
 i 
 

MANAGEMENT OF PSOROPTES IN FREE RANGING BIGHORN SHEEP 

 

A Thesis Submitted to the  

College of Graduate and Postdoctoral Studies 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Large Animal Clinical Sciences 

University of Saskatchewan 

Saskatoon 

 

 

 

 

By 

 

Adam M. Hering 

 

 

 

 

 

© Copyright Adam M. Hering, April 2020. All rights reserved. 



 i 
 

PERMISSION TO USE 

 

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection. I further agree that permission for copying of this 

thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by 

the professor or professors who supervised my thesis/dissertation work or, in their absence, by 

the Head of the Department or the Dean of the College in which my thesis work was done. It is 

understood that any copying or publication or use of this thesis/dissertation or parts thereof for 

financial gain shall not be allowed without my written permission. It is also understood that due 

recognition shall be given to me and to the University of Saskatchewan in any scholarly use 

which may be made of any material in my thesis/dissertation. 

 

 

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in 

whole or part should be addressed to: 

 

 Department Head 

 Large Animal Clinical Sciences 

 Western College of Veterinary Medicine 

 University of Saskatchewan 

 Saskatoon, Saskatchewan (S7N 5B4) Canada 

 

 OR 

 

 Dean 

 College of Graduate and Postdoctoral Studies 

 University of Saskatchewan 

 116 Thorvaldson Building, 110 Science Place 

 Saskatoon, Saskatchewan  S7N 5C9  Canada 



 ii 
 

DISCLAIMER 

 

Reference in this thesis to any specific commercial products, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 

recommendation, or favoring by the University of Saskatchewan. The views and opinions of the 

author expressed herein do not state or reflect those of the University of Saskatchewan and shall 

not be used for advertising or product endorsement purposes. 

  



 iii 
 

ABSTRACT 

The overall objective of this thesis is to address gaps in knowledge and provide tools that 

will aid in the management of the psoroptic mange outbreak in bighorn sheep (Ovis canadensis) 

of the Okanagan region of Canada. A multi-pronged approach was taken including outbreak 

investigation, development of disease detection tools, investigation of treatment options, and 

finally review of management action approaches. Based on comparison of Psoroptes morphology 

and mitochondrial gene sequencing, the most likely source of the outbreak was determined to be 

a cross-species transmission event from rabbits. This transmission likely occurred on the 

Okanagan Game Farm, closed in 1999, and therefore new exogenous sources of disease in the 

area are unlikely. A commercially available enzyme linked immunosorbent assay (ELISA) 

marketed for Psoroptes detection in domestic sheep was optimized for use with bighorn sheep 

serum with a test sensitivity of 98.7% and specificity of 94.0%. A treatment trial conducted on 

Psoroptes-infested Canadian bighorn sheep found that both the injection of extended-release 

eprinomectin and topical application of fluralaner were unsuccessful in eliminating mite 

infestations; meanwhile, orally administered fluralaner cleared the infestations and greatly 

improved clinical signs following a single treatment when used at either 5mg/kg or 25mg/kg 

dosages. The fence and handling systems used in the treatment trial for housing and control of 

bighorn sheep movement were reviewed and critical weaknesses in design and construction were 

identified to address a gap in literature on bighorn sheep fencing requirements. The complexity of 

population-level application of new knowledge often involves ongoing uncertainty leading to 

delays in management action. While Psoroptes has rarely been managed in wild sheep, 

respiratory disease has received considerably more attention. Interviews conducted with 13 

wildlife professionals involved in the management of bighorn sheep respiratory disease were 

used to help identify common challenges and opportunities in the management of North 

American bighorn sheep. Investigation of strategies aimed at preventing pathogen introduction 

into naïve herds is essential before eradication efforts can be considered. A more systematic 

approach to addressing sources of disease introduction is a necessary step in the development of 

management options for both respiratory disease and Psoroptes. Four main types of barriers that 

impede management action were identified; social and political challenges, resource limitations, 

knowledge barriers, and physical/landscape barriers. Some of these are beyond the control of 

wildlife managers while strategies to address others are discussed. Increased attention to the 



 iv 
 

human dimensions of wildlife management and the application of an adaptive management 

approach is needed. The tools developed throughout this thesis and the lessons learned through 

these interviews are valuable resources for wildlife managers to use when engaging stakeholders 

in developing an adaptive management plan for Psoroptes in British Columbia.   



 v 
 

ACKNOWLEDGEMENTS 

My immense gratitude goes to my supervisors Dr Murray Woodbury who has stuck by 

me through thick and thin and who I always knew had my back, and Dr. Tasha Epp who has 

endured countless versions of the manuscripts you see here and guided me to find the value in the 

chaos. Thanks also to my graduate committee Drs. Helen Schwantje, Todd Shury and Brett Elkin, 

who have been some of the best mentors an aspiring wildlife veterinarian could hope for. Thanks 

to all of their instruction, mentorship, and support, this program has provided a variety of 

opportunities and skills that I could have only dreamed of when this adventure began.  

I’d like to acknowledge the University of Saskatchewan and the Interprovincial Graduate 

Student Fellowship that provided much of the funding and support for me to complete this work.  

Thank you to the many funding bodies that made this research possible including the Western 

College of Veterinary Medicine AFIF Specialized Livestock Research Chair funds, the 

Government of British Columbia, the Habitat Conservation Trust Fund of British Columbia, The 

Guide Outfitters Association of British Columbia, The Wild Sheep Society of BC, and The Wild 

Sheep Foundation.  

Many parts of this research were collaborative efforts and I am grateful for the 

opportunity to work alongside my research partners in the government of British Columbia and 

the Penticton Indian Band; especially the biologists who helped navigate the sometimes 

treacherous path of wildlife research including Craig McLean, Aaron Reid, Cailyn Glasser, James 

Pepper, and Andrew Walker. Thanks also to the Walker family who invited me into their home 

and made me feel like family throughout my many visits to Penticton.  Thanks to John Taylor, 

Robert Burke, Terry Pearson, Steve Pearlman, and Rebecca Hoff at the University of Victoria 

who generously provided lab space and access to equipment that allowed me to complete this 

research from a distance.  

This project would not have been possible without the countless hours that were 

volunteered by wildlife enthusiasts of all ages, cultures, and backgrounds. A special thanks to 

Brad and Alisa Siemens, Gary and Carole Warren, Vanessa Gonzales, Brody Armstrong, Ellen 

Simmons, and Meagan Raison who went above and beyond to ensure that our captive bighorn 

sheep remained fed, watered, and adequately cared for throughout their time in captivity. 

Finally, thanks my loving family, especially my wife Kaitlin, my mom Karen and my dad 

Abe, who have motivated me, helped build the pens, handle the animals, kept me fed and sane, 



 vi 
 

and edited this manuscript. Their endless support and years of encouragement kept me going and 

helped me enjoy my time along the way!  

  



 vii 
 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to the animals who temporarily gave their freedom to make this project 

possible and to all those who generously gave their time, resources, energy and passion to this 

project. Your generosity and enthusiasm inspire me to continue working to protect this planet and 

all of its inhabitants. 

  



 viii 
 

TABLE OF CONTENTS 

PERMISSION TO USE ..................................................................................................................... I 

DISCLAIMER II 

ABSTRACT III 

ACKNOWLEDGEMENTS .............................................................................................................V 

DEDICATION VII 

TABLE OF CONTENTS ............................................................................................................. VIII 

LIST OF TABLES ........................................................................................................................ XIII 

LIST OF FIGURES ...................................................................................................................... XIV 

 

CHAPTER 1: OVERVIEW OF BIGHORN SHEEP DISEASE MANAGEMENT IN 

NORTH AMERICA ......................................................................................................................... 1 

1.1 CANADIAN BIGHORN SHEEP .............................................................................................. 1 

1.2 OVERVIEW OF PSOROPTIC MANGE .................................................................................... 2 

1.3 OVERVIEW OF BIGHORN SHEEP RESPIRATORY DISEASE ................................................... 7 

1.4 OVERVIEW OF WILDLIFE DISEASE MANAGEMENT .......................................................... 10 

1.5 OBJECTIVES OF RESEARCH .............................................................................................. 12 

1.6 LITERATURE CITED ......................................................................................................... 12 

 

CHAPTER 2: TRACEBACK OF THE PSOROPTES OUTBREAK IN BRITISH 

COLUMBIAN BIGHORN SHEEP (OVIS CANADENSIS) ........................................................... 20 

2.1 INTRODUCTION ................................................................................................................ 20 

2.2 MATERIALS AND METHODS............................................................................................. 22 

2.2.1 SOURCES OF MITE ISOLATES 22 

2.2.2 MORPHOLOGIC INSPECTION AND MORPHOMETRIC SETAE MEASUREMENT 23 

2.2.3 DNA EXTRACTION 24 

2.2.4 PRIMERS AND PCR CONDITIONS 24 

2.2.5 PHYLOGENETIC ANALYSIS 25 

2.3 RESULTS .......................................................................................................................... 25 

2.3.1 SAMPLES ANALYZED 25 

2.3.2 CYTOCHROME B SEQUENCING 26 



 ix 
 

2.3.3 CYTOCHROME C OXIDASE SUBUNIT I SEQUENCING RESULTS 27 

2.4 DISCUSSION ..................................................................................................................... 27 

2.5 CONCLUSION ................................................................................................................... 29 

2.6 ACKNOWLEDGEMENTS .................................................................................................... 31 

2.7 LITERATURE CITED ......................................................................................................... 31 

 

CHAPTER 3: ADAPTATION AND OPTIMIZATION OF A COMMERCIAL SERO-

DIAGNOSTIC TOOL FOR DETECTION AND MONITORING OF PSOROPTIC 

MANGE IN BIGHORN SHEEP (OVIS CANADENSIS) ................................................................ 39 

3.1 INTRODUCTION ................................................................................................................ 39 

3.2 MATERIALS AND METHODS............................................................................................. 40 

3.2.1 STUDY POPULATION 40 

3.2.2 ELISA OPTIMIZATION 43 

3.2.3 ELISA TEST PROTOCOL 43 

3.2.4 ASSAY ANALYSIS 44 

3.3 RESULTS .......................................................................................................................... 45 

3.3.1 ELISA OPTIMIZATION 45 

3.3.2 ELISA TEST PERFORMANCE ON ARCHIVED SERUM 45 

3.3.3 ANTIBODY RESPONSE TO DEVELOPING PSOROPTES INFESTATIONS IN LAMBS 45 

3.3.4 ANTIBODY RESPONSE BEFORE AND ONE MONTH AFTER TREATMENT 46 

3.3.5 ELISA RESULTS IN A HERD OF UNKNOWN INFESTATION STATUS 46 

3.4 DISCUSSION ..................................................................................................................... 46 

3.4.1 TEST SENSITIVITY AND SPECIFICITY 46 

3.4.2 SEROCONVERSION IN NEWBORN LAMBS AND TREATED ANIMALS 47 

3.4.3 HERD LEVEL DIAGNOSTICS 48 

3.5 CONCLUSION ................................................................................................................... 49 

3.6 ACKNOWLEDGEMENTS .................................................................................................... 49 

3.7 LITERATURE CITED .......................................................................................................... 49 

 

CHAPTER 4: EVALUATION OF THREE FENCING DESIGNS FOR PREVENTION 

OF BIGHORN SHEEP (OVIS CANADENSIS) MOVEMENT ...................................................... 57 

4.1 INTRODUCTION ................................................................................................................ 57 



 x 
 

4.2 MATERIALS AND METHODS............................................................................................. 58 

4.2.1 STUDY ANIMALS 58 

4.2.2 STUDY ENCLOSURE 59 

4.2.3 FENCING EFFICACY EVALUATION 60 

4.3 RESULTS .......................................................................................................................... 61 

4.3.1 ANIMAL-HOURS OBSERVED BY MOTION ACTIVATED CAMERAS 61 

4.3.2 DESCRIPTION OF FREE RANGING SHEEP VISITATIONS 62 

4.3.3 DESCRIPTION OF FENCE LINE BREACHING EVENTS 62 

4.4 DISCUSSION ..................................................................................................................... 62 

4.5 CONCLUSIONS ................................................................................................................. 64 

4.6 ACKNOWLEDGEMENTS .................................................................................................... 64 

4.7 LITERATURE CITED ......................................................................................................... 64 

 

CHAPTER 5: ASSESSMENT OF NOVEL TREATMENT OPTIONS FOR THE 

MANAGEMENT OF PSOROPTIC MANGE IN FREE RANGING BIGHORN SHEEP 

(OVIS CANADENSIS) .................................................................................................................... 72 

5.1 INTRODUCTION ................................................................................................................ 72 

5.2 MATERIALS AND METHODS............................................................................................. 73 

5.2.1 STUDY ANIMALS 73 

5.2.2 SAMPLING AND TREATMENTS 74 

5.2.3 RANDOMIZATION AND ALLOCATION OF TREATMENT GROUP 76 

5.2.4 HUSBANDRY 76 

5.2.5 MICROSCOPIC PARASITE EVALUATION 77 

5.2.6 SUBJECTIVE CLINICAL LESION SEVERITY 77 

5.2.7 STATISTICAL ANALYSIS 77 

5.3 RESULTS .......................................................................................................................... 78 

5.3.1 LIVE MITE PRESENCE 78 

5.3.2 CLINICAL EAR LESION SCORES 78 

5.3.3 MORTALITIES 79 

5.4 DISCUSSION ..................................................................................................................... 79 

5.5 CONCLUSION ................................................................................................................... 82 

5.6 ACKNOWLEDGEMENTS .................................................................................................... 82 



 xi 
 

5.7 LITERATURE CITED ......................................................................................................... 82 

 

CHAPTER 6: THE USE OF ADAPTIVE MANAGEMENT IN WILD SHEEP 

RESPIRATORY DISEASE AND PSOROPTIC MANGE MANAGEMENT IN NORTH 

AMERICA 91 

6.1 DISCLAIMER .................................................................................................................... 91 

6.2 INTRODUCTION ................................................................................................................ 91 

6.3 MATERIALS AND METHODS............................................................................................. 93 

6.3.1 RESPIRATORY DISEASE AND THE DMV 94 

6.3.2 STUDY POPULATION 94 

6.3.3 STUDY DESIGN 95 

6.3.4 INTERVIEW EVALUATION 96 

6.4 RESULTS .......................................................................................................................... 97 

6.4.1 OVERVIEW 97 

6.4.2 PREVENTION ACTIONS 97 

6.4.3 CONTROL VERSUS ERADICATION ACTIONS 100 

6.4.4 DO-NOTHING 101 

6.4.5 INTENTIONAL USE OF ADAPTIVE MANAGEMENT 104 

6.4.6 THE CHALLENGES NOT ADDRESSED BY THE DMV 109 

6.5 DISCUSSION ................................................................................................................... 109 

6.5.1 BARRIERS 111 

6.5.2 ADAPTIVE MANAGEMENT AND HUMAN DIMENSIONS 113 

6.5.3 STAKEHOLDER INVOLVEMENT 113 

6.5.4 DEFINED OBJECTIVES, MULTIPLE ACTIONS, AND EXPLICIT EXPERIMENTATION 115 

6.5.5 PREDICTION OF CONSEQUENCES, SPECIFICATION OF CONSTRAINTS, AND 

ACKNOWLEDGMENT OF UNCERTAINTY 116 

6.5.6 MONITORING 117 

6.5.7 ACTIVE LEARNING EMPHASIS 118 

6.6 RECOMMENDATIONS FOR THE DMV ............................................................................. 118 

6.7 RECOMMENDATIONS FOR ADAPTIVE MANAGEMENT OF PSOROPTIC MANGE ................ 120 

6.8 CONCLUSIONS ............................................................................................................... 122 

6.9 LITERATURE CITED ....................................................................................................... 124 



 xii 
 

CHAPTER 7: DEVELOPMENT OF TOOLS AND INFORMATION FOR THE 

ADAPTIVE MANAGEMENT OF PSOROPTES IN CANADIAN BIGHORN SHEEP 

(OVIS CANADENSIS) .................................................................................................................. 132 

 INTRODUCTION .............................................................................................................. 132 

 RESULTS AND DISCUSSION ............................................................................................ 133 

 CONCLUSION ................................................................................................................. 140 

 LITERATURE CITED ....................................................................................................... 142 

 

APPENDIX A: CYTOCHROME B SEQUENCES .................................................................................. 144 

APPENDIX B: CYTOCHROME OXIDASE 1 SEQUENCES .................................................................... 145 

 

  



 xiii 
 

LIST OF TABLES 

Table 2-1: Herd and host origin of mites inspected, and DNA successfully sequenced. % 

mites with both OOS measured = the proportion of mites for which measurement of 

the outer opisthosomal setae (OOS) was possible from both the left and right OOS 

of the mite in which case the longer of the two was included in data analysis. Cyt B 

= number of pools of mites for which the cytochrome B (Cyt B) mitochondrial gene 

was successfully sequenced (where each pool represents multiple mites from a 

single host), COI = number of pools of mites for which the cytochrome oxidase 

subunit 1 (COI) mitochondrial gene was successfully sequenced (where each pool 

represents multiple mites from a single host. ..................................................................... 34 

Table 2-2: Genetic Similarity between Psoroptes mites of differing host origins including 

samples collected from Canadian Bighorn sheep (CAN BHS), American bighorn 

sheep (USA BHS), North Canadian pet rabbits (Rabbit), and a published GenBank 

sequence for P. cuniculi ..................................................................................................... 35 

Table 3-1: LilliTest sheep scab ELISA optical densities (OD) relative to the negative 

control (NC). Samples include archived serum from bighorn sheep of known 

Psoroptes exposure status, developing lamb infestations, treated/resolving 

infestations, and samples from two Hells Canyon herds of unknown infestation 

status. .................................................................................................................................. 52 

Table 4-1: Number of animal-hours observed by each motion activated camera during each 

time period along the perimeter fence of each pen. NA = incomplete camera data 

during this period of time. WWF = 2.9m woven wire fence, EF = 1.4m electric 

fence ................................................................................................................................... 67 

Table 5-1: Number of bighorn sheep in each treatment group with live mites found in their 

otic exudate. ....................................................................................................................... 85 

Table 6-1: Primary management challenges identified during interviews and their 

consideration in the DMV strategy. ................................................................................. 129 

 

  



 xiv 
 

LIST OF FIGURES 

Figure 1-1: The focus of the chapters of this thesis in addressing the steps of disease 

management and intervention ............................................................................................ 19 

Figure 2-1: Characteristic long segmented peduncle (blue circle) that differentiates the 

genus of Psoroptes spp. from other psoroptidae that have relatively short 

unsegmented peduncles. ..................................................................................................... 36 

Figure 2-2: (a) Micrograph of a characteristic opisthosomal lobe of a USA bighorn mites. 

The photographed mite was collected from a bighorn sheep in the Hells Canyon 

metapopulation. Note the more prominent outer opisthosomal lobe edge (orange 

circle) and broad base to the OOS (red arrow) (b) Micrograph of a characteristic 

opisthosomal lobe of BC bighorn and rabbit origin mites. This mite was collected 

from a bighorn in the Okanagan region of BC. Note the less distinct outer 

opisthosomal edge (orange circle) and the relatively less prominent base of the OOS 

(red arrow). ......................................................................................................................... 37 

Figure 2-3: Distribution of outer opisthosomal setae (OOS) lengths of Psoroptes mites 

collected from rabbits (labelled Rabbit), USA bighorn sheep (labelled BHS_USA), 

and Canada-outbreak associated bighorn sheep (labelled BHS_CAN). Each is 

marked with the province or state of host origin. Horizontal lines represent median 

OOS of each host grouping. ............................................................................................... 38 

Figure 3-1: LilliTest Sheep Scab ELISA optical densities (OD450nm) of serially diluted  

pooled positive (PC) and negative (NC) serum at multiple antigen concentrations. ......... 53 

Figure 3-2: LilliTest Sheep Scab ELISA optical density (OD) scores divided by the 

negative control optical density (NC) of the ELISA plate.  Negative control (NC) 

adjusted optical density distributions of each sample group and the group mean are 

displayed............................................................................................................................. 54 

Figure 3-3: LilliTest Sheep Scab ELISA test sensitivity and specificity at different optical 

density (OD) cutoffs relative to the negative control pooed serum. Green arrow 

indicates optimal cutoff. ..................................................................................................... 55 

Figure 3-4: Progression of LilliTest Sheep Scab ELISA optical density (OD) scores in 

newborn lambs in the face of developing Psoroptes infestations. Optical density 

scores are divided by the mean plate negative control to adjust for inter-plate 

variability. Each colour represents one lamb’s OD score change over time...................... 56 

Figure 4-1: Visual depiction of the two enclosures, associated terrain, camera locations and 

the location of the electric fence breaching events. ........................................................... 68 

Figure 4-2: Size measurements of the woven wire fencing used in construction of the 

research pens. left = 20-strand construction, Right = 17-strand construction. Photo 

credit – modified from: (Tree Island Steel) ........................................................................ 69 

Figure 4-3: Corners create critical breakdowns of the horizontal component of three-

dimensional fencing structures. .......................................................................................... 70 

file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800050
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800050
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800052
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800052


 xv 
 

Figure 4-4: Cumulative incidence of free ranging bighorn sheep visitation to captive 

bighorn sheep pens over six months of observation. Bars represent one week of 

observation. EF = electric fence, WWF = woven wire fence. Green shading denotes 

the period of bighorn sheep rut. ......................................................................................... 70 

Figure 4-5: Time of day of visits made by free ranging bighorn sheep to captive bighorn 

sheep pens over six months of observation. Background colours indicate 

approximate daylight hours (yellow) and nighttime hours (blue) ...................................... 71 

Figure 5-1: Bighorn sheep Psoroptes treatment trial study timeline depicting treatment 

timing and location/co-housing  of study animals. EST = Eprinomectin single 

treatment, EDT = Eprinomectin double treatment, SC = saline control, FHO = 

Fluralaner high-dose oral, FLO = fluralaner low-dose oral, FHT = Fluralaner high-

dose topical, FLT = Fluralaner low-dose topical ............................................................... 86 

Figure 5-2: Examples of ear lesion severity scores. (A) Grade 0 (non-infested) or 1 (lesions 

restricted to ear canal) depending upon otoscopic findings, (B) Grade 2- lower 1/3rd 

of auricle affected, (C) Grade 3- lower 2/3rd of auricle affected, (D) Grade 4- entire 

auricle affected ................................................................................................................... 87 

Figure 5-3: Individual and average ear lesion severity scores of bighorn sheep following 

different treatments. Treatment groups include: Injectable extended-release 

eprinomectin delivered once (EST) or twice (EDT), saline control (SC), topical 

fluralaner administered at 5mg/kg (LT) and 10mg/kg (HT), oral fluralaner 

administered at 5mg/kg (LO) and 25mg/kg (HO). Results of HO treatment of 

animals previously treated with eprinomectin or topical fluralaner are marked in red 

(FHO-all). The arrow indicates the date of second eprinomectin treatment for the 

EDT group. ......................................................................................................................... 88 

Figure 5-4: Characteristic resolution of clinical signs following treatment with high dose 

(25mg/kg) oral fluralaner (FHO) (A1) The right ear of animal #19 at the time of 

treatment (A2) the same ear one month after treatment. .................................................... 89 

Figure 5-5: Improvement of the ear lesion of one characteristic Psoroptes-infested bighorn 

sheep over the course of three months  following a single treatment with oral 

fluralaner at a dosage of 25 mg/kg (FHO). ........................................................................ 90 

Figure 6-1: Respiratory disease management considerations identified by thematic analysis 

of interviews divided into the four wildlife disease management strategies. Where 

no action is being taken, the major groups of barriers to action presented are listed. ..... 130 

Figure 6-2: Major barriers to action identified through thematic analysis revealed four 

common groups, each suited to different methods of approach. ...................................... 131 

  

file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800055
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800055
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800055
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800055
file://///Users/adamhering/Dropbox/Grad%20School/Writing/Thesis%20drafts/Hering%20Thesis%20Final.docx%23_Toc38800055


 1 
 

CHAPTER 1:  OVERVIEW OF BIGHORN SHEEP DISEASE 

MANAGEMENT IN NORTH AMERICA 

1.1 Canadian Bighorn Sheep 

Bighorn sheep (Ovis canadensis) are a highly prized, charismatic species of mountain 

ungulate found throughout the western portions of North America ranging from southern British 

Columbia and Alberta in the north down to Mexico in the south (Buechner 1960). The division of 

the species into different subspecies throughout their range has been debated in the literature but 

the three subspecies that are currently recognized are California bighorn sheep (O. c. 

californiana), Desert bighorn sheep (O. c. nelsoni), and Rocky Mountain bighorn sheep (O. c. 

canadensis)  (Wehausen and Ramey 2005; Buchalski et al. 2016). Some Canadian biologists 

refer to bighorn sheep in the southern interior of British Columbia as California bighorn sheep 

(O. c. californiana), but according to morphometric and genetic evidence all Canadian bighorn 

sheep are Rocky Mountain bighorn sheep (O. c. canadensis) (Demarchi 2004; Wehausen and 

Ramey 2005).  

Bighorn sheep are cherished for their aesthetic value by wildlife enthusiasts of all types. 

Okanagan First Nation folklore relates to bighorn sheep as beloved relatives that look out for the 

needs of their human cousins; wildlife observers revel at their agility on rocky escape terrain and 

impressive sparring during the rut; and hunters revere them for their impressive and beautiful 

curled horns and the remote terrain in which they are found. All are concerned with their 

conservation and determined to ensure their ongoing presence on the North American mountain 

landscape. Despite this prized position in North American culture bighorn sheep have 

experienced dramatic declines in both range and abundance since the European colonization of 

western North America. It is estimated that populations once numbered in the one to two million 

range prior to European colonization and decreased to the low tens of thousands in the early 

1900s as a result of overharvesting and the introduction of exotic disease with domestic sheep  

(Buechner 1960). Since the 1960s, conservation efforts have been successful in enabling bighorn 

populations to rebound back to the current estimates of over eighty five thousand animals (Wild 

Sheep Foundation 2017).   Although numerous stakeholder groups place high value on bighorn 
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sheep, it is usually rooted in different cultural contexts and consequently it is not surprising that 

perspectives and opinions on bighorn management are divergent and difficult to reconcile.  

The field of wildlife management aims to identify, understand, modify, prevent, or 

counteract the circumstances that contribute to population declines. Numerous factors drive these 

population trends as a result of anthropogenic and environmental influences including habitat 

destruction, hunting, predation, competition for forage, and wildlife disease (Miller et al. 2012). 

Two such diseases of significance to Canadian bighorn sheep are psoroptic mange and respiratory 

disease. Both of these diseases are thought to have been transplanted to North America with 

domestic sheep and both have caused severe population declines in at least some of the affected 

bighorn populations (Sweatman 1958; Buechner 1960; Miller et al. 2012).  

Management of diseases in wildlife must be done from an epidemiologic point of view, 

considering both individual animal-level factors and broader population-level factors. The 

objective of this thesis is to provide tools and understanding for the management of wildlife 

disease in Canadian bighorn sheep. This thesis primarily focuses on aspects of psoroptic mange 

that require further clarity for management of this disease in Canada and addresses key gaps in 

knowledge. Due to a lack of management activity directed at Psoroptes in North American 

bighorn sheep, the final chapter of this thesis pertaining to the use and implementation of the 

adaptive management approach, focuses on efforts currently directed at respiratory disease 

management in bighorn sheep. Discussion of these findings is carried out with regard to their 

relevance to respiratory disease management as well as important lessons to be applied in the 

development of Psoroptes management plans in the future.   

1.2 Overview of Psoroptic Mange 

Mites of the genus Psoroptes are a non-burrowing, ectoparasitic, mange-causing mite 

known to parasitize numerous domestic and wild mammalian hosts including horses, sheep, 

goats, cattle, rabbits, deer, wapiti, water buffalo and bighorn sheep (Sweatman 1958; Zahler et al. 

1998; Bates 1999; Zahler et al. 2000; Amer et al. 2015). The mite has been found throughout 

Europe as well as on hosts in New Zealand, USA, Canada, Mexico, Egypt, South Africa, Uganda 

and Chile (Zahler et al. 1998; Zahler et al. 2000; Pegler et al. 2005; Amer et al. 2015). 

Infestations are highly contagious between conspecific hosts (Bates 1999; Pegler et al. 2005) and 

affected animals generally exhibit highly pruritic, exudative, alopecic lesions, however 

subclinical infestations also occur (Bates 1996; Bates 1999). Lesions tend to localize to the ears 
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of species such as rabbits, bighorn sheep, and goats, while they tend to be generalized in other 

host species including domestic sheep, equids, and cattle (Zahler et al. 2000; OIE 2013). 

Psoroptes infestations pose an important welfare threat and have significant economic 

ramifications when present in domestic populations (Losson 2012a; Amer et al. 2015). The 

disease was the focus of intensive management resulting in Psoroptes eradication from domestic 

species in some countries including Australia, New Zealand, Canada and the USA, while 

eradication efforts in other countries continue to be unsuccessful (van den Broek and Huntley 

2003). Despite the eradication from domestic sheep in North America, Psoroptes has been 

documented in select American bighorn sheep populations throughout the 19th and 20th centuries, 

and in some cases, it has been associated with significant population declines (Boyce and 

Weisenberger 2005; Miller et al. 2012). 

The lifecycle of Psoroptes spp. was meticulously described by Sweatman in order to 

elucidate potential differences between them (1958). The lifecycle takes place entirely on the host 

and involves five life stages; egg, larva, protonymph, deutonymph, and adult (Sweatman 1958). 

Male and female mites are indistinguishable at the egg and larval stages after which time sexual 

dimorphism develops. Female deutonymphs and adults are referred to as pubescent females and 

ovigerous females respectively. Psoroptes mites are barely visible to the naked eye, ranging in 

size from almost 200um at the egg stage to about 550um in body length for adult males and about 

750um in body length for ovigerous females excluding their setae or legs (Sweatman 1958).   

The time required for Psoroptes to complete its lifecycle is heavily dependent on 

environmental conditions, specifically temperature and humidity, but under optimal conditions 

the egg to egg lifecycle is reported to take between 14 and 21 days, with each life stage taking 

longer under suboptimal conditions (Sweatman 1958). Meanwhile, off the host, mites can survive 

and retain infectivity for a period of up to 15 days under realistically simulated environmental 

conditions (O’Brien et al. 1994). The key distinguishing attribute of the Psoroptes genus is the 

presence of a relatively long, segmented caruncle (sucker) at the end of the first, second, and 

fourth legs of adult females and the first, second, and third legs of adult males, where other 

genera in the psoroptidae family have short unsegmented caruncles (Sweatman 1958; Pegler et al. 

2005; Wall and Kolbe 2006). It is only in the mature male life stage that species differentiation 

based on phenotypic characteristics was considered possible. Species identification was 

performed by measuring the length of a hair-like structure on the male opisthosomal lobe called 
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the outer opisthosomal setae (OOS) from numerous male mites and calculating the average OOS 

length in a population.  However, wide ranges of OOS length were reported within each proposed 

species and significant overlaps in published OOS ranges of each species often made 

differentiation challenging and sometimes uncertain (Sweatman 1958; Zahler et al. 1998; Bates 

1999; Zahler et al. 2000). The division of the Psoroptes genus into species has been the topic of 

much discussion and debate since it was first described by Viborg in 1813 (Zahler et al. 1998; 

Bates 1999; Zahler et al. 2000; Wall and Kolbe 2006; OIE 2013; Amer et al. 2015; OConnor and 

Klimov 2015).  

The genus was historically divided into between 5 and 9 different species based on host 

preference, and site of infestation on the host, with the OOS length used as the main 

distinguishing morphological criterion between them (Sweatman 1958; Pegler et al. 2005). The 

validity of these distinctions has been thoroughly explored since the original Sweatman 

description because cross infection trials indicate that host specificity is not absolute (Wright et 

al. 1981; Foreyt 1997). Furthermore, mites originating from different host species, categorized as 

different mite species based on OOS length, were able to interbreed to produce viable, fertile 

offspring capable of colonizing either of the originating host species demonstrating a lack of 

“reproductive isolation” between the species (Wright et al. 1983). Pegler et al (2005) proposed 

that the morphologic differences observed may be a result of phenotypic plasticity or the ability 

of strains of mites to adapt to their primary host thus disputing the validity of the species 

differentiation based on OOS length. Despite this species unification, cross infection trials of 

mites found on different host species are only sometimes successful and unique mite variants 

have been shown to exhibit dissimilar properties including virulence or rate of lesion 

development when infesting a particular host (Wright et al. 1981; Bates 1999). The reasons for 

differences in mite virulence, host susceptibility and infestation severity remain unclear (Zahler et 

al. 2000; Siegfried et al. 2004; Sarre et al. 2015).   

With the rise of polymerase chain reaction (PCR) and DNA sequencing technologies, 

molecular techniques have increasingly been applied to clarify questions around Psoroptes 

taxonomy (Gu et al. 2014). DNA sequence analyses have been performed on DNA microsatellite 

markers, mitochondrial DNA and ribosomal DNA of Psoroptes mites from different host species 

and parts of the world (Ochs et al. 1999; Evans et al. 2003; Wang et al. 2012; Gu et al. 2014; 

Amer et al. 2015; Juan et al. 2015; OConnor and Klimov 2015). Variation observed in these 
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regions do not always correspond to the host from which the mites were obtained and thus 

molecular studies generally further support the assertion that the distinction  between disparate 

species of mites based on host origin is invalid (Zahler et al. 1998; Ochs et al. 1999; Pegler et al. 

2005). According to some authors, Psoroptes natalensis, found on water buffalo in South Africa, 

may be an exception as it shows enough consistent genetic divergence from the strains of 

Psoroptes found in most hosts worldwide, to justify categorization as a unique species (Wang et 

al. 2012; Amer et al. 2015). P. natalensis also shows morphologic variation in that the OOS of 

most Psoroptes strains are narrow and hair-like, while the OOS of P. natalensis is flattened or 

“spatulated” (Sweatman 1958; Amer et al. 2015). Nevertheless, with the possible exception of P. 

natalensis, Psoroptes is currently regarded as a single genotypically and morphologically diverse 

species united under the first described name, Psoroptes ovis, also referred to as Psoroptes spp.  

(Wall and Kolbe 2006; OIE 2013) and will therefore be referred to as simply Psoroptes 

throughout this dissertation.  

Treatment and eradication of Psoroptes mites require a strategic and coordinated effort 

due to numerous problematic characteristics of the disease. Therapeutic measures must be applied 

to all members of a population simultaneously in order to interrupt the infection cycle because 

animals do not develop immunity following treatment. Many drugs have no residual activity, and 

some have no effect on the mite eggs, necessitating multiple sequential treatments (Ortega-Mora 

et al. 1998; O’Brien 1999).  Some previously relied upon treatments contained organochlorines 

such as dichlorodiphenyltrichloroethane (DDT) and benzene hexachloride (BHC) which had this 

desirable residual activity but were found to be highly toxic to the environment and to exposed 

humans prompting their restriction (O’Brien 1999; van den Broek and Huntley 2003).  

Due to its global nature and profound impact on domestic species, Psoroptes has been the 

subject of a substantial amount of research in domestic species; however, significantly less 

attention has been paid to its impact and management in bighorn sheep.  In Canada in particular, 

the impact of psoroptic mange in bighorn sheep is a new consideration. Psoroptic mange has been 

documented in bighorn sheep throughout much of their American range including Arizona, 

California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Washington and 

Wyoming, dating back to the mid 1800s in some cases (Lange et al. 1980; Welsh and Bunch 

1983; Foreyt et al. 1990; Muschenheim et al. 1990; Mazet et al. 1992; Miller et al. 2012). Reports 

of Canadian bighorn sheep with mange-like symptoms were first received by government 
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biologists in 2003 and Psoroptes was officially identified in 2011 (Reid 2011; Scott et al. 2013). 

Variable effects have been observed in Psoroptes infested US bighorn populations ranging from 

persistent and undulating infestations with minimal effects on herd abundance (Foreyt et al. 1990; 

Muschenheim et al. 1990) to large scale population declines and at least one near-extirpation 

event (Lange et al. 1980; Foreyt et al. 1990; Boyce and Weisenberger 2005).   

The effects of Psoroptes can be difficult to identify because infestation alone is rarely a 

direct cause of death, and yet infestation may increase the risk of death by predation through 

hearing loss (Norrix et al. 1995). Therefore, even when population declines are closely associated 

with Psoroptes outbreaks, managers may be reluctant to call the parasite the "cause” of decline. 

Nonetheless, it is clear that Psoroptes is a negative contributor to the cumulative effects that drive 

population trends (Miller et al. 2012). More holistic conceptual models of causation are useful in 

this regard. While Psoroptes infestation is not likely to independently result in death in bighorn 

sheep, it increases the likelihood of mortality, particularly in combination with other factors, and 

should therefore be considered at least a “component-cause” in population declines. The reason 

for the wide variability in observed population level effects of Psoroptes in bighorn sheep 

remains uncertain; however, it is clear that the appearance of this disease in BC has been 

associated with a significant decline in the affected population while comparable nearby 

unaffected herds are not experiencing the same population reductions (Reid 2013a). Possible 

theories to explain the variable outcomes observed include differences in host susceptibility or 

underlying health, predator abundance, mite strain virulence, environmental conditions, or some 

combination of these factors.   

Inconsistency in treatment efficacy, cost and risk of wildlife capture, and minimal long 

term benefits make the decision to undertake wildlife treatment using currently available methods 

difficult to justify (Kinzer et al. 1983; van den Broek and Huntley 2003; Lekimme et al. 2010). 

The challenging logistics of herd-wide capture and treatment, especially in situations of 

interconnected metapopulations with broader home ranges, adds further challenge to management 

of this disease in wildlife. The recent discovery of macrocytic lactone resistance in Psoroptes 

collected from domestic sheep in the UK adds to the necessity of discriminate use of 

anthelmintics and provides additional incentive for the investigation of new antiparasitic drugs 

and approaches to Psoroptes treatment in Ovidae (Doherty et al. 2018).   
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Research into field-worthy treatment approaches for Psoroptes in bighorn sheep has been 

attempted with mixed success. Strategies attempted include ivermectin medicated feed (Foreyt 

1993), ivermectin sustained release implants (Boyce et al. 1992), 5% coumaphos dustbags 

suspended over salt licks (Lange et al. 1980), aimtraz-impregnated collars, and cyfluthrin 

impregnated ear tags (Bleich et al. 2015). Despite these varied approaches, the only report of a 

successful Psoroptes eradication effort in free ranging bighorn sheep occurred in the San Andres 

Mountains of New Mexico between 1999-2002 (Boyce and Weisenberger 2005).  The San 

Andres Mountain population dwindled to a single individual who was caught and treated for her 

Psoroptes infestation. After using a radio-collared sentinel ram to confirm that no other infected 

sheep were in the area, the sole survivor was re-released and the population was augmented. 

Numerous gaps in knowledge regarding Psoroptes in Canadian bighorns need attention before 

meaningful management action can be considered. To ameliorate these gaps in knowledge, this 

thesis aims to: 

- improve understanding of the source of the Canadian Psoroptes outbreak,  

- improve detection of potential subclinical carriers in bighorn sheep,  

- and provide additional preliminary investigation into wildlife-appropriate treatment 

options for this parasite.  

1.3 Overview of Bighorn Sheep Respiratory Disease 

Unlike Psoroptes, respiratory disease is a well-documented, well-researched, and well-

accepted driver of population decline in bighorn sheep herds throughout both the United States 

and Canada (Besser, Highland, et al. 2012; Kuzyk et al. 2012; Besser et al. 2013; Plowright et al. 

2013; WAFWA Wild Sheep Working Group 2017). Respiratory disease has been blamed for 175 

separate epizootic mortality incidents in bighorn sheep populations between 1970 and 2014 

(WAFWA, 2017). It has affected 17 of the 20 regions in North America that harbour bighorn 

sheep and resulted in the loss of over 14,000 adult bighorn sheep individuals (WAFWA, 2017).  

Respiratory disease refers to a contagious pneumonia affecting bighorn sheep at the 

population level and is considered to be one of the most important factors affecting bighorn sheep 

populations across North America (Cassirer and Sinclair 2007; Brewer et al. 2014). Respiratory 

disease epizootics in bighorn sheep are characterized by all-age mortality events followed by 

years or decades of enzootic pneumonia in lambs resulting in poor lamb recruitment and long 

term population declines (Besser et al. 2012). Outbreaks have been associated with a variety of 
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pathogens such as Mycoplasma ovipneumoniae and several Pasteurellaceae, including 

Pasteurella multocida, Mannheimia haemolytica, and Bibersteinia trehalosi (Besser et al. 2012).  

Current research suggests that while pneumonia infections are frequently polymicrobial in nature, 

Mycoplasma ovipneumoniae is the key predisposing factor (Besser et al. 2012). In the absence of 

M. ovipneumoniae, pneumonia related mortalities may occur but epizootic die-offs and chronic 

poor lamb recruitment will not (Besser et al. 2013; Butler et al. 2018).  

These pathogens are directly transmitted between hosts through contact or aerosol 

transmission (Besser et al. 2014). The management of respiratory disease in bighorn sheep is 

complicated by the fact that domestic sheep and goats act as asymptomatic reservoir hosts for 

these pathogens (Besser et al. 2012) and therefore human movement of domestic sheep can 

introduce profound risk to naïve bighorn sheep in an area. Supportive and preventative care for 

bighorn sheep including vaccination, mineral supplementation, anthelmintic treatment, and 

supplemental feeding have been relatively ineffective in changing the outcome for  pneumonia-

affected bighorn sheep (Wood et al. 2017; Cassirer et al. 2018).  While the theory that puts M. 

ovipneumoniae at the center of attention is not accepted by all wildlife professionals, almost all 

agree that domestic sheep and goats constitute a significant risk to wild sheep populations (Butler 

et al. 2017; Drew and Weiser 2017; Wood et al. 2017). Controversy remains over whether M. 

ovipneumoniae  is present in wildlife outside of the Caprinae subfamily (Highland et al. 2018) 

and this doubt regarding the major potential routes of disease exposure for wild sheep may delay 

action aimed at reducing the risk that domestic sheep and goats pose.  

Progress regarding the role of M. ovipneumoniae in the epidemiology of respiratory 

disease outbreaks has enabled new pathogen-specific research and management approaches 

aimed specifically at detecting and eradicating M. ovipneumoniae in domestic and wild sheep 

populations. It is currently thought that M. ovipneumoniae persists in a population via chronically 

shedding bighorns that survived the initial epizootic mortality events and that these individuals 

perpetuate disease outbreaks in wild herds year after year (Plowright et al. 2017; Cassirer et al. 

2018; Garwood 2018). This information, in combination with the discovery that serologic 

exposure to M. ovipneumoniae (assessed via antibody detection) is far more common than 

detection of M. ovipneumoniae bacteria (via PCR) suggests that not all M. ovipneumoniae 

exposed animals act as maintenance hosts to perpetuate infection in affected herds (Cassirer et al. 

2018). This picture is further complicated by the fact that some animals shed the bacteria 
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intermittently and it is unclear whether those “intermittent shedders” maintain infection and only 

shed the bacteria intermittently or if they are reinfected by other persistently infected animals 

before shedding again (Plowright et al. 2017). If only a subset of animals, the ”chronic shedders”, 

act as maintenance hosts and they can be detected and removed from a population, it is 

hypothesized that M. ovipneumoniae and the associated lamb die-off cycle could be interrupted 

and eliminated from a population without necessitating a complete herd depopulation. This 

strategy has been implemented in South Dakota, where one of the first test and cull programs 

directed at M. ovipneumoniae eradication was carried out (Garwood 2018).  

South Dakota’s M. ovipneumoniae test and cull program involved the capture and GPS 

collaring of every single animal in a herd, with a target of three capture and test events per animal 

within one year in order to detect all intermittent shedders. Animals that produced positive PCR 

test results at all capture events were removed from the population.  Initial effects include 

improved lamb recruitment rates (Garwood 2018). Because of the necessary logistics, this 

approach is only feasible for small isolated herds in highly accessible terrain and is expensive on 

a per-animal basis. Nevertheless, this presents a promising new management option for the 

control and elimination of respiratory disease caused epizootic mortality events in some 

populations and a similar operation is planned in a M. ovipneumoniae positive herd of bighorn 

sheep in British Columbia.  

As a result of a relative lack of success achieved in the management of respiratory disease 

in wild bighorn sheep populations, the Wild Sheep Working Group (WSWG) of the Western 

Association of Fish and Wildlife Agencies (WAFWA) established the Wild Sheep Disease 

Management Venture (DMV) in 2015. The DMV aims to “assist jurisdictions to evaluate, 

validate and implement adaptive management actions that may prevent infection, clear pathogens 

and improve herd performance” (WAFWA, 2016). The lack of management success with this 

disease despite an abundance of research and attention devoted to this topic is a testament to the 

obstacles that wildlife disease management encounters. Respiratory disease management in 

bighorn sheep also exemplifies a situation where the challenge of wildlife disease management 

extends beyond understanding the natural sciences and spills over into the social sciences. The 

role that private citizens can play in driving this disease complex in bighorn sheep necessitates an 

appreciation and understanding of the multi-faceted human dimensions of wildlife management. 

This thesis therefore does not intend to expand the body of knowledge on the natural sciences 
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aspects of respiratory disease. Rather it investigates the difficulties faced in implementing 

management action for respiratory disease across North America. In doing so, this thesis hopes to 

gain further insight into the process of wildlife disease management and highlight important 

challenges and lessons that will improve the effective use of wildlife disease knowledge for 

respiratory disease and other comparable wildlife diseases.      

1.4 Overview of Wildlife Disease Management 

While basic principles of wildlife disease management are often conserved across 

diseases, species, or locations, each wildlife disease management situation involves a unique set 

of challenges as a result of the particular conditions in which that disease occurs (Nishi et al. 

2004). These circumstances are the product of what is known as the epidemiological triad. Made 

up of the host, the pathogen, and the environment, the triad represents the understanding that 

numerous factors interact to create the circumstances in which disease occurs. The effect of any 

disease must be considered with reference to the context in which it exists and is not necessarily 

consistent in impact between different herds (Dohoo et al. 2003). This lesson is important in 

considering why Psoroptes may have different impacts on different bighorn populations, or why 

interventions that are successful in mitigating the effects of respiratory disease in one herd may 

be impossible or ineffective in another.  The term “environment” should be considered more 

broadly than the immediate ecosystem in which an animal or population lives to consider the 

larger system in which wildlife disease management must operate. This includes the human and 

social factors that must be considered when attempting wildlife disease management as well. 

Interventions must be specific to each location, often requiring adaptation, implementation, and 

evaluation of management knowledge at a population specific level.  

Wildlife management in Canada is guided by a set of seven core principles collectively 

referred to as the “North American Model of Wildlife Conservation” (Organ et al. 2001). These 

are:  

1) Wildlife resources are a public trust 

2) Markets for game are eliminated 

3) Allocation of wildlife is by law 

4) Wildlife can be killed only for a legitimate purpose 

5) Wildlife is considered an international resource 

6) Science is the proper tool to discharge wildlife policy 
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7) Democracy of hunting is standard 

Under this model, the care of wildlife is the responsibility of provincial and federal 

agencies on behalf of the public interest, and the decision to undertake action as well as the 

selection of which actions to take are based in decisions that must be driven by science and social 

factors (Organ et al. 2001). The decision to undertake action aimed at addressing an issue of 

disease in a wildlife population is therefore driven by public interest and conservation.  In this 

setting, the management of disease in wildlife is generally carried out for one of three reasons; 

zoonotic risk of a wildlife disease resulting in human health implications, impact of the wildlife 

disease on domestic livestock resulting in economic implications; or the impact of disease on a 

wildlife population with its own intrinsic value (Wobeser 2002).  

Management of disease in wildlife is an iterative process where research and intervention 

take place continuously throughout the progression from disease outbreak investigation to disease 

stabilization or eradication. It involves a diverse range of fields from mathematical modelling to 

the philosophical and sociological study of human behaviour (Delahay et al. 2009).  While the 

vast diversity within these topics is beyond the scope of any single piece of work, modern 

wildlife disease management plans must consider all these aspects in order to be strategic and 

effective in defining and achieving their goals. Wildlife disease management is made challenging 

by the circumstances in which the disease occurs with regard to both the natural sciences and 

epidemiologic aspects, and the social sciences and human dimensions complications (Delahay et 

al. 2009). Each management challenge is therefore unique to the area in which it is being applied.  

Initially, it is often useful to consider infectious disease management and response with 

reference to a set of standardized steps that must take place in order to effectively manage a 

disease outbreak. These steps, described as response interventions by the World Health 

Organization are: anticipation, early detection, containment, control and mitigation, and 

elimination or eradication (World Health Organization 2018). The broad range of knowledge 

encompassed by these topics necessitates the involvement of numerous experts and many years 

of work in the development of wildlife health knowledge and in the development and 

implementation of wildlife disease management plans. While the pursuit of this wildlife health 

knowledge can be a never-ending process, limited resources and time sensitive constraints such 

as declining populations often force managers to take action despite ongoing uncertainty (Chadès 

et al. 2017). In order to address the need for continued learning and research while 
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simultaneously initiating management action, the concept of adaptive management has been 

proposed. Adaptive management involves the intentional structuring of management action in 

such a manner as to allow wildlife managers to compare the effects of different management 

actions and the ability of those action to achieve predetermined management goals (Enck et al. 

2006; Lauber and Decker 2012). This allows the act of wildlife management to also be a tool for 

learning. In the final chapters of this thesis the utility of an adaptive management approach to the 

management of respiratory disease in bighorn sheep is investigated and important barriers and 

lessons to be learned from its implementation that can be applied to comparable wildlife disease 

scenarios, in this case the Canadian Psoroptes outbreak, are discussed.   

1.5 Objectives of Research 

This thesis aims to address key gaps in knowledge necessary for the management of 

psoroptic mange in Canadian bighorn sheep and uses lessons learned through a review of 

respiratory disease management to provide suggestions for the development of Psoroptes 

management plans. The discussion proceeds through the steps of outbreak management focusing 

on the natural science components in need of attention for Psoroptes including determining the 

outbreak source, validating detection tools, addressing gaps in literature around bighorn sheep 

movement control, evaluating new treatment options and investigation into social science aspects 

of bighorn sheep management. Figure 1.1 outlines the research questions addressed in these five 

primary research chapters as they relate to important gaps in knowledge for effective wildlife 

disease management. 

 Through this exploration of the steps of disease management and intervention, this thesis 

aspires to be a useful and applicable resource for wildlife managers in their efforts to mitigate the 

effects of these diseases and promote conservation of this iconic species in North America.  
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Figure 1-1: The focus of the chapters of this thesis in addressing the steps of disease management 

and intervention 

Anticipation

•Chapter 2: Traceback of the Psoroptes outbreak in British Columbian bighorn sheep (Ovis 
canadensis)

•This chapter aims to clarifying the source of Psoroptes in BC bighorn to help understand key 
risk factors and anticipate threats for future outbreaks.

Early 
detection

•Chapter 3: Adaptation and optimization of a commercial sero-diagnostic tool for detection 
and monitoring of psoroptic mange in bighorn sheep (Ovis canadensis)

•This chapter optimizes and validates the use of a highly sensitive and specific serology-based 
test for rapid and early detection of Psoroptes infestation in bighorn sheep. 

Containment

•Chapter 4: Evaluation of three fencing designs for prevention of bighorn sheep (Ovis 
canadensis) movement 

•This chapter adds to the limited pool of published literature on the effectiveness of fence 
designs for prevention of bighorn sheep movement and contact across fencelines. Physical 
barriers like fences are important tools for containment of infectious disease. 

Control and 
Mitigation

•Chapter 5: Assessment of novel treatment options for the management of psoroptic mange in 
free ranging bighorn sheep (Ovis canadensis)

•This chapter explores the potential for Psoroptes control and mitigation through treatment 
options that are suitabilie for application in a wildlife context.

Elimination or 
Eradication

•Chapter 6: The use of adaptive management in wild sheep respiratory disease and Psoroptes
management in North America 

•This chapter explores the implementation of adaptive disease management plans throughout 
north america aimed at the entire management cycle from anticipation to disease elimination. 
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CHAPTER 2:  TRACEBACK OF THE PSOROPTES OUTBREAK IN 

BIGHORN SHEEP (OVIS CANADENSIS) IN BRITISH COLUMBIA 

The research described in chapter 2 investigates the source of the Psoroptes outbreak in 

Canadian bighorn sheep. Determining the source of the outbreak is an essential piece of 

information for wildlife managers before proceeding to management action for this parasite. This 

manuscript is intended for submission to the International Journal for Parasitology: Parasites 

and Wildlife. 

 

Hering conducted all morphologic and morphometric data collection and analysis. Chilton and 

his lab completed the DNA sequencing and collaborated with Hering in the design and 

interpretation of the genetic component of this study.   

 

2.1 Introduction 

Psoroptic mange, caused by non-burrowing mites of the genus Psoroptes, is a newly 

recognized disease in British Columbia (BC) bighorn sheep. While the disease has been reported 

in bighorn sheep populations in the United States dating back throughout the late 19th and 20th 

century (Lange et al. 1980), its presence had not been documented in Canadian herds before it 

was identified in 2011 (Harper et al. 2002; Scott et al. 2013). The outbreak of Psoroptes in 

Canadian bighorn sheep was first detected in the Similkameen region of southern BC within 

approximately 50 km of the USA border and was identified in the corresponding Sinlahekin 

population of bighorn sheep in Washington state in 2013 (Scott et al. 2013; Harris et al. 2018). 

Declines of up to 40% of the affected Canadian herds have been observed and declines are 

suspected in Washington state as well (Reid 2013a; Harris et al. 2018). The appearance of 

Psoroptes in this transborder metapopulation of bighorn sheep has puzzled biologists because it 

is not known to be connected with other American bighorn populations through any natural 

migratory routes.  It is separated from the closest known Psoroptes infested bighorn herds by 

over 250 kilometers and several large water ways, making natural ram dispersal an unlikely 

source of introduction (Cassirer 2005; Borg et al. 2017; Harris et al. 2018). Identifying the source 

of the Psoroptes outbreak in this bighorn sheep population is an essential step in the management 
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of this disease that will enable managers from BC and throughout North America to improve 

understanding of Psoroptes transmission and mitigate risk of disease outbreak in naïve herds.  

Prior to European colonization in North America, local First Nations had not observed 

psoroptic mange in bighorn sheep (Buechner 1960). It was postulated that Psoroptes was brought 

to North America on infested domestic sheep in the 1800s and that the parasites were transmitted 

to wild sheep through contact between the two species (Sweatman 1958; Buechner 1960).  By the 

late 1800s to early 1900s, severe infestations had been observed in bighorn sheep populations 

from California to Oregon and Wyoming. In the late 1800s, high bighorn herd range contiguity in 

the western portions of the United States combined with persistence of the parasite in domestic 

sheep likely facilitated Psoroptes transmission throughout much of the bighorn range. By 1960, 

large scale population declines led to range contraction and large areas of bighorn extirpation 

(Buechner 1960; Borg et al. 2017).  

In 1973 Psoroptes was eradicated from domestic sheep in the United States (van den 

Broek and Huntley 2003), and this, combined with bighorn sheep habitat fragmentation likely 

slowed the spread of Psoroptes. Efforts to recover and re-establish the historical range of bighorn 

sheep through translocations and reintroductions were well underway and despite attempts to 

treat Psoroptes infested animals used in translocations, these human-assisted animal movements 

were a cause of at least some of the continued spread of the disease (Foreyt et al. 1990). This 

challenge has been largely rectified since that time by the implementation of standardized herd 

health assessment protocols for source stock used in bighorn translocation events (Western 

Association of Fish & Wildlife Agencies - Wildlife Health Committee 2015).  

While Psoroptes was considered eradicated from Canadian domestic sheep in 1924 (van 

den Broek and Huntley 2003), it continues to be observed parasitizing other host species such as 

pet rabbits in Canada. It was once believed that different species of Psoroptes infested different 

hosts with Psoroptes ovis infesting sheep while rabbits were infested with Psoroptes cuniculi 

(Sweatman 1958). The parasites that were found on bighorn sheep throughout the USA matched 

the morphologic description of Psoroptes ovis (Boyce et al. 1990). In recent years, taxonomic re-

examination challenged the previously held belief of heterospecificity of Psoroptes mites (Zahler 

et al. 2000; Pegler et al. 2005). Psoroptes species identification was traditionally done on the 

basis of host species, location of infestation on the host, and measurement of the outer 

opisthosomal setae length of the adult male Psoroptes mite (Sweatman 1958). However, some 
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cross-species infestation trials have demonstrated mite transmission between host species as well 

as interbreeding of mites previously categorized as heterospecific, supporting the taxonomic 

amalgamation of the Psoroptes species (Bates 1999). Genetic evaluation of Psoroptes mites from 

different hosts and locations using common genetic targets has included investigation of 

microsatellite markers, the second internal transcriber sequence of the rDNA gene (ITS2), and the 

mitochondrial gene cytochrome oxidase subunit I (COI) (Zahler et al. 1998; Evans et al. 2003; 

Pegler et al. 2005; Amer et al. 2015; Juan et al. 2015). This molecular work has provided 

additional support for the conspecificity of these mites. While no clear rules on the molecular 

differentiation of species exist, most authors agree that all mites of the Psoroptes genus with the 

possible exception of Psoroptes natalensis in water buffalo (Amer et al. 2015) should be unified 

under the name of priority, Psoroptes ovis. It is common in the literature to refer to them simply 

by the genus name Psoroptes and they will therefore be referred to as such throughout this work 

(Zahler et al. 1998; Ochs et al. 1999; Evans et al. 2003; Pegler et al. 2005; Juan et al. 2015; 

OConnor and Klimov 2015). While results from cross-species transmission studies are 

inconsistent, the possibility that Canadian bighorn sheep could have been exposed to the mite 

from another Psoroptes susceptible host species such as rabbit, horse, or deer (Wright et al. 1983; 

Bates 1999) is a necessary consideration.  

In this study, Psoroptes mites collected from the BC bighorn sheep, were compared with 

Psoroptes mites collected from domestic rabbits, and from wild bighorn sheep throughout the 

USA. The relatedness of these different mite populations was investigated using molecular and 

morphometric data to identify the likely source of the BC bighorn sheep Psoroptes outbreak.  

2.2 Materials and Methods 

2.2.1 Sources of Mite Isolates 

Mite samples (n=4) were collected from the ears of naturally infested bighorn sheep of the 

Penticton Indian Band herd of British Columbia (BC) that were captured for the treatment trial in 

2017 (Chapter 5). Two additional samples associated with this outbreak were collected from 

animals found dead in the Sinlahekin herd of the USA, just south of the Canada-USA border 

(Harris et al. 2018). Rabbit samples (n=3) were collected from privately owned domestic rabbits 

in 2018 and 2019 in Edmonton, AB (n=1) and Maple Ridge, BC (n=1), and an archived 

Psoroptes sample from a rabbit host (1988) was obtained from the Wyoming State Veterinary 

Lab; however, no location of origin was available for this sample. Samples from endemic bighorn 
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Psoroptes infestations were opportunistically collected from naturally infested bighorn sheep in 

Nevada (n=2), Oregon (n=2), and Idaho (n=5) during routine wildlife captures and mortality 

investigations between 2007 and 2019. Unfortunately, mites collected from the Asotin herd of the 

Hells Canyon metapopulation in the southeastern portion of Washington State (the closest 

previously known Psoroptes infested herd in the USA) were available in extremely limited 

quantities, were highly desiccated, and DNA replication attempts were therefore unsuccessful. As 

a result, mites from this herd were not used in analysis; however, 3 of the Idaho samples, and 

both of the Oregon samples were obtained from other herds that are part of the Hells Canyon 

metapopulation and it is therefore presumed that these mites would be highly similar.   

Throughout the analysis mites were grouped based on geographic location and species of 

origin with one group composed of mites collected from Canadian and Sinlahekin (USA) bighorn 

sheep, a second group composed of mites collected from the remaining USA bighorn sheep, and 

a third group composed of mites collected from rabbit hosts. Morphologic, morphometric and 

molecular comparisons investigated differences within and between these groups.  

Psoroptes mites were collected by extracting cerumen and hyperkeratotic skin crusting 

from the ear lesions and within ear canals of the host using cotton tipped swabs or forceps. 

Samples were then stored dry or in ethanol until they could be transported for inspection, mite 

isolation, and analysis. Mites were extricated from the cerumen and crust under a stereoscopic 

dissecting microscope and identified as Psoroptes based on the presence of cone shaped suckers 

(pulvilli) on the end of their characteristically long jointed pretarsi (peduncles) (Sweatman 1958; 

Bates 1999; Pegler et al. 2005; Amer et al. 2015) (Figure 2-1).   

2.2.2 Morphologic Inspection and Morphometric Setae Measurement 

Subsamples of adult male mites were removed from each sample, placed on a microscope 

slide, flattened with a cover slide and examined under a computer and camera-enabled compound 

microscope. Micrographs of the opisthosomal lobes and setae were taken under 25x and 40x 

magnification and the 4th setae, known as the outer opisthosomal setae (OOS), was measured 

using the free-hand measurement tool, in the SPOT Basic Image Capture software (SPOT 

Imaging) following calibration using a standardized 0.01m stage micrometer. 

When visible and intact, both the left and right OOS were measured from each mite and 

the longer of the two measurements was used in data analysis. In cases where one of the OOS 

was broken or not able to be distinguished from the other opisthosomal setae microscopically, the 
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remaining OOS was used in data analysis. Outer opisthosomal setae lengths were analyzed using 

a Kruskal-Wallis non-parametric test to compare OOS lengths between individuals and between 

populations and a Dunn’s multiple comparison test was used for post-hoc pairwise comparisons. 

All statistics were completed in R Studio (Version 1.1.423 – © 2009-2018 RStudio, Inc) using 

the FSA: Fisheries Stock Analysis R package for the Dunn’s test (Ogle et al. 2019).  

2.2.3 DNA Extraction 

Pooled samples of 20 or more mites from a single host (when available) were placed in 

uniquely identified vials in 60% ethanol for DNA extraction, replication and sequencing. DNA 

was extracted from each of the pooled groups of mites without homogenization using the DNeasy 

tissue kitTM (Qiagen) following the method described by Dergousoff and Chilton (2007). Briefly, 

pools of mites were removed from the ethanol, and combined with 180 µl of ATL Buffer 

(Qiagen), 20 µl of Proteinase K (15µg/µl) and left to incubate overnight at 55oC. Next, 200µl of 

AL buffer (Qiagen) was added and the sample was vortexed and incubated at 70oC for 10 

minutes. Two hundred microliters of ethanol (100%) was then added and the solution was passed 

through a spin column. Rinsing was performed using wash buffers AW1 and AW2 (Qiagen), and 

the DNA was eluted with 100 µl AE buffer (Qiagen) and stored at -70 oC until PCR could be 

completed. 

2.2.4 Primers and PCR Conditions 

The mitochondrial gene cytochrome oxidase subunit I (COI) was amplified using primers 

COF14 (5’- GGTCAACAAATCATAAAGATATTGG-3’), and COR72 (5’-

TAAACTTCAGGGTGACCAAAAAATC-3’) (Wang et al. 2012).  The COI PCR was performed 

in 25 l volumes containing 200M of dNTP (Bio-Rad), 3mM MgCl2, 0.75M of each primer, 

1.25U DNA polymerase (Phusion HotStart II), 5l 5X Buffer Phusion Green HF buffer, 17.1l 

H2O, and 1L of template DNA using a thermocycler with the following conditions: 95C for 5 

min (initial denaturation), 35 cycles of 95C for 1 min (denaturation), 40C for 1 min (annealing), 

and 72C for 30s (extension); followed by 72C for 5 min (final extension). Negative control (i.e. 

no gDNA template) samples were included in each set of PCRs. 

The mitochondrial gene cytochrome B (Cyt B) was amplified using the forward primer 

(5’-TGTGAGAATAACTCCAATTCTAG -3'), and reverse primer (5’-

GGTGAAAGATACTACCCCACT-3') which were designed for this study based on previously 
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published mitochondrial sequences (Gu et al. 2014). The Cyt B PCR was performed in 25l 

volumes containing 200M of each dNTP (Bio-Rad), 1.5mM MgCl2, 0.75M of each primer, 

1.25U DNA Phusion High-Fidelity DNA polymerase, 5l 5X Buffer Phusion Green HF buffer, 

15.9l H2O, and 2 L of template DNA using a thermocycler with the following conditions: 

98C for 30s (initial denaturation), 35 cycles of 98C for 10s (denaturation), 50C for 30s 

(annealing), and 72C for 1 min (extension); followed by 72C for 5 min (final extension). 

Negative control (i.e. no gDNA template) samples were included in each set of PCRs. 

Amplicons (5l) were subjected to 1.5% agarose gel electrophoresis. All amplicons of the 

expected size were purified (as described by Krakowetz et al. 2014) prior to automated DNA 

sequencing using the same primers used for the PCR (i.e., in separate reactions).  

2.2.5 Phylogenetic Analysis  

Sequences were manually aligned and compared with the previously published sequence 

of Psoroptes cuniculi mitochondrial DNA on GenBank (accession number KJ957822) (Gu et al. 

2014). Comparison was performed in a pairwise manner to highlight the similarities and 

differences between sequences. Percent sequence similarity (S) was calculated between the 

different mite samples using the formula S=M/L where M is the number of alignment positions a 

base is shared between two alignments, and L is the number of alignment positions compared 

(Dergousoff and Chilton 2007). DNA sequences were translated into amino acid sequences using 

the invertebrate mitochondrial genetic code  

2.3 Results 

2.3.1 Samples Analyzed 

Morphometric analysis was performed on subsamples from the same host for which DNA 

sequencing was successful except for two samples where no DNA sequence was obtained. 

Sequence data was also obtained for another three samples for which morphometric examination 

was not performed.  Morphologic inspection and morphometric measurements were performed 

on a total of 131 mites collected from 17 different host animals. A total of 22 DNA sequences (13 

CytB and 9 COI) were obtained from 15 unique hosts. The make-up of these samples and 

sequences are summarized in Table 2-1 below.  

The USA bighorn mites had opisthosomal lobes containing three prominent opisthosomal 

setae (2nd or inner, 3rd or middle, and 4th or outer) with a well-defined angle at the outer edge of 
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the opisthosomal lobe (Figure 2-2a) while mites from Canadian bighorn sheep and rabbit hosts 

both had consistently less prominent OOS, and a less distinct outer opisthosomal lobe edge 

(figure 2-2b). The USA bighorn origin mite OOS lengths had a median of 150m (range = 

114m -193m), Canadian bighorn mite OOS lengths had a median of 81m (range = 62m -

101m) and rabbit mite OOS lengths had a median of 85m (range = 57m -142m) (Figure 2-

3). Kruskal-Wallis analysis for differences in the OOS length of the mites matched the 

morphologic observations of the opisthosomal lobe shape.  Outer opisthosomal setae lengths 

were significantly different between the different host group (i.e. rabbit vs. Canadian bighorn, vs 

USA bighorn) (Kruskal-Wallis chi-squared = 96.04, df = 2, P<0.001). Post-hoc testing using a 

Dunn’s test for pairwise comparison found that Canadian bighorn sheep mites were not 

significantly different from rabbit mites (p=0.28) but were significantly different from USA 

bighorn mites (p<0.001). Similarly, rabbit mites were also significantly different than USA 

bighorn mites (p<0.001).   

When blocked by host animal rather than host group, the null hypothesis was also rejected 

(Kruskal-Wallis chi-squared = 104.33, df = 16, P<0.001). Pairwise comparisons using the Dunn’s 

test revealed no significant differences between the different individuals within any of the three 

host groups. Pairwise comparisons between individuals of the Canadian host group with the other 

two host groups found 1 out of 15 pairwise comparisons with rabbit hosts that were significantly 

different, and 43 out of 48 pairwise comparisons with the USA bighorn mites that were 

significantly different. All five of the pairwise comparisons that were not significantly different 

between Canadian and USA bighorn sheep involved the sample “BHS_CAN6-WA” for which 

only one male mite was present in the sample.    

2.3.2 Cytochrome B sequencing 

DNA sequencing of Cyt B (341 bp) was successful for 13 different samples (Table 2-1), 

encompassing all three mite host groups. Analysis was performed over a 307 BP section which 

was complete for 12/13 recovered sequences. Complete (100%) similarity was observed among 

the four Canadian bighorn samples and also among the seven USA bighorn samples.  A single 

base pair substitution was observed between the sequences of the two rabbit origin samples. 

Seven point mutations made up of four purine transitions, one pyrimidine transition, and two 

transversions were discovered between the USA and Canadian bighorn samples (97.7% 

homology). These nucleotide differences corresponded to one mutational difference in the amino 
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acid sequence. Two samples of rabbit origin were successfully sequenced, one of which was 

100% similar to the Canadian bighorn sequences, and the second contained one pyrimidine 

transition (99.7% homology) resulting in an amino acid substitution (Appendix 1).  

Comparison of the Canadian Cyt B sequence with the published Psoroptes cuniculi 

sequence on GenBank (Accession # KJ957822, collected from an infested New Zealand white 

rabbit in China) reveals 12 point mutations (96.1% homology) including three purine transitions, 

six pyrimidine transitions, and four transversions (Gu et al. 2014). These corresponded to three 

differences in amino acid sequence. Comparison of the same published sequence with the USA 

bighorn sequence revealed thirteen nucleotide mutations representing three purine transitions, six 

pyrimidine transitions, four transversions, and four mutations in amino acid sequences. Percent 

similarity of haplotypes of mites from different host origins is displayed in Table 2-2.  

2.3.3 Cytochrome C oxidase subunit I Sequencing Results 

DNA sequences were successfully acquired from 9 different samples (Table 2-1), 

including two Canadian bighorn samples and 7 USA bighorn samples. None of the rabbit origin 

samples were successfully sequenced at this locus. A maximum of 660 base pairs were sequenced 

however most samples produced only partial sequences. Analysis was performed over a 305 BP 

section which was complete for 8/9 recovered sequences. Similarity was 99.7% within the 

Canadian bighorn and USA bighorn groups with each displaying one silent pyrimidine transition 

within their groups. Between groups, nine point mutations were found (97.0% similarity) made 

up of four pyrimidine transitions, four purine transitions, and one transversion resulting in two 

amino acid substitutions. Comparison with the published amino acid sequence of “Psoroptes 

cuniculi” from Gu et al. (2014), revealed seven point mutations composed of four purine 

transitions and three pyrimidine transitions, resulting in one amino acid substitution relative to 

the sequence of Psoroptes from Canadian bighorn.  When comparing this P. cuniculi sequence to 

the USA bighorn sequences at this locus ten point mutations were observed, composed of four 

purine transitions, five pyrimidine transitions and one transversion resulting in three amino acid 

substitutions (Appendix 2). No deletions, insertions or changes resulting in non-sense mutations 

were observed in any sequences.  

2.4 Discussion 

Evidence of two genetically and phenotypically separate groups of mites was apparent 

based on the morphologic, morphometric and molecular analyses. The distinctly different shape 
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of the opisthosomal lobes and the different lengths of OOS of the Canadian bighorn and rabbit 

samples relative to the USA bighorn samples shows a clear distinction between these two groups. 

These different phenotypes were reported by Boyce et al (1990) who found that mites collected 

from bighorn hosts had slightly longer “length of lateral margin of opisthosomal knob” than 

mites collected from rabbit hosts as well as significantly longer OOS lengths. The Canadian 

bighorn outbreak is the first report of mites that resemble the rabbit phenotype causing natural 

infestation in a bighorn sheep population. Despite the small number of rabbit mites that were 

successfully sequenced, the very high percent similarity found between the Canadian bighorn 

sheep and rabbit mites relative to the USA bighorn samples adds important supportive evidence. 

It shows that these differences are the result of shared ancestry between the mites of rabbits and 

those found on Canadian bighorn sheep rather than the possibility of convergent evolution of this 

phenotype. This indicates that the mite infestation that is present within the Canadian bighorn 

herds did not come from a disease spillover event originating from nearby infested bighorn 

populations in the USA, but rather it likely represents a species barrier jump where the ecotype 

that is generally found on rabbits began to infest bighorn sheep.  

Samples of wild rabbits or hares from BC were solicited for this study to assess Psoroptes 

infestation level and perform morphometric and molecular comparisons but no samples could be 

located. While Psoroptes is known to survive in the environment for a period of 10-14 days, and 

therefore cross-species transmission events are theoretically possible without direct contact 

between rabbits and wild bighorn sheep; it begs the questions of why there, and why then? A 

look at the history of the area reveals a likely possibility in the form of a wildlife park that was 

located in the area called the Okanagan Game Farm.  

In 1999, twelve years prior to the official detection of Psoroptes in Canadian bighorns, the 

Okanagan Game Farm, located in what is now considered the epicenter of the Psoroptes 

outbreak, closed (Horton 2007). The facility held a number of exotic and native species. Among 

them was a herd of bighorn sheep from locally caught and imported stock from the USA (C. 

Lacey, personal communication, January 22, 2016). The facility also had a domestic rabbit 

colony used for feeding the carnivores which was reported to be infested with mites and not 

treated but rather heavily infested animals were euthanized for feed (H. Schwantje, personal 

communication, June 20, 2019). At the time of closure, bighorn sheep were captured and 

individually inspected by provincial and federal veterinarians for export to a variety of captive 
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and free ranging locations in the USA, at which time none of the sheep showed clinical 

symptoms of Psoroptes infestation (H. Schwantje, personal communication, June 20, 2019). A 

game farm employee, as well as a private veterinarian who did work for the game farm, reported 

inspecting and unsuccessfully treating bighorn sheep for mange-like symptoms during its 

operation (C. Lacey, personal communication, January 22, 2016; D. Ward, June 17, 2019). The 

etiologic cause of those symptoms was never confirmed.   

It is unclear whether the infestation started in the Okanagan Game Farm or whether 

imported animals brought the infestation with them but according to Lacey’s old notes, the 

outbreak began with two symptomatic bighorn sheep in 1991, many years after the opening of the 

park, and continued until the park shut down in 1999 (C. Lacey, personal communication, 

January 22, 2016). Additionally, the absence of reports of the rabbit ecotype of Psoroptes 

infesting bighorn sheep elsewhere suggests that the infestation was likely not introduced by 

infested source stock at the founding of the Okanagan Game Farm bighorn population (Boyce et 

al. 1990). This captive situation would have artificially put bighorn sheep in close proximity to 

infested rabbits and could have been a prime opportunity for the disease transfer from rabbits to 

bighorn sheep through contaminated equipment, feed, or direct contact between the animals.  

While the bighorn sheep were reportedly asymptomatic at the time of the Okanagan Game 

Farm closure, and were sent to USA collections and not released, it is reported that during its 

operation bighorn sheep did escape the confines of the Okanagan Game Farm and founded the 

“Kruger Hill Subpopulation” (Harper et al. 2002). Thus it seems highly likely that the Okanagan 

Game Farm facilitated a host-species jump by bringing these host-species in unnaturally close 

proximity, creating an opportunity for direct or indirect transmission. These bighorn sheep 

escapees would then have been the likely source of Psoroptes infestation in the free-ranging 

Canadian bighorn herds, though it is unclear why there was such a long period of time between 

this disease introduction and the detection of disease in surrounding bighorn populations. It is 

possible that relative separation of bighorn herds and infrequent inter-herd migrations contributed 

to the slow spread of the infestation during this time. 

2.5 Conclusion 

Improved understanding of the source of the Canadian Psoroptes outbreak is important 

for wildlife managers to be able to mitigate the risk of new Psoroptes outbreaks in bighorn sheep. 

The findings presented here show strong evidence that the Psoroptes mites infesting BC bighorn 
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sheep did not move into Canada through natural bighorn movement from other infested bighorn 

populations but rather, they likely crossed the species barrier from rabbits. Based on the history, 

it seems likely that this species jump was facilitated by artificial housing conditions in the 

Okanagan Game Farm and may still be unlikely to occur in free ranging situations. The 

difference in these mite strains may be a reason why Canadian bighorn populations have been 

more severely impacted by Psoroptes than many American bighorn populations are; however, a 

population decline was caused in New Mexico by mites matching the USA Psoroptes 

descriptions as well, so mite strain differences are unlikely to fully explain the variability 

observed in the population-level impacts of this disease (Boyce et al. 1990).  

These findings also provide an important timeline for when Psoroptes may have first been 

introduced to Canadian bighorn sheep, which is important for traceback and impact analysis.  For 

example, Bighorn sheep were transplanted from the Keremeos area of BC (now endemic with 

Psoroptes) into the Okanagan Mountain Park (outside of the current Psoroptes infested area) in 

2007, before the confirmation of the Psoroptes outbreak in the Okanagan, but after its 

introduction (Reid 2012). While Psoroptes has not been reported in the Okanagan Mountain Park 

animals at this time, continued monitoring of those animals as well as serological testing for 

exposure would be worthwhile to ensure that Psoroptes was not translocated with any of those 

animals in 2007.  

This study provides a real-world example of the lack of host specificity of the Psoroptes 

mite that has been reported in cross-infection trials (Wright et al. 1983; Bates 1999). It is the first 

report of a natural infestation of bighorn sheep with mites that are morphologically and 

genetically associated with rabbits (formerly known as Psoroptes cuniculi). It raises questions 

about the potential for difference in the virulence of this strain of Psoroptes mites when infesting 

bighorn sheep. It also suggests that further assessment of the Psoroptes infestation status of other 

competent host species in the Okanagan area such as rabbits, elk, deer, or horses is worthwhile if 

a bighorn sheep Psoroptes eradication effort is to be entertained. Finally, this outbreak 

demonstrates the necessity of further research into several key areas that could have helped 

prevent the outbreak in the first place. These include improved detection of disease (Chapter 3), 

improved treatment of Psoroptes in bighorn sheep that could have been used while they were still 

in captivity (chapter 5), or improved fencing and enclosure design to prevent accidental escapes 
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of captive bighorn sheep (Chapter 4). These gaps in knowledge are addressed throughout this 

thesis.  
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Host origin Morphologic and Morphometric Sample Size DNA Sample Size 

# of mites 

inspected 

# hosts 

represented 

% mites with both 

OOS measured 

Cyt B COI 

USA bighorn  67 8 82% 7 7 

Can bighorn 49 6 96% 4 2 

Rabbit 15 3 80% 2 0 

Total  131 21 86% 13 9 

Table 2-1: Herd and host origin of mites inspected, and DNA successfully sequenced. % mites 

with both OOS measured = the proportion of mites for which measurement of the outer 

opisthosomal setae (OOS) was possible from both the left and right OOS of the mite in which 

case the longer of the two was included in data analysis. Cyt B = number of pools of mites for 

which the cytochrome B (Cyt B) mitochondrial gene was successfully sequenced (where each 

pool represents multiple mites from a single host), COI = number of pools of mites for which the 

cytochrome oxidase subunit 1 (COI) mitochondrial gene was successfully sequenced (where each 

pool represents multiple mites from a single host. 
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 Cytochrome B Cytochrome c oxidase subunit I 

Base pair  

Similarity (%) 

Amino Acid  

Similarity (%) 

Base pair  

Similarity (%) 

Amino Acid  

Similarity (%) 

CAN BHS x Rabbit 99.7%-100% 99.0%-100% N/A N/A 

CAN BHS x USA BHS 97.7% 99.0% 97.0% 98.0% 

CAN BHS x P. Cuniculi 96.1% 97.1% 97.7% 99.0% 

USA BHS x P. cuniculi 95.8% 96.1% 96.7% 97.0% 

Table 2-2: Genetic Similarity between Psoroptes mites of differing host origins including samples 

collected from Canadian Bighorn sheep (CAN BHS), American bighorn sheep (USA BHS), North 

Canadian pet rabbits (Rabbit), and a published GenBank sequence for P. cuniculi  
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Figure 2-1: Characteristic long segmented peduncle (blue circle) that differentiates the genus of 

Psoroptes spp. from other psoroptidae that have relatively short unsegmented peduncles. 
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Figure 2-2: (a) Micrograph of a characteristic opisthosomal lobe of a USA bighorn mites. The 

photographed mite was collected from a bighorn sheep in the Hells Canyon metapopulation. 

Note the more prominent outer opisthosomal lobe edge (orange circle) and broad base to the 

OOS (red arrow) 

(b) Micrograph of a characteristic opisthosomal lobe of BC bighorn and rabbit origin mites. This 

mite was collected from a bighorn in the Okanagan region of BC. Note the less distinct outer 

opisthosomal edge (orange circle) and the relatively less prominent base of the OOS (red arrow).    

a b 
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Figure 2-3: Distribution of outer opisthosomal setae (OOS) lengths of Psoroptes mites collected 

from rabbits (labelled Rabbit), USA bighorn sheep (labelled BHS_USA), and Canada-outbreak 

associated bighorn sheep (labelled BHS_CAN). Each is marked with the province or state of host 

origin. Horizontal lines represent median OOS of each host grouping.  
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CHAPTER 3:  ADAPTATION AND OPTIMIZATION OF A COMMERCIAL 

SERO-DIAGNOSTIC TOOL FOR DETECTION AND MONITORING OF 

PSOROPTIC MANGE IN BIGHORN SHEEP (OVIS CANADENSIS) 

The research described in Chapter 3 aims to improve detection of Psoroptes mites using a 

commercially available ELISA that is available to any lab interested in performing the test. This 

ELISA can allow increased access to analysis of archived samples and can further clarify the 

current and historic distribution of the mite. It should also help address the challenge of 

detecting subclinical carriers of the mites and improve herd-level disease profiling. This 

manuscript is intended to be submitted to the Journal of Veterinary Parasitology.  

 

Archived blood samples were collected from biologists and veterinarians across North 

America. Hering completed all sample and data collection, as well as all laboratory work, and 

data analysis included in this chapter. Pilot testing of the ELISA (not included in this 

manuscript), guidance, and troubleshooting on the use of the ELISA was provided by its creators, 

Drs. Stewart Burgess and Francesca Nunn (Moredun Research Institute).  

 

3.1 Introduction 

Psoroptic mange infestations have been reported in some wild sheep populations of the 

United States of America since the 19th century (Sweatman 1958; Lange et al. 1980). Psoroptes 

mites have significant welfare and aesthetic effects on their hosts and may predispose wild sheep 

to predation through hearing loss (Norrix et al. 1995). Infestations can be a significant contributor 

to wild sheep mortality (Boyce and Weisenberger 2005; Miller et al. 2012) but mixed outcomes 

have been reported in affected herds, ranging from relatively benign transient infestations 

(Muschenheim et al. 1990) to rapid and severe population declines (Boyce and Weisenberger 

2005).   

While Psoroptes have been present in USA populations of bighorn sheep for many years, 

their presence in free ranging Canadian bighorn sheep is a relatively new development with the 

first animals with confirmed infestation identified in 2011 in British Columbia (Scott et al. 2013). 

Psoroptes has since spread to all bighorn herds on the west side of the southern Okanagan and 

Similkameen area of British Columbia, but has not been observed in any other bighorn 

populations because highways and fences form barriers to animal movement.  
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Subclinical infestations with Psoroptes may represent an important contributor to the 

persistence and spread of this parasite in wild sheep as it does with domestics (Burgess et al. 

2012). Blood-based testing methods can improve disease detection, enable improved surveillance 

through retrospective testing of archived serum, and act as confirmatory testing for suspect 

microscopy results or clinical signs. This study tested the versatility of the LilliTest Sheep Scab 

enzyme-linked immunosorbent assay (ELISA) test kit (Lillidale Diagnostics 2016), in the 

detection of Psoroptes antibodies in bighorn sheep. The LilliTest Sheep Scab ELISA is a 

commercially available ELISA test kit marketed for Psoroptes detection in domestic sheep. It 

was evaluated for its ability to detect host antibodies against the mite antigen, Pso o 2, in bighorn 

sheep under several conditions including existing infestations, newly developing infestations in 

lambs, and the reduction in antibodies following successful treatment of infested animals. The 

use of this test as a herd-level disease surveillance tool was also explored.   

3.2 Materials and Methods 

The ELISA conditions were first optimized using known positive and negative bighorn 

sheep serum after which time the ELISA test performance was calculated using archived serum 

samples from known infested and disease-free bighorn sheep. The ELISA was then conducted on 

serum from naïve bighorn lambs with new developing infestations, on serum from animals with 

resolving infestations following treatment with anthelmintics, and on archived serum samples 

from a herd of uncertain Psoroptes status with suspect clinical signs.  

3.2.1 Study Population 

Positive and negative control stock was made from pooled bighorn sheep serum of known 

infestation status for use in the ELISA optimization.  Aliquots of these same pooled sera samples 

were frozen in numerous cryovials and acted as positive and negative ELISA plate controls 

throughout the study to allow inter-plate comparison and quality control.  

The positive control pool (PC) consisted of archived hyper-immune sera, pooled from 

naturally infested bighorn sheep from a British Columbia herd with clinically severe ear lesions 

(n=14). Severe ear lesions were those ranking 4/4 according to the severity scoring rubric 

described by Pan et al.’s (2006) characterized by hyperkeratotic exudative debris encompassing 

the entire auricle of the ear.  These clinical signs were coupled with abundant live mites 

visualized on microscopic examination of ear exudate collected from those individuals. The 

duration of infestation of these free-ranging individuals was unclear; however, reports of 
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symptomatic animals in the area from which these samples were collected go back at least 9 

years prior to capture and sample collection. The negative control pooled sera (NC) consisted of 

archived bighorn sheep sera from Canadian bighorn sheep that were free of clinical signs of 

psoroptic mange and located in areas never before reported to be infested with Psoroptes (n=24). 

Specifically, 20 of the negative samples included in the NC pool were collected in 2009 from 

bighorn sheep in the Elk Valley Provincial Park of BC, over 300 km east of the Psoroptes-

infested Canada bighorn herd. The remaining 4 samples used in the NC pool came from bighorn 

sheep in the Tranquille Ecological Reserve in 2014, about 150 km north of the Psoroptes-infested 

Canadian bighorn herd.  

Following optimization, the ELISA’s test accuracy was determined using serum collected 

from known Psoroptes infested (positive) and Psoroptes free (negative) bighorn sheep. Positive 

samples came from free ranging bighorn sheep from the USA (n=44) and Canada (n=33) while 

negative samples came only from Canada (n=33). Positive Canadian samples were composed of 

archived serum from previously captured bighorn sheep from the Okanagan and Similkameen 

area of British Columbia (n=14) in addition to serum from infested bighorn sheep captured for 

initiation of a Psoroptes treatment trial in the same area (n=19) (Chapter 5).  Positive USA 

samples were collected at the time of routine wildlife captures from Psoroptes positive herds in 

Oregon, Washington, Idaho, and Nevada. Ear swab microscopy was not routinely performed to 

confirm diagnosis in Psoroptes infested herds, because it is thought to have poor sensitivity in 

cases where infestations are less severe or subclinical (Bates 1996). Instead, positive cases were 

defined as any individual from which Psoroptes mites were identified on the ear swab 

microscopy of that individual or any herd-mate from their source herd within one year of the time 

of blood collection.  

Due to the possibility of subclinical disease, only samples collected from asymptomatic 

animals in historically Psoroptes-free areas of British Columbia were used as known negative 

samples (n=33). Thirteen of these negative samples came from the bighorn sheep in Tranquille 

Ecological Reserve while the remining 20 samples came from the Elk Valley bighorn sheep. 

Archived positive and negative samples were collected by a variety of wildlife biologists and vets 

so consistent lesion severity scoring was not available for all the positive samples. Among the 

positive Canadian samples, all animals displayed gross clinical signs of infestation. Among the 

44 serum samples of known positive herds from the USA, 3 sheep displayed no symptoms of 
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Psoroptes infestation, 8 displayed mild suspect symptoms of Psoroptes infestation (mild hair loss 

in the ear but no skin crusting), 25 displayed overt evidence of Psoroptes infestation (including 

skin crusting in the ears), and the remaining 8 had unreported Psoroptes infestation severities but 

were located in herds with microscopy-confirmed infestations.  

Analysis of the serology associated with new developing infestations was performed on 

11 bighorn sheep lambs born in captivity during the Psoroptes treatment trial (Chapter 5) and 

naturally exposed to Psoroptes infestation over the first 6 months of life. Lambs were handled 

once monthly for sample collection during captivity. One lamb was lost from the sampling pool 

after three months due to mortality. Three additional lambs were removed from the sampling pool 

because they were administered treatment for psoroptic mange as part of the treatment trial.   

Analysis of the antibody response to treatment was performed using serum collected from 

infested bighorn sheep at the time of treatment and 28 days after oral administration of 25mg/kg 

of fluralaner. These bighorn sheep were heavily symptomatic at the time of treatment with 

abundant live mites found in their ear swab microscopy. Twenty eight days after treatment, 

during follow-up inspection and sample collection, they were free of live mites and exhibited 

profound reductions in gross ear lesion severity (Chapter 5). No additional antibody testing was 

performed after that date because the animals were released from captivity immediately 

following the 28 day post-treatment examinations. 

Finally, a real-world application of the ELISA test was performed on a herd of unknown 

Psoroptes infestation status. Archived serum samples from two neighboring herds, the Wenaha 

and Mountain View herds of the Hells Canyon metapopulation, collected in 2010 (n=15 and 4 

respectively) were tested using the ELISA. Wenaha animals had microscopy confirmed 

Psoroptes infestations in 2003 and 2008. By 2010, no overt symptoms of infestation were 

observed in 5 out of the 15 animals that were captured, and the remaining 10 animals had only 

minor suspect symptoms such as areas of hair loss, but no areas of skin crusting. In the Mountain 

View herd, only 1/4 animals were reported to have suspect symptoms (hair loss in the ears) with 

the remaining 3 animals showing no signs of infestation. No mites were discovered in the ear 

microscopy of any of the samples collected in 2010 (Hells Canyon Bighorn Sheep Restoration 

Committee 2010; F. Cassirer, E-mail communication, January 9, 2019). The population estimate 

of these two herds at that time were reported as a combined sum of 120 animals (Hells Canyon 

Bighorn Sheep Restoration Committee 2010). These serum samples were assayed using the 
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protocol described here and the results are discussed with reference to herd level interpretation of 

infestation status and management implications. 

3.2.2 ELISA Optimization  

The LilliTest Sheep Scab ELISA kit is a commercially available ELISA test kit developed 

by Moredun Research Institute for detection of Psoroptes in domestic sheep (Nunn et al. 2011; 

Burgess et al. 2012). It is an indirect ELISA aimed at the detection of IgG antibodies specific to 

the Psoroptes mite protein Pso o 2 in the serum of exposed sheep (Nunn et al. 2011).  

A checkerboard titration protocol published by Fitzgerald industries international 

(International Atomic Energy Agency, Accessed March 28, 2017) was used for optimizing the 

indirect ELISA conditions using bighorn sheep serum. Optimal test conditions were determined 

by titrating serial antigen dilutions against serial 2-fold dilutions of pooled positive and negative 

bighorn sheep serum. The stock recombinant Pso o 2 antigen was diluted in distilled/deionized 

water (at 2 μg/ml, 1μg/ml, and 0.5μg/ml concentrations) and the ovine serum was diluted from 

1:100 to 1:3200 in a blocking buffer (BB: phosphate buffered saline [PBS] with Tween 80® 

[0.5%] and NaCl [0.5M]). The test conditions producing the highest PC:NC ratio was selected as 

optimal.  

3.2.3 ELISA Test Protocol 

The optimal ELISA protocol used throughout the trial closely resembles that established 

for domestic sheep by Nunn et al. (2011). The ELISA procedure used is as follows:  

1) Fifty microliters of the antigen were diluted to 2 μg/ml in distilled/deionized H2O 

and added to each well of a 96-well microplate (Greiner medium-binding Microlon ® 96 

well microplate).   

2) The plate was covered with a plate sealer and left overnight at room temperature 

to incubate.  

3) The plate contents were discarded, and the plate was blotted dry on paper towel. 

The plate was washed 5 or more times using a wash buffer and blotted dry between each 

wash. Wash buffer was composed of PBS solution and Tween® 20 (0.05%).  

4) Each well was loaded with 100 μl of blocking buffer composed of PBS, Tween® 

80 (0.5% v/v), and NaCl (0.5M). The plate was then sealed with a plate sealer and 

incubated for 60 minutes at 370C.  
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5) The plate contents were discarded, and the plate was blotted dry on paper towel. It 

was then washed 5 or more times using a wash buffer and blotted dry between each wash.  

6) Test serum, positive control, and negative control serum was diluted 1/800 v/v in 

blocking buffer and 50 μl was loaded into each well in addition to 4 wells of blocking 

buffer as a blank control according to the test kit instructions. Each sample was assayed in 

duplicate and the controls were assayed in quadruplicate with duplicate controls placed 

and loaded at the beginning and end of each plate. The plate was then sealed with a plate 

sealer and incubated for 60 minutes at 370C.  

7) The plate contents were discarded, and the plate was blotted dry on paper towel. 

The plate was washed 5 or more times using a wash buffer and blotted dry between each 

wash.  

8) Each well was then loaded with 50 μl of the rabbit anti-sheep IgG Horseradish 

Peroxidse-labelled conjugate, diluted 1/2000 v/v in blocking buffer. The plate was then 

sealed with a plate sealer and incubated for 60 minutes at 370C.  

9) The plate contents were discarded, and the plate was blotted dry on paper towel. 

The plate was washed 5 or more times using a wash buffer, ensuring that the wash buffer 

was retained in wells for >1 minute on washes 4 and 5.  

10) The wells were each loaded with 50 μl of tetra-methylbenzidine (TMB) substrate 

and the plate was incubated at room temperature for 5 minutes.  

11) Fifty microliters of TMB stop solution were added to each well to stop the 

reaction and the optical density (OD) of the colour change was read using a 

spectrophotometer at OD450nm.  

All ELISA iterations were run in duplicate on the same microplate during the 

checkerboard optimization and throughout the trial. Plates were rerun if the plate average PC OD 

was <1.0, or the NC OD was >0.35. Samples were rerun if the inter-well coefficient of variation 

(CV) was >10. The same batch of PC and NC pools were used on all ELISA plates to allow for 

inter-plate standardization.  

3.2.4 Assay Analysis 

Once optimal test conditions were established, archived serum of known infestation status 

bighorn sheep was assayed in duplicate to select an optimal positive/negative cut-off. In order to 

account for inter-plate variability, the cutoff was selected in relation to the average NC serum 
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pool OD of each plate and sample ODs were adjusted by dividing the average sample OD on a 

plate by the average NC OD on that plate. This cut-off was used throughout the following 

analyses of developing infestations and treated infestations.  

3.3 Results 

3.3.1 ELISA Optimization 

Optimal conditions for the ELISA were achieved using an antigen dilution of 2.0 µg/ml 

and a serum dilution of 1:800 v/v in BB with a development time of 5 minutes (Figure 3-1). At 

the highest antigen concentration (2 μg/mL) and positive serum concentrations (1:100 and 1:200), 

precipitation occurred following addition of the TMB stop solution. 

3.3.2 ELISA Test Performance on Archived Serum   

Archived positive and negative serum samples tested under the same conditions showed a 

range of NC adjusted ODs (Table 3-1). Test specificity and sensitivity parameters as they relate 

to different positive/negative cut-offs are displayed in Figure 3-2. An optimal cutoff of 1.5 times 

the average OD of a plate’s four negative controls (1.5*NC) was selected as the value providing 

the maximum combined test sensitivity and specificity resulting in an overall test specificity of 

94.0% (31/33 negative sera tested negative). This cutoff produced accurate positive results in all 

33 of the Canadian bighorn sera and in 43/44 of the USA positive samples giving a test 

sensitivity of 98.7%.  

All 3 animals that were free of clinical signs from known infested herds from the USA 

tested positive on the ELISA using the established cutoff. The one false negative test result from 

the USA herds (NC adjusted OD =1.25) was described as having “ears mostly clean of scabies” 

and was categorized among the 8 samples with “suspect clinical signs” that were collected from 

known infested herds. Alternative ELISA cutoffs could be selected to prioritize either test 

sensitivity or specificity. A cutoff of 1.2*NC would obtain 100% sensitivity and a specificity of 

85.7% using the set of archived samples available for this study, while a cutoff of 2.9*NC was 

required to obtain a 100% specificity resulting in a 90.9% sensitivity. 

3.3.3 Antibody Response to Developing Psoroptes Infestations in Lambs 

Serum OD450nm values were generally higher in the lambs during the first month of life 

than in either of the following two months. Using the established ELISA OD450nm cutoff, 9/11 

lambs tested positive at one month of age but none tested positive at two months of age. By 3 
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months of age 3/11 tested positive and by 4 months all 10/101 remaining lambs tested positive. 

After 4 months 3 lambs were removed from the pool for the treatment trial and the 7 remaining 

lambs continued to test positive each month for the following 3 months until all animals were 

treated with anti-parasite medication in preparation for their release from captivity at the 

conclusion of the treatment trial (Figure 3-4).  

Grossly, none of the 11 lambs had any detectable sign of Psoroptes infestation at 1 month 

of age, but 10/11 displayed clinical signs of Psoroptes infestation in at least one ear by two 

months of age and all showed symptom of infestation by 3 months of age and for the remainder 

of the study period until treatment. 

3.3.4 Antibody Response Before and One Month after Treatment 

ELISAs performed on serum collected before and after treatment showed no significant 

reduction in negative adjusted OD450nm over that 4-week period (Paired-sample T-test P=0.27). At 

the time of treatment average negative adjusted OD450nm values among treatment trial animals 

was 9.37 (+/-3.35), and 28 days later the average negative adjusted ELISA score was 8.40 (+/-

3.11). None of the animals seroconverted to ELISA negative within 4 weeks following treatment 

(Table 3-1).  

3.3.5 ELISA Results in a Herd of Unknown Infestation Status 

All 4 of the Mountain View samples and 14/15 Wenaha herd samples tested negative 

using the 1.5*NC cutoff. The fifteenth Wenaha sample gave a weak positive result of 1.54*NC. 

The range of negative adjusted optical densities obtained from these archived serum samples was 

0.55 to 1.54 with a mean of 0.91 and a standard deviation of 0.27 (Figure 3-3).  

3.4 Discussion 

3.4.1 Test Sensitivity and Specificity 

Following optimization, this ELISA test demonstrated high test sensitivity and specificity 

for the detection of Psoroptes exposure in bighorn sheep. Given that a key strength of antibody-

based testing is the potential ability to detect antibodies in subclinically infested animals, it would 

be beneficial for the ELISA to be applied to more asymptomatic animals from known infested 

herds. That asymptomatic animals, as well as the majority of animals with suspect lesions, all 

tested ELISA positive using the selected cutoff, is strong evidence that the ELISA is capable of 

 
1 One lamb was lost to mortality between the 3rd and 4th month of observation. 
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detecting exposure and/or subclinical states of infestations. However, the sample size included in 

this experiment is not sufficient to describe testing accuracy in this portion of the population 

specifically.  

 Adjusting the cutoff to improve either test sensitivity or test specificity while sacrificing 

the other, as applied by Boyce et al. (1991), can allow adaptation of the test to different 

ecological contexts. This approach alone does not remove uncertainty regarding how to interpret 

the “weak positive” results that fall within this overlapping OD range such as the one weak 

positive result obtained from the Wenaha herd.  Interpretation of these results should be done 

with consideration of the ecological context and the potential consequence of incorrect test 

results. For example, a false negative test result for an infested animal that is preparing to be 

translocated has a high ecological cost and therefore the lower test positive threshold might be 

selected to increase test sensitivity and guard against the higher cost of a false negative. 

Meanwhile, using a low threshold when performing general health assessments would result in an 

erroneously high prevalence estimate due to poor test specificity.  

3.4.2 Seroconversion in Newborn Lambs and Treated Animals 

Since antibodies were not detected in the second month of sampling but were detected in 

the first, it is likely that the high ELISA positive rate in one month old lambs is the result of 

passive transfer of maternally derived IgG antibodies obtained in colostrum from their dams 

within the first hours of life (Khan and Ahmad 1994). Those antibodies would deteriorate 

resulting in negative ELISA results for the coming months until the lambs themselves became 

infested and began to produce their own Psoroptes specific antibodies. Most lambs did not 

seroconvert, based on the established cutoff value, until closer to 4 months of age despite the 

appearance of symptoms of infestation at 2-3 months of age. This lag period is not consistent 

with the early detection of disease prior to onset of clinical signs reported by Nunn et al with this 

ELISA in domestic sheep (2011). While these results indicate the age of onset of infestation in 

newborn lambs as well as the time period needed for lambs to develop antibodies to this parasite, 

they may not be representative of the amount of time needed for immunocompetent adult animals 

to develop antibodies to new infestations and therefore may not reflect the true performance of 

this ELISA in adult bighorn sheep.   

Following oral treatment with fluralaner (25mg/kg), none of the animals became ELISA 

negative within the first month when sampling was performed. This finding likely reflects the 
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persistence of IgG antibodies in the host rather than the efficacy of treatment as these findings are 

consistent with other studies that suggest that decline in Psoroptes antibody levels will only occur 

6-8 months following resolution of infestation (Mazet et al. 1992; Burgess et al. 2012). This 

ELISA is therefore not a useful tool in assessment of freedom from disease or treatment efficacy 

immediately following treatment.  

3.4.3 Herd Level Diagnostics 

Herd level approaches to infectious diseases like psoroptic mange are highly important 

since apparently disease-free animals could be subclinically infested or can become re-infested if 

cohabitating with other infested animals. Consequently, disease freedom should be assessed at 

the herd level. An individual animal’s test result is therefore less relevant to managers than a herd 

level assessment of infestation status. Given that one of the Wenaha herd test results was weakly 

positive, this population could be considered suspect for Psoroptes infestation. Alternatively, a 

herd level sensitivity and specificity of the testing performed can be calculated using the test 

parameters obtained for this cutoff, the number of samples collected, the estimated population 

size and two scenario parameters: hypothetical disease prevalence, and minimum number of 

positive test results required to consider a herd positive. Since a population estimate for the 

adjacent Wenaha and Mountain View herds in 2010 was only available as a cumulative total, the 

results will be discussed as a single herd.  

The reported population estimate of the two herds is 120 animals (Hells Canyon Bighorn 

Sheep Restoration Committee 2010) and nineteen samples were collected from this joint herd. 

Using the test sensitivity of 98.7%, specificity of 94.0%, and selecting a disease prevalence 

detection limit of 5% with one positive test result as the cut point, a herd level specificity of 

28.9% and a herd level sensitivity of 90.7% is obtained. Under these conditions there is therefore 

a 71.1% chance that a truly negative herd would test positive (AusVet 2019). Alternatively, 

increasing the cut point to 2 positive results required to consider a population disease positive 

(meaning the set of 19 samples included in this study gives a negative herd level test result 

instead of a positive result) offers a herd level sensitivity of only 64.8% (AusVet 2019). These 

calculations demonstrate how difficult it is to detect disease that is only present in a herd at a very 

low prevalence. While many Psoroptes infestations in wild bighorn sheep appear to be present at 

higher prevalences than 5% (Reid 2013a), there are reports of large bighorn herds with low sero-

prevalence to Psoroptes (Mazet et al. 1992) and so the possibility of a low seroprevalence in a 
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truly infested herd cannot be ruled out. These ELISA results suggest that the Wenaha and 

Mountain View population of bighorn sheep may have cleared themselves of their Psoroptes 

infestation, however the possibility that Psoroptes prevalence is low in those herds but the 

disease is still present cannot be ruled out. Further inspection and confirmation of these results is 

necessary to increase the confidence in this conclusion.  

3.5 Conclusion 

The difficulty in the detection of subclinical or early stage disease makes management of 

herds with unknown disease status challenging and poses a considerable risk to the spread of 

disease through natural animal movements or translocation events. The LilliTest Sheep Scab 

ELISA is a commercially available ELISA that can be easily adapted to a wildlife context and 

attains a high level of sensitivity and specificity with minimal optimization. This ELISA is 

unlikely to be accurate for disease detection in very young lambs with developing infestations or 

for confirming successful treatment of recently treated animals however interpretation at the herd 

level adds an extra layer of disease detection capability and would be a useful tool for wildlife 

professionals in the detection and monitoring of Psoroptes in herds of unknown or suspect 

disease status.  
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Group Number of 

samples 

Mean NC- 

adjusted OD 

Standard 

Deviation 

Archived positive    

USA 44 4.68 1.74 

Canada 33 5.31 1.52 

Archived negative    

Canada 33 0.88 0.45 

New lamb infestations    

1 month of age 11 2.56 1.23 

2 months of age 11 0.55 0.17 

3 months of age 11 2.30 2.80 

4 months of age 10 10.13 3.34 

Treated animals     

Treatment day 27 9.37 3.35 

1 month post treatment 27 8.40 3.11 

Unknown Psoroptes status    

Wenaha Herds 15 0.93 0.30 

Mountain View Herd 4 0.81 0.12 

Table 3-1: LilliTest sheep scab ELISA optical densities (OD) relative to the negative control 

(NC). Samples include archived sera from bighorn sheep of known Psoroptes exposure status, 

developing lamb infestations, treated/resolving infestations, and samples from two Hells Canyon 

herds of unknown infestation status.  
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Figure 3-1: LilliTest Sheep Scab ELISA optical densities (OD450nm) of serially diluted  pooled 

positive (PC) and negative (NC) serum at multiple antigen concentrations.  
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Figure 3-2: LilliTest Sheep Scab ELISA optical density (OD) scores divided by the negative 

control optical density (NC) of the ELISA plate.  Negative control (NC) adjusted optical density 

distributions of each sample group and the group mean are displayed.  
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Figure 3-3: LilliTest Sheep Scab ELISA test sensitivity and specificity at different optical density 

(OD) cutoffs relative to the negative control pooed serum. Green arrow indicates optimal cutoff. 
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Figure 3-4: Progression of LilliTest Sheep Scab ELISA optical density (OD) scores in newborn 

lambs in the face of developing Psoroptes infestations. Optical density scores are divided by the 

mean plate negative control to adjust for inter-plate variability. Each colour represents one 

lamb’s OD score change over time. 
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CHAPTER 4:  EVALUATION OF THREE FENCING DESIGNS FOR 

PREVENTION OF BIGHORN SHEEP (OVIS CANADENSIS) MOVEMENT  

The research described in Chapter 4 addresses a gap in the published literature regarding 

bighorn sheep housing and fencing requirements. The need for this research to aid in preventing the 

escape of captive bighorn sheep was demonstrated by chapter 2 where the escape of captive bighorn 

sheep were identified as the likely source of the Canadian Psoroptes outbreak. This research 

provides additional information on potential points of weakness when attempting to prevent 

movement of bighorn sheep and has implications on the potential usefulness of these tools in 

facilitating separation of domestic and wild sheep for respiratory disease management.  

 

Research design, setup, data collection and analysis was performed by Hering. Matthew 

Jones, a summer student of the British Columbia Ministry of Forests Lands and Natural Resource 

Operations (FLNRO), assisted with camera maintenance and data collection, and used a subset of 

this data for his honours undergraduate thesis.  

 

4.1 Introduction 

Exposure to novel infectious agents is a key factor affecting the health of wild bighorn sheep 

(Ovis canadensis) in North America and has been associated with numerous population declines and 

mortality events (Miller et al. 2012). Important infectious diseases in bighorn sheep include 

respiratory disease, nasal sinus tumours, and psoroptic mange among others (Lange et al. 1980; 

Besser et al. 2012; Miller et al. 2012; Fox et al. 2016). Fencing is a fundamental tool used by 

wildlife managers to limit exposure to infectious agents (Wobeser 2002; Vercauteren et al. 2007a). 

According to the Wild Sheep Working Group (WSWG) of the Western Association of Fish and 

Wildlife Agencies (WAFWA)  “Maintaining effective separation between bighorn sheep and 

domestic sheep or goats is presently the most effective tool available for minimizing risk of 

respiratory disease” (Brewer et al. 2014). The outbreak of psoroptic mange in Canadian bighorn 

sheep may have been prevented by adequate fencing of captive bighorn sheep on the Okanagan 

Game Farm (Chapter 2) and the spread of Psoroptes in Canada is limited at its eastern boundary by 

the presence of wildlife fencing along a highway (Reid 2013).   

Fencing solutions have been studied as a method to achieve physical separation, prevent 

animal movement into undesired areas, and reduce disease transmission between wild and domestic 
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species (Vercauteren et al. 2007a; Vercauteren et al. 2007b; Fischer et al. 2011). The fencing 

requirements of different species vary based on size and athletic ability, but species-specific research 

is lacking for bighorn sheep. Fencing requirements will also vary based on the pathogen of concern. 

For example, Psoroptes can be transmitted directly between hosts or on other fomites like fence 

posts used for scratching so prevention of direct contact will likely eliminate most disease 

transmission (O’Brien 1999). Pathogens that cause respiratory disease on the other hand can be 

passed between animals through aerosol transmission (Besser et al. 2014). Specific separation 

requirements to prevent aerosol disease transmission are not possible because of the variability of 

important factors like environmental conditions, host behaviour, and pathogen dynamics (Morawska 

2006); however, it is probable that disease spread is less frequent when direct contact is prevented. 

Therefore, the use of fencing to prevent nose to nose contact and increase separation distance would 

be a valuable first step in preventing respiratory disease spread as well (Besser et al. 2014).  

Fences can form either psychological barriers, physical barriers, or a combination of both 

(Walter et al. 2010). Woven wire fencing is often effective in preventing the movement of ungulate 

species but it is also expensive and perhaps cost prohibitive (Castiov 1999). Electric fencing is a less 

expensive option but studies on the use of electric fencing for wildlife control show that different 

species respond differently to the same fencing structures and therefore research on the use of 

electric fencing must also be species-specific (Karhu and Anderson 2003). In this study the 

effectiveness of solid wood fencing, woven wire fencing (WWF) and electric fencing (EF) in 

preventing animal movement across these structures are described for the containment, housing, and 

separation of wild bighorn sheep.  

4.2 Materials and Methods 

4.2.1 Study Animals 

Eighteen Rocky mountain bighorn sheep ewes and lambs were captured from the Okanagan 

region of British Columbia by a combination of net gunning and chemical immobilization and were 

transported to two purpose-built research enclosures within their natural range (Figure 4-1). Animals 

were placed in the enclosures between February and March of 2017 and were kept (12 in the east 

pen and 6 in the west pen) for a period of 14 months. The enclosed herd also included 11 lambs that 

were born in April and May of 2017 (8 in the east pen and 3 in the west pen). The remaining local 

wild herd consisted of approximately 40 individuals of unknown sex ratio who periodically visited 

their captive herd-mates.  
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4.2.2 Study Enclosure 

Two adjacent 5-acre enclosures were constructed on hilly terrain near Penticton, British 

Columbia, Canada for the purpose of a Psoroptes drug treatment trial. Pens were located at an 

elevation of 450m above sea level and contained a 30m elevation change within the pens, with the 

highest elevation at the top inside corners and the lowest elevation at the bottom inside corners of the 

two pens (Figure 4-1). The terrain within the pens and fence lines consisted of gradual hills with 

vegetation characterized by primarily alfalfa grasses (Medicago sativa), sagebrush (Artemisia 

tridentata) meadow, and occasional lodgepole pine (Pinus contorta). 

Three different physical barriers were used in the construction of the pens  

1) Woven Wire Fence (WWF): The perimeter fences as well as a feeding pen that led into a 

crowding tub were constructed out of 2.4m tall, fixed knot, woven wire fencing. Because the 

fencing was donated, two different types of WWF were used. The feeding pens and some of 

the perimeter fence was constructed with 20-strand WWF (2096-6”) with 7.5cm x 15cm 

bottom segments that progressively increased in size to 17cm x 15cm top segments (Figure 

4-2). The remaining perimeter fence was constructed using 17-strand WWF (1796-6) with 

15cm x 15cm bottom segments that first narrowed to 15cm x 10cm segments and then 

expanded to 17cm x 15cm segments (Figure 4-2)(Tree Island Steel 2019). The entire 

perimeter fence was outfitted with a single strand of electric fence tape positioned 30cm 

above ground level and protruding from the outside of the wire fence by a 10cm outrigger to 

discourage predator entry into the enclosures. Additionally, all of the WWFs were outfitted 

with 0.9m overhangs protruding inwards at a 45 angle from horizontal from the top of the 

fence with 3 strands of high tensile wire spaced every 30cm from the top.  

2) Electric Fence (EF): A secondary 1.4m tall, 4-strand, electric fence was assembled 1 meter 

outside the primary WWF of one of the two enclosures (referred to as “the east pen”) to 

create a three dimensional (3D) effect where multiple fences or barriers are used in 

combination to create an obstacle with both a vertical and a horizontal component (Paige 

2012) as depicted in Figure 4-3. The EF consisted of 3 energized strands at heights of 0.35m, 

1.15m and 1.4m, charged by a 10,000V solar powered energizer and a grounded strand at 

0.7m. The EF was installed 6 months after introduction of the bighorn sheep to the enclosure 

during which time spatial use preferences of outside free-ranging sheep were 

opportunistically observed.   
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3) Solid walls: The handling/squeeze chute and crowding tub structures were built of solid 2.4m 

tall plywood walls with a 10cm slit between two 1.2m sheets of plywood for visualization 

and handling of animals from outside the tub and chute. The chute was enclosed on top by 

fencing but the crowding tub initially was not. 

The circumference of each pen was about 575 meters.  The 4-strand electric fence covered 420m of 

fence line which included all of the perimeter of one pen but not the area between the two pens 

(Figure 4-1).  

4.2.3 Fencing Efficacy Evaluation 

Qualitative and quantitative observations of the fencing successes in preventing animal 

crossings were made throughout the period of bighorn captivity through direct observation and 

remote camera recording. Bighorn sheep were moved through the handling system 12 times for 

examination, treatment, and Psoroptes sampling during their time in the enclosures. They were also 

observed without handling on a daily basis when being fed. Six motion-activated cameras were 

installed along the perimeter fence lines (Figure 4-1) to allow observation and comparison of free-

ranging sheep behaviour outside of the pens in the presence or absence of the electric fence. Specific 

emphasis was placed on occasions when fence lines were crossed (i.e. “breached”) and the 

circumstances that enabled that to occur as those occurrences represented total or partial breakdown 

of these fencing barriers. 

Three cameras were placed along the higher elevation fence line of each pen to monitor sites 

where free ranging sheep had been witnessed to visit the perimeter fence prior to the EF instalment. 

Cameras were mounted on wooden extensions from the WWF such that their line of sight was 

parallel to the fence line. Cameras used were a combination of Spypoint Force 10, and Bushnell 

Trophy Camera Essential E3 cameras set to capture pictures at 30 second intervals when activated 

by motion (Bushnell 2013; Spypoint 2019). Marking flags were used to demarcate an observation 

field of 15m along the fence line for each camera to allow comparison of visits between cameras and 

pens along an equivalent length of fence line. Flags were also used on the pen without the electric 

fence to indicate where it would have been placed and to show the area within which nose-to-nose 

contact would be possible.  

Depleted camera batteries by windy conditions, dislodged cameras, and camera sensor or 

night-mode malfunctions resulted in significant data loss at some of the camera sites; therefore, the 

best functioning cameras were allocated to locations 3 and 5 (Figure 4-1) where signs of sheep 
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activity were greatest. Cameras were active from October 3, 2017 to April 3, 2018. Incomplete data 

sets where cameras were only operating correctly for portions of the observation period are 

highlighted in grey in Table 1-1.  

The quantity of time spent by free ranging bighorn sheep in view of the cameras, referred to 

as “visitations”, are recorded as animal-hours. One animal-hour was defined as one animal being 

present in the photos of one camera for one hour or less. When multiple animals were present, each 

animal visible on film consisted of an animal-hour and animals present at one site for more than one 

hour were counted as multiple animal-hours based on the duration of their stay. When multiple 

pictures were taken by a single camera within an hour, they were assumed to be photos of the same 

animal unless distinguishing characteristics such as size, horn morphology, or sex, could provide 

confident differentiation of individuals so as to apply conservative estimates of visitation. Date, time, 

and where possible, the sex of the animal in each visit was recorded. Photos captured during 

incomplete data periods (marked in grey on table 1-1) are included in time of day, time of year, and 

sex ratio of visiting sheep data but not used in discussion of site selection or proximity to the WWF. 

Visitations were divided into animal-hours spent less than 1 meter from the WWF (requiring 

an electric fence breach event for the east pen), and those spent more than 1 meter from the WWF. 

Visitations within 1 meter of the WWF represented opportunities for contact transmission rather than 

aerosol transmission of disease. Time of day, time of year and signalment of those animals 

considered to constitute the greatest risk of disease transfer are reported as well as implications about 

strengths and weaknesses of the fencing designs based on observed breach events.  

4.3 Results 

4.3.1 Animal-Hours Observed by Motion Activated Cameras 

A total of 269 animal-hours of visitation were observed by the 5 functioning wildlife cameras 

over the course of 6 observed months. Preference of sheep for various areas along the observed 

fence line can be seen in the number of animal hours photographed by each camera during each of 

the monitoring periods (Table 4-1).  

The two camera sites with complete data (3 and 6) show periods when visits were most 

abundant over the course of the 6-month observation period. More than 50% of total visiting animal-

hours were observed by camera 3 despite representing no more than one third of the functioning 

observation area at any given time, and this site recorded more visitation hours than all other 

functioning sites combined during all time periods.  
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When grouped by proximity to the WWF, of the 218 animal-hours observed in the presence 

of electric fence, free-ranging animals spent 43 animal-hours or 19.7% of their time within the 1m of 

the wire fence (after breaching the EF). On the other hand when the electric fence was not present, 

animals spent 33 of the observed 42 animal hours, or 78.6% of their time within 1m of the WWF. 

4.3.2 Description of Free Ranging Sheep Visitations 

Over 88% (237/269) of camera-observed animal hours of visitation involved rams, in 

contrast to 5.6% (15/269) involving ewes and 6.3% (17/269) for sheep of undetermined sex, based 

on the photos captured. Of the 43 occurrences of animals seen between the electric fence and the 

WWF, all involved rams with the exception of one photo of an animal of undetermined sex. While 

unique identification of free ranging animals was not always possible, based on horn morphology a 

minimum of 3 different rams were identified crossing the electric fence. The vast majority of visits 

occurred during the rut between late October and late December (Figure 4-4) and sheep visited the 

pens most often during daylight hours (Figure 4-5).  

4.3.3 Description of Fence Line Breaching Events 

All photographed EF breaches involved animals jumping over the fence in front of camera 3 

(marked with a green star on Figure 4-1). These breaches were made possible by the breakdown of 

3D fence structure at the WWF corners where sheep were able to jump the electric fence and have 

room to land without crashing into the WWF (Figure 4-3).  

Two other electric fence breaches were observed. The first happened soon after the birth of 

the lambs when a captive lamb (<1 month old) was separated from her mother during handling and 

went through one of the bottom 15cm2 holes of a WWF. The second event involved a breach of the 

solid walls of the handling area. A yearling ram was able to jump off of a gate and propel itself over 

the perpendicular adjoining wood wall of the crowding tub to escape back into the larger enclosure. 

The handling system was not equipped with the metal overhangs and straight wire that the perimeter 

fence had. Following this occurrence, the entire crowding tub was fully covered over by fencing 

preventing this from occurring again. None of the mature bighorn sheep crossed the WWF in either 

direction at any time. 

4.4 Discussion 

The inability to distinguish the identity of different free ranging bighorn sheep individuals 

outside of the enclosures made it impossible to discern whether the same several animals were 

responsible for most of the visitations and electric fence breaches, or whether the trends observed 
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truly represent characteristic bighorn sheep behaviour in general.  Regardless, the abundance of 

animal-hours captured by camera 3, despite the presence of electric fence at that site, suggests that 

the electric fence did not dissuade animals from visiting that particular location of the perimeter 

fence. One explanation is that the area monitored by camera 3 represented the location around the 

pens with the most elevated terrain and therefore the best visibility. Bighorn sheep use elevated 

terrains for escape, thus their preference for this area suggests a prioritization of safety and security 

over the ability to make nose-to-nose contact with the captive sheep. If this is indeed the case, the 

high terrain areas of an enclosure deserve particular attention to prevent contact or challenge from 

wild sheep. Similarly, the captive sheep in the pens were most often seen resting in the nearby upper 

inside corners of the pens, presumably for the same reason. Another contributing factor to this site 

selection by sheep inside the pens could be that it was the furthest point in the pens from the 

handling system where sheep experienced substantial stress and therefore sheep may have 

intentionally chosen to rest as far from the handling area as possible.  Free ranging sheep may have 

selected the areas of the pens adjacent to camera 3 simply to be closest to where the captive sheep 

chose to rest.  

The observation that the presence of the EF correlated with a smaller percentage of time 

spent within 1 meter of the WWF when compared to areas without it, suggests that the EF reduced, 

but did not eliminate the opportunities for nose to nose contact. The sex distribution represented in 

the animal-hours of visitors heavily favoured rams, but this does not distinguish between 

independent visitors and the frequency of visits made by each individual. This suggests that rams 

were most driven to contact sheep on the other side of the fence line or that a few interested rams 

made up the majority of the visitor pool.  Regardless, this observation supports the widely held belief 

that bighorn sheep rams pose the greatest risk to disease transmission between populations due to 

intermingling with sheep from different herds and greater drive for contact, especially during the rut.  

 Electric fence breaches were made possible by two notable design flaws that should be 

mitigated when constructing electric fencing in future. First, the breach location happened at a site 

where visiting sheep could approach the fence from an uphill direction. This slope makes the 

functional height of the fence lower and the fence easier to jump as previously described by Paige 

(2012).  However, the fact that the rams were able to jump back out of the fence in the opposite 

(uphill) direction indicates that even if the angle of terrain were more level, the height selected for 

the EF in this study is insufficient on its own in preventing bighorn sheep rams from jumping over it. 
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Secondly, the horizontal component of the 3D electric fence effect no longer applied in corner 

regions where the fence turns 90 degrees because visiting bighorns had room to jump the electric 

fence and land without crashing into the second fence (Figure 4-3).  This problem with 3D fencing 

design might be avoided by placing the shorter fence, in this case the EF, on the inside of the corner 

so that no location is available to jump the EF with any sizable landing area between the fences.  

4.5 Conclusions 

Fence line breaches signify critical breakdowns in which the fencing structures were 

insufficient to prevent movement of animals. In general, 2.4m woven wire fencing with 0.9m 45 

overhangs were sufficient for housing of captive bighorn sheep. However, in areas of high stress 

additional security measures such as avoiding 90 corners in fencing, and covered handling areas are 

necessary. Woven wire fencing with small bottom holes of the dimension 5cm x 15cm is necessary 

to contain bighorn sheep lambs and prevent escape of young animals.  

The addition of 1.4m high electric fencing may reduce the risk of disease transmission 

through a WWF when used as part of a 3D fence design however using the design implemented in 

this study was insufficient to prevent all potential nose-to-nose contact events from occurring. 

Additional attention should be directed towards increasing electric fence security at corners, in areas 

of high angle terrain where bighorn sheep spend the largest portion of their time, and in areas 

preferred by the captive sheep population. Future uses of this fence design be improved by putting 

the shorter fence on the inside of the taller WWF. These weaknesses are especially important to 

address during the period around the rut when rams are most driven to make contact with ewes.  
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Pen Camera October 3, 2017 to 

November 8, 2017 
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1 NA NA NA 

2 18 35 NA 
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4 NA NA 0 

5 23 14 1 

6 NA NA 4 

 

Table 4-1: Number of animal-hours observed by each motion activated camera during each time 

period along the perimeter fence of each pen. NA = incomplete camera data during this period of 

time. WWF = 2.4m woven wire fence, EF = 1.4m electric fence  
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1 

     2.4m Woven Wire Fence 

     1.5m Electric Fence 

     Camera location and 

direction 

     Location of EF Breach 

     Handling System 

 

West Pen 
East Pen 

Figure 4-1: Visual depiction of the two enclosures, associated terrain, camera locations and the location of the electric fence 

breaching events. 
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Figure 4-2: Size measurements of the woven wire fencing used in construction of the research 

pens. left = 20-strand construction, Right = 17-strand construction. Photo credit – modified 

from: (Tree Island Steel) 
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Figure 4-4: Cumulative incidence of free ranging bighorn sheep visitation to captive bighorn 

sheep pens over six months of observation. Bars represent one week of observation. EF = 

electric fence, WWF = woven wire fence. Green shading denotes the period of bighorn sheep rut. 
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Figure 4-3: Corners create critical breakdowns of the horizontal component of three-

dimensional fencing structures. 
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Figure 4-5: Time of day of visits made by free ranging bighorn sheep to captive bighorn sheep 

pens over six months of observation. Background colours indicate approximate daylight hours 

(yellow) and nighttime hours (blue) 
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CHAPTER 5:  ASSESSMENT OF NOVEL TREATMENT OPTIONS FOR 

THE MANAGEMENT OF PSOROPTIC MANGE IN FREE RANGING 

BIGHORN SHEEP (OVIS CANADENSIS) 

The research described in Chapter 5 explores new options for the treatment of Psoroptes 

infestations in bighorn sheep that may facilitate feasible treatment regimens in free-ranging 

animals. Once disease containment can be achieved by utilizing the findings and tools of 

chapters 2-4, disease treatment is the necessary next step, however optimal treatment options for 

free ranging wildlife applications are not yet available. This chapter begins to address this 

deficit. 

 

The research in this chapter represents the efforts of a partnership between the 

University of Saskatchewan, the British Columbia Ministry of Forests Lands and Natural 

Resource Operations and Rural Development (FLNRORD), and the Penticton Indian Band. The 

concept of this work was suggested by Dr. Helen Schwantje. The suggestion of fluralaner 

treatment following the failure of eprinomectin came from Dr. Patricia Dowling. Hering 

coordinated and designed all parts of the study including enclosure design, construction, and 

animal care practices. Together with research partners and numerous volunteers he performed 

all field work including sheep capture, handling, treatment, and sample collection. Hering 

performed all sample processing, microscopy, data analysis and interpretation for this study.  

 

5.1 Introduction 

Psoroptic mange is a persistent problem in many wild and domestic animal species 

around the world. Wild sheep populations in the United States have been afflicted with 

Psoroptes as far back as the 1850s (Lange et al. 1980). Meanwhile, the parasite wasn’t identified 

in Canadian bighorn sheep (Ovis canadensis canadensis) populations until 2011 (Scott et al. 

2013). Effects of the parasite on bighorn sheep populations range from relatively benign transient 

infestations (Muschenheim et al. 1990) to severe, population-limiting outbreaks (Lange et al. 

1980; Miller et al. 2012).  Since its detection in herds of southern British Columbia, severe 

symptoms, increasing prevalence, and declining populations have been observed, while 

unaffected nearby populations remain stable (Reid 2013a; Reid 2013b). The severe impacts of 

disease and currently limited spread in that region makes Psoroptes management a time-sensitive 

concern for local wildlife managers. Parasite eradication requires simultaneous treatment of all 

individuals in a herd, posing a challenging task for wildlife managers. This further increases the 
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desire of managers to address the situation before the parasite spreads beyond its current range in 

Canada.  

Management is further complicated by the fact that the parasite has been shown to 

survive off the host and remain infective in the environment for up to 16 days (O’Brien et al. 

1994).  Current treatments in domestic sheep provide little residual drug effect and instead rely 

on repeated application (O’Brien 1999) making them unsuitable for use in free-ranging wild 

sheep where one missed or reinfested animal results in persistence of the parasite in a herd 

(O’Brien 1999).  Furthermore, widespread reliance on macrocytic lactones for treatment makes 

the discovery of Psoroptes resistance to this class of drugs a notable concern (Doherty et al. 

2018).  

All of these factors, in addition to the challenges of wildlife capture and handling, make 

eradication of this disease in wildlife a complex and expensive proposition. Using the currently 

available options, treatment of psoroptic mange in bighorn sheep is therefore only appropriate in 

3 specific scenarios:  

1) Small isolated herds, where whole herd treatment may be a possibility,  

2) Situations where animal welfare or conservation status is impaired to such an 

extent that treatment is justified even if eradication is unrealistic,  

3) To ensure freedom from Psoroptes infestation among translocated animals. 

If a treatment could be administered remotely (Foreyt 1993), had a lasting effect (Bleich 

et al. 2015), and required only a single usage, its application outside of these situations might be 

feasible. New treatment options have shown promise in other species and are worthy of 

exploration in bighorn sheep (D’Alterio et al. 2005; Visser et al. 2013; Prohaczik et al. 2017; 

Sheinberg et al. 2017). This study evaluated the efficacy of two new drugs, a sustained release 

eprinomectin, and orally or topically administered fluralaner, in the treatment of psoroptic mange 

in bighorn sheep.  

5.2 Materials and Methods 

5.2.1 Study Animals 

The study population began with twelve adult ewes, and six young of the year (five ram 

lambs and one ewe lamb), totaling 18 naturally Psoroptes infested Rocky Mountain bighorn 

sheep (Ovis canadensis canadensis) from two free-ranging herds in southern British Columbia. 

They were captured between January and March of 2017 from the Psoroptes infested region of 
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British Columbia, Canada. Sixteen of the individuals originated from the Penticton Indian Band 

reserve, one from the Macintyre bluff area and one from the Keremeos area (all within 50km of 

the study enclosure). Every captured animal was heavily symptomatic for Psoroptes infestation 

with severe, hyperkeratotic, exudative lesions in both ears and abundant live Psoroptes mites 

present on microscopic examination of the ear exudates. Eleven additional lambs, seven males 

and four females, were born in the research pens between April 15 and May 30, 2017 and were 

included in phases 2 and 3 of the trial.  

Captures involved a combination of ground based chemical immobilization, helicopter 

net gunning and helicopter based chemical immobilization. Chemical immobilization was 

achieved using an intramuscular injection of 1 ml of a premixed combination of butorphanol 

(27.3 mg/ml), azaperone (9.1 mg/ml) and medetomidine (10.9 mg/ml) (ZooPharm 2015) 

delivered by a remote delivery device (dart). When chemical immobilization was used sedation 

was reversed using 2 ml of atipamezole (25 mg/ml) and 0.5 ml of naltrexone (50 mg/ml) injected 

intramuscularly prior to transportation. Following capture, animals were administered 5 mg/kg of 

haloperidol lactate intramuscularly for long term tranquilization and then transported to the 

research pens in a stock trailer with covered windows (University of Saskatchewan Animal Use 

Permit 20160068, British Columbia Wildlife Permit PE16-240045).  

5.2.2 Sampling and Treatments 

The study was conducted in three phases: (1) Eprinomectin treatment trial, (2) Fluralaner 

pilot study, (3) Fluralaner substantiation (figure 5-1). Animals were handled and sampled 

monthly throughout the three phases and the following samples and data were collected at each 

handling:   

1. Pictures of each ear 

2. Blood (serum extracted and frozen for ELISA testing) 

3. Fecal Samples 

4. Ear exudate samples from each ear 

5. Body weight measurement using a hanging spring scale 

6. Subjective body condition score 

Phase 1 used an extended-release formulation of eprinomectin, a macrocytic lactone sold 

under the trade name LongrangeTM. Eprinomectin was administered at a dosage (1 ml/25kg) in a 

single subcutaneous injection on the side of the neck. Saline treated control animals received the 
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same handling and sampling and were administered an equivalent volume of saline as a 

subcutaneous injection in the same site as the treatment group animals. In phase 1, study animals 

were divided into 3 treatment groups: 

a. Eprinomectin single treatment (EST) (n=6) 

b. Eprinomectin double treatment (EDT) (n=6) 

c. Saline control animals (SC) (n=6) 

All animals were treated at the onset of phase 1 and EDT animals were treated a second 

time with LongrangeTM three months after the initial treatment (Figure 5-1). Monthly 

examination and sampling took place for five months following the first treatment.  

 Phase 2 took place after the conclusion of phase 1 and investigated the efficacy of 

fluralaner, an isoxazoline drug sold under the trade name BravectoTM. Both oral and topical 

applications were tested. The six saline-treated control animals and their three lambs from phase 

1 were randomly subdivided into four treatment groups composed of a high dose and a low dose 

group for each route of drug administration (Figure 5-1).  

a. Fluralaner high-dose oral (FHO) 25 mg/kg (n=3) 

b. Fluralaner low-dose oral (FLO) 5 mg/kg (n=2) 

c. Fluralaner high-dose topical (FHT) 10 mg/kg (n=2) 

d. Fluralaner low-dose topical (FLT) 5 mg/kg (n=2) 

Topical treatments used a feline topical liquid formulation of BravectoTM with the 

administered volume rounded up to the nearest 28mg (0.1ml) and deposited on the skin of the 

back of the neck (Merck Animal Health 2016). Oral treatments used canine chewable 

BravectoTM tablets rounded up to the nearest 175mg (¼ tab) and were force fed using a balling 

gun to physically restrained sheep. Monthly examination and sampling took place for 3 months 

following treatment with fluralaner.  

Phase 3 took place after phase 2 and involved the treatment of all bighorn sheep with 

25mg/kg of oral fluralaner (FHO-all) prior to release from the pens at the conclusion of the trial. 

Because five of the animals had been recently cleared of disease using the oral fluralaner 

treatment during phase 2 (FLO and FHO animals), only those animals never before treated with 

oral fluralaner (n=24) were included in the analysis of this phase of the trial (Figure 5-1). 

Examination, sampling, and release from the pens occurred one month after phase 3 was 

initiated.  
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5.2.3 Randomization and Allocation of Treatment Group 

In phase 1 animals were assigned to treatment groups using an alternating pattern such 

that every third animal to enter the chute was placed into one of the EST, EDT or the SC group 

with the first group selected by coin toss. Following the first three animals, this order was 

reversed to reduce stress by allowing animals to be released into pens in pairs2. In phase 2 the six 

control animals from phase 1 and their 3 lambs were randomly allocated into one of four 

fluralaner treatment groups using a Microsoft Excel (2017) random number generator.  

While blinding of observers to the treatment status was not possible due to separation of 

treatment groups into different pens, observers were blinded to the treatment group when 

multiple treatment groups were present in the same pen. This was the case for the comparison of 

EST and EDT animals as well as for the comparison of all fluralaner treatment groups in phase 2. 

Microscopic detection of live mites was performed with the microscope user blinded to the 

sample identity for phases 1 and 2 however phase 3 did not involve a control group so no 

blinding could be done.  

5.2.4 Husbandry 

Two purpose-built 5-acre enclosures were constructed on Penticton Indian Band (PIB) 

land, within the natural range of the PIB bighorn sheep herd. Each pen included a separate 

handling system and pens were separated by at least 2 metres to prevent unintentional 

transmission of mites between pens.  Following the allocation of animals into treatment groups at 

the beginning of phase 1, no trial animals were moved between pens.  

Sheep had continuous access to alfalfa/grass mix hay, fresh water, salt and mineral 

blocks, and a wind/sun shelter in each pen. Animals were inspected from a distance and a grain 

mix formulated for domestic sheep was offered by pen checkers daily to desensitize animals to 

human activity and as supplemental nutrition. All pen checkers entered the treatment pen prior to 

the control pen. Monthly handling and sampling was performed on treatment groups first and 

control groups second.  Pen-specific materials including buckets and supply-transport sleds were 

used for each pen. Personal protective equipment including boot covers and gloves were 

disposed of between pens and clean blindfolds were used for each animal and machine washed 

 
2 Because of a capture related mortality that occurred prior to the beginning of the treatment trial, the 6th control 

animal was caught on the day of the first eprinomectin and automatically assigned to the control group to fill out the 

target study population size. 
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and dried between handlings to reduce likelihood of disease transmission between pens as a 

result of handling.  

5.2.5 Microscopic Parasite Evaluation 

Samples were collected from the ear canal or the lower third of the auricle, and from the 

deepest portion of the hyperkeratosis adjacent to the skin where live mites are most likely to be 

found. Inspection for live mites was performed using fresh, unprocessed exudate within 2-12 

hours of sample collection and examined under a stereoscopic microscope (10-40X 

magnification). Quantification of mites in samples was highly variable when performed on 

multiple subsamples from a single animal and therefore only the presence or absence of live 

mites in a sample was recorded. Samples were inspected until a live mite was found or the entire 

sample was visualized. Animals were categorized as having live mites found in samples from 

both ears (2), from just one of their ears (1) or no live mites in the samples collected from either 

ear (0).  

5.2.6 Subjective Clinical Lesion Severity 

Ear lesion severity was estimated using a modified scoring rubric from Pan et al. (2006) 

for Psoroptes infestations in rabbits which presents similarly to bighorn sheep (Figure 5-2). This 

scoring rubric was as follows:  

0 - Ears are normal in appearance, ear canals patent, and no active hyperkeratotic lesions 

are apparent.  

1 – Ear canals are patent. Hyperkeratotic lesions are present but confined to the ear canal 

(visible on otoscopic exam only). 

2 - Hyperkeratosis extends outside of the ear canal onto the lower 1/3 of the auricle.  

3 –Hyperkeratosis is present on the lower 2/3 of the auricle and the ear canal is occluded. 

4 – Hyperkeratosis is present over the entire auricle and the ear canal is occluded. 

When chronically damaged ears showed clear evidence of healing and healthy epithelial 

regeneration, scoring was based on the extent of the distal-most apparently-active hyperkeratotic 

lesions present on the auricle.  

5.2.7 Statistical Analysis 

Statistical analysis was considered necessary for phase 1 results because of a lack of 

clinical relevance given the observed results. Statistically analysis was not performed on the 

phase 2 results because of the extremely small sample size in this pilot study. Statistical analysis 
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was performed on phase 3 results through comparison of ear lesion severity scores before and 

after treatment using Wilcoxon signed rank test performed in R-studio (Version 1.1.423). 

5.3 Results 

5.3.1 Live Mite Presence 

Microscopic evaluation revealed live mites in both ears of all animals at the time of initial 

treatment (Table 5-1). Live mites were found in one or both ears of all animals throughout the 

eprinomectin trial. Live mites could also be found in both ears of all animals treated with topical 

fluralaner at all handling times, but no live mites were found in the ears of any animals treated 

with oral fluralaner (at either dosage) one month after treatment. One individual in the high-dose 

group (FHO) was free of live mites in both ears for the entire 3-month follow-up period. Live 

mites were subjectively more easily located in samples from saline control (SC) animals than 

eprinomectin and fluralaner treated animals. Saline control animals had live mites throughout the 

lesions whereas, when found on treated animals, they were often seen only in exudate collected 

from the lower third of the auricle or ear canal. No live mites were found in the ears of any of the 

animals following treatment with high-dose oral fluralaner in phase 3 (FHO-All).  

5.3.2 Clinical Ear Lesion Scores  

Ear lesions were moderate to severe (Grade ≥ 2) in all animals at the time of initial 

treatment in each of the 3 phases. Clinical signs of eprinomectin-treated animals in phase 1 and 

topical fluralaner-treated animals in phase 2 often appeared to be improving but the portion of 

auricle affected generally remained unchanged so these improvements were not reflected in the 

lesion severity scores (Figure 5-3). Ear canals did not become patent in any eprinomectin or 

topical fluralaner treated animals at any time following treatment. Oral fluralaner treatment 

resulted in marked improvement of ear lesions (figure 5-4) and patent ear canals (grade <2) in all 

animals. Ear lesions improved dramatically and canals remained patent in these animals over the 

course of the study follow-up period (Figure 5-5). When lesions were present on other parts of 

the body prior to treatment they appeared to be healing as well but were not specifically graded 

or quantified. 

 In phase 3, all ear lesion severity scores decreased over the course of the month. All but 

one animal started with a score of 3 or 4 in both ears at the time of treatment and all were 

significantly reduced to 0 or 1 with patent ear canals by the time of release one month later 

(Wilcoxon signed rank test p<0.001,  R-studio Version 1.1.423).  
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5.3.3 Mortalities 

Two animals died during phase 1 of the trial; the ewe that was captured at McIntyre 

Bluff, and the animal believed to be her lamb. Both ewe and lamb were among the most 

chronically stressed and most difficult animals to bring into the handling enclosure. They were 

also regularly assessed to be in poor body condition during handling and sampling prior to their 

death. The ewe died 2.5 months after initial treatment and the lamb died approximately 3 months 

later. No evidence was found to suggest that the mortalities were related to drug administration, 

however liver toxicity panels were not performed due to degradation of the carcass prior to 

collection and no definitive cause of death was determined in either animal.  

5.4 Discussion 

It is clear from these trials that the extended-release formulation of eprinomectin and 

topically applied fluralaner were not effective in treating Psoroptes infestations in heavily 

infested bighorn sheep at the dosages used. However, oral fluralaner was effective in treatment 

of Psoroptes infestations and prevention of re-infestation for at least 4 weeks when administered 

at a dosage of either 5 mg/kg or 25 mg/kg. While all treatment groups likely benefited from 

improvements in symptom severity, the persistence of live mites on eprinomectin and topical 

fluralaner treated animals makes these treatment approaches of little clinical value. It is believed 

that the two eprinomectin treated animals found to have one ear without live mites one-month 

after treatment (table 5-1) was the result of poor sample collection technique rather than true 

freedom from live mites in those ears. It was at that one-month assessment that the necessity of 

careful sampling involving collection from the deep aspects of the skin lesions adjacent to the 

live skin was appreciated and incorporated into future sampling procedure. All sampling after 

that date followed this new, more rigorous procedure.  

  To the author's knowledge, this is the first report of the use of fluralaner in any ruminant 

species. Drug safety studies have not been published for fluralaner in ruminant species making it 

difficult to assess optimal dosages or other potential drug effects. Starting dosages of 5mg/kg 

were chosen based on discussion with pharmacologists and parasitologists regarding anticipated 

dosages for effective use of this drug in ruminant species. Mortalities occurred in animals treated 

with eprinomectin only and both died more than 2 months after treatment, suggesting that cause 

of mortality was not related to the eprinomectin effects. Neither animal was treated with 

fluralaner. No localized or systemic effects were observed in any of the treated animals in any 
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treatment groups from distance exam or at the time of hands-on exam one month following 

treatment.  

 The duration of drug activity for fluralaner-treated animals could not be assess through 

this study design. At least four weeks of drug persistence following oral treatment is likely based 

on the lack of live mite observations on FHO and FLO animals one month after treatment, 

despite cohabitation with persistently infested FHT and FLT animals. The observation of live 

mites on the FHO and FLO animals two and three months post-treatment was thought to be the 

result of reinfestation from FHT and FLT animals, however the possibility of low-level 

undetected continuous infestation of those animals cannot be ruled out. It was also not possible 

to determine whether the mites found two and three months after oral treatment represented 

viable infestations or transferred mites from (unsuccessfully) topically-treated animals that 

would eventually succumb to persistent effects of the oral fluralaner treatment.  There may have 

been increased effect or persistence of activity of fluralaner when used at 25 mg/kg compared to 

5 mg/kg, but there was insufficient study power to confirm this suspicion based on the phase 2 

sample size.  

The reason for the small phase 2 sample size was that this treatment trial was initially 

developed for the phase 1 trial and only after the eprinomectin trial produced disappointing 

results was the phase 2 trial developed. To prevent confounding between the residual effects of 

the extended release eprinomectin and the fluralaner, the pilot study initially only involved the 

untreated control animals from phase 1. By the conclusion of phase 2, however, the risk of 

residual effects of eprinomectin was considered to be low, so in an effort to add power to the 

phase 2 findings, and consider the welfare of the animals prior to release, the most efficacious 

treatment (FHO) was applied to all animals. 

It would have been valuable to continue the phase 3 portion of the treatment trial for 

longer in order to ensure that infestations did not return two or three months after treatment since 

no new exogenous source of infestation would have been present. The extension of phase 3 was 

not pursued because it was important to respect the wishes of the many stakeholders that 

contributed to and supported this research project and follow-through on the promise that these 

wild sheep would only remain in captivity for one year. These local stakeholders and research 

partners are excited for future research possibilities to answer follow-up questions on the use of 

fluralaner in bighorn sheep presented in this thesis.  
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The separation of treatment and control animals made blinding of observers to treatment 

status impossible during the phase 1 trial. Because ear lesion severity scoring was, by necessity, 

performed animal-side, the potential for observer bias could not be eliminated; however, this bias 

would be expected to exaggerate treatment effect. Given the lack of treatment success in 

eprinomectin treated animals, the potential for observer bias may account for some or all of the 

reported improvement of clinical signs, but likely did not change the outcome given that negative 

trial results were ultimately reported in Phase 1. Observer bias was eliminated during live mite 

evaluation for phases 1 and 2 by blinding the microscope user to the treatment used on the 

sample being evaluated. During phase 2, observers were also blinded as to treatment group for 

fluralaner treated animals because topical and oral fluralaner treated animals were co-housed, 

and these treatments resulted in profoundly different results. The difference in clinical lesion 

score improvement reported between phase 2 FHO animals and phase 3 animals who received 

the same treatment (Figure 5-3) may have been the result of the elimination of co-housing with 

other persistently infested animals in phase 3, the result of observer bias, or of some combination 

of both. Clinical lesion scores were susceptible to some subjectivity because ears that were 

heavily impacted by Psoroptes could not fully heal within just 1 month, regardless of treatment. 

Observers attempted to grade lesions based on where the distal-most active portion of the lesion 

appeared to be on the ear so that a grade of 0 or 1 could be awarded to an ear with a patent ear 

canal and healing wounds despite the ongoing presence of skin crusts still adherent to distal 

aspects of the pinna (Figure 5.4).  

 The efficacy of oral fluralaner following a single use for the treatment of Psoroptes 

provides an easily accessible promising new option for the potential treatment and management 

of this parasite in wild sheep. Remote applications of this drug using medicated feeds or salt 

licks may enable low-cost effective treatment in remote areas with severely affected herds 

however assuring consistent dosages and herd-wide treatment may present a challenge. Further 

studies are necessary to better assess the duration of drug effect through experimental re-

infection trials. Pharmacokinetics and safety studies are advised to evaluate drug safety and 

withdrawal times in this hunted species, and the palatability of free-choice oral formulation could 

be assessed to explore hands-off application options. Investigation of the environmental impact 

of fluralaner must also be considered prior to field administration (Wall 2007).  
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5.5 Conclusion 

 Extended release injectable eprinomectin (LongrangeTM) was not effective in eradicating 

Psoroptes infestations in bighorn sheep following single or multiple administrations when used 

at a dosage of 2mg/kg. Topical fluralaner (BravectoTM) was similarly ineffective in treatment of 

Psoroptes following a single administration at 5 or 10 mg/kg but was effective for a period of at 

least four weeks when administered orally at either 5mg/kg or 25mg/kg. It is possible that 

25mg/kg of fluralaner, administered orally to bighorn sheep, may result in protection from 

reinfection for 2-3 months following treatment; however, additional replication and modification 

of this study design to prevent continuous exposure over this period of time is needed to confirm 

this observation.   
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Time (months)  0  1 2 3 4 5 

# of animals 

with live mites 

in 0, 1, or both 

ears. 

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

EST (n=6)   6  1 5   5a   5b   5b   5b 

EDT (n=6)   6  1 5   6   6   5a   6 

FLO (n=3)   3 3     3  1 2       

FHO (n=2)   2 2   1 1  1  1       

FLT (n=2)   2   2   2   2       

FHT (n=2)   2   2   2   2       

FHO-All (n=24)   24 24               

SC (n=6)   6   6   6   5a   6   5a 

 

Table 5-1: Number of bighorn sheep in each treatment group with live mites found in their otic 

exudate.  

Columns indicate handing month (0 through 5) subdivided by the number of animals per 

treatment group with live mites found in 0, 1 or both (2) ears.  

Rows indicate treatment group:  EST = Eprinomectin single treatment, EDT = Eprinomectin 

Double treatment, FLO = Fluralaner low oral (5mg/kg), FHO= Flurlaner high oral (25mg/kg), 

FLT = Fluralaner low topical (5mg/kg), FHT = Fluralaner high topical (10mg/kg) FHO-All = 

Fluralaner high dose oral (25mg/kg) phase 3 , SC = Saline control. 

 a Sample collection failures in one or both ears resulted in loss of data points  

b Mortality of one study animal resulted in loss of data for the remainder of study 
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PHASE 1: Eprinomectin Trial 

  

PHASE 2: Fluralaner Pilot PHASE 3: Fluralaner 

Confirmation 

Capture and 

introduction 

to pens 

Randomization and 

initial eprinomectin 

treatment  

Lambs 

born 

Second 

eprinomectin 

treatment 

Randomization and fluralaner treatment  All animals treated 

with high dose oral 

fluralaner 

Release 

from pens 

West 

Pen 

East 

Pen 

Figure 5-1: Bighorn sheep Psoroptes treatment trial study timeline depicting treatment timing and location/co-housing  of study 

animals. EST = Eprinomectin single treatment, EDT = Eprinomectin double treatment, SC = saline control, FHO = Fluralaner high-

dose oral, FLO = fluralaner low-dose oral, FHT = Fluralaner high-dose topical, FLT = Fluralaner low-dose topical 
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Figure 5-2: Examples of ear lesion severity scores. (A) Grade 0 (non-infested) or 1 (lesions restricted to ear canal) depending upon 

otoscopic findings, (B) Grade 2- lower 1/3rd of auricle affected, (C) Grade 3- lower 2/3rd of auricle affected, (D) Grade 4- entire 

auricle affected    
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Figure 5-3: Individual and average ear lesion severity scores of bighorn sheep following different treatments. Treatment groups 

include: Injectable extended-release eprinomectin delivered once (EST) or twice (EDT), saline control (SC), topical fluralaner 

administered at 5mg/kg (LT) and 10mg/kg (HT), oral fluralaner administered at 5mg/kg (LO) and 25mg/kg (HO). Results of HO 

treatment of animals previously treated with eprinomectin or topical fluralaner are marked in red (FHO-all). The arrow indicates the 

date of second eprinomectin treatment for the EDT group.  
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Figure 5-4: Characteristic resolution of clinical signs following treatment with high dose (25mg/kg) oral fluralaner (FHO) (A1) The 

right ear of animal #19 at the time of treatment (A2) the same ear one month after treatment.  
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Figure 5-5: Improvement of the ear lesion of one characteristic Psoroptes-infested bighorn sheep over the course of three months  

following a single treatment with oral fluralaner at a dosage of 25 mg/kg (FHO).  

T0=treatment day, T1= 1 month after treatment, T2= 2 months after treatment, T3= 3 months after treatment. 
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CHAPTER 6:  THE USE OF ADAPTIVE MANAGEMENT IN WILD SHEEP 

RESPIRATORY DISEASE AND PSOROPTIC MANGE MANAGEMENT IN 

NORTH AMERICA  

The research described in Chapter 6 completes the management process by addressing 

the challenge posed in converting theoretical knowledge into management action and proceeding 

with management despite uncertainty. It aims to expedite the efficiency of this process through 

identification of challenges and mistakes in a comparable wildlife disease management scenario, 

respiratory disease, and then adapt those lessons learned to the management of Psoroptes in 

bighorn sheep. Findings of this chapter are important considerations to be accounted for in the 

development of a Psoroptes management plan in Canadian bighorn sheep. 

 

Hering completed all interviews, interpretation, thematic analysis and data synthesis for 

this manuscript. Suggestions for interview subjects were provided by Drs. Mike Cox and Helen 

Schwantje of the Adaptive Wild Sheep Disease Management Venture. Guidance in performance 

of thematic analysis was provided by Dr. Craig Stephen.   

 

6.1 Disclaimer 

Interview subjects who participated in this study work in a variety of regions and settings. 

The information discussed here is a reflection of their experiences, perspectives, and opinions as 

well as those of the author but are not necessarily representative of the official perspective or 

opinion of the agency for which they work. Further, these interview findings should not be 

considered a comprehensive summary of all of the actions or approaches being pursued in each of 

the jurisdictions represented in this study.  

6.2 Introduction 

Practitioners of wildlife management are regularly faced with the challenge of applying 

meaningful management action in the face of ongoing uncertainty (Possingham 2000; Armitage 

et al. 2008; Williams and Brown 2016). The application of wildlife disease knowledge in the 

form of management action is a complex process that necessarily involves an understanding of a 

wide variety of biological and social considerations. Biological systems include agent, host and 

ecosystem-level factors, while social considerations, commonly referred to as the “human 

dimensions of wildlife management” include stakeholder desires, economic limitations and 

political dynamics (Wobeser 2002; J. Riley et al. 2003). This complicated and sometimes delicate 
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reality contributes to a phenomenon called “analysis paralysis”; a desire to constantly learn more 

before taking action (Urquhart 2012). The need to refine and optimize the process of knowledge 

application in the form of wildlife disease management interventions is therefore apparent.   

Adaptive management (AM) is described as a method for addressing complex problems 

laden with a high degree of uncertainty concerning which management actions are best suited to 

achieve desired outcomes (Williams et al. 2009). The concept of AM has been the topic of much 

academic consideration, in part because of how appealing it is in theory and simultaneously how 

challenging it is to execute (Walters 2007; Allen and Gunderson 2011).  The theory of AM 

describes the process as “learning by doing” (Armitage et al. 2008; Cundill and Fabricius 2009; 

Fontaine 2011). Putting theory into practice has been thoroughly discussed in the literature, with 

a wide variety of AM examples (National Research Council 2004). On one end of the spectrum is 

“passive” AM where managers unceremoniously choose what they believe to be the best course 

of action, monitor the outcomes of their actions and then adapt their management actions to the 

situation at hand (National Research Council 2004). Others describe this “trial and error process” 

as “maladaptive management”, instead,  suggesting one of several far more prescriptive processes 

(Williams et al. 2009; McFadden et al. 2011; Conroy and Peterson 2013; Chadès et al. 2017). 

What remains consistent between approaches is the recommendation to apply scientific methods, 

addressing uncertainty, to select management strategies that are most effective. To do so there is 

a clear need to: 1) define the goal of management, 2) implement multiple strategies to achieve 

that goal (based on particular hypotheses), 3) monitor and compare the results of the selected 

interventions and 4) make changes or “adapt” the management strategy(ies) accordingly.  

Despite awareness of Psoroptes presence in wild sheep populations of North America for 

over a century, it has received relatively little attention from wildlife managers for several 

reasons, one being a lack of feasible practical management options (Scott et al. 2013). The one 

exception where Psoroptes was actively eradicated from a wild sheep population occurred in the 

San Andres Mountains of New Mexico once the population had declined to only one ewe that 

was caught, brought into captivity, treated with ivermectin, and then re-released with other 

animals to rebuild the population (Boyce and Weisenberger 2005). Ideally management 

interventions should take place before the population dwindles to just one animal. Attention to 

other wild sheep disease management challenges might provide valuable insight into how to 

develop effective management plans for Psoroptes. Psoroptic mange has also received less 
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attention because most managers agree that there are other significant threats to bighorn sheep 

conservation more deserving of their time and attention, specifically respiratory disease (Brewer 

et al. 2014; Hurley et al. 2015).  

An abundance of effort has been directed towards better understanding the risk factors, 

disease dynamics, and population impacts of epizootic polymicrobial respiratory disease complex 

in bighorn sheep (Cassirer and Sinclair 2007; Besser, Highland, et al. 2012; Besser et al. 2013; 

Plowright et al. 2013; Besser et al. 2014; Sells et al. 2015; Sells et al. 2016; Borg et al. 2017) and 

yet the application of knowledge into management action presents its own challenges. In 

dissecting the struggle to implement management action for respiratory disease in bighorn sheep, 

conclusions can be drawn about common challenges and opportunities in wild sheep 

management. Considering the Wild Sheep Working Group of the Western Association of Fish 

and Wildlife Agencies’ (WAFWA) Adaptive Wild Sheep Disease Management Venture (DMV) 

as a case study is a useful exercise to highlight some of the practical barriers to the 

implementation of AM to wild sheep health challenges.  

The DMV’s mission is to act as a source of expertise and guidance for jurisdictional 

wildlife management agencies and to accelerate collective learning by facilitating the 

implementation and evaluation of the AM of respiratory disease in wild sheep (Western 

Association of Fish & Wildlife Agencies 2017). Since the DMV was established in 2015, several 

examples of management interventions that could be described as adaptive management of 

respiratory disease can be found (Bernatowicz et al. 2017; Garwood 2018), however applications 

have only been attempted in select limited situations (Montana Department of Fish Wildlife and 

Parks 2010; Bernatowicz et al. 2017; Garwood 2018). This chapter aims to review the current 

state of respiratory disease management in bighorn sheep across North America and seeks to 

understand the factors preventing the translation of acquired knowledge into respiratory disease 

management action by conducting semi-structured interviews with wildlife health professionals. 

Lessons learned through this process are discussed in the context of improving wildlife 

management for respiratory disease as well as their potential application to development of 

Psoroptes management plans in bighorn sheep.  

6.3 Materials and Methods 
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6.3.1 Respiratory Disease and the DMV 

Respiratory disease has caused at least 175 major die-off events, involving almost all 

jurisdictions in North America containing bighorn sheep populations, resulting in significant 

population declines throughout bighorn range over the past 50 years (WAFWA - Wild Sheep 

Working Group 2017; Cassirer et al. 2018). Respiratory disease mortality events are the result of 

polymicrobial infections but new research within the last decade confirms that Mycoplasma 

ovipneumoniae is the primary causative agent, resulting in mortality rates of 10-90% in infected 

populations (Besser et al. 2014; Butler et al. 2017). There is agreement that a major source of 

respiratory disease-causing pathogens in wild sheep is contact with domestic sheep which are 

asymptomatic carriers of M. ovipneumoniae. Therefore, minimizing contact between wild and 

domestic sheep is a necessary component of wild sheep respiratory disease management (Besser, 

Highland, et al. 2012; Sells et al. 2015; Cassirer et al. 2018).  

The key question defined by the DMV at its inception was: “What contributes to this 

variation in herd response to respiratory disease and how can management actions improve herd 

performance?” (WAFWA - Wild Sheep Working Group 2017). In 2017 the DMV created 

guidelines for improved herd monitoring, as well as proposed AM actions for jurisdictions to 

implement (WAFWA - Wild Sheep Working Group 2017). Six AM strategies were suggested, 

three of which were described in detail with recommended actions and criteria for evaluation of 

success, while the remaining three were listed without additional guidance. Briefly, those 

described in detail were: 1) selective test and cull to eliminate M. ovipneumoniae shedders or 

other pathogens of interest from a herd, 2) depopulation of a respiratory disease affected herd and 

repopulation with unaffected animals, and 3) translocation of animals based on matching 

pathogen profiles between source and recipient herds. The remaining three included in the DMV 

strategy without additional direction for managers were: 4) “Nonselective culls – ewe hunts”,  5) 

“Breakup herds- actions to disperse/distribute/hazing” and 6) “Fertility control to reduce herd 

densities” (WAFWA - Wild Sheep Working Group 2017).  Specific guidance in the selection of a 

particular AM school of thought was not provided in the DMV strategy, leaving managers to 

select their own approach to implementing AM interventions.  

6.3.2 Study Population  

Thirteen wildlife professionals with personal experience working on respiratory disease 

management in bighorn sheep were selected from seven different states and provinces. Interview 
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participants were non-randomly chosen using suggestions from the chair of the DMV, and the 

recommendations made by the interviewees. Care was taken to include a wide variety of roles, 

perspectives, and related experience from these different regions, and included both DMV 

committee members and non-members. Interview subjects worked in and/or represented British 

Columbia, Washington, Idaho, Montana, South Dakota, Oregon, and Utah. Seven interview 

subjects were government biologists, managers, or supervisors, three were government-employed 

wildlife veterinarians, and three were researchers or biologists who work closely with 

government officials but have consulting roles and are not directly tasked with management 

decision making. Enrollment of interview participants continued until information saturation was 

achieved (no additional unique viewpoints were provided).  

6.3.3 Study Design 

Semi-structured interviews were conducted by phone at pre-arranged times between 

August and October 2018 with one or two wildlife managers at a time. Each lasted between 45-

90 minutes in a single session. The goal of each interview was to learn about the current state of 

respiratory disease management in their jurisdiction, the interventions being performed, and the 

perceived barriers preventing action. Interviewees were promised anonymization of results to 

ensure honesty when expressing their concerns or disagreements with the DMV approach or 

other potentially controversial topics around respiratory disease management. Subjects were 

encouraged to discuss both the aspects of respiratory disease management that they felt were 

currently going well and key challenges being faced in their respective regions. Semi-structured 

interview questions were used with additional prompts when necessary to help clarify unclear key 

points, specific context, and important details as needed. The core questions were provided to 

interviewees ahead of time and were kept intentionally general to limit the biasing of answers by 

the interviewer.   

Semi-structured interview questions were as follows: 

1. Tell me about your role with regard to wildlife management in your area. 

2. Does your region state specific goals regarding the management of respiratory 

disease in your bighorn sheep? 

3. What are some of the main actions you’re implementing or trying to implement to 

manage respiratory disease in your region? 

4. What are the main challenges you face in selecting or implementing these actions?  
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5. What are some things your region does well?  

6. Is there anything else you would like to add or anyone else you would suggest that I 

talk with?  

 

Where available, bighorn sheep management plans for each region as well as other 

supplemental texts were examined ahead of time by the interviewer and were discussed during 

the interviews to add additional context and information about the unique and common 

challenges faced in each region.  

6.3.4 Interview Evaluation 

All interviews were audio-recorded for future review and a thematic analysis was 

performed on the recordings to ascertain key commonalities and points of disagreement between 

interview subjects. Shared management goals, actions, and barriers preventing action were 

grouped into unifying themes. Management actions discussed by interview subjects were divided 

into the four basic wildlife disease management categories: prevention, control, eradication, and 

doing nothing, as defined by Wobeser (2002). In this case, control is distinguished from 

eradication in that control refers to actions aimed at reducing the frequency of disease or its 

effects in a population to an acceptable level without aiming to remove the disease or pathogen 

from the population entirely. The expectation with control actions is therefore that the disease 

will persist in the population at some level and therefore control actions are generally intended to 

be carried out in perpetuity (Wobeser 2002). Meanwhile, eradication measures aim to eliminate 

the pathogen from the population entirely. Where desired management actions were not being 

actively implemented, and a do-nothing approach was the de-facto strategy employed, the key 

barriers preventing action presented by the interview subjects were discussed and grouped into 

unifying themes.  

The management actions carried out by agencies and how they were implemented were 

reviewed and evaluated for adherence to an AM approach. There is no widely accepted definition 

of what constitutes AM; however, it is generally understood to refer to situations in which 

management actions themselves are viewed as experiments to address uncertainty around how 

best to accomplish some management objective (Walters 1986).  Since the DMV did not provide 

additional guidance on what they meant by AM and managers were free to employ their own 
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preference of AM styles, a broadminded perspective on what constitutes AM was taken when 

evaluating management actions. 

Interview subjects were questioned about their management goals, challenges they faced, 

actions they carried out, how outcomes were monitored, how success was evaluated, how 

outcomes were compared, and how the integration of acquired knowledge was achieved.  The 

management processes described by interviewees, and any supplemental documents on their 

interventions, were evaluated for whether they were implemented in a way that would allow 

experimentation and comparison of multiple strategies, and therefore could be considered AM. 

For added clarity, a set of 9 key adaptive management principles for success identified by 

McFadden et al (2011) through a meta-analysis of different approaches to AM was considered. 

The 9 key principles are 1) stakeholder involvement, 2) defined objectives, 3) multiple actions, 4) 

prediction of consequences, 5) specification of constraints, 6) acknowledgement of uncertainty, 

7) explicit experimentation, 8) monitoring, and 9) emphasis on active learning. While these do 

not define what qualifies as AM, they provide insight into how to perform AM effectively or 

where to focus efforts when it is not being implemented.  

Interviews were used to assess whether the jurisdictions were using AM and to assess how 

the DMV could best direct future efforts to improve respiratory disease management in wild 

sheep. The thematic analysis of the interview information was used to assess how the DMV and 

an AM approach could help address the barriers identified. 

6.4 Results 

6.4.1 Overview 

All four wildlife disease management strategies (prevention, control, eradication, and do-

nothing) (Wobeser 2002) were represented in the challenges, goals, and actions described by the 

interview subjects. Some aspects, namely prevention and eradication, received considerably more 

time and effort from most managers than others. Where no action was being taken (Do-nothing), 

despite a desire by managers to do something, four unifying themes of barriers to action emerged 

(Figure 6-1).  

6.4.2 Prevention Actions 

The largest portions of managers’ time and effort have been directed towards the 

prevention of disease, and all jurisdictions included in this study were working towards 

preventing disease entry into unaffected herds in multiple ways. Three primary routes of disease 



 

 98 

exposure were identified by interview subjects for which action is being taken: 1) exposure from 

contact with domestic sheep and goats, 2) exposure from human-assisted translocation of bighorn 

sheep, and 3) exposure from the natural movement of bighorns between herds of differing 

pathogen profiles.  

To prevent introduction of disease, a key foundation identified by all interview subjects 

was knowledge of the current pathogen distribution. All regions invest substantial amounts of 

time and resources in monitoring the infection statuses of the wild sheep populations under their 

care. Meaningful comparison of disease profiles between jurisdictions is made possible by the 

development of standardized disease testing recommendations. Recommendations for respiratory 

disease testing were published by the Wildlife Health Committee of the WAFWA in 2015 

(Wildlife Health Committee, 2015) and enhanced monitoring guidelines were published by the 

DMV in 2017. Higher priority herds such as those that provide better wildlife viewing or hunting 

opportunities are subject to more frequent retesting, but most regions reported to have baseline 

information on the majority of herds in their territory even if some baseline information was 

several years old. When asked what aspect of respiratory disease management they did well, at 

least one representative of each of the 7 jurisdictions considered baseline surveillance to be 

among their strengths.  

After establishing an understanding of the location and disease status of herds, managers 

directed significant effort to identifying and addressing sources of disease exposure in at-risk 

populations. The first potential route of disease entry was through contact with domestic sheep 

and/or goats. All interview subjects agreed that the science was clear that domestic sheep and 

goats represent a significant threat to wild sheep and that isolation from these domestic species 

must be a priority. All regions have put significant effort into identifying domestic sheep and goat 

producers and landowners with these species on their properties or making use of public lands 

close to bighorn sheep habitat. Locating new owners of domestic sheep and goats was a common 

challenge identified by managers from four of the seven regions. Several strategies were 

presented for locating and identifying properties that represent risk of disease introduction. One 

region has an independent program aimed specifically at locating and addressing the risk 

presented by domestic sheep and goats and in all other cases this work is done primarily by 

government-employed wildlife managers.  
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Several interview subjects also discussed having an interest in testing domestic sheep for 

M. ovipneumoniae in the hopes that this might help identify the degree to which those tested 

domestic herds represent a disease spillover risk to wild sheep. Research is underway to 

investigate options for treatment or eradication of M. ovipneumoniae from domestic species 

(Besser et al. 2018) however, none of the interviewees discussed this strategy being applied as a 

management action at the time when interviews were performed. The barriers preventing 

exploration of this approach are discussed later in the “do nothing” section.   

The second potential route of pathogen entry identified by wild sheep managers was 

through bighorn sheep translocations. Translocation involves the intentional movement of 

wildlife from one or more “source” herd(s) to another “recipient” herd or region. Translocations 

are used to control source herd size or density, or to establish, reintroduce, or expand/augment 

recipient herds. Interviewees from all included jurisdictions reported having carried out 

translocations in their region. All describe performing pathogen testing on both the source and 

recipient herds before translocations as per DMV recommendations, however all expressed 

hesitation around the DMV’s suggested AM approach of performing translocations between 

herds based on matching of M. ovipneumoniae strain types. There was a general reluctance to 

translocate M. ovipneumoniae positive animals unless absolutely necessary, and when done, 

managers expressed a strong preference for doing it between herds with a historical connection 

through previous translocations in addition to matching of pathogen profiles. The main reason 

presented for this hesitation is a lack of confidence in the current ability to identify all relevant 

pathogens or strain types in donor and recipient populations and a reluctance to do anything that 

potentially puts bighorn sheep at risk. None of the interviewees described any plans for direct 

comparison of their translocation outcomes, regardless of pathogen profiles. However, all regions 

are performing these translocations after thorough testing of the source and recipient herd 

pathogen profiles, and all are carrying out post-translocation monitoring that should detect 

respiratory disease outbreaks if they occur.  

The third potential route of disease introduction presented by the interviewees is through 

the natural movement of bighorn sheep between herds of differing pathogen profiles thereby 

exposing new herds to pathogens not previously familiar to them. Six of the 13 interview 

subjects, each from a different region, discussed a lack of ability to prevent bighorn movement 
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between herds that are part of a larger metapopulation as a key challenge in preventing disease 

introduction into naïve herds.  

"We can do [a test and cull] with a sheep herd like the [location removed] that’s 

isolated in a relatively small piece of sheep habitat, but things are going to get much 

more challenging if we're talking about the [location removed] for example, where 

you have 1000 sheep scattered across 150 or 200km of river.” – Wildlife 

Biologist/manager  

Few options have been proposed to prevent the movement of wild sheep between herds; 

however, population reduction was identified by interviewees as a potential method to address 

this challenge. This theory is based on evidence that respiratory disease outbreaks often occur 

when herds are close to their maximum population size (Monello et al. 2001). It is believed that 

the mechanism for these disease outbreaks was through increased likelihood of contact between 

M. ovipneumoniae free bighorns and nearby domestic sheep, goats, or infected bighorn herds. 

When population sizes were large and herd densities were high, animals would have been more 

likely to venture further away from core habitats into surrounding areas (Sells et al. 2015), 

thereby increasing the risk of exposure to M. ovipneumoniae carriers. In light of this, some 

managers and management plans described specific population targets for herds based on an 

estimated minimum-viable population and a population size that could be sustainably hunted. 

Interview subjects described carrying out translocations rather than ewe hunting for population 

reduction in 3 of the regions interviewed. When action was targeted at population size or density 

reduction in hopes of impacting the likelihood of disease exposure, none of the regions described 

any way of evaluating whether this strategy was successful in changing animal movement 

patterns in the source herd. 

6.4.3 Control versus Eradication Actions 

Effective control actions aimed at reducing the impact of disease in affected herds have 

not yet been identified. While research is underway to find actions that may be taken to either 

reduce the impact of disease on affected animals or the degree of spread within affected herds, no 
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demonstrably effective control strategies were discussed by interview subjects or in wildlife 

management plans.  

Because of the lack of successful options for disease control once disease is present within 

a population, disease eradication is the goal of much of the management effort as well as a main 

focus of the DMV initiative. The two main eradication interventions proposed by the DMV are 1) 

test and cull, and 2) depopulate and repopulate. At the time of interviewing, test and cull efforts 

focusing on M. ovipneumoniae were carried out in two of the seven regions with a third effort in 

the planning stages. Depopulation and repopulation efforts were also described in two of the 

regions, one of which had reintroduced animals back into that landscape while the other was still 

confirming the success of the depopulation attempt before reintroducing disease-free sheep.   

All managers agreed that depopulation and repopulation can be an effective strategy for 

eradicating respiratory disease; however, most managers expressed reluctance to consider this 

option because of the many social, political and logistical challenges that come with this 

approach. Some examples of challenges discussed include lack of public support for killing 

wildlife, lack of public support for re-introduction of bighorn sheep if they were removed, the 

logistical challenge of locating and removing all individuals in challenging terrains, and the 

expense of such a proposition. Some managers also see this option as undesirable because of the 

loss of local genetic diversity and local landscape knowledge that cannot be quickly replaced 

when completely naïve animals are introduced into a foreign habitat (Jesmer et al. 2018). Of the 

two regions implementing this strategy, one case selected this option due to a severe pneumonia 

die-off leaving few remaining animals, and the other chose it because of multiple failed 

population augmentation efforts and chronic poor recruitment. The interview subjects from the 

region that had reintroduced sheep into the previously depopulated area indicated that while 

follow-up monitoring had not seen any evidence of respiratory disease in the newly reintroduced 

animals yet, continued observation was still necessary before the reintroduction effort could be 

considered a success.  

6.4.4 Do-Nothing  

The “do nothing” approach is sometimes considered the best management option when 

the effects or probability of disease are mild enough that intervention is not justified, but in many 

cases it is the default that is selected when no practical or viable options are thought to offer a 

high chance of success. All interviewees described numerous situations where action was 
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desirable but was not being taken. Significant amounts of time were spent discussing these 

examples and the numerous barriers that prevented the implementation of desired active 

interventions. Of the numerous barriers described during interviews, the thematic analysis 

revealed 4 general categories of barriers: 1) social/ political, 2) physical, 3) resource, and 4) 

information/knowledge barriers (figure 6-2).  

 Social and political barriers were those where aspects of human dimensions were the 

limiting factor identified. In general, these existed because the managers did not have the political 

leverage to achieve the desired action through regulatory means nor the social support among at 

least some of the target audience to achieve that same action voluntarily. Physical barriers were 

those where some aspect of the physical landscape or the herd dynamics on that landscape made 

the desired management intervention physically impossible. Resource barriers referred to 

shortages in personnel time or money that interviewees felt were needed to carry out a particular 

management action in the appropriate way. Finally, knowledge and information barriers were 

present when interviewees felt that the necessary understanding needed to carry out a particular 

intervention in a responsible way was not yet available.   

Social and Political Barriers 

A lack of legal power over domestic sheep and goat owners on either private or public 

lands was identified by 10 of the 13 interviewees as a barrier that limited their ability to reduce 

the risk of contact between wild sheep and domestic hosts. Interviewees explained that while 

relationships with most domestic sheep producers, especially larger producers, were on good 

terms, 11 of the 13 interview subjects described situations in their region where a lack of trust or 

rapport between a landowner or producer and the interview subject/agency they worked for 

resulted in the landowner being unwilling to work cooperatively with wild sheep managers to 

reduce the risk presented by their livestock. Almost half (6 of the 13) reported that they faced 

situations in which a stakeholder was unwilling to accept the scientific consensus regarding the 

risk of pathogen spillover from domestic species. Interview subjects had variable opinions about 

whether they felt the most effective strategy was likely to be something involving voluntary 

incentive-based or regulation-enforced compliance with the necessary actions.  

A recurrent theme throughout interviews was that the involvement of livestock producers 

in consultation and planning was regularly low despite the key role that their domestic species 

posed to wild sheep. Even when stakeholder engagement was a part of management planning, 
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often the primary stakeholders represented were hunters, leaving domestic sheep owners and 

producers without a substantive contribution to the process. For example, in one management 

plan involving a public scoping procedure at the time of its creation, thirty-one responses were 

received during the process and seven organizations were represented in the commenting period, 

5 of which were wildlife or hunting related organizations and only one of which was a domestic 

sheep related organization. Of the 18 comments made specifically on the topic of bighorn and 

domestic sheep and goat interactions, 13 recommended reducing, limiting or preventing domestic 

sheep and goats from being raised or grazed in bighorn-adjacent areas.  Given this reality, it is not 

surprising that so many of the domestic sheep and goat affiliated stakeholders felt threatened and 

expressed a lack of trust.  

 Another social/political barrier identified was a lack of public support for lethal tools 

needed to limit bighorn population size. This was presented by five interview subjects 

representing four different jurisdictions and referred to a lack of precedent for ewe hunts in two 

regions, lack of support for increasing hunting tags sufficiently in one region, and lack of access 

to lethal population reduction in parks in one region. In all cases this created a situation where 

translocation was the only remaining option for population reduction; however; it was not always 

a suitable solution due to an inability to meet appropriate translocation pre-requisites such as 

those suggested by the DMV.   

Physical Barriers 

 Challenging terrain that made capture work or even depopulation next to impossible was 

discussed by 7 of the 13 interviewees from 5 of the 7 regions. In certain habitats, neither of the 

strategies aimed at disease eradication (test and cull or depopulation) were considered feasible 

because of an inability to find, capture, or even kill all sheep regardless of the tools and money 

available.  

High levels of inter-herd connectivity preventing action on one herd without working on 

all subpopulations of a metapopulation simultaneously was also cited as a significant physical 

barrier by six of the interview subjects representing all of the regions.  

“The problem is we don’t have any good candidate herds… there’s so much 

connectivity to other locations.” -Wildlife veterinarian  
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Resource Barriers 

 Limited access to the financial and personnel resources necessary to complete an AM 

style intervention was discussed by 11 of the 13 interviewees representing all jurisdictions. It was 

noted that both the cost of the action itself and the obligatory follow-up, monitoring, and analysis 

were aspects of this limitation. Most did not feel that simply increasing access to funding would 

be sufficient to address this challenge because the time to coordinate, complete, and analyze the 

desired work was not available to many interviewees, especially those in government-funded 

positions. One similarity among all three of the test and cull interventions discussed was a high 

level of cooperation between regional wildlife departments and academic institutions, 

independent researchers, or both. Access to these additional resources was discussed as a 

valuable component in helping those highly involved test and cull interventions occur and 

enabled the post-treatment evaluation that was necessary to determine the success of those 

actions.  

Knowledge and Information Barriers 

 Many areas of curiosity and uncertainty were discussed; however, in many cases these 

should almost be seen as reasons why AM should be carried out rather than reasons why it could 

not. Numerous uncertainties were presented as barriers that prevented action. These included 

which pathogens and which strains of M. ovipneumoniae were most important (6/13 

interviewees), the nature of intermittent shedding of M. ovipneumoniae (3/13 interviewees), 

whether M. ovipneumoniae could be cleared from a live animal or a herd without depopulation 

(8/13 interviewees), what could be done to reduce movement between herds in a metapopulation 

(5/13 interviewees), why some herds experienced more severe outcomes to M. ovipneumoniae 

introduction than others (8/13 interviewees) and whether any actions could be taken to reduce the 

impact of disease in these M. ovipneumoniae positive herds (3/13 interviewees). Three interview 

subjects were not convinced that M. ovipneumoniae should be receiving as much priority as it has 

been; however, all agreed that isolation from domestic sheep and goats was still a necessary 

priority.  

6.4.5 Intentional Use of Adaptive Management  

The use of an AM approach to wildlife management was not a stated goal in any of the 

regions’ management plans, nor was it referenced in additional supplemental literature describing 

the management interventions discussed (Oregon Department of Fish and Wildlife 2003; Hells 
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Canyon Bighorn Sheep Restoration Committee 2010; Idaho Department of Fish and Game 2010; 

Montana Department of Fish Wildlife and Parks 2010; Utah Division of Wildlife Resources 

2012; Washington Department of Fish and Wildlife 2015; Bernatowicz et al. 2017; South Dakota 

Game Fish and Parks 2018; Utah Division of Wildlife Resources 2018). While many of the 

management plans were written and published before the establishment of the DMV none of the 

interview subjects identified AM as an intended framework in which management interventions 

were being implemented. When asked about it directly, several managers expressed a need for 

clarity around what is meant by AM, while those that felt they had a clear understanding of AM 

did not think they were truly implementing it.  

One interview subject discussed a lack of control group availability as a key challenge 

preventing the utilization of an AM approach. The difficulty in finding a population that was a 

reasonable candidate for the implementation of any management action is extremely difficult, but 

to find two that are both good candidates for action and are similar enough to each other to allow 

one to act as a comparable control group to the other was next to impossible. This interviewee 

expressed that one of their hopes for the DMV was to increase the geographic pool from which 

candidate herds could be identified and consequently more eligible control herds might be 

available, but this has proven more challenging than anticipated.  This interview subject 

suggested that this barrier could be overcome by increased uptake of a “before-after-control 

impact” (BACI) design for assessing the effect of the intervention.  

When asked whether translocations were being done through any AM framework, one 

interview subject responded by asking “what is an adaptive management experiment?” and 

another said, “you could say that almost any time we move sheep it’s adaptive management”. 

When no framework or formal plan describing how a management intervention was selected, 

designed, carried out, and interpreted was available, objectively evaluating whether management 

action qualified as AM was difficult. In these cases, both the fulfillment of the nine AM 

principles proposed by McFadden et al. (2011) and the more general intent to carry out the 

intervention in a way that allows comparison and analysis of multiple strategies were considered.  

One example of this ambiguity is the fact that all regions had some stakeholder 

involvement and public consultation process in their management planning, but whether 

stakeholders were informed or had a meaningful opportunity to be involved in management 

planning was often unclear.  Despite the fact that AM was not a stated goal, the application of 
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management in a way that enabled the evaluation and comparison of different actions through the 

outcomes they achieved, therefore making them examples of AM, could still be found in some 

cases.  

With regard to prevention, none of the DMV proposed AM actions address the 

uncertainty expressed around how best to prevent disease introduction from domestic sheep and 

goats. None of the regions identified a formal set of objective separation goals, or a mechanism 

of evaluating whether their separation efforts were successful.  

"There's no adaptive management in terms of evaluating the intensity of prevention 

strategies for example, and how that's affecting risk. We're not really doing that in 

any systematic way. It's hard without a clear program. We have a clear program in 

terms of general health monitoring, but we don't have any [region] wide program for 

sheep respiratory disease management" – Disease Ecologist 

Interview subjects discussed actions directed at reducing the risk posed by domestic sheep 

and goats but none of these were applied in a way that would qualify as AM. For example, it is 

common practice for stray animals found in high-risk areas (whether domestic or wild) to be 

removed and tested for respiratory pathogens. There is little uncertainty about the fact that these 

animals constitute a significant disease spillover risk; the most effective way of detecting these 

animals, however, is less obvious. None of the regions discussed any specific strategy for 

detecting these animals let alone attempting to compare which strategies are most effective in a 

systematic way that might be described as AM.  

In terms of mitigating the risk of disease introductions via translocations, it is difficult to 

determine if all nine AM principles received consideration without having a formal description of 

the decision processes and actions of each individual translocation event. The lack of multiple 

actions and explicit experimentation between translocation events precludes most of these 

translocations from qualifying as true AM. However, the high degree of testing and monitoring 

that goes into each of these translocations as well as the following of standard recommendations 

from the DMV about pre-and post-translocation data collection makes them well suited to post-

hoc comparison and recovery of that otherwise missed opportunity. Because AM is an iterative 

process, the comparison of management outcomes and integration of lessons learned are 
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essential; if these are completed for this data set, by the DMV or another body, and lessons are 

incorporated into future management planning, this would be an example of AM.  

The only mechanism discussed to prevent disease introduction through reduction of 

movement between herds of wild sheep in a metapopulation was population reduction. There 

were three management strategies suggested by the DMV adaptive management 

recommendations that pertain to population size or density: 1) Non-selective culls – ewe hunts, 2) 

“Break-up” herds – actions to disperse/distribute/hazing, and 3) Fertility Control to reduce herd 

densities. Neither fertility control nor actions aimed at breaking up herds were mentioned by any 

regional management plans or interview subjects as a strategy they were considering or had 

carried out. Four of the bighorn management plans described non-selective ewe hunts as an 

acceptable method of population reduction but none of the interview subjects reported actively 

using this strategy for population control (excluding depopulation efforts) in their region. 

Population reduction via translocation of excess animals was discussed but no methods of 

reviewing the impact of these removals on source herd movement patterns or herd dynamics were 

reported. Without this necessary follow-up, the evaluation of the success of this action on 

reducing likelihood of disease or animal movement between herds could not be evaluated and 

therefore this action too does not qualify as AM in its current form.  Another theory regarding the 

benefit of population reduction may be to reduce the potential effect of density-dependent factors 

on disease (Monello et al. 2001), but again, no examples of comparison of pneumonia-related 

mortality rates between reduced and unreduced herds were reported.  

When searching for interventions that could be used for disease control, interview 

subjects discussed ongoing investigation into why some herds are more severely impacted by 

respiratory disease than others. The research described was generally aimed at comparison of 

herd or ecosystem characteristics and was therefore observational in nature rather than 

incorporating active management interventions that could be considered AM. In four of the seven 

regions, actions aimed at habitat improvement were discussed including controlled burning and 

weed control. While some interview subjects discussed the idea that habitat improvement might 

lead to improved health and therefore reduced susceptibility to pneumonia, none described an 

experimental comparison or AM methodology that would enable the evaluation of that 

hypothesis.  
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A large portion of DMV attention was directed towards recommended AM interventions 

aimed at disease eradication. Two regions completed a test and cull attempt and one had plans to 

begin one when the interviews were completed. All 3 were directed at M. ovipneumoniae 

eradication from the herd. The two completed interventions involved thorough monitoring 

including M. ovipneumoniae testing and observation of both lamb recruitment and mortality 

rates, before and after application of the proposed strategy. Both involved comparison of 

outcomes between herds subjected to different management approaches. This enabled an 

objective comparison of the different approaches to further support any cause and effect 

associations of implemented interventions and observed outcomes. The third proposed plan did 

not explicitly identify a control group. Instead, pre-treatment data describing relevant herd 

characteristics including recruitment and mortality rates has been collected for several years since 

the outbreak of disease occurred in the affected herd. That data should be sufficient to allow a 

before and after comparison to be performed that will provide similar confidence in the validity 

of the conclusions. While the application of these management approaches did not explicitly state 

the use of an AM framework, publications on the two completed test and cull efforts combined 

with interviews of involved parties clearly demonstrated consideration of the nine AM principles. 

The third test and cull intervention similarly did not include an AM plan but based on an 

interview with involved personnel they had plans to address all of the AM principles except for 

the presence of a control group. In all cases, the experimental approach to evaluating the effect of 

test and cull management interventions clearly qualify as AM.  

With regard to the use of AM in depopulation and repopulation cases, both regions that 

used this approach had stakeholder involvement in their management planning and one even used 

stakeholders (hunters) to help with the depopulation effort. Meanwhile, other AM principles were 

less self-evident. A defined objective of having a sustainable disease-free herd of bighorn sheep 

in the target area was the objective of each intervention but the specifics of what that meant was 

not defined. Neither situation discussed a specific direct comparison of the herd outcome to a 

control herd to fulfill the multiple actions for comparison principle as proposed by McFadden et 

al. (2011). One of the two depopulation events had numerous years of pre-treatment data for 

comparison while the other carried out the depopulation effort immediately following the 

outbreak and therefore did not. Both had predicted consequences even if they didn’t directly 

discuss them.  Constraints and uncertainty were included in discussions around difficulty in 
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performing the management actions. Explicit experimentation was not described as an aim of 

either of these efforts; however, monitoring and emphasis on active learning was clearly a 

priority and so one could consider these principles met as well. Ultimately, the comparison of 

pre- and post- depopulation herd dynamics could make this an example of AM in one case if 

lessons learned helped shape future management, while the lack of pre-depopulation data in the 

other case makes the identification of a suitable control herd a necessary requirement to qualify 

as an example of AM.    

6.4.6 The Challenges Not Addressed by the DMV 

This research observed that the recommendations provided by the DMV were helping to 

facilitate the implementation of AM style interventions for certain management challenges while 

not addressing other necessary priorities. Many of the interviewees spent large portions of time 

discussing challenges and uncertainties faced in managing respiratory disease not identified by 

the DMV that need to be addressed before jurisdictions can consider implementing DMV 

recommended interventions. Seven major management challenges were identified where the 

optimal strategy remains unclear, and of those only three were addressed by the DMV strategy 

(Table 6-1).  

6.5 Discussion 

This research demonstrates that there are some strong opinions and theoretical strategies 

about how we might best manage wild sheep respiratory disease through efforts directed at 

elimination of M. ovipneumoniae from affected herds, but that the opportunities to use this 

information are still limited because isolation from sources of pathogen reintroduction is rare. 

There is ongoing uncertainty about how best to achieve pathogen eradication; however, AM is 

already being used to examine how eradication might be best achieved, and two feasible 

alternatives (depopulation/repopulation and test and cull) might each be well suited to particular 

disease scenarios. In cases where the entire AM cycle is not already being completed, the 

standardized recommendations for follow-up and testing provided by the DMV should allow 

comparisons to be done by the DMV at a later date. Managers are already focused on prevention, 

the necessary pre-requisite of eradication, though prevention efforts are lacking the systematic 

organization currently applied to eradication. Additional progress towards improved pathogen 

isolation is needed otherwise the opportunities to make use of the meaningful work the DMV is 
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currently doing on optimizing pathogen eradication strategies will always be limited to a small 

subset of the respiratory disease affected herds. 

These primary lessons are valuable when adapting them to considering how psoroptic 

mange management should be approached.  Psoroptes management benefits from a less 

complicated management process than respiratory disease for several key reasons. First, while 

Psoroptes is infectious to domestic sheep, it is currently absent from North American domestic 

sheep making isolation from domestic animals less important for Psoroptes management (van 

den Broek and Huntley 2003). Second, chronic smoldering infestations of Psoroptes are often 

more easily identified by the presence of external symptoms in at least some animals in a herd 

(van den Broek and Huntley 2003). Third, because there is only a single pathogen involved 

attention can be focused on the specific cause without requiring the decades of research effort and 

debate that has been needed to identify M. ovipneumoniae as the primary causal pathogen in the 

respiratory disease complex (Besser et al. 2013). Finally, experience in domestic species suggests 

that treatment of Psoroptes at the herd level is only possible by treating each and every animal 

(O’Brien 1999) unlike respiratory disease which requires removal of the “chronic shedders” of 

M. ovipneumoniae who may only be shedding M. ovipneumoniae intermittently therefore 

potentially requiring multiple captures of each animal.   

On the other hand, numerous similarities between respiratory disease and Psoroptes are 

apparent in this study. For example, isolation of naïve bighorn herds from infected herds or 

isolation of subpopulations from a larger metapopulation poses the same challenge for Psoroptes 

as it does for respiratory disease. Action aimed at disease prevention (isolation) to subdivide 

larger metapopulations into manageable subpopulations must be undertaken in many situations 

before extensive disease eradication efforts should be considered otherwise pathogen 

reintroduction is likely. Additionally, current treatments used in domestic animals require 

multiple applications for herd level pathogen eradication (O’Brien 1999) so until a Psoroptes 

treatment can be shown to have residual effects long enough to allow treatment of an entire herd 

before the first treated animals become susceptible again, multiple captures would also be 

necessary.   

The selection criteria suggested by the DMV for choosing respiratory disease situations 

suited to AM intervention and the recommendations made to standardize follow-up procedures 

were valuable guidance for wild sheep managers. Creation of similar guidelines for AM of 
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Psoroptes would be useful for managers wishing to manage Psoroptes in their regions. The 

challenges of improving detection of stray wild sheep and reducing emigration from core habitats 

are equally applicable to improving isolation for Psoroptes management as they are to respiratory 

disease management. Translocation procedures can be easily adapted to include Psoroptes either 

through improved detection or through treatment of translocated individuals with anthelmintics. 

Detection can be performed at both the herd level and the individual level; however, because of 

the possibility of sub-clinical carriers, reliance on detection should involve herd level pathogen 

testing to determine the suitability of a population to act as a source herd for translocations (van 

den Broek and Huntley 2003). Routine treatment of animals used in translocations would provide 

an extra level of protection to prevent transmission of Psoroptes to a recipient herd, however an 

interim housing facility would be required for 10-12 days depending on the treatment selected to 

ensure all of the mites are killed prior to introduction to the new herd (O’Brien 1999). Significant 

differences in herd-level disease dynamics exist between respiratory disease and psoroptic 

mange. Current evidence suggests that only select animals act as maintenance hosts for M. 

ovipneumoniae and pathogen eradication can be accomplished if those animals are identified and 

removed. Meanwhile, in domestic species, all animals appear to be potential maintenance hosts 

for Psoroptes (O’Brien 1999); however, it is possible that in a wildlife setting, lower density 

would allow some animals with a higher level of natural resistance to clear the infestation without 

treatment and so the same might be true for Psoroptes management. Actions aimed at control or 

eradication of psoroptic mange therefore need their own AM experiments. 

6.5.1 Barriers 

The barriers presented by interviewees provide direction on where management of 

respiratory disease can generally be improved in North America. The six information barriers 

described (Figure 6-2) are evidence that significant uncertainties exist regarding fundamental 

aspects of respiratory disease and how best to accomplish management goals, indicating that AM 

continues to have a role in respiratory disease management. Some barriers may be 

insurmountable such as the physical barrier of inaccessible terrain for capture or animal removal, 

while others could be greatly aided by an AM approach to test a particular hypothesis. The AM 

approach is especially necessary in situations where a reductionist approach is not valid. For 

example, the question of “Can we remove M. ovipneumoniae from domestic sheep flocks using 

antibiotics?” can likely be answered by first asking the question of “can we remove M. 
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ovipneumoniae from an individual sheep using antibiotics?” and then the findings of that reduced 

question can be applied to an entire flock. Meanwhile, to ask “Can we prevent intermingling of 

wild sheep between multiple herds of a larger metapopulation?” necessarily involves 

consideration of interactions between sheep in a herd and so a reductionist approach is simply not 

possible. The incentive for sheep to disperse between sub-herds may be driven by factors that 

cannot be studied in isolation, such as drive to find mating opportunities or the search for 

improved forage conditions when densities are high and habitat is heavily grazed. As a result, this 

important question must be investigated at the landscape scale through AM.  

When considering these same barriers through a Psoroptes lens, some remain relatively 

unchanged, some become less relevant, and some provide new possible directions for 

management exploration. For example, the lack of importance of domestic sheep in the 

management challenge of Psoroptes alleviates many of the social and political barriers discussed. 

By contrast, high levels of connectivity in larger metapopulations represent similarly important 

challenges that require attention before Psoroptes eradication efforts can be entertained. Adaptive 

management approaches aimed at metapopulation fragmentation and reduction of connectivity 

through strategies such as population reductions to reduce emigration rates are equally applicable 

to Psoroptes management as they are respiratory disease management. Unlike respiratory disease, 

however, chapter 5 of this thesis added to the literature on effective treatment options for 

psoroptic mange (Boyce et al. 1990; Boyce et al. 1992; Foreyt 1993). Because we found that 

fluralaner could be administered orally, the use of a medicated feed or salt lick may be an option 

for treatment in even highly inaccessible terrains and may help alleviate some of the physical 

barriers with regard to their impedance of Psoroptes management. Significant additional research 

to further evaluate the safety, and efficacy of fluralaner would be needed before a free choice 

application of fluralaner could be considered. Some of these next steps will be discussed further 

below.  

Regardless of the disease being managed, a unified vision of the process of AM would be 

beneficial in order to ensure that wild sheep managers are proceeding in a manner that allows the 

results of individual AM experiments to be compared and compiled in a meaningful way. It is 

important to be clear that the goal of any management should not be to fulfill the “criteria” of 

AM, and as Walters (1986) states, the goal shouldn’t even be to learn unless it helps fulfill the 

ultimate objective which is to optimize management (Conroy and Peterson 2013). So, while the 
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principles described by McFadden et al. (2011) may not be relevant to every management 

scenario, many of the barriers preventing implementation of respiratory disease management 

action as presented by interview subjects, could be addressed through the implementation of a 

more structured and unified vision of AM and therefore additional guidance for managers on 

what constitutes AM would be beneficial.  

6.5.2 Adaptive Management and Human Dimensions 

A key challenge that all wild sheep managers discussed facing is minimizing the potential 

for disease spillover from domestic sheep. This challenge differs from any of the situations where 

the DMV is currently proposing AM in that it involves not only biological uncertainty, but also 

uncertainty about how the social system will respond to a selected action. For example, in some 

regions livestock producers may be amenable to having their domestic sheep tested for M. 

ovipneumoniae and working with government employees to eliminate it from their flock, while in 

other regions interviewees described some local producers as being generally suspicious and/or 

uncooperative and so efforts to test and remove M. ovipneumoniae from domestic flocks would 

be unlikely to succeed. There is an essential human dimensions component here. The question of 

how to minimize spillover from domestic sheep is currently being addressed through the 

haphazard application of numerous different strategies in different regions rather than in a way 

that would enable controlled learning about which strategies are most likely to be successful. 

According to Enck et al. (2006) “management actions should be considered experiments, and this 

should apply to both the human dimensions of management (i.e., beliefs, attitudes, and behaviors) 

and the biological and ecological dimensions”. Numerous preferences and opinions were 

presented for how best to address this challenge which is exactly why an AM style comparison of 

these different approaches is worthwhile.  

6.5.3 Stakeholder Involvement 

It is no coincidence that the very first AM principle is stakeholder involvement 

(McFadden et al. 2011). Divergent stakeholder priorities, interests, and concerns are common 

reasons for the failure of management (Gregory et al. 2006; Allen and Gunderson 2011). 

Especially where strategies require compliance of those stakeholders, early involvement in the 

management decision-making process can identify conflicts of interest or opinion that must be 

addressed to maximize the chances of creating a sustainable management plan (S.J. Riley et al. 

2003). Increased involvement of stakeholders leads to increased trust and a greater likelihood of 
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selecting management strategies that have the support of divergent stakeholders (Lauber and 

Decker 2012).  

Many interview subjects expressed skepticism that any policy or regulation that might 

impinge on livestock agriculture, including access to public grazing lands or people’s rights and 

freedoms on their private property, is likely to gain traction in their region. In these regions, the 

promotion of wild-domestic sheep separation through regulatory means is unlikely, leaving 

cooperation and compliance as the necessary route to create disease isolation where regulatory 

enforcement is not an option. At the same time, regulated domestic sheep-free areas may be the 

most effective option for long term wild sheep protection and so in areas where managers believe 

it is feasible, especially those areas without a long history of domestic sheep farming, managers 

should prioritize regulatory options. Because of the role of domestic sheep in pathogen spill-over, 

some of the most important stakeholders are the domestic sheep and goat owners. Because of the 

diversity of social and political contexts, one particular strategy is unlikely to work in all regions 

faced with this challenge, but additional attention to human dimensions challenges and 

involvement of stakeholders is the first step to addressing these key common barriers (S.J. Riley 

et al. 2003).  

The likelihood of facing drastically different stakeholder priorities and opinions is far 

lower when discussing management of Psoroptes, but beyond building trust and a shared set of 

goals, higher levels of stakeholder engagement could also allow for improved public monitoring 

as a means of detecting sheep in undesirable locations. All regions have a policy of removing 

wild sheep thought to pose a high risk for pathogen exposure. For respiratory disease 

management these are the animals that may potentially make contact with domestic sheep, but 

this tool could also be used in psoroptic mange management through the use of wild sheep-free 

buffer areas between Psoroptes infested and uninfested herds. These animals represent a 

significant potential source of disease transmission between infected and naïve populations, and 

yet the best way to detect these high-risk sheep is also uncertain. Low-frequency chance 

occurrences such as movement of wild sheep outside of their core habitat can be extremely 

difficult to detect, but in other scenarios public awareness and reporting as a form of passive 

surveillance was both a more sensitive and more cost-effective way of detecting stray animals 

than active surveillance (Hering 2015). Not only could the engagement of private citizens help 

achieve the goal of surveillance more effectively, but evidence suggests that this engagement of 
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stakeholders, a strategy known as collaborative monitoring, further builds sorely needed social 

capital (Cundill and Fabricius 2009). Similarly, the involvement of private citizens such as 

forestry professionals or guide outfitters could be valuable in helping maintain disease isolation 

between two herds of a larger metapopulation as part of a disease eradication effort for either 

Psoroptes or respiratory disease.  

6.5.4 Defined Objectives, Multiple Actions, and Explicit Experimentation 

Defined objectives, and multiple actions are the next two key AM principled identified by 

McFadden et al (2011). An explicit experimental approach to achieve these defined objectives 

through comparison of multiple actions is the basis of the scientific method. Concrete measurable 

objectives were not always identified during interviews. While their apparent deficit may have 

been in part a result of the informal interview style, the intentional selection and statement of 

objectives commonly receives less attention than it deserves (S.J. Riley et al. 2003). The process 

of defining objectives together with stakeholders is valuable in developing a shared vision, an 

important step in building trust with stakeholders (Conroy and Peterson 2013; Videira et al. 

2016). The lack of clear objectives and involvement of stakeholders in their formulation is a 

likely contributor to the frequency with which the issues relating to a mistrust and non-

compliance were cited by interview subjects.  

Objectives take two forms, both of which require consideration.  Fundamental objectives 

can be thought of as the ultimate goal of the management action whereas enabling objectives 

describe smaller actions generally related to the hypothesis being tested, and are used to achieve 

the fundamental objective (S.J. Riley et al. 2003; Enck et al. 2006). Numerous enabling 

objectives are often identified that might achieve a single fundamental objective. For example, 

preventing disease transmission between domestic sheep and wild sheep is a fundamental 

objective that might be met by the enabling objectives of eliminating domestic sheep farming 

from an area, or by increasing detection and reporting of stray wild sheep, or by creating test and 

remove programs in domestic sheep flocks to remove concerning pathogens from those flocks. 

Establishing fundamental objectives together with stakeholder groups highlights common ground 

to build on, after which a variety of enabling objectives can be proposed and considered. As one 

interview subject said, “a die-off is bad for everyone”.  

Similarly, for Psoroptes management, co-development of management objectives would 

be a valuable process to get managers and stakeholders to have a shared set of goals. An example 
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of a fundamental objective may be to prevent spread of the Psoroptes parasite into nearby naïve 

herds. Several enabling objectives such as removal of bighorn sheep from high risk corridors 

where disease transfer is likely, attempts to capture and treat high risk animals such as young 

rams or herds in high risk locations, or placement of medicated feeding stations at the extent of 

the current range of the parasite might be worthy of consideration.  

A process of structured decision making (SDM) can be used to systematically select 

between the multiple actions or “enabling objectives” most likely to achieve the fundamental 

objective (Robinson and Fuller 2016). An excellent example of this SDM process for selection 

between bighorn respiratory disease enabling objectives was published by Sells et al. (2016). 

While SDM can be used to select management options worthy of implementation, it should be 

seen as a component of AM not a replacement for it because the complexity of challenges suited 

to AM approaches are beyond what can be accurately predicted by SDM and modeling alone. 

The assessment of which strategy best achieves the desired result when applied in a management 

setting requires the comparison of multiple strategies through explicit experimentation; this is the 

foundation of AM (Possingham 2000; McFadden et al. 2011; Sells et al. 2016).   

6.5.5 Prediction of Consequences, Specification of Constraints, and 

Acknowledgment of Uncertainty 

Throughout the exploration of management challenges, managers should aim to clearly 

understand where the uncertainty lies, what constraints exist, and how selected actions might 

result in differing outcomes; however, the role and necessity of these AM principles is often less 

clear. Without explicitly considering these, managers risk overlooking key considerations when 

developing and selecting management options together with stakeholders. One example of this is 

the fact that many managers cited metapopulation connectivity as a barrier to herd eligibility for 

respiratory disease eradication; however, in at least some cases the frequency of animal 

movement between subpopulations is uncertain. Global positioning system (GPS) collar data may 

show that animals have on occasion moved between herds and this represents the potential for 

connectivity from a disease standpoint, but now with new evidence suggesting that many animals 

in a herd may not be chronic shedders, those animals may not pose a high transmission risk. For 

example, of the 24 animals involved in the South Dakota test and remove intervention on the 

Custer State Park herd (composed of 17 females and 7 males), only 2 animals were classified as 

“chronic shedders” after serial testing for M. ovipneumoniae, both of which were female. While 
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the proportion of animals acting as chronic shedders are likely variable, it is possible that these 

infrequent animal dispersals, often involving rams (O’Brien et al. 2014), may not represent as 

much of a respiratory pathogen transmission risk as was once thought.   

Hells Canyon is one area where numerous subpopulations are considered to be part of one 

larger metapopulation. The Hells Canyon bighorn sheep metapopulation’s range includes some 

22,500km2 alongside the Snake River’s drainage of Washington, Idaho and Oregon (Hells 

Canyon Bighorn Sheep Restoration Committee 2010). The Hells Canyon metapopulation is 

affected by both respiratory disease and Psoroptes; however, in Chapter 3 of this thesis, the 

samples collected from the Wenaha and Mountain View herds of Hells Canyon were found to be 

almost entirely (14/15) seronegative for Psoroptes exposure while active mite infestations were 

found in the nearby Asotin herd of Hells Canyon. Presumably, the Psoroptes infestation spread 

through the larger metapopulation through animal movement at one time and so this connectivity 

does exist, but at the same time the different serological status of these two neighboring herds 

may indicate a break in this connectivity or that it is far less frequent or relevant than might have 

otherwise been thought. The Asotin herd of Hells Canyon which continued to be infested with 

Psoroptes was also the site of a successful test and remove management intervention directed at 

M. ovipneumoniae based on nasal PCRs (Bernatowicz et al. 2017). This strategy could take 

advantage of temporary breaks in connectivity of larger metapopulations to attempt disease 

eradication throughout a metapopulation in a stepwise format by working on one sub-herd at a 

time. There is often uncertainty around the actual degree of connectivity, and the likelihood of 

disease transmission with the connectivity that does still exist. This uncertainty needed to be 

acknowledged in order for feasible management options to be inappropriately considered. 

6.5.6 Monitoring  

The development of standardized monitoring recommendations has already been 

established by the Wild Sheep Working Group and the DMV for many of the key respiratory 

disease herd and animal-level parameters (WAFWA - Wild Sheep Working Group 2017) and 

interviews confirmed that herd surveillance and monitoring are already a strength in most 

regions. The infrastructure that is currently in place for respiratory disease management can also 

help address the challenge of Psoroptes management. Thanks to the externally visible symptoms 

of psoroptic mange, monitoring and herd health assessments can and do collect samples and 

observations for Psoroptes at the same time as respiratory disease.  
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The high degree of disease monitoring and pathogen surveillance is commendable and a 

significant area of success of the DMV and regional wildlife management efforts. One area where 

additional monitoring could be of value is in evaluation of objectives not directly related to wild 

sheep populations. For example, additional emphasis on monitoring how new domestic sheep 

owners in high-risk areas are detected would enable managers to become more strategic in 

selecting and adapting management strategies aimed at these enabling objectives.    

6.5.7 Active Learning Emphasis 

The significant role that learning already plays in the work and attitudes of wild sheep 

managers is evidenced by the willingness of interview subjects to participate in this study, the 

development of the DMV with its emphasis on active learning, and the numerous information 

barriers discussed by interview subjects. Managers need to continue being strategic about how 

best to address ongoing areas of uncertainty. Adaptive management can help address problems 

that are not suited to a reductionist approach such as whether actions aimed at disrupting 

connectivity of larger metapopulations are valuable in preventing transmission of respiratory 

disease causing pathogens between subpopulations, or whether actions taken by managers can 

reduce the impact of respiratory disease in affected populations. Meanwhile, primary research 

efforts directed at simpler problems like treating domestic sheep to clear M. ovipneumoniae, or 

preparing and testing an oral free-choice preparation of fluralaner to treat bighorns with psoroptic 

mange should be pursued.  

6.6 Recommendations for the DMV 

1. Utilize non-government personnel to work alongside government employees in 

developing and implementing management actions.  

o Most interviewees identified scarcities of finances or time as major challenges 

preventing more proactive implementation of disease management strategies. 

The creation of dedicated sheep separation coordinators and fostering of 

partnerships with academic institutions are valuable ways to address these 

deficits. 

2. Invite human dimensions experts to aid in understanding the social dynamics of 

respiratory disease management and the development of positive working relationships with 

key stakeholder groups.   
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o Human dimensions of wildlife management are a significant challenge that must 

be considered in minimizing the risk of respiratory disease spillover from 

domestic sheep and goats to wild sheep. Differing social and political climates 

in different states and provinces are key considerations that can be used to guide 

the selection of strategies. Managers are often well positioned to work with local 

stakeholders in selecting which strategies are most likely to be effective in their 

region; however, the explicit consideration of stakeholder engagement as a part 

of an AM approach can both increase the likelihood of success in each region 

and increase the learning that can be done during this process.  

3. Strategies involving regulatory based restrictions on domestic sheep and goat 

farming should be approached with caution and in some cases entirely discontinued.  

o In regions with long-standing histories of domestic sheep farming the continued 

exploration of these options severely undermines the necessary relationship 

foundation with these important stakeholder groups. Increased stakeholder 

involvement, public education, and the development of trusting relationships 

with different stakeholder groups and individuals are essential steps in the 

reduction of disease risk to wild sheep, especially with regard to respiratory 

disease.  

o In wild sheep adjacent areas where domestic sheep and goat farming is not 

already present, the pursuit of regulatory restrictions on the presence of these 

domestic species is strongly encouraged.  

4. Animal-level treatments should continue to be explored in the primary research 

arena before implementation in a management context.  

o New options for treating individual animals harbouring select respiratory 

disease pathogens could offer promising management alternatives. For example, 

these options may enable pathogen elimination from wild herds without 

requiring depopulation or may be more palatable alternatives for removal of 

those pathogens to domestic flocks in high risk areas.  

5. Respiratory disease should continue focusing on harm and risk reduction.  

o The complex polymicrobial nature of respiratory disease is such that true 

eradication will likely never be achieved. Adaptive management interventions 
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should focus first and foremost on the herd level response to management 

interventions rather than on a single pathogen. This insures that AM continues 

to work towards the fundamental goal of improving the health of wild sheep. 

6. Continue providing key guidance and direction to wild sheep managers that acts to 

standardize aspects of wild sheep management procedure and expand recommendations to 

include other disease of concern to wild sheep health.   

o The wild sheep surveillance and testing guidelines, AM recommendations, 

synthesis of knowledge, and availability of expertise provided by the DMV are 

invaluable contributions to the management of wild sheep in North America. 

Surveillance and health monitoring recommendations allow comparison of 

actions carried out in different jurisdictions and should be expanded to include 

other diseases of concern. These actions and DMV services should be continued 

and expanded to help provide additional guidance on how managers can use the 

principles of AM to better accomplish their management goals.  

 

6.7 Recommendations for Adaptive Management of Psoroptic Mange  

Specific management recommendations are context specific. While numerous management 

options have been discussed throughout this thesis and will be referenced in these 

recommendations, the selection of specific actions for implementation should be made together 

with relevant stakeholder groups and to suggest otherwise would be to forget one of the key 

lessons of these interviews.    

1. Reach out to all potential stakeholder groups that may be interested in being involved in 

the management of psoroptic mange. 

o This should include other neighbouring jurisdictions, local first nations and 

aboriginal governments, relevant parks and other governance bodies, domestic 

producers harbouring psoroptes susceptible species, wildlife and bighorn sheep 

specific conservation groups, sportsmen associations and hunters groups, guide 

outfitters, and any other locally relevant individuals and organizations.  

2. Together with any interested stakeholder groups identify shared fundamental and 

enabling objectives.  



 

 121 

o Depending on the situation, these should begin with initial research to better 

understand the local context, distribution, and potential sources/reservoirs of 

infestation. 

o Next, actions aimed at prevention of spillover to other species or populations, 

mitigations of the effects of infestation, reduction of prevalence, or even 

eradication of the mite from a population when possible should be considered.  

3. Identify multiple actions that can realistically be used to achieve the desired outcome 

and how eligible herds should be selected for application of these actions.  

o These would be dependent on the objectives selected together with the 

stakeholders. In most situations, once the initial understanding of the parasite 

distribution and prevalence is understood, prevention of disease spread to 

unaffected herds is an appropriate next step. Options to achieve this objective 

might include: population reduction of herds at the periphery of the known mite 

distribution to reduce the likelihood of emigration, complete depopulation of 

small herds thought to pose a high risk of transmission of the mite to a naïve 

metapopulation, development of oral treatment bait stations on suspected high 

likelihood animal movement corridors, fencing solutions to prevent animal 

movement, annual capture and treatment of high risk herds, wild sheep-free 

buffer areas where citizens are asked to report any wild sheep sightings, etc.  

4. Anticipate consequences and potential constraints of the management actions and 

thoroughly explore them with the body of stakeholders involved in selection of 

management options.  

o While this step can be tedious, it is an essential component of due diligence. For 

example, if the proposed management action involves building of physical 

barriers such as fences, the impacts of that habitat fragmentation on other 

species should be considered, and where possible mitigated. Furthermore, it may 

be understood that fencing would be the most effective way of preventing 

disease movement, but that option may be cost prohibitive or the effects on 

other species too great. The shared understanding of these constraints can help 

build a shared vision among AM collaborators. 

5. Explicitly discuss uncertainty of management outcomes with AM partners. 
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o Improved understanding of the range of potential outcomes will help alleviate 

frustration that may otherwise be felt if management actions do not achieve the 

desired results or follow desired timelines. This uncertainty also helps explore 

possible reasons why management efforts may not be successful and identify 

areas where further investigation may be necessary before a management 

strategy is ready for implementation in an AM situation. 

o For example, there are many areas of uncertainty that should be considered 

before a free-choice form of oral fluralaner could be used. Some of these require 

additional research before this management option is ready to be implemented 

including: establishing safe and effective dose ranges, palatability, duration of 

protection, effects in pregnant animals, impacts on non-target species, drug 

residues and human safety in hunted species, impacts on invertebrates 

performing ecosystem functions, etc.  

6. Develop experimental plans to observe and monitor the outcomes of management 

interventions.  

o Development of a research plan prior to implementation of the AM action will 

ensure that the hypothesis that drove the management action can be adequately 

evaluated in order to improve the application of that management strategy into 

the future.  

7. Identify a specific timeline sufficient to complete the initial AM intervention and 

observe the results. These can then be reviewed and discussed with management 

partners in order to adapt and refine the management strategy being implemented.  

6.8 Conclusions 

The DMV is well situated to help regions implement AM approaches to improving 

disease management in many bighorn herds; however, a broader perspective of the significant 

challenges faced by wild sheep managers and the potential management options is essential to 

maximize the utility of the DMV’s outputs. While it may be outside of its current scope, if the 

DMV wants to act as a valuable resource to managers in addressing their key barriers, it needs to 

not only address the knowledge gaps but also consider and strategize around the diverse social 

and political barriers that prevent action from being taken and ensure these barriers are 

considered in AM planning. Prevention of respiratory disease pathogen transmission is often 
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impaired by social and political challenges rather than by uncertainty about the biological 

systems involved. These human dimensions can not only be better understood, but also be 

directly addressed by incorporating the principles of AM. While the DMV is not in a position to 

directly implement any particular actions, it can help managers and facilitate learning through an 

AM approach. It should continue to suggest management actions to be implemented and 

outcomes to be monitored and can then take an active role in completing the comparison of 

outcomes observed from management actions performed in different regions. This will enable 

shared learning across jurisdictional lines about which strategies have the greatest likelihood of 

success.  

Despite a lack of consistent positive results in the management of respiratory disease in 

wild bighorn sheep populations, the research findings of members of the DMV and WAFWA’s 

Wild Sheep Working Group present very promising new options for the management of 

respiratory disease in wild sheep that may alter how this problem is managed in the coming 

years. Additionally, new information provided by this thesis on the detection and treatment of 

Psoroptes could be seamlessly added into some management actions including disease 

surveillance and test and remove programs already being carried out by wild sheep managers. 

Lessons learned in this study about common challenges of bighorn sheep disease management 

can help avoid common challenges while directing the development of new AM plans aimed at 

the management of psoroptic mange. The addition of expertise on human dimensions would aid 

in addressing and guiding wild sheep managers through the many social and political barriers 

they face. Development of adaptive management recommendations and inclusion criteria aimed 

at addressing the currently underexplored management challenges identified in this study such as 

how best to prevent emigration of bighorns between sub-herds of a metapopulation, or how to 

maximize detection of stray sheep would be valuable additions to the current topics of interest for 

the DMV and be useful in improving the management of numerous infectious diseases including 

respiratory disease and Psoroptes.  

The creation of centralized working groups for compiling and analyzing information to 

tackle common goals represents a significant advancement in North American wildlife disease 

management. The benefits gained through this centralization can help refine the process from 

knowledge acquisition to application if used strategically. Added support in the form of 

additional funding, expertise, and personnel would help the DMV initiative provide guidance, 
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coordination, and synthesis of knowledge for wildlife management agencies in tackling the 

negative impacts of infectious diseases on wild sheep conservation and recovery in North 

America.  
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Category Management challenge Addressed by DMV? 

Prevention Detection of domestic sheep operations No 

Prevention Detection of high-risk stray sheep No 

Prevention Strategies to reduce stray bighorn emigration from 

core habitat 

No 

Prevention Optimal translocation strategies to mitigate 

respiratory disease risk 

Yes 

Control Habitat modification and resilience to respiratory 

disease pathogens 

No 

Eradication Test and Cull Yes 

Eradication Depopulation/repopulation Yes 

Table 6-1: Primary management challenges identified during interviews and their consideration 

in the DMV strategy. 
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Figure 6-1: Respiratory disease management considerations identified by thematic analysis of 

interviews divided into the four wildlife disease management strategies. Where no action is being 

taken, the major groups of barriers to action presented are listed. 

 

Strategy

•Important considerations

Prevention

•Contact with domestic sheep and goats

•Human assisted wild sheep movement (translocations)

•Natural wild sheep movement

Control

•Habitat level factors

•Herd level factors

•Individual level factors

Eradication

•Depopulation and repopulation of affected herds

•Test and cull of affected herds

Do Nothing 

•Social & political barriers

•Resource barriers

•Physical barriers

•Information & knowledge barriers
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Figure 6-2: Major barriers to action identified through thematic analysis revealed four common 

groups, each suited to different methods of approach. 

Barriers 

 
Social / 

Political 

• Lack of legal power 

• Lack of voluntary compliance 

• Lack of trust  

• Lack of support for lethal action 

 Physical 

• Inhospitable terrain 

• Metapopulation connectivity 

• No comparable control populations 

 Resources 
• Staff/ time 

• Money  

 Information 

• Which pathogen? 

• Intermittent shedding of M. ovipneumoniae? 

• Can M. ovipneumoniae be cleared?  

• Reducing connectivity? 

• Why the different disease outcomes? 

• Can herd resilience be improved? 
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CHAPTER 7:  DEVELOPMENT OF TOOLS AND INFORMATION FOR 

THE ADAPTIVE MANAGEMENT OF PSOROPTES IN CANADIAN 

BIGHORN SHEEP (OVIS CANADENSIS) 

 Introduction 

Bighorn sheep (Ovis canadensis) are an iconic wildlife species that have come to 

represent the enduring wilderness of North America. Following European contact with North 

America, bighorn sheep populations declined from one to two million animals to the low tens of 

thousands in the early 1900s (Buechner 1960). Since that time, in part thanks to conservation 

effort throughout their range, bighorn populations have rebounded to over eighty five thousand 

animals (Wild Sheep Foundation 2017). Numerous anthropogenic factors were responsible for 

their decline, one of which was the introduction of exotic diseases (Buechner 1960). Psoroptic 

mange is one such disease thought to have been brought to North America with domestic 

livestock from Europe in the 1800s. After its introduction, it crossed over to numerous North 

American wildlife species including all three subspecies of bighorn sheep (O. canadensis), as 

well as elk (Cervus canadensis), white-tailed deer (Odocoileus virginianus), and mule deer 

(Odocoileus hemoinus) (Lange et al. 1980; Sandoval 1980).  

When observed in bighorn populations, Psoroptes infestations have often been managed 

by benign neglect, while in select cases population declines following outbreaks have 

necessitated that action be taken (Sandoval 1980). This appears to be the case currently in British 

Columbia, Canada, where the outbreak of psoroptic mange in several southern bighorn sheep 

herds was associated with a >50% population decline (Reid 2013a).  It has spurred local wildlife 

biologists and the provincial wildlife veterinarian to direct efforts towards improving 

understanding of the parasite and the outbreak with the intention of developing management 

options to address the situation. 

The non-burrowing obligate ectoparasitic mite Psoroptes parasitizes ungulates and 

lagomorphs around the world (Zahler et al. 2000). The taxonomy and host specificity of 

Psoroptes has been the subject of much academic debate and reclassification. Increasing evidence 

supports the assertion that all Psoroptes, with the possible exception of P. natalensis in Egyptian 
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water buffalo, are conspecific based on the fact that distinguishing morphologic traits, genetic 

data, host species, and site predilection on the host are not mutually exclusive as was once 

thought (Sweatman 1958; Zahler et al. 1998; Amer et al. 2015). Psoroptic mange continues to 

plague domestic sheep in the United Kingdom despite decades of management effort (Smith et al. 

2001; Losson 2012b), and any disease management gets more challenging in a wildlife context, 

where free ranging animals are involved (Lange et al. 1980; Sandoval 1980). Despite the added 

complexity of a wildlife context, the principles of infectious disease management are conserved. 

In order to manage a disease outbreak, a process of disease anticipation, early detection, 

containment, mitigation, and finally elimination/eradication should take place (World Health 

Organization 2018).  

This thesis addresses several gaps in knowledge that will aid in the development of an 

adaptive management plan for psoroptic mange in Canadian bighorn sheep. Included is 

identification of the source of the outbreak, new tools for detection of infested animals, 

observations of fencing structures and their utility in controlling bighorn sheep movement, and 

new Psoroptes treatment options that may be suited to remote application in free-ranging 

animals. Because of the lack of active Psoroptes management in bighorn sheep, a review 

focusing on respiratory disease management provided valuable insights into the challenges of 

turning knowledge into management action. Lessons learned through this review will help in the 

development of a psoroptic mange management plan moving forward.  

 Results and Discussion 

The first step of developing a psoroptic mange management plan for Canadian bighorn 

sheep was identifying the source of the outbreak. There were two dominant theories about the 

source Psoroptes in Canada. First, that mites travelled north through natural bighorn sheep 

movement or on contaminated wildlife handling equipment from infested bighorn populations in 

the USA, and second, that infestation originated from another locally endemic species, rabbits.  

Psoroptes mites recovered from Canadian bighorn sheep were compared to those found 

on pet rabbits in western Canada and to mites collected from infested wild bighorn sheep 

populations in the USA. Psoroptes mites acquired from Canadian bighorn sheep were more 

morphologically and genetically similar to those collected from rabbits than those of American 

bighorn origin (Chapter 2). Outer opisthosomal setae (OOS) lengths of mature male mites, the 

previously accepted method of differentiating species of Psoroptes, measured an average length 
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of 81.7m (+/-7.7m) in Canadian bighorn mites and 88.9m (+/-12.0m) in domestic rabbit 

mites; meanwhile, the OOS of Psoroptes mites recovered from American bighorn populations 

averaged 151.2m (+/-16.6m). Observation of opisthosomal lobe morphology also differed 

between the groups with Canada bighorn mites and rabbit mites appearing morphologically 

similar to each other but distinct from USA bighorn mites. Findings in USA mites matched 

previously observed descriptions of bighorn Psoroptes mites (previously classified as P. ovis) 

which have significantly longer OOS lengths than those collected from rabbits (previously 

classified as P. cuniculi; Boyce et al. 1990). This is the first report of mites matching the rabbit 

ecotypes infesting free-ranging bighorn sheep.  

Comparison of mitochondrial genes Cytochrome B (Cyt B) and Cytochrome C oxidase 

subunit I (COI) corroborated these findings. The Canadian bighorn mites were more similar to 

mites collected from rabbits than mites collected from American bighorns at the Cyt B locus. 

None of the rabbit origin mites were successful in producing amplicons at the COI locus 

however, when compared to a Genbank sequence of P. cuniculi, the Canadian bighorn mites were 

more similar to the Genbank sequence than they were to the American bighorn mite sequence at 

the COI locus. This information provides a high degree of confidence that the Canadian bighorn 

Psoroptes mites are the rabbit variant (previously called P. cuniculi) suggesting that the source of 

Psoroptes introduction into Canadian bighorn populations was through a disease spillover event 

from rabbits rather than from spread of the parasite through bighorn sheep movements.  

It seems likely that this host-species jump occurred prior to 1999 when a wildlife park 

called the Okanagan Game Farm was operating in the area now affected by psoroptic mange. The 

park housed a herd of bighorn sheep in close proximity to a breeding colony of Psoroptes-

infested rabbits, used for feeding carnivores (Schwantje 2019). This captive situation would have 

put the two species in unnaturally close quarters and increased the chances of contaminated feed 

or other fomites spreading the infestation between species. The bighorn sheep were also known to 

escape their enclosure periodically, creating a conduit for the infestation to spread to the 

surrounding free-ranging bighorn sheep populations. If true, the source of disease introduction 

has been removed by the closure of the game farm and wildlife managers can turn their attention 

to better understanding the current spread of disease, application of control measures, and pursuit 

of eradication efforts.  
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Subclinical Psoroptes infestations are also reported, making detection, control and 

determination of the current distribution of the mite a challenge. The availability of a serologic 

diagnostic test optimized for bighorn sheep will help address this challenge by increasing sample 

throughput, allowing for detection of previous exposure, and enabling retrospective evaluation of 

archived samples. The LilliTest Sheep Scab ELISA is a commercially available indirect ELISA 

aimed at detection of IgG antibodies to Psoroptes antigen developed for use in domestic sheep. 

This ELISA was applied to bighorn sheep serum from Psoroptes-infested Canadian and 

American animals as well as unexposed Canadian bighorn sheep. Serum from treatment-trial 

animals (Chapter 5) before and after treatment, and serum from their newborn lambs handled 

monthly as they developed infestations was also tested (Chapter 3). After optimizing the ELISA 

test conditions and creating pooled positive and negative control serum of bighorn sheep with 

known disease status, the LilliTest Sheep Scab ELISA achieved a test sensitivity of 98.7% and 

specificity of 94% using a cutoff of 1.5 times the negative control optical density (Chapter 3). 

The positive-test cutoff could be adjusted up or down to maximize sensitivity or specificity 

depending on the ecological context and the consequences of false positives or negatives, thereby 

increasing the ELISA’s utility in a variety of scenarios. 

Antibody detection was unreliable in lambs under 3 months of age and clinical symptoms 

of infestation appeared in young animals before antibody titres exceeded the cut-off threshold. As 

previous studies observed, these antibody titres take time to decline following successful 

treatment and therefore, this ELISA cannot be used as a measure of treatment success. In the 

process of validating this ELISA, we found two of the herds in the Hells Canyon metapopulation 

presumed to be infested with Psoroptes that may in fact be free of the disease, demonstrating the 

utility of this test when applied at the herd level. This test can be a valuable addition to Psoroptes 

management in Canada and is well suited to being applied retroactively to archived samples or to 

any suspect herds to confirm the true distribution of the parasite. For example, samples collected 

from the Okanagan Mountain Park herd which is outside of the current known distribution of 

Psoroptes in Canada, but was augmented with bighorn sheep taken in 2007 from the area now 

infested with Psoroptes, should be tested. At that time Psoroptes had not been detected in 

Canadian bighorn sheep; however, based on the findings of Chapter 2 it had likely already been 

introduced into the wild bighorn sheep population used as a source herd at the time of that 

translocation and augmentation.    
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Once the extent of the Psoroptes spread is understood, preventing further movement 

should be the next priority, while mitigation and eradication efforts are prepared. A key tool in 

the prevention of animal movement, and with it disease movement, is wildlife fencing. For 

example, the current distribution of psoroptic mange in British Columbia is prevented from 

spreading further east by a wildlife game fence that runs alongside highway 97 dividing the 

Psoroptes-free bighorn populations on the east side of the Okanagan valley from the infested 

western populations, separated in some cases by only a few hundred meters (Reid 2013a). 

Because of the varying athletic abilities and social drives of different animals, species-specific 

knowledge of fencing efficacy is essential. The circumstances leading to the escape of bighorn 

sheep from the Okanagan Game Farm are not known, but it is possible that the use of species-

appropriate fencing in the design and construction of the bighorn sheep enclosures may have 

prevented them from escaping the facility, and the Psoroptes outbreak in Canada may never have 

happened (Chapter 2). Chapter four of this thesis addresses this gap in the literature on bighorn 

sheep wildlife fencing.  

Two adjacent wildlife enclosures were constructed to house bighorn sheep for a Psoroptes 

treatment trial (Chapter 5). One enclosure was surrounded by 2.4m tall, fixed knot, woven wire 

fencing (WWF) with 0.9m overhangs protruding inward at a 450 angle from horizontal from the 

top of the WWF. The second enclosure had the same WWF plus a secondary electric fence (EF) 

installed 1 m outside of the WWF designed to prevent nose to nose contact between sheep on 

either side of the fence line. The EF was composed of three positive and one negative strand with 

the top strand at a height of 1.4 m. A group of 18 bighorn sheep ewes and lambs were introduced 

into the pens and housed there for 14 months. Eleven lambs were born in the pens midway 

through the year and two rams were temporarily introduced into the pens for the purpose of 

breeding but were released after the rut.  Perimeter fences were monitored using three motion 

activated game cameras along each enclosure’s perimeter. The 2.4 m WWF with the 0.9 m 

overhangs was successful in preventing any bighorn sheep crossing events, with the exception of 

one handling day when a baby lamb that was less than one month old ran through the large holes 

at the bottom of the perimeter WWF during a high stress handling event. Because its dam 

remained in the pens, the lamb was easily recovered and reunited with the ewes. The EF on the 

other hand, was not successful in preventing animals from crossing it. Wild rams frequently 

jumped over the 1.4m EF to gain closer access to the ewes, though they never managed to get 
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inside of the WWF. Utilization of a 2.4m WWF with 0.9m overhang structures is a good option 

for any circumstance where bighorn movement needs to be fully restricted.   

Once isolation from sources of disease reintroduction is established, managers’ attention 

can shift towards disease eradication efforts. Elimination of Psoroptes in domestic flocks 

generally involves multiple sequential treatments of every animal in the herd using a macrocytic 

lactone anthelmintic (O’Brien 1999). This approach would necessitate bringing wildlife into a 

captive setting in order to treat them multiple times. This approach was taken in a New Mexico 

Psoroptes-affected herd, but not before the bighorn sheep herd had dwindled to just one 

remaining animal (Boyce and Weisenberger 2005). This strategy comes at great financial cost 

and wildlife capture is inherently risky to the animals (as demonstrated in this study); it is also 

dependent on being able to catch every single animal and is therefore not well suited to 

application in many free ranging wildlife scenarios. For treatment of psoroptic mange in free 

ranging bighorns to be an option, effective single use treatments need to be available. Ideally 

those treatments should be administered remotely, and preferably they should have a duration of 

action long enough to allow treatment of all the animals in a herd before the first treated animals 

become susceptible to reinfection. This thesis discussed the results of a treatment trial conducted 

on captive, naturally-infested bighorn sheep in Penticton, British Columbia.  

We tested two different drugs administered in three different ways for their efficacy in 

treating psoroptic mange. LongrangeTM, a macrocytic lactone that uses an extended release 

formulation of eprinomectin to achieve 150 days of residual effect against internal parasites in 

cattle, was tested at twice the label dosage in our bighorn sheep but was not effective in 

eliminating the infestation. The other, of a relatively new class of drugs called isooxazolines, has 

been highly effective in treating ectoparasites in other species but its use had not been reported in 

ovids (Prohaczik et al. 2017; Taenzler et al. 2017; Sheinberg et al. 2017). One of the drugs in this 

class, Fluralaner®, advertises an efficacy window of 12 weeks for preventing ectoparasites in 

dogs and cats. Two formulations, a topical and an oral form, were tested on the Psoroptes 

infested bighorn sheep, each at two different dosages. The oral form was effective in clearing the 

infestation at both the 5mg/kg and 25mg/kg dosages, but the topical form was not effective at 

either the 5mg/kg or the 10mg/kg dosage. The duration of efficacy of the oral fluralaner could not 

be fairly evaluated in this trial because of cohabitation of all fluralaner treated animals. As a 

result, it was not possible to differentiate new developing infestations on orally treated animals 
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from mites acquired from topically treated animals that might still succumb to the persistent 

effects of the oral drug and therefore would not result in another infestation. Follow up studies 

are needed to clarify the duration of protection provided by the oral fluralaner. Ideally, these 

studies should involve artificially controlled Psoroptes exposures at timed intervals rather than 

continuous exposure from cohousing with persistently infested animals as was the case in this 

study. That would allow researchers to differentiate between viable re-infestations and the 

transfer of mites that are likely to succumb to the persistent effects of the drug in the orally 

treated animal.  

Despite increased knowledge acquired about this disease, translating knowledge into 

wildlife management action is often more challenging than it would appear. While psoroptic 

mange has rarely been actively managed in wild sheep, review of other wild sheep disease 

management programs may help provide valuable insight to the process and application of wild 

sheep infectious disease management.  This thesis explored the transition of knowledge into 

action in the management of respiratory disease throughout the USA and Canada. Particular 

attention was placed on illuminating challenges to be avoided and lessons to be learned in the 

development of management plans for psoroptic mange.  

Through interviews with wildlife professionals across North America we learned that 

developing disease eradication options is currently a primary focus but that prevention of disease 

introduction is a key pre-requisite that needs additional attention. Many uncertainties continue to 

exist regarding how best to create and maintain isolation from sources of disease introduction. 

The three sources of respiratory pathogen introduction were identified as 1) natural movement of 

wild sheep between herds, 2) human-assisted translocation of animals between herds, and 3) 

contact with domestic sheep harbouring respiratory disease pathogens.  Of these three, only the 

first two are relevant to Psoroptes prevention. Preventing contact with domestic sheep adds 

significant human dimensions considerations to respiratory disease isolation that is not relevant to 

managing Psoroptes. This aspect highlights both the importance of considering sources of 

disease introduction from other reservoirs including domestic species, as well as the importance 

of addressing the human dimensions challenges of wildlife management in a strategic way.  

Other components of respiratory disease management are more directly applicable to 

Psoroptes management. For example, considerable effort is expended on population surveillance 

and herd pathogen profiling, and substantial progress has been made on improving and 



 

 139 

standardizing disease testing of translocated animals to reduce the likelihood that human-assisted 

animal movements contribute to the spread of disease. Managers also explained that natural 

animal movements that maintain connectivity of metapopulations also prevent disease isolation. 

Further exploration into whether this connectivity can be temporarily interrupted through actions 

such as herd reductions is needed. The results of these adaptive management efforts is equally 

relevant to both Psoroptes and respiratory disease management.  

Disease eradication efforts for respiratory disease and psoroptic mange are also different 

in the strategy that must be applied because of the dynamics of each disease. Research on 

domestic flocks shows that Psoroptes may infest every single animal necessitating treatment of 

each individual, while respiratory disease appears to be maintained by a few “super shedders” of 

Mycoplasma ovipneumoniae. However, effective treatment of respiratory disease has not been 

demonstrated and therefore those carrier animals must be found and removed through a test and 

cull type strategy (Bernatowicz et al. 2017). Both of these scenarios involve the capture and 

handling of each animal. The discovery of an effective oral treatment for Psoroptes creates the 

possibility of treating a herd remotely using a free-choice medicated salt lick or grain that could 

be strategically placed in the field to treat affected herds.  

Interviews with wildlife professionals revealed several key barriers faced during 

implementation of management action against respiratory disease. These barriers fit into four 

basic categories: political and social, physical, resource shortages, and informational. The first of 

these involve a lack of political power or social will to execute a desired management action. 

These barriers impact respiratory disease management more so than Psoroptes management 

because of the key role that domestic sheep play in the epidemiology of respiratory disease. 

Despite this difference, interviews highlighted that stakeholder engagement can be a major 

challenge and that the human dimensions component of wildlife management needs to be 

addressed at the beginning of the management process in order to identify shared goals and 

objectives that will allow managers and stakeholders to work cooperatively towards management 

success.  

The second category, physical barriers were those that prevent action outside of the 

human or social dynamics of the situation. For example, many bighorn sheep live in terrain that is 

inaccessible where wildlife capture is next to impossible. Capture of each animal in a herd is 

unrealistic in those areas. The development of effective anthelmintic treatments that can be 



 

 140 

delivered remotely may help overcome this barrier for Psoroptes treatment. Resource shortages, 

the third category, refers to the high financial and time cost of intensive wildlife management 

interventions. This barrier has been addressed in some circumstances through collaboration 

between provincial and state management agencies and other groups such as academic 

institutions as is the case for this research program.  

Finally, the many gaps in knowledge that still exist around respiratory disease and how 

best to manage it are represented by the informational barriers category. In Chapter 6 we 

demonstrated how an adaptive management approach, utilizing the 9 principles of adaptive 

management proposed by McFadden et al. (2011), can address these uncertainties and other 

barriers that deter management progress. Adaptive management should begin with a significant 

investment of time and energy into meaningful stakeholder engagement. Multiple management 

actions should then be implemented in a way that allows objective comparison and assessment of 

their ability to achieve predefined management goals. The development of a centralized body of 

wildlife management knowledge such as the one created by the Western Association of Fish and 

Wildlife Agencies (WAFWA) for respiratory disease in the form of the Adaptive West-wide 

Disease Management Venture (DMV) is a worthwhile investment to help achieve desired 

outcomes across bighorn range. Because Psoroptes represents a significantly smaller threat to 

bighorn sheep conservation than respiratory disease, and the fact that many of the disease 

isolation research priorities will be useful for both Psoroptes and respiratory disease, directing 

dedicated management effort to Psoroptes management in areas where both diseases are present 

will only act to further divide these already limited resources. Release of Psoroptes monitoring 

and translocation prevention recommendations through the WAFWA’s DMV may be sufficient 

to meet most of the needs of this disease management scenario for all but the most heavily 

impacted herds.  

 Conclusion 

The development of an adaptive management program for psoroptic mange in British 

Columbia is worthwhile. Numerous important governments and stakeholder groups should be 

consulted and invited to be involved in the creation of an adaptive management plan including 

BC fish and wildlife, Washington fish and wildlife, the Penticton Indian Band, the Okanagan 

Nation Alliance, local conservation groups such as the Wild Sheep Society of BC, willing 

biologists, academics, invested members of the public, and others. Together these groups can 
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establish shared goals and values that will guide a strategic roadmap to managing this disease. It 

is recommended that any future adaptive management program use the tools developed and 

information collected through this thesis to ascertain the actual geographic and herd specific 

extent of the parasite, limit its spread, further investigate treatment options and delivery methods, 

and evaluate suitability of herds to the application of a disease eradication effort.  

Similar to the situation for respiratory disease management discussed in chapter 6, it 

would be important for this adaptive management effort to consider the entire disease triad: the 

agent, the host, and the ecosystem, and to include the larger human dimensions and social aspects 

when considering the ecosystem. Future studies are recommended to determine if wild sheep 

herds can be isolated from sources of disease introduction which would be valuable for both 

respiratory disease and Psoroptes management. Next, further evaluation of the Psoroptes ELISA 

specifically regarding its utility in detection of subclinical Psoroptes carriers and the use of this 

test in surveillance should be pursued. Additional evaluation of the true impacts of Psoroptes on 

the affected Canadian herds will help clarify the population level impacts of this parasite and the 

necessity of direct management action. Further research should also be directed at the use of 

fluralaner for this application to determine the duration of protection provided by the drug. A 

form of the drug suited to free choice consumption would be valuable, and research on whether 

there are ecosystem level consequences of herd-wide use of this drug or on non-target species. 

Opportunities for application of this information through disease eradication efforts on smaller 

isolated populations such as the Penticton Indian Band herd should be considered.  

There is no doubt that any disease management effort aimed at tackling disease in free 

ranging wildlife situations is an extremely difficult challenge. Yet, I have also been humbled and 

amazed at the amount of support and enthusiasm displayed by people from all walks of life who 

are willing to donate their time and energy to wildlife projects. The work described in this thesis 

could not have happened without the time, effort, and money donated by a wild variety of people 

and companies who simply wanted to help wildlife in whatever ways they could. That support 

inspires me to persevere despite the numerous setbacks experienced throughout this PhD program 

and to encourage other passionate conservationists to work with me in tackling these tricky 

wildlife challenges into the future.  
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Appendix A: Cytochrome B Sequences  

. = no sequence readable here 

 

Group USA= (18RB15, 19081, 18LH20, 18RB33, 19901, 11RB08, 5158)    

Group Canada BHS = (F20, 2F, 4F, 10F) 

Group Rabbit = (PSC003, PSC001) 

GenBank accessation # KJ957822-  Psoroptes Cuniculli – Cyt B gene 

 

 

 

RABBIT1  .............................................................  

RABBIT2  ..................................GGTTAATAAGATAACGACTCTCACAAA 

CAN BHS  ..................................GGTTAATAAGATAACGACTCTCACAAA 

GRP USA  .................................AGGTTAGGAGGATAACGACTCTCACAAA 

GB-P.cun.TGTATGGGGGCTCTACAGGGTTTGCTCCAATTCATGTTAGCAGGATAACGACTCTCACAAA  

         ************************* *************  * ****************** 

 

RABBIT1  ............................................................. 

RABBIT2  ACATCAGAACGATAATTTTTTTGTTGGGTTAAATTTTTTATTAAATTTTCTTTTTATTAAA 

CAN BHS  ACATCAGAACGATAATTTTTTTGTTGGGTTAAATTTTTTATTAAATTTTCTTTTTATTAAA 

GRP USA  ACATCAGAACGATAATTTTTTTGTTGGGTTAAATTTTTTATTAAATTTTCTTTTTATTAAA 

GB-P.cun.ACATCAGAACGATAATTTTTTTGTTGGGTTAAATTTTTTATTAAATTTTCTTTTTATTAAA  

         ************************************************************* 

 

RABBIT1  ........................................AAACCCCCCCTAGTTTTGAGG 

RABBIT2  CATAGTACTATTAAAGAAAGGATCGAAAGTCCTATAGCGCAAACCCCCCCTAGTTTTGAGG 

CAN BHS  CATAGTACTATTAAAGAAAGGATCGAAAGTCCTATAGCGCAAACCCCCCCTAGTTTTGAGG 

GRP USA  CATAGTACTATTAAGGAAAGGATCGAAAGTCCTATAGCGCAAACCCCCCCTAGTTTTGAGG 

GB-P.cun.CATAGCACTATTAAAGAAAGGATCGAAAGTCCTATAGCGCAAACCCCCCCCAGTTTTGAGG  

         ***** ******** *********************************** ********** 

 

RABBIT1  GAATTGCCCGTAAAATGGCGTAGGCGAATAAGAAATATCACTCAGGTTGAATATGGGTTGG 

RABBIT2  GAATTGCCCGTAAAATGGCGTAGGCGAATAAGAAATATCACTCAGGTTGAATATGGGTTGG 

CAN BHS  GAATTGCCCGTAAAATGGCGTAGGCGAATAAGAAATATCACTCAGGTTGAATATGGGTTGG 

GRP USA  GAATTGCCCGTAAAATGGCGTAGGCGAATAAGAAATATCACTCAGGCTGAATATGGGTTGG 

GB-P.cun.GAATTGCCCGTAAAATGGCGTAGGCGAATAAGAAATATCACTCAGGTTGAATATGGGTTGG  

         ********************************************** ************** 

 

RABBIT1  GGTTGATGTTGGTATAGCTGGTGTGAAGTTTTCAACATCTCCTAGAAGGTTGGGGTTCAGA 

RABBIT2  GGTTGATGTTGGTATAGCTGGTGTGAAGTTTTCAACATCTCCTAGAAGGTTGGGGTTCAGA 

CAN BHS  GGTTGATGTTGGTATAGCTGGTGTGAAGTTTTCAACATCTCCTAGAAGGTTGGGGTTCAGA 

GRP USA  GGTTGATGTTGGTGTAGCTGGTGTGAAGTTTTCAACATCTCCTAGAAGGTTGGGGTTCAGA 

GB-P.cun.GGGTGATGTTGGTATAGCTGGTGTGAAGTTTTCAACATCCACTAGAAGGTTGGGGTTTAAA  

         ** ********** *************************  **************** * * 

 

RABBIT1  CACACCAAGTAGATAATTATTATTATTGATAACAAA 

RABBIT2  CACACCAAGTAGATAATTATTACTATTGATAACAAA 

CAN BHS  CACACCAAGTAGATAATTATTATTATTGATAACAAA 

GRP USA  CAGACCAAGTAGATAATTATTATTATTGATAACAAA 

GB-P.cun.CAGATCAAGTAGATAATTATTATTATTGATAACAAA  

         ** * ***************** ************* 
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Appendix B: Cytochrome Oxidase 1 Sequences 

. = no sequence readable here 

Group USA= (18RB15, 19081, 18LH20, 18RB33, 19901, 11RB08, 5158)    

Group CAN BHS = (F20, 2F, 4F, 10F) 

GenBank accessation # KJ957822-  Psoroptes Cuniculli - COI gene 

 

 

 

BHS_CAN4 .................................................TTTAGTAGTTT 

BHS_CAN1 AACATTATATTTTATCTTTGGTGTGTGAAGTGGTATATTGGGGACCAGGTTTAGTAGTTT 

BHS_USA3 AACATTATATTTTATCTTTGGTGTGTGAAGTGGTATATTGGGGACCAGGTTTAGTAGTTT 

BHS_USA4 ...................GGTGTGTGAAGTGGTATATTGGGGACCAGGTTTAGTAGTTT 

GB-P.cun.AACATTATATTTTATCTTTGGTGTGTGAAGTGGTATATTGGGGACCAGATTTAGTAGTTT  

         ************************************************ ***********  

 

BHS_CAN4 TATTCGGTTAGAGTTGTCTCAACCTGGTGACCTCTTAATAGATTATGATTACTATAATTC 

BHS_CAN1 TATTCGGTTAGAGTTGTCTCAACCTGGTGACCTCTTAATAGATTATGATTATTATAATTC 

BHS_USA3 TATTCGGTTAGAGTTGTCTCAACCTGGTGACCTCTTAATAGATTATGATTATTATAATTC 

BHS_USA4 TATTCGGTTAGAGTTGTCTCAACCTGGTGACCTCTTAATAGATTATGATTATTATAATTC 

GB-P.cun.TATTCGGTTAGAGTTGTCTCAACCTGGTGACCTTTTAATAGATTACGATTACTATAATTC 

         ********************************* *********** ***** ********  

 

BHS_CAN4 TGTTGTTACTGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTATTATAATAGG 

BHS_CAN1 TGTTGTTACTGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTATTATAATAGG 

BHS_USA3 TGTTGTTACTGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTATTATGGTAGG 

BHS_USA4 TGTTGTTACTGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTATTATGGTAGG 

GB-P.cun.TGTTGTTACTGCTCATGCTTTTATTATAATTTTTTTTATAGTTATACCTATTATGATAGG  

         ******************************************************  ****  

 

BHS_CAN4 GGGTTTTGGTAATTTATTGGTACCACTAATGATTGGTGCAACTGATATGGCTTATCCTCG 

BHS_CAN1 GGGTTTTGGTAATTTATTGGTACCACTAATGATTGGTGCAACTGATATGGCTTATCCTCG 

BHS_USA3 GGGTTTTGGTAATTTACTGGTACCACTAATGATTGGTGCAACTGATATGGCTTATCCTCG 

BHS_USA4 GGGTTTTGGTAATTTACTGGTACCACTAATGATTGGTGCAACTGATATGGCTTATCCTCG 

GB-P.cun.GGGTTTTGGTAATTTACTAATACCACTAATGATTGGTGCAACTGATATGGCTTATCCTCG 

         **************** *  **************************************** 

 

BHS_CAN4 TTTAAATAATATAAGTTTTTGACTTCTTCCCCCATCTTTGTCATTACTTATTAGATCTGC 

BHS_CAN1 TTTAAATAATATAAGTTTTTGACTTCTTCCCCCATCTTTGTCATTACTTATTAGATCTGC 

BHS_USA3 TTTAAATAATATAAGTTTTTGGCTTCTTCCCCCATCTTTGTCATTACTTATTAGATCTGC 

BHS_USA4 TTTAAATAATATAAGTTTTTGGCTTCTTCCCCCATCTTTGTCATTACTTATTAGATCTGC 

GB-P.cun.TTTAAATAATATAAGTTTTTGGCTTCTTCCCCCATCTTTGTCATTACTTATTAGATCTGC 

         ********************* **************************************  

 

BHS_CAN4 TGTGGTAGGTTGTGGAGTGGGGACCGGTTGAACTGTCTATCCCCCCTTATCTAATG.... 

BHS_CAN1 TGTGGTAGGTTGTGGAGTGGGGACCGGTTGAACTGTCTATCCCCCCTTATCTAATGGTAT 

BHS_USA3 TGTGGTAGGTTCTGGGGTGGGGACTGGTTGAACTGTTTATCCCCCCTTATCTAATGGTAT 

BHS_USA4 TGTGGTAGGTTCTGGGGTGGGGACTGGTTGAACTGTTTATCCCCCTTTATCTAATGGTAT 

GB-P.cun.TGTGGTAGGTTGTGGAGTGGGGACCGGTTGAACTGTCTATCCCCCCTTATCTAATGGTAT 

         *********** *** ******** *********** ******** **************  

 

BHS_CAN4 ............................................................ 

BHS_CAN1 TTTTCACCATGGCCCAGCGGTTGATTTTGGTATTTTAAGCCTTCATATCGCTGGTATTTC 

BHS_USA3 TTTTCACCATGGCCCAGCGGTTGATTTTGGTATTTTAAGCCTTCATATCGCTGGTGTTTC 

BHS_USA4 TTTTCACCATGGCCCAGCGGTTGATTTTGGTATTTTAAGCCTTCATATCGCTGGTGTTTC 

GB-P.cun.TTTTCACCATGGCCCAGCGGTTGATTTTGGTATTTTAAGCCTTCATATCGCTGGTATTTC  
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         ******************************************************* **** 

  

BHS_CAN4 ............................................................ 

BHS_CAN1 TTCAATTTTAGGGGCTATTAATTTTATTGTTACTATTTTTAATATGAAAGTTGAAGGGAT 

BHS_USA3 TTCAATTTTAGGGGCTATTAATTTTATTGTTACTATTTTTAATATGAAAGTTGAAGGGAT 

BHS_USA4 TTCAATTTTAGGGGCTATTAATTTTATTGTTACTATTTTTAATATGAAAGTTGAAGGGAT 

GB-P.cun.TTCAATTTTAGGGGCTATTAATTTTATTGTTACTATTTTTAATATGAAAGTTGAAGGGAT 

         ************************************************************  

 

 

BHS_CAN4 ............................................................ 

BHS_CAN1 AAAATGATCTAATGTTCCTTTGTTTGTTTGATCTGTATTTATTACTTCTTTTCTTTTAGC 

BHS_USA3 AAAATGATCTAATGTTCCTTTGTTTGTTTGATCTGTATTTATTACTTCTTTTCTTTTAGC 

BHS_USA4 AAAATGATCTAATGTTCCTTTGTTTGTTTGATCTGTATTTATTACTTCTTTTCTTTTAGC 

BHS_USA1 AAAATGATCTAATGTTCCTTTGTTTGTTTGATCTGTATTTATTACATCTTTTCTTTTAGC 

GB-P.cun.AAAATGATCTAATGTTCCTTTGTTTGTTTGATCTGTATTTATTACTTCTTTTCTTTTAGC  

         ********************************************* **************  

 

BHS_CAN4 ............................................................ 

BHS_CAN1 TTTTTCTTTACCTGTTTTAGCAGCAGCTTTAACTATGTTATTAACAGACCGAAATTTTAA 

BHS_USA3 TTTCTCTTTACCTGTTTTAGCAGCAGCTTTAACTATGTTATTAACAGACCGAAATTTTAA 

BHS_USA4 TTTCTCTTTACC................................................ 

GB-P.cun.TTTTTCTTTACCTGTTTTAGCAGCAGCTTTAACTATGTTATTAACAGACCGAAATTTTAA  

         *** ********************************************************  

 

BHS_CAN4 .......................................................... 

BHS_CAN1 TTCTACATTCTTTGACCCTATTGGGGGTGGTGACCCTATTCTTTATCAACATCTTTTC 

BHS_USA3 TTCTACATTCTTTGACCCTATTGGGGGTGGTGACCCTATTCTTTATCAACATCTTTTC 

BHS_USA4 .......................................................... 

GB-P.cun.TTCTACATTCTTTGACCCTATTGGGGGTGGTGACCCTATTCTTTATCAACATCTTTTC  

         **********************************************************  
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