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Abstract

Infectious disease spread is difficult to accurately measure and model. Even for well-studied pathogens,

uncertainties remain regarding the dynamics of mixing behavior and how to balance simulation-generated

estimates with empirical data. Smartphone-based sensing data promises the availability of inferred proximate

contacts, with which we can improve transmission models. This dissertation addresses the problem of

informing transmission models with proximity contact data by breaking it down into three sub-questions.

Firstly, can proximity contact data inform transmission models? To this question, an extended-Kalman-

filter enhanced System Dynamics Susceptible-Infectious-Removed (EKF-SD-SIR) model demonstrated the

filtering approach, as a framework, for informing Systems Dynamics models with proximity contact data.

This combination results in recurrently-regrounded system status as empirical data arrive throughout disease

transmission simulations—simultaneously considering empirical data accuracy, growing simulation error

between measurements, and supporting estimation of changing model parameters. However, as revealed

by this investigation, this filtering approach is limited by the quality and reliability of sensing-informed

proximate contacts, which leads to the dissertation’s second and third questions—investigating the impact of

temporal and spatial resolution on sensing inferred proximity contact data for transmission models.

GPS co-location and Bluetooth beaconing are two of those common measurement modalities to sense

proximity contacts with different underlying technologies and tradeoffs. However, both measurement modali-

ties have shortcomings and are prone to false positives or negatives when used to detect proximate contacts

because unmeasured environmental influences bias the data. Will differences in sensing modalities impact

transmission models informed by proximity contact data? The second part of this dissertation compares GPS-

and Bluetooth-inferred proximate contacts by accessing their impact on simulated attack rates in correspond-

ing proximate-contact-informed agent-based Susceptible-Exposed-Infectious-Recovered (ABM-SEIR) models

of four distinct contagious diseases. Results show that the inferred proximate contacts resulting from these

two measurement modalities are different and give rise to significantly different attack rates across multiple

data collections and pathogens.

While the advent of commodity mobile devices has eased the collection of proximity contact data, battery

capacity and associated costs impose tradeoffs between the frequency and scanning duration used for proximate-

contact detection. The choice of a balanced sensing regime involves specifying temporal resolutions and

interpreting sensing data—depending on circumstances such as the characteristics of a particular pathogen,

accompanying disease, and underlying population. How will the temporal resolution of sensing impact

transmission models informed by proximity contact data? Furthermore, how will circumstances alter the

impact of temporal resolution? The third part of this dissertation investigates the impacts of sensing regimes on

findings from two sampling methods of sensing at widely varying inter-observation intervals by synthetically

downsampling proximity contact data from five contact network studies—with each of these five studies

measuring participant-participant contact every 5 minutes for durations of four or more weeks. The impact
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of downsampling is evaluated through ABM-SEIR simulations from both population- and individual-level

for 12 distinct contagious diseases and associated variants of concern. Studies in this part find that for

epidemiological models employing proximity contact data, both the observation paradigms and the inter-

observation interval configured to collect proximity contact data exert impacts on the simulation results.

Moreover, the impact is subject to the population characteristics and pathogen infectiousness reflective (such

as the basic reproduction number, R0). By comparing the performance of two sampling methods of sensing, we

found that in most cases, periodically observing for a certain duration can collect proximity contact data that

allows agent-based models to produce a reasonable estimation of the attack rate. However, higher-resolution

data are preferred for modeling individual infection risk. Findings from this part of the dissertation represent

a step towards providing the empirical basis for guidelines to inform data collection that is at once efficient

and effective.

This dissertation addresses the problem of informing transmission models with proximity contact data in

three steps. Firstly, the demonstration of an EKF-SD-SIR model suggests that the filtering approach could

improve System Dynamics transmission models by leveraging proximity contact data. In addition, experiments

with the EKF-SD-SIR model also revealed that the filtering approach is constrained by the limited quality and

reliability of sensing-data-inferred proximate contacts. The following two parts of this dissertation investigate

spatial-temporal factors that could impact the quality and reliability of sensor-collected proximity contact data.

In the second step, the impact of spatial resolution is illustrated by differences between two typical sensing

modalities—Bluetooth beaconing versus GPS co-location. Experiments show that, in general, proximity

contact data collected with Bluetooth beaconing lead to transmission models with results different from

those driven by proximity contact data collected with GPS co-location. Awareness of the differences between

sensing modalities can aid researchers in incorporating proximity contact data into transmission models.

Finally, in the third step, the impact of temporal resolution is elucidated by investigating the differences

between results of transmission models led by proximity contact data collected with varying observation

frequencies. These differences led by varying observation frequencies are evaluated under circumstances with

alternative assumptions regarding sampling method, disease/pathogen type, and the underlying population.

Experiments show that the impact of sensing regimes is influenced by the type of diseases/pathogens and

underlying population, while sampling once in a while can be a decent choice across all situations. This

dissertation demonstrated the value of a filtering approach to enhance transmission models with sensor-

collected proximity contact data, as well as explored spatial-temporal factors that will impact the accuracy

and reliability of sensor-collected proximity contact data. Furthermore, this dissertation suggested guidance

for future sensor-based proximity contact data collection and highlighted needs and opportunities for further

research on sensing-inferred proximity contact data for transmission models.
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1 Introduction

Infectious diseases have strained civilization since its dawn. A century after the 1918 influenza pandemic,

which infected nearly a third1 of the world’s population [1], we still appear underprepared for the ongoing

coronavirus 2019 (COVID-19) pandemic—an epidemic estimated to have infected over 180 million individuals

[2] and precipitated a $16 trillion economic loss [3] as of July 11, 2021. Escalating impacts of infectious

diseases, exploiting increased human mobility [4–6] and booming social media [7, 8], seep into every corner

of our lives, from compulsive hoarding [9, 10] to misinformation spread [11], threatening everyone’s physical

health [12, 13] and mental health [9–11, 14]. The extended impact of infectious diseases affects wild animals

and water reservoirs [15], threatening us through ecological systems [16].

Public health efforts have mitigated and even eliminated [17] infectious diseases by reducing infectious

contacts, such as by implementing quarantines [18, 19], and actively increasing the immunized portion of the

population, such as via promotion of vaccination [17]. Behind the scenes, mathematical modeling driven by

empirical data guide us in evaluating [20–22] and improving [23, 24] the efficiency of both measures. In the

ongoing fight against the COVID-19 pandemic, societies have introduced social distancing [25–27], lockdown

[28–31], and quarantine and isolation measures [32–34] to buy us time [25, 28, 30, 33] to develop and roll

out vaccines [35–37]. Epidemiological models [38–40] with machine learning [41–44] and various data [44]

are employed to guide public health measures [45–47] and, at a micro-level, to send individuals protective

notifications based on device-supported proximity detection schemes [48]. While lockdown and vaccination

continue to protect us against COVID-19, the extended lockdowns have also burdened many [49–51], and

vaccine hesitancy and hostility have slowed vaccination campaigns [52–54], exposing us to emerging variants,

some of which render the vaccine less effective [55–59].

The availability of high-resolution proximity contact data enables models to evaluate the individual risk of

infection [60–63] based on personal and group behavior patterns [61, 63], capturing heterogeneities among the

population. This individual-level granularity is likely to offer strong advantages for modeling scenarios when

the number of cases in the region of interest is low—such as in the early stage of a potential outbreak—or

when contemplating relaxing local lockdowns. Such resolution also appears likely to improve model resolution

when there are smaller numbers of susceptibles, such as with pertussis outbreaks after prolonged quiescence,

which are increasingly common in North America [21, 64, 65]. Models making use of high-resolution proximity

contact data can provide insights that support designs of more effective, lower-burden lockdowns, as well as

1The 1918 influenza pandemic infected about 500 million people in four waves from February 1918 to April 1920, and the

world population at that time was about 1.8 billion.
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optimize overall protection despite residual vaccine hesitancy or hostility [66, 67].

The prevalence of smartphones and personal wearable sensors facilitates scanning for proximity contacts

with a high frequency and storing longitudinal historical contact data, providing higher resolution and

fidelity than traditional self-reporting-based contact tracing methods [68–70]. However, our understanding of

constraints of battery capacity and impacts of sensor measurement biases are limited, and additional studies

are required to enable models to utilize high-resolution proximity contacts to better support public health

planning and decision-making regarding measures such as precision lockdown [71–73] and robust reopenings

following lockdowns [54, 74–76].

1.1 Motivation

Epidemiological modeling [63, 77] and related machine learning methods [78–81] bring advantages to in

mitigating the impact of infectious diseases [82, 83]. Such models support many uses, from guiding effective

regional interventions [84, 85] to multi-regional collaborations [86, 87], to confining outbreaks [88] and

flattening the epidemic curve [89, 90]. Epidemiological models have three primary purposes: estimating

parameters, simulating (or predicting) dynamics [91], and exploring “what-if” (or counterfactual) scenarios

[92, 93]. Modern epidemiological modeling for simulating dynamics primarily use three approaches: System

Dynamics/compartmental modeling (SD), agent-based/microsimulation/network-based modeling (ABM), and

discrete-event simulation (DES) [63, 77, 94, 95]. For infectious diseases like COVID-19, both SD and ABM

often model the infection status of an individual into states including susceptible, exposed (representing

those in a latent state of infection), and one or more infectious states. Depending on the hypotheses and

scope of the model, after the infectious state, there could be states such as removed, dead, recovered. A

vaccinated state is also commonly used. Within such models, the transition from susceptible to exposed is a

particularly key one, and is governed by the force of infection, which is generally governed in part by both

the transmissibility of the pathogen and the contact rate of the parties involved. When considered over the

time an individual spends infectious, these factors also govern a key epidemiological parameter known as the

reproductive number1, that is, the expected number of new infections (transition from susceptible to exposed)

caused by an infectious individual throughout the course of their infectious period. Keeling and Eames [61]

noted that the reproductive number provides an approximate summary of the emergent dynamics of contact

networks, and advocated studying this connection in order to achieve deeper understanding of epidemiological

system and more insightful epidemiological models [60, 62, 96].

The prevalence of smartphones supports the gathering of richer data concerning the dynamics of contact

networks, and also offers the prospect of deploying personalized protections for those at risk. For example,

1Here we use reproductive number to refer to, more specifically, the basic reproductive number (which assumes an otherwise

susceptible population) or effective reproductive number (considering whatever epidemiological situation is currently in place)

under corresponding contexts.
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modern contact tracing employing smartphone-based sensing has been initiated simultaneously by diverse

governments [97–100] and tech giants [48], triggering massive research on the ethical and privacy impact

and efficiency of these contact tracing apps [101–107]. However, more empirical studies and theories of

smartphone-based contact tracing are required to enhance the efficiency and utility of ongoing data collection.

The higher efficiency means derived contact networks for a targeted population from fewer sampled people and

with lower sensing frequency; by contrast, while better utility refers to more innovative usages of smartphone-

based contact data will be sufficient—not only predicting the attack rates, but also spotting critical paths

of spreading, minimize targets of lockdowns if possible, or advising measures to compensate non-compliance

with public health orders. Kreuger and Osgood have evaluated the potential of particle-filtered agent-based

models [108] while limited by the quality and reliability of the contact data, as well as the representation of

contact networks beyond theoretical network models such as small-world and ring lattice networks. Current

theoretical network models, despite being able to capture some heterogeneity, still offer poor fidelity in

representing the occurrence of empirical proximate contacts. This limited resolution impairs the accuracy of

dynamic model outcomes. For example, these theoretical network models tend to systematically overestimate

attack rates [109].

Contact data collection and interpretation for the purposes of epidemic modeling and simulation purposes

have unique characteristics and require further studying [110, 111]. When compared with other time-series,

contact data has more characteristics, because if we encoding occurrence of contacts between a pair of objects

(i, j) as dichotomous dummy variable xij(t), then xij(t) ∈ {0, 1} is governed by a stochastic process where

Wij(t) =
∫ t

0
xij(t) is cumulative contact time between i and j during time period (0, t]. The challenge lies

in the fact that we cannot safely adopt the naïve assumption and treat {xij} i, j ∈ V, i 6= j as mutually

independent, due to simple counterexamples such as schedules of group meetings during which all pairs of

group members are expected to be connected, or conflicting contemporaneous activities making contacts

between pairs mutually exclusive. Furthermore, failure modes, such as overlooking one contact or recording

a contact that did not happen, will have an impact when estimating the spread of disease [63]. Further

studies specifically evaluating the dynamics of the contact data collection and interpretation for epidemic

modeling and simulation are required, particularly with the high-resolution contact data available through

smartphone-based data collecting methods, when compared with traditional less-effective and less efficient

manual tracing based on self-reported contacts.

In order to take advantage of high-resolution contact data, improvements in modeling methodology are

required [61]. Traditional System Dynamics and compartmental modeling approaches work on aggregate

contact matrices. The employment of the standard random mixing assumption for both contacts within a

compartment and contacts between a pair of compartments can be appropriate when modeling at larger scales.

However, models that employ the random mixing assumption do not incorporate individual-level data—such

as contact history or individual-level of heterogeneity of social activity—or provide updatable estimates of

individual risk during the early stage of an outbreak or post-outbreak reemergence.
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Many machine learning techniques leveraging Bayesian statistics at this stage are ready to predict outbreaks

and evaluate interventions. For example, Markov chain Monte Carlo [112], the sequential Monte Carlo method

of particle filtering [108, 113–118], and particle Markov Chain Monte Carlo methods [119] developed by Osgood

and Liu are well suited for drawing insight from sophisticated combinations of empirical data and dynamics

drawn from an epidemiological model.

This thesis argues that combining resolution-aware sensor data collection and models capable of taking

into account high-resolution data with a hybrid modeling and machine learning approach can be of help

analyze and refine interventions, enabling epidemiological modeling to better support decision making.

1.2 Problem Statement

It is important to study high-resolution contact records because they provide opportunities for existing

epidemiological models to simulate and study individual risks of infection and reveal individual-level granularity

on how the infections spread over a community. Understanding both individual risks of infections and

individual-level granularity on the empirical spread of infection seem likely to be of strong importance for

informing precision lockdown, slowing outbreak spread, and safeguarding the process of reopening. Broader

availability of proximity contact data (smartphone-based sensing) and increased computing power (machine-

learning and supporting hardware) have brought us access to individual proximity contact data. However,

traditional group-level compartmental transmission models cannot readily exploit empirical data reflecting

the individual-level heterogeneity within a group [120]. Another challenge concerns the impact of sensing

resolutions on individual-level estimations when fused into models.

Traditional compartmental transmission models usually reflect group-level heterogeneities on proximity

contacts as preferential contact matrices and cannot benefit from individual-level proximity contact records

directly. On the other hand, although we can fuse agent-based models with individual-level proximity contact

records, their progress is increasingly burdened as the population grows. It is important to investigate the

connection between periodically regrounded cohort-level compartmental models and individual-level proximity

contact data-driven agent-based models. In the first part of this thesis, I present a solution employing a

Kalman filter, which subsequently led other researchers to explore how other filtering techniques, such as the

Sequential Monte Carlo method of particle filtering, can be used to enable compartmental models [113] or

even agent-based models [108]. The Kalman filtering study revealed that filtering techniques are now limited

by the quality and reliability of the sensing data-inferred proximity contact networks. While other researchers

in the group investigated other fusion algorithms based on my initial work, I focused on understanding the

impact of the input data.

Sensing comes with different types of noise, and improving accuracy will, in general, require increasing

costs. Whether we have sensor-collected proximity contacts derived from a co-location approach (such as via

GPS-inferred distances) or via a beaconing approach (such as with Bluetooth discovery), errors exist due to
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complex real-world factors; for example, signal attenuation and electromagnetic wave interference can result

in failures to detect proximate individuals. Anthropogenic effects, such as those related to privacy concerns

or leaving wearable devices off-person, can lead to biased proximity contacts, over-representing contacts

with certain subsets of individuals, and under-representing others. In the second major component of this

work, the research seeks to understand the degree to which GPS co-location and Bluetooth beaconing will

lead to different derived proximity contacts. Moreover, this work seeks to understand the impact of spatial

resolution—reflected as the Euclidean distance derived from measures of location and via signal strength in

beaconing—on estimations made with agent-based models.

The information entropy rate can be used to measure the expected amount of information conveyed by

sensor-collected proximity contact data. Because the information entropy rate of sensor-collected proximity

contact data grows at the cost of power consumption [121], the study of the outcomes of agent-based models

at different temporal resolutions can help assess the impacts of both observation frequency and observation

method. Assessment of this sort can inform us of potential opportunities to optimize battery consumption

and balance privacy protection when rolling out personal-wearable-device-based proximate-contact sensing.

Furthermore, observations undertaken with higher temporal resolution can capture transient contact patterns

in the network structures of proximate contacts. These transient contact patterns can provide insights into

assessing individual risks of infection in places such as hospitals, incarceration facilities, and care homes.

To summarize, this dissertation focuses on addressing the problem: How can we improve transmission

models with sensor-collected proximity contact data? To address this general problem, this dissertation

investigates three specific questions:

• Is it possible to use the Kalman filter to advance transmission modeling by incorporating high-resolution

proximity contact data?

• Whether and to what degree does increased spatial resolution in proximate-contact sensing impact

simulation outcomes?

• Whether and to what degree does increased temporal resolution in proximate-contact sensing impact

simulation outcomes?

1.3 Methodology to Address Stated Problems

The last two lines of investigations noted above involve evaluating the impact of high-resolution proximity

contact data on outcomes of agent-based models. While the proximate contacts among our modeled population

consist of deterministic replays of sensor recordings, the stochastic nature of agent-based modeling governs

that each realization is still probabilistic due to the following factors: (1) Poisson arrivals characterizing

infection attempts (such as coughing- or sneezing-induced cascades of droplets), (2) Bernoulli distributed

outcome of infection attempts between a proximate infectious and susceptible pair, and (3) the probability
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distributions associated with the duration of the latent period and (separately) infectious period. To arrive at

reliable conclusions in the face of such stochastic processes, we ran multiple realizations for each parameter

set and developed metrics to compare the impacts arising from differences between proximity contact data

when used with different transmission models associated with different parameter sets, such as those involving

different temporal-spatial resolution or differing pathogens.

1.4 Contribution

In three steps, this dissertation explored the problem of improving transmission models with proximate-

contact sensing. The first part of this work employed the Kalman filtered System Dynamics model as an

example, and demonstrated the potential of applying filtering techniques and proximity contact data to

improve transmission models. The second and third part of this work addresses limitations found through this

earlier work by focusing on better understanding sensing-data-inferred proximate contacts for transmission

models—from both temporal and spatial perspectives.

The work of Chapter 3 is among the first to explore applying filtering techniques to recurrently reground

state estimates of epidemiological models in light of dynamically unfolding data. This work evaluated the

effectiveness of extended Kalman filtering (EKF) in periodically regrounding an aggregate (System Dynamics)

susceptible-infectious-removed (SIR) model. The evaluation involved comparing the results of the EFK-filtered

SIR model against synthetic data generated by an individual-level agent-based SIR model parameterized by

proximity contact data. This work found that the EKF solution improves outbreak peak estimation and can

compensate for inaccuracies induced by model structure, aggregation, and parameter estimates. Findings

of the Kalman filtering work encouraged further studies on filtering techniques to fuse individual-level data,

System Dynamics, and agent-based models.

The investigation described in Chapter 4 investigates how the accuracy of proximate-contact detection

varies by sensing technique. Because the distance threshold within which infection can be transmitted varies by

pathogen/disease, experiments were undertaken with both GPS co-location derived- and Bluetooth beaconing

derived-proximity contact data for agent-based SEIR models over four common diseases. This work found

that, generally, proximate contacts derived through GPS co-location and Bluetooth beaconing will result in

different simulation results, particularly from the perspective of individual infection risks. Furthermore, the

degree of difference induced by these distinct measurement modalities varies by pathogen/disease and the

transmission distance thresholds of proximate contacts of interest. The findings of this work emphasize the

need for further disease-specific- and sensing technique-specific- studies to better understand the influence of

sensing techniques on the induced outcomes of proximity-contact-data-informed transmission models.

Finally, the investigation characterized in Chapter 5 studied the impacts of temporal resolution on

proximity contact sensing and findings of proximity-informed simulation models by varying the sampling

method and observation frequency. As a result, this work corroborated that temporal resolution matters for
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proximity contact sensing, with a better sampling method and higher observation frequency helping to mitigate

overestimation and underestimation. In addition, this work found the practical and widespread Snapshot

sampling method to be relatively reliable in estimating attack rates, but that the impact of temporal resolution

varies by disease, underlying populations, and the combination of sampling method and observation frequency.

This work identified the need for improved sampling methods to support the estimation of individual-level

risk of infection and reveal the network structure of proximity contacts in the context of lower observation

frequencies.

1.5 Dissertation Overview

The thesis is manuscript-styled [122]. There are three papers related to the body of this thesis, included here

as (Chapter 3 through Chapter 5). The following is a summary of the chapter contents.

Chapter 1

Introduces the field, frames the problem, and provides an overview of the contributions. Mathematical and

algorithmic background and definitions required to understand the dissertation are provided.

Chapter 2

This chapter discusses developments related to the problems characterized in the Problem Statement (Sec-

tion 1.2). This chapter starts by recalling classical epidemiological models and the importance of contact

networks, coverage followed by a characterization of three dynamic simulation modeling approaches and

their applications to epidemiological modeling. This characterization is followed by noting the prospects

of informed understanding of the dynamics of contact networks due to developments in technologies and

lifestyles. The chapter then reviews recent development in mobile sensing techniques and their capability to

record high-resolution proximity contacts. This chapter then dives into a discussion of two primary types of

sensors—GPS and Bluetooth—revisiting their limitations. Finally, this chapter summarizes the motivation

for further studies on sensing proximity contacts and integration into transmission models.

Chapter 3 (Manuscript 1)

Citation: W. Qian, N. D. Osgood, and K. G. Stanley, “Integrating Epidemiological Modeling and Surveillance

Data Feeds: a Kalman Filter Based Approach,” in International Conference on Social Computing, Behavioral-

Cultural Modeling, and Prediction, Springer, 2014, pp. 145–152. doi: 10.1007/978-3-319-05579-4_18.

The uncertainty regarding the dynamics of mixing behavior is one of the major reasons infectious disease

spread is difficult to accurately measure and model. In practice, this induces a need to balance simulation-

generated estimates with empirical data. This chapter demonstrated and evaluated an Extended Kalman Filter

(EKF) approach to recurrently regrounding simulations when empirical data arrives throughout outbreaks.
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This approach simultaneously considers empirical data accuracy, the growing simulation error as time passes

between measurements, and supports estimations of changing model parameters. The work of this chapter

compared simulations between a “synthetic ground truth” SIR agent-based model (SIR-ABM) fused with

high-proximity contact data and an EKF-filtered System Dynamics SIR model (EKF-SD-SIR) recurrently

updated with noisy measurements reflected in the synthetic data output by the SIR-ABM. The work of

this chapter finds that the EKF-SD-SIR solution improves outbreak peak estimation compared to a SIR

aggregate model in the absence of such filtering, and can compensate for inaccuracies and approximations in

the structure and parameter estimates of the aggregate model.

Chapter 4 (Manuscript 2)

Citation: W. Qian, A. Cooke, K. G. Stanley, and N. D. Osgood, “Comparing Contact Tracing Through

Bluetooth and GPS Surveillance Data,” Submitted to the Journal of Medical Internet Research, Apr. 2022.

Two primary sensing techniques for proximate-contact detection exhibit distinct accuracy tradeoffs: GPS

co-location can have errors of at least ten meters when used outdoors; Bluetooth beaconing usually has errors

on the order of meters. Both measurement modalities have shortcomings and are subject to false positives

or negatives as unmeasured environmental influences bias the data. Meanwhile, communicable respiratory

diseases predominantly infect through one of two mechanisms. Many spread through respiratory droplets

during coughing and sneezing, which can, as clinical experiences tell, affect people within 6 feet in line of

sight (LOS) when unmasked. Contrastingly, airborne diseases (such as those spreading via aerosol-based

mechanisms) can spread much further. The manuscript of this chapter presents a comparison of GPS and

Bluetooth-inferred contact patterns and assesses their impact on the attack rate induced in corresponding

agent-based Susceptible, Exposed, Infectious, Recovered (SEIR) models of four different communicable

diseases. The work of this chapter shows that the contact networks recorded by these two measurement

modalities are different and give rise to significant discrepancies in the estimates of attack rates across multiple

datasets and pathogens.

Chapter 5 (Manuscript 3)

Citation: W. Qian, K. G. Stanley, and N. D. Osgood, “Impacts of observation frequency on Reconstruc-

tion of Close-proximity Contact Networks and Modeled Transmission Dynamics,” Submitted to the PLOS

Computational Biology, May 2022.

Constraints and efficiencies—such as those involving battery capacity and energy consumption—limit obser-

vation frequency when detecting and collecting proximity contact data. This chapter sought to investigate how

the acceptable measurement frequencies depend on the characteristics of a particular pathogen/accompanying

disease, population cohesion, downsampling method (Snapshot and Upperbound), and analysis involving

disease transmission modeling simulation to be performed. The investigation in this chapter downsampled

data from five contact network studies, each measuring participant-participant contact every 5 minutes for
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durations of four or more weeks. The studies included a total of 284 participants exhibiting different commu-

nity structures. The work of this chapter found that for epidemiological models employing high-resolution

proximity data, both the observation method and the observation interval configured to collect proximity

data impact the simulation results. The impact is subject to the population characteristics and pathogen

infectiousness (R0). By comparing the performance of two observation methods, this investigation found

that in most cases, periodically observing for a particular duration can collect proximity data that allows

agent-based models to produce a decent estimation of the (cumulative incidence) attack rate. However,

high-resolution data (such as with sampling intervals shorter than half an hour in the context of simulation

experiments covered by this chapter) are preferred to model individual infection risk. The findings of this

chapter represent a step toward establishing the empirical basis for guidelines to inform data collection that

is simultaneously efficient and effective.

Chapter 6

The contributions are summarized in light of the Problem Statement. The chapter includes a discussion of

potential future work and the overall conclusions from this body of work.

1.6 Summary

Studies on high-resolution proximate contacts and their integration into transmission modeling are essential

to better support decision-making with regard to epidemiological controls. This work has demonstrated the

Kalman filter as one promising approach to fuse high-resolution proximity contacts with epidemiological

models. In a subsequent contribution, this work studied the impacts of different proximity contact detection

approaches (co-location and beaconing) when fed into simulation models; finally, this work investigated the

impact of temporal resolution and downsampling approaches (Snapshot and Upperbound), under the related

factors of pathogen/disease type and population type. This dissertation has demonstrated the plausibility of

integrating high-resolution proximity contact into simulation models, discussed factors that could impact the

precision and accuracy of these individual-granularity models, and envisioned paths that lead to improvements.

This dissertation has also recommended sensor data collection settings for several high-burden communicable

diseases and community types.
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2 Background and Literature Review

2.1 Epidemiological Modeling and Machine Learning

2.1.1 Epidemiological Modeling

Simulation modeling methods employ mathematical characterizations to represent the operation of a system

or a process. Such models can be applied to the study of the behavior of the actual system, evaluating and

optimizing the performance of a system, and experimenting with the interventions and their corresponding

impact over a longer period in various scenarios [126, 127]. There are three primary simulation paradigms

within the sphere of Health and Health Care: Those using Compartmental or System Dynamics (SD)

modeling, agent-based modeling (ABM), and discrete event simulation (DES). By combining these three

modeling paradigms and taking advantage of each for suitable portions of a model, hybrid models can be

created.

Common Epidemiological Compartmental/System Dynamics Models

The susceptible-infectious-removed (SIR) model is a classical epidemic model describing fundamental concepts

of infectious disease spread [128–130]. It classifies a population according to the stages of diseases, namely

Susceptible, Infectious, and Removed. Using ordinary differential equations, it describes the rate of changes

in the count of people in these states (dS, dI, dR) in terms of the current count of people in these states (S,

I, R), along with parameters describing the contact networks (c) and disease characteristics (β, τ), as shown

in Equation (2.1).

dS

dt
= −c̄ I

N
βS

dI

dt
= c̄

I

N
βS − τI

dR

dt
= τI

(Eq. 2.1)

Despite of being simple, SIR models are widely used. For example: Towers et al . [131] used an SIR disease

model with periodic transmission rate to access the control strategies via antiviral drug treatment during an

outbreak of pandemic influenza; Huppert and Katriel [132] took a general assumption of SIR and equations

to model influenza and vaccination; Cooper et al . [133] drew on SIR models to study the effectiveness of a
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modeling approach for the COVID-19 pandemic, they also developed an SIR model that provides a theoretical

framework to investigate the COVID-19 spread within a community.

The SEIR model

The mathematical model of a System Dynamics SEIR model (SEIR-SD) is composed of the following ordinary

differential equations:

dS

dt
= −c̄ I

N
βS

dE

dt
= c̄

I

N
βS − σE

dI

dt
= σE − γI

dR

dt
= γI

(Eq. 2.2)

where N = S + E + I +R denotes the total size of the population; c̄ is the mean number of contacts made

by each susceptible per unit time, β is the probability of transmission per contact between a susceptible and

an infective; σ is the rate of exposed persons finishing the latent period and becoming infectious; and γ is

the rate at which an infectious person recovers or otherwise transitions to the Removed state. S, E, I, and

R are the current number of susceptible, exposed, infectious, and removed people.

The SEIR-SD model, despite being widely used, contains some strong assumptions, notably the random-

mixing of contacts between those infectious and susceptible. Given that each susceptible mixes with c̄ people

per unit time, there is an assumption that c̄ IN of them will be with infectives; the fact that this quotient

considers the infective fraction of the entire population reflects an assumption that any infective within the

population will contribute equally to this group, and that a given contact made by a given susceptible will

have an equal probability of occurring with any other person within the model population. The probability per

unit time that this susceptible is infected by any of their contacts with infectives—the force of infection λ—is

then approximated as λ = c̄ IN β. It follows that the count of new infections per unit time is c̄ IN βS = λS. By

recognizing that in an entirely susceptible population, S
N ≈ 1 The term c̄β can also be seen as approximating

the count of new infections per unit time transmitted by an index infective in an otherwise susceptible

population.

Within this framework, the basic reproductive number R0, denoting the expected number of secondary

cases produced by a typical infective during its entire period of infectiousness in an otherwise susceptible

population, is given as R0 = βc̄
γ .

The c̄ denotes the mean contact rate across the population. Extending the mean c̄ into individual samples

ĉ, extra resolution can reflect heterogeneity between cohorts with various contact activity level. Consider

the mean contact rate between two cohorts i, j is cij
∧

, then the basic reproductive number for cohorts i, j

is Rij0 = βcij
∧

γ , denoting the expected number of secondary cases in the cohort i produced by a typical

infective from cohort j during its entire period of infectiousness when everyone in cohort i is susceptible [134].
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When i = j, cij
∧

denoting the mean contact rate within the cohort, when everyone except the infective is

susceptible. When the cohorts have a size of one, cij
∧

denotes expected contact rate between two individuals

of the susceptible i and infectious j.

Compartment models or Bayesian spatial models can provide further resolution on sub-populations with

different ĉ and even the spread between geographical regions, but they fail to resolve individual-level contact

patterns and the root node (or patient zero) where epidemics originate [135].

Recent Models

While a large number of compartmental/System Dynamics models have been developed to address the ongoing

COVID-19 pandemic, we will not cite those papers one by one here. Instead, we will summarize prominent

spheres of focus:

Estimating R0 and Re One category of research focuses on estimating the basic reproduction number R0,

effective reproduction number Re, or both. The basic reproduction number R0 is the expected number of

secondary cases produced by a typical infected individual during its entire period of infectiousness, given a

situation where the entire population is susceptible at the start of an epidemic, before widespread immunity

starts to develop and before any attempt has been made at immunization [136]. If, when surrounded by

susceptibles, the index person develops the infection and passes it on to two others prior to recovery, the R0

is 2. The effective reproductive number, Re, sometimes also called Rt or R∗, similarly quantifies an expected

number of infections generated by an index infective, but under a wider set of epidemiological circumstances.

Specifically, it is the expected number of people in a population who would be infected by an index infective

before their recovery at the present time (or time t, for Rt). The effective reproductive number changes

as the epidemiology evolve—for example, as the count of susceptibles in the population decrease, either by

natural immunity (immunity following infection) or by vaccination, and or as individuals are born, immigrate

or emigrate, die, or are otherwise removed.

At the beginning of the COVID-19 pandemic, researchers focused on estimating the basic reproduction

number R0 from limited and highly regional dependent infection data; as the pandemic spread, health

surveillance efforts and data reporting standards have supported regular reporting of new cases, active cases,

hospitalization and mortality estimates for various levels of jurisdictions (such as countries, provinces, regions,

municipalities and neighborhoods) over time, which allows estimation of the effective reproduction number

Re [137–140].

Separating Infectious States COVID-19 is known for its relatively long latent period and long infectious

period. The variation in symptomology, contagiousness, and propensity to seek care over the course of this

long course of infection, has led to researchers delineating several infectious compartments in SEIR models,

with potentially multiple mutually exclusive states on each stage. These modules can be characterized as

12



SEIIR [141] or SEIIIR models1 [142]. Another motivation for having these sorts of SEIIR and SEIIIR models

is to characterize asymptomatic infection pathways or model the impact of quarantine and interventions, by

splitting the infectious state into many parallel mutually exclusive sub-states. Such splitting allows modelers

to assign different infectious rate β or different contact rate c to those parallel sub-states [143].

Compartment Models and Preferential Contact Matrices In order to capture heterogeneity in

contact preferences and parameter differences, compartmental models commonly split each stock of S, E, I,

R through the use of subscriptions. Different values of a subscript could represent, for example, different age

groups, distinct ethnicity groups, or successive behavior groups (such as with respect to frequency of mask use).

The model would then represent preferential mixing probabilities characterized in contact matrices [20, 144–

149]. System Dynamics models work better on a large enough scale and with more homogeneous populations

such that stochastic variability across flows is not a major issue and that sampling variability does not lead to

pronounced deviations from means. However, the System Dynamics modeling approach is limited compared

to the agent-based modeling approach for behavioral change models (BCMs), which focus on studying the

coupling of individual behavior-changing—such as social distancing and contact precautions—and disease

transmission [150–152]. Because a given person’s changes in behavior over time commonly depends on the

preferences, circumstances, history and context of that particular person, agent-based models much more

effectively capture the factors needed to reason about realistic behavior change than do aggregate models.

From System Dynamics Models to Agent-based Models

The mutually exclusive and collectively exhaustive states characterizing the natural history of infection or

diagnosis/health status within a compartmental/System Dynamics model can be captured within individual

agents using one or more statecharts. Contacts between each pair of individuals within such an individual-

based model can be characterized by reading either sensor-collected proximity contact data or model-generated

contact schedules. Through this process, we can create a corresponding agent-based model that is able to

simulate scenarios when the homogeneous assumption of the SD model no longer holds [95, 153, 154]. Agent-

based modeling is particularly flexible in terms of being able to use contact schedules from a generative mobility

model, which describes patterns of daily life such as traveling amongst and dwelling at home, working places,

and grocery stores, with preferential mixing considered. Agent-based modeling can also include latent factors

determining individuals’ behaviors, such as adherence with quarantine order or the wearing masks.

Hybrid Models

Hybrid models can be quite useful in combining compartmental/System Dynamics models and agent-based

models, because agent-based models are usually computationally expensive and demand more detailed data

1To be precise, Arenas et al . [142] did not name their model as SEIIIR; instead, we coined their model as SEIIIR due to the

fact that they have an additional infectious state representing inpatient infectious people.
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[155–158]. For example, when modeling and monitoring the impact of caloric intake and daily workouts on

gestational diabetes [158], we used agent-based modeling to represent individual-level heterogeneity in dietary

and kinetic habits. Within each agent representation of an individual, this model used an Ordinary Differential

Equation/System Dynamics model to summarize the complex dynamics of β-cell mass and glycemia of a

diabetic individual. The hybrid modeling approach enables us to easily characterize the broader context of

present knowledge from the mathematical model from Hardy et al . [159].

2.1.2 Calibrating and Grounding an Epidemic Model

Epidemic models and filtering techniques provide two important means for characterizing and exploiting

information extracted from surveillance datasets. Epidemic models specify processes posited to govern the

data represented—in a scattered way—in such datasets. Filters sieve noise out of the data and support

calibrating parameters of epidemic models to achieve estimates of evolving system states and parameters.

Although epidemic models vary notably across specific diseases, filtering techniques are generic and

programmable. There are many applied filters in automation and robotics with the purpose of process

control and artificial intelligence. Kalman filters and particle filters are two of those filters. Such filters have

been implemented in many signal processing software libraries. However, it is not until recently that these

filters have been formally applied in mathematical and computational epidemiology to enhance and calibrate

epidemic models [108, 113–117, 134, 160].

Both the Kalman filter and particle filter can be regarded as examples of Bayesian estimation. In Bayesian

estimation, unknown variables are treated as stochastic variables, with different Bayesian estimators differing

on how they characterize the distribution unknown variables follow. The Kalman filter assumes that all

stochastic variables in the discussed system follow Gaussian distributions, an assumption that sacrifices a

degree of generality for reduced computational complexity. In accordance with the principle of importance

sampling, the particle filter represents distributions with sets of weighted samples, referred to as particles.

Both the Kalman filter and particle filter update the prior distribution of an instantaneous system state

(treated as a vector of stochastic variables) with the likelihood function of instantaneous system states given

acquired observations [161]. A particle filter commonly takes 10 to 1, 000 times the computational time than

a Kalman filter, with the specific computational time required by a particle filter scaling with the number of

particles it employs [162–164].

Hidden Markov Model

Hidden Markov models (HMMs) and linear dynamical systems (LDSs) are closely related, except that,

traditionally HMMs are considered to have discrete state-spaces while LDSs can have continuous state-spaces

[165]. The HMM is the foundation of applied estimators, including both the Kalman filter and particle filter

[78, 165]. The essence of an HMM lies in its abstraction of the relationship of measurement and system-state

over time.
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HMMs employ the Markov assumption under which the Markov property holds, with the Markov property

(also referred to as the memorylessness property) positing that the probability distribution of future states

of the system is conditionally independent of historical states given the current state. Under the Markov

assumption, the forward propagation of a discrete-time state-space model, that is, to estimate the marginal

p(Xk |X0) of state distribution of a state p(X1:k |X0) at time tk given the initial state distribution p(X0), can

be simplified by iteratively computing p(Xk) = p(Xk |Xk−1) p(Xk−1); this iterated system helps us reduce

the complexity associated with describing and computing [166].

A discrete-time hidden Markov model usually contains a Markov chain, which describes the system-state

dynamics in terms of state transition probabilities. This Markov chain of system-state dynamics is hidden,

which means they cannot be directly measured or verified—a given model could differ from the most natural

abstraction characterizing the underlying structure governing the system in the world. For example, that

model could be some missing transitions or states, or contain needless states. One benefit of the Markov

chain system model is that the governing factors can be encoded into a state-transition matrix.

Another part of the hidden Markov model formalism concerns the transitions from system-states to

measurement-states. Again, the memoryless characteristics of transitions within a Markov process helps to

simplify the computation, because given a measurement Zk, the k-th of a series of measurements, we could

interpret the posterior probability of the hidden state Xk as follows:

p(Xk | Z1:k) =
p(Zk |Xk) p(Xk | Z1:k−1)

p(Zk | Z1:k−1)
(Eq. 2.3)

where

p(Xk = xk | Z1:k−1 = z1:k−1) =

∫
p(xk | xk−1) p(xk−1 | z1:k−1) dxk−1 (Eq. 2.4)

Note that in Equation (2.4), we used the assumption of Markov process, Xk ⊥⊥ Z1:k−1 | Xk−1, to have

p(Xk |Xk−1, Z1:k−1) = p(Xk |Xk−1).

For a multi-dimensional discrete system with unbiased system noise and unbiased measurements, its

state-space model is given as follows [78, 80, 81]:

xk = fk(xk−1,vk−1)

zk = hk(xk,uk)

vk ∼ N (0, Q)

uk ∼ N (0, R)

(Eq. 2.5)

where {xk, k = 1, 2, . . . } is the state sequence of the underlying system; fk : Rnx×Rnv → Rnz is a potentially

nonlinear function of the state xk−1, termed the state transition function for system state xk; zk is the

measurement at time tk; Q and R are covariance matrices of Gaussian noises associated with the model and

measurements. Similarly to the system-state transition, per measurement space, we have a mapping function

from the system-space to the measurement-space hk : Rnx × Rnn → Rnz . There are also two noise sources

that are treated as independent and identically distributed (i.i.d.) stochastic processes: vk represents the
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system noise—the deviation of model estimation from underlying ground truth of the system state. Beyond

this, uk represents the measurement noise, i.e., the deviation of measurement from underlying ground truth

regarding the measurand.

For systems with additive system noise and measurement noise, Equation (2.5) can be simplified as:

xk = fk(xk−1) + vk−1

zk = hk(xk) + uk

(Eq. 2.6)

Kalman Filter

According to the assumption of a Kalman filter, the system is characterized by additive i.i.d. noise (per

Equation (2.6)), and both vk and uk follow a zero-mean normal (Gaussian) distribution.

For a discrete-time linear system, we could rewrite Equation (2.6) as:

xk = Fkxk−1 + vk−1

zk = Hkxk + uk

(Eq. 2.7)

where Fk is the state-transition matrix of shape nx×nx, and Hk is the measurement matrix of shape nz ×nx.

It is worth noting that, given the state-space of xk, the rank of Hᵀ
kzk is determined by both Hk and uk.

In practice, the rank of Hk is usually less than or equal to the dimension of the state-space of xk—this means

that the intrinsic dimension of idealized measurement (without noise) should be less than or equal to the

dimension of the state vector.

To estimate the underlying state xreal
k , The Kalman filter works when the rank of Hᵀ

kzk is greater than

or equal to the dimension of the state-space of xk. This is usually achieved by having rank of Hᵀ
kuk greater

than or equal to the rank of Hᵀ
kHkxk, and the rank of Hᵀ

kuk is the number of linearly independent sources

of measurement noise in vector uk. To be more specific, the dimension of vector space of zk is the number of

independent measurements taken on the system-state, and the core of Kalman filter is to fuse independent

noisy measurements to get a more accurate estimation of the underlying system state.

When dealing with a continuous-time non-linear system, we have Equation (2.5) further expressed as:

x(tk) = x(tk−1) +

∫ tk

tk−1

f (x(τ), τ) dτ +

∫ tk

tk−1

v(τ)dτ

z(tk) = htk (x(tk),utk)

(Eq. 2.8)

Note that usually we will still use the discrete form for measurement rather than the continuous form. The

term v(τ)dτ can not be integrated directly unless we use Itô calculus [78]. Luckily, from the assumption of

Gaussian noise, E[v(τ)] = 0, removing
∫ tk
tk−1

v(τ)dτ in the state-update from x(tk−1) to x(tk).

The equations for the extended Kalman filter will use Taylor expansion up to the first order (shown in

one-dimension, when (x− x̂)→ 0) [78],

f(x) = f(x̂) +
∂f

∂x

∣∣∣∣
x=x̂

(x− x̂) +O(x− x̂)2 (Eq. 2.9)
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following is the equation set for Extended Kalman Filter

ẋ(t) = f (x̂(t), t) +K(t) [z(t)− h (x̂(t), t)]

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F ᵀ (x̂(t), t) +Q(t)

−P (t)Hᵀ (x̂(t), t)R−1(t)H (x̂(t), t)P (t)

K(t) = P (t)Hᵀ (x̂(t), t)R−1(t)

(Eq. 2.10)

where
F (x̂(t), t) = ∂f(x(t),t)

∂x(t)

∣∣
x=x̂

H (x̂(t), t) = ∂h(x(t),t)
∂x(t)

∣∣
x=x̂

(Eq. 2.11)

One issue that arises when applying EKF concerns the case in which R−1(t) does not exist, which can be

caused by R(t) not being of full-rank, such as by dependent measurements in our measurement set. Under

this condition, measurements should be removed to eliminate the dependency.

Importance Sampling

Both importance sampling technique and Markov chain Monte Carlo method use a proposal distribution q(x)

to approximate the target distribution p(x). Particle filtering relies on the importance sampling technique

and variants thereof to track estimates of system states with even non-Gaussian noise from the system model

and measurements. Importance sampling uses weighted particles to approximate the target distribution p(x),

and the importance weight wi of the i-th particle xi, i = 1, · · · , n, is defined as

wi =
p(xi)

q(xi)
. (Eq. 2.12)

The expected value of f(X), X ∼ p(x) can be estimated by∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx

= Eq(x)

[
f(x)

p(x)

q(x)

]
' 1

n

n∑
i=1

f(xi)
p(xi)

q(xi)

=

∑n
i=1 wif(xi)∑n

i=1 wi
.

(Eq. 2.13)

Particle Filter

Unlike the Kalman filter, which uses the mean value and covariance matrix of a Gaussian distribution

to characterize the likelihood of the underlying system-state at an instance, a particle filter applied to a

set of state equations characterizing stochastic evolution of system state represents the required posterior

distribution of system-state values at a given time given a set of observations until that time by a set of

importance-weighted particles. Estimates are calculated based on sequential importance sampling with such

particles.
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Suppose the sources of noise v(t) and u(t) in Equation (2.6) follow two distributions, with general form

Ψv(µv,Σv) and Ψu(µu,Σu). Suppose further that at time tk we have measurement zk and n particles x(i)
k , i =

1, 2, · · · , n, collectively to represent the distribution of system-state xk. We could rewrite Equation (2.5) as

xk ∼ Ψv(fk(xk−1) + µv,Σv)

zk ∼ Ψu(hk(xk) + µu,Σu)
(Eq. 2.14)

In terms of notation, fk will continue to represent the system-state transition function and hk the measurement

function. If we use witk to represent the weight of ith particle at time tk, we will have weight-updating equation

as following,

wik ∝
p
(
xi0:k|z1:k

)
q
(
xi0:k|z1:k

)
wik ∝ wik−1

p
(
zk|xik

)
p
(
xik|x

i
k−1

)
q
(
xik|x

i
k−1,zk

) (Eq. 2.15)

where q(x) is the proposal distribution, and p(x) is the target distribution. This iterated approach of updating

importance weights of particles is also referred to as sequential importance sampling (SIS).

Markov Chain Monte Carlo

There are three important methods that are frequently used to generate samples following an arbitrary

distribution: Metropolis, Metropolis-Hasting, and Gibbs. Within these three, the Metropolis-Hasting method

could be regarded as the general case for both Metropolis and Gibbs methods [167].

Successive samples we generate as θ(t), a genetically inspired algorithm for Metropolis and Metropolis-

Hasting methods to sample from the target distribution p(x), could be summarized as follows:

1. Start with any initial value θ(0) satisfying p(θ(0)) > 0

2. Use proposal distribution to generate a candidate sample θ?

3. For step t, Compute α for θ? (varies per algorithm; see below)

4. Compare α with a sample ε ∼ U [0, 1), if ε < α, then accept θ? as θ(t), otherwise still use θ(t−1) as θ(t).

It bears noting that when α = 1, θ? is always accepted as θ(t).

For the Metropolis sampling,

α = min

(
p(θ?)

p(θ(t−1))
, 1

)
(Eq. 2.16)

where the target distribution p(x) has to be symmetric.

For the Metropolis-Hasting method,

α = min

(
p(θ?)q(θ? | θ(t−1))

p(θ(t−1))q(θ(t−1) | θ?)
, 1

)
(Eq. 2.17)

When q(x) is symmetric, then q(θ? | θ(t−1)) = q(θ(t−1) | θ?), the equation reduces to the form used in the

Metropolis method.
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In contrast to Metropolis sampling and Metropolis-Hasting sampling, which have to keep throwing out

rejected proposals θ?, an advantage of Gibbs sampling is that it will make use of all the generated proposals

θ? after the initial burn-in period. One assumption of a Gibbs sampler is that the target distribution should

be multivariate and the conditional distributions of one variable conditioned on all of the other variables can

be computed and sampled exactly from these distributions.

Assume we want to generate a joint sample θ(t) =
[
θ

(t)
1 θ

(t)
2 · · · θ

(t)
nφ

]
for a vector of nφ variables

φ =
[
φ1 φ2 · · · φnφ

]
of the target distribution p. Assume further that, for every φi, we can compute

conditional distributions p(φi | φ−i) = p(φi | φ1, · · · , φi−1, φi+1, · · · , φnφ) and we can also sample θ(t)
i ∼

p(φi | φ−i). Based on the joint sample θ(t−1) from step t− 1, we generate θ(t) by

1. Sample θ(t)
1 ∼ p(φ1 | θ(t−1)

2 , θ
(t−1)
3 , · · · , θ(t−1)

nφ )

2. Sample θ(t)
2 ∼ p(φ2 | θ(t)

1 , θ
(t−1)
3 , · · · , θ(t−1)

nφ )

3. Sample θ(t)
3 ∼ p(φ3 | θ(t)

1 , θ
(t)
2 , θ

(t−1)
4 , · · · , θ(t−1)

nφ )

. . .

nφ − 1. Sample θ(t)
nφ−1 ∼ p(φnφ−1 | θ(t)

1 , θ
(t)
2 , · · · , θ(t)

nφ−2, θ
(t−1)
nφ )

nφ. Sample θ(t)
nφ ∼ p(φnφ | θ

(t)
1 , θ

(t)
2 , · · · , θ(t)

nφ−1)

Putting together the nφ samples generated above, we get the joint sample θ(t) =
[
θ

(t)
1 θ

(t)
2 · · · θ

(t)
nφ

]
for step t.

Applications in Epidemiological Modeling

Osgood and Liu [113, 115, 117] have led particle filter and particle MCMC applications for latent state

and parameter estimation for re-grounding epidemiological models. This use of the particle filter strongly

elevated the predictive accuracy of epidemiological models, relative to their open-loop counterparts [113].

The University of Saskatchewan Computational Epidemiology and Public Health Informatics lab (CEPHIL),

founded and led by Professor Osgood, who has contributed a series of applications: Kreuger et al . [108] has

pioneered applying particle filter on agent-based models; Li et al . [116] has applied particle filtering in both

aggregated and age-structured population compartmental models of pre-vaccination measles; Safarishahrbijari

et al . [117] investigated three applications of particle filtering involving a SEIRV simulation model of H1N1

influenza. This work included study of the impact of particle filtering on predictive accuracy of particle

filtering in dynamic models to support outbreak projections, investigation of how predictive accuracy is

affected by the inter-observation interval and key parameters used in particle filtering, as well as how the

use of search data affected particle filtering predictive accuracy [115]. Oraji, Safarishahrbijari et al . [114]

combined particle filtering and transmission modeling for Tuberculosis control; Mohammadbagheri et al . [118]

has applied mathematical modeling of the Hypothalamus-Pituitary-Adrenal gland (HPA) axis using particle

filter algorithm.
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2.2 Human Mobility and Contact Networks

Human mobility and contact networks are two behavior-related matters of great importance to epidemiological

modeling. Human mobility models focus on describing the characteristics of both individual and collective

movements, from larger scale inter-continent flights to small scale daily trips between home, working spaces,

and grocery stores [168–170]. Human mobility patterns at the scale of a country or a city may be reflected

in real-time travel data and statistics regarding cumulative population migration over a corresponding time

frame. The co-location is an even between two persons when their physical distance is within the threshold

of interests. Deduced co-location from human mobility patterns can suggest contact rates and exposure risks

for epidemiological modeling [168, 169, 171] and aid in the evaluation of interventions involving mobility

restrictions such as lockdowns [172, 173].

By contrast, dynamic measurement of contact networks traces contacts between people, providing infor-

mation that can be directly used to feed an epidemiological model [61]. Access to information on contact

networks and their representation in a model can aid evaluation of interventions that cannot be straight-

forwardly expressed as alteration of mobility patterns, for example, public health orders requiring social

distancing [149] or personal hygiene measures such as mask use [63].

Intuitively, there is a natural role for the use of mobility patterns when modeling larger scale disease

spreads between countries and cities, while information on contact networks offers ready exploitation at

smaller scales of disease spread, such as within a city, a community, or an aged care home [61, 63, 168, 169].

Multiscale epidemiological models using both mobility patterns and contact networks are expected to better

express the multiscale nature of dynamic behaviors driving contact within the system [169, 174].

Studies collecting reliable records or formulating accurate models and predictions of human mobility

patterns can benefit intelligent routing decisions, whether based on infrastructures such as cell tower or WiFi

router placement, or opportunistic peer-to-peer routing in delay tolerant networks. There has been significant

research on employing user movement patterns to support transit opportunity estimation [175–178], device

resource management [179, 180], and battery savings [181, 182]. Similarly, information on human mobility

patterns of the sort which informs the placement of cell towers and WiFi hotspots can also support decision

making on the placement of other services or amenities, such as bus stops [183, 184].

Both human mobility and contact networks are shifting with our ever-changing lifestyles, as well as

emergency events. Shared (micro-)mobility services such as bike-share and scooter-share changed both

trip duration and spatiotemporal signatures [185]. Online shopping and food delivery is changing human

mobility patterns not only of their users and couriers [186], but also of others due to delivery service-induced

changes in urban traffic patterns and routing [187, 188]. Such changes can be particularly marked during

public emergencies such as COVID-19, when, due to social distancing policy, adoption or personal protective

behaviors, or occurrence of lockdown, residences rely more on delivery services while staying at home [189].

The COVID-19 pandemic demonstrated a capacity of the early stage of an outbreak to alter such residents’
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regular grocery purchasing schedules due to hoarding of goods such as toilet paper; such changes can eventually

alter the entire supply chain [190]. Emerging services such as drone delivery may further change human

mobility patterns and contact networks [191]. The cost of energy, an aging population, and “996” working

systems for young people can further accelerate the demand for delivery services and shared mobility services

[186, 191].

Contact patterns are patterns of interaction or mixing in close proximity amongst population members

over a time frame. Although greater numbers of such interactions are occurring in the virtual sphere because

of convenience with emerging social networks, this thesis focuses on contacts of proximate individuals directly

impacting disease transmission models; the balance of the dissertation will commonly refer to such contacts

as “proximate contacts” and data records of these contacts as “proximity contact data”. Common aggregate

metrics used in characterizing contact patterns include the distribution of contact duration, distribution

of inter-contact duration [192, 193], and the average contact frequency in a underlying population [61].

These metrics impact parameters of critical importance in health modeling, such as the basic reproductive

number. The basic reproductive number, as introduced in Section 2.1.1, is the expected number of others

to whom an index infective individual transmits infection over the course of their infectious period, in an

otherwise susceptible population. Additionally, contact patterns play a central role in agent-based infection

transmission models, infection prevention, and shape individual decision-making [194, 195]. Human mobility

patterns underlie the contact patterns between both people and places, and are suitable as metrics at the

population level [171, 196]. Human mobility patterns have impacts on the transmission of contagious diseases,

attitudes and norms, access to services, and contribute to exposure to environmental risks such as toxins,

pedestrian-unfriendly built environments, and food environments, and form an important causal influence on

both environmentally mediated diseases such as asthma and socially mediated diseases such as obesity [60,

62, 197–199].

Barbosa et al . systematically reviewed human mobility models and their applications [168] from four

perspectives: data sources, metrics, models, and applications. Inspired by their perspective, we will review

human mobility and contact network by their data sources, metrics, and models. Because human mobility

patterns and contact networks are quite related in such a way that many data sources and metrics apply to

both, we will only separate these two topics when discussing their models.

2.2.1 Data Source and Important Patterns Found

Unsurprisingly, findings on human mobility patterns and contact networks accompany new data sources

enabled by new technologies with higher resolution and better fidelity. The following data sources and

associated important findings are presented in chronological order.
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Census, Surveys and Circulatable Notes

Census data started to trace migration, living place and later workplace and transportation in 1841 led by

the British [200]. With census data, the “Laws of Migration” were formulated in 1885 [201], positing that

“migrants only move a comparatively short distance from the place which gave them birth”; a “Law of Limited

Circulation of Population” was later articulated in 1937 [202], adding that migration may exhibit “occasional

radiating inequalities which indicate favored routes of migration”. The improvement of census questions may

have facilitated the revealing of these changes in migration patterns. However, they more plausibly could

be a reflection of human mobility changing from the 1880s to 1930s—especially when considering that the

American industrial revolution took place from the 1880s to 1920s, when the workforce shifted in a pronounced

manner from agriculture to industry, and the number of workers increased rapidly [203].

With the availability of an online dollar bill tracking system, Brockmann et al . [204] in 2006 studied

dollar bill trajectories as secondary data to reveal patterns of underlying human mobility. Their research

brought human mobility research into a new phase by attempting to use physical models such as random

walks and Lévy walks [205, 206] to explain human mobility. Within their paper, an investigation regarding

the distribution of traveling path lengths at a relatively large scale led to the discovery of truncated power-law

distributed trip length as one of the potential characteristics of human mobility. The physical limits of human

beings are the primary driver for the truncated tails in the power-law distribution and technology [207]. The

researchers also derived from lattice network assumptions a model that can reproduce patterns in human

mobility with truncated power-law distributed trip length. However, trip length only focuses on memoryless

or quasi-memoryless transitions, without considering the patterns of absolute location created by our days or

weeks [168]. The memoryless processes have only recorded relative location aspects, which could not be used

to represent the characteristic clustering of absolute locations.

Cellular Tower, GPS and WiFi Records

Jensen et al . [208] used both GPS and WiFi supported location information as feed-in data, using the same

criteria as the Song and Barabási adopted [209]; their results support Song and Barabási’s finding of a high

entropy upper-bound [209]. Besides using the Lempel-Ziv estimator for entropy, they also applied a first-order

Markov model with the transition probability estimated from the finite process and obtained the same result

as did the Lempel-Ziv estimator.

Hashemian et al . [210] developed an app for the Google Android operating system-based smartphones.

Multi-sensor data provides a potential opportunity for data fusion that could mitigate noise caused by a

single sensor or allow for better reliability in the presence of missing data. However, an analysis of collected

data in terms of human mobility patterns was not provided.

Qian [211] completed the post-processing of data collected for [210], obtaining multi-sensor data allowing

the filtering of noisy data, and—in addition to previously used techniques [208, 212]—investigated the impact

of and interaction between granularity and geometric representation.
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RFID and Bluetooth Discovery Records

Integrating human traces from six studies, with data collected from smartphone-based GPS, WiFi, and

Bluetooth sensors, Karagiannis et al . [212] found that the distribution of inter-contact time possesses an

invariant property: a characteristic elapsed time threshold—on the order of half a day—beyond which the

distribution decays exponentially. Furthermore, Karagiannis et al . proposed the random way point method

of generating synthetic human mobility records involves randomly generating points to represent sites for

possible visits, and choosing a destination from these points as a component of the subsequent trajectory.

The random way point method can generate human trajectories while allowing truncated exponential decay

of inter-contact time pairs in the simulated community.

Cattuto et al . [213] used active Radio Frequency Identification (RFID) devices to detect and collect

person-to-person proximity contacts, and found super-linear behavior between the number of connections

and cumulative contact duration, indicated “the possibility of defining super-connectors both in the number

and intensity of connections”. Hashemian et al . [109] found that using a putative “typical day” to represent

contact networks of coworkers tended to overestimate incidence, and argued that in some circumstances,

high-resolution data of contact dynamics are required to secure high fidelity in transmission models.

Auxiliary Data Sources and Their Impacts

Riding the tide of cloud computing and machine learning, emerging data sources such as social media, open

data, and crowdsourced data, allow new perspectives on human mobility and contact networks. These types

of data differ from previous datasets in several ways, including the fact that their collection demands fewer

labor hours per record, are less likely to be affected by certain subjective biases, with the data capturing

information on various aspects of context [214–216]. Such auxiliary data sources can provide extra insights,

as shown in the following studies, arranged according to their auxiliary data source types.

Social Media To help describe traffic anomalies, Pan et al . [217] used term frequency-inverse document

frequency (TF-IDF) [218] to extract keywords from posts on Weibo (a Twitter-like social media service in

China). They demonstrated that when using TF-IDF to extract descriptive keywords of a traffic anomaly, it

is more efficient to focus only on posts both spatially and temporally related to a detected traffic anomaly.

Their finding reveals a potential to reduce the demand for posts used for information extraction from millions

down to hundreds.

Grabowicz et al . [219] found entanglement between social ties and human mobility and interactions by

building and calibrating their stylistic “travel and friendship” model based on location check-ins on Twitter.

The researchers identified user interaction data on Twitter with respect to following, replying, sharing, and

check-in locations for over 714,000 users during a month. Additional location check-in datasets are employed

from two location-based services, namely Gowalla and Brightkite. Their “travel and friendship” model,

simulating traveling to friends and making new friends, was parameterized with two important stylistic
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factors. For the travel component, an important parameter was the probability of visiting a randomly selected

friend at their current location. The friend component of the model included the probability of randomly

connecting to an individual anywhere, in analogy to making a new friend on social media independent of the

geography. They found their calibrated model fits well with the social media collected check-in locations (as

human mobility data) and interactive activities on the social media (as the social network structure) in terms

of the following metrics:

• Node degree distribution, where an edge represents a directed social link, such as message following in

social media. Two individuals with at least one social link in either direction is considered a linked pair.

• At a given distance, the ratio of linked pairs among all distance pairs, where a distance pair is two

individuals with physical distance at the given threshold. Because individuals’ locations are rounded

into grids of points, pairs of two individuals can be grouped by the distance between them.

• For a linked pair, that is, two individuals with at least one link in either direction, the probability of

these two individuals mutually linking to each other. Two individuals are mutually linking to each other

form a mutually-linked pair.

• Among distance pairs for a given distance, the ratio of mutually-linked pairs over linked pairs.

• The ratio of closed triads over all triads for a given distance, where a triad is defined as any three

individuals (i, j, k) such that (i, j) and (j, k) are distance pairs for the given distance, and this triad is

closed if (i, k) are also a distance pair for the given distance.

• Distribution of distance disparity among a closed triad, where the distance disparity is defined as

D = 6

[
d2

1 + d2
2 + d2

3

(d1 + d2 + d3)2
− 1

3

]
, (Eq. 2.18)

where d1, d2, and d3 are geographical distances between (i, j), (j, k), and (i, k) of a triad (i, j, k). The

distance disparity ranges from 0 to 1 as the triangle passes from equilateral to isosceles.

Wu et al . [220] modeled intra-urban human mobility based on 15 million check-in records collected

during a yearlong. They analyzed these records by dividing travel demands into locationally mandatory

activities (LMA) and locationally stochastic activities (LSA). They further classified check-in locations into

six categories: home, transportation, work, dining, entertainment and other, and removed random walks

(as judged by when the displacement between two adjacent records is less than 100 meters), remaining in

the vicinity of a single location or missing (the time interval between two adjacent records is over 12 hours),

abnormal data (as judged by an average speed over 431 kilometers per hour). Their classification of travel

demands summarized check-in records into a temporal transition probability matrix of activities to simulate

agent-based intra-urban mobility.
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Wu1 et al . [221] evaluated prediction of keywords associated with a mobility record given historical

spatiotemporal documents using kernel density estimation (KDE). Based on 37 million tweets across three

cities (New York, Chicago, and Los Angeles) spanning over nine months, their evaluation shows that the

prediction of keywords associated with mobility records can be carried out with relatively high accuracy

(over 90%) for over one-third of the cases. Their finding confirmed the existence of locationally mandatory

activities or locationally landmark tweet keywords as the other Wu et al . [220] highlighted.

Zhang et al . [222] found that group-level mobility records can help improve the accuracy of predicting

individual mobility from a predefined set of probable locations, and that better user grouping with higher

within-group consistency boosts model reliability. Zhang et al . drew on over 1.3 million Twitter messages

during twenty days across two cities. Their model takes their check-in locations and their text to explain the

activities users undertook while at that location. Text in natural language often exhibits high sparsity, which

can be reflected in the use of many different words to present the same underlying activity. For example, the

use of the keywords “pasta” and “pizza” from two tweets checked-in near a shopping mall during lunchtime

may indicate the same underlying activity of “having lunch”. Zhang et al . employed sampling-based text

augmentation [223, 224] to handle sparsity of text, such that different expressions indicating similar underlying

activities from different users across the spatiotemporal space can be grouped to infer the emission distribution

of tweet-text given an underlying activity. Considering each tweet as a multi-dimensional observation, and

following emission distributions conditional on the hidden-state of the individual who published the very

tweets, Zhang et al . used a hidden Markov model (HMM), parameterized by the number of hidden states.

They evaluated the trained HMM to predict the top k places at which each individual is likely located, and

found that the performance of their HMM is not sensitive to the number of latent states K, as long as K ≥ 5.

Their finding supports the hypothesis that the number of “hotspots” that a group could collectively exhibit

follows a power-law distribution [207, 225].

The studies characterized above benefit significantly from social media data. Without social media data, it

would be difficult to conduct studies with millions of participants, not to mention linking their information to

the activities that they undertake and locations that they visit for months. In addition, information gleaned

from social media data can enable researchers to investigate the semantic meaning of human mobility patterns

to improve human mobility models and behavior analyses. However, the social media data used by these

studies are still likely to suffer from sampling bias, with two notable reasons being the fact that social media

data under-represents those who do not use social media activity and cannot rule out self-reporting bias [226].

Open Data Open Data is an evolving idea currently manifested in notable initiatives of Open Government

Data [227] and open science data [228]. The open data movements can be traced back to Ancient Greece [227]

and substantially influenced by the Open Source and Free Software movements amid the 1990s [228]. Then

the principles enabling linked open data and [229] and open government data were conceived in 2006–2007.

1This Wu [221] is not the same researcher as the Wu [220] above.
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Until 2014, the Open Definition defined data as open if “anyone can freely access, use, modify, and share for

any purpose—subject, at most, to requirements that preserve provenance and openness [230].” During the

COVID-19 pandemic, Lassig et al . proposed the Open Data progression model for opening data for global

health [231].

Open Data sectors and communities cover various aspects of our lives, such as statistics regarding educa-

tion, geospatial planning, land ownership, population-level health status, reporting from telecommunication

operators, and transportation statistics. Many sectors of open data sharing rely on national or regional

statistics conducted by the government [232]. Meanwhile, trends of, for example, transportation methods,

telecommunication, and internet user hobbies rely on third-party organizations, tech giants, and even small

businesses to contribute and self-regulate. Such forms of open data can provide background context that

helps understanding and forecasting shifts of human mobility and behavior patterns from city construction

to online shopping and delivery [233].

Crowdsourced Data The idea of crowdsourcing was proposed in 2006, contemporary with linked open

data and open government data [234]. One general pattern that distinguishes crowdsourced data and open

data lies in the fact that crowdsourcing initiatives commonly target more specific topics, such as are seen for

the CRAWDAD community for archiving wireless data1 and OpenStreetMap.2 Moreover, crowdsourcing of

data can be more responsive towards emergencies, providing insight before organizations or governments kick

in. For example, during the COVID-19 pandemic, software developers and communities self-motivated to

crowdsource data to help mitigate epidemics before large-scale government-backed initiatives were undertaken.

Crowdsourcing data helped capture and communicate statistics of infections and mortality from the disease

in its early stages and aided government tracking and tracing. However, due to non-systematic collecting

methods, sampling bias, and the lack of authoritative validation [235–237], conspiracy theories, misinformation,

disinformation, and fake messages have corrupted the flow of information regarding the pandemic. Studies

on how to effectively use crowdsourced data to help respond to epidemics are necessary [238, 239].

2.2.2 Metrics and Laws

This section summarizes commonly used metrics for analyzing human mobility and contact networks. Metrics

are often employed together to effectively demonstrate patterns within data observing specific laws.

Radius of Gyration

The radius of gyration measures the degree of dispersion among a set of relative locations. The distribution

of personal radii of gyration for a population reflects the rationale that humans at certain scales “tend to

1https://crawdad.org/
2https://www.openstreetmap.org/
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move a characteristic distance from their starting locations”. Related discovery can be traced back to the

“Law of Migration” in the 1880s using census data [201].

Formally the radius of gyration, rg, is defined as [168]:

rg =

√√√√ 1

N

N∑
i=1

(ri − r0)
2
, (Eq. 2.19)

where position coordinates vector {ri}, i = 1, . . . , N consists of N observations of location at different time;

r0 denotes the center of mass of the set of points r0 = 1
N

∑
i ri; and {ri − r0} , i = 1, . . . , N are effectively

N displacements (or relative locations) of a person relative to that center of mass.

Gonzalez et al . [170] found that for individual location data collected by smartphones with configurations

of both “high temporal resolution shorter period (every two hours over one week)” and “low resolution

longer period (every call or text data over six months),” the distribution of rg among a population can be

approximated with a truncated power-law

P (rg) =
(
rg + r0

g

)−βr
exp

(
− rg

κr

)
, (Eq. 2.20)

where βr = 1.65 ± 0.15 reflects a significant degree of heterogeneity of the travel habits of the observed

population (the larger the βr, the less likely individuals will to travel further from their initial location), and

κr ≈ 350km represents an upper cutoff mostly due to the finite size of the study area or even the limit of

human mobility region [168]. The fact that Equation (2.20) exhibits both a power-law body and fat-tail

characteristics reflects the fact that when rg � κr, exp
(
− rgκr

)
→ 1, P (rg) ≈

(
rg + r0

g

)−βr , and clearly

limrg→∞ exp (Crg)P (rg) = D
(
rg + r0

g

)−βr
= ∞, indicating that this distribution also exhibits a fat-tail.

Interestingly as the author noted, at extreme data collection configurations:

• When the observation frequency is low—for example, annually—the smartphone data with respect to

the location time series exhibits similarities to a census data with respect to family location, where the

law on radius of gyration becomes an expression of the “Laws of Migration” [201] and “Law of Limited

Circulation of Population” [202].

• When the observation period is sufficiently short that it only includes a single observation, a law

regarding radius of gyration becomes a law constraining trip lengths—lengths which observe a similar

power-law, as we will discuss next.

Trip Length

Trip length refers to characteristics of the distance an individual travels over a period of time. In practice, it

could be the measure of the displacement l = ‖x2 − x1‖ [170, 204] (or distance l =
∫ x2

x1
I(x ∈ C) dx on route

C [240]) between two locations before and after a fixed interval of time [170], or consecutive opportunistic

events such as phone calls [170, 204].
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A general form to express the truncated power-law characteristic of trip length is [170]

P (l) = (l + l0)
−βl exp(− l

κl
). (Eq. 2.21)

where l0 can be considered as the minimum trip length, especially in the case when there are a significant

amount of trip lengths accrued while remaining in the immediate vicinity of a single location (l = 0) in

the data collection; κl is the cutoff value reflecting an overall upper bound of trip length; for trip between

consecutive smartphone calls or messages [170], the exponent βl = 1.75± 0.15. The power-law characteristic

of trip length is connected to characteristics of a Lévy walk [204]. In fact, by changing the exponent βl, we

can characterize a series of random walks [241].

The empirical complementary cumulative distribution function (ECCDF) of trip length may appear to

be piecewise characterized by a power-law body and exponential decay due to cost and physical limits of

extremely long trips [207]. On the other hand, the trip length distribution may resemble a single-piece power

law when studying trips within a small region.

Trip length and human mobility predictability are often considered together. This reflects the fact that

given a threshold as the maximum random walk radius, within the conventional model led by Song et al .

[209], the distribution of trip length fully describes the length distribution of both random walks and flights.

In the classic model, directions of both random walks and flights follow uniform distributions. As a result,

the trip length distribution is all we need to describe a mobility model and its predictability [242].

Inter-Contact Time

In the ideal case featuring continuous observations, the inter-contact time between two devices (as the

representatives of their holders) is defined as the length of the time interval over which two devices remain

not in contact, between endpoints in which they are in contact [212]. However, in practice, due to cost

and energy consumption, most devices can only detect contacts during a period in which they are mutually

awake. Measured inter-contact time is often subject to a one-sided bias that leads measurements to tend to

overestimate the actual intercontact time.

For devices using sensors such as Bluetooth, which has both discovery and discoverable mode in each duty

cycle, discovery records for a pair of devices are expected to be symmetric. That is, if device A has a record

stating it discovered device B at time t, then it is expected that B also has a record stating it discovered

A between (t − ∆t, t + ∆t). If only A or B has a record of such a contact, we call this discovery record

asymmetric. Asymmetric Bluetooth discovery records may be caused by shifted schedule times, conflicting

Bluetooth modes (explored in Section 2.3), or other reasons [243, 244].

Studies investigating inter-contact time often involve analyses of its ECCDF curves [212, 245–248]. Using

data resulting from the SHED7 study, we undertook a preliminary investigation of the impact on the ECCDF

curve induced by both the inexact scheduled discovery process and asymmetric discovery records. The results

demonstrated that the power-law decay in the body of the ECCDF remained regardless of whether asymmetric
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records are included, and missing records tend to fatten the tail of the distribution due to overestimating

inter-contact time.

Inter-contact time is also studied from the perspective of stochastic processes and diffusion on temporal

networks [96, 249], especially in the context of systems involving human activities. The dynamics of such

systems, deviating strongly from that of a Poisson process, are “characterized by bursts of rapidly occurring

events separated by long periods of inactivity” due to the highly scheduled activities of human working and

living [250].
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2.3 Measuring Human Mobility and Contact Networks

Privacy-respecting sensor data security is a need as smartphone-based sensing becomes popular. Much

pioneer work has been conducted to address this need, including asymmetric encryption on User ID, one-time

generated User ID, and non-centralized storage of contact data [103, 251, 252]. Homomorphic Encryption is

an emerging solution to support privacy-preserving machine learning with sensitive data [253, 254].

2.3.1 Smartphone-Based Behavior Sensing

The prevalence and richness of smartphone based sensors have inspired a diverse set of studies ranging from

agriculture management [255], vehicle telemetries [256], and smartphone-based applications for healthcare

and well-being [257–261].

Most applications of smartphone-based sensing in health and healthcare can be classified into two categories:

behavior-related and physiological-related. Behavior-related sensing (also referred to as community sensing

[262]) focuses on capturing health-related behaviors, such as proximate contacts with other people [257],

physical activity [263], dietary intakes [264], degree of stress and other aspects of psychological status

[265–267]. Uses of smartphones for physiological sensing, on the other hand, record measurands such as

pulse rateand oxygen saturation level1 [268], and blood pressure [269, 270]. Approaches employing external

sensing devices, often referred to as “biosensors” [271, 272], connected to a smartphone via Bluetooth, can

perform unobtrusive ambulatory monitoring and assessment2 such as electroencephalogram (EEG) [274],

mood assessment and mood recognition [275], and symptoms of chronic diseases such as Parkinson’s disease

[276].

Many current applications of smartphone-based sensing in healthcare focus on comparing and improving

its accuracy (or rather its consistency) with existing medical devices [277–279]. These analyses are likely

accelerating adoption of their respective technologies in accordance with the history of now-ubiquitous

pulse oximetry—a history which demonstrated that adoption of a novel measurement modality relies on

comprehension by potential users of the diagnostic value of the measurements from that modality in practice

[268, 280].

This section will focus primarily on how smartphone-based behavior sensing informs two sensing problems:

the mobility pattern identification problem and the proximate-contact tracing problem. We will further

investigate how to integrate solutions of learning problems with sensing problems to form feedback loops,

improving solutions to both problems.

1Modern pulse oximeters measure pulse rate along with pulse oximetry. A pulse oximeter primarily works by analyzing

changes in the amount of backscattered light from (invisible) infrared light sent into the tissue, in the forms of fingertips, bands

on the chest or wrist, or stickers.
2Ambulatory assessment focuses on minimizing retrospective biases while gathering ecologically valid data from people in

(near) real-time in their natural environment, including self-reported, observational and biological, physiological, or behavioral

[273].
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The Mobility Pattern Problem

Human mobility patterns are patterns of human geospatial trajectories. The sensing problem of recognizing

human mobility patterns involves collecting trajectory data and pattern recognition with trajectory data.

Depending on the context, human trajectories are studied in either real space—where properties such as

the distance between places and the travel time of each route vary—or a projected space, such as an abstract

space structured1 such that distances between places and travel times for traversing each route are equal

[281]. In both real space and projected space, researchers [282–284] often simplify the characterization of

human trajectories as graphs or graphs over temporal spaces, denoting places as vertices and routes between

places as edges with attributes (such as accessibility or the cost of time). Trajectory data collection can be

accomplished by periodically collecting the current location, so as to define a sequence of vertices, and then

inferring trajectories as paths of edges between sequences of vertices. Remaining in the vicinity of a single

location and traveling can be further distinguished within timestamped location sequences given a threshold.

For behavior-related studies, researchers may study trajectories in a projected space so as to highlight features

of interests [282, 283].

Even before the emergence of wireless sensor networks (WSNs), analysis of human mobility patterns

formed a part of an emergent field called network science. Barabási et al . studied cellular-tower tagged human

mobility data over time [209, 285] and found the predictability of human mobility is higher than many had

previously suggested. Since then, a series of human mobility models [286–288] have been proposed based on

study of human mobility patterns collected from pocket-sized sensors or smartphone-based sensors. With the

advent of WSNs and growing prevalence of smartphones, human mobility models and human mobility data

were further studied for applications such as low-capacity packet-switched networks [289], detecting traffic

anomalies [217, 290], and modeling responses to the large-scale spread of infectious diseases [291] and further

activity-based human mobility patterns [292]. More recent studies also proposed frameworks for feature

extraction [283, 284].

The Proximate-Contact Tracing Problem

Proximity is another fundamental behavior that our definition can address as it bears on two subproblems:

proximate-contact detection and (separately) tracing contact networks. The first subproblem focuses on

classifying if two individuals are in proximity via sensor-collectible signals by optimizing parameters such as

sensor types, available measures from each sensor type, and controllable configurations of each sensor. The

second subproblem builds on the first by emphasizing optimization of the collection of proximate contacts

amongst a population over time to capture important proximate contacts for individuals and reconstructing

contact patterns for characterizing such individuals’ contact network. The parameters being optimized in

1Formally, abstract space is a geographic space that is entirely homogeneous, such that all movements and activities would

be equally easy or difficult in all directions and across all locations within this space.
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the context of the second subproblem include but are not limited to those involving the sampling schedule

(to whom to deploy sensors; when to activate deployed sensors), and interpretation of sampled contact data—

estimating and (separately) mitigating bias of samples—subject to energy-related constraints of the sensors

and the costs of the deployment.

For proximate-contact detection, a variety of sensor types have been employed, such as radio-frequency

identification (RFID) tags [293], Wi-Fi MAC tags [294, 295], those collecting supporting GPS binning [296],

Cellular Tower tags [159], and Bluetooth device-discovery based sensing [257]. Smartphone-based proximate-

contact sensing is expected to have higher intrinsic validity because of the ubiquity of smartphone use. This

longitudinal granularity offers unique opportunities for alleviating the impacts of communicable diseases [61].

All the sensors listed above use radio frequency (RF) signals, which radiate as electromagnetic waves

(radio waves). RF signals weaken along their paths, with obstacles generally accelerating the attenuation.

As a result, the signal strength of a sender sensed by a receiver can offer some insights into the distance

between the receiver and sender. However, because signal strengths measured by an obstruction-separated

sender-receiver pair could be similar to that from a considerably more distant pair within line-of-sight (LoS)

of each other, there remains the issue of distinguishing these two scenarios offering similar signal strength

readings. Whether this issue impacts the inferred proximate contacts depends on the transmission signal

characteristics used, the criteria used to define proximate contacts, the character of the physical environment,

and the behaviors of the population [297, 298].

We use generalized proximate contacts to include contacts that are in proximity but separated by obstacles

(such as those generated by a wall or floor and ceiling). For generalized proximate contacts, we consider two

“contactees” as being in contact as long as their absolute distance lies within a certain threshold. However,

for contact tracing and many other behavior-related tracking purposes, we are attempting to sense only those

proximate contacts not separated from each other by obstacles. This reflects the fact that many obstacles

(e.g., floors/ceilings) may shield one of the pair in contact from transmission of infection or block a pair from

physical interactions [63].

Sensors support generalized proximate-contact detection through either direct measures or indirect mea-

sures. Direct measures map sensor signals directly to distance, while indirect measures map sensor signals first

to locations and then calculate distance from locations. Researchers often refer to the generalized proximate-

contact detection problem as a co-location problem: the generalized proximate-contact detection problem is

the dual to the locating problem with error. In its simplest form, determining whether two individuals are

in proximate contact is equivalent to finding whether the Euclidean distance between those two individuals

is less than a threshold. To locate an object with tolerance for error is equivalent to finding landmarks and

other points or parties in contact with it, then use those features as location references and the distance

threshold within which two points or parties are judged as proximate contacts as error bounds. Indirect

measures may suffer from error amplification due to the extra transform from measured location to distance

[299, 300]. In addition, RF signals with higher frequencies have fewer diffraction effects, thus lowering signal
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strength beyond obstacles, making detection of contact with obstacles easier. In summary, proximate-contact

detection and locating are two related questions but can still be quite different depending on the context.

Contemporary smartphones have the following on-board sensors that have been demonstrated in studies

to contribute to the challenge of locating and proximity contact detection [301]:

• GPS module: A GPS module can directly measure latitude, longitude and accuracy as a radius of 68%

confidence. Most modern modules can also provide bearing, the horizontal direction of travel of this

device.

• Bluetooth module: While details will be covered in a dedicated section below, in short, the Bluetooth

module can take advantage of the discovery phase to scan other devices with a Bluetooth module set

to the discoverable mode.

• Wi-Fi module: A Wi-Fi module can search for discoverable routers, or serve as a router providing

connections to other Wi-Fi modules.

• Battery level: In light of the reliable availability of sensor data on battery state, presence of such sensor

data within recordings can be used to determine whether the device is powered on and recording. This

can aid in distinguishing a situation in which a device is not recording from one in which recording is

occurring but no connection was found.

• Magnetometer: The change of the surrounding magnetic field as measured by a magnetometer can be

used to infer orientation. More importantly, it can assist detection of whether the sensing device is on the

body. This can be helpful to avoid conflating information about sensor device surroundings with those

concerning the surroundings of the owner when the sensing device is merely left unattended. Additionally,

a linear correlation between two series of magnetometer readings—each from a smartphone—can aid in

inferring that these two smartphones coexisted within a disease-contractible distance [302].

• Accelerometer: Similar to the magnetometer, within the context of detecting proximate contacts,

readings from the accelerometer are employed primarily for the purpose of ensuring that the phone was

carried on the person of the owner.

• Sound intensity: Jeong et al . [302] found that linear correlations of ambient sound level measurements

from different study devices can be used to detect co-location of phones, thus serving a purpose similar

to that of the magnetometer in their study. At a practical and ethical level, such use of sound is difficult

due to audio being privacy sensitive.

• Temperature: Similar to a magnetometer, this sensor can help determining whether a phone was carried

on-person. In some settings, this can also be used to distinguish the presence of the owner indoors or

outdoors.
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Due to the scope of this thesis, we will further confine our discussion on the data processing pipeline and

error propagation to the GPS module, Wi-Fi, and Bluetooth, because these three sensors are most widely

used for proximate-contact detection [303, 304].

GPS Module

GPS receivers rely on receiving timestamped satellites signals (with the commonly used L1 band at 1575.42

MHz and L2 band at 1227.60 MHz) to calculate distances to satellites. By combining estimated distances of

the current point from at least four satellites and the expected position of each satellite, a set of quadratic

equations can be solved to estimate the receiver’s coordinates. Errors in the GPS receiver are classified

into User Equivalent Range Error (UERE), and Geometric Dilution of Precision (GDOP) [305]. GDOP is a

dimensionless multiplicative factor that reflects the geometric relationships of the GPS satellites. Researchers

focused on methods and assistant systems reducing and analyzing the UERE [306]. UERE is classified into

three segments, namely space, control, and user. UERE which is allocated into space and control segments

is called user range error (URE). By contrast, UERE which is allocated into the user segment is called user

equipment error (UEE), and is due to errors sourced from user equipment. Notable error sources by the

amount of their error-budget are as follows, indicating for each the segment to which they correspond. [305]

• (URE) Frequency standard stability

• (URE) Space vehicle acceleration uncertainty

• (URE) Ephemeris prediction and model implementation

• (UEE) Ionospheric delay compensation

• (UEE) Tropospheric delay compensation

• (UEE) Receiver noise and resolution

• (UEE) Multipath effects

It is worth noting that the time-to-first-fix (TTFF) error is not stated in the error budget as listed above.

TTFF is a measure of the elapsed time required for a GPS receiver to acquire the satellite signals’ navigation

data and calculate a position solution [305]. TTFF is commonly discussed in three scenarios: cold start,

warm start, and hot start. Cold start means lacking a cached recently solved position, while warm and hot

start means having a valid cache. A valid cache to enable a warm start (also referred to as normal operation)

usually means having an estimated GPS solution from within the past 20 seconds, and the solved position
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is within a few hundred kilometers of the current position.1,2 The cold start has longer TTFF than the hot

start, roughly on the scale of minutes versus seconds [305, 307]. Modern cellphones reduce the time to first

fix by using assisted GPS (A-GPS) and other localization methods such as those involving Wi-Fi routers and

cellular tower locations.

Signal attenuation is another common error source caused when using GPS for indoor positioning. A GPS

receiver cannot receive attenuated signals behind a wall of buildings or other objects [307]. Other error sources

for detecting proximity include projection error when converting GPS reading (usually refers to WGS843)

to UTM4 zones to allow calculating Euclidean distances, and error caused by altitude inaccuracy (such that

person on a different floor may be considered in close proximity to another below them when in fact they are

not).

Kjærgaard et al . [307] evaluated GPS indoor positioning in terms of GPS availability and signal strength,

time first to fix (TTFF), and accuracy. Such characteristics were evaluated by field testing with both dedicated

receivers and smartphone onboard receivers.

Potential methods to deal with GPS error during data processing could be:

• GPS with an L1 receiver on smartphones has difficulties achieving a resolution finer than a 10-meter

circle, especially when used for indoor positioning. Without losing useful positioning information, we

can safely trim more than four decimal places from latitude and longitude readings. Given the fact

that Geometric Dilution of Precision is not random but depends on satellite position and number of

available satellites dependent, it will not be easy to perform noise canceling with extra decimal points

to achieve higher accuracy.5

• Due to TTFF, GPS reading can take one or a few seconds to become available. It can be hard to attach

accurate positions to a randomly timed event. We may mitigate this type of error by reading from the

GPS receiver after the event occurrence and then estimate the actual position of the scene of the past

event.6

1The GPS receiver relies on a reasonably close estimate of its current position and a reasonably fresh almanac to know which

satellite should be visible and quickly acquire and track satellite signals. The last solved position of a GPS receiver is often used

in estimating its current position. Therefore, presence of the receiver in a location further away from the last solved position

delays the GPS receiver in acquiring and tracking satellite signals.
2https://www.gpsworld.com/innovation-faster-higher-stronger/
3World Geodetic System 1984 (WGS84) is the latest revision of the WGS standard, a geographic coordinate system used to

assign a coordinate for a location on the surface of the Earth. It approximates the Earth’s surface as the surface of an oblate

spheroid, and coordinates are on a polar axis, with the unit of degree. Euclidean distance cannot be directly calculated between

two WGS84 coordinates.
4The Universal Transverse Mercator (UTM) coordinate system projects a geographic coordinate system, usually WGS84,

into sixty zones (ignoring areas having latitudes beyond 84◦N and 80◦S). Each zone is a planar surface using a Cartesian axis

where Euclidean distance can be directly calculated between coordinates within the same zone. This projects has maximum

scale error within 0.04% [308].
5http://wiki.gis.com/wiki/index.php/Decimal_degrees
6https://docs.huihoo.com/android/4.4/guide/topics/location/strategies.html
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• The location manager of Android can return a GPS reading of (0◦, 0◦)—a location off the west coast of

Africa—during cold start,1 requiring filtering or outlier removal.

• To calculate Euclidean distance from latitude and longitude, it can be easier to choose an appropriate

UTM zone to convert WGS84 coordinates into UTM coordinates2 [309].

• GPS readings usually have a larger error when measuring in cold start, measuring at high velocity,

measuring indoors, or reading from an area with lower coverage of assistance systems like cell towers,

filtering out these readings may of help [305, 307].

Wi-Fi and Bluetooth Modules

Both Wi-Fi and Bluetooth are each wireless network protocols, rather than dedicated beaconing systems

for proximity contact detection. Devices that support these protocols are intended for communicating and

transmitting packets. The discovery ability of such devices is used to find transmitters/receivers nearby, and

signal strength measurements can be used to infer the existence of and distance to nearby Wi-Fi or Bluetooth

devices. We will review both protocols and their service devices for proximate-contact detection by focusing

on the discovery mechanism and signal strength measures.

Wi-Fi Wi-Fi refers to a family of wireless network protocols, standardized in IEEE802.11. Devices support-

ing Wi-Fi follow the IEEE standards but are regulated by a non-profit third party organization called the

Wi-Fi Alliance. The IEEE802.11 family has its base on 802.11-1997, and then evolved according to a series of

“amendments” notably 802.11a (provided 5GHz in addition to existing 2.4GHz), 802.11b (data rates upgrade

for 2.4GHz), 802.11g (further data rates upgrade for 2.4GHz), 802.11n (Wi-Fi 4, dual-band), 802.11ac (Wi-Fi

5), and newest 802.11ax (Wi-Fi 6).

Wi-Fi has supported ad hoc networks since 802.11-1997 [310]. Technically, modern Wi-Fi-supported

devices can be controlled to stay in passive scanning mode; while communicating, these devices can still

record other nearby devices, including access points (APs). However, these approaches will likely disturb the

normal use of smartphones from communicating via Wi-Fi.

There are two scanning modes that a station can choose to search APs—passive scanning and active

scanning—but only one mode can be chosen at any time [311]. Under the passive scanning mode, the Wi-Fi

module on a smartphone gathers a service set identifier (SSID) from a beacon message sent every 100ms

from each working AP nearby. The Wi-Fi module will listen to each channel for no longer than a maximum

duration defined by the MaxChannelTime parameter during the passive scanning period. For IEEE802.11a

with 2.4GHz and 13 usable channels (or three frequently used channels, 1, 6, 11), this regime means that

the process of scanning all channels can require at least 300ms to finish. Due to privacy issues, APs may

1stackoverflow:37715680, stackoverflow:42192608, stackoverflow:24627745
2https://learn.arcgis.com/en/projects/choose-the-right-projection/
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be configured to exclude the SSID field in beacon messages, making some private network sensing records

effectively useless (because the SSID is empty, the receiver cannot distinguish to which AP the record belongs).

On the other hand, active scanning requires the smartphone to broadcast probe requests and wait for

nearby APs to reply with probe responses. It usually costs less than 150ms to finish a full scan [312, 313].

While passive scanning can take a relatively long time to finish, frequent active scanning can increase the

latency of all devices connected to the probed AP [314].

The Received Signal Strength Indicator (RSSI) is specified in 802.11-1997 and its following amendments.

According to these standards, RSSI is intended to be interpreted on an ordinal scale, suitable as long as the

RSSI is a monotonically increasing function of the received power on the scale of 0 to up to 255. In practice,

each manufacturer chooses a different “RSSI_Max” [315], which can be converted to some corresponding

quantity of power (dBm) [310].

Bluetooth Bluetooth is intended for ad hoc short-range wireless networks, enabling various close-proximity

devices connected in a secure, reliable, and low power consumption manner. With the emergence of IoT,

Bluetooth Low Energy (BLE) superseded ZigBee and became the de-facto standard of connectivity in low-

power, low-cost IoT devices. It is expected that with the ongoing Bluetooth 5.x, Bluetooth will be an essential

part of the data collection pipeline for many fields [316, 317].

Both Wi-Fi and Bluetooth use radio frequency (RF) signals as a form of communication. However, when

multiple devices simultaneously send radio frequency signals across the same frequency range, their interference

causes receivers to fail to receive messages. Wi-Fi resolves this interference problem by partitioning a radio

frequency range into non-overlapping sub-ranges, called channels, and by confining signals to operate within

a chosen channel. However, as discussed in the previous section, this segmenting approach causes problems

when performing passive and active scanning—since typically a device can only send/receive messages on

one specific channel at a time, the full scan of all nearby devices requires the scanner to iterate between

each channel. In contrast, Bluetooth uses adaptive frequency hopping to address interference, with two

connected devices periodically hopping to another frequency following a coordinated pseudo-random sequence.

According to three of their early founders, this “gives a reasonable bandwidth and the best interference

immunity ... [318]”. In addition, Bluetooth’s frequency-hopping virtual channel simplifies communication

across channels and makes it easier to scan.

Since the inception of its architecture, Bluetooth has emphasized a quick connect procedure [318]. For

each virtual channel (that is, a different frequency hopping sequence), there is at most one piconet, and within

a piconet, there is one master node and one or more slave nodes. A Bluetooth device can simultaneously take

a master role in some piconets and a slave role in other piconets. For example, for Bluetooth-based proximity

contact detection, when a device (such as a smartphone) wants to scan all nearby discoverable Bluetooth

devices, it can initiate a new piconet as the master node of this piconet, starting an inquiry taking an average

1.92 seconds (or 3.84 seconds if the first 1.92 seconds does not overlap with slaves’ wake-up periods) to finish
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the scan.

Lower threshold

Upper threshold

20± 6dBm

max = −56dBm

min = 6dBm above actual RX sensitivity

Golden Receive Power Range
(RSSI = 0)

Figure 2.1: Convert Received Power to RSSI Given the GRPR
Reproduced and annotated based on [319], this graph shows the mapping of optional RSSI value to received power.
The figure shows the Golden Receive Power Range and its mapping to RSSI value 0; beyond the lower/upper
threshold, any positive RSSI value indicates how many dBm the RSSI is above the upper limit, any negative value
indicates how many dBm the RSSI is below the lower limit.

To measure signal strength, Bluetooth also employs an RSSI. The optional RSSI fields were bound to the

received power in a way that the “Golden Receive Power Range” (GRPR) was defined (see Figure 2.1). Its

lower threshold level corresponds to a received power between -56dBm and 6dB above the actual sensitivity

of the receiver. The upper threshold level is 20dB above the lower threshold level to an accuracy of ±6dB.

Some studies of Bluetooth-based positioning [320] make use of a Bluetooth access point (AP), yet APs are

not defined in Bluetooth standards. When consulting industry specifications,1 and patents,2,3 we found that

these so-called Bluetooth access points are one or more Bluetooth devices working as master, while devices

connected to the AP are slaves.

Interference Bluetooth works on the 2.4GHz industrial scientific and medical (ISM) RF band.4 However,

many other bands overlap this band—most notably, Wi-Fi running in 2.4GHz,5 Zigbee (standardized by

IEEE 802.15.4), and other S-band microwaves such as those emitted by microwave ovens and cellular phones

(the Ultra high frequency band in the definition of ITU frequency bands, running from 300MHz to 3GHz).

Bluetooth exhibits lower interference than other overlapping protocols [321–323]. Pei et al . [324] found

Wi-Fi positioning will primarily interfere with Bluetooth even with the Apple Filing Protocol (AFP) enabled

on Bluetooth. Most researchers in this area found that Wi-Fi substantially disrupts Zigbee, while Bluetooth

continues to perform adequately [322, 323, 325, 326].

1https://www.silabs.com/community/blog.entry.html/2019/06/28/how_to_use_bluetoothlow-energyforwi-fionboardi-CQTu
2https://patentimages.storage.googleapis.com/e5/1d/38/8523b85acbe685/US20030134596A1.pdf
3https://patentimages.storage.googleapis.com/3d/25/47/73158d3ad17c65/US7606600.pdf
4Although the 2.4GHz ISM band is defined from 2.4GHz to 2.5GHz with 100MHz bandwidth, Bluetooth uses from 2400MHz

to 2483.5MHz. Thus, strictly speaking, not every radio wave within the 2.4GHz ISM band will interfere with Bluetooth
5Wi-Fi in the 2.4GHz band defined 14 channels. Channel 1 to channel 11 are designated worldwide, from 2401MHz to

2473MHz; channel 12 to channel 14 are only designated in some regions, spanning from 2456MHz to 2495MHz.
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2.3.2 Bluetooth-Based Location and Co-location

In the following section, we will focus on Bluetooth-based measures as the primary sensor data source to

address the localization and co-location (LCL) problem in order to answer the following questions:

• What are those measures from Bluetooth devices that can be of help to the LCL problem?

• What is the theoretical relationship between such measures and the LCL problem?

• In practice, how are those measures used in studies, and how well have these studies addressed the LCL

problem?

Bluetooth Signal Parameters

Hossain and Soh [327] provided a comprehensive overview of Bluetooth signal parameters, that is, an overview

of all the status parameters of a Bluetooth connection together with any other signal values made available

in the Bluetooth Core Specification, which we summarize as follow:

• Link Quality (LQ): an 8-bit unsigned integer from 0 to 255 that evaluates the perceived link quality at

the receiver, derived from the average bit error rate (BER) . However, the exact mapping from BER to

LQ is device-specific. Based on the authors’ experiments, CSR® chips report LQ with BER resolution

reduced as BER value increases, for example, with mappings like BER ∝ log(LQ). In general, the

authors summarize the following LQ characteristics:

– BER-to-LQ mapping is sensitive to Bluetooth class and device specific.

– LQ readings do not vary much at close-range distance.

• RSSI: an 8 bit signed integer from -128 to 127, logarithmically scaled with a ratio of received signal

power. The authors’ summary of RSSI is as follows:

– RSSI readings tend to change significantly at close-range.

– Combining both LQ and RSSI may be a viable option.

– RSSI has a poor correlation with distance.

• Transmit Power Level (TPL): an 8 bit signed integer from -128 to 127, which specifies the Bluetooth

module’s transmit power level (in dBm). The transmitter will set TPL either to its device-specific

default power setting or vary it during a connection in accordance with possible power control processes.

• Inquiry Result with RSSI: an approach for collecting the RSSI value by sending an inquiry. This

approach it requires no active connection, and the radio layer of a nearby device monitors the RX

power level of the current inquiry and infers the corresponding RSSI. The following characterize authors’

concerns regarding inquiry results with RSSI:
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– The retrieval of inquiry-based signal parameters tends to induce latency of about 9 seconds to

reach the potential of discoverability (and 4 seconds to reach above 50% of its potential).

According to Hossain and Soh [327], RSSI, along with “inquiry results with RSSI”—a special inquiry

procedure that perceives RSSI from the responses sent by its nearby devices—is suitable for use as the

primary measurable parameters for Bluetooth signal based distance estimation; other parameters, such as

LQ, may be used for data fusion.

RSSI to Distance

Path loss models based on the free-space path loss (FSPL) formula, which is derived from the Friis transmission

equation, have been widely used [320, 328–333] to convert RSSI to distance. It is often cited as:

RSSI = −10n log10

(
d

d0

)
+ RSSI 0, (Eq. 2.22)

where RSSI is the observed RSSI in dB, n is the path loss exponent that corresponds to the environment, d

is the distance between the beacon and the user, d0 is the reference distance and RSSI0 is the average RSSI

value in dB at the reference distance. In practice, we often let d0 = 1 meter and consider d ≥ d0, rewriting

Equation (2.22) into

d = 10
RSSI−RSSI0

10n . (Eq. 2.23)

Critics of this formula have noted discrepancies with empirically measured (d,RSSI ) pairs [320, 329, 330, 332,

334]. This has led to mitigating the model error with methods such as sensor fusion [335], filtering [330, 332],

or neural networks [336].

The path loss exponent n is required to map between RSSI and distance. However, the literature exhibits

very limited attempts to estimate down the realistic value(s) of n. David Young from the Android Beacon

Library estimated a fully parameterized function based on experiments [337]:

d = 0.89976×
(

RSSI

RSSI 0

)7.7095

+ 0.111, (Eq. 2.24)

where RSSI 0 is the RSSI value at a distance of one meter and d has the unit of meter.

We analyzed both Young’s RSSI model (Equation (2.24)) and the simple Path Loss model (Equation (2.23))

with the assumption RSSI 0 = −60, based on our analyses from SHED series data collected by Ethica Data

from smartphone-base sensors [257]. In short, both Young’s RSSI model and the simple Path Loss model

resembles each other in practice, given our assumption of RSSI 0 = −60 and for close proximity distances,

which we informally defined to involve proximity within 1 to 20 meters.

Note that the simple path loss model derived from the Friis transmission equation did not check Friis’s

assumption that d in Equation (2.22) needs to be sufficiently large to assume a planar wavefront at a distance

d to the emitter, and free space is needed to assume that the receiver power does not have further decay, such

as absorption in the transmission medium, whose impact is accumulated over distance [299, 300]. Moreover,

40



taking the non-bijective mapping between receiver power and RSSI (due to GRPR Figure 2.1), it would be

hard to calibrate data from various scenarios into a single constant n in Equation (2.23).

Beyond the simple path loss model (Equation (2.23)), a working group of the National Institute of

Standards and Technology (NIST) has come up with a series of models for channel propagation or path loss

[338]. The fundamental idea of their modeling of the path loss by distance is to build specific models for each

environment featured by characteristics of noises from RF reflection, RF attenuation, and background noise.

For different ranges of distance, piecewise forms assuming different path loss exponents were employed. The

generic path loss model without considering noise as referred to in [338], when converted to a dBm scale from

the original dB scale, has:

PLd,dBm(d) = PL0,dBm +

 −10n0 log10 (d/d0) , d ≤ d1

−10n0 log10 (d1/d0)− 10n1 log10 (d/d1) , d > d1

, (Eq. 2.25)

where d, d0, d1 are all in meters, and d1 is the breakpoint where the path loss exponent increased from n0 to

n1. The n1 ≥ n0 is in accordance with the accelerated decay of power at a greater distance. PL0,dBm is the

reference path loss at d0 = 1 meter, modeled with:

PL0,dBm = −20 log10 (2πd0/λ) , (Eq. 2.26)

where λ is wavelength in meters. Plugging in λ = v/h with further assuming v = 3× 108 as speed of light in

a vacuum, and approximating Bluetooth RF as h ≈ 2.4GHz, we have λ ≈ 0.125 meters and PL0,dBm ≈ −34

dBm. Note that by definition in Figure 2.1, this could result in a positive RSSI value, for example if the lower

threshold were chosen at maximum −56 dBM, and GRPR range were taken as 20− 6 = 14 dBm, with the

resulting value of RSSI max
0,ideal = 9.

To further correct model error, random component of the path loss PLr,dB is proposed [338], having

complete path loss PLdB modeled as:

PLdBm = PLd,dBm + PLr,dBm, (Eq. 2.27)

where PLd,dB is the ideal path loss modeled in Equation (2.25). The random path loss can be further separated

into two terms:

PLr,dBm = Xs,dBm + Xf,dBm, (Eq. 2.28)

where Xs,dBm is referred to as shadow fading, representing the deviation of the signal from its predicted

deterministic model due to the presence of large obstructions in the wireless path. This effect is modeled as

a Gaussian noise:

Xs,dBm ∼ N (0, σ). (Eq. 2.29)

The second term Xf,dBm is referred to as small-scale or fast fading, representing the deviation of the signal

due to the presence of smaller obstruction on the path which cause scattering of the signal or multipath

effects, as a gamma distributed noise:

Xf,dBm ∼ Γ(α, β), (Eq. 2.30)
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where α = β = m and m is the Nakagami fading parameter [338].

The Location and Co-location Problem

Sensors usually acquire their location (and co-location) by communicating with other devices. The coverage

limit and signal transmission cost determine the effective distance threshold. It is assumed that receiving a

signal stronger than a preset RSSI indicates co-location (within a threshold of the RSSI indicated distance)

of both the sender and the receiver, as in [106, 257, 302, 339]. We refer to this dichotomous measure-based

co-location method as tagging: co-located devices serve as taggers to each other, and the co-location is

represented as an edge between two vertices (denoting the sender and receiver) in a graph, which we refer

to as a tagging graph. Two sensors are considered co-located if and only if there exists at least one path

between their corresponding vertices in the tagging graph. Similarly, the tagging-based distance between two

vertices can be defined as the minimum number of edges to be added to the tagging graph to make a path

between their corresponding vertices. Although the tagging-based method can be used to detect co-location

with places of interest if transmitters are placed at places of interest, in practice, the tagging method is rarely

used except in Bluetooth-based locating studies [340].

The distance between sender and receiver can be estimated by measuring signal quality, such as time-

to-receive and receiver signal strength. We refer to this weighted measure as the distancing method. The

distancing graph can be viewed as a weighted tagging graph, where each edge is a weight indicating the

distance between two nodes. We could rephrase the distancing method into classical graph problems, defining

the path length (sum of all weights of edges on the path) as the maximum distance between two devices and

the maximum flow (minimum of all weights of edges on the path) as the minimum distance between two

devices. In addition to Bluetooth RSSI based distancing methods, acoustic sensor-based location methods use

a time difference of arrival (TDoA) measure and yield high accuracy (mean error 30cm) [341–343]. However,

the acoustic sensor-based methods suffer from the crowdsensing problem [344], in an analogy to the speech

recognition problem known as the cocktail party effect [345]. By combining video of mouth movement, the

problem of cocktail party effect can be tackled [346–348], but beaconing with acoustic sensors in crowded

areas remains an open problem.

Given the absolute location of each tagger, with distances to a sufficient number of non- co-located taggers,

multilateration [328, 332] can be undertaken to determine an absolute location. We refer to this kind of

approach as trilateration as a minimum of three sources are received [328]. Co-location can be estimated

by either directly measuring the distance to the sender or calculating distances between devices given their

absolute location [332]. Note that the latter approach does not require communications between two devices

to whom co-location status is to be determined. Trilateration methods are applied on GPS and widely

re-applied with Bluetooth indoor positioning studies [328, 332, 349]. GPS measures use multilateration

and results measured in ellipsoid coordinates. To calculate distance between two points with an ellipsoid

coordinate requires projection into planar coordinates first. We often use Euclidean distance to calculate
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distance between two coordinates of the Universal Transverse Mercator (UTM) coordinate system [309].

Machine learning methods have been applied based on distancing and trilaterating methods to improve the

accuracy of measurements [350–353]. RSSI readings of signals sent from Bluetooth devices that are physically

associated with a landmark (usually a cell from a gridded planar surface in experiments) along with their

device MAC address as identities, are usually referred to as the Bluetooth fingerprints of landmarks, which

can be stored as dictionaries,

{Landmark1, [(MAC1,RSSI1), · · · ]} , · · · .

Bluetooth fingerprints of landmarks are often taken as features to determine the closest landmark given a

tuple of fingerprints from an unknown place. Analyses would then seek to locate the current unknown place

by referring to the known landmark’s location [354–356]. Using the fingerprint method to predict current

location without history can be considered as a classification learning problem if one seeks to output the

closest landmark [354, 356], or as a posterior point estimate (for example, the mean of the posterior of a

Bayesian static estimate [355], the kernel method used in [335] is essentially the same). Meanwhile, to predict

the current location based on previous locations with a state-space model incorporating the assumption of a

random-walk can be addressed through an application of the sequential Monte Carlo method (SMC) [355].
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3 Integrating Epidemiological Modeling and Surveillance

Data Feeds: A Kalman Filter Based Approach

Citation: W. Qian, N. D. Osgood, and K. G. Stanley, “Integrating Epidemiological Modeling and Surveil-

lance Data Feeds: a Kalman Filter Based Approach,” in International Conference on Social Computing,

Behavioral-Cultural Modeling, and Prediction, Springer, 2014, pp. 145–152. doi: 10.1007/978-3-319-

05579-4_18

Abstract Infectious disease spread is difficult to accurately measure and model. Even for well-studied

pathogens, uncertainties remain regarding dynamics of mixing behavior and how to balance simulation-

generated estimates with empirical data. While Markov chain Monte Carlo approaches sample posteriors

given empirical data, health applications of such methods have not considered dynamics associated with model

error. We present here an extended Kalman filter (EKF) approach for recurrent simulation regrounding as

empirical data arrives throughout outbreaks. The approach simultaneously considers empirical data accuracy,

growing simulation error between measurements, and supports estimation of changing model parameters. We

evaluate our approach using a two-level system, with “ground truth” generated by an agent-based model

simulating an outbreak over empirical micro-contact networks, and noisy measurements fed into an EKF

corrected aggregate model. We find that the EKF solution improves outbreak peak estimation and can

compensate for inaccuracies in model structure and parameter estimates.

Relationship to This Thesis To improve transmission modeling with sensing data, one fundamental

question is whether there exists an approach to combine sensing data informed contact network with existing

transmission models and resulting better estimation. The manuscript of this chapter demonstrated EKF as an

approach to bridge a System Dynamics SIR model with an agent-based SIR model, provided high-resolution

proximity contact data. The improvement of the EKF empowered System Dynamics SIR model on outbreak

peak estimations indicates the potential of SD models to benefit from high-resolution proximity contact data

and overcome inaccuracies in its model structure and parameter estimates. At the same time, the EKF

improved SD models lead to the potentials for ABM to delegate to filtering-informed aggregate models some

expensive simulation tasks for quick responsive “what-if” questions. Finally, this demonstration revealed that

our understanding of sensing inferred proximity contact networks limits the reliability of the model. We

need better understanding the quality and reliability of the sensing data inferred proximity contact network.

This paper demonstrates that integrating sensed contact data to epidemiological models during an outbreak
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is possible and beneficial, but replaces the errors on modeling infectious contacts due to random-mixing

assumptions with unknown errors due to inferences of proximity contacts from sensing data. This paper then

serves as a motivation for the work of the next two papers which attempt to analyze the impact of spatial

and temporal errors on simulation results.

Author’s Note In this chapter, we applied minor updates to the published manuscript to fix typos and

improve clarity.
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3.1 Introduction

Infectious diseases are notoriously difficult to manage, because they can exhibit great instability, with periods

of quiescence interspersed by sudden outbreaks. Anticipating the future behavior of the outbreak and how

interventions will affect the disease spread is important for policy makers who must marshal prophylactic

and treatment campaigns. However, in the case of emerging pathogens such as SARS or H1N1, the disease

dynamics and appropriate treatment regime are unknown [199].

System Dynamics (SD) models can project possible epidemiological dynamics, and aid assessment of trade-

offs between interventions. Models are traditionally parameterized and calibrated when they are constructed,

but frequently the underlying parameters are dependent on hard-to-predict dynamic factors such as human

contact patterns, diagnosing practices, or even the weather [62]. In particular, dynamics of human contact

patterns have been shown to play a significant role in the spread of disease [109, 357], and are poorly captured

by even the best open-loop models.

Filtering techniques leveraging statistical inferences for dynamic models, such as the sequential Monte

Carlo (SMC) method and Markov chain Monte Carlo (MCMC) methods, can be used to estimate model

parameters as information becomes available [358]. The typical formulation identifies posterior distributions

for parameters or outputs conditional on the model, and do not explicitly recognize the growth in model

projection error as time elapses since an observation. In this paper, we demonstrate that the extended Kalman

filter (EKF) can be used to adapt System Dynamics1 models to better estimate an epidemic outbreak even

when the parameters in question are not empirically or logically observable. In particular, we provide the

first demonstration of an EKF-enhanced System Dynamics model evaluated against empirically observed and

evolving proximity contact data. We demonstrate that the EKF-enhanced system provides obviously better

estimates of the number of infectious individuals and the peak timing of an outbreak than a calibrated but

open-loop SD-SIR model, particularly when contact rate in the model is repeatedly regrounded with incoming

data.

3.2 Related Work

System Dynamics models have been used in a variety of epidemiological studies, and have made contributions

to all areas of epidemiology [112, 359, 360]. Recently, research has highlighted the importance of population

heterogeneity and network structure in shaping outbreak emergence and progression [357]. While this work

has promoted the recognition of agent-based models (ABMs), such models exhibit diverse and textured

tradeoffs with aggregate models [153], including the use of ABMs as synthetic ground truth whose dynamics

the aggregate model is seeking to adequately characterize [95].

1In this manuscript, we referred to System Dynamics models as aggregate models in contrast to agent-based/individual-based

models.
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Some practitioners have sought to address aspects of parameter uncertainty in dynamic models using

Monte Carlo methods [112, 359]. While such approaches can offer great insight into parameter-related

uncertainty, using them to understand model-related uncertainty is more involved [153]. Similarly, SMC

methods are applied in the context of stochastic processes [361]. The Kalman filter has been employed to

address shortcomings in disease models or calibrations including temporal-spatial integration [362], dynamics

of the HIV/AIDS epidemic [363], and time-varying effects of the covariates in accessing short-term pollutant

exposure effects on health [364].

Recently, researchers have collected high-resolution empirical data of proximate contacts [293, 357, 365,

366] and have reported strong heterogeneity in contact patterns [293, 357, 366]. Moreover, researchers

found that dynamics of proximate contacts impact the spread of disease [357, 358]. However, methods for

incorporating such empirical contact data tend to work better with ABM and not aggregate dynamic models.

3.3 Model Description

For simplicity and to demonstrate that even stylized models benefit from the closed-loop design, we employed

a classic System Dynamics susceptible-infectious-removed (SD-SIR) model. To test the effectiveness of the

Kalman filtering approach in improving the projective accuracy of this aggregate model, we used, as a

comparison, an agent-based model that is more textured but still adheres to the SD-SIR characterization of

health status.

3.3.1 Agent-Based Model

We used an agent-based model (ABM) to provide synthetic ground truth data against which we could compare

aggregate model estimates. The ABM employed a classic dynamic-network-based SIR formulation whose

details as given in [366]. We refer to this agent-based SIR model as ABM-SIR. The ABM-SIR has 36 agents,

each denoting a specific (real-world) participant. Proximate contacts among these 36 agents were replayed

according to empirical proximity contact data collected among 36 participants in [366] over 92 days. Each

infectious agent generated exposure events of a Poisson process with λ = 0.003; for each such event, a

connected susceptible agent experienced a 25% likelihood of infection. Within simulations, no infectious

individuals remained beyond the first 30 days. The time span of our experiments was therefore refined to 30

days.

3.3.2 Population Models

The SIR model is widely known and well-studied in mathematical epidemiology. The model contains three

state variables: the number of Susceptible (S), Infectious (I), and Removed (R) individuals. Individuals are

assumed to mix randomly and transitions between states are governed by memoryless processes. Equations
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depicting dynamics of system states are as follows:

Ṡ = −c · β · I · S
S + I +R

İ =
c · β · I · S
S + I +R

− I

τ

Ṙ =
I

τ

, (Eq. 3.1)

where c is the mean number of contacts made by each susceptible per unit time, β is the probability of

transmission per contact between a susceptible and an infective, and τ is the mean time to recovery.

The SIR model assumes a constant mixing parameter, c, which implies emergent behavior unlikely to

obtain in many empirical dynamic contact networks. Reflecting the observation that the mean contact rate

can change substantially over the course of an outbreak due to both behavioral changes [367] and network

heterogeneity [109, 357], we generalize to an SIRc model in which c is changed from a fixed parameter to

a state variable of the model, allowing it to change over time. Rather than seeking to impose a flaw-prone

behavioral model, the model initially estimates no change in c, forcing updates to c to be entirely driven by

the EKF, we refer to this EFK-enhanced System Dynamics SIRc model as the EKF-SIR model.

Ṡ = −c · β · I · S
S + I +R

İ =
c · β · I · S
S + I +R

− I

τ

Ṙ =
I

τ

ċ = 0

(Eq. 3.2)

3.3.3 Extended Kalman Filter Model

The EKF provides estimates by combining information from both model estimates and measurements. To

evaluate EKF effectiveness, we used the ABM to generate noisy measurements of the count of agents in the

Infectious state and the Removed state at the (discrete) time step k. Then, at each time step k, the EKF

updates state estimates based on a weighted average of the model output at time k (as shaped by previous

EKF updates) and the incoming measurement at time k.

Because the System Dynamics of our SIR model is nonlinear, we employed an EKF variant known

as the continuous-discrete extended Kalman filter [78], referred to herein simply as the EKF. In iterated

steps, the EKF updates state estimates and the covariance matrix of process noise. The covariance matrix

of process noise specifies the accuracy of model estimates. The EKF consists of two processes for each

iterated step: the continuous-time update, which governs the behavior of the System Dynamics SIR model

and estimates covariance between measurement points; and the discrete-time measurement update, which

modifies (regrounds) system state and updates covariance estimates with a consensus estimate derived from

both measurements and model estimates. Interested readers are referred to [78] for details. A standard

EKF formulation posits a state vector x(t) governed by a set of state equations with a nonlinear right-hand
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side fk(x(k), k), plus process noise following a zero-mean Gaussian distribution; and a measurement-state

mapping function hk(x(k), k), mapping system states to measurements. Typically, f and h are nonlinear.

The EKF approximates each function with its first-order Taylor expansion.

Initial values for the system noise covariance matrix and the measurement noise covariance matrix are

usually generated based on expert knowledge and heuristics reflecting the uncertainty of dynamic model

estimated system states and uncertainty of measurements. In our model, the covariance matrix of measurement

noise was initialized to expect contagious contacts from zero to three individuals, based on empirical data

[366] and observations. Our experiments use results from ABM simulations as the ground truth. We generate

synthetic noisy measurements of I and R by artificially adding noises to the ABM simulated I and R at

time k. Our EKF-SIR model uses I, R, and c as state variables. Starting from the initial conditions or

the “consensus” results of the previous measurement update (whichever is later), the ordinary differential

equations (ODEs) for both the process state equations and the covariance matrix P are numerically integrated

from the previous state until the next measurement update. The covariance process noise, in general, grows

in iterated updates, reflecting the accumulation of ongoing process noise. At the next measurement update

process, the gain matrix K is calculated, and the EKF-SIR generates a new consensus state estimate based on

the noisy measurements, model state estimates, and covariance matrices. In the event of physically impossible

situations—such as where the numbers in the S, I, and R bins exceed their upper-/lower- bounds or move in

a direction that is unrealistic (for example, the number of recovered decreasing)—we reset the Kalman filter

to entirely weight towards the noisy measurements.

3.4 Experimental Setup

For each experiment, we assume an initial contact rate c = 1. Disease-specific parameters β and τ are assumed

to hold the same value in both the aggregate (Open-Loop-SIR and EKF-SIR) models and the ABM-SIR

model (β = 0.25, τ = 7, N = 36). In the Open-Loop-SIR model and continuous-time update processes of the

EKF-SIR, we used MATLAB’s function ode15s to numerically integrate I and R over time. Since we have a

closed population, for time t, the number of susceptible is simply calculated by using S(t) = N − I(t)−R(t).

We used similar settings to [109, 366] to simulate the ABM-SIR model. We added zero-mean Gaussian noise

to the output of the ABM-SIR simulation to generate synthetic noise measurements.

3.4.1 Kalman Filter Configuration

Within the EKF-SIR models, we used the aggregate SIRc model to update the system state estimate, and

assumed that β, τ , and the noise distribution were well estimated. Two rounds of experiments were performed:

firstly, based on the SD-SIR model (which has a calibrated constant c), we configured an EKF-enhanced

model to investigate the filter’s performance compensating for measurement noise; secondly, we configured

the EKF-SIR model by applying EKF on the System Dynamics SIRc model (which includes c as a dimension
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of the system states) to determine the ability of the EKF enhanced system to compensate for varying, but

unmeasured parameter. For each round of experiments, the initial contact rate c = 1 was used based on the

results of the ABM-SIR simulation to provide a highly plausible starting point for the aggregate models.

3.5 Results

We compared the performance of our EKF-SIR model against the synthetic ground truth, the measurements

corrupted by zero-mean Gaussian noise, and the Open-Loop-SIR model. It is important to note that in

these comparisons, the only difference is the addition of the EKF-mediated feedback. We chose to focus our

evaluation on the ability of EKF-SIR to correctly estimate the number of infectious people at each time point.

Figures 3.1a and 3.1b show two example infection trajectories.

(a) Trackings of Infections I (A Typical Example) (b) Trackings of Infections I (An Excellent Example)

(c) Histogram of Error on I with EKF (d) Histogram of Error on I without EKF (Open-loop)

Figure 3.1: EKF Infection Trackings and Error Histograms
Infection trajectories for the results; Figure 3.1a an example of a typical tracking performance for the Kalman filter for a
single realization; Figure 3.1b an example of an exceptionally good tracking performance for a single realization; Figure 3.1c
histogram of error trajectories for EKF-SIR model; Figure 3.1d histogram of error trajectories for the Open-Loop-SIR
model. All x-axis are time (days) and y-axis are counts of infectious people.

Figure 3.1a is an example of typical tracking performance, while Figure 3.1b is an example of exceptionally
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good tracking performance. As shown in Figures 3.1a and 3.1b, obviously, the EKF-SIR does a substantially

better job of tracking the infection than the Open-Loop-SIR, which diverges from the ground truth rapidly.

The noisy measurement as an estimate of the ground truth is still better than either the EKF-SIR model or

the Open-Loop-SIR model, perhaps due to the conservative error model we employed for measurement noise;

however, the noised measurement cannot predict the system state in a future time, and cannot be used as a

forecast.

Figure 3.1c and Figure 3.1d show two-dimensional histograms of the difference between the synthetic

ground truth versus the Open-Loop-SIR model and the synthetic ground truth versus the EKF-SIR model.

at the onset of the outbreak, both the EKF-SIR model and the Open-Loop-SIR model have errors of similar

magnitude but opposite in sign. But the EKF-SIR model converges more quickly to the synthetic ground

truth, reaching near-zero error after 10 days rather than 20 days. Because the Open-Loop-SIR model is

running in an open loop, it makes exactly the same prediction regardless of the dynamics resulting from

varying the initial infectious person for the outbreak. As such, variability in the case of the Open-Loop-SIR

model is entirely due to the variation of the outbreak dynamics with a different initial infectious person

and disease dynamics. The EKF-SIR model, on the other hand, attempts to re-ground the simulation at

measurement steps. The performance of the EKF-SIR model is mainly due to EKF’s capacity to track the

epidemic given the model and the measurement data quality. The fact that the variance of the two cases is

similar indicates that any additional variance introduced by the EKF-SIR estimates is of the same order of

magnitude as normal variation due to disease dynamics.

3.6 Discussion

We have proposed a method for integrating epidemiological surveillance data with population-based mathe-

matical epidemiology models. This approach creates consensus estimates of the underlying epidemiological

situation from measured data and model estimates in a way that reflects the confidence modelers place in

each. Compared to MCMC implementations, the EKF is computationally parsimonious, allowing for ready

incorporation in sensitivity analyses and large-scale scenario exploration.

However, the current approach is accompanied by limitations. The EKF’s requirement for the process

noise and measurement covariance matrices may be difficult to obtain in practice, but bounding distributions

can be readily derived. The assumption that the system is corrupted by white Gaussian noise could render

the model temporarily obsolete if presented with non-Gaussian disturbances. The EKF will attempt to

correct for the deviations due to model inaccuracies, distorting the result. However, these risks are no worse

than in existing open-loop systems. We believe that there is the potential for such systems to broaden the

contributions of models to practical decision-making. The capacity to keep models up to date raises the

potential for much greater trust being placed in them. More fundamentally, closed-loop models lower the

divisions between epidemiological data collection and modeling, encouraging decision-makers to consider an
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integrated process. Finally, modelers have traditionally sought model precision through additional model

complexity [153] or ABMs [368]. Closed-loop models offer a third way of enhancing prediction reliability.

3.7 Summary

We have presented a technique for creating closed-loop epidemiological models, compensating for dynamic

human contact patterns. The technique described here is based on well-established stochastic optimization

techniques and permits flexibly incorporating ongoing data streams data directly into the model. We have

established the efficacy using cross-validation across different model types in light of empirical data on

observed human contact patterns. The approach is easily integrated with population-level models, provides

better than open-loop estimates with noisy measurements, and is more computationally efficient than MCMC

approaches. This work has the potential to serve as a valuable tool for policymakers and researchers alike

when attempting to compensate for changing parameters and flawed models during epidemic outbreaks.
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4 Comparing Contact Tracing Through Bluetooth and

Gps Surveillance Data

Citation: W. Qian, A. Cooke, K. G. Stanley, and N. D. Osgood, “Comparing Contact Tracing Through

Bluetooth and GPS Surveillance Data,” Submitted to the Journal of Medical Internet Research, Apr. 2022

Abstract The COVID-19 pandemic has highlighted the need for accurate and responsive transmission

modeling of epidemic outbreaks. These simulations must be grounded in quantities derived from the measure-

ment, for example, of the period over which a person is infectious or a disease’s mortality rate. Challenging

parameters to estimate are those associated with contacts between individuals. Digital contact tracing can

provide more precise measures of proximate contacts than traditional methods based on direct observation

or self-reporting. Bluetooth beaconing and GPS co-locating are two sensing modalities to collect proximity

contact data; both have shortcomings and are prone to false positives or negatives as unmeasured environ-

mental influences bias collected data. In this paper, we present a comparison of GPS and Bluetooth-inferred

contact patterns and assess their impact on the attack rate induced in corresponding agent-based Suscepti-

ble, Exposed, Infectious, Recovered (SEIR) models of four different contagious diseases. We show that the

contact networks generated from these two measurement modalities are different and generate significantly

different attack rates across multiple datasets and pathogens. While both modalities offer higher resolution

portraits of contact behavior than is possible with most traditional contact measures, the differential impact

of measurement modality on simulation outcome cannot be ignored.

Relationship to This Thesis GPS co-locating and Bluetooth beaconing are two common approaches

to sensing proximate contacts, but are associated with different underlying geometries. It is essential to

understand whether collocating- and beaconing-collected proximity contact data will lead to fundamental

differences in the inferred proximity contact networks. The investigation described in this chapter compared

simulation results from an ABM model parameterized with time series of proximity contacts derived from

two different sensing techniques—GPS co-locating and Bluetooth beaconing. It answers whether the sensing

techniques and the spatial resolution matter to the networks inferred. Furthermore, we demonstrated to

what degree and under what conditions these two sensing techniques—and, by extension, their spatial

resolution—impact simulation outcomes. It is impossible to evaluate which modality was more accurate

without independent ground truth. However, the substantial differences indicate that simulations of population

spread of the same disease/pathogen with contact data collected with different modalities cannot be directly
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compared, even for the same underlying population. This difference has implications for study design and

meta-analysis.
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4.1 Introduction

Infectious disease has imposed a heavy burden across the span of human civilization [369, 370]. Prior to the

COVID-19 epidemic, annual influenza alone accounted for $87.1 billion worth of lost economic activity in the

United States [371]. Even preventable diseases such as measles, tuberculosis, and polio have had substantial

impacts on indigenous or otherwise marginalized societies [372–374]. The COVID-19 epidemic has brought

the threat of contagious disease into sharp focus. With 3.44 million dead, 166 million infected [375] and over

$16 trillion in lost economic activity [3] as of July 11, 2021, COVID-19 has been one of the defining global

crises of the 21st century [376]. While the rapid development and deployment of vaccines have blunted the

spread of COVID-19 in some parts of the world, it appears likely that the disease will become endemic, and

that society will face a prolonged battle characterized by continuous monitoring, vaccine boosters reflecting

the evolving variant ecology, and intermittent outbreaks [377, 378].

Transmission models have served as a key tool in the fight against contagious diseases. These mathematical

models date back over a century [128–130], but have become more useful through leveraging sophisticated

algorithms [113, 379] and increased computing power [380, 381]. Transmission models to predict, plan

and respond to periodic COVID-19 outbreaks will be required for as long as COVID-19 remains endemic.

Both compartmental [381] and agent-based [379] transmission models require well-grounded parameters

characterizing not only the biology of the pathogen and host, but also the host’s behavior to provide reasonable

estimates of disease spread [61]. Among the most difficult of these parameters to reliably estimate are the

links between population spatial behavior and infectious events—that is, how a given population of interest’s

movement through space aids or inhibits the spread of disease. Many public health interventions are based on

altering spatial behavior to slow disease spreading, with quarantine and lockdown protocols being amongst

the most direct, whereas mask use and handwashing are meant to reduce the probability of infection given

exposure to pathogen.

For airborne contagious diseases like measles [373] or COVID-19 [376], the key enabler for disease spread

is collocation. Spatiotemporal proximity of an infectious person to a susceptible person dramatically increases

the probability of disease transmission. Spatially, collocation is being in the same volume of space at the same

time, where effective spatial volume for COVID-19 is determined by aerosol dynamics, and often approximated

as two meters [382]. Measuring collocation can be conducted by self-reporting, as is commonly used in classic

contact tracing [383], direct observation and counts [383], or more recently by electronic means [105, 257,

384].

Two primary modalities for determining collocation using electronic devices exist: Measurements based

on estimating the distance from one person to another directly (beaconing), and measurements based on

estimating the location of each person of interest within a coordinate system, and calculating distances

(localizing). Beaconing measurements are typically made by detecting an electromagnetic ping from one

device on another device. Devices can be bespoke such as the sociometric badge [354–356], or can leverage
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existing technologies like Bluetooth phones, beacons or dongles [341–343]. Localization techniques use GPS

or local localization systems to place every user at a specific location at a specific time [305, 307], and can

conveniently be piggybacked on existing smartphones, or mined from some social media platforms [385–387].

Unlike many systems sponsored by governments, and supported by technology from Apple and Google,

determining collocation for parameter estimation of transmission models requires complete records of all

interactions, not only interactions that result in infection. To estimate probabilities of disease transmission,

the total number of interactions, proportion of times spent in the vicinity of frequently visited locations

(also referred to as s, and spatial proximity must be measured to properly baseline the parameter estimates.

Techniques from companies like Ethica Data [388] and other companies made possible by a Google-Apple

partnership [389] can be used to obtain this data for target populations under transparent and ethical data

acquisition practices (preferably overseen by some type of institutional ethics board). However, the underlying

physical processes and mathematical treatment of beaconing and collocation data are substantially different,

and have different failure modes. Previous research had not elucidated the degree to which the use of such

techniques would yield disparities in the estimated contact patterns for the same population. It is simple to

hypothesize that co-locating and beaconing will yield different contact patterns, but it is less apparent how

the differences will interact with diseases dynamics and impact the overall simulation outcomes.

In this paper, we examine the contact patterns derived from three previously collected datasets employ-

ing both Bluetooth beaconing and GPS localization on smartphones running the Ethica Data app. We

demonstrate that while the underlying contact patterns generated from co-locating and beaconing are broadly

similar, they contain salient differences. For each of four pathogens marked by different dynamics, we compare

the results of an agent-based simulation of a communicable disease outbreak for that pathogen parameterized

with beaconing and localization derived contact patterns. The results demonstrate that the method used to

estimate contact patterns gives rise to significant differences between estimates of key outbreak parameters.

In particular, we show that GPS-based contact patterns estimate significantly fewer and less severe outbreaks

than Bluetooth-derived contact patterns for the same participant and device. This result is mostly insensitive

to disease and contact distance threshold, and for the most part holds across datasets, with the magnitude of

the effect changing, but not the direction.

4.2 Literature Review

Transmission models for communicable diseases are based on the characterization of the natural history of

a condition and contact networks [61]. Beyond traditional population-based non-spatial approaches, agent-

based epidemiological models can take individual-level contact records and behaviors to identify emergent

patterns in a bottom-up approach [379].

Real-world proximity tracking has applications in contact tracing, location-based risk assessment, mobility

tracking, and outbreak detection [390]. Deriving real-world proximity contact mainly falls into two categories:
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calculating the delta of measured absolute positions—with, for example, GPS and Wi-Fi network-assisted

locationing [294, 296]—and directly measuring the relative distance with, for example, Bluetooth [257, 391],

or RFID [293].

Exemplars of each of these two approaches—GPS and Bluetooth—have been studied for digital contact

tracing and epidemiological simulation [382, 390]. Recent comparisons between GPS- and Bluetooth-inferred

proximity contact collection approaches focus on privacy-preservation, adoption, and compliance rates [382].

By contrast, the accuracy of simulations with GPS- and Bluetooth- derived proximity contacts have yet to

be quantified across different underlying populations and pathogens [391].

Advances in digital contact tracing have also contributed to disease parameter estimation. At the beginning

of the COVID-19 pandemic, researchers focused on estimating the basic reproduction number R0 from limited

and highly regional dependent infection data; as the pandemic spread, data collection and reporting standards

have enabled daily reporting of incident cases, active cases and mortality for various geographic scales over

time, allowing estimation of the effective reproduction number Re [137–140].

4.3 Background

4.3.1 Bluetooth Proximity

Bluetooth is a short-range communications protocol incorporated into most smartphones, where it is commonly

used to pair with devices such as wireless headsets. It is a low-power protocol designed to operate over short

ranges to facilitate local connections. By default, Bluetooth is configured to be in a quiescent state, not

advertising its presence and only communicating with devices that have been paired. Prior to 2020, it

was possible to lock an Android phone into a more active discovery mode, where the device would beacon

approximately every eight seconds, advertising its presence to other devices. While this functionality was

intended to provide ease of initial device pairing, it could be repurposed to detect the proximity of two devices

by registering when one device received a discovery ping from another.

Several studies [244, 330] have investigated the use of Bluetooth to estimate the spatial proximity between

devices representing people. The simplest methodology will be to create a proximity event between two

devices if one device detects a discovery ping from the other or vice versa. However, the distance between

devices is a relevant parameter for determining a valid proximity event or contact in many applications.

Researchers have typically used the Received Signal Strength Indicator as a proxy for distance [350–352],

assuming an exponential falloff of signal strength with distance [392, 393]. This approximation is confounded

by reflections or transmissions off or through objects, meaning that RSSI cannot be strictly interpreted as

distance except in all but the most controlled conditions. RSSI values can plausibly be used to filter out

contacts that are either far away or on the other side of a barrier, such as a wall.

The Received Signal Strength Indicator (RSSI) measures signal strength in decibel-milliwatts (dBm),

where RSSI = 0 is defined by a “Golden Receive Power Range” (GRPR), whose lower threshold level
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corresponds to a received power between -56dBm and 6dB above the actual sensitivity of the receiver, and

whose upper threshold level is 20dB above the lower threshold level to an accuracy of ±6dB. Beyond the

lower/upper threshold, any positive RSSI value indicates how many dBm the RSSI is above the upper limit,

any negative value indicates how many dBm the RSSI is below the lower limit. Usually, the stronger the signal

strength (higher RSSI) indicates closer distances between two Bluetooth devices, but orientation, barriers,

and interference can attenuate the signal strength beyond what the distance would suggest [331]. David

Young [337], and Android Beacon Library [394] contributed an RSSI to distance function based on Nexus 4

and Apple’s iBeacon performance which is often used as a first approximation for similar location awareness

services on modern smartphones

d = 0.89976×
(

RSSI

RSSI 0

)7.7095

+ 0.111, (Eq. 4.1)

where RSSI 0 is the RSSI value at a one-meter distance.

4.3.2 GPS and Location Proximity

Global Positioning System receivers are standard on smartphones, enabling location-based services and route

finding. Consumer-grade GPS receivers typically have a nominal accuracy of 10 meters, but can be subject

to substantially larger error due to environmental factors. Neither iOS nor Android employs pure GPS

localization in their location estimation services. Both additionally employ initial estimates from cell tower

locations (AGPS) as well as fingerprinting-based localization employing databases of detected Wi-Fi routers.

Because GPS receivers often take several seconds to obtain a position lock, even with APGS assistance,

smartphone localization services tend to default to Wi-Fi-based localization initially, then switch to GPS as

better location estimates become available. For simplicity of presentation, the balance of this paper uses the

term GPS to refer to location estimation regardless of whether it was obtained through GPS, AGPS, Wi-Fi

fingerprinting, or some combination thereof.

Given records of locations, a dichotomous notion of proximity can be defined in which two agents are

considered proximate if they are in the same place at the same time. Precision and accuracy of the mea-

surements and the context of the definition of proximity determine how close in time and space agents must

be to be considered proximate or in contact. When using commodity smartphone localization hardware

and services, accuracy below 5 meters is rare [307], so spatial proximity has a strong lower resolution limit.

Temporal resolution is substantially better—on the order of seconds—and is more likely to be limited by

the measurement regime or application requirements. Elevation estimates are even less reliable than spatial

estimates, so commodity GPS receivers are often projected onto a two-dimensional plane, introducing the

potential for erroneous connections between people at the same location but on different floors of a building,

for example.

While both GPS and Bluetooth can provide higher fidelity estimates of proximity and contact than

traditional surveys or diaries, both are prone to false positives and negatives. Given two devices separated
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by a mutually proximate wall or ceiling/floor, Bluetooth can still report contacts because the attenuation of

RSSI will be such that they appear in contact but farther away. GPS is prone to false positives for detecting

proximity for communicable pathogens because the distance over which transmission can occur is smaller

than the accuracy threshold for commodity devices. GPS proximity can only be interpreted as close enough

that contact was possible, given the error in measurement, not that contact actually occurred. Bluetooth

can produce false negatives if the beaconing and listening cycles of the devices are misaligned, such that

one device is beaconing while the other is asleep. GPS can lose signal or accuracy when indoors, causing

false negative contacts by either having no location reported for an agent, or exhibit position inaccuracies

which render inaccurate co-location calculations. While the underlying true contact dynamics for the same

devices are identical, the differing failure modes of GPS and Bluetooth means that data drawn from those

data collection modalities may generate different contact networks, and thereby suggest different contact

dynamics, and ultimately, different outbreak dynamics.

4.3.3 Agent-Based SEIR Models

The SEIR disease state model is a classic model to characterize, the pathogen transmission and the natural

history of infection across a range of communicable diseases. Disease state transitions are unidirectional in

the order of susceptible, exposed, infectious and removed. The initial state of the model specifies the amount

of population in each disease state, and the rate of transition between disease states are subject to both

disease-characteristic parameters (such as latent period and infectious period) and contact network (such as

preferential mixing and average contact rate). It is common for a specific disease, given surveillance data,

to have more detailed models. For example, there are models of COVID-19 splitting SEIR into more states

and re-route transitions in states [141, 142]. Because our goal is to probe the impact of contact measurement

modality, in accordance with Occam’s razor, we choose the simplest SEIR model.

Agent-based models incorporate individual interactions and track the state and state transitions through

which each individual progress. Unlike a stock and flow model, which uses differential equations to model

the flow of individuals from one state to another in aggregate, an agent-based model knows the state of every

agent individually at any time step of the simulation, and aggregate statistics, for example, on infections, are

queried and computed during post-processing. An agent-based SEIR model captures both individual disease

state transitions based on disease-specific parameters such as latent period, infectious period, R0, as well as

some abstraction of the contact behavior of the population. Because the simulation of an infectious disease

can capture emerging patterns in a bottom-up manner [379], and more faithfully reflect dynamics due to the

proximity contact network than compartmental models, agent-based models provide higher fidelity at the

cost of computation when compared to stock and flow models. Because an agent-based model can directly

employ a contact pattern as part of the simulation, it is the logical choice for examining the sensitivity of

simulations to the contact detection methodology.
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4.4 Methods

4.4.1 Dataset Description

For this work, we employed three previously collected datasets, all of which were collected from the city of

Saskatoon, a city in the mid-western Canadian province of Saskatchewan. In all these datasets, readings

from additional sensor modalities (for example, accelerometers, gyroscopes, and Wi-Fi traces) were also

collected, but only the Bluetooth, GPS traces, and battery data were used in this study. Battery data were

used to identify gaps in data collection. If the phone is on, and Ethica is running, then battery data will

be recorded, providing a more reliable way to assess the continuity of data collection than is possible with

GPS, where signals can be obscured by the built environment, but where the phone is still actively recording.

The Saskatchewan Human Ethology Datasets (SHEDs) are a collection of pilot projects and technical trials

taking place during the iEpi project—the academic precursor for the Ethica Data system—and associated

post-processing and methodological outcomes [395, 396]. The SHED datasets were exclusively collected from

populations at the University of Saskatchewan in Saskatoon. The SHED7 dataset was collected between

July 11, 2016 and August 8, 2016, and included 61 students. The SHED8 dataset was collected between

September 25, 2016 and October 25, 2016, and included 74 students. The SHED9 dataset was collected

between October 28, 2016 and December 9, 2016, and included 88 students. These participants were part

of a social science student study pool that included both undergraduate and graduate students, weighted

towards undergraduates. All data were collected with the informed consent of the participants and under the

oversight of the institutional research ethics review board.

4.4.2 Sensor Data Processing

To evaluate the performance of each sensor under real-world scenarios, we needed to account for the impact

of participant compliance. We defined the active period of a study with the start day as the first day when

we have no less than 80% of participants’ battery reading, and the end day as the first day with all following

days having less than 80% of participants’ battery reading. We retained participants who had at least 50%

of daily battery data. Descriptive statistics are shown in Table 4.1.

Ethica’s multi-sensor sensing mechanisms request that the Android operating system perform sensor

scanning and reading periodically. We call our requested period length—that is, each of the repeated 5-

minute time windows—a duty cycle. For location and Bluetooth contact data used by this paper, Ethica

records for 1 minute starting every 5 minutes.

The Bluetooth discovery record from the Android API includes the MAC-address of the discovered

Bluetooth device and the associated RSSI. After linking such discovery records to the participant-id via

the smartphone Bluetooth MAC-address table collected after consent and before the experiment started, we

created a table of Bluetooth discovery records of eligible participants. Those RSSI values were filtered to
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Table 4.1: Sensor Data Table

shed7 shed8 shed9

Total number of participants 61 74 88

Number of retained participants 61 74 78

Total number of days in studies 35 31 41

Number of active days in studies 28 30 38

Number of Bluetooth-inferred contacts

(dist. threshold 8m)
37,804 34,400 20,597

Number GPS-inferred contacts

(dist. threshold 10m, accuracy 10m)
4338 6784 5064

include records associated with an RSSI stronger than the RSSI values associated with the desired distance

thresholds, and then aggregated maximum RSSI for unique tuples of discovered-participant and duty cycle

(data collection epoch), resulting in the final BT contact record table. Although Bluetooth discovery records

are directional, our usage of unique tuples will consider a pair of participants potentially in contact if at least

one’s Bluetooth device discovers that of the other.

Starting with raw GPS readings, for each participant, we first discarded GPS readings having an accuracy

radius larger than 10 meters as being too inaccurate to allocate even approximate co-location estimates. For

each participant, we used the median of their GPS readings within a duty cycle as the estimated geolocation

of that participant. We then mapped the estimated GPS coordinates of latitude and longitude onto UTM

coordinates as Northing and Easting with units of meters. For the sake of estimating inter-participant

proximity, we used the Euclidean distance between the estimated geolocation for all pairs of participants

within the same duty cycle as the estimated distance between pairs of participants. For each duty cycle,

participants who lacked GPS readings within that duty cycle were considered as not being in contact with

any of the other participants for the duration of that cycle.

ABM-SEIR model

An agent-based susceptible-exposed-infectious-removed (ABM-SEIR) simulation model was employed to

characterize pathogen transmission and describe the natural history of infection. The model assumed the

following:

• There is no reinfection during the simulation period.

• The population is closed, and no birth, death, and migration occur during the simulation time horizon.

• The latent periods for diseases under consideration are similar to the incubation periods.

• During the infectious period, an infectious patient will have a constant hazard rate of transmission to
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every one of their currently contacted persons, normalizing passive shedding from active spread (e.g.

sneezing) over a contact period.

• There are no behavior changes for participants during the simulation period, conditional on the contact

patterns measured. For small outbreaks, this is reasonable, but COVID-19 has demonstrated the

importance and magnitude of changes that can occur to hygienic personal protective behavior (e.g.,

mask use) over the course of a pandemic.

We made use of a four-fold duplication and concatenation of both GPS- and Bluetooth-inferred proximity

contact data—like successively replaying a movie—to allow the outbreak to run its course, without running

out of contact data.

All participants connected to at least one other participant after filtering were included in the simulation.

Each simulation starts with one initially exposed participant. We conducted multiple simulations with

different random seeds to account for stochastics. Every simulation began with a single infectious participant.

All active participants were the initially exposed participant in turn, for 50 realizations each.

Table 4.2: Number of Participants With at Least One Contact Within the Study

shed7 shed8 shed9

Bt8 58 71 76

Bt20 58 71 76

GPS8 49 63 66

GPS20 58 71 74

During the initialization of each simulation realization, for each participant, the latent period and infectious

period were drawn uniformly from the minimum-maximum range of corresponding parameters as shown in

Table 4.3.

Table 4.3: Disease Parameter Table

R0 Incubation Period
(min–max)

Infectious Period
(min–max)

covid19 (non-variant) †2.2 [144, 397] 5.6 – 7.7 [144] 3 – 7 [144]

flu ‡3 [398] 1 – 4 [399] 3 – 5 [399]

norovirus 1.75 [400] 0.5 – 2 [401] 2 – 3 [401]

measles ‡15 [402] 10 – 12 [403] 8 – 11 [403]
†Derived as midpoint of reported range. ‡Derived range from different reports.

Simulation Configuration

For each SHED study, after pre-processing, we obtained GPS- and Bluetooth-inferred proximity contact

data with distance-equivalent RSSI thresholds of -80 dBm (corresponding to about 8 meters) and -90 dBm
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(about 20 meters). A group of simulations for each of the four diseases—namely flu, COVID-19, measles,

and norovirus—was run. Within each group of simulations sharing the same derived proximity contact data

and diseases parameters, we iterated each of the active participants as the initially exposed patient with 50

realizations, where each realization has a different predetermined random seed, resulting in 170400 realizations,

in total, across all datasets and conditions.

In our agent-based SEIR model, at any given time during the simulation, each agent resides in one of

the four disease states (susceptible, exposed, infectious, removed). At the start of the simulation, all agents

except the designated initially exposed agent are susceptible. The transition from susceptible to exposed

has a probability p when exposed by proximity to an infectious agent. Such occurrences of exposure are

characterized by a Poisson process with a mean inter-arrival time of 5-minutes. The value assumed for p is

derived from the disease-specific R0 and the average empirically observed frequency of population contacts.

The timing, duration and the pair of agents involved in each proximity contact are given by to the proximity

contact data fed to the simulation. The transitions of exposed-to-infectious, and infectious-to-removed are

timeouts with timers set as the corresponding latent period and infectious period as initialized to each

individual.

Simulations were run on two servers, each with Intel® Xeon® CPU E5-2690 v2 and 503GB memory.

Models were created in AnyLogic 8.1.0 and exported to a standalone Java application with OpenJDK

1.8.0_252 as the runtime environment. Analysis was conducted in R 4.0.2 with major packages including

tidyverse 1.3.0, ggprah 2.0.5, igraph 1.2.6, and in Python 3.8.0 with major packages including pandas 1.2.0,

numpy 1.20.2 and scipy 1.6.1.

Evaluate Impacts on Transmission Models

We use attack ratio as the metric to evaluate the impact of proximity contact data on transmission models.

The attack ratio is the proportion of the total population who ever get infected throughout the simulation.

Although the ABM-SEIR model can produce many estimates for different disease parameters given proximity

contact data, the attack rate and individual risk of infection was chosen for simplicity, accessibility and on

account of serving as single summary statistics [404, 405].

Welch’s t-Test Assuming disease M and underlying population V , the choice of an initial infectious

individual ν is independent of the data collection configuration (sensor type ω and proximate distance

threshold ε). We are interested in the marginal P (Θ | ω, ε,M, V ) =
∑
ν∈V P (Θ | ω, ε,M, V )P (ν | M,V ).

Limited by our knowledge of P (ν |M,V ), we assume the initial infectious individual ν is chosen with uniform

probability from the underlying population V , that is P (ν |M,V ) = 1
‖V ‖ . Consider X = X̄ as the sample

mean from a sample Xi ∼ P (Θ | ν = vi, ω, ε,M, V ), i = 1, · · · , ‖V ‖, and we sample X̄ by repeating ‖V ‖

simulations iterating every individual of the population V as the initial infectious individual. By the central

limit theorem, samples of X ∼ P (X | ω, ε,M, V ) tends toward normally distributed to suffice the assumption
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of Welch’s t-test.

Pairwise t-Test Without assuming the initial infectious individual ν is homogeneous among the underlying

population V (that is P (ν |M,V ) = 1
‖V ‖ ), we could construct a pairwise t-test by pairing the samples of attack

rate having the same initial infectious individual µ, given sensor type ω, distance threshold ε, for each pair of

diseaseM and underlying population V . In this case, we assume the pairwise differences of attack rate, such as

for ΘBT8-GPS20
i = ΘBT8−ΘGPS20, are normally distributed, where ΘBT8 ∼ P (Θ|ν = vi, ω = BT, ε = 8,M, V ),

ΘGPS20 ∼ P (Θ | ν = vi, ω = GPS, ε = 20,M, V ).

Kullback-Leibler Divergence of Individual Infection Risks Given sensor type, proximate distance

threshold, disease and underlying-population, we estimated individual infection risk based on the Laplacian-

smoothed rate of being infected across realizations, denoted by ρv∈V (ω, ε,M,V). The likelihood of being the

most likely infected individual for an individual v ∈ V follows P (v |ω, ε,M,V), which can be estimated by nor-

malizing vector ρ = {ρv |v ∈ V }. The Kullback-Leibler divergence was used to summarize differences between

pairs of sensor type and proximate distance threshold (ω, ε) within blocks by disease and underlying-population.

For disease M and underlying population V , we have DKL(φw1,e1 ‖ φw2,e2) between sensing configurations

(w1, e1) and (w2, e2), where φwi,ei = P (v | ω = wi, ε = ei,M = M,V = V ), wi ∈ {BT,GPS}, ei ∈ {8, 20}.

4.5 Results

While the agent-based simulation utilizes dynamic contacts, some insight can be gained by examining the

aggregate contact network for participants in each study. Figure 4.1 shows the aggregate contact networks for

SHED7, 8 and 9 using Bluetooth (BT), and GPS at 8m and 20m thresholds. If a connection ever occurred

between two nodes given the protocol, a corresponding edge is drawn in the network, with the color of the edge

proportional to the total contact duration over the course of the experiment between those nodes. Reflecting

the Pareto-like distribution of contact duration, colors move from blue (weakly connected) to red (strongly

connected) on a logarithmic scale, consistent with other human network observations [207, 406]. As expected,

most nodes appear to have weak connections compared to highly connected dyads and triads in the network.

The Bluetooth networks are denser and more highly connected than their GPS counterparts, implying a

greater potential for disease spread. There is a greater preponderance of weak edges in the Bluetooth datasets

than amongst their corresponding GPS counterparts. There is a modest increase in the number of edges

between the 8m and 20m thresholds for each dataset.

Contact frequency (the rate at which contacts occur) and inter-contact time (the time between contacts)

are common aggregate distributions used to characterize contact datasets. Like many other datasets, both the

BT and GPS demonstrate power law decay for the probability of a contact duration and inter-contact time

(Figure 4.2). GPS-based contact detection tends to infer more and shorter duration contacts, but exhibits

truncated tails. In SHED7 and SHED9, the tail truncation leads to fewer long duration contacts (more than
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600 minutes) than BT. Inter-contact times are similar for all datasets, but BT distributions are skewed more

heavily towards longer inter-contact times than is the case for GPS. By contrast, for SHED8 and SHED9, BT

tracking detects notably fewer moderately long contacts (those in the range of 50-600 minutes). This may be

due to localization noise-induced false positives in the GPS dataset skewing the apparent contact durations

higher.

After filtering connections for the appropriate distance threshold (8 meters and 20 meters), the agent-

based simulation was run according to the protocol described in Section 4.4.2. Many runs do not produce an

outbreak, with the initially exogenously infected individual the only member of the network infected. This

results in a zero-heavy bimodal distribution of cumulative infection counts per realization, with a Poisson spike

at zero cumulative endogeneous infections (one exongenous infection) and a second distribution describing

the probability of an outbreak of a given size, conditional on outbreak occurrence (i.e., the probability of at

least one endogenous infection). A stacked bar plot showing the ratio of runs in which further incidences

beyond the initial infectious individual did or did not occur is shown in Figure 4.3. The figure clearly shows a

higher likelihood of an outbreak occurring with the Bluetooth data, as expected from the aggregate network

diagrams and aggregate contact duration and frequency plots. The consistent difference in the probability

of outbreak occurrence between the two conditions is our first substantial indication that the two means

of measuring contact are not equivalent. To determine the impact of each dynamic contact pattern on the

outbreaks themselves, the trials in which no endogenous infection occurred were removed, and statistical

analysis conducted on the distribution of outbreak severity conditional on outbreak occurrence.

The core research question of this paper was whether and to what extent the differences in GPS and

Bluetooth based proximity detection would alter the contact network and therefore the implied attack rate.

We consider the attack rate θ =
∫ T
t=0

I(t)dt

N ∈ [0, 1] (the proportion of the population that is infected) as

the response variable (denote as Θ) to controlled variables of the disease/pathogenM, the initial infectious

individual ν ∈ V = {v1, v2, · · · , vn}, n = ‖V ‖, and collected proximity contact data D(ω, ε, V ). For that

proximity contact data D(ω, ε, V ), ω ∈ {BT,GPS} is the sensor type, ε ∈ {8, 20} is the distance threshold of

proximate contacts, and V is the underlying population. So with the ABM-SEIR model as P (·) for specific

diseaseM and underlying population V , we can sample Θ ∼ P (Θ = θ | V = ν, ω, ε,M, V ) with simulation

realizations. While the initial infectious individual ν has been known to impact attack rate Θ, investigation

of that impact lies outside the scope of this manuscript.

The Bonferroni-corrected Shapiro-Wilk test checking normality is passed for each 50 samples of X for

every pair of diseaseM and the underlying population V , except for COVID-19 with contact records collected

via GPS using distance threshold 20 over underlying population SHED8. The result of a Bonferroni-corrected

Welch’s t-test are shown in Table 4.4.

The core research question of this paper was whether and to what extent the differences in GPS and

Bluetooth based proximity detection would alter the inferred contact network and therefore the induced attack

rate. The results of Bonferroni-corrected pairwise t-tests [407] between observed attack rates (having filtered
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Table 4.4: Welch’s T-Test Table

Pairwise t-test with Bonferroni correction number of incidences ∼ proximity contact data source with distance threshold

p-value Bt8-Bt20 Bt8-GPS8 Bt8-GPS20 Bt20-GPS8 Bt20-GPS20 GPS8-GPS20

shed7 p < 0.001 *** 0.052 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***

shed8 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***norovirus

shed9 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** 0.001 ** p < 0.001 ***

shed7 p < 0.001 *** 0.117 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***

shed8 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** 0.001 **flu

shed9 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***

shed7 p < 0.001 *** 0.845 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***

shed8 0.039 * p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** 0.038 *covid19

shed9 0.001 ** p < 0.001 *** 1 p < 0.001 *** p < 0.001 *** p < 0.001 ***

shed7 p < 0.001 *** 0.003 ** p < 0.001 *** p < 0.001 *** 1 p < 0.001 ***

shed8 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***measles

shed9 p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

out scenarios with zero endogenous infections) across all simulation runs for a condition are shown in Table 4.5.

These results confirm our hypothesis that Bluetooth and GPS-based contact histories induce significantly

different estimates of total disease burden across multiple simulated realizations. The primary comparisons

are the BT8-GPS8 and BT20-GPS20, with others included for completeness. For SHED7 BT8-GPS8, the

results are not significant. For all other diseases and datasets, the results are statistically significantly different.

In the case of BT20-GPS20, all results are significantly different with the exception of SHED7 measles. While

we suspected that the infectiousness of the disease would impact simulated outcomes, the results seem to be

dominated by differences in dataset and contact measurement modality. Looking at the impact of resolution,

some combinations of dataset and disease are not significantly different, but for the most part, increasing the

threshold increases the number of contacts, driving differences in simulated outcomes. The exception to this

general rule seems to be SHED8 GPS8-GPS20, where increasing the threshold did not significantly alter the

outcomes for most diseases, and only marginally for measles.

Figure 4.4 shows violin plots for the attack rates over each realization across all simulated conditions, and

provides insight into the statistical results from Table 4.5. In Figure 4.4, the width of each violin indicates the

empirical probability density of the attack rate at the corresponding y-coordinate. Each violin represents an

empirical probability density distribution of attack rate resulting from the multiple realizations across different

initially exposed agents and random seeds. The y-coordinates of each red dot and corresponding bar indicates

the mean and mean plus or minus the sample standard deviation. As shown in Figure 4.4, SHED7 consistently

exhibits smaller attack rates for all diseases, with smaller variance and mean than other data sources. The

limited attack rate likely drives the similarity between Bluetooth and GPS. The denser SHED8 and SHED9

networks have substantially larger variance, leading to significant differences between measurement modality

conditions. In particular, the highly contagious measles virus exhibits marked differences within SHED8 and

SHED9 datasets. In general, Bluetooth contact patterns have longer tails, indicating a greater possibility for
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Table 4.5: Pairwise T-Test Table

Cumulative incidence count ∼ proximity contact data source with distance threshold
Pairwise t-test with Bonferroni correction

Bt8-Bt20 Bt8-GPS8 Bt8-GPS20 Bt20-GPS8 Bt20-GPS20 GPS8-GPS20

shed7 p < 1e-10 *** 0.2505 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

shed8 0.4436 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** 1norovirus

shed9 p < 1e-10 *** 0.0114 * 0.0046 ** p < 1e-10 *** 0.0075 ** p < 1e-10 ***

shed7 p < 1e-10 *** 1 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

shed8 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** 1flu

shed9 p < 1e-10 *** 0.0036 ** 0.0189 * p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

shed7 1e-04 *** 0.729 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

shed8 0.0689 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** 1covid19

shed9 p < 1e-10 *** p < 1e-10 *** 1 p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

shed7 p < 1e-10 *** 1 p < 1e-10 *** p < 1e-10 *** 0.4877 p < 1e-10 ***

shed8 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** 0.002 **measles

shed9 p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 *** p < 1e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

larger outbreaks throughout the population. In cases where a substantial probability mass is contained in the

tail, the median is also drawn higher, as in SHED8 with BT20 for measles.

Figure 4.5 shows Kullback-Leibler divergence (KL-divergence) on individual infection risks within blocks

of disease and underlying population, where bars indicate corresponding KL-divergence DKL(p ‖ q) between

pairs of sensor configurations (p, q) annotated as ticks p-q on the x-axis. The individual infection risks are

reflected by the likelihood of being the most likely infected individual between different sensing configurations,

where a sensing configuration is a pair of selected sensor types and proximate distance thresholds. Whether

it is considered to be 8 meters or 20 meters, the distance threshold of proximate contact does not appear to

impact GPS-collocated inferred proximity contacts in terms of individual infection risks, regardless of the

underlying population. This invariance to distance thresholds suggests that the primary bottleneck lies in the

GPS-collocation method’s inability to identify exact proximity contacts from a group of collocated individuals.

Meanwhile, the BT-beaconing method may capture proximity contacts at certain distance thresholds (such

as for SHED7 and SHED8), which can be important when considering droplet-based pathogen transmission.

The underlying population in SHED9 is known to behave in a less spatially clustered manner than for

SHED7, SHED8, which might contribute to a lower magnitude of KL-divergence for BT8-BT20 and BT20-

BT8. The KL-divergence among pairs of different sensor types is similar regardless of distance thresholds of

proximate contact, suggesting that BT-beaconing and GPS-collocating collect different proximity contacts

regardless of the resolution on distance thresholds of proximate contacts. The magnitude of asymmetric

|DKL(p ‖ q)−DKL(q ‖ p)| shown in red lines is lower than either DKL(p ‖ q) or DKL(q ‖ p), indicating the

asymmetry of KL-divergence is not impairing our analyses above.
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4.6 Discussion

Our results clearly indicate that GPS and Bluetooth-based contact tracking yield disparate results for the

same cohort under measurement. The ground truth contact network, while unknown, was the same for

each dataset—it was the same set of participants carrying a single phone measuring both quantities. Both

Bluetooth- and GPS-derived contact measurements are estimates of the underlying contact pattern, admitting

false positives (for example, Bluetooth contacts through a wall) and negatives (for example, a missed GPS

contact because it occurred in an area of poor satellite reception). GPS-based contact tracking identifies fewer

shorter contacts, leading to a significant decrease in expected outbreak intensity and number of outbreaks,

potentially because both participants need to have a sufficiently good location fix to estimate collocation. The

denser contacts reported by Bluetooth-based contact tracking lead to a higher probability of an outbreak and

larger outbreaks, resulting in significantly different attack rates for most datasets and diseases. While there

were conditions under which no significant differences were observed across the data collection modalities

(particularly SHED7 BT8-GPS8), differences were significant often enough to encourage caution in uptake

and interpretation of these sensed contact networks. GPS8 tends to underestimate attack rate relative to the

others (BT8, BT20, GPS20), indicating the general inability of GPS-collocating to capture proximate contacts

within a short distance. Sensing configurations tend to estimate similar attack rates for infectious diseases

without a comparatively high R0 in a more distant underlying population, except for SHED9-measles. Our

study cannot conclusively determine if the higher outbreak frequency and size in Bluetooth derived networks

is due to false positives in Bluetooth, or false negatives in GPS, but based on the precision of commodity GPS

receivers, and their propensity to lose signal in large buildings, we suspect that the observed disparities are

predominantly driven by GPS false negatives. If this suspicion is warranted, GPS location-based proximity

measurement should be employed in epidemiological simulations with caution, and in a fashion that anticipates

and accounts for the fact that the data collection modality employed may be systemically underestimating

contact. This is particularly true for the short contacts outside of normal contact networks that drive mixing.

The significance results were relatively insensitive to differences in simulated disease impacting differences

in GPS and BT, but the data collection modality induced fewer differences in the results for less contagious

diseases such as seasonal flu than for more contagious diseases like measles. It is possible that weakly

contagious diseases might not demonstrate differences, as outbreaks would be rare and limited in both GPS

and BT networks. These findings hold for both a nominal 8m and 20m threshold for determining if contact

has occurred. The thresholds chosen are already judicious, and indicate participants being close enough

during a measured portion to have come into close contact during a sensor sleep period, rather than explicitly

detecting a close contact. Comparing within sensor outcomes, the contact threshold impacted simulated

attack rate for most cases, with the exception of SHED8, which was generally consistent across resolution.

We employed a stylized agent-based SEIR model to determine the attack rate using both Bluetooth- and

GPS-inferred temporal contact patterns. The stylized nature of the simulation implies that the results should
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be generally correct, but that more detailed models may diverge in the magnitude of the differences observed.

SHED7, 8, and 9 are interesting datasets due to the multiple sensor modalities, but are also highly biased,

being drawn from a university social science participant pool comprised primarily of undergraduate students

in the social and physical sciences. GPS or Bluetooth data from other demographics will almost certainly have

different contact patterns, leading to different outcomes. At one extreme, institutionalized individuals (for

example, in incarceration facilities or care homes) have limited mobility and would be expected to have much

more convergent GPS and Bluetooth contact patterns. Perhaps not surprisingly, some of the worst COVID-19

outbreaks happened in these institutional settings. Similarly, we analyzed four relatively contagious diseases,

and ignored diseases where a specific type of contact initiates infection, such as sexually transmitted or

blood-borne diseases, or where disease propagation is slow or exhibits prolonged latent periods, such as with

tuberculosis. Because the definition of contact for such excluded diseases is substantially different from those

analyzed here, the difference between GPS and Bluetooth contact patterns may be more or less pronounced.

The process we have used to evaluate the differences should generalize to any contagious disease or measured

contact pattern and can be used to evaluate the impact of novel contact detection algorithms or other or

novel diseases such as COVID-19 variants of concern.

While this study has made several meaningful contributions to the literature, particularly in highlighting

divergent attack rates for GPS and BT measurements of the same underlying contact network, it is subject

to notable limitations. We employed three datasets drawn from a social sciences participant pool at our

institution. These datasets included individuals who were often unknown to each other, and likely produced

more diffuse datasets than would have been expected had we used snowball or respondent-driven sampling or

other socially connected recruiting techniques. Running a similar analysis on other datasets could provide

more broadly generalizable or representative results. However, for reasonable privacy reasons, public datasets

containing both GPS and Bluetooth records are not available, requiring additional measurement effort to

extend this analysis. We employed an agent-based SEIR model as it provided the most direct link between

the data and the simulated diseases. We chose the stylized SEIR model to emphasize the role of evolving

contact networks over other disease dynamics. These results could be extended to include more sophisticated

disease models and compare those results against compartmental transmission models grounded in aggregate

representations of the underlying contact network. The COVID-19 epidemic has driven innovation in contact

tracing, and new measurement techniques based on dongles, beacons or badges are now readily available. A

similar analysis including these data sources could be valuable. Finally, we constrained our analysis to four

canonical contagious diseases with relatively well parameterized behaviors. However, novel diseases will have

novel disease parameters. An exploratory simulation study which outlined how diseases might be expected

to behave over these contact networks using, for example, a random-walk through parameter space, might be

valuable in predicting new variants or existing diseases, or new diseases emerging from animal reservoirs.
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4.7 Conclusions

Epidemiological models of disease propagation are an important tool in controlling and containing epidemic

outbreaks. These models rely on accurate measurement of key biological and behavioral parameters to ground

the simulation results. Quantifying the characteristics dynamic contact networks is a particularly challenging

aspect of grounding these simulations. The significant differences in predicted outcomes for contact networks

demonstrated here between GPS and Bluetooth-based contact tracking highlight the difficulty of grounding

these simulations. Because of the nature of our data, we know that the contact networks being sought via

measurement by BT and GPS should have been identical, as they corresponded to the same device held by

the same high-adherence individual as they went about their lives. That the resulting contact networks and

predicted attack rates were different indicates that these modalities are not interchangable and that caution

should be exercised by modelers employing these measures. While BT and GPS data provides more precise

measurement than traditional surveys, they are still prone to error and to disparate estimates of underlying

network structure and dynamics.
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Figure 4.1: Stress-layout of Aggregated Weighted Contact Network by Underlying Population and
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Figure 4.5: Kullback-Leibler Divergence of Individual Infection Risks
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5 Impacts of Observation Frequency on Proximity

Contact Data and Modeled Transmission Dynamics

Citation: W. Qian, K. G. Stanley, and N. D. Osgood, “Impacts of observation frequency on Reconstruc-

tion of Close-proximity Contact Networks and Modeled Transmission Dynamics,” Submitted to the PLOS

Computational Biology, May 2022

Abstract Transmission of many communicable diseases depends on proximity contacts among humans.

Modeling the dynamics of proximity contacts can help determine whether an outbreak is likely to trigger

an epidemic. While the advent of commodity mobile devices has eased the collection of proximity contact

data, battery capacity and associated costs impose tradeoffs between the observation frequency and scanning

duration used for contact detection. The choice of observation frequency should depend on the characteristics

of a particular pathogen and accompanying disease. We downsampled data from five contact network studies,

each measuring participant-participant contact every 5 minutes for durations of four or more weeks. These

studies included a total of 284 participants and exhibited different community structures. We found that

for epidemiological models employing high-resolution proximity data, both the observation method and

observation frequency configured to collect proximity data impact the simulation results. This impact is

subject to the population characteristics as well as pathogen infectiousness. By comparing the performance

of two observation methods, we found that in most cases, half-hourly Bluetooth discovery for one minute

can collect proximity data that allows agent-based transmission models to produce a reasonable estimation

of the attack rate, but more frequent Bluetooth discovery is preferred to model individual infection risks or

for highly transmissible pathogens. Our findings inform the empirical basis for guidelines to inform data

collection that is both efficient and effective.

Relationship to This Thesis The sensing regime of Bluetooth discovery matters when used for gathering

proximity contact data because the energy constraints and network bandwidth costs must be balanced against

the temporal resolution of the measurement. Increasing the observation frequency of Bluetooth discovery

aids in assessing under-reported proximity contacts at the cost of increased battery consumption and network

bandwidth required for gathering sensed data. This chapter investigated the impacts of changing temporal

resolution by varying the observation frequency under scenarios considering sampling methods, diseases, and

underlying populations. Our findings confirmed that temporal resolution of proximity contact data collection

impacts outcomes of transmission modeling simulation. In general, higher temporal resolution lessens the
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risks of overestimation or underestimation on metrics drawn from simulation results, as judged relative to

finding at the baseline frequency (every 5 minutes) of sampling. We have found that downsampling by

simply increasing the periodic duty cycle interval is practically straightforward and reliable. We found that

reducing temporal resolution can distort the structure of reconstructed contact networks, and higher temporal

resolution diminishes this distortion. Findings from this part of the thesis suggest that a tailored sensing

regime can improve collections of proximity contact data to reduce battery footprint while ensuring data

quality on derived proximate contacts for transmission model simulation. The tailoring of a sensing regime

depends on the combination of disease/pathogen and the underlying population.
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5.1 Introduction

Despite a century of advances, the burden of contagious diseases remains troublingly high. In the context

of growing rates of drug resistance and virus mutations, development patterns which elevate human contact

with vectors and animal disease reservoirs, and the capacity of infections to be disseminated via historically

growing rates of global travel, the potential burden of infectious disease is historically high. From the shocking

worldwide death toll from SARS-CoV-2 [408–411], to Middle East respiratory syndrome coronavirus (MERS-

CoV), to Ebola in central Africa [412, 413], to the burden of endemic tuberculosis worldwide and in indigenous

communities [414, 415], to the lost productivity due to seasonal flu [416–418] and the common cold [419,

420], and the resurgent patterns of childhood communicable diseases [421–423], contagious disease continues

to impose a heavy adverse impact on society. This impact has driven substantial and ongoing research into

the transmission, population spread, treatment and prevention of common viral and bacterial pathogens

[421, 424, 425]. For the past century, dynamic models of communicable diseases have served as a key tool in

the understanding, prevention and control of communicable disease. A central element of such models is a

representation of contact patterns between hosts, transmission, and the natural history of infection within a

host [128, 426].

Close-proximity human contact networks constitute a key mechanism in the spread of communicable

diseases [61, 427, 428]. Together with pathogen-specific parameters, high-fidelity representations of such

contact networks within transmission models [61] can enable a much higher resolution view of the process

of a disease spreading than is possible with the random mixing assumptions required in compartmental

models within the traditional susceptible-infectious-recovered (SIR) family [128, 426, 429]. Such a view

can support real-time identification early of outbreaks and an estimation of the attack rate, as well as

retrospective evaluation and assessment of improved effectiveness of altered vaccine schedules, aid in planning

of interventions such as outbreak response immunization [21], public health orders and quarantine, and

support assessment of the impact of the scope, speed, and breadth of contact tracing [430]. Transmission

models structured with a detailed contact network aid inferencing of population-scale effects from individual-

level behavior of infections by enabling characterization of the transmission of contagious diseases over the

close-proximity contacts shaping outbreak dynamics [61, 368].

The ubiquity of smartphones with their rich complement of sensors, and emergence of wearable proximity-

detection device have enriched data collection systems [213, 257, 293, 396, 431, 432]. Automatic contact

tracing apps using Bluetooth low-energy [391] have allowed researchers to collect contact information whose

self-reporting would be burdensome [68, 433], and likely infeasible due to limited awareness of contacts [434].

As envisioned by some observers [61], the growing availability of proximity contact data in high-resolution

has further encouraged analytics taking empirical data of proximate contacts into transmission modeling [109,

119, 134, 293, 435]. Salathé et al . [293] pioneered collecting high-resolution proximity contact data with mote

sensors, and taking such high-resolution data into a transmission model to analyze influenza outbreaks.
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Despite the increasing scale of computing power in the form of expanding storage capacity and accessible

high-performance computing, we still struggle to collect, store, and process individual-level contact data

sufficient to parameterize a longitudinal transmission model with even a municipal-scale population. When

configuring smartphones to collect proximity contact data, a sensing regime with sampling frequencies on

the scale of minutes notably elevates power consumption, risking adverse impacts on study recruitment

and adherence. Such impacts are of particular concern among low-socioeconomic status populations who

are subject to elevated risks of communicable disease transmission due to crowding and other risk factors

[436–438].

In light of such technology constraints, past contributions [213, 428, 439] have argued that a clear

understanding of the sensing regime is required—a sensing regime schedules short periods to turn sensors on

for scanning throughout an experiment. The proximity contact data in our study are derived from Bluetooth

discovery records, and the Bluetooth discovery is performed at the first minute of each duty cycle, where duty

cycles are consecutive periods of identical length. The reciprocal of the duty cycle interval is referred to as

the observation frequency, and the observation frequency is in inverse relationship with the inter-observation

interval. This study investigated how varying sensing regimes affects captured proximity contact data and

impacts the results of an empirical contact empowered transmission model (ECTM). Specifically, we sought

to investigate the following three questions:

• How does the structure of the inferred contact network skew as the observation frequency of Bluetooth

discovery reduces?

• How do the results of a transmission model when taking proximity contact data collected at a reduced

observation frequency deviate from taking proximity contact data collected at a baseline frequency (the

highest frequency among our scenarios)?

• Under which disease/pathogen and community structure contexts may observation frequency be reduced,

and to what extent, without undermining confidence in conclusions?

We addressed these questions by analyzing proximity contacts derived from downsampled contact data

collected from participant smartphones in five high-resolution human contact network studies. Each study

has an effective duration of four or more weeks, and includes at least 30 participants, yielding a total of 284

participants across all studies. Close-proximity contact data were collected approximately every 5 minutes

by smartphone-based Bluetooth handshakes. We analyzed how network structure changed as observation

frequency is reduced.

To study the impact of downsampling on the model-estimated attack rate and individual infection risks,

we provided downsampled contact data to an SEIR agent-based simulation model for 12 different transmissible

diseases/pathogens. Using findings at the baseline resolution (involving sampling every 5 minutes) as the

reference, we found that the bias-variability of the attack rate shifted as observation frequency was reduced.

Our findings further demonstrate that in terms of both variability and bias, the magnitude of the impact of
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reducing observation frequency is both disease and community specific. Specifically, for diseases with low basic

reproduction number, such as Middle East Respiratory Syndrome (MERS), simulation results with respect

to both attack rate and individual infection risk were relatively insensitive to observation frequency. On

the other hand, pathogens such as Bordetella pertussis showed a marked dependence on sampling frequency.

Maintaining a higher observation frequency notably turns to be more important in denser communities.

Finally, we found that individual infection risk varied according to which edges of contact network served as

parts of transmission chains within a given simulation.

5.2 Data Sources

This study drew contact data from five high-velocity micro-contact data sets each with a month or longer

duration, employing the Saskatchewan Human Ethology Datasets (SHED) 1, 2, 7, 8, and 9 [210, 257, 395].

These SHED data sets employed the iEpi system and its successor Ethica Data [257] to collect longitudinal

data via smartphone-based sensors, including with respect to the battery level, charging state, Bluetooth, Wi-

Fi, GPS, accelerometer, magnetometer, in addition to pre- and post-surveys. Only the Bluetooth discovering

records and battery level records were used in this research. It is important to emphasize that the SHED

datasets, though sharing high acquisition velocity and a duration of a month or greater, exhibit notable

heterogeneity in the characteristics of the participant population and—by extension—the network structures.

SHED1 and SHED2, represent “closer” communities, composed of graduate students and staff from the

Department of Computer Science from University of Saskatchewan, with SHED1 having the majority of its

participants coming from two research laboratories. In contrast, SHED7, SHED8, and SHED9 recruited

undergraduate students from across the University of Saskatchewan through a social sciences study pool,

representing a more diverse and diffuse community.

All SHED studies’ participants were volunteers. No experimental manipulations were conducted during

data collection. The studies did not undertake stratified sampling as to ethnicity, grade, or gender. The study

did not proscribe participation by those connected with the department or research laboratories involved, and

the study team informed colleagues in labs and the Department of Computer Science first. Awareness of the

potential study involvement can be assumed to have spread across social networks. For SHED1 and SHED2,

participants were provided with a pre-configured Android phone that they carried in conjunction with any

other personal mobile device. By contrast, participants used their own phones for SHED7, SHED8, and

SHED9. Although for these three studies, both Android and iPhone users were welcome, because Bluetooth

beaconing did not work reliably on iPhone due to security settings, iPhone users were removed from the

analysis and all participants reported here were Android users.

80



5.2.1 Contact Data Collection Method

Data collection for Bluetooth contacts and battery levels on both iEpi and Ethica Data apps equipped

smartphones occurs within discontinuous epochs. Study periods (consecutive days spanning at least one

month) were divided into 5-minute (exactly for SHED1 and SHED2, and approximate intervals for SHED7,

8, 9) duty cycles. Within each duty cycle, battery levels were recorded as long as the apps were running,

and Bluetooth scan was enabled during the first minute of each duty cycle. Phones were discoverable while

scanning for nearby discoverable devices.

5.3 Methods

We synthesized collections of proximity contact data with varying sensing regimes by downsampling from a

baseline. The impact of varying sensing regimes are measured on two types of findings: those regarding network

structure, and those involving population-wide disease spread. For the network analyses, we compared network

structure with successive levels of downsampling and interpreted the results in terms of classical network

models [207, 225, 406]. For the simulation analyses, we used an individual-level Susceptible-Exposed-Infectious-

Recovered (SEIR) model [135], with reconstructed contact networks using 12 distinct common communicable

diseases/pathogens (flu, SARS, fifth, pertussis, measles, chickenpox, MERS, diphtheria, COVID-19, COVID-

19 Alpha variant, COVID-19 Beta variant, COVID-19 Delta variant). We investigated how downsampling

(decrements in observation frequency) impacts findings regarding the attack rates, individual infection risks,

and outbreak timing from simulation outputs, by employing two distinct downsampling methods named

Snapshot and Upperbound. For every combination of choices from downsampling methods, sampling rates,

communicable diseases, and studies, the contact network for that study induced by that downsampling rate

was derived and analyzed, and simulations conducted using those networks were analyzed.

5.3.1 Downsampling Approach

We assume that the behavior of close-proximity contacts is time-varying and denoted by an undirected graph

Gt = (Vt, Et), with vertices representing participants and edges denoting pairs of participants that exhibit

close-proximity contact at time t. We assume that, given a sufficiently small temporal quantum ξ0 (for

example, one second), the state of our close-proximity contacts can be considered constant across each such

time quantum without significant loss of precision, meaning our analysis only considers dynamics over a

unidimensional lattice with spacing ξ0. This leads to proximity contacts evolving over time as a series of

undirected graphs Gt0 , t0 ∈ ξ0N ⊂ R, where t0 projects the discrete-time index onto a real-world clock.

We denote proximity contacts among participants V at time t as Gt, t ∈ N. Downsampling according to a

heuristic is essentially aggregating {Gt} , t ∈ [ti, tj), which can be considered as a coding problem [440, 441].

Because the baseline frequency of longitudinal data obtained is approximately every 5 minutes, the original
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sampling of close-proximity contact network is a series of {Gt}, t ∈ [0, T ), where t has the unit of minute

and T is the effective length of a study in minutes. After post-processing, t represents an integer index

representing the minute associated with the observation, where minute 0 corresponds to the first minute of

the first day of the study. For convenience, we rephrase the sample time as a period rather than a specific

point, {Gti}, ti ∈ [ξi, ξi+ ξ), i = 0, 1, 2, · · · , where ξ = 5 is the (expected) duty cycle interval and 1/ξ is the

observation frequency for our original data, and is referred to as the baseline frequency.

A further consideration relates to data availability. Such availability is affected by many factors, including—

but not limited to—participants opting to “snooze” the sensor data recording during a private period, cases

where the operating system temporarily evicts the data collection app from memory due to resource shortages,

or—especially for the case of SHED7-8—due to misaligned duty cycles reflecting system scheduling. After

aggregation, each sample Gt = (Vti , Eti) is an unweighted unidirected simple graph which can be represented

as a (0, 1)-adjacency matrix. This adjacency matrix is symmetrical and each of its element aij ∈ {0, 1}

indicates individual vi and vj have a contact (aij = 1) or no contact (aij = 0).

We considered two downsampling strategies: A physically realizable sampling strategy (named Snapshot),

and a theoretical upper-bound (named Upperbound). Snapshot periodically samples a snapshot of the

current contacts in place at that time, thereby providing a simulated answer to the question “what if we

sampled less frequently?”. The Upperbound downsampling strategy instead records all contacts throughout the

downsampling interval, and reports those as applying at the sampling time. It instead answers the question

“What would be the impact of these same contacts, if they were to change less frequently?” Upperbound

provides an oracle which maintains all contacts during the period regardless of whether the downsampled

schedule would have measured them.

Snapshot

The Snapshot downsampling method is conceptually straightforward: For each downsampling period [ξ′i, ξ′i+

ξ′), i = 0, 1, 2, · · · , we choose the first available sample index Gt̃i , t̃i ∈ [ξ′i, ξ′i+ξ′). This results in subsampling{
Gt̃i
}
, t̃i ∈ [ξ′i, ξ′i+ ξ′). If a contact occurred during the specific duty cycle captured by that index, it will

be reflected within the sampled record. Snapshot simulates the effect of selecting a longer duty cycle for

measurement, including the loss of contacts due to undersampling.

Upperbound

In contrast to Snapshot, we sought to investigate the impact of a theoretical downsampling method, which

could provide a sample summary that included information drawn from throughout that interval. Specifically,

we considered the union Gt̆i for {Gti} , ti ∈ [ξi, ξi + ξ), i = 0, 1, 2, · · · , where the union, in general for

any discrete set j ∈ N, is defined as
⋃
j∈J Gj =

⋃
j∈J

(
Vj , Ej

)
=
(⋃

j∈J Vj ,
⋃
j∈J Ej

)
. This downsampling

mechanism serves to conserve all pairwise contacts which are observed at any time during a downsampling

interval. Upperbound cannot practically be deployed in data collection using the most common sensors used
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for proximity detection, but could be used during post-processing to reduce the number of time steps realized

during ABM-based analyses, increasing simulation speed. As ξ approaches the study period, the Upperbound

downsampling results in a more homogeneously weighted random mixing graph of contacts, resembling com-

partmental models with less heterogeneous preferential mixing among compartments. Upperbound maintains

the density of the contact graph during downsampling.

While the investigation of the effects of Upperbound was motivated predominantly by its theoretical

properties, it bears noting that some technologies—such as privacy-preserving or battery-sensitive contact

tracking and reporting systems—do perform similar temporal aggregation of contact information over a period

of time [442]. Snapshot performs temporal quantization in a sampling context. Upperbound performs both

temporal quantization and aggregation via accumulation across that interval.

5.3.2 Network Structure Analyses

Past research suggests that contact networks are types of small-world networks [225], and may be associated

with scale-free properties [406]. The scale-free property is characterized by a power-law decay in degree

distribution. Amaral et al . further classified small-world networks into three classes, and advanced the

hypotheses that faster decay in the degree distribution with a rising degree is due to aging vertices and

constraints on adding new links to highly connected vertices [207]. We measured cumulative contact time as a

measure proportional to contact time c̄, which specifies the average time that an individual is in close-proximity

contact with another, and has been used in epidemiological models [357, 443].

5.3.3 SEIR Simulation

We built an agent-based SEIR transmission model (SEIR-ABM) with the proximate contacts derived from

synthetic proximity contact data collected with different observation frequencies. These synthetic proximity

contact data are generated by downsampling with both Snapshot and Upperbound methods across datasets

and diseases/pathogens.

Agent-Based SEIR model

The agent-based model treats each person in the study population as an actor with one of four possible states

with respect to a natural history of infection: Susceptible, latently infected (Exposed), Infective, and in a

Removed state conferring persistent immunity to future infection. At any one time quantum, a given agent

is further parameterized by a vector of active contacts, as specified by the proximity contact data for that

agent for the current study, at the current level and type of aggregation.

Our SEIR agent-based model (SEIR-ABM) takes proximity contact dataD =
(
{Gti} , ξ

)
, ti ∈ [ξi, ξi+ξ), i =

0, 1, · · · , n − 1, an initial infected agent V ∈
⋃
i Vti , i = 0, 1, · · · , n − 1, and a disease M from the set

{flu, SARS, fifth, pertussis, measles, chickenpox, MERS, diphtheria, COVID-19, COVID-19 Alpha variant,

COVID-19 Beta variant, COVID-19 Delta variant}. The proximity contact observations were repeated four
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times, ensuring at least four months of proximity contacts time series for transmission simulation, to avoid

underestimation of attack rate induced by right-censored data—particularly considering diseases/pathogens

whose Exposed and Infectious periods add up to more than twenty days.

For each disease, we gathered the base reproductive number R0, and range estimates of the latent period

and infectious periods. Each agent in the SEIR-ABM was associated with a latent period and personal infectious

period drawn uniformly from corresponding ranges. Although in practice R0 varies along with the rate of

human-human or human-vector interactions spatially and temporally [138], we assumed identical R0 for

scenarios with different SHED datasets, because participants spend a considerable amount of their time on

campus. This paper focuses on analyzing the impact of temporal resolution of Bluetooth discovering sensed

proximate contact. Even if the R0 is not calibrated separately for the specific population represented in each

SHED dataset, it will not block us from interpreting how R0 changes with the temporal resolution.

Table 5.1: Disease Parameter Table

Basic Reproduction

Number
Incubation Period Infectious Period

chickenpox †15 [444] 10 – 12 [403] ∗8 – 11 [445]

COVID-19

Wild Type

†2.5 [144] 5.6 – 7.7 [144] 3 – 7 [144]

COVID-19

Alpha Variant

?3.23 [446] 5.6 – 7.7 [144] 3 – 7 [144]

COVID-19

Beta Variant

?3.13 [446] 5.6 – 7.7 [144] 3 – 7 [144]

COVID-19

Delta Variant

?4.93 [446] 5.6 – 7.7 [144] 3 – 7 [144]

diphtheria †6.5 [402] ‡2 – 5 [403] ‡14 – 28 [447]

fifth 1.8 [448] ∗6 – 11 [449] ∗4 – 9 [449]

flu ‡1.31 [199] 2.28 – 3.12 [199] ‡2.06 – 4.69 [199]

measles †15 [402] ∗5 – 10 [450] ∗4 – 6 [451]

MERS 0.69 [452] 2 – 14 [453] ?1 – 5 [454]

pertussis †14.5 [402] 7 – 10 [403] ‡14 – 21 [403, 455]

SARS 3.6 [456–458] 2 – 10 [457] 4 – 14 [459]

†Derived as midpoint of reported range.
‡Derived range from different reports.
∗Derived from starting range plus average duration.
?Derived from other disease or comparative estimations.
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A simplified model was employed because we were primarily interested in the impact of measurement

frequency. That model supports a stylized notion of the characteristics of the diseases explored, under a

variety of epidemiological contexts:

• Closed-population Despite the fact that some for the 12 communicable diseases examined here are

potentially lethal, we assume a closed population with no mortality or care-seeking that would cause

an infected individual to be removed from circulation prior to recovery.

• No intervention Occurrence of infection within an individual or public health messaging regarding an

identified outbreak can lead to the adoption of personal protective behavior such as elevated hygienic

adherence and social distancing by population members; outbreaks can also lead to triggering of public

health interventions, such as outbreak response immunization campaigns, quarantine efforts, contact

tracing or increased vaccination. Within our simulation, we assume that infection status does not

change agent behavior.

• Consistent stages of infection While the different communicable diseases considered in this paper

differ considerably in the features of their natural history of infection (e.g ., the presence of both

symptomatic and alternative oligo-/asymptomatic pathways, lack of permanent immunity) and routes

of transmission (e.g ., airborne, droplet, fecal-oral), to focus on the effects of temporal quantization, we

treated them as all being characterized by a 4-stage natural history of infection and proximity-based

transmission, and as differing merely in terms of a disease-specific residence time within each state. This

structure proceeds from Susceptible to Exposed, Infectious, and Removed states. In light of the 4-month

time horizon of the model, we assumed that no re-infection is possible for each of the 12 communicable

diseases.

• Homogeneous infectious rate We assume that for every discordant pair of individuals engaged in

contact, the probability that the pathogen will be transmitted is governed by a constant hazard rate

and the duration of the contacting period. This hazard rate is determined by a rate of potentially

infecting exposures β (for example, sneezing, aerosol production or hand-shaking), and a transmission

probability per such exposure.

A System Dynamics/compartmental SEIR model (SEIR-SD) typically has R0 = λ · γ−1 = β · c̄ · γ−1, where

λ is the force of infection, β is the probability of transmission per contact between a susceptible and an

infective, c̄ is the average number of contacts made by each susceptible per unit time, and γ is the rate at

which an infectious person recovers or otherwise transitions to the Removed state. In the SEIR-ABM, because

of the no intervention assumption, we estimate c̄ =
1

T‖V ‖
∑
i,j,k

I(ejk ∈ Eti) given observed temporal graphs

{Gti = (Vti , Eti)} , ti ∈ [ξi, ξi + ξ), i = 0, 1, · · · , n − 1, where T = ξn is the effective study period, I is the

indicator function, ‖V ‖ is the number of participants whose contact networks are recorded and ‖V ‖ does not

change within the model because of the closed-population assumption.
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All agents in the SEIR-ABM start as susceptible, with the exception of one initial infective. To address the

potential impact on an outbreak outcome of the index infective individual, we iterate the initially infected

person over the entire population. For each initial infection setting, we simulated the model across 30 distinct

realizations, each associated with a distinct random number seed. At a high level, the algorithm of our

SEIR-ABM can be summarized as follows:

Algorithm 1: Outline of SEIR-ABM
input : contact data D,

diseaseM,

initially infected person V

output : list of infectious events R

1
(
G, ξ
)
← D ;

2 it← iterator(G);

3 Vs← init_population;

4 set_health_state(V, Infectious);

5 t← 0;

6 G← next(it);

7 while t < T do

8 map(update_health_state, Vs);

9 map(λv. append(R, expose_all_connected(v, G)), filter(λv. at_health_state(v,

Infectious), Vs));

10 if get_timestamp(G) + ξ < t then

11 G← next(it);

12 end

13 t← tick_tock(t);

14 end

Parameter Variation Grid

For each of the two downsampling methods, our simulation considers scenarios involving all combinations

over three parameter classes: underlying populations, diseases/pathogens, and downsampling intervals (mim-

icking observation frequencies). This paper specifically investigates the impact of the downsampling method

and downsampling intervals given a specific underlying study population and pathogen. We consider all

combinations of the following:

• Two downsampling methods: Snapshot and Upperbound

• Five datasets (SHED1-2, SHED7-9) with populations {39, 32, 61, 74, 78}, considering each possible
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exogenously infected index within each population

• Twelve pathogens and their accompanying communicable diseases: influenza type A, SARS-CoV, par-

vovirus B19, Bordetella pertussis, Measles morbillivirus (MeV), varicella-zoster virus (VZV), MERS-CoV,

Corynebacterium diphtheriae, SARS-CoV-2, SARS-CoV-2 (B.1.1.7), SARS-CoV-2 (B.351), SARS-CoV-2

(B.1.617.2)

• Seven sampling intervals: 5 minutes (baseline), and 6 downsampling intervals: 10, 30, 60, 90, 180, 360

minutes

• An ensemble of 30 Monte Carlo realizations per parameterization

Considering all combinations of the above, we planned 1312080 realizations of the SEIR-ABM model.

Realizations were evaluated on a server with an Intel® Xeon® CPU E5-2690 v2 and 503GB memory.

Models were created in AnyLogic 8.1.0 and exported to a standalone Java application with OpenJDK

1.8.0_252, resulting in 85GB of output data.

5.3.4 Impact Metrics

The transmission dynamics that emerged from an SEIR agent-based model have various usages, typified by

evaluating interventions [460, 461], understanding transmission paths [462, 463], estimating disease parameters

[464, 465], and forwarning outbreaks [466, 467]. These usages often have their basis on model simulated results,

such as attack rates, transmission pathways in contact networks, and individual infection risks. We employed

corresponding metrics to summarize changes in these simulation results across the parameter variation grid,

bearing variations due to stochastics of Monte Carlo realizations and rotations of the index infective within

each population.

Cumulative Cases The cumulative cases of a realization are the number of endogenous infections through-

out that realization, starting from an infectious due to exogenous infection (not counted) until no one at the

states of Exposed or Infectious. Because of assumptions as to the closed-population and acyclic stages of

infection and persistent immunity, the cumulative cases are capped at one less than the size of underlying

population. Without imposing assumptions on the distribution of cumulative cases over thirty Monte Carlo

realizations, we employed median and inter-quantile range (IQR) as statistics to summarize cumulative cases

by groups. In an agent-based model, the results of disease spread can be strongly influenced by the contact

network of the initially infected individual. We explored two approaches to grouping the cumulative cases by

constructing blocks with/without the index infectives.

Attack Rates The attack rate of a realization is the ratio of cumulative cases to the size of its underlying

population. The attack rate reflects the proportion of people who become infected started with an exogenously

infected index in an otherwise susceptible population under our assumptions. Considering the attack rate as
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corresponding cumulative cases normalized by the size of its underlying population, we can compare attack

rates among different underlying populations for a given disease/pathogen but with different downsampling

methods and observation frequencies. These comparisons may shed light on whether an underlying population

will alter the importance of the temporal resolution to transmission simulation results of our interests.

Transmission Pathways in Contact Networks Studies on transmission pathways in contact networks

investigate how a disease/pathogen may spread on routes of transmission available between infectious and

susceptible individuals, given the structure of contact networks where they reside [468, 469]. Sensor-data-

derived proximate contacts reveal contact networks to study transmission pathways for diseases/pathogens

relying on routes of aerosol transmission and potentially direct contact transmission [257, 293, 302]. An

infection pair of a realization, denoted by an ordered tuple of (Vsusceptible, Vinfectious), states the infection of

Vsusceptible by Vinfectious during the infectious period of Vinfectious in the realization. Because infection pairs

are elemental results reflecting transmission pathways from a realization, we sought to measure impacts of

temporal resolution on transmission pathways in contact networks by comparing statistics of infections pairs

from corresponding realizations.

Given a set of realizations from the ABM-SEIR model with a size ‖V ‖ population, if we put all possible

tuples of individuals T = {(i, j) | i, j ∈ V ∧ i 6= j} into a canonical form with a rule (i, j) ≺ (k, l) ⇐⇒ i ≺

j ∨ (i = k ∧ j ≺ l), then we can express the frequencies of infection pairs in the set of realizations as a vector

Ω ∈ N0
‖T ‖×1, where ‖T ‖ = ‖V ‖2 − ‖V ‖. Assuming Ω 6= 0 and an uniform prior of an individual becoming

the exgenously infected index, the L1-normalized vector of infectious pairs’ frequencies, denoted by Ω
‖Ω‖1 , is

the relative risk of infection pairs occur in a realization.

Now we consider two parameter sets Pp and Pq sharing a disease/pathogen, an underlying population, and

a sampling method, but with different duty cycle intervals ξp and ξq. The differences of realizations resulted

by Pq from Pp, in terms of frequencies of infection pairs, can be reflected by a weighted-Minkowski distance of

order one, denoted by DM (Ωp,Ωq) =

(
Ωp

‖Ωp‖1

)ᵀ

·
(
Ωp −Ωq

)abs

, where Ω
‖Ω‖1 is the weight and (·)abs is the

element-wise absolute value operator for a vector, such that Ωabs =
[
abs(Ω1) · · · abs(Ω‖T ‖)

]ᵀ
. When ξp < ξq,

Pq is a parameter set with a larger duty cycle interval than Pq, this weighted-Minkowski distance between

frequencies of infection pairs Ωp and Ωq can be interpreted as the risk-weighted L1-distance resulted by a

downsampled proximate data of duty cycle interval ξq from a reference proximate data of duty cycle interval

ξp. This expected L1-distance handles variations due to stochastics of Monte Carlo realizations and rotations

of the index infective within each population, allowing us to infer impacts of observation frequencies on

simulated results of infection pairs sharing an underlying population. Notice that 0 ≤ DM (Ωp,Ωq) ≤ 30‖V ‖,

where 30 is due to the number of Monte Carlo realizations per parameterization, and ‖V ‖ is due to the

rotation of index infectives. We have DM (Ωp,Ωq) = 0 when Ωp = Ωq, and DM (Ωp,Ωq) = 30‖V ‖ when

@ i, j ∈ V, Ω
(i,j)
p > 0 ∧ Ω

(i,j)
q > 0 ∧ i 6= j. To unify the scale of DM (Ωp,Ωq) for underlying populations with

different sizes, we employed DNM (Ωp,Ωq) =
DM(Ωp,Ωq)
‖V ‖ and 0 ≤ DNM (Ωp,Ωq) ≤ 30.
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Individual Infection Risks The infection risk of an individual is estimated by the fraction of realizations

where the individual got infected. For a population V , its individual infection risks under a circumstance of

a disease, a sampling method, and an duty cycle interval can be presented by a vector of infection risks for

everyone in the population, denoted by Ψ ∈ N‖V ‖0 . The L1-normalized vector of individual infection risks,

denoted by ρ = Ψ
‖Ψ‖1 can be considered as the likelihood of an individual to be the most likely infected.

5.4 Results

We evaluated the impact of downsampling methods and frequencies from two perspectives: the resultant distor-

tions of network structure, and deviation in transmission model outcomes. Each such evaluation employed the

results of the baseline fidelity network representation as the reference for assessing such distortions/deviations.

The network structure analyses show that, as observation frequency reduces, the Snapshot method and the

Upperbound method distort network structure in different ways—the Snapshot keeps the average cumulative

contact time at the cost of underestimating node degrees. In contrast, the Upperbound method results in

inflated average cumulative contact time but retains the node degree distribution. The evaluated the deviation

in transmission model outcomes at both the population and individual levels are analyzed in the following

sections.

5.4.1 Impacts on Population-Level Simulation Results

The impacts of the observation frequency on simulation results from the ABM-SEIR model can be considered at

the population and/or individual level. Cumulative cases and attack rates were used to measure the impacts of

observation frequency on simulation results at the population level—population-level results of a transmission

model are often used to evaluate the size of the outbreak or the overall severeness of an upcoming wave.

We performed Welch’s t-test on cumulative cases with different ξ to draw quantitative conclusions as to the

impact of observation frequency on the mean of cumulative cases. We used the Prentice modified Friedman

tests on cumulative cases with different ξ to test the impact of observation frequency on the distribution of

cumulative cases.

Cumulative Cases

Figures 5.1 and 5.2 show grids of violin plots visualizing the empirical distributions of the cumulative cases in

realizations of the agent-based SEIR model taking downsampled contact data at different duty cycle intervals,

with one grid for each of the Snapshot and the Upperbound downsampling methods. Each grid of the violin

plots characterizes how cumulative cases varies by diseases (row) and underlying populations (column). Each

cell of a grid is a violin plot consists of violins arranged by increasing duty cycle interval, with 5 minutes being

the left-most and 360 minutes being the right-most. Each violin in a violin plot illustrates the distribution of

cumulative cases for realizations given the duty cycle interval (x-axis value), the disease/pathogen (row-label),
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and the underlying population (column-label)—aggregated over random seeds and index infectives.

Violin plots of cumulative cases illustrate the risk of outbreak occurrence. In general cases, the Snapshot

method preserves the distribution of cumulative regardless of increasing duty cycle interval. Meanwhile,

the Upperbound method suffers from systematically overestimating the plausibility of having an outbreak,

except for diseases with low R0 (MERS). For diseases having relatively high R0 (e.g., chickenpox, measles,

pertussis) and close population (SHED1-2), the Snapshot method risks underestimating plausible outbreaks

with sparse observations—those sampled an hour or more apart—while the Upperbound method retains the

risk of corresponding outbreak occurrence at the cost of results varying between either universal infection or

no further infection after the initial infection.

Welch’s t-test We validated our interpretation of Figures 5.1 and 5.2 with the Bonferroni-corrected Welch’s

t-test, provided by R package stats, version 4.0.2. For each sampling method of the Snapshot and Upperbound,

we tested cumulative cases with different duty cycle intervals blocked by diseases and underlying populations.

Resulting 60 blocks, with each group (observation frequencies) having at least 960 samples (cumulative cases

of realizations), sufficiently large to consider the robustness of t-test given the distribution of cumulative

cases’ departure from normality [470, 471], as shown in Figures 5.1 and 5.2. Setting the α-value as 5%, our

null hypothesis is that given a disease/pathogen other than high R0 diseases/pathogens (chickenpox, measles,

pertussis) and a underlying population, the mean of cumulative cases resulted by proximate contacts collected

with different observation frequencies of at least once per half-hour (equivalent to duty cycle intervals of 5,

10, and 30 minutes) are equal. For each block, pairwise by duty cycle intervals resulting three comparisons

per block and αaltered = 0.05/3 = 0.0167. It turned out for the Snapshot method null hypotheses are failed

to reject except for SHED8-diphtheria between pairs of duty cycle intervals 30–5
(
t(4360.8) = 2.72, p =

0.0065
)
, 30–10

(
t(4368.3) = 3.10, p = 0.0019

)
; SHED8-SARS 30–5

(
t(4294.5) = 3.24, p = 0.0012)

)
, 30–

10
(
t(4338.9) = 2.78, p = 0.0006

)
; and SHED9-diphtheria 30–5

(
t(4399.6) = 3.61, p = 0.0003

)
, 30–10(

t(4524.3) = 2.87, p = 0.0040
)
. For the Upperbound method hypotheses are rejected, except for SHED2-fifth

10–5
(
t(1910.7) = 1.84, p = 0.0667

)
, SHED2-MERS 10–5

(
t(1902.2) = 1.04, p = 0.2998

)
; SHED7-fifth 10–5(

t(3623.1) = 2.36, p = 0.018
)
.

Prentice-Modified Friedman Test We further validated our interpretation of Figures 5.1 and 5.2 with

the Prentice-modified Friedman test, provided by R package muStat, version 1.7.0. We tested cumulative

cases grouped by sampling interval and blocked by data collection, sampling method, population (dataset),

disease, and initial infection node. Resulting χ2 = 222081, with 6 degrees of freedom (reflecting the fact that

the sampling interval ξ ∈ {5, 10, 30, 60, 90, 180, 360} has 7 choices in total), and p < 2.2e−16, with the null

hypothesis being that the sampling interval does not differentiate the distribution of cumulative cases, for the

same data collection, sampling method, dataset, disease, and initial infection node.
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Figure 5.1: Grids of Violin Plots of Cumulative Cases for the Snapshot Method
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Figure 5.2: Grids of Violin Plots of Cumulative Cases for the Upperbound Method
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Attack Rate

The accuracy-precision view measures the deviation with respect to the attack rate of simulations parameter-

ized by the downsampled contact observations Dξ′ , ξ′ ∈ {10, 30, 60, 90, 180, 360} from the baseline Dξ0 , ξ0 = 5.

Subplots are arranged as grids according to the combinations of underlying population V and disease M.

Within each subplot specific for a given combination of {D,V,M}, deviation of the median attack rate

is shown on the horizontal axis (reflecting accuracy), and deviation of the inter-quartile range (IQR) for

attack rate is depicted on the vertical axis (negatively correlated with precision). Each datapoint within

such a subplot is associated with a specific sample interval ξ of D, whose value is denoted by both color

and shape for visual clarity. In both Figures 5.3 and 5.4, points with the same color and shape tend to

cluster instead of mixing with other colors, indicating that sample interval impacts govern both the accuracy

and precision of the attack rate more than the initial infection node. In Figure 5.3, when downsampling

with the Snapshot method, points are closer to the origin for communicable diseases/pathogens with low

R0 and for “diffuse” population such as {SHED7, SHED8, SHED9}, indicating the advantage of Snapshot

at maintaining an estimate of attack rate as downsampling interval increases. For diseases with high R0

(chickenpox, measles, pertussis) and “closer” communities {SHED1, SHED2}, Snapshot underestimates the

attack rate as ξ increases, whereas Upperbound slightly overestimates. Upperbound reduces IQR deviation of

estimated attack rate while the Snapshot increases interquartile range (IQR) deviation.

In Figures 5.3 and 5.4, we summarized two statistics: median and IQR, across the values of the attack

rate drawn from an ensemble of 30 realizations for each scenario defined by observations of contact network

D, initial infectious individual V, and a type of communicable diseaseM. The accuracy-precision deviation

of simulation results in terms of attack rate depends on the underlying population structure (“closer” or

“diffuse”), the type of communicable disease, the sampling method (Snapshot or Upperbound), and the sample

interval. The sampling interval is denoted with color. Figure 5.3 depicts median and IQR specifically for the

Snapshot sampling method, while Figure 5.4 depicts for the Upperbound sampling method. Casual inspection

of the skewed nature of the distributions towards higher values of the horizontal axis within each subplot

(indicating increasing median deviation in incidence) confirms that increasing the sample interval results in

over-estimation of the attack rate, as is suggested in [109]. By contrast, the clustering of the points by color

in each subplot suggests that the initial infection node exerts a smaller impact on the two statistics we have

chosen to reflect the accuracy-precision tradeoffs.

Comparing within subplots column-wise, the Snapshot method performs well with diffuse communities,

resulting in both low deviation of median and low deviation of IQR. When used with close networks, Snapshot

tends to overestimate the attack rate but underestimate the IQR. Upperbound exhibits greater deviation

than Snapshot, and is more consistent as sampling interval increases given other factors—from left to right.

When sampling interval is brief and sampling rate high, attack rate exhibits low median and IQR deviation

from the ground truth, because the reconstructed contact network is less distorted. As the sampling interval

increases and sampling rate decreases, Upperbound tends to become both less accurate and less precise. As
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the sample interval increases further, the overestimation of the attack rate reaches a limit as people directly

or indirectly connected to the initially infectious person are reliably infected for high R0 pathogens, or people

remain uninfected for pathogens with low R0.

Comparing within subplots row-wise, disease-specific patterns are also visible: estimates for the at-

tack rate of diseases with low R0, such as MERS, seem relatively insensitive to the sampling interval.

Pathogens/communicable diseases with sufficiently high R0 tend to behave similarly as sampling interval

increases, regardless of their differences in R0 value.

Outbreaks and Outbreak Timing

Outbreak timing and behavior are commonly studied characteristics of communicable diseases, yet the

quantifiable definition of an outbreak varies due to challenges regarding data collection and characterization

of the appropriate cohort to be counted. Instead of imposing a quantitative definition, this work employs

cumulative cases over time as a measure to reflect outbreak dynamics of disease in simulations for a given

underlying population V and observed contact data D.

We computed the empirical cumulative distribution (ECDF) of incidence occurrence time given disease

M and observed contact data D by marginalizing the time of incidence across initial infectious person V and

realizations. In Figure 5.5, the empirical cumulative distribution (ECDF) of incidence occurrence time across

alternative assumptions regarding the initial infectious person V are arranged as grids by columns of underlying

population V and rows given by downsampling interval ξ. Lines in color denote ECDF of incidence time

given observed population/dataset (columns) samples with the Snapshot method and Upperbound method

at corresponding duty cycle intervals (row), with other factors remaining unchanged. Within each grid, a

baseline ECDF of incidence time given observed contact data without downsampling Dξ0 is provided as a

reference. Grids with three colored ECDF curves close to each other indicate that under the scenario of

underlying population V and downsampling interval ξ, the timing and existence of outbreaks are insensitive

to the downsampling interval ξ, regardless of the sampling method (Snapshot vs. Upperbound).

We selected four representatives. Similar diseases appear to have similar dynamics, as shown, for example,

in Figure 5.5a and Figure 5.5b; diseases with extremely low and high R0 tend to behave quite differently

regardless of sampling method, interval, and dataset, as can be seen by contrasting Figure 5.5c and Figure 5.5d.

The steeper ECDF curves of the Snapshotmethod exhibiting similar shape but ending earlier on the horizontal

axis as the downsampling interval increases the pathogen spread is halting by disconnections among infectious

and susceptible due to missed contacts. Our measure automatically normalized outbreak size to lie in the

interval [0, 1]. This analysis demonstrates that:

• As would be expected, given an initially susceptible population, a pathogen with a tendency to catalyze

an outbreak will often exhibit an apparent, sharp increases in infections during the outbreak period.

Weakly spreading pathogens have an initial ascent followed by a long tail. More notable is that this

tendency holds largely invariant of sampling method, population, and sampling interval.
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Figure 5.3: Attack Rate Given Initial Infection Node for the Snapshot Method
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Figure 5.4: Attack Rate Given Initial Infection Node for the Upperbound Method
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• In a pattern that is maintained—mutatis mutandis—across populations, sampling method, and interval,

similar diseases exhibit clinically similar curves: SARS (Figure 5.5b) is known to have similar character-

istics to flu (Figure 5.5a), and they exhibit similar patterns for our measure. The discrepancy is small

for close populations.

• In a pattern that again holds independent of sampling method and interval as well as population

(dataset), diseases with different R0 behave differently. Pertussis (Figure 5.5c) has the highest R0

amongst the diseases we simulated, while MERS (Figure 5.5d) has the lowest. Their pattern is distinct—

pertussis tends to have a clearer outbreak. By contrast, SARS exhibits a steep curve in the beginning

and a long tail, indicating limited disease spread.

• Discrepancies between Snapshot and Upperbound from the baseline increased with the sampling interval

ξ. Discrepancies induced by the sampling interval exert less impact than the characteristics of the study

population, with “diffuse” communities (like SHED9) exhibiting substantial discrepancies for both

Snapshot and Upperbound.

• For a “diffuse” community, Snapshot outperforms Upperbound when the sampling interval is extensive,

with more minor differences in median and IQR deviation.

5.4.2 Impacts on Individual-Level Simulation Results

We measure the impacts of observation frequencies on the simulation results at the individual level with

transmission pathways and individual infection risks. Individual risk of infection can suggest vulnerable group

to prioritize resource allocation and ensure health equity [472]. Individual risk of infection is asymptotically

approached by the fraction of realizations in which an individual is infected. The difference of individual

risk of infection can be compared pairwise in terms of the weighted-Minkowski distance among scenarios

with different datasets D for the same underlying population V and diseaseM. We calculated the Kullback-

Leibler divergence on individual infection probabilities with different ξ to draw quantitative conclusions on the

impact of downsampling frequency on simulation results at the population level. Higher KL-divergence values

from the Snapshot method for SHED9 were observed for chickenpox, COVID-19, diphtheria, measles, and

pertussis, and are indicated by reddish colors of the corresponding column on Figure 5.6. Lower KL-divergence

values associated with MERS, regardless of dataset and downsampling frequency, induces its greenish color

in the corresponding column in that figure. We find that the KL-divergence can effectively summarize the

information shown on Figure 5.6 and therefore can serve as an efficient metric to measure differences in

individual risk.

Distances Matrices of Infection Pairs

Figure 5.6 shows matrices of pairwise weighted-Minkowski distances of frequencies of infections pairs given

downsampling methods, disease, and sampling frequencies for underlying populations, with the color shifting
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(d) MERS

Figure 5.5: Comparison of Outbreak Timing
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Figure 5.6: Distance Matrix of Infection Pairs

from greenish to reddish with the increasing degree of dissimilarity. For each matrix, starting from its top left

corner, inter-observation intervals are arranged in ascending order—ξ = 5, 10, 30, 60, 90, 180, 360—horizontally

from left to right and vertically from top to bottom. We found Snapshot is better at preserving consistent

frequencies of infection pairs, particularly with an observation frequency higher than once per half-hour,

except for higher R0 diseases in “diffuse” communities, such as chickenpox and measles in SHED9. For

lower R0 diseases in general, particularly in “closer” communities like SHED1, the Snapshot method have

weighted-Minkowski distance less than 1 even between the observation frequencies of 5-minute and 360-minute.

We found Upperbound is better at preserving likely paths than Snapshot, and the limits of the sampling

interval needed to preserve likely paths of disease spreading lies amongst ξ ∈ {10, 30, 60}. Under Upperbound,

diseases with similar R0 resemble each other, and MERS with a low R0 = 0.69, has its likely paths varying

notably over sampling intervals for a less diffuse population, while other diseases—despite exhibiting a wide

range of R0 ∈ [0.69, 15]—maintain a similar pattern of those likely paths with rising sampling interval, for a

given population.
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Figure 5.7: Kullback-Leibler Divergence of Individual Infection Risk

Kullback-Leibler Divergence on Individual Infection Risk

For each individual given each combination of disease and datasets, we calculated the Laplacian-smoothed

individual infection probability based on infection counts from simulations fed with ξ-sampled contact data

using downsampling method µ, where µ ∈ {Upperbound, Snapshot}; then we assembled the individual

infection probability into a vector of the individual infection risk, denoted ρ(M,Dξ,µ). Laplacian-smoothing

was employed to ensure that those who were not infected in simulation outcomes are still assigned a small

probability of being infected.

To characterize ρ(M,Dξ,µ) as shown in Figure 5.7, we arranged the presentation top-down, characterizing

the distinct downsampling methods (µ) using two sub-figures, with disease (M) within each sub-figure as

wrapped facets. Finally, within each facet, we plotted a line for each underlying population, with the x-value

as the duty cycle interval ξ, and the y-value as δξ+ = DKL(ρ(M,Dξ0,µ) ‖ ρ(M,Dξ+,µ)), where ξ0 = 5, and

ξ+ ∈ {10, 30, 60, 90, 180, 360}.

As shown in Figure 5.7, the Snapshotmethod in general will exhibit higher divergence than the Upperbound

method, except for diseases with low R0, such as influenza type A (1.31) and MERS (0.69). In general, the

higher the δξ+ , the higher the divergence of individual infection risk from estimations with ξ+-downsampled

contact data when compared to ξ0-sampled contact data.

5.5 Discussion

The Snapshot method generally resulted in faithful population-level estimates—in terms of securing estimates

on the mean of cumulative cases at the cost of distort the probability distribution of cumulative cases across

realizations—invariant to the duty cycle interval ξ while imposing the risk of underestimating the attack rate

for high R0 pathogens, particularly for denser communities such as SHED1. By contrast, for population-level
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estimations, the Upperbound method can produce close estimates only for short duty cycle intervals. However,

for individual-level estimations, we found that the Upperbound method generally outperforms the Snapshot

method, except for low R0 pathogens and diffuse communities.

We found that both the sampling method and sampling interval exert impacts on the simulation results;

moreover, their impacts vary depending on the type of pathogen and the sparse-versus-dense attributes of the

community. Such differences are evident in Figures 5.1 to 5.4 by the distinct patterns distinguishing different

downsampling methods and different intervals within a sampling method.

For most subplots in Figures 5.1 and 5.2, locations and shapes of boxplots within each subplot across

different sampling intervals exhibit greater similarity to each other for the Snapshot method than for the

Upperbound method. Moreover, in Figures 5.3 and 5.4, dots are closer to the origin for the Snapshot method

than the Upperbound method. These closer-to-the-origin dots indicates that in estimating the attack rate, as

the duty cycle interval increases, the Snapshot method achieves lower bias and variance than does Upperbound.

In short, when fed into the ABM model, the results of the Snapshot method—which only captures proximity

contacts within a short duration window within each duty cycle—can produce more accurate estimates at a

lower variance than results sampled from the Upperbound method.

Despite Snapshot’s effectiveness in capturing contact networks in terms of estimating the mean of cumu-

lative cases and attack rate, when considering individual infection risk, Upperbound is superior. In Figure 5.6,

the weighted-Minkowski distances for the Snapshot method is, in general, larger than that for the Upperbound

method, particularly for sparse populations like that SHED9, and with diseases having higher R0, such as

pertussis, and measles.

For simulations to yield reliable conclusions with respect to infection transmission across sparsely connected

communities, there needs to be compensation for reductions in observation frequency through elevation of

the ensemble sizes. Reducing observation frequency can alter simulation results, and comparisons on network

structure changes induced by downsampling suggest the need to maintain information on the ordering of

contacts to better simulate contact networks reconstructed from high-resolution contact data. This also

indicates that apps that have already employed the Snapshot method, such as EthicaData [388], can be an

excellent tool for efficiently and effectively capturing proximity contact data.

In terms of network structure presented by downsamplings with the Snapshot and Upperbound method,

the Snapshot method ensures accuracies of cumulative contact time at the cost of distorting the node-degree

distribution. The Snapshot method seems to retain better population-level estimates than the Upperbound

method for results of an empirical contact data empowered transmission model. There might be associations

between metrics of contact network (such as cumulative contact time) and transmission model results (such

as the mean of cumulative cases and attack rate).

Our findings are subject to a number of important limitations:

• Limited Population Size—Given the confined population size, it is possible that the observed behavior

of Snapshot and Upperbound here is materially altered by quantization effects exhibited by agent-based
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simulation when population size is small [95, 153, 473]. Because the attack rate represents the quotient

of two integers, when both nominator and denominator are small, the possible values of their ratio can

be sparse. A partial result is that realizations in which the entire population is infected can happen

more frequently than when the population size is large.

• Limited Diversity of Participants—As university students, most participants of our experiments

share similar lifestyles and activity spaces for their working and studying hours. The findings resulting

from applying such methods to larger and more societally representative communities may vary notably

from the results shown here.

• Simple Modeling Methodologies—While the method of feeding high-resolution proximity contact

data into the epidemiological model used in our experiment is mathematically and practically straight-

forward, there is much opportunity to apply more versatile methods to combine data into the model as

modeling methodologies advance.

5.6 Conclusion

This work has investigated the impacts of observation frequency and sampling methods for proximity contact

records in capturing proximity contact networks for epidemiological simulations. We evaluated the impacts

induced by the temporal granularity of sampling networks in terms of distortion of measured network structure

and of population-level and individual-level simulation outcome metrics in light of combinations of specific

diseases and underlying types of communities. These results emphasize classes of pathogens and population

structures in which the design of new studies should prioritize frequent sampling of contact networks. Our

findings also provide guidance as to how network density and lower sampling rates might distort measures

such as attack rate and individual risk.

102



6 Conclusions

6.1 Summary

The incorporation of high-resolution proximity contact data offers an important avenue towards advancing

transmission models. Effective public interventions and measurements to control infections—such as contact

tracing, precision lockdowns, safeguarded reopening, and vaccine planning—can benefit from a better under-

standing of proximate contacts. High-resolution proximity contact data and methods to fuse these data with

transmission models help secure insights into the significance of proximate-contact patterns.

The first contribution of this dissertation is the demonstration of the utility of Extended Kalman Filtering

(EKF) as an approach to enable a System Dynamics SIR (SD-SIR) model to benefit directly from high-

resolution proximity contact data. The experiment designed in Chapter 3 reveals connections between a

filtered SD model and an agent-based SIR (ABM-SIR) model, with both taking advantage of recurrent

incoming data. The filtered SD model takes recurrent noisy surveillance data such as a time series of new

cases, and the agent-based model takes high-resolution proximity contact data. The demonstrated EKF

empowered SD model has improved estimations better matching outbreak peaks. This improvement indicates

the potential to train the SD model with surveillance data to better match the high-resolution proximity

contact data assisted ABM model, overcoming inaccuracies in the SD model structure and its parameter

estimates. Meanwhile, it is plausible to have agent-based models hand over some expensive simulation tasks

to a filtered SD model for rapid response to interactive what-if questions. The work of EKF also revealed a

need to study the impact of unknown sensing noise on simulation results of transmission models, particularly

considering the dynamics of human behavior and disease spreading.

The second contribution of this dissertation demonstrated that both spatial and temporal resolution have

a fundamental impact on high-resolution proximity contact data. Experiments designed in Chapter 4 and

Chapter 5 substantiated the importance of such data in general, and pointed to the need for further studies

with various populations, diseases, sensing techniques, and resolutions. For simulation results exhibiting

invariance under changes in resolution, general patterns and exceptions suggest opportunities to optimize

sensing regimens and generalize findings from simulations to similar scenarios. For example, identifying a

minimum sufficient observation frequency can help slow battery drain. Doing so may support the viability of

using varying pedigrees of smartphones, promoting smartphone-assisted contact tracing globally to populations

at various degrees of development and socioeconomic status. This research lays the groundwork for further

studies that could support identifying characteristics of the contact network giving rise to such invariance.
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Such work could, for instance, shed light on contexts under which potential outbreaks are oblivious to certain

types of variation in contact patterns, helping spot safe opportunities for lockdown relaxation and reopening.

Beyond allowing us to measure and quantify contact patterns, the advent of sensing technologies, such as

GPS and Bluetooth, is also shaping such patterns. For example, GPS-equipped navigation systems may route

a vast number of users to the same small set of optimized routes, thereby inadvertently boosting co-location

of individuals. On the other hand, Bluetooth lessens dependence on wired communications, enabling users

to move away from their electronic devices and mingle in proximity to others. There are circumstances

involving underlying populations and pathogens under which the results of transmission simulation exhibit

invariance to changes in resolution of proximity contact data. Studies characterizing such circumstances can

aid under-parameterized models in emerging or poorly studied diseases, helping us better prepare for features

of the next pandemic.

6.2 Future Work

This dissertation raises the opportunity for and highlights the importance of some interesting future work.

The groundwork of Chapter 4 and Chapter 5 hypothesized and evaluated the character of impacts of sensors’

temporal-spatial resolution on transmission models informed by sensor-collected proximity contact data.

However, the findings of Chapter 4 and Chapter 5 are limited to the scope of proximity contact data used in

experiments. Proximity contact data collected from a larger-sized underlying population with more diversified

occupations can enrich sensitivity analyses of impacts of temporal-spatial resolution.

In Chapter 5, the Snapshot sampling method with at least half-hourly observation seems to be a decent

default sensing regime. Simulations with parameters of other communicable diseases may lead to better

estimations on configuring the default sensing regime. Particularly, communicable diseases can be classified

into subgroups based on their sensitivities to spatial resolution. Identifying an effective classifier for a

communicable disease’s sensitivity to the sensing regime can suggest sensor configuration for a newly emerged

disease whose parameters remain unknown.

Personal privacy-protected proximity contact data collection is crucial to acquire data to inform trans-

mission models. Sensing modalities with lower spatial resolution can naturally provide better protection

of personal privacy. Following the experiment in Chapter 5, comparisons with other sensing modalities,

such as co-location based on cellular tower trilateration, can support finding a better solution for personal

privacy-protected proximity contact data collection.

6.3 Conclusions

This dissertation studied the fusion of high-resolution proximity contact data with transmission models by

answering the following three questions:
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• Is it possible to use the Kalman filter to advance transmission modeling by incorporating high-resolution

proximity contact data?

• Whether and to what degree does increased spatial resolution in proximate-contact sensing impact

simulation outcomes?

• Whether and to what degree does increased temporal resolution in proximate-contact sensing impact

simulation outcomes?

We addressed these problems with simulation experiments taking and designed around empirical longi-

tudinal datasets. Simulation results suggest transmission models can benefit from high-resolution proximity

contact data: With recurrent EKF updates and incoming estimates from an ABM-SIR model, an SD-SIR

model can mitigate structural and parametric inaccuracies at the cost of uncertainties in observed proximate

contacts due to the temporal-spatial resolution. An agent-based model can benefit from proximity contact

data directly, but its estimates’ sensitivity to the temporal-spatial resolution of proximity contact data varies

under circumstances of diseases/pathogens, underlying population, and the stochastic of disease spreading.

Characterization how this sensitivity changes under the circumstances reveals opportunities to tailor sensing

regimes and modalities for proximity contact data collection, ensuring model estimates’ accuracy and data

collections’ energy efficiency. To summarize, the contributions of this dissertation to the literature are as

follow:

• The extended Kalman filter (EKF) can improve a System Dynamics/compartmental aggregate susceptible-

infectious-removed (SD-SIR) model by periodically regrounding that model with even noisy surveillance

data. The EKF filtered SD model has its outbreak peak estimations in better accordance with synthetic

data outcoming from an agent-based SIR (ABM-SIR) model taking individual-level proximity contact

data. This better accordance reflects that the EKF solution compensates for an SD-SIR model’s struc-

tural and parametric inaccuracies. For example, an SD-SIR model usually assumes random mixing

within its compartments, aggregating individual-level preferential contacts into group-level preferential

mixing rates. This aggregation replaces contact rates between two individuals with the norm of con-

tact rates between two groups to which these two individuals belong. EKF updates taking recurrent

incoming data can reground model states, mitigating inaccuracies incurred from replacing individual

contact rates with group norm and estimating the norm of contact rates between two groups. Because

an EKF improved aggregate model has improved accuracies without a surging burden of computational

complexities, it may support offloading expensive computing from the agent-based model.

• For transmission modeling using derived proximate contacts from proximity contact data, the impact of

sensing modality and the distance threshold of two individuals having proximity contact can substantially

impact modeling outcomes. GPS co-location and Bluetooth beaconing are two typical sensing modalities

employed to collect proximity contact data. Even with an identical agent-based susceptible-exposed-

infectious-removed (ABM-SEIR) model, GPS co-location derived- vs. Bluetooth beaconing derived-

105



proximate contacts can still result in different predictions regarding disease trajectories. The magnitude

of differences in predictions varies by disease type and underlying population but is usually notable

from individual risks of infection. Proximity contact data measured using different spatial resolutions

cannot be treated as interchangeable, despite combinations of disease/pathogen types and underlying

populations under which the results of an ABM-SIR can exhibit insensitivity to the spatial resolution.

Studies on conditions governing low sensitivity to spatial resolution may lead to improvements in data

compatibility and reusability.

• The observation frequency and the sampling method are referred to as the sensing regime. The

sensing regime impacts the temporal resolution of proximity contact data collection, hence the derived

proximate contacts for transmission modeling. For example, when collecting proximity contact data

for derived proximate contacts taken by an ABM-SEIR model, with the sampling method fixed, a

sensing regime with higher observation frequency usually results in low deviance of the ABM-SEIR

model estimated attack rate and individual risks of infection from the baseline—the sensing regime with

the highest possible observation frequency. The Snapshot sampling method can moderate the lowering

observation frequency caused diminishing accuracy in simulation-based outcomes, thus is worthy of

further consideration. Although disease type and underlying population can considerably alter the

model’s sensitivity to temporal resolution, results suggest, with the Snapshot sampling method, it is

plausible to lower observation frequency to once per 10 minutes or even once per 30 minutes while

retaining simulation results in bearable accordance with the baseline of once per 5 minutes.

This dissertation demonstrated a practical approach to improving transmission models. The first part

demonstrated that filtering techniques and proximity-sensing-informed contact data could lessen the dis-

tortions caused by System Dynamics and compartmental transmission models. The distortions due to

assumptions of random-mixing are lessened and replaced with distortions characteristic of the sensing regime

and modality involved. The second component of this thesis studied the impacts on simulated results of

potential outbreaks of spatial and temporal resolution and two key configurable factors of sensing modalities

for proximate contacts, shedding light on managing distortions due to sensing data and modality. When

synthesized together, further research related to either part will bring new insights into improving transmission

models and our approaches.

Our approach also serves as a way to present, store and retrieve proximity contact networks. Proximity

contact networks have been presented by stylized models, such as with Poisson random, small-world and

scale free networks, generative algorithms such as Erdős–Rényi, and Watts-Strogatz and Barabási–Albert

algorithms. These approaches focus on characterizing network features with key parameters, and relying on

calibrated key parameters to parametrically approximate the structure of particular contact networks. While

such methods are recommended by conciseness, such parametric characterizations of networks are static—

thereby lacking temporal dependency—and serve as a notably lossy approximation to proximity contact

networks. Our approach of storing proximate contacts as event records and downsampling and filtering
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techniques to retrieve stored proximity contact networks can preserve temporal dependency and population

characteristics, particularly when used with transmission models. Keeping simulation results comparable

while adjusting the downsampling method and parameters suggests compressed or feature extracted proximity

contact networks.

We found that systematic approaches are required to study transmission simulation results, which, notwith-

standing exceptions, cannot be generally independently analyzed with respect to sensing modalities, underlying

population, and disease parameters in isolation. Insensitivity of simulation results to sensing modalities, un-

derlying population, and disease parameters was only noticed in certain combinations, such as with a diffuse

population with the GPS co-location method given a less transmissible disease. Our findings suggest that

changing parameters, such as via implementation of public health orders, will give rise to different strengths

of impact given different underlying populations or different diseases parameters, such as given for variants

of concern of SARS-CoV-2.
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