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Abstract

Background: Numerous studies have shown that older adults’ cognitive abilities are age-related and
likely to decline at a certain age. Based on these indications, this work uses functional principal component
analysis (FPCA) to explore changes in cognitive function with age. This study aims to describe the longitu-
dinal cognitive function of elderly trajectory patterns between 65 and 80 years of baseline age using FPCA
and identify risk factors for cognitive decline using machine learning algorithms.

Methods: We used FPCA to extract the overall pattern change and use elastic-net, decision tree, and
random forest models to find risk factors. In a sample of elderly (n = 944) with 6608 measurements (7
waves) from the Survey of Health, Aging, and Retirement in Europe (SHARE), by using age at interview as
time, longitudinal cognitive function trajectory patterns for the elderly were extracted using FPCA. Zou and
Hastie (2005) proposed the elastic net regression method, which effectively implements feature selection by
setting coefficients of non-significant variables to zero [56]. Random forest is a tree-based machine learning
algorithm that harnesses the power of multiple decision trees to make decisions. Random forests combine the
outputs of individual decision trees to generate the final result. [I5]. We modelled the first two functional
principal components (FPCs) with these machine learning algorithms and used the selected covariates in the
baseline wave to identify risk factors.

Results and Conclusions: We have obtained four FPCs explained by 78.0, 14.2, 6.7 and 1.1 % of the
variation respectively for the cognitive function. The mean function of FPCA shows that cognitive decline
is generally divided into two stages (early decline and late decline). By analyzing and comparing a set of
models at the national level, the cognitive function of each country is slightly different. Older people in Italy
and Spain have significantly lower cognitive abilities. The Predictive R? of FPC1 and FPC2 is around 0.5
and 0.2 with covariate delayed recall score (DRS) and reduced to 0.4 and 0.1 without covariate DRS. From
the individual point of view, many risk factors are modifiable and can be prevented in advance. Our results
show that immediate recall score, education level, country, numeracy score, reading score, and household

income are associated with cognitive patterns in the elderly.
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1 Introduction

Cognitive functions refer to various mental abilities, which are more related to how people learn, think,
remember, pay attention, make decisions and solve problems [3T]. Cognitive functions have been distin-
guished by how they change throughout adulthood, namely cognitive mechanics and cognitive pragmatics.
Cognitive mechanics are constructed by information processing rate, working memory and inhibition(ability
to automatically inhibit goal-irrelevant information). The information processing rate is most sensitive to age
differences. In this work, we focus on cognitive mechanics, which is typically decline with age and accelerate
in old age. In contrast to the mechanics, the pragmatics of cognition are verbal and numerical abilities that
rely on the accumulation of lifespan development and knowledge-based forms of intelligence, which are well

maintained during adulthood and will not decline obviously in advanced age [2].

Cognitive abilities are critical to living independently as people age, such as whether a person can live inde-
pendently and drive safely. Furthermore, cognition is essential for effective human communication, including
processing information given by others and responding appropriately to others. Cognitive impairment and
memory loss, which tend to decline with age [37], are characteristics of diseases such as dementia. Dementia
is a clinical syndrome characterized by a loss of cognitive functioning (thinking, remembering, and reasoning)
that interferes with a person’s daily life and activities [25]. In 2015, it was estimated that nearly 47 million
people worldwide were affected by dementia, and the number continues to rise, which is expected to reach 75
million by 2030 and 131 million by 2050 [5I]. Alzheimer’s disease (AD) is the most common form of dementia,
accounting for around 50% -70% of cases. In other words, cognitive decline is the most common cause of
AD in older adults. A group analyzed the prevalence and incidence of AD in European countries by using
meta-analyses. They found the prevalence of AD in Europe was estimated at 5.05% and the incidence was
11.08 per 1000 persons per year [38]. For AD or other dementia, there is no cure or treatment that substan-
tially relieves symptoms. AD can profoundly impact the lives of patients and their families over many years,
but it doesn’t stop there. AD can also have a significant economic impact on individuals and their families.
According to statistics, the cumulative cost of an AD patient starting from primary care to specialist care
in Sweden has exceeded €5,000 [5I]. However, this cost is only a small fraction of an AD patient’s lifetime
medical and nursing costs. The total social cost of dementia in Europe in 2010 was estimated to be between
US $238.6 billion and €105.6 billion [53]. And by 2050, the overall mean cost burden for AD and Parkinson’s
Disease(PD) is estimated to be €357 billion [34]. The global economic cost of dementia was estimated at
more than US $600 billion in 2010 [50], in excess of US $1 trillion in 2020 and forecast to double by 2030
[55].



Declining cognitive functions has become one of the primary concerns for European countries. Explosive
growth in care costs and associated societal burdens on AD, PD, and other dementia challenges European
countries’ health care and long-term care systems. Since the primary risk factor for cognitive decline is age,
as life expectancy increases worldwide, the prevalence of the disease is increasing dramatically. However,
Cognitive impairment has multifactorial etiology, and partial risk factors are modifiable [51]. In 2011, Barnes
D E and Yaffe K identified the evidence for seven potentially modifiable risk factors associated with AD:
diabetes, midlife hypertension, midlife obesity, smoking, depression, cognitive inactivity or low educational
attainment, and physical inactivity. They also predicted that if all seven risk factors were reduced by 10 %-
25 %, as many as 1.1 to 3 million cases of AD could be prevented globally, and 184,000 to 492,000 cases
in the United States [3]. In 2014, [39] suggested that around one-third of AD cases might be attributed to

potentially modifiable risk factors.

This thesis examines the association between age and cognitive decline among people, especially the
elderly, living in different European countries. We model the cognitive function trajectory as a function of
age to see the overall pattern and if there is a pattern change. In addition, we intend to identify all aspects
of risk factors from the overall design and the pattern change. To this end, we used the data from the Survey
of Health, Aging, and Retirement in Europe. SHARE is a research infrastructure providing internationally

comparable longitudinal data on various health, economic, and social factors [I3].

Longitudinal studies employ continuous or repeated methods for tracking the same individual to detect
any changes that might occur over a long period, usually, years or decades [19]. Longitudinal data are
collected naturally on any combination of exposures and outcomes, without any external influence [I8].
The type of study is most commonly used in medicine, economics, medical sciences and epidemiology. It’s
useful for assessing risk factors, disease progression, and treatment outcomes over different lengths of time.
Mixed-effects regression (MER) is one of the preferred methods for longitudinal data, which allows time-
invariant(s.g., gender) and time-varying predictors (s.g., age) [36]. Furthermore, MER explicitly models
individual changes over time and is flexible in repeated measures without requiring the same number of
observations for each subject. Nevertheless, MER is not appropriate for our study, we instead propose an
estimation procedure based on principal component bases and extend FPCA to the longitudinal setting. In
MER models, we assume that our outcome variable is a linear function of age, and then there will only
be a positive or negative linear relationship between them. We believe that age-based cognitive function

trajectories should be more complex with a nonlinear quadratic functional format.

Functional data analysis (FDA) is a statistical field that studies models and analysis methods for data
recorded over continuous time for each subject. Likewise, it can be described as the study of a sample of
trajectories or time courses. In FDA, where we consider repeated observations over time courses and do
not rely on any stationarity assumptions, FDA is particularly well suited for analyzing temporal dynamics
and longitudinal data that are abundantly found in applications such as biomedicine. In general, any time-

related data that is repeatedly observed across independent individuals or units can be analyzed using FDA’s



methods. A basic paradigm of the FDA is that the observed data is regarded as an independent and identically
distributed random sample from a stochastic process. However, it is also possible to incorporate dependencies
between the realizations of stochastic processes. The underlying stochastic process that is assumed to lie in
L, space is generally assumed to be smooth over a continuum, which is the target interest of FDA [23] [28].
Functional principle component analysis is one of the most popular multivariate analysis techniques for the

extraction of information from the FDA.

FPCA is a powerful tool used to model longitudinal data observed at different time points. FPCA is based
on the principle of component analysis(PCA); however, rather than using variables, the FPCA uses functions.
It is a dimension reduction method to decompose the latent stochastic process into a linear combination of
FPCs [54]. And it represents functional data in the most parsimonious way, which maximizes the variation in
the randomly observed curves. The top few FPCs explain most of the variability in the underlying stochastic
process [44]. FPCA can work with sparse data and does not require that the observations are taken at the
same time points. In this regard, FPCA offers significant advantages for a better understanding of trends.
FPCA has successfully been applied to real life, such as weather and climate prediction, fetal movement

monitoring data [52], genetic growth [27] and child growth study [30].

In this thesis, because the number of repeated measurements for cognitive function per elderly is irregular
and small, FPCA is performed by a nonparametric method to analyze and characterize cognitive trajectory
data. Unlike classic FPCA, which requires many regularly spaced measurements to express the random curves
per subject, this method works well with a small number of repeatable measurements per subject. We assume
the repeatable measurements are randomly located with a random number of repetitions for each subject and
are determined by an underlying smooth random trajectory plus measurement errors. Even if only one or few
measurements are available for a subject, it can estimate individual smooth trajectories satisfactorily. This
approach assumes the repeated measures are determined by an underlying smooth random (subject-specific)
trajectory plus measurement errors [45] and principal component scores (FPCs) [54]. Simultaneously, like
classic FPCA, it is suitable for extracting the pattern of the entire cognitive abilities as a function that will
otherwise be lost with applying some traditional statistical techniques. By treating the whole curve as a
single entity, there is no concern about correlations between repeated measurements. We assumed that an
underlying functional relationship governs the data. In addition to the computational advantages, we are
thus able to extract the main differences between subjects in their average cognitive function and how their
cognitive function over time. We also detect the associations between one or more factors and longitudinal

cognitive growth data.

The primary aim of this study is to characterize individual cognitive trajectories of the elderly using
FPCA and identify the risk factors by using machine learning models (including elastic-net, decision tree
and random forest). The results of FPCA show that cognitive function is an up-and-down process, divided
into two stages (early and late decline), with an increase in cognitive function at about age 70, and then

an accelerated decline after age 75. Based on the results of these machine learning models, we found many



preventable risk factors, such as alcohol drinking behaviour, physical activity, household income level, and
education level.

The remainder of the thesis is organized as follows. Section 1 is the introduction. In Section 2, we
present the data, including the source of data, prime outcome, covariates and study sample. The FPCA,
Cross-Validation, Elastic-net, Decision tree, and Random Forest methods are described in Section 3. The

result of FPCA and risk factors are presented in Section 4. Section 5 is the conclusion.



2 The data

2.1 Source of data

Our sample data is from SHARE. The baseline study of SHARE took place in 2004 and continued
today. With the exception of the SHARE, Corona Survey collected via telephone in 2020, all other SHARE
data collection consisted of face-to-face computer-assisted interviews. 140,000 people aged 50 or older from
various regions of Europe and Israel participated and conducted 530,000 in-depth interviews. The baseline
wave involved 12 countries(Austria, Belgium, Denmark, France, Germany, Greece, Israel, Ttaly, Netherlands,
Spain, Sweden, and Switzerland). Switzerland and Belgium contribute the least and the most respondents at
around 3.33% and 12.68% of the whole population, respectively. Approximately 8% to 10% of respondents
are from other countries. In contrast, Spain and Italy have seriously ageing populations, with the average
respondent reaching over 65 years old, while the average age of respondents in Greece is relatively low, around
62 years old. Respondents from other countries are about 63 to 64 years old. Overall, the male-to-female ratio
in these participating countries is around 5 to 5. Several other countries have been added in the following
waves. Until now, 28 European countries and Israel joined SHARE. The persons aged 50 years and over are
the target population of SHARE. New participants Will be enrolled in each wave as refreshment samples to
compensate for the dropout of participants. The collection method in wave 3 differs from other waves; it is
called SHARELIFE. The questioning method in SHARELIFE is based on the Life History Calendar (LHC).
Respondents’ lives are graphically represented by a grid that automatically populates during the interview.
The LHC helps respondents remember primarily by asking about life events that are likely to be reflected
accurately. Usually includes the respondent’s child’s name, date of birth and partner’s history. Since our
outcome variable has not been provided in the third wave, the sample data include wave 1 (2011), wave2
(2011), waved (2013), waveb (2015), wave6 (2017), wave7 (2019) and wave8 (2020). Wave 1 was selected as

the baseline, and wave 8 was a new wave when collection took place in 2020.

2.2 Primary Outcome

Cognition function was assessed using the “ten words list learning” test in SHARE. The test is conducted
with immediate recall and delayed recall. Immediate recall was the number of recalled words after the
interviewer read a list of 10 words, so the score of immediate recall ranges from 0 to 10. At the end of the

test, the interviewer will ask the participants to recall the words again from the list as the delayed recall



score(DRS). From Table 1, the mean of DRS decreases as the wave increases, from 3.44 in wave 1 to 2.54 in
wave 8, showing a downward trend; as we mentioned in the introduction, cognitive function is closely related
to age. We will use the normalized delayed recall score as our outcome variable and only keep the subjects
without any missing value in DRS. According to our introduction to cognitive function in section 1, DRS

belongs to cognitive mechanics, which is sensitive to age differences.

2.3 Covariates

SHARE is an extensive database that covers thousands of variables; we initially identified covariates from
multi-aspect, including demographic information, household composition, social support, network, childhood
conditions, health, behavioural risk, work, and money. Our descriptive statistics for the final covariates
across waves are depicted in Tables 2.1 and 2.2. Note there are 944 people in each wave, no missing values
in the wavel, but other waves might have it, and the number in the bracket is the percentage of an index
for a variable (Table 2.1). The number in the bracket after the description is the index in the dataset. For
example, in the original dataset, Male(1) means Male represent by index 1.

In descriptive Table 2.1, we found that the participants were more female (58%), and the elderly living
alone were increasing, from 29% in wave 1 to 54% in wave 8. At the same time, the health of the elderly
is declining, the number of hospitalisations is increasing, and some activities cannot be completed, which
is in line with the laws of nature. It is worth noting that when self-rated writing, reading and orientation
time skills have dropped significantly, the numeracy score of the elderly has not shown a significant drop;
it remained unchanged. From the descriptive Table 2.2, we found that the cognitive function of the elderly
decreased with age, which was consistent with expectations. In addition, BMI, maximum grip strength, and

income levels all decreased over time.

Table 2.1: Descriptive Statistics Across Waves (discrete variable)

Variable wave 1 wave 2 wave 4 wave 5 wave 6 wave 7 wave 8
gender

Male(1) 401(42)  401(42)  401(42)  401(42)  401(42)  401(42)  401(42)
Female(2) 543(58) 543(58)  543(58))  543(58)  543(58)  543(58)  543(58)
partnerinhh

Living with spouse/partner(1) 670(71) 642(68)  581(62)  545(58)  506(54)  475(50)  432(46)
Living w.o spouse/partner(3) 274(29)  302(32)  363(38)  399(42)  438(46)  469(50)  512(54)
Marital status(mstat_m)

married and living together with spouse(1) 645(68) 25(45) 16(27) 24(34) 24(37) 10(17) 7(11)
registered partnership(2) 10(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0 (0)
married, living separated from spouse(3) 7(1) 0(0) 0(0) 0(0) 1(2) 1(2) 1(2)
never married(4) 38(4) 1(2) 1(2) 1(1) 2(3) 0(0) 1(2)
divorced(5) 54(6) 0(0) 3(5) 2(3) 1(2) 1(2) 2(3)
widowed (6) 190(20)  29(53)  40(67) 44(62)  37(57)  46(79) 50(82)
Current job situation(ep005)

employed(1) 39(4) 18(2) 13(1) 7(1) 6(1) 8(1) 4(0)
unemployed, retired (0) 904(96)  918(98)  914(99)  919(99)  913(99)  902(99)  880(100)

Number of Child(child)



0(1)

1 to 3(2)

over 4(3)

Number of Received help(ghelp)
0(0)

1 to 3(1)

Number of Given help(ghelp)
0(1)

1 to 3(2)

Self-perceived health(health)
Excellent(1)

Good(2)

Poor(3)

Hospital stay(hospital_m)
No(0)

Yes(1)

Drinking behavior(drink)

not at all(1)

less than twice a month(2)

less than four days a week(3)
almost every day(4)

ever smoking(esmoked_m)
No(0)

Yes(1)

N of chronic diseases(chronic)
0(1)

1(2)

over 1(2)

N of doctor visit in 12 month(doctorS)
0 to 3(1)

4 to 12(2)

13 to 98(3)

depression scale(depression)
0 to 3(1)

4 to 12(2)

Mobility Index(mob)

0(1)

1 to 4(2)

Eyesight reading(reading)
poor(0)

good(1)

Self-rated writing skills(writing)
poor(0)

good(1)

Self-rated reading skills(reading)
poor(0)

good(1)

hearing

poor (0)

good(1)

Large Muscle Index(muscle)
0(1)

1 to 2(2)

3 to 4(3)

76(11)
511(72)
126(18)

758(80)
186(20)

609(65)
335(35)

112(12)
636(67)
196(21)

849(90)
95(10)

273(31)
20(2)
293(34)
281(32)

589(62)
355(38)

198(21)
316(33)
430(46)

430(46)
417(44)
97(10)

691(76)
220(24)

473(50)
471(50)

180(19)
764(81)

169(18)
775(82)

143(15)
801(85)

171(18)
773(82)

567(60)
229(24)
148(16)

79(11)
519(72)
120(17)

789(84)
155(16)

645(68)
299(32)

94(10)
567(60)
283(30)

814(86)
130(14)

249(29)
72(8)
246(29)
286(34)

592(63)
351(37)

191(20)
299(32)
454(48)

393(42)
426(45)
125(13)

730(79)
190(21)

496(53)
448(47)

161(17)
783(83)

167(18)
777(82)

144(15)
800(85)

188(20)
756(80)

597(63)
203(22)
144(15)

81(11)
535(72)
124(17)

758(80)
186(20)

553(75)
187(25)

66(7)
581(62)
297(31)

791(84)
151(16)

265(31)
73(9)
228(27)
277(33)

592(63)
351(37)

159(17)
289(31)
496(53)

343(36)
474(50)
127(13)

671(74)
237(26)

420(45)
522(55)

174(18)
770(82)

167(18)
777(82)

144(15)
800(85)

215(23)
729(77)

522(55)
225(24)
197(21)

87(12)
530(72)
117(16)

741(78)
203(22)

558(76)
179(24)

56(6)
547(58)
341(36)

780(84)
164(17)

281(33)
78(9)
225(27)
262(31)

593(63)
351(37)

145(15)
256(27)
543(58)

331(35)
468(50)
145(15)

633(70)
275(30)

378(40)
566(60)

214(23)
730(77)

166(18)
778(82)

143(15)
801(85)

261(28)
683(72)

487(52)
245(26)
212(22)

90(12)
557(73)
120(16)

685(73)
259(27)

750(79)
194(21)

51(5)
526(56)
367(39)

775(82)
169(18)

NaN
NaN
NaN
NaN

593(63)
351(37)

134(14)
235(25)
575(61)

328(35)
497(53)
119(13)

644(71)
265(29)

375(40)
569(60)

182(19)
762(81)

166(18)
778(82)

143(15)
801(85)

260(28)
684(72)

490(52)
219(23)
235(25)

88(12)
540(73)
113(15)

584(65)
318(35)

735(81)
167(19)

39(4)
505(53)
400(42)

757(80)
187(20)

NaN
NaN
NaN
NaN

567(63)
335(37)

117(12)
231(24)
596(63)

327(35)
485(51)
132(14)

590(68)
273(32)

326(35)
618(65)

161(18)
741(82)

219(24)
683(76)

153(17)
749(83)

271(30)
631(70)

432(46)
246(26)
266(28)

88(11)
568(73)
121(16)

557(59))
387(41)

808(86)
136(14)

34(4)
445(47)
465(49)

724(77)
220(23)

NaN
NaN
NaN
NaN

607(64)
337(36)

100(11)
226(24)
618(65)

290(31)
492(52)
162(17)

586(64)
330(36)

266(28)
678(72)

208(22)
736(78)

222(24)
722(76)

155(16)
789(84)

306(32)
638(68)

64(36)
34(19)
80(45)



Vigorous activities(vigorous)

never(1)

more than once(2)

active of Daily Living Index(active)
0(1)

1 to 5(2)

Instrumental Activities Index(active2)
0(1)

1 to 5(2)

Fine Motor Skills Index(finemotor)

1

2

3

4

Gross Motor Skills Index(grossmotor)

TR W N =

Score of orientation in time test(orient)

[ I N

Numeracy Score(percentage)(numeracy_m)

1

[S. TNV )

mother alive
Yes(1)

No(5)
father alive
Yes(1)

No(5)
country
Austria
Belgium
Denmark
France
Germany
Italy

Sweden
Switzerland

Spain

348(37)
596(63)

899(95)
45(5)

844(89)
100(11)

891(94)
50(5)
3(0)
0(0)

851(90)
74(8)
15(2)
2(0)
2(0)

0(0)

0(0)

16(2)
108(11)
820(87)

44(5)
154(16)
312(33)
290(31)
144(15)

70(7)
867(93)

9(1)
930(99)

38(4)
137(15)
88(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)

395(42)
548(58)

886(94)
58(6)

848(90)
96(10)

882(93)
55(6)
7(1)
0(0)
843(89)
70(7)
23(2)
7(1)
1(0)

0(0)

4(0)

6(1)
98(10)
836(89)

45(5)
156(17)
274(29)
303(32)
166(18)

45(23)
153(77)

3(2)
146(98)

38(4)
137(15)
88(9)
126(13)
95(10)
133(14)
137(15)
75 (8)
115(12)

463(49)
480(51)

857(91)
85(9)

794(84)
148(16)

852(90)
85(9)
7(1)
0(0)

790(84)
107(11)
37(4)
8(1)
2(0)

0(0)

5(0)

8(0)
100(11)
831(88)

15(2)
750(98)

1(0)
760(100)

38(4)
137(15)
83(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)

508(54)
436(46)

846(90)
98(10)

762(81)
182(19)

837(89)
96(10)
10(1)
0(0)

(81)
107(11)
(

10(1)
9(1)

0(0)

5(0)

10(1)
102(11)
827(88)

46(5)
155(16)
273(29)
303(32)
167(18)

15(2)
929(98)

1(0)
939(100)

38(4)
137(15)
83(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)

529(56)
415(44)

820(87)
124(13)

700(74)
244(26)

829(88)
94(10)
18(2)
0(0)

747(79)
100(11)
66(7)
22(2)
8(1)

4(0)

6(1)

15(2)
111(12)
808(86)

46(5)
155(16)
272(29)
304(32)
167(18)

9(47)
10(53)

1(12)
7(88)

38(4)
137(15)
88(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)

535(59)
367(41)

809(86)
135(14)

670(71)
274(29)

820(87)
102(11)
18(2)
0(0)

674(71)
158(17)
70(7)
31(3)
10(1)

9(1)
13(1)
31(3)

125(14)
724(80)

43(5)
151(17)
259(29)
286(32)
163(18)

4(0)
927(100)

0(0)
934(100)

38(4)
137(15)
88(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)

124(70)
54(30)

714(76)
230(24)

536(57))
408(43)

135(76)
30(17)
11(6)
0(0)

96(54)

39(22)

22(12)
13(7)
8(4)

30(3)
19 (2)
46(5)
163(17)
686(73)

46(5)
155(16)
272(29)
304(32)
167(18)

0(0)
20(100)

0(0)
14(100)

38(4)
137(15)
88(9)
126(13)
95(10)
133(14)
137(15)
75(8)
115(12)




Table 2.2: Descriptive Statistics Across Waves (continues variable)

Variable Summary wave 1 wave 2 wave 4 wave 5 wave 6 wave 7 wave 8
Immediate recall Score mean(sd) 4.85(1.68) 4.92(1.67) 4.93(1.58) 4.83(1.63) 4.74(1.65) 4.54(1.69) 4.03(1.77)
Age for time interview mean(sd) 69.31(3.74)  71.54(3.78)  75.88(3.74)  77.83(3.76)  79.78(3.76)  81.86(3.75)  84.48(3.76)

BMI mean(sd)  26.41(3.89)  26.50(3.99)  26.45(4.08)  26.60(4.15)  26.49(4.30)  26.23(4.29)  25.80(4.43)
Income(thousand)(thinc_m) median 25.11 21.78 24.24 23.58 21.64 20.42 21.00
IQR 26.67 22.95 25.46 22.74 20.04 19.45 18.87
Education year mean(sd) 9.38(4.81) 10.38(4.90)  10.37(4.92) 10.38(4.89) 10.38(4.87)  10.37(4.88)  10.37(4.88)
Maximum of grip strength(maxgrip) median 31 30 29 27 27 26 24
IQR 16 16 15 15 14 14 13
Household size(hhsize) median 2 2 2 2 2 2 2
IQR 1 1 1 1 1 1 1
Number of siblings alive median 1 1 1 1 1 1 2
IQR 2 2 2 2 2 1 3

2.4 Study sample

Due to filters/routing or an abandoned interview, there are plenty of missing values in the main SHARE
database. Besides, apart from the above reasons, SHARE uses missing codes to represent the missing values,
such as —1, —2, and —99. We regard all these missing codes as missing values. Independently of the chosen
imputation method. SHARE provide five multiple imputations [42] of the missing values on some variables
by using the simple hot-deck method or jointly by the fully conditional specification method (FCS) [49] for
users to account for additional variability caused by the imputation process when evaluating the accuracy
of their estimators. Hot-deck imputations are carried out separately by country, while FCS imputations are
carried out by country and sample type. In our study, we use some variables that have been imputed by
SHARE to reduce the proportion of missing values. For continuous variables, we calculate the mean of the
five multiple imputations. And for discrete variables, we use the most frequent value.

Researchers in different fields often wonder what percentage of missing data should be removed. Yet,
there is generally no established cut-off value for an acceptable portion of missing data in a dataset. By
referring to various literature, we find that Schafer asserts that a missing rate of 5% or less is irrelevant [43]
and Bennett believes that when more than 10% of the data are missing, the statistical analysis is likely to be
biased [B]. Considering our dataset, we think 10% is an appropriate threshold. We further filter out variables
if there is more than 10% missing data [33].

We suspected an accelerated decline in cognitive function after the age of 65, So we kept only participants
whose baseline age is from 65 to 80. Among these, we find the sample size for the age over 95 is too small,
which causes the outliers in the FPCA model. Therefore we remove the age over 95 in wave 8. In addition,
we filter out subjects with DRS less than zero and do not consider interviewees with missing values in DRS.
Since many respondents did not participate in all wave interviews, we exclude those respondents who did
not have all 7 measurements (all waves except wave 3). The FPCA method sample includes 944 individuals

with 6608 measurements. After filtering out variables with missing data, the sample size reduces to 713.



3 Methods

3.1 Sparse Functional principal component analysis

In sparse FPCA, sparse functional data as noisy sampled points are assumed to be independent real-
izations of a smooth random function with the mean is E(z;(t)) = p: and cov(z;(s),z:(t)) = G(s,t) =
Yok MePr(8)dr(t), t,s € T, where Ay are non-increasing eigenvalues. The ¢ and s are index variables as time
which belong to the closed time interval T. In classical FPCA, & = [(2i(t) — u(t))¢r(t) dt and the "
random curve is expressed as X;(t) = u(t) + >, &indr(t). t € T, where &, is the k" FPCs for it random
curve with E(&x) = 0, Var(§ix) = Mgy Dop A < 00, A1 > Ao > A3 > ..., and ¢y(t) is the k" eignfunction.
X; can be represented by the sequence of &;1,&;0,...&k. For any k, the first k term is the best k-dimensional
linear approximation for X (t) in Lo space, which explains the highest proportion of variance in data with a
given number of components.

Now we consider adding uncorrelated measurement errors with mean zero and constant variance o2 to

reflect additive measurement errors and the model will become [54]:

oo
Yij = Xi(Ty) + € = w(Tyj) + Y bindn(Tij) + €35 (3.1)
k=1
where Tj; € T, ¢;; is the i.i.d. measurement error and is also independent of &, where ¢ = 1,...,n,
j=1,...,N;, k=1,2,.... N; is the number of measurements on the i** subject.

Note Y;; is the j*" observation of the random function X;(t), made at a random time 7};. In our study,
Y;; is a j'" cognitive data point for i'" person and T;; is the age in the j" measurement for i*" person, where
i and j are integers. j € {1,2,3,4,5,6,7} and ¢ € {1,2,3,4,...,944}

In sparse FPCA, we use local linear smoothers for function and surface estimation. The local lines and
planes are fitted by weighted least squares. Mean, covariance and eigenfunctions are all assumed to be
smooth [22]. The mean function [i is estimated based on the pooled data from all individuals. The local
linear scatterplot smoother for fi is minimizing

n N;

szl(Ti;L—t)(Yij — Bo — Bu(t — Tpy))? (3.2)

i=1j=1

with respect to By, 1. The estimate of u(t) is fi(t) = Bg(t), k1 is a kernel function of order (v,l) and is
compactly supported, ||k1]]* = J k3(u) du < oo, where v is a multi-index v = (v1,v2). v1.v2.l are the given

integers, with 0 < vy +v2 <1
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The local linear surface smoother for G(s,t) is defined by minimizing

> Y ka8 T 6wy, T - 106, 5,0, (8, T (33)

i=1 1<jZI<N; G
where f(8, (s,t), (Tij, Tu)) = Bo+ B11(s—Tij) + f12(t — Ty). Minimization is with regard to 8 = (5o, f11, B12)-
ko is a kernel function of order (v,1) and is compactly supported, [|kz2||> = [ [ k2(u,v) dudv < cc. Usually,
the smoothing parameter for this surface smoothing step is chosen by one-curve-leave-out cross-validation.

The covariance function between Y;; and Yj; is given by

cov(Yi, Ya|Tij, Tir) = cov(Xi(Ty;), Xi(Tu)) + 0651 (34)

where 0;; = 1 if j =1 and 0 otherwise.
Now let G;(T;;,Tu) = (Yij — i(Ti;))(Ya — (Ty)) be the raw covariances, where fi(t) is the estimated
mean function. Then the E [G,(T;;, T;;)] becomes

E[Gi(Ti;, Ti)] = cov(Xi(Tij), Xi(Ty)) + 06,1 (3.5)

By estimating the diagonal covariance function V(t) = G(t,t) with the local linear smoother on the
diagonal raw covariances G;(T;;, T;;) (obtained from equation (3.2) by using {G;(T;;, T;;)} as input) [29] [21]

[24], if 02 > 0, the 02 of the measurement errors in Equation (3.1) is estimated by

2 N ~
52— 2 [V(t) . G(t,t)} dt (3.6)
T| Jr,
where |T'| denote the length of T and Ty is the interval Ty = [inf{z :x € T} +|T| /4, sup{z : x € T} —|T| /4]
The eigenfunctions and eigenvalues correspond to the ék and \j, can be estimated by the following equation

t) ’ = 1 and (¢(t) , dm(t)) = 0, for m < k. G(s,t) denote the smooth surface
estimate of G(s,t) = cov(X(s), X(t)) (see Equation (3.3))

with the constraints Hq@k(

/T Gi(s, )u(s) ds = A1) (3.7)

For the classical FPCA, FPC scores are estimated by & = [(2;(t) — u(t))ér () dt, which works well for
the sufficient density of the grid of measurements for each subject. However, for sparse FPCA, since the
Y;; are only available at discrete random times Tj;, this numerical integration can not provide a reasonable
approximation. The FPCs for sparse FPCA should be estimated under the assumption that &, and €;; are

jointly Gaussian, and the best prediction is given by
&ir = B(&alY7) = )\kC/)ikZ;il(Yi — ;) (3-8)

where Y, = (Y;17 s ZNL) Zy - COV(}/hY) ¢ik: = ((bk(nl)v s 7¢/€( ZN,)) and Hi = (M(Tll)a .. ’M(ENL))7
Note the true values of A\, ¢;x, Yy and p; are unknown. f;k is the best linear prediction of &, given the

information from the i*” subject, no matter whether the Gaussian assumption holds or not.
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By substituting estimates of i;, Ak, ¢ix and y~,, from the entire data ensemble, Yao, Muller and Wang

(2005) proposed to use the conditional expectation to estimate scores

i = j\kéiki:;(}’i — 1) (3.9)

The prediction of trajectory X;(¢) is given by

XK@

K
)+ Eandi(t) (3.10)
k=1

The K is chosen by cross-validation based on the one-cure-leave-out prediction error [54]. This condi-
tioning method provides the best predictors under Gaussian assumptions and works in the presence of both
measurement errors and sparsity.

All statistical analyses were performed using R studio version 4.0.4 and FPCA was performed using the
fdapace package [21] [54] [1] [20]. The first step toward using the FPCA function in the fdapace package is
to restructure the data so that each respondent’s time and DRS data are stored as lists in separate columns,

where each row contains all of the data for a single id. The work-flow for sparse FPCA is as follows:

e Calculate the smoothed mean [i (local linear smoothing) by aggregating all available cognitive curves

together (see Equation (3.2)).

e Calculate each cognitive curve’s own raw covariance separately and aggregate all these raw covariances

to form the sample raw covariance (see Equation (3.4) and (3.5)).
e Use the off-diagonal raw covariances to estimate the smooth covariance (see Equation (3.3)).

e Obtain the eigenfunctions ¢E and eigenvalues A by doing eigenanalysis on the smooth covariance and

then project the smooth covariance on a positive semi-definite surface (see Equation (3.7)) [26].
e Use conditional expectation to estimate the £ (see Equation (3.8) and (3.9)).

In functional data analysis, FPCA plays a vital role. The top FPCs explain major sources of total
variation among the whole dataset. We use FPCA to catch major variance, avoid overfitting, and smooth the
fitted curves [44]. The FPCA method can accurately capture the time fluctuation characteristics of cognitive
function, especially the changing direction and form in time, which provides a scientific basis for modelling
the cognitive function of the elderly. In the next section, we introduce some machine learning models and

methods, namely cross-validation, Lasso, ridge, elastic network model, decision tree and random forest model.

3.2 Statistical learning

3.2.1 Shrinkage Models

After applying the FPCA method for dimension reduction, we use shrinkage models to identify the risk

factors. In the machine learning field, it is called feature selection. Our dependent variable is FPC1 or

12



FPC2 (y;) which we obtain from the FPCA technique and independent variables (z;;) are the covariates in
Table 1 and 2. Note that since after removing all missing values there are 713 individuals and 39 covariates
remaining, so i € {1,2,3,...,713} and j € {1,2,3,...,39}. After fitting the shrinkage model with significant

coefficients(f;), the remaining covariates are the risk factors we want to recognise.

Ridge and Lasso Regression

The ridge regression and Lasso regression are the two best-known techniques for the shrinkage of the re-
gression coefficients. By adding the L; or L, penalty into the loss function, both methods could shrink
the regression coefficients toward zero. These two methods are very similar to least squares (RSS =
Sy (yi —Bo— >0 Bjmij)Q), except that the coefficients are estimated by minimizing a slightly differ-

ent quantity. The ridge regression provides the minimum lambda to minimize the

2
n

P P
Z yi—50—25j9€ij +)\Zﬁ? (3.11)
=1 i

i=1

where ) is a tuning parameter that greater or equal to zero. The shrinkage penalty A Z?:l sz has the effect
of shrinking the estimates of §; towards zero, but it never shrinks the ; exactly to zero. The parameter
A is used to control these two terms’ relative influence on the regression coefficients’ estimation. That is,
when ) is zero, the penalty term has no effect, and when \ approaches infinite, the penalty becomes more
impactive, ridge regression coefficient tends to be zero. Ridge regression has the obvious disadvantage that
the final ridge regression model will contain all predictors. However, the Lasso regression can overcome this
disadvantage.

The Lasso regression provides the minimum lambda to minimize the

n

2
P P
Z yi_/@O_Zﬁjxij +/\Z\,Bj| (3.12)
=1

i=1 j=1

L1 penalty equal to A Z§:1 |5;] can estimate all the coefficients exactly to zero when the tuning parameter
A is sufficiently large. Therefore, the Lasso performs variable selection, and the Lasso model is much easier
to interpret than the ridge. The A usually is selected by cross-validation methods. By choosing a grid of A
values, we select the A for which the cross-validation error is the smallest. Lasso also has obvious shortcomings.
When there is a multicollinearity problem, Lasso randomly selects a multicollinear variable, so Lasso cannot
overcome the multicollinearity problem. The shrinkage regressions (e.g. ridge, Lasso regression) usually
significantly reduce the prediction variance and achieve the purpose of coefficient shrinkage and variable

selection, but they all have limitations.

Elastic Net

The elastic net is a hybrid between the Lasso and ridge model for improving the shortcomings of these

two techniques; it uses the penalties as a combination of a L; norm penalty and a Ls norm penalty. Ridge
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with Ly norm = Z§=1 632 includes all the predictors in the final model and will not perform feature selection.
Lasso with L; norm = Z§:1 |5;| only takes a few samples for high-dimensional data. Like ridge and Lasso,

we attempt to minimize the residual sum of squares with different penalty terms:

2
n p

Do\ wi=Bo=d B | +A |- /2 +a 1) (3.13)

i=1 j= j=1 j=1
note that dividing the ridge penalty by 2 is convenient for optimization.

The new penalty is A {(1 —a)( ?:1 B3)/2+ Z?:l |5j|}» which balance the two penalties of Lasso and
ridge and can result in a better performance on some problems. Notice that o and A\ are always positive
numbers. It is more useful to think of « as controlling the mixing between the two penalties and A controlling
the amount of penalization. « takes values between 0 and 1. When o = 1, it gives Lasso and when a = 0,
it gives ridge. We use R Package caret to fit the elastic-net model [32]. In that package, we set up a 10
fold cross-validation strategy and use train() with method = “glmnet” to fit the elastic net. We allow caret
automatically choose the best tuning parameters o and A based on the minimizing cross-validation error.

If a group of variables is highly correlated, Lasso tends to select only one in this group and ignore the
rest. In elastic-net, strongly correlated predictors tend to appear together in or removed from the model [56].
Hence, elastic-net performs feature selection and regularization simultaneously. In our case, some selected
variables may be highly correlated. With the grouping effect of elastic-net regularization, those correlated

variables will be selected together, and non-zero coefficients will become more interpretable.

3.2.2 Decision tree

The decision tree method is a predictive algorithm that can perform both classification and regression
based on multiple covariates. Common usages of decision tree models include feature selection, assessing
the relative importance of variables, handling of missing values, prediction, and data manipulation. Besides,
decision trees are fundamental components of random forests. The main components of a decision tree model
are nodes and branches. Each node represents a “test”, and each branch represents the result of the test.
The node in the tree model shows the predicted value, the number of data points reaching this node, and
the population percentage in this node.

The Figure named Decision Tree shows the prediction of the FPC1 from the categorical variables. This de-
cision tree starts with a single node (base. country = Austria, Denmark, France, Germany, Sweden, Switzerland),
which branches into possible outcomes. Each outcome leads to additional nodes, which branch off into other
possibilities. 0.032 is a predicted value for the first FPCs, 713 is the number of data points reaching this
node, and 100% is the percentage of the population in this node. For example, if you choose “Yes” in the
first node, it comes to the node base.numeracy = 4 or 5 (with probability 58%) and if you choose “No”, it
comes to the node base.writing = good (with probability 42%).

All statistical analyses about decision tree are using R Package rpart [48] and all visualization plots are
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Figure 3.1: Decision Tree

using R Package rpart.plot [35]. Since the outcome variables, FPC1 or FPC2 are continuous. We need to
build the regression tree rather than the classification tree. The process of building a regression tree is roughly
two steps. First, we construct distinct and non-overlapping nodes and put each observation onto these nodes.
Second, we make the same prediction for every observation that falls into the node by simply calculating the
mean response values for the training observations. For example, if there are node 1 and node 2 obtained in
the first step. The response mean of the training observations in the first node is 5 and in the second node
is 10. Then if given observations a; € node 1 and as € node 2, we will predict a; as 5 and as as 10. We

construct the node by minimizing the residual sum of square (RSS), given by

SN (wi—ir,)? (3.14)

j=1i€R;

where R; represents j" node, y; — ¥g, is the mean response for the training observations within the 7t node.
The decision tree first considers all predictors and all possible values of cutpoint for each predictor. Then it
chooses the predictor and cutpoint such that the resulting tree has the lowest RSS.

The resulting decision tree might be too complex, which is likely to overfit the data, leading to poor test
set performance. Therefore, we will prune a tree to obtain a subtree. Rather than considering every possible

subtree, cost complexity (CP) determines the best prune way to prune the tree. We consider a sequence of
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trees indexed by a nonnegative tuning parameter «. For each value of «, there corresponds a subtree T' € Ty

such that
|T|
S wi—igr)?* +alT] (3.15)
m=1z;,ER,,

is as small as possible. Here Tp is the tree before pruning, and |T'| is the number of terminal nodes of the
tree T. R,, is the subset of predictor space (rectangle) corresponding to the m* terminal node. g, is the
predicted response associated with R,,. The parameter a controls the trade-off between the complexity of
the subtree and the fit to the training data. When a = 0, T'= T. Usually, we use cross-validation to select
the value of a and then return it to the dataset for obtaining the subtree corresponding to a.

The final predicted value for the decision tree is FPC1 or FPC2, which obtain from the FPCA technique,
and the nodes are picked from the covariates in Table 1 and 2. Our objective is to find the risk factor, which

is the name of each node in the decision tree. The step for the decision tree:
e Pick the variables based on the lowest RSS and grow a large tree on the training data.
e Snipping off the least important splits based on the CP (prune the tree).

e Use cross-validation (Repeat step 1 and step 2 on all but the k** fold of the training data) to choose

the « that minimizes the mean squared prediction error.
e Obtain the subtree in step 2 with the « in step 3.

The decision tree model is straightforward to understand and interpret, and it can handle heavily skewed
without doing transformation, and missing data without imputation [47]. However, decision trees are not
stable; a tiny change in data may lead to a significant difference in the structure of the optimal decision tree.
Decision trees also tend to have an over-fitting problem, which random forests can handle, but they are not

as easily explained as decision trees.

3.2.3 Random forest

The Random Forest algorithm proposed by L. Breiman in 2001 is a powerful machine learning classifier
that performs classification by constructing numerous decision trees by bootstrapping and aggregating their
results to create the final model (called bagging). Bootstrapping is resampling the observed dataset (and of
equal size to the observed dataset), each of which is obtained by random sampling with replacement from
the original dataset [I4] [46]. Figure 3.2 depicts how Bootstrapping works. The right part is the original
dataset, and the left details are the training datasets bootstrapping. It displays a small sample size n = 3.
Each bootstrap dataset contains 3 observations, and it chooses samples with replacements from the original

dataset. &**

are estimated by each bootstrap dataset.
By generating B different bootstrapped training data sets, we train our method on the b** bootstrapped

training data set to get f*b(x). After averaging all the predictions, we obtain the following equation called
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Figure 3.2: Bootstrapping

bagging. With bigger values of B, the variance of the decision trees will decrease while the computational
time will grow substantially. An optimal number of trees B can be found using cross-validation to balance
precision and computational cost. However, bagging contains a large number of decision trees, it is no longer
possible to exhibit a process like a single decision tree, and it is no longer clear which variables are critical to

the overall process. Thus, the improved predictive power of bagging comes at the expense of interpretability.

N 1 &
Frag(@) = =D f*() (3.16)

We build several decision trees on bootstrapped training samples in the random forest model. When
building these decision trees, a split in a tree is considered at each time, and a random sample with m
predictors is chosen from the full set of p predictors. Splitting allows only one of the m predictors to be
used. The new sample of m predictors is taken for each split. Usually, we choose m ~ ,/p. Note that m is
the number of predictors considered at each split, and p is the total number of predictors. The difference
between bagging and the random forest is the predictor subset size m. If a random forest is built using the
m equal to p, this amounts simply to bagging.

Because of the law of large numbers, random forest rectifies the overfitting problem in decision trees for the
training set. And the right kind of randomness makes them accurate classifiers and regressors. The output of
the random forests for classification is the class chosen by the majority of the trees, and the regression task
returns the mean prediction of the individual trees [41]. Excellent performance is shown by random forest
when the number of variables is much larger than the number of observations; it allows hundreds of input

variables without variable deletion. Furthermore, random forests have extremely high classification rates,
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and they can make feature selection by determining the importance of variables [15]. All statistical analyses
about random forest are using R Package randomForest [40]. The sample size of each bootstrap replicate is
not the same as the original data, which is around 480 each time. There are 500 number of trees grown and
12 number of predictors sampled for splitting at each node.

Steps involved in random forest algorithm:

Create a Bootstrapped Data Set.

Individual decision trees are constructed for each sample.

Each decision tree will generate an output.

Go back to Step 1 and Repeat

e Bootstrapped the data and used the aggregate from all the trees to make a decision. This process is

known as Bagging (Majority Voting or Averaging for Classification and regression, respectively).

Usually, there are two measures of variable importance for random forests: Mean Decrease Gini and
Mean Decrease Accuracy. In this thesis, we use Mean Decrease Accuracy(%IncMSE), the most robust and
informative measure obtained from RSS (for bagging regression trees). For calculating the %IncMSE for
a given predictor, we record the total amount of RSS decrease due to splits over this given predictor and
average overall bagging trees. The higher value of Mean Decrease Accuracy, the higher importance of the

variable in the random forest model.

3.2.4 Predictive R? with CV

For some regularized methods (e.g. Lasso), we typically have numerous variables, and a model with all the
variables will always have the largest R?. As such, we are using R? is not recommended. With a continuous
dependent variable, we first divide the whole dataset into 10 folds and use one of the folds as a testing set
and the others as a training set. Each fold will become a test set, making a total of ten predictions. Then

we would use the Predicted Residual Sum of Squares (PRESS) statistic, which is given by

K
PRESS =Y Y (i — i) (3.17)

k=1 ;cfold,
where §); _, is the i'" predictive value for y; without using test cases in foldy. k € {1,2,3,...,10} i € foldy.
The predictive R? is denoted by
PRESS
R’=1- 3.18
55 (3.18)

where SS = ", (y; — §)?, ¥ is the mean of y; in the whole dataset.

18



3.2.5 Cross Validation

Cross-validation is a statistical method used to evaluate the performance of a machine learning model.
It is often used in applied machine learning to compare and select models for a given predictive modelling
problem, as it helps us choose the model that performs best on unseen data, evaluate the quality of the
model and avoid overfitting and underfitting. In this method, we split the data into train and test sets so
that the sample between train and test set does not overlap[I7]. As there is never enough data to train a
model, removing a part of it for validation poses a problem of under-fitting. We risk losing essential patterns
by reducing training data and increasing bias-induced error. K-Fold and Leave One Out Cross-Validation
are popular and easy ways to understand. They generally result in a less biased model compared to other
methods. Because it ensures that every observation from the original dataset has the chance of appearing in

the training and test set, this is one of the best approaches if we have limited input data[l6].
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Figure 3.3: 5-fold Cross-Validation
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Figure 3.4: Leave One Out Cross-Validation

A set of n observations randomly divided the dataset into two segments. One segment is for training the

model, and remains for testing the model. K-fold cross-validation means randomly partitioning all samples
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into k equal-sized and non-overlapping parts. One of the k parts is regarded as the validation data for testing
the model, and the remaining k& — 1 parts are used as the training set. The k-fold cross-validation process
repeats k times, with each k subset being used once as the validation set. Figure 3.1 is a schematic display
of a 5 Fold cross-validation.

In LOOCV, we divide the data set into two parts. In one part, we have a single observation, which is our
test data, and in the other part, we have all the other observations from the dataset forming our training
data. If we have a data set with n observations, then training data contains n — 1 observation, and test data
contains 1 observation. The first training set contains all but observation 1, the second training set contains
all but observation 2, and so forth. This process is iterated for each data point as shown in Figure 3.2[16].

The test error is then estimated by averaging the n resulting MSEs. It is described as follows:

n

I 1 R
CViy = —D_ MSE; = =3 (i —5)* (3.19)

i=1 i=1

where y; is the observation and g; is the predictive value of this observation.
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4 Result

4.1 FPCA

Elderly cognitive data contains one time-varying trait, the DRS. We obtained patterns of variation in
the cognitive outcomes by using FPCA. Figure 4.1 shows the mean function, scree plot and the first three
eigenfunctions. The y-axis in the mean function plot denotes the normalized DRS. The computed mean
function for the data shows a dip in DRS near the beginning, then a clear upward trend at age 70, followed
by an abrupt decline at age 75. In the scree plot, the y-axis represents FPCs, and the x-axis represents the
fraction of variance explained. It can be seen that FPC1 explained a large fraction of the variation (78.0%).
The second, third, and fourth FPCs explained 14.2, 6.7 and 1.1% of the variation, respectively. The first
two FPC explained 92.2% of the variability, and 99.9% of the variability was described by the first 4 FPCs.
The remaining are less important except for the first two FPCs. Eigenfunctions(EFs) are also known as
weight functions in Chapter 3. Interpreting these EFs can be quite hard, as there might not be an obvious
counterpart in the data. EFs of DRS seem to explain that EF1 is the reduction of the DRS from the mean
function over age, EF2 is the reduction of DRS before and after the age of 80.

Mean Function Scree plot First 3 Eigenfunctions

— First Egienfunction
~ - Second Egienfunction
Third Egienfunction

—e— Cumul. FVE

cognifive function

Fraction of variance explained
cognitive function
0.

T T T T T S
65 70 75 80 85 90 95 1

T T T T T
65 70 75 80 85 90 95

Blln -

age Number of components age

Figure 4.1: Summary Of FPCA Result
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4.2 Comparison of FPC scores by countries

The sample data after filtering involved 9 European countries (Austria, Belgium, Denmark, France, Ger-
many, Italy, Spain, Sweden, and Switzerland). We compare the first two FPCs and the median longitudinal
trajectory for these nine countries in Figures 4.2 —4.5. The curves in Figures 4.2 are the mean function plus
the median FPCI of each country. Since the EF1 is a decline in the cognitive mean function, We can regard
these curves as the mean cognitive curve after the first dip. After adding the median FPC2 of each country,
the curves shown in Figure 4.3 show another descent of the curves 4.2. It can be seen from both Figures
that the median longitudinal trajectory curves(MLTC) of Italy and Spain are at the bottom. However, from
Figure 4.4, we find that Italy and Spain have higher FPC1 than other counties, and Sweden and Switzerland
have relatively high FPC1. This is because EF1 is negative. The first FPC for each country has a negative
correlation with the actual DRS, which can be verified in Figures 4.2 and 4.3. We guess it is because these two
countries’ economies are not great compared to other European countries, resulting in an imperfect health
care system and a lack of medical conditions.

Table 4.1 shows the Euro Health Consumer Index(EHCI) in 2015 (from the Euro health consumer index
2015 report), which was a comparison of European health care systems based on waiting times, results,
and generosity and included 37 European countries. Based on patient rights and information score (PRIS),
pharmaceuticals score and overall score ranking in the table, we find that Spain and Italy are in eighth and
ninth positions for these indexes, respectively. In addition, these two countries do not have high scores on
waiting times for treatment (scores) (WTTS), outcomes (scores) (OS), range and reach of services (scores)
(RRSS) and prevention scores, which provide evidence for our results that the MLTC of these two countries is
at the bottom among these nine European countries. Figure 4.1 shows that 80 is a turning point, and FPC2
will become negative after about 80 years old. According to the boxplot in Figure 4.5, only the medians of
Spain and Italy are below zero. This result confirms the summary result mentioned in section 2.1, the severe
problem of population ageing in Spain and Italy.

The top 5 MLTC are from Sweden, Switzerland, Denmark, Germany, and France. The comparative figure
of the FPC2 (Figure 4.5) shows that the overall country difference in pattern change is not as substantial as

the difference in the first FPC scores.
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Figure 4.2: Overall Cognitive Function Trajectory Across Different European Countries Based On
FPCI1. (Mean function + Median FPC1 of each country)
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Figure 4.3: Overall Cognitive Function Trajectory Across Different European Countries Based On
FPC1 and FPC2. (Mean function + Median FPC1 + Median FPC2 of each country)
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Figure 4.5: Bloxplot Of FPC2 Across Different European Countries

24



Table 4.1: Euro Health Consumer Index 2015

Country Overall ranking Total socre PRIS WTTS OSs RRSS Prevention score PS
Switzerland 2 894 133 225 240 119 101 76
Belgium 5 836 117 225 198 131 89 76
Germany 7 828 125 188 229 94 107 86
Denmark 9 793 133 138 219 138 89 76
Sweden 10 786 125 100 229 144 107 81
France 11 775 113 188 208 106 89 71
Austria 12 774 121 188 188 119 83 76
Spain 19 695 104 113 198 113 101 67
Italy 22 667 96 138 188 88 101 57

4.3 Predictive R? for models

Table 4.2 shows the predictive R? of FPC1 and FPC2 for different models. We calculate predictive R?
four times for each model (two with and two without covariate DRS). From the table, we conclude that
the predictive R? for FPC1 with covariate DRS is around 0.4 to 0.5. If we remove the covariate DRS,
the predictive R? drops from 0.4 to 0.2. Nevertheless, the Predictive R? of FPC2 for all models is very
low, around 0.1, regardless of whether the covariate DRS is contained. The best result of predictive R2
for predicting FPCI is to use the Elastic-net model, which is 0.550 with covariate DRS and 0.450 without
covariate DRS. Again, the best result of predictive R? for predicting FPC2 is to use the elastic-net model
(0.132 with covariate DRS and 0.115 without covariate DRS). Since the predictive R? for FPC2 is low, we
should not over-interpret the coefficients as we presented in the previous report. Many factors for explaining
the reduction of cognitive functions after 80 years old haven’t been included in this study, and this will be

an exciting topic for future research.

Table 4.2: Predictive R? for machine learning models

Methods For FPC1 with DRS For FPC1 without DRS For FPC2 with DRS For FPC2 without DRS
Elastic-net 0.550 0.450 0.132 0.115
Lasso 0.540 0.400 0.130 0.080
Random Forest 0.479 0.370 0.122 0.100
Decision Tree 0.436 0.260 0.094 0.074

4.4 Indentification of Risk factors for cognitive decline

We set up a 10 fold cross-validation strategy for choosing the parameter o and A in the elastic net model.
And we use the argument “tuneLength” in R that tests different combinations of values for o and A. There

are ten « values from 0.10 to 1.00, and each tried ten times to select the optimal model. The smallest value
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of the root mean square error (RMSE) is used to select the optimal model.

With FPC1 as dependent variable, the final final tuning parameter used for the model are « = 0.2 and
A = 0.28. Generally, a model with all the variables will have a larger R?. Hence for a regularized model,
we prefer to use RMSE, mean absolute error(MAE) and predictive R? for goodness-of-fit measures. The
RMSE = M for the model include all covariates in Table 2.1 and 2.2 is 2.28 and MAE =
w is 1.87. If we include the covariate DRS the RMSE and M AFE decrease to 2.11 and 1.72,

respectively. The predictive R?, including all covariates, is 0.42 and reduced to 0.55 if covariate DRS is
added. With FPC2 as dependent variable, the final tuning parameter used for the model are a = 0.2 and
A = 0.28. However, the predictive R? for FPC2 is low (0.132 with DRS and 0.115 without DRS). The details
of the predictive R? are in Table 4.2.

In Figures 4.6 and 4.7, we report the risk factors of baseline covariates by using elastic-net. The positive,
negative, and no effects with an order of importance are represented by red, blue, and grey, respectively. The
top five positive effects in baseline wave for FPC1 are Gross Motor Skills level 2 out of 4, Country Spain,
Country Italy, Fine Motor Skills level 2 out of 4 and Instrumental Activities of Daily level 1 out of 2. And
top five negative effects for FPC1 are Immediate recall score, country Sweden, numeracy score of 5 out of
5, Country France and gender Female. Notice since EF1 is negative. All effects are opposite for the original

DRS. Namely, A negative effect on FPC1 is a positive effect on DRS.

In general, the elderly living in countries with excellent health care systems, being in good health, having
a long education experience, being accompanied by family members, exercising regularly, being in a good
mood without depression, having an average cognitive ability higher than the average of all people. More
specifically, We find that the Gross Motor Skills Index level 2 out of 4 is the factor that decreases the most
of the mean cognitive function (Fig. 4.6). This Index describes the sum of walking 100 meters, walking
across a room, climbing one flight of stairs and bathing or showering. The higher the index, the better
the cognitive ability of the participant. Similarly, Fine Motor Skills Index is the sum of picking up a small
coin, eating/cutting up food and dressing. Instrumental Activities are the sum of telephone calls, taking
medications, and managing money. Fine Motor Skills Index level 2 and Instrumental Activities level 1 are
relatively low activity indexes. These results illustrate the importance of activity for cognitive decline. In
addition, as we mentioned in section 4.2, the country is a significant factor affecting cognitive function, and
the same conclusion can be drawn from Figure 4.6 as in section 4.2. The elderly from Spain, Italy, and
Belgium showed slower mean cognitive function decline, while the elderly from Sweden, France and Denmark
showed a faster reduction. Furthermore, we found that the mean cognitive function decreased more in the
elderly hospitalized and with a high depression index. Cognitive decline can be mitigated by long years of
education, good reading, writing skills, and eyesight. Immediate recall score is similar to delay recall score
(DRS), so it greatly inhibits mean cognitive function decline as we expected. Compared with the top effects
in Figure 4.7, we find the significant effects in both figures are very similar. Some covariates are continually

significant. (e.g., country, Gross Motor Skill, immediate recall score)
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To validate and compare risk factors estimated by elastic-net shown in Figure 4.6-4.7, we report four
graphs (see Fig. 4.8-4.9 in the main text and Figures in Appendix A) where we offer the tree-based method
for predicting FPC1 and FPC2. We employ the tree’s CP value with the smallest cross-validation error. The
decision tree algorithm can naturally select which features are most crucial [47]. Besides, we prune parts of
the tree that do not provide the power to classify instances to reduce the probability of overfitting problems.
The features that impact our outcome variable DRS demonstrated in these four figures are comparable to
those in the elastic-net model. (e.g., immediate recall score, country, numeracy score, reading)

Nevertheless, decision trees still suffer from overfitting the training data. Thus, we also use a random
forest model to identify significant variables (risk factors). As mentioned above, a random forest model is a
way of producing multiple decision trees with different parts of the same training set, which is insensitive to
the overfitting of an individual decision tree [4]. Mean Decrease Accuracy ranks the random forest algorithm’s
essential features shown in Figure 4.13. Immediate recall score, country, numeracy score, reading and gender

are still the top important variables.
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Figure 4.8: Pruned Tree based method for predicting FPC1 from all the variables
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Figure 4.9: Pruned Tree based method for predicting FPC2 from all the variables
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5 Conclusion

In this thesis, we have shown how the FPCA is helpful in the study of cognitive decline among age
in the elderly, which can catch the major variance of the longitudinal cognitive measurements. Applying
these functional techniques to European individuals aged 65 to 80 confirmed many previous conjectures and
revealed many interesting findings. Our results emphasise the importance of education, Income, activities,
drinking, and chronic diseases for cognitive decline. While some factors are unavoidable, others may not, such
as lowering BMI through exercise or reducing alcohol consumption. Therefore, to prevent or delay cognitive
decline in the elderly, interventions to prevent it may be an effective strategy.

Furthermore, according to our analysis, other European countries have similar cognitive abilities to people
over 65, except for Italy and Spain. Nevertheless, they all go through two stages (early and late) of cognitive
decline, and the decline will accelerate in the second stage (around 75). While the differences between Italy,
Spain and other Europe countries are significant, further research is needed to discover the reason we find the
link between country and cognitive decline. We believe this kind of analysis could be of considerable interest
to cognitive patients since it allows them to develop a plan in accordance with early prevention. Based on
the predictive R? we obtained, we believe that many other factors affect cognitive function in older adults,
especially factors for explaining the reduction of cognitive functions after 80 years old, which is an exciting

and worthwhile topic to explore in future research.
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Appendix A
Plots for predicting the first two FPC scores from the

categorical variables

0.032
n=713 100%

country = Austria,Denmark,France,Germany,Sweden,Switzerland
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n=417 58% n=296 42%
numeracy = 4,5 writing = good
(6]
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n=201 28%
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—l 6 —0 33 0 31
n=253 35% n=164 23% n=62 9% n= 139 19% 95 13%

Figure A.1: Pruned Tree based method for predicting FPC1 from the categorical variables

35



47
13 100%

country = Belgium,ltaly,Spain

2 24
96 42% 17 58%

numeracy = 1,2 reading = poor

n

[ () (6)

-0.45 -0.09 33 0.27
n=105 15% n=191 27% 6 4% n=391 55%

Figure A.2: Pruned Tree based method for predicting FPC2 from the categorical variables
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Appendix B
R Code

B.1 Data Management for Wave8

B.2 Load data and data clearing

1 |#Note this is only the data management for wave 8, the data management
for wavel—7 data is similar to this procedure.

2

3 |#clean function

1 | cleanup <— function (myvar = Alcohol$ALQ110, mymin = 1, mymax = 2,
exclude = ¢(999)){

5 ID1 <~ (myvar < mymin) # ids with less than min values

6 ID2 <— (myvar > mymax) # ids with greater than max values

7 if (length(exclude) > 0) # ids with strange values

s { ID3 <— myvar%in%exclude }

10 # set all the above three values to be NA.
1 RmID <— ((ID1 + ID2 + ID3) > 0)

12 myvar [RmID] = NA

13 return (myvar)

14 }

16 | data=read.csv(”?wavel _7.csv”)

17 | library (haven)

18 | cr <— read_dta(’sharew8 _rel8—0-0_cv_r.dta’)

19 | cf < read_dta(’sharew8_rel8 —0-0_cf.dta’)

20 |[gv_health<—read_dta(’sharew8_rel8 —0—0_gv_health.dta’)

26

27

names (gv_health

names (gv_health ) [names(gv_health

coupleldS ]=" coupleid”
"]="recall _1”

21 [names(cr) [names(cr)="hhid8”]="hhid”
22 [names(cr) [names(cr)=—="mergeidp8”]="mergeidp”
23 [names(cr) [names(cr)=="coupleid8”]="coupleid”
24 |names(gv_health) [names(gv_health ”hh1d8”] "hhid”
25 |names(gv_health) [names(gv_health)=—"mergeidp8”]="mergeidp”
( )
( )
)

28

29

30

31

32

33

34

35

36

37

38

39

[ )
[ ( )=
[names (gv_health )=—
[ ( )
names (gv_health) [names(gv_health)
cr$wave <— 8

gv_health$wave <— 8
inter<—c(intersect (colnames(cr),

inter2<—c(intersect (colnames(gv_health)

wave8cr<—cr[,c(inter)]
wave8gv _health<—gv_health|[,c

names (wave8gv_health)) ,

"]="recall _2”

colnames (data)))
colnames (data)))

(inter2)]
wave8l <— merge(wave8cr ,wave8gv_health ,by =
all = TRUE)

intersect (names(wave8cr) ,

ac=read _dta(’sharew8 _rel8 —0—0_ac.dta’)

names (ac) [names(ac)=="hhid8”]

=" hhid”
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40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

names (ac) [names(ac)=="mergeidp8”|="mergeidp”

names (ac) [names(ac)=="coupleid8”]="coupleid”

acSwave=8

ac$ac002d1=NA

ac$ac002d2=NA

ac$ac002d3=NA

ac$ac002d4=NA

ac$ac002d5=NA

ac$ac002d6=NA

ac$ac002d7=NA

ac$ac002dno=NA

selectac=c (" mergeid” ,” hhid” ,” coupleid” ,” wave” ,” ac002d1” ,” ac002d2” ,”
ac002d3” ,”ac002d4” ,” ac002d5” ,

7ac002d6” ,”ac002d7” ,” ac002dno”)

wave8ac<—ac [, selectac]

wave8lnew <— merge(wave8l,wave8ac,by = intersect (names(wave81), names(
wave8ac) ) ,all = TRUE)

#write.csv(wave81, file = "Desktop/2022\ share/wave81l.csv” ,row.names = F)

o S /- ’p?ll“, 2

dn<—read _dta(’sharew8 _rel8 —0—0_dn.dta’)

names (dn) [names (dn)=="hhid8”]="hhid”

names (dn) [names (dn)=—="mergeidp8”]="mergeidp”
names (dn) [names (dn)=" coupleldS ]=" coupleid”
names (dn) [names (dn)=—"dn014 7 ]="mar_stat”
names (dn) [names (dn)="dn026 _1”]="mother _alive”
names (dn) [names (dn)=="dn026 _2” |]=" father _alive”

dn <~ dn %% rowwise () %%
mutate(siblings_alive = sum(dn036-,dn037_))

dn$wave<—8
selectdn=c (" mergeid” ,” hhid” ,” coupleid” ,”dn002_" ,”dn003_” ,”dn004 _” ,
7dn007 .7 ,”mar_stat” ,”mother_alive” ;” father_alive” ,”dn037_.7)”
siblings _alive” ,”wave”)

wave8dn<—dn|[, selectdn |

ch<—read _dta(’sharew8 _rel8 —0—0_ch.dta’)

names (ch) [names (ch)=="hhid8”]="hhid”

names (ch) [names(ch)=—"mergeidp8”]="mergeidp”
names (ch) [names(ch)=="coupleid8”]|="coupleid”
ch$ch007_1[is .na(ch$ch007_1)]=0

ch$ch007 _2[is.na(ch$ch007_2)]=0
ch$ch007_3[is na(ch$ch007 3)]=0

ch$ch007 _4[is .na(ch$ch007_4)]=0
ch$ch007_5[is .na(ch$ch007_5)]=0
ch$ch007_6[is.na(ch$ch007_6)]=0

ch$ch007 _7[is .na(ch$ch007_7)]=0
ch$ch007_8[is na(ch$ch007 8)]=0
ch$ch007_9[is .na(ch$ch007_9)]=0
ch$ch007_10[is .na(ch$ch007_10)]=0
ch$ch007_11[is .na(ch$ch007_11)]=0
ch$ch007_12[is .na(ch$ch007_12)]=0

ch$ch007 _13[is .na(ch$ch007_13)]=0
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ch$ch007_14[is .na(ch$ch007_14)]
ch$ch007_15[is .na(ch$ch007_15)]=0
ch$ch007_16[is .na(ch$ch007_16)]=0

0

ch$ch007_hh <— ifelse (ch$ch007_1 ==1| ch$ch007_2==1

| ch$ch007 -3==1| ch$ch007 d==
| ¢ch$ch007_5==1| ch$ch007 _6==
| ¢ch$ch007_7==1] ch$ch007 _8==1
| ¢ch$ch007_9==1] ch$ch007_10==1
|ch$ch007 _11==1|ch$ch007 _12==
| ch$ch007 _13==1|ch$ch007 _14==1
| ch$ch007_15==1|ch$ch007 _16==1|
ch$ch007_1 ==2| ch$ch007 _2==
| ¢ch$ch007_3==2] ch$ch007 _4==
| c¢ch$ch007 _5==2] ch$ch007 _6==
| ch$ch007 .7==2| ch$ch007 8==
| ch$ch007 _9==2| ch$ch007_10==2
| ch$ch007_11==2|ch§ch007 _12==
| ch$ch007 _13==2|ch$ch007 _14==
[ch$ch007 _15==2|ch$ch007 _16==2,1,
ifelse (ch$ch007 _1==08&ch$ch007 _2==0
&ch$ch007 _3==0&ch$ch007 _4==0
&ch$ch007 -5==0&ch$ch007 _6==0
&ch$ch007 -7==0&ch$ch007 _8==0&
ch$ch007 _9==08ch$ch007 _10==0&
ch$ch007 _11==0&ch$ch007 _12==0&
ch$ch007 _13==0&ch$ch007 _14==0&
ch$ch007 _15==0&ch$ch007 _-16==0,NA,5) )

table (ch$ch007 _hh,useNA = ”always”)

ch$ch007 km <— ifelse (ch$ch007_1 ==3| ch$ch007_2==3

table (ch$ch007 _km)

| ch$ch007 -3==3| ch$ch007 _d==
| ch$ch007_5==3| ch$ch007_6==
| ch$ch007 _7==3| ch$ch007_8==3
| ¢ch$ch007_9==3] ch$ch007 _10==3
[ch$ch007 _11==3|ch$ch007 _12==3
| ch$ch007 _13==3|ch$ch007 _14==3
| ch$ch007 _15==3|ch$ch007_16==3,1,
ifelse (ch$ch007 _1==0&ch$ch007 _2==0
&ch$ch007 _3==0&ch$ch007 _4==
&ch$ch007 _5==08ch$ch007 _6==
&ch$ch007 _7==0&ch$ch007 _8==0&
ch$ch007 _9==0&ch$ch007 _10==0&
ch$ch007 _11==0&ch$ch007 _12==0&
ch$ch007 _13==0&ch$ch007 _14==0&
ch$ch007 _15==0&ch$ch007 _16==0,NA,5) )

inter<—c(intersect (colnames(dn), colnames(data)))
inter
inter2<—c(intersect (colnames(ch), colnames(data)))
inter?2

wave8dn<—dn[,c(inter)]
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181

182

184

185

187

wave8ch<—ch[,c(inter2)]

wave82 <— merge(wave8dn,wave8ch,by = intersect (names(wave8dn), names(
wave8ch)),all = TRUE)

#write.csv (wave82, file = "Desktop/2022\ share/wave82.csv” ,row.names = F)

AT

AP art 3
sp<—read _dta(’sharew8 _rel8 —0—0_sp.dta’)
names (sp ) [names (sp )=="hhid8”|="hhid”

names (sp ) [names (sp )=—="mergeidp8”]="mergeidp”
names (sp ) [names (sp)=="coupleid8”]=" coupleid”
sp$wave<—8

selectsp<—c(”mergeid” ,”hhid” ,” coupleid” ,”wave” ,” sp002_7 ,”sp003_1” ,”sp003
227 7sp003_3" ,”sp008_",
7sp009_1” ,”sp009_2” ,”sp009_3")
wave8sp<—sp [, selectsp |

ph <—read_dta(’sharew8_rel8 —0—0_ph.dta’)

ph$wave=8
names (ph) [names (ph)=="hhid8”]="hhid”
names (ph) [names (ph)=="mergeidp8”|]="mergeidp”

names (ph) [names (ph)=="coupleid8”]=" coupleid”

selectph=c (" mergeid” ,” hhid” ,” coupleid” ,”wave” , "’ph003_" ,paste0 (” ph006d”
,1:6) ,paste0 (”ph006d” ,10:14))

wave8ph<—ph|[, selectph]

mh <—read_dta(’sharew8_rel8 —0—0_mh.dta’)

mh$wave=8
names (mh) [names (mh)=—="hhid8”]="hhid”
names (mh) [names (mh)=—="mergeidp8”]="mergeidp”

names (mh) [names (mh)=="coupleid8”]=" coupleid”
selectmh=c (” mergeid” ,” hhid” ,” coupleid” ,” wave” ,”mh002_"
"mh003_" |7 mh004,” ,”mh005_7" [/ ”mh007_” ,”mh008_" , "'mh010_" ,”mh011 _

”

»mh013_” ,”mh014_" ,”mh015_" ,”mh016_" ,” mh017_")

wave8mh<—mh| , selectmh ]
wave8mh$mh002 <—ifelse (wave8mh$mh002_==1,1,ifelse (wave8mh$mh002_==5,0,NA

wave8mh$mh003 _<—ifelse (wave8mh$mh003_==1,0,ifelse (wave8mh$mh003_==2,1 NA

))
wave8mh$mh004 _<—ifelse (wave8mh$mh004_==1,1,ifelse (wave8mh$mh004_==2,0,NA

)
wave8mh$mh005 _<—ifelse (wave8mh$mh005_==2,0,ifelse (wave8mh$mh005_==1,1,
ifelse (wave8mh$mh005_==3,1,NA)))

wave8mh$mh007 _<—ifelse (wave8mh$mh007_-==1,1,ifelse (wave8mh$mh007_==2,0,NA
))

wave8mh$mh008 <—ifelse (wave8mh$mh008_==2,0,ifelse (wave8mh$mh008_==1,1,
ifelse (wave8mh$mh008_==3,1,NA)))

wave8mh$mh010_<—ifelse (wave8mh$mh010_==1,1,ifelse (wave8mh$mh010_==2,0,NA

))
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188

190

191

192

193

194

220

221

222

224

225

227

228

230

231

232

wave8mh$mh011 _<—ifelse (wave8mh$mh011_==1,1,ifelse (wave8mh$mh011_==2,0,
ifelse (wave8mh$mh011_==3,0,NA)))
wave8mh$mh013 <—ifelse (wave8mh$mh013_==1,1,ifelse (wave8mh$mh013_==5,0,NA

)

wave8mh$mh014 _<—ifelse (wave8mh$mh014_==1,1,ifelse (wave8mh$mh014_==2,0 NA
))

wave8mh$mh015 <—ifelse (wave8mh$mh015_==1,1,ifelse (wave8mh$mh015_==2,0,NA
)

wave8mh$eurolO=ifelse (wave8mh$mh014 ==1|wave8mh$mh015_==1,1,0)
wave8mh$mh016 _=ifelse (wave8mh$mh016_==1,1,ifelse (wave8mh$mh016_==2,0,NA)

)
wave8mh$mh017 _=ifelse (wave8mh$mh017_==1,1,ifelse (wave8mh$mh017_==5,0,NA)

)

names (wave8mh
names ( waveSmh
names ( wave8mh

”eurol”
eur02”

names (wave8mh )=—"mh002_”
names (wave8mh )=—"mh003 _”
names (wave8mh )=—"mh004 _
names (wave8mh) [ names (wave8mh )=—="mh005 _
names (wave8mh ) [ names (wave8mh )=—"mh007 _”

( ) [ ( )= |=
( ) [ ( )= |=
( ) [ ( )= =
( ) [ ( )= ]=
( ) [ ( )= ]=
names (wave8mh ) [names(waveSmh)— mh008_7 = ”eur06”
( ) [ ( )= |=
( ) [ ( )= |=
( ) [ ( ) ]=
( ) [ ( ) ]
( ) [ ( ) 7]

b2

b2

names (waveS8mh ) [ names (wave8mh )=—="mh010 _”
names (wave8mh) [ names (wave8mh )=—"mh011_"”
names ( wave8mh ?
names (wave8mh
names (waveS8mh

”euro9”
euroll”
>eurol2”

names (wave8mh )=—"mh013 _
names (wave8mh )=—"mh016 _”
names (wave8mh )=—="mh017 _

wave8mh=subset (wave8mh, select = —c(mh014_,mh015_))
library (dplyr)
wave8mh <— wave8mh %% rowwise () %%

mutate (eurod = sum(c_across(eurol:eurol0)))

he<—read _dta(’sharew8 _rel8 —0—0_hc.dta’)

hc$wave=8

names (hc) [names (hc)=="hhid8”|="hhid”

names (hc) [names (hc)=—"mergeidp8”]|="mergeidp”

names (hc) [names(hc)=="coupleid8”]=" coupleid”

names (hc) [names (hc)="hc602_7]="hc002_”

selecthc<—c(”mergeid” ,” hhid” ,” coupleid” ,”wave” ,;” hc002_” ;”hc012_" ;”hc029 _
77)

wave8hce<—hc [, selecthc]

ph<-read _dta( ’sharew8 _rel8 —0—0_ph.dta’)

ph$wave=8

names (ph) [names (ph)=="hhid8”]="hhid”

names (ph) [names (ph)="mergeidp8”]="mergeidp”
names (ph) [names (ph)="coupleid8”]="coupleid”

selectph=c (" mergeid” ,” hhid” ,” coupleid” ,” wave” ,” ph049d1” ,” ph049d2”
ph049d3” ,” ph049d4” ,” ph049d5” ,
” ph049d8” ,” ph049d9” , *ph049d10° ,” ph049d11” ,” ph049d13” ,” ph048d1
7 7 ph048d2” ,” ph048d3” ,” ph048d4” ,” ph048d5” ,
7 ph048d6” ,” ph048d8” ,” ph048d10” )
wave8ph<—ph|[, selectph]
wave8ph$ph049dl=cleanup (wave8ph$ph049d1,0,1)
wave8ph$ph049d3=cleanup (wave8ph$ph049d3,0,1)
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wave8ph$ph049d4=cleanup (wave8ph$ph049d4 ,0,1)
wave8ph$ph049d2=cleanup (wave8ph$ph049d2,0,1)
wave8ph$ph049d5=cleanup (wave8ph$ph049d5,0,1)
wave8ph$ph049d10=cleanup (wave8ph$ph049d10,0,1)
wave8ph$ph049d1ll=cleanup (wave8ph$ph049d11,0,1)
wave8ph$ph049d13=cleanup (wave8ph$ph049d13,0,1)
wave8ph$ph049d9=cleanup (wave8ph$ph049d9 ,0,1)
wave8ph$ph049d8=cleanup (wave8ph$ph049d8,0,1)
wave8ph$ph048dl=cleanup (wave8ph$ph048d1,0,1)
wave8ph$ph048d4=cleanup (wave8ph$ph048d4 ,0 ,1)
wave8ph$ph048d5=cleanup (wave8ph$ph048d5,0,1)
wave8ph$ph048d2=cleanup (wave8ph$ph048d2,0,1)
wave8ph$ph048d3=cleanup (wave8ph$ph048d3,0,1)
wave8ph$ph048d6=cleanup (wave8ph$ph048d6,0,1)
wave8ph$ph048d8=cleanup (wave8ph$ph048d8,0,1)
wave8ph$ph048d10=cleanup (wave8ph$ph048d10,0,1)

library (dplyr)
wave8ph <— wave8ph %% rowwise () %%

mutate (adlwa = sum(c_across (ph049d1:ph049d4)))
table (wave8ph$adlwa ,useNA = "always”)

wave8ph <— wave8ph %% rowwise () %%
mutate (adla = sum(c_across (ph049d1:ph049d5)))

wave8ph <— wave8ph %% rowwise () %%
mutate (iadla = sum(c_across (ph049d10:ph049d13)))

wave8ph <— wave8ph %% rowwise () %%
mutate (iadlza = sum(c_across (ph049d8:ph049d10)))

wave8ph <— wave8ph %% rowwise () %%
mutate (mobilityind = sum(ph048d1,ph049d2,ph048d4 ,ph048d5))

table (wave8ph$mobilityind ,useNA = ”always”)

wave8ph <— wave8ph %% rowwise () %%
mutate (lgmuscle = sum(ph048d2,ph048d3,ph048d6 ,ph048d8))

wave8ph <— wave8ph %% rowwise () %%
mutate (grossmotor = sum(ph048d1,ph049d2,ph048d5,ph049d3))

wave8ph <— wave8ph %% rowwise () %%
mutate (finemotor = sum(ph048d10,ph049d4 ,ph049d1))

select=c(” mergeid” ,” hhid” ,” coupleid” ,” wave” ,” adlwa” ,” adla” ,” iadla”
7iadlza” ,” mobilityind” ,” lgmuscle” ;” grossmotor” , ’finemotor ’)

wave8ph=wave8ph|[, select ]
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287

289

321

322

323

324

326

327

329

330

331

332

333

334

Ml<—merge (wave8hc ,wave8sp ,by = intersect (names(wave8hc), names(wave8sp))
,all = TRUE)
M2=merge (M1, wave8ph ,by = intersect (names(Ml), names(wave8ph)),all = TRUE

wave83=merge (M2, wave8mh ,by = intersect (names(M2), names(wave8mh)),all =
TRUE)

wave83%$hc002 _=cleanup (wave83%$hc002_,0,365)
wave83$hc012 _=cleanup (wave83%hc012_,0,5)
wave83$hc029 =cleanup (wave83%hc029_,1,5)
wave83%sp002 _=cleanup (wave83$sp002_,1,5)
wave83%sp003 _1=cleanup (wave83$sp003_1,1,96)
wave833sp008 =cleanup (wave83$sp008_,1,5)
wave833sp009 _1=cleanup (wave83$sp009_1,1,96)
wave83$sp009 2=cleanup (wave83$sp009_2,1,96)

inter<—c(intersect (colnames(wave83), colnames(data)))
inter

#write.csv(wave83, file = "wave83.csv” ;row.names = F)
THHAHAHAHE

HHAHAHARP art 4

br<—read _dta(’sharew8_rel8 —0—0_br.dta’)

names ( br) [names (br)=—"hhid8”]="hhid”

names (br) [names(br)=—"mergeidp8”]="mergeidp”

names (br) [names(br)=="coupleid8”]=" coupleid”

br$wave <— 8

br$br010 _mod<—NA

names (br) [names(br)=="br002_"]="smoking”

names (br) [names(br)="br001_”7]="ever _smoked”

selectbr<—c(”mergeid” ,”hhid” ,” coupleid” ,” wave” ,
"smoking” ,” ever _smoked” ,”br010 _mod” ,” br015_")

wave8br<—br|[,selectbr]

wave83new=merge (wave83 ,wave8br ,by = intersect (names(wave83), names(
wave8br)),all = TRUE)

#write.csv (wave83new, file = "wave83.csv” ,row.names = F)

T

HAHAHAHAHP art 5
ep<—read _dta(’sharew8_rel8 —0-0_ep.dta’)
names (ep ) [names (ep )=—="hhid8”]="hhid”
names (ep ) [names (ep)=—"mergeidp8”]="mergeidp”
names (ep ) [names (ep)=="coupleid8”]=" coupleid”
ep$wave <— 8
epSep011 =NA
selectep<—c(”mergeid” ,”hhid” ,” coupleid”
"wave” ,”ep005_7 ,”7ep009_" ,7ep011_7" ,”ep013_7 ,”ep026_" ,”ep036_"
)
wave8ep<—ep [, selectep |
wave83new2=merge (wave83new ,wave8ep ,by = intersect (names(wave83new)
names (wave8ep) ), all = TRUE)
#library (sjlabelled)
#a=as . list (get_label (ep))
#write . csv (wave83new2, file = "wave83.c¢sv” ,row.names = F)
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ph<—read _dta(’sharew8_rel8 —0—0_ph.dta’)
ph$wave=8
names (ph) [names (ph)="hhid8”]="hhid”
names (ph) [names (ph)=="mergeidp8”]="mergeidp”
names (ph) [names (ph)=="coupleid8”]=" coupleid”
inter=c(intersect (colnames(ph), colnames(data)))
inter
wave8phnew=ph|[,inter]
wave8phnew <— wave8phnew %% rowwise () %%
mutate (chronic _mod = sum(c_across (ph006d1:ph006d14)))

wave83new3=merge (wave83new2 ,wave8phnew ,by = intersect (names(wave83new2),
names (wave8phnew) ) , all = TRUE)

#write.csv (wave83new3, file = "wave83.csv” ,row.names = F)

THHHHHHE

Tt art 6

co<—read _dta(’sharew8 _rel8 —0—-0_co.dta’)

co$wave=8

names ( co) [names(co)=—="hhid8”]="hhid”

names (co ) [names(co)=—"mergeidp8”]="mergeidp”

names (co) [names(co)=="coupleid8”]=" coupleid”
selectco<—c(”mergeid” ,” hhid” ,” coupleid” ,” wave” ,” co007 _”)
wave8co<—co [, selectco]

gv_isced<-read _dta(’sharew8_rel8 —0-0_gv_isced.dta’)

names (gv_isced ) [names(gv_isced )="hhid8”]|="hhid”

names (gv_isced ) [names(gv_isced )="mergeidp8”]="mergeidp”
names (gv-isced ) [names(gv_isced )=="coupleid8”]="coupleid”
gv_isced $wave<—S8

selectr<—c(”mergeid” ,” hhid” ,” coupleid” ,” wave” ,”isced1997 _r”)
wave8gv_isced<—gv_isced [, selectr ]

iv<—read _dta(’sharew8_rel8 —0—0_iv.dta’)
names (iv ) [names(iv)=="hhid8”]="hhid”

names (iv) [names(iv )=—="mergeidp8”]|="mergeidp”
names (iv ) [names(iv)=="coupleid8”]=" coupleid”
ivSwave<—8

selectiv<—c(”mergeid” ,”hhid” ,” coupleid” ,” wave” ,”iv009_")
wave8iv<—iv [, selectiv ]

im <— read_dta(”sharew8_rel8 —0—0_gv_imputations.dta”)
im$wave=8
names (im) [names (im )=="hhid8” ]="hhid”

names (im) [names (im)=—"mergeidp8”]="mergeidp”

names (im) [names (im )=="coupleid8”]=" coupleid”

colSums(is.na(im))

wave8im<—im /[, c(” mergeid” ,” hhid” ,” coupleid” ,”wave” ,” implicat” ,” thinc” ,”

b

sphus” ,”mstat” ,” nchild” ,” chronic” ,
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”esmoked” ,” eurod” ,” doctor” ,”rhfo” ,” ghto” ,” fdistress”

777 yedu” ) ]
wave8im$ fdistress [wavelim$fdistress==—99]=NA
wave8im$esmoked [ wave8im$esmoked==—99]=NA

wave8im$ghto [ wave8im$ ghto==—99]=NA
wave8im=wave8im %% group _by(mergeid) %%
dplyr ::summarise (thinc m=mean(thinc),
nchild m=as.integer (mean(nchild)),chronic _m=as.
integer (mean(chronic)))
doctor m=as.integer (mean(doctor)) ,rhfo m=as.integer (
mean (rhfo)) ,ghto m=as.integer (mean(ghto)),
fdistress m=as.integer (mean(fdistress)) ,yedu_m=mean (
yedu))
wave8im <— wave8im %%
mutate (
sphus _m = as. factor (sphus_m) ,
mstat . m = as.factor (mstat _m),
esmoked m = as.factor (esmoked_m) ,
rhfo_m = as.factor (rhfo_m),
ghto_m = as.factor (ghto_m),
fdistress m=as.factor (fdistress m)

)

wave8im$wave=8

ml=merge (wave8co ,wave8gv _isced ,by = intersect (names(wave8co), names(
wave8gv _isced)) ,all = TRUE)

m2=merge (ml, wave8iv ,by = intersect (names(ml), names(wave8iv)),all = TRUE
)

wave84=merge (m2, wave8im ,by = intersect (names(m2), names(wave8im)),all =
TRUE)

#write.csv(wave84, file = "wave84.csv” ;row.names = F)

AT

M erge

MMi<—merge (wave8lnew ,wave82 ,by = intersect (names(wave8lnew) , names(

wave82)),all = TRUE)

MMX—merge (MMI1, wave83new3 ,by = intersect (names(MML), names(wave83new3)),
all = TRUE)

wave8<—merge (MM2, wave84 ,by = intersect (names(MM2), names(wave84)),all =
TRUE)

#write.csv(wave8, file = "wave8.csv” ,row.names = F)
wavel _8=merge (data ,wave8,by = intersect (names(data), names(wave8)),all =
TRUE)

B.3 Load data and data clearing

1

2

3

library (" RColorBrewer”)
library ("rattle”)
library (fdapace)
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b2

library (" ggplot2”)
library (caret)
library (tidyr)
library (glmnet)
library (viridis)
library (rpart)
library (rpart.plot)
library (randomForest)
library (cvTools)

#read data
data=read.csv(”wavel _8_5.24.2022.csv”)

#set the color

mycolor<—brewer.pal (9, ”Setl”)

mycolor.alpha <— scales ::alpha(mycolor, 80/100)

mygray <— scales::alpha(”gray”, 40/100)
myeffectcolor<—viridis _pal(option = 7C”)(3)[c(1, 3, 2)]
myeffectcolor [2] <— "gray”

mycolor.alpha <— scales::alpha(mycolor, 80/100)

# set all the above three values to be NA.
RmID <— ((ID1 + ID2 + ID3) > 0)
myvar [RmID] = NA
return (myvar)

#0nly keep subjects without missing cogintive functions
subdata <— subset (data, (recall_1>=0)&(recall _2>=0))

#0nly keep the people age 50 and older

baseline <— subset(subdata, wave = 1)

ID1 < baseline$mergeid [which(baseline$age >=50)]
subdata <— subset (subdata, mergeid%in%ID1)

#Scale my cognitive functions
subdata[, c(”recall _1.scale”, "recall_2.scale”)] <— scale(subdata|, c(”
recall 1”7, 7recall _27)])

# Only keep those with 7 measurements
myt <— table(subdata$mergeid)

mytt <— table (myt)

length (myt)

print (mytt/length (myt)«100)

myID <— names(myt) [myt >= 7]

subdatal <— subset(subdata, mergeid%in%myID)
dim (subdatal)

#22876 54

#only keep the age bw. 60 and 85 in wavel

ID <— baseline$mergeid [which (( baseline$age_int <= 80)&(baseline$age_int
>= 65))]
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#exclude the age over 95 in the last wave(the sample size is too small,
outlier)

wave8 <— subset (subdata, wave = 8)

ID2 <~ wave8$mergeid [ which (wave8$age _int < 95)]

subdata2 <— subset (subdatal, mergeid%in%ID)
subdata2 <— subset (subdata2, mergeid%in%ID2)

dim (subdata?2)

#6608 55

# baseline covariates

base02=subset (subdata2 ,select = —c(recall_1,recall_2))
base2 <— subset(base02, wave = 1)

colnames (base2)[2:53] < paste(”base.”, colnames(base2)[2:53], sep = 77)

}

B.4 FPCA
. [4FPCa
> |BFPCA2 <~ MakeFPCAInputs(IDs = subdata2$mergeid, subdata2$age_int ,

© o N o v & W

28

subdata2$recall _2.scale)
FPCA2 < FPCA(BFPCA2$Ly, BFPCA2$Lt)

plot (FPCA2)
#Figure 4.1 code
par (mfrow = c(1, 3))
#time #mean
plot (FPCA28workGrid , FPCA2$mu, type = 717, xlab = "age”,
ylab = 7cognitive_function”, lwd = 2, col = mycolor[1], main ="

Mean.Function”)
CreateScreePlot (FPCA2)
plot (FPCA2$workGrid , FPCA2$phi[,1]
ylim = ¢(—-0.4, 0.4), lwd = 2
function” , lty = 1,
main = "First .3_Eigenfunctions”)
lines (FPCA28workGrid , FPCA2$phi[,2], col = mycolor[4], lwd = 2, lty = 2)
lines (FPCA28workGrid , FPCA2$phi[,3], col = mycolor[8], lwd 2, lty =
abline(h = 0, col = "gray”)
legend ("top”, paste(c(”First”, ”Second”, ”Third”), ”Egienfunction”),
lwd=2, lty = 1:3, col = mycolor[c(l, 4, 8)], bty = "n”)

type = 717, col = mycolor[1],

”

xlab = ”age”, ylab = ”cognitive.

b
b

|
w
N

#Figure effect of the First FPC
par (mfrow=c(1,2))
plot (FPCA28workGrid , FPCA28mu, type = ”"1”7, xlab = "age”, ylab =7
cognitive_function” ,
main = " Effect _of_First _Eigenfunction”, lwd = 1.5)
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lines (FPCA2$workGrid , FPCA2$mu — 0.3+«FPCA2$phi[,1], col
(1], 1wd = 1.5)

lines (FPCA28workGrid , FPCA28$mu + 0.3 «FPCA2$phi[,1], col
[3], lwd = 1.5)

myeffectcolor

myeffectcolor

plot (FPCA2$workGrid , FPCA28mu, type = ”"1”7, xlab = "age”, ylab =7

cognitive_function” ,
main = " Effect _of_Second_Eigenfunction”, lwd = 1.5)
lines (FPCA28workGrid , FPCA2$mu — 0.3 *FPCA2$phi[,2], col
[1], lwd = 1.5)
lines (FPCA28workGrid , FPCA2$mu + 0.3*FPCA2$phi[,2], col
[3], lwd = 1.5)

#merge FPCl and FPC2 with baseline covariates dataset

First2PC2 <— data.frame(cbind (names(BFPCA2$Ly), FPCA2$xiEst [,

colnames (First2PC2) <— c¢(”mergeid”, "PC1”, "PC2”)
First2PC2$PC1 <— as.numeric(as.character (First2PC2$PC1))

First2PC2$PC2 <— as.numeric(as.character (First2PC2$PC2))
PCs2 <— merge(First2PC2, base2, by = ”"mergeid”)

myeffectcolor

myeffectcolor

1:2]))

B.5 PC score V.s. nine countries
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#HHPCL1 for nine countries (Figure 4.4)

ggplot (PCs2, aes(x=country, y=PCl)) +
geom _boxplot ( fill = mycolor, width = 0.6, notch = T)+

geom_hline (yintercept = 0 , col = "gray”) +

theme (axis.text.x = element_text(face = ”"bold”, angle = 70, size = 8),
axis.ticks.x = element _blank (),
axis.text.y = element_text(face = ”"bold”, size = 8),
panel.background = element _rect (fill = ”white”, colour = NA),
panel.border = element_rect (fill = "NA”, color = 7gray”),
panel.grid .major = element _line (colour = ”gray80”, size = 0.25),
panel.grid .minor = element _line (colour = ”gray80”, size = 0.25)

)+

labs (x="" ,y="First .PC_.Score”)

HHPC2 for nine countries (Figure 4.5)

ggplot (PCs2, aes(x=country, y=PC2)) +
geom _boxplot ( fill = mycolor, width = 0.6, notch = T)+

each country

48

geom_hline (yintercept = 0 , color = "gray”) +

theme (axis.text.x = element_text(face = ”"bold”, angle = 70, size = 8),
axis.ticks.x = element _blank (),
axis.text.y = element _text(face = ”"bold”, size = 8),
panel.background = element _rect(fill = ”white”, colour = NA) |,
panel.border = element_rect(fill = "NA”, color = "gray”),
panel.grid.major = element_line (colour = ”gray80”, size = 0.25),
panel.grid.minor = element_line (colour = ”gray80”, size = 0.25)

)+labs (x="" ,y="Second .PC_Score”)

Medianll <— with (PCs2, tapply (PCl, country, median))##median of PCIl for
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Median22 <— with (PCs2, tapply (PC2, country, median))##median of PC2 for
each country

mymedcurves22 <— data.frame (cbind (FPCA2$workGrid ,FPCA2$mut
outer (FPCA2$phi[,1], Medianll))) #

eigenfunction one times medianll

data _long22 <— gather (mymedcurves22, country, value, Austria:Switzerland
, factor _key=TRUE)
### Figure 4.2 code
ggplot (data_long22, aes(x=V1, y=value, group = country, color = country)
)+
geom _line ()+
scale _color _manual (values=mycolor) +
labs(x = "age”, y = "cognitive_function”)
mymedcurves33 <— data.frame (cbind (FPCA2$workGrid ,
FPCA2$mut
# outer (FPCAsparse$phi[,1], Medianl)+
outer (FPCA2$phi[,2], Median22)))
data_long33 <— gather (mymedcurves33, country, value, Austria:Switzerland
, factor _key=TRUE)

ggplot (data _long33, aes(x=V1, y=value, group = country, color = country)
)+
geom_line ()+
scale _color _manual (values=mycolor) +
labs(x = 7age”, y = ”cognitive_function”)

### Figure 4.3 code
data_long44 <— gather (mymedcurvesd4, country, value, Austria:Switzerland
, factor _key=ITRUE)

data _long44$country <— factor (data_long44$country, levels = c¢(”Sweden”,
?Switzerland” , ”Denmark” |
7 Germany” |

”

France

7 ”
)

Austria
Belgium
ki Italy” ’”
Spain”
))
pdf(”median3. pdf”)
ggplot (data_long44 , aes(x=V1, y=value, group = country))+
geom _line (aes(linetype=country, color = country))+
scale _color _manual ( values=c (” #000000” , "#EG69F00” , ”#56B4E9” ,
" HO09ET3” , "red” , "#40072B2” , "#D55E00”
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"HCCTIAT” |7 #999999” ) )+
labs(x = "age”, y = "cognitive_function”)
dev.off ()

B.6 data management before model fitting

#select covariates

select .co<—c(”base.bmi”, ”"base.thinc m”, "base.yedu_m”,” base.maxgrip”,”
base.hhsize” ,”base.recall _1.scale” ,”base.recall _2.scale”,’base.
siblings _alive )
select .dis <— c(”base.country”, ”base.gender”, ”"base.hearing”, ”base.
reading” ,
"base.writing” , ”"base.eyesight”, "base.ep005”, ”base.mob
7 b
"base.active2” , "base.active”, ”"base.doctorS”, ”"base.depression”
”base.chronic”, ”base.health”, ”"base.ghelp”, ”"base.rhelp”,
”"base.esmoked _m” , "base.marry”, "base.hospital m”,
”base.partnerinhh” ,” base.mother_alive” ,”base.father _alive” ,
”base.hc029_" ,” base . grossmotor” ,” base.finemotor” ,”base.orienti”,
"base.numeracy ’,” base.drink” ,” base.muscle” ,” base.vigorous”)

mynewPCs0 <— PCs2
mynewPCs0 [ select . dis] <— lapply (mynewPCsO[select .dis], factor)

#new dataset with the select coulmn
mynewPCs3=cbind (mynewPCs0[1:3] ,mynewPCs0[,c(select.dis,select.co)])
mynewPCs3=mynewPCs3 [ complete . cases (mynewPCs3) , ]

B.7 Model fitting

B.7.1 Elastic Net

# Fitted Model based on minimum Mean Squared Error

set .seed (1000)

myfit3 <— train(
PCl ~.—mergeid—PC2, data = mynewPCs3, method = ”glmnet” ,
trControl = trainControl(”cv”, number = 10),
tuneLength = 30

)

get _best _result (myfit3)
mycoefl3d <— coef(myfit3$finalModel , myfit3$bestTune$lambda)

mycoef3 <— data.frame(rep (0, length (mycoefl3@Dimnames[[1]])),
mycoefl3@Dimnames [[1]])

mycoef3 [mycoefl3@i + 1, 1] <— mycoefl3@x

colnames (mycoefd) <— c¢(”V1”, "V2”)

newcoefd <— mycoef3[order (mycoef3$Vl), |
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newcoef3$V2 <— factor (newcoef3$V2, level = unique(as.character(newcoef3$
V2)) )
newcoef3$color <— myeffectcolor [sign(newcoef3$Vl) + 2]

## Figure 4.6 code

ggplot (newcoef3 , aes(x=V2, y=V1, fill=color, color = color)) +
geom _bar (stat="identity” )+
coord _flip ()+

scale _x_discrete (position = ”top” )+
scale _fill _manual (name = 77 |
labels = c¢(”Negative_Effect”, "Positive_Effect”, "No
-Effect”),

values=myeffectcolor [c(1,3,2)])+
scale _color _manual (name = 77,
labels = ¢(”Negative.Effect”, ”"Positive_.Effect”, ”
No_Effect”),

values=myeffectcolor[c(1,3,2)])+

theme (#axis . text .x = element_blank (),
axis.text.x = element_text(face = ”"bold”),
axis.text.y = element_text(face = ”"bold”, color = newcoef3$color),
legend . position="bottom” )+
labs(x =77, y =7", title = ”"Covariate_.Effects_on_the_First FPC.
Scores”)

/

set.seed (100000)

myfit23 <— train(
PC2 ".—mergeid—PCl, data = mynewPCs3, method = ”glmnet” ,
trControl = trainControl(”cv”, number = 10),
tuneLength = 10

mycoef23 <~ coef(myfit23$finalModel , myfit23$best Tune$lambda)

mycoef2.23 <— data.frame(rep (0, length (mycoef23@Dimnames [[1]]) ),
mycoef23@Dimnames [[1]])

mycoef2.23[mycoef23@i + 1, 1] <— mycoef23@x

colnames (mycoef2.23) <— ¢("V1”, "V2”)

newcoef23 <— mycoef2.23[order (mycoef2.23$V1), |

newcoef23$V2 <— factor (newcoef233V2, level = wunique(as.character (
newcoef23$V2)))

newcoef23$color <— myeffectcolor [sign (newcoef23$V1) + 2]

#newcoef2 [which (sign (newcoef28V1)==-1) ,]

#newcoef2 [which (sign (newcoef28V1)==1) ,]

## Figure 4.7 code

ggplot (newcoef23 , aes(x=V2, y=V1, fill=color, color = color)) +
geom _bar (stat="identity” )+
coord _flip ()+

scale _x_discrete (position = "top” )+
scale_fill _manual(name = 77,
labels = c(”Negative_Effect”, "Positive_Effect”, ”"No
JEffect”),

values=myeffectcolor[c(1,3,2)])+

bk

scale _color _manual (name = ,
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labels = c(”Negative_Effect”, "Positive_.Effect”, ”

No_Effect”),
values=myeffectcolor|[c(1,3,2)])+
theme (text = element_text (size=10),
axis.text.x = element_text (face = "bold”),
axis.text.y = element _text(face = "bold”, color = newcoef23$color),
legend . position="bottom” )+
labs(x =77, y =77, title = ?”Covariate_Effects_on_the._Second _.FPC_

Scores”)

B.7.2 Dicision Tree model with discrete variables
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# fit a big tree
dat02 <— subset (mynewPCs3, select = c(”PC1”, select.dis))
dat02[2:31] <— lapply(dat02[2:31], factor)

fit02 <— rpart (PCl™., data=dat02)

model02 <— prune(fit02, cp=fit023%cptable[which.min(fit02$cptable],”
xerror”]) ,”CP”])

# This function returns the optimal cp value associated with the minimum
error .

rpart.plot (model02, type=0,cex=1.2)

#Figure A.1
fancyRpartPlot (model02, uniform=TRUE, sub="")

datl2 <— subset (mynewPCs3, select = c¢("PC2”, select.dis))
dat12[2:31] <— lapply(datl2[2:31], factor)

fit12 <— rpart (PC27., data=datl2)

modell2 <— prune(fitl2 , cp=fitl12%cptable[which.min(fit12$cptable],”
xerror”]) ,”CP” )

rpart.plot (modell2, type=0,cex=1.2)

#Figure A.2
fancyRpartPlot (modell2, uniform=TRUE, sub="")

B.7.3 Dicision Tree model with whole selected variables

dat002 <— subset (mynewPCs3, select = c(”PCl”, select.dis, select.co))

fit02 <— rpart (PCl”., data=dat002)

model002 <— prune(fit02, cp=fit02%cptable[which.min(fit02$cptable[,”
xerror”]) ,”CP”])

rpart.plot (model002, type=0,cex=1.2)

#Figure 4.8
fancyRpartPlot (model002, uniform=TRUE,sub="")

datll2 <— subset (mynewPCs3, select = c(”PC2”, select.dis, select.co))
fit112 <— rpart(PC27., data=datl12)
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modelll2 <— prune(fit112 , cp=fit1128%cptable [which.min(fitl12$cptable],”
xerror”]) ,”CP” )
rpart.plot (modelll2, type=0,cex=1.2)

#Figure 4.9
fancyRpartPlot (modelll2, uniform=TRUE, sub="")

B.7.4 Random Forest with whole selected variables

fit2 <— randomForest(PCl ~ ., importance = TRUE, data=dat002)
print (fit2)
fit12 <— randomForest (PC2 = ., importance = TRUE, data=datl12)

print (fit12)

#Figure 4.10

par (mfrow = ¢(1,2))

varImpPlot (fit2 , main = "For_the_First _FPC_.Score” ,type=1)
varIlmpPlot (fit12 , main = ”"For_the.Second .FPC.Score” ,type=1 )

B.8 PredictiveR? for different models

B.8.1 Elastic-net

20

21

22

23

24

25

#For FPCl1

submynewPCs3=subset (mynewPCs3, select = —c(mergeid ,PC2))
k <— 10 #the number of folds

folds <— cvFolds NROW(submynewPCs3) , K=k)
submynewPCs3%$holdoutpred <— rep (0,nrow (submynewPCs3))

for (i in 1:k){
train < submynewPCs3|[folds$subsets[folds$which != i], ] #Set the
training set
validation <— submynewPCs3[folds$subsets|[folds$which = i], ] #Set the
validation set
set .seed (1000000)
newlm <— train (
PC1 ".—holdoutpred, data = train, method = ”glmnet” , #change to
holdoutpred—base.recall _2.scale
tuneGrid =expand.grid (alpha=0.1,lambda = 0.190567)) #the best tuning
parameter
newpred <— predict (newlm,newdata=validation)
submynewPCs3 [ folds$subsets [folds$which = i], ]$holdoutpred < newpred

}

submynewPCs3$holdoutpred #do whatever you want with these predictions
ppress=sum ( (submynewPCs3$PC2 — submynewPCs3$holdoutpred) "2)

ss=sum ( (submynewPCs3$PC2—mean (submynewPCs3$PC2) ) " 2)
rsquare=l—ppress/ss

rsquare

#0.45 elastic net predictive R"2 for PC2 without drs

#0.55 elastic net predictive R"2 for PC2 with drs

i / /] /] ] / /] /] / /] /] ] / /] /] / /] /]
/ v yo—ms v ya—ms v v v i e e e 1 i
7 7 7 7 7 7 7
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#For FPC2

submynewPCs3=subset (mynewPCs3, select = —c(mergeid ,PC1))
k <— 10 #the number of folds

folds <— cvFolds (NROW(submynewPCs3) , K=k)
submynewPCs3%holdoutpred <— rep (0,nrow (submynewPCs3))

for(i in 1:k){
train <— submynewPCs3|[folds$subsets[folds$which != i], ] #Set the
training set
validation < submynewPCs3[folds$subsets[folds$which = i], | #Set the
validation set
set .seed (1000000)
newlm <— train (
PC2 ".—holdoutpred, data = train, method = ”glmnet” , #change to
holdoutpred—base.recall _2.scale
tuneGrid =expand.grid(alpha=0.1,lambda = 0.190567)) #the best tuning
parameter
newpred <— predict (newlm,newdata=validation)
submynewPCs3 [ folds$subsets [ folds$which = i], ]$holdoutpred <— newpred

}

submynewPCs3$holdoutpred #do whatever you want with these predictions
ppress=sum ( (submynewPCs3$PC2 — submynewPCs3$holdoutpred) "2)

ss=sum ( (submynewPCs3$PC2-mean (submynewPCs3$PC2) ) "2)
rsquare=l—ppress/ss

rsquare

#0.115 elastic net predictive R"2 for PC2 without drs

#0.132 elastic net predictive R"2 for PC2 with drs

B.8.2 Lasso

© ®w N o

##select best tuning parameter lambda
set .seed (10000)
lassol <— train(
PCl ~.—mergeid—PC2-base.recall _2.scale, data = mynewPCs3, method =7

glmnet” |
trControl = trainControl (method = "repeatedcv”
number = 10,
repeats = 5,
verboselter = TRUE) ,
tuneGrid = expand.grid (alpha = 1, lambda=seq (0, 0.5, by = 0.1)),
tuneLength = 10)
get _best _result (lassol)
datlas <— subset (mynewPCs3, select = c¢(”PCl”, select.dis, select.co))
#For PFCl1

datlas <— subset (mynewPCs3, select = c(”PCl”, select.dis, select.co))
k <— 10 #the number of folds

folds <~ cvFolds NROW(datlas), K=k)
datlas$holdoutpred <— rep(0,nrow(datlas))

54




22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

59

60

62

for (i in 1:k){

train <— datlas[foldsS$subsets|[folds$which != i], ] #Set the training
set

validation <— datlas[folds$subsets|[folds$which = 1], ] #Set the
validation set

set .seed (10000)

newlm <— train (PCl ~.—holdoutpred, data = train, method = ”glmnet”

tuneGrid =expand.grid (alpha=1,lambda = 0.1)) #change to —holdoutpred
base.recall _2.scale

newpred <— predict (newlm,newdata=validation)

datlas [folds$subsets|[folds$which = i], ]$holdoutpred <— newpred

}

datlas$holdoutpred #do whatever you want with these predictions
ppress=sum((datlas$PCl — datlas$holdoutpred) "2)

ss=sum (( datlas$PCl-mean(datlas$PCl)) " 2)

rsquare=l—ppress/ss

rsquare

##0.54 lasso predictive R"2 for PCl with drs

##0.4 lasso predictive R"2 for PCl without drs

datlas2 <— subset (mynewPCs3, select = c(”PC2”, select.dis, select.co))

k <— 10 #the number of folds
folds <~ cvFolds NROW(datlas2), K=k)
datlas2$holdoutpred <— rep(0,nrow(datlas2))

for (i in 1:k){
train <— datlas2[folds$subsets[folds$which != i], | #Set the training
set
validation <— datlas2[folds$subsets[folds$which = i], | #Set the
validation set
set .seed (10000)
newlm <— train (PC2 ~.—holdoutpred, data = train, method
tuneGrid =expand.grid (alpha=1,lambda = 0.
holdoutpred—base.recall _2.scale
newpred <— predict (newlm,newdata=validation)
datlas2 [folds$subsets|[folds$which = i], |$holdoutpred <— newpred t

= ”glmnet”
1)) #change to

}

datlas2$holdoutpred #do whatever you want with these predictions
ppress=sum ( ( datlas2$PC2 — datlas2$holdoutpred) "2)

ss=sum (( datlas2$PC2—mean(datlas2$PC2)) " 2)

rsquare=l—ppress/ss

rsquare

##0.13 lasso predictive R"2 for PC2 with drs

##0.08 lasso predictive R"2 for PC2 without drs

B.8.3 Random Forest

1

2

3

datc00 <— subset (mynewPCs3, select = ¢(”PC1”, select.dis, select.co))

k <— 10 #the number of folds
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folds <— cvFolds NROW(datc00), K=k)
datc00$holdoutpred <— rep (0,nrow(datc00))

for (i in 1:k){
train <— datc00[folds$subsets[folds$which != i], ] #Set the training
set
validation <— datc00[folds$subsets|[folds$which = i], ]| #Set the
validation set
set.seed (10000)
newlm <— randomForest (PCl ~ .—holdoutpred ,data=train) Fchange to —
holdoutpred—base.recall _2.scale
newpred <— predict (newlm,newdata=validation)
datc00[folds$subsets[folds$which = i], ]|$holdoutpred < newpred
¥
datcO00$holdoutpred #do whatever you want with these predictions
ppress=sum ((datc00$PC1 — datc00$holdoutpred) "2)
ss=sum (( datc00$PCl—mean(datc00$PC1)) "2)
rsquare=l—ppress/ss
rsquare
#0.479 random forest predictive R"2 for PCl with drs
#0.37 random forest predictive R"2 for PCl without drs

datcl12 <— subset (mynewPCs3, select = c(”PC2”, select.dis, select.co))
folds <— cvFolds NROW(datcl112), K=k)
datcl12$holdoutpred <— rep(0,nrow(datcl12))

for (i in 1:k){

train <— datcll2[folds$subsets|[folds$which != i], | #Set the training
set
validation <— datcl12[foldsS$subsets|[folds$which = i], | #Set the

validation set
set .seed (1000000)
newlm <— randomForest(PC2 ~ .——holdoutpred ,data=train) #change to —
holdoutpred—base.recall _2.scale
newpred <— predict (newlm,newdata=validation)
datcl112[folds$subsets|[folds$which = i], ]$holdoutpred <— newpred }

datcl12$holdoutpred #do whatever you want with these predictions
ppress=sum ((datc112$PC2 — datcl12$holdoutpred) "2)

ss=sum ( (datc112$PC2-mean(datcl112$PC2)) "2)

rsquare=l-ppress/ss

rsquare

#0.122 random forest predictive R"2 for PC2 with drs

#0.1 random forest predictive R"2 for PC2 without drs

B.8.4 Decision Tree

1 T N

k <— 10 #the number of folds
folds <~ cvFolds (NROW(datc00), K=k)
datc00$holdoutpred <— rep (0,nrow(datc00))

for (i in 1:k){
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train <— datc00[folds$subsets[folds$which != i], | #Set the training
set

validation <— datc00[folds$subsets|[folds$which = i], ]| #Set the
validation set

set .seed (10000)

newlm <— prune(rpart (PCl”.—holdoutpred, data=train), cp=rpart(PC1™.—
holdoutpred , data=train

$cptable [which.min(rpart (PC17.—holdoutpred , data=train)$cptable[,”
xerror”]) ,”CP”])

#change to —holdoutpred—base.recall _2.scale

newpred <— predict (newlm,newdata=validation)

datc00 [folds$subsets [folds$which = i], ]$holdoutpred <— newpred

}

datcO00$holdoutpred #do whatever you want with these predictions
ppress=sum ( (datc00$PCl — datcO0$holdoutpred) "2)

ss=sum (( datc00$PCl—mean(datc00$PC1)) "2)

rsquare=l—ppress/ss

rsquare

#0.436 dicision tree predictive R"2 for PCl with drs

#0.26 dicision predictive R"2 for PCl without drs

for(i in 1:k){

train <— datcl12[folds$subsets[folds$which != i], | #Set the training
set

validation < datcl12[foldsS$subsets[folds$which = i], | #Set the
validation set

set .seed (1000000)

newlm <— prune(rpart (PC27.—holdoutpred , data=train), cp=rpart(PC27.—
holdoutpred, data=train)$cptable[which.min(rpart(PC2”.—holdoutpred
, data=train)$cptable[,” xerror”]) ,”CP”])

#change to —holdoutpred—base.recall _2.scale
newpred <— predict (newlm,newdata=validation)
datcll2[folds$subsets|[folds$which = i], ]$holdoutpred <— newpred

}

datcl12$holdoutpred #do whatever you want with these predictions
ppress=sum((datc112$PC2 — datcll2$holdoutpred) "2)

ss=sum ( (datc112$PC2-mean(datcl112$PC2)) "2)

rsquare=l—ppress/ss

rsquare

#0.094 decision tree predictive R"2 for PC2 with drs

#0.074 decision tree predictive R"2 for PC2 without drs
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