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ABSTRACT 

Blackouts in power systems cause major financial and societal losses, which necessitate 

devising better prediction techniques that are specifically tailored to detecting and preventing 

them. Since blackouts begin as a cascading failure (CF), an early detection of these CFs gives the 

operators ample time to stop the cascade from propagating into a large-scale blackout. In this 

thesis, a real-time load-based prediction model for CFs using phasor measurement units (PMUs) 

is proposed. The proposed model provides load-based predictions; therefore, it has the advantages 

of being applicable as a controller input and providing the operators with better information about 

the affected regions. In addition, it can aid in visualizing the effects of the CF on the grid. To 

extend the functionality and robustness of the proposed model, prediction intervals are 

incorporated based on the convergence width criterion (CWC) to allow the model to account for 

the uncertainties of the network, which was not available in previous works. Although this model 

addresses many issues in previous works, it has limitations in both scalability and capturing of 

transient behaviours. Hence, a second model based on recurrent neural network (RNN) long short-

term memory (LSTM) ensemble is proposed. The RNN-LSTM is added to better capture the 

dynamics of the power system while also giving faster responses. To accommodate for the 

scalability of the model, a novel selection criterion for inputs is introduced to minimize the inputs 

while maintaining a high information entropy. The criteria include distance between buses as per 

graph theory, centrality of the buses with respect to fault location, and the information entropy of 

the bus. These criteria are merged using higher statistical moments to reflect the importance of 

each bus and generate indices that describe the grid with a smaller set of inputs. The results indicate 

that this model has the potential to provide more meaningful and accurate results than what is 

available in the previous literature and can be used as part of the integrated remedial action scheme 

(RAS) system either as a warning tool or a controller input as the accuracy of detecting affected 

regions reached 99.9% with a maximum delay of 400 𝑚𝑠. Finally, a validation loop extension is 

introduced to allow the model to self-update in real-time using importance sampling and case-

based reasoning to extend the practicality of the model by allowing it to learn from historical data 

as time progresses. 
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1 INTRODUCTION 

1.1 General 

Power systems are getting larger and more complex, and with the inclusion of renewable 

energy resources, they are also getting more stochastic. This complex and stochastic nature of 

power systems increases the probability of undesirable events, such as line trippings, forced 

outages…etc. [1]. Moreover, transmission lines are typically operated very close to their maximum 

capacities (thermal limits) to maximize profit, which significantly increases the probability of 

overheating the line conductors. Typically, system operators apply reliability analysis tests and try 

to maintain the N-1 criteria or the 0.1 days/year criteria to keep the system operational within 

acceptable operation levels even after a line trip or a forced outage [2]. However, operators’ 

mistakes, hidden failures, extreme weather, or sabotage can induce multiple trippings and forced 

outages that can lead the system into a cascading failure (CF) which can then lead to a total or 

partial blackout [3]. Moreover, forecasting errors, e.g., when predicting loads or wind speed, 

increases the chances of a particular fault leading to a CF. In general, the increased uncertainties 

in the network increase the likelihood of failures. In addition, renewable energy resources can 

increase the probability of CFs and blackouts. For example, wind farms have lower inertia and 

lower fault ride through (FRT) capabilities than synchronous generators. Thus, a high penetration 

of wind energy means that the system is getting weaker in withstanding faults. Thus, increasing 

the probability of a CF. Additionally, due to their low FRT capabilities, it is possible that a fault 

within the wind farm or close to it could result in hundreds of wind turbines being tripped off in a 

cascading manner leading to major blackouts [1]. Hence, based on the previous scenarios and 

multiple points of failure, power systems have a multitude of ways by which CFs and blackouts 

can happen.  

Major blackouts that occurred in the 21st century include the 2003 US-Canada Northeast 

blackout, the 2011 California blackout, the 2016 southeast Australia blackout, and the 2018 

Brazilian blackout just to name a few [4]. Even more recently, there is the 2021 Texas blackout 

caused by winter storms and severe weather conditions during February, which caused damages 

in the range of billions of dollars [5]. A summary of major blackouts in the last twenty years and 

their estimated impacts is shown in Table 1.1. The recurrence of blackouts indicates that blackouts 
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are still happening albeit the numerous techniques used to suppress them and the multitude of 

reliability metrics that power grids adhere to. Additionally, all these blackouts result in huge supply 

interruptions and losses in the order of millions, and sometimes even billions, of dollars to both 

utilities and consumers. Besides, these blackouts have hidden costs consisting of their negative 

impact on other aspects of life, such as increased crime rate and increased mortality, which can 

never be quantified in terms of dollars [6]. This repetitive nature of blackouts in different regions 

and the huge losses associated with blackouts indicate that more analysis of blackouts and how to 

prevent them is still needed [7]. 

Table 1.1. Notable blackouts in the last twenty years (2001-2021), their estimated costs, and their 

main causes. 

Ref Location Year 

Loss of 

load 

(MW) 

Time 

duration 

Estimated 

cost 

(million $)1 

Main causes for the initiation or 

propagation of the blackout 

[5], [8] Texas 2021 34,000 72-336 h 195,000 

Severe windstorms, disruption in 

natural gas supply, and frigid 

winter contributed to the initiation 

and propagation of the blackout. 

[1] 
South 

Australia 
2016 2,900 3-24 h 285 

Severe thunderstorms caused the 

initial faults. Then, the fault ride 

through (FRT) mechanism in wind 

turbines caused CFs within the 

wind farms in the grid. 

[9], [10] Kenya 2016 180 <3 h N.A. 

A monkey caused a major 

transformer to trip resulting in a CF 

(the system was not N-1 secure at 

the time of failure). 

[9] Sri Lanka 2016 800 >4 h N.A. N.A. 

[9], [11] Turkey 2015 32.2 >7 h 700 

The system was not N-1 secure due 

to maintenance and construction 

work. Then, a trip in a major tie-

line caused islanding within the 

grid. Then, frequency instability 

initiated CFs in both islands. 

 

1 Cost estimates can vary greatly based on the approach used to estimate the costs, because there are direct costs 

(e.g., restoration cost), indirect costs (e.g., loss of revenue in utilities and other corporations), damage costs (e.g., 

sustained failure in equipment), indirect damage cost (e.g., loss of life), and future costs (e.g., loss of revenue due to 

bankruptcy). Hence, based on the considered factors the reported amounts significantly vary. 
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Table 1.1. Continued. 

Ref Location Year 

Loss of 

load 

(MW) 

Time 

duration 

Estimated 

cost 

($) 

Main causes for the initiation or 

propagation of the blackout 

[9], [12] India 2012 48 2-8 h 6,000 

The system suffered from a weak 

transmission line system since 

multiple key tie-lines between 

northern and western regions were 

overloaded. Then, trippings in 

these tie-lines initiated the CF and 

the widescale blackout. 

[9] Brazil 2011 8.88 >3 h N.A. N.A. 

[9] 
Brazil and 

Paraguay 
2009 24,436 4-6 h N.A. 

Direct cause undetermined, but 

the blackout was initiated by a 

fault causing the Itaipu dam to 

stop production, which initiated a 

CF due to the huge power 

imbalance. 

[13] Australia 2007 2,150 4-8 h 129 

Bushfires and extreme weather 

conditions caused multiple 

failures and overheated 

transmission lines. 

[9], [14] Colombia 2007 6.64 >4 h 130 
CF initiated by a maintenance 

mistake. 

[9], [15] Europe 2006 14.5 2 h N.A. 

Trippings of multiple high voltage 

lines formulated three islands that 

either collapsed or suffered major 

shedding because of power 

imbalances. 

[9], [16] Pakistan 2006 11.16 5-6 h N.A. 

Tripping of a large transformer 

that led to the tripping of its 

parallel counterpart. This initiated 

a CF causing multiple major tie-

lines operating near their capacity 

to trip. 

[13] 

Sweden 

and 

Denmark 

2003 6,550 2 h N.A. 

Loss of a 1.8 and a 1.2 GW plants 

due to two unrelated faults within 

five minutes of each other.  

[9] Italy 2003 24 5-9 h 1200 

Tree flashover in a major tie line 

initiated a power deficit that led to 

a CF. 
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Table 1.1. Continued. 

Ref Location Year 

Loss of 

load 

(MW) 

Time 

duration 

Estimated 

cost 

(million $) 

Main causes for the initiation or 

propagation of the blackout 

[9] London 2003 724 >30 m N.A. 

Hidden failures due to wrong 

relay settings and delayed 

maintenance work initiated the 

CF. 

[9], [13] 
North 

America 
2003 63,000 5-72 h 

Over 

10,000 

A heatwave that led to demand 

peaks and insufficient reactive 

power, incorrect state estimation 

of the grid, and bad vegetation 

management leading to multiple 

L-G faults. 

 

The first step to prevent blackouts is to understand and detect how they start and expand. 

However, blackouts are difficult to analyze due to the numerous mechanisms involved, some of 

which are extremely hard to model, such as operators’ mistakes [7]. Therefore, another approach 

for predicting blackouts is to analyze CFs, which are defined as the uncontrolled successive failure 

of elements in an interconnected system initiated by a starting failure [17]. Thus, by predicting and 

preventing CFs, blackouts will also be prevented by extension since they are a subset of CFs. 

However, modeling CF is also complex due to the involvement of numerous mechanisms and the 

complexity of power systems. Hence, there is no individual tool that captures all of the CF 

mechanisms, which can be a barrier that prevents building reliable and meaningful CF prediction 

models [18]. Nonetheless, it has been shown in the literature that the existing tools can provide 

results similar to historical data in terms of risk and probability distribution [19]. Also, they model 

the most significant parts that contribute to blackouts and CFs. Thus, these tools are sufficient for 

building models to analyze and predict CF [7]. 

1.2 Smart Grids and Wide Area Monitoring Systems 

A major problem in power systems that contributed to the recurrence of blackouts and CFs 

in the past was the need to estimate the state of the grid due to a lack of the availability of the status 

of its major buses in real time. However, with the advent of Wide Area Monitoring Systems 

(WAMS), this issue is solved by introducing Phasor Measurement Units (PMUs) which provide 
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real-time measurements of voltage magnitude and phase angle. These measurements effectively 

eliminated the need for state estimation (assuming enough PMUs are used) [20]. In addition, PMUs 

are significantly better than the typical supervisory control and data acquisition system (SCADA), 

because PMUs allow for higher sampling rates and can provide synchronized measurements even 

between dispersed areas in the power network [21]. On the other hand, the added complexities of 

smart grids could lead to more ways by which a system fails due to the use of such technology 

[22]. Hence it is important to use PMUs to offset the negative impacts of smart grids technologies 

and improve the grid reliability and resiliency. 

Since PMUs are essential to CF prediction, it is essential to summarize their structure and 

working principle. Initially, PMUs receive analog inputs from current transformers (CTs) and 

potential transformers (PTs) connected to the transmission line. Then, these measurements are 

passed through a low-pass filter and an analog to digital (A/D) converter to satisfy the Nyquist 

criteria and reduce noise. Afterwards, these measurements are time aligned and time stamped using 

a Phase Locked Loop (PLL) synchronized with a nanosecond accurate clock to have the 

synchronicity needed to generate synchronized voltage measurements. Typically, GPS’s second 

of century (SOC) is used for synchronization. Afterwards, these measurements are passed to an 

internal microprocessor to calculate the magnitude and phase of both voltage and current, as well 

as, real power, reactive power, power factor, total harmonic distortion, frequency, frequency 

deviation, and other measurements. Finally, an internal modem generates the data packets for the 

PMU measurements, and the packets are sent to the control center via Phasor Data Concentrators 

(PDC). Figure 1.1 summarizes the block diagram of this working principle. Although PMUs 

appear to be similar to other conventional voltage and current measurement devices, the usage of 

GPS’s SOC allows for the synchronicity that guarantees that all measurements can be precisely 

aligned together to form a snapshot of the system’s state at a given time, which is the main 

advantage of PMUs.  

1.3 Problem Statement 

Supply interruption negatively affects the lives of millions and causes significant societal 

and economic impacts when it occurs. The largest and severest of supply interruptions are 

blackouts, which could affect millions or even hundreds of millions when they occur. Nonetheless, 

the rarity of blackouts and the complexities involved in how they occur makes it hard to predict 
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their occurrences. Thus, blackouts keep on reoccurring, such as the 2003 US-Canada blackout and 

the hundreds of other blackouts mentioned in the literature. However, in all these blackouts, a lack 

of information regarding whether the contingencies are going to lead to a blackout, or an 

operational system was among the main causes why these blackouts propagated and expanded. 

Thus, formulating a tool capable of detecting the possible occurrence of blackouts can help system 

operators and emergency controllers to react in a proper way that ensures the elimination of 

blackouts or at the very least the limiting of their devastating outcomes. 

 

Figure 1.1. Phasor Measurement Unit (PMU) block diagram with GPS input, transmission line 

inputs and control center outputs. 

1.4 Research Objectives 

• Conduct a literature review on cascading failures and blackouts. 

• Conduct a literature review on real-time prediction in power systems with a focus on real-

time cascading failure prediction. 

• Design a model to predict cascading failures, and by extension blackouts, in real-time with 

high accuracy and minimal delay. 

• Predict the affected regions by the cascade in real-time using the aforementioned model. 
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• Improve the model to account for the different operating regions and the stochastic nature 

of the power network, as well as the uncertainties within the proposed model. 

• Improve the scalability in the model to make it applicable to large interconnected systems. 

• Improve the model by proposing a framework to update and improve the model in real-

time as it receives more data from the power grid. 

1.5 Significance 

The main contribution of this thesis is improving the real-time cascading failure prediction 

and by extension blackout prediction. Although there are many tools for CF prediction (CFP), this 

research work is unique and needed due to three main additions compared to existing works. These 

will be elaborated further when discussing the literature review and the methodology, but a 

summary of these additions is listed here for the completeness of the introduction. The proposed 

model uses recurrent neural networks (RNN), which addresses some of the limitations of previous 

works like having a predictor that depends only on a small set of past values. In addition, the model 

uses information theory, graph theory, and probabilistic techniques to reduce the input count 

without affecting the accuracy. This aids in the expansion of the model to large interconnected 

systems. Moreover, the model divides the CF prediction problem into a load-point-based 

prediction, which makes the predictions more accurate and provides the operators with more 

information regarding the locations affected by the cascading failure or blackout. 

1.6 Methods Overview 

The relationship between each chapter's aims and methodology and the general flow of the 

thesis are summarized in Figure 1.2. 

1.7 Research Outcome 

The main outcome of this thesis is proposing a new framework for real-time prediction of 

cascading failures in power systems. Since the work is a framework, it is highly versatile and 

includes many components that can be changed according to the operators’ requirements and 

specifications. Moreover, the framework using the setup described in Chapter 5 yielded results 

that are superior to other models in both accuracy and speed. Hence, it is expected that this 

framework could be used as an additional warning tool in the control center for detecting CFs and 

blackouts.  
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Figure 1.2. Methods overview and methodology flowchart. 
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1.8 Definitions 

A complete list of definitions and clarifications regarding terminologies used in this thesis 

is given in Appendix A.  

1.9 Thesis Organization 

The thesis is organized into seven chapters, a list of references section, and five appendices. 

The main topics of each chapter are as follows: 

• Chapter 1 introduces the nature of cascading failures and blackouts, and the benefits 

of PMU in CF prediction. The objective of the research is also presented in this 

chapter. 

• Chapter 2 discusses the literature review of cascading failure in detail. 

• Chapter 3 explains the dataset and how it is generated. 

• Chapter 4 introduces the first method in this thesis, the prediction-interval-based 

model for cascading failure prediction, along with its results and conclusion. 

• Chapter 5 expands on the initial method by incorporating RNN, graph theory, 

information theory, probabilistic techniques, and load point predictions into the 

formulation. 

• Chapter 6 expands the model further by incorporating a validation and update loop 

to allow the model to improve in real-time. 

• Chapter 7 summarizes the thesis, lists its conclusions, and provides areas of 

improvements where future work could be implemented. 

• Appendix A lists the definitions of used terminologies in this thesis. 

• Appendix B summarizes the dynamic equations included in the power system 

model used in this thesis. 

• Appendix C includes the information for the IEEE 39-bus system. 

• Appendix D provides a sample of the used data to generate the IEEE 39-bus system 

for reference and reproducibility. 

• Appendix E includes the pseudocodes for all the algorithms used in this thesis. 
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2 CASCADING FAILURES IN POWER SYSTEMS 

LITERATURE REVIEW 

2.1 Introduction 

Cascading failures (CF) have an extremely low probability of occurrence but could lead to 

catastrophic outcomes, such as wide scale blackouts. Hence, operators and decision-makers need 

to know if the current grid (or dispatch) is aiding in reducing the probability and severity of CF, 

or the opposite. This applies to both the planning and operating of the gird. In planning, its 

importance stems from determining if a certain change to the gird or electricity dispatch would 

increase or decrease the probability (or severity) of blackouts, or CF in general. In operation, CF 

analysis is even more critical as CFs must be quickly mitigated and suppressed before they turn 

into blackouts. 

Researching and analyzing CFs in power systems is a complex problem with many 

different, and sometimes contradicting, approaches and paradigms. However, since they are 

interconnected with each other, it is necessary to address all of them in the literature review to 

highlight the pros and cons of each paradigm and how they interact with each other. Moreover, it 

is important to understand the limitations of any CF prediction model, especially if it is a real-time 

model, by realizing the limitations of the different CF paradigms, to avoid making wrong decisions 

that could potentially expand the CF rather than suppressing it. With that in mind, the literature 

pertaining to CF could be classified into one or more of the following categories: 

1. CF modeling 

2. Component modeling 

3. Angle stability 

4. CF mitigation 

5. Cybersecurity and malicious attacks 

6. Interdependent systems 

7. CF prediction  

8. Reliability analysis and risk assessment 

9. Literature review and benchmarking. 
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The relationship of these components with respect to the operation of the power system is 

shown in Figure 2.1. The figure divides the CF literature into 5 overlapping categories: research 

and development (R&D), dispatch, normal operation, contingency, and wide scale blackout. Most 

of the CF literature focuses on offline operation, i.e., R&D and dispatch, followed by online 

operation during contingencies. This focus on offline operation is mainly because CF modeling 

and analysis is still an ongoing research and there are not many industrial applications pertaining 

to CF in online operation. Based on the previous classification of CF categories, the remainder of 

this literature review addresses each one of these categories separately, but with emphasis on CF 

modeling and CF prediction as they are the focus of this work. 

 

Figure 2.1. Classification of the CF literature according to the stages when they are relevant. 

2.2 CF Modeling 

2.2.1 Introduction 

The purpose of CF modeling is to propose models capable of simulating or estimating CFs. 

These models could derive their concepts from areas such as network theory, probabilistic analysis, 

and time-domain simulations. Considering how detailed or abstract is the CF model, CF modeling 

can be classified into three types: 
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1. Topological models 

2. Quasi steady state models 

3. Dynamic models. 

There are other types of models such as stochastic and interdependent system models, but they can 

also be classified using these three types. In topological models, power systems are assumed to be 

a graph network where buses and transmission lines are transformed into nodes and graphs. The 

advantage of such models is that they are quick to compute and can easily generate approximations 

for the likelihood of CFs given a specific network topology and the associated risk of these CFs. 

However, these models ignore multiple important power system aspects such as voltage violations 

and angle stability to name a few. On the other hand, quasi steady state (QSS) models aim to 

address the limitations of topological models by considering some power system aspects such as 

transmission lines' MW capacities, voltage violations, and the redistribution of power after the loss 

of a line or a generator. Nonetheless, QSS models ignore other power system dynamics such as 

angular stability and frequency violations to minimize the simulation time. Hence, they provide a 

trade-off between speed and accuracy. Finally, dynamical models, or time-domain models, 

simulate power system dynamics and mechanisms as accurately as possible to provide a realistic 

view about the power system behaviour following a CF. However, their models do not include all 

possible aspects as some are either impossible to model or computationally infeasible. Comparing 

all the three models, the trade-off is always between the simulation time and the accuracy of 

describing the power system behavior as shown in Table 2.1. 

Table 2.1. Relative comparison between CF models in terms of speed and accuracy to calculate 

CF risk. 

Model Simulation speed Accuracy of the model 

Topological model Extremely fast (milliseconds) Low 

Quasi steady state (QSS) model Fast (seconds) Medium 

Dynamic model Slow (hours) High 
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Modeling of CFs is not only limited to the simulation speed and accuracy of the model, but 

it also depends on which causes of CFs are being modeled. Considering the different causes of 

CFs and how they propagate, CFs can generally be initiated, or propagated, by any of the following 

scenarios. 

1. CF can happen due to a line tripping causing another line, or lines, to be overloaded. This 

leads to that other line, or lines, to trip as well. Then, this cascaded tripping continues until 

the entire system collapses or a new stable island, or islands, emerges. Alternatively, this 

propagation could be stopped by load shedding or other control schemes by relieving the 

congested lines before they trip due to overcurrent. 

2. Another CF scenario is when a tripping causes a huge part of the generation to be lost, and 

then the demand becomes more than the supply. Afterwards, the system enters a CF, 

because the frequency of the system would drop leading to more generator tripping, to 

protect the generators from being damaged, until the entire system collapses. The opposite 

can also happen (i.e., the generation is far greater than the supply, because a huge part of 

the demand is disconnected) and this could also lead to a CF, but it is rarer and easier to 

deal with. 

3. Finally, CFs can be initiated by the occurrence of a fault subsequent to another one that its 

effect has not yet been mitigated. This can result in a CF, either due to the system not being 

able to withstand that particular N-2 fault, or because the transient of these faults resulted 

in more tripping and failures, which initiated the cascade. According to NERC, 73.5% of 

CFs are due to or aggravated by hidden failures, which is one of the main reasons for having 

faults happening within a short time frame of another seemingly unrelated fault [23]. 

However, this list is not exhaustive, as there are many other ways by which CFs propagate. 

Regardless, it presents the most prominent ways by which blackouts and CFs happen and 

propagate. Moreover, the propagation of all the blackouts presented in Table 1.1 can be categorized 

using the three classifications stated above. Although the initiating events of these blackouts might 

not all fall into the three classifications, the important aspect of CF is the propagation, because this 

is the main difference between typical contingencies and CFs. 

In all the different scenarios by which CFs propagate, cascading outages can be described 

as oscillating events between fast and slow CFs. The “slow cascade” is when the system appears 
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to be operating normally but is actually under stress due to one or more transmission lines operating 

very close or above their capacity (this also applies to other components, but it is more common 

in transmission lines). This slow cascade can then cause line trippings that may trigger electrical 

instability or move the system to another slow cascade. The time frame for the slow cascade is 

between a few seconds and hours. In case electrical instabilities occur, the system will then be in 

the “fast cascade”. During the fast cascade, the system has successive trippings (mainly due to 

frequency and voltage violations). The time frame for fast cascade is between milliseconds to few 

seconds. After the “fast cascade”, the system reaches one of four states: a partial blackout, a total 

blackout, another “slow cascade”, or a new steady state with multiple islandings and major load 

sheddings [24]. This distinction between fast and slow cascades highlights one of the main reasons 

why topological and QSS models are inaccurate since both models only consider the slow cascade 

and ignore the fast cascade. 

2.2.2 Existing CF models 

For each of the three main CF models (topological, QSS, and time domain), as well as the 

other models (e.g., stochastic, and interdependent models), there are many existing tools both for 

industrial and research applications. Table 2.2 compares the various existing CF modeling tools 

both in the industry and research ([9], [24]–[27]). The comparison shows that each model has 

different advantages over the others. For example, probabilistic or risk-based models, like OPA, 

are more suited for general information about the risk of blackouts and CFs which is important 

during planning or when comparing the risks of different dispatches [26]. On the other hand, 

detailed deterministic models, like COSMIC, are more suited for simulating specific cases to 

determine their stability and exact behavior [27]. For example, this is useful when simulating a 

critical subset of N-2 contingencies. 

Table 2.2. Comparison of existing CF analysis models. 

Model Main advantages Load flow Additional information 

Hidden 

Failure 

Modeling hidden failures in relays and relay 

systems. 

Uses fast heuristic approaches to randomly 

search for severe hidden failure scenarios and 

estimate their likelihood and severity to 

provide the expected risk. 

AC Research tool 
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Table 2.2. Continued. 

Model Main advantages Load flow Additional information 

PSA 

Includes isolation and connectivity analysis.  

Computes the least number of cuts for 

isolation. Can simulate grids with a large 

number of nodes. 

AC/DC Research tool 

TAM 

A reliability assessment tool that produces 

common reliability indices (e.g., LOLP and 

BIP). 

Uses MC simulation. 

AC Research tool 

OPA 

Considers tree contact, dispatching, and 

planning. 

Most useful in planning when comparing a 

base case with an updated grid layout and 

comparing their progression as years pass and 

demand increases. 

AC/DC 

Research tool. AC is only 

available in improved 

OPA. Ignores many 

dynamical processes and 

time elements in CF. 

Manchester 

Uses MC simulation to obtain Risk. 

Includes hidden failures and forced outage 

probabilities. 

Includes restoration modeling and estimation 

of restoration time. 

AC Research tool 

COSMIC 

Considers generators’, turbines’, and exciters’ 

dynamics. 

Uses ZIPE load models. 

Open-source software. 

AC 
Research tool 

Uses dynamic timesteps.  

ASSESS 

Uses both analytical and Monte Carlo based 

techniques. 

Includes security-constrained AC OPF. 

Includes both time-domain simulation and 

QSS simulation. 

AC/DC 

Commercial tool 

Requires a specialist user 

since it covers a wide 

range of different 

simulation paradigms. 

TRELSS/ 

TransCARE 

Reliability assessment tool with CF analysis. 

Can model protection systems in detail. 

Has detailed control actions including 

redispatch, transformer tap, and reactor 

switching. Has fast decoupled power-flow 

algorithm. 

AC/DC Commercial tool 
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Table 2.2. Continued. 

Model Main advantages Load flow Additional information 

CAT 

Measures if a contingency leads to another one 

or not (e.g., CF initiation). 

Considers voltage and thermal overload 

violations. 

Uses a QSS AC approach to access losses due 

to load drops. 

AC Commercial tool 

POM-PCM 

Identifying all cascading paths and chains in 

one simulation. 

Ranking the CF chains based on vulnerability 

and likelihood. 

Has mitigation strategies incorporated.  

AC 

(steady 

state and 

dynamic) 

Commercial tool 

 

2.2.3 Importance of time domain dynamic simulation in CFP 

To obtain an accurate description of the CF propagation for the purpose of CF prediction 

(CFP), the detailed dynamical model of the system is needed to avoid the pitfalls of static and QSS 

simulations. In a dynamic model, the generators’ dynamic following a system change (e.g., 

generation demand mismatch) is governed by the following equations: 

     𝑀𝑖

𝑑𝜔𝑖
𝑑𝑡

= 𝑃𝑚,𝑖 − 𝑃𝑔,𝑖 − 𝐷𝑖(𝜔𝑖 − 1) (2.1) 

      
𝑑𝛿𝑖
𝑑𝑡

= 2𝜋𝑓𝑜(𝜔𝑖 − 1) (2.2) 

      𝑃𝑔,𝑖 =
|𝐸𝑎,𝑖

′ ||𝑉𝑖|

𝑋𝑑,𝑖
′ sin 𝛿𝑖 +

|𝑉𝑖|
2

2
(
1

𝑋𝑞,𝑖
 −

1

𝑋𝑑,𝑖
′ ) sin 2𝛿𝑖 (2.3) 

     
𝑑𝑃𝑚,𝑖
𝑑𝑡

= σ(
1

𝑇𝑡𝑖
(σ (𝑃𝑟𝑒𝑓𝑖 −

1

𝑅𝑖
Δ𝜔𝑖) − 𝑃𝑚,𝑖)) (2.4) 

where: 

𝑀𝑖 is generator 𝑖’s inertia constant in seconds,  
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𝜔𝑖 is generator 𝑖’s speed in per unit, 

𝑃𝑚,𝑖 is the mechanical power input of the 𝑖𝑡ℎ generator in per unit, 

𝑃𝑔,𝑖 is the generator real power output of the 𝑖𝑡ℎ generator in per unit, 

𝐷𝑖 is the damping coefficient of the 𝑖𝑡ℎ generator in per unit, 

𝛿𝑖 is generator 𝑖’s load angle in radians, 

𝑓𝑜 is the synchronous frequency in hertz, 

|𝐸𝑎,𝑖
′ | is the generator 𝑖’s transient open circuit voltage magnitude in per unit, 

|𝑉𝑖| is generator 𝑖’s voltage magnitude in per unit, 

𝑋𝑑,𝑖
′  is the direct-axis transient reactance in per units, 

𝑋𝑞,𝑖 is the quadrature-axis synchronous reactance in per units, 

σ is the sigmoid activation function, 

𝑇𝑡𝑖 is generator 𝑖’s proportional integral (PI) controller time constant in seconds, 

𝑃𝑟𝑒𝑓𝑖 is generator 𝑖’s reference power (e.g., desired power output) in per units, and 

𝑅𝑖 is generator 𝑖’s droop in per units. 

However, in a static simulation (and some QSS simulations), generator outputs are 

assumed to be constant using the following assumptions: 

     
𝑑𝜔𝑖
𝑑𝑡

=
𝑑𝛿𝑖
𝑑𝑡

= 0, 𝑃𝑚,𝑖 = 𝑃𝑔,𝑖, 𝜔𝑖 = 1 𝑖𝑛 𝑝. 𝑢. (2.5) 

This disparity between dynamic and static simulation can often be neglected when looking 

for the statistical behavior of power systems. To elaborate, the disparity mainly affects outcomes 

in the tail of the distribution, which has an extremely low probability (𝑝 ≪ 0.05). Thus, the 

difference in the estimated risk between the dynamic and static simulation is negligible [27]. 

However, when predicting the outcome of a sole case unfolding in real-time, these differences 

become significant. For example, cascading events with multiple failures and massive demand loss 

are already in the tail of the distribution. Hence, they are far away from the region where the 

simplifications and linearizations of static simulations are valid [27]. Moreover, dynamic models 

allow for more realistic line heating characteristics, which is essential in large-scale CF 

propagation as evident from the 2003 Northeast blackout as the heating and tripping of lines was 
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a critical component in the propagation of the blackout [28]. Also, in [24] different cascading paths 

were investigated and the results indicate that similar events (assuming static simulation) could 

propagate differently considering dynamic simulation. Moreover, [24] shows that no mechanism 

of CF propagation can be ignored a priori, e.g., angular stability and frequency deviations. Hence, 

time domain simulations are necessary for the formulation of CFP models. 

2.2.4 Literature review 

Numerous studies have been made regarding the proposing of new CF modeling schemes 

and the improvement of existing models. In addition to the models listed in Table 2.2 more in-

depth analyses of the different paradigms in CF modeling are summarized in Table 2.3 [26], [27], 

[29]–[36]. 

Table 2.3. CF literature review matrix (subtopic: CF modeling). 

Ref Title Year Main aim 

[29] A Study of Self-Organized Criticality of 

Power System Under Cascading 

Failures Based on AC-OPF With 

Voltage Stability Margin 

2008 Designing a CF simulation model based on 

self organized criticality that includes AC 

OPF and lines upgrades. 

[26] An Improved OPA Model and Blackout 

Risk Assessment 

2009 Extending the OPA model to account for 

power dispatch and relay protection among 

other elements that were not considered in the 

original OPA model. 

[30] A “Random Chemistry” Algorithm for 

Identifying Collections of Multiple 

Contingencies That Initiate Cascading 

Failure 

2012 Using Random Chemistry algorithm to 

identify unique N-2 to N-5 contingencies that 

cause CFs with a minimal number of 

simulations that is orders of magnitude faster 

than Monte Carlo (MC) simulation. 

[31] Blackout Model Considering Slow 

Process 

2013 Proposing an improved OPA model 

considering dispatching center actions and 

protective relays simulation. 

[32] Blackout Probabilistic Risk Assessment 

and Thermal Effects: Impacts of 

Changes in Generation 

2013 Modeling and simulating the impact of 

thermal effects (wind changes and vegetation 

contact) in CF. 
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Table 2.3. Continued. 

Ref Title Year Main aim 

[33] Cascading Failure Analysis with DC 

Power Flow Model and Transient 

Stability Analysis 

2015 proposing a DC power flow simulation for CF 

and performing a comparative analysis of its 

results with transient stability assessment 

tools and deriving insights about the 

discrepancies between them. 

[34] Revealing the Impact of Multiple 

Solutions in DCOPF on the Risk 

Assessment of Line Cascading Failure 

in OPA Model 

2016 Extending the OPA Model to more realistic 

consideration of the OPF solution and dealing 

with outlier cases in the numerical solutions. 

[35] Cascading Failure Analysis for Indian 

Power Grid 

2016 Modeling and simulating the Indian grid 

blackout and validating the findings of the 

simulation using the existing PMU data prior 

to the blackout. 

[36] Cascading failure model in power grids 

using the complex network theory 

2016 Using complex network theory to analyze CF 

while also extending the model to include 

hidden failures and other electrical 

characteristics of the power network, instead 

of relying on topology alone. 

[27] Dynamic Modeling of Cascading 

Failure in Power Systems 

2016 Proposing a new CF simulation algorithm 

(COSMIC) that uses dynamic simulations 

with variable time steps to enhance the 

prediction accuracy while minimizing the 

computer processing time. 

[37] Cascading Power Outages Propagate 

Locally in an Influence Graph That is 

Not the Actual Grid Topology 

2017 Showing that the CF propagates non locally 

and constructing an influence graph of this 

propagation and proving it is Markovian in 

nature. 

[38] Impacts of Operators’ Behavior on 

Reliability of Power Grids During 

Cascading Failures 

2018 Attempting to model operators' behaviours 

(i.e., operators mistakes) in CF modeling 

based on historical data and interviews with 

power grid operators. 

 

2.3 Component Modeling 

In addition to the general approach of modeling CFs and their propagation, another method 

of studying CFs is to observe and model how certain components in the power grid behave under 
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CFs. For example, motors during stalling or the interaction between vegetation and transmission 

lines as time progresses. For example, regarding transmission lines and thermal line rating 

modeling, fixed thermal rating values are used in [39], [40]. While detailed modeling of vegetation 

growth and wind cooling effects are in [31], [32], [41]. Also, [42] expanded the transmission line 

simulation by estimating the mechanical state of the line. As another example of component 

modeling, protection devices' interaction with CF were modeled in [27], [43]–[45] considering 

aspects like zone 3 distance relay maloperation among other considerations. A summary of 

selected literature of component modeling in CF is presented in Table 2.4 [46]–[52]. 

2.4 Angle Stability 

Angle stability refers to generators’ ability to maintain synchronism following a 

contingency [53]. Angle stability is not directly related to CF. Nonetheless, it is important in 

modeling and predicting CFs, because the fast-cascading portion of the CF is usually an angle 

stability or a frequency stability issue. Hence, it is an important subtopic of CF. However, when 

analyzing angle stability from a CF perspective it has the major issue of being a cause and an 

outcome at the same time. To elaborate, an angle stability issue could initiate a CF, but a CF could 

also initiate an angle stability issue. Hence, dedicated CF analysis tools are still needed even with 

the existence of analysis methods for angle stability, and transient stability in general. A summary 

of the work related to using angle stability within CF is given in Table 2.5 [54]–[57]. 

2.5 CF Mitigation and Restoration 

2.5.1 CF mitigation 

Another important aspect of CF analysis and literature is the mitigation of CF. CF 

mitigation is concerned with the ways by which CF can be suppressed either by reducing its 

probability or reducing its severity. According to [58], one of the most effective ways to propel 

the system towards blackout is the cascaded failure of overloaded lines. Hence, an effective 

emergency remedial action against CFs is to perform load shedding to quickly alleviate the 

congestion. However, there are other ways to mitigate CFs, such as: 

• Investing to upgrade the grid’s infrastructure. 

• Changing the operating point of the system to another point with lower risk. 
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• Relieving congestion before it propagates into CF. 

• Improving the efficacy of restoration equipment and protocols.  

• Regular maintenance checks and re-evaluation of tripping settings to prevent having 

devices with wrong settings or faulty components in the grid. 

Table 2.4. CF literature review matrix (subtopic: component modeling and analysis in CF). 

Ref Title Year Main aim 

[46] Cascading Stall of Many 

Induction Motors in a Simple 

System 

2012 Modeling the cascaded stall of motors following a 

failure in the grid. 

[47] Analysis of Induction Motor 

Cascading Stall in a Simple 

System Based on the CASCADE 

Model 

2013 Proposing an analytical model to find the probability 

distribution of motor stalling CF in power systems. 

[48] On Self-Organized Criticality of 

the East China AC–DC Power 

System—The Role of DC 

Transmission 

2013 Modeling CF for systems with DC transmission 

lines and calculating their blackout risk. Also, 

proposing a framework for choosing DC 

transmission operating points to reduce blackout 

risks. 

[49] Probabilistic Indicators for 

Assessing Age- and Loading-

Based Criticality of 

Transformers to Cascading 

Failure Events 

2014 Investigating the relation between transformers' 

hidden failures and CF initiation while also finding 

the important parameters for modeling transformer 

failures in CF. 

[50] Risk Assessment in Extreme 

Events Considering the 

Reliability of Protection Systems 

2015 Risk assessment of power systems under extreme 

conditions (e.g., severe weather). The model also 

considers detailed circuit breakers (CB) and 

protective relay modeling. 

[51] A New Dynamic Performance 

Model of Motor Stalling and 

FIDVR for Smart Grid 

Monitoring/Planning 

2016 Modeling induction motor stalling and delayed 

recovery within a CF model to propose an enhanced 

monitoring scheme for smart grids. 

[52] Real-Time Cascading Failures 

Prevention for Multiple 

Contingencies in Smart Grids 

Through a Multi-Agent System 

2018 Simulating CF with hardware-in-loop (HIL) and 

introducing a multi-agent algorithm to prevent the 

propagation of CF. 
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Table 2.5. CF literature review matrix (subtopic: angle stability). 

Ref Title Year Main aim 

[54] A Novel Bio-Inspired Technique 

for Rapid Real-Time Generator 

Coherency Identification 

2015 Rapidly identifying coherency groups in power 

systems using flocking behavior technique. 

[55] Angle Stability Analysis of 

Power System with Multiple 

Operating Conditions 

Considering Cascading Failure 

2017 Analyzing angle stability while considering CF and 

reducing the computational burden of angle stability 

calculations. 

[56] Control strategy for relieving 

transient potential energy 

accumulation in power system 

2018 Designing controllers for a power system based on 

relieving the accumulation of transient potential 

energy in order to prevent CFs. 

[57] Hybrid method for power system 

transient stability prediction 

based on two-stage computing 

resources 

2018 Proposing a method for transient stability prediction 

in real-time based on trajectory fitting and extreme 

machine learning. 

 

Since there are numerous methods to mitigate CFs, the literature pertaining to them is 

diverse as well. It includes improvements to relays, transmission lines, power dispatch, detecting 

hidden failures, estimating system information and missing data, and enhancing the power grid 

resiliency against cyber- and physical- attacks. The summary of these works is shown in Table 2.6.  

Table 2.6. CF literature review matrix (subtopic: CF mitigation). 

Ref Title Year Main aim 

[43] Blocking of Zone 3 Relays to 

Prevent Cascaded Events 

2008 Proposing a methodology to differentiate between 

line overloads and faults in zone 3 distance relay to 

reduce CF probability. 

[59] Long-Term Effect of the n-1 

Criterion on Cascading Line 

Outages in an Evolving Power 

Transmission Grid 

2008 Assessing long-term impacts of reliability policies 

on CF risks as the grid evolves, increasing both 

generation and demand. 

[60] Digital Grid: Communicative 

Electrical Grids of the Future 

2011 Dividing the grids into cells based on a new concept 

called 'Digital Grid' to better utilize HVDC and 

increase renewable energy penetration while 

minimizing CFs probability. 
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Table 2.6. Continued. 

Ref Title Year Main aim 

[61] Sparse Overcomplete 

Representations for Efficient 

Identification of Power Line 

Outages 

2012 Using limited voltage phasor data to identify 

multiple line outages in near real-time. It also aims 

to maximize the information gained from a limited 

set of PMUs or smart meters. 

[62] Determination of available 

transfer capability with 

implication of cascading 

collapse uncertainty 

2014 Determination of the available transfer capacity in 

transmission lines considering the likelihood of CF 

using the bootstrap technique. 

[63] Efficient Location Identification 

of Multiple Line Outages with 

Limited PMUs in Smart Grids 

2015 Using a location identification scheme to identify 

line outages with very limited PMU measurements. 

[64] Dynamic Detection of 

Transmission Line Outages 

Using Hidden Markov Models 

2016 Detecting line outages (estimating the state of all 

lines) using limited information and under a noisy 

environment. 

[65] Boosting the Power Grid 

Resilience to Extreme Weather 

Events Using Defensive 

Islanding 

2016 Improving the resiliency of the grid by introducing a 

risk assessment method that would pre-emptively 

separate a grid into stable, self-sustaining islands. 

[66] CCPA: Coordinated Cyber-

Physical Attacks and 

Countermeasures in Smart Grid 

2017 Analyzing cyber-physical attacks and devising 

methods to counteract them in smart grids using 

secure PMUs and online tracking of the power 

system impedance. 

[45] Real-time monitoring of zone 3 

vulnerable distance relays to 

prevent maloperation under load 

encroachment condition 

2017 Proposing a monitoring scheme to rank distance 

relay in real-time to detect the most vulnerable relays 

to maloperation. 

[44] A D-S Evidence Theory-Based 

Relay Protection System Hidden 

Failures Detection Method in 

Smart Grid 

2018 Detecting hidden failures in relay protection system 

using D-S evidence theory. 

[67] Decentralized Implementation 

of Unit Commitment with 

Analytical Target Cascading: A 

Parallel Approach 

2018 Proposing an implementation of the unit 

commitment optimization problem that is less prone 

to cyber attacks. 
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Table 2.6. Continued. 

Ref Title Year Main aim 

[68] Alleviation of post-contingency 

overloads by SOCP based 

corrective control considering 

TCSC and MTDC 

2018 Controlling and optimizing the DC transmission 

lines power flow to reduce CF probabilities and 

blackout risk. 

[69] A Robustness-Oriented Power 

Grid Operation Strategy 

Considering Attacks 

2018 Designing a constrained optimal power flow (COPF) 

framework that extends the existing OPF by 

considering CFs and malicious attacks. 

[70] Frequency Derivative-Based 

Inertia Enhancement by Grid-

Connected Power Converters 

with a Frequency-Locked-Loop 

2019 Introducing an inertia enhancement method for 

power grids with high penetration of renewable 

energy sources to reduce load sheddings and CFs. 

[71] Mitigating False Data Attacks 

Induced Overloads Using a 

Corrective Dispatch Scheme 

2019 Implementing a corrective dispatch mechanism that 

is secure against cyber threats such as data attacks. 

 

2.5.2 CF restoration 

In case a CF event is not stopped or suppressed successfully then the only form of CF 

mitigation that can be applied is restoration. CF restoration refers to the steps and protocols that 

can aid in the quick restoration of normal operation. It includes elements such as black start 

protocols and guidelines for managing loads following a partial blackout. CF restoration is 

essential to CF, because it minimizes the expected energy not supplied (EENS) by reducing the 

total time required to return to normal operation. Hence, reducing the overall severity of the CF. 

Selected articles about grid restoration techniques following a CF are shown in Table 2.7. 

2.6 Cybersecurity and Malicious Attacks 

Following the malicious cyber attack on the Ukrainian grid network in 2015, the interest 

in cybersecurity significantly increased [72]. Moreover, since that cyber attack induced a CF, more 

research has been done in analyzing which malicious attacks can initiate CFs and proposing 

methods to counteract these attacks. Also, the study of the ‘worst possible attack’ was investigated 

in many articles, where the aim is to find the set of lines or bus stations that has the highest 

susceptibility to induce a large-scale blackout if a cyberattack targeted them and proposing 
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methods to protect such lines and bus stations. Table 2.8 provides a summary of the recent 

cybersecurity research with emphasis on CFs and blackouts. 

Table 2.7. CF literature review matrix (subtopic: system restoration). 

Ref Title Year Main aim 

[73] A Hybrid Multiagent 

Framework With Q-Learning for 

Power Grid Systems Restoration 

2011 Designing a Q-learning based framework for grid 

restoration control (loads and transmission lines 

prioritization) for both centralized and decentralized 

grids 

[74] Conceptual Design of a Multi-

Agent System for Interconnected 

Power Systems Restoration 

2012 Designing a multi-agent-based system for managing 

various aspects of grid restoration. 

[75] Incentivizing Energy Reduction 

for Emergency Demand 

Response in Multi-Tenant 

Mixed-Use Buildings 

2018 Minimizing the energy shedding in emergency 

demand response cases and minimizing the losses by 

maximizing the benefits of the available emergency 

energy. 

Table 2.8. CF literature review matrix (subtopic: cybersecurity). 

Ref Title Year Main aim 

[76] A Coordinated Multi-Switch 

Attack for Cascading Failures in 

Smart Grid 

2014 Assessing multi switch attack cybersecurity threats 

and finding the worst-case scenarios of CFs. 

[77] Bilevel Model for Analyzing 

Coordinated Cyber-Physical 

Attacks on Power Systems 

2016 Analyzing the effects of a cyber-physical 

coordinated attack to identify the most damaging 

and hard to detect attacks. Also, proposing methods 

to counteract them. 

[78] Price Modification Attack and 

Protection Scheme in Smart Grid 

2017 Investigating price modifications attacks and their 

effects on CF. Then, devising approaches to analyze 

the problem and form a protection scheme against it. 

[79] Cyber cascades screening 

considering the impacts of false 

data injection attacks 

2018 Finding the most severe false data injection attacks 

to a power grid in terms of their resulting CF. 

[80] Local Cyber-Physical Attack for 

Masking Line Outage and 

Topology Attack in Smart Grid 

2019 Modeling a worst-case scenario malicious cyber-

physical attack that can deceive the control center 

into assuming that the outage is at a different 

location. 
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2.7 Interdependent Systems 

With the advent of smart grids and renewable energy sources, power grids became 

increasingly dependent on other networks and systems. Among the most notable interaction is the 

coupling between the power grid and the communication network due to smart sensors and 

WAMS. Another common interaction is the one between the transmission of power through 

transmission lines and the transmission of natural gas through pipelines as both are coupled 

through the generators’ dependency on gas availability. In the case of communication networks, 

the failure in the power grid means a failure in the communication system (unless backup 

generators are used to power the communication system), but at the same time, a failure in the 

communication system could lead to a failure in the power grid due to incorrect or missing 

information regarding the state of the system. This dual interaction between power grids and 

communication systems leads to more ways by which a power grid can fail and enter a CF that 

could potentially lead to huge blackouts in both systems. A similar event can happen between gas 

and electricity, albeit with different interactions, and it is one of the main causes for the propagation 

of the 2021 Texas outage [8]. To understand and analyze these phenomena, multiple research 

works addressed the modeling of coupled systems and proposed new metrics to calculate the 

modified risks of having a CF or a blackout in a coupled system. Table 2.9 provides a summary of 

the recent interdependent systems research with emphasis on CFs and blackouts interactions with 

communication grids and vice versa. 

Table 2.9. CF literature review matrix (subtopic interdependent system analysis). 

Ref Title Year Main aim 

[81] Detecting Critical Nodes in 

Interdependent Power Networks 

for Vulnerability Assessment 

2013 Detection of the critical nodes that leads to the 

severest CF within an interdependent system. 

[82] Cascading Failures in 

Interdependent Infrastructures: 

An Interdependent Markov-

Chain Approach 

2016 Analyzing coupled systems and interdependent 

systems in terms of reliability and CF propagation 

using Markov chains. 

[83] Cascading Failure Analysis 

Considering Interaction 

Between Power Grids and 

Communication Networks 

2016 Analyzing cyber physical systems in terms of CF 

interactions and proposing metrics and methods to 

improve their security. 
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Table 2.9. Continued. 

Ref Title Year Main aim 

[84] Framework for vulnerability 

assessment of communication 

systems for electric power grids 

2016 Assessing the vulnerability of communication 

systems and proposing metrics to quantify the 

severity of the vulnerability. 

[39] Control of Communications-

Dependent Cascading Failures in 

Power Grids 

2019 Investigating the communication delay and 

communication failure effects on worsening the CF 

propagation and how to model control schemes that 

are more resilient to such issues. 

[85] Cost Efficient Data Aggregation 

Point Placement with 

Interdependent Communication 

and Power Networks in Smart 

Grid 

2019 Proposing a method to optimally place data 

aggregators for sensors (PMUs or smart meters) in a 

power system while considering the CF in the 

communication and power network. 

 

2.8 CF Prediction and Risk Assessment 

Conventionally, power grid operators perform risk assessment during dispatch, in day 

ahead, or after a system change instead of predicting or assessing CFs. In risk assessment, the 

power grid is analyzed against a list of all possible N-1 contingencies and a selected set of N-2 

contingencies using time-domain simulations with detailed system dynamics. This set of all 

possible N-1 and the selected N-2 contingencies can include up to 20,000 scenarios in some 

practical cases, which are depending on the application simulated each hour or even each couple 

of minutes [86]. In addition to applying detailed dynamic models, risk assessment also includes a 

DC reliability analysis that can even go up to N-5 when assessing the risks of blackouts (only the 

subset of the N-k cases that has high probability are considered). Typically, these analyses yield 

multiple vulnerability and criticality metrics that the industry uses to maintain an acceptable level 

of risk. The 0.1 days/year outage is often used, which means that the power system on average, 

and each bus therein, will only suffer a cumulative of 1 day worth of outages every 10 years. 

Another metric is the N-1, which indicates that the system can withstand any individual failure in 

any element in the grid (e.g., transmission line, generator, transformer…etc.). However, these 

metrics and similar metrics are no longer sufficient to prevent large-scale blackouts as evident 

from the blackouts that happened in the past. Moreover, these methods do not always satisfy the 

requirements to perform a real-time online assessment of large, interconnected power systems 
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[87]. Hence, CF prediction and analysis emerged, where the goal is to understand and suppress CF 

events regardless of their perceived rarity. For example, the 2003 blackout and the CF that initiated 

it happened when the system was undergoing an N-5 contingency, which is an exceedingly 

unlikely event from a probabilistic point of view. Nonetheless, operators are still reluctant to use 

new monitoring systems concerning CFs, because they are not rigorously tested to provide 

sufficient verification of their accuracy. However, the ongoing research in CF can lead to an 

improved understanding and testing methods of the newly formulated CF monitoring schemes, 

which should encourage future integration of these methods to the power grid. 

Current CF prediction and risk assessment literature tackles the problem from a variety of 

approaches. One approach is the vulnerability and risk assessment with CF events consideration. 

These works aim to perform the typical severity metrics found in the industry but using CF models. 

A second approach is to assess the stochastic propagation of CFs considering random factors such 

as hidden failures and deviations between the calculated and actual thermal line rating to quantify 

the power grid sensitivity to these unexpected failures. Also, system assessment can be achieved 

by scanning the space of N-k (where 𝑘 ≥ 2) contingencies to quickly find all the CFs that induce 

large-scale blackouts and propose system modifications to mitigate them. Another approach is to 

propose models to predict the propagation and severity of CFs and blackout in real-time. Table 

2.10 provides a summary of CF prediction literature, Table 2.11 summarizes the CF literature with 

focus on risk assessment and Table 2.12 provides a summary of the system assessment approach 

to CF. 

2.9 Literature Review and Benchmarking 

Considering the diverse nature of CF, multiple research works summarizing existing CF 

literature are available. Most significantly are the papers, proceedings, and presentations from the 

IEEE PES CAMS Working Group on Understanding, Prediction, Mitigation, and Restoration of 

Cascading Failures [88]. Among these works is [19], which aims to design a framework for the 

future testing and benchmarking of existing CF modeling and analysis tools, as well as, elaborating 

on the difficulties that prevent having a comprehensive benchmarking standard for CF. 

Furthermore, [9] provides overall information regarding blackouts, detailed CF modeling and 

analysis tools comparison, and a thorough review of existing CF literature. More research work on 

CF modeling and predictions is reported in the references given in Table 2.13. 
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Table 2.10. CF literature review matrix (subtopic: CF prediction). 

Ref Title Year Main aim 

[89] Estimating the Propagation and 

Extent of Cascading Line 

Outages from Utility Data with a 

Branching Process 

2012 Predicting the distribution of line outages in a CF 

using branching process based on utility data. 

[40] Stochastic Analysis of 

Cascading-Failure Dynamics in 

Power Grids 

2014 Proposing a tractable probabilistic model for CF 

dynamics based on the number of failures, maximum 

capacity of failed lines, and estimation errors. 

[90] An Interaction Model for 

Simulation and Mitigation of 

Cascading Failures 

2015 Generating an interaction network from either 

historical or simulated data to quickly find the CF 

propagation paths alongside the critical lines and 

components in the network. 

[91] A Three Stages Decision Tree-

Based Intelligent Blackout 

Predictor for Power Systems 

Using Brittleness Indices 

2018 Using decision trees with brittleness indices based 

on PMU measurements from the grids to predict the 

blackout size following a disturbance in real-time. 

[92] Efficient Estimation of 

Component Interactions for 

Cascading Failure Analysis by 

EM Algorithm 

2018 Estimating the CF propagation from an incomplete 

set of simulations to drastically reduce simulation 

time. 

 

Table 2.11. CF literature review matrix (subtopic: risk assessment considering CF). 

Ref Title Year Main aim 

[41] Composite Power System 

Vulnerability Evaluation to 

Cascading Failures Using 

Importance Sampling and 

Antithetic Variates 

2013 Quickly estimating the expected energy not served 

(EENS) using MC simulations with importance 

sampling. Moreover, the research considers 

overgrown vegetation, relay overtripping, and other 

practical considerations. 

[93] Towards Estimating the 

Statistics of Simulated Cascades 

of Outages with Branching 

Processes 

2013 Estimating the blackout probability distribution 

using branching process. 

[94] Splitting Method for Speedy 

Simulation of Cascading 

Blackouts 

2013 Using splitting method to quickly find CF with low 

probabilities but high impact. 
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Table 2.11. Continued. 

Ref Title Year Main aim 

[95] N-k Induced Cascading 

Contingency Screening 

2015 Screening for CF inducing contingencies in N-k 

space to quickly estimate risk. 

[96] Efficient Splitting Simulation for 

Blackout Analysis 

2015 Proposing a technique to quickly estimate the 

probability of rare events to efficiently estimate 

blackout risk and locate vulnerable lines. 

[97] Estimating Cascading Failure 

Risk with Random Chemistry 

2015 Introducing a Random Chemistry based risk 

estimation that is multiple orders of magnitude faster 

than Monte Carlo simulations in estimating the risks 

of CF. Also, the method introduces a new metric to 

find strategies to reduce CF risk 

[24] A Two-Level Probabilistic Risk 

Assessment of Cascading 

Outages 

2016 Introducing a two-level framework to simulate CFs 

as two phases (slow and fast cascade) and deriving 

risk and EENS from it. 

[98] Quantifying the Influence of 

Component Failure Probability 

on Cascading Blackout Risk 

2018 Deriving the relationship between blackout risk and 

component failure probability. 

[99] Vulnerable transmission line 

identification considering depth 

of K-shell decomposition in 

complex grids 

2018 Using a K-shell decomposition method to locate 

vulnerable lines in large power systems. 

 

Table 2.12. CF literature review matrix (subtopic: system assessment). 

Ref Title Year Main aim 

[42] Mechanical State Estimation for 

Overhead Transmission Lines 

with Level Spans 

2008 Monitoring and estimating the mechanical state 

(e.g., sag levels) of transmission lines to provide 

early warning to operators regarding lines vulnerable 

to tree contacts or dangerous sagging levels. 

[100] Vulnerability Assessment 

Scheme for Power System 

Transmission Networks Based 

on the Fault Chain Theory 

2011 Using fault chain theory to assess the vulnerability 

of transmission lines efficiently. 

[101] Method for evaluating the 

importance of power grid nodes 

based on PageRank algorithm 

2014 Modifying PageRank algorithm to suit the 

importance ranking of power grid buses problem to 

order the buses based on their importance in 

contributing to CFs and blackouts. 
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Table 2.12. Continued. 

Ref Title Year Main aim 

[102] Multi-attribute node importance 

evaluation method based on 

Gini-coefficient in complex 

power grids 

2016 Proposing a node importance evaluation metric 

based on both topological and electrical 

characteristics of the power grid. 

[103] Impact of Topology on the 

Propagation of Cascading 

Failure in Power Grid 

2016 Analyzing blackouts by reducing a grid to its 

topology and analyzing it through branching 

process. 

[104] Fast Screening of Vulnerable 

Transmission Lines in Power 

Grids: a PageRank-based 

Approach 

2017 Modeling CF as a directed weighted graph and using 

PageRank approach to quickly screen the vulnerable 

lines. 

[105] Vulnerable transmission line 

identification using ISH theory 

in power grids 

2018 Using improved structure hole theory to identify the 

most vulnerable transmission lines in power grids. 

[106] Quickest Localization of 

Anomalies in Power Grids: A 

Stochastic Graphical Framework 

2018 Detecting the locations of anomalies (e.g., line 

outages) in a power grid quickly and accurately 

using stochastic approaches. 

 

Table 2.13. CF literature review matrix (literature review and benchmarking). 

Ref Title Year Main aim 

[107] Causes of the 2003 major grid 

blackouts in North America and 

Europe, and recommended 

means to improve system 

dynamic performance 

2005 Analyzing the 3 major blackouts that happened in 

2003 and proposing recommendations to prevent 

future blackouts based on the causes of these 

blackouts. 

[25] Survey of Tools for Risk 

Assessment of Cascading 

Outages 

2011 Reviewing the state of the art in cascading outages 

risk assessments both in the literature and industrial 

applications. Also, it reviews and compares the 

current industry practices for evaluating risks. 

[7] Risk Assessment of Cascading 

Outages: Methodologies and 

Challenges 

2012 Reviewing the methods of estimating risks and 

modeling and analyzing CFs and blackouts. 
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Table 2.13. Continued. 

Ref Title Year Main aim 

[19] Benchmarking and Validation of 

Cascading Failure Analysis 

Tools 

2016 Reviewing the existing models, tools, and 

algorithms to simulate and analyze CF and 

proposing methods and criteria to benchmark and 

validate both future and existing CF tools. 

[9] A Critical Review of Cascading 

Failure Analysis and Modeling 

of Power Systems 

2017 A detailed comparison between the different CF 

modeling techniques and models indicating the main 

pros and cons of each model. 

[108] Impact Assessment of 

Hypothesized Cyberattacks on 

Interconnected Bulk Power 

Systems 

2018 A literature review of cyberattacks, cyber-

infrastructure protection, and mitigation strategies in 

power grids. 
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3 GENERATION OF CASCADING FAILURE CASES 

3.1 Introduction 

CF prediction requires a large amount of data (either simulated cases, historical data, or a 

mixture of both) to cover the many scenarios by which a system can enter a CF and the subsequent 

propagation of these CFs. However, CFs are exceedingly rare events in power systems due to their 

high reliability. Thus, historical data alone are not sufficient for building an accurate CF prediction 

model. Moreover, studies that analyze previous blackouts and historical data, such as [107], only 

provide general information regarding common trends in CFs and blackouts, as well as, comparing 

historical data with the available simulation tools. Hence, these studies cannot be extrapolated to 

other contingencies, other CF paths, or other power grids. Thus, it is important to synthetically 

generate data for CFs and blackouts to train CF prediction models and validate their efficacy. 

To generate CF scenarios, a CF simulation tool is needed. As shown in Section 2.2, 

topological and QSS models do not provide an accurate description of CFs. Thus, it is necessary 

to use dynamic models (i.e., time domain simulation) to generate accurate CF data. In this thesis, 

the COSMIC package is used to generate the data since it is an open-source MATLAB-compatible 

dynamic model for CF simulation. COSMIC has multiple advantages over other dynamic CF 

models. For example, it uses dynamic time steps and includes ZIPE (impedance, current, power, 

and exponential) load model. COSMIC models the power system as a set of differential and 

algebraic equations (DAE) with additional discrete equations to model relays’ action. Following 

this model, the power system state can be defined using three state vectors 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡). 

The three state vectors are described by the following equations [27]: 

     
𝑑𝑥

𝑑𝑡
= f(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) (3.1) 

     g(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 0 (3.2) 

     h(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) < 0 (3.3a) 

     d(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 0 (3.3b) 
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where: 

𝑥(𝑡) corresponds to the continuous state variables and they are described by the set of 

differential equations f(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), e.g., the angular speed in the swing equation. 

𝑦(𝑡) corresponds to the state variables which only have algebraic equations and are thus 

described by the set of algebraic equations g(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), e.g., bus voltages in the load 

flow equations. 

𝑧(𝑡) corresponds to state variables that are binary, 𝑧 ∈ {0,1}, and they are described as a 

function h(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) that activates a counter function d(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) when the 

conditions of ℎ are not satisfied, e.g., relay tripping action modeling where the ℎ function is 

the line temperature equation and the counteraction function 𝑑 is changing the bus impedance 

matrix. 

Hence, from these three state vectors, all the equations and variables in the power system can be 

transformed into equations in the form of (3.1)-(3.3) where the variables are subsets of 𝑥(𝑡), 𝑦(𝑡), 

and 𝑧(𝑡).  

3.2 Data Generation 

Typically, to generate the different CF scenarios Monte Carlo (MC) simulations are used, 

but it was avoided in the studies conducted in this thesis because it has many downsides. MC 

underestimates the probabilities of N-3 and above contingencies whereas CFs are very sparse in 

N-2 and are almost non-existing in N-1 cases. For example, during simulating 31,000 N-2 

scenarios of the US eastern interconnection system, only 953 cases had overloaded lines and only 

38 initiated a cascading event [23]. Hence, only one case out of a thousand cases resulted in a CF. 

Thus, MC simulations would require a very long simulation time to generate sufficient CF 

scenarios. Moreover, the aim of MC simulations is to give a good estimate of the risk (i.e., severity 

multiplied by likelihood) of a power grid or a particular dispatch. However, this means that MC 

does not provide an equal portion of normal and abnormal cases since power systems are highly 

reliable by design. Hence, an alternative approach to avoid the downsides of MC simulations is to 

generate cases such that the number of normal events and the number of undesirable events (CFs, 

partial blackouts, or total blackouts) are close to each other [109]. This goal can be achieved either 
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by sampling from a different probability distribution that gives more weights to N-2+ 

contingencies (e.g., using importance sampling (IS) [110]) or by directly generating events only 

from a sample space that only has N-2+ contingencies. Alternatively, the training itself can be 

skewed to give more importance to abnormal cases accuracy to penalize the system for lumping 

the abnormal cases with the larger set of the normal cases, which can be achieved using a modified 

extreme learning machine (ELM) [111]. However, this approach is more suited if the abnormal 

cases are a good representation of the entire space of abnormal cases, which is not the case in CFs. 

Hence, the preferable approach is to make both the normal and abnormal cases have an almost 

equal number of cases, or at the very least are within the same order of magnitude, using either IS 

or sampling from N-2+. 

For the data generation in this research, the following factors are considered for 

modification between each case: 

• Loading level 

• Fault location 

• Lines out of service 

• Generators out of service. 

These factors are selected based on two criteria, improving the robustness of the trained model, 

and generating meaningful information. For each factor, a different method is used to generate the 

random data. For the loading level, a uniform distribution between 0.6 to 1.5 of the nominal loads 

is used to generate the random datapoints. The uniform distribution is used, rather than the normal 

distribution, to generate more data at the tails of the distribution, as shown in Figure 3.1 that 

compares the sampling of the load using normal distribution and uniform distribution. Generating 

data at the tail of the distribution is crucial because CFs typically happen at the tail of the 

distribution. For fault location, it is generated at a random transmission line giving equal 

probability for each transmission line (i.e., assuming all transmission lines have equal outage 

probability). As for the lines out of service, it is sampled such that 80% of the cases have no lines 

out of service, 16% of the cases have one line out of service, and 4% of the cases have two lines 

out of service. This selection does not reflect the actual power grid, but rather forces the data 

generation to cover multiple topologies to increase the robustness of the prediction model and to 

increase the likelihood of scenarios with CFs. Similarly, generators out of service are sampled as 



 

36 

80% of cases have no generator out of service, and 20% have one generator out of service. In both 

the lines out of service and generators out of service the location of components is randomly 

sampled with equal probabilities.  

 

Figure 3.1. Comparison between sampling 100,000 load ratios using normal uniform 

distribution. 

3.3 Constructing PMU Data 

One of the COSMIC model advantages is that it uses variable time steps to have high 

accuracy during fast cascade (e.g., system transient behaviour immediately after a contingency) 

and high simulation speed during slow cascade (e.g., line heating dynamics). This means that the 

actual timestep between each measurement varies significantly, as shown in Figure 3.2. It can be 

seen from this figure that the gaps between the time steps are very narrow (around 25 𝑚𝑠) during 

the first half second of the simulation, while they reach 0.2 𝑠 when the system is experiencing 

slower dynamics (e.g., between 𝑡 = 3– 4 𝑠). In the dataset used in this thesis, the time step in 

COSMIC is set to be at a maximum of 1 𝑠 (during steady state) and a minimum of 1 𝜇𝑠 (during 

fast transients), but it usually ranges between 10 𝑚𝑠 and 100 𝑚𝑠. Hence, a 100 𝑠 simulation could 

take anywhere between 100 timesteps to >10,000 timesteps1. However, this means that the data 

cannot be directly used as PMU measurements. Hence, to construct the PMU measurements, linear 

 

1 Theoretically, the greatest number of timesteps in a 100s case is 100 × 106. However, in a dataset with 50,000 

cases, the largest number of time steps was 20,000. This disparity between theoretical and actual maximum is because 

power systems oscillate between steady state and fast dynamics. Hence, there can never exist a case with fast transient 

events happening for the full duration of 100s. 
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interpolation is used between the datapoints to obtain the hypothetical PMU measurements (PMUs 

are assumed to be operating at a sampling rate of 60 samples per second). Figure 3.3 shows the 

constructed PMU measurements from a portion of the curve shown in Figure 3.2 where the number 

of PMU points between each time step varies between 4 to 9 points. These calculated points refer 

to the PMU measurements in the ideal scenario without considering PMU’s internal delay, 

communication delay, noise, or the estimation error during transient. However, non-idealities will 

be considered in the next chapters by adding noise, and missing measurements to the constructed 

ideal PMU measurements. 

 

Figure 3.2. COSMIC variable time step. At the start of the contingency, the model uses more 

datapoints for high accuracy while larger time steps are used when there are slower dynamics. 

3.4 IEEE 39-Bus System 

3.4.1 System information and data summary 

The IEEE 39-bus system is used in this thesis as an example of a small-scale power 

network. The single line diagram (SLD) of the system is shown in Figure 3.4, and additional 

information about it are provided in Appendix C. The number of generated cases is 54,756 and 

their description is provided in Table 3.1. These cases are generated according to the methodology 

mentioned in Section 3.2 and the construction of PMU data is done as per Section 3.3. In each 

case, the system is simulated until it collapses, stabilizes or the simulation time ends (100 𝑠 is 

selected as the simulation time). 
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To visualize the distribution of the data, the histogram of the LOL (in MW) in all cases is 

plotted in Figure 3.5 and the Pareto plot (ordered histogram, with the accumulated percentage of 

data) in Figure 3.6. It is observed from these figures that most of the LOL are in the intervals 0-

1000 𝑀𝑊 and 5000-7000 𝑀𝑊 and only a negligible number of cases have LOL between 1000-

5000 𝑀𝑊. This skewed distribution is due to multiple causes. First, most simulation tools, 

including COSMIC, overestimate the LOL by assuming that any nonconverging network (or 

nonconverging island) is suffering from a total blackout. Second, since the IEEE 39-bus system is 

a small system, multiple N-2+ contingencies can cause a significant load-generation imbalance 

that leads to instability issues leading to a total blackout (assuming no RAS intervention). Third, 

even with considering N-2+ contingencies, power systems are reliable. Hence, the most common 

outcome is having cases with 0% blackouts. 

 

Figure 3.3. Linearly interpolating PMU measurements from the variable time steps generated by 

COSMIC. 

Table 3.1. IEEE 39-bus system simulated cases summary. 

Type Number of cases 

Simulated cases 54,756 

Total blackout 24,364 

 Load shedding or partial blackout  8,329 

 No blackout 22,063 
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Figure 3.4. IEEE 39-bus system SLD. 
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Figure 3.5. Distribution of the LOL (in MW) in the generated IEEE 39-bus system cases. 

 

Figure 3.6. Pareto chart of the LOL (in MW) in the generated IEEE 39-bus system cases. 
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3.4.2 Sample scenarios 

To demonstrate the content of each case, three case examples are selected from the 

simulated cases. The first case has a contingency that initiated a CF which then resulted in a total 

blackout, the second case has no outages (system stabilizes after the loss of lines due to the faults 

without any LOL), and the third case has a cascading event (a CF) that ends with a partial blackout 

due to improper islanding. 

In the first example (Case number 5)1, the system is stressed due to multiple loads having 

more than a 25% increase in their nominal values, then a fault happens at line 21 (between buses 

16 and 17, Figure 3.4) causing that line to trip at 𝑡 = 10 𝑠. The loading of the system at the time 

of the fault is described by Table 3.2 where the numbers refer to the load multiplier in comparison 

to the nominal loading of the bus (refer to Appendix C for load buses information and transmission 

line locations). The progression of the cascade is detailed in Figures 3.7 to 3.9. Figure 3.7 shows 

the voltages at each bus against time, Figure 3.8 shows the voltage angle (theta), and Figure 3.9 

shows the rotor speed (omega). It can be seen from these figures that the first trip occurred at 𝑡 =

10 𝑠 (exogenous event) and that the system exhibits unstable oscillations. At around 𝑡 = 20 𝑠, the 

under-voltage load shedding (UVLS) scheme started tripping loads to reduce the dips in voltage. 

It tripped loads at buses 3, 4, 7, 8, 11, 13, 15 and 31. However, this increased the oscillations 

instead of stabilizing the system. Then, at about 𝑡 = 22.4 𝑠 the system was declared to be in a total 

blackout state (assuming worst case scenario) since the dynamic simulation could not converge to 

any operating point. The summary of the events is shown in Figure 3.10 which displays the events 

log of the COSMIC simulation. 

Table 3.2. Loading level at each load in Case number 5 (compared to nominal values). 

Load number 1 2 3 4 5 6 7 8 9 10 

Load multiplier 0.744 1.159 1.370 0.635 0.837 0.798 1.067 1.123 1.270 1.286 

Load number 11 12 13 14 15 16 17 18 19 

Load multiplier 1.400 1.123 1.152 0.646 0.891 0.610 0.874 1.205 1.402 

 

1 The numbering used in this Chapter refers to the internal numbering of cases in the 54,756 data. It is only provided 

for cross-referencing with the dataset. 
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Figure 3.7. Voltage magnitude at each bus (Case number 5). 
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Figure 3.8. Voltage angle at each bus (Case number 5). 

 

Figure 3.9. Rotor speed at each generator bus (Case number 5). 



 

44 

 
Figure 3.10. Case number 5 events log. 

In the second example, Case number 27444, that has the loading levels given in Table 3.3, 

the system has only one fault at line 33 (between buses 26 and 29) that causes the line to trip (at 𝑡 =

10 𝑠). Figures 3.11 to 3.13 show the plot of voltage magnitude, voltage angle, and rotor speed 

against time, respectively. Also, Figure 3.14 displays the events log of the scenario. As seen from 

the plots and the events log, the system has an extended period of oscillations after the tripping of 

starting simulation at t = 0 
writing results to IEEE_39_5_20210525T012401.csv 
 simulation start event. simulation start event. simulation start event. 
simulation start event. 
 Simulating from t=0 s to t=10 s 
 Completed simulation up until t=10 
 Writing simulation results to IEEE_39_5_20210525T012401.csv 
  t = 10.0000: Branch 21 tripped... 
 
 Simulating from t=10 s to t=110 s 
  t = 20.6510: UVLS relay trip at bus 12... 
  t = 20.6510: 1.78 MW of load shedding at bus 12... 
  t = 20.6550: UVLS relay trip at bus 7... 
  t = 20.6550: 80.09 MW of load shedding at bus 7... 
  t = 20.6650: UVLS relay trip at bus 8... 
  t = 20.6650: 82.80 MW of load shedding at bus 8... 
  t = 20.6800: UVLS relay trip at bus 4... 
  t = 20.6800: 144.86 MW of load shedding at bus 4... 
  t = 22.0610: UVLS relay trip at bus 31... 
  t = 22.0610: 2.77 MW of load shedding at bus 31... 
  t = 22.0750: UVLS relay trip at bus 15... 
  t = 22.0750: 63.84 MW of load shedding at bus 15... 
  t = 22.2200: UVLS relay trip at bus 3... 
  t = 22.2200: 59.86 MW of load shedding at bus 3... 
  t = 22.4150: UVLS relay trip at bus 18... 
  t = 22.4150: 44.34 MW of load shedding at bus 18... 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Algorithm failure in the newton step. 
 Completed simulation up until t=22.415 
 Writing simulation results to IEEE_39_5_20210525T012401.csv 
Completed simulation from 0 sec. to 110 sec. 
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the line, but the system then stabilizes at a new operating point and remains stable for the remainder 

of the simulation. Thus, this simulation indicates a case without any loss of load (i.e., no blackout) 

or CFs. 

Table 3.3. Loading level at each load in Case number 27444 (compared to nominal values). 

Load number 1 2 3 4 5 6 7 8 9 10 

Load multiplier 1.402 1.258 1.111 1.139 0.765 1.169 0.880 1.286 0.999 0.873 

Load number 11 12 13 14 15 16 17 18 19 

Load multiplier 1.440 0.856 0.694 1.393 1.281 0.697 0.906 0.667 0.824 

 

 

Figure 3.11. Voltage magnitude at each bus (Case number 27444). 
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Figure 3.12. Voltage angle at each bus (Case number 27444). 

 

Figure 3.13. Rotor speed at each generator bus (Case number 27444). 
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Figure 3.14. Case number 27444 events log. 

In the third example, Case number 470, the loading levels are described in Table 3.4 and 

the system only has a fault at line 27 (between buses 21 and 22) that caused the line to trip (at 𝑡 =

10 𝑠). As seen from Figure 3.16-Figure 3.18 and the events log in Figure 3.15, the system has a 

period of oscillations and almost stabilizes at around 𝑡 = 25 𝑠 , but at around 𝑡 = 28 𝑠 the system 

has an endogenous trip (i.e., cascading event) which is the tripping of line 29 (between buses 23 

and 24). Following that trip, four buses (22, 23, 35, and 36), including two generator buses (G6 

and G7), were isolated from the grid, causing multiple load buses (e.g., buses 4, 7, 8, 12, 15, 21 

and 24) to have partial load sheddings to restore the voltage to acceptable levels, while the smaller 

island collapsed due to over frequency at 𝑡 = 30 𝑠 (assuming worst case scenario, since the smaller 

island did not converge). At the end of the event, the isolated loads, and the load sheddings 

amounted together to a 20% loss of load (863 𝑀𝑊). Hence, this case is considered as a CF with a 

partial blackout.  

Table 3.4. Loading level at each load in Case number 470 (compared to nominal values). 

Load number 1 2 3 4 5 6 7 8 9 10 

Load factor 1.402 1.258 1.111 1.139 0.765 1.169 0.880 1.286 0.999 0.873 

Load number 11 12 13 14 15 16 17 18 19 

Load factor 1.440 0.856 0.694 1.393 1.281 0.697 0.906 0.667 0.824 

 

starting simulation at t = 0 
writing results to IEEE_39_27444_20210525T225442.csv 
 simulation start event. simulation start event. simulation start event. 
simulation start event. 
 
 Simulating from t=0 s to t=10 s 
 Completed simulation up until t=10 
 Writing simulation results to IEEE_39_27444_20210525T225442.csv 
  t = 10.0000: Branch 33 tripped... 
 
 Simulating from t=10 s to t=110 s 
 Completed simulation up until t=110 
 Writing simulation results to IEEE_39_27444_20210525T225442.csv 
Completed simulation from 0 sec. to 110 sec. 
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Figure 3.15. Case number 470 events log.

starting simulation at t = 0 
writing results to IEEE_39_470_20210525T230307.csv 
 simulation start event. simulation start event. simulation start event. simulation 
start event. 
 Simulating from t=0 s to t=10 s 
 Completed simulation up until t=10 
 Writing simulation results to IEEE_39_470_20210525T230307.csv 
  t = 10.0000: Branch 27 tripped... 
 
 Simulating from t=10 s to t=110 s 
  t = 10.5000: UVLS relay trip at bus 4... 
  t = 10.5000: 160.97 MW of load shedding at bus 4... 
  t = 10.5000: UVLS relay trip at bus 7... 
  t = 10.5000: 39.84 MW of load shedding at bus 7... 
  t = 10.5000: UVLS relay trip at bus 8... 
  t = 10.5000: 134.44 MW of load shedding at bus 8... 
  t = 10.5000: UVLS relay trip at bus 12... 
  t = 10.5000: 2.97 MW of load shedding at bus 12... 
  t = 10.5000: UVLS relay trip at bus 15... 
  t = 10.5000: 107.31 MW of load shedding at bus 15... 
  t = 10.5000: UVLS relay trip at bus 16... 
  t = 10.5000: 78.43 MW of load shedding at bus 16... 
  t = 10.5000: UVLS relay trip at bus 21... 
  t = 10.5000: 42.69 MW of load shedding at bus 21... 
  t = 10.5000: UVLS relay trip at bus 24... 
  t = 10.5000: 104.14 MW of load shedding at bus 24... 
  t = 27.33: Over current relay trip at branch 29... 
  t = 27.3300: Branch 29 tripped... 
  t = 27.3300: The network partitioned into two islands... 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Algorithm failure in the newton step. 
 Completed simulation up until t=109.83 
 Writing simulation results to IEEE_39_470_20210525T230307.csv 
Completed simulation from 0 sec. to 110 sec. 
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Figure 3.16. Voltage magnitude at each bus (Case number 470). 



 

50 

 

Figure 3.17. Voltage angle at each bus (Case number 470). 

 

Figure 3.18. Rotor speed at each generator bus (Case number 470). 
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3.4.3 Prediction model input  

To input the data from each scenario to the prediction models that are detailed in the next 

chapters, the data must be converted into a set of vectors or matrices. These vectors are divided 

into two categories: 

• time-independent vectors  

• time-dependent vectors. 

If Case number 1 is used as an example, at 𝑡 = 0.01 𝑠 (time is only relevant to for the time-

dependent vectors), all the generated vectors are detailed in Tables 3.5 to 3.12 and are described 

as follows. The time-independent vectors represent the variables that do not change with time. 

These vectors include initial fault location (Table 3.5), generator outage status at the time of the 

fault (Table 3.6), line outage status at the time of the fault (Table 3.7), and load bus ratio prior to 

any contingency (Table 3.8). Each vector of the time-independent data, excluding load bus ratio, 

represents a binary vector whose values indicate whether the line or generator is having an outage 

(or fault) or not. The load bus ratio refers to the loading of the buses with respect to the nominal 

values (Appendix C). As for the time-dependent vectors, they represent vectors that typically 

change with respect to time. These vectors include: current timestamp (Table 3.9), generators’ 

omega and delta (rotor speed and rotor angle) (Table 3.10), and the voltage magnitude and angle 

at each bus (Table 3.11 and Table 3.12). However, generators’ deltas are not used for prediction, 

because they are internal measurements that are typically inaccessible. 

Table 3.5. Fault location vector (fault at line 37). 

Row 1-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Row 25-48 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Table 3.6. Generator outage vector (no generator outage. 

Row 1-10 0 0 0 0 0 0 0 0 0 0 

Table 3.7. Line outage location vector (line 37 is out of service). 

Row 1-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Row 25-48 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
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Table 3.8. Load bus ratio vector. 

Row 1-10 1.014 0.899 1.442 1.421 0.667 0.847 1.500 0.641 0.994 1.477 

Row 11-19 0.747 0.763 0.824 1.467 1.318 0.620 0.759 1.338 0.635 

Table 3.9. Time vector for a single time step. 

Time 0.01 

Table 3.10. Generators' omega and delta vector for a single time step. 

Row 1-10 -0.653 -0.813 -0.697 -0.670 -0.663 -0.678 -0.675 -0.664 -0.676 -0.667 

Row 11-20 0.988 -1.000 0.922 0.948 0.949 0.941 0.935 0.936 0.9 0.987 

Table 3.11. Voltage magnitude vector for a single time step. 

Row 1-10 0.135 -0.126 -0.158 -0.201 0.339 0.157 0.458 0.436 0.233 -0.601 

Row 11-20 -0.609 -0.525 -0.448 -0.186 -0.159 -0.150 -0.155 -0.157 -0.108 -0.102 

Row 21-30 -0.136 -0.107 -0.102 -0.146 -0.120 -0.148 -0.162 -0.127 -0.111 -0.108 

Row 31-39 -1.000 -0.543 -0.085 -0.087 -0.088 -0.074 -0.100 -0.113 0.298 

Table 3.12. Voltage angle vector for a single time step. 

Row 1-10 0.732 0.631 0.521 0.488 0.481 0.476 0.485 0.731 0.512 0.499 

Row 11-20 0.495 0.516 0.530 0.581 0.548 0.622 0.626 0.595 0.488 0.513 

Row 21-30 0.566 0.440 0.345 0.637 0.346 0.564 0.384 0.405 0.820 -1.000 

Row 31-39 0.564 0.639 0.515 0.638 0.557 0.683 0.461 0.926 0.717 

 

3.4.4 Data normalization 

In artificial intelligence (AI) models, and especially in neural networks (NN), it is preferred 

to normalize the data to avoid coefficients that are close to infinity or close to zero for any of the 

internal parameters of the model. Ideally, this is achieved when the inputs are normalized to have 

a mean of zero and a maximum amplitude of one. Hence, the data for the IEEE 39-bus system has 

been normalized so that all inputs are between -1 and 1. For each input, the values are normalized 

using: 
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     𝑥𝑛 =
2(𝑥 − min(𝑋))

max(𝑋) −min(𝑋)
− 1 

(3.4) 

where: 

𝑥𝑛 is the normalized input, 

𝑥 is the original input, 

𝑋 is the vector of all values of that input (for all scenarios and all timesteps), 

min(𝑋) and max(𝑋) are the minimum and maximum of that input, respectively. 

One main limitation of this normalization method is that it is dependent on the data to find the 

maximum and minimum. Thus, it is possible that the model could generate values outside the range 

of -1 to 1 while connected to the grid (i.e., the values are the local maxima and minima, instead of 

the global maxima and minima). However, in practical systems, this is not an issue, because each 

component in a power grid is expected to operate within a certain operational range before 

automatically tripping it (e.g., bus voltages between 0.9 − 1.1 𝑝𝑢). 

3.5 2383-Bus Polish Winter Peak System 

3.5.1 System information and data summary 

The 2383-bus Polish winter peak system (henceforth POL 2383-bus system) is a publicly 

available model that represents the full Polish network during its winter peak of 1999-2000. The 

system has around 2800 lines, 1800 load buses and the total MW load of the system in it is nominal 

load level is 24 𝐺𝑊. The version of the model used here is based on its MATPOWER 

implementation [112]. This model is used as an example of a large interconnected system to show 

the efficacy of the prediction model presented in Chapter 5. The simulated cases include 15000 

scenarios, described in Table 3.13. In the POL 2383-bus system cases, the data is normalized 

according to the same procedure described in Subsection 3.4.4. However, as for the lines out of 

service sampling, it was sampled such that 80% of the cases have one line out of service, 16% of 

the cases have two lines out of service, and 4% of the cases have three lines out of service. This 

discrepancy between the outage sampling in IEEE 39-bus and POL 2383-bus systems is to increase 

the number of cases with CFs, because the POL 2383-bus system is more reliable than the IEEE 

39-bus system, due to its interconnectedness and larger size. The distribution of the cascading 

cases resulted loss of load (LOL) is shown as a histogram in Figure 3.19 and as a Pareto chart in 
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Figure 3.20, which both show that 99% of the cases have a LOL < 70 𝑀𝑊 with more than half 

the cases having no LOL. Regarding the computer and simulation time, for each case, the 

simulation time was 60 seconds and the required computer time ranged from 180 − 240 𝑠.  

Table 3.13. POL 2383-bus system simulated cases summary. 

Type Number of cases 

Simulated cases 15000 

Total blackout 39 

Load shedding or partial blackout  6505 

No blackout 8456 

 

3.5.2 Sample scenario 

Similar to the IEEE 39-bus system, a sample of the POL 2383-bus system cases is 

presented here. Since normal operation cases do not present any new information compared to the 

previous cases they are not included here. Similarly, all the total blackouts in the POL 2383-bus 

system do not provide any information either because they are due to non-convergence. Hence, 

only a case of a partial blackout is presented here. However, due to the size of the system, only 

select buses are shown. Moreover, load ratios cannot be displayed as there are more than 1800 

load buses. In Case number 163, the system suffers two exogenous faults that lead to line trippings 

at lines 2622 and 666. As seen from Figures 3.21-3.23, the system undergoes some minor 

oscillations before it stabilizes within 5 or 10 seconds depending on the buses. However, since the 

system is huge, the selected 50 buses do not reflect the entirety of the system even though these 

buses are selected from different regions of the system. To better understand the case, Figure 3.24 

shows the events log of the case and it reveals that the network separated into two islands after the 

tripping of line 2622, and the newly formed small grid of 1 generator and 4 load buses collapsed 

due to nonconverging load flow caused by low frequency. The voltage of the affected load buses 

is plotted in Figure 3.24 and it shows that the collapse happened in less than two seconds after the 

grid separation. At the end of the event, the isolated loads amounted to a 50 𝑀𝑊 LOL, which is 

less than a 1% LOL since POL 2383-bus system has a total load of 24 𝐺𝑊, but it is still a 

significant blackout as it almost equates to 60,000 households losing electricity using the estimates 

in [113]. Hence, this case presents a partial blackout following a CF. 
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Figure 3.19. Distribution of the LOL in the generated POL 2383-bus system cases. 

 

Figure 3.20. Pareto chart of the LOL in the generated POL 2383-bus system cases. 
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Figure 3.21. Voltage magnitude at selected buses (POL 2383-bus system Case number 163). 
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Figure 3.22. Voltage angle at selected buses (POL 2383-bus system Case number 163). 
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Figure 3.23. Rotor speed at selected generator buses (POL 2383-bus system Case number 163). 

 

Figure 3.24. Voltage magnitude at isolated buses (POL 2383-bus system Case number 163). 
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Figure 3.25. Events log of POL 2383-bus system Case number 163. 

starting simulation at t = 0 
writing results to sim_case2383_20210616T155251.csv 
 
 Simulating from t=0 s to t=1 s 
 Completed simulation up until t=1 
 Writing simulation results to sim_case2383_20210616T155251.csv 
  t = 1.0000: Branch 666 tripped... 
 
 Simulating from t=1 s to t=5 s 
 Completed simulation up until t=5 
 Writing simulation results to sim_case2383_20210616T155251.csv 
  t = 5.0000: Branch 2622 tripped... 
 
 Simulating from t=5 s to t=30 s 
  t = 5.0000: The network partitioned into two islands... 
  t = 6.7360: UFLS relay trip at bus 1842... 
  t = 6.7360: 0.71 MW of load shedding at bus 1842... 
  t = 6.7360: UFLS relay trip at bus 2054... 
  t = 6.7360: 2.91 MW of load shedding at bus 2054... 
  t = 6.7360: UFLS relay trip at bus 2248... 
  t = 6.7360: 3.37 MW of load shedding at bus 2248... 
  t = 6.7360: UFLS relay trip at bus 2269... 
  t = 6.7360: 4.50 MW of load shedding at bus 2269... 
 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
Reducing Newton step size. 
 
Algorithm failure in the newton step. 
 Completed simulation up until t=29.9667 
 Writing simulation results to sim_case2383_20210616T155251.csv 
Completed simulation from 0 sec. to 30 sec.  
Elapsed time is 238.534823 seconds. 
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4 A CONFIDENCE INTERVAL BASED CASCADING FAILURE 

PREDICTION MODEL FOR POWER SYSTEMS 

4.1 Overview 

Several research works addressed the analyzing and predicting of CF [40], [91], [114]–

[120]. In [40], continuous-time Markov chains are used to extract the blackout probability and 

severity, and feature selection is employed to allow for scalability without decreasing the accuracy. 

In [91], brittleness indices based on phasor measurement unit (PMU) measurements are used to 

predict the system’s blackout size under different failures and maintenance topologies. In [114], a 

real-time probability function is proposed for the expected number of line outages using a 

branching process. In [115], machine learning and a Bayes network are used to predict the next 

likely propagation of the cascade (i.e., the chain of line trippings), whereas [116] uses a neural 

network (NN) to predict cascading events while also considering the effect of hidden failures. 

Consideration of weather factors (i.e., ice) on CF using Self Organized Criticality theory is carried 

out in [117]. In [118], the next line to trip is predicted using the transmission lines’ power flow 

deviation from its nominal value. In [119], the probability distribution function of line outages for 

a given system is predicted using the Galton‐Watson branching process theory. In [120], Support 

Vector Machine (SVM) and probabilistic models are used to build a prediction model for line 

outages. This approach has the advantage of using historical data, but it does not consider the 

system’s transient behavior. 

These prediction methods do provide insights for the operators that help in countering 

blackouts. However, most of them suffer from limitations such as assuming that the power grid is 

static, ignoring real-time operation, or assuming that generator dynamics can be ignored. Thus, it 

is essential to introduce a predictor based on dynamic data, which would require the use of wide-

area measurement devices such as phasor measurement units (PMU), as well as constructing cases 

based on dynamical simulations of the power system. Examples of incorporating PMUs and 

detailed models in predictions are reported in [121], [122], where PMUs were used to predict the 

stability of power systems with renewable generation and to simulate the Arizona blackout. 

Moreover, another limitation of CF prediction (CFP) literature is that it only predicts the next line 

to trip, the expected number of line trips, or the expected size of the cascade [91], [114], [115]. 
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Therefore, these algorithms do not inform the operator about the exact locations of the affected 

areas by the CF event. Hence, there is still a need for a CFP model for the locations affected by 

the CF that is based on dynamical simulations of the power grid. 

Besides, CFP models also need to account for uncertainties because the errors are large in 

such models. The large uncertainty is due to considering multiple unknowns within the power 

system (e.g., load types, hidden failures…etc.). The issue of uncertainty becomes even more 

evident as more items are being predicted, which increases the likelihood of errors [115]. To 

counter this issue, prediction intervals (PI) were implemented in other smart grid fields such as 

generator coherency grouping and wind power forecast [123], [124]. Moreover, including 

prediction uncertainties to models based on deterministic predictions, for example decision trees 

or neural networks (NNs), increases the credibility and reliability of such predictions [125]. 

However, there is no such application of PI in CFP literature. Thus, the usage of PI in CFP to 

increase the reliability of the prediction model and account for the grid uncertainties requires 

further analysis.  

In this chapter, to address the aforementioned limitations of CFP, a load-based PI is 

proposed for real-time CFP. The main contributions of this method are predicting the exact 

locations affected by the CF, as well as using PI instead of point predictions. The usage of PI 

allows the model to account for the uncertainties within its formulation. It thus provides the 

operators with more reliable information regarding the affected areas and the expected size of the 

cascade. Moreover, PI is needed to account for the added complexity of the proposed model in 

comparison to already existing methods such as predicting the next line to trip, or whether a CF 

will occur or not. Also, since the simulations used to build the model include dynamic simulations 

with multiple maintenance topologies, it addresses the static flow issue. Thus, the proposed model 

addresses multiple issues that exist in the current literature, and to the authors’ knowledge, such a 

model has never been implemented before.  

4.2 Prediction Intervals 

Multiple methods to design PI in NN exist in the literature, such as the delta, Bayesian, 

MVE, Bootstrap, and LUBE methods. Each method has its unique advantages and limitations. 

Hence, this section provides a summary of each method. 
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The delta method assumes that the NN is a nonlinear regression model and, thus, it solves 

for the parameters that provide its best fit. Afterwards, the PI can be calculated by estimating the 

variance of the prediction error. Delta method’s main advantage is that it provides an accurate PI 

if the NN model truly represents the best fit of the data. However, the main issue with the delta 

method is that it provides the same constant interval for all predictions. Hence, it does not consider 

when certain inputs correspond to a higher prediction accuracy [126]. 

On the other hand, the Bayesian method aims to minimize the sum of square errors by 

assuming that errors have a normal distribution and then finding the parameters that minimize the 

variance of the distribution. Also, its formulation makes it account for both the errors due to noise 

and incorrect or nonideal modeling. However, its main shortcoming is its huge computational 

demand [126].  

Both the delta and Bayesian methods approach the PI problem as a single problem, but 

MVE addresses PI as two separate issues. In MVE, the PI is again assumed to be a normal 

distribution, but the formulation is divided into two predictions, the prediction of the mean and the 

prediction of the variance. Hence, each one is optimized separately. This formulation allows the 

model to assign different variances for each prediction, effectively solving the main issue of the 

delta method. Moreover, it is a simple model to implement since the first portion is just the typical 

point prediction model. However, the main limitation of this method is the assumption that the 

first model will produce an accurate estimate of the mean. Thus, the generated normal distribution 

parameters, and the intervals produced by them, can have large deviations from the actual 

distribution [126]. 

As for the Bootstrap method, it provides an easy to implement and accurate way to 

produced PIs. In Bootstrap, multiple NNs are trained, then the mean and variance are directly 

extracted from the mean and variance of the different models. Bootstrap’s main pros are its simple 

formulation, its ability to account for error in both noise and misclassifications, and allowing for 

different variances (similar to MVE). However, it has multiple disadvantages. It is dependent on 

the number of NNs used. Therefore, a large number of NNs might be needed to get an accurate PI. 

Also, it is computationally expensive to get the initial training of all the models [126]. 
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Finally, the LUBE method addresses the PI problem as an optimization function with two 

contradictory parameters, the interval width, and the coverage probability. The interval width 

refers to the distance between the upper and lower bounds of the PI, and the coverage probability 

refers to the probability that the true value lies within the PI. The optimization function aims to 

produce two points for each prediction, referring to the upper and lower bound of the estimation. 

Then, a fitness function is calculated based on the interval width and the coverage probability to 

find the fitness of the model and whether it provides better PIs compared to other models or not. 

The method is mathematically rigorous and can provide PIs that are both accurate and narrow. 

However, its main limitation is that the provided optimization function is highly nonlinear. Thus, 

the LUBE method is limited by the robustness of the used solver. Moreover, due to the high 

nonlinearity, heuristic algorithms need to be used, which are not mathematically tractable and can 

be trapped in local minima [125]. Overall, each PI method has different advantages and 

disadvantages. Hence, depending on the requirements of the model different methods should be 

used. 

4.3 Cascading Failure Modeling 

CF occurs when an initial failure in the network causes additional failures in the grid. The 

initial failure is referred to as the exogenous failure and typically it is not the focus of analysis in 

CF. However, the following failures are considered as endogenous failures and are the focus of 

CF. These additional failures are the main mechanism of how a CF propagates, and they can 

happen due to multiple causes. However, the most important causes are modeled as the following 

[3]: 

4.3.1 Transmission lines overheat tripping (Overcurrent tripping) 

Following the initial failure, the redistribution of transmission line power flows can cause 

some lines to overheat. The overheating of the lines can be modeled either by a constant limit, a 

variable limit based on transmission line heating, or a detailed model of circuit breaker behaviour 

(i.e., actual model). The comparison between the three types is demonstrated in Figure 4.1. The 

figure refers to the relation between time and current (normalized by the line’s current rating) in 

determining if a line will trip (if its state lies to the right or upper right of the curve) or not (if its 

state lies to the left or lower left of the curve). In static models, the dotted vertical line indicates 

that the model ignores the time factor and only assumes that the line will trip after exceeding a 
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constant value. Dynamic models extend the formulation by assuming an inverse relationship 

between time and allowed current. Finally, the actual model considers the detailed behaviour of 

the circuit breaker (CB) where the curve is made up of 3 or more subparts referring to the short 

time delay, long time delay, and instantaneous tripping. Moreover, it has an undetermined dead 

band, which could be modeled by sampling from a random distribution or ignored by only 

considering one of the curves or their averages. 

In Figure 4.1, the three models can be compared by considering four different regions. In 

regions 1A and 1B, all models produce the same prediction (1A: normal operation, 1B: trip). In 

regions 2A and 2B, the dynamic and actual models behave the same (2B: normal operation, 2A: 

trip), but the static model differs (2A: normal operation, 2B: trip). In region 3, the static and actual 

models behave the same (trip), but the dynamic model differs (normal operation). In regions 4A, 

4B, and 4C, the actual model is undetermined, but the dynamic model better approximates the 

behavior of the actual model than the static model. Since 1A and 1B regions are larger than the 

other regions, static models do provide good estimates for the overall risk. However, when 

considering real-time prediction or CF events with multiple line trippings, the difference between 

the static model and the more detailed models becomes more significant. Hence it is necessary to 

avoid static models when considering real-time prediction of CFs. 

Assuming a dynamic model, the temperature change and line tripping are modeled in the 

power system as [27]: 

     𝑇𝑖̇ = 𝑟𝑖𝐹𝑖
2 − 𝑘𝑖𝑇𝑖 (4.1) 

     𝑆𝑂𝐶−𝑟𝑒𝑙𝑎𝑦,𝑖  = ς(Ti(t), Fi(t)), 𝑆𝑂𝐶−𝑟𝑒𝑙𝑎𝑦,𝑖 ∈ {0,1} (4.2) 

where: 

𝑇𝑖 is the temperature of the line, in Celsius degrees, compared with the ambient value (20 °𝐶), 

𝐹𝑖 is the current of line 𝑖 in Amperes, 

 𝑟𝑖 is the heating constant, 

𝑘𝑖 is the time constant, 

𝑆𝑂𝐶−𝑟𝑒𝑙𝑎𝑦 is the state of the overcurrent relay, 
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ς is the tripping function, which depends on the temperature 𝑇𝑖(𝑡), line flow 𝐹𝑖(𝑡), and the 

relay’s internal parameters, such as the delay setting 𝜏 and line rating. 

 

Figure 4.1. Comparison between the characteristics of static model, dynamic model, and actual 

line overheating model. 
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4.3.2 Under voltage load shedding (UVLS) 

Following a large disturbance, if a large transmission line or generator becomes out of 

service some loads might sustain an extended duration of under-voltage. In this case, UVLS relay 

trips the load, or a portion of it, in an attempt to restore the voltage. Typically, this action is 

modeled as a binary operation [27]: 

     𝑆𝑈𝑉𝐿𝑆−𝑟𝑒𝑙𝑎𝑦,𝑛  = ξ(vn(t)), 𝑆𝑈𝑉𝐿𝑆−𝑟𝑒𝑙𝑎𝑦 ∈ {0,1} (4.3) 

where: 

𝑆𝑈𝑉𝐿𝑆−𝑟𝑒𝑙𝑎𝑦 is the state of the UVLS relay, 

ξ is the tripping function, which depends on the voltage at load bus 𝑛 (𝑣𝑛(𝑡)), as well as the 

relay parameters such as the threshold voltage (vTh), delay (𝜏), and load shedding percentage. 

Figure 4.2 represents a case where the IEEE 39-bus system initiated an UVLS to restore the 

voltage. The system suffered a contingency at 𝑡 = 129.6 𝑠 (loss of a generator bus). Following the 

contingency, the system sustained critically low voltages for 0.5 𝑠. Afterwards the UVLS tripped 

a portion of the affected loads, which effectively restored the voltage to normal levels (0.9 −

1.1 𝑝𝑢).  

4.3.3 Under frequency load shedding (UFLS) 

Similar to UVLS, if the load sustained a long duration of under frequency state, the UFLS 

trips the load, or a portion of it, to restore the frequency. UFLS is also modeled as a binary 

operation [27]: 

     𝑆UFLS−𝑟𝑒𝑙𝑎𝑦.𝑛  = ϱ(fn(t)), 𝑆UFLS−𝑟𝑒𝑙𝑎𝑦 ∈ {0,1} (4.4) 

where: 

𝑆UFLS−𝑟𝑒𝑙𝑎𝑦 is the state of the UFLS relay, 

ϱ is the tripping function, which depends on the measured frequency at load bus 𝑛 terminal 

(𝑓𝑛), and the settings of the relay such as frequency threshold (𝑓𝑇ℎ), delay (𝜏), and load 

shedding factor.  



 

67 

 

Figure 4.2. Restoration of the voltage following a loss of generation using load shedding in the IEEE 39-bus system. 
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4.3.4 Hidden failures 

Hidden failures (HF) are mainly due to incorrect settings or malfunctioning equipment. HF 

refers to any failure that does not affect the system under normal operation but appears following 

an initial disturbance causing additional contingency. For example, if a circuit breaker (CB) is 

connected to a line with a nominal current of 1 𝑘𝐴 and is supposed to be set to trip at 10 𝑘𝐴, but 

is wrongly set to 5 𝑘𝐴 (or trips at 5 𝑘𝐴 due to a manufacturing error). Then, when the CB trips 

while the current is between 5-10 𝑘𝐴 it will be considered as a HF. Another common HF is tree 

contact failures when the current is lower than the expected tree contact threshold. As these failures 

are hard to predict, they are modeled as a fault with a random probability based on historical data. 

Generally, it is modeled as [127]:  

     𝑝𝑥(𝑡) + 𝑞𝑥(𝑡) = 1;  𝑝𝑥(𝑡), 𝑞𝑥(𝑡) ∈ [0,1] (4.5) 

Where: 

𝑝𝑥(𝑡) is the probability that element x (relay, transformer…etc.) works as expected, 

𝑞𝑥(𝑡) is the probability that element x has a hidden failure.  

Finally, there are additional causes for CF outside of the causes mentioned here. However, 

they are either too difficult to model, such as operators’ mistakes, a unique case of previous 

scenarios (e.g., multiple lines overheat trippings due to severe weather), or too rare (e.g., over-

demand) [3], [19]. 

4.4 The Proposed Method 

4.4.1 Neural network (NN) 

In order to obtain an accurate prediction of the CF propagation, the detailed dynamical 

model of the system is needed to avoid the pitfalls of static simulations and to include the 

previously mentioned CF mechanism properly [23]. However, it is not feasible to run detailed 

dynamic simulations in real-time to predict CF. Thus, it is needed to transform the underlying 

complexity of the dynamic model as a relation between the state of the system and the expected 

loss of load (LOL) at a given load using methods such as neural networks (NN), Figure 4.3. The 

inputs for this model can be the voltages (magnitude and phase) and real power at each load as 
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obtained from the PMU data, while the output can be defined as the blackout size prediction for 

each load bus in the network. Thus, the input is formulated as: 

 

Figure 4.3. Structure of a neural network where hidden layers typically represent the 

approximation of the complexities of the original model. 

  𝑋 = [𝑃𝐿 𝑉𝑃 𝑇𝑃] 

𝑃𝐿 = [𝑝𝐿1 …𝑝𝐿𝑛 …𝑝𝐿𝑁] 

𝑉𝑃 = [𝑣1…𝑣𝑚 …𝑣𝑀] 

𝑇𝑃 = [𝜃1…𝜃𝑚 …𝜃𝑀] 

  𝑚 = 1,2, …𝑀;  𝑛 = 1,2, …𝑁 

(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

 

Where: 
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PL is the real power vector, 

VP and TP are the voltage magnitude and angle vectors, 

 𝑃𝐿𝑛 is the real power at load bus 𝑛, 

𝑣𝑚 and 𝜃𝑚 are the voltage magnitude and angle at bus 𝑚, as obtained from the PMUs, 

respectively, 

𝑀 is the number of buses, 

𝑁 is the number of load buses in the network.  

It is worth noting that under this formulation, the model does not receive any information regarding 

fault locations or line outages to avoid dependency on this data. This dependency is one of the 

primary causes of the propagation of the 2003 US-Canada Northeast blackout, because the system 

had an incorrect estimation of the state of line outages and fault locations [28]. 

Moreover, in order to provide a more accurate prediction and compensate for the missing 

information, 𝑋 at multiple time steps are used for the prediction. Thus, the prediction of the LOL 

is obtained as: 

     𝐿𝑂𝐿𝑛 = ℱn(𝑋𝑡, 𝑋𝑡−1… ,𝑋𝑡−𝛿), 𝛿 ∈ Z≥ (4.7) 

where: 

ℱn is the NN associated with predicting the LOL at load bus 𝑛 and 𝐙≥ is the set of non-negative 

integers. 

However, this formulation is highly likely to produce multiple errors as the error probability that 

at least one load prediction is wrong is: 

     𝑃𝐹 = 1 −∏𝑃𝑛

𝑁

𝑛=1

 (4.8) 

where: 

𝑃𝐹 is the probability that at least one prediction is wrong, 

𝑃𝑛 is the probability that ℱ𝑛 correctly predicted 𝐿𝑂𝐿𝑛. 

It is evident that regardless of the individual accuracies 𝑃𝑛, the failure probability 𝑃𝐹 quickly 

increases as the number of models increases. Thus, it is required to address this limitation of the 
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model. Hence, an additional sub-model is added to suppress this increasing error probability, 

which is data fusion. 

4.4.2 Data fusion 

Since power systems are interconnected systems, there is a high correlation between the 

state of a given load and the state of its surrounding loads. This correlation can be used to improve 

the accuracy of the prediction by correcting wrong predictions through data fusion (DF) techniques 

[128]. Although there are numerous DF techniques mentioned in the literature, in this CF 

prediction scenario the desired outputs are just the corrected inputs. Hence, both the inputs and 

outputs are from the same domain and range. Thus, that the DF can be reduced to the following 

equation: 

     𝐿𝑂𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = ℂ(𝐿𝑂𝐿𝑜𝑙𝑑), 𝐿𝑂𝐿 ∈ ℝ𝑁 (4.9) 

where: 

𝐿𝑂𝐿𝑜𝑙𝑑 is the vector of the original 𝐿𝑂𝐿 predictions, 

𝐿𝑂𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is the vector of the corrected 𝐿𝑂𝐿 predictions, 

𝑁 is the number of load buses in the network, 

ℂ is the mapping or DF function. 

Moreover, as an additional input, the original inputs can also be fed into the DF NN. This additional 

input helps in exploiting the correlations between the inputs and outputs, and in that case, the 

equation becomes: 

     𝐿𝑂𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = ℂ(𝐿𝑂𝐿𝑜𝑙𝑑, 𝑋𝑡, … , 𝑋𝑡−𝛿) (4.10) 

To illustrate how this DF NN works, consider the following illustrative example. Given 

the simple 7-bus power system shown in Figure 4.4, and assuming that after a contingency the 

LOL prediction algorithms predicted the following. Loads 2,3,4,5 will suffer from a LOL, but 

loads 1 and 6 will not have a LOL. Then, under this scenario, the DF NN would either generate 

the same output if it considers it correct (i.e., 2,3,4, and 5 has LOL, 1 and 6 does not have a LOL) 

or modify the prediction to the most likely outcome. In this specific grid layout however, it is 

unlikely that load 6 (bus 7) does not have a LOL if load 3 (bus 4) has a LOL. Hence, the DF will 
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transform the prediction to the most likely outcome based on its training, which could be for 

example LOL in loads 2,3,4,5, and 6 while load 1 is the only load with no LOL as shown in Table 

4.1. Similarly, in more complicated grids the DF NN compares a prediction result with its previous 

training dataset to detect and correct highly unlikely predictions. Finally, following the modified 

output from the DF NN, the LOL predictions are lump summed into a single predictor of the total 

blackout size (if any) using prediction intervals, which are added as the final sub-model of the 

prediction model. 

 

Figure 4.4. A simple 7-bus system with 1 generator and 6 loads. 

Table 4.1. Prediction correction using data fusion for the 7-bus system example. 

Load index 1 2 3 4 5 6 

Original Prediction (𝐿𝑂𝐿𝑜𝑙𝑑) 0 1 1 1 1 0 

Modified Prediction (𝐿𝑂𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) 0 1 1 1 1 1 

 

4.4.3 Prediction intervals 

Typically, NNs are used to produce classifications or point predictions. However, these 

predictions lack crucial information, which is the probability that these predictions are correct. 

This uncertainty is even more critical as the number of predictions increases, which is the case in 
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this proposed model since each observed load has its LOL prediction. Thus, PIs are needed. 

Typically, PIs are the intervals at which there is a probability of 1 − 𝛼 that the generated model 

will have its PI covering the actual value [125]. To achieve this, the Lower Upper Bound 

Estimation (LUBE) method, which is based on minimizing the Coverage Width-based Criterion 

(CWC) given a set D and is used. This method is selected over the other PI methods since it 

provides better PIs as it allows different outputs to have different PI widths and it does not require 

a huge computational burden. The LUBE method for PI is defined as follows [126]: 

     𝐷 = {(𝑋, 𝑌)𝑧=1
𝑍 |𝑋𝑧 ∈ ℝ

𝑔, 𝑌𝑧 ∈ ℝ} (4.11) 

     𝐶𝑊𝐶 = 𝑁𝑀𝑃𝐼𝑊(1 + 𝜈(𝑃𝐼𝐶𝑃)𝑒−𝜂(𝑃𝐼𝐶𝑃−𝜇)) (4.12) 

     𝑁𝑀𝑃𝐼𝑊 =
𝑀𝑃𝐼𝑊

ℛ
 (4.13) 

     𝑀𝑃𝐼𝑊 =
1

𝑍
∑(𝑈(𝑋𝑧) − 𝐿(𝑋𝑧))

𝑍

𝑧=1

 (4.14) 

     𝑃𝐼𝐶𝑃 =
1

𝑍
∑𝑐𝑧

𝑍

𝑧=1

 (4.15) 

     𝑐𝑧 = {
1, 𝑦𝑧  ∈ [𝐿(𝑋𝑧), 𝑈(𝑋𝑧)]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.16) 

     𝜈 = {
0, 𝑃𝐼𝐶𝑃 ≥ 𝜇
1, 𝑃𝐼𝐶𝑃 < 𝜇

 (4.17) 

Where: 

𝑍 is the number of data points, 

𝑔 is the number of features, 

MPIW is the mean prediction interval width, 

NMPIW is the normalized MPIW, 

PICP is the prediction interval coverage probability, 

ℛ is the output range y (the difference between the maximum and minimum value of y in the 

dataset), 
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𝜂 and 𝜇 are hyper-parameters of the LUBE method (𝜇 can be set to the desired accuracy 

(i.e., 1 − 𝛼) and 𝜂 can just be set to an arbitrarily large exponent), 

𝑈 and 𝐿 are the upper and lower bounds of the prediction, 

𝑦𝑧 is the desired output (i.e., the real value), 

𝑐𝑧 indicates whether the desired output for a given input 𝑋𝑧 is within the prediction interval or 

not and 𝜈 is a slack variable. 

Thus, instead of minimizing the error between the predictions and desired outputs, and having a 

single point prediction for each input, by training the NN using CWC, each prediction becomes a 

set of an upper and lower limit with an associated probability 1 − 𝛼 as shown in Figure 4.5. Hence, 

based on the previous formulation, the optimization of CWC aims to minimize two competing 

functions, the width of the prediction (i.e., NMPIW) and the accuracy of the prediction (i.e., PICP), 

to achieve a range that is both narrow and accurate. 

A main limitation in using PI in a load point CF prediction framework is the scarcity of 

cases with partial load shedding. For example, in the given set of 20,000 cases, a bus could have 

around 8900 cases with total blackouts and 10900 cases with no blackouts, but only 200 cases with 

partial load shedding. This severe skewness in data makes the correct prediction of these cases 

irrelevant as it contributes to 1% of the cases. Moreover, even with considering negative sampling 

techniques, there are insufficient cases to validate the model [129]. Hence, the PIs will only be 

applied to the total blackout rather than individual buses, while individual buses will have the 

conventional point prediction NN. However, if sufficient cases with partial load shedding are 

generated, then a PI can be designed for each individual bus. 

4.4.4 Full model 

Incorporating both the PI and DF into the model, the final model becomes as shown in 

Figure 4.6. The full model is detailed as follows. Each 𝐿𝑂𝐿𝑛 prediction model outputs a single 

point predictor of the expected LOL at bus 𝑛. Then, these predictions for the load losses vector (𝑌) 

along with the input vector (𝑋) are fed into the DF model, which outputs the corrected load loss 

per load. Then, these outputs are inputted to the PI model, which is based on the LUBE method 

described in Subsection 4.4.3. Also, similar to data fusion, the original input could be added to the 

PI model as a feedforward input.  
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4.5 Results and Discussion 

4.5.1 Case generation and simulation 

As stated in Section 4.1, one of the main limitations of previous CFP methods is only using 

static simulation or, more generally, ignoring the dynamics of the power network. Thus, it is crucial 

to simulate cases that account for the dynamics of the power network, specifically the dynamics 

relating to CF. Thus, the COSMIC package was used for simulation since it is an open-source 

MATLAB-compatible detailed dynamic simulation [27]. It has multiple advantages over other 

approaches, such as variable time steps and more detailed line heating dynamics. Also, it can 

simulate all the cases mentioned in Section 4.3 by which CF occurs. In COSMIC formulations, 

OC relays directly trip the affected lines. However, UVLS and UFLS relays are implemented as a 

4-phase tripping, where each phase trips 25% of the pre-contingency load and waits for 0.5 𝑠 

before initiating another phase (if the UV or UF is still sustained). However, COSMIC does not 

directly simulate hidden failures. Thus, it was introduced by randomly sampling N-2 and N-3 

failures. 

 

Figure 4.5. Deep neural network (DNN) model for generating prediction intervals (PI). 

The IEEE 39-bus system (New England 10 machine power system) is used for evaluating 

the model. The simulated CF cases constitute 20,000 cases with different loading levels, repair 
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scenarios, and faults. Each case includes the full dynamical simulation of the case until either the 

system collapses, the cascading event saturates, or the simulation time ends (100 seconds). Table 

4.2 summarizes the dataset (partial blackout includes both improper islanding and emergency load 

shedding). The large percentage of blackouts is attributed to two factors, the large number of N-3 

contingencies and more importantly the fact that dynamic models tend to overestimate blackouts 

due to non-convergence [27].  

 

Figure 4.6. Load-point based CFP with prediction intervals and data fusion. 

Table 4.2. IEEE 39-bus system simulated CF cases summary. 

Type Number of Cases 

Simulated cases 20,000 

   - total blackout 8,933 

   - load shedding or partial blackout  3,015 

   - no blackout 8,052 

 

4.5.2 NN specifications and data training  

After simulating all the cases, the system’s data recorded at each time-step are used as 

inputs for the training (voltage magnitude and angle). Also, the state of each load at the end of the 

simulation is used as the desired output. In addition, to avoid contaminating the training set with 
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the test set, the same train and test sets are used for all the components of the model. As for the 

ratios between training, validation, and testing, the data were split into 70% training, 15% 

validation, and 15% testing (both training and validation sets are used in training to avoid 

overfitting, while the results are based on the testing set only). All simulations are conducted in a 

PC with an i7-7700 processor (3.6 GHz quad-core processor), 16 GB DDR4 RAM, and no 

dedicated graphics card. 

The implementation of the model is done as follows. The first component, the LOL 

prediction model, is built as 19 models since the IEEE 39-bus system has 19 load buses. As for the 

number of cycles, it is set to 3 samples (i.e., 50 𝑚𝑠 delay assuming 1 sample per cycle in a 60 𝐻𝑧 

system). Each model is built as a separate NN. The average training time for each model is 

5 𝑠/𝑒𝑝𝑜𝑐ℎ and 20 𝑒𝑝𝑜𝑐ℎ𝑠 on average are needed to reach maximum validation accuracy. 

Moreover, since models can be trained in parallel, the number of models will not affect the total 

training time if enough processors are used. The second component, the DF model, is a single NN, 

with 19 outputs. Alternatively, this component can also be constructed as 19 models with a single 

output each. Each epoch requires an average of 2 𝑠 and five epochs to reach maximum accuracy. 

The third component, the PI model, is built as a NN with two outputs (lower limit and upper limit). 

However, since the LUBE optimization function is nonlinear and non-differentiable, typical 

gradient descend algorithms cannot optimize it properly. As such, stochastic techniques are needed 

to optimize this component. The selection of the optimal stochastic algorithm is beyond the scope 

of this research. As such, the particle swarm optimization (PSO) technique is used since it is a 

general-purpose stochastic algorithm that can provide accurate global optima in a variety of cases 

[130]. The training time is 40 𝑠/𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and the algorithm require around 30 iterations to reach 

maximum accuracy. The relatively long training time can be reduced by further tuning the PSO or 

using a more advanced algorithm. However, this time is still sufficient for CF prediction 

applications even for hour-ahead modeling. 

4.5.3 Prediction model 

Training the LOL prediction models (PM) on the IEEE 39-bus system dataset, the accuracy 

of detecting the LOL in the testing set is 90.9% on average and ranged from 89.5% to 92.2%, and 

it is detailed in Figure 4.7. The relatively low prediction accuracy is due to twofold limitations. 

First, the uncertainty of HF, as the model needs to predict the accuracy while accounting for the 
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cases where hidden failures exist. Thus, three scenarios can occur: no HF occurs, a HF occurs but 

does not significantly affect the final CF propagation, or a HF occurs and significantly changes the 

propagation of the CF. Hence, if the second scenario happens, the model must compromise 

between having a conservative estimate of the prediction (e.g., predict the output based on the 

worst possible HF) or not. Second, the model, by design, has no information regarding the 

locations of the faults and only uses three cycles after the fault, so there are cases where this 

information is not sufficient to produce a prediction. 

 

Figure 4.7. Testing set accuracy for LOL prediction models for the IEEE 39-bus system. 

The next step in building the prediction model is to add the first additional component, the 

DF component. DF is applied as described in Subsection 4.4.2 (with feedforward from the input). 

The accuracy of the predictions increased for the training dataset by an average of 1.6%, as 

indicated in Figure 4.8. The accuracy for the testing set for each model now ranges from 91.5 to 

93.3, with an average of 92.5. Thus, DF manages to correct 17.5% of the errors in the predictions 

on average (i.e., the average of the errors decreased from 9.1% to 7.5%). The reason for using the 

input feedforward model is that it significantly increases the accuracy without significantly 

increase the training time (the accuracy improvement when using the model without feedforward 
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is 0.8% on average). Also, a second observation is that the DF significantly reduced the errors in 

the models with the least accuracy. Thus, the deviation in accuracy between models is reduced.  

 

Figure 4.8. Testing set accuracy for LOL prediction models for the IEEE 39-bus system after 

applying data fusion (DF). 

Finally, adding the PI component (without feedforward from the input) to output a single 

range describing the expected LOL of the system, the model achieved a 90% confidence interval 

(CI) with intervals having a width ranging from 0.1% to 10% with an average width of 5% of the 

total nominal load. The feedforward was not added in the PI as the stochastic training time 

significantly increased without notable improvement in the accuracy. Figure 4.9 shows 35 

randomly selected cases, with correct predictions and various blackout percentages. Since the 

IEEE 39-bus system is relatively small and has very few redundancies in transmission lines, almost 

all blackouts larger than 20% results in the system collapsing with 90% or above blackout. Thus, 

it is rare to find cases with blackouts ranging between 20% and 90%. 

To show the PI operation in real-time, the output of the PI following a disturbance in one 

of the simulated IEEE 39-bus system cases is presented in Figure 4.10. From the figure, the output 

of the model indicated that both the upper and lower limits are close to 0. Hence, the expected 
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blackout size is 0%. However, after the endogenous fault, the prediction increased its upper limit 

to 10% indicating that a partial blackout could happen, but it is unlikely since the lower limit is 

still 0%. Then, after the system stabilized, the PI returned to upper and lower limits of 0%, which 

indicates that the predictor is predicting normal operation (i.e., 0% blackout). 

 

Figure 4.9. PI for a sample of the simulated cases (ordered by lower bound prediction). 

Finally, comparing the obtained results with existing works, the width of the proposed PI 

(5%) is significantly narrower than the method proposed in [91] since its proposed brackets are 

10-30% of the total nominal load, with an average width of 24%. However, this model uses a 90% 



 

81 

CI with a 50 𝑚𝑠 delay, while the other model uses a 98.5% CI with 500 𝑚𝑠 delay. As such, each 

model provides a different compromise between accuracy, speed, and interval width. In addition, 

this model includes the effect of hidden failures, which is ignored in [91]. Hence, the reported 

accuracy is an overestimate. The comparison between the proposed model and the existing model 

for PI-based CFP is summarized in Table II. Also, an additional PI model with 95% CI is added 

for comparison. 

 

Figure 4.10. PI output in real-time following a disturbance. 

Table 4.3 Models’ comparison of different prediction interval schemes. 

Model Delay Average Interval Width Accuracy Hidden Failures 

LOL-DF-PI 50 𝑚𝑠 5% 90.1% Yes 

LOL-DF-PI-95% 50 𝑚𝑠 57% 95.4% Yes 

3-Stage-DT [91] 500 𝑚𝑠 25% 98.5% No 
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4.6 Summary 

In this chapter, typical CF propagation methods are explained to show the importance of dynamic 

models in comparison with static models. In addition, a new model is proposed for CF prediction 

in real-time applications. The proposed method reduces the problem of CF prediction to a set of 

parallel LOL predictors that further combine into a single predictor using DF and PI techniques. 

DF is used to exploit the correlation between the LOL predictors and the inputs to improve model 

accuracy. Moreover, PI is used to address a common limitation in conventional NN predictors, 

which is the lack of a reliability indicator. The results indicate that the model can detect the location 

of the buses affected by the cascade and provide narrow PI for the expected LOL in the grid using 

limited information and minimal delay, even while HF and multiple failures are considered. In 

conclusion, this model is expected to be applicable as a visualization or warning tool for the 

operators to react quickly and correctly to suppress contingencies that could propagate into a CF 

or a large-scale blackout. 
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5 A LOAD-POINT-BASED ONLINE CASCADING FAILURE 

PREDICTION FRAMEWORK FOR LARGE 

INTERCONNECTED POWER SYSTEMS  

5.1 Introduction 

Several published works address the analysis and prediction of CF in the literature [40], 

[91], [114]–[120]. Despite the variety of approaches and techniques, the majority of the current 

CF prediction (CFP) methods have still some limitations. First and foremost, these techniques do 

not precisely specify the areas and buses affected by a CF event. For example, although some of 

these techniques predict the next line to trip, reveal the expected number of line trips, and predict 

the overall expected size of a cascade, they do not precisely pinpoint the effects of CF on the 

individual system buses [40], [91], [118]–[120]. As such predictions are supposed to feed and 

trigger emergency control modules, it seems beneficial to share more detailed information about 

the impacts of CFs on the buses of interest. 

Techniques for remedial action scheme (RAS) emergency control include actions such as 

load shedding and controlled islanding, and sufficient information about the state of the power 

system is needed to apply these emergency actions. Considering controlled islanding, for instance, 

an emergency islanding based on coherency groups of generators and minimization of power 

mismatch is discussed in [131]. Similarly, [132] introduced an islanding technique in case 

controlled islanding is needed following a fault. However, both algorithms require knowledge of 

whether a CF would cause uncontrolled islanding at a given region or not. As such, existing CFP 

methods that predict the next line trip or blackout percentages provide incomplete information for 

such emergency control techniques as they do not necessarily predict if a CF would lead to 

uncontrolled islanding or not. On the other hand, if a prediction algorithm can predict the buses 

affected by a CF, it is consequently capable of detecting the areas affected, i.e., islanded regions. 

Thus, several islanding methods reported in the literature, such as [131], [132], can be triggered 

with faster reaction time and better accuracy because more detailed information regarding the state 

of the network is revealed in the first place. 
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Another limitation in CFP is that most existing works are not ideal for real-time operation 

and are limited to planning-stage studies. For example, generator dynamics are ignored in [114] 

and [118]. Moreover, some methods capture system transients, but require a long time-series of 

data before making the prediction [91]. Additionally, most of these methods are slow to detect the 

final blackout size due to negligence of the transient state of the network and its dynamics [133]. 

Thus, it seems worthwhile to introduce a predictor that can utilize dynamic measurements obtained 

from PMUs, i.e., capable of updating the prediction based on each single data sample received 

from the measurement device. Such an approach can substantially increase both the speed and 

accuracy of CFP. Recurrent neural network (RNN) long short-term memory (LSTM) cells can 

accept temporal sequences of data and hence be used for this purpose. Successful applications of 

RNN-LSTM to predict dynamic events using PMU data are reported in [21]. In addition, LSTM 

allows for predictions to be produced at each time step, instead of waiting for a long delay period 

as in [91]. Hence, the application of LSTM for CFP can be further investigated based on PMU 

data to facilitate the incorporation of transient behavior in this area. 

Last but not least, one can note that scaling is a major issue in CFP models when applied 

to large interconnected systems. In such cases, the number of inputs and parameters can grow 

exponentially depending on the model used, substantially increasing the computational complexity 

of the resulting model. This issue is partially addressed in [40], [91], but the proposed techniques 

do not consider the importance and ranking of transmission lines and buses [134]. However, this 

limits the efficacy of the model as the criticality of lines and buses is an important aspect of CF 

propagation [100]. Nonetheless, depending solely on critical lines and buses could result in a 

distorted view of the network, as a large portion thereof could be unobservable by the set of critical 

buses. Thus, it seems beneficial to use information theory and probabilistic models to find the ideal 

candidate features to input to the prediction models and minimize the loss of information. 

In this chapter, a load-based real-time CFP framework is introduced to address the 

limitations of existing CFP literature. The main contribution of this method is the load perspective 

approach to CFP, which provides operators with more reliable information regarding the affected 

areas and the expected size of the blackout. Also, by incorporating the Theil index and eigenvector 

centrality for data selection, the model can scale to large interconnected systems without a 

significant loss of information. Moreover, higher order probabilistic moments are used to also 
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maximize the amount of retained information from a small set of inputs further aiding in the scaling 

of the model. As a secondary contribution of this work, RNN-LSTM cells are used to train the 

model to address the static flow issue and capture transient data from PMUs. Finally, several 

maintenance topologies, multiple failures, different loading levels, and various power dispatches 

are considered to make the model more robust to system changes. All in all, the model addresses 

multiple issues existing in the current CFP literature, and to the best of the authors’ knowledge, 

such implementation has never been applied before. 

5.2 Load-Point-Based Ensemble RNN  

5.2.1 Overview 

The main goal of a CFP model is to predict the propagation and extent of a potential CF 

using available data, e.g., PMU measurements, with the shortest delay and acceptable accuracy. 

Ideally, dynamic simulations are needed for such predictions to avoid the pitfalls of static 

simulations [27]. Running real-time dynamic simulations to identify and control the grid for a 

possible CF may not be feasible, so it might be helpful to transform the model into a machine 

learning prediction problem, which facilities estimation of the underlying complexities using 

methods such as neural networks, decision trees, or similar algorithms [27], [91]. However, this 

may lead to a major challenge with respect to capturing transient dynamic behaviors, as a constant 

delay 𝑑 is needed to feed the model the vector of delayed inputs (𝑥 = 𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑑) to output 

the prediction (𝑦 = 𝑦𝑡) [91]. For example, Figure 5.1 (a) represents a model with a two time-step 

delay ( 𝑥 = 𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, 𝑦 = 𝑦𝑡). To address this shortcoming, RNNs accept temporal sequence 

inputs and can hence produce output 𝑦𝑡 based on both the inputs 𝑥𝑡 and the state of the system 𝑠, 

rather than depending on the inputs alone [21]. Moreover, as shown in Figure 5.1(b), the RNN 

calculates its predictions using all inputs in 𝑡 ∈ (−∞, 0]. This interaction is elaborated by Figure 

5.1(c) which shows the unfolded structure of RNN cells. Hence, models based on RNN cells can 

produce outputs for each time 𝑡, so building separate models for different delays is not required. 

Although the use of an RNN solves a major issue in CFP, the curse of dimensionality may 

deteriorate model performance. This is because RNN training time rapidly increases as the training 

set size and number of RNN inputs increase [135]. To partially mitigate this effect, a load-based 

ensemble of RNNs is used. Specifically, instead of building a single RNN model to represent the 
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relationship between system state and loss of load (LOL), an ensemble of RNNs is employed as 

shown in Figure 5.2 where each essential load1 has a separate RNN to predict its LOL. This load-

based approach to divide RNNs achieves two benefits in addition to minimizing the negative 

impacts of the curse of dimensionality; it provides more meaningful information because the areas 

affected by the CF can be visualized, and it also allows for parallel processing, which aids in the 

scalability of the model to large-scale interconnected networks. 

 

Figure 5.1. (a) NN structure (for a two time-step delay), (b) RNN structure, and (c) RNN 

structure after unfolding the internal state feedback loop. 

However, having an ensemble of RNNs by itself is not sufficient to guarantee scalability. 

This is because the ensemble can reduce the size and training time of individual RNNs but cannot 

reduce the number of RNN inputs (i.e., the ensemble would turn a model with 𝑀 inputs, 𝐶 cells, 

and 𝑁 outputs into 𝑁 models with 𝑀 inputs, 𝐶 − 𝑁 + 1 cells, and 1 output. Hence the number of 

 

1 Essential load refers to any load(s) of interest to the operator or decision maker. If enough resources are available, 

then all buses in the network could be considered as essential load. Hence, the ensemble would be applied to all buses. 
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inputs is the same albeit the size of the model is reduced). To address this limitation, ranking 

indices and weighted average probability indices are introduced for input selection, which 

guarantees the scalability of the model by limiting the number of inputs even in large networks. 

 

Figure 5.2. Structure of the proposed RNN ensemble. 

5.2.2 LSTM structure 

To build the RNN ensemble, each essential load requires a separate RNN that is comprised 

of one or multiple LSTM cells shown in Figure 5.3. The behavior of each LSTM cell can be 

described as follows [136]. First, the LSTM has three inputs (current input 𝑋𝑡, previous cell 

state 𝐶𝑡−1, and previous hidden state 𝐻𝑡−1) and two outputs (cell state 𝐶𝑡, and hidden state 𝐻𝑡). The 

inputs 𝑋𝑡 and 𝐻𝑡−1 are passed through the forget gate 𝑓𝑡: 

     𝑓𝑡 = σ(𝑊𝑓 . [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑓) (5.1) 

where: 
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𝑊 and 𝑏 are the weightings and biases for each gate within the LSTM (the subscript indicates 

the corresponding gate), 

𝜎 is the sigmoid activation function1. 

Then, the same inputs are passed again through an auxiliary gate 𝑘𝑡 and an input gate 𝑖𝑡: 

     𝑘𝑡 = tanh(𝑊𝑘. [ 𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑘) (5.2) 

     𝑖𝑡 = σ(𝑊𝑖. [ 𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑖) (5.3) 

where: 

𝑡𝑎𝑛ℎ is the tanh activation function2. 

Subsequently, the outputs from these three gates merge with the previous cell state to produce the 

new state of the cell: 

     𝐶𝑡 = 𝑓𝑡⨂𝐶𝑡−1 + 𝑖𝑡⨂𝑘𝑡 (5.4) 

where: 

⨂ is bitwise multiplication. 

Finally, to obtain the new hidden state 𝐻𝑡, 𝑋𝑡 and 𝐻𝑡−1 are passed through the output gate 𝑜 and 

merged with  𝐶𝑡−1 through a 𝑡𝑎𝑛ℎ activation function: 

     𝑜𝑡 = σ(𝑊𝑜 . [𝐻𝑡−1, 𝑋𝑡] + 𝑏𝑜) (5.5) 

     𝐻𝑡 = 𝑜𝑡⨂tanh (𝐶𝑡) (5.6) 

This structure of gates makes LSTM suitable for capturing power system dynamics as the 

output of the LSTM depends on two cell states (the output state and the hidden state). This dual 

state structure of LSTM allows it to simultaneously capture the slow and fast dynamics of the 

power system as LSTMs can detect both long- and short-term dependencies [137]. For instance, if 

 

1 Sigmoid activation function is defined as: σ(𝑥) =
1

1−𝑒−𝑥
 

2 Tanh activation function is defined as: tanh(𝑥) =
ex−𝑒−𝑥

ex+𝑒−𝑥
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a disturbance happens while a line is also overheating, a single LSTM can track the effects of both 

the disturbance (short-term event) and the overheating (long-term event) without suffering from 

the vanishing gradient problem. 

 

Figure 5.3. Structure of a single LSTM cell. 

5.3 Ranking Indices and Reduced Input Set 

Selecting only the most critical information as inputs is important for limiting the number 

of inputs to each RNN model within the ensemble. However, no single universal ranking index 

can measure the importance of buses and lines in power networks [134]. Thus, it is important to 

consider multiple indices to reduce biases towards any specific ranking metric. To achieve this 

goal, three ranking indices are introduced based on node distance, entropy change, and bus 

centrality. Mathematically, this ranking of buses to select the top buses represents a projection of 

the higher dimension point of all state variables (e.g., all voltages magnitude and angle) to a 

dimension with only the states of the important buses in the network (e.g., the voltages magnitude 

and angle of five buses). To illustrate this projection, Figure 5.4 represents the projection of 

classifications in an ℝ3 space into an ℝ2 space. In the figure, any information relating to the z-axis 

is not retained and a new space is formed for the prediction. However, it is still possible to build a 

classifier to differentiate between the two sets of points using only ℝ2 space as the 𝑧 axis 

information was not essential. A similar concept applies to the prediction model proposed here, 

but the dimension reduction cannot be visualized as the number of states even in a small power 

grid (e.g., IEEE 39-bus system) is too large to visualize. 
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After selecting the buses based on node distance, entropy change, and bus centrality, 

average weighting and statistical moments are used to merge all indices together. Finally, the 

inputs are selected based on available PMU data and passed to the RNN-LSTM ensemble model. 

 

Figure 5.4. Projection of classifier points in an ℝ3 space into an ℝ2 space 

5.3.1 Node distance 

Considering graph theory, if a power network is assumed to be static, then it can be 

represented as a graph where buses are nodes and transmission lines are edges [138]. Under this 

assumption, the distance (number of edges) becomes the most important correlating factor between 

buses (nodes ℵ). Using the graph shown in Figure 5.5 which represents an 18-bus system as an 

example, if a fault happens at Node 0 (ℵ0), then only ℵ1 and ℵ2 will be affected as they are in 𝐴1 

area, and only when these nodes fail, the fault will propagate to other nodes via 𝐴2 edges (e.g., 𝐴2 

area). Subsequently, ℵ5, which is connected to the faulted bus via an 𝐴4 edge, would only fail as 

the 4th failure even when considering the shortest path ( 𝑡0: ℵ0 → 𝑡1: ℵ1 → 𝑡2: ℵ3 → 𝑡3: ℵ4 →
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𝑡4: ℵ5). Similarly, if the fault is at ℵ5, then it would only propagate to ℵ0 as the 4th failure. Hence, 

as the number of edges between nodes increases the effect of their faults decreases. Thus, a ranking 

index for the importance of a bus can be formulated as follows: 

 

Figure 5.5. Network graph representation and fault propagation for an 18-bus power system 

(only nodes of interest are numbered). 

Assigning bus 𝐵 as the observed bus1, the ranking factor of each bus 𝑖 in the network from the 

perspective of 𝐵 is calculated as: 

 

1 The observed bus 𝐵 refers to the bus that is currently being observed using a single RNN in the RNN ensemble. 

Hence, for each essential bus (or all buses if considering that all buses as essential buses), there will be an RNN model 

where that bus is the observed bus 𝐵. 
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     𝑤𝑖,𝐵,𝑑 = {
𝛼−𝑑𝑖,𝐵 , ∀𝑖 ∈ Ω𝑑𝑚𝑎𝑥 
0, ∀𝑖 ∉ Ω𝑑𝑚𝑎𝑥 

 (5.7) 

     Ω𝑑𝑚𝑎𝑥 = {𝑖|𝑑𝑖,𝐵 < 𝑑𝑚𝑎𝑥} (5.8) 

Where: 

𝑤𝑖,𝐵,𝑑 is the weighting of bus 𝑖 with respect to bus 𝐵 according to the distance index, 

𝛼 is the attenuation factor, 

𝑑𝑚𝑎𝑥 is the largest allowable distance between bus 𝐵 and other buses to consider the bus as 

significant (both 𝛼 and 𝑑𝑚𝑎𝑥 are tunable parameters of the node distance index), 

𝑑𝑖,𝐵  is the minimum number of edges (lines) between bus 𝑖 and bus 𝐵, which can be calculated 

for the entire system using the Floyd Warshall (FW) algorithm, which guarantees the global 

minimum distance for all buses [139]. 

Alternatively, the node distance index can be replaced by any graph, and it is not restricted 

to only the topological graph of the power system. For instance, [37] describes a modified graph 

that is not the grid topology, but the actual propagation of the CF. That modified graph, and similar 

graphs, could be used in generating the node distance indices using the same equations (5.7)-(5.8) 

but 𝑑𝑖 and 𝑑𝑚𝑎𝑥 will be calculated based on the modified graph instead of the grid topology. 

5.3.2 Information entropy 

Following disturbances in the power system, certain buses experience more voltage 

fluctuations than others. These buses are more important to observe during cascading events 

because they provide more information compared to buses that their voltages are almost constant 

even under different contingencies (i.e., provide less information). For example, in Figure 5.6, the 

voltage at bus 5, in a particular set of cases, is having a higher entropy compared to the voltage at 

bus 27, because the voltage has more variability. Whereas the voltage at bus 27 has most of its 

values close to 1.035, so it does not provide as much information as bus 5.  

To quantify the amount of information entropy (e.g., the disparity between values), the generalized 

entropy index (GEI) can be used. The GEI can distinguish between redundant variables and crucial 

factors as it measures the degree of variation that a variable is exhibiting. Moreover, GEI can 
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differentiate between redundant variables regardless of normalization since its formulation 

includes both the magnitude and distribution of the change in variables. The GEI is calculated by 

[134]: 

 

Figure 5.6. Distribution of the voltage for two buses in the IEEE 39-bus system: (a) voltage at 

bus 5 (high entropy case) and (b) voltage at bus 27 (low entropy case). 

(b) 

(a) 
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 (5.9) 

     𝑥̅ =
1

𝑛
∙∑ℎ𝑖  .  𝑥𝑖

𝑛

𝑖=1

 (5.10) 

where: 

𝑛 is the number of data points in a sample, 

𝑥𝑖 is the 𝑖𝑡ℎ datapoint, 

ℎ𝑖 is the weighting factor for 𝑥𝑖, 

𝑥̅ is the mean of the sample, 

𝛽 is the difference coefficient, which is a parameter of the GEI. 

Within the GEI, when (𝛽 = 1) the index is referred to as the Theil Index (TI), which is 

preferred when measuring differences within the middle of the sample’s distribution, and that is 

often the main focus of analyses. Extending the TI to CF simulation and given a set of 𝑆 CF 

scenarios, the sensitivity (or information entropy) of bus 𝑖 to the CF can be measured using the 

voltages (or phase angles) of the bus in these 𝑆 scenarios. For brevity, a single time sample of 

voltage is used in the formulation, but the equations can be expanded to multiple time samples per 

scenario. Using a single time sample 𝑣𝑖,𝑠,𝑡1 from each CF simulation, the TI is calculated as: 

     𝑣̅ =
1

𝑆
∙∑𝑣𝑖,𝑠,𝑡1

𝑆

𝑠=1

 (5.11) 

     𝑤𝑖,𝑒 = 𝑇𝐼 = 𝐺(1) =
1

𝑆
∙∑

𝑣𝑖,𝑠,𝑡1
𝑣̅

∙ log (
𝑣𝑖,𝑠,𝑡1
𝑣̅

)

𝑆

𝑠=1

 (5.12) 

where: 
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𝑤𝑖,𝑒 is the weighting of bus 𝑖 according to the entropy index (note: this weight is independent 

of the observed bus 𝐵, i.e., 𝑤𝑖,𝐵,𝑒 = 𝑤𝑖,𝑒), 

𝑣𝑖,𝑠,𝑡1 is the voltage of bus 𝑖 following fault scenario 𝑠 at time 𝑡1, 

𝑣̅ is the mean of the voltage at bus 𝑖, and assuming all datapoints have equal weighting (ℎ𝑖 =

1) in (5.10). 

5.3.3 Bus centrality 

This index measures the importance of a bus by evaluating its centrality, which can indicate 

the influence of a node (bus) on the rest of the network. Centrality is an indicator of the 

connectedness of a node to the rest of the nodes. As such, buses connecting multiple regions (e.g., 

bus stations between long tie lines) would have higher centrality, while buses that are only 

connected to fewer buses (e.g., radial buses) would have lower centrality. However, in large 

networks, a large set of buses would have large centrality values. To address this concern, the 

formulation of centrality needs to take the observed bus and fault locations into account. This can 

be achieved by defining a new subgraph 𝑆 of the original power network graph (𝑆𝑜) such that: 

     𝑆 = {(𝑉(𝑆), 𝐸(𝑆))  |  𝑑𝑖𝐵 < 𝛾 and 𝑑𝑖𝐹 < 𝛾    ∀ 𝑖 ∈ 𝑉(𝑆)} (5.13) 

where: 

𝑉(𝑆) and 𝐸(𝑆) are the vertices and edges of 𝑆, respectively, 

𝑑𝑖𝐵  is the distance between bus 𝑖 and the observed bus 𝐵, 

𝑑𝑖𝐹 is the distance between bus 𝑖 and the fault location (the fault is assumed to be at the ending 

side of the transmission line that is closest to the fault), 

𝛾 is a tunable parameter for the subgraph size. 

Then, using eigenvector centrality (EC), the centrality of each bus according to the new subgraph 

can be measured as follows [140]: 

     𝐴𝑖𝑗
∗ = {

1      𝑏𝑢𝑠𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑆
0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.14) 
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     𝑤𝑖,𝐵,𝐹,𝑐 = {
𝑐𝑖 = 𝑘

−1 ∙∑𝐴𝑖𝑗
∗ ∙ 𝑐𝑗

 

𝑗∈𝑆

  𝑖 ∈ 𝑆

0            𝑖 ∉ 𝑆

 (5.15) 

where: 

𝐴∗ is the adjacency matrix of 𝑆, 

𝑤𝑖,𝐵,𝐹,𝑐 is the weighting factor of bus 𝑖 according to the centrality index when observing bus 𝐵 

while a fault happens at 𝐹, 

𝑐𝑖 is the centrality of bus 𝑖, 

𝑘 is a constant that should be larger than or equal to the maximum eigenvalue of matrix 𝐴∗, to 

ensure EC values are all non-negative. 

5.3.4 Reduced set weighted average probability indices 

To merge all the ranking indices, an average weighting is used to normalize the indices and 

adjust their contributions: 

     𝑤𝑖,𝐵 = αd(𝑤𝑖,𝐵,𝑑) + αe(𝑤𝑖,𝑒) + αc(𝑤𝑖,𝐵,𝐹,𝑐) (5.16) 

where: 

𝑤𝑖,𝐵 is the final weight of importance of bus 𝑖 with respect to bus 𝐵, 

αd, αe, and αc are functions to normalize and adjust the weightings of distance, entropy, and 

centrality indices, respectively. 

Selecting the top 𝜓 buses according to their 𝑤𝑖,𝐵 values, the set Ψ can be defined as the set 

of the most important buses to observe bus 𝐵. This Ψ set is the main input to the RNN and the 

information about the remaining buses could be discarded. However, to retain more information 

about the state of the grid, these buses are merged into a weighted average instead of discarding 

them: 

     𝜇 =
1

 ∑ 𝑤𝑖,𝐵𝑖∉Ψ
∙∑𝑤𝑖,𝐵 𝑥𝑖
𝑖∉Ψ

 
(5.17) 
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Moreover, higher moments such as variance, skewness, and kurtosis are used to capture more 

information about the distribution of these values, as these higher moments change significantly 

during CF [120]. Thus, the weighted values of the higher moments are calculated as: 

     𝜎2 =
1

 ∑ 𝑤𝑖,𝐵𝑖∉𝜓
∙∑(𝑤𝑖,𝐵 𝑥𝑖 − 𝜇)

2

𝑖∉Ψ

 (5.18) 

     𝑠𝑘 =
1

 𝑠3 ∙ ∑ 𝑤𝑖,𝐵𝑖∉𝜓
∙∑(𝑤𝑖,𝐵 𝑥𝑖 − 𝜇)

3

𝑖∉Ψ

 (5.19) 

     𝑘𝑟 =
1

𝑠4 ∙ ∑ 𝑤𝑖,𝐵𝑖∉𝜓
∙∑(𝑤𝑖,𝐵 𝑥𝑖 − 𝜇)

4

𝑖∉𝜓

 (5.20) 

where: 

𝑠 is the standard deviation, 

𝜎2 is the variance, 

𝑠𝑘 is the skewness, 

𝑘𝑟 is the kurtosis. 

Figure 5.7 illustrates the importance of the higher moments where each graph represents a 

distribution with the same mean and variance, but with a different skewness and kurtosis 

(according to the Gram-Charlier expansion of the normal distribution) [141]. Since completely 

different distributions (e.g., voltage distribution at the different buses of the power grid) could have 

similar mean and variance, having more moments reduces the probability of such similarity. 

However, there are infinite distributions with the same mean, variance, skewness, and kurtosis. 

Hence, these four measurements are not always sufficient to distinguish between the different 

distributions. Nonetheless, having four moments instead of two provides more information 

regarding the shape of the distribution as illustrated in the figure. As for the interpretation of the 

higher moments, it can change depending on the distribution, but in general they represent the 

following concepts: 

• The mean represents the middle point (location) of the distribution. 

• The variance is its scatter (spread). 
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• The skewness represents the shift in the distribution between its mean and median 

(i.e., lack of symmetry). 

• The kurtosis is the shortness of the tail of the distribution (peakedness) [142].  

 

Figure 5.7: Visualization of the skewness and kurtosis effect on a normal distribution using the 

Gram-Charlier expansion, m is the mean, v is the variance, s is the skewness and k is the kurtosis 

of the distribution. 
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Based on the proposed Ψ set and the additional higher moment inputs, the total number of 

inputs to the RNN will only be (|Ψ| + 4) ∗ 𝑓, where 𝑓 is the number of features, regardless of the 

size of the network. Hence, the curse of dimensionality is significantly suppressed because the 

input count is independent of the total buses count in the network. 

5.3.5 Model implementation 

Given a power network with |Ω𝑀| buses, |Ω𝑁| load buses, and |Ω𝐽| lines, the set of possible 

input features for the proposed load-point prediction model can be defined as: 

     𝑋 = [𝑆𝐿 𝐹𝐿 𝑃𝐿 𝑉𝑃 𝑇𝑃] (5.21) 

where: 

SL is the network’s line state, 

FL is the fault location, 

PL is the real power loading, 

VP, and TP are the voltage, and theta measurements obtained from the PMUs, respectively. 

Also, each element in X is referred to as a set 𝑊 (e.g., 𝑊1 = 𝑆𝐿), where each W set is a row vector 

defined as follows: 

     𝑆𝐿𝑗 = {
1              𝑙𝑖𝑛𝑒 𝑗 𝑖𝑠 𝑜𝑢𝑡     
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

     𝐹𝐿𝑗 = {
1       𝑗 = 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

     𝑃𝐿 = {𝑝𝐿𝑛|∀ 𝑛 ∈ Ω
𝑁}  , 𝑉𝑃 = {𝑣𝑚|∀ 𝑚 ∈ Ω𝑀}, 

     𝑇𝑃 = {𝜃𝑚|∀ 𝑚 ∈ Ω𝑀} 

     𝑗 = 1,2, … |Ω𝐽|;  𝑚 = 1,2, … |Ω𝑀|;  𝑛 = 1,2, … |Ω𝑁| 

(5.22) 

where: 

𝑃𝐿𝑛 is the real power at load bus 𝑛, 

𝑣𝑚 and 𝜃𝑚 are the voltage magnitude and angle at bus 𝑚, respectively. 

Ω𝐽, Ω𝑀, and Ω𝑁 are the sets of transmission lines, load buses, and buses, respectively. 
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Then, for each set in 𝑋, only the values referring to the top 𝜓 buses are selected while the remaining 

buses are reduced to probability indices according to (5.17)-(5.20). Hence, the set of inputs to the 

RNN are: 

     𝑋′ = {{𝑊𝑘Ψ
, 𝜇𝑊𝑘

, 𝜎𝑊𝑘
, 𝑠𝑘𝑊𝑘

, 𝑘𝑟𝑊𝑘
}|∀𝑊𝑘 ∈ 𝑋} (5.23) 

where: 

𝑋′ is the updated input features, 

𝑊𝑘Ψ
 is the 𝑊𝑘 values for buses 𝑖 ∈ Ψ. 𝜇𝑊𝑘

, 𝜎𝑊𝑘
, 𝑠𝑘𝑊𝑘

, and 𝑘𝑟𝑊𝑘
 are the mean, variance, 

skewness, and kurtosis of 𝑊𝑘\Ψ (the set of 𝑊𝑘 excluding elements in Ψ), respectively. 

Moreover, to address the trade-off between speed and accuracy, the model is set up to 

predict the LOL within a maximum of Τ cycles after the initiating fault. Thus, the prediction of the 

LOL is obtained as: 

     𝐿𝑂𝐿𝑛 = ℱn(𝑋𝑇
′ , 𝑋𝑇−1

′ , … , 𝑋0
′) (5.24) 

where: 

ℱn is the RNN associated with predicting the LOL at load bus 𝑛 and 𝑋𝑇
′  is the 𝑋′ at cycle Τ. 

 However, note that RNN produces output for each set of inputs 𝑋𝑡
′. Thus, Τ refers to the maximum 

delay, rather than a constant delay (i.e., the algorithm still produces predictions at all 0 ≤ 𝑡 ≤ Τ). 

Afterward, if all load buses are considered as loads of interest (i.e., 𝑛 = 1,2, … |Ω𝑁|), the total size 

of the predicted cascade (𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡%) is calculated as: 

      𝑏𝑙𝑎𝑐𝑘𝑜𝑢𝑡% =
∑ 𝐿𝑂𝐿𝑛
|Ω𝑁|

𝑛=1

∑ 𝑃𝐿𝑛
|Ω𝑁|

𝑛=1

 
(5.25) 

To sum it up, the offline portion of the model commences by generating the CF scenarios 

and simulating them while calculating the three indices (𝑤𝑐, 𝑤𝑑, and 𝑤𝑒) using (5.7)-(5.15) in 

parallel. Thereafter, the values needed for 𝑋 (5.21) and (5.22) are extracted from the data and 

passed to the weighting and selection phase according to (5.16) to find the top ranking buses 𝜓. 

Furthermore, for each load bus of interest (or all load buses if all buses are considered buses of 

interest), an RNN-LSTM prediction model is trained in parallel, where the inputs are the top buses 
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in addition to the weighted average of the remaining buses’ probability indices using (5.23). 

Finally, for the online implementation, the data in 𝑋 are already measured or calculated from 

PMUs. Hence, the data is directly passed to the weighting and selection phase which is already 

calculated offline. Therefore, only (5.17)-(5.20) are calculated online before inputting the data to 

the trained RNN-LSTM ensemble. Finally, the implementation of the model, with respect to online 

implementation and offline training, and all the relevant calculations are summarized in Figure 

5.8. 

5.4 Case Studies 

5.4.1 Dynamic CF simulations and NN specifications 

The CF simulations are conducted using the COSMIC package, an open-source MATLAB-

compatible detailed dynamic simulation designed explicitly for CF. It has multiple advantages 

over other approaches, including variable time steps, generator ramping, and detailed line heating 

and generator dynamics [27]. The IEEE 39-bus system and the 2383-bus Polish winter peak system 

according to [27] (henceforth POL 2383-bus system) are used to test the model and demonstrate 

its applicability to both small- and large-scale networks. Each case has different loading levels and 

repair scenarios, and both single and multiple initiating faults are considered (faults range from N-

1 to N-5). Moreover, each case includes the full dynamical simulation until either the system 

collapses, the cascading event saturates, or the simulation time ends (60 𝑠 is selected as the 

simulation time). Furthermore, the dynamic simulation has a variable time step with a minimum 

step of 1 × 10−6 𝑠 (during fast cascade) and a maximum step of 1 𝑠 (during slow cascade) to 

maximize simulation efficiency, while the PMUs are assumed to record the measurements once 

each cycle ≈ 16.7 × 10−3 𝑠. 

After simulating all cases, the system’s data at each time step are recorded as the raw inputs. 

Similarly, the state of each load at the end of the simulation is assigned as the desired output. 

Moreover, since each case is a time-series, it can be divided into multiple cases, e.g., Case1 A: 

𝑡 =  0 𝑠 − 0.05 𝑠, Case1 B: 𝑡 =  0.01 𝑠 − 0.06 𝑠 …etc. Thus, the final data size can be an integer 

multiple of the simulated case count. The implementation of the RNN-LSTM model was done in 

Python using TensorFlow [143] and all the simulations were carried out on a PC with an i7-7700 
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processor (3.6 GHz quad-core processor), 16 GB DDR4 RAM, 4 TB HDD, and no dedicated 

graphics card. 

 

Figure 5.8. Implementation of the proposed method for predicting CF in power systems in real-

time. 

5.4.2 Rank index parameter tuning 

The first case study aims to tune the model parameters, validate its efficacy, and observe 

its sensitivity against parameter tuning. Yet, tuning all parameters of the model to find the global 
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optimum point requires a dedicated optimizer with both RNN and big data in a loop, which is 

beyond the main scope of this research. An alternative and more realistic tuning approach is to 

separately tune the parameters of each part of the model and investigate the model’s sensitivity to 

those parameters [144]. Furthermore, this approach can validate the efficacy of the model by 

showcasing how each portion of the model provides significant, but incomplete insights regarding 

the state of the power system under cascading events.  

The tuning of the parameters is done on the IEEE 39-bus system. The case study includes 

54,756 CF scenarios. The average computer time to process each scenario is around 14 𝑠, while 

parallel processing was used to reduce the total time for simulating all the cases and training the 

RNNs by 75% (more significant reductions could be achieved using more logical processors or 

more PCs). Table 5.1 is a summary of all simulated cases and their outcomes; in all cases, the 

number of variables per time sample is 196. 

Table 5.1. Summary of simulated cases for the IEEE 39-bus system. 

Type Number of Cases 

Simulated cases 54,756 

    Total blackout 24,364 

    Load shedding or partial blackout  8,329 

    No blackout 22,063 

 

 

5.4.2.1 Node distance index 

Starting with the node distance index, finding the optimal values of the parameters 𝛼 

(attenuation factor) and 𝑑𝑚𝑎𝑥 (max distance), is conducted by arbitrarily selecting bus 18 (the 8th 

load bus) in the IEEE 39-bus system, Figure 5.9, as the observed bus while varying 𝛼 and 𝑑𝑚𝑎𝑥. 

Whilst forcing all other ranking indices to zero (i.e., 𝑤𝑖,𝐵 = 𝑤𝑖,𝐵,𝑑), limiting 𝑋 in (4.6) to voltage 

only, and removing direct inputs (i.e., |Ψ| = 0). The RNN-LSTM model is built with six layers: 

input layer, three fully connected NN, LSTM RNN, and then a fully connected NN (Table 5.2). 

The accuracies of all the models ranged between 50 and 85% and a heat map of the obtained 

accuracies is depicted in Figure 5.10. The optimal values were found at 𝛼 = 1.1 and 𝑑𝑚𝑎𝑥 = [4,5]. 
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However, since increasing 𝑑𝑚𝑎𝑥 increases the complexity of the formulation,  𝑑𝑚𝑎𝑥 = 4 is 

selected. Moreover, the accuracy of the model peaked at 85%, which indicates the distance index 

with voltage alone is not a sufficient indicator for cascading failures.  

 

Figure 5.9. Single line diagram of IEEE 39-bus system 
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Table 5.2. RNN-LSTM network layer types and specifications. 

Layer name and type Layer shape               Number of parameters    

Main input (Input layer)  (, 25, 36) 0          

Reduction layer (Dense layer)  (, 25, 128) 4736 

Reduction layer 2 (Dense layer)  (, 25, 64) 8256       

Reduction layer 3 (Dense layer)  (, 25, 32) 2080       

Main LSTM (LSTM layer)  (, 16) 3136       

Main output (Dense layer)  (, 2) 34         

 

Figure 5.10. Effects of variation in 𝛼 and 𝑑𝑚𝑎𝑥 on the accuracy of the testing model (figure 

smoothed to account for RNN training variations). 
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5.4.2.2 Entropy index 

For the entropy index, the only tunable parameter is the number of samples per CF scenario. 

A comparison between one and two samples per scenario is presented in Figure 5.11, which shows 

a negligible difference in the entropy index as the order of the buses (highest to lowest entropy) 

remains the same in both scenarios. Subsequently, the entropy index is used to train the RNN and 

predict CF with the rankings obtained from a single sample. However, unlike the distance index, 

|Ψ| = 1 was selected while eliminating the mean, variance, and higher moments. This is applied 

to measure the efficacy of the eliminated inputs as will be shown later. The prediction accuracy of 

the model under these specifications was 80%. Moreover, the accuracy of the entropy index is 

lower than the distance index which is expected because the distance index provides local 

information regarding the effect of CF whereas the entropy index uses the same bus ranking for 

all of its predictions.  

 

Figure 5.11. Theil index for one and two samples of the voltage. 

5.4.2.3 Centrality index 

The main issue with the centrality index is its huge computational burden compared to 

other indices. To elucidate, both the entropy and distance index are independent of fault location, 

and the entropy index is also independent of the observed bus. However, the centrality index is 
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dependent on both fault location and the observed bus. Moreover, it requires building a subgraph 

and calculating the centrality of each of its nodes. To mitigate this issue, the 𝛾 value can be tuned 

to limit the number of generated subgraphs as 𝑑𝑖𝐵 > 𝛾 or 𝑑𝑖𝐹 > 𝛾 would result in the trivial 

solution of an empty subgraph (i.e., the fault is far from the observed bus, hence 𝑤𝑐 = 0 for all 

buses) or subgraphs with one node (i.e., only one bus, or a group of isolated buses are satisfying 

the criteria of being close to both the fault and the observed bus). The number of trivial solutions 

should be tuned properly as it is not desired to acquire this solution if the buses of interest are close 

to the fault location, but at the same time, trivial solutions are much faster to compute. Hence, 𝛾 is 

capped as follows: 

     𝛾 =
max(𝑑)

𝑟𝑓
 (5.26) 

where: 

max(𝑑) is the maximum of the shortest distance between any two nodes, i.e., the maximum 

value from the Floyd Warshall algorithm, and 𝑟𝑓 is a reduction factor. 

Investigating the effects of 𝑟𝑓 on the accuracy and trivial solutions, an RNN-LSTM based 

predictor with a similar setting as the distance index, but with 𝑤𝑖,𝐵 = 𝑤𝑖,𝐵,𝐹,𝑐, is used to predict CF 

while varying the value of 𝑟𝑓. Figure 5.12 showcases the resulting comparison between the 

prediction accuracy and the percentage of trivial solutions in the dataset. The figure illustrates the 

value of 𝑟𝑓 can significantly increase the trivial solutions without substantially affecting the 

accuracy as the accuracy is only marginally decreasing between 𝑟𝑓 =3-11. However, an 

unexpected result is that the accuracy is lowest when there are no trivial solutions. This could be 

due to selecting the global central bus rather than the central bus according to the fault and 

observed bus locations. Finally, the maximum accuracy of the prediction model is also only 82% 

which indicates the centrality index is not a sufficient predictor by itself.  

5.4.2.4 Correlation between parameters 

To further showcase the importance of each element, the correlation between the 

parameters along with their correlation with the expected result is presented in Figure 5.13. The 

results indicate a very low correlation between the indices, meaning all of them can be helpful in 

the prediction. Because the low correlation indicates that each model is having a different set of 
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correct predictions. Moreover, the highest correlation with the desired solution was the distance 

index prediction that used the mean, variance, and higher moments, thus indicating the importance 

of statistical higher moments in the formulation. 

 

Figure 5.12. Prediction accuracy and trivial solutions as a function of 𝑟𝑓. 

 

Figure 5.13. Correlation between parameters. 
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5.4.3 Input buses size |𝛹| 

To merge all indices according to (5.16), they need to be adjusted according to a weighting 

function α(𝑤). For brevity, α(𝑤) is only used for normalization but can be used to give different 

weighting and importance to each index. Hence, the weighting is defined as:  

     𝑤𝑖𝑛𝑒𝑤 = α(𝑤𝑖) =
𝑤𝑖 −𝑤

𝑤 − 𝑤 
 (5.27) 

where: 

𝑤 and 𝑤 are the maximum and minimum values of a given index, respectively. 

Finally, to evaluate the sensitivity and importance of the input size |Ψ|,  the full model is tested on 

the IEEE 39-bus system and the results are depicted in Figure 5.14. In this figure, the number of 

buses |Ψ| is varied from 0 to 25, which corresponds to varying the inputs from 8 to 58. 

Considering two features per bus (voltage magnitude and phase), and four probability indices per 

feature). As seen in the figure, the model accuracy increases from 83% to 91% when |Ψ| is 

increased to 25. However, considering the range from 15 to 25, the accuracy remains almost 

constant (with variations due to model uncertainty). Hence, the additional inputs did not result in 

a significant increase in accuracy, which validates the claim that the most important buses are 

selected by the algorithm. 

 

Figure 5.14. The number of inputs and model accuracy as a function of |𝛹|. (Input count is 

normalized by dividing it by its maximum value). 
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5.4.4 Time sensitivity analysis 

One assumption in previous sections was that the number of time-samples remained 

constant to reduce the number of unknowns in the formulation. However, after acquiring the 

parameters for the indices and the appropriate values for 𝛼, 𝑑𝑚𝑎𝑥, 𝑟𝑓, and |Ψ|, the next step is to 

observe the sensitivity of the model to an increase in time samples. To evaluate the sensitivity, 

time-samples are assumed to be one cycle apart (i.e., 1/60 𝑠 interval) where the first time-sample 

is taken at fault occurrence of the first exogenous tripping. As shown in Figure 5.15, the accuracy 

increases as the number of time-samples increases, but this will significantly lower the efficacy of 

the model as it introduces more delay. For instance, 25 samples correspond to a 0.417 𝑠 delay with 

90.5% accuracy, whereas three samples give an accuracy of 89.7% with only a 0.05 𝑠 delay. 

Moreover, increasing the time does not always improve the accuracy as multiple high peaks are 

acquired at different time intervals. This behaviour of multiple peaks and drops is caused by 

multiple reasons. The variability within the RNN, because each model has a component of 

randomness, and the locations of peaks and drops within the data (i.e., whether the prediction 

model’s last data is at a crest, trough, or equilibrium point). Hence, the ideal number of time 

samples can only be determined after training the model, which is 9 time-samples in this scenario 

considering the best trade-off between speed and accuracy, or 25 time-samples considering the 

maximum accuracy. 

 

Figure 5.15. Model accuracy as a function of time samples. 
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5.4.5 IEEE 39-bus system 

To fully test the proposed model, the RNN-LSTM ensemble is built as 19 RNN-LSTM 

models because the IEEE 39-bus system has 19 load buses. The average training time for each 

model is 50 𝑠/𝑒𝑝𝑜𝑐ℎ and 10 𝑒𝑝𝑜𝑐ℎ𝑠 on average are needed to reach maximum validation 

accuracy. Because models can be trained in parallel, the number of models will not affect the total 

training time if enough processors are used. The reduction in time in our setup was 75% due to the 

use of four processors, but further reductions could be reached with a maximum of 95% reduction 

in computing time using 19 or more processors. The LOL prediction models are built using the 

parameters described in Table II, which are the optimal values according to Subsections 5.4.2 to 

5.4.4. Thus, this setup corresponds to the maximum accuracy of the corresponding indices. The 

accuracy of detecting the LOL for each bus for the testing set using these parameters was 94.5% 

on average and ranged from 94.1 to 94.9%.  

Table 5.3. RNN-LSTM ensemble parameters. 

Parameter Value Parameter Value 

𝛼 1.1 𝑟𝑓 10 

𝑑𝑚𝑎𝑥 4 |Ψ| 12 

𝑡 (𝑓𝑜𝑟 𝑒𝑛𝑡𝑟𝑜𝑝𝑦) 1 𝑡𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 12 

 

Furthermore, to showcase the efficacy of the RNN-LSTM framework in terms of 

improving its prediction accuracy as time progresses, the testing set accuracy of the model for bus 

18 as it receives more data is shown in Figure 5.16. Only one bus is selected for brevity, but the 

other models also exhibit the same trend. The figure shows the model starts with an 87% prediction 

accuracy at fault occurrence, and as it receives more data the accuracy increases until it saturates 

at 94.2% after 22 cycles (0.366 𝑠). In other words, the model informs the operators whether a 

particular fault, regardless of how close or far it is from bus 18, is going to cause any load shedding 

or LOL at bus 18 or not with an initial accuracy of 87% at fault occurrence, but as time progresses 

it improves until it peaks at 94.2% within 0.360 𝑠. 
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To illustrate this improvement of prediction, in one of the cases, the system is assumed to 

be at stress by setting the loads 20% higher than the nominal value (e.g., an unexpected heatwave 

or cold snap causing increased electrical consumption). Then, a fault causes the line between buses 

4 and 5 to trip. For this scenario, the system stabilizes within 10𝑠 after the trip. However, after the 

initial fault, the line connecting buses 13 and 14 endogenously trips due to overcurrent, which 

causes the system to enter a transient instability that leads to a series of instabilities ending in a 

total blackout. Under this case, the proposed model could detect that bus 18 will suffer a loss of 

load within 0.15 𝑠 after the first (exogenous) fault as shown in Figure 5.17. Hence, the model 

predicted the LOL even before line 13-14 trips. Moreover, it is essential to note that this prediction 

is for any curtailment in general. Thus, if a contingency would lead to a partial blackout that 

includes bus 18, or load shedding of bus 18 was needed as part of undervoltage or underfrequency 

load shedding schemes the prediction model will also issue a LOL prediction. Hence, the operators 

(or emergency controllers) have ample time to take corrective actions to ensure that bus 18, or the 

whole grid, if possible, does not suffer a LOL. 

 

Figure 5.16. Model accuracy for the IEEE 39-bus system for bus 18 (based on the testing set) as 

the model receives more time samples.  

5.4.6 Missing PMU data 

In previous cases, PMUs are assumed to be ideal. However, in practice, many PMU non-

idealities occur. A major non-ideality during CFs is missing PMU measurements because buses 

become unobservable due to line outages. To test the robustness of the proposed model to missing 
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PMU data, the PMU data is modified such that 1% of measurements are missing. Figure 5.18 

compares the case with missing PMUs with the normal case and shows that the model is resilient 

to missing measurements especially as more time samples are obtained since both cases have 

similar accuracy trends especially from 14 time-samples and beyond. The main reason for this 

high resiliency is due to the dependency of the model on a smaller set of direct measurements 

compared to using all available measurements. Hence, there is a lower probability that a missing 

PMU measurement is needed. 

5.4.7 Noisy PMU data 

The second type of non-ideality considered in this model is noisy measurements. The noise 

is first modeled as a 2% total vector error (TVE) and then as a 10% TVE and the prediction 

accuracy of the model under these cases is shown in Figure 5.19. With a low TVE, the model is 

resilient and shows similar trends as the missing PMUs case. However, with a 10% TVE the 

prediction model performs poorly with almost a 9% reduction in accuracy at the first time-sample 

that shrinks to 5% with 24 time-samples. Although PMUs are typically designed to have a TVE 

  

 

Figure 5.17. Voltages of select buses of the IEEE 39-bus system (voltages at other buses show a 

similar trend) and the prediction model for bus 18 following a trip in line 4-5 (Logic 1 indicates 

that the bus would suffer load curtailment, 0 otherwise). 
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≤ 1%, which the model handles well, this small TVE only applies to steady state TVE. On the 

other hand, TVE during transient (i.e., first 100 𝑚𝑠 after a tripping or a failure) can reach up to 

10% in some major disturbances [145]. Hence, depending on the PMUs’ transient TVE 

characteristics the current prediction model might have a significant drop in accuracy between 

transient and steady states. 

 

Figure 5.18. Comparison between the accuracy under normal conditions and with missing PMU 

data. 

 

Figure 5.19. Comparison between the prediction accuracy under normal conditions and with 

noisy PMU data. 
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5.4.8 POL 2383-bus system 

The POL 2383-bus system is used to validate the model’s efficacy in a large, 

interconnected network. The simulated CF scenarios include 15,000 cases with an average 

computer time of 170 𝑠 per case. The number of variables per time sample for all cases is 9951. 

Table 5.4 shows a summary describing all the simulated cases. Note that the number of POL 2383-

bus total blackout cases is negligible compared to the IEEE 39-bus system because the number of 

applied contingencies (ranging from N-1 to N-5) are not severe enough to cause many total 

blackouts in this large interconnected system. The RNN-LSTM ensemble is built as 23 models of 

the selected load buses (among more than 1800 load points). These buses were selected so the 

distance between them is maximized to cover different areas of the POL 2383-bus system. Also, 

each model is built using the same specifications as the IEEE 39-bus system. 

Table 5.4. Summary of simulated cases for the POL 2383-bus system. 

Type Number of cases 

Simulated cases 15000 

Total blackout 39 

Load shedding or partial blackout  6505 

No blackout 8456 

 

 

The LOL prediction model for these selected load buses had a 99.8% accuracy of detecting 

the loss of load on average and ranged from 99.5 to 100% as shown in Figure 5.20. The error is 

very narrow since POL 2383-bus is more decoupled than the IEEE 39-bus system. Thus, a 

localized predictor can accurately describe the state of the bus. Besides, since most blackouts are 

only partial, then from a load perspective, the probability of having a LOL is significantly lower. 

However, a valid concern would be that the predictor has high accuracy because the probability of 

LOL is much lower. To address this concern, the average of the extended confusion matrix for all 

the buses of interest is shown in Table 5.5, where 0 indicates no LOL (negative) and 1 indicates 

that there is a LOL (positive). From the table, it is observed that the false positives are orders of 

magnitude lower than the true negatives. Similarly, the false negatives with the true positives show 

a similar trend. Hence, the model is indeed accurate, and it is not biased towards the negative 
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result. As for the recall, it is only 89.1%, but with all CFP literature ignoring recall it is not possible 

to compare the results of this model with other models. Hence, this work can be the base for 

comparison for future CFP works.  

 

Figure 5.20. Prediction model accuracy for selected buses of the POL 2383-bus system. 

Table 5.5. Average of the extended confusion matrices of the POL 2383-bus LOL Prediction 

models. 

Type Actual 0 Actual 1 Sum Extended metrics 

Predicted 0 99.464% 0.055% 99.52% 
False omission rate = 

0.0005% 

Predicted 1 0.008% 0.472% 0.48% 
Recall (Sensitivity) = 

89.1% 

Sum 99.47% 0.53% 100% 

F1-score = 93.47% Extended 

metrics 

False positive rate = 

0.0001% 

Precision = 

98.3% 

Accuracy = 

99.93% 

 

5.4.9 Comparison with existing work 

One of the main contributions of the proposed method is its single bus prediction accuracy 

using limited inputs. As such, it is difficult to compare it with existing methods, because no other 

published work considered this aspect. However, one way to provide a meaningful comparison is 

to expand the model to the maximum number of buses and predict the expected blackout 

percentage in a similar fashion to existing work. Table 5.6 shows this comparison, where the 

proposed RNN-LSTM ensemble model (LSTM-e) is modified in two ways. Firstly, the model 

outputs ‘true’ if any single bus is having a LOL (LSTM-e Boolean), to compare it with [120] and 

[116]. Secondly, the model is set to output the expected blackout size out of four intervals (LSTM-
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e Brackets) to compare it with [91]. It is evident from the table that the proposed method is more 

versatile and more accurate than existing CFP methods as it has dynamics simulation with higher 

or equal accuracy and a shorter delay. 

Table 5.6. Models Comparison Summary. 

Method Notes Predictor ref Acc. 

BPDT 
Dynamic, 500 𝑚𝑠 delay, 

multiple topologies 
Blackout% (4 brackets) [91] 97.97% 

SVM-PF 
Static line trip, single 

topology 
Blackout Boolean [120] 100.0%* 

FFNN 
Static line trip, single 

topology 
CF Boolean [116] 99.95% 

LSTM-e Boolean 
Dynamic, 100-400 𝑚𝑠 

delay, multiple topologies 
Blackout Boolean - 99.99% 

LSTM-e Brackets 
Dynamic, 100-400 𝑚𝑠 

delay, multiple topologies 
Blackout% (4 brackets) - 99.99% 

* With a wide range of ‘indecisive region’  

5.5 Summary 

In this chapter, a new model is proposed to predict cascading failure in real-time. The method 

reduces the problem of cascading failure to a set of parallel loss of load predictors using the 

correlation between data points and their influence on the CF. The correlation and influence of the 

buses are extracted through graph theory, Theil index, eigenvector centrality, and skewed 

probability distributions to maximize information entropy while minimizing the number of inputs. 

Moreover, RNN LSTM cells are used to allow the model to produce self-improving results with 

each additional information as time progresses. The results indicate that the model successfully 

addresses multiple concerns in the literature, including versatility, faster response, fewer inputs, 

scalability to large systems, and the ability to detect the location of the buses affected by the 

cascade. In conclusion, this model is expected to be applicable in practical applications, either as 

a remedial action scheme input or a visualization tool for the operator. 
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6 FRAMEWORK FOR A REAL-TIME AUTONOMOUS 

CASCADING FAILURE PREDICTION MODEL 

6.1 Introduction 

To predict CFs, and by extension blackouts, multiple CF prediction algorithms and 

frameworks were proposed in the literature [40], [91], [114]–[120], [146]. However, in all these 

approaches, the modeling is divided into two distinct phases: the offline training and the online 

predicting as illustrated in Figure 6.1. However, this approach limits the potential of these models 

since the grid may change significantly as time progresses. Also, synthetic data might not be as 

accurate as real data. Hence, a better approach is to use adaptive or autonomous models [147]. In 

this case, the model constantly updates its prediction accuracy and adapts to the changes in the 

grid. This updated structure is demonstrated in Figure 6.2 where prediction results along with the 

PMU data are aggregated into a new prediction dataset that is then used to retrain the model along 

with the existing simulated scenarios. 

Sampling from this new set of mixed synthetic and real datapoints can introduce multiple 

issues. It can generate a biased dataset, because power grids are by design highly reliable which 

leads to real datapoints having very few positive cases (i.e., cases with contingencies). Moreover, 

the mixed set can include contradictory datapoints if a synthetic result mismatches the outcome of 

a real result. To address the first issue, importance sampling (IMS) can be used to balance the sets 

[110]. In IMS, instead of sampling from the original distribution of the data, the datapoints are 

sampled from a new distribution according to their importance, which can be set so that the bias 

is minimized. Alternatively, the model training can be modified to give more weighting to the 

sparse classes using weighted regularization [111]. However, IMS has the advantage of keeping 

the original model unchanged. Hence it is less invasive to existing works. As for the second issue, 

a validation loop based on case-based reasoning (CBR) can be added to detect and remove any 

contradictory synthetic data [148]. Moreover, it can be used to generate synthetic data to validate 

the model by comparing the generated data with existing real data. Thus, verifying the efficacy of 

the simulation tool used to generate the data. Furthermore, CBR’s 4R cycle (Retrieve, Reuse, 

Revise, Retain) can aid in the formulation of the autonomous prediction model [149]. Hence, both 

IMS and CBR provide important additions and fixes to the proposed autonomous model. 
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Figure 6.1. Typical flowchart of a real-time CF prediction model. 

Based on the previous limitations and insights, a framework for an adaptive real-time CF 

prediction model is introduced in this chapter. The framework uses IMS to address the biased 

samples issues and to select the most important samples for the training of the model. Moreover, 

it includes a validation loop based on CBR that corrects contradictions in the dataset between real 

data and existing synthetic data. In addition, it allows for the validation of the simulation tool used 

to generate the synthetic data. Therefore, this framework significantly enhances existing CF 

prediction models and can easily be incorporated in prediction models in other power engineering 

areas. 

The remainder of the chapter is organized as follows. Section 6.2 describes the adaptive 

prediction paradigm and how to implement it in a CF prediction framework. Section 6.3 introduces 

IMS and its application to address the skewness in the data. The results and discussions are in 

Section 6.4. Finally, Section 6.5 concludes the chapter. 
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Figure 6.2. Proposed flowchart for the adaptive real-time CF prediction model. 

6.2 Adaptive Cascading Failure Prediction 

Power grids produce a large amount of data through PMUs, smart meters, and other devices 

at each second. This data should be utilized in prediction models to enhance their prediction. 

However, in conventional prediction models, models are only trained when considering a different 
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dispatch or when a different grid topology is introduced (depending on the purpose of the model). 

An alternative and more efficient way to retrain the model and utilize existing data is to have the 

model dynamically adapt to newly acquired data by incorporating the data within a learning loop. 

To build this autonomous learning loop the following components need to be defined: 

update scheduler, dataset selector, update acceptor, and data validator components. Collectively, 

these four components formulate the 4R cycle of the CBR as update scheduler handles retaining, 

dataset selector handles retrieving, update acceptor handles reusing, and data validator handles 

case revising. The structure of CBR and its relation to the proposed autonomous learning loop is 

shown in Figure 6.3. 

The update scheduler handles the amount of time between each iteration 𝑘 of the model’s 

retraining. Ideally, this time should be the same as the rate of the measurement devices (e.g., 

1/60 𝑠 in the case of PMUs). However, practically this is impossible, because the update time is 

restricted by the training speed of the model. Hence, the update time would be the maximum 

between the desired update time and the training time. Alternatively, the training can be interrupted 

if it exceeds a predefined maximum allowed time. Therefore, the training time for the update 

scheduler can be defined as: 

     𝑡𝑢𝑝 = min (max(𝑡𝑡𝑟 , 𝑡𝑑𝑒) , 𝑡𝑚𝑥) (6.1) 

where: 

𝑡𝑢𝑝 is the actual update time, 

𝑡𝑡𝑟 is the training time, 

𝑡𝑑𝑒 is the desired update time, 

𝑡𝑚𝑥 is the maximum allowed time for training. 

The second component is the dataset selector, and it is responsible for defining the subset 

of data used to retrain the model. Considering Figure 6.2, the available data to construct the 

retraining dataset can be classified into three sets: synthetic data, historical data that were used to 

train previous prediction models, and newly stored historical data that were not used to train any 

model yet. Depending on the application of the prediction model, a different ratio between these 

three sets can be selected. Hence, a general formula for the retraining dataset is:  
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     𝑑𝑡 = {𝑑𝑠, 𝑑ℎ, 𝑑𝑛}, 𝑑𝑠 ⊆ 𝑑𝑆, 𝑑ℎ ⊆ 𝑑𝐻, 𝑑𝑛 ⊆ 𝑑𝑁 (6.2) 

where: 

𝑑𝑡 is the retraining dataset, 

𝑑𝑠, 𝑑ℎ, and 𝑑𝑛 are the subsets used in the retraining from synthetic data, historical data, and 

new data, respectively. 

𝑑𝑆, 𝑑𝐻, and 𝑑𝑁 are the full set of synthetic data, historical data, and new data, respectively.  

Since tuning the sizes of the subsets in 𝑑𝑡 is a nontrivial problem, IMS can be used to select the 

optimal set of datapoints, which is discussed in Section 6.3.  

 

Figure 6.3. Case-based reasoning (CBR) 4R cycle (Retrieve, Reuse, Revise, and Retain) according 

to the proposed learning loop components. 

The third component is the update acceptor, which is used for accepting or rejecting 

updates. It also maintains the accuracy of the model by either rejecting an update, repeating it, or 

changing its parameters if the resulting trained model is below a certain acceptance criterion. 

Typically, this acceptance criterion is the model accuracy, but precision, F1 score, or other criteria 

can be used as well. Alternatively, this component could just issue a warning to the operator 

following a violation. Since there are multiple ways to formulate this component and each 
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approach requires different parameters, it is harder to define a general update acceptor component. 

Nonetheless, a general accuracy-based acceptor with warning can be represented as: 

     𝑓𝑟𝑤 = acc(𝑀
𝑘) <  𝑎𝑐𝑐𝑇ℎ (6.3) 

     𝑀 = {
𝑀𝑘 , 𝑓𝑟𝑤 = 0

𝑀𝑘−1, 𝑓𝑟𝑤 = 1
 (6.4) 

where: 

𝑓𝑟𝑤 is the internal Boolean flag for rejecting updates and issuing warnings, 

𝑘 is the model update counter, 

acc(𝑀𝑘) is the accuracy of model 𝑀𝑘, 

𝑎𝑐𝑐𝑇ℎ is the threshold accuracy to accept the model. 

Finally, the last component, the validator, compares the newly acquired data at each loop 

with the existing ones and deletes any contradictory datapoints (i.e., two points with the same 

inputs but different outputs). In addition, for increased robustness of the model, the validator can 

also generate new synthetic data to compare it with existing historical data that have the same input 

to validate the correctness of the simulation tool. Thus, the validator is formulated as a case 

generation and comparison loop that produces a Boolean flag 𝑓𝑚𝑤 to denote a mismatch warning, 

where 𝑓𝑚𝑤 = 1 if any contradictory predictions are detected. 

Based on (6.1)-(6.4), the adaptive autonomous real-time CF prediction model shown in 

Figure 6.2 can be extended as shown in Figure 6.4. Initially, the model counter 𝑘 is initialized to 

1 and an initial set of synthetic data is generated using the desired simulation tool depending on 

the required specifications [25]–[27]. This ends the initial offline phase of the model. Then, these 

simulated scenarios are used to create a new subset according to (6.2). However, since there are 

no other datasets yet, 𝑑𝑡 = 𝑑𝑆 can be used. After that, the model is trained, but if the maximum 

time in (6.1) is violated the training will be abruptly stopped. Regardless of whether the training 

ended prematurely or not, the current iteration of the training will be considered as the 𝑀𝑘 model. 

Hence, the next step is to measure 𝑓𝑟𝑤 to decide if the model is accepted or rejected. Next, the 

model is updated (𝑀 = 𝑀𝑘) if its accuracy exceeds the required threshold or kept as it is if the 

accuracy of the new model is low (𝑀 = 𝑀𝑘−1). The first iteration cannot fail since there are no 
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models before it. The chosen model is then deployed as the prediction model, and the PMU data 

are processed according to the prediction model requirements and then passed to produce the 

prediction. The prediction and the inputs are then stored. After the actual outcome of the grid 

becomes known, the input data with the true outcome form a new scenario for the model. These 

new scenarios are then matched with the existing scenarios to find and delete any contradictory 

datapoints (issuing a warning if any are discovered). Then, the model starts a new iteration of 

training with the new scenarios added to the existing ones. Additionally, since the update time is 

much slower than the prediction time, the portion of the online model labeled as prediction loop 

(the dotted area) will run multiple times before the model is trained and 𝑘 is incremented (i.e., the 

other portion of the online model). Finally, for the compactness of the flowchart, the validator’s 

synthetic cases generation loop is omitted from the figure. 

6.3 Sampling Method 

In a prediction model with significantly skewed classifiers, e.g., failure prediction in a 

highly reliable system, the goal of modifying the sampling method is to maintain a higher ratio of 

failure cases to normal operation cases. This can be achieved by either reducing the number of 

normal operation cases or sampling more times from the pool of failure cases. However, before 

applying any of these techniques, the data needs to be analyzed to check if there is any biasing in 

the dataset. 

Considering the datasets used in the proposed CF prediction framework, the following 

observations regarding synthetic data, historical data, and new data can be made. For the synthetic 

data 𝑑𝑆, the size of the dataset is |𝑑𝑆|, with 𝑃𝑑𝑠  as the ratio of normal operation cases, and 1 − 𝑃𝑑𝑆  

for the failure cases ratio. However, 𝑃𝑑𝑠 ≅ 1 − 𝑃𝑑𝑆 ≅ 0.5 in well-designed synthetic data because 

equal portions between positive and negative cases is typically a design requirement. As for 

historical data 𝑑𝐻, the dataset size is |𝑑𝐻|, the ratio of normal operation cases is 𝑃𝑑𝐻 , and the ratio 

of failure cases is 1 − 𝑃𝑑𝐻 . However, 𝑃𝑑𝐻 ≫ 1 − 𝑃𝑑𝐻  since power systems are highly reliable, then 

𝑃𝑑𝐻 ≅ 1. As for new data, they follow the same ratio as historical data, but with a much smaller 

dataset since |𝑑𝑁| ≪ |𝑑𝐻| and |𝑑𝑁| ≪ |𝑑𝑆|. Thus, |𝑑𝑡| = |𝑑𝑆| + |𝑑𝐻| + |𝑑𝑁| ≅ |𝑑𝑆| + |𝑑𝐻|. 

Hence, if a sample 𝑋 is randomly drawn from the pool of datapoints, it will have the following 

expectation: 
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Figure 6.4. Expanded adaptive CF prediction model. 
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     E(𝑋) =
|𝑑𝑆|𝑃𝑑𝑠 + (|𝑑𝐻| + |𝑑𝑁|)𝑃𝑑𝐻

|𝑑𝑆| + |𝑑𝐻| + |𝑑𝑁|
 (6.5) 

Simplifying the terms using the approximations provided:  

     E(𝑋) ≅
|𝑑𝑆| ∗ 0.5 + |𝑑𝐻|

|𝑑𝑆| + |𝑑𝐻|
= 0.5

|𝑑𝑆|

|𝑑𝑆| + |𝑑𝐻|
+

|𝑑𝐻|

|𝑑𝑆| + |𝑑𝐻|
 (6.6) 

Hence, as the simulation begins, |𝑑𝑆| ≫ |𝑑𝐻| and thus the expectation is close to 0.5, which is 

desired as prediction models typically provide better results with unbiased data. However, as the 

simulation continues and |𝑑𝐻| gets bigger, the ratio approaches 1. Thus, a very skewed dataset is 

formulated where most of the cases are normal operation points. Therefore, there is bias in the 

dataset, but it happens as a function of time. 

To solve the issue of the skewed dataset, IMS can be used to ensure that the sampled data 

samples more from the “important samples”, which in the case of the proposed model is the 

sampling that makes the expectation closer to 0.5. IMS achieves this goal by sampling from a new 

distribution function 𝑔. Ideally, the aim of 𝑔 is to minimize the variance in the scaled sample [150]: 

     g∗(𝑋) = min
g
varg(𝑋

f(𝑋)

g(𝑋)
) (6.7) 

which can be achieved by: 

     g∗(𝑋) =
|𝑋|f(𝑋)

∫|𝑥|f(𝑥)𝑑𝑥
 (6.8) 

Considering the given datapoints and the target of E(𝑋) = 0.5, 𝑔 can be defined as the following. 

Given the original sampling method, the drawn sample can be defined as: 

     𝑥 =

{
  
 

  
 𝑥𝑆,     𝑝 =

|𝑑𝑆|

|𝑑𝑁| + |𝑑𝑆| + |𝑑𝐻|

𝑥𝐻 ,    𝑝 =
|𝑑𝐻|

|𝑑𝑁| + |𝑑𝑆| + |𝑑𝐻|

𝑥𝑁 ,    𝑝 =
|𝑑𝑁|

|𝑑𝑁| + |𝑑𝑆| + |𝑑𝐻|

 (6.9) 

where: 
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𝑥 is the drawn sample, 

𝑥𝑠, 𝑥𝐻, and 𝑥𝑛 refer to a sample drawn from synthetic, historical, and new data, respectively, 

𝑝 is the probability of drawing from that particular sample. 

Then, the modified 𝑔(𝑥) to maintain 𝐸(𝑥) = 0.5 would modify the sampling into:  

     𝑥 = {

𝑥𝑆,     𝑝 = 1
𝑥𝐻,    𝑝 = 0
𝑥𝑁 ,    𝑝 = 0

 (6.10) 

However, this function does not consider the “importance” of real data (both historical and new). 

Hence, one solution to solve this issue would be to set 𝐸(𝑋) = 𝛼 where 𝛼 > 0.5. Additionally, 

since 𝑑𝑁 is small and contains data not previously used in training, it should be included in the 

training dataset without sampling (i.e., 𝑑𝑛 = 𝑑𝑁). Thus, the new sampling function to maintain the 

new expectation (𝐸(𝑋) = 𝛼) is: 

      𝑥 =

{
 
 

 
 𝑥𝑆,       𝑝 =

𝛼 − 𝑃𝑑𝐻
𝑃𝑑𝑆 − 𝑃𝑑𝐻

        

𝑥𝐻 ,      𝑝 = 1 −
𝛼 − 𝑃𝑑𝐻
𝑃𝑑𝑆 − 𝑃𝑑𝐻

 (6.11) 

Hence, the CF prediction dataset can be formulated by sampling from the original datasets using 

the modified sampling function (6.11) where the number of samples drawn is |𝑑𝑡| − |𝑑𝑁|. Then, 

concatenating the 𝑑𝑁 datapoints to formulate 𝑑𝑡. 

6.4 Results and Discussion 

To test the validity of the proposed model, a set of COSMIC simulations of the IEEE 39-

bus system are conducted and separated into two categories: synthetic data, and real-time data. For 

the synthetic dataset, the dataset has 50% of the cases with CF events, while the real-time dataset 

has only 1% of the cases with CF events. The detail of each dataset is summarized in Table 6.1. 

For the CF prediction, the model in [146] is used, but with RNN instead of NN to improve 

prediction accuracy, while load bus 9 of the IEEE 39-bus system is arbitrarily selected as the bus 

under analysis (other buses show similar trends). The simulation starts with training the model 

using only synthetic data. Then, for each time step, new data is added from the pool of real-time 

data. Afterwards, the simulation finishes when all the data from the real-time category are 
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included. As for the parameters of the model, they are listed in Table 6.2. Finally, since both 

datasets are based on COSMIC, the validator will not detect any contradictions. Hence, it is 

omitted. 

Initiating the simulation according to Figure 6.4 and the specified settings in Table 6.2, the 

accuracy of the prediction model as 𝑘 progresses is shown in Figure 6.5. Initially, the model started 

with only 89.2% accuracy, but as more historical data is fed into the model its accuracy improved 

until it peaked at 𝑘 = 5 with 94.7% accuracy. However, since the models did not achieve a better 

prediction accuracy afterwards, the 𝑀5 model remained as the selected prediction model until the 

end of the simulation at 𝑘 = 9. This result shows that the model is capable of learning from the 

data and subsequently updating the prediction model as more information about the grid is known. 

Moreover, the maximum training time (𝑡𝑡𝑟) was 300 𝑠; thus, the model under this setup can 

produce updated predictors each 5 minutes.  

Table 6.1. Synthetic and real data description. 

Case type Synthetic data Count Real data count 

Normal Operation 2000 15840 

Blackout or CF 2000 160 

Total 4000 16000 

 

Table 6.2. CF prediction model parameters. 

Parameter Value Parameter Value 

𝑡𝑚𝑥 600 s |𝑑𝑡| 10000 

𝑡𝑑𝑒 1 s |𝑑𝑁| 2000 

𝑡𝑡𝑟 30-300 s 𝑎𝑐𝑐𝑇ℎ 𝑎𝑐𝑐(𝑀𝑘−1) 

 

To further test the model, two additional case studies are conducted. In the first case study, 

the effect of modifying |𝑑𝑁| is investigated by reducing it to 1000. The new CF prediction model 

parameters are shown in Table 6.3 where the 𝑡𝑡𝑟 also decreased significantly, indicating that this 

setup can provide quicker updates (around one new update every 2 minutes). The accuracy of this 

new configuration is plotted in Figure 6.6 and it shows double the number of iterations since the 

model needs half the amount of new data to formulate a new model. The accuracy shows a similar 
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trend as the original model but has more variations between the models and deeper dips in 

accuracy. Also, the best accuracy is slightly lower. 

 

Figure 6.5. Accuracy of the model 𝑀𝑘 as 𝑘 is incremented. 

 Table 6.3. CF prediction model parameters (with reduced |𝑑𝑁|). 

Parameter Value Parameter Value 

𝑡𝑚𝑥 600 s |𝑑𝑡| 10000 

𝑡𝑑𝑒 1 s |𝑑𝑁| 1000 

𝑡𝑡𝑟 30-150 s 𝑎𝑐𝑐𝑇ℎ 𝑎𝑐𝑐(𝑀𝑘−1) 

 

 

Figure 6.6. Accuracy of the model 𝑀𝑘 as 𝑘 is incremented with reduced |𝑑𝑁|). 
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The second case study is modifying the data size used for training so that only new data is 

used (|𝑑𝑡| = |𝑑𝑁|). However, the model is modified so that it allows for incremental change (i.e., 

new models use the older model as its based model before training the data). The new parameters 

are listed in Table 6.4. With the new configuration, the training time is significantly less than one 

minute, indicating that the model is suitable even for five-minute dispatching. As shown in  Figure 

6.7, the model under this case study has fewer variations than the reduced |𝑑𝑁|, but more than the 

original model. However, the incremental nature of the model provided accuracies higher than the 

previous two models as the maximum accuracy was 95.5%. 

Table 6.4. CF prediction model parameters (with |𝑑𝑡| = |𝑑𝑁|). 

Parameter Value Parameter Value 

𝑡𝑚𝑥 600 s |𝑑𝑡| 1000 

𝑡𝑑𝑒 1 s |𝑑𝑁| 1000 

𝑡𝑡𝑟 5-25 s 𝑎𝑐𝑐𝑇ℎ 𝑎𝑐𝑐(𝑀𝑘−1) 

 

Figure 6.7. Accuracy of the model 𝑀𝑘 as 𝑘 is incremented with |𝑑𝑡| = |𝑑𝑁|). 

6.5 Summary 

In this chapter, an autonomous CFP framework is proposed. The framework addresses 

multiple issues in the current CFP models by allowing the model to automatically learn from new 

datasets as time progresses. Moreover, IMS and CBR extend the functionality of the autonomous 

framework and increase its convergence speed and its efficacy in extracting information from the 
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newly acquired datasets. Moreover, this framework is expected to be applied as an auxiliary 

warning system to detect discrepancies between synthetic and real-time data to help aid in the 

improvement of the CF simulation models. 
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7 SUMMARY AND CONCLUSIONS 

7.1 Summary 

Blackout losses cost billions of dollars to both utilities and consumers. To reduce the risk 

of blackouts, system operators use criteria such as the N-1 outage and the 0.1 days/year outage to 

maintain acceptable operation levels even after contingencies. However, the recurrence of 

blackouts necessitates better assessment and analysis methods. Hence, cascading failure (CF) 

analysis emerged because it better describes the propagation of blackouts in power systems since 

all blackouts propagate as a CF. Then, the recent developments in CF analysis, most notably CF 

modeling, increased the interest in designing CF prediction models. 

This thesis presented multiple CF prediction frameworks to address the different design 

requirements of real-time CF prediction. A confidence-interval-based prediction framework was 

designed to predict CFs in real-time without the need for fault information. However, it had the 

limitation of requiring PMU data from all buses, which limits its scalability. Then, a CF prediction 

framework based on RNN-LSTM ensemble to capture the dynamics of the power networks was 

proposed. It used information theory and other reduction techniques to significantly reduce the 

number of inputs while maintaining high accuracy. Hence, it addressed the main limitation of the 

first model. Finally, a validation loop was introduced to allow the proposed models to update in 

real-time while being connected to the grid to reduce the dependency on synthetic data and to adapt 

to system changes. 

The following paragraphs provide a chapter-wise summary of this thesis. 

Chapter 1 introduces the importance of CF prediction and blackouts prevention. Also, the 

impact of smart grids and WAMS on the used paradigms to analyze and suppress CFs and 

blackouts is discussed.  

A detailed literature review on CF is conducted in Chapter 2. The reviewed topics included 

CF modeling, reliability analysis and its relation to CF, CF prediction, and the benchmarking 

attempts to both CF modeling and prediction. The chapter also addresses the limitations of static 

modeling which is often used in CF analysis. Moreover, the limitations of angle stability and risk 

assessment from a CF perspective are discussed. 
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Chapter 3 presents the methodology used to generate the CF data in this thesis and the 

downsides of using normal distributions and Monte Carlo simulations to create CF scenarios. The 

analyzed generated CF and blackout data have shown the significant difference between the LOL 

distribution in small and large systems. 

Chapter 4 presents the first CF prediction model proposed in this thesis. The model uses 

prediction intervals (PI) to deliver more meaningful information to the operator regarding the 

likelihood and size of the blackout. Also, it uses data fusion to improve the prediction accuracy. 

Moreover, the proposed formulation does not depend on the failure location and line outage data 

to produce its prediction. Hence, it is less prone to estimation errors. However, it requires inputs 

from all PMUs which might not be practical in large systems. 

Chapter 5 presents a second CF prediction model, namely the real-time load-point-based 

CF prediction for large interconnected systems. RNN-LSTM cells are used in this model for better 

modeling of the dynamic grid behaviour so that the predictor can provide quicker and more 

accurate predictions at each time step. Moreover, a load-based RNN ensemble is used to provide 

more information to the operators and RAS controllers regarding the locations affected by the CF. 

Also, the ensemble partially decreases the size of the RNN to reduce the curse of dimensionality. 

In addition, the usage of network theory, eigenvector centrality, information entropy, and higher 

moments to obtain the most relevant information to CF prediction drastically decreases input count 

without affecting the accuracy. Hence, it allows the model to be applicable to large interconnected 

power systems, which was the main limitation of the first model. Moreover, PMU non-idealities 

are considered in the formulation of the CF prediction model, and it is shown that the model is 

resilient to both missing PMU data and noisy PMU measurements. 

Chapter 6 proposes an autonomous learning framework for CF prediction. This framework 

aims at improving the efficacy of CF prediction algorithms by training and updating them in real-

time while they are connected to the grid. The framework uses importance sampling and case-

based reasoning to optimize the data size and the training time to make the framework suitable for 

real-time CF prediction. The results indicate that this framework can significantly improve the 

efficacy of existing CF prediction models by allowing them to improve in real-time without 

notably altering their original formulation. 
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7.2 Contributions 

Following are the main contributions of this thesis: 

1. Designing a real-time CF prediction framework that can be scaled to large 

interconnected power systems. 

2. Tailoring prediction interval techniques to the CF prediction problem and 

adjusting the problem formulation accordingly. 

3. Proposing methodologies to significantly reduce the number of inputs used in CF 

prediction using higher moments, bus centrality, information entropy, and graph 

theory. 

4. Designing a load-based RNN-LSTM ensemble, which provides more meaningful 

information to the operators regarding the state of the grid while also simplifying the 

formulation and training of the model. 

5. Formulating an autonomous framework for CF prediction training in real-time 

based on importance sampling and case-based reasoning. 

7.3 Conclusions 

The following conclusions are drawn from the studies conducted in this thesis: 

1. Typical MC simulations are not suited for CF analysis. Hence, modified data 

generation schemes are needed to efficiently generate CF data in order to test and train 

CF prediction models. 

2. Data fusion substantially improves the prediction accuracy of load-based predictions 

by exploiting the correlation between the buses (it corrects around 20% of the 

prediction errors). 

3. Applying a load-based approach to CF prediction improves the accuracy of the 

predictions and allows the operators to have meaningful information about the affected 

regions. 

4. RNN-LSTM cells are suitable for modeling both the fast and slow cascades of the 

power network. Hence, they provide higher prediction accuracy (99.9%) with less 

delays (the maximum time delay is 400 𝑚𝑠). 
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5. The inclusion of hidden failures (HFs) significantly reduces the accuracy of a 

prediction model (maximum accuracy is below 95%). However, it more accurately 

represents the uncertainties of the network. Thus, there is a trade-off between efficacy 

and accuracy when including HFs within CF prediction. 

6. RNN-LSTM ensemble with input reduction techniques can significantly suppress the 

curse of dimensionality in CF prediction schemes and provides very high accuracy in 

large interconnected systems (inputs are reduced by 98%, but the accuracy is still 

higher than 99%). 

7. The validation loop allows the CF prediction model to improve naturally as time 

progresses. Hence, the validation loop eliminates the need for recurrent offline training. 

Moreover, it shows the applicability of importance sampling and case-based reasoning 

on CF prediction frameworks. 

7.4 Suggestions for Future Work 

The following studies are recommended for future investigations based on the research 

carried out in this thesis. 

1. EENS Prediction: Currently, all models proposed in this thesis, and the CFP literature 

in general, output the LOL expectation (LOLE). However, a more desired output is the 

expected energy not supplied (EENS). This can be achieved by modeling the 

restoration process to estimate the duration of the LOLE. Hence, future work could 

incorporate such a process. 

2. Bus-Branch-based CF prediction: The CF analysis in this thesis uses the Bus-Branch 

modeling of the power system. However, CF analysis can be extended to include the 

Node-Breaker model, when considering failures near or within substations.  

3. Detailed PMU dynamics: Only some PMUs non-idealities are considered in this 

research (total vector error (TVE) as a Gaussian noise and missing PMU data). 

However, a more holistic system could incorporate more PMUs non-idealities. For 

example, the delay due to communication networks, which can range between 100 𝑚𝑠 

to 3000 𝑚𝑠 depending on the communication network infrastructure. Also, the TVE 

due to transient response and internal PMU delays. Hence, future work should address 

these limitations and build a more robust CF prediction framework.  
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APPENDIX A: DEFINITIONS 

Table A.1. Definitions and clarifications. 

Terminology Definition and clarifications 

Cascading failure The uncontrolled successive loss of elements in an interconnected system 

that is initiated by the loss or maloperation of an element or elements. 

Moreover, all blackouts propagate as a cascading failure, so the term refers 

to both cascading failures and blackouts. 

(Total) Blackout The loss of power in the entire power system network. 

(X% blackout) The partial loss of power either due to load shedding, disconnection 

between generation and demand, or generation-demand mismatch. 

Sometimes this term is referred to as brownout in the literature, but X% 

blackout is used in this thesis. 

Reliability The system’s ability to maintain normal operation following a contingency. 

Load shedding Tripping of the load by the operator (or automatic controllers) to help stop 

CF propagation or restore the grid to an acceptable operating point. Mainly 

done to have generation-demand balance, relieving congested transmission 

lines, or restoring frequency to an appropriate level. 

Load curtailment The loss of load (partially or completely) due to load shedding, improper 

islanding, disconnection between generation and demand, or not having 

transmission lines with sufficient capacity.  

(Uncontrolled) 

Islanding 

The separation of the grid into one or more islands following a contingency. 

This is also called improper islanding in some literature. 

Controlled 

islanding 

The separation of the grid into one or more islands during a contingency or 

a CF to isolate the affected regions from the normally operating regions. 

Resilience The system’s ability to quickly recover to normal operation following a 

contingency. 

Robustness The model’s ability to operate normally in different operating conditions. 

More generally, it is the model’s ability to maintain its reliability and 

resilience under different initial conditions and contingencies. 
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Slow cascade The slow change in the transmission line temperature that could extend the 

cascading event by tree contact, overcurrent relays, or other slow dynamics. 

Fast cascade The electrical instability that extends the cascading event by triggering 

frequency and voltage violations causing generator or load trippings. 

 

Additional information regarding CF terminologies are in [7], [9], [19]. 
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APPENDIX B: DYNAMIC EQUATIONS OF COSMIC 

This appendix presents a summary of the dynamic equations used in the open-source 

MATLAB-based simulation tool used to simulate the CF scenarios in this thesis. The detailed 

description of COSMIC1 is in [27]. This summary is only provided for reference. 

List of included dynamics and their equations: 

Swing equation and rotor angle for each generator in the network: 

𝑀
𝑑𝜔

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑔 − 𝐷(𝜔 − 1) (B.1) 

𝑑𝛿

𝑑𝑡
= 2𝜋𝑓𝑜(𝜔 − 1) (B.2) 

Generator model: 

𝑃𝑔 =
|𝐸𝑎

′ ||𝑉|

𝑋𝑑
′ sin 𝛿𝑚,𝑖 +

|𝑉|2

2
(
1

𝑋𝑞 
−
1

𝑋𝑑
′ ) 𝑠𝑖𝑛2𝛿𝑚 (B.3) 

𝑄𝑔 =
|𝐸𝑎

′ ||𝑉|

𝑋𝑑
′ cos 𝛿𝑚 + |𝑉|

2 (
cos2 𝛿𝑚
𝑋′𝑑

 +
sin2 𝛿𝑚
𝑋𝑞

) (B.4) 

𝑑|𝐸𝑎
′ |

𝑑𝑡
= −|𝐸𝑎

′ |
𝑋𝑑
𝑇𝑑𝑜
′ + (

𝑋𝑑
𝑋′𝑑

 − 1)
|𝑉|

𝑇𝑑𝑜
′ cos 𝛿𝑚 +

𝐸𝑓𝑑

𝑇𝑑𝑜
′   (B.5) 

Exciter model: 

𝑑|𝐸𝑓𝑑|

𝑑𝑡
=
1

𝑇𝐸
(𝐾𝐸 . 𝜎 ((1 −

𝑇𝐴
𝑇𝐵
)𝐸1 +

𝑇𝐴
𝑇𝐵
(𝑉𝑟𝑒𝑓 − 𝑉𝑡)) − 𝐸𝑓𝑑) (B.6) 

𝑑|𝐸1|

𝑑𝑡
=
1

𝑇𝐵
(𝑉𝑟𝑒𝑓 − 𝑉𝑡 − 𝐸1) (B.7) 

 

1 Cosmic is a dynamic cascading outage simulator in power systems, developed by Jiajia Song and Eduardo Cotilla-Sanchez (Oregon State 
University), Paul Hines and Goodarz Ghanavati (University of Vermont). Its code is free to use for research purposes (GNU General Public License 

V3.0) and is available at: https://github.com/ecotillasanchez/cosmic. 

https://github.com/ecotillasanchez/cosmic
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Governor model: 

𝑑𝑃𝑚
𝑑𝑡

= 𝜎 (
1

𝑇𝑡
[𝜎 (𝑃𝑟𝑒𝑓 − (

1

𝑅
Δ𝜔 + 𝑃3)) − 𝑃𝑚]) (B.8) 

𝑑𝑃3
𝑑𝑡

=
1

𝑅. 𝑇𝑖
Δ𝜔 (B.9) 

where each variable and constant are described according to the Table below. 

Table B.1. COSMIC dynamic equation variables. 

Variable/Constant Definition Variable/Constant Definition 

𝑀 Machine inertia constant (s) 𝐸𝑓𝑑 Excitation voltage (p.u.) 

𝜔 Rotor speed (p.u.) 𝑇𝐸 Exciter time constant E (s) 

𝑃𝑚 
Mechanical power input 

(p.u.) 
𝐾𝐸 Exciter gain 

𝑃𝑔 
Electrical power output 

(p.u.) 
𝜎(𝑥) Sigmoid limiter function 

𝐷 Damping constant 𝑇𝐴 Exciter time constant A (s) 

𝛿 Rotor angle (radian) 𝑇𝐵 Exciter time constant B (s) 

𝑓𝑜 Synchronous speed (Hz) 𝐸1 
Internal variable of the 

exciter 

𝐸𝑎
′  

Transient open-circuit 

voltage (p.u.) 
𝑉𝑟𝑒𝑓 

Desired reference voltage 

(p.u.) 

𝑉 Bus voltage (p.u.) 𝑉𝑡 Terminal voltage (p.u.) 

𝛿𝑚 
Mechanical rotor angle 

(radians) 
𝑇𝑡 

Servomotor time constant 

(t) 

𝑋𝑑
′  

Direct-axis transient 

reactance (p.u.) 
𝑃𝑟𝑒𝑓 Reference Power (p.u.) 

𝑋𝑞 
Quadrature-axis reactance 

(p.u.) 
𝑅 Droop 

𝑋𝑑 Direct-axis reactance (p.u.) 𝑃3 
Internal variable of the PI 

controller 

𝑇𝑑𝑜
′  

Direct-axis transient time 

constant 
𝑇𝑖 PI time constant 
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APPENDIX C: IEEE 39-BUS SYSTEM INFORMATION 

The single line diagram (SLD) of the IEEE 39-bus system is shown in Figure C.. The figure 

also includes the numbering of the generator buses. Moreover, the numbering of transmission lines 

and load bus locations are shown in Tables A. 2 and A. 3. 

 

Figure C.1. Single line diagram (SLD) of the IEEE 39-bus system. 
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Table C.1. Transmission lines’ locations. 

Line Number From bus To bus Line Number From bus To bus 

1 1 2 24 16 24 

2 1 39 25 17 18 

3 2 3 26 17 27 

4 2 25 27 21 22 

5 3 4 28 22 23 

6 3 18 29 23 24 

7 4 5 30 25 26 

8 4 14 31 26 27 

9 5 6 32 26 28 

10 5 8 33 26 29 

11 6 7 34 28 29 

12 6 11 35 12 11 

13 7 8 36 12 13 

14 8 9 37 6 31 

15 9 39 38 10 32 

16 10 11 39 19 33 

17 10 13 40 20 34 

18 13 14 41 22 35 

19 14 15 42 23 36 

20 15 16 43 25 37 

21 16 17 44 2 30 

22 16 19 45 29 38 

23 16 21 46 19 20 

 

Table C.2. Load bus locations, MW, and MVAR information. 

Load number Bus MW MVAR Load number Bus MW MVAR 

1 3 322.0 2.4 11 23 247.5 84.6 

2 4 500.0 184.0 12 24 308.6 -92.2 

3 7 233.8 84.0 13 25 224.0 47.2 

4 8 522.0 176.6 14 26 139.0 17.0 

5 12 8.5 88.0 15 27 281.0 75.5 

6 15 320.0 153.0 16 28 206.0 27.6 

7 16 329.4 32.3 17 29 283.500 26.9 

8 18 158.0 30.0 18 31 9.200 4.6 

9 20 680.0 103.0 19 39 1104.000 250.0 

10 21 274.0 115.0 
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APPENDIX D: CASES’ INFORMATION SAMPLE 

Each case in the IEEE 39-bus system is constructed using the rules and specifications described in Chapter 3. This table is provided for 

reproducibility and the verification of used probability distribution where the exact numbers for the first 100 scenarios (out of the total 54,756 scenarios) 

are presented. The columns are as follows: the scenario index (column 1), the first line with forced outage (0 if none) (column 2), the second line with 

forced outage (0 if none) (column 3), the generator with forced outage (0 if none) (column 4), the location of the fault (column 5), and the relative 

loading factor of the 19 loads of the system (columns 6-24).  

Table D.1. Cases’ information sample (the first 100 scenarios in the IEEE 39-bus system). 

# tl1 Tl2 g f load1 load2 load3 load4 load5 load6 load7 load8 load9 load10 load11 load12 load13 load14 load15 load16 load17 load18 load19 

1 0 0 0 37 1.014 0.899 1.442 1.421 0.667 0.847 1.500 0.641 0.994 1.477 0.747 0.763 0.824 1.467 1.318 0.620 0.759 1.338 0.635 

2 0 0 0 13 1.154 1.262 1.220 1.295 1.247 1.176 1.050 1.489 1.170 1.156 0.698 0.606 1.151 1.167 0.765 1.034 1.014 1.039 0.680 

3 0 0 0 23 1.325 0.730 1.107 0.981 0.687 0.663 0.626 0.647 0.783 1.273 0.689 0.859 0.779 0.820 0.918 1.135 1.024 1.247 1.455 

4 0 0 0 29 1.360 1.455 0.605 1.040 1.166 0.755 1.159 1.124 1.015 1.210 0.819 1.202 1.376 1.475 1.086 0.905 0.675 1.157 0.603 

5 0 0 0 21 0.744 1.159 1.370 0.635 0.837 0.798 1.067 1.123 1.270 1.286 1.400 1.123 1.152 0.646 0.891 0.610 0.874 1.205 1.402 

6 0 0 0 31 0.704 0.694 1.351 1.425 0.718 1.255 0.820 1.462 1.062 0.741 0.656 1.251 0.611 0.669 0.708 1.231 0.875 0.993 1.259 

7 0 0 0 3 1.121 0.812 0.924 0.967 0.858 1.295 0.628 1.357 0.913 1.005 0.643 1.242 1.278 1.476 0.708 1.172 1.445 0.749 1.116 

8 0 0 8 32 0.836 0.694 1.140 1.084 0.799 0.837 1.465 0.624 1.482 1.313 1.491 1.129 1.232 1.408 0.844 1.209 0.902 1.352 0.671 

9 34 0 0 26 1.234 0.628 0.881 0.600 0.960 0.917 0.839 1.156 1.034 0.606 1.449 1.241 0.907 1.103 1.175 0.632 1.157 0.858 1.072 

10 0 0 0 2 1.287 1.274 1.209 0.956 1.201 0.651 1.230 0.928 0.761 1.120 1.290 0.952 0.883 1.215 0.761 0.715 0.622 0.895 1.114 

11 0 0 0 33 0.782 1.075 1.172 1.208 1.347 0.850 1.417 0.817 0.899 0.628 0.958 1.254 0.864 0.990 1.054 1.091 1.319 1.395 1.070 

12 0 0 0 34 0.902 0.905 1.237 1.229 1.182 1.192 1.348 1.324 0.919 1.257 1.223 1.290 0.703 0.857 1.332 0.671 1.229 0.909 1.047 

13 0 0 10 46 0.831 0.919 1.179 1.082 0.747 1.369 0.671 0.667 1.275 0.935 1.198 0.697 1.488 1.099 0.608 1.374 0.741 0.898 1.048 

14 0 0 0 22 1.153 0.674 1.494 1.242 1.023 1.299 1.126 1.364 1.447 0.757 1.424 0.633 0.662 0.617 1.429 1.127 1.366 0.640 0.675 

15 0 0 0 8 1.287 0.696 1.130 0.600 1.424 1.423 1.441 1.267 0.954 0.977 1.200 0.852 0.670 1.121 1.161 1.312 0.616 0.666 0.944 

16 0 0 0 43 0.724 1.478 0.666 0.681 1.474 0.752 1.239 1.024 0.812 1.495 1.482 1.257 0.763 0.790 0.969 0.785 1.005 0.812 1.087 

17 0 0 0 43 1.028 1.379 1.060 1.138 0.891 0.882 1.170 0.940 0.741 1.416 1.199 0.801 0.888 0.969 0.705 1.184 1.104 0.719 0.702 
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Table D.1. Continued. 

# tl1 Tl2 g f load1 load2 load3 load4 load5 load6 load7 load8 load9 load10 load11 load12 load13 load14 load15 load16 load17 load18 load19 

18 0 0 0 43 0.919 0.981 0.773 1.258 0.972 0.915 1.232 1.162 0.761 1.011 1.256 1.416 1.389 0.945 0.734 0.798 1.275 0.952 1.036 

19 11 0 0 2 1.109 0.655 0.749 1.304 0.922 0.810 0.805 0.792 0.985 0.999 0.918 1.229 0.716 1.112 1.208 0.707 1.132 1.348 1.185 

20 0 0 0 17 1.103 1.423 1.207 0.659 1.246 0.951 1.102 1.225 1.483 1.439 1.479 1.471 0.997 1.188 0.621 0.966 0.839 0.750 0.788 

21 0 0 0 15 0.952 0.886 0.966 0.709 1.425 0.647 0.798 0.965 0.979 1.377 1.057 0.910 1.208 1.236 0.959 0.771 0.745 1.365 1.103 

22 11 0 0 28 0.993 1.312 0.987 0.717 1.450 1.218 1.301 0.788 0.806 0.762 0.674 1.231 1.492 0.982 0.627 1.031 1.275 1.227 0.853 

23 0 0 0 4 0.794 1.290 0.695 0.700 0.614 1.185 1.235 1.243 1.026 1.360 1.174 1.145 1.208 0.739 1.362 1.032 1.246 1.114 1.046 

24 0 0 0 38 0.777 1.208 0.606 0.781 1.182 0.650 1.457 1.463 1.239 1.166 0.674 1.374 0.779 1.489 0.612 0.645 1.162 1.458 1.483 

25 0 0 0 21 0.806 0.630 0.986 0.667 0.732 1.440 1.236 0.870 1.323 1.175 0.838 1.482 1.131 0.843 1.066 1.415 0.840 1.203 1.205 

26 0 0 0 31 1.390 0.783 1.283 0.805 1.308 0.690 1.138 1.165 1.056 0.880 1.457 1.246 0.672 1.008 0.985 0.702 1.010 1.000 1.268 

27 0 0 0 25 0.712 0.800 1.006 1.041 0.756 0.976 0.681 0.635 0.910 1.459 1.220 1.365 0.778 1.216 0.972 0.771 0.824 0.674 1.010 

28 0 0 0 12 1.079 1.422 1.234 0.612 1.125 1.141 1.155 1.171 1.124 0.871 1.487 1.412 1.094 1.104 0.674 1.474 1.332 0.988 0.741 

29 12 0 0 2 1.284 0.717 1.378 0.851 1.431 0.966 1.388 1.374 1.298 1.253 1.132 1.024 0.861 1.259 0.884 1.404 1.256 0.853 0.790 

30 0 0 0 7 1.024 1.419 1.394 0.743 1.205 0.840 0.873 0.919 1.073 1.374 0.868 1.361 1.337 0.825 0.685 0.644 1.477 1.208 0.797 

31 0 0 0 35 1.033 1.059 1.169 0.766 0.652 0.965 1.279 0.781 1.176 1.438 0.680 0.995 1.111 1.226 0.960 1.463 0.981 0.873 1.087 

32 0 0 0 3 1.344 0.952 0.878 1.237 1.471 1.242 1.064 0.842 0.910 1.166 1.175 1.404 0.628 1.058 1.364 1.187 1.435 0.672 0.639 

33 0 0 0 42 1.152 0.837 0.612 1.263 0.826 0.766 1.409 0.644 1.316 1.347 1.340 0.846 0.793 1.098 0.894 1.130 0.717 1.353 1.047 

34 0 0 0 16 0.943 1.069 0.806 1.284 1.209 1.370 0.697 1.301 0.801 1.257 0.894 0.611 1.303 0.948 0.960 1.080 1.073 1.020 0.727 

35 18 0 0 45 1.498 0.688 0.685 0.732 0.685 1.042 1.145 1.331 1.233 1.005 1.278 0.741 1.294 0.611 0.939 0.779 0.662 0.910 1.237 

36 0 0 0 7 1.342 0.701 1.262 0.843 1.007 1.047 0.885 1.380 1.257 0.752 0.608 1.249 1.444 1.240 0.754 1.178 0.916 0.641 1.071 

37 0 0 0 32 0.792 0.671 1.350 0.678 1.150 0.815 1.230 1.447 1.336 0.605 0.846 1.435 0.721 0.674 0.715 1.228 0.943 0.736 0.820 

38 0 0 0 11 0.687 0.657 1.384 0.871 0.801 0.802 1.088 1.024 1.395 0.732 1.249 0.709 1.448 1.221 1.166 1.465 0.805 0.770 1.297 

39 0 0 0 17 1.191 0.972 1.160 1.063 1.360 1.378 0.975 1.049 0.835 1.290 1.199 0.611 1.123 1.397 1.462 0.729 1.369 1.184 0.764 

40 0 0 0 6 0.980 0.664 0.823 0.808 1.351 1.000 1.226 1.318 1.260 1.128 0.952 0.713 0.986 0.823 1.435 0.853 1.082 0.971 0.836 

41 0 0 0 12 0.930 1.248 1.056 0.657 0.750 0.824 0.675 0.893 1.038 1.286 1.377 0.970 1.196 1.090 1.206 1.288 1.123 0.874 1.207 

42 0 0 0 42 0.754 0.908 1.295 0.921 1.151 1.268 0.676 1.409 0.829 0.749 1.252 0.714 1.173 0.741 1.489 1.403 1.298 1.311 1.051 

43 0 0 0 43 0.621 1.227 1.169 0.646 1.429 1.244 0.832 1.125 1.178 0.770 1.096 1.402 1.250 1.410 1.185 0.863 0.837 0.740 0.730 

44 0 0 0 22 1.196 0.838 0.759 1.122 0.604 1.425 1.100 0.687 1.001 1.277 1.074 0.842 1.363 0.807 1.037 0.802 1.441 1.160 1.007 

45 0 0 0 31 1.005 0.706 1.257 1.370 0.621 0.646 1.012 1.208 1.106 1.278 1.492 1.006 1.196 0.978 1.299 1.412 1.275 1.294 0.915 
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Table D.1. Continued. 

# tl1 Tl2 g f load1 load2 load3 load4 load5 load6 load7 load8 load9 load10 load11 load12 load13 load14 load15 load16 load17 load18 load19 

46 35 0 0 3 0.741 1.255 0.615 1.303 1.023 0.868 0.640 0.657 1.114 1.226 1.234 0.915 1.164 0.628 1.453 0.619 0.637 0.930 0.741 

47 0 0 0 15 1.023 0.856 0.611 0.946 1.369 1.451 0.724 0.624 1.156 1.062 1.182 1.378 0.864 0.861 1.006 1.079 1.137 0.775 1.324 

48 0 0 0 35 1.163 0.996 0.763 1.330 1.128 1.407 0.753 0.976 0.782 0.982 1.438 1.427 1.420 1.049 0.826 1.405 0.829 1.350 0.960 

49 21 0 0 14 1.444 1.349 0.649 0.821 0.935 1.329 0.607 0.841 1.087 0.656 1.070 0.830 1.365 0.915 0.860 1.158 0.704 0.626 0.869 

50 0 0 2 33 0.875 0.989 1.209 1.029 1.093 1.289 1.065 1.331 0.968 1.145 0.930 0.909 1.014 1.226 1.485 0.779 0.848 1.072 0.998 

51 0 0 0 26 1.193 1.202 0.930 1.465 1.091 1.148 0.703 1.346 0.960 0.668 1.170 1.378 0.700 0.928 0.850 1.487 0.906 0.997 0.900 

52 0 0 0 13 1.292 1.003 0.787 1.073 1.135 0.643 1.196 0.941 0.895 1.388 1.163 0.742 1.170 1.056 0.755 1.087 0.632 0.819 1.493 

53 0 0 0 44 0.908 1.459 0.781 0.847 1.340 0.882 0.943 0.969 0.812 1.064 1.173 1.104 0.976 1.472 1.275 1.495 1.143 1.093 0.902 

54 0 0 0 10 1.430 0.845 0.684 1.477 1.033 1.493 1.186 0.812 1.191 1.207 0.605 0.994 0.978 1.040 1.146 1.112 0.650 0.619 1.084 

55 0 0 0 27 1.364 1.131 0.851 1.119 1.452 1.364 1.443 1.071 0.959 0.929 0.642 0.886 1.427 1.389 0.996 1.167 0.931 1.366 1.002 

56 0 0 0 41 1.275 1.312 0.920 0.684 1.076 1.288 0.724 0.863 1.092 0.790 0.760 0.737 1.249 0.903 1.110 0.885 0.859 1.219 1.082 

57 26 0 0 5 1.168 1.060 1.173 1.043 1.046 0.932 1.279 1.267 0.927 1.275 0.821 1.088 1.258 1.176 0.736 1.405 0.816 1.307 1.037 

58 39 0 0 21 0.836 0.635 1.115 0.765 0.696 1.095 0.674 1.275 0.826 1.060 0.674 0.618 0.702 1.093 0.683 1.275 1.360 1.137 0.869 

59 0 0 0 29 1.178 0.842 1.489 1.230 0.741 0.852 1.415 1.227 1.026 1.310 1.330 1.192 1.055 1.200 1.290 1.179 1.088 0.859 0.619 

60 0 0 0 24 1.327 1.087 0.750 0.869 0.910 0.746 0.631 1.320 0.796 0.863 0.630 0.738 1.185 1.382 0.932 1.392 1.194 1.330 1.138 

61 0 0 0 43 0.643 1.043 0.840 0.755 1.387 1.293 0.982 1.009 1.325 1.185 1.418 1.410 0.758 1.342 0.895 1.482 0.998 0.771 1.132 

62 0 0 0 22 0.737 1.346 0.684 1.267 0.792 1.309 1.265 1.288 1.368 1.272 0.778 1.469 0.974 1.410 0.842 1.182 1.367 1.346 0.632 

63 0 0 0 23 1.081 0.855 0.940 0.748 0.994 1.060 1.063 1.355 1.111 0.747 1.397 0.762 0.606 0.896 0.798 0.895 1.215 0.866 0.652 

64 0 0 0 10 1.330 0.745 1.315 1.242 0.946 0.862 1.206 1.219 1.161 0.921 1.157 0.694 1.241 0.992 0.736 1.286 1.254 0.878 0.807 

65 0 0 0 7 1.174 0.807 1.235 0.998 0.779 1.345 1.296 1.450 0.881 1.357 1.196 0.729 0.915 0.725 0.666 0.905 0.724 0.698 0.894 

66 0 0 0 2 0.807 1.057 1.129 1.077 1.153 1.070 1.315 0.923 1.330 0.731 1.008 0.906 1.229 0.713 1.189 0.973 0.748 0.994 1.198 

67 0 0 0 27 1.390 1.365 0.697 0.702 0.924 1.242 0.942 0.877 1.048 0.935 0.872 0.763 1.338 1.362 0.815 0.619 1.249 1.049 0.919 

68 0 0 0 14 0.770 0.620 1.366 0.803 0.811 0.700 1.391 0.676 0.819 0.993 0.716 0.946 0.934 0.725 0.731 1.366 1.001 1.004 0.900 

69 0 0 0 2 1.105 1.031 0.977 0.672 0.779 1.296 0.983 1.291 0.794 1.109 0.935 0.612 0.637 0.729 0.605 0.745 0.829 1.065 1.324 

70 0 0 0 46 1.421 1.134 0.787 1.220 1.450 1.092 0.774 1.484 0.757 1.439 0.906 1.063 1.422 0.615 1.429 0.952 1.288 0.835 1.036 

71 0 0 0 31 1.238 0.839 1.026 0.773 0.995 0.962 0.942 0.688 1.099 0.819 1.112 1.426 1.339 0.642 1.092 0.884 0.600 1.103 0.629 

72 7 0 0 31 0.832 0.890 1.123 1.443 1.403 1.202 1.272 0.918 1.239 1.105 1.347 1.045 0.686 1.205 1.467 1.232 0.908 0.807 0.604 

73 0 0 0 30 1.247 1.161 1.053 1.344 0.762 0.702 1.046 1.133 0.889 1.281 0.675 1.112 1.246 1.122 1.226 0.680 1.089 0.675 1.197 
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Table D.1. Continued. 

# tl1 Tl2 g f load1 load2 load3 load4 load5 load6 load7 load8 load9 load10 load11 load12 load13 load14 load15 load16 load17 load18 load19 

74 0 0 0 35 0.764 1.124 1.419 0.970 0.729 0.844 0.606 1.299 1.214 0.623 1.296 1.404 0.819 1.115 1.095 1.126 0.888 1.044 0.940 

75 0 0 0 16 1.482 0.982 1.258 0.952 1.384 1.491 0.806 1.058 0.967 1.446 0.951 0.921 1.087 1.186 0.622 0.631 1.208 1.113 0.696 

76 36 7 0 9 1.447 0.952 0.673 0.734 0.644 0.715 1.454 0.779 0.863 0.765 0.632 0.860 1.333 1.488 1.391 1.310 1.374 0.655 0.870 

77 0 0 0 12 0.810 1.496 0.784 1.046 0.685 0.722 0.736 0.674 1.364 0.950 0.869 1.004 1.208 0.805 1.232 1.122 1.397 0.992 1.009 

78 0 0 0 29 1.021 1.397 1.358 1.241 1.305 0.742 1.306 1.456 0.965 0.789 1.426 0.880 0.690 0.956 0.672 0.739 1.091 0.984 1.172 

79 0 0 0 3 1.185 1.000 0.702 1.351 1.238 1.038 0.799 0.893 1.469 0.963 1.464 1.209 1.259 0.751 0.797 0.707 0.819 0.970 0.890 

80 0 0 1 36 0.644 0.836 1.436 1.395 0.780 1.300 0.772 1.182 1.448 1.486 0.995 1.372 1.289 1.401 1.048 0.733 0.979 0.717 0.667 

81 0 0 0 23 0.697 1.227 0.658 0.751 1.307 0.623 0.610 0.902 1.294 1.211 0.836 1.024 1.396 0.770 0.889 0.720 1.426 0.638 1.147 

82 0 0 0 14 0.928 1.451 1.051 0.786 1.263 0.955 0.741 0.821 1.100 0.688 1.187 1.060 1.408 0.732 1.423 0.864 0.905 1.174 0.643 

83 0 0 0 43 1.042 0.707 1.327 1.064 1.092 1.083 1.106 0.826 1.019 0.872 0.698 0.967 0.736 0.748 0.742 1.222 1.436 0.605 1.332 

84 0 0 0 20 1.074 0.689 1.470 1.186 0.692 1.152 1.251 1.382 1.014 0.755 0.690 1.010 1.280 1.209 0.846 1.367 0.729 0.919 0.787 

85 0 0 0 46 0.739 1.247 1.211 1.079 0.622 1.296 0.863 0.959 0.877 0.725 1.224 1.165 0.663 0.940 1.056 1.341 1.409 1.292 0.615 

86 0 0 0 39 1.131 0.847 1.343 0.868 0.794 0.764 1.173 0.718 1.423 0.977 1.144 1.054 1.239 0.962 1.374 1.458 0.657 0.673 0.946 

87 0 0 0 17 1.031 1.085 1.226 0.888 1.039 1.443 0.852 0.606 0.922 1.001 0.683 0.636 1.222 1.312 1.415 1.106 1.005 1.227 0.808 

88 0 0 0 44 0.790 1.461 1.073 0.744 0.790 1.316 0.802 0.872 0.769 0.888 1.110 0.844 1.424 0.694 1.268 1.353 0.756 0.819 0.881 

89 0 0 0 29 1.002 0.903 0.655 0.672 1.164 1.050 1.286 1.148 0.705 1.169 1.354 1.176 1.465 0.788 0.997 0.829 1.372 1.254 0.643 

90 0 0 0 14 0.805 1.168 1.333 1.425 1.484 1.394 1.217 1.224 1.140 1.074 0.689 1.045 0.756 1.309 1.383 1.129 0.940 1.215 0.740 

91 0 0 0 45 1.334 1.310 0.879 0.931 1.184 1.006 1.430 0.930 0.829 0.642 0.782 0.644 1.409 0.680 1.217 0.738 0.661 1.312 1.013 

92 0 0 0 44 1.229 1.188 1.349 1.100 1.310 1.075 0.844 0.671 1.013 0.935 0.878 1.301 1.095 0.602 1.083 0.879 1.160 0.759 0.945 

93 0 0 0 11 1.418 1.120 0.902 0.966 0.926 1.460 1.344 1.199 0.740 0.732 0.856 1.445 0.697 0.987 0.654 1.289 1.360 0.914 1.271 

94 0 0 0 41 0.680 0.727 1.137 0.672 1.163 1.458 1.150 0.836 1.441 0.959 0.770 1.323 1.462 0.863 1.033 0.755 1.064 1.222 0.647 

95 0 0 0 8 1.292 1.169 0.754 1.280 0.945 1.462 1.056 1.372 0.934 0.809 0.907 0.984 0.753 0.886 1.045 1.054 1.141 0.945 0.864 

96 0 0 0 6 1.282 0.976 0.859 1.099 1.061 0.754 0.670 1.218 1.430 0.753 1.466 0.882 1.262 0.678 1.095 1.283 0.717 1.050 1.214 

97 0 0 0 6 1.272 0.794 0.754 1.275 1.211 0.909 1.281 0.737 1.019 0.665 0.851 0.736 0.928 1.211 1.091 0.783 1.078 1.124 0.605 

98 0 0 10 36 0.866 1.317 0.777 1.108 1.251 1.090 0.861 0.804 0.752 1.210 0.613 1.170 0.806 1.244 1.185 0.619 0.760 1.072 1.389 

99 0 0 0 26 0.622 1.090 0.864 0.645 1.419 1.474 0.604 1.358 1.417 0.878 1.498 1.131 0.678 1.229 1.454 0.963 0.727 1.316 0.961 

100 0 0 0 38 0.760 0.853 1.284 1.117 0.618 1.102 1.485 1.383 0.987 0.755 0.627 1.112 1.393 0.633 0.661 1.337 0.879 1.455 0.751 
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APPENDIX E: ALGORITHMS 

Algorithm 1 (Cascading Failure Simulation) 

INPUT: desired loading level, fault location(s), line repair state, stopping time, and power system 

information. 

OUTPUT: cascading failure scenario data. 

1. START. 

2. LOAD data of the specified power system. 

3. SET loading level to the desired loading level. 

4. SET line state to line repair state. 

5. RUN the power system simulation until it reaches steady state. 

6. IF system did not converge OR became unstable THEN: 

7. Raise error flag: system did not converge. 

8. GO TO END 

9. Apply the fault(s). 

10. WHILE 𝑡 <  𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑡𝑖𝑚𝑒:  

11. RUN the simulation until stopping time is reached. 

12. IF system did not converge OR became unstable THEN: 

13. Raise state flag: the system had a total blackout. 

14. END WHILE LOOP. 

15. OUTPUT and STORE time domain data of the system. 

16. END. 

 

Algorithm 2 (Generate Random Cascading Failure Scenarios) 

INPUT: probability distribution function for loading (𝑃𝐷𝐹𝑙), probability distribution function for 

failures (𝑃𝐷𝐹𝑓), number of cases (𝑠), number of elements (𝑒), number of faults (𝑓), number of load 

buses (𝑏), and desired probability (𝑝). 
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OUTPUT: loading level, and fault location(s). 

1. START. 

2. INITIALIZE loading level as an 𝑠 × 𝑏 matrix as all zeros. 

3. INITIALIZE fault location as an 𝑠 × 𝑒 matrix as all FALSE BOOLEAN. 

4. FOR 𝑖 FROM 1 TO 𝑠: 

5. FOR 𝑗 FROM 1 TO 𝑏: 

6. SET loading level(𝑖, 𝑗)  = random sample from the 𝑃𝐷𝐹𝑙. 

7. FOR 𝑘 FROM 1 TO 𝑒: 

8. IF random sample from the 𝑃𝐷𝐹 > threshold THEN: 

9. SET fault location(𝑖, 𝑘) = TRUE. 

10. OUTPUT and STORE cascading failure scenarios system.  

11. END. 

 

Algorithm 3 (Validate Cascading Failure Scenarios) 

INPUT: desired loading level, line repair state, and power system information. 

OUTPUT: valid simulation flag. 

1. START. 

2. LOAD data of the specified power system. 

3. SET loading level to the desired loading level. 

4. SET line state to line repair state. 

5. RUN the power system simulation until it reaches steady state. 

6. IF system did not converge OR became unstable THEN: 

7. SET valid simulation flag = FALSE. 

8. ELSE: 

9. SET valid simulation flag = TRUE. 

10. OUTPUT and STORE valid simulation flag. 

11. END. 
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Algorithm 4 (Generate dataset for cascading failure) 

INPUT: probability distribution function for loading (𝑃𝐷𝐹𝑙), probability distribution function for 

failures (𝑃𝐷𝐹𝑓), number of cases (𝑠), number of elements (𝑒), number of faults (𝑓), number of load 

buses (𝑏), desired probability (𝑝), stopping time (𝑡𝑓), and power system information (𝑝𝑠). 

OUTPUT: loading level, and fault location(s). 

1. START. 

2. RUN Algorithm 2 (Generate Random Cascading Failure Scenarios). 

3. FOR 𝑖 FROM 1 TO 𝑠: 

4. RUN Algorithm 3 (Validate Cascading Failure Scenarios) for case 𝑖. 

5. IF valid simulation flag = FALSE THEN: 

6. Discard datapoint. 

7. ELSE: 

8. RUN Algorithm 1 (Cascading Failure Simulation). 

9. OUTPUT and STORE cascading failure scenarios and time domain simulations. 

10. END. 

 

Algorithm 5 (Cascading failure prediction framework) 

INPUT: all inputs of Algorithm 4 (Generate dataset for cascading failure). 

OUTPUT: prediction model, and prediction model accuracy. 

1. START 

2. RUN Algorithm 4 (Generate dataset for cascading failure). 

3. SET RNN input = concatenation of voltage, current, line state, and fault location. 

4. SET RNN output = loss of load at the end of the simulation (= 0 if there is no loss). 

5. Apply weighting to RNN input. 

6. RUN training of the prediction model. 

7. OUTPUT and STORE prediction model and prediction model accuracy. 

8. END. 
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Algorithm 6 (Validation loop) 

INPUT: accuracy threshold (𝑎𝑐𝑐𝑇ℎ), and all inputs of Algorithm 4 (Generate dataset for cascading 

failure). 

OUTPUT: loading level, and fault location(s). 

1. START. 

2. INITIALIZE k=0. 

3. RUN Algorithm 4 (Generate dataset for cascading failure). 

4. Train prediction model M[k] using the dataset from 3. 

5. SET M = M[k]. 

6. SET acc(M[k]) = prediction accuracy of model M[k]. 

7. WHILE TRUE: 

8. Predict CF using model M. 

9. Generate new cascading failure cases. 

10. SET k=k+1. 

11. Train prediction model M[k] using the dataset from 3 and 8. 

12. SET acc(M[k]) = prediction accuracy of model M[k]. 

13. IF acc(M[k]) >𝑎𝑐𝑐𝑇ℎ: 

14. SET M = M[k]. 

15. ELSE: 

16. SET M = M[k-1]. 

17. OUTPUT and STORE M, M[k], acc(M[k]). 

18. END. 
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