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Abstract

Multivariate statistical analysis is the area of statistics that is concerned with observations made on many

variables. Determining how variables are related is a main objective in multivariate analysis. The covariance

matrix is an essential part of understanding the dependence between variables. The distribution of the sample

covariance matrix for a sample from a multivariate normal distribution, known as the Wishart distribution,

is fundamental to multivariate statistical analysis. An important assumption of the well-known Wishart

distribution is that the number of variables is smaller than the number of observations. In high-dimensions

when the number of variables exceeds the number of observations, the Wishart matrix is singular and has a

singular Wishart distribution. The purpose of this research is to rederive the Wishart and singular Wishart

distributions and understand the mathematics behind each derivation.

ii



Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Szmigielski for the continuous

support of my Master’s research. His motivation and immense knowledge aided me consistently throughout

my studies.

I would also like to thank Prof. Soteros for the time and knowledgeable suggestions she offered for the

writing of this thesis.

iii



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

1 Introduction 1

2 Samples of a Multivariate Normal Distribution 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Density Function of X̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 A Geometric Derivation of the Wishart Distribution 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Univariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Bivariate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 p - Variate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 An Algebraic Derivation of the Wishart and
Singular Wishart Distributions 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Concluding Remarks and Future Work 41

References 42

Appendix A Basics of Probability 44

Appendix B Surface Area of Spheres 46

Appendix C Gaussian Integrals 48

Appendix D Integral Representation of the Dirac Delta 51

Appendix E The Laplace Transform 55

Appendix F LU Factorization 57

Appendix G Lewis Carroll Identity 62

Appendix H Fubini’s Theorem 65

iv



Chapter 1

Introduction

Multivariate statistical analysis is the area of statistics that is concerned with observations made on many

variables [1]. An example of sample data that may be used for analysis is measurements of height and weight

of individuals drawn randomly from a certain population. Determining how variables are related is a main

objective in multivariate analysis. The covariance matrix is an essential part of understanding the dependence

between variables. The distribution of the sample covariance matrix for a sample from a multivariate normal

distribution, known as the Wishart distribution, is fundamental to multivariate statistical analysis [1].

In order to develop a better understanding of this chapter, we will introduce the underlying structure

of the problem. A more detailed approach will be presented in chapter 2. Assume that a random vector

Y = (X1, X2, · · · , Xp) has a multivariate normal distribution, which we will denote Y ∼ Np(µ,Σ). Here

µ ∈ R1×p is the population mean vector and Σ ∈ Rp×p is the population covariance matrix. Consider a set of

N independent observations on each of the p variates, which we will represent by a random matrix X having

the independent random vectors Y1,Y2, . . . ,YN ∼ Np(µ,Σ) as its columns. We will demonstrate in chapter

2 that the sample covariance matrix A can be expressed as the difference between the matrix XX T and the

matrix formed from the sample mean vector (see equation (2.1)). In order to simplify this expression, we first

rotate X to create the rotated matrix Xr. From the choice of the rotation matrix, we observe that A can be

expressed as NA = X̂ X̂ T , where X̂ is the matrix obtained from removing the last column of Xr. Thus, X̂ will

have p rows and M = N − 1 independent random vectors Ŷ1, Ŷ2, . . . , ŶM ∼ Np(0,Σ) as its columns. The

density function of X̂ will be a starting point for the derivation of the distribution of the random Wishart

matrix Ω = X̂ X̂ T .

A fundamental assumption of the well-known Wishart distribution is that the dimension, p, is smaller

than the number of observations, N . In high-dimensions when p is greater than N , the Wishart matrix is

singular, where the reason for singularity is explained in chapter 2. For the case of a singular Wishart matrix,

the random matrix has a singular Wishart distribution.

The research presented in this thesis is predominantly based on the derivation of the Wishart and singular

Wishart distributions of J. Wishart [33] and R. A. Janik and M. A. Nowak [15]. Each of the distributions

have been derived by several others, including the work of A. T. James [14] and I. Olkin and S. N. Roy [13] in

their derivations of the Wishart distribution. The singular Wishart distribution has been derived by H. Uhlig

[32], M. S. Srivastava [28], and Y. Yu and Y. Zhang [36], while a more recent derivation was provided by S.
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Yu et al. [35] in 2014. Here we analyze the work of J. Wishart in his geometric derivation of the Wishart

distribution and R. A. Janik and M. A. Nowak’s algebraic approach to deriving both distributions. These

publications were of interest because we wanted to find different ways of approaching the same problem. The

fact that two completely different arguments can be used to derive identical distributions is an intriguing

discovery.

J. Wishart’s derivation of the Wishart distribution was of significant interest because of the alternative

approach than that of R. A. Janik and M. A. Nowak. It is also the first derivation of the celebrated Wishart

distribution and the work of J. Wishart has origins in random matrix theory [36]. The principal steps of the

derivation are as follows. With the application of Fubini’s theorem, we are able to consider the M observations

on a single variate and conduct a geometrical change of variable. A substantial portion of chapter 3 is used

to compute the Jacobian from this change of variable. After conducting this process for each variate and

certain variables are integrated out, the result is a product of ratios of parallelogram volumes. J. Wishart

provides an interesting result about such parallelogram volumes, which we present in Theorem 3.6.

The derivation of both the Wishart and singular Wishart distributions by R. A. Janik and M. A. Nowak

uses an algebraic approach. The main point of the derivation is the fact that the density function of the

random matrix Ω satisfies a recurrence relation. We present extensive details about this recurrence relation

and how to obtain a solution, more than that of the authors. The most interesting result of R. A. Janik and

M. A. Nowak’s paper was that the terms that appear in the recurrence relation can be expressed as a ratio

of principal minors of the Wishart matrix Ω. We provide a different approach to proving this fact by using

the Lewis Carroll identity. By incorporating a familiar identity, we are able to present a more precise proof

of the theorem. We also compute the normalization coefficient of the singular Wishart distribution, which

we compare to the derivation by S. Yu et al. [35] and this yields the same result.

R. A. Janik and M. A. Nowak [15] state that obtaining an expression for the singular Wishart distribution

is a starting point for algorithms leading to fast reconstruction of the redundant information of the first M

rows of the Wishart matrix. Y. Yu and Y. Zhang [36] explain that familiarity about the singular Wishart

distribution is important in the study of bio-molecular interaction matrices, as knowledge of such a matrix

is fundamental for quantitatively understanding how cells function. Future research interests include the ap-

plication of the singular Wishart distribution in multivariate analysis, such as understanding the dependence

between genes in DNA microarray experiments [7] and analyzing security returns in financial analysis [21].

Each of the distributions have statistical applications, two of which we will briefly introduce. The first

will be the utilization of the Wishart distribution in the derivation of the generalized T 2 distribution and the

second, an application of the singular Wishart distribution in Bayesian statistics.

Testing hypotheses about the mean vector µ of the population and obtaining confidence intervals for

the mean vector are important problems in multivariate statistics [20]. What is known as the T 2-statistic,

proposed by Hotelling (1931), can be used for testing such hypotheses when the covariance matrix is unknown.

In order to demonstrate the logistics of the statistic and how it is related to the Wishart distribution, we will
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introduce some assumptions. Suppose that Y1,Y2, . . . ,YN ∼ Np(µ,Σ) with sample mean vector X̄ ∈ R1×p

and sample covariance matrix A ∈ Rp×p, then Hotelling’s T 2-statistic is defined as T 2 = N(X̄ −µ)A−1(X̄ −

µ)T [20]. We will go into more details about the parameters, X̄ and A, in the next chapter. Observe that

if the population mean is zero, µ = 0, then one would expect the sample means, X̄, to be close to zero and

therefore the T 2-statistic would also be close to zero. If the population mean is unknown and we are testing

the null hypothesis that µ = 0, we could reject the null when T 2 was sufficiently large. This threshold would

be determined by the critical point on the T 2 distribution, in relation to the significance level. One of the

fundamental assumptions for the T 2 distribution, which is proportional to the F-distribution, is that the

matrix Ω = NA has a Wishart distribution [1].

In a paper by H. Uhlig [32], the basis of his motivation to obtain a distribution for a singular Wishart

matrix is to update a Bayesian posterior when tracking a time-varying covariance matrix. A covariance matrix

that is time-varying is common in financial analysis that uses time series data. H. Uhlig presents intricate

calculations describing a posterior probability distribution, which is a probability distribution of a random

variable that is conditional on evidence obtained from previous experiments. He explains, that the posterior

probability for a covariance matrix At at time t is developed from one’s knowledge of the distribution of the

covariance matrix At−1, at time t−1. Thus, one can update a posterior probability for the covariance matrix

as time is varying.

The following chapters will demonstrate the derivation of the Wishart and singular Wishart distributions.

In chapter 2, we will go into greater detail about the assumptions of the model that were presented at the

beginning of this chapter. That is, assuming our random variables have a multivariate normal distribution,

we will make a transformation on our data matrix in order to derive the desired Wishart matrix. Also, we will

address the fact that the Wishart matrix is singular when p > N . The derivation of the Wishart distribution,

with the majority of the work following J. Wishart [33], will be demonstrated in chapter 3. This derivation

will be based on a geometric argument, where the assumption that p ≤ N is crucial to the calculations. In

section 3.2, we will consider a single variate and derive the Wishart distribution in this case. In the following

section we will consider the bi-variate case and the last section of the chapter will be the derivation of the

Wishart distribution for general p. For the final chapter, we will present the derivation of both the Wishart

and Singular Wishart distributions. Computations throughout this chapter were motivated by the work of

R. A. Janik and M A. Nowak [15].
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Chapter 2

Samples of a Multivariate Normal Distribution

2.1 Introduction

The purpose of this chapter is to develop a starting point for the derivation of the distribution of a p-

dimensional random Wishart matrix. By making a transformation of our matrix of sample values, we can

express our sample covariance matrix as a matrix of inner products. This will allow us to obtain the density

function as a prelude to our derivations, as well as make inferences about the rank of the sample covariance

matrix.

2.2 The Density Function of X̂

Suppose that the elements of the random vector Y = (X1, X2, . . . , Xp) are continuous random variables and

define the set {y = (x1, x2, . . . , xp) : xk ∈ R}, as the range of values the random vector can take. Assume

the random variables X1, X2, . . . , Xp have a multivariate normal distribution with vector of means µ ∈ R1×p

and covariance matrix Σ ∈ Rp×p. Then, their density function is given by, [23]

fY(y) =
1

(2π)
p
2 (det Σ)

1
2

e−
1
2 (y−µ)Σ−1(y−µ)T , y ∈ Rp.

Here det Σ is the determinant of the matrix Σ and y denotes a row vector, while yT is a column vector.

We will represent a set of N independent observations on each of the p variates, by the random matrix

X =



YT
1 YT

2 · · · YT
N

X 1 X11 X12 · · · X1N

X 2 X21 X22 · · · X2N
...

...
...

. . .
...

X p Xp1 Xp2 · · · XpN

,

where YT
i is the vector of observations from the ith sample and X j represents N independent observations

of the jth variable [23]. We will define X = [xkn] ∈ Rp×M as a matrix of possible values the random matrix

X can take and we will denote yTi as the ith column and xj as the jth row of X.
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Then, the density function of the random matrix X is

fX (X) =

N∏
n=1

fYn
(yn)

=
1

(2π)
pN
2 (det Σ)

N
2

e−
1
2

∑N
n=1(yn−µ)Σ−1(yn−µ)T , yn ∈ Rp [23].

Throughout this chapter, we will be manipulating the matrices, vectors, and variables that are the possible

values the corresponding random matrices, vectors, and variables can take. Any transformations done on these

quantities, will correspond to the same transformation on the respective random quantity. For clarification,

we will introduce the following notation:

• The random vector of sample means will be denoted by X̄ and the possible values this random vector

can take will the denoted by X̄

• The random sample covariance matrix will be denoted by A and the corresponding matrix of possible

values will be denoted by A.

With this in mind, the entries of the vector of sample means X̄ = [x̄k] ∈ R1×p and the entries of the sample

covariance matrix A = [akl] ∈ Rp×p are defined by

x̄k =
1

N

N∑
n=1

xkn,

akl =
1

N

N∑
n=1

(xkn − x̄k)(xln − x̄l) =
1

N

N∑
n=1

xknxln − x̄kx̄l [1].

The second statement can be expressed in the following matrix form

N(A+ X̄T X̄) = XXT .

Leading to an equation for the sample covariance matrix

NA = XXT −NX̄T X̄.

If we express this equation in terms of the corresponding random matrices and vectors, we obtain

NA = XX T −N X̄ T X̄ . (2.1)

The basis of our motivation from this point forward is to find a transformed matrix representation of

A. In order to accomplish this, we will transform the data matrix X. If we choose a rotation matrix with

the last column as
(

1/
√
N, 1/

√
N, . . . , 1/

√
N
)T

, when this rotation matrix acts on X the last column

of the resulting matrix will be proportional to the sample mean vector. This will allow us to simplify the

equation given in (2.1) and the rank of our sample covariance matrix A will be clear.
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When considering the N observations of a single variate, xk1, xk2, . . . , xkN , we have equations defining a

hyperplane in RN

x̄k =
1

N

N∑
n=1

xkn,

with the unit normal vector 1√
N

(1, 1, · · · , 1)
T

, as well as a sphere

akk =
1

N

N∑
n=1

x2
kn − x̄2

k.

We will study the intersection of the hyperplane and the sphere by analyzing the line perpendicular to the

hyperplane. To simplify the equation in (2.1), we will perform a rotation from the vector (0, 0, · · · , 1)
T

to

the vector 1√
N

(1, 1, · · · , 1)
T

, that is

R


0

0
...

1

 =
1√
N


1

1
...

1

 ,

where R ∈ RN×N is a rotation matrix, i.e. RT = R−1 and det(R) = 1. Now, the equations of the hyperplanes

can be written as

NX̄ = (1, 1, · · · , 1)XT =
√
N (0, 0, · · · , 1) (XR)T ,

resulting in

√
NX̄ = (0, 0, · · · , 1) (XR)T . (2.2)

Denote XR = Xr = [x̂kn] ∈ Rp×N , where each x̂kn can be interpreted as the rotated observation from the

original data matrix X. We will denote the corresponding random matrix as Xr. Then, with the application

of (2.2), we have
√
NX̄ = (x̂1N , x̂2N , · · · , x̂pN ) ,

and

XrX
T
r = (XR)(XR)T = XRRTXT = XXT . (2.3)

From the transformation of the data matrix, we were able to obtain an explicit expression for the vector

of sample means X̄. That is, the sample mean vector is proportional to the last column of the rotated matrix

Xr. This fact leads to the following lemma.

Lemma 2.1. Let X̂ = [x̂km] ∈ Rp×M , with M = N − 1. Then,

NA = X̂X̂T ,
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where X̂ is the matrix obtained from removing the last column of the rotated matrix Xr. The corresponding

random matrix will be denoted as X̂ = [X̂km] ∈ Rp×M , obtained from removing the last column of the random

matrix Xr. Then, we can express the random matrix A as

NA = X̂ X̂ T .

Proof. By (2.1) and (2.3),

NA = XrX
T
r −NX̄T X̄

= XrX
T
r − (x̂1N , x̂2N , · · · , x̂pN )

T
(x̂1N , x̂2N , · · · , x̂pN )

= X̂X̂T .

Observe that from the previous lemma, the sample covariance matrix is expressed as a product of the

transformed matrix X̂ ∈ Rp×M . Since the rank(X̂) ≤ min(M,p), then the rank(A) ≤ min(M,p). In the

case that the number of observations, N , is less than the number of variates, p, we have that the rank(A) =

rank(X̂) ≤M . Notice that A is a p-dimensional matrix, thus when p > N , A will be singular.

Corollary 2.2. NA is a Gram matrix, i.e.

NA = [x̂k · x̂l] ,

where x̂k is the kth row of the matrix X̂ and “·” defines the inner product.

Proof.

NA = X̂X̂T

=


x̂1

x̂2

...

x̂p




x̂1

x̂2

...

x̂p



T

=


x̂1 · x̂1 x̂1 · x̂2 . . . x̂1 · x̂p
x̂2 · x̂1 x̂2 · x̂2 . . . x̂2 · x̂p

...
...

. . .
...

x̂p · x̂1 x̂p · x̂2 . . . x̂p · x̂p


= [x̂k · x̂l] .

As mentioned in the introduction of this chapter, we would like to derive the density function of the random

Wishart matrix. We will define the random Wishart matrix by Ω = NA, where a matrix of possible values

Ω can take will be denoted by Ω. Observe, that if the population mean µ is known, we can shift each sample
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value by the population mean. Thus, without loss of generality we will assume Y1,Y2, . . . ,YN ∼ Np(0,Σ),

giving the following density function

fX (X) =
1

(2π)
pN
2 (det Σ)

N
2

e−
1
2

∑N
n=1 ynΣ−1yTn

=
1

(2π)
pN
2 (det Σ)

N
2

e−
1
2 Tr(XTΣ−1X).

In the following theorem, we will show that the density function of the random matrix X is invariant

under the rotation of X and the Jacobian of this transformation is equal to one.

We will introduce vertical bars to denote the product of the differentials, that is

|dX| =
p∏
k=1

M∏
m=1

dxkm.

For symmetric matrices, we are only concerned with the p(p+1)
2 independent elements of the symmetric

matrix, thus

|dΩ| =
p∏

k,l=1
k≤l

dωkl. (2.4)

Theorem 2.3. The density function of the random matrix X is invariant under the rotation of the random

matrix, i.e.

fXr (Xr)|dXr| = fX (X)|dX|.

Proof. For the exponent appearing in the density function, we have

Tr((XR)TΣ−1(XR)) = Tr(RTXTΣ−1XR) = Tr(Σ−1XTRTRX) = Tr(Σ−1XTX).

Define Ψ : X → Xr = XR. Observe,

Xr =


x1R

x2R
...

xpR

 ,

where x1,x2, . . . ,xp are the rows of X. Then the Jacobian of this map will be

det


R 0 . . . 0

0 R . . . 0
...

...
. . .

...

0 0 . . . R

 = (detR)p.

Since R is an orthogonal matrix, detR = 1. Thus, fXr (Xr)|dXr| = fX (X)|dX|.

Theorem 2.4. The random matrix X̂ has the following density function

f̂X̂ (X̂) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(Σ−1Ω),

where Ω = NA = X̂X̂T .
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Proof. Recall from Theorem 2.3, we have that fXr (Xr)|dXr| = fX (X)|dX|. For simplicity, denote B = Σ−1,

then the density function of the random matrix Xr is given by,

fXr (Xr) =
1

(2π)
pN
2 (det Σ)

1
2

e−
1
2 Tr(XTr BXr).

We will denote the columns of Xr as

Xr =
(
ŷT1 , ŷ

T
2 , . . . , ŷ

T
N

)
,

where ŷTn = [x̂kn] ∈ Rp×1. Similarily, we will express B in terms of its columns

B =
(
bT1 ,b

T
2 , . . . ,b

T
p

)
,

with bTk ∈ Rp×1. Then, the matrix product appearing in the exponent of our density function can be

simplified to

XT
r BXr =


ŷ1b

T
1 ŷ1b

T
2 . . . ŷ1b

T
p

ŷ2b
T
1 ŷ2b

T
2 . . . ŷ2b

T
2

...
...

. . .
...

ŷNbT1 ŷNbT2 . . . ŷNbTp

 ·
(
ŷT1 , ŷ

T
2 , . . . , ŷ

T
N

)

=


ŷ1b

T
1 x̂11 + . . .+ ŷ1b

T
p x̂p1

ŷ2b
T
1 x̂12 + . . .+ ŷ2b

T
p x̂p2

. . .

ŷNbT1 x̂1N + . . .+ ŷNbTp x̂pN

 .

Since we are taking the trace of this product, the diagonal elements are only of interest. Thus,

Tr(XT
r BXr) = ŷ1b

T
1 x̂11 + . . .+ ŷ1b

T
1 x̂p1 + . . .+ ŷNbT1 x̂1N + . . .+ ŷNbTp x̂pN

= Tr(X̂TBX̂) + ŷNBŷTN .

Applying the above equation to our density function, we obtain

fXr (Xr)|dXr| =
1

(2π)
pN
2 (det Σ)

N
2

e−
1
2 Tr(X̂TBX̂)e

1
2 ŷ

T
NBŷN |dX̂||dŷN |.

Integrating our density function with respect to the p variables, x̂1N , x̂2N , . . . , x̂pN , will produce a factor

of (2π)
p
2 (detB)−

1
2 , as observed in Lemma C.1 in Appendix C. Hence, the density function of the random

matrix X̂ is given by

fX̂ (X̂) =
1

(2π)
p(N−1)

2 (det Σ)
N−1

2

e−
1
2 Tr(X̂TBX̂)

=
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(X̂TΣ−1X̂).

Considering that the trace is invariant under cyclic permutations and Ω = NA = X̂X̂T ,

fX̂ (X̂) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(Σ−1Ω).

9



**Notation

We will consider the above formula to be our starting point for future reductions. For simplicity, we will

drop the hat from X in the formula. Thus, our density function reads

fX̂ (X) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(Σ−1Ω), (2.5)

with

X ∈ Rp×M and Ω = XXT .

2.3 Summary

The computations throughout this chapter allowed us to obtain a starting point for the derivation of the

distribution of the random Wishart matrix Ω. That is, by rotating the random matrix X , we generated a

representation of our random sample covariance matrix A as a matrix of inner products. We then showed

that the density function of X was invariant under the rotation of X . Furthermore, we considered the density

function of the rotated matrix Xr and integrated with respect to the last column of the rotated matrix. This

enabled us to reduce the dimension and obtain the desired density function of the random matrix X̂ ∈ Rp×M ,

for M = N − 1. Also, from the calculations we were able to deduce the rank of the random Wishart matrix,

i.e. when p > M , rank Ω = M .

10



Chapter 3

A Geometric Derivation of the Wishart Distribution

3.1 Introduction

In this chapter we will obtain the Wishart distribution of a random matrix Ω for the case of p = 1, p = 2, and

for general p. With the application of Fubini’s theorem, we will fix p− 1 vectors and conduct a geometrical

change of variable on the remaining vector. The majority of the work will involve the computation of

the Jacobian from the transformation. The integration of part of the Jacobian, that involves the polar

angles of the parameterization, gives the surface area of a sphere and the radius of the sphere is a ratio of

parallelogram volumes. Once we have considered each vector and integrated out all of the angles we will see

almost a complete cancellation of the parallelogram volumes and obtain the density function of the Wishart

matrix. The calculations and geometrical argument presented throughout this chapter follow the derivation

by J. Wishart [33]. We will now state the celebrated result of J. Wishart and the central outcome of this

chapter, which appears in section 3.4, equation (3.23).

Consider the random matrix X̂ , having the random vectors Ŷ1, Ŷ2, . . . , ŶM ∼ Np(0,Σ) as its columns.

The random matrix Ω = X̂ X̂ T is said to have a Wishart distribution if it has the following density function

FM>p(Ω) =
π

−p(p−1)
4

2
pM
2

p∏
k=1

Γ

(
M − k + 1

2

) (det Σ)
−M2 (det Ω)

M−p−1
2 e−

1
2 Tr(Σ−1Ω), (3.1)

where p < M [1]. Here, det Σ is the determinant of the covariance matrix and det Ω the determinant of the

Wishart matrix Ω = [ωkl] ∈ Rp×p.

3.2 Univariate

In order to rederive the Wishart distribution for a univariate population, we will be sampling from our density

function in (2.5),

fX̂ (X) =
1

(2π)
pM
2 σ

M
2

11

e−
ω11
2σ11 ,

with

X = x1 ∈ R1×M , ω11 = x1 · x1, (3.2)

11



and σ11 is the variance of the random vector X 1 as defined in Appendix A, definition A.7.

Observe this is a sphere in RM of radius
√
ω11. Now, we will choose an arbitrary unit vector g ∈ RM ,

then x1 can be parameterized as

x1 =
√
ω11R(Θ1)g, (3.3)

where R(Θ1) is a rotation matrix. Define Ψ1 : RM → RM as a map, such that Ψ1(u1) = x1. Specifically,

Ψ1 : u1 =


ω11

θ1,1

...

θ1,M−1



T

−→ x1 =


x11

x12

...

x1M



T

. (3.4)

Consider the change of variable formula. Let g be an integrable function on RM , then∫
RM

g(x1)|dx1| =
∫
RM

g(Ψ1(u1) |det (DΨ1(u1))| |du1|

=

∫
RM

g(Ψ1(u1))
[
det
(

(DΨ1(u1))
T

(DΨ1(u1))
)]1/2

|du1|. (3.5)

The Jacobian appearing in (3.5) is therefore,

[
det
(

(DΨ1(u1))
T

(DΨ1(u1))
)]1/2

=


det



∥∥∥∥ ∂x1

∂ω11

∥∥∥∥2
∂x1

∂ω11
· ∂x1

∂θ1,j

∂x1

∂θ1,i
· ∂x1

∂ω11

∂x1

∂θ1,i
· ∂x1

∂θ1,j





1/2

, (3.6)

where 1 ≤ i, j ≤M − 1.

Lemma 3.1. Consider the vector x1 as defined in (3.3). For all 1 ≤ j ≤M − 1

∂x1

∂ω11
· ∂x1

∂θ1,j
= 0.

Proof. Observe that x1 · x1 = ω11, then

∂

∂θ1,j
(x1 · x1) =

∂x1

∂θ1,j
· x1 + x1 ·

∂x1

∂θ1,j

= 2

(
x1 ·

∂x1

∂θ1,j

)
= 0.

By the parameterization in 3.3, we see that
∂x1

∂ω11
∝ x1. Thus,

∂x1

∂ω11
· ∂x1

∂θ1,j
= 0.

12



Using Lemma 3.1, our Jacobian becomes

[
det
(

(DΨ1(u1))
T

(DΨ1(u1))
)]1/2

=

det


∥∥∥∥ ∂x1

∂ω11

∥∥∥∥2

0

0
∂x1

∂θ1,i
· ∂x1

∂θ1,j




1/2

=

∥∥∥∥ ∂x1

∂ω11

∥∥∥∥ [det

(
∂x1

∂θ1,i
· ∂x1

∂θ1,j

)]1/2

=
1

2
√
ω11

[
det

(
∂x1

∂θ1,i
· ∂x1

∂θ1,j

)]1/2

.

Observe the integration of the determinant appearing in the above result, with respect to each angle θ1,j ,

gives the surface area of a (M − 1)-dimensional sphere having radius
√
ω11, thus

AM−1 (
√
ω11) =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

[
det

(
∂x1

∂θ1,i
· ∂x1

∂θ1,j

)]1/2

dθ1,M−1 · · · dθ1,2dθ1,1

=
2π

M
2

Γ
(
M
2

) (
√
ω11)

M−1
.

After this change of variables, we obtain the univariate Wishart distribution of a random variable ω

FM>1(ω11) =
1

2
M
2 Γ
(
M
2

)σ−M211 ω
M−2

2
11 e−

ω11
2σ11 .

3.3 Bivariate

For a bivariate population, we will be sampling from our density function in (2.5),

fX̂ (X) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(Σ−1Ω),

with

X =

 x1

x2

 ∈ R2×M ,

and

Ω = XXT =


‖x1‖2 x1 · x2

x1 · x2 ‖x2‖2



=

ω11 ω12

ω21 ω22

 . (3.7)

The 2-dimensional parallelogram in RM spanned by vectors x1,x2, denoted P (x1,x2), has a 2-dimensional

volume of

v2 = Vol2P (x1,x2) =
[
det(XXT )

]1/2
= (det Ω)1/2.
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Similarily, the volume of the 1-dimensional parallelogram spanned by x1 is given by

v1 = Vol1P (x1) =
√

x1 · x1 =
√
ω11.

Consider the expected value of the function g(Ω), with respect to density function fX̂ (X), as defined in

Appendix A Definition A.5

E(g) =

∫
R2M

g(Ω)fX̂ (X)|dX| (3.8)

=

∫
RM

[∫
RM

g(Ω)fX̂ (X)|dx2|
]
|dx1|, (3.9)

where we used Fubini’s Theorem, as presented in Appendix H. That is, we will fix the vector x1 and

integrate with respect to x2. First, we will parameterize x2 using the following procedure. Consider a

subspace W ∈ RM such that RM = W ⊕W⊥, where W = Rx1 and W⊥ the orthogonal complement of W .

Then, we can express x2 as

x2 = αx1 + x⊥2 , (3.10)

where x⊥2 ∈W⊥ and α a constant coefficient. Performing rotations of a unit vector f ∈W⊥, that leave W⊥

invariant, we obtain a unit (M − 2)-dimensional sphere. Thus, an arbitrary point on a sphere of radius ||x⊥2 ||

can be parametrized as ||x⊥2 ||R(Θ2)f , where R(Θ2) is a rotation matrix that leaves W⊥ invariant. Therefore,

x2 = αx1 +
∥∥x⊥2 ∥∥R(Θ2)f .

From (3.7) and the parameterization of x2 in (3.10), we can determine α and the length of x⊥2 with the

following computations

x2 · x1 = (αx1 + x⊥2 ) · x1 = α(x1 · x1).

Hence,

α =
ω12

ω11
.

Then, we see that the length of x⊥2 can be expressed as a ratio of parallelogram volumes, i.e.

∥∥x⊥2 ∥∥2
= x⊥2 · (x2 −

ω12

ω11
x1)

= x⊥2 · x2 −
ω12

ω11

(
x⊥2 · x1

)
= x⊥2 · x2

= (x2 −
ω12

ω11
x1) · x2

= ω22 −
ω2

12

ω11

=
det Ω

ω11
=

(
v2

v1

)2

, (3.11)
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resulting in a final parameterization for x2

x2 =
ω12

ω11
x1 +

v2

v1
R(Θ2)f . (3.12)

Define Ψ2 : RM → RM to be a map, such that Ψ2(u2) = x2. Specifically,

Ψ2 : u2 =



ω12

ω22

θ2,1

...

θ2,M−2



T

−→ x2 =



x21

x22

x23

...

x2M



T

.

Recall the change of variables formula from (3.5). For the above map, the computation of the Jacobian is as

follows

[
det
(

(DΨ2(u2))
T

(DΨ2(u2))
)]1/2

=


det



∥∥∥∥ ∂x2

∂ω12

∥∥∥∥2
∂x2

∂ω12
· ∂x2

∂ω22

∂x2

∂ω12
· ∂x2

∂θ2,j

∂x2

∂ω12
· ∂x2

∂ω22

∥∥∥∥ ∂x2

∂ω22

∥∥∥∥2
∂x2

∂ω22
· ∂x2

∂θ2,j

∂x2

∂ω12
· ∂x2

∂θ2,i

∂x2

∂ω22
· ∂x2

∂θ2,i

∂x2

∂θ2,i
· ∂x2

∂θ2,j





1/2

,

where 1 ≤ i, j ≤M − 2.

Lemma 3.2. Consider the vector x2 as defined in (3.12). Then, for all 1 ≤ j ≤M − 2,

∂x2

∂ω12
· ∂x2

∂θ2,j
= 0,

∂x2

∂ω22
· ∂x2

∂θ2,j
= 0.

Proof. Observe from (3.11), we have that x⊥2 · x⊥2 does not depend on θ2,j . Then,

∂

∂θ2,j

(
x⊥2 · x⊥2

)
= 2

(
∂x⊥2
∂θ2,j

· x⊥2
)

= 0.

Similarly, x2 · x1 is independent of our angles

∂

∂θ2,j
(x2 · x1) =

∂x2

∂θ2,j
· x1 + x2 ·

∂x1

∂θ2,j

=
∂x2

∂θ2,j
· x1 = 0.

From (3.10), we obtain

∂x2

∂θ2,j
=
ω12

ω11

∂x1

∂θ2,j
+
∂x⊥2
∂θ2,j

=
∂x⊥2
∂θ2,j

,

15



and

∂x2

∂ω12
=

1

ω11
x1 +

∂x⊥2
∂ω12

.

From the parameterization in (3.12), we have that
∂x⊥2
∂ω12

∝ x⊥2 . Hence,

∂x2

∂ω12
=

1

ω11
x1 + βx⊥2 ,

where β does not depend on θ2,j . Thus,

∂x2

∂ω12
· ∂x2

∂θ2,j
=

1

ω11

(
x1 ·

∂x2

∂θ2,j

)
+ β

(
x⊥2 ·

∂x2

∂θ2,j

)
= 0.

By the same argument

∂x2

∂ω22
· ∂x2

∂θ2,j
= 0.

Once applying Lemma 3.2, our Jacobian can be simplified to

[
det
(

(DΨ2(u2))
T

(DΨ2(u2))
)]1/2

=


det



∥∥∥∥ ∂x2

∂ω12

∥∥∥∥2
∂x2

∂ω12
· ∂x2

∂ω22
0

∂x2

∂ω12
· ∂x2

∂ω22

∥∥∥∥ ∂x2

∂ω22

∥∥∥∥2

0

0 0
∂x2

∂θ2,i
· ∂x2

∂θ2,j





1/2

.

Calculating the partial derivatives of the above Jacobian, we obtain

∂x2

∂ω12
=

x1

v1
− ω12

1

v2v1
R(Θ2)f ,

∂x2

∂ω22
=

v1

2v2
R(Θ2)f .

Then ∥∥∥∥ ∂x2

∂ω12

∥∥∥∥2

=
ω22

v2
2

,

∥∥∥∥ ∂x2

∂ω22

∥∥∥∥2

=
ω11

4v2
2

,

∂x2

∂ω12
· ∂x2

∂ω22
= −ω12

2v2
2

.
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Resulting in the following

[
det
(

(DΨ2(u2))
T

(DΨ2(u2))
)]1/2

=

1

4

(
1

v2
2

)2

det

 ω22 −ω12

−ω12 ω11

 det

(
∂x2

∂θ2,i
· ∂x2

∂θ2,j

)1/2

=

[
1

4

(
1

v2
2

)2

v2
2 det

(
∂x2

∂θ2,i
· ∂x2

∂θ2,j

)]1/2

=
1

2v2

[
det

(
∂x2

∂θ2,i
· ∂x2

∂θ2,j

)]1/2

.

Observe that the integration of the determinant appearing in the above result, with respect to each angle

θ2,j , gives the surface area of a (M − 2)-dimensional sphere. The radius of this sphere is
v2

v1
, the length of∥∥x⊥2 ∥∥ as observed in 3.12, and the area of its surface is therefore

AM−2

(
v2

v1

)
=

2π
M−1

2

Γ
(
M−1

2

) (v2

v1

)M−2

.

Thus, the expected value of the function g is now

E(g) =

∫
R2M

g(Ω)fX̂ (X) |dX| = C1

∫
RM

[∫
R2

vM−3
2

vM−2
1

g(Ω)fX (X) dω12dω22

]
|dx1|,

where C1 =
π
M−1

2

Γ
(
M−1

2

) .

Consider the vector x1. Beginning with the parameterization in (3.3), the change of variables and inte-

gration of this vector will follow exactly as in the univariate case. Recalling that,
√
ω11 = v1, we obtain

E(g) =

∫
R2M

g(Ω)fX̂ (X) |dX|

= C2

∫
R3

vM−3
2

vM−2
1

vM−2
1 g(Ω)fX (X) dω12dω22dω11

= C2

∫
R3

vM−3
2 g(Ω)fX̂ (X) dω12dω22dω11,

where C2 =
π

2M−1
2

Γ
(
M
2

)
Γ
(
M−1

2

) . Then, we can simplify the presentation of the expected value of g, such that

E(g) =

∫
R3

g(Ω)FM>2(Ω)|dΩ|,

where FM>2(Ω) is the density function of the random matrix Ω, which can be expressed as

FM>2(Ω) =
π−

1
2

2MΓ
(
M
2

)
Γ
(
M−1

2

) (det Σ)
−M2 (det Ω)

M−3
2 e−

1
2 Tr(Σ−1Ω).

Thus, the random matrix Ω has a Wishart distribution.

3.4 p - Variate

For the derivation of the Wishart distribution for a p-variate population, we will be sampling from our reduced

probability measure (2.5)

fX̂ (X) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(Σ−1Ω),
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with

X =


x1

x2

...

xp

 ∈ Rp×M ,

where we will assume the vectors xk to be linearly independent. Again, we have that

Ω = XXT =



‖x1‖2 x1 · x2 . . . x1 · xp

x2 · x1 ‖x2‖2 . . . x2 · xp

...
...

. . .
...

xp · x1 xp · x2 . . . ‖xp‖2



=


ω11 ω12 . . . ω1p

ω21 ω22 . . . ω2p

...
...

. . .
...

ωp1 ωp2 . . . ωpp

 . (3.13)

Consider the expected value, as defined in Appendix A Definition A.5, of the function g(Ω)

E(g) =

∫
RpM

g(Ω)fX̂ (X)|dX|,

where fX̂ (X) is the density function of the the random matrix X̂ . Observe that for general p, the expected

value involves pM integration variables. If we hold the vectors x1, . . . ,xp−1 constant, we can integrate with

respect to xp; then we integrate the resulting function with respect to xp−1, and so on. This application of

Fubini’s Theorem, with details given in Appendix H, allows us to compute multiple integrals by hand. Thus,

the expectation of g can be viewed as

E(g) =

∫
RM
· · ·
[∫

RM
· · ·
[∫

RM
g(Ω)fX̂ (X)|dxp|

]
· · · |dxk|

]
· · · |dx1|. (3.14)

We will now parameterize xk, for 1 ≤ k ≤ p, using the following procedure. Consider a subspace W ⊂ RM ,

such that RM = W ⊕W⊥, where W = span{x1, . . . ,xk−1} and W⊥ is the orthogonal complement of W .

Then, xk can be expressed as

xk =

k−1∑
l=1

αlxl + x⊥k , (3.15)

where x⊥k ∈W⊥ and each αl are constant coefficients. Performing rotations about a unit vector f ∈W⊥, that

leave W⊥ invariant, we obtain a unit (M − k)-dimensional sphere. Thus, any point on the sphere of radius∥∥x⊥k ∥∥ can be parameterized as
∥∥x⊥k ∥∥R(Θk)f , where R(Θk) is a rotation matrix that leaves W⊥ invariant.
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Hence,

xk =

k−1∑
l=1

αlxl +
∥∥x⊥k ∥∥R(Θk)f . (3.16)

In the bi-variate case, we introduced formulas for volumes of 1 and 2-dimensional parallelograms. Now, we

will define the volume of a k-parallelogram in RM .

Definition 3.3. (Volume of a k-parallelogram in RM ). Let the k vectors x1, . . . ,xk be in RM , and let

B ∈ Rk×M be the matrix with these vectors as its rows: B = (x1, . . . ,xk)T . Then the k-dimensional volume

of the parallelogram spanned by {x1, . . . ,xk}, denoted P (x1, . . . ,xk), is

vk = VolkP (x1, . . . ,xk) =
[
det
(
BBT

)]1/2
.

Theorem 3.4. For a vector xk, as defined in (3.15)

1. The perpendicular distance from this vector to the subspace W = span(x1, . . . ,xk−1) is∥∥x⊥k ∥∥ =
vk
vk−1

2. Each coefficient, αl for 1 ≤ l ≤ k − 1, must satisfy the following system
x1 · x1 x2 · x1 . . . xk−1 · x1

x1 · x2 x2 · x2 . . . xk−1 · x2

...
...

. . .
...

x1 · xk−1 x2 · xk−1 . . . xk−1 · xk−1




α1

α2

...

αk−1

 =


xk · x1

xk · x2

...

xk · xk−1

 .

Proof. Consider the vector xk as defined in (3.15), then

xk =

k−1∑
l=1

αlxl + x⊥k .

Observe W = span(x1, . . . ,xk−1) and x⊥k ∈W⊥. Then, for any 1 ≤ r ≤ k − 1,

0 = x⊥k · xr = (xk −
k−1∑
l=1

αlxl) · xr, (3.17)

and

∥∥x⊥k ∥∥2
= x⊥k · (xk −

k−1∑
l=1

αlxl) = x⊥k · xk = (xk −
k−1∑
l=1

αlxl) · xk. (3.18)

From (3.17) and (3.18), we have a system of k linear equations

k−1∑
l=1

αlxl · xr = xk · xr, (3.19)

k−1∑
l=1

αlxl · xk +
∥∥x⊥k ∥∥2

= xk · xk,
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which can be written as
x1 · x1 x2 · x1 . . . xk−1 · x1 0

x1 · x2 x2 · x2 . . . xk−1 · x2 0
...

...
. . .

...
...

x1 · xk x2 · xk . . . xk−1 · xk 1




α1

...

αk−1∥∥x⊥k ∥∥2

 =


xk · x1

xk · x2

...

xk · xk

 . (3.20)

We can determine
∥∥x⊥k ∥∥2

by the use of Cramer’s rule, i.e.

∥∥x⊥k ∥∥2
=

det


x1 · x1 x2 · x1 . . . xk · x1

x1 · x2 x2 · x2 . . . xk · x2

...
...

. . .
...

x1 · xk x2 · xk . . . xk · xk



det


x1 · x1 x2 · x1 . . . xk−1 · x1 0

x1 · x2 x2 · x2 . . . xk−1 · x2 0
...

...
. . .

...
...

x1 · xk x2 · xk . . . xk−1 · xk 1



=

(
VolkP (x1, . . . ,xk)

Volk−1P (x1, . . . ,xk−1)

)2

.

Thus, with the application of Definition (3.3),
∥∥x⊥k ∥∥ =

vk
vk−1

.

Recall the system of k− 1 equations given in (3.19). Then, each coefficient, αl, must satisfy the following
x1 · x1 x2 · x1 . . . xk−1 · x1

x1 · x2 x2 · x2 . . . xk−1 · x2

...
...

. . .
...

x1 · xk−1 x2 · xk−1 . . . xk−1 · xk−1




α1

α2

...

αk−1

 =


xk · x1

xk · x2

...

xk · xk−1

 .

From Theorem 3.4, we can express xk as

xk =

k−1∑
l=1

αlxl +
vk
vk−1

R(Θk)f . (3.21)

Define Ψk : RM → RM as a map such that Ψk(uk) = xk. Specifically,

Ψk : uk =



ω1k

ω2k

...

ωkk

θk,1
...

θk,M−k



T

−→ xk =


xk1

xk2

...

xkM



T

. (3.22)
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Consider the change of variables formula presented in (3.5). For the above map, the Jacobian will be

[
det
(

(DΨk(uk))
T

(DΨk(uk))
)]1/2

=

det


∂xk
∂ωlk

· ∂xk
∂ωrk

∂xk
∂ωlk

· ∂xk
∂θk,j

∂xk
∂ωrk

· ∂xk
∂θk,i

∂xk
∂θk,i

· ∂xk
∂θk,j





1/2

,

for 1 ≤ l, r ≤ k and 1 ≤ i, j ≤M − k.

Theorem 3.5. Consider the vector xk as defined in (3.21). For any 1 ≤ l ≤ k and 1 ≤ j ≤ M − k, the

following holds
∂xk
∂ωlk

· ∂xk
∂θk,j

= 0.

Proof. Consider the vector xk as defined in (3.21),

xk =

k−1∑
r=1

αrxr +
vk
vk−1

R(Θk)f ,

recall that
vk
vk−1

R(Θk)f = x⊥k . Observe,

∂xk
∂θk,j

=
∂x⊥k
∂θk,j

,

Since x1,x2, . . . ,xk−1 are independent of each ωlk and
∂x⊥k
∂ωlk

∝ x⊥k

∂xk
∂ωlk

=

k−1∑
r=1

βrxr + βx⊥k ,

where βr =
∂αr
∂ωlk

. Considering the fact that the inner products, x⊥k ·x⊥k and xk ·xr, are independent of each

angle, θk,j , we have
∂x⊥k
∂θk,j

· x⊥k = 0,
∂xk
∂θk,j

· xr = 0,

for 1 ≤ r ≤ k − 1 and 1 ≤ j ≤M − k. Thus

∂xk
∂ωlk

· ∂xk
∂θk,j

=

k−1∑
r=1

βrxr ·
∂xk
∂θk,j

+ βx⊥k ·
∂xk
∂θk,j

= 0.

With the application of Theorem 3.5, we obtain the following simplified Jacobian

[
det
(

(DΨk(uk))
T

(DΨk(uk))
)]1/2

=

det


∂xk
∂ωlk

· ∂xk
∂ωrk

0

0
∂xk
∂θk,i

· ∂xk
∂θk,j





1/2

.

Theorem 3.6. Consider the vector xk as previously defined. Then for any 1 ≤ l, r ≤ k, we have[
det

(
∂xk
∂ωlk

· ∂xk
∂ωrk

)]1/2

=
1

2vk
.
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Proof. Consider the vector xk associated with the map from (3.22), Ψk(uk) = xk. As observed, the Jacobian

of this map will be [
det
(

(DΨk(uk))
T

(DΨk(uk))
)]1/2

,

where

(DΨk(uk)) =

(
∂xk
∂ω1k

. . .
∂xk
∂ωkk

∂xk
∂θk,1

. . .
∂xk

∂θk,M−k

)
,

and from Theorem 3.5,

(DΨk(uk))
T

(DΨk(uk)) =


∂xk
∂ωlk

· ∂xk
∂ωrk

0

0
∂xk
∂θk,i

· ∂xk
∂θk,j

 ,

for 1 ≤ l, r ≤ k and 1 ≤ i, j ≤M − k . Consider(
(DΨk(uk))

T
(DΨk(uk)

)−1

= (DΨk(uk))
−1
(

(DΨk(uk))
−1
)T

.

For a differentiable function f(x1, x2, . . . , xn), we will define ∇f as the gradient of f , that is

∇f =

(
∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

)
.

Thus,

(DΨk(uk))
−1

=

(
∂uk
∂xk1

. . .
∂uk
∂xkM

)
=



∇ω1k

...

∇ωkk
∇θk,1

...

∇θk,M−k


.

Then our inverse Jacobian becomes,

(
(DΨk(uk))

T
(DΨk(uk))

)−1

=


∇ωlk · ∇ωrk 0

0 ∇θk,i · ∇θk,j

 .

Observe we have the following relationships

ωlk = xl · xk.

Therefore,

∇ωlk =

 xl l 6= k

2xk l = k
,
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which results in the following

∇ωlk · ∇ωrk =


x1 · x1 x1 · x2 . . . 2x1 · xk
x2 · x1 x2 · x2 . . . 2x2 · xk

...
...

. . .
...

2xk · x1 2xk · x2 . . . 4xk · xk

 .

Observe det (∇ωlk · ∇ωrk) = (2 ·Volk(x1, . . . ,xk))
2

= (2vk)2. Hence,[
det

(
∂xk
∂ωlk

· ∂xk
∂ωrk

)]1/2

= [det (∇ωlk · ∇ωrk)]
−1/2

=
1

2vk
.

Applying Theorem 3.6 we have[
det
(

(DΨk(uk))
T

(DΨk(uk))
)]1/2

=
1

2vk

[
det

(
∂xk
∂θk,i

· ∂xk
∂θk,j

)]1/2

.

As observed in the bi-variate case, the integration of the of the determinant appearing in above result gives

the surface area of a (M − k)-dimensional sphere. The radius of the sphere is vk
vk−1

, the length of x⊥k , and

the area of its surface is therefore

AM−k

(
vk
vk−1

)
=

2π
M−k+1

2

Γ
(
M−k+1

2

) ( vk
vk−1

)M−k
.

Hence the change of variables and integration of the M − k angles from the kth-variate produces

π
M−k+1

2

Γ
(
M−k+1

2

) vM−k−1
k

vM−kk−1

|dωk|,

where we will define |dωk| = dω1kdω2k · · · dωkk.

For the computation of our entire density function, we will begin by letting k = p and fixing each vector

x1, . . .xp−1. If we conduct the same change of variables and integration of the M − p angles as we presented

for general k, we will obtain

π
M−p+1

2

Γ
(
M−p+1

2

) vM−p−1
p

vM−pp−1

|dωp|.

Thus, the expected value of g, as presented in (3.14), is

E(g) =

∫
RpM

g(Ω)fX̂ (X)|dX|

= C1

∫
RM
· · ·

[∫
RM
· · ·

[∫
Rp

vM−p−1
p

vM−pp−1

g(Ω)fX̂ (X)|dωp|

]
|dxp−1|

]
· · · |dx1|,

where C1 =
π
M−p+1

2

Γ
(
M−p+1

2

) .

Now consider the vector xp−1 and fix each vector x1, · · · ,xp−2. The change of variables and integration

of the M − p+ 1 angles will produce

π
M−(p−1)+1

2

Γ
(
M−(p−1)+1

2

) vM−(p−1)−1
p−1

v
M−(p−1)
(p−1)−1

|dωp−1|.
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Observe, the expected value of g will be

E(g) =

∫
RpM

g(Ω)fX̂ (X)|dX|

= C2

∫
RM
· · ·

[∫
RM

[∫
R2p−1

vM−p−1
p

vM−pp−1

vM−pp−1

vM−p+1
p−2

g(Ω)fX̂ (X)|dωp||dωp−1|

]
|dxp−2|

]
· · · |dx1|,

where C2 =
π
M−p+2

2

Γ
(
M−p+2

2

) π
M−p+1

2

Γ
(
M−p+1

2

) .

We will continue to implement the same process, by considering the vector xp−2 and so on until the last

vector x1. As observed in previous sections, the change of variables and integration of the angles from the

parameterization of x1 will produce

π
M
2

Γ
(
M
2

) vM−2
1 .

Thus,

E(g) =

∫
RpM

g(Ω)fX̂ (X)|dX| = Cp

∫
R
p(p+1)

2

vM−p−1
p

vM−pp−1

vM−pp−1

vM−p+1
p−2

· · · v
M−3
2

vM−2
1

vM−2
1 g(Ω)fX (X)|dΩ|

where Cp =
π
p(2M−p+1)

4

Γ
(
M
2

)
Γ
(
M−1

2

)
· · ·Γ

(
M−p+1

2

) . Observe that we will see almost a complete cancellation of

parallelogram volumes, with only the largest volume, vM−p−1
p , remaining.

Then, the expected value of the function g can be simplified to

E(g) =

∫
R
p(p+1)

2

g(Ω)FM>p(Ω)|dΩ|,

where FM>p(Ω) is the density function of the random matrix Ω, which can be expressed as

FM>p(Ω) =
π

−p(p−1)
4

2
pM
2

p∏
k=1

Γ

(
M − k + 1

2

) (det Σ)
−M2 (det Ω)

M−p−1
2 e−

1
2 Tr(Σ−1Ω). (3.23)

From the form of the density function in (3.23), the random matrix Ω has a Wishart distribution.

3.5 Summary

As presented in this chapter, the distribution of the Wishart matrix can be obtained by a geometrical

argument. After conducting a change of variable and computing the Jacobian of each transformation, we

observed that integration with respect to each angle resulted in the surface area of a sphere. The radius of the

sphere was a ratio of parallelogram volumes, which we proved by the use of Cramer’s rule. Upon integration

of the angles, there was an abundance of parallelogram volumes. After cancellations, the resulting volume

was in fact the determinant of our Wishart matrix and we obtained the desired Wishart distribution.
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Chapter 4

An Algebraic Derivation of the Wishart and

Singular Wishart Distributions

4.1 Introduction

This chapter will present R. A. Janik and M. A. Nowak’s [15] approach to deriving both the Wishart and

singular Wishart distributions. We will introduce the Dirac delta in order to express the density function

of the random matrix Ω. After simplifications, we demonstrate that the density function of Ω satisfies a

recurrence relation. The terms in the recurrence relation can be expressed as ratios of minors from the original

matrix Ω. We took a different approach than the authors, by using the Lewis Carroll identity to prove the

theorem. Dependent on the number of variates compared to the number of observations, the solution of the

recurrence relation will be proportional to either the Wishart or singular Wishart distribution. The main

outcome of this chapter will appear in Theorem 4.8, which we will now introduce. The notation appearing

in the second result will be explained in more detail later in the chapter.

Consider the random matrix X̂ , having the random vectors Ŷ1, Ŷ2, . . . , ŶM ∼ Np(0,Σ) as its columns.

We can simplify the presentation of the density functions by setting Σ = I, where an explanation is given

at the beginning of section 4.2. Then, the density function of the random matrix Ω = X̂ X̂ T can take the

following forms

1. When M > p, the random matrix Ω has a Wishart distribution given by the density function

FM>p(Ω) =
π

−p(p−1)
4

2
pM
2

p∏
k=1

Γ

(
M − k + 1

2

) (det Ω)
M−p−1

2 e−
1
2 Tr(Ω).

2. When M < p, the random matrix Ω has a singular Wishart distribution given by the density function

FM<p(Ω) =
π
M(M+1)

4

(2π)
pM
2

M∏
k=1

Γ

(
M − k + 1

2

) (det Ω[M ])
M−p−1

2 e−
1
2 Tr Ω

p∏
l,r=M+1
l≤r

δ

(
det Ω[M ]∪{l,r}

det Ω[M ]

)
.
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4.2 Derivation

The density function of the random matrix X̂ , having the random vectors Ŷ1, Ŷ2, . . . , ŶM ∼ Np(0,Σ) as its

columns, is given by

fX̂ (X) =
1

(2π)
pM
2 (det Σ)

M
2

e−
1
2 Tr(XTΣ−1X).

As mentioned in the introduction of this chapter, we will introduce the Dirac delta in order to establish the

density function of the Wishart matrix Ω. We will use the integral representation of the Dirac delta in our

density function. After this, we will need to simplify our function in order to integrate with respect to our

sample matrix X. For the purpose of simplifying these calculations, we will rescale the matrix X, that is we

will make the transformation that X̃ = Σ−
1
2X. In order to determine the Jacobian of this transformation,

observe

X̃ =
(

Σ−
1
2 yT1 Σ−

1
2 yT2 . . . Σ−

1
2 yTM

)
,

where yT1 ,y
T
2 , . . . ,y

T
M are the columns of X. Hence, the Jacobian of this transformation will be (det Σ)

M
2 .

We will drop the tilde from the formula for simplicity, thus the density function of the random matrix X̂

becomes

fX̂ (X) =
1

(2π)
pM
2

e−
1
2 Tr(XXT ),

with

X =


x1

x2

...

xp

 ∈ Rp×M ,

and

Ω = XXT =



‖x1‖2 x1 · x2 . . . x1 · xp

x2 · x1 ‖x2‖2 . . . x2 · xp

...
...

. . .
...

xp · x1 xp · x2 . . . ‖xp‖2



=


ω11 ω12 . . . ω1p

ω21 ω22 . . . ω2p

...
...

. . .
...

ωp1 ωp2 . . . ωpp

 .

Since we would like to obtain the density function for the random matrix Ω, we may incorporate the Dirac

delta. Thus, the density function of a p-dimensional random matrix Ω is given by

F (Ω) =

∫
RpM

fX̂ (X)δ(Ω−XXT )|dX|,
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where δ(Ω−XXT ) is a multidimensional Dirac delta [6]. We will now introduce an integral representation,

with detail given in Appendix D, for a multidimensional Dirac delta

δ(Ω−XXT ) =
2
p(p−1)

2

(2π)
p(p+1)

2

∫
R
p(p+1)

2

eiTr[T (Ω−XXT )]|dT |,

where T is a real symmetric p × p matrix. Inserting the integral representation of the Dirac delta into our

density function we obtain

F (Ω) = C

∫
RpM

[∫
R
p(p+1)

2

eTr(− 1
2XX

T+iTΩ−iTXXT )|dT |
]
|dX|

= C

∫
RpM

[∫
R
p(p+1)

2

e−
1
2 Tr[(1+i2T )XXT ]eiTr(TΩ)|dT |

]
|dX|,

where C =
2
p(p−1)

2

(2π)
p(p+1+M)

2

. Observe that with the application of Fubini’s theorem (before we take each

Nj →∞, as explained in Appendix D), we can fix T and integrate with respect to X, that is

F (Ω) = C

∫
R
p(p+1)

2

eiTr(TΩ)

[∫
RpM

e−
1
2 Tr[(1+i2T )XXT ]|dX|

]
|dT |.

To eliminate the factor of 2, we will do a simple change of variable, T → 2T

F (Ω) = C ′
∫
R
p(p+1)

2

e
1
2 iTr(TΩ)

[∫
RpM

e−
1
2 Tr[(1+iT )XXT ]|dX|

]
|dT |,

where C ′ =
2−p

(2π)
p(p+1+M)

2

. Observe that the integration with respect to X is a real Gaussian integral, which

produces (2π)pM/2 det(1 + iT )−
M
2 , as shown in Appendix C. Thus,

F (Ω) = C ′′
∫
R
p(p+1)

2

det(1 + iT )−
M
2 e

1
2 iTr(TΩ)|dT |, (4.1)

where C ′′ =
2−p

(2π)
p(p+1)

2

. From this point forward we will conduct multiple integrations of the above
p(p+ 1)

2

dimensional integral. We will denote this integral as

Gp,M (Ω) =

∫
R
p(p+1)

2

det(1 + iT )−
M
2 e

1
2 iTr(TΩ)|dT |. (4.2)

Consider the following decomposition of the matrices T and Ω

T =

 t11 t

tT Tp−1

 Ω =

 ω11 ω

ωT Ωp−1

 , (4.3)

where t11 and ω11 are the entries from the first row and first column of each respective matrix, t and ω are

(p− 1)-dimensional row vectors and the bottom right (p− 1)× (p− 1) submatrices are symmetric. Observe

that the determinant of some matrix D, that is decomposed in the above way and has an invertible submatrix,
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can be expressed as follows

det(D) = det

 d11 d

dT Dp−1



= det


 1 d

0 Dp−1


 d11 − dD−1

p−1d
T 0

D−1
p−1d

T Ip−1


 ,

where Ip−1 is a (p− 1)-dimensional identity matrix. Thus

det(D) = det(Dp−1) · det(d11 − dD−1
p−1d

T ).

Observe the second term is the determinant of a 1-dimensional matrix

det(D) = det(Dp−1) · (d11 − dD−1
p−1d

T ). (4.4)

In our case, we can use this property to factor the matrix 1 + iT . Observe that the submatrix 1 + iTp−1,

is invertible. This can be shown by first diagonalizing Tp−1, that is

Tp−1 = UDU−1,

for an orthogonal matrix U and diagonal matrix D. Then,

1 + iTp−1 = 1 + iUDU−1 = UU−1 + iUDU−1 = U(1 + iD)U−1,

observe that an inverse exists since 1 + iD is a diagonal matrix with all nonzero entries. Thus, from the

property in (4.4) we can rewrite det(1 + iT ), which gives

Gp,M (Ω) =

∫
R
p(p+1)

2

(
(1 + it11 + t(1 + iTp−1)−1tT ) det(1 + iTp−1)

)−M2 e
1
2 iTr(TΩ)dt11|dt||dTp−1|.

Note that the trace of the product TΩ can be written as

Tr(TΩ) = Tr

 t11ω11 + tωT t11ω + tΩp−1

ω11t
T + Tp−1ω

T tTω + Tp−1Ωp−1


= t11ω11 + tωT + Tr(tTω + Tp−1Ωp−1)

= t11ω11 + tωT + ωtT + Tr(Tp−1Ωp−1). (4.5)

Then, by rewriting the exponent involving Tr(TΩ) and applying Fubini’s Theorem, we have

Gp,M (Ω) =

∫
R
p(p−1)

2

∫
Rp−1

[det(1 + iTp−1)]
−M2 e

1
2 i(tωT+ωtT )e

1
2 iTr(Tp−1Ωp−1)×[∫

R
(1 + it11 + t(1 + iTp−1)−1tT )−

M
2 e

1
2 it11ω11dt11

]
|dt||dTp−1|.

Now, we would like to integrate with respect to t11.
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Lemma 4.1. The following integral

I =

∫
R

(1 + it11 + t(1 + iTp−1)−1tT )−
M
2 e

1
2 it11ω11dt11,

is defined and evaluates to

I =
2π

Γ
(
M
2

) (ω11

2

)M
2 −1

e−
1
2ω11(1+t(1+iTp−1)−1tT ).

Proof. In order to evaluate this integral we will use the following integral representation of the gamma

function, with details given in Appendix E,∫
R

eitw(k + it)−vdt =
2π

Γ(v)
wv−1e−wk, (4.6)

where Rek > 0; w > 0; Re v > 0;. Consider the integral we want to evaluate

I =

∫
R

(1 + it11 + t(1 + iTp−1)−1tT )−
M
2 e

1
2 it11ω11dt11.

With use of the property in (4.6), we have that

k = 1 + t(1 + iTp−1)−1tT , w =
ω11

2
, v =

M

2
.

Next, we will show the conditions are satisfied. Observe that ω11 = ‖x1‖2 where x 6= 0, thus ω11 > 0 and so

w > 0. Since M ∈ Z+, Re v > 0. For Rek > 0, consider

t(1 + iTp−1)−1tT = t(1 + iTp−1)−1(1− iTp−1)−1(1− iTp−1)tT

= t((1 + iTp−1)(1− iTp−1))−1(1− iTp−1)tT

= t(1 + T 2
p−1)−1(1− iTp−1)tT

= t(1 + T 2
p−1)−1tT − it(1 + T 2

p−1)−1Tp−1t
T .

Now, we will diagonalize Tp−1, i.e.

Tp−1 = UDU−1 =⇒ T 2
p−1 = UDU−1UDU−1 = UD2U−1

where U is an orthogonal matrix and D is a diagonal matrix of the eigenvalues of Tp−1. Then,

(1 + T 2
p−1)−1 = (UU−1 + UD2U−1)−1 = (U(1 +D2)U−1)−1 = U(1 +D2)−1U−1.

Since the above matrix has strictly positive eigenvalues, the matrix is positive definite. Thus

Re (t(1 + iTp−1)−1tT ) > 0.

Hence all of our conditions are satisfied, so our integral evaluates to

I =
2π

Γ
(
M
2

) (ω11

2

)M
2 −1

e−
1
2ω11(1+t(1+iTp−1)−1tT ).
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Observe with the application of the above Lemma, our integral Gp,M (Ω) is

Gp,M (Ω) =
2π

Γ
(
M
2

) (ω11

2

)M
2 −1

e−
1
2ω11

∫
R
p(p−1)

2

det(1 + iTp−1)−M/2e
1
2 iTr(Tp−1Ωp−1)×[∫

Rp−1

e−
1
2ω11(t(1+iTp−1)−1tT )+ 1

2 i(tωT+ωtT )|dt|
]
|dTp−1|.

From here, we would like to integrate with respect to the vector t. We will show that this will be a Gaussian

integral.

Lemma 4.2. The integral

I =

∫
Rp−1

e−
1
2ω11(t(1+iTp−1)−1tT )+ 1

2 i(tωT+ωtT )|dt|,

is Gaussian and is equal to

I = π
p−1
2

(
2

ω11

) p−1
2

det(1 + iTp−1)1/2e−
1

2ω11
ω(1+iTp−1)ωT .

Proof. For simplicity, we will denote B = (1 + iTp−1)−1, notice that ReB is a symmetric positive definite

matrix. Then, we have

I =

∫
Rp−1

e−
1
2 iω11(tBtT )+ 1

2 i(tωT+ωtT )|dt|.

Observe that the exponent can be written as a shift, i.e.

I = C

∫
Rp−1

e−
1
2ω11(t+a)B(tT+aT )|dt|, (4.7)

where C is a normalization constant independent of t and the vector a is p− 1 dimensional. So we need,

Ce−
1
2ω11(tBtT+tBaT+aBtT+aBaT ) = e−

1
2ω11(tBtT )+ 1

2 i(tωT+ωtT ).

Thus

C · e− 1
2ω11aBaT = 1 =⇒ C = e

1
2ω11aBaT ,

and

−1

2
ω11(tBaT + aBtT ) =

1

2
i(tωT + ωtT ),

which gives

−ω11aB = iω =⇒ a = − i

ω11
ωB−1,

and

C = e−
1

2ω11
ωB−1ωT .

Next, make a change of variable such that x =

√
ω11

2
(t + a). Then, after a shift to the real axis, our integral

from (4.7) becomes

I = e−
1

2ω11
ωB−1ωT

∫
Rp−1

e−xBxT
(

2

ω11

) p−1
2

|dx|.
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Observe the resulting integral is Gaussian, as shown in Appendix C, which gives

I = e−
1

2ω11
ωB−1ωT

(
2

ω11

) p−1
2

π
p−1
2 (detB)−1/2

=

(
2

ω11

) p−1
2

π
p−1
2 det(1 + iTp−1)1/2e−

1
2ω11

ω(1+iTp−1)ωT .

Making use of the Lemma 4.2, we obtain the following expression for Gp,M (Ω),

Gp,M (Ω) = Cp,M

∫
R
p(p−1)

2

ω
M−p−1

2
11 det(1 + iTp−1)−

M−1
2 e

1
2 iTr(Tp−1Ωp−1)e−

1
2 (ω11+ ωωT

ω11
+

iωTp−1ωT

ω11
)|dTp−1|.

Observe that ωTp−1ω
T = Tr(Tp−1ω

Tω), then

Gp,M (Ω) = Cp,M ω
M−p−1

2
11 e−

1
2 (ω11+ ωωT

ω11
)
∫
R
p(p−1)

2

det(1 + iTp−1)−
M−1

2 e
1
2 iTr(Tp−1(Ωp−1−ωTω

ω11
))|dTp−1|,

where Cp,M =
2π

Γ
(
M
2

) π p−1
2 2

p−M+1
2 .

Theorem 4.3. The function Gp,M (Ω) satisfies the following recurrence relation

Gp,M (Ω) = Cp,M ω
M−p−1

2
11 e−ω11−ωωT

ω11 Gp−1,M−1(Ωp−1 −
ωTω

ω11
),

where Cp,M =
2π

Γ
(
M
2

)π p−1
2 2

p−M+1
2 .

Proof. Observe that with the application of Lemma 4.1 and 4.2, we have

Gp,M (Ω) = Cp,M ω
M−p−1

2
11 e−

1
2 (ω11+ ωωT

ω11
)
∫
R
p(p−1)

2

det(1 + iTp−1)−
M−1

2 e
1
2 iTr(Tp−1(Ωp−1−ωTω

ω11
))|dTp−1|,

where Cp,M =
2π

Γ
(
M
2

) ·π p−1
2 2

p−M+1
2 . Notice that the integral appearing in the above expression is a function

of a p− 1 dimensional symmetric matrix Ωp−1 − ωTω
ω11

, having p− 1 variables sampled M − 1 times, with the

first entry of the resulting matrix being strictly greater than zero. Thus, from the relationship given in (4.2),

we have ∫
R
p(p−1)

2

det(1 + iTp−1)−
M−1

2 e
1
2 iTr(Tp−1(Ωp−1−ωTω

ω11
))|dTp−1| = Gp−1,M−1(Ωp−1 −

ωTω

ω11
).

Hence, we can express Gp,M (Ω) as a recurrence relation,

Gp,M (Ω) = Cp,M ω
M−p−1

2
11 e−

1
2 (ω11+ ωωT

ω11
)Gp−1,M−1(Ωp−1 −

ωTω

ω11
). (4.8)

We will now explicitly outline the steps for the solution to the recurrence relation. First we will introduce

notation for the reduced matrix Ωp−1 − ωTω
ω11

, i.e.

Ωp−1 −
ωTω

ω11
= Ω(p−1). (4.9)
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Then the distribution of any k × k matrix of the (p − k)th-step of the recursion, denoted by Ω(k) and

decomposed as such

Ω(k) =

 ω
(k)
11 ω(k)

(ω(k))T Ω
(k)
k−1

 ,

is used to generate the next matrix in the recursion by the formula:

Ω(k−1) = Ω
(k)
k−1 −

(ω(k))Tω(k)

ω
(k)
11

.

Now we will outline a procedure to develop the solution to the recurrence relation.

1. We will begin at formula (4.2), then

Gp−1,M−1(Ω(p−1)) =

∫
R
p(p−1)

2

det(1 + iTp−1)−
M−1

2 e
1
2 iTr(Tp−1Ω(p−1))|dTp−1|.

2. Now, we will decompose the matrices Tp−1 and Ω(p−1), as done in (4.3), that is

Tp−1 =

 t11 t

tT Tp−2

 Ω(p−1) =

 ω
(p−1)
11 ω(p−1)

(ω(p−1))T Ω
(p−1)
p−2

 ,

where the row vectors t and ω(p−1) are (p − 2)-dimensional and the superscript, (p − 1), denotes the

1st step of the recursion. Since ω
(p−1)
11 is a ratio of leading principal minors of our original matrix Ω, of

which we will show later in Theorem 4.7, we have that ω
(p−1)
11 > 0.

3. From the property given in (4.4), we can rewrite the determinant appearing in Gp−1,M−1(Ω(p−1)) and

the trace as observed in (4.5)

Gp−1,M−1(Ω(p−1)) =

∫
R
p(p−1)

2

(
(1 + it11 + t(1 + iTp−2)−1tT ) det(1 + iTp−2)

)−M−1
2 ×

e
1
2 i(t11ω

(p−1)
11 +t(ω(p−1))T+ω(p−1)tT+Tr(Tp−2Ω

(p−1)
p−2 ))dt11|dt||dTp−2|.

4. Next, we would like to integrate with respect to t11, thus we can apply Lemma 4.1

Gp−1,M−1(Ω(p−1)) =
2π

Γ
(
M−1

2

) (ω(p−1)
11

2

)M−1
2 −1

e−
1
2ω

(p−1)
11 ×∫

R
(p−1)(p−2)

2

det(1 + iTp−2)−
M−1

2 e
1
2 iTr(Tp−2Ω

(p−1)
p−2 )×[∫

Rp−2

e−
1
2ω

(p−1)
11 (t(1+iTp−2)−1tT )+ 1

2 i(t(ω(p−1))T+ω(p−1)tT )|dt|
]
|dTp−2|.

5. Observe the integration with respect to t is Gaussian, so we will use Lemma 4.2

Gp−1,M−1(Ω(p−1)) =Cp−1,M−1 (ω
(p−1)
11 )

M−p−1
2 e

− 1
2 (ω

(p−1)
11 +

ω(p−1)(ω(p−1))T

ω
(p−1)
11

)

×∫
R

(p−1)(p−2)
2

det(1 + iTp−2)−
M−2

2 e
1
2 iTr(Tp−2Ω(p−2))|dTp−2|,

where Cp−1,M−1 =
2π

Γ
(
M−1

2

)π p−2
2 2

p−M+1
2 and Ω(p−2) = Ω

(p−1)
p−2 −

(ω(p−1))Tω(p−1)

ω
(p−1)
11

.
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6. Notice that the integral appearing in the above function describes Gp−1,M−1(Ω(p−1)) as a function of

a reduced (p− 2)× (p− 2) matrix Ω(p−2). Hence,

Gp−1,M−1(Ω(p−1)) = Cp−1,M−1

(
ω

(p−1)
11

)M−p−1
2

e
− 1

2

(
ω

(p−1)
11 +

ω(p−1)(ω(p−1))T

ω
(p−1)
11

)
Gp−2,M−2(Ω(p−2)).

Then, we can write a more explicit expression for Gp,M (Ω),

Gp,M (Ω) = C2

[
1∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑1
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
Gp−2,M−2(Ω(p−2)),

where C2 = Cp,MCp−1,M−1.

7. Depending on the number of variables compared to the sample size, there will be two cases. The first,

when M > p, will be the Wishart distribution as derived in the previous chapter. While the second,

when M < p, will be the singular Wishart distribution.

Case 1 (Wishart): For M > p, we will consider p − 1 steps of the recursion. Thus, we will repeat

steps 1-6, p− 1 times, giving

Gp,M (Ω) = Cp−1

[
p−2∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑p−2
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
G1,M−(p−1)(Ω

(1)),

where Cp−1 =

p−2∏
k

Cp−k,M−k. Now, from 4.2, we can express G1,M−(p−1)(Ω
(1)) as

G1,M−(p−1)(Ω
(1)) =

∫
R

det(1 + iT1)−
M−(p−1)

2 e
1
2 iTr(T1Ω(1))dT1,

observe each matrix is 1-dimensional, i.e. T1 = t11 and Ω(1) = ω
(1)
11 , then

G1,M−(p−1)(Ω
(1)) =

∫
R

(1 + it11)−
M−(p−1)

2 e
1
2 it11ω

(1)
11 dt11.

Now, if we consider Lemma 4.1, we can evaluate this integral, giving

G1,M−(p−1)(Ω
(1)) =

2π

Γ
(
M−(p−1)

2

) (ω(1)
11

2

)M−(p−1)
2 −1

e−
1
2ω

(1)
11 .

Lemma 4.4. When M > p, the function Gp,M (Ω) can be expressed as

Gp,M (Ω) = Cp

[
p−1∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑p−2
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
e−

1
2ω

(1)
11 ,

where Cp =
(2π)p 2

p(p−M+1)
2 π

p(p−1)
4

Γ
(
M
2

)
· · ·Γ

(
M−p+1

2

) .
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Case 2 (Singular Wishart): For M < p, we will repeat steps 1-6, M times, then

Gp,M (Ω) = CM

[
M−1∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑M−1
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
Gp−M,0(Ω(p−M)),

where CM =

M−1∏
k=0

Cp−k,M−k. Observe from (4.2), we have

Gp−M,0(Ω(p−M)) =

∫
R

(p−M)(p−M+1)
2

e
1
2 iTr(Tp−MΩ(p−M))|dTp−M |, (4.10)

where Tp−M is all real (p −M) × (p −M) symmetric matrices and the determinant has disappeared,

thus the integral is not convergent in any ordinary sense. We will show that the above function is

proportional to the Dirac delta.

Recall from Appendix D, the multidimensional Dirac delta can be expressed as

δ(Ω(p−M)) =
2

(p−M)(p−M−1)
2

(2π)
(p−M)(p−M+1)

2

∫
R

(p−M)(p−M+1)
2

eiTr(TΩ(p−M))|dT |,

where T is all real (p−M)-dimensional symmetric matrices. Then,

(2π)
(p−M)(p−M+1)

2

2
(p−M)(p−M−1)

2

δ(Ω(p−M)) =

∫
R

(p−M)(p−M+1)
2

eiTr(TΩ(p−M))|dT |.

We will rescale T such that T = 1
2 T̂ ,

(2π)
(p−M)(p−M+1)

2

2
(p−M)(p−M−1)

2

δ(Ω(p−M)) = 2−
(p−M)(p−M+1)

2

∫
R

(p−M)(p−M+1)
2

e
1
2 iTr(T̂Ω(p−M))|dT̂ |

= 2−
(p−M)(p−M+1)

2 Gp−M,0(Ω(p−M)).

Thus,

Gp−M,0(Ω(p−M)) =
(2π)

(p−M)(p−M+1)
2

2
(p−M)(p−M−1)

2

2
(p−M)(p−M+1)

2 δ(Ω(p−M)).

From this representation, we have that

Gp,M = C ′M

[
M−1∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑M−1
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
δ
(

Ω(p−M)
)
,

where C ′M =
πM+

M(2p−M−1)
4 +

(p−M)(p−M+1)
2 2p+

p(p−M+1)
2

Γ
(
M
2

)
Γ
(
M−1

2

)
· · ·Γ

(
1
2

) .

Lemma 4.5. When M < p, the function Gp,M (Ω) can be expressed as

Gp,M (Ω) = C ′M

[
M−1∏
k=0

ω
(p−k)
11

]M−p−1
2

e
− 1

2

∑M−1
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
δ
(

Ω(p−M)
)
,

where C ′M =
πM+

M(2p−M−1)
4 +

(p−M)(p−M+1)
2 2p+

p(p−M+1)
2

Γ
(
M
2

)
Γ
(
M−1

2

)
· · ·Γ

(
1
2

) .
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Now, we would like to write each distribution in terms of the original matrix Ω. Interestingly enough,

we can express each element of a reduced matrix, Ω(k), as ratios of minors from the original matrix Ω. The

proof of this can be done by induction, which we will show. For now, let us dive into more notation.

Definition 4.6. We will define Ω[k], for 1 ≤ k ≤M when p > M and 1 ≤ k ≤ p when p ≤M , as the upper

left hand k × k submatrix of Ω. For each l, r > k consider the (k + 1) × (k + 1) matrix, denoted Ω[k]∪{l,r},

obtained by adjoining the k + 1 entries of the lth row and rth column of Ω to the submatrix Ω[k], i.e.

Ω[k]∪{l,r} =


Ω[k]

ω1r

...

ωkr

ωl1 . . . ωlk ωlr

 .

When k = 0, we will define det Ω[0] = 1 and det Ω[0]∪{l,r} = ωlr.

We will begin by introducing some assumptions about the matrix Ω. Observe when M > p we have a Gram

matrix, thus Ω is positive definite. When p > M , our matrix is only semi-positive definite, but since the

rank(Ω) = M , we will have an M -by-M block that is positive definite. We will assume that this block exists

in the upper left hand corner of our matrix, i.e. Ω[M ] is positive definite. Then, all leading principal minors

of Ω[M ] are positive definite.

Theorem 4.7. Any element of the matrix Ω(p−k), from the kth step of the recurrence relation, can be written

as a ratio of minors from the original matrix Ω, i.e.

ω
(p−k)
lr =

det Ω[k]∪{l+k,r+k}

det Ω[k]
,

where 0 ≤ k ≤M when p > M and 0 ≤ k ≤ p when p ≤M . Also, l, r > k.

Proof. For k = 0 the statement in true, since we have

ω
(p)
lr =

det Ω[0]∪{l,r}

det Ω[0]
= ωlr,

where by definition det Ω[0] = 1. Assume the relationship stands for k − 1 and we will verify for k. Recall

the relationship from (4.9)

Ω(k−1) = Ω
(k)
k−1 −

(ω(k))Tω(k)

ω
(k)
11

.

Hence,

Ω(p−k) = Ω
(p−k+1)
p−k − (ω(p−k+1))Tω(p−k+1)

ω
(p−k+1)
11

.

Then, each element of the matrix can be viewed as

ω
(p−k)
lr =

(
Ω

(p−k+1)
p−k − (ω(p−k+1))Tω(p−k+1)

ω
(p−k+1)
11

)
lr

. (4.11)
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Leading to an expression for each element

ω
(p−k)
lr = ω

(p−k+1)
l+1,r+1 −

ω
(p−k+1)
l+1,1 ω

(p−k+1)
1,r+1

ω
(p−k+1)
11

, (4.12)

where the shift in l and r comes from the fact the element in the lth row and rth column of the new matrix is

made up from the l+1 row and r+1 column of the previous matrix, i.e. ω
(p−k)
11 = ω

(p−k+1)
22 − ω

(p−k+1)
21 ω

(p−k+1)
12

ω
(p−k+1)
11

.

Also, we will introduce a comma in some situations in order to communicate the appropriate row and column

of Ω that we are interested in.

Recall, we assumed the relationship to be true for k − 1, so the right hand side of (4.12) is

ω
(p−k+1)
l+1,r+1 −

ω
(p−k+1)
l+1,1 ω

(p−k+1)
1,r+1

ω
(p−k+1)
11

=
det Ω[k−1]∪{l+k,r+k}

det Ω[k−1]
−

det Ω[k−1]∪{l+k,k}

det Ω[k−1]
×

det Ω[k−1]∪{k,r+k}

det Ω[k−1]
·

det Ω[k−1]

det Ω[k−1]∪{k,k}

=
det Ω[k−1]∪{l+k,r+k}

det Ω[k−1]
−

det Ω[k−1]∪{l+k,k} det Ω[k−1]∪{k,r+k}

det Ω[k−1] det Ω[k]

=C
(
det Ω[k] det Ω[k−1]∪{l+k,r+k} − det Ω[k−1]∪{l+k,k} det Ω[k−1]∪{k,r+k}

)
,

where C =
1

det Ω[k−1] det Ω[k]
. Thus we want to prove the following identity

det Ω[k−1] det Ω[k]∪{l+k,r+k} = det Ω[k] det Ω[k−1]∪{l+k,r+k} − det Ω[k−1]∪{l+k,k} det Ω[k−1]∪{k,r+k}.

We will show that with some shifting of rows and columns we can apply the Lewis Carroll identity, as

presented in Appendix G. Observe

det Ω[k]∪{l+k,r+k} = det



ω1k ω1,r+k

Ω[k−1]

...
...

ωk−1,k ωk−1,r+k

ωk1 . . . ωk,k−1 ωkk ωk,r+k

ωl+k,1 . . . ωl+k,k−1 ωl+k,k ωl+k,r+k


.

Now we would like to move the last row to the first row and the last column to the first column, thus we are

doing k row interchanges and k column interchanges

det Ω[k]∪{l+k,r+k} = (−1)2k det



ωl+k,r+k ωl+k,1 . . . ωl+k,k−1 ωl+k,k

ω1,r+k ω1k

... Ω[k−1]

...

ωk−1,r+k ωk−1,k

ωk,r+k ωk,1 . . . ωk,k−1 ωkk


(4.13)

= detD.
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In order to apply the Lewis Carroll identity, we will develop some more notation. We will denote the

submatrix from which the i1, i2, . . . , in rows and j1, j2, . . . , jn columns of D ∈ Rk+1×k+1 are removed by

Di1,i2,...,in
j1,j2,...,jn

. Then the identity states

detD · detD1,k+1
1,k+1 = detD1

1 · detDk+1
k+1 − detDk+1

1 · detD1
k+1.

Consider Ω[k−1], from (4.13) we see that this is the matrix D but with the first and last row removed as well

as the first and last column, so det Ω[k−1] = detD1,k+1
1,k+1. Also, det Ω[k] = det Ω[k−1]∪{k,k} = detD1

1. Observe,

if we move the last row and column of Ω[k−1]∪{l+k,r+k} to the first row and column and take the determinant

of the resulting matrix, we will obtain (−1)2(k−1) detDk+1
k+1. Also, by moving the last row of Ω[k−1]∪{l+k,k}

to the first row and taking the determinant, this is equivalent to (−1)k−1 detDk+1
1 . Similarly, by moving the

last column of Ω[k−1]∪{k,r+k} to the first column, we have det Ω[k−1]∪{k,r+k} = (−1)k−1 detD1
k+1. Thus,

det Ω[k−1] det Ω[k]∪{l+k,r+k} = detD1,k+1
1,k+1 · detD

= detD1
1 · detDk+1

k+1 − detDk+1
1 · detDk+1

= det Ω[k] · det Ω[k−1]∪{l+k,r+k}−

(−1)−(k−1) det Ω[k−1]∪{l+k,k} · (−1)−(k−1) det Ω[k−1]∪{k,r+k}

= det Ω[k] det Ω[k−1]∪{l+k,r+k} − det Ω[k−1]∪{l+k,k} det Ω[k−1]∪{k,r+k}.

Hence,

ω
(p−k)
lr =

det Ω[k]∪{l+k,r+k}

det Ω[k]
.

From the above Theorem, we can express the terms in both of our distributions as ratios of determinants.

Consider,

ω
(p−k)
11 =

det Ω[k]∪{1+k,1+k}

det Ω[k]
=

det Ω[k+1]

det Ω[k]
.

Then, for the product from Gp,M (Ω), given in Lemma 4.4,

p−1∏
k=0

ωp−k11 =

p−1∏
k=0

det Ω[k+1]

det Ω[k]

=
det Ω[1]

det Ω[0]
·

det Ω[2]

det Ω[1]
· · ·

det Ω[p−1]

det Ω[p−2]
·

det Ω[p]

det Ω[p−1]
=

det Ω[p]

det Ω[0]

= det Ω[p],

and, for the product from Gp,M (Ω), given in Lemma 4.5,

M−1∏
k=0

ω
(p−k)
11 =

M−1∏
k=0

det Ω[k+1]

det Ω[k]
=

det Ω[M ]

det Ω[0]
= det Ω[M ].

Next, we will show that the expression in the exponent that appears in both distributions is the trace of the
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original matrix Ω. Recall we have the relationship in (4.9), from which we will take the trace of both sides

Tr Ω(k−1) = Tr

(
Ω

(k)
k−1 −

(ω(k))Tω(k)

ω
(k)
11

)

= Tr Ω
(k)
k−1 −

ω(k)(ω(k))T

ω
(k)
11

,

since Tr((ω(k))Tω(k)) = ω(k)(ω(k))T . Observe from the decomposition of Ω(k), Tr Ω(k) = ω
(k)
11 + Tr Ω

(k)
k−1

Tr Ω(k−1) = Tr Ω(k) − ω(k)
11 −

ω(k)(ω(k))T

ω
(k)
11

.

Thus

ω
(k)
11 +

ω(k)(ω(k))T

ω
(k)
11

= Tr Ω(k) − Tr Ω(k−1).

For the Wishart case, we have

−1

2

p−2∑
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
− 1

2
ω

(1)
11 = −1

2

p−2∑
k=0

(
Tr Ω(p−k) − Tr Ω(p−k−1)

)
− 1

2
ω

(1)
11 .

Observe the right hand side is an alternating sum, thus we will only be left with the first and last term, that

is

−1

2

p−2∑
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
− 1

2
ω

(1)
11 = −1

2
(Tr Ω− Tr Ω(1))− 1

2
ω

(1)
11

= −1

2
Tr Ω,

since Ω(1) = ω
(1)
11 .

Then, for the singular Wishart case,

−1

2

M−1∑
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
= −1

2

M−1∑
k=0

(
Tr Ω(p−k) − Tr Ω(p−k−1)

)
.

which again is an alternating sum, thus

−1

2

M−1∑
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
= −1

2

(
Tr Ω− Tr Ω(p−M)

)
.

From the Dirac delta, the second trace vanishes

−1

2

M−1∑
k=0

(
ω

(p−k)
11 +

ω(p−k)(ω(p−k))T

ω
(p−k)
11

)
= −1

2
Tr Ω.

We will now obtain an expression for the mulitdimensional Dirac delta, δ(Ω(p−M)), that appears in Lemma

4.5. Recall that Ω(p−M) is a (p−M) dimensional symmetric matrix with (p−M)(p−M+1)
2 independent elements.

We will express each independent entry of this matrix as a ratio of determinants. Thus for any l, r

ω
(p−M)
lr =

det Ω[M ]∪{l+M,r+M}

det Ω[M ]
,
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resulting in

δ(Ω(p−M)) =

p∏
l,r=M+1
l≤r

δ

(
det Ω[M ]∪{l,r}

det Ω[M ]

)
.

In the following theorem we will present both the Wishart and singular Wishart distribution, taking into

account the previous findings.

Theorem 4.8. The density function of the random matrix Ω can take the following forms

1. When M > p, the random matrix Ω has a Wishart distribution given by the density function

FM>p(Ω) =
π

−p(p−1)
4

2
pM
2

p∏
k=1

Γ

(
M − k + 1

2

) (det Ω)
M−p−1

2 e−
1
2 Tr(Ω).

2. When M < p, the random matrix Ω has a singular Wishart distribution given by the density function

FM<p(Ω) =
π
M(M+1)

4

(2π)
pM
2

M∏
k=1

Γ

(
M − k + 1

2

) (det Ω[M ])
M−p−1

2 e−
1
2 Tr Ω

p∏
l,r=M+1
l≤r

δ

(
det Ω[M ]∪{l,r}

det Ω[M ]

)
.

Proof. Recall from (4.1) we have that

F (Ω) =
2−p

(2π)
p(p+1)

2

Gp,M (Ω).

1. As observed in Lemma 4.4, when p ≤M , Gp,M (Ω) can be expressed as

Gp,M (Ω) =
(2π)p 2

p(p−M+1)
2 π

p(p−1)
4

Γ
(
M
2

)
Γ
(
M−1

2

)
· · ·Γ

(
M−p+1

2

) (det Ω)
M−p−1

2 e−
1
2 Tr Ω.

Thus,

FM>p(Ω) =
π

−p(p−1)
4

2
pM
2

p∏
k=1

Γ

(
M − k + 1

2

) (det Ω)
M−p−1

2 e−
1
2 Tr(Ω).

2. As observed in Lemma 4.5, when p > M , we have that

Gp,M (Ω) =
πM+

M(2p−M−1)
4 +

(p−M)(p−M+1)
2 2p+

p(p−M+1)
2

Γ
(
M
2

)
Γ
(
M−1

2

)
· · ·Γ

(
1
2

) (det Ω[M ])
M−p−1

2 e−
1
2 Tr Ω

p∏
l,r=M+1
l≤r

δ

(
det Ω[M ]∪{l,r}

det Ω[M ]

)
.

Thus,

FM<p(Ω) =
π
M(M+1)

4

(2π)
pM
2

M∏
k=1

Γ

(
M − k + 1

2

) (det Ω[M ])
M−p−1

2 e−
1
2 Tr Ω

p∏
l,r=M+1
l≤r

δ

(
det Ω[M ]∪{l,r}

det Ω[M ]

)
.
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4.3 Summary

R. A. Janik and M. A. Nowak’s approach to the derivation of the distributions required intricate calculations.

With the application of the integral representation of the Dirac delta and integration of the data matrix X,

we observed that the density function of the random matrix Ω satisfied a recurrence relation. The steps of

the recurrence relation were outlined explicitly, which produced a complicated expression of terms. In fact,

the elements of a reduced matrix at any step of the recurrence could be expressed by the ratio of minors from

the original matrix Ω. This result allowed a simplification of the density function and we were able to prove

that the Wishart matrix had one of two density functions. For the case of p < M the random matrix had a

Wishart distribution and for p > M the random matrix had a singular Wishart distribution.
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Chapter 5

Concluding Remarks and Future Work

The derivations provided throughout this thesis were approached in entirely different manners. The work

of J. Wishart uses a geometric argument, while R. A. Janik and M. A. Nowak use an algebraic approach.

These publications were of interest to us because we wanted to find different ways of approaching the same

problem. It is interesting to discover that two completely different arguments can be used to derive identical

distributions.

One remaining topic of interest is the applications of the distributions in multivariate analysis. We

introduced two applications of the distributions in statistics, such as the need for the Wishart distribution in

the derivation of the generalized T 2 distribution and the application of the singular Wishart distribution in

Bayesian statistics. But, the open question is how can the singular Wishart distribution be applied to high-

dimensional data analysis? For statistical methods that require assumptions about the covariance matrix,

specifically discriminant analysis, is there a need for knowing such a distribution?

In the introduction of this thesis, we offered two examples of high-dimensional problems, such as analyzing

security returns in financial analysis [21] and classifying tumors using DNA microarray experiments [7]. The

use of microarrays is becoming more prevelant in the area of biomedical research. Commonly in microarray

experiments, there may be an abundance of variables, leading to an enormous covariance matrix [9]. When

considering DNA microarray data, there is availability of gene expressions on thousands of genes, but very

few individuals. Even though the genes are correlated, most of the analysis carried out on the data ignore

these correlations [29]. Learning more about analysis in this field and how the singular Wishart distribution

could be applied is a compelling topic for future research.
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Appendix A

Basics of Probability

The following definitions on basic concepts in probability were obtained from S. M. Ross [24] and J. H.
Hubbard et. al [12].

Definition A.1. The sample space S of an experiment contains all possible outcomes of the experiment. A
subset H of S (H ⊂ S) is called an event.

Definition A.2. Let S be the sample space of outcomes of an experiment. A random variable is a function
X : S → R.

Definition A.3. A random variable X is said to be a continuous random variable if there exists a nonnegative
function f(x), defined for all real x ∈ R, having the property that for any set of B of real numbers

Prob(X ∈ B) =

∫
B

f(x)dx.

Definition A.4. The function f(x) appearing in Definition A.3 is called the probability density function of
the random variable X.

Definition A.5. For a continuous random variable X having a probability density function f(x), the expected
value of X is defined by

E(X) =

∫
R
xf(x)dx.

Definition A.6. The variance of a random variable X, denoted V ar(X), is given by the formula

V ar(X) = E
(
(X − E(X))2

)
= E(X2)− (E(X))2.

Definition A.7. The standard deviation of a random variable X, denoted SD(X), is given by

SD(X) =
√
V ar(X).

Definition A.8. If X and Y are random variables, their covariance, denoted Cov(X,Y ), is

Cov(X,Y ) = E

((
X − E(X)

)(
Y − E(Y )

))
.

Definition A.9. Let X and Y be random variables. Their correlation coefficient, denoted corr(X,Y ), is
given by

corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )

It follows that |corr(X,Y )| ≤ 1.

Definition A.10. A random vector X =
(
X1, X2, . . . , Xp

)T
is a vector of jointly distributed random vari-

ables. The expectation of a random vector, denoted E(X), is given by

E(X) =


E(X1)
E(X2)

...
E(Xp)

 .
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Definition A.11. The covariance matrix, denoted Σ, of a random vector X is

Σ = E

((
X− E(X)

)(
X− E(X)

)T)

=


V ar(X1) Cov(X1, X2) · · · Cov(X1, Xp)

Cov(X2, X1) V ar(X2) · · · Cov(X2, Xp)
...

...
. . .

...
Cov(Xp, X1) Cov(Xp, X2) . . . V ar(Xp)

 .

Definition A.12. Let B be a p × p square matrix. The matrix B is called symmetric if the (i, j) entry is
equal to the (j, i) entry

bij = bji 1 ≤ i, j ≤ p.

Definition A.13. Let B be a symmetric p × p real matrix. Then the matrix B is said to be positive
semi-definite if zTBz ≥ 0 for every non-zero column vector z ∈ Rp.

Lemma A.14. If Σ is the covariance matrix of a random vector X, then Σ is positive semi-definite.

Proof. Observe Σ is symmetric since

Cov(Xi, Xj) = Cov(Xj , Xi) 1 ≤ i, j ≤ p.

Consider a non-zero column vector z ∈ Rp

zTΣz = zTE

((
X− E(X)

)(
X− E(X)

))
zT

= E

(
zT
(
X− E(X)

)(
X− E(X)

)T
z

)
= E

(
Y Y T

)
≥ 0,

where Y = zT
(
X− E(X)

)
.

Definition A.15. Let X be a p×N matrix of p random variables each sampled N times

X = [xkn] 1 ≤ k ≤ p, 1 ≤ n ≤ N.

The sample mean of the kth-variate, denoted x̄k is given by

x̄k =
1

N

N∑
n=1

xkn.

Definition A.16. Let X be a p × N matrix of p random variables each sampled N times. The sample
covariance matrix is a p× p matrix A with entries

akl =
1

N

N∑
n=1

(xkn − x̄k)(xln − x̄l) 1 ≤ k, l ≤ p.
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Appendix B

Surface Area of Spheres

Observe, ∫
R
e−x

2

dx =
√
π.

Then, (∫
R
e−x

2

dx

)2

=

∫
R
e−x

2

dx

∫
R
e−y

2

dy,

using Fubini’s Theorem, with details given in Appendix H, we have

=

∫
R2

e−(x2+y2)d(x, y),

let r2 = x2 + y2

=

∫ ∞
0

e−r
2

A1(1) r dr

= A1(1)

∫ ∞
0

e−r
2

r dr,

where A1(1) is the surface area of a unit 1-dimensional sphere or, similarly, the circumference of the unit
circle. Thus,

A1(1) =

(∫
R e
−x2

dx
)2

∫∞
0
e−r2r dr

.

To compute the denominator, we will institute a change of variable. That is,

u = −r2 du = −2 dr.

Then, ∫ ∞
0

e−r
2

r dr =
−1

2

∫ ∞
0

eu du =
−1

2
(e∞ − e0) =

1

2
.

So,

A1(1) =
π

1/2
= 2π.

As expected, this is exactly the circumference of a unit circle. Consider(∫
R
e−x

2

dx

)3

=

∫
R3

e−(x2+y2+z2)d(x, y, z)

let r2 = x2 + y2 + z2

=

∫ ∞
0

e−r
2

A2(1) r2 dr

= A2(1)

∫ ∞
0

e−r
2

r2 dr,
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where A2(1) is the surface area of a 2-dimensional unit sphere. Observe

A2(1) =

(∫
R e
−x2

dx
)3

∫∞
0
e−r2r2 dr

.

For the computation of the denominator, apply integration by parts. That is,

w = r dv = re−r
2

dr

dw = dr v =
−1

2
e−r

2

.

Thus, ∫ ∞
0

e−r
2

r2 dr = −r
2
e−r

2
∣∣∣∞
0

+
1

2

∫ ∞
0

e−r
2

dr

=
1

2

∫ ∞
0

e−r
2

dr,

let r =
√
t =⇒ dr = 1

2 t
1
2−1 dt

=
1

4

∫ ∞
0

t
1
2−1e−t dt,

which is the integral representation of the Gamma function

=
1

4
Γ

(
1

2

)
=

√
π

4
.

The surface area of the 2-dimensional unit sphere is therefore,

A2(1) =
(
√
π)3

√
π/4

= 4π.

Then, for any natural number N, we have

AN−1(1) =

(∫
R e
−x2

dx
)N

∫∞
0
e−r2rN−1 dr

=
(
√
π)N

Γ
(
N
2

)
/2

=
2(
√
π)N

Γ
(
N
2

) .
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Appendix C

Gaussian Integrals

Recall from Appendix B that we have ∫
R

e−x
2

dx =
√
π.

Then for any variable a > 0, independent of x, consider∫
R

e−ax
2

dx,

we will make a change of variable such that x̃ =
√
ax, then∫

R
e−ax

2

dx =

∫
R

e−x̃
2 1√

a
dx̃

=

√
π

a
.

Now we will consider the 2-dimensional case, that is∫
R

∫
R

e−(x2+y2)dxdy.

With the application of Fubini’s theorem, where details are given in Appendix H, we have∫
R

∫
R

e−(x2+y2)dxdy =

∫
R

e−y
2

[∫
R

e−x
2

dx

]
dy

=
√
π

∫
R

e−y
2

dy

= (
√
π)2.

Thus, for general k we have ∫
Rk

e−(x2
1+x2

2+···+x2
k)dx1dx2 · · · dxk = (

√
π)k.

Now, consider

I =

∫
R

∫
R

e−(a11x
2+a12xy+a22y

2)dxdy.

In order to integrate with respect to x, we will fix y and complete the square in x

I =

∫
R

e−(a22y
2)

[∫
R

e−a11(x+
a12
a11

y)2+
a212
a11

y2dx

]
dy,

now, make a change of variable such that x̃ =
√
a11(x+ a12

a11
y), then

I =

∫
R

e−a22y
2

e
a212
a11

y2
[∫

R
e−x̃

2 1
√
a11

dx̃

]
dy

=

√
π

a11

∫
R

e−(a22−
a212
a11

)y2 .
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Then make the final change of variable, ỹ =
√
a22 − a212

a11
y

I =

√
π

a11

∫
R

e−ỹ
2 1√

a22 − a212
a11

dỹ

=
(
√
π)2

√
a11

√
a11

a22a11 − a2
12

=

√
π2

a22a11 − a2
12

.

Observe that if we write x = (x, y) and A = [alr] ∈ R2×2 such that A is a symmetric positive definite matrix,
we have

a11x
2 + 2a12xy + a22y

2 = xAxT .

Then ∫
R2

e−xAxT |dx| =
∫
R

∫
R

e−(a11x
2+a12xy+a22y

2)dxdy =

√
π2

detA
.

Lemma C.1. For any vector x ∈ R1×k and symmetric positive definite matrix A = [alr] ∈ Rk×k, the
following holds ∫

Rk
e−xAxT |dx| =

√
πk

detA
.

Proof. Since A is a symmetric matrix, we will diagonalize A such that

A = UDUT ,

where U is an orthogonal matrix and D a diagonal matrix. Then,∫
Rk

e−xAxT |dx| =
∫
Rk

e−xUDU
TxT |dx|

=

∫
Rk

e−(xU)D(xU)T |dx|.

We will make a change of variables such that x̃ = xU , thus∫
Rk

e−xAxT |dx| =
∫
Rk

e−x̃Dx̃T |detU ||dx̃|

=

∫
Rk

e−(x2
1d1+x2

2d2+···+x2
kd2)dx1dx2 · · · dxk

=

√
πk

d1d2 · · · dk
.

Observe that

detA = det(ODOT ) = det(O) det(D) det(OT ) = det(D) = d1d2 · · · dk.

Hence,

∫
Rk

e−xAxT |dx| =
√

πk

detA
.
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Theorem C.2. For a matrix X ∈ Rk×M and symmetric postive definite matrix A ∈ Rk×k, the integral

I =

∫
RkM

e−Tr(XTAX)|dX|

is Gaussian and evaluates to
I = (π)

kM
2 (detA)−

M
2 .

Proof. We will denote the columns of X as

X =
(

yT1 yT2 . . . yTM
)
,

and the columns of A
A =

(
aT1 aT2 . . . aTk

)
.

Consider the product appearing in the exponent

XTAX =


y1a

T
1 y1a

T
2 . . . y1a

T
k

y2a
T
1 y2a

T
2 . . . y2a

T
k

...
...

. . .
...

yMaT1 yMaT2 . . . yMaTk

 · ( yT1 yT2 . . . yTM
)

=


y1AyT1

y2AyT2
. . .

yMAyTM

 .

Since the exponent in our integral involves the trace of the above product, the diagonal elements are only of
interest. Thus,

Tr(XTAXT ) = y1AyT1 + y2AyT2 + . . .+ yMAyTM .

Hence we can write∫
RkM

e−Tr(XTAX)|dX| =
∫
Rk
· · ·
[∫

Rk

[∫
Rk

e−(y1AyT1 +y2AyT2 +...+yMAyTM )|dy1|
]
|dy2|

]
· · · |dyM |

=

√
πk

detA

∫
Rk
· · ·
[∫

Rk
e−(y2AyT2 +...+yMAyTM )|dy2|

]
· · · |dyM |

=

(
πk

detA

)M
2

.
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Appendix D

Integral Representation of the Dirac Delta

Definition D.1. [10] A function fN (x) is a delta convergent sequence if:

a) For all M > 0 and for |a| ≤M and |b| ≤M , the quantities∣∣∣∣∣
∫ b

a

fN (t)dt

∣∣∣∣∣
must be bounded by a constant independent of a, b, or N .

b) For any fixed, nonzero a and b, we must have

lim
N→∞

∫ b

a

fN (t)dt =

{
0 a < b < 0, 0 < a < b
1 a < 0 < b

.

Consider the following sequence

fN (x) =
1

2π

∫ N

−N
eitxdt

=
1

2π

(
eitx

ix

∣∣∣∣N
−N

)

=
1

2πix
(cos(Nx) + i sin(Nx)− cos(Nx) + i sin(Nx))

=
1

π

sin(Nx)

x
.

Consider the following ∫ b

a

fN (x)dx =
1

π

∫ b

a

sin(Nx)

x
dx.

Next, make a change of variable such that y = Nx, then

1

π

∫ b

a

sin(Nx)

x
dx =

1

π

∫ Nb

Na

sin y

y
N

dy

N

=
1

π

∫ Nb

Na

sin y

y
dy.

In order to show the second condition of Definition D.1, we will have three cases. For a < b < 0

lim
N→∞

1

π

∫ b

a

sin(Nx)

x
dx = lim

N→∞

1

π

∫ Nb

Na

sin y

y
dy =

1

π

∫ −∞
−∞

sin y

y
dy = 0.

Similarily, when 0 < a < b

lim
N→∞

1

π

∫ b

a

sin(Nx)

x
dx =

1

π

∫ ∞
∞

sin y

y
dy = 0.

Lastly, for a < 0 < b, we have

lim
N→∞

1

π

∫ b

a

sin(Nx)

x
dx = lim

N→∞

1

π

∫ Nb

Na

sin y

y
dy

=
1

π

∫ ∞
−∞

sin y

y
dy.
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Observe that this is the integral of the sinc function and, for x 6= 0, is equal to π [10]. Thus,

lim
N→∞

1

π

∫ b

a

sin(Nx)

x
dx = 1.

For the first condition, observe ∣∣∣∣∣ 1π
∫ b

a

sin(Nx)

x
dx

∣∣∣∣∣ =

∣∣∣∣∣ 1π
∫ bN

aN

sin(y)

y
dy

∣∣∣∣∣ ,
is bounded uniformly in a and b for all N . Therefore, fN (x) satisfies the necessary conditions to be a delta
convergent sequence.

Lemma D.2. [10] For a delta convergent sequence fN (x), we have

lim
N→∞

fN (x) = δ(x).

Proof. Let fN (x) be a delta convergent sequence. Consider the following sequence of functions

FN (x) =

∫ x

−1

fN (τ)dτ.

Observe from the properties of a delta convergent sequences, as N increases we have

lim
N→∞

FN (x) = lim
N→∞

∫ x

−1

fN (τ)dτ =

{
0 x < 0
1 x > 0.

Futhermore, these functions FN (x) are bounded uniformly. In the sense of generalized functions, the sequence
of functions converges to the step function, i.e.

lim
N→∞

FN (x) = θ(x) =

{
0 x < 0
1 x > 0.

Observe, from the Fundamental Theorem of Calculus, fN (x) = F ′N (x). Thus,

lim
N→∞

fN (x) = θ′(x).

Since θ′(x) = δ(x), we have that fN (x) converges to δ(x).

Definition D.3. [10] The space of test functions denoted by K is the set of all real test functions φ(x) which
are smooth and have compact support. Then, for every test function φ ∈ K, we have

〈δ(x), φ(x)〉 = φ(0).

Observe with the application Lemma D.2, the Dirac delta is given by

δ(x) = lim
N→∞

sin(Nx)

πx
= lim
N→∞

(
1

2π

∫ N

−N
eitxdt

)
.

The above limit is not defined point-wise, but rather in the weak sense. That is, for a test function φ ∈ K,
we have

lim
N→∞

1

2π

∫
R

[∫ N

−N
eitxdt

]
φ(x)dx = φ(0).
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Since we observed that the one dimensional Dirac delta can be expressed using an integral, consider the
vector case, specifically a p-dimensional vector. That is,∫

Rp
eit·x|dt| =

∫
Rp

ei(t1x1+t2x2+...+tpxp)dt1dt2 · · · dtp

=

∫
R
eit1x1dt1

∫
R
eit2x2dt2 · · ·

∫
R
eitpxpdtp

= 2πδ(x1)2πδ(x2) · · · 2πδ(xp)
= (2π)pδ(x).

Thus, for a p-dimensional vector we have

δ(x) =
1

(2π)p

∫
Rp

eit·x|dt|.

We are interested in the representation of the Dirac delta for symmetric matrices of size p×p. First, consider
the following integral ∫

R
p(p+1)

2

eiTrTX |dT |,

where T is a symmetric matrix. Thus we will have
p(p+ 1)

2
integrations. Observe the exponent can be

simplified as

TrTX =

p∑
i,j=1

tijxij

=

p∑
i≤j

tijxij +

p∑
i>j

tijxij .

By switching indices on the second sum, we can write it as i < j

TrTX =

p∑
i≤j

tijxij +

p∑
i<j

tjixji.

Since both matrices are symmetric, tijxij = tjixji

TrTX =

p∑
i≤j

tijxij +

p∑
i<j

tijxij

= 2

p∑
i<j

tijxij +

p∑
i=1

tiixii.

Hence, our integral can be expressed as∫
R
p(p+1)

2

eiTrTX |dT | =
∫
R
p(p−1)

2

ei2
∑p
i<j tijxijdt12dt13 · · · dtp−1 p

∫
Rp

ei
∑p
i=1 tiixiidt11dt22 · · · dtpp.

Now let 2tij = t̂ij for i < j, then dtij = 2 dt̂ij∫
R
p(p+1)

2

eiTrTX |dT | = 1

2
p(p−1)

2

∫
R
p(p−1)

2

ei
∑p
i<j t̂ijxijdt̂12dt̂13 · · · dt̂p−1 p

∫
Rp

ei
∑p
i=1 tiixiidt11dt22 · · · dtpp

=

(
2π

2

) p(p−1)
2

δ(x12)δ(x13) · · · δ(xp−1 p)(2π)pδ(x11)δ(x22) · · · δ(xpp)

=
(2π)

p(p+1)
2

2
p(p−1)

2

δ(X).
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Therefore, we have a integral representation for the mutlidimensional Dirac delta

δ(X) =
2
p(p−1)

2

(2π)
p(p+1)

2

∫
R
p(p+1)

2

eiTrTX |dT |,

and for a test function φ(X) ∈ K, we have

lim
Nj→∞

2
p(p−1)

2

(2π)
p(p+1)

2

∫
RpM

∫ N1

−N1

· · ·
∫ Nj

−Nj
· · ·
∫ N p(p+1)

2

−N p(p+1)
2

eiTrTX |dT |

φ(X)|dX| = φ(0).
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Appendix E

The Laplace Transform

Definition E.1. [27] The Laplace transform of a function f(t) is denoted by f̂(s) and is defined by the
integral

f̂(s) =

∫ ∞
0

e−stf(t)dt,

where s ∈ C, t ≥ 0 and f is locally integrable and such that the integral exists for a given s.

Consider the Laplace transform for the function f(t) = tα. In order for f(t) ∈ L1(loc), we need Re
α > −1. Then,

f̂(s) =

∫ ∞
0

e−sttαdt, Re s > 0.

We will make the substitution such that u = st, then du = sdt and

f̂(s) =

∫ ∞
0

e−u
(u
s

)α du

s

= s−α−1

∫ ∞
0

e−uuαdu.

In order to evaluate this integral we will use the integral representation of the Gamma function.

Lemma E.2. [3] For Re z > 0

Γ(z) =

∫ ∞
0

e−ttz−1dt.

Thus, for Re α > −1 and Re s > 0

f̂(s) = s−α−1Γ(α+ 1).

Lemma E.3. [25] The integral formula for the inverse of the Laplace transformation, at the points where f
is continuous, is given by the line integral

f(t) =
1

2πi
lim
R→∞

∫ σ+iR

σ−iR
estf̂(s)ds,

where the contour for the inversion integral is shown in Figure E.1.

iω

γ

σ

Figure E.1: Contour for inversion intgeral
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Recall for f(t) = tα, we found f̂(s) = s−α−1Γ(α+ 1), then

tα =
Γ(α+ 1)

2πi
lim
R→∞

∫ σ+iR

σ−iR
ests−α−1ds.

We will let s = k + ix, where Re k > 0. Then, ds = i dx and

tα =
Γ(α+ 1)

2π

∫
R

(k + ix)−α−1e(k+ix)tdx

=
Γ(α+ 1)

2π
ekt
∫
R

(k + ix)−α−1eixtdx.

Thus, ∫
R

(k + ix)−α−1eixtdx =
2π

Γ(α+ 1)
tαe−kt,

where Re α > −1, Re k > 0 and t > 0.
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Appendix F

LU Factorization

Definition F.1. [11] Let A ∈ Rn×n. The presentation A = LU , in which L ∈ Rn×n is lower triangular and
U ∈ Rn×n is upper triangular, is called an LU factorization of A.

Theorem F.2. [11] Suppose that A ∈ Rn×n and rank A = k. If A[j], for all 1 ≤ j ≤ k, is nonsingular, then
A has an LU factorization. Furthermore, if k = n then A has an LU factorization if and only if A and all
of its leading principal submatrices are nonsingular.

Example F.3. Consider the following matrix

A =

(
2 3
6 4

)
.

First we will check if an LU factorization exists, thus we will compute the leading principal minors

det(a11) = 2 6= 0 det A = −10 6= 0.

Since they are nonzero, an LU decomposition exists. So,(
2 3
6 4

)
=

(
l11 0
l21 l22

)(
u11 u12

0 u22

)
.

Now, we will multiply the right hand side to obtain the following system of equations

l11u11 = 2

l11u12 = 3

l21u11 = 6

l21u12 + l22u22 = 4.

Observe there are more unknowns than the number of equations, so we will arbitrarily assign the diagonal
elements of L to be 1, that is l11 = 1 and l22 = 1. Then,

u11 = 2

u12 = 3

l21 = 3

u22 = −5,

which gives the following LU factorization(
2 3
6 4

)
=

(
1 0
3 1

)(
2 3
0 −5

)
.

If we were to take the original matrix A and conduct Gaussian elimination until the matrix is in upper
triangular form, without switching any rows or columns, we would obtain U . We will see that the elementary
matrices obtained from conducting the row operations can be used to find L. Then,(

2 3
6 4

)
R2 → R2 − 3R1

(
2 3
0 −5

)
= U.

Observe that from the single row operation we have the following elementary matrix,

E21 =

(
1 0
−3 1

)
.
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Then we have that E21A = U , which implies A = E−1
21 U . Therefore, we see that E−1

21 = L, i.e.

E−1
21 =

(
1 0
3 1

)
= L.

Hence, we get the same LU factorization as before,

A =

(
2 3
6 4

)
=

(
1 0
3 1

)(
2 3
0 −5

)
= LU

Example F.4. Now, we will consider

A =

 1 2 4
3 8 14
2 6 13

 ,

where A has the following principal minors

det(a11) = 1 6= 0

det(a11a22 − a12a21) = 2 6= 0

det(A) = 1 · det

(
8 14
6 13

)
− 2 · det

(
3 14
2 13

)
+ 4 · det

(
3 8
2 6

)
= 6 6= 0.

Thus, an LU factorization exists, that is 1 2 4
3 8 14
2 6 13

 =

 l11 0 0
l21 l23 0
l31 l32 l33

 u11 u12 u13

0 u22 u23

0 0 u33

 .

We will perform Gaussian elimination on the matrix A in order to make it upper triangular 1 2 4
3 8 14
2 6 13

 R2 → R2 − 3R1

R3 → R3 − 2R1

 1 2 4
0 2 2
0 2 5

R3 → R3 −R2

 1 2 4
0 2 2
0 0 3

 = U.

From each row operation we have the following elementary matrices,

E21 =

 1 0 0
−3 1 0
0 0 1

 E31 =

 1 0 0
0 1 0
−2 0 1

 E32 =

 1 0 0
0 1 0
0 −1 1

 .

Thus we have that
E32E31E21A = U =⇒ A = E−1

21 E
−1
31 E

−1
32 U.

In order to find the inverse of each elementary matrix, we will switch the sign of any off diagonal element.
So,

E−1
21 E

−1
31 E

−1
32 =

 1 0 0
3 1 0
0 0 1

 1 0 0
0 1 0
2 0 1

 1 0 0
0 1 0
0 1 1


=

 1 0 0
3 1 0
2 1 1

 = L.

Thus we have an LU factorization for A,

A =

 1 2 4
3 8 14
2 6 13

 =

 1 0 0
3 1 0
2 1 1

 1 2 4
0 2 2
0 0 3

 = LU.
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Lemma F.5. [11] Let A ∈ Rn×n and supposed that A = LU is an LU factorization. For any block 2-by-2
partition

A =

(
A11 A12

A21 A22

)
, L =

(
L11 0
L21 L22

)
, U =

(
U11 U12

0 U22

)
,

with A11, L11, U11 ∈ Rk×k and k ≤ n, we have A11 = L11U11. Consequently, each leading principal submatrix
of A has an LU factorization in which the factors are the corresponding leading principal submatrices of L
and U .

If we consider the matrix Ω as presented in Chapter 4, we will see that during the process of our recurrence
relation we use an LU factorization. Observe that from the decomposition in (4.3) we have

Ω =

 ω11 ω

ωT Ωp−1

 .

We will write this as an LU factorization

Ω = LU =

 1 0

ωT

ω11
L1

 ·
 ω11 ω

0 U1

 .

So, we need L1U1 = Ωp−1 −
ωTω

ω11
, which is exactly what we defined as the next matrix in our recurrence

relation, as we observed in (4.9), i.e. L1U1 = Ω(p−1). Thus, we can factorize this resulting matrix

Ω(p−1) = L1U1 =


1 0

(ω(p−1))T

ω
(p−1)
11

L2

 ·
 ω

(p−1)
11 ω(p−1)

0 U2

 ,

where L2U2 = Ω
(p−1)
p−2 −

(ω(p−1))Tω(p−1)

ω
(p−1)
11

. Again, this is defined as Ω(p−2). Hence, we have

Ω =



1 0

ωT

ω11

1 0

(ω(p−1))T

ω
(p−1)
11

1 0

(ω(p−2))T

ω
(p−2)
11

L3


·


ω11 ω

0

ω
(p−1)
11 ω(p−1)

0
ω

(p−2)
11 ω(p−2)

0 U3

 .

We will continue this process for each step of our recurrence relation. When p ≤ M we will see that Ω will
have a complete LU factorization where L is unipotent, having ones on the diagonal. When p > M , our
recurrence stops after M steps, thus the factorization will produce a lower triangular matrix L that is only
partially unipotent.
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For the first case, p ≤M , we will conduct the factorization process for p− 1 steps, giving

Ω =



1 0

ωT

ω11

1 0

(ω(p−1))T

ω
(p−1)
11

. . .
. . .

. . .
1 0

(ω(2))T

ω
(2)
11

Lp−1


·



ω11 ω

0

ω
(p−1)
11 ω(p−1)

0

. . .
. . .

. . .
ω

(2)
11 ω(2)

0 Up−1


,

where

Ω(2) =


1 0

(ω(2))T

ω
(2)
11

Lp−1

 ·
 ω

(2)
11 ω(2)

0 Up−1

 .

So,

Lp−1Up−1 = Ω
(2)
1 −

(ω
(2)
21 )Tω

(2)
12

ω
(2)
11

= Ω(1) = ω
(1)
11 .

If we assign Lp−1 = 1 and Up−1 = ω
(1)
11 , we have

Ω =



1 0

ωT

ω11

1 0

(ω(p−1))T

ω
(p−1)
11

. . .
. . .

. . .
1 0

(ω(2))T

ω
(2)
11

1


·



ω11 ω

0

ω
(p−1)
11 ω(p−1)

0

. . .
. . .

. . .
ω

(2)
11 ω(2)

0 ω
(1)
11


.

Thus, Ω accepts an LU factorization having a unipotent lower triangular matrix.

We will conduct the same proces when p > M , except we will stop after M steps. Hence, we will have

Ω =



1 0

ωT

ω11

1 0

(ω(p−1))T

ω
(p−1)
11

. . .
. . .

. . .
1 0

(ω(p−(M−1)))T

ω
(p−(M−1))
11

LM


·



ω11 ω

0

ω
(p−1)
11 ω(p−1)

0

. . .
. . .

. . .
ω

(p−(M−1))
11 ω(p−(M−1))

0 UM


.

Observe that again L and U will have the same form as before, that is

LM+1UM+1 = Ω
(p−M+1)
p−M − (ω(p−M+1))Tω(p−M+1)

ω
(p−M+1)
11

= Ω(p−M),
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but from our Dirac delta appearing in our recurrence relation, that is δ
(
Ω(p−M)

)
, we see this resulting matrix

vanishes. Thus,
LM = [0], UM = [0].

Hence, our LU factorization is of the form

Ω =



1 0

ωT

ω11

1 0

(ω(p−1))T

ω
(p−1)
11

. . .
. . .

. . .
1 0

(ω(p−(M−1)))T

ω
(p−(M−1))
11

0


·



ω11 ω

0

ω
(p−1)
11 ω(p−1)

0

. . .
. . .

. . .
ω

(p−(M−1))
11 ω(p−(M−1))

0 0


.
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Appendix G

Lewis Carroll Identity

Theorem G.1. [16] Let A ∈ Rn×n. Denote the submatrix of A in which the rows l1, l2, . . . , lk and columns
r1, r2, . . . , rk have been removed by Al1,l2,...,lkr1,r2,...,rk

. Then the following holds

detA · detA1,n
1,n = detA1

1 · detAnn − detAn1 · detA1
n.

Proof. Consider the following matrix A ∈ Rn×n

A =


a11 a12 . . . a1,n−1 a1n

a21 a2n

... B
...

an−1,1 a2,n−1

an1 an2 . . . an,n−1 ann



=


a11 l a1n

rT B jT

an1 k ann

 .

We will compute the righthand side of the identity in order to find an explicit expression for each determinant.
For the above matrix, observe by removing the last row and last column we obtain the submatrix Ann. Then
the determinant of this submatrix will be

detAnn = det

 a11 l

rT B

 = detB · (a11 − lB−1rT ).

Similarly, by removing the first row and column from A, we obtain A1
1 and the following determinant

detA1
1 = det

 B jT

k ann

 = detB · (ann − kB−1jT ),

and

detAn1 = det

 l a1n

B jT

 .

Now, we would like to make n− 2 interchanges by moving the first row to the last row, giving

detAn1 = (−1)n−2 det

 B jT

l a1n

 = (−1)n−2 detB(a1n − lB−1jT ).

By the same logic, we will consider

detA1
n =

 rT B

an1 k

 ,
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and move the first column to last column

detA1
n = (−1)n−2

 B rT

k an1

 = (−1)n−2 detB(an1 − kB−1rT ).

Next, we want to find an expression for detA. Denote C as the upper left (n− 1)× (n− 1) submatrix of A,
i.e.

C =

 a11 l

rT B

 .

Then,

A =

 C
a1n

jT

an1 k ann

 =

 C ĵT

k̂ ann

 ,

and

detA = detC · (ann − k̂TC−1ĵT ). (G.1)

In order to determine C−1, we must find a matrix such that a11 l

rT B

 ·
 e f

gT Y

 = I,

thus we have

e =
1

a11 − lB−1rT

f = −e lB−1

gT = −eB−1rT

Y = B−1 + eB−1rT lB−1.

Now, consider the product appearing in G.1

k̂TC−1ĵT =
(
an1 k

)
·

 e f

gT Y

 · ( a1n j
)T

= e an1a1n − e a1nkB−1rT − e an1lB
−1jT + kB−1jT + ekB−1rT lB−1jT

= e a1n(an1 − kB−1rT )− e (an1 − kB−1rT )lB−1jT + kB−1jT

= e (an1 − kB−1rT )(a1n − lB−1jT ) + kB−1jT .

So, we can express G.1 as

detA = detB · (a11 − lBrT )(ann − kB−1jT − e(an1 − kB−1rT )(a1n − lB−1jT ))

=
detB

e
·
(

detA1
1

detB
− edetA1

n · detAn1
(detB)2

)
=

detA1
1

e
− detA1

n · detAn1
detB
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From our definition of e, we see that e =
detB

detAnn
. Thus,

detA =
detAnn · detA1

1

detB
− detA1

n · detAn1
detB

.

Observe that detB = detA1,n
1,n, hence

detA · detA1,n
1,n = detAnn · detA1

1 − detA1
n · detAn1 .

We will demonstrate the above theorem with an example

Example G.2. Consider the following matrix

A =


1 4 20 3
2 7 9 10
13 15 5 8
4 11 6 7

 .

For the lefthand side of the identity we have that

detA · detA1,4
1,4 = det


1 4 20 3
2 7 9 10
13 15 5 8
4 11 6 7

 · det

(
7 9
15 5

)

= 7801 · −100

= −780, 100.

Then, we see the computation of the right hand of the identity side gives the same result, i.e.

detA1
1 · detA4

4 − detA4
1 · detA1

4 = det

 7 9 10
15 5 8
11 6 7

 · det

 1 4 20
2 7 9
13 15 5

−
det

 4 20 3
7 9 10
15 5 8

 · det

 2 7 9
13 15 5
4 11 6


= 106 · −892− 1668 · 411

= −780, 100.
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Appendix H

Fubini’s Theorem

Theorem H.1. [12] Let f be an integrable function on Rn × Rm and suppose that for each x ∈ Rn, the
function y 7→ f(x,y) is integrable. Then the function

x 7→
∫
Rm

f(x,y)|dy|,

is integrable and ∫
Rn+m

f(x,y)|dx||dy| =
∫
Rn

[∫
RM

f(x,y)|dy|
]
|dx|.

Example H.2. Consider the function f(y) = e−y
2

. Let us integrate this function over the triangle

T =

{(
x
y

)
∈ R2 | 0 ≤ x ≤ y ≤ 1

}
.

Fubini’s theorem allows us to write this integral as an iterated one-dimensional integral∫ 1

0

[∫ 1

x

e−y
2

dy

]
dx and

∫ 1

0

[∫ y

0

e−y
2

dx

]
dy.

The first integral cannot be computed in an elementary sense, as the function does not have an elementary
antiderivative. Consider the computation of the second integral∫ 1

0

[∫ y

0

e−y
2

dx

]
dy =

∫ 1

0

ye−y
2

dy

= −1

2
e−y

2
∣∣∣1
0

=
1

2

(
1− 1

e

)
.

Thus, ∫∫
T

e−y
2

dydx =
1

2

(
1− 1

e

)
.
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