Computing Fast and Scalable Table Cartograms for Large Tables

A thesis submitted to the
College of Graduate and Postdoctoral Studies
in partial fulfillment of the requirements
for the degree of Master of Science
in the Department of Computer Science
University of Saskatchewan
Saskatoon

By
Mohammad Rakib Hasan

©Mohammad Rakib Hasan, November 2021. All rights reserved.
Unless otherwise noted, copyright of the material in this thesis belongs to the author.
Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Disclaimer

Reference in this thesis to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the University of Saskatchewan. The views and opinions of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes.

Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be addressed to:

 Head of the Department of Computer Science
 176 Thorvaldson Building, 110 Science Place
 University of Saskatchewan
 Saskatoon, Saskatchewan S7N 5C9 Canada

 OR

 Dean
 College of Graduate and Postdoctoral Studies
 University of Saskatchewan
 116 Thorvaldson Building, 110 Science Place
 Saskatoon, Saskatchewan S7N 5C9 Canada
Abstract

Given an $m \times n$ table T of positive weights, and a rectangle R with an area equal to the sum of the weights, a table cartogram computes a partition of R into $m \times n$ convex quadrilateral faces such that each face has the same adjacencies as its corresponding cell in T, and has an area equal to the cell’s weight. In this thesis, we explored different table cartogram algorithms for a large table with thousands of cells and investigated the potential applications of large table cartograms. We implemented Evans et al.’s [40] table cartogram algorithm that guarantees zero area error and adapted a diffusion-based cartographic transformation approach, FastFlow [52], to produce large table cartograms. We introduced a constraint optimization based table cartogram generation technique, TCarto, leveraging the concept of force-directed layout. We implemented TCarto with column-based and quadtree-based parallelization to compute table cartograms for table with thousands of cells. We presented several potential applications of large table cartograms to create the diagrammatic representations in various real-life scenarios, e.g., for analyzing spatial correlations between geospatial variables, understanding clusters and densities in scatterplots, and creating visual effects in images (i.e., expanding illumination, mosaic art effect). We presented an empirical comparison among these three table cartogram techniques with two different real-life datasets: a meteorological weather dataset and a US State-to-State migration flow dataset. FastFlow and TCarto both performed well on the weather data table. However, for US State-to-State migration flow data, where the table contained many local optima with high value differences among adjacent cells, FastFlow generated concave quadrilateral faces. We also investigated some potential relationships among different measurement metrics such as cartographic error (accuracy), the average aspect ratio (the readability of the visualization), computational speed, and the grid size of the table. Furthermore, we augmented our proposed TCarto with angle constraint to enhance the readability of the visualization, conceding some cartographic error, and also inspected the potential relationship of the restricted angles with the accuracy and the readability of the visualization. In the output of the angle constrained TCarto algorithm on US State-to-State migration dataset, it was difficult to identify the rows and columns for a cell up to 20° angle constraint, but appeared to be identifiable for more than 40° angle constraint.
Acknowledgements

Firstly, I would like to thank my supervisors, Dr. Debajyoti Mondal and Dr. Kevin A. Schneider for their valuable guidance. I am also grateful for the graduate funding support from the Department of Computer Science at the University of Saskatchewan and the grant from the National Sciences and Engineering Research Council of Canada (NSERC). It led me to conduct this wonderful research work.

I am very much thankful to my wife and my daughters for giving me the courage to finish what I started. I am lucky to have some really good friends and lab mates who supported me all the way through.

Most importantly, I am eternally indebted to my parents, who taught me to accept failures, keep dreaming of success and never give up on something just because it is difficult.
Dedicated to my creator, my lovely wife (Zinat Ara), both of my precious daughters (Pariza Eleanor and Irem Maryam), and my parents.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permission to Use</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Research Questions</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Contributions</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Methodology</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Chapter Organization</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Declaration</td>
<td>11</td>
</tr>
<tr>
<td>1.7 Summary</td>
<td>11</td>
</tr>
<tr>
<td>2 Background</td>
<td>12</td>
</tr>
<tr>
<td>2.1 Cartogram</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1 Contiguous and Non-contiguous Cartogram</td>
<td>13</td>
</tr>
<tr>
<td>2.1.2 Rectangular Cartogram</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 Table Cartogram</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Image Transformation</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1 Affine Transformation</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2 Image Warping with Piecewise Affine Transformation</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Quality Measurement metrics</td>
<td>17</td>
</tr>
<tr>
<td>2.3.1 Statistical Accuracy metrics</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Comprehensiveness Measurement metrics</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Miscellaneous</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>20</td>
</tr>
<tr>
<td>3 Literature Review</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Related Works</td>
<td>21</td>
</tr>
<tr>
<td>3.1.1 Cartograms</td>
<td>21</td>
</tr>
<tr>
<td>3.1.2 Algorithmic Techniques</td>
<td>24</td>
</tr>
<tr>
<td>3.1.3 Parallel Processing</td>
<td>25</td>
</tr>
<tr>
<td>3.2 Summary</td>
<td>26</td>
</tr>
<tr>
<td>4 Table Cartogram Algorithms</td>
<td>27</td>
</tr>
<tr>
<td>4.1 TCarto: An Optimization Based Algorithm</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Baseline - Errorless Table Cartogram Algorithm</td>
<td>33</td>
</tr>
<tr>
<td>4.3 FastFlow - Fast Flow-based Density-Equalizing Algorithm</td>
<td>35</td>
</tr>
<tr>
<td>4.4 Summary</td>
<td>37</td>
</tr>
</tbody>
</table>
List of Tables

6.1 Cartographic error (ϵ_i), mean quadratic error (I_{MQE}), mean aspect ratio (AR) and average concave count (α) for weather dataset [88]. .. 55

6.2 Results on US State-to-State Migration Flows from 2015 to 2019 published by the US Census Bureau [22]. On each input, TCarto Parallel runs until 10 iterations and FastFlow until 15 iterations with our modification to tackle the convergence problem. 56

A.1 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **Baseline** algorithm with 16 \times 16 grid, (bottom) **TCarto Parallel** algorithm with 16 \times 16 grid [88]. .. 76

A.2 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **TCarto DivCon** algorithm with 16 \times 16 grid, (bottom) **FastFlow** algorithm with 16 \times 16 grid [88]. .. 77

A.3 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **Baseline** algorithm with 32 \times 32 grid, (bottom) **TCarto Parallel** algorithm with 32 \times 32 grid [88]. .. 78

A.4 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **TCarto DivCon** algorithm with 32 \times 32 grid, (bottom) **FastFlow** algorithm with 32 \times 32 grid [88]. .. 79

A.5 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **Baseline** algorithm with 64 \times 64 grid, (bottom) **TCarto Parallel** algorithm with 64 \times 64 grid [88]. .. 80

A.6 Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **TCarto DivCon** algorithm with 64 \times 64 grid, (bottom) **FastFlow** algorithm with 64 \times 64 grid [88]. .. 81

B.1 Different measurement metrics for angle (i.e., 0, 20, 40, 60, 80 degree) constraint with US migration data [22]. .. 82
List of Figures

1.1 (a) The 2016 US Electoral College vote represented using a contiguous cartogram [52]. (b) population of the United States in 1970 presented using non-contiguous cartogram [81].

1.2 (a) A table R with 2×2 grid, (b) a table cartogram of R using constraint optimization, (c) Evans et al.'s [40] output for R (based on a theoretical proof), (d) a cartogram for a large table (32×32) based on constraint optimization.

1.3 Top row represents the 32 by 32 grid corresponding to their below images. Bottom row shows, (a) a contour plot of the portion of solar energy reflected from the surface of the earth (ALBEDO) over the western provinces of Canada, (b) TCarto output that transforms the contour plot based on the table of soil moisture (SH20) values for 32 by 32 grid with cartographic error (See Eq. 2.2) = 0.0961 and average aspect ratio (See Eq. 2.8) = 0.6130, (c) Evans et al.'s [40] algorithm (Baseline) output with cartographic error = 0.0001 and average aspect ratio = 0.1689.

1.4 The table cartogram outputs for the US state-to-state migration data of year 2017, (a) top is TCarto DivCon output, and bottom is TCarto DivCon with 40° angle constraint, where blue region has the high weight and yellow has the low weight, (b) FastFlow outputs with concave and overlapping cells at different iterations, where red cells are concave quadrilaterals.

1.5 Large table cartograms applied to different applications.

1.6 Piecewise affine transformation of (a) an image, (b) into a convex polygon, (c) into a concave polygon.

1.7 Basic diagram of waterfall model.

1.8 Structure of the thesis.

2.1 1921 cartogram of the USA based on electrical energy sold for light and power in the Literary Digest [1].

2.2 The 2012 US electoral college vote of re-electing former President Barak Obama. (a) standard input image with red for the Republican Party and blue for the Democratic Party [28, 104], (b) college vote using a contiguous cartogram [104], (c) same election results using non-contiguous cartogram [89].

2.3 Rectangular cartogram presenting the highway distances of different states at US [138].

2.4 (top) Different states of US in the original geographic map, (bottom-left) 6 x 8 grid map of the states of US, (bottom-right) corresponding table cartogram output for the population of the US states in 2010.

2.5 Affine image transformation.

2.6 (a) Input image with blue nodes (source position) as grid points, (b) output image after applying a piecewise affine transformation with the destination point.

3.1 Cartogram-like representations from early ages [109, 111]. (a) “Chart of the comparative magnitudes of countries” by Woodbridge in 1837, (b) figure from “New and Improved School Atlas” by Olney in 1837, (c) figure from “Rand McNally World Atlas” of 1897.

3.3 Cartograms from the ‘Atlas of Canada and the World’ (1979) showing (left) population, (right) oil production [108, 109].

4.1 Initial $m \times n$ table T, where V, W and A are the vertices, weights and the areas of corresponding cells, respectively. There are three types of vertices - red, orange and blue vertices. Red (fixed) vertices are fixed, orange (boundary) vertices can move only towards boundary line and blue (inner) vertices can move anywhere inside so that each cell remains convex.

viii
Table cartograms to create mosaic effect using 64 grid, (left) input images on first row, (middle) generated output using TCarto algorithm, (right) artistic effect in 'Microsoft Paint'.

5.3 The output image for Baseline algorithm where ALBEDO is the contour and SH2O is the variable. Here, we used soil liquid water (SH2O) as variable and easier to understand, we have distorted the regions by pushing yellow are low and high values). Then we have reflected solar energy by the surface (as variable B) and made the position is changed to generate partial overlapping (top row), no overlapping (middle row) and 120 sample points respectively. The density and sample number remains constant, but to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120 and 50 sample points.

5.4 Increasing light illumination using table cartogram algorithm, image masking and image filtering.

4.5 (a) Demonstration of Input table, a partitioned tables, A, B, and C. Here, we used soil liquid water (SH2O) as variable. (b)–(c) Load distribution among different threads in two phases, (c)–(e) preprocessing for the algorithm where ALBEDO is the contour and SH2O is the variable.

4.6 (a) Barycentric coordinates approach to subdivision the triangle, \(\Delta \). Here, we used soil liquid water (SH2O) as variable. (b) Initial setup, (c)–(e) computation of the height, \(h \), and \(\theta_1 \), \(\theta_2 \), and \(\theta_3 \) are respectively. If all these angles are higher than threshold angle, we consider it as the new position. Otherwise, we calculate \(t' \) and check the angles again.

4.7 (a) Input table, (b) initial setup for FastFlow by putting particles into water-filled rectangular path, Z, (c) the subdivision of triangles, where Z is red color, (d) the final cartogram output. 34

4.8 (a) Contour plots of different variables over western Canada (blue and green) and reflected solar energy on the surface (red and orange). Then we have distorted the regions by pushing yellow are low and high values. Then we have reflected solar energy by the surface (as variable B) and made the position is changed to generate partial overlapping (top row), no overlapping (middle row) and 120 sample points respectively. The density and sample number remains constant, but to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120 and 50 sample points.

4.9 The first row shows the divided positions satisfying angle threshold, where the clusters' position, (a) the input scatter plot, (b) marked the clusters with colored circle (1762), on third row 'Girl with a Pearl Earring' by Johannes Vermeer (1665), (middle) generated output using TCarto algorithm, (right) artistic effect on the transformed image by TCarto algorithm, (left) artistic effect in 'Microsoft Paint'.

4.10 Detecting clusters with their densities using table cartogram algorithm while maintaining the clusters' position, (a) the input scatter plot, (b) marked the clusters with colored circle (1762), on third row 'Girl with a Pearl Earring' by Johannes Vermeer (1665), (middle) generated output using TCarto algorithm, (right) artistic effect on the transformed image by TCarto algorithm, (left) artistic effect in 'Microsoft Paint'.

5.1 Applying table cartogram algorithm and image warping to reveal spatial relation between two areas such that the density of each region is proportional to its corresponding weight, (c) equal weight and \(s \) is the new position calculated by quadratic programming. Otherwise, we calculate \(t' \) and check the angles again. 51

5.2 The first row shows the divided positions satisfying angle threshold, where the clusters' position, (a) the input scatter plot, (b) marked the clusters with colored circle (1762), on third row 'Girl with a Pearl Earring' by Johannes Vermeer (1665), (middle) generated output using TCarto algorithm, (right) artistic effect on the transformed image by TCarto algorithm, (left) artistic effect in 'Microsoft Paint'.

5.3 The output image for Baseline algorithm where ALBEDO is the contour and SH2O is the variable. Here, we used soil liquid water (SH2O) as variable and easier to understand, we have distorted the regions by pushing yellow are low and high values). Then we have reflected solar energy by the surface (as variable B) and made the position is changed to generate partial overlapping (top row), no overlapping (middle row) and 120 sample points respectively. The density and sample number remains constant, but to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120 and 50 sample points.

5.4 Increasing light illumination using table cartogram algorithm, image masking and image filtering.
5.13 (a-d) **TCarto DivCon** output for 2018 US migration data with 0, 25, 50 and 75 angle constraint with cartographic errors of 122.01, 174.65, 175.33 and 184.71, respectively, (e) **FastFlow** output after 3rd iteration with 152 concave (red) cells (it got stuck in an infinite loop afterwards).

6.1 (a) Workflow for Weather Research and Forecast (WRF) [88] data processing, (b) workflow for the US State-to-State Migration Dataset [22]

6.2 Relationship between cartographic error and mean aspect ratio for all table cartograms on weather dataset with 64×64 grid, where each data point represents the performance measurements of two weather variables (See Tables A.5 and A.6), and the straight line represents the linear regression for their corresponding color (green star is the best case and red circular shape is worst scenario).

6.3 Relationship between cartographic error and the grid size for **TCarto DivCon** on weather dataset, where each data point represents the accuracy of two weather variables (one is weight and another is contour plot). Green star represents the best case and red circular shape shows the worst case.

6.4 Relationship between processing time and the grid size for all table cartograms on weather dataset, where each data point represents the processing time for the algorithm of two weather variables (one is weight and another is contour plot). Green star represents the best case with lower processing time.

6.5 The output of angle constraint with **TCarto DivCon** for US State-to-State migration data [22] with 0, 20, 40, 60 and 80 degree angle constraints on the years from 2015 to 2019. The color and area of each cell represent the similar variable, the number of population are migrating from one state to another state. Blue and yellow color represent the highest and lowest values respectively. So, blue regions are supposed to be larger, whereas the yellow regions are smaller. Rows and columns of this visualization indicate the outgoing and incoming states. These states are Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Tennessee, Texas, Virginia, Washington and Wisconsin in the exact order from left to right for the columns and top to bottom for the rows.

6.6 Relationship between cartographic error and the threshold angle for **TCarto DivCon** with angle constraint table cartogram on US State-to-State migration flow dataset [22], where each data point represents the cartographic error from Table B.1.

6.7 Relationship between aspect ratio and the threshold angle for **TCarto DivCon** with angle constraint table cartogram on US State-to-State migration flow dataset [22], where each data point represents the cartographic error from Table B.1.
List of Abbreviations

LOF List of Figures
LOT List of Tables
Baseline An errorless table cartogram algorithm proven by Evans et al. [40]
FastFlow A fast flow and diffusion based cartographic transformation algorithm proposed by Gastner et al. [52]
TCarto Our proposed scalable table cartogram algorithm. It usually refers to TCarto DivCon approach
TCarto Parallel TCarto algorithm with the computation of column based parallelization
TCarto DivCon TCarto algorithm with the computation of quadtree based parallelization
MRAE Mean Relative Area Error
RMSE Root Mean Square Error
MQE Mean Quadratic Error
AR Aspect Ratio
α Number of Concave Cell
CPU Central Processing Unit
GPU Graphics Processing Unit
1 Introduction

Information visualization is commonly used to analyze data and communicate information to the end users. Information visualization refers to the study of visual representations of data for enhancing human’s ability to perceive information [103, 91]. It also intensifies human perception by proper visual computations with abstract information [24]. Simply, it is the process to visualize or present data in a meaningful way so that a user can easily and correctly comprehend the underlying information [116]. The area of information visualization has interacted with various fields such as interactive interface design, cartographic computation, computer graphics, psychology, and business methods. Cartographic data representations or cartograms [56, 135] combine the statistical and geographical information on a thematic map, where some statistics (e.g., population, area, income) control the areas of geographical regions (e.g., continents, countries, states) based on some predefined scale.

Area cartogram is a type of cartogram where regions of the cartogram are proportional to the variables they represent. There are various types of area based cartograms [109]. Some cartograms preserve shapes of the regions with exact area accuracy (the difference between area and the value being represented) while conceding the neighborhood adjacency. Some cartograms sacrifice area accuracy to keep the shapes of the regions and their neighborhood adjacency. A cartogram is a contiguous cartogram if it preserves the neighborhood adjacency. In Figure 1.1(a), the contiguous area cartogram preserves the shapes and the neighborhood adjacency while compromising some area accuracy. In contrast, the non-contiguous cartogram on Figure 1.1(b) holds the area accuracy and the exact shapes but does not maintain the neighborhood adjacency.

![Figure 1.1](image)

Figure 1.1: (a) The 2016 US Electoral College vote represented using a contiguous cartogram [52], (b) population of the United States in 1970 presented using non-contiguous cartogram [81].
Table cartogram, which has been proposed in 2013 [40], is an area contiguous cartogram that preserves the neighbourhood adjacency while distorting the shapes of the regions. A table cartogram is a cartographic representation for a two dimensional positive matrix or tabular data (See Figure 1.2). Given a positive $m \times n$ matrix of weights, a table cartogram represents each cell as a distinct convex quadrilateral with an area proportional to the corresponding cell’s weight such that the cell adjacencies are preserved, the quadrilaterals form a partition of a rectangle R, and the sum of all weights is equal to the area of R rectangle keeping the outside border fixed.

![Figure 1.2](image)

Figure 1.2: (a) A table R with 2×2 grid, (b) a table cartogram of R using constraint optimization, (c) Evans et al.’s [40] output for R (based on a theoretical proof), (d) a cartogram for a large table (32×32) based on constraint optimization.

Many researchers have conducted theoretical and application based research on cartograms. In 2018, Gastner et al. [52] proposed a diffusion-based method for density equalizing cartogram. In this approach, the population of each region is initiated with the density ($= \text{population/area}$) proportional to the weight of that region. In each iteration, populations flow to the low density regions from the high density regions, and the movements of the population deform the shape of each region. The areas of the high density regions increase, and thus their density decrease with the movement of the initial population. The opposite happens to the low density regions, and the iteration stops when all the regions have the same density. This fast approach is auspicious for traditional cartograms; however, it remains unknown how a traditional cartographic algorithm performs for a table cartogram.

In 2013, Evans et al. [40] showed that every $m \times n$ table admits a table cartogram. Their theoretical proof is based on first partitioning the table into weighted triangles, then computing cartograms for the triangles using the concept of barycentric coordinates, and finally, merging the triangles based on the necessity to obtain the final table cartogram. Although the proof guarantees to produce a table cartogram with zero cartographic error, the authors pointed out that the output may not be visually pleasing (See Figure 1.3 top-right) and good heuristics are needed to improve the aesthetics. Recently, Inoue and Li [71] showed an optimization-based approach for the construction of table cartograms by changing the bearing angles on the edges of the polygons.

Several attempts [95, 96, 39] have been made to compute aesthetic table cartograms. Researchers have also looked at the scope for using table cartograms in practice, in particular, the data and types of tasks that are well-suited for using a table cartogram [96]. However, all prior applications of table cartograms examined...
only various forms of tabular data (e.g., periodic tables, temperature calendar, population demographics, line charts, etc) with a few hundred cells. Thus, table cartograms for large tables with several thousands of cells and their other applications, beyond tabular data visualization remained unexplored.

1.1 Motivation

The primary aim of this thesis is to explore table cartograms for large tables. The plan was to design a fast and scalable algorithm for computing cartograms. Initially, the table cartogram generation technique by Evans et al. [40] appeared promising because of the errorless output. Based on the theoretical proof by Evans et al. [40], we implemented the table cartogram algorithm. It could run for large tables with minimal error; however, it generated skinny triangles with a small ‘average aspect ratio’ (See Equation 2.8). The outputs of this algorithm for the image-based applications also compromised the neighborhood adjacencies. Figure 1.3(c)(top) shows the skinny triangles, and Figure 1.3(c)(bottom) shows that yellow-green(land) region divided the blue(ocean) region into several blue-colored holes, but blue (ocean) region is always connected in the original image. Thus, this algorithm became ineffective for image-based applications. For convenience, we refer this errorless table cartogram technique as Baseline [40] for the rest of the paper.

Figure 1.3: Top row represents the 32 by 32 grid corresponding to their below images. Bottom row shows, (a) a contour plot of the portion of solar energy reflected from the surface of the earth (ALBEDO) over the western provinces of Canada, (b) TCarto output that transforms the contour plot based on the table of soil moisture (SH20) values for 32 by 32 grid with cartographic error (See Eq. 2.2) = 0.0961 and average aspect ratio (See Eq. 2.8) = 0.6130, (c) Evans et al.’s [40] algorithm (Baseline) output with cartographic error = 0.0001 and average aspect ratio = 0.1689.

Then, we decided to adapt the widely used physics-based cartogram algorithm. The diffusion-based cartogram technique by Gastner et al. [52] was promising among the existing algorithms in the literature due to its fast computation capability. Since this cartogram technique was not designed for table cartograms, we
amended this algorithm by fixing the outer boundary. The output was promising for the data with no high spikes and many local optima; however, it generated concave and overlapping cells for the data distribution consisting of sudden value changes and many local maxima (See Figure 1.4). We will describe the complexity and challenges of concave cells for image-based applications shortly. Since these concave and overlapping cells mislead the visual interpretation of the image-based applications, it became a necessity to design an algorithm that can simulate large tables with thousands of cells without generating any concave and overlapping cells. For convenience, we refer to this diffusion-based cartographic approach [52] as **FastFlow** for the rest of the paper.

Motivated by Tutte’s Embedding and the concept of force-directed layout [47, 50], we designed an algorithm for the table cartogram, where each node had moved based on the position of its neighboring nodes and the weights of neighboring regions. Quadratic programming [62, 43] aided in finding the optimal positions of the nodes maintaining the convexity constraints, and all the nodes moved towards the globally optimized solution on each iteration. Parallelization made it possible to run the algorithm for large tables with thousands of cells, and this ability had opened up the possibility of applying the idea of table cartograms on images and geographic contour plots, and thus allowed us to explore new application areas. We proposed two approaches of this algorithm: column-based (**TCarto Parallel**) (See Algorithm 1) and quad-tree (**TCarto DivCon**) (See Algorithm 2) based parallelization. We refer **TCarto DivCon** algorithm as **TCarto** for the rest of the paper.

Table cartogram transforms the initial equal-area grid cells based on each cell’s weight, sustaining the cell adjacencies and each quadrilateral cell’s convexity. Because of these characteristics, it can serve as

Figure 1.4: The table cartogram outputs for the US state-to-state migration data of year 2017, (a) top is **TCarto DivCon** output, and bottom is **TCarto DivCon** with 40° angle constraint, where blue region has the high weight and yellow has the low weight, (b) **FastFlow** outputs with concave and overlapping cells at different iterations, where red cells are concave quadrilaterals.
the underlying algorithm of many applications, e.g., revealing the spatial correlation between variables, understanding of clusters with their densities in scatter plot, generating the visual effect of the illumination increase of the light sources in an image. It may also assist in formulating population-density equalizing cartograms [135, 51, 52] and generating a unique-identifier matrix barcode system [92, 145, 133].

Table cartogram distorts the input cell into convex quadrilateral only and restrict distorted cells to transform a concave quadrilateral. However, traditional cartographic transformation do not follow this restriction. So, when it comes to large tables, it is natural to ask whether it is important to keep the cells as convex polygons, which makes table cartograms unique from cartographic map transformations. Figure 1.5 illustrates some image-based applications that had been explored in this thesis.

![Cartographic Transformation](image1.png) ![Scatter Plot Comprehensiveness](image2.png) ![Enhanced Illumination](image3.png) ![Mosaic Art Effect](image4.png)

Figure 1.5: Large table cartograms applied to different applications.

Challenges with concave cell: While transforming images, concave cells may pose more challenges than the convex ones. Figure 1.6 illustrates a piecewise affine transformation [115] of a square-size image to fit into a convex and a concave polygon. An ideal situation would be that all the colors in the image maintain their pixel ratio even after the transformation, i.e., the area of the visual attributes will be scaled linearly based on the area transformation. However, for concave areas, the transformation often appears to be more distorted.

For example, Figure 1.6(a) illustrates an initial image, and Figure 1.6(b) and (c) illustrate piecewise linear transformations into a convex polygon and a concave polygon, respectively. The transformation maps the two triangles of the Delaunay triangulation of the original image to that of the destination image. The concave corner enforces the circular shape in the image to appear more distorted compared to the convex corners, e.g., the initial red circle appears to be a heart shape inside the concave polygon. Furthermore, we need to
Figure 1.6: Piecewise affine transformation of (a) an image, (b) into a convex polygon, (c) into a concave polygon.

remove any glitch that may appear due to the extra triangles that appear in the Delaunay triangulation for the concave case, e.g., see the triangle marked ‘glitch’.

1.2 Research Questions

The main focus of this thesis is to investigate table cartogram techniques for large tables with thousands of cells. Researchers have already investigated different applications [95, 96] with tabular data visualization of table cartogram for small table. Our plan is to advance the existing research by adapting or implementing table cartogram for large table and by exploring applications even beyond tabular data visualization. For this, we consider these two research questions.

A. Potential Applications of Large Table Cartograms

• RQ$_{A1}$: What are the potential applications of large table cartograms beyond visualizing tabular data?

• RQ$_{A2}$: How crucial is it to maintain the convexity of the cells in such applications?

Since existing approaches have already applied constraint based techniques for smaller tables, we were motivated to examine whether it can be applied to large tables. We also considered to investigate the feasibility of adapting cartographic transformation algorithms to generate table cartograms.

B. Algorithms for Computing Large Table Cartograms

• RQ$_{B1}$: Can constraint optimization based approach be used to compute table cartograms for large tables with small cartographic error?

• RQ$_{B2}$: How constraint optimization based table cartogram compares to the cartographic map transformation algorithms in various quality metrics (e.g., number of convex cells, aspect ratio, etc.)?
• \(RQ_{B3} \): How table cartogram algorithms perform with respect to different quality metrics for different types of data distribution?

There are several major criteria such as accuracy, readability of the visualization, and processing time. Some algorithms may have better accuracy, but may generate visualizations with lower readability of the visualization. Some may be faster, but may provide lower accuracy and readability of the visualization. The appropriate algorithms are chosen based on the needs or requirements.

C. Impact of Angle Constraint

• \(RQ_{B4} \): What are some potential trade-offs or relationships (if any) among the accuracy, processing time and other quality metrics?

Researchers have applied angle constraint on small table to generate table cartograms with better readability of the visualization [71]. Our next goal is to inspect the viability of angle constraint for large tables and also to investigate how accuracy and readability of the visualization behave with this angle constraint.

• \(RQ_{C} \): Can an angle constraint based algorithm generate cartograms for large table with at least the readability to identify the columns and rows for a cell? How accuracy and this readability of the visualization relate with the threshold angle?

The above research questions and various prospects of table cartogram motivated us to design and implement the necessary algorithms, produce and analyze the results, and explore more in depth.

1.3 Contributions

We explored the existing table cartogram algorithms for a large table with thousand of cells. We implemented the Baseline table cartogram technique which was theoretically proven to ensure zero area error by Evans et al. [40]. But, for a large table this algorithm generated skinny triangles (See Figure 1.3). We adapted the existing FastFlow cartographic transformation technique by Gastner et al. [52] to generate table cartograms, which may produce cartograms with concave and overlapping cells (See Figure 1.4(b) and 1.6) for tables with high spikes in values and with many local maxima.

In this thesis, we proposed a new table cartogram generation technique that leverages force directed layout and overcomes the shortcomings of these existing algorithms. Force-directed layout [47] [50] generates an aesthetically pleasing visualizations for graphs by attracting the adjacent nodes and repelling the others. These characteristics of the force-directed layout motivated us to propose a new table cartogram construction technique.

Our proposed table cartogram technique, TCarto, is a constraint-based optimization approach, where each node is moved based on the position of its neighboring nodes and the weights of neighboring regions
maintaining a minimum distance from its neighbors. **TCarto** leverages parallel computing to deform a table via local optimization using quadratic programming [62, 43]. For parallelization, we considered column-based approaches and quadtree-based approaches. The quadtree-based approach dispersed the weights faster than the column-based approach; thus, quadtree-based approach performed faster. **TCarto** can handle tables over hundred thousands of cells and maintains the convexity of each cell.

We presented several real-life applications (*RQ*SA1) of table cartograms, e.g., for analyzing correlations between geospatial variables, understanding clusters in scatterplots, and creating visual effects in images. Though **Baseline** was errorless, it generated skinny triangles with a higher aspect ratio that distorted the output images so much that this approach became impractical for the image-based applications (See Figure 1.3). We showed that both **TCarto** and **FastFlow** (and thus large table cartograms) could potentially be useful in these real-life scenarios. We also demonstrated how crucial it is to maintain the cells’ convexity on these applications (*RQ*SA2).

We compared the performances of **Baseline**, **TCarto**, and **FastFlow** empirically with two different real-life datasets: a meteorological weather dataset and a US State-to-State migration flow dataset. In particular, we examined well-known metrics for measuring cartographic errors, the number of concave cells, and the average aspect ratio of the cells for *RQB1*, *RQB2*, and *RQB3*. **Baseline** generated outputs with minimal errors but with a lower average aspect ratio that reduced the readability of the output visualizations highly for both datasets. For the meteorological dataset, where the data distribution had no high spikes and many local optima, both **TCarto** and **FastFlow** performed well, and **FastFlow** produced only a few concave cells. For the migration dataset with many sharp local optima, both **TCarto** and **FastFlow** produced low-quality output, whereas for **FastFlow** we observed hundreds of concave cells.

We also described the potential relationships between the accuracy and the readability of the visualization for all table cartogram algorithms (*RQB4*). **FastFlow** and **TCarto DivCon** both performed well, but **FastFlow** is preferable when cells’ convexity is not important. When this cells’ convexity is crucial, **TCarto** is recommended (*RQB4*). We also demonstrated the relationship of the grid size with accuracy and processing speed for a constraint based table cartogram. Accuracy does not change linearly and processing speed increases exponentially by the increment of the grid size. We also showed how enforcing additional angle constraints can help enhancing the readability of the visualization and demonstrated the relationship of threshold angle with *cartographic error* and *mean aspect ratio* (*RQC*). The augmented **TCarto DivCon** with 40° angle constraint, produced table cartogram, where row and column could be easily identified for a cell.

1.4 Methodology

There are several development methodologies, e.g. waterfall model [26, 12, 112], agile methodology [12, 70], SCRUM development process [125], feature-driven development [110], and different hybrid models that we can
follow as our research methodology. Each of these methodologies has its own advantages and disadvantages over others. The waterfall model and agile methodology both were suitable for our research project based on our objectives, requirements, development plan, and different risk factors. We followed the waterfall model \[112\] for this research project since it is suitable for projects with fixed, transparent and well-defined requirements. It is also straightforward to comprehend and use. Since this research project contains well-established requirements and few contributors, the waterfall model was chosen to carry out the research.

At the beginning, we figured out all the requirements and steps to tackle the research questions. We went through the previous related works and planned the possible directions, measurements, and tasks. We also analyzed and identified the potential challenges and obstacles. In the project design phase, we planned how to implement and adapt the existing algorithms, and designed our proposed table cartogram algorithm. We also figured out various possible applications of table cartograms, and their different metrics for the evaluation. We explored several technologies and their corresponding libraries for the implementation and development of the algorithms. We selected python as a programming language because of its rich libraries and documentations. At the implementation stage, we implemented a couple of existing algorithms and our proposed algorithm as well as the possible applications for the large table cartogram. In the evaluation stage, we calculated and compared the measurement metrics for the three table cartogram algorithms and analyzed the resultant data to answer all the research questions. For this thesis project, we did not use the maintenance stage in particular; however, we always used github (https://github.com/rakib045/TCarto) for code versioning, documentation and project management. At the end, we prepared some tutorials for the end users.
1.5 Chapter Organization

We organized this thesis document with seven chapters. We described how we approached to the research questions by completing development tasks and analyzing the resultant outcomes in these chapters (See Figure 1.8).

Chapter 1 explains the research topic, the motivations, the research questions, our approach towards them and finally a summary of the contributions.

Chapter 2 covers the background information, methods, materials and resources that anyone needs to know to comprehend the rest of this research document.

Chapter 3 provides an illustrated overview of the previous related works of different cartograms and table cartograms. It also describes the recent works of the table cartograms, different algorithmic techniques and parallel computation.

Chapter 4 illustrates the design and implementation of our proposed table cartogram algorithm (TCarto) with parallelization. It also includes a discussion of two of the existing algorithms that we have implemented and augmented to compute large table cartograms.

Chapter 5 demonstrates several prospective applications of large table cartograms. It also explains the importance of cells’ convexity for each application.
Chapter 6 describes couple of datasets with their sources and data pre-processing workflows. It also presents the results and analysis with those datasets for different algorithms based on various performance metrics. It devises the answers and recommendations for the research questions after analyzing and visualizing the resultant data.

Finally, Chapter 7 holds the concluding remarks of this research. It describes the contributions and contains the discussions on the limitations of the research. It finishes with the possible directions of the future research.

1.6 Declaration

Throughout this research document, the term ‘we’ refers to the author and the reader following the computer science norm for scientific writing.

I confirm that I had conducted this research and written this document under the supervision of my advisors, Dr. Debajyoti Mondal and Dr. Kevin A. Schneider. Part of the results had been accepted to be published at the 16th International Symposium on Visual Computing (ISVC 2021) [59].

1.7 Summary

Here, we narrowed down our research scope followed by a summarized description on cartogram. We discussed our motivations, defined the research questions, mentioned our contributions on this thesis and described the methodology for this thesis. At the end, we discussed the organization of this thesis document as well as necessary declarations for this thesis.
2 Background

In this chapter, we describe several topics that will be helpful to understand the following chapters of this thesis document. Table cartogram is the prime topic of this whole research work. In the first section, we define cartograms, demonstrate different types of cartograms and the table cartogram. Next, we demonstrate an image transformation techniques, piecewise affine transformation and image warping associated with that technique. Then, we describe all the quality measurement metrics that we have used in our ‘Results and Analysis’ chapter. At the end of this chapter, we describe different types of quadrilateral based on convexity in the miscellaneous section.

2.1 Cartogram

Cartograms refer to the thematic maps that present the visualization with the integration of statistical and geographical information to deliver better perceptions into the pattern, trends, and outliers in the real world [109]. In cartograms, the areas of geographical regions are distorted by scaling in proportion to some statistical variables. These geographical regions could be continent, country, state, or even specific portion, whereas the statistical variables could be a single statistical variable (e.g., population, income, area), or some arithmetic computation of single or multiple variables (average income, income per person). Cartograms have been studied and used since 1870 by geographers, cartographers, economists, social scientists, data analysis and visualization researchers, and many others. Researchers demonstrated and implemented different types of cartograms for achieving or improving the accuracy on statistical (cartographic error), geographical (preserving the outlines of geographic regions), and topological (keeping the correctness on neighborhood adjacencies of the geographic regions) aspects. Even newspapers in the United States used cartograms to emphasize their stories as early as in 1921 to present energy consumption in different US states [1] (See Figure 2.1).

Several systematic ways can be followed to categorize this large number of different types of cartograms. Based on the design dimensions, cartograms can be categorized into four major types: contiguous, non-contiguous, Dorling, and rectangular cartogram. We will use the notion of contiguous, non-contiguous, and rectangular cartogram in this document.
2.1.1 Contiguous and Non-contiguous Cartogram

Contiguous cartograms are those that deform the geographic regions of a map based on statistics in such a way that the geographic region outlines and the neighborhood adjacencies among those regions are maintained. They are also called deformation cartograms \[5, 52\]. In these types of cartograms, the original geographic regions on the map are usually altered by zooming, pulling outside, pushing inside, or stretching the boundaries of the regions. It helps to preserve the shapes and neighborhood adjacencies of the regions (See Figure 2.2(b)). For consistency, we will mention this type of cartogram as contiguous cartogram in the rest of this research document. These cartograms contain higher topological accuracy, whereas a trade-off exists between statistical and geographical accuracy.

Non-contiguous cartograms transform the geographic regions based on the statistical information focusing only on preserving the original shapes of the geographic regions while ignoring the adjacencies of the regions completely. In these cartograms, the geographic regions become undistorted and only scaled up or down based on the statistical information. It makes these cartograms perfect statistical accuracy and perfect shape preservation. However, these cartograms fail to preserve the topology of the original map (See Figure 2.2(c)). This cartogram’s topology is difficult to understand since the geographic regions either touch erroneously or do not contact each other at all. Sometimes, the regions may become very small, and it is very tough to comprehend without proper topological information.
2.1.2 Rectangular Cartogram

In these cartograms, all the geographic regions are represented as rectangles. The size or area of each of those rectangles is proportional to their corresponding statistical information. The rectangular cartogram disregards the original shapes of the geographic regions. This cartogram has higher topological accuracy but cannot guarantee perfect accuracy.

Firstly, an initial boundary rectangular layout is calculated from the topology of the map. Then, the appropriate coordinates of the rectangles are computed with a segment moving heuristic. The vertical and horizontal segments of that rectangular layout have been moved iteratively to increase the statistical accuracy. After that, the topology can be preserved at the cost of error, or the topology might be compromised to achieve perfect statistical accuracy. A rectangular cartogram [138] depicts the highway distances in kilometers of different states of US (See Figure 2.3).

Figure 2.3: Rectangular cartogram presenting the highway distances of different states at US [138].
2.1.3 Table Cartogram

Table cartogram is an area-based contiguous cartogram with several specific rules. Table cartograms also transform the regions based on the statistical information. Table cartograms maintain the neighborhood adjacency but do not preserve the shapes of the regions. Some table cartograms guarantees no area error \cite{41}, and some sacrifice statistical accuracy \cite{71,96,59} for the aesthetically pleasing visualization or maintaining the readability of the visual representations.

A table cartogram is a two-dimensional grid-like rectangular table. Initially, all the cells are equal-area rectangles, and statistical values or positive weights are assigned to each cell as input such that the total area equals the sum of all weights (See Figure 2.4\textmd{bottom-left}). This cartogram transforms the grid cells into convex quadrilaterals where the area of each cell is proportional to its corresponding weights. This table cartographic transformation also maintains the neighborhood adjacencies of the regions while keeping the outside boundary fixed. In Figure 2.4\textmd{bottom-right}), the neighborhood adjacencies are maintained with precise statistical accuracy, but the shapes are compromised.

![Figure 2.4](image)

Figure 2.4: (top) Different states of US in the original geographic map, (bottom-left) 6 x 8 grid map of the states of US, (bottom-right) corresponding table cartogram output for the population of the US states in 2010 \cite{41}.

2.2 Image Transformation

Image transformation plays an important role in the image-based applications of table cartograms. First, we consider the input image into $m \times n$ grid cells, split the input image into smaller rectangular pieces, and then simulate the table cartogram for those grid cells to deform into convex quadrilaterals. After that, we use image transformation to transform all rectangle image pieces to the convex quadrilateral faces based on the output.
of the table cartogram algorithm and then merge all smaller image pieces with convex quadrilateral faces together into the output image. Image warping performs this image transformation and merging sequentially.

Image transformation is one of the common tasks in image processing. Transformation is a function that takes an input image and converts it to a different output image \[3\]. Let \(f(x, y)\) and \(G(x, y)\) are input and output image respectively, where image represents a 2D matrix with \(x\) and \(y\) are the co-ordinates. If the transformation function is \(T\), we can consider the below equation,

\[
G(x, y) = T \{f(x, y)\}
\] (2.1)

Linear transformations include geometrical raster transformations such as rotation, scaling, skewing, and perspective distortion. Linear transformation preserves vector addition and scalar manipulation. Matrix is usually used to implement image transformation. Affine transformations helps to achieve perspective distortion of an image.

2.2.1 Affine Transformation

Affine transformations assist to achieve scaling, rotation, and skewing \[2\]. We can accomplish perspective distortion using projection matrix. The below matrix can represent affine transformation:

\[
\begin{bmatrix}
 a_1 & a_2 & b_1 \\
a_3 & a_4 & b_2 \\
c_1 & c_2 & 1
\end{bmatrix}
\]

Scaling and rotation can be performed by modifying the values of \(a_1, a_2, a_3\) and \(a_4\). It is called rotation matrix. So, the rotation matrix is,

\[
\begin{bmatrix}
 a_1 & a_2 \\
a_3 & a_4
\end{bmatrix}
\]

\(b_1\) and \(b_2\) contributes towards the translation of the image. It is called translation matrix.

\[
\begin{bmatrix}
 b_1 \\
b_2
\end{bmatrix}
\]

Rotation and translation can be achieved by modifying the rotation and translation values in the same matrix. \([c_1\ c_2]\) is called projection matrix and we can get perspective distortion with this matrix. Let \(x\) and \(y\) be the co-ordinate values of a pixel, \(p\) of an input image. Let \(x'\) and \(y'\) be the updating values of the pixel, \(p\) after geometrical raster transformation. We can calculate the updated values by multiplying the input values with the transformation matrix.

\[
\begin{bmatrix}
 a_1 & a_2 & b_1 \\
a_3 & a_4 & b_2 \\
c_1 & c_2 & 1
\end{bmatrix}
\times
\begin{bmatrix}
 x \\
y \\
1
\end{bmatrix}
=
\begin{bmatrix}
 x' \\
y' \\
1
\end{bmatrix}
\]

Affine transformations preserve parallelism if projection matrix is zero (See Figure 2.5).
2.2.2 Image Warping with Piecewise Affine Transformation

Piecewise affine transformation is the process that distorts an input image by image warping with the help of affine transformation based on the movement of some specific pixel points from the source position to the destination position. In piecewise affine transform, some nodes at the input image are supposed to move at their destination position on the output image. The input image has been warped using affine transformation so that those nodes fall at their destination positions. The features or shapes, or pixels within those nodes have stretched or sheared. In Figure 2.6(a), blue nodes are at the source position, and blue dots in Figure 2.6(b) are their destination positions. In this example, destination points have been calculated using the sine function. After defining the source and destination positions of the nodes, piecewise affine transformation generates the output image, Figure 2.6(b) from an input image Figure 2.6(a).

![Figure 2.5: Affine image transformation.](image)

![Figure 2.6: (a) Input image with blue nodes (source position) as grid points, (b) output image after applying a piecewise affine transformation with the destination point.](image)

2.3 Quality Measurement metrics

There are several metrics for the statistical accuracy calculation. Different researchers use different error calculations based on their needs. We will use Cartographic Error, Mean Relative Area Error (MRAE), Root Mean Square Error (RMSE), and Mean Quadratic Error (MQE). These metrics are important for those applications where statistical accuracy is crucial [132, 62].
2.3.1 Statistical Accuracy metrics

There are several metrics for the statistical accuracy calculation. Different researchers use different error calculations based on their needs. We will use Cartographic Error, Mean Relative Area Error (MRAE), Root Mean Square Error (RMSE), and Mean Quadratic Error (MQE).

Cartographic Error

One of the standard measurements of the spatial area error of each region or polygon is defined as the Cartographic Error, e_i. Assume that A is an $m \times n$ table. So, there are total of $m \times n$ polygons. Let A^*_i be the desired area or the given weight of i polygon and A^{actual}_i be the actual area after the cartographic transformation [72], then

\[
\text{Cartographic Error, } e_i = \left| \frac{A^*_i - A^{\text{actual}}_i}{A^*_i} \right| \quad (2.2)
\]

Thus, if $N = m \times n$, the average cartographic error for a set of polygon, P is defined as

\[
\overline{e}_i = \frac{1}{N} \left[\sum_{i=1}^{N} e_i \right] \quad (2.3)
\]

Average cartographic error ranges from 0 to any number, where 0 is the best case with no error and higher the error is the worse the scenario is.

Relative Area Error

Another metric for statistical accuracy calculation is the Relative Area Error. For previously defined $m \times n$ table A, Keim et al. [76] defined this relative area error, e_{i}^{rel} for i polygon as follows.

\[
e_{i}^{rel} = \left| \frac{A^*_i - A^{\text{actual}}_i}{A^*_i + A^{\text{actual}}_i} \right| \quad (2.4)
\]

Now, for $N = m \times n$, the average Relative Area Error for a set of polygon, P would be as follows,

\[
\overline{e}_{i}^{rel} = \frac{1}{N} \left[\sum_{i=1}^{N} e_{i}^{rel} \right] \quad (2.5)
\]

The range of average relative area error is from 0 to 1, where 0 is the best case with no error and 1 is the worst case scenario.

Mean Quadratic Error

Keim et al. [76] also formulated another error metric from relative area error and named it as Mean Quadratic Error. It is actually the average of root squared relative area error. Again for $m \times n$ table A, Keim et al. [76]
calculated Mean Quadratic Error, I_{MQE} for a set of polygon, P as below,

$$I_{MQE} = \overline{e_{rel}^i} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} e_i^2}$$ \hspace{1cm} (2.6)

I_{MQE} lies in between from 0 to 1. Here, 0 is the best case with no error and 1 is the worst case scenario.

Root Mean Square Error

Root Mean Squared Error is another metric for accuracy calculation. It is the root value of the average of squared cartographic error. If $N = m \times n$, we can define Root Mean Squared Error, I_{RMSE} for a set of polygon, P as below using Equation \ref{equation:2.2}

$$I_{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} e_i^2}{N}} = \sqrt{\frac{\sum_{i=1}^{N} (|A_{desired}^i - A_{actual}^i|)^2}{N}}$$ \hspace{1cm} (2.7)

The range of I_{RMSE} is also from 0 to 1, where 0 is the best case with no error and 1 is the worst scenario.

2.3.2 Comprehensiveness Measurement metrics

The readability of the cartogram output plays a crucial role. If a person could not understand the informative insight of a visualization, there is no point in generating such visualization. We considered average aspect ratio (average AR) and concave count for the readability of the visualization. These metrics are particularly important for those applications that use image processing or image transformation followed by the cartographic distortion output.

Aspect Ratio

Aspect Ratio (AR) refers to the ratio between height and width of the bounding box of a region or polygon. Aspect ratio is often used as a measure for shape distortion \cite{16,136} and visual quality of cartogram generation techniques \cite{13,138}.

The range for average Aspect Ratio is $[0, 1]$, where 0 is the worst and 1 is the best. For a $m \times n$ table A, let width_i and height_i be the width and height of the bounding box of polygon i from a set of polygon P. Now, if the total number of polygon, $N = m \times n$, the mean AR is as below,

$$\text{Mean } AR = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\min(\text{width}_i, \text{height}_i)}{\max(\text{width}_i, \text{height}_i)} \right]$$ \hspace{1cm} (2.8)

The range of mean aspect ratio is also from 0 to 1. Here, 1 is the best case where height and width are similar and 0 is the worst case.
Concave Count

The *concave count* is simply the number of concave quadrilaterals after tabular cartographic transformation. If a quadrilateral transforms into a convex one, it follows linear transformation for all point coordinates after applying *piecewise affine transformation*. However, the concave quadrilaterals do not follow this properly and also generate glitches on the output transformed image. Thus, the applications using *piecewise affine image transformation* should not accept any concave quadrilateral. Concave count would be any positive value starting from 0. Zero concave cell is the best case, whereas the higher the count worsen the scenario.

2.4 Miscellaneous

Concave and Convex Quadrilateral

A *quadrilateral* is a polygon with four edges. The line segment connecting non-adjacent vertices is called *diagonal*. A quadrilateral is called a convex quadrilateral if all internal angles are less than or equal to 180°. Two diagonals of a convex quadrilateral usually intersect each other. If one of the internal angles of a convex quadrilateral becomes 180°, it turns into a triangle. So, a triangle is a degenerate convex quadrilateral. On the other hand, a quadrilateral is concave if one of its internal angles is greater than 180°. Another way to think is that the two diagonals of a concave quadrilateral do not intersect each other.

2.5 Summary

In this chapter, we described the background information for several topics. We defined different types of cartograms related to table cartogram. Afterward, we illustrated the *piecewise affine transformation* technique which was used in several applications of large table cartograms. We also described several important performance metrics to calculate the statistical accuracy and the readability of the cartographic visualization. All the topics in this chapter are required to understand before proceeding to the following chapters.
3 Literature Review

Researchers and scholars have drawn their attention towards cartograms and different problems of cartograms since the 18th century. These problems include different fields like cartography, computational geometry, computer graphics, and many others. Different techniques and approaches have been demonstrated to tackle these various complex problems and scenarios. Our primary focus is to explore different table cartograms for large tables having thousands of cells, along with their numerous applications. In this chapter, we describe the history of cartograms, different types and techniques of cartograms to tackle the problems, and table cartograms with their applications and problems. Finally, we describe different algorithmic techniques such as Tutte’s embedding, force directed layout, and quadtree.

3.1 Related Works

3.1.1 Cartograms

History of Cartograms: Cartographic representation was used from an early age, even before it was named as ‘cartogram’. Tobler [135] mentioned that the first reference to the term ‘cartogram’ was used when Emile Levasseur presented cartograms in an economic geography textbook dated back to 1870. Before that, cartogram-like representations had appeared in 19th-century atlases in the US. In 1837, William C. Woodbridge presented ‘comparative charts’ of North America, Europe, Africa, and South America in his ‘Modern atlas on a new plan to accompany the system of Universal Geography’ (See Figure 3.1(a)). In the same year, the size and population of the major empires and kingdoms were visualized in ‘New and Improved School Atlas’ by Jesse Olney (See Figure 3.1(b)). In 1897, ‘Rand McNally World Atlas’ published cartogram-like representations with two circles for each empire symbolizing the area and the population of the empires [108] (See Figure 3.1(c)).

Later in 20th century, according to Fabricant [94], German election results in 1903 were visualized with cartograms. William B. Bailey showed ‘1911 Apportionment Map of the United States’, where the size of the states is proportional to their population [82] (See Figure 3.2). In 1934, the first formal definition of rectangular cartograms was given by Raisz [119]. In the 1979 Atlas of Canada and the World, population cartogram and oil production cartograms were published [114] (See Figure 3.3). In the 90s decade, cartograms became popular and frequently described in geography and cartography textbooks [19, 128].

Surveys: Guseyn-Zade and Tikunov [56] presented a short review on several methods for cartogram generation. They introduced several desired properties to construct a cartogram such as the reproducibility
of the results and the recognizability of the regions by preserving original geographic shapes. Kocmoud compiled another survey of cartogram generation techniques and discussed additional characteristics such as shape preservation, prevention of region overlapping, and trade-offs between area and shape accuracy. Tobler compiled a comprehensive survey of cartograms, including different cartogram generation methods with their limitations. Tobler highlighted the necessity of cartogram evaluation measures mentioning three fundamental factors: (i) statistical accuracy, (ii) shape preservation, and (iii) computational efficiency. In 2016, Nusrat and Kobourov conducted a detailed survey on cartograms and categorized all types of cartograms based on their design dimensions and task taxonomies. The surveys by Tobler and by Nusrat and Kobourov demonstrated historical progress in cartogram since an early age. Recently, Langton et al. surveyed with a study design to measure how people interpret different cartograms of the same data to draw a conclusion. Hografer et al. also conducted another survey on map-like visualization and
provided a hierarchical classification of the existing techniques.

Cartographic Transformation: Cartographic representation of maps is a classic area of research. Cartographic representations can be divided into two major categories: contiguous and non-contiguous. In a contiguous area cartogram, the area of each region in the cartogram corresponds to a given measured value for that region, and all the regions together preserve the map topologies. Non-contiguous cartograms (e.g., circular [35, 29], rectangular [119, 129, 21] cartograms) do not require the map topologies to be preserved. Table cartograms can be thought of as a contiguous area cartograms.

Early algorithms were based on the metaphor that considers the original map as a rubber sheet, and defines forces on the points such that they move to realize the cartographic representation. A major challenge in such an approach is to ensure fast convergence, and preserve the shape of the regions on the map. Many algorithms [25, 36, 67] have been proposed to tackle these challenges, yet the slow convergence remained a problem.

The diffusion-based algorithm [51] is another popular method for drawing contiguous cartograms. This is inspired by the idea of diffusion in physics, where the points move from high density to the low-density regions. A diffusion-based algorithm often produces blob and spike like artifacts, and narrow corridors. Hence Cano et al. [23] proposed mosaic cartograms, where regions are represented as a set of regular tiles of the same size. The tiles help compare the regions via counting, better preserve the shape, but also have a cost of making winding region boundaries and tentacles like artifacts.

There exist many approaches beyond rubber sheet or diffusion based algorithms. For example, medial-axis based cartogram [77] that transforms the regions based on the medial axis of the map polygon, neural network based approach inspired by self-organizing map [61], etc.

Fast Computation: In 2013, Sun [132] presented a rubber-sheet inspired algorithm (Carto3F) that significantly improves the computational efficiency by using a quadtree structure, and eliminates the topological error by adding appropriate conditions while computing forces. In addition, the implementation of Carto3F exploits parallel computation. Recently, Gastner et al. [52] proposed a flow-based technique (FastFlow), inspired by the way particles of varying density into the water diffuse across the water over time that also leverages parallelism for fast cartogram computation.
Table Cartograms: Table cartograms [41] were proposed to visualize tabular data, where cells are restricted to be convex and to form a tiling of a rectangle. However, if we relax table cartogram constraints, then it is possible to use existing physics-inspired cartogram algorithms to create cartograms for tables. Winter [143] used the diffusion-based cartographic representation to visualize periodic table of chemical elements. However, this deforms the outer boundary of the table, as well as produces non-convex cells. Cartogram algorithms (in particular Carto3F [132] and flow-based approach [52]) often use an underlying regular grid (sometimes of size 1024 × 1024, e.g., Carto3F allows using a quadtree of depth 10) to transform the map, but the number of map regions makes a major difference. The existing approaches for cartographic representation focus on transforming at most a few hundred regions, while a 1024 × 1024 table may contain over a million cells.

Table cartogram is closely related to another well-studied problem called prescribed area drawing. Given a planar graph with positive face weights, a prescribed area drawing computes a planar drawing of the graph in \mathbb{R}^2 such that each interior face realizes a prescribed face area. In 1990, Ringel [120] introduced the prescribed area drawing problem. Since then a rich body of literature has focused on computing prescribed area drawings for various classes of planar graphs. Thus a table cartogram is a version of prescribed area drawing problem where the input graph is an $m \times n$ grid graph. We refer the reader to [55, 4] for the literature related to the prescribed area drawing.

Recent Works on Table Cartogram: Since the introduction of table cartogram, there have been various attempts to produce aesthetic cartograms based on optimization. Inoue and Li [71] showed an optimization-based approach for the construction of table cartograms by changing the bearing angles on the edges of the polygons. McNutt and Kindlmann [95] proposed another approach that instead of convexity constraints, puts simpler restriction such as to preserve the x and y axis ordering of the grid points. They showed that one can construct multiple table cartograms that have the same cartographic error but visually look very different. Recently, McNutt [96] has further examined table cartogram with the perspective of the data and tasks where table cartogram may be useful, and observed that table cartogram may be suited for various tasks such as understanding sorted order of cells or to find anomalies; especially when the table size is small.

3.1.2 Algorithmic Techniques

Our proposed table cartogram algorithm, TCarto, can simulate tables with thousands of cells. Tutte’s embedding motivated us initially to design TCarto. Later, we adapted a force-directed layout graph model to devise our table cartogram algorithm. Parallel processing made the algorithm capable of simulating thousands of cells within reasonable processing time (5-7 minutes for 64 × 64 table in Figure 5.2(a)(TCarto)).

We improved the task distribution technique for parallelization of TCarto with the concept of quadtree.

Tutte’s embedding: Tutte’s embedding or barycentric embedding is a classic algorithm in graph drawing and geometric graph theory. In 1963, Tutte showed that every simple 3-vertex-connected planar graph has a
non-overlapping straight-line embedding such that the outer face is a convex polygon and interior vertex is at the barycenter of its neighbors’ positions. This theorem motivated lots of research works, such as mesh processing methods, and force-directed graph drawing algorithms.

Force-directed layout: A force-directed graph drawing algorithm draws graphs aesthetically by clustering similar types of nodes. It is also called the spring-embedder model or energy-based model. The basic idea is to define the model (node and edges) with some initial energy that converges to the minimum energy state by moving all nodes over a certain number of iterations. Non-adjacent nodes repeal each other, and adjacent nodes attract each other. The node movements become zero at the minimum energy state. This layout is used for both directed and undirected graphs. Many researchers improved the efficiency and aesthetical quality of this algorithm over time. Many proposed some hybrid models with other well-known techniques such as genetic algorithm, space-filling method, stochastic sampling. Parallelization is also applied to increase the scalability of this force-directed layout to support thousands of nodes. GPU is also used to make this layout faster. Researchers also considered the nodes into multiple levels and proposed different multi-level algorithms. The force-directed layout is used in different types of applications, such as large graph, cluster, network visualizations, and many others.

Quadtree: A quadtree is a tree data structure with each internal node having precisely four children. Two-dimensional space is partitioned to subdivide recursively into four quadrants. Several important surveys on quadtree or octrees provided different techniques and methods of the quadtree. Researchers conducted researches on making quadtree more efficient, and some focused on getting the optimal solutions. Many researchers explored different applications of the quadtree, such as image processing, connected component labeling, spatial queries, mesh generation, visualizations, and many others.

3.1.3 Parallel Processing

Parallel processing is the computation where many calculations or tasks are processed simultaneously. Initially, the tasks or instructions are distributed to several computation units such as central processing unit (CPU), graphic processing unit (GPU), and the results or outcomes of all the computations are accumulated and combined as the final output. Parallel processing can be classified into several classes such as multi-core computing, symmetric computing, distributed computing, cluster computing, and many others. The main advantage of such parallel processing is that large problems can be solved easily with a short processing time. After the invention of the Analytical Engine by Charles Babbage, parallelism in numerical calculations was discussed first in 1958. Later, Amdahl’s law was devised to define the limit of speed-up due to parallelism in 1967. Since then, researchers have been relentlessly worked on improving parallelism.

Nowadays, parallel computations with central processing unit (CPU) and graphic processing unit
(GPU) are very prevalent and widely used to speed up computation in image processing and visualization. Many applications with grid like input (image or matrix) use column-based and quadtree-based parallelism. We used both techniques to parallelize our proposed algorithm TCarto.

3.2 Summary

In this chapter, we discussed the brief history of cartograms, several important surveys on cartograms, and different types of cartographic transformation. We also described various fast computational cartogram generation techniques and different table cartograms. We also mentioned all the recent works with table cartograms and their applications. Finally, we finished this chapter with a summarized discussion on different algorithmic techniques such as Tutte’s embedding, force-directed layout, and quadtree.
4 Table Cartogram Algorithms

The primary focus of this thesis is to explore the table cartograms for a large table and adapt the existing algorithms. Evans et al. [40] designed a table cartogram algorithm and proved that it produces minimal (almost zero) error. We implemented the algorithm and referred it as Baseline. However, this algorithm produced some skinny triangles (See Figure 1.3) that made this algorithm impractical to our proposed applications. Then, Gastner et al. [52] designed and implemented FastFlow, one of the fastest known cartographic transformation in the literature. Since FastFlow was not developed to use for the table cartograms, we adapted this algorithm to run on large table cartograms. However, this algorithm generates concave cells (See Figure 1.6) for the data with a high number of local maxima and sudden value changes into neighboring cells. These concave cells might mislead specific applications of the table cartograms. Thus, we designed and implemented a new table cartogram generation technique, TCarto to simulate a large table without generating any concave cells. In this chapter, we illustrate the design of the TCarto and Baseline algorithm. Finally, we discuss the FastFlow algorithm and describe the details of our adaptation.

4.1 TCarto: An Optimization Based Algorithm

TCarto is different than the known optimization based algorithms [74, 95, 96] in two ways. First, it contains explicit convexity constraints (instead of considering an under-constrained version). Second, it leverages parallel computing to handle large tables. TCarto is inspired by the classic Tutte’s approach for drawing planar graphs [137]. At each iteration of the Tutte’s algorithm, every vertex moves towards the barycenter of its neighbors, and hence over time, the algorithm attempts to minimize a global energy function defined on the layout. In TCarto, every vertex except four at the corner moves towards the locally optimum point.

Let T be an $m \times n$ table. We normalize the cell weights $w_{i,j}$ to satisfy the following equality: $\sum W_{i,j} = m \times n$. We set the initial cartogram to be a regular $m \times n$ grid of area mn, where each cell area $A_{i,j}$ is one unit square. We can describe this with an undirected graph, $G = (V,E)$, where $V = V_{i,j}$ are the vertices $(i \in \{0,1,...,m\} \text{ and } j \in \{0,1,...,n\})$ and E are the edges connecting each vertex to its neighbouring vertices at its top, right, bottom and left side (Figure 4.1).

The total number of vertices is $(m + 1) \times (n + 1)$. Let, W be the weights or target values for all cells, and we normalize W. Assume the areas of the cells are $A_{i,j} = \text{Area}(V_{i,j}, V_{i+1,j}, V_{i+1,j+1}, V_{i,j+1})$, where $i \in \{0,1,...,m\}$ and $j \in \{0,1,...,n\}$.

Initially, it is a regular $(m \times n)$ equal-area grid, and the area for every cell individually is 1. We can
deduct the total area of table \(T \) from Equation ?? as below,

\[
\sum_{i,j} A_{i,j} = m \times n = \sum_{i,j} W_{i,j}. \tag{4.1}
\]

This total area remains constant throughout the whole algorithm life-cycle. The vertices, \(V_{i,j} \), changes their position based on local optimization so that all cells remain convex and,

\[
\forall A_{i,j} \rightarrow \forall W_{i,j}. \tag{4.2}
\]

We have used quadratic programming \([7, 147]\) for this local optimization. This local optimization depends on the neighborhood cells’ vertices, weights and areas. It is not biased on the non-neighboring attributes directly. So, this local optimization can not reach the solution for the global optimization in a single run. After several iterations of local optimization, it impacts non-neighboring cells also. The solution for the global optimization is that all \(V_{i,j} \) move to certain positions so that all \(A_{i,j} \) is equal to their corresponding \(W_{i,j} \). The global optimization function can be formulated by the following Equation 4.3.

\[
f(\psi) = \sum_{i,j} |W_{i,j} - A_{i,j}|^2, \tag{4.3}
\]

where \(i \in \{0, 1, \ldots, m-1\} \) and \(j \in \{0, 1, \ldots, n-1\} \). The goal of the global optimization is to find the right combination \(\psi \) for the positions of all \(V_{i,j} \) so that \(f(\psi) \) becomes the minimum.

Three types of nodes

We can categorize the nodes into three types based on their movement. These three types are fixed nodes (red color), boundary nodes (orange color) and inner nodes (blue color) (See Figure 4.1).

Fixed Nodes (red color): Fixed nodes are the four corner nodes and their position is fixed throughout the whole life-cycle of the algorithm.

Boundary Nodes (orange color): Boundary nodes are the nodes residing on the boundary. These nodes can only move on top of the boundary. These nodes are two types - vertical boundary nodes (See Figure 4.2(a)-(b)) and horizontal boundary nodes (See Figure 4.2(c)-(d)).

In Figure 4.2(a), \(V_{i,j} \) is a vertical boundary node that will move on the top of vertical boundary line, \(Line(V_{i,j-1}, V_{i,j+1}) \). We denote by \(W \) and \(A \) as the weights and areas of the neighboring cells, respectively. Assume that \(y' \) is the vertical displacement of \(V_{i,j} \) towards \(V_{i,j-1} \), and \(V'_{i,j} \) is the new position of \(V_{i,j} \). If \(A' \) is the area of the triangle \(\Delta V_{i,j}V'_{i,j}V_{i+1,j} \), then

\[
\frac{A_{i,j} + A'}{A_{i,j-1} - A'} = \frac{W_{i,j}}{W_{i,j-1}} \tag{4.4}
\]
Figure 4.1: Initial \(m \times n \) table \(T \), where \(V \), \(W \) and \(A \) are the vertices, weights and the areas of corresponding cells, respectively. There are three types of vertices - red, orange and blue vertices. Red (fixed) vertices are fixed, orange (boundary) vertices can move only towards boundary line and blue (inner) vertices can move anywhere inside so that each cell remains convex.

\[
A' = A_{i,j-1} - \frac{W_{i,j-1} \cdot (A_{i,j} + A_{i,j-1})}{(W_{i,j} + W_{i,j-1})}.
\] (4.5)

Assume that \(h' \) the shortest path from \(V_{i+1,j} \) to the vertical boundary line \(Line(V_{i,j-1}, V_{i,j+1}) \). We can calculate \(y' \) as follows:

\[
y' = \frac{2A'}{h'}.
\] (4.6)

If \(y' \) is positive, then \(V_{i,j} \) will go upwards. It will go downwards for a negative value. Similarly, we can calculate horizontal displacement \(x' \) from Figure 4.2(c) as follows:

\[
x' = \frac{2A'}{h'}.
\] (4.7)

Due to the convexity constraint, boundary nodes can not move beyond certain region. \(F \) is the vertical and horizontal nodes in Figure 4.2(b) and (d), respectively. In both cases, \(F \) node should remain in between \(F_1 F_2 \) line to keep \(ABCF \) and \(CDEF \) quadrilateral as convex. If \(F \) moves between \(AF_1 \), then \(EDCF \) will become concave. \(ABCF \) will become concave if it goes between \(EF_2 \).
Figure 4.2: (a) Boundary node movement on vertical boundary line, (b) constraints for the movement of the vertical boundary node, F so that ABCF and CDEF cells remain convex. F can only move in between F_1 and F_2 along vertical boundary, (c) boundary node movement on horizontal boundary line, (d) constraints for the movement of the horizontal boundary node, F so that ABCF and CDEF cells remain convex. F can only move in between F_1 and F_2 along horizontal boundary.

Inner Nodes (blue color): All other nodes inside the boundary are inner nodes. We move these based on local optimization using quadratic programming. Let t be the current vertex to be moved (e.g., See Figure 4.3(c)), and consider the top left face $tpaq$ quadrangle of t. We now construct four constraints determined by the lines through pq, qs, sr, rp such that t must preserve its location relative to these lines even after the move. These four constraints alone cannot ensure that the four neighboring faces must remain convex after we move t. For example, moving t outside of the shaded region (but keeping it inside the quadrangle $pqsr$) would make one of the four faces non-convex. The reason is that for each face, the edges which are not incident to t also put constraints on where t can move. Hence, we need to add another set of eight constraints, two for each neighbor of t. Specifically, for a neighbor q, let qa and qb, where $t \notin \{a, b\}$, be the edges such that each lies on the boundary of one of the faces adjacent to the edge qt. Then the two constraints corresponding to q are determined by the lines corresponding to qa and qb. The twelve constraints
together ensure that the neighboring faces of \(t \) remain convex even after the move. Since no other face is affected by the move of \(t \), all the faces in the layout remain convex.

We now describe the optimization function. Let \(h_{t,1}, h_{t,2}, h_{t,3}, h_{t,4} \) be the perpendicular distances (heights) of \(t \) from the lines \(pq, qs, sr, pr \), respectively. Note that these heights relate to the errors of the corresponding faces, and moving \(t \) would change these heights (e.g., See Figure 4.3(b)). We then define a set of required heights \(h'_{t,i} \), where \(1 \leq i \leq 4 \). Here we only show how to compute \(h'_{t,1} \). Denote by \(W(tpaq) \) the target weight of a face \(tpaq \), and let \(A(tpaq) \) denote area of the same face. Assume that \(\gamma = W(tpaq) - A(tpaq) - \Delta tpq \).

If \(\gamma > 0 \), i.e., we need to add more area by moving \(t \), then the required height is determined by the equation
\[
\frac{1}{2} |pq|h'_{t,1} = \gamma + \Delta tpq, \quad \text{where} \quad |pq| \quad \text{is the Euclidean distance between} \quad p,q.
\]
Otherwise, \(\gamma \leq 0 \), i.e., we already have more than the required area. In this case we assume\(^1\) that \(h'_{t,1} = h_{t,1} \). We then minimize the error
\[
\sum_{w \in V} \sum_{1 \leq i \leq 4} (h'_{w,i} - h_{w,i})^2, \quad \text{where} \quad V \quad \text{is the set of grid nodes}.
\]

We can fit this minimization with quadratic programming mentioning all those twelve constraints. If \(a_ix + b_iy = c_i \), where \(1 \leq i \leq 4 \) are the equation of four diagonal lines \(pq, qs, sr, rp \) and \(h'_{i} \) are the required heights respectively, we can define the quadratic minimization function as follows:

\[
\text{minimize} \sum_{i=1}^{4} \left(\left(\frac{a_i^2 x^2}{a_i^2 + b_i^2} \right) x^2 + \left(\frac{b_i^2 y^2}{a_i^2 + b_i^2} \right) y^2 + \left(\frac{a_i b_i}{\sqrt{a_i^2 + b_i^2}} \right) x y + \left(\frac{a_i (c_i - h'_{i})}{\sqrt{a_i^2 + b_i^2}} \right) x + \left(\frac{b_i (c_i - h'_{i})}{\sqrt{a_i^2 + b_i^2}} \right) y \right)
\]

subject to all twelve constraints that creates shaded region in Figure 4.3(c).

\(^{1}\)Note that this case can also be handled based on the area excess, we did not consider that for simplicity.
Figure 4.4: (a)–(b) Load distribution among different threads in two phases, (c)–(e) preprocessing for the Div-Con approach.

Algorithm 1 TCarto Parallel

1: **Input:** A square size positive matrix T, iteration count c
2: Create a square grid and sort the vertices of the grid based on the area error of the neighboring cells
3: **for each** iteration i from 0 to c **do**
4: Split the grid and assign column intervals to the threads
5: Run each thread to move the vertices assigned to it in the precomputed order
6: Join threads and accumulate the results
7: Run each thread to move the vertices on the interleaved columns
8: Join threads and accumulate the results into a layout Γ
9: **return** Γ

Parallel Computing

To take advantage of parallel computing, we partition the layout and distribute the load to different threads. At each iteration, we partition the columns into k regular intervals with one column gap in between (e.g., See Figure 4.4(a)). The iteration is completed in two phases. In the first phase, each thread moves their allocated points, and in the second phase the threads move the interleaved columns (e.g., See Figure 4.4(b)). We will refer to this procedure as TCarto Parallel. Algorithm 1 presents pseudocode of TCarto Parallel.

The limitation of the TCarto Parallel is that if the data density is very high in a particular interval, then it would take many iterations until the points move towards a low density region. To cope with this challenge, we take a top-down approach, as follows. Let the input be a $2^j \times 2^j$ grid. For each i from 0 to j, in the ith level we group the cells into a $2^i \times 2^i$ grid and run the procedure TCarto Parallel for $j - \log(i) + 1$ iterations. Thus the major weight shift occurs early in the top levels and further refinement occurs at the bottom levels. We will refer to this approach as Div-Con. Algorithm 2 presents a pseudocode for Div-Con.

Implementation Details: We implemented our system in Python and used CVXOPT [8] for quadratic optimization. For parallel computing, a process-based parallelism package, multiprocessing [45], has been used for concurrent code execution. Movement of boundary points sometimes causes the loss of convexity of the grid due to the floating point error. We adjusted the computed point location to avoid non-convexity.
We also ensured that the points do not overlap or lie on a non-incident edge by using a small threshold.

4.2 Baseline - Errorless Table Cartogram Algorithm

Evans et al. [40] proved that a table cartogram can always be achieved from a $m \times n$ table having positive weights. They construct a table cartogram with zero cartographic error and claim to generate such an errorless table cartogram every time with mathematical and geometric theory. They divide the input table in half based on the weights, make weighted triangles from those partitioned tables, finally compute cartograms for the triangles using the similar concept of barycentric coordinates. However, the authors mentioned that the generated output may not be visually pleasing and require better heuristics for aesthetically improvement. The aspect ratios of the width and height for the cells become high because of their triangle based partitioning process.

Let A be an $m \times n$ table of non-negative weights $A_{i,j}$. Let $S = \sum_{i,j} A_{i,j}$ and S_i be the sum of weights in row, i, i.e., $S_i = \sum_{1 \leq j \leq n} A_{i,j}$. Assume, $S > 4$ and R be the rectangle with height=2 and width=$\frac{S}{2}$ having four corners as $(0,0), (\frac{S}{2},0), (\frac{S}{2},2), (0,2)$ (See Figure 4.5). We assume such height and width for an easy explanation of the algorithm; however, we set height=\sqrt{S} and width=\sqrt{S} in the actual implementation.

There are four major steps for this algorithm.

(a) Partition the input table and define two partitioned tables with roughly equal sum.

(b) Compute the polygonal zig-zag line Z in the rectangle R to partition it into triangles.

(c) Compute final cartogram with the idea of barycentric coordinates by splitting the triangles.

At the initial step, we need to find the splitting row k for which the cumulative row weight from top becomes larger than the half of total weight S. Then, we split A into two partitioned tables, A' and A^b. The splitting factor λ is calculated λ from the equations (See equation 4.9 and 4.10 below).

\[\sum_{1 \leq i \leq k-1} S_i + \lambda S_k = \frac{S}{2} \]

(4.9)
Figure 4.5: (a) Demonstration of Input table, a partitioned tables, A^t and A^b where total row, $n=4$, and splitting row, $k = 2$ and splitting factor, $\lambda = 0.886$ and splitting row, (b) computation of zig-zag path, Z, (c) the subdivision of triangles, where Z is red color, (d) the final cartogram output.

We calculate the new weights for the split rows of A^t and A^b tables. Let D^t_p and D^b_q are two-column sums, where $p = 1, 2, ..., \frac{n}{2} + 1$, and $q = 1, 2, ..., \frac{n}{2}$. Here, D^t_1 and D^t_p have only single column. It is shown with blue and orange colors in Figure 4.5(a).

At the second step, we compute the zig-zag $Z = z_0, z_1, ..., z_n$ inside the rectangle R in such a way so that each triangle acquires the same area of their corresponding two-column sums, D^t_p and D^b_q (Shown in Figure 4.5). The first triangle has an area equal to the left column of A^t, and each subsequent triangle has an area equivalent to the next 2-columns. The last triangle may have one or two columns. The zig-zag Z always ends at one of the two rightmost corners.

At the last step, we split these triangles into subdivisional triangles so that all those smaller triangles represent the face of each cell of the input table A, with an area equal to their corresponding weights. We use barycentric coordination to calculate the smaller triangles.

We can consider $\Delta z_0z_1z_2$ to split into smaller triangles (See Figure 4.6). The weight of the top-left cell is assigned to Δz_0pz_1 and top-right cell to Δz_1pz_2. The sum of the rest is assigned into Δz_0pz_2. Since we know the distance between z_0 and z_2, we can calculate the height, y of Δz_0pz_2. After that, we consider a line l_0l_1 parallel to z_0z_2 line and point p would be on top of that line anywhere between x_{min} and x_{max}.

To find p, we do a binary search as follows. We first chose the position of point p randomly on top of line

$$\sum_{k+1 \leq i \leq n} S_i + (1 - \lambda)S_k = \frac{S}{2} \quad (4.10)$$
Figure 4.6: (a) Barycentric coordinates approach to subdivision the triangle, $\Delta z_0z_1z_2$. To make it readable and easier to understand, we have distorted the regions by pushing p point towards the bottom, (b) final output.

If $l_0 l_1$ in between x_{min} and x_{max}. If $\Delta z_1 p z_0 > 0.34$, that means our point p is too much to the right. To make the search on the left, we set x_{max} at p position. If $\Delta z_1 p z_0$ is smaller than 0.34, we set x_{min} at p position. In this way, we narrow down the search region and chose point p again. The iteration ends when p position generates error within reasonable threshold.

We calculate the points p_0, p_1, p_2 at Figure 4.6(b) using a similar approach. After we remove the red zig-zag Z from Figure 4.5(c), we obtain the final cartogram output as in Figure 4.5(d).

4.3 FastFlow - Fast Flow-based Density-Equalizing Algorithm

The flow-based cartogram, introduced by Gastner et al. [52], is inspired by the density-equalization technique. This FastFlow algorithm is an all-coordinate cartographic transformation technique with linear equalization. Since this algorithm was not developed originally for the table cartogram technique, it does not maintain a fixed rectangular boundary and might generate empty spaces among the outer boundary and regions. Table cartogram and image-based applications require a fixed rectangular boundary and do not allow empty space inside the rectangular boundary. These adaptations are required to use it as a table cartogram technique and for image-based applications.

In our adaptation, FastFlow takes the regular grid table as input (See Figure 4.7(a)) where each cell is water filled. Initially, some particles or populations are placed on each region such that the density of each region is proportional to its corresponding weights (See Figure 4.7(b)). Then, the populations or particles diffuse across the entire outer-rectangular region. The populations or particles flow from higher density regions to lower density regions. Thus, higher density regions expand and lose some density, whereas lower density regions shrink to gain additional density. When the densities of all the regions are equal, the flow of populations or particles stops (See Figure 4.7(c)). Then, the final distorted regions are calculated by the boundary particles of each region, and the final output is generated (See Figure 4.7(d)).
Figure 4.7: (a) Input table, (b) initial setup for FastFlow by putting particles into water-filled rectangular areas such that the density of each region is proportional to its corresponding weight, (c) equal density for all the regions, (d) the final output.

Formally, if $\rho(x,y)$ is the population density function of a small rectangular area with corners $(x \pm dx/2, y \pm dy/2)$, this rectangle contains the population $\rho(x,y)dx\,dy$. This rectangular area projects into a quadrilateral $T = (T_x,T_y)$ in such a way that $\rho(x,y)dx\,dy = \bar{\rho}dT_x\,dT_y$, where $\bar{\rho}$ is the spatially averaged density to preserve the total map area. This transformation T is the density-equalizing projection. If $dx \to 0$, $dy \to 0$ and T is differentiable, we can get the prescribed Jacobian equation [30, 11],

$$\frac{\delta T_x}{\delta x} \frac{\delta T_y}{\delta y} - \frac{\delta T_x}{\delta y} \frac{\delta T_y}{\delta x} = \frac{\rho(x,y)}{\bar{\rho}} \quad (4.11)$$

In flow-based cartogram, the population density ρ is defined with not only position $r = (x,y)$ but also time t. This density must approach to its mean over time: $\lim_{t \to \infty} \rho(x,y,t) = \bar{\rho}$ for all x and y. The points must flow so that the initial differences in their density become equal over time. This alone can not define transformation T. We also need to know the velocity $v(x,y,t)$ with which (x,y) point is dragged at time t. This v satisfies the continuity equation,

$$\frac{\delta \rho}{\delta t} + \nabla.(\rho v) = 0 \quad (4.12)$$

If $v(x,y,t)$ is known for all x, y and t, we can calculate the position $r(t)$,

$$r(t) = r(0) + \int_0^t v(r(t'),t') \, dt' \quad (4.13)$$

The projection T will shift $r(0)$ to $\lim_{t \to \infty} r(t)$. By integrating Fick’s law, $v = -D(\nabla \rho)/\rho$ (where D is the diffusion co-efficient) into equation [4.12] we can get $\delta \rho/\delta t = D\nabla^2 \rho$. This new equation controls the evolution of ρ. If this new equation is replaced by a linear density equalization toward the mean,

$$\rho(x,y,t) = \begin{cases} (1-t) \rho_0(x,y) + t \bar{\rho} & \text{if } t \leq 1 \\ \bar{\rho} & \text{if } t > 1 \end{cases} \quad (4.14)$$

A velocity field v exists for Eq. [4.13] such that the resulting transformation T satisfies Eq. [4.11] [30] that has been calculated using sine and cosine Fourier transformation.

After an affine transformation, all the coordinates are mapped inside a rectangular box with bounding coordinates $x_{min} = 0$, $y_{min} = 0$, $x_{max} = L_x$ and $y_{max} = L_y$. There is no flow at the edges of this bounding
box. We compute velocity $v(r, t)$ for each grid point r and move the population with that velocity v. A predictor-corrector method is used to adapt the time step dynamically for next iteration. The iteration stops when all regions own the spatially averaged density $\bar{\rho}$.

Adaptation for table cartogram: We adapted this flow-based cartographic transformation technique to simulate large tables with thousands of cells. Since this algorithm is not developed for table cartograms, it expands or squeezes the outer boundary based on the needs in general. To make it perform similar to a table cartogram, we fix the outer boundary that no region can go beyond the outer boundary. We also ensure that there would be no empty space in between the outer boundary and the regions inside. We do not implement any restrictions for the concave quadrilateral because it takes a reasonable amount of time to verify this cells’ convexity. One of the key features of this algorithm is faster processing speed, and we do not want to compromise its speed by applying convexity restriction. Thus, it might generate concave cells.

Later, when this algorithm runs the data table with high spikes in values and many local maxima, this algorithm is stuck within the predictor-corrector method to update the time step for the next iteration. It divides the time step into smaller and smaller on each iteration and eventually freezes the algorithm. So, we relaxed the rules of decreasing time steps and tweaked time step calculation to get out from the frozen state. After this modification, it can run a large table without freezing but generates overlapping cells followed by concave cells.

4.4 Summary

In this chapter, we discussed the implementation of the Baseline algorithm initially, and then moved to the next algorithm because of the skinny cells (See Figure 1.3). Then, we tried to adapt FastFlow algorithm, but it generated concave and overlapping cells for a large table with high spike data (See Figure 1.4). Later, we designed a new table cartogram, TCarto that could run a large table cartogram without generating any concave cells. We demonstrated the design and implementation of TCarto and Baseline. At the end, we explained the FastFlow algorithm along with the augmented part to make it fit for the table cartogram.
5 Applications of Table Cartograms

The first two research questions are to explore applications of large table cartograms beyond visualizing tabular data and the importance of convexity of each transformed cell in such applications. In this chapter, we propose several potential applications that use the underlying mechanism of a large table cartogram (i.e., positive evidence towards RQ_{A1}). We demonstrate how a table cartogram can be used to reveal spatial relation between a pair of variables, to understand clusters better in a scatter plot, and for different visual effects in images such as mosaic effect, expanding light illumination. For each application, we examine and discuss whether the convexity is crucial or not (i.e., RQ_{A2}). In the end, we describe how an angle constraint can be applied to produce better aesthetically pleasing visualization.

5.1 Infographics to Reveal Spatial Relation

Table cartograms for large metrics reveal the spatial correlation between pairs of geospatial variables. One variable is used for the input weights of the table cartogram and another to generate the initial contour plot. Then, the table cartogram algorithm transforms the initial regular grid to distorted grid output based on the weights. Afterward, image warping with piece-wise affine transformation [54] [115] is used on top of the contour plot based on the initial grid cells and the distorted grid output provided by the table cartograms. The expansion or shrinkage of the contour plot at the final output image reveals the spatial relation between those two variables.

In Figure 5.1, the two matrices representing two geospatial variables A and B. Let variable A be the input weight for the table cartogram, and Contour (variable B) be the contour plot of B. To calculate the input weight from variable A, we put the grid on top of the expected region, and then consider the average of all the values of variable A within a grid cell to calculate the input weight for that grid cell. We computed output for the table cartogram (i.e., $TCarto$, Baseline, and $FastFlow$) based on the input weights, variable A. Image warping took three inputs: Contour (Variable B) as the input image, the initial grid position as source nodes, and the distorted output grid generated by table cartogram algorithm as destination nodes. Image warping with piecewise affine transformation [58] generated the resulting output image that revealed the potential spatial relation between A and B.

Figure 5.2 (first column) illustrates how a contour plot of ALBEDO (the reflected solar energy by the surface) is transformed based on the table cartogram for soil liquid water (SH2O) values. The blue color in the contour plot indicates a low value (lakes and ocean) and yellow indicates a high value. Since the
transformation grows the ocean, one can observe that SH2O is high in ocean (which is a low ALBEDO area).

Figure 5.2 shows the cartograms obtained using **TCarto** and **FastFlow** for various combinations of ALBEDO (Solar Energy Reflectance), TSK (Surface Skin Temperature), PBLH (Planetary Boundary Layer Height), SH2O (Soil Liquid Water), and EMISS (Surface Emissivity). In the contour plot, blue and yellow regions are the lowest and highest values consecutively. The expansion of yellow (high value) region or shrinkage of blue (low value) region indicates potential positive relation. For example, see Figure 5.2(c) for shrinkage of blue. We can infer a negative relation if the opposite happens, e.g., see Figure 5.2(a), (b) and (d) for expansion of blue. In Figure 5.2(a), SH2O as weight transforms the contour plot and expands the low valued regions of ALBEDO. It indicates that ALBEDO and SH2O are negatively correlated. From Figure 5.2(b-d), we can say that TSK and ALBEDO are negatively, EMIS and PBLH are positively, and ALBEDO and SH2O are negatively correlated. We excludes the output images for **Baseline** from Figure 5.2 on purpose since the grid output of Baseline generates lots of skinny cells and the output image also lacks the accurate neighborhood adjacencies (See Figure 5.3).

Discussion

Both **TCarto** and **FastFlow** showed similar transformation in regions and revealed potential relation between geospatial variables \(RQ_{A1} \). The cell convexity did not appear to be a crucial phenomenon since the grid size is large \(RQ_{A2} \). However, a close inspection of the grid showed that there exist major differences that were not readily visible in the images, but in the transformed grid. Hence overlaying the grid on the image or placing them side-by-side might help guide the interpretation when creating infographic pictures. Note that two cartograms might look very different even when their cartographic error was small (See Table 6.1). This had also been observed by McNutt [96], but for small tables. Hence such cartogram infographics were mostly useful to spark excitement among the viewers, or to convey a major concept.
Figure 5.2: The first row shows the contour plots of different variables over western Canada (blue and yellow are low and high values). Then we have TCarto and FastFlow outputs with both the transformed images and the cartograms.
Figure 5.3: The output image for Baseline algorithm where ALBEDO is the contour and SH2O is the weights.

Both FastFlow and TCarto are suitable for the application to reveal the geospatial correlation between a couple of variables and convexity does not appear to be crucial for this application (RQ\(_{A1}\), RQ\(_{A2}\)).

5.2 Different visual effects in images

Large table cartograms can potentially be used to create visual effects in images. Table cartograms expand the cells with higher weights and shrink the cells with lower weights. Because of this characteristic, large table cartograms can assist in increasing or decreasing the lightness of an image and generate different effects, such as the mosaic effect in an image. We described two such applications: increasing the light illumination and generating mosaic effect.

5.2.1 Increasing Light Illumination

A large table cartogram can embellish the illumination on the higher lightness regions and dim the lower lightness regions. To increase the illumination of light sources in an image (See Figure 5.4), we divided the input image into \(m \times n \) equal area grid and calculated the weights as the average value of the lightness channel of HSL (Hue, Saturation, and Lightness) for each pixel within a single grid cell. Then, the large table cartogram algorithm transformed the grid cells based on those weights. Afterward, we generated a masked image (black and white) on the table cartogram output based on the weights and then applied Gaussian Filtering (Gaussian Blur with radius 10) to smooth the sharp edges. Finally, we increased the lightness channel of input image from 0% to a maximum of 25% based on the distorted cells and their corresponding weights to generate the final output image.

Figure 5.5 illustrates examples where the lightness channel of HSL (Hue, Saturation and Lightness) has been transformed using table cartogram to expand the light illumination from the light sources. This has been
achieved by overlaying a 64×64 grid on the image and then creating a weighted table T by accumulating the lightness values for each grid cell. Next the lightness channel has been adapted based on the table cartogram of T, which enlarges the brighter regions and compresses the darker areas.

5.2.2 Mosaic Effect

Another visual effect that we can create using large table cartograms is similar to mosaic arts. A mosaic art generates a picture using small stones or glass fragments. For the mosaic art effect (See Figure 5.6), we generated weights for $m \times n$ grid randomly and applied a table cartogram algorithm to deform the initial equal-area grid. We applied image warping with piece-wise affine transformation \cite{115, 144} on the input image with the initial grid as source nodes and the table cartogram output grid as destination nodes. Then, we applied cell borders on top of the generated output to produce the final output. We can also apply different artistic effects or filters on the lines of the distorted grid or the transformed image programatically or using any photo-editor software (See Figure 5.7).

In Figure 5.8 we produce a 64×64 table T with random weights to generate the mosaic image effect. We then transform the image based on the table cartogram of T and then overlay the grid to create the mosaic effect.

Discussion

Both TCarto and FastFlow were able to create some mosaic effect (RQ_{A1}), where the cell sizes in the FastFlow cartogram appear to be more uniform compared to that of TCarto. While we only focused on potential application, it would be interesting to investigate whether one is more artistic than the other. Since the weights were chosen at random in a small interval, the cells produced were convex, with FastFlow cells.
Figure 5.5: Table cartograms to expand light illumination using 64×64 grids, (left) input images, (middle) generated output using TCarto algorithm, (right) FastFlow algorithm.
having better average aspect ratio (RQ_{A2}).

FastFlow outputs are slightly more uniform than **TCarto**, but both are acceptable for this type of applications and convexity is not crucial here (RQ_{A1}, RQ_{A2}).

5.3 Understanding Clusters in a Scatter-plot

Detecting clusters and density estimation of a highly dense scatter plot is always challenging due to the overlapping of data points. In 2019, Raidou et al. [118] proposed **Pixel-Relaxed Scatter Plot** as an addition to the traditional scatter-plot to detect the clusters with their corresponding densities compromising the cluster’s actual positions (See Figure 5.9).

Large table cartogram may also assist in detecting clusters and interpreting their density, maintaining their coordinated actual positions on the scatter plot. Initially, we divided the scatter plot into a regular equal-area grid and calculated the weights for each cell as the number of data points residing on that cell (See Figure 5.10). We set a minimum positive value for the cells having no data point. Then, the table cartogram algorithm generated output based on the weights, where dense clusters expanded, and the other clusters shrank. We developed a mask image by coloring each cell with a sequential grey-scale color scheme based on the weights where black is the lowest and white is the highest. We applied the **Gaussian Filtering** to smooth the edges. Finally, we created a contour plot from the filtered mask image.

For example, Figure 5.11 column (a) illustrates three input scatter plots, each containing four clusters with 500 (blue), 200 (orange), 120 (red) and 120 (green) points. The density and sample number remain constant, but the position is changed to generate several scenarios such that partial overlapping (top row),
Figure 5.7: (a) Input image, (b) artistic effect on the lines of the grid transformed by TCarto, (c) artistic effect on the transformed image by TCarto using Cutout artistic effect in ‘Microsoft PowerPoint 365’.

no overlapping (middle row) and all four overlapping (bottom row). The scatter plots has transformed into weighted tables by overlaying a 64×64 grid where the weight of each cell corresponds to the number of points in it. A table cartogram then expands the dense clusters which has been visualized using a contour plot.

While comparing the contour plot outputs by TCarto and FastFlow in Figure 5.11, the TCarto outputs seem expanding either vertical or horizontal way rather than growing equally to all directions. A potential reason could be the CPU distribution among the nodes using TCarto DivCon algorithm (See Algorithm 2 and Figure 4.4(c-e)). The weights are distributed depending on the quadtree based top-down approach. Then, all the inner nodes of those miniature quadtrees are processed in TCarto Parallel approach (See Algorithm 1). In contrast, the boundary nodes of those miniature quadtrees can only move to their vertical or horizontal boundaries that restrict the overall weights’ distribution equally to all the directions. However, a more uniformly shaped load distribution may reduce this tendency. On the other hand, FastFlow outputs seem to spread along all the directions equally because of the diffusivity of the medium.

Discussion

Both TCarto and FastFlow were able to reveal the differences in the relative densities of the clusters, which was hard to depict in the original scatterplot. They even showed some detailed structures within the largest cluster. The FastFlow output looked more symmetric (circular) compared to that of TCarto.

Both FastFlow and TCarto are acceptable for this type of applications of cluster and density detection of a scatter-plot and cell convexity does not appear to be crucial here (RQ$_{A1}$, RQ$_{A2}$).
5.4 Tabular Data with Angle Constraint

Here we examine large table cartograms for general tabular data. This is a challenging case because a general table may contain many sharp local maxima and minima compared to the ones we observed in image applications or weather dataset \cite{88}. In addition, the values between adjacent cells can be drastically different. In such scenario, the available implementation of FastFlow performed poorly, i.e., it generated many concave cells and also failed to converge.

Since the perception of rows and columns are important in interpreting a table, we augmented TCarto DivCon with angle constraints so that the corner of each cell was above a given angle threshold. In Figure 5.12 \(t\) is the previous position of a node, and \(t'\) is the optimized position of \(t\) calculated by quadratic programming. \(\theta_1, \theta_2, \theta_3\) and \(\theta_4\) are the angles of \(pt'q, rt'p, rt's\) and \(st'q\), respectively. Then, we check whether all these angles are higher than the angle threshold. If it satisfies, \(t'\) is the new position for \(t\) node. Otherwise, we calculate \(t1\), which is 5% away from \(t'\) towards \(tt'\) line and check all the angles for this newly calculated \(t1\) position. It continues until it finds a suitable position satisfying angle threshold, or the newly calculated node is a minimum distance away from the previous position \(t\).

Figure 5.13(a)–(d) illustrate TCarto outputs for US migration data on 2018, where rows and columns represented a subset of 32 states and each cell \((i,j)\) corresponded to the quantity that migrated from \(i\) to \(j\). The cells were color coded based on their weights, where higher values were represented in blue. The angle constraints that had been used from left was \(0^\circ, 25^\circ, 50^\circ, 75^\circ\), respectively. The available implementation of FastFlow did not support any angle constraints. It failed to converge and the predictor-corrector method \cite{52} that iteratively moved the points, got stuck after 3rd iteration. It produced 152 concave cells as shown in red in Figure 5.13(e). To overcome this situation, we replaced the predictor-corrector method with uniform step size. Although it allowed us to run for more iterations, it created more concave cells and error.

Discussion

For large tabular data with many sharp local optima, TCarto performed way better than FastFlow. The rows and columns were hard to follow in a TCarto output, but it improved with larger angle constraints. Larger angle constraints also contribute to larger cartographic errors, and hence for real-life use cases (RQ_{A1}), it is important to choose an appropriate angle constraint that balances this potential trade-off between readability and cartographic error. This is where the convexity appears to be important than most other applications (RQ_{A2}).

TCarto is the only suitable algorithm for visualizing tabular data with angle constraint and convexity is very important for the readability of the visualization (RQ_{A1}, RQ_{A2}).
5.5 Summary

In this chapter, we demonstrated our proposed applications of large table cartograms beyond visualizing tabular data (RQ_{A1}) and explained the importance of the cells' convexity in such applications (RQ_{A2}). We described how a large table cartogram benefitted us in infographics to reveal the geospatial relation between variables, different effects in images (i.e., expanding light illumination, mosaic effect), cluster detection with densities maintaining actual coordinated positions in a scatter plot, and generating visualization for tabular data with angle constraint. We demonstrated the findings for research questions, RQ_{A1} and RQ_{A2} in this chapter.
Figure 5.8: Table cartograms to create mosaic effect using 64×64 grid, (left) input images on first row ‘Mona Lisa’ by Leonardo da Vinci (1503), on second row ‘Whistlejacket’ by George Stubbs (1762), on third row ‘Girl with a Pearl Earring’ by Johannes Vermeer (1665), (middle) generated mosaic effect for TCarto algorithm, (right) FastFlow algorithm.
Figure 5.9: (a) Scatter plot (opacity =0.25), (b) density plot, (c) pixel-relaxed scatter plot using linear sum assignment \[118\].

Figure 5.10: Detecting clusters with their densities using table cartogram algorithm.
Figure 5.11: Table cartograms for interpreting clusters with their densities in a scatter plot while maintaining the clusters’ position. (a) the input scatter plot, (b) marked the clusters with colored circle to describe the number of sample points. Blue, orange, red and green circle has 500, 200, 120 and 120 sample points respectively. The density and sample number remains constant, but the position is changed to generate partial overlapping (top row), no overlapping (middle row) and all four overlapping (bottom row), (c) contour plot output using TCarto algorithm, (d) FastFlow algorithm.
Figure 5.12: Finding new optimized position satisfying angle threshold, where t is the previous position and t' is the optimized position calculated by quadratic programming. θ_1, θ_2, θ_3, and θ_4 are $\angle pt'q$, $\angle rt'p$, $\angle st'r$, and $\angle qt's$ respectively. If all these angles are higher than threshold angle, we consider it as the new position. Otherwise, we calculate tt and check the angles again.

Figure 5.13: (a-d) TCarto DivCon output for 2018 US migration data with 0, 25, 50 and 75 angle constraint with cartographic errors of 122.01, 174.65, 175.33 and 184.71, respectively, (e) FastFlow output after 3rd iteration with 152 concave (red) cells (it got stuck in an infinite loop afterwards).
6 Experimental Results & Analysis

In this chapter, we describe the datasets and images that we have used in our experiments for large table cartograms. We also mention the sources, acquisition process, pre-processing steps, and various parameters of the datasets. Afterward, we define the evaluation metrics and compare the performances for all large table cartogram algorithms (i.e., Baseline [40], TCarto Parallel, TCarto DivCon, FastFlow [51]) for two different real-life datasets. We then present the experimental results. Afterward, we discuss the potential relationship among accuracy, readability of visualization, grid size and processing speed for all table cartograms. Finally, we describe the potential association of threshold angle with cartographic error (accuracy) and mean aspect ratio (the readability of the visualization) for the angle constrained table cartogram algorithms.

6.1 Experimental Setup

6.1.1 Dataset Description

We used two datasets for our experiments: the Weather Research and Forecasting (WRF) model output for several weather parameters [44] (See Table 6.1) and the United States (US) State-to-State Migration Flows from 2015 to 2019 published by the US Census Bureau [22] (See Table 6.2).

Weather Research and Forecasting (WRF) Dataset: The Weather Research and Forecasting (WRF) dataset consists of the weather data of 8 years from 2008 to 2015 [88]. Each data file contains hourly data for every day over 699 latitude and 639 longitude points of western Canada and is stored as a NetCDF file (approximately 1.3 GB) containing 10 million (10,719,864) samples. Each sample has around 36 weather parameters. The tables for this dataset does not contain any sharp spike.

For our experiment, we chose the data for January 2013. For a missing data point, we considered the average value of its eight neighboring cells. We picked ten variables such as ALBEDO, TSK, EMISS, SMOIS, LWUPB, PBLH, U10, PSFC, Q2, SH2O. ALBEDO measures the solar energy reflected by the earth’s surface, and TSK measures the temperature of surface skin. EMISS measures the emissivity of the surface, SMOIS measures the water held in the surface, LWUPB stands for ‘Upwelling Longwave Flux’, PBLH stands for ‘Planetary Boundary Layer Height’, and U10 stands for the wind velocity at 10-meter height. PSFC stands for surface pressure, Q2 stands for the ratio of water vapour mixing at 2 meter height, and SH2O measures the liquid water in the surface. We downloaded the data (netCDF) files from the remote...
server and then extracted the CSV file. We considered the pairs of the geospatial variables for the temporal inpainting. Each temporal pair was selected randomly without repetition. Later, patches were cropped from them, maintaining the temporal order. We used perceptually uniform sequential colormap \cite{107} to generate the contour plots from the weather dataset \cite{88} and also calculated the weights for different grids (i.e., 16×16, 32×32, 64×64 grids). Figure 6.1(a) shows the workflow from data acquisition to the processed weight data and the contour plots.

US State-to-State Migration Dataset: The US Census Bureau \cite{22} has published State-to-State migration data for the United States (US) since 2004. These data are stored in excel files yearly, and each yearly data file contains migration data from 52 states to 52 states. This dataset has sudden value changes to its neighboring cells and many local maxima.

For our experiment, we selected data from the year 2015 to 2019 for 32 states only (See Table 6.2). We downloaded the excel file for the 2019 year first, ordered all 52 states based on migration value in descending order (large value at top), and chose the top 32 states. Then, we downloaded all excel files from 2015 to 2019 and logged the values for our selected 32 states with the alphabetical order. Later, we generated a 32 by 32 correlation matrix with the migration data. The workflow in Figure 6.1(b) describes the data processing for the migration dataset.

Figure 6.1: (a) Workflow for Weather Research and Forecast (WRF) \cite{88} data processing, (b) workflow for the US State-to-State Migration Dataset \cite{22}.

6.1.2 Evaluation Metrics

The primary two assessments of the large table cartogram algorithms are the accuracy and the readability of the visualization. The accuracy of the cartogram refers to how accurately each polygon spatially transforms based on its desired weights. The readability of the visualization defines how easily a user can read or comprehend the visualization accurately. We considered two accuracy calculations and two measures for the readability of the visualization.
Accuracy

One standard quality metric for accuracy is the average cartographic error, \tilde{e}_i. If A_{i}^{desired} is the desired area or the given weight of ith polygon (cell) and A_{i}^{actual} is the actual area after the cartographic transformation \cite{72}, then \tilde{e}_i is computed as follows: $\tilde{e}_i = \frac{1}{N} \left[\sum_{i=1}^{N} e_i \right]$, where $e_i = \frac{|A_{i}^{\text{desired}} - A_{i}^{\text{actual}}|}{A_{i}^{\text{desired}}}$, e_i. (See Equation \ref{2.2} for details)

The mean quadratic error I_{MQE} is another commonly used quality metric for accuracy used in the literature \cite{76}: $I_{MQE} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} e_i^2}$, where $e_i = \frac{|A_{i}^{\text{desired}} - A_{i}^{\text{actual}}|}{A_{i}^{\text{desired}} + A_{i}^{\text{actual}}}$. (See Equation \ref{2.6} for details)

Comprehensiveness

We considered mean aspect ratio (mean AR) and concave count (α) to measure the readability of a visualization. The concave count (α) is simply the number of concave quadrilaterals in the output. The mean aspect ratio is defined as follows: $\text{Mean AR} = \frac{1}{N} \sum_{1 \leq i \leq N} \min(w_i, h_i) \max(w_i, h_i)$, where w_i and h_i are the width and height of the ith cell, respectively. (See Equation \ref{2.8} for details)

6.2 Results and Analysis

6.2.1 Performance Comparison with Weather Dataset

The weather dataset \cite{888} contains no sudden value changes to its neighborhood cells and not many local maxima. We compared all the measurement metrics for accuracy and readability of the visualization among Baseline (Evans et el.) \cite{40}, TCarto Parallel, TCarto DivCon and FastFlow \cite{52} algorithms. Baseline (Evans et el.) and both TCarto are table cartograms, whereas FastFlow is a cartographic transformation algorithm. We fixed the outer bounding box holding all regions (polygons) to make FastFlow generate an output similar to a table cartogram. It mostly behaved like a table cartogram without following the convexity constraints. We used the large table cartogram techniques to visualize the spatial correlation of a pair of variables from the Weather Research and Forecasting (WRF) data \cite{44}. We took a weather variable as weight and another one to generate the initial contour plot. We measured the metrics for ten different pair wise combinations of weather variables for 16×16 (See Tables \ref{A.1} and \ref{A.2}), 32×32 (See Tables \ref{A.3} and \ref{A.4}), 64×64 (See Tables \ref{A.5} and \ref{A.6}) tabular grids. Finally, we categorized the data based on the grid size of tabular grid cells and eventually considered the average value. Table \ref{6.1} is the summarized table of all Tables \ref{A.1}, \ref{A.2}, \ref{A.3}, \ref{A.4}, \ref{A.5} and \ref{A.6} which are provided in the Appendix.

Performance Comparison: From Table \ref{6.1} we can observe that the Baseline had a very high accuracy but the average aspect ratio was too low to be used in the applications that we explored in Chapter 5.

Table \ref{6.1} reports the results on weather datasets \cite{888}, where there is no sudden spikes and not many local maxima. Both TCarto DivCon and FastFlow had very small average cartographic error and mean quadratic error (RQ_{B1}), with FastFlow having the smaller average among the two. The average cell aspect...
Table 6.1: Cartographic error (\tilde{e}_i), mean quadratic error (I_{MQE}), mean aspect ratio (AR) and average concave count (α) for weather dataset [88].

Table 6.1 indicates that constraint based table cartogram TCarto DivCon can compute large table cartograms with small cartographic error (RQ_{B1}). TCarto DivCon and FastFlow both perform similarly on the data table of weather datasets [88] that have no high spike in values; however, FastFlow generates a few concave cells (RQ_{B2}, RQ_{B3}). Sometimes, the outputs by TCarto DivCon and FastFlow are slightly different. However, user studies or interviews with domain expert (meteorologists for weather dataset) may potentially help to understand which technique reveals the relationship than others.

6.2.2 Performance Comparison with Migration Dataset

The US migration dataset is a 32 \times 32 matrix as the weighted table and consists of a very sudden value change in neighboring cells. This dataset also has many local maxima. We made a comparison table among Baseline (Evans et al.) [40], TCarto Parallel, TCarto DivCon and FastFlow [52] algorithms. For this, we ran ten iterations for both TCarto Parallel and 15 iterations for FastFlow. We categorized the US migration data by year and generated the comparision table (See Table 6.2).

Performance Comparison: In Table 6.2 Baseline has the better accuracy than the others, but contains very low Mean Aspect Ratio. It made it unable to apply on the applications. Here, we observed ratio was above 0.75 for both TCarto and FastFlow, where FastFlow had better aspect ratio compared to TCarto. Only a few concave cells appeared in FastFlow (even for large tables).
<table>
<thead>
<tr>
<th>Year</th>
<th>Algorithm</th>
<th>\overline{e}_i</th>
<th>I_{MQE}</th>
<th>Mean AR</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Baseline</td>
<td>0.0083</td>
<td>0.00170</td>
<td>0.12322</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto Parallel</td>
<td>0.9676</td>
<td>0.030685</td>
<td>0.949539</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto DivCon</td>
<td>119.777</td>
<td>0.01297</td>
<td>0.563086</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FastFlow</td>
<td>5.9962</td>
<td>0.00813</td>
<td>0.539933</td>
<td>346</td>
</tr>
<tr>
<td>2018</td>
<td>Baseline</td>
<td>0.0081</td>
<td>0.00082</td>
<td>0.12335</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto Parallel</td>
<td>0.9662</td>
<td>0.03066</td>
<td>0.95056</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto DivCon</td>
<td>101.1979</td>
<td>0.0131</td>
<td>0.56454</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FastFlow</td>
<td>12134.8996</td>
<td>0.02895</td>
<td>0.591651</td>
<td>746</td>
</tr>
<tr>
<td>2017</td>
<td>Baseline</td>
<td>0.0081</td>
<td>0.00086</td>
<td>0.12512</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto Parallel</td>
<td>0.9666</td>
<td>0.03068</td>
<td>0.94793</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto DivCon</td>
<td>111.805</td>
<td>0.01261</td>
<td>0.568921</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FastFlow</td>
<td>2100.1133</td>
<td>0.02229</td>
<td>0.187013</td>
<td>768</td>
</tr>
<tr>
<td>2016</td>
<td>Baseline</td>
<td>0.0079</td>
<td>0.000845</td>
<td>0.122745</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto Parallel</td>
<td>0.969</td>
<td>0.03071</td>
<td>0.94822</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto DivCon</td>
<td>89.5294</td>
<td>0.01248</td>
<td>0.570147</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FastFlow</td>
<td>67.3776</td>
<td>0.016234</td>
<td>0.501046</td>
<td>513</td>
</tr>
<tr>
<td>2015</td>
<td>Baseline</td>
<td>0.0086</td>
<td>0.00093</td>
<td>0.123013</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto Parallel</td>
<td>0.9656</td>
<td>0.0307</td>
<td>0.947668</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TCarto DivCon</td>
<td>131.5762</td>
<td>0.01229</td>
<td>0.571858</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FastFlow</td>
<td>2562.7078</td>
<td>0.02280</td>
<td>0.424352</td>
<td>752</td>
</tr>
</tbody>
</table>

Table 6.2: Results on US State-to-State Migration Flows from 2015 to 2019 published by the US Census Bureau [22]. On each input, **TCarto Parallel** runs until 10 iterations and **FastFlow** until 15 iterations with our modification to tackle the convergence problem.

Both **TCarto** to have lower cartographic error, and better aspect ratio compared to **FastFlow**(RQ_{B2}). Furthermore, **FastFlow** produced hundreds of concave cells with inconsistent higher cartographic error. Though **TCarto Parallel** had better accuracy and average aspect ratio than **TCarto DivCon**, only ten iterations are not good enough for **TCarto Parallel** to disform the whole grid and to produce meaningful output. Thus, **TCarto DivCon** is preferred for the dataset having lots of spikes in values and with many local optima.

The data table of US State-to-State migration dataset [22] contains sudden value changes in adjacent cells and many local optima. For this type of dataset, **TCarto** gives better aspect ratio and often results less cartographic error, but **FastFlow** produces many concave cells. **Baseline** gives better accuracy conceding lower aspect ratio (RQ_{B2}, RQ_{B3}), but does not produce a readable output.
6.2.3 Relationship between Accuracy and Readability of Visualization

We categorized weather data of 64×64 grid from Table A.5 and Table A.6 by different large table cartogram algorithms. We plotted cartographic error and mean aspect ratio in a scatter plot with trend lines to visualize the relationship between accuracy and readability of the visualization. Figure 6.2 demonstrates that Baseline has the highest accuracy, but lowest mean aspect ratio. TCarto Parallel has the lowest accuracy. The scatter plot shows that both FastFlow and TCarto DivCon look promising since both of them have small amount of cartographic error (lower than 0.1) and higher mean aspect ratio (RQ_{B4}).

Though mean aspect ratio is similar for both FastFlow and TCarto DivCon algorithm, the accuracy of FastFlow is slightly better than TCarto DivCon. Thus, FastFlow is preferable for all large table cartograms when convexity is not crucial. TCarto DivCon is recommended for large table cartogram algorithms when cells’ convexity is important (RQ_{B4}).

Figure 6.2: Relationship between cartographic error and mean aspect ratio for all table cartograms on weather dataset with 64×64 grid, where each data point represents the performance measurements of two weather variables (See Tables A.5 and A.6), and the straight lines represent the linear regression for their corresponding color (green star is the best case and red circular shape is worst scenario).

FastFlow is preferable for large table cartograms when both accuracy and readability of the visualization are accountable, but convexity is not crucial. If convexity is important, TCarto DivCon is recommended (RQ_{B4}).
6.2.4 Relationship of Grid Size with Accuracy and Processing Speed

It is interesting to investigate how accuracy changes by different grid sizes for constraint based algorithm. To analyze this, we categorized weather data for TCarto DivCon based on various grid sizes (i.e., 16×16, 32×32, 64×64) from Tables A.2, A.4, and A.6. We plotted a box plot with cartographic error where each data point is the accuracy for a pair of weather variables (one is weight and another is contour plot). Figure 6.4 shows that the minimum values of all grid sizes are similar and close to 0.05. The mean error for 16×16 grid is the highest, whereas 32×32 grid performs better than other grids based on the accuracy. The performance of 32×32 grid looks promising since the first half of this grid is lower than 0.01 (RQ_{B4}).

![Box plot showing cartographic error for different grid sizes](image)

Figure 6.3: Relationship between cartographic error and the grid size for TCarto DivCon on weather dataset, where each data point represents the accuracy of two weather variables (one is weight and another is contour plot). Green star represents the best case and red circular shape shows the worst case.

Another interesting analysis would be to investigate whether the increment of grid size for TCarto DivCon raises the processing time linearly. Similar to earlier, we categorized the weather data based on the grid size and plotted the processing time in a box plot. Figure 6.4 shows that processing time increases with the increment of the size of the grid. The increase in processing time looks exponential rather than linear (RQ_{B4}).
Figure 6.4: Relationship between *processing time* and the grid size for all table cartograms on weather dataset, where each data point represents the processing time for the algorithm of two weather variables (one is weight and another is contour plot). Green star represents the best case with lower processing time.

Accuracy does not change linearly by changing the grid size. **TCarto DivCon** performs better with 32×32 grid based on accuracy. However, processing time changes exponentially with the change of grid size (RQ_{B4}).

6.2.5 Relationship of Threshold Angle with Accuracy and Readability of Visualization for Angle Constraint Table Cartogram

We augmented **TCarto DivCon** with angle constraint so that the corner of each cell was above a given angle threshold. It is important to understand the corresponding rows and columns for each cell. We ran **TCarto DivCon** with angle constraints on US migration data (See Table B.1). Figure 6.5 shows all the outputs for different angle constraints such as $0^\circ, 20^\circ, 40^\circ, 60^\circ,$ and 80° respectively (RQ_C). The outputs follow the color scheme from blue to yellow based on the weights, where blue is for high value and yellow is for the opposite. From Figure 6.5, we can observe that it is difficult to identify the row and column for a cell upto 20° angle constraint and it becomes easier to comprehend for more than 40° angle constraint.

Since the angle constraint blocks the cells to deform by enforcing additional angle limitations, it defi-
nately compromises the accuracy. For understanding the relationship between accuracy and threshold angle, we plotted cartographic error (accuracy) with different angle in a line chart at Figure 6.6. It shows that cartographic error increases with the increment of threshold angle overall. However, the cartographic error lines dip for most of the cases (i.e., on 2015, 2016, and 2018) at the 40° angle constraint. We also plotted another line chart with aspect ratio and threshold angle (See Figure 6.7). It shows that aspect ratio increases exponentially with the increment of threshold angle.

While considering both line charts simultaneously from Figure 6.6 and Figure 6.7, we can observe a trade-off between the cartographic error and the aspect ratio. The aspect ratio improves with the increase of the threshold angle escalating the cartographic error. Since the readability of visualization enhances with the increase of threshold angle conceding some accuracy an appropriate threshold angle may be chosen based on the ratio or the priority of the accuracy and an aspect ratio parameters.

TCarto DivCon with angle constraint can generate outputs for large tables with the aspect ratio more than 0.5. This aspect ratio can be increased up to 0.95 by raising threshold angle; however it also increases cartographic error. We can increase the threshold angle to enhance the readability of the visualization up to the acceptable cartographic error based on the requirement. The row and column identification for a cell is difficult up to 20° threshold angle, but it becomes easier from 40° angle restriction (See Figure 6.5)(RQC).

6.3 Summary

In this chapter, we explained the sources, acquisition process, data preprocessing, and all used parameters of the datasets. After mentioning the evaluation metrics, we discussed the performances of all four table cartogram algorithms by comparing the measurement metrics with two different dataset. Then, we discussed the potential relationship between accuracy and readability of visualization for all table cartograms. We also demonstrated the relationship of the grid size with accuracy and the processing time for constraint based table cartogram, TCarto DivCon. In the end, we presented the potential association of threshold angle with accuracy and readability of visualization for angle constraint table cartograms. Most importantly, we provided the findings and recommendations for research questions RQB1 to RQC.
Figure 6.5: The output of angle constraint with TCarto DivCon for US State-to-State migration data [22] with 0, 20, 40, 60 and 80 degree angle constraints on the years from 2015 to 2019. The color and area of each cell represent the similar variable, the number of population are migrating from one state to another state. Blue and yellow color represent the highest and lowest values respectively. So, blue regions are supposed to be larger, whereas the yellow regions are smaller. Rows and columns of this visualization indicate the outgoing and incoming states. These states are Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Jersey, New York, North Carolina, Ohio, Oklahoma, Oregon, Pennsylvania, Tennessee, Texas, Virginia, Washington and Wisconsin in the exact order from left to right for the columns and top to bottom for the rows.
Figure 6.6: Relationship between cartographic error and the threshold angle for TCarto DivCon with angle constraint table cartogram on US State-to-State migration flow dataset [22], where each data point represents the cartographic error from Table B.1.

Figure 6.7: Relationship between aspect ratio and the threshold angle for TCarto DivCon with angle constraint table cartogram on US State-to-State migration flow dataset [22], where each data point represents the cartographic error from Table B.1.
7 Conclusion

7.1 Summary

The primary aim of this thesis is to explore and investigate table cartogram algorithms for a large table with thousands of cells. We implemented an errorless table cartogram algorithm (Baseline) proven by Evans et al. [40]. Even with a high accuracy, this algorithm was unable to be used in the proposed applications because of the skinny cells that it produces (See Figure 1.3). We adapted another recent algorithm of cartographic transformation (FastFlow) [52] due to its fast processing time and investigated how it works as a table cartogram. Since FastFlow produces concave cells, we proposed a new scalable optimization-based table cartogram generation technique, TCarto. Later, we augmented TCarto with angle constraint for better readability with the expense of introducing cartographic error.

In this thesis, we also showed that large-scale table cartograms could potentially be applied to various applications beyond visualizing general tabular data. We used large table cartograms in creating infographics of cartographic transformations that can reveal correlations among different geospatial variables, or to generate different visual effects (i.e., increase the illumination of an image, mosaic art effect), or for better understanding of clusters with densities in a scatterplot. In all these applications, the underlying data had the property that the neighboring cells’ values were similar, and the number of local maxima was small. We observed both TCarto and FastFlow to perform similarly in such scenarios. However, the cells in the FastFlow output appeared to be much more uniform compared to those of TCarto. Therefore, in the image-based applications, the images were less distorted in the FastFlow output.

Both the constraint-based approach and physics-inspired cartographic map transformation effectively generated large-scale cartograms (with low cartographic error, good cell aspect ratio, and few concave cells) for image and weather datasets [88]. However, for data tables with a large number of local maxima and high spikes, we observed constraint-based optimization to work better than the flow-based traditional cartographic approach. Furthermore, we investigated the possible relationships among different criteria such as accuracy, the readability of the visualization, processing speed and the grid size based on various measurement metrics (i.e., cartographic error, mean aspect ratio, and count of concave cells).

In general, for the large tabular dataset with many local optima with large spikes and high value differences between adjacent cells, neither the TCarto nor FastFlow produced appealing output. However, TCarto with angle constraint improved the readability of the table conceding some cartographic error. This suggested the importance of choosing an appropriate restricted angle that allowed users to follow the rows and columns,
as well as to understand the relative cell areas, peaks and valley regions.

7.2 Contribution

Our main contributions to this thesis are as follows:

1. We explored different table cartograms for large tables with thousands of cells. While investigating several cartographic transformations and table cartogram algorithms, we found that some were adaptable and applicable, whereas some were not. We implemented an errorless table cartogram (Baseline) based on the theoretical proof by Evans et al. [40] that produced skinny triangles (See Figure 1.3). We amended another modern and fast cartographic transformation technique (FastFlow) by Gastner et al. [52] with a restriction at the outer boundary to adapt a large table cartogram. The outputs for this algorithm looked promising for the data tables with similar values on the neighboring cells having no high spikes; however, it produced concave and overlapping cells for the data distribution with high spikes and many local maxima (See Figure 1.4).

2. We also proposed a new constraint-based table cartogram technique, TCarto that preserves cell convexity yet capable of handling large tables. In this approach, each node moved based on neighboring nodes and weights via local optimization using quadratic programming [62, 43]. We proposed two approaches: column-based and quadtree-based approaches for parallelization, where the quadtree-based method performed faster than the column-based approach because of its faster weight-dispersion.

3. We demonstrated several real-life applications (RQ_A1) of large table cartograms, e.g., for analyzing correlations between geospatial variables, understanding clusters and their densities in scatterplots, and creating visual effects in images (i.e., expanding illumination, mosaic art effect). We illustrated that both TCarto and FastFlow could potentially be effective in these applications and discussed the importance of convexity for each application (RQ_A2).

4. We examined the performance of Baseline, TCarto, and FastFlow with two different real-life datasets: a meteorological weather dataset [88] and a US State-to-State migration flow dataset [22] by comparing several measurement metrics such as cartographic error, mean aspect ratio, number of concave cells (RQ_B1, RQ_B2, and RQ_B3). Baseline showed minimal errors with a lower aspect ratio. The data distribution of the weather dataset had no spikes and many local minima, and both TCarto and FastFlow showed impressive performance. For the migration dataset with many sharp local maxima, both TCarto and FastFlow produced low-quality output, whereas FastFlow generated hundreds of concave cells.

5. We also augmented TCarto with angle constraint to enhance the readability of the visualization. We produced outputs for migration data with better readability by increasing the restricted angle conceding
some accuracy (RQ_C). We also analyzed the potential relationships among the measurement criteria, such as accuracy, readability of the visualization, processing speed, the grid size and restricted angles (RQ_{B4}, RQ_C). When both accuracy and readability of the visualization were concerned, FastFlow was preferable; however, it generated concave cells. TCarto performed better and faster among table cartograms that do not produce concave cells.

7.3 Limitations

In this section, we discuss the limitations of this thesis.

7.3.1 Data Limitations

We simulated all the large table cartograms on two different real-life datasets: a meteorological weather dataset [88] and a US State-to-State migration flow dataset [22]. The results and analysis with datasets from further domains could provide us with better insights towards generalizability of these algorithms and their applications.

The tables for the meteorological weather dataset [88] had no high value changes in neighboring cells and had small number of local maxima. In contrast, the data characteristics of the US State-to-State migration flow dataset [22] were just the opposite, with high spikes and many local maxima. We ran all table cartograms on both types of datasets. It may be useful to run controlled study with synthetic data to gain insights into how various data features impacts the quality of the visualizations.

7.3.2 User studies

Since we devoted our focus and effort primarily to explore the scope of table cartogram for large tables, we did not consider conducting controlled user studies or interviews with the domain experts (meteorologist for weather dataset [88], artists or photographers for visual image effects) to evaluate the readability or the artistic quality of the generated outputs by TCarto and FastFlow. For the weather dataset [88], such user studies or interviews with meteorologists might potentially be helpful in understanding the best technique to reveal the relationships among various weather parameters. It would also be interesting to investigate the performance of the cartogram-based approaches and modern artificial intelligence-based techniques for creating digital arts.

Furthermore, we used two measurement criteria: mean aspect ratio and the number of concave cells for the readability of the visualization. Different people might observe such visualizations differently. Since such visual observation is subject to human interpretation, it would thus be interesting to conduct a user study on the readability of the visualizations generated by different table cartogram algorithms.
7.3.3 Evaluation metrics

In all our proposed applications, the underlying data characteristics were the small number of local maxima and the similarity among values of the neighboring cells. **TCarto** and **FastFlow** performed well and similarly in such applications. However, we observed **FastFlow** produced more uniform outputs than **TCarto**. Thus, output images were less distorted in the **FastFlow** output for the image-based applications. The measurement metrics we used were related to the accuracy or the readability of the table cartogram output. We did not consider any metric for the image warping or image distortion. It would thus be interesting to devise such performance metrics that also took the image warping or distortion into account.

7.3.4 GPU Implementation

We parallelized our proposed table cartogram algorithm, **TCarto** to compute a large table with thousands of cells. Initially, we used a column-based parallelization approach, **TCarto Parallel** (See Algorithm 1). Later, we improved the processing time with a quadtree-based parallelization approach, **TCarto DivCon** (See Algorithm 2). GPU computation had not been used to leverage any of the current implementations. Thus it would be an exciting opportunity to explore whether GPUs can be leveraged to compute table cartograms in interaction time.

7.4 Future Work

In this thesis, we explored different table cartogram techniques for large table with thousands of cells. We implemented an existing table cartogram technique and adapted a traditional cartographic algorithm so that they could run large tables. We also proposed a new constraint based table cartogram technique using quadratic programming powered by parallel computing. We also demonstrated several potential applications for large table cartograms beyond tabular data visualizations. There are still scopes to improve the table cartogram algorithm and explore various new applications. In Section 7.3, we discussed several limitations that may lead to the future works.

1. The readability of a visualization has been measured using metrics such as mean aspect ratio, number of concave cells. However, such visual interpretation varies from person to person. Thus, a user study to investigate the readability of the outputs by table cartograms, might provide better insights.

2. We simulated and run all the table cartogram algorithms on real-life data. It would be interesting to run the table cartograms on other data to generalize the algorithms, and also on synthetic or computer generated data to understand how data properties influence visualization quality.

3. A controlled study or interview with domain experts (i.e., meteorologist for weather dataset, artists or photographers for visual image effects) might give us better insight into the readability of the visualizations or the artistic quality of the generated outputs by different algorithms.
4. Our proposed algorithm can compute thousands of cells leveraging by parallel computation, but cannot process faster enough to use it interactively. In fact, none of the algorithms has yet been leveraged with GPU implementation and can process in interaction time (in a few seconds).

5. The performance of the algorithms has not considered any metric with image distortion. It would be interesting to devise such measurement metric that can consider image distorting or image warping. While using table cartogram to reveal potential relation between a pair of geospatial variables, we only examined positive and negative relationships. It would be interesting to investigate whether one can compute the strength of such relationship from the measurement metric that considers the image distortion or image warping.

6. We have explored several applications of large table cartograms. There are still lots of applications exist that can be achieved using table cartogram such as density equalizing cartogram, unique-identifier matrix barcode system. Researchers may feel interested to explore more applications of large table cartograms.

7. The table cartograms only support the positive weights since the polygons of distorted output can occupy only the positive areas. It would be interesting to explore useful data transformations such that the table cartogram algorithms can support negative and zero values by shifting or rescaling the range of input weights.

8. Some algorithms are appropriate for better accuracy, and some are for aspect ratio. It would be interesting to design algorithms that takes user priorities as input and tunes the algorithm’s parameters to produce an output that best meets the user’s need.

9. The expectation is that the larger grid size might produce the less cartographic error. In Figure 6.4, we observed that 32×32 grid has a lower cartographic error than 64×64 grid. It would be interesting to investigate what restricts larger grid size to obtain better accuracy. Sometimes, load distribution with different numbers of CPUs might affect the cell distortion. The potential relationship between the accuracy and the number of CPUs can be examined in future.
References

Appendix A
Generated Results with Weather Dataset

BaseCase for 16 by 16 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000003</td>
<td>0.246067</td>
<td>0</td>
<td>90.2759</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.169647</td>
<td>0</td>
<td>91.1152</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.215378</td>
<td>0</td>
<td>84.0753</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000003</td>
<td>0.204207</td>
<td>0</td>
<td>88.7996</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.169625</td>
<td>0</td>
<td>89.2564</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000004</td>
<td>0.246066</td>
<td>0</td>
<td>88.7049</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.232971</td>
<td>0</td>
<td>84.4967</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>SMOIS</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000003</td>
<td>0.246067</td>
<td>0</td>
<td>86.8138</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.169647</td>
<td>0</td>
<td>86.3677</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000003</td>
<td>0.204206</td>
<td>0</td>
<td>85.3345</td>
</tr>
</tbody>
</table>

AVERAGE

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.00007</td>
<td>0.0001</td>
<td>0.000003</td>
<td>0.210388</td>
<td>0</td>
<td>87.524</td>
</tr>
</tbody>
</table>

TCarto PARALLEL for 16 by 16 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.4961</td>
<td>1.0934</td>
<td>0.014409</td>
<td>0.690473</td>
<td>0</td>
<td>63.3037</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0043</td>
<td>0.0048</td>
<td>0.000151</td>
<td>0.992711</td>
<td>0</td>
<td>64.4739</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.2754</td>
<td>0.3047</td>
<td>0.011204</td>
<td>0.782531</td>
<td>0</td>
<td>67.8231</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.4006</td>
<td>0.5112</td>
<td>0.012964</td>
<td>0.72349</td>
<td>0</td>
<td>62.4078</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0083</td>
<td>0.0103</td>
<td>0.000322</td>
<td>0.951126</td>
<td>0</td>
<td>69.2347</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.4961</td>
<td>1.0934</td>
<td>0.014409</td>
<td>0.690473</td>
<td>0</td>
<td>64.3514</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.538</td>
<td>0.5726</td>
<td>0.017384</td>
<td>0.759855</td>
<td>0</td>
<td>66.3975</td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.2754</td>
<td>0.3047</td>
<td>0.011204</td>
<td>0.782531</td>
<td>0</td>
<td>68.3536</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0043</td>
<td>0.0048</td>
<td>0.000151</td>
<td>0.992711</td>
<td>0</td>
<td>64.534</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.4006</td>
<td>0.5112</td>
<td>0.012964</td>
<td>0.72349</td>
<td>0</td>
<td>61.66</td>
</tr>
</tbody>
</table>

AVERAGE

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.28991</td>
<td>0.44111</td>
<td>0.009516</td>
<td>0.808939</td>
<td>0</td>
<td>65.24217</td>
</tr>
</tbody>
</table>

Table A.1: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) BaseLine algorithm with 16 × 16 grid, (bottom) TCarto Parallel algorithm with 16 × 16 grid [88].
<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.0325</td>
<td>0.0571</td>
<td>0.001660</td>
<td>0.662080</td>
<td>0</td>
<td>35.1892</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0032</td>
<td>0.0035</td>
<td>0.000110</td>
<td>0.992193</td>
<td>0</td>
<td>35.2239</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0136</td>
<td>0.017</td>
<td>0.000528</td>
<td>0.737363</td>
<td>0</td>
<td>35.0065</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0706</td>
<td>0.1193</td>
<td>0.003777</td>
<td>0.653522</td>
<td>0</td>
<td>34.8351</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.003</td>
<td>0.0036</td>
<td>0.000111</td>
<td>0.95761</td>
<td>0</td>
<td>35.3811</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.0325</td>
<td>0.0571</td>
<td>0.001660</td>
<td>0.662080</td>
<td>0</td>
<td>35.3962</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0983</td>
<td>0.1279</td>
<td>0.003885</td>
<td>0.619437</td>
<td>0</td>
<td>32.2893</td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.0136</td>
<td>0.017</td>
<td>0.000528</td>
<td>0.737363</td>
<td>0</td>
<td>35.5939</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0032</td>
<td>0.0035</td>
<td>0.000110</td>
<td>0.992193</td>
<td>0</td>
<td>34.9152</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0706</td>
<td>0.1193</td>
<td>0.003777</td>
<td>0.653522</td>
<td>0</td>
<td>34.7602</td>
</tr>
</tbody>
</table>

AVERAGE 0.03421 | 0.05253 | 0.001615 | 0.766722 | 0 | 34.85906 |

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.0068</td>
<td>0.01013</td>
<td>0.000317</td>
<td>0.744372</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0038</td>
<td>0.00406</td>
<td>0.000127</td>
<td>0.993098</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0105</td>
<td>0.01605</td>
<td>0.000500</td>
<td>0.759962</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0081</td>
<td>0.01172</td>
<td>0.000366</td>
<td>0.656382</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.003</td>
<td>0.0037</td>
<td>0.000116</td>
<td>0.97435</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.0068</td>
<td>0.01013</td>
<td>0.000317</td>
<td>0.744372</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0137</td>
<td>0.02209</td>
<td>0.000686</td>
<td>0.702215</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.0105</td>
<td>0.01605</td>
<td>0.000500</td>
<td>0.759962</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0038</td>
<td>0.00406</td>
<td>0.000127</td>
<td>0.993098</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0081</td>
<td>0.01172</td>
<td>0.000366</td>
<td>0.656382</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE 0.00763 | 0.01097 | 0.000342 | 0.797619 | 0 | |

Table A.2: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **TCarto DivCon** algorithm with 16×16 grid, (bottom) **FastFlow** algorithm with 16×16 grid [SS].
Table A.3: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset

Baseline for 32 by 32 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.12391</td>
<td>0</td>
<td>646.6317</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.105403</td>
<td>0</td>
<td>400.5113</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.118004</td>
<td>0</td>
<td>402.4248</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.116359</td>
<td>0</td>
<td>443.3352</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.105135</td>
<td>0</td>
<td>456.6903</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.12391</td>
<td>0</td>
<td>403.6109</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.168931</td>
<td>0</td>
<td>433.975</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>SMOIS</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.12391</td>
<td>0</td>
<td>415.5731</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.105403</td>
<td>0</td>
<td>404.9429</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000002</td>
<td>0.116359</td>
<td>0</td>
<td>395.3356</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.00004</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.120732</td>
<td>0</td>
<td>440.30308</td>
</tr>
</tbody>
</table>

TCarto PARALLEL for 32 by 32 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.1392</td>
<td>0.1937</td>
<td>0.002975</td>
<td>0.783234</td>
<td>0</td>
<td>203.6473</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0061</td>
<td>0.0075</td>
<td>0.000118</td>
<td>0.994482</td>
<td>0</td>
<td>183.0774</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.148</td>
<td>0.1943</td>
<td>0.004033</td>
<td>0.877615</td>
<td>0</td>
<td>188.3193</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.5662</td>
<td>0.8766</td>
<td>0.008612</td>
<td>0.720298</td>
<td>0</td>
<td>215.3847</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0247</td>
<td>0.0286</td>
<td>0.000448</td>
<td>0.953498</td>
<td>0</td>
<td>180.9087</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.1392</td>
<td>0.1937</td>
<td>0.002975</td>
<td>0.783234</td>
<td>0</td>
<td>207.8594</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.5948</td>
<td>0.685</td>
<td>0.009307</td>
<td>0.776501</td>
<td>0</td>
<td>202.8882</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>SMOIS</td>
<td>0.1392</td>
<td>0.1937</td>
<td>0.002975</td>
<td>0.783234</td>
<td>0</td>
<td>206.1995</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0061</td>
<td>0.0075</td>
<td>0.000118</td>
<td>0.994482</td>
<td>0</td>
<td>184.9958</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.5662</td>
<td>0.8766</td>
<td>0.008612</td>
<td>0.720298</td>
<td>0</td>
<td>190.68</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.23297</td>
<td>0.32572</td>
<td>0.004017</td>
<td>0.838688</td>
<td>0</td>
<td>196.39603</td>
</tr>
</tbody>
</table>

Table A.3: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset. (top) **Baseline** algorithm with 32 × 32 grid, (bottom) **TCarto Parallel** algorithm with 32 × 32 grid [88].
Table A.4: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) TCarto DIVCON algorithm with 32×32 grid, (bottom) FastFlow algorithm with 32×32 grid [88].
BaseCase for 64 by 64 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.145531</td>
<td>0</td>
<td>1411.6986</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0</td>
<td>0.0001</td>
<td>0.000000</td>
<td>0.063268</td>
<td>0</td>
<td>1415.6552</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000001</td>
<td>0.151246</td>
<td>0</td>
<td>1439.5124</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.000002</td>
<td>0.112502</td>
<td>0</td>
<td>1476.9337</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0</td>
<td>0.0001</td>
<td>0.0000000</td>
<td>0.065153</td>
<td>0</td>
<td>1523.3196</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.000001</td>
<td>0.145531</td>
<td>0</td>
<td>1400.7231</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000001</td>
<td>0.157166</td>
<td>0</td>
<td>1386.6986</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>SMOIS</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.000001</td>
<td>0.145531</td>
<td>0</td>
<td>1506.4809</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0</td>
<td>0.0001</td>
<td>0.000000</td>
<td>0.063268</td>
<td>0</td>
<td>1396.4835</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.000002</td>
<td>0.112502</td>
<td>0</td>
<td>1445.8187</td>
</tr>
<tr>
<td>AVG</td>
<td>AVG</td>
<td>0.00007</td>
<td>0.00014</td>
<td>0.000001</td>
<td>0.1161698</td>
<td>0</td>
<td>1440.33243</td>
</tr>
</tbody>
</table>

TCARTO PARALLEL for 64 by 64 grid

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.9397</td>
<td>1.9667</td>
<td>0.005088</td>
<td>0.728804</td>
<td>0</td>
<td>368.1508</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0075</td>
<td>0.0098</td>
<td>0.00007</td>
<td>0.995572</td>
<td>0</td>
<td>544.5627</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.3447</td>
<td>0.3811</td>
<td>0.003351</td>
<td>0.84153</td>
<td>0</td>
<td>497.0566</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.8358</td>
<td>1.7899</td>
<td>0.005117</td>
<td>0.721424</td>
<td>0</td>
<td>422.0614</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0386</td>
<td>0.0436</td>
<td>0.000339</td>
<td>0.959108</td>
<td>0</td>
<td>532.8095</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.9397</td>
<td>1.9667</td>
<td>0.005088</td>
<td>0.728804</td>
<td>0</td>
<td>369.5962</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.6801</td>
<td>0.8329</td>
<td>0.005030</td>
<td>0.806353</td>
<td>0</td>
<td>450.3295</td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.3447</td>
<td>0.3811</td>
<td>0.003351</td>
<td>0.84153</td>
<td>0</td>
<td>499.3773</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0075</td>
<td>0.0098</td>
<td>0.00007</td>
<td>0.995572</td>
<td>0</td>
<td>543.8422</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.8358</td>
<td>1.7899</td>
<td>0.005117</td>
<td>0.721424</td>
<td>0</td>
<td>422.8433</td>
</tr>
<tr>
<td>AVG</td>
<td>AVG</td>
<td>0.49741</td>
<td>0.91715</td>
<td>0.003264</td>
<td>0.8340121</td>
<td>0</td>
<td>465.06295</td>
</tr>
</tbody>
</table>

Table A.5: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) **Baseline** algorithm with 64 × 64 grid, (bottom) **TCARTO Parallel** algorithm with 64 × 64 grid [88].
Table A.6: Error and processing time for different table cartograms with the Weather Research and Forecasting (WRF) dataset, (top) TCarto DivCon algorithm with 64×64 grid, (bottom) FastFlow algorithm with 64×64 grid.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.023</td>
<td>0.0429</td>
<td>0.000334</td>
<td>0.653317</td>
<td>0</td>
<td>254.6153</td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.0035</td>
<td>0.0037</td>
<td>0.000029</td>
<td>0.991587</td>
<td>0</td>
<td>266.105</td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0147</td>
<td>0.0209</td>
<td>0.000162</td>
<td>0.730771</td>
<td>0</td>
<td>245.6336</td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0905</td>
<td>0.2032</td>
<td>0.001433</td>
<td>0.628697</td>
<td>0</td>
<td>241.8784</td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0031</td>
<td>0.0038</td>
<td>0.000030</td>
<td>0.955271</td>
<td>0</td>
<td>241.9801</td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.023</td>
<td>0.0429</td>
<td>0.000334</td>
<td>0.653317</td>
<td>0</td>
<td>251.0729</td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0965</td>
<td>0.1593</td>
<td>0.001281</td>
<td>0.598307</td>
<td>0</td>
<td>253.9868</td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.0147</td>
<td>0.0209</td>
<td>0.000162</td>
<td>0.730771</td>
<td>0</td>
<td>250.2475</td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.0035</td>
<td>0.0037</td>
<td>0.000029</td>
<td>0.991587</td>
<td>0</td>
<td>259.433</td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0905</td>
<td>0.2032</td>
<td>0.001433</td>
<td>0.628697</td>
<td>0</td>
<td>242.325</td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
<td>0.03632</td>
<td>0.07045</td>
<td>0.000523</td>
<td>0.7562322</td>
<td>0</td>
<td>250.72776</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>Contour Plot</th>
<th>Cartographic Error</th>
<th>RMSE</th>
<th>MQE</th>
<th>Mean AR</th>
<th>Concave Count</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBEDO</td>
<td>TSK</td>
<td>0.0073</td>
<td>0.011488</td>
<td>0.000090</td>
<td>0.737358</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EMISS</td>
<td>SMOIS</td>
<td>0.004</td>
<td>0.004171</td>
<td>0.000033</td>
<td>0.993309</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SMOIS</td>
<td>LWUPB</td>
<td>0.0071</td>
<td>0.010012</td>
<td>0.000078</td>
<td>0.749869</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PBLH</td>
<td>U10</td>
<td>0.0163</td>
<td>0.026975</td>
<td>0.000210</td>
<td>0.640149</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>PSFC</td>
<td>Q2</td>
<td>0.0027</td>
<td>0.003236</td>
<td>0.000025</td>
<td>0.972509</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ALBEDO</td>
<td>U10</td>
<td>0.0073</td>
<td>0.011488</td>
<td>0.000090</td>
<td>0.737358</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SH2O</td>
<td>ALBEDO</td>
<td>0.0096</td>
<td>0.013089</td>
<td>0.000107</td>
<td>0.696102</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SMOIS</td>
<td>ALBEDO</td>
<td>0.0071</td>
<td>0.010012</td>
<td>0.000078</td>
<td>0.749869</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>EMISS</td>
<td>PSFC</td>
<td>0.004</td>
<td>0.004171</td>
<td>0.000033</td>
<td>0.993309</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PBLH</td>
<td>EMISS</td>
<td>0.0163</td>
<td>0.026975</td>
<td>0.000210</td>
<td>0.640149</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
<td>0.00817</td>
<td>0.012234</td>
<td>0.000095</td>
<td>0.7909981</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Generated Results with US Migration Data for Angle-Constrained Table Cartogram

<table>
<thead>
<tr>
<th>Year</th>
<th>Angle Constraint</th>
<th>Cartographic Error</th>
<th>MQE</th>
<th>Aspect Ratio</th>
<th>Concave Count</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>118.1559</td>
<td>0.012902</td>
<td>0.564516</td>
<td>0</td>
<td>247.5013</td>
</tr>
<tr>
<td>2019</td>
<td>20</td>
<td>146.4334</td>
<td>0.013333</td>
<td>0.596656</td>
<td>0</td>
<td>358.1435</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>163.1643</td>
<td>0.015559</td>
<td>0.644495</td>
<td>0</td>
<td>454.3955</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>174.4646</td>
<td>0.016824</td>
<td>0.735737</td>
<td>0</td>
<td>490.7108</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>177.4496</td>
<td>0.017728</td>
<td>0.922708</td>
<td>0</td>
<td>445.9009</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>122.6302</td>
<td>0.01286</td>
<td>0.573007</td>
<td>0</td>
<td>249.2671</td>
</tr>
<tr>
<td>2018</td>
<td>20</td>
<td>161.5319</td>
<td>0.013482</td>
<td>0.594331</td>
<td>0</td>
<td>350.5704</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>165.5414</td>
<td>0.01549</td>
<td>0.652299</td>
<td>0</td>
<td>462.4279</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>188.0578</td>
<td>0.01689</td>
<td>0.745684</td>
<td>0</td>
<td>485.4156</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>198.507</td>
<td>0.01771</td>
<td>0.944794</td>
<td>0</td>
<td>443.4621</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>112.0682</td>
<td>0.01265</td>
<td>0.568966</td>
<td>0</td>
<td>252.7945</td>
</tr>
<tr>
<td>2017</td>
<td>20</td>
<td>150.3556</td>
<td>0.012906</td>
<td>0.597542</td>
<td>0</td>
<td>353.9587</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>171.5994</td>
<td>0.01502</td>
<td>0.66129</td>
<td>0</td>
<td>460.3529</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>167.6703</td>
<td>0.01644</td>
<td>0.757292</td>
<td>0</td>
<td>487.9671</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>186.1981</td>
<td>0.01740</td>
<td>0.946794</td>
<td>0</td>
<td>422.4674</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>101.6477</td>
<td>0.01257</td>
<td>0.572988</td>
<td>0</td>
<td>245.5603</td>
</tr>
<tr>
<td>2015</td>
<td>20</td>
<td>147.5374</td>
<td>0.01314</td>
<td>0.582802</td>
<td>0</td>
<td>357.1659</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>150.1876</td>
<td>0.01538</td>
<td>0.661719</td>
<td>0</td>
<td>483.6119</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>165.6995</td>
<td>0.01656</td>
<td>0.784835</td>
<td>0</td>
<td>480.4445</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>173.1386</td>
<td>0.01744</td>
<td>0.947561</td>
<td>0</td>
<td>450.0511</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>139.7696</td>
<td>0.01248</td>
<td>0.566564</td>
<td>0</td>
<td>238.6135</td>
</tr>
<tr>
<td>2015</td>
<td>20</td>
<td>181.4783</td>
<td>0.012748</td>
<td>0.591866</td>
<td>0</td>
<td>364.9545</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>169.2078</td>
<td>0.01496</td>
<td>0.662828</td>
<td>0</td>
<td>433.9679</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>181.6644</td>
<td>0.01646</td>
<td>0.759784</td>
<td>0</td>
<td>460.5321</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>188.3216</td>
<td>0.01723</td>
<td>0.933456</td>
<td>0</td>
<td>413.4425</td>
</tr>
</tbody>
</table>

Table B.1: Different measurement metrics for angle (i.e., 0, 20, 40, 60, 80 degree) constraint with US migration data [22].