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ABSTRACT

The Tatinteractive protein of 60 kDa (Tip§@s a histone acetyltransferase enzyme that
appears to have a wide range of acetylation targiish include core histone proteins H2A and
H4, transcription factors Myc and p53, the androgen receptor, and ATM kinase. Additionally,
Tip60 appears to plagrole in several cellular processes such as transcriptional regulation, DNA
damage repair, chromatin remodeling, and apoptosis. Due to its divess¢h®lderegulation
of Tip60 has been implicated in several humandiseasesc | udi ng Adsedncksomeer 0 s
cancers. Several studies have been conducted
acetyltransferase activity. Studi es have sucg
methylated lysine residues found on histonestasl important for targeting substrates and
allosterically regulating the enzymeThis research aimed to determine the structure of the
chromodomain,identify its binding partners, anctlucidate the mechanism of binding.
Ultimately, the research aimedctarify how binding of the chromodomain to its partnemsid
affect acetyltransferase activity. Throughay crystallographythe crystal structure of the
Drosophila melanogasteTip60 chromodomain wasolved to a resolution of 1.59 A. The
binding patners of the chromodomain werevealedthrough the use of surface plasmon
resonance and confirmed by isothermal titration calorimetry. The binding studies found that the
chromodomain preferentially bound peptidskich corresponded to modifications falion the

histone H4 Nterminal tail.
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1 INTRODUCTION

The DNA molecule is the building block of all living organisms. It provides instructions
for the growth, development, and function of everything wigm organism. Within eukaryotes,
DNA is often condensed and coiled around histone proteins to form the fundamental unit of
chromatin the nucleosome. The organization aswmpactionof chromatin often poses a
challenge to cellulareplication, transcption, and repaimachinery which requires access to
DNA. This problem is often solved through the use ofpr@stslational modifications on histone
proteins to altetheir affinity for DNA. The addition of podranslational modifications is
typically carried out by histone modifying enzymesuch as histone acetyltransferases.
Additionally, the loss or deregulation of histone modifying enzymes is often implicated in human
disease. Therefore, undersiang the roles and mechanisms of a histone modiyg enz y me 0 ¢

function and activity is an important step in identifying their role in human disease.

The histone acetyltransferase -Tigteractive protein of 60 kDa (Tip60) was found to
possess a wide range of acetylation targelsch include core histonproteins, transcription
factors, the androgen receptor, and ATM kinase. The diverse amount of acetylation targets also
indicated that Tip60 is involved in numerous cellular processesh as transcriptional
regulation, DNA damage repair, chromatin remloty, and apoptosis. It comes as no surprise
thatdue t o Ti p 6§ thesderdgulatienroftiee protein i often implicated in several
human diseases. Therefore, understanding how Tip60 is regulated and how it fuad@ions

important step imnderstanding its role in human disease.

There have already been several studies conduateidh attempt to elucidate the
regul ation of Tip606s acetyltransferase act.i
Tip60 chromodomain to methylated ilys residues found on histone tails is important for
targeting substrates and allosterically regulating the enzyme. The structural basis of binding of
the Tip60 chromodomain to methylated lysine residues, antisequentlythe allosteric
regulation of itsacetyltransferase are currently unknown. Previous studies on the Tip60
chromodomain have suggested thhhsed on a sequence alignment with the canonical
methyllysine binding chromodomain of HB1the mechanism for binding methyllysine is
achieved through the use of an aromatic cage. Howheeilip60 chromodomain shows poor

sequence Il denti ty with t he chromodomai n of



chromodomains to TipG&uch asesential Saszelated acetyltransferase Es@) andmales

absent on the firs?tOF), show an absence of an aromatic cage. This casts doubt onto the data
published in these prior studies of the Tip60 chromodomdimpublished data from the Moore

lab has sbwn that the MOF chromodomain interacts with histone H4 tail peptBigsed on the
sequence conservation between the Tip60 chromodomain and the closely related MOF
chromodomainand the unpublished data regarding the MOF chromodomairhypothesize

thatthe Tip60 chromodomin will bind mehyllysine found on histone H4 tails

The research objectives aim to determine the structure of the Tip60 chromodomain
through Xray crystallography and elucidate the binding partners of the chromodomain through
in vitro binding studies. Structure determination of the Tip60 chromodomain will utilize the
chromodomains from thélomo sapiensTip60 splice variant Tip@® and the Drosophila
melanogastefMip60 enzymes. This study also aimsidentify and characterize the binding
partners of the Tip60 chromodomain throughvitro binding studieswhich include nuclear
magnetic resonance (NMR), surface plasmon resona88d&R)( and isothermal titration
calorimetry (ITC) Once the structure and binding partners of the chromodomain have been
identified we hope to determine the structural basis of binding throughy Xrystallography,
NMR, and mutagenesis studiegltimatdy, this studyaimsto elucidatehe mechanism for the
allosteric regulation of the histone acetyltransferase (HAT) domaithéybinding of the

chromodomain to its targets.



2 LITERATURE REVIEW
2.1 Chromatin Packaging and Remodeling

2.1.1 Nucleosome Structure and dreation

The genomic DNA of eukaryotes wdound to be wrapped around an octamer of core
histone proteins H2A, H2B, H3, and H4 to form the fundamental unit of chranthen
nucleosoméSoriaet al, 2012) Approximately 145147 base pairs of DNA are wrappedund
the histone coré.65 times in a lethanded superheligFigure2.1) (Lugeret al, 1997) Each of
the four corehistoneproteirs arecomposed of two distinct domainge histone tail and the
histone fold each of whicthave different functionfAndrews and Luger, 2011A detailed look
at the nucleosome core particle revealed that each diptatein possess a flexibletsirminal
tail and that histone H2A also possess a flexibler@inal tail(McGinty and Tan, 2015)The
histone fold region of all core histones was also found to contdimr ee U hel i ces c¢
t wo | ooplsi-Uiaa-Uanc ot f iFigue.2) {McQinty arfd Tan, 2015)The fold
region in each of the core histones was found to contaighalével of structural similarity
(Andrews and Luger, 2011)

90°

Figure 2.1 Overview of the nucleosome core particle crystal structure. The nucleosor
particle fromXenpus laevi$PDB ID 1KX5) solved to 1.4 by Daveyet al, 2002. The doub
strand DNA (orange) is shown wrapped around an octamer ref listone proteins HZ
(yellow), H2B (magenta), H3 (blue), and H4 (green).
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Figure 2.2 Structure and schematics of the core histone proteins. The crystal structur
histone proteins frolenopus laesi(PDB ID: 1KX5) was solved to 1A by Daveyet al, 2002
All four core histones are composed of a histone fold region, which contaifisldnlR-L2-U3
motif. The histone extensions are shown for each histone protein in a different shade as
to the histone fold motif. Each histone has atefinal tail extending from the histone fold
histones H2A and H2B contain at€minal tail as well Figure adapted from McGinty and T
2015.



Within the nucleosome core patrticle, the histone octamer is subdivided into four dimer
pairs consisting of two HBI4 pairs and two H2Ad2B pairs Figure2.3). These heterodimers
are formed by complimentary histone folds interacting with one another. The antiparallel
configuration of the heterodimer results in the L1 loop of one histone packing against the L2 loop
of the complimentary histon@McGinty andTan, 2015) The heterodimers have a crescent
shaped appearance, which results in a convex surface that contains the L1L2 loopsUand the
helices andcreatesa concave surface which contains tizeand(B helices(McGinty and Tan,
2015) This convex surface was found to carry a strongtipestharge which allows it to
function as the primary DNA binding surface for each heterod{iMeGinty and Tan, 2015)
To form the nucleosome, the two pairs of-H8 dimers form a tetramer through the interaction
of a 4helix bundle formed between theR and3 helices from thaistonefé ds of H3 and
(Figure2.4A) (Lugeret al, 1997) The H2AH2B dimers were found to interact with the-H3
tetramer through a sitar 4-helix bundle formed between the2 andU3 helices from thaistone
folds of H2B and H4Kigure2.4B) (Lugeret al, 1997) The two H2AH2B dimers were found

to onlyhave limited interactions with one anottidndrews and Luger, 2Q).

[JH2A B H2B

W H3 B H4

Figure2.3 Crystal structure of the core histonedredimers. The crystal structure of the his
fold region of the histone proteins frodenopus laeviéPDB ID: 1KX5). The heterodimers
formed through the interaction of complimentary histone folds. The antiparallel config
results in the L1oop of one histone packing against the L2 loop of the complimentary h
A. H2A-H2B dimer. B. H3-H4 dimer. Figure adapted from McGinty and Tan, 2015.
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Figure2.4 Four helix bundles found in the hiseonctamer. An overview of where these bur
are located in the nucleosome is shown on the left and a magnified view of the bundles
on the right. All structures are froXenopudaevis(PDB ID: 1XK5). A. The H3H4 dimer:
form a tetramer througa four helix bundle, which is formed by the and(B helices of th
hi stone folds of hi st omBeThadBRAHRZB dimeid 8ainpldtest
octamer by forming a similar four helix bundle composed ofihandU3 helices of histon
H2B (magenta) and H4 (green). To differentiate @ehelix from thelB helix in histone H2E
the UC helix has been coloured light pink.



In addition to the fourcanonicalcore histone proteins, it was found tleate histones
H2A, H2B, and H3 possess different isoforifieferred to as histone variantg)an those
previously describe@venkatesh and Workman, 2015Currently, no additional isoformate
been identified for histone HMazeet al, 2014) Histone variants have been found to be coded
by different genes than thoséeh code for the canonichistone proteingt was found that the
variants werehighly conserved between different spedieager et al, 2012) The histone
variants were found to differ from the canonical histopéker by a few amino acids or through
the presence of additional domaif\é&enkatesh and Workman, 2B)1 Histone variants were
found to be involvedh the replacement of missing histones or transcribed specifically during the
S-phase of the cell cycle to ensure high expression I€lalger et al, 2012; Venkatds and
Workman, 2015) The exchnge of canonical histones wiariants was found to result in the
alteration of chromatin structure and dynamiigsaffecting proteirprotein interactions and pest

translational modifications of histon@dazeet al, 2014; Venkatesh and Workman, 2015)

The DNA in the nucleosome core particle was fotouhteract directly with the histone
octamer. Approximately 121 base pairs of DNA interact with the histone fold regions affeach
the four dimergDaveyet al, 2002) This equates to approximately-28 base pairs of DNA
interacting with each dimer and 4ge pairs of DNA to link each regi@iougeret al, 1997) The
remaining 13 base paji®cated at each end of the DINWere found tcbind the UN helices at
the Niterminus of each of the two H3 histor{ésigeret al, 1997) The binding of the DNAo
the histone folds is predominantly facilitated by hydrogen bonuitgeen the histone folds and
the phosphodiester backbone of DAigeret al, 1997) Furthermore, it was also found that
the interactions between the histones and Die also facilitated through water mediated
hydrogen bondfDaveyet al, 2002) While the majority of interactions occur through dtrec
water mediated hydrogen bonding between the histone and the phosphodiester backbone of DNA,
it was found that approximately 20 side chains bind the DNA in the minor g(Dawveyet al,
2002) Additionally, it was found that the histo2NA interaction was also mediated by ionic
and non polar interactiorfcGinty and Tan, 2015)

As the fundamental unit of chromatin, each nucleosome particle was found to be linked
together by short segments of DNA, termed linker DNA, approximatelyO2Dase pairs in

length(Segal and Widom, 2009 he length of the linker region between each nucleosome core



particle was found to vaygepending on the cell type and spe¢t&suhl and Segal, 2013 he

linked nucleosome core partictiesm the 10 m nucleosome fibrevhich is often considered the

first level of chromatin compaction and organizati@n and Reinberg, 2011) The primary
mechanism for the formation of the 30 nm chromatin fibre was thought to be the interaction
between the Nerminal tail of histone H4 and the acidic patch found on therceaalohistone

H2A (Tremethick, 2007) This interaction was found to lnetegral to forming the 30 nm fibre,

as the deletion of the H4 tail or the replacement of canonical histone H2A with its variant
H2A.Bbd, which features a truncated acidic patch, resulted in the inability to form the 30 nm
fibre (Tremethick, 2007) Additionally, the presence of linker histonsach as H1 or H%re
thoughtto aid in the formation of the 30 nm chromatin fib(esger and Hansen, 2005; Segal
and Widom, 2009) Finally, the 30 nm chromatin fibres are thought to undergo further
condensation to form the highly orderedarhatin fibreg(Lugeret al, 2012) An overview of

chromatin structure and compaction is showRigure2.5.

\O\Nucleosome

|

g N

30 nm fibre

High order chromatin fibre

Figure2.5 Overview of chromatin structure and compaction. The nucteess formed by tt
DNA (orange) wrapping around the core histone proteins (blue discs). Nucleosomes
linked together by linker DNA to form the 10 nm fibre. The addition of linker histones (e
or H5) and other scaffold proteins (yellow triges), which interact with the nucleosomes, i
to the formation of the 30 nm fibre and high order chromatin fibres. Figure adapted fror
et al, 2012.



The highly ordered nature of chromatin organization amdpaction can act as a barrier
for the replication, transcription, and repair of DNMarmorstein and Trievel, 2009)There
have been studies which hasaught to determine the mechanism by which chromatin condenses
and compacts. These studies have foundhtieahechanism by which the 30 nm chromatin fibre
was constructethvolved an acidic patch on canonical histone H2A and thersinal tail of
histore H4, and that these components wietegral to the fibrés formation(Tremethick, 2007)
Therefore, alterations to these histones in the form of histone H2A variants and/for post
translational modifications to the H4 tail aid in the relaxation of the chromatin fibueer et
al.,, 2012) The postranslational modification of histonesd chromatin remodeling allows for
the cellular machinery involved with replication, transcription, and repair to access the
chromosomal DNAFischle, 2009)

2.1.2 PostTranshtional Modificationsof Histone Tails

The ability for cellular machinery to access DNA for replication, transcription, and repair
is a vital cellular process. However, the highly ordered nature of chromatin organization and
compactiorserves aa barrietto the machinery to access the DNIiAwas found thattte structure
and dynamis of chromatircouldberegulated byhe posttranslational modifications (PTMs) of
histone proteingMusselmaretal., 2012) These modifications allow for thellular machinery
to access the DNA to perform necessary functiensh as replication, transcription, and DNA
repair (Fischle, 2009) The process by ich PTMs exertregulabry effects on chromatin
structure and dynamics was found to be throtwgh distinct methods. The first method of
regulation wasound to behroughthe direct disruptionf histone interactions with other histones
or DNA (Kouzarides, Q07). The second method of regulation by PTMs wa®ugh the
recruitment of effector proteins or complex@dusselmaret al, 2012) Additionally, it was
found that a wide variety of historf@TMs exist to regulate different functignbese PTMs
include but are not limited toacetylation, methytion, phosphorylation, ubiquitinatipn
sumoylation, ADP bosylation, deimination, and proline isomerizat(d@ade 2.1) (Kouzarides,
2007) It should be noted that intracellular signals govern the time, location, and type of PTMs

observedand thus not all modifications will be present at ofitauzarides, 2007)



Tale 2.1 Overview of histonanodifications and théunctions regulatedTable adapted from

Kouzarides, 2007.

Modification Type Residues Modified Regulated Functions
Acetylation Lysine Transcription, repair, rdjgation,
condensation
ADP ribosylation Glutamate Transcription
Deimination Arginine Transcription
Methylation Lysine Transcription, repair
Arginine Transcription
Phosphorylation Serine Transcription, repair, condensatio
Threonine Transcription, repaj condensation
Proline Isomerization Proline Transcription
Sumoylation Lysine Transcription
Ubiquitination Lysine Transcription, repair

The posttranslational modificationswhich possess the ability to directly disrupt
interactions with other histoe@r DNA must occur on the histones at locatitiregtare relatively
accessible fothe modifying enzymes. As a result, the majority of PTMs identified on histones
were found on the Xerminal tails(Kouzarides, 2007)Additionally, studies which removed the
N-terminal histone tails found th#te nucleosomes were unable to compact into the 30 nm
chromatin fibres(Suganuma and Workman, 2011; Tremethick, 2007This indicated that
modificatiors made to histone tails could directly affect irmercleosome contac{Suganuma
and Workman, 2011)In addition to modifications on the histone tails, it was identified by mass
spectrometry that PTMs were also presentree globular domains of the core histone proteins
(Freitaset al, 2004) Several of tbse PTMs were found to occur along the lateral surface of the
core histones andubsequentlynany of these modified residues were found to be involved with
interacting DNA(Cosgroveet d., 2004) The lateral surface was foutm be positively charged
to facilitate binding to the negatively charged DNA backbonethedefore, it was proposed that
PTMs which altered the charge of the lateral surface (e.g. acetylation and phosphwoyylatio
could cause significant disruption to the interaction with Nkopberger and Schneider, 2013)
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In addition to thedirect disruption of interactions, PTMs have been found to exert
regulatory effects through the recruitment of effector proteins and comyMusselmaret al,
2012) These effector proteirend complexes typically possédsstone binding domainsvhich
recognizeand bind onlyspecific histone modifications (Campos and Reinberg, 2009 he
recruitment of these effector proteins may resuthe crosshking of nucleosomes, the increased
occupancy of the RNA polymerase complex, the recruitment of chromatin remodelers, or the
recruitment of other chromatin modifying enzyn{®aithenburget al, 2007) There are many

examples of PTMs recruiting effector proteins and complexes to exert a regulatory effect.

As previously mentioned, ¢éne are a wide variety of histone modificatiomghich
include, but are not limited toacetylation, methylation, phosphorylationpiquitination
sumoyldion, ADP ribosylation,citrullination, and proline isomerizatio(Kouzarides, 2007
Each modification possesslifferent propertiessuch as net charge and siichcan influence
how it exerts its regulatory effects. For example, the acetylation of a lysine residue located on
the histone H3 or H4 tail was proposed to neutraheepositive chargexhibited by the lysine
residue andsubsequentlyweaken its interaction with DNAZentner and Henikoff, 2013)
Another example of PTMthat utilize charge manipulation to exert regulatory effentsthe
phosphorylation of seringghreonines, and tyrosines found on théehninal tails of histones
(Bannister and Kouzarides, 2011l has been proposed that the phosphorylation of histones
could impart a negative charge on its modified resicesiltingin charge repulsion between the
negatively charged phosphodiester backbone of DNA and the phosphorylated histone residue
(Zentner and Henikoff, 2013Additionally, the phosphorylation of histones has been implicated
in the alteration of chromatin bimdy domains affinity for their targets. This has been observed
with the phosphorylation o$erine 10 on histone H3 (H3S19Pcausing the release of the
chromatin bindingprotein HP1 from the adjacent -triethylated lysine nine on histone H3
(H3K9Mes) (Zentner and Henikoff, 2013)

One of the more complex modifications found on histones is the methylation of lysine
and arginine residues. The methylation of histones does not impart a charge tdifitsdmo
residue therefore it exerts its regulatory eftts in much less direct manner than charge
manipulation(Zentner and Henikoff, 2013)Furthermore, histone methylation has been found

to be much more complein that lysine residues can be mendi-, or tri-methylated on thé}
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amino groupand the arginine residues can be mamethylated, symmetrically @nethylated,

or asymmetrically dmethylated on thq -nitrogen, where each methylation state can correspond
to a different regulatory outconi®lusselmaret al, 2012) For example, thenonomethylation

of lysine 20 on histone H4 is associated with active gene transcriptioereas the tri
methylation of lysine 20 was associated with heterochromatin and gene imp{Basskiet al,

2007) A brief summary of the common modifications to the lysine residues located on the

histone H3 and H4 Xerminal tails relevant to this reseaistshown inFigure?2.6.

Due to the diverse amount of histone modifications and the ability of the modifications to
regulate different functionst was required that there be an equally diverse amount of histone
modifying enzymes and readers of their subset| PTMs. These readers of PTMs are integral
to the recruitment of the appropriate cellular machinery to chropthtis allowing a variety of
cellular processes to be perform@&tusselmaret d., 2012) Additionally, the misreading and/or
deregulation of PTMs have been implicated in human dig@dssselmaret al, 2012) The
readers of PTMs can be grouped into categodiegendng on the modification with which they
recognize. Some examples of PTM readers include methyllysine, methylarginine, acetyllysine,
phosphoserine, anchgsphothrenine readergMusselmaret al, 2012; Tavernat al, 2007)
Table2.2 outlines a few examples of speciPd M readers and their target modificatiorihis
literature review will examine thehromodomaimmethyllysine readein more detail in section
2.2

As previously mentioned, to accommodate and regulate the wide variety of BiEkés
is an equally diverse amount of histone modifying enzymes. These enzymes serve to deposit or
remove modifications on the histone residuEgamplesof histone modifying enzymes include
histone acetyltransferases (HATSs), histone deacetylases (HDACs), lysine or arginine
methyltransferases, serine/threonine kinases, ubiquitinases, and lysine demethylases
(Kouzarides, 2007) It was r@orted that methyltransferases and kinases were the most specific
of the modifying enzymes, as members of these two classes often only target one specific histone
residue (Kouzarides, 2007) This literature review will only examine thdistone

acetyltransferase class of histone modifying enzymes.
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Figure2.6 Summary of commonly modified lysimesidues on the fierminal tails of histone F
and H4. The nucleosome core particle fodnaevis(PDB ID 1KX5) is shown on the left pan
The Nterminal tails of histone H3 (blue extension) and histone H4 (green extension) are
in red. The rigt panel shows the términal tail sequence of histones H3 and H4 fidr
sapiens The lysine residues are coloured red and their corresponding modification i
below.

Table2.2 Histone readers arttie targeted modification

Modification Recognized | PTM Reader | SpecificHistone PTM Recognized
Methyllysine Chramodomain, H3K9Mes, H3K27Me;, H3K4Me,,
H4K20Mey
MBT H3KMe1, H3KMez, H4KMe1, H4KMe2
PHD H3K9Mes, H3K4Me,, H3K4Mez
Tudor H3K36Me3
Acetyllysine Bromodomain | H3KAc, H4KAc, H2AKAc, H2BKACc
Methylarginine Tudor H3RMe, H4RMe
WD40 H3R2Me
Phosphoserine/thonine | 14-3-3 H3S10Ph, H3S28Ph
BIR H3T3Ph
Unmodified Histone PHD H3n
WD40 H3n
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