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ABSTRACT 

Cardiovascular disease (CVD) is a major contributor to chronic disability and death 

globally while hypercholesterolemia is a major independent risk factor. Because of adverse 

effects of currently used CVD drugs (e.g. statins), safer alternatives including natural products 

might be considered as options for treatment of hypercholesterolemia. Studies have shown that 

treatment with flaxseed lignan, mainly as secoisolariciresinol diglucoside (SDG), can safely 

decrease blood cholesterol. However, purified SDG production is expensive; processes that 

concentrate the natural SDG polymer to 50% or more SDG from flax yield a more cost effective 

product. Unfortunately, the relative bioavailability of pure SDG and SDG polymer are unknown 

and the bioactivity of these two forms of SDG are also unknown. 

This study compared the relative pharmacokinetics of purified SDG and SDG polymer in 

a single oral dose (40 mg/kg SDG dose) in rat. The concentration of SDG and SDG polymer 

including secoisolariciresinol (SECO), enterodiol (ED), and enterolactone (ENL) were 

determined in plasma after administration. The aglycone SECO could only be detected in early 

plasma samples at 0.25 to 4 h after administration. Unconjugated ED was detected and 

quantified after 8 (mean ± SD: 3.4 ± 3.3 ng/mL) and 12 h (6.2 ± 3.3 ng/mL) in most subjects, 

while total ED (unconjugated ED and ED conjugate) was detected in plasma from 2 h to 16 h 

in most rats. The time of the maximum plasma concentration (Tmax) of total ED in rats fed SDG 

was 11.7 ± 1.1 h and 10.9 ± 1.9 h for rats fed the SDG polymer. The maximum concentration 

of total ED (Cmax) for rats fed SDG was 262.2 ± 170.8 ng/mL while for those fed SDG polymer 

Cmax was 207.2 ± 115.5 ng/mL. Total enterolactone (ENL) was determined for all plasma 

samples. Tmax of total ENL in rats fed purified SDG was 12.6 ± 1.5 h while for those fed SDG 

polymer Tmax was 12.7 ± 3 h. Cmax of total ENL in the purified SDG and SDG polymer fed rats 

was 81.6 ± 23.8 ng/mL, and 65.9 ± 19.6 ng/mL, respectively. The relative bioavailability of 

total ED and ENL of SDG polymer is 111% and 89%, respectively, when compared to purified 

SDG. No significant difference in Cmax, Tmax, and AUC of total ED and ENL of purified SDG 

and SDG polymer was found. 

In addition, we investigated the effects of chronic daily oral purified SDG (6 mg/kg) or an 

equivalent dosage of SDG polymer in female Wistar rats fed a 1% cholesterol diet for 1 week 
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before initiation of purified SDG or SDG polymer doses for 23 days. A significant reduction in 

normalized liver weight was observed in the group treated with purified SDG when compared 

to high cholesterol control. Both purified SDG and SDG polymer not significantly, but 

clinically induced a reduction in serum TAG (19% and 15%, respectively) and increase in HDL-

C (15% and 24%, respectively). Furthermore, hypercholesterolemic rats given purified SDG or 

SDG polymer had clinically lower scores in steatosis and non-alcoholic fatty liver disease 

activity (NAS), when compared to controls. 

In conclusion, no differences in the absorption kinetics and total exposure of bioactive 

metabolites was observed between pure SDG and SDG polymer. Moreover, apparent lipid 

lowering effects were observed following purified SDG and SDG polymer administration, 

without significant differences between the two groups. Thus, the pharmacokinetic 

characteristics and hypocholesterolemic effect of SDG polymer warrant its further investigation.  
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Cardiovascular disease (CVD) and non-alcoholic fatty liver disease result in considerable 

morbidity and mortality in human. Hypercholesterolemia and hypertriglyceridemia are major 

independent risk factors for CVD. To manage hypercholesterolemia, lifestyle changes and drug 

therapy, especially statins, are used. However, statins can lead to side effects. Preclinical and 

clinical studies suggest that oral consumption of the flaxseed lignan, secoisolariciresinol 

diglucoside (SDG), can reduce reduce serum total, and LDL-cholesterol, and lipid 

accumulation in the liver. Furthermore, both animal and human studies indicate that flaxseed 

and its lignan extract are safe. Hence, oral SDG supplementation might offer a safe alternative 

to pharmaceutical hypocholesterolemic agents in hypercholesterolemia management.  

Flaxseed SDG is stored as a component of an ester-linked copolymer. Reported processes 

for hydrolyzing, extracting, and purifying SDG from the flaxseed copolymer to produce a 

purified SDG can be a costly procedure. Consequently, unless the cost of SDG isolation is 

reduced it is unlikely to be marketed as a nutraceutical. In 2007, Archer Daniels Midland 

Company (ADM) attained regulatory approval of a flaxseed lignan enriched complex called 

BeneFlax™ from both the U.S. Food and Drug Administration Agency and Health Canada. 

Hydrolysis of BeneFlax™ released 34%-38% SDG by weight and long-term supplementation  

with the complex was well tolerated and safe. However, ADM ceased commercial production 

of BeneFlax™ to focus on soy isoflavanoids. Recently, Prairie Tide Diversified Inc. began 

production of a more concentrated flax lignan copolymer that releases 50% or more SDG with 

hydrolysis. Biological activity of this SDG copolymer has never been studied. 

Following oral consumption of the SDG copolymer, SDG is released in the stomach and 

intestine. Subsequent deglycosylation, releases the aglycone of SDG, secoisolariciresinol 

(SECO) which is further metabolized to mammalian lignans, enterodiol (ED) and enterolactone 

(ENL), by colonic microflora. Deglycosylation of SDG and further biotransformation to 

mammalian lignans proceed following administration of either purified SDG or SDG polymer. 

However, the extent to which SDG is released from the copolymer and subsequent  

bioavailability of the SDG metabolites is unknown. 
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Therefore, I conducted a relative bioavailability study between purified SDG and the SDG 

copolymer to understand the pharmacokinetics of the two SDG forms. As well, I evaluated the 

efficacy of the SDG copolymer in diet-induced hypercholesterolemic rats to determine if a diet 

including this product induced similar effects as purified SDG. These studies helped to 

determine if the value of using an SDG copolymer, a more economical product than purified 

SDG, is a candidate for management of hypercholesterolemia. 

1.2 Cholesterol as a risk factor for cardiovascular disease and current therapies 

Cardiovascular diseases (CVD) are diseases that involve heart or blood vessels1. 

Collectively these diseases remain the major contributor to chronic disability and death 

globally2. In 2015, there were about 17.92 million deaths due to CVD, increasing from 12.59 

million deaths in 19902. Different types of CVD include ischemic heart disease, cerebrovascular 

disease (stroke), peripheral vascular disease, heart failure, rheumatic heart disease and 

congenital heart disease1,2. Hypercholesterolemia and hypertriglyceridemia are major 

independent risk factors for CVD3. Elevated serum total cholesterol (TC), low-density 

lipoprotein cholesterol (LDL-C), high serum triglyceride (TG) levels, and low serum high-

density lipoprotein cholesterol (HDL-C) are associated with increased CVD4. 

1.2.1 Etiology of hypercholesterolemia 

Hypercholesterolemia can be divided into familial hypercholesterolemia and polygenic 

hypercholesterolemia. Polygenic hypercholesterolemia, the most common form, is caused by 

the combination of unidentified genetic factors and unhealthy lifestyle factors, such as high-fat 

diets and lack of practical exercise5. High-fat diets include high levels of cholesterol, saturated 

fatty acids, trans fatty acids, and total caloric intake6. In most cases, familial 

hypercholesterolemia results from mutation of the LDL receptor gene, leading to elevated levels 

of plasma LDL-C5, 7. Other genetic causes of familial hypercholesterolemia are mutations in 

apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type 9 gene (PCSK9)5, 7.  

1.2.2 Impact of elevated cholesterol 

The biggest threat associated with hypercholesterolemia is unfavorable cardiac events, with 

complications like heart disease, stroke, and peripheral vascular disease5. Increasing LDL-C 

can accumulate as arterial deposits or plaques and, if untreated, lead to atherosclerosis. There 

is an association between elevated serum TC/HDL-C and the presence of vulnerable plaques8. 

Furthermore, low HDL-C and high total cholesterol levels increased the incidence of coronary 
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heart disease (CHD)9. In a community study involving 8132 people aged 40 to 69 years, the 

incidence rate of CHD was 2.49x for individuals with 140-159 mg/dL non-HDL cholesterol and 

3.13x for individuals with ≥ 180 mg/dL, compared to individuals with non-HDL cholesterol 

levels of < 100 mg/dL10. Nowadays, cholesterol reduction is considered as a practical strategy 

for the prevention of heart disease9. 

1.2.3 Treatment of hypercholesterolemia 

Lifestyle changes and drug therapy are the mainstays of hypercholesterolemia treatment. 

Lifestyle modification might include improvement in diet, increase of physical exercise, 

maintenance of an optimal body weight, moderation of alcohol consumption, and cessation of 

smoking11. The usual targets for drug therapy include reduction of LDL-C level, enhancement 

of HDL-C level, and reduction in triglyceride concentration12. There are several biochemical 

mechanisms to reduce LDL-C levels including: 1) HMG-CoA reductase inhibition to inhibit  

synthesis of hepatic cholesterol (e.g. statins)13; 2) Inhibition of cholesterol absorption (e.g. 

ezetimibe and phytosterols)12,14; 3) bile acid sequestrants increasing clearance of circulating 

LDL-C (e.g. bile acid resins, colesevelam)12; and 4) Modulation of transcription of genes 

encoding for proteins that control lipoprotein metabolism. (e.g. fibrates) 15
 .  

Inhibition of HMG-CoA reductase, which is the first and rate-limiting step in cholesterol 

synthesis by statins is the most common approach for lipid reduction16. The intensity of statin 

therapy is determined by the predicted percentage reduction in LDL-C levels, from < 30% to 

>50%. Only 38% of patients achieved their LDL-cholesterol goal in statin therapy13. Although 

trials indicated that statins lower LDL-C levels leading to reduction of major vascular events 

by 22%, CHD death by 20% and all-cause mortality by 10%, the outcomes of statin therapy 

have varied in particular patient groups17. For example, no clear benefit of statin therapy in 

patients with heart failure with reduced ejection fraction, and for patients aged >75 years, statin 

had less benefit in reduction of major vascular events when compared to younger patients17. 

Moreover, there are some side effects of statins including gastrointestinal disturbance, 

extremely high liver transaminases, rhabdomyolysis, myositis, and neuropathies16. 

The efficacy of other hypocholesterolemic drugs is also limited in patient groups with 

elevated serum cholesterol. For instance, Ezetimibe reduces LDL-C blood levels by about 17% 

– 22% and has modestly beneficial effects on TGs and HDL-C levels as well. No significant 

adverse effects of ezetimibe were found compared to placebo12. Fibrates are PPAR-α agonists, 

which predominantly reduce VLDL level15. Fibrates are used for treatment of primary 

hypertriglyceridemia, but in some hypercholesterolemic patients, no response or even a 



4 
 

paradoxical increase in LDL has been observed15. Potential adverse effects of fibrates are 

gastrointestinal complaints, increase in liver transaminases, and increased cancer has been 

observed in rodents12, 15. While current lipid-altering agents are commercially available, 

however, their varied effects in different patient groups and possible side effects has led to a 

need for more effective drugs with no adverse events. 

1.3 Cholesterol 

Cholesterol is a water insoluble sterol alcohol with a single hydroxy group, a double 

bond, and an eight carbon side chain18. Cholesterol is an important component of all 

mammalian cells and a precursor of steroid hormones, vitamin D, and bile acids19. It exists in 

its free form in cell membranes and in esterified forms in plasma. Total body cholesterol 

homeostasis is maintained by balancing dietary cholesterol intake, de novo synthesis, biliary 

excretion, and fecal excretion18, 19. Cholesterol biosynthesis regulation requires the balance of 

endogenous cholesterol synthesis and absorption of dietary and biliary cholesterol.  

1.3.1 Intestinal cholesterol absorption and regulation 

Intraluminal cholesterol absorption involves the digestion and hydrolysis of dietary lipids 

and micellar solubilization. Biliary cholesterol absorption is higher than dietary cholesterol 

absorption because biliary cholesterol enters the intestine in micellar solution, while dietary 

cholesterol is mostly dissolved in dietary triglycerides and must be transformed into micellar 

solution before adsorption is possible. 

Cholesterol is released from micelles at the enterocyte brush border membrane and then 

absorbed into cells by a mechanism largely involving a protein called Niemann-Pick C1 like 1 

protein (NPC1L1)20. However, a portion of the cholesterol entering the enterocyte is removed 

from the cells to the intestinal lumen by the action of ATP-binding cassette (ABCA1) 

transporters, ABCG5 and ABCG8 20. ABCA1 also plays a role in reverse cholesterol 

transport. Studies have showed that the ABCA1 transporter, mostly present in the liver and 

peripheral macrophages, assists the efflux of cholesterol and production of nascent HDL21. 

Overexpression of ABCA1 in mice increased plasma HDL cholesterol levels21. 

1.3.2 Cholesterol biosynthesis 

Cholesterol biosynthesis begins with two acetyl-CoA molecules forming acetoacetyl-

CoA, followed by reaction of HMG-CoA synthase with one more acetyl-CoA to form 3-

hydroxy-3-methylglutaryl-CoA (HMG-CoA). HMG-CoA is then converted to mevalonate by 
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HMG-CoA reductase18. Mevalonate undergoes conversion to isopentenyl-pyrophosphate and 

subsequently six isopentenyl-pyrophosphate are condensed in sequence to yield squalene. The 

precursor squalene is then converted to cholesterol22. The major site for cholesterol 

biosynthesis is liver, followed by the gastrointestinal tract18. 

No human enzyme can degrade the sterol ring structure of cholesterol. The sterol ring is 

acted on by enzymes to become more water soluble by the action of liver enzymes. The 

modified product is excreted in the bile and urine18.  

1.3.3 Regulation of cholesterol metabolism 

Three mechanisms exist to maintain cholesterol homeostasis including transcriptional 

(liver X receptor (LXR) dependent and independent pathways), post-transcriptional, and post-

translational (SREBP-2 pathway) regulatory mechanisms. LXR-dependent pathways regulate 

bile acid synthesis and sterol efflux from hepatocytes and peripheral cell via transcriptional 

upregulation of CYP7A1, ABCA1, ABCG5, and ABCG823. LXR-independent pathways 

regulate sterol regulatory element binding protein-2 (SREBP-2), which is also a post-

translation factor. SREBP-2 levels decline when cellular sterol and oxysterol levels are high, 

resulting cholesterol biosynthesis genes inhibition, including HMGR, HMG-CoA synthase, 

squalene synthase, and the LDL-C receptor (LDLR)24. High cellular oxysterol levels lead to 

increasing cellular mRNA levels of LXR, and protein content and enzyme activity of 

CYP7A1, ABCG5, and ABCG823. 

1.3.4 Cholesterol transport 

Cholesterol transport from peripheral tissues to the liver is required for oxidation and 

excretion. Free cholesterol is transported from peripheral cells by nascent HDL. This complex 

is secreted by the liver and intestine and consists primarily of phospholipids and apoA-1 but 

has very little cholesterol. In peripheral tissues nascent HDL matures by binding cholesterol 

esters for transport to form mature HDL-C. Cholesterol esters of HDL-C can be selectively 

absorbed by the liver and other steroidogenic tissues, or transferred to apoB-containing 

lipoproteins, including VLDL-C and LDL-C. Levels of LDL-C increase with increasing 

cholesterol supply25.  

1.3.5 Cholesterol regulation by lignan  

According to a previous study by Alcorn et al. treatment of HepaRG cells with ENL and 

ENL-Gluc inhibits HMG-CoA reductase, a rate limiting activator of the mevalonate synthesis 
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pathway, and LDL-R transcription and translation. These findings suggest that ENL and 

ENL-Gluc might play an inhibitory effect on both cholesterol synthesis and uptake26. In other 

work by Alcorn et al. treatment of Caco-2 intestinal epithelium cell line with ENL and ENL-

Gluc reduced enterocyte cholesterol accumulation27. ENL-Gluc significantly increased Insulin 

Induced Gene-1 (INSIG-1) regulation, and significantly downregulated SREBP-1, while 

ENL, distinctly but not significantly, upregulated  INSIG-127. INSIG-1 expression restricts 

adipocyte lipogenesis28 and serves a dual function to regulate cholesterol homeostasis by 

binding to both SREBP cleavage-activating protein and HMG-CoA reductase29, while 

SREBP-1 downregulation is correlated with reduction in cholesterol synthesis in mice30. 

Therefore, the glucuronidation form of ENL is perceived to have a potential role in 

cholesterol homeostasis. 

1.4 Natural health products (NHPs) 

Natural health products (NHPs) include herbal remedies, traditional medicines such as 

traditional Chinese and Ayurvedic medicines, probiotics, homeopathic medicines, vitamins and 

minerals, and other products like amino acids and essential fatty acids31. NHPs should be safe, 

effective, and of high quality; however, 12% of Canadians who use NHPs report that they have 

experienced unwanted side effects. Canadian regulations allow access to NHPs freely without 

a prescription. Generally, NHPs are consumed to maintain health, and treat or prevent minor, 

serious, or chronic disease32. Health Canada claimed that 71% of Canadians have used natural 

health products33. According to a survey involving 326 individuals, 82% of participants stated 

they preferred to take a NHP for a minor condition and 60% of them preferred the use of NHPs 

for chronic medical illnesses, as they perceive that NHPs are safe and have good quality34. 

1.4.1 Natural Health Products Regulation (NHPR) 

The Natural Health Products Directorate (NHPD) of Health Canada was empowered to 

enforce Canadian NHP regulations on January 1, 2004. Prior to that time NHPs sold in Canada 

were regulated by the Food and Drugs Act (1985). The categorization of NHPs as foods or 

drugs is dependent upon any medicinal claims associated with the product. Generally, NHP 

regulations are stricter than food product regulations but less strict than drug regulations. All 

NHP marketers must provide science-based evidence of safety, efficacy, and quality to Health 

Canada31. Health Canada has published a “Pathway for Licensing Natural Health Products 

Making Modern Health Claims”, a document that indicates evidence requirements for sale of 

NHPs35. Depending on product ingredients, proposed health claim(s) and overall risks, the level 
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of evidence required differs. For NHPs with low risk, data to support health claims can range 

from epidemiological studies and strong Phase II clinical trials. For NHPs with high risk and 

those used for treatment, cure, and prevention of serious diseases at least two Phase III clinical 

trials are required 35. Sellers must submit a product license application to the NHPD to receive 

authorization for sale of their product in Canada. Once approved by NHPD, an eight-digit 

natural product number (NPN) or a Drug Identification Number-Homeopathic Medicine (DIN-

HM) will be issued by the NHPD to the producer31. 

1.4.2 Flaxseed lignans as NHP candidates 

Flaxseed lignans may be marketed as NHPs if they are both safe and the seller claims 

health benefits. Preclinical and clinical studies have shown that flaxseed lignans have 

potential health benefits that would be useful in treatment of chronic diseases such as breast 

cancer, prostate cancer, CVD, diabetes, and inflammation36-47. Safety studies in rabbit (40 

mg/kg lignan complex once daily for 2 months)48, rat (10% flax chow)49, and human (200-

600 mg/day SDG for 6 months)50-52 indicate that flaxseed lignans are safe for most people 

to consume with the possibleexception of women during pregnancy and lactation53, 54. 

Safety will be discussed in section 1.5.4. 

In 2008, NHPD accepted Archer Daniel’s Midland (ADM)’s Natural Health Products 

Master File for a flax lignan concentrate (a 34%-38% SDG-enriched complex ) called 

BeneFlax™ and issued a specific reference number for the ingredient55. The USFDA also 

accepted Archer Daniel Midland's new dietary ingredient (NDI) filing for BeneFlax™56. 

Therefore, the new SDG-enriched polymer is an approved NHP. 

1.5 Flaxseed 

Flax (Linum usitatissimum) is an oilseed crop, which is usually grown in cooler 

environments, primarily in the mid-west of United States and Canada57. Flaxseed varies in 

color, from golden yellow to reddish brown58. Although the nutritional composition of 

flaxseed varies with environment and cultivar, it typically has about 40% lipid, 30% dietary 

fiber, 20% protein, as well as lignans, minerals, and vitamins59. Flaxseed was grown to 

produce industrial oils, but recently it has received more attention as a functional food 

because of its three principle components: α-linolenic acid (ALA), soluble fiber, and 

lignan58. ALA is an omega-3 polyunsaturated essential fatty acid that comprises at least 

55% of the total flax oil triglyceride of Canadian cultivars but lower levels occur in 

flaxseed grown elsewhere. The saturated fatty acid content of flaxseed oil is typically less 
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than 9%; therefore, flaxseed oil is considered a low saturated fat food58. Flaxseed soluble 

fiber, known as mucilage or gum, is composed of high molecular weight polysaccharides. 

This gum comprises approximately one-third of the total dietary fiber in flaxseed60. 

Flaxseed hull is one of the richest sources of plant lignans which occur mainly as a 

copolymer that contains SDG. The lignan content of flaxseed is 1-26 mg/g of whole 

flaxseed61. Based on a submission put forward by the Flax Council of Canada the NHPD 

allows a health claim for the consumption of products that contain whole flaxseed. The 

daily recommended consumption of flaxseed according to the health claim is 40 g (5 

tablespoons) of ground whole flaxseed. 

1.5.1 Flaxseed lignans 

Lignans are a class of diphenolic compounds distributed widely in the plant kingdom, 

including flaxseed, sesame, rye bran, whole grain and vegetables62. Flaxseed lignans are 

concentrated in the seed coat mainly as SDG, as well as a small amount of the lignans, 

matairesinol, pinoresinol and isolariciresinol63. The lignan content of flaxseed varies with 

genotype, and environmental effects including location, harvest year, and seeding date46. 

Flaxseed lignan is present in a linear ester-linked copolymer where SDG bonded with 3-

hydroxy-3-methyl-glutaryl units (HMG) is the repeated unit (Figure 1.1)64, 65. Ford et al. 

used 1H and 13C NMR and HRMS analysis, to deduce that SDG-containing polymer 

consists of mixtures of dimers, trimers, tetramers, and so forth65. Additionally, the 

glucosides of p-coumaric acid (CouAG) and ferulic acid (FeAG)65-68 and herbacetin 

diglucoside (HDG)69 may also be found as the terminal residue of the copolymer. However, 

in the study of Kamal-Eldin et al.(2001), 1H NMR analysis showed peaks of p-coumaric 

acid and ferulic acid but no visible peaks of these phenolic compounds were observed 

when using 13C NMR, as the latter is a much less sensitive method and the amount of these 

compounds in the copolymer is relatively small70. In their study, the oligomeric structure 

was composed of five SDG residues interconnected by four 3-hydroxy-3-methyl glutaric 

acid (HMGA) residues70. 

 

Figure 1.1 Schematic representation of the SDG polymer. The circle represents the backbone 
SDG, the rhombus represents the linker molecule HMGA, and the square represents terminal 
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units, which can be CouAG, FeAG (HCAG = CouAG or FeAG), or HMGA. Adapted from 

Struijs et al. 71. 

1.5.2 Overall health benefits of flaxseed lignan 

The breadth of biological effects of flaxseed lignan as an anti-oxidative, anti-oestrogenic, 

anti-inflammatory, and anti-carcinogenic compound have been reviewed36, 37. The reviews 

include potential health benefits of lignan as a treatment or prophylactic for chronic disease 

including cancer, CVD, diabetes, and inflammation. In two studies, one of 383 women with 

palpable cysts38 while the other included 194 women diagnosed with breast cancer and a 208 

community-based control39, an inverse correlation was observed between serum EL 

concentration and breast cancer risk. SDG and its metabolites can inhibit lipid peroxidation by 

hydroxyl radical (·OH) scavenging indicating that the antioxidative ability is greater than 

Vitamin E 72, 73. In addition, studies in rat and human showed that SDG mitigated the effects 

of type I and type II diabetes40-43.  

1.5.3 Hypocholesterolemic effect of flaxseed lignans 

Studies have shown reductions in LDL-C and serum cholesterol in response to 

flaxseed meal or flaxseed lignan supplementation for both animal models 74-78 and human44-

47. Several human studies indicate that flaxseed lignan only has hypolipidemic effects in 

hypercholesterolemic patients46, 47 but not in normocholesterolemic subjects even with a 

dose of 543 mg/day SDG in BeneFlax™ Flax Lignan Concentrate 44, 45. The ability to 

lower LDL-C in hypercholesteremic patients but have no effect in normocholesterolemic 

subjects is seen as an indicator that flaxseed lignan-enriched products are potentially safe 

for consumption by most people. 

1.5.3.1 Animal studies 

Various studies have been performed in different animal models to evaluate the 

hypocholesterolemic effect of flaxseed or purified SDG. In SHR/N-cp lean and obese rats 

receiving 20% of energy from flaxseed meal for 6 months, a significant reduction was 

found in LDL-C, HDL-C, plasma triglyceride, and liver fat deposition. However, the 

components responsible for the hypolipidemic effect are unknown74. Two studies by 

Penumathsa et al. (2008) indicated cardioprotective effects of SDG in rat models. Rats 

were fed a high cholesterol diet (2%) for 8 weeks followed by oral administration of SDG 

(20 mg/kg) for 2 weeks and blood lipids were compared to rats only fed the high 

cholesterol diet79. A significant reduction in total cholesterol, LDL-cholesterol, 
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triglycerides and an increase in HDL-cholesterol levels were observed in rats receiving 

SDG. Felmlee et al (2009) found that for hypercholesterolemic rats fed a 1% cholesterol 

diet and also administered 3 or 6 mg SDG/kg body weight exhibited a dose-dependent 

reduction in serum TC, LDL-C levels, hepatic lipid accumulation, and body-weight gain. In 

this study SDG did not alter hepatic gene expression of commonly reported regulatory 

targets of lipid homeostasis80.  

In rabbits fed a high cholesterol diet, flaxseed reduced development of aortic 

atherosclerosis without significantly lowering serum cholesterol. In normocholesterolemic 

rabbits, flaxseed increased serum total cholesterol without significantly affecting serum 

triglycerides75. Prasad et al.76 also investigated diets that included solin flaxseed, which has 

similar oil and lignan content as regular flaxseed but has very little  α-linolenic acid (2–

3% of the total oil), and observed a similar reduction of serum TC and LDL-C in 

hypercholesterolemic rabbits fed flaxseed with normal α-linolenic acid content. This 

finding indicates that the antiatherogenic activity of flaxseed is not due to α-linolenic 

acid76. In 6 to 8 week old New Zealand White rabbit, treatment with 15 mg/kg body weight 

pure SDG (wrapped in lettuce) reduced hypercholesterolemic atherosclerosis with a 

decrease in serum cholesterol, LDL-C, and lipid peroxidation products as well as an 

increase in HDL-C and antioxidant reserve77. Similarly, in another rabbit study, a diet 

containing 0.04% SDG reduced the progression of atherosclerosis to a greater extent than 

controls, and reduced atherosclerosis78. They also conducted three studies of flax lignan 

complex in diet-induced hypercholesterolemic rabbits. They found that 40 mg/kg lignan 

complex treatment for two months reduced the development of atherosclerosis by 34% in 

rabbits fed a diet with 0.5% cholesterol which was associated with a reduction in serum TC 

by 20%, LDL-C by 14% and an increase in HDL-C by 30%81. In addition, their later study 

verified that flax lignan complex was effective in slowing progression of 

hypercholesterolemic atherosclerosis by 31% in rabbits fed a 0.25% cholesterol diet (2 

months) followed by a 0.25% cholesterol diet plus 40 mg/kg body weight flax lignan 

complex orally daily (2 months), when compared to control rabbits fed a 0.25% cholesterol 

diet for 4 months82. However, the same group reported that flax lignan complex did not 

induce regression of atherosclerosis but prevented its acceleration83. The authors did not 

report the SDG content of the flax lignan complex in these three studies, thus it is difficult 

to determine the effects SDG on atherosclerosis. In 2016, a study of the therapeutic effect 

of a 15% flax-based diet on non-alcoholic fatty liver of laying hens indicated that hens 
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supplemented with whole flaxseed or defatted flaxseed meal had lower body weight and 

serum aspartate aminotransferase concentration57. 

Although most animal model studies suggest that flaxseed lignan has positive effects 

on CVD, the study of Sano et al. showed that SDG did not affect either atherogenesis or 

thrombosis in apolipoprotein E and low-density lipoprotein receptor deficient mice fed a 

diet with 0.05% cholesterol and SDG (0.06% w/w; 100 mg/kg body weight per day)84. 

1.5.3.2 Human studies 

Several studies have revealed that flaxseed or flaxseed lignan lowers cholesterol in 

hypercholesterolemic subjects, while lignan supplementation had no effect on 

normocholesterolemic subjects. Moderately hypercholesterolemic men who received 100 

mg of SDG for 12 weeks exhibited a significant reduction in the ratio of LDL-C/ HDL-C47. 

In a study conducted in fifty-five hypercholesterolemic patients, 600 mg SDG 

supplementation for 8 weeks significantly decreased serum TC, LDL-C and glucose 

concentrations. The observed serum cholesterol correlated negatively with concentrations 

of plasma SECO and ED46. However, a study among healthy postmenopausal women who 

consumed a low-fat muffin with a lignan complex (500 mg/day SDG) daily for 6 weeks 

showed that lignan complex had no effect on plasma lipid concentrations, serum 

lipoprotein oxidation resistance, or plasma antioxidant capacity45. Similarly, flaxseed 

lignan supplementation had no hypoglycemic or hypotensive effect in healthy older human 

participants receiving 543 mg/day SDG in the form of a 35% SDG-enriched complex44. 

1.5.3.3 Hypocholesterolemic effect of HMG 

Several studies in rats and rabbits have showed that HMG had hypocholesterolemic 

effects. The study of Beg et al (1968) showed that 20 mg HMG kg/day i.p. injections 

treatment caused a significant decline in the levels of different serum lipids of 

hyperlipidemic rats85. In another study, rats receiving 25 mg HMG/kg had significantly 

lower serum triglyceride and phospholipid levels, but the serum cholesterol, and liver and 

aorta lipid content did not show any significant change86. Conversely, all serum, liver, and 

aorta lipids except aortic phospholipids were significantly decreased by administration of 

50 mg HMG/kg86 suggesting a dose-dependent lipid reduction effect of HMG. Cholesterol-

fed rabbits receiving HMG had significantly lower levels of serum cholesterol, 

phospholipids, triglycerides, free fatty acids, and total lipids. However, liver cholesterol 

was slightly increased87. As SDG polymer include HMG, it is necessary to consider the 

effect of both components when evaluating hypocholesterolemic efficacy. 
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1.5.4 Safety and toxicity of flaxseed lignan 

Sustained consumption of lignan complex (40 mg/kg body weight orally daily for 2 

months) had no adverse effects on the hemopoietic system in normo- and 

hypercholesterolemic rabbits48. A study of male and female Fischer 344 rats indicated that 

consumption of 10% flax chow from the 18th day of gestation to the 86th day after giving 

birth did not have long-term effects on growth, development, and behavior49. Moreover, no 

signs of toxicity were observed in the subjects49. 

A 34%-38% SDG-enriched complex provided to subjects in a 600 mg/day SDG dose 

for six months (BeneFlax™, Archer Daniel’s Midland) was safe and well tolerated by 

human subjects50, 51. Similarly, no evidence of hypotension, hypoglycemia, or other adverse 

events was found in older adults supplemented with 300 mg/ day SDG for six months52.  

A study showed that feeding rats flaxseed during pregnancy and lactation might 

reduced the risk of mammary cancer88. Flaxseed consumption was associated with lowered 

birth weight, irregular estrous cycles, and altered reproductive development of offspring. It 

was postulated that lignans transferred to the offspring via rat dam's milk induced the 

observed physiological changes53,54. The authors suggest that such effects would be of 

concern for subjects consuming flaxseed during pregnancy and lactation. 

1.6 Pharmacokinetics of flaxseed lignan 

1.6.1 Absorption and Gastrointestinal metabolism 

Following flaxseed consumption, SDG and various combinations of SDG and HMGA 

are released from the lignan macromolecule in the stomach and small intestine89. A study 

using artificial human stomach and small intestine suggested that lignan polymer digestion 

begins in the stomach and small intestine. Pancreatic enzymes and bile salts90 contribute 

considerably to digestion of the lignan complex. SDG can be deglycosylated to its aglycone 

form, SECO, by β-glucosidase and β-glucuronidase enzymes in the small intestine91 and 

colon microflora92. Clavel et al. (2006) found that Clostridium sp. SDGMt85-3Db had the 

highest deglycosylation rate, but this strain was only found in two of twenty human fecal 

samples93. In their study, Bacteroides distasonis and B. fragilis, which were found in all 

human feces with proportion of 0.5% and 3.3% of total fecal bacteria, respectively, 

completely converted SDG into SECO within 20 h93. Similarly, in SDG-supplemented 

culture inoculating with human feces, SDG underwent deglycosylation to SECO within 12 

h94. SECO is then partially absorbed into the systematic circulation or biotransformed to the 
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mammalian lignan, enterodiol (ED), by gut microflora via demethylation and 

dehydroxylation95. In SDG-supplemented microbial culture inoculated with human feces, 

SECO was successively dehydroxylated and demethylated to yield enterodiol (4–18% 

conversion) and enterolactone (0.2–6%) after 24 h94. In another in vitro experiment, both 

Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2 

transformed SECO to ED. Conversion of SECO was detected under anoxic conditions, but 

not observed during aerobic incubation96. ED is subsequently dehydrogenated to form 

enterolactone (ENL), and only small amounts of ED and ENL are absorbed into the systemic 

circulation50, 80. The pathway for conversion from SDG to ENL is displayed in Figure 1.2. A 

subdominant bacteria of the human intestine, Lactonifactor longoviformis, contributes to 

ENL formation from ED97. Other plant lignans in flaxseed such as matairesinol, pinoresinol 

and lariciresinol, can also be converted into the mammalian lignans, ED and ENL50, 80.  

Neither SDG nor its conjugates have been detected in plasma and urine98. In a 

permeability study of SDG and its metabolites using caco-2 human intestinal cells, SDG had 

very poor permeation characteristics, and passive diffusion is the principal mechanism of 

intestinal permeation for SECO, ED, and ENL 99. Therefore, only SECO, ED, and ENL can 

be absorbed by the gastrointestinal tract. Kuijsten, Anneleen et al. found that crushing and 

milling of flaxseed significantly improved enterolignan bioavailability100. They found that 

relative bioavailability of enterolignans from whole flaxseed was 28% , while that of crushed 

ground flaxseed expeller cake was 43%100.  
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Figure 1.2 Pathways for the conversion of the plant lignan secoisolariciresinol diglucoside 

(SDG) to the mammalian lignan enterolactone (ENL). The intestinal -glycosidase enzyme 

cleaves glucose groups from SDG and yields its aglycone form, secoisolariciresinol (SECO). 
The unabsorbed SECO undergoes dehydroxylation and demethylation to produce enterodiol 

(ED). ED is subsequently dehydrogenated to form ENL. 

1.6.2 Metabolism 

After absorption from the gastrointestinal tract, SECO, ED, and ENL undergo extensive 

first pass metabolism. Mainly, the compounds undergo conjugation reactions with glucuronic 

acid and sulfate by enterocyte and liver phase II enzymes101. In a polarized Human Caco-2 cell 

system used for permeability assessments due to its morphological and physiological similarity 

with the small intestine, SECO, ED, and ENL underwent passive permeation and extensive 

conjugative metabolism by intestinal Caco-2 cells99. An in vitro enzyme kinetic study of ENL 

glucuronidation in liver and intestinal microsomes from both human and rat indicated that the 

extent of hepatic microsomal glucuronidation surpassed intestinal glucuronidation in both 

human and rat102. The phase II metabolites may undergo enterohepatic recirculation, a process 

that could slow the clearance of lignans from the body103. 

As well, SECO, ED, and ENL can undergo metabolism by hepatic cytochrome P450, 

typically hydroxylation reactions at aliphatic and aromatic positions, to a minor extent104, 105. In 

a study of the oxidative metabolism of SECO in rat and human microsomes, Niemeyer et al. 

detected aliphatic and aromatic hydroxylation metabolites of SECO, but demethylation 
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products were not observed106. In female Wistar rat aromatic and aliphatic monohydroxylation 

products of ED and ENL were present in bile of rat that were administered interduodenal ED 

and EL (10 mg/kg) 107. 

1.6.3 Distribution 

Flaxseed lignans metabolites are widely distributed to the whole body in their conjugated 

forms. A study involving a single gavage study of 3H-SDG (3.7 kBq/g body weight) in female 

Sprague-Dawley rats showed that tissue radioactivity was highest in the cecum108. Other tissues 

with measurable lignan concentrations included the small intestine, colon, stomach, liver, 

kidney, and uterus. Throughout the experimental period radioactivity in the blood was always 

<1% of the recovered dose. The highest radioactivity levels in the blood and blood components 

were noted at 12 h108. In male Sprague-Dawley rats ED and ENL accumulated in liver, testes, 

prostate, and lung tissue in a dose-dependent manner. Among these four tissues, prostate had 

the highest concentration of ED (1.899 pmol/mg) at the 60 mg/kg dose, suggesting that prostate 

accumulates lignan109. Saarinen and Thompson assessed tissue lignan distribution in rats after 

1 d and 7 d administration of 3H-SDG (3·7 kBq/g body weight)110 and found that liver contained 

the majority of tissue lignans (48–56%) in both male and female rat after both exposure 

regimens110. When serum lignan concentrations reached a plateau, concentrations in skin and 

kidneys increased, which indicated tissue accumulation110. Therefore, serum concentrations 

alone do not fully reflect individual tissue concentrations.  

1.6.4 Excretion 

Urine and faeces are the major routes of lignan metabolite excretion. In a study in 

female rats with acute or chronic SDG treatment over 48 h, more than 80% of the lignan 

dose of lignan was excreted in both groups (feces > 50%, urine = 28–32%) by 48 hours108. 

Similarly, another study of lignan excretion in male and female Sprague–Dawley rats after 

1 d and 7 d administration of 3H-SDG (3.7 kBq/g body weight) showed that the majority of 

radioactivity was excreted in faeces (40–83%) and urine (1.2–5.2 %)110. A study of adult 

male chimpanzees consuming regular food showed that they excreted large amounts of 

ENL (14.1 + 3.5 nmol/mg cr.) and small amounts of ED, (0.4 +/- 0.2 nmol/mg cr.) in 

urine111. In male rats administered 47.2 mg/kg SDG or 25 mg/kg SECO orally ENL was a 

major metabolite identified in urine after SDG administration, with small amounts of 

SECO and ED detected as well. However, for rats had been given SECO, the majority of 

them excreted higher quantities of ED than ENL into urine112. 
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Both urinary and fecal lignan increased with consumption of lignan containing foods. 

A study on the effect of flaxseed and wheat bran in 16 premenopausal women indicated 

that urinary lignan excretion significantly increased with flaxseed consumption, but intake 

of wheat bran did not significantly change excretion113. Thirteen premenopausal women 

consumed their usual diets supplemented with 10 g/day ground flaxseed 114. Feces were 

collected on days 7-11 where ED and ENL in feces increased significantly with flax 

consumption, from 80.0 ± 80.0 (SD) to 2560 ± 3100, and 640 ± 480 to 10,300 ± 7580, 

respectively114. Similarly, young vegetarian women excreted significantly greater amounts 

of ENL than omnivores, while old vegetarians excreted similar amounts as the omnivore 

group115.  

In urine, lignans mainly exist as conjugates. In urine samples from two vegetarian or 

semivegetarian women and in two urine samples from men consuming an ordinary Finnish 

diet116, ED, ENL and matairesinol were largely present as monoglucuronides (73-94%), and to 

a smaller extent as monosulfates (2-10%). Unconjugated lignans represented 0.3-1% of the total 

lignans116. Interestingly, in some studies, before flaxseed supplementation, EL glucuronide 

conjugates and sulfates occurred in all urine samples94.    

1.6.5 Pharmacokinetic Parameters 

In a PK study involving male Wistar rats, the oral bioavailability of SDG, SECO, and ED 

were 0, 25%, and 1%, respectively117. SDG had the lowest apparent volume of distribution 

(0·76 litres/kg), systemic clearance (1.11 litres/h per kg) and half-life (0.52 h). SECO had a 

large apparent volume of distribution (44.1 litres/kg), systemic clearance (7.82 litres/h per kg), 

and half-life (4 h). Compared with SECO, ED had a larger systemic clearance (23.1 litres/h per 

kg), and a shorter half-life (1.8 h)117. In a second PK study involving male Wistar rats, SECO 

had smaller volume of distribution (17.7 litres/kg), and a smaller systemic clearance (3.1 litres/h 

per kg), while its oral bioavailability was about 25%. 

A single oral dose of purified SDG (1.31 µmol/kg body wt) PK study in healthy women 

and men showed that enterolignans appeared in plasma 8–10 h after ingestion of the purified 

SDG118. In 14.8 ± 5.1 h and 19.7 ± 6.2 h, ED and ENL reached their maximum plasma 

concentration, respectively. The half-life of ED (4.4 h ± 1.3 h) was shorter than that of ENL 

(12.6 h ± 5.6 h)118. Another PK study in healthy postmenopausal women administering SDG 

orally reported that SECO reached its peak plasma concentrations after 5–7 h and disappeared 

with a plasma elimination half-life of 4.8 h119. Highest concentrations of ED and ENL were 

detected after 12–24 h and 24–36 h, respectively, and their half-lives were 9.4 h and 13.2 h119.  
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2 RATIONALE 
Cardiovascular disease (CVD) remains the major contributor to chronic disability and 

death globally. Hypercholesterolemia is one of the major independent risk factors of CVD. 

Statins are the most commonly used class of drugs for treatment of hypercholesterolemia; 

however, adverse effects of statins attract interest of scientists and investigators to find safer 

natural product alternatives. 

Oral SDG supplementation might offer a safe alternative in the management of 

hypercholesterolemia. Studies have shown that SDG supplementation reduced LDL-C and 

serum cholesterol; however, purified SDG production is costly. Recently, Prairie Tide 

Diversified Inc. produced a more affordable SDG polymer that contains 50% or more SDG. 

Although SDG polymer undergoes deglycosylation in the gastrointestinal tract following 

consumption to yield SDG, the extent to which SDG is released from the polymer and 

subsequent bioavailability of the SDG metabolites is unknown. Our pharmacokinetic 

knowledge regarding flaxseed bioactives suggests that the mammalian lignans, enterodiol (ED) 

and enterolactone (ENL), and ENL-glucuronide play important role in high cholesterol 

treatment. Therefore, to understand the relative bioactivity of purified SDG and SDG polymer 

it is necessary to first understand the pharmacokinetics of the two SDG forms. This will be one 

of the aims of this thesis. In addition, the biological activity of this SDG polymer has never 

been studied. Hence, the effects of SDG polymer administration in treatment of 

hypercholesterolemia will be another aim of this work. 

 

 

 

 

 

 



18 
 

3 PURPOSE OF PROJECT 

3.1 Hypothesis 

3.1.1 Hypothesis 1  

There will be no difference in the pharmacokinetics of SDG and its metabolites in female 

Wistar rats administered equivalent doses of SDG polymer or purified SDG.  

3.1.2 Hypothesis 2  

Chronic administration of SDG polymer will induce equivalent reductions in serum lipid 

levels and steatohepatitis as purified SDG in diet-induced hypercholesterolemic female Wistar 

rats, when compared to hypercholesterolemic controls. 

3.2 Objectives 

3.2.1 Objective 1 

To compare the relative bioavailability of purified SDG and SDG polymer in rat by 

measuring SDG metabolites after administration of a single oral bolus. 

3.2.2 Objective 2 

To investigate the effects of oral purified SDG and SDG polymer administration in diet-

induced hypercholesterolemic rats. 

a. Assess the effects of purified SDG and SDG polymer on body weight, liver weight, 

and serum lipid parameters. 

b. Analyze the effects of purified SDG and SDG polymer on steatohepatitis.  
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4 MATERIALS AND METHODS 

4.1 Comparison of oral pharmacokinetics of purified SDG and SDG polymer in rat  

4.1.1 Chemicals and reagents 

Purified SDG (96.1%) and SDG polymer were kind gifts from Prairie Tide Diversified Inc. 

(Saskatoon, Canada). Chemicals including secoisolariciresinol (SECO), enterolactone (ENL), 

enterodiol (ED), PEG 400, and sodium acetate buffer were purchased from Sigma-Aldrich 

(Oakville, ON, Canada). Racemic enterolactone-13C3, enterodiol-13C3, and racemic 

secoisolariciresinol-D6 was from Toronto Research Chemicals (TRC) (Toronto, ON, Canada). 

MP Biomedicals™ Beta-Glucuronidase solution from Helix pomatia were purchased from 

Fisher Scientific (Ottawa, ON, Canada). Diethyl ether, 0.9% sodium chloride, LC/MS grade 

acetonitrile (ACN), LC/MS grade water, LC/MS grade methanol were acquired from 

ThermoFisher Scientific (Toronto, ON, Canada). Whatman Mini-UniPrep Syringeless Filter 

vials were procured from GE Healthcare Life Sciences (Mississauga, ON, Canada). Rat blank 

plasma was obtained directly from rats in UACC Animal & Tissue Share program. Double 

deionized water was provided from a MilliQ Synthesis Water Purification. Dow Corning silastic 

tubing and Intramedic polyethylene tubing were purchased from VWR (Mississauga, ON, 

Canada). All other chemicals used were analytical grade or better. 

4.1.2 Animals 

Wistar female rats (about 300 g) were obtained from Charles River Canada (St. Constant, 

PQ, Canada). Animals were housed under controlled temperature and maintained on a 12 hour 

dark-light cycle. The rats received a standard laboratory rodent chow and water ad libitum  

throughout a one-week acclimatization period. During this time, rats were acclimated to 

handling and restraint such that rats were familiar with the handler. This work was approved by 

the University of Saskatchewan’s Animal Research Ethics Board (20180044) and adhered to 

the Canadian Council on Animal Care guidelines for humane animal use. 

4.1.3 Dosing vehicle 

Considering SDG polymer’s poor water solubility, SDG polymer was first dissolved in 70% 
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ethanol. Subsequently, PEG 400 and saline were added to the lignan solution to form the 

suspension. The final proportion of ethanol, PEG 400 and saline were 1:3:6. Purified SDG used 

the same dosing vehicle as SDG polymer. 

4.1.4 Single dose oral pharmacokinetics study 

Wistar female rats were randomized into two groups (n=12): one group received purified 

SDG (40 mg SDG/kg body weight) while the other group received SDG polymer (amount of 

SDG is equal to purified SDG). Rats had a jugular vein cannula surgically implanted one day 

prior to the PK study. After fasting overnight, rats were administered purified SDG or SDG 

polymer by single dose oral gavage. Rats were singly housed during the blood collection period. 

Due to the limited blood volume, rats of each treatment groups (n=12) were divided into two 

subgroups. Blood samples (300 μL per time) of first subgroup (n=6) were collected via jugular 

vein cannulation at 0 (pre-dose), 15, 30, 60, 90 min, and 2, 3, 4, 8 and 12 hours after the dosing. 

For second subgroup (n=6), jugular blood samples (300 μL per time) were collected at 0 (pre-

dose), 12, 16, 20, 24, 32, 40 and 48 hours after the dosing. Food was provided to the rats two 

hours after dosing.  

4.1.5 Plasma Preparation 

Blood samples were collected in Lithium Heparin tubes and then centrifuged at 3000 

rpm for 5 min. Separated plasma was transferred into 2 mL plastic micro-centrifuge tubes 

and stored at -80°C until analysis.   

4.1.6 Quantitation of lignans 

4.1.6.1 LC-MS/MS conditions 

This assay was adopted from a published protocol of Jane Alcorn (2017)120. The 

chromatographic system used for analysis was an Agilent series 1200 binary pump (G1311A) 

with a degasser (G1322A) and auto sampler (G1329A) (Agilent Technologies, Mississauga, 

ON, Canada), and the analytes were detected with an AB Sciex API 4000 Q-Trap mass 

spectrometer (AB Sciex, Concord, ON, Canada) with a Turbo V electrospray ionization (ESI) 

source in the negative mode. A 2.1 x 50 mm, 2.7 µm, Poroshell 120 EC-C18 column with 

2.1 x 5 mm, 2.7 µm, guard column (Agilent Technologies) was used and the column 

temperature was 20°C. Analytes were separated under gradient mobile phase conditions with 

a mobile phase that consisted of (A) 0.1% formic acid in water and (B) 0.1% formic acid in 

acetonitrile, at a flow rate of 250 μL/min and injection volume of 5 μL. Lignans were 
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separated by a gradient starting with 85% A and 15% B for 0.5 minutes which was 

subsequently decreased to 5% A over 6 minutes. After each chromatogram the column was 

returned to starting conditions (85% A over 0.5 minutes) and held for 5 minutes under that 

condition before the next injection. The total chromatogram time per sample and 

regeneration is 12 min. In the AB Sciex API 4000 Q-Trap mass spectrometer, Curtain gas 

pressure was adjusted at 30 psi; GS1 and GS2 were set at 60 psi. The Ion spray voltage was 

maintained at -4500 V and ESI source interface temperature was set at 700°C. The flaxseed 

lignan metabolite fragment ionization conditions are listed in Table 4.1. 

 

Table 4.1 ABSciex QTRAP 4000 mass spectrometry conditions for multiple reaction 

monitoring of analytes. 

 

 

 

 

 

 

 

4.1.6.2 Preparation of standard curve solutions and quality control 

Stock solutions (1 mg/mL) of SECO, ED, EL and their internal standard (IS) SECO-D6, 

ED-13C3, EL-13C3, were dissolved in methanol and stored at -20°C. Mixed working solutions 

of SECO, ED and EL were prepared by serial dilution of stock solutions with water-

acetonitrile (90:10) mixture to produce concentrations for the calibration curve (SECO: 100 

– 1000 ng/mL; ED: 15 – 1000 ng/mL; EL: 50 – 1000 ng/mL) and the mixture of internal 

standards were diluted with water-acetonitrile (90:10) mixture to concentrations of SECO-

D6, ED-13C3: 500 ng/mL; EL-13C3: 250 ng/mL. Quality control (QC) presenting the entire 

range of the standard curve: lower limit of quantification (LLOQ), low quality control sample 

(LQC) (3-fold the lower limit of quantification), middle quality control sample (MQC), and 

high quality control (HQC) (80% of the upper limit of quantification), were prepared using 

water-acetonitrile (90:10) mixture. 

To prepare the standard curve, 10 μL of working solutions was added to 40 μL of blank 

rat serum to achieve calibration standard curve range of 20 – 200 ng/mL for SECO, 3 – 200 

ng/mL for ED, and 10 – 200 ng/mL for EL. QC samples were prepared by spiking 40 μL of 

blank rat serum with 10 μL of QC working solutions. 

Analyte Fragment 
Declustering 
potential 

Collision 
energy 

Collision cell 
exit potential 

SECO 361.019 > 164.800 -90 -36 -11 
SECO-D6 
(IS) 367.126 > 168.000 -95 -36 -13 

ED 301.000 > 106.000 -85 -46 -5 

ED-13C3 (IS) 304.000 > 273.000 -95 -32 -13 

EL 297.000 > 189.000 -90 -30 -7 

EL-13C3 (IS) 299.942 > 255.100 -75 -30 -13 
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4.1.6.3 Extraction procedure 

Internal standard (10 µL) was added to all samples and vortexed 15s to mix, after which 

3 mL of diethyl ether was added. The mixture was shaken for 10 min to extract the lignans 

and internal standard, followed by centrifugation for 5 min at 1000 x g and then placed at -

80°C for 5-10 minutes to freeze the lower plasma layer. The upper layer was transferred into 

disposable glass tubes (VWR® Culture Tubes, Disposable, Borosilicate Glass and dried to 

evaporation under a stream of air (about 20 minutes). Samples were reconstituted in 150 μL 

of water-acetonitrile (90:10) mixture, vortexed for 15 s, transferred into Whatman Mini-

UniPrep Syringeless Filter vials, PTFE membrane, 0.2 µm pore size (Fisher Scientific 

Canada, Ottawa, ON) for analysis. 

4.1.6.4 Glucuronidase/Sulfatase Sample Pretreatment 

In order to measure total concentrations of SECO, ED, and EL in rat plasma after purified 

SDG or SDG polymer administration, 50 µL plasma was incubated with a 9 µL β-

glucuronidase sulfatase solution (5000 U/mL) and 50 µL 0.1 mol/L sodium acetate buffer 

(pH5) prior to LC-MS/MS analysis. The mixture was then incubated in a shaking incubator 

at 37°C for 4 hours followed by the extraction with diethyl ether as described in 4.6.1.3. 

4.1.6.5 Method validation 

Since the assay was previously validated in the laboratory, a partial validation process was 

performed according to USFDA guidelines. A standard curve was constructed each time prior 

to analysis. QC samples were analyzed with each analysis run as acceptance criteria for each 

run. The lowest limit of quantification (LLOQ) was determined at the lowest concentration that 

signal-to-noise ratio was 5. The intra- and inter-day precision and accuracy of the assay was 

determined by analyzing six replicates at each of LLOQ, LQC, MQC, and HQC on three 

consecutive days. Precision (%) was expressed as relative standard deviation (RSD). Accuracy 

(%) was expressed as (observed amount/nominal concentration×100). The ratio of peak areas 

of lignans and their internal standard were plotted against the nominal concentrations of the 

calibration curve samples. A linear least squares regression analysis, using 1/X as weighting 

factor, was used to determine slope, intercept, and coefficient of determination (r2) to indicate 

linearity of the method. Matrix effect was measured at LQC and HQC samples in triplicates. 

Post-extracted LQC and HQC samples were first prepared using water-acetonitrile (90:10) 

mixture, and then spiked into extracted blank rat plasma matrices using the same extraction 

method mentioned above. The absolute peak areas of the analytes were compared to those of 

analogues QC samples prepared in neat solvents. 
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4.1.7 Pharmacokinetic parameter estimation and statistical analysis 

Pharmacokinetic parameters were estimated from concentration vs. time data using 

GraphPad Prism 7.0 (GraphPad software, San Diego, CA, USA). PK parameters were 

expressed as mean ± SD. Area under the curve (AUC) was estimated from concentration-time 

data using the linear trapezoidal rule-extrapolation method. Relative SDG polymer 

bioavailability was calculated using Equation 4.1. Linear regression using the terminal slope of 

natural logarithmic plasma lignan concentration versus time response supported the calculation 

of a log-linear terminal rate constant, k. The half-life (t1/2) was estimated as 0.693/k. Cmax and 

AUC of purified SDG and SDG polymer were compared using t test. Tmax of purified SDG and 

SDG polymer were compared using Mann-Whitney U test (non-parametric). P value of 0·05 

was considered as the threshold for significance testing. 

 

 𝐹𝑟𝑒𝑙 =
𝐴𝑈𝐶SDG Polymer

𝐴𝑈𝐶purified SDG
× 100%                             Equation 4.1                 

4.2 Hypocholesterolemic efficacy study of purified SDG and SDG polymer  

4.2.1 Chemicals and reagents 

Purified SDG (96.1%) and SDG polymer were kind gifts from Prairie Tide Diversified Inc. 

(Saskatoon, Canada). PEG 400 was purchased from Sigma-Aldrich (Oakville, ON, Canada). 

Ensure® Nutritional Drinks (strawberry flavor) was bought from Real Canadian Superstore 

(Saskatoon, SK, Canada). Rat blank plasma was obtained directly from rats in UACC Animal 

& Tissue Share program. Double deionized water was provided from a MilliQ Synthesis Water 

Purification. Stanbio Cholesterol Kit and Triglycerides kit were bought form Fisher Scientific 

(Ottawa, Ontario). HDL and LDL/VLDL Quantitation Kit was purchased from Sigma-Aldrich. 

RNAprotect Tissue Reagent was purchased from Qiagen (Hilden, Germany). All other 

chemicals used were analytical grade. 

4.2.2 Animals 

Female Wistar rats (N=35) were obtained from Charles River Canada (St. Constant, 

Quebec) at 10 weeks of age. The rats were housed in groups of two or three under controlled 

temperature (22 +/- 2°C) and maintained on a 12-hour light:dark cycle. 

4.2.3 Dosing vehicle 

Considering SDG polymer’s poor water solubility, SDG polymer was first dissolved in 70% 



24 
 

ethanol. Subsequently, PEG 400 and saline were added to the lignan solution to form the 

suspension. To increase the taste, strawberry flavored Ensure was added to the suspension. The 

final proportion of ethanol, PEG 400, saline, and Ensure were 1:3:6:15. Purified SDG used the 

same dosing vehicle as SDG polymer. 

4.2.4 Study design 

On the date of arrival, female Wistar rats (10-week old, 200 - 250g) were randomized and 

divided into four groups. First group (n=5) were fed the standard rodent diet (LabDiet® 

Prolab® RMH 3000, 5P00), the other three groups (n=10) were fed a 1% cholesterol diet 

(Modified LabDiet® Prolab® RMH 3000, 5P00, with 1% total cholesterol). Animals consumed 

food and water ad libitum. After a one-week period on the diet and for acclimatization, rats in 

the 1% cholesterol diet groups, were administered vehicle, 6 mg/kg purified SDG or SDG 

Polymer at a dose equivalent to purified SDG using a modified oral gavage technique (with 

syringe)once daily for 23 days. This dose is equivalent to human studies which use 200 – 600 

mg SDG daily. All rats were weighed daily. Fasted blood samples were collected under 

isoflurane anaesthesia at 2 weeks via saphenous venipuncture and at 23 days by cardiac 

puncture for serum lipids analysis. Then rats were euthanized by exsanguination following 

isoflurane anaesthesia. Livers were rapidly excised, weighed. Parts of liver were fixed in 10% 

formalin solution for routine histological analysis. Portions of liver were stored in RNAprotect 

Tissue Reagent for mRNA and protein analysis.  

4.2.5 Serum lipids analysis 

Blood samples were allowed to clot for 30 min at a room temperature and then centrifuged 

in an Eppendorf centrifuge at 3000 rpm for 10 min. Separated serum was transferred into 1.5 

mL plastic micro-centrifuge tubes and was stored at -80°C until analysis. 

Serum total cholesterol (TC) and triglycerides (TG) were determined by Stanbio 

Cholesterol LiquiColor colorimetric kits and Stanbio LiquiColor Triglycerides kits. In the 

manufacturer’s brochure, TC and TAG are measured with cuvets and spectrophotometer. 

However, due to the large sample size, after validation we used 96-well plates and microplate 

reader instead. Sample volume was adjusted proportionally. High density lipoprotein 

cholesterol (HDL-C) were determined by Sigma HDL and LDL/VLDL Quantitation kit. LDL-

cholesterol levels were determined using the Friedewald method121, which subtracts HDL-C 

and VLDL-C from TC. VLDL calculated as one-fifth the level of TG. 
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For total cholesterol, cholesterol standard (200 mg/dL) was serially diluted with water to 

produce concentrations for the standard curve (0-200 mg/dL). In 96 well plate, 2 µL unknown 

serum or standard solutions were added to 200 µL of cholesterol reagent (Stanbio No. 1010) 

and pipette up and down to mix thoroughly. Following a 10-minute incubation at room 

temperature, the absorbance was measured at 500 nm using a Microplate Reader (Synergy 

HT, Biotek Instruments, Inc., Oakville, ON, Canada). 

For triglyceride determination, Triglyceride Activator was added into Triglyceride 

Reagent. The following steps were the same as that of total cholesterol analysis except a 

triglyceride standard replaced the cholesterol standard. Serum TC and TAG concentration can 

be determined from the standard curve. 

To separate HDL-C, 100 µL serum was mixed with 100 µL of the Precipitation Buffer in 

a microcentrifuge tube, incubated for 10 min at room temperature to allow LDL/VLDL 

precipitation and then centrifuged at 2000 x g for 10 min. The supernatant fraction (HDL) was 

transferred to a new tube. For HDL-C analysis, Reaction Mix were made by mixing Assay 

Buffer, Probe, Enzyme mix and Esterase together according to the manufacturer direction. 0, 

4, 8, 12, 16, 20 µL of the 25 ng/ µL Cholesterol standard solution and 15 µL of each serum 

samples were added into a 96 well plate. Each well plate was brought to a final volume of 100 

µL with cholesterol assay buffer and 50 µL Reaction Mix. After mixing well and incubated at 

37 °C for 1h, the absorbance was measured at 570nm using a Microplate Reader. 

The amount of HDL-C present in the samples can be determined from the standard curve. 

Concentration of HDL was calculated with Equation 4.2 

CHDL-C = Sa/Sv×Df            Equation 4.2 

Where:  Sa = Amount of cholesterol in unknow sample 

Sv = Serum sample volume added into the wells 

Df = The dilution factor (due to the 1:1 dilution with the Precipitation 

buffer, Df=2) 

 

4.2.6 Histology and pathology analysis 

Liver samples of rats were fixed in neutral buffered formalin for 48 hours. After fixation, 

tissue processing was done in an automated tissue processor. In the processor, the water from 

the livers were removed by dehydration with a series of alcohols, from 70% to 95% to 100%. 

The next step was called "clearing" and consisted of removal of the dehydrant with xylene that 
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was miscible with the embedding medium (paraffin). Finally, the tissue was infiltrated with the 

embedding agent paraffin.  

Following processing, tissues were embedded in paraffin, and sectioned at 5 mm with Leitz 

microtome. Finally, the slides were stained with hematoxylin-eosin (H&E) for steatohepatitis 

grading. Morphological analysis was performed using a Nikon Eclipse E200 microscope with 

a Motic® Moticam S2 Microscope Tablet Camera. 

A pathologist who was blinded to treatment groups assessed the liver sections for the degree 

of steatohepatitis, using grading criteria according to the NASH Clinical Research Network 

Scoring System122. The scoring system definition is detailed in Table 4.2. NAFLD activity score 

(NAS) was calculated as the sum of steatosis, lobular inflammation and ballooning. 

 

Table 4.2 NASH Clinical Research Network Scoring System Definition and Scores 

Item definition 
 

score 

Steatosis 

(Low- to medium-power 

evaluation of parenchymal 

involvement by steatosis) 

<5% 0 

5%-33% 1 

>33%-66% 2 

>66% 3 

Lobular inflammation 

(Overall assessment of all 

inflammatory foci) 
 

No foci 0 

<foci per 200×field 1 

2-4 foci per 200×field 2 

>4 foci per 200×field 3 

Ballooning 

 
 

None 0 

Few balloon cells 1 

Many cells/prominent 

ballooning 

2 

 

4.2.7 Statistical analysis 

All data were analyzed using SPSSv26 (IBM SPSS Statistics 26, NY, US). All results were 

presented as means and standard deviation, except for serum lipids levels and histological 

NAFLD activity score, which expressed as mean and standard error. Because my purpose is to 

determine the effect of SDG and SDG polymer in diet-induced hypercholesterolemic rats, I 

performed a statistical test in three groups with 1% cholesterol diet. Five rats for the negative 
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control (standard diet) were used to confirm diet-induced hypercholesterolemia. I performed 

statistical test between standard diet and 1% cholesterol diet without lignan intervention. 

Comparisons of body weight, liver weight, and serum lipid levels between 1% cholesterol diet 

control group and standard diet group used t-test, while comparisons of NAFLD scores use non-

parametric Mann – Whitney U test. Comparisons of body weight, liver weight, and serum lipid 

levels among 1% cholesterol diet control, purified SDG, and SDG polymer treatment groups 

used one-way ANOVA and Tukey post-hoc test, while comparisons of NAFLD scores used non 

parametric Kruskal-Wallis H test. Differences were considered significant at p-value < 0.05. 
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5 RESULTS 

5.1 Comparison of oral pharmacokinetics of purified SDG and SDG polymer in rat 

5.1.1 LC-MS/MS method validation 

Figure 5.1 presents representative LC-MS/MS spectrums of lignans and their respective 

internal standards spiked into rat plasma. The spectra demonstrated that the method is 

specific with the absence of endogenous peaks that co-elute with the lignans and internal 

standards. 

Before conducting the PK study in rat, a partial validation process of a previously validated 

LC-MS/MS assay for lignan and lignan metabolites in human plasma was performed. Therefore, 

the lignans quantitation assay was suitable for a rat PK study. SDG was not included in the 

analysis as previous studies in the lab, including rat in vivo117, 118 PK and in vitro Caco-299 

transwell permeation assays, failed to detect SDG.  
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Figure 5.1 Representative LC-MS/MS peaks of rat blank plasma for SECO (200 ng/mL), ED 

(200 ng/mL) and ENL (200 ng/mL). The analyte peaks from left to right in the lower 
spectrum were SECO [m/z 164], END [m/z 106] and ENL [m/z 189]. The internal standards 
used for these analytes were SECO-D6, END-13C3, and ENL-13C3, which were in the upper 

spectrum at the same retention time as the analysts in the lower spectrum. 
 

The limit of detection (LOD) for SECO, ED, and ENL was 10, 1.5, and 5 ng/mL 

respectively, and the lowest limit of quantification (LLOQ) was 20, 3, and 10 ng/mL, 

respectively. The method was linear over a concentration range of 20 – 200 ng/mL for SECO, 

3 – 200 ng/mL for ED, and 10 – 200 ng/mL for ENL with coefficient of determination values 

greater than 0.995 for all calibration curves. The matrix factor of SECO, ED, and ENL was 104% 

± 10.2%, 121% ± 6.8%, 133% ± 23%, which means the majority of analytes suffered from low 

ion enhancement effect. Intra-day and inter-day accuracy and precision values of SECO, ED 

and ENL are listed in Table 5.1, 5.2, 5.3. 

 

 

Table 5.1 Intra-day (n=6) and inter-day (three consecutive days, n=18) accuracy and precision 
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values of secoisolariciresinol (SECO) determination by LC-MS/MS in rat plasma. 

SECO nominal 

concentration 

(ng/mL) 

Intra-day accuracy and precision Inter-day accuracy and precision 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

LLOQ : 20 20.3±2.25 102 11 19.8±0.50 99 3 

LQC: 60 60.9±5.17 101 9 61.9±0.98 103 2 

MQC: 80 74.7±6.40 93 9 81.6±6.09 102 7 

HQC: 160 165.0±10.90 97 7 172.2±7.12 108 4 

 

Table 5.2 Intra-day (n=6) and inter-day (three consecutive days, n = 18) accuracy and precision 

values of enterodiol (ED) determination by LC-MS/MS in rat plasma. 

ED nominal 

concentration(ng/mL) 

Intra-day accuracy and precision Inter-day accuracy and precision 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

LLOQ : 3 2.7±0.23 91 9 2.9±0.17 96 6 

LQC: 9 8.7±0.23 96 3 8.8±0.40 97 5 

MQC: 80 79.2±2.23 99 3 80.8±1.43 101 2 

HQC: 160 169.3±6.98 100 4 173.6±4.03 109 2 

 

Table 5.3 Intra-day (n=6) and inter-day (three consecutive days; n = 18) accuracy and precision 

values of enterolactone (ENL) determination by LC-MS/MS in rat plasma. 

ENL nominal 

concentration(ng/mL) 

Intra-day accuracy and precision Inter-day accuracy and precision 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

Observed 

concentration 

(mean ± SD, 

ng/mL) 

Accuracy 

(%) 

Precision 

(CV%) 

LLOQ : 10 10.4±1.52 104 15 10.4±0.34 104 3 

LQC:  30 31.7±1.57 106 5 31.8±0.47 106 1 

MQC: 80 81.0±3.10 101 4 83.5±3.31 104 4 

HQC: 160 166.7±2.88 98 2 179.1±11.60 112 6 

 

Collectively the data suggest that this LC-MS assay is sensitive, accurate, and precise for 
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the quantification of SECO, ED, and ENL. Therefore, it is suitable for the following 

pharmacokinetic study which requires an accurate, precise, and sensitive (to detect and quantify 

small changes in drug concentration over time) analytical technique. 

5.1.2 48-hour pharmacokinetic study of purified SDG and SDG polymer 

A 48-hour study was conducted to assess SECO, ED, and EL concentration response, based 

on the results of previous study in our lab indicating that two metabolites with bioactivity may 

not be detected after 24 hours, while another metabolite is detected in 15-36 hours. Tables 5.4 

and 5.5 summarize concentrations of total ED of the 48-hour study. Tables 5.6 and 5.7 

summarize concentration of total ENL of the 48-hour study. Unconjugated SECO, total SECO, 

unconjugated ED, and unconjugated ENL could only be detected in a few samples at different 

time point collections. 

For rats receiving purified SDG, total SECO was detected in 0.25, 0.5, 1.5 and 3 hour 

samples of rat 6. It was also detected in 2 and quantitated in 3 hour (25.9 ng/mL) samples of rat 

3, and detected in 3 and 4 hour sample of rat 1 and 2 (quantified in 4 hour sample of rat 2: 24.3 

ng/mL). Total SECO was detected at its highest level in 3 hour sample in rat 7 (58.7 ng/mL). 

Unconjugated SECO was only detected at one time point (8h) of rat 3 following administration 

of Purified SDG. 

In both purified SDG and SDG polymer group, unconjugated ED was detected in 8 (3.4 ± 

3.3 ng/mL) and 12 h (6.2 ± 3.3 ng/mL) time points of most rats. Unconjugated ED was also 

detected at 3 and 4 h time samples in rat 4 (Purified SDG dose) and in 16 h sample in rat 13 

and 24 (SDG polymer dose). 

Unconjugated ENL was not detected in rats administered either purified SDG group or 

SDG Polymer.  

 

Table 5.4. Serum concentration versus time response of total enterodiol (ED) after single oral 
dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg, n=7) or SDG polymer 
(equivalent amount of SDG as purified SDG, n=5) by gavage in female Wistar rats from 0 h to 

12 h. 

Time (h) 0 0.25 0.5 1 1.5 2 3 4 8 12 

 

 

Purified 

SDG 

(ng/mL) 

 

 

 

Rat 1 0 0 0 0 0 D 4.11 4.2 14.2 200 

Rat 2 0 0 0 0 0 0 D D 31.5 300 

Rat 3 0 0 0 0 D 3.1 4.71 6.2 54.3 238 

Rat 4 0 0 0 0 0 3.6 23.5 47.6 588 227 

Rat 5 0 0 0 0 0 0 D D 44.4 477 

Rat 6 0 0 0 0 0 0 D 4.1 98 362 

Rat 7 0 0 0 0 0 D D 3.6 54.6 427 

mean 0 0 0 0 D 1.7 6.2 9.9 126.4 318.7 
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SDG 

polymer 

(ng/mL) 

 

 

Rat 8 0 0 0 0 0 0 6.7 11.4 90.4 248 

Rat 9 0 0 0 D D 6.2 12.6 18.5 251 286 

Rat 10 0 0 0 0 D D 7.5 9.1 172 93.5 

Rat 11 0 D 0 0 D 3.9 9.0 11.8 389 126 

Rat 12 0 0 0 0 0 D 7.5 14.5 229 15.5 

mean 0 D 0 D 1.4 3.0 8.7 13.1 226.3 153.8 

D – detected (below the LOQ of the assay: 3 ng/mL) 

 

Table 5.5 Serum concentration versus time response of total enterodiol (ED) after single oral 
dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg, n=6) or SDG polymer 
(equivalent amount of SDG as purified SDG, n=6) by gavage in female Wistar rats from 12 h 

to 48 h. 

Time (h) 0 12 16 20 24 32 40 48 

 

 

Purified 

SDG 

(ng/mL) 

 

 

Rat 13 0 256 33.3 D D 0 0 D 

Rat 14 0 131 6.9 9.1 10.4 0 0 0 

Rat 15 0 26.5 3.2 0 0 0 0 0 

Rat 16 0 279 14.4 0 0 0 0 0 

Rat 17 0 33.2 D 0 0 0 0 0 

Rat 18 0 90.6 4.1 0 0 0 0 0 

mean 0 136.1 10.7 1.8 2.1 0 0 0 

 

 

SDG 

polymer 

(ng/mL) 

 

 

Rat 19 0 9.8 D 0 0 0 0 0 

Rat 20 0 102 6.4 0 0 0 0 0 

Rat 21 0 130 29.8 0 0 0 0 0 

Rat 22 0 234 20.4 0 0 0 0 0 

Rat 23 0 113 11.1 4.2 D 0 0 0 

Rat 24 0 366 88.3 20.1 D 0 0 0 

mean 0 159.1 31.2 4.1 D 0 0 0 

D – detected (below the LOQ of the assay: 3 ng/mL) 

 

Table 5.6 Serum concentration versus time response of total enterolactone (ENL) after single 

oral dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg, n=7) or SDG polymer 
(equivalent amount of SDG as purified SDG, n=5) by gavage in female Wistar rats from 0 h to 

12 h. 

Time (h) 0 0.25 0.5 1 1.5 2 3 4 8 12 

 

 

Purified 

SDG 

(ng/mL) 

 

 

 

Rat 1 15.5 20.8 23.3 20.1 14.4 13.8 22.9 21.5 27.9 54.1 

Rat 2 20.9 16.7 25.4 18.0 10.0 11.3 17.6 20.7 37.7 60.2 

Rat 3 19.5 13.6 14.4 8.4 10.9 10.9 12.7 8.8 20.7 41.8 

Rat 4 11.5 10.0 9.2 8.0 5.7 5.3 8.0 18.8 54.6 108.0 

Rat 5 13.5 20.5 12.3 8.9 11.2 14.1 16.2 11.1 39.3 61.9 

Rat 6 25.5 29.6 20.0 8.9 13.2 11.2 28.5 13.0 43.9 122.0 

Rat 7 21.7 19.3 18.3 25.8 28.0 29.5 8.3 26.7 45.8 84.5 

mean 18.3 18.6 17.6 14.0 13.3 13.7 16.3 17.2 38.6 76.1 

 

SDG 

polymer 

(ng/mL) 

 

 

Rat 8 15.2 11.9 12.0 11.9 11.0 11.6 16.8 23.6 49.4 66.4 

Rat 9 5.6 3.8 3.8 7.5 7.5 8.4 10.4 12.4 25.8 75.4 

Rat 10 41.7 24.2 26.4 20.5 21.8 25.9 30.2 24.7 60.1 58.6 

Rat 11 19.4 23.4 23.5 21.6 15.7 25.8 13.4 15.2 37.0 36.8 

Rat 12 27.0 13.5 10.8 15.5 16.4 19.8 16.1 20.7 60.9 85.0 

mean 21.8 15.4 15.3 15.4 14.5 18.3 17.4 19.3 46.6 64.4 

  

Table 5.7 Serum concentration versus time response of total enterolactone (ENL) after single 

oral dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg, n=6) or SDG polymer 
(equivalent amount of SDG as purified SDG, n=6) by gavage in female Wistar rats from 12 h 
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to 48 h. 

Time (h) 0 12 16 20 24 32 40 48 

 

 

Purified 

SDG 

(ng/mL) 

 

 

Rat 13 27.5 60.9 68.9 61.2 33.1 24.5 21.8 28.9 

Rat 14 0.0 104.0 81.7 80.4 65.6 14.4 13.1 20.2 

Rat 15 36.4 100.0 93.6 72.5 51.2 37.3 17.4 19.3 

Rat 16 3.6 58.9 80.6 61.0 44.0 29.2 20.2 25.9 

Rat 17 25.8 98.1 64.6 48.2 36.1 26.0 22.9 16.6 

Rat 18 12.1 76.7 75.0 61.4 51.3 32.5 28.2 23.5 

mean 17.6 83.1 77.4 64.1 46.9 27.3 20.6 22.4 

 

 

SDG 

polymer 

(ng/mL) 

 

 

Rat 19 14.3 98.7 101.0 73.6 57.6 31.4 48.7 22.7 

Rat 20 10.4 75.3 81.9 59.9 45.3 22.0 27.2 43.6 

Rat 21 14.3 62.2 72.4 44.5 34.5 14.0 12.8 13.9 

Rat 22 9.8 37.4 56.3 38.4 32.6 16.5 19.0 22.2 

Rat 23 12.3 44.3 34.4 43.8 25.3 15.3 18.0 13.8 

Rat 24 13.6 45.6 37.8 46.4 40.7 17.9 20.7 13.4 

mean 12.5 60.6 64.0 51.1 39.3 19.5 24.4 21.6 

 

Total ED concentration versus time in individual rats of Purified SDG treatment group 

and SDG polymer treatment group are depicted in Figure 5.2. Mean value of total ED 

concentration versus time of purified SDG treated or SDG polymer treated rats is presented in 

Figure 5.3 
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Figure 5.2 Total enterodiol (ED) serum concentration versus time response after a single oral 
dose of (a) purified secoisolariciresinol diglucoside (SDG) (40 mg/kg bwt); (b) SDG polymer 

(40 mg/kg bwt SDG) in female Wistar rats. 
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Figure 5.3 Total enterodiol (ED) serum mean concentration versus time plot after single oral 

dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg bwt) or SDG Polymer (40 

mg/kg bwt SDG) in female Wistar rats. 

 

 

 

 

 

 

 

 

 

Total ENL concentration versus time in individual rats of Purified SDG treatment group 

and SDG polymer treatment group are also depicted in Figure 5.4 and Figure 5.5, 

respectively. Mean value of total ENL concentration versus time of Purified SDG treated or 

SDG Polymer treated rats are presented in Figure 5.6. 
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Figure 5.4 Total enterolactone (ENL) serum concentration versus time plot after a single oral 
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dose of purified secoisolariciresinol diglucoside (SDG) (40 mg/kg bwt) in female Wistar rats: 

(a) rectilinear plot; (b) semilogarithmic plot. 
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Figure 5.5 Total enterolactone (ENL) serum concentration versus time plot after single oral dose 
of secoisolariciresinol diglucoside (SDG) Polymer (40 mg/kg bwt SDG) in female Wistar rats: 

(a) rectilinear plot; (b) semilogarithmic plot. 
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Figure 5.6 Total enterolactone (ENL) serum mean concentration versus time plot after single 
oral dose of purified secoisolariciresinol diglucoside (SDG) (40mg/kg bwt) or SDG Polymer 

(40 mg/kg bwt SDG) in female Wistar rats. 

 

5.1.3 Pharmacokinetic Parameter Estimation 

Non-compartmental method was used for estimation of ED and ENL PK parameters of 

Purified SDG treatment group and SDG Polymer group. Data collected during the terminal 

phase of natural logarithmic plasma ED concentration versus time study was not sufficient to 

provide an estimate of the elimination rate constant (k) and half-life, following a linear 

regression. The PK parameters are summarised in Table 5.8. 

 

Table 5.8 Pharmacokinetic parameter estimates calculated by a non-compartmental 

pharmacokinetic analysis using GraphPad Prism 7 following a single oral dose administration 

of 40 mg/kg secoisolariciresinol diglucoside (SDG), or equivalent dosage of SDG polymer in 

female Wistar rats 

Pharmacokinetic 

parameters 

ED ENL 

 Purified SDG SDG polymer Purified SDG SDG polymer 

Cmax (ng/mL) 262.2 ± 170.8 207.2 ± 115.5 81.6 ± 23.8 65.9 ± 19.6 
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Tmax (h) 11.7 ± 1.1 10.9 ± 1.9 12.6 ± 1.5 12.7 ± 3 

k — — 0.058 0.075 

T1/2 (h) — — 12.0 9.2 

AUC (ng×h/mL) 

(95% confidence 
interval) 

1532 

(472 to 2543) 

1702 

(715 to 2687) 

1889 

(1637 to 2143) 

1677 

(1111 to 2243) 

Frel (%, compared to 
purified SDG) 

— 111 — 89 

No significant difference was observed in Tmax, Cmax and AUC of total ED in purified SDG and SDG polymer. 

(P>0.05, Mann-Whitney U test for Tmax, t test for Cmax and AUC) 

No significant difference was observed in Tmax, Cmax and AUC of total ENL in purified SDG and SDG 

polymer. (P>0.05, Mann-Whitney U test for Tmax, t test for Cmax and AUC) 

 

The relative bioavailability (Frel) of SDG polymer in total ED is 111%, while Frel of SDG 

polymer in total ENL is 89%, as compared to that of purified SDG. There are no significant 

differences in AUC of total ED and total ENL between purified SDG and SDG polymer. 

5.2 Hypocholesterolemic efficacy study of purified SDG and SDG polymer 

5.2.1 Body weight and liver weight 

The body and liver weight after 23 days of purified SDG or SDG Polymer administration 

with 30 days of 1% cholesterol diet feeding to hypercholesterolemic rats are listed in Table 5.9. 

When comparing 1% cholesterol diet treated rats (with no SDG) with those of standard diet, 

significant increases were observed in final body weight (P<0.05, 9%), liver weight (P<0.01, 

23%), and normalized liver weight (P<0.0113%). Upon examination of gross liver morphology, 

differences in liver color were apparent between normo- and hypercholesterolemic rats. A 

diffuse yellowing of the liver was observed in rats of three groups consuming 1% cholesterol 

diet, suggesting hepatic fat accumulation.  

 

Table 5.9. Body and liver weight indices (Mean ± SD) for female Wistar rats (10 weeks old) 

fed a standard diet or 1% cholesterol diet (30 days) and treated with oral doses of 0, 6.0 mg 
purified secoisolariciresinol diglucoside (SDG)/kg body weight (BW) or SDG polymer with 

equivalent SDG once daily for 23 days. 

Weight 
parameter 

Standard diet 
n=5 

1% cholesterol 
diet, no SDG 

n=10 

1% cholesterol 
diet with  

Purified SDG 
n=10 

1% cholesterol 
diet with  

SDG Polymer 
n=10 

Final body 

weight (g) 

297±16.8 323±16.0a 323±12.8 330±15.0 
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Weight gain (%) 25.4±3.42 29.2±3.49 30.9±3.79 32.0±4.97 

Liver weight (g) 8.8±0.52 10.8±0.89b 10.0±0.98 10.4±0.88 

Liver 
weight/body 
weight (g/kg) 

29.6±1.16 33.5±2.38c 31.0±2.16* 31.5±1.98 

a, b, cSignificantly different from standard diet control group (t-test, P<0.05) 

*Mean value was significantly different from that of the 1% cholesterol diet without lignan group (One-way 

ANOVA, P< 0·05). 

 

In the three hypercholesterolemic treatment groups, no difference was observed in final 

body weight, weight gain, and liver weight. However, a significant reduction in normalized 

liver weight (P<0.05, 7%) was observed in Purified SDG treatment group when compared to 

control. Also, based on gross liver morphology, liver color was less yellow in both lignan treated 

groups in comparison to the hypercholesterolemic control group.  

5.2.2 Serum lipid responses 

Serum lipid parameters of rats fed a 1% cholesterol diet for 1 week before initiation of 

purified SDG or SDG polymer dosing for 23 days are presented in Figure 5.7. Rats in 1% 

cholesterol diet demonstrated a significant increase in TC (44%) and LDL-C (211%) when 

compared with rats in standard diet. They also had lower HDL-C level (51%) than those in 

standard diet. 

Hypercholesterolemic rats given purified SDG demonstrated a distinctive, but not 

statistically significant reduction (P>0.05)in TAG (19%), and a slight reduction in TC (5%) 

and LDL-C (6%), when compared to hypercholesterolemic rats in control group. Similarly, 

hypercholesterolemic rats treated with SDG Polymer had a marked reduction (P>0.05)in TAG 

(15%), LDL-C (14%) and TC (10%). Both treatment groups showed an increase serum HDL-

C level of 15% and 24%, respectively. 

 

 

A                                          B 

 
 

a 
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C                                            D 

 
Figure 5.7 Serum lipid parameters (total cholesterol (A)), triglyceride (B) HDL-cholesterol (C) 
and LDL-cholesterol (D) following chronic daily oral purified secoisolariciresinol diglucoside 

(SDG) or SDG polymer administration in female Wistar rats fed a 1% cholesterol diet for 1 
week before initiation of purified SDG or SDG polymer dosing for 23 days. Results are 
expressed as mean ± SEM. (Comparison between standard diet group and 1% cholesterol diet 

control group used t-test; comparison among three treatment groups with 1% cholesterol diet 

used one-way ANOVA, P set at 0.05). 

a, b, c Significantly different from standard diet control group (t test, P<0.05). 

 

5.2.3 Histology and pathology analysis 

Histological assessment was conducted using H&E staining. Representative images of each 

groups are presented in Figure 5.8. A pathologist who was blinded to treatment groups assessed 

the liver sections for the degree of steatohepatitis, using grading criteria according to the NASH 

Clinical Research Network Scoring System. NAFLD scores of each group are listed in Table 

5.10 

   

b 

c 



42 
 

   

Figure 5.8 Liver histology by hematoxylin and eosin (H&E) staining of female Wistar rats (10 
weeks old) fed a standard diet or 1% cholesterol diet (30 days) and treated with oral doses of 0, 
6.0 mg purified SDG/kg body weight (BW) or SDG polymer with equivalent SDG once daily 

after 23 days. A: standard diet; B: 1% cholesterol diet; C: 1% cholesterol diet with purified 
SDG; D: 1% cholesterol diet with SDG Polymer. Representative images of H&E stained liver 

tissue are presented at 40×. 

Table 5.10 NAFLD Scores (mean values and standard error) for female Wistar rats (10 weeks 

old) fed a standard diet or 1% cholesterol diet (30 days) and treated with oral doses of 0, 6.0 
mg purified secoisolariciresinol diglucoside (SDG)/kg body weight (BW) or SDG polymer with 

equivalent SDG once daily after 23 days 

Treatment Standard diet 1% cholesterol 
diet 

1% cholesterol 
with purified 

SDG 

1% cholesterol 
with SDG 

Polymer 

Steatosis 0 1.8 ±0.20a 1.3 ±0.26 1.4 ±0.31 

Lobular inflammation 0.2 ±0.16 1b 0.7 ±0.15 1 ±0.15 

NAS (NAFLD 
activity score) 

0.2 ±0.16 2.8 ±0.20c 2 ±0.37 2.4 ±0.37 

No balloon cell was found in any liver sections. Therefore, ballooning score was 0 in all groups. 
a, b, c Significantly different from standard diet control group (Non parametric Mann – Whitney 
U test, P<0.05). 

No significant differences were found among 1% cholesterol control, purified SDG, and SDG 
polymer in steatosis, lobular inflammation and NAS (Kruskal-Wallis H test, P>0.05). 
Scoring for hepatic steatosis, lobular inflammation, and NAS was significantly lower with 

standard diet than those with 1% cholesterol diet. 

 

Hypercholesterolemic rats given purified SDG demonstrated lower scores in steatosis 

(27.8%), lobular inflammation (30%) and NAS (28.5%), when compared to 

hypercholesterolemic rats in control group (P>0.05). Similarly, hypercholesterolemic rats 

treated with SDG Polymer had lower scores (P>0.05) in steatosis (22.2%) and NAS (14.3%). 

However, its mean score for lobular inflammation was the same as that of hypercholesterolemic 

control group. It should be noted that hepatocyte ballooning was not presented in all groups. 
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6 DISCUSSION 
CVD remains the leading cause of morbidity and mortality worldwide. 

Hypercholesterolemia is one of the major independent risk factors for CVD. Lifestyle changes 

which combine a healthy diet and regular physical exercise, and drug therapy, specially statins, 

are the mainstays of hypercholesterolemia treatment. However, some side effects in organs are 

associated with statin treatment16. Several animal74-78 and human44-47 studies suggest that oral 

consumption of the SDG results in reduction in serum total and LDL-cholesterol and lipid 

accumulation in the liver. Therefore, oral SDG or SDG containing supplements are considered 

as a safe alternative to pharmaceutical hypocholesterolemic agents to manage 

hypercholesterolemia. Nevertheless, the process of hydrolyzing, extracting, and purifying SDG 

from the SDG polymer in flaxseed to produce a pure SDG is a costly procedure. In the market, 

100 mg pure SDG (98%) is sold for $480. One g flaxseed lignan extract (SDG polymer: 40% 

SDG) is $5. If the recommended daily dose is 300 mg SDG, that means the cost is $1,469 when 

consuming pure SDG. Instead, the daily cost for consumption of SDG polymer is $3.75. SDG 

can also be formed in the GI tract following SDG polymer consumption89, and undergoes 

subsequent bio-transformation to SECO, ED and ENL. The extent to which SDG is released 

from the polymer and subsequent bioavailability of the SDG metabolites was previously 

unknown. Furthermore, the biological activity of this SDG polymer has never been studied. We 

aimed to compare the pharmacokinetics and hypocholesterolemic effect of pure SDG and SDG 

polymer, to confirm the value of using an SDG polymer as a more economical product than 

purified SDG in the future application and management of hypercholesterolemia. To 

accomplish the aim of this study, two major objectives were addressed. 

6.1 Comparison of oral pharmacokinetics of purified SDG and SDG polymer in rat 

My first objective was to compare the relative bioavailability of SDG metabolites after 

single oral bolus administration of purified SDG and SDG polymer in rat. Rat is a common  

practical model for preclinical evaluation, particularly for pharmacokinetic evaluations. A 

complete plasma drug concentration versus time response can be recorded from a single rat 

allowing for pharmacokinetic parameter estimation. Rat strains also are nearly genetically  

identical which can lead to more consistent results, and their genetic, biological and behavior 
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characteristics closely resemble those of humans. However, an important limitation of the rat 

model is that there are considerable interspecies differences in first-pass metabolism in the 

gastrointestinal tract and liver123. Consequently, relative bioavailability determinations in rat 

may not translate to human relative bioavailability. 

In the present study, the oral relative bioavailability (Frel) was determined following 

comparison of AUC values of the mammalian lignans following oral administration of purified 

SDG and SDG polymer to parallel groups of rats. The Frel of SDG polymer compared to that of 

purified SDG for total ED is 111%, while Frel of total ENL is 89%. Statistical evaluation of 

AUC of total ED and total ENL between purified SDG and SDG polymer showed no differences. 

Various factors influence the availability of drugs prior to their entry into the systemic 

circulation, including but not limited to: physical properties of the drug (hydrophobicity, pKa, 

solubility), formulation, co-ingested factor, gastric emptying, intestinal motility, variability in 

microbiome, and first pass metabolism124. As for relative bioavailability of SDG polymer as 

compared to purified SDG, physicochemical properties, formulation, and inter-individual 

differences in intestinal microflora are the affecting factors. SDG polymer is poorly water 

soluble and more lipophilic. In the present study, we dissolved these two compounds in the 

same formulation to avoid differences of dissolution, which is considered as a prerequisite to 

the drug absorption process. Furthermore, SDG polymer undergoes hydrolysis to its monomer 

units, 3HMG and SDG, before further transformation to enterolignans 89. Incomplete hydrolysis 

to SDG, then, may contribute to reductions in the relative bioavailability of SDG polymer. The 

lack of statistically different total mammalian lignan AUC values suggest hydrolysis of the SDG 

polymer to SDG is efficient within the rat gastrointestinal tract.  

Comparison of total enterolignan AUC values is not the conventional approach towards 

determination of relative bioavailability. Conventionally, relative bioavailability is determined 

by comparing AUC of parent compound (SDG) after administration of two 

differentformulations of the same compound. However, lack of SDG bioavailability due to its 

poor permeation characteristics precluded assessment in this fashion. Instead, we compared 

AUC of mammalian lignans (total) because only the SDG metabolites SECO, ED, and ENL, 

can be absorbed into systemic circulation. Moreover, studies suggest that ED, ENL, and ENL-

glucuronide play important role in high cholesterol treatment26, 27. 

Total enterolignan AUC values showed considerable interindividual variation amongst 

different rats. Important considerations in the variation in bioavailability include SDG’s poor 

permeability characteristic, reliance on gastrointestinal flora for conversion to the mammalian 
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lignans, extensive first pass metabolism, and analytical sensitivity. Only the SDG metabolites 

SECO, ED, and ENL, are absorbed into systemic circulation. Interindividual differences in 

permeation of these lignan forms as well as differences in first-pass metabolism by the 

gastrointestinal tract and liver contribute to the interindividual variation in AUC values amongst 

the lignan forms. Previous research had found that SECO, ED, and ENL undergo extensive first 

pass metabolism by phase II enzymes in enterocytes and hepatocytes99, 102. This causes low 

bioavailability of lignans as a result of extensive first pass metabolism. In the current study, 

lignans in the systematic circulation are mostly present in their conjugated forms, which is 

consistent with the literature where it was reported the oral bioavailability in rat was 0, 25 and 

< 1% for SDG, SECO and ED, respectively117. Furthermore, variations in lignan-converting 

bacteria also contributes to the marked interindividual differences observed for enterolignan 

production97. Although rats are raised in the same environment and given the same diet, the rat 

gut microbiota can diversify due to the harvesting of more or less nutrients from this basic 

diet125, 126. Finally, robust AUC determination is hampered by limited analytical sensitivity. 

Total exposure is measured by AUC from time zero to infinity, calculating as AUC from time 

zero to the last measurable concentration (AUC0-t) plus the last measurable drug concentration 

(Clast) divided by the terminal elimination rate constant (k). Therefore, incomplete concentration 

vs time response data also affects AUC estimation. Since we do not record continuous 

concentrations, sampling intervals also contributes to the variability. 

6.1.1 Plasma SECO concentration versus time course in rat PK samples 

SECO, the aglycone of SDG, is produced following hydrolysis of the glucose groups. 

SECO has known bioavailability (26%) in rat based on previous work117. However, it undergoes 

extensive phase II metabolism as well. Following administration of 40 mg/kg equivalent SDG 

oral doses, few rat plasma samples contained detectable levels of unconjugated SECO. Total 

SECO was detected from 15 min to 4 hours and quantifiable in three samples within 2 to 4 h, 

only following administration of pure SDG. Thus, we could not use SECO AUC for F 

determinations due to lack of concentration vs time response data for this metabolite. 

Our findings are consistent with a previous PK study of SDG and its metabolites in Wistar 

rat from our lab, no unconjugated SECO was detected after administering SDG orally127. One 

possible explanation is that the systemic concentration of SECO was below our limit of 

detection. The systemic concentrations of SECO depend upon the rate and extent of conversion 

of SDG, extent of transformation to ED, as well as the rate and extent of its absorption, i.e. oral 

bioavailability. Possibly, the conversion rate from SDG to SECO was low, or most of SECO 
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were transformed into ED so that the systemic concentration of SECO was not large enough to 

be detected by our analytical method. However, in a single oral dose of 40 mg/kg SECO study 

in rat, unconjugated SECO was quantitated from 5 min to 18 h after administration (21.15 ng/ml 

- 1487.26 ng/ml) and reached bimodal peaks in 10 min and 1 h after dosing117. It was also 

reported that SECO was quantified from 2 h to 12 h after 86 mg SDG was given orally to human 

participants, and it reached peak plasma concentrations after 5–7 h and disappeared with a 

plasma elimination half-life of 4.8 h119. Another possible explanation is SECO appears in the 

systemic circulation and was distributed extensively and eliminated quickly, resulting in 

undetectable levels in the current PK study. Indeed a previous PK study involving IV 

administration of SECO in rat, SECO had short half-life (4.7±3.6 h), large volumes of 

distribution (44.1 ± 12.2 L/kg), and high systemic clearance (7.82 ± 1.11 L/h·kg)117. Also, 

SECO has a shorter half-life than the mammalian lignans in both rat and human80, 119. 

Considering the hydrolysis process from SDG to SECO and the short half-life of SECO, our 

sampling points may miss the time when SECO was present in systemic circulation.  

6.1.2 Plasma ED concentration versus time course in rat PK samples 

SDG is converted eventually to the mammalian lignans (ED and ENL) but this process 

largely occurs in the large intestine as it requires colonic bacteria. This explained the expected 

delay in the appearance of ED in plasma. In both purified SDG and SDG polymer group, 

unconjugated ED was detected and quantified in 8 h (3.4 ± 3.3 ng/mL) and 12 h (6.2 ± 3.3 

ng/mL) time points of most rats, while total ED (unconjugated ED and ED conjugate) was 

quantified from 2 h to 16 h in most rats. Tmax of total ED in purified SDG group and SDG 

polymer group was 11.7 ± 1.1 h, and 10.9 ± 1.9 h, respectively. Cmax of total ED in purified 

SDG group and SDG polymer group was 262.2 ± 170.8 ng/mL, and 207.2 ± 115.5 ng/mL, 

respectively. Half-life of ED could not be determined due to lack of enough points in the 

terminal phase to calculate the elimination rate constant (k). That the concentrations of ED 

conjugates are much higher than its unconjugated form is supported by the finding that ED and 

EL were exclusively found as glucuronic acid and sulfate conjugates in urine, bile, and the 

portal vein of the rats following an oral lignan administration128. After oral administration, Cmax 

and Tmax are dependent on the extent and the rate of lignan absorption and disposition. No 

significant difference was observed in either Tmax or Cmax of total ED, suggesting similar SDG 

conversion to ED. There are no differences in processes that influence rate and extent of 

absorption in pure SDG and SDG polymer. In a PK study, maximum serum concentration of 

ED was attained after 12-24h in postmenopausal women after oral intake of 86 and 172 mg of 
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SDG119. Transit times in rodents are inevitably shorter than that in humans owing to their short 

gut length. Total colonic transit time is 36.2 ± 5.1 h in human, while the colonic transit time of 

rat is 15.6 h129. Since physiological factors, such as gastric emptying and small intestinal transit 

time, can affect lignan absorption, differences in intestinal transit time can explain differences 

in Tmax in humans and rats. 

Kuijsten’s oral PK study in humans given 0.9 mg/kg SDG found that the elimination half-

life (4.4 ± 1.3 h) and mean residence time (21 h) of ED were much shorter than that of ENL 

( t1/2=12.6 ± 5.6 h, MRT=36 h), which may explain that ED was undetected after 24h118. In a 

previous PK study of our lab, unconjugated ED was detected from 8h to 48h (3 ng/mL - 10 

ng/mL) in rats following a single oral 40 mg/kg SECO, while interfering endogenous peaks 

precluded quantification of the conjugated lignans130. Another PK study following IV 

administration indicated that ED had poor bioavailability (less than 1%), large volumes of 

distribution (54.2 ± 27.5 L/kg), and high systemic clearance (23.1 ± 4.51L/h·kg)117.  

6.1.3 Plasma ENL concentration versus time course in rat PK samples 

The mammalian lignan ENL comes from ED and this largely occurs in the large intestine 

as gut microflora is needed for the conversion. Unconjugated ENL was not detected in rats 

administered either purified SDG group or SDG Polymer, because ENL appears to be more 

rapidly metabolized to its conjugates in human colon epithelial cells131. Total ENL can be 

quantified in all plasma samples including pre-dose sample, which was confirmed by other 

studies where ENL in pre-dose samples are not zero due to the abundance of lignans in foods45, 

46, 118. Unlike ED, ENL responses showed a gradual increase from 4 hours, reaching the highest 

concentration in 12 or 16 hours, and then gradually declining to baseline in 32 hours. Tmax of 

total ENL in the purified SDG group and SDG polymer group was 12.6 ± 1.5 h, and 12.7 ± 3 h, 

respectively. Tmax of total ENL were shorter than Tmax of total ED in both groups, demonstrating 

the transformation process of ED to ENL. Cmax of total ENL in purified SDG group and SDG 

polymer group was 81.6 ± 23.8 ng/mL, and 65.9 ± 19.6 ng/mL, respectively. Half-life of ENL 

for pure SDG and SDG polymer were 12.0 h and 9.2 h, respectively. No significant difference 

was observed in either Tmax or Cmax of total ENL, suggesting similar SDG conversion to ENL. 

In a PK study involving postmenopausal women, peak serum concentration of ENL was 

reached after 24-36 h after oral intake of 86 and 172 mg of SDG119. Differences of Tmax in 

humans and rats can be explained by species differences in intestinal transit time.  

In a previous PK study of our lab in rat administered a single IV dose of 20 mg/kg SECO 

or a single oral dose of 40 mg/kg SECO, ENL was only detected in 15, 18, and 36 hour samples 
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of one rat (IV dose, less than 50 ng/mL). It was also detected in 21 and 36 hour samples of one 

rat (oral dose, less than 50 ng/mL)130. Further studies with more time points blood collections 

from 8 to 16 hours after administering SDG are necessary to unambiguously determine Tmax 

and Cmax. 

In conclusion, there are no differences in the absorption kinetics between pure SDG and 

SDG polymer. The process of hydrolyzing, extracting, and purifying SDG from the SDG 

polymer in flaxseed to produce a purified SDG is a costly procedure. Since pure SDG and SDG 

polymer have similar absorption kinetics and total exposure of bioactive metabolites, SDG 

polymer is a more economical alternative of pure SDG for future application. 

6.2 Hypocholesterolemic efficacy study of purified SDG and SDG polymer 

Previous studies have determined the potential hypocholesterolemic effect of flaxseed and 

flaxseed lignan using rabbit81, mouse132, and rat80 models of diet-induced hypercholesterolemia. 

The rat model may be the most suitable model for this study because of the relatively low animal 

cost, a requirement for lower amounts of purified SDG and SDG polymer relative to the rabbit, 

ease of lignan administration in this species, relatively short induction time for development of 

hypercholesterolemia and hepatic lipidosis, and ability to relate to lignan PK conducted in rat. 

The rat model allows for precise dose administration. Use of a modified oral gavage technique 

(syringe) provides opportunity to deliver an exact dose with minimal stress the rat rather than 

incorporation of the lignan into the diet as is often required in mouse studies. This avoids 

unfavorable inter-animal variation due to variable amounts of lignan consumption per day based 

on the dietary intake of individual animals. Since rat provided sufficient blood volume for the 

pharmacokinetic study, the rat model was utilized for the efficacy study for consistency. In the 

previous hypocholesterolemic efficacy study of SDG administration in diet-induced 

hypercholesterolemic rats in our lab, female Wistar rat demonstrated a clinically relevant 

response to 1% cholesterol diet and hypocholesterolemic response to oral SDG administration80 . 

Because my objective is to compare the hypocholesterolemic efficacy of purified SDG and 

SDG polymer, in a previous study the female Wistar rat has a clear and predictable response to 

SDG80, I also utilized female Wistar rat for efficacy study. In other animal chronic studies (rats 

and rabbits), 3 mg/kg, 6 mg/kg or 15 mg/kg SDG were used. In human studies, 100 mg to 600 

mg SDG were used per day, which when normalized to body weight 70 kg, the dose was 1.4 

mg/kg to 8.6 mg/kg daily. I chose 6 mg/kg SDG daily as the dose. An animal study (3 mg/kg 

and 6 mg/kg SDG) and a human study (300 mg and 600 mg SDG)46 have shown that 

hypocholesterolemic effects of flaxseed lignan are dose-dependent. 
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The 1% cholesterol diet fed for 30 days increased final body weight, liver weight, and 

normalized liver weight, serum lipid levels, and hepatic steatosis and hepatocellular injury 

relative to rats fed a standard diet. This is consistent with the previous study where rats were 

fed 1% cholesterol diet for 37 days, their body weight, liver weight, and serum lipid levels, 

increased when compared to rats fed a standard diet133. The current study showed trends in 

reductions in normalized liver weight, liver steatosis and hepatocellular injury, as well as serum 

lipid levels in hypercholesterolemic rats (10 weeks) with pure SDG or SDG polymer treatment. 

However, no difference was observed in final body weight and liver weight. This is consistent 

with a previous study with a similar experiment design in our lab that clinically relevant 

reductions in serum and hepatic lipid levels of rats following 30 days 6 mg/kg SDG intervention 

was observed80. Although consistent, the current study did not show similar reductions in rate 

of weight gain and serum lipid parameters probably due to the shorter duration of the dietary 

and lignan intervention. Both the current study and the previous study fed the 1% cholesterol 

diet for one week before administration of the lignan, but the current study (30 days for 1% 

cholesterol diet and 23 days for lignan treatment) is one week shorter than the previous one (37 

days for 1% cholesterol diet and 30 days for lignan treatment). Moreover, this inconsistency 

may be explained by the different ages and growth phase of rats in the reported studies. As for 

liver histological analysis, both purified SDG and SDG polymer treatment not statistically, but 

clinically demonstrated lower scores in steatosis and NAS, when compared to 

hypercholesterolemic rats in the control group. Purified SDG treatment demonstrated lower 

scores in steatosis (27.8%), lobular inflammation (30%) and NAS (28.5%) as compared to the 

hypercholesterolemic controls. Similarly, SDG Polymer treatment had lower scores in steatosis 

(22.2%) and NAS (14.3%). No significant difference in pathology parameters was found 

between pure SDG and SDG polymer. Microscopic visual artifacts can potentially cause 

misdiagnosis of samples. Related to lipidosis, results of oil red O-stained liver slices, a semi-

quantitative analysis, in the previous study with a similar experiment design in our lab where 6 

mg SDG/kg decreased hepatic fat accumulation by 24 %, we concluded that both purified SDG 

and SDG polymer can partially attenuate steatosis and hepatocellular injury caused by high 

cholesterol diet in a similar extent. 

In the current study, hypercholesterolemic rats given SDG polymer demonstrated not 

statistically significant but clinical reduction in TC (10%), and an increase in HDL-C by 24%, 

which is similar in magnitude to the results of Jae B. Park’s study (10% reduction in TC and 

30% increase in HDL-C following a high fructose and high fat diet with 0.02% SDG enriched 
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complex, similar dosage to the present study)134. Besides, we only observed a distinctive, but 

not statistically significant reduction in TAG (15%) and a slight reduction in LDL-C (14%) after 

23 days SDG polymer consumption. Within Jae B. Park’s study, significant reductions were 

found in TAG (27%) and LDL-C (47%) 134. These different results may due to the short duration 

of lignan administration in the present study. Other supportive evidence demonstrated that 23 

days of lignan intervention may not be enough to induce significant differences in serum lipid 

parameters. Prasad et al found that TC and LDL-C in rabbits treated with 1% cholesterol and 

15mg/kg SDG) at month 2 was significantly lower than those in 1% cholesterol control group. 

However, at month 1, SDG consumption only had slight reductions in TC and LDL-C77. Similar 

results were observed in their other similar study, in which TC and LDL-C values of rabbits 

were 20% and 14% lower in rabbits with 0.5% cholesterol and 40 mg/kg lignan complex (~15 

mg/kg SDG)) as compared to those in 0.5% cholesterol control group at 2 months81. Also, HDL-

C were significantly higher at month 1 (93%) and at month 2 (30%). Nevertheless, TC and 

LDL-C were even higher with lignan complex at month 1 when compared to those without 

lignan complex81.  

Although no statistical difference was found after 23 days intervention of either purified 

SDG or SDG polymer in hypercholesterolemic rats when compared to hypercholesterolemic 

controls, apparent lipid lowering effect was observed following purified SDG and SDG 

polymer administration. Therefore, from an economic perspective, SDG polymer can be 

considered as a more economical natural product in the management of mild 

hypercholesterolemia. This efficacy similarity was supported by the comparative PK study of 

pure SDG and SDG polymer where no differences were found in AUC of total ED and total 

ENL. When combined with the PK study where glucuronides of ED and ENL were the major 

lignan metabolites in plasma, the pharmacological effect of their conjugates should be 

considered and need more examination. 

6.3 Challenges and limitations  

This research encountered several challenges, ranging from technical to instrumental 

challenges. In the PK study, I used LC-MS/MS to quantify SDG metabolites levels in rat plasma. 

The assay was previously developed and validated in human plasma in our lab, with great 

sensitivity. However, the rat plasma volume used in analysis was much lower than human 

plasma resulting in lower sensitivity and a higher LLOQ. Lower sensitivity may explain why 

unconjugated and total SECO, unconjugated ED and unconjugated ENL could not be detected 

in most samples. Also, an incomplete plasma concentration versus time curve was collected due 
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to ethical constraints associated with limited volume blood collections in rodents. In addition, 

the LC-MS 4000 Q-Trap had some technical problems for a considerable period of time during 

my attempts to validate the assay for rat serum. Another challenge was that many sources of 

beta-glucuronidase contained an endogenous interfering substance that affected the 

quantification of SECO. This interfering peak eventually disappeared after using MP 

Biomedicals™ Beta-Glucuronidase solution. These analytical challenges took time to resolve.  

For the efficacy study, we planned to feed rats 1% cholesterol diet for 7 days prior to 

initiation of the lignan intervention. Subsequently, we planned to continue the dietary 

intervention an additional 30 days coupled with once daily administration of purified SDG or 

SDG polymer during this 30 day time period. However, I encountered a shortage of the high 

cholesterol diet, so the study was terminated ahead of schedule (23 days). This early termination 

may explain the lack of significant difference in lignan treatment and control group. The 

previous study demonstrated greater increases in serum lipid levels and hepatic lipidosis as 

compared with the current study, suggesting induction of hypercholesterolemia was incomplete 

in the current study. Another technical problem was encountered with histopathology 

assessments. The liver blocks were overhydrated following tissue processing in an automated 

tissue processor. Thus, we soaked liver blocks in softening solutions for different periods of 

time to rehydrate. Nevertheless, slide preparation was less than ideal, which affected the ability 

to reliably assess for hepatocellular lipid levels and inflammatory changes. Given the 

incomplete induction of hypercholesterolemia, it is very likely that further investigation of liver 

samples for evaluation of the expression of molecular targets involved in cholesterol 

metabolism may not provide further supportive evidence to enhance our understanding of 

lignan effects on cholesterol regulation. 

6.4 Conclusion 

In the present study, we compared the relative bioavailability of SDG metabolites after 

single oral bolus administration of purified SDG and SDG polymer in rat. The unconjugated 

form of SECO, ED, and ENL was detected in only a few samples at different time point 

collections likely due to extensive first pass metabolism such that the lignans are present in the 

systematic circulation mostly in their conjugated forms. The relative bioavailability of total ED 

and ENL of SDG polymer was 111% and 89%, respectively, when compared to purified SDG. 

No significant differences in Cmax, Tmax, and AUC of total ED and ENL between purified SDG 

and SDG polymer were found. Since pure SDG and SDG polymer have similar absorption 

kinetics and total exposure of bioactive metabolites, combining the extra production process 
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and extra cost of pure SDG, SDG polymer is a more economical alternative of pure SDG for 

future application. 

We observed an improved physiological condition in hypercholesterolemic rats treated 

with purified SDG or SDG polymer, including reductions in normalized liver weight, TAG, TC 

and LDL-C, and an increase in serum HDL-C. Both purified SDG and SDG polymer treatment 

demonstrated lower scores in liver steatosis and NAS, meaning that purified SDG and SDG 

polymer can partially attenuate steatosis and hepatocellular injury caused by high cholesterol 

diet. No significant difference was observed between purified SDG and SDG polymer treatment.  

Therefore, from an economic perspective, SDG polymer can be considered as a more 

economical natural production in the management of hypercholesterolemia. 

6.5 Future work 

Firstly, a single dose escalation pharmacokinetic study of purified SDG and SDG polymer 

can be conducted to understand whether lignans demonstrate dose-dependent pharmacokinetics. 

If the relationship between plasma AUC and dosage is not proportional, then lignans exhibit 

dose-dependent pharmacokinetics, which would complicate the design of dosage regimens and 

prediction of efficacy and toxicity. Many health and economic assessments, as well as 

regulatory decisions, often depend on the integrity of this relationship. 

If lignans exhibit dose-dependent kinetics, the numbers of clinical trials would increase and it 

would cost a considerable amount of money. In addition, multiple dose pharmacokinetic studies 

determine the steady state pharmacokinetic parameters. Since multiple doses of purified SDG 

or SDG polymer will be administered if SDG is taken as a medication, steady state 

pharmacokinetics (Css, Cmax, Cmin) can affect efficacy and safety. Therefore, multiple dose 

pharmacokinetic studies of purified SDG and SDG polymer should be conducted to determine 

their steady state pharmacokinetic parameters. Purified SDG and SDG polymer can be 

administered following multiple doses once daily and blood samples (at CSS,max and CSS,min) will 

be collected over the duration of the experiment to determine steady state pharmacokinetic 

parameters.  

Studies have shown that the hypocholesterolemic efficacy of flaxseed lignans are dose 

dependent and it is critical to know appropriate dose and treatment duration as well as safety. 

Dose and duration range finding studies can be conducted in two phases. Firstly, in a fixed 

period of time, a single escalating dose of purified SDG and SDG polymer can be administered 

orally to diet - induced hypercholesterolemic rats. Also, a fixed dose of purified SDG and SDG 

polymer can be administered for different durations. The fixed dose for second phase will be 
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determined based on the first dose study and pharmacokinetics. Efficacy (body weight and 

serum lipids levels) and safety (liver enzymes and adverse events) should be assessed. At the 

end of the study, any abnormal physiological and histopathological changes will be investigated. 

No effect level dose (NEL), dose with no observed adverse effect level (NOAEL,) and 

maximum tolerated dose (MTD) will be determined. Applicable duration can also be 

determined. 

Several studies have revealed that whole flaxseed or flaxseed lignan has 

hypocholesterolemic effects in hypercholesterolemic subjects. A comparative placebo 

controlled efficacy study of purified SDG and SDG polymer can also be conducted in 

hypercholesterolemic patients. The patient will receive purified SDG, equivalent dosage of 

SDG polymer, or a placebo for 12 weeks. The pilot study can start with 600 mg/day SDG and 

equivalent dosage of SDG polymer for 12 weeks because a 600 mg/day SDG dose for six 

months in human subjects are safe and well tolerated50, 51. Participants can mix the lignan form 

in a small amount of yoghurt once daily. Their plasma lignan levels, body weight, serum lipids 

level and other related physiological conditions will be monitored. Patients can record their 

body weight daily at home. Blood can be collected at Predose (baseline), one-month, two-month, 

and the end of intervention.     
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