
Large-Scale Clone Detection and Benchmarking

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Jeffrey Svajlenko

c©Jeffrey Svajlenko, December 2017. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i



Abstract

Code clones are pairs of code fragments that are similar. They are created when developers re-use code

by copy and paste, although clones are known to occur for a variety of reasons. Clones have a negative

impact on software quality and development by leading to the needless duplication of software maintenance

and evolution efforts, causing the duplication and propagation of existing bugs throughout a software system,

and even leading to new bugs when duplicate code is not evolved in parallel. It is important that developers

detect their clones so that they can be managed and their harm mitigated. This need has been recognized

by the many clone detectors available in the literature. Additionally, clone detection in large-scale inter-

project repositories has been shown to have many potential applications such as mining for new APIs, license

violation detection, similar application detection, code completion, API recommendation and usage support,

and so on.

Despite this great interest in clone detection, there has been very little evaluation of the performance

of the clone detection tools, including the creation of clone benchmarks. As well, very few clone detectors

have been proposed for the large-scale inter-project use cases. In particular, the existing large-scale clone

detectors require extraordinary hardware, long execution times, lack support for common clone types, and

are not adaptable to target and explore the emerging large-scale inter-project use-cases. As well, none of the

existing benchmarks could evaluate clone detection for these scenarios.

We address these problems in this thesis by introducing new clone benchmarks using both synthetic and

real clone data, including a benchmark for evaluating the large-scale inter-project use-case. We use these

benchmarks to conduct comprehensive tool evaluation and comparison studies considering the state of the

art tools. We introduce a new clone detector for fast, scalable and user-guided detection in large inter-project

datasets, which we extensively evaluate using our benchmarks and compare against the state of the art.

In the first part of this thesis, we introduce a synthetic clone benchmark we call the Mutation and

Injection Framework which measures the recall of clone detection tools at a very fine granularity using

artificial clones in a mutation-analysis procedure. We use the Mutation Framework to evaluate the state of

the art clone detectors, and compare its results against the previous clone benchmarks. We demonstrate that

the Mutation Framework enables accurate, precise and bias-free clone benchmarking experiments, and show

that the previous benchmarks are outdated and inappropriate for evaluating modern clone detection tools.

We also show that the Mutation Framework can be adapted with custom mutation operators to evaluate

tools for any kind of clone.

In the second part of this thesis, we introduce BigCloneBench, a large benchmark of 8 million real clones

in a large inter-project source datasets (IJaDataset: 25K projects, 250MLOC). We built this benchmark

by mining IJaDataset for functions implementing commonly needed functionalities. This benchmark can

evaluate clone detection tools for all types of clones, for intra-project vs inter-project clones, for semantic

clones, and for clones across the entire spectrum of syntactical similarity. It is also the only benchmark

ii



capable of evaluating clone detectors for the emerging large-scale inter-project clone detection use-case. We

use this benchmark to thoroughly evaluate the state of the art tools, and demonstrate why both synthetic

(Mutation Framework) and real-world (BigCloneBench) benchmarks are needed.

In the third part of this thesis, we explore the scaling of clone detection to large inter-project source

datasets. In our first study we introduce the Shuffling Framework, a strategy for scaling the existing natively

non-scalable clone detection tools to large-scale inter-project datasets, but at the cost of a reduction in recall

performance and requiring a small compute cluster. The Shuffling Framework exploits non-deterministic

input partitioning, partition shuffling, inverted clone indexing and coarse-grained similarity metrics to achieve

scalability. In our second study, we introduce our premier large-scale clone detection tool, CloneWorks,

which enables fast, scalable and user-guided clone detection in large-scale inter-project datasets. CloneWorks

achieves fast and scalable clone detection on an average personal workstation using the Jaccard similarity

coefficient, the sub-block filtering heuristic, an inverted clone index, and index-based input partitioning

heuristic. CloneWorks is one of the only tools to scale to an inter-project dataset of 250MLOC on an average

workstation, and has the fastest detection time at just 2-10 hours, while also achieving the best recall and

precision performances as per our clone benchmarks. CloneWorks uses a user-guided approach, which gives

the user full control over the transformations applied to their source-code before clone detection in order

to target any type or kind of clones. CloneWorks includes transformations such as tunable pretty-printing,

adaptable identifier renaming, syntax abstraction and filtering, and can be extended by a plug-in architecture.

Through scenarios and case studies we evaluate this user-guided aspect, and find it is adaptable has high

precision.

iii



Acknowledgements

I would like to express my heartfelt appreciation to my supervisor, Dr. Chancel Roy, for his constant and

continued support, guidance, encouragement and patience during my graduate studies.

I would like to thank Dr. Michael Horsch, Dr. Nadeem Jamali, and Dr. Aryan Saadat Mehr for their

participation on my supervising committee, including their advisement and evaluation of my work and thesis.

I would like to thank my external examiner Dr. Nikolaos Tsantalis for his evaluation of my thesis.

I would like to thank the co-authors of the papers I have published during my graduate studies, including

Chanchal K. Roy, Iman Keivanloo, Hitesh Sajnani, Judith F. Islam, Mohammad Mamun Mia, James Cordy,

Vaibhav Saini and Cristina V. Lopes.

I would like to thank all of present and past members of the Software Research Lab, who have given me

their support, advise and friendship on many occasions. As well for the many hours of clone validation efforts

they have volunteered for my research studies.

I would like to thank the faculty and staff of the Department of Computer Science and College of Graduate

Studies for their support over the years. In particular, I would like to thank Gwen Lancaster.

I am grateful for the financial support, including scholarships and awards, provided by the Natural

Sciences and Engineering Research Council of Canada (NSERC), the Department of Computer Science of

the University of Saskatchewan and the College of Graduate Studies of the University of Saskatchewan, which

allowed me to focus on my studies and this thesis work.

I give my heartfelt thanks to my mother Donna Svajlenko and my father Shane Svajlenko for their

unconditional support and encouragement throughout my graduate studies. They celebrated with me through

the highs, and motivated and pushed me through the lows, and I really owe the completion of this thesis to

them.

iv



For my parents, Donna and Shane Svajlenko.

v



Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables xi

List of Figures xii

List of Abbreviations xiv

1 Introduction 1
1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Addressing the Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Decomposing our Research behind Addressing the Problem . . . . . . . . . . . . . . . . . . . 5

1.3.1 Part 1 - Synthetic Clone Benchmarking with Mutation Analysis . . . . . . . . . . . . 5
1.3.2 Part 2 - Real-World Large-Scale Clone Benchmarking . . . . . . . . . . . . . . . . . . 6
1.3.3 Part 3 - Large-Scale Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Manuscript-Style Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10
2.1 Cloning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Clone Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Type-1 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Type-2 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Type-3 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Type-4 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Clone Granularity and Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.7 Clone Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.8 Clone Detection Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Benchmarking Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Measuring Recall and Precision with an Oracle . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Challenges in building an Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Measuring Recall with a Reference Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Clone Matching Algorithm/Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Methods for building a Reference Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Measuring Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Synthetic Clone Benchmarking with Mutation Analysis 21

3 The Mutation and Injection Framework 24
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Clone Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 The Editing Taxonomy for Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Mutation and Injection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.2.1 Clone Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Generation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Using the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Experiment Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Stage 1 - Generation Phase Setup Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Stage 2 - Generation Phase Execution Stage . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Stage 3 - Evaluation Phase Setup Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Stage 4 - Evaluation Phase Execution Stage . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.6 Stage 5 - Results Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Evaluating Modern Clone Detection Tools 55
4.1 Bellon’s Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Bellon’s Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Mutation and Injection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 The Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Bellon’s Benchmark Results - Original Benchmark . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Bellon’s Benchmark Results - Murakami Extension . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Bellon’s Benchmark Results - The Better OK Metric . . . . . . . . . . . . . . . . . . . 64
4.3.4 Bellon’s Benchmark - Modern Vs. Original Experiment . . . . . . . . . . . . . . . . . 64
4.3.5 Bellon’s Benchmark Variants Vs. Expectations . . . . . . . . . . . . . . . . . . . . . . 66
4.3.6 Mutation Framework Results vs. Expectations . . . . . . . . . . . . . . . . . . . . . . 68
4.3.7 Bellon’s Benchmark vs Mutation Framework . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Fine-Grained Evaluation with the Mutation and Injection Framework 73
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Evaluating Clone Detection Tools for Gapped Clones 86
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Gap Mutation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Corpora Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 ForkSim 91
7.1 Related and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Software Forking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Fork Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



7.4 Simulation of Development Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II Real-World Large-Scale Clone Benchmarking 102

8 BigCloneBench 104
8.1 Related and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2.1 Mining Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2.2 Tagging Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.3 Final Judgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2.4 Adding True Clone Pairs to Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2.5 Adding False Clone Pairs to Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.3 Snippet Tagging Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4 The Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.5 Evaluating Clone Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.5.1 Example Tool Evaluation: D-NiCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.6 Evaluating Clone Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.7 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.8 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.8.1 Limitations in the Universality of the Mining Procedure . . . . . . . . . . . . . . . . . 120
8.8.2 Limitations in Human Judgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.8.3 Limitations in Clone Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Evaluating Clone Detection Tools with BigCloneBench 123
9.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.1.1 Big Clone Bench. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.1.2 Mutation and Injection Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.1.3 Tool Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.2 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.2.1 BigCloneBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.2.2 Mutation and Injection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2.3 Comparing the Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.3 Intra-Project vs. Inter-Project Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4 Clone Capture Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10 BigCloneEval 138
10.1 BigCloneBench - BigCloneEval Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.2.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.2.2 Register Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.2.3 Detect Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.2.4 Import Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.2.5 Evaluate Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.2.6 Tool Evaluation Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

10.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

viii



III Large-Scale Clone Detection 145

11 Large-Scale Clone Detection using the Classical Detectors 148
11.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2 The Core Shuffling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.3 Study Setup - The Corpus, Environment, Tools and Measures . . . . . . . . . . . . . . . . . . 154

11.3.1 Corpus - IJaDataset 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.3.3 Clone Detection Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.3.4 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11.4 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.5 Motivating Study - IJaDataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11.5.1 Simian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.5.2 NiCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.5.3 Deckard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.5.4 Other Tools - SimCad, iClones, CCFinderX . . . . . . . . . . . . . . . . . . . . . . . . 167
11.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.6 Shuffling Framework Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.7 Improving the Shuffling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11.7.1 Blind Partitioning Shuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.7.2 Unseen Pairs Shuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.7.3 Unseen Similar Pairs Shuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 176
11.7.4 Inverted Index Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
11.7.5 Choosing an Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

11.8 The Improved Shuffling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
11.8.1 Comparison with Deterministic Method . . . . . . . . . . . . . . . . . . . . . . . . . . 182

11.9 IJaDataset Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.9.1 Simian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.9.2 NiCad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11.10Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

12 CloneWorks: Fast, Scalable and User-Guided Clone Detection for Large-Scale 194
12.1 The CloneWorks Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
12.2 Fast Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.3 Scalable Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
12.4 User-Guided Clone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
12.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

12.5.1 Mutation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
12.5.2 Recall - BigCloneBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
12.5.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
12.5.4 Execution Time and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
12.5.5 Characterizing CloneWorks Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.5.6 User-Guided CloneWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.8 Contributions of CloneWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

IV Closing 222

13 Conclusion 223
13.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
13.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

ix



13.3 Publications from this Thesis Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

References 231

x



List of Tables

3.1 Clone Difference and Similarity Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Editing Taxonomy for Cloning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Mutation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Participating Tools: Our Expectations and Configurations . . . . . . . . . . . . . . . . . . . 60
4.2 Expected Vs. Measured Recall: Mutation Framework (MF) and Bellon’s Benchmark (ok,

b-ok, good metrics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 OK to BetterOK - Relative Change in Recall . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 New Vs. Old Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 CCFinder vs. CCFinderX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6 Agreement Between Measured and Expected Recall, Mutation Framework (MF) and Bellon’s

Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Mutation Framework (MF) vs. Bellon’s Benchmark (ok, b-ok, good) . . . . . . . . . . . . . . 69

5.1 Participating Subject Tools, Their Language and Clone Type Support, and Configuration . 75
5.2 Recall Results for Java Function (F) and Block (B) Clones . . . . . . . . . . . . . . . . . . . 77
5.3 Recall Results for C Function (F) and Block (B) Clones . . . . . . . . . . . . . . . . . . . . 80
5.4 Recall Results for C# Function (F) and Block (B) Clone Pairs . . . . . . . . . . . . . . . . . 83

6.1 Participating Tools and their Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Taxonomy of Fork Development Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 ForkSim Generation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Mutation Operators from a Code Editing Taxonomy for Cloning . . . . . . . . . . . . . . . . 96
7.4 ForkSim Generation Parameters: NiCad Case Study . . . . . . . . . . . . . . . . . . . . . . 100
7.5 NiCad Case Study Recall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1 Snippet Tagging and Benchmark Contents Summary . . . . . . . . . . . . . . . . . . . . . . 115

9.1 BigCloneBench Clone Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2 Subject Tools and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.3 Benchmark Recall Measurements and Difference Per Clone Type . . . . . . . . . . . . . . . 127
9.4 BigCloneBench: Type-3 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.5 BigCloneBench: Intra-Project vs Inter-Project Recall . . . . . . . . . . . . . . . . . . . . . . 132
9.6 BigCloneBench: Clone Capture Quality - Metric Comparison . . . . . . . . . . . . . . . . . 136

10.1 BigCloneEval Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

11.1 Tool Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.2 Summary of the IJaDataset Clone Detection Experiments . . . . . . . . . . . . . . . . . . . 161

12.1 Tool Configurations for Mutation Framework and BigCloneBench Experiments . . . . . . . 201
12.2 Recall Per Clone Type and Precision Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
12.3 Scalability and Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
12.4 Demonstration of User-Guided Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xi



List of Figures

2.1 Measuring Recall and Precision with an Oracle . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Clone Synthesis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Overview of the Mutation Framework Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Clone Synthesis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Overview of Generation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Overview of Evaluation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Sample UI Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Measured Recall - Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Example Single Gap Clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Recall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Fork Generation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1 Methodology (Executed Per Functionality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Sample Snippet: Shuffle Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.3 Snippet Tagging Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Clone Similarity Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.5 Benchmark Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

10.1 BigCloneEval Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

11.1 Comparison of the recall estimation approaches . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.2 Preliminary Experiment - JHotDraw54b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.3 Preliminary Experiment - ArgoUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.4 Preliminary Experiment - JDK1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
11.5 Simian Heuristic (Clone Fragment) Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.6 Simian Total Recall for Maximum Class Size Trimmed Output . . . . . . . . . . . . . . . . . 164
11.7 Simian Heuristic Recall for Maximum Class Size Trimmed Output . . . . . . . . . . . . . . . 164
11.8 Growth of NiCad’s Found Clones and Cloned Fragments . . . . . . . . . . . . . . . . . . . . 166
11.9 Growth of Deckard’s Detected Cloned Fragments . . . . . . . . . . . . . . . . . . . . . . . . 167
11.10 Deckard’s Clone and Fragment Detection for Trimmed Output . . . . . . . . . . . . . . . . . 168
11.11 Shuffling Algorithm Performance Comparison: NiCad, 50,000 File Dataset, 250 File Subsets 173
11.12 Shuffling Algorithm Performance Comparison: Simian, 50,000 File Dataset, 250 File Subsets 173
11.13 Shuffling Algorithm Performance Comparison: iClones, 10,000 File Dataset, 50 File Subsets 174
11.14 Shuffling Algorithm Computational Comparison: Subsets Generation Time (ms), 50,000 File

Dataset (NiCad/Simian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.15 Shuffling Algorithm Computational Comparison: Subsets Generation Time (ms), 10,000 File

Dataset (iClones) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.16 Inverted Index Algorithm - Subset Generation Time vs. Total Recall (NiCad/Simian, 50,000

File Dataset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.17 Inverted Index Algorithm - Subset Generation Time vs. Total Recall (iClones, 10,000 File

Dataset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
11.18 Improved Shuffling Framework Procedure (Summary) . . . . . . . . . . . . . . . . . . . . . . 183
11.19 Index vs. Blind Shuffling Algorithm For IJaDataset Using Simian . . . . . . . . . . . . . . . 187
11.20 Index vs. Blind Shuffling Algorithm Clone Pair Detection For IJaDataset With NiCad . . . 189
11.21 Index vs. Blind Shuffling Algorithm Clone Fragment Detection For IJaDataset With NiCad 189
11.22 Subset Generation Time - 10,000 file subsets of IJaDataset - NiCad . . . . . . . . . . . . . . 191
11.23 Subset Generation Time - 10,000 file subsets of IJaDataset - NiCad . . . . . . . . . . . . . . 191

xii



12.1 The CloneWorks Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
12.2 Example of Fingerprint Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.3 TXL Code for Removing Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.4 Example of the Try-Catch-Finally Normalization . . . . . . . . . . . . . . . . . . . . . . . . 216
12.5 API Call Extraction Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xiii



List of Abbreviations

UPI unique percentage of items
LOC lines of code
KLOC thousand lines of code
MLOC million lines of code
API application program interface
T1 Type-1
T2 Type-2
T3 Type-3
T4 Type-4
VST3 Very Strongly Type-3
ST3 Strongly Type-3
MT3 Moderately Type-3
WT3/T4 Weakly Type-3 or Type-4

xiv



Chapter 1

Introduction

Code clones, or software clones, are pairs of code fragments within a software system that are similar.

Code reuse by copy and paste, with or without modifications, is one of the common sources of code clones,

although they are known to arise for a variety of reasons [2, 8, 10, 55, 58, 72, 88, 104, 108, 109]. Software

developers frequently employ copy and paste code re-use as it is faster and easier than developing new code

or abstracting existing code [11,68,82]. Unfortunately, cloning also has a negative impact on software quality

and software development costs. Cloning leads to an unnecessary increase in the size of the code base, which

needlessly increases the cost of software maintenance and evolution tasks that scale with the size of the

code base [88, 92]. Cloning harms software quality by increasing the number of bugs in the system [50, 82].

When an existing code fragment contains a bug, cloning it duplicates and propagates the bug across the

system. If a code fragment is evolved or otherwise modified, and those modifications are not appropriately

and correctly propagated to its duplicates, a bug is created as a result of cloning [82, 83]. As cloning is

not usually documented, and the developer making the change to a code fragment may not be the one who

previously cloned the code fragment, inconsistent changes to duplicated code is not atypical and therefore

there is a real risk of cloning related bugs [103]. While cloning can also have benefits, such as accelerated

software development and increased decoupling [26, 59, 109], it is important that developers keep track of

their clones in order to manage and reduce their negative effects [78].

Clone detection tools have been developed to locate clones within or between software systems [104,108].

These tools provide awareness of the clones within a software system, which allows developers to mitigate

their harm on development costs and software quality. Developers can mitigate the harmfulness of a clone by

removing it using software refactoring and re-engineering (e.g., extracting the shared code into an abstraction

mechanism) [89]. In cases where refactoring is too expensive or difficult (e.g., social factors such as code

ownership), the awareness of these clones provided by the clone detectors can be used to monitor and prevent

the potential harm [95, 106]. When a code fragment is modified to fix a bug, clones of that code fragment

should be inspected for the same bug. Similarly, clones of an evolved code fragment can be inspected to

see if the evolution needs to be propagated to the duplicates. There are four primary clone types, including

syntactically identical clones (Type-1), structurally identical clones (Type-2), syntactically similar clones

(Type-3) and semantically similar but syntactically dissimilar clones (Type-4). Most clone detection tools

target the detection of up to type Type-3 clones within a single software system.

1



While clone detectors were created to aid in the refactoring and management of code clones, a number

of other applications have been demonstrated. The detection of similar code has been shown to be useful

in plagiarism detection [43, 79, 100], license violation detection [74], origin analysis [42], software evolution

analysis, multi-version program analysis [69], bug detection [51, 54, 82], aspect mining [17], program com-

prehension [56], code compaction [30], malware detection [138], software product line analysis [28], and so

on [104,108,109].

An emerging topic in clone research is the detection of clones within very-large inter-project source code

datasets containing on the order of tens of thousands of software projects or more. This has many research

applications, including: studying global open-source developer practices [96], building new application pro-

gramming interfaces (APIs) [48], license violation detection [73], similar mobile application detection [22],

large-scale clone and code search [61,81], code completion [49], API recommendation and usage support [66],

and so on. These applications require clone detectors that scale to hundreds of millions of lines of code

or larger. Large-scale clone detection is needed for migrating software variants towards a software product

line [45], to detect clones in large software ecosystems (e.g., Debian), and to study cloning in the global

open-source community (e.g., GitHub). The detection of code smells such as clones is very important in

critical systems, such as modern automobile systems, which can contain up to 100 million lines of code [3],

while large software companies have software portfolios reaching a billion lines of code [91].

Clone detection tools are evaluated using information retrieval metrics including recall and precision [13].

Recall is the ratio of the clones within a software system that a tool is able to detect, while precision is the

ratio of the clones reported by a clone detector that are actually clones and not false positives. Precision can

be measured by manually validating a random sample of the clones a tool detects across a variety of subject

systems. Measuring precision is simple but very time consuming. Recall is very challenging to measure as

it requires independent knowledge of the clones that exist in a subject software system(s). Building high

quality clone benchmarks of known reference clones to measure recall has been very difficult for the clone

research community.

1.1 Research Problem

A 2009 survey of clone detection tools and techniques by Roy et al. [108] found the existence of at least 39

clone detection tools. A 2013 survey by Rattan et al. [104] found at least 70 tools, a 75% increase in only

four years. Our literature review in 2017 found at least 198 tools, a 182% increase in the four years following

Rattan’s study. This number reflects the importance the community has placed on clone detection for use

in software development and research studies. However, I note two significant deficits in the state of clone

detection research.

First, despite the emerging applications of clone detection in large inter-project source-code datasets,

there is a lack of tools that can scale to such large inputs, in particular for Type-3 clones. Additionally,

2



there is no user-guided tools in this domain, which can be configured to detect any type or kind of clone,

or be easily extended to detect novel kinds of clones. This lack makes pursuing the emerging applications

in large-scale and inter-project clone detection difficult. Therefore, researchers must develop domain-specific

clone detection tools for their studies, which takes significant effort. These tools have significant limitations

beyond the specific study, so are not suitable for re-use. They are not user-guided in detecting different types

and kinds of clones, and require significant computing resources. The community would benefit from a fast,

scalable and user-guided clone detection tool that can be re-used across various studies, freeing the researcher

from developing a whole new tool for their task, and allowing them to focus on the goals of their study.

Second, despite the large number of published clone detection tools and techniques, there is a lack of clone

detection benchmarks and standard tool evaluation procedures. As a consequence, there has also been a lack

of tool evaluation and comparison studies. Clone detection tools are evaluated for their recall, precision,

execution time and scalability. While precision, execution time and scalability can be measured by the tool

authors without external support, measuring recall requires a clone benchmark of known reference clones.

Therefore, tool authors rarely measure recall, and often they either do not measure the other metrics or do a

poor job in measuring them. This has led to the situation where so many clone detection tools are available

in the literature, but there is very little empirical evidence of their performance. Researchers do not know

which tools to use, and instead create new tools for their research. There is also a strong preference for people

to use familiar tools, such as those produced by their own lab or which have been historically popular in clone

studies, instead of the best tool for their use-case. Therefore, authors rarely even release research prototypes

of their tools, as tool adoption is difficult. Needed are high quality and easy to use clone benchmarks for

measuring recall, tool comparisons comparing the state of the art and popular tools, and tool evaluation

studies that demonstrate standard methods for measuring the four clone detection performance metrics.

Additionally, to deliver a flexible clone detection tool for large-scale clone detection, I need benchmarks

designed to evaluate large-scale clone detection, including for the inter-project use-cases.

These research problems are strongly interconnected. In order to introduce a new large-scale clone detec-

tion tool, I need clone benchmarks to demonstrate its performance and justify its value. Clone benchmarks

are needed by the community to drive real improvements in the clone detection tools backed by empirical

evidence. As well, in order to demonstrate new benchmarks targeting emerging clone detection applications,

such as large-scale inter-project clone detection, I need accessible large-scale clone detection tools designed

for this domain.

In summary, there are a number of significant deficits in the clone detection tool literature:

1. A lack of fast, scalable and user-guided clone detection tools for clone detection in large inter-project

source datasets, in particular for Type-3 clones and emerging clone types.

2. A lack of modern and high-quality clone benchmarks for measuring clone detection recall, and in

particular for the emerging large-scale inter-project clone detection domain.

3



3. A lack of empirical studies comparing the performance of state of the art clone detection tools, in

particular their recall, precision, execution time and scalability performances.

1.2 Addressing the Research Problems

To address these problems, I perform research to contribute towards the advancement of large-scale inter-

project clone detection and clone detection tool benchmarking and comparison.

To address the problems in clone detection tool evaluation I introduce two modern clone detection bench-

marks: the Mutation and Injection Framework and BigCloneBench. The Mutation and Injection Framework

is a synthetic benchmark which measures recall at a very fine granularity in a mutation-analysis procedure.

The Mutation Framework automates controlled and biased-free recall measurement experiments. BigClone-

Bench is a big benchmark of over 8 million real clones in a large (25K projects, 250MLOC) inter-project

source-code dataset. It can measure recall from a variety of perspectives, including: per clone type, for

inter-project vs intra-project clones, for semantic and syntactic clones, and across the entire spectrum of

syntactical similarity. In particular, BigCloneBench targets the evaluation of clone detectors for large-scale

inter-project clone detection. With these benchmarks, I deliver a complete clone detection recall measure-

ment procedure which combines the best of synthetic and real-world clone benchmarking techniques, which

I find to be essential to accurately measure recall.

I use our benchmarks in a number of tool evaluation and comparison studies, which measure the perfor-

mance of the state of the art tools. I use our Mutation Framework to evaluate the recall and capabilities of the

tools at a fine granularity and for particular kinds of clones. I use our BigCloneBench to measure the recall

of the tools for real clones, including inter-project vs intra-project clones, and across the entire spectrum of

clone types and syntactical similarity. I compare the Mutation Framework and BigCloneBench results, and

justify the need for both synthetic and real-world benchmarking. Using our benchmarks, I evaluate state of

the art tools, measuring their recall, precision, execution time, and scalability up to and including a large

inter-project source-code datasets (250MLOC). I provide the most comprehensive analysis of modern clone

detection tool performance, and demonstrate a complete tool evaluation procedure that can be reused by

the community as a standard methodology. Before our work, the most widely accepted clone benchmark

was Bellon’s Benchmark. In a quantitative study, I demonstrate that it may not appropriate for evaluating

the modern clone detection tools, demonstrating the need for our new and modern clone benchmarks. This

finding is supported also by the related work studying Bellon’s Benchmark [9, 19,21].

To address the lack of clone detection tools targeting large-scale inter-project clone detection, I introduce

a new clone detection tool: CloneWorks, and evaluate it using our clone benchmarks. I begin with an

exploratory study evaluating heuristics for scaling existing clone detection tools to large-scale. I find that

input partitioning and clone indexes are a promising method of scaling clone detection to large scale on

standard hardware. I combine input partitioning and clone indexing with efficient clone similarity metrics

4



and filtering heuristics from the literature to build a clone detector with the best execution time and scalability

on commodity hardware. I design a user-guided parsing and source transformation pipeline, with plug-in

support, that enables users to target any clone type, as well as explore new kinds of clones using custom

source normalization and processing. I demonstrate CloneWorks’s user-guided approach in a number of case

studies, and then evaluate it against the state of the art using our clone benchmarks. BigCloneBench shows

that CloneWorks is the best tool for large-scale clone detection experiments.

1.3 Decomposing our Research behind Addressing the Problem

I decompose our research into the following three parts:

• Part 1 - Synthetic Clone Benchmarking with Mutation Analysis.

• Part 2 - Real-World Large-Scale Clone Benchmarking.

• Part 3 - Large-Scale Clone Detection.

1.3.1 Part 1 - Synthetic Clone Benchmarking with Mutation Analysis

In this part of the thesis, I present our work using mutation analysis and source-code injection to build

synthetic clone benchmarks and to evaluation the recall of clone detection tools. I begin by introducing

our Mutation and Injection Framework (Chapter 3), which evaluates clone detectors in a mutation-analysis

procedure. It synthesizes reference clones using fifteen mutation operators based on a taxonomy of the types

of edits developers make on copy and pasted code, and automates the execution of the subject clone detection

tools for the benchmark and measures their recall at a fine granularity. I use this framework to generate large

Java and C clone benchmarks and use them to evaluate the state of the art tools (Chapter 4). I compare

these results against the previous leading clone benchmark, Bellon’s Benchmark [13,14], to show that it is not

appropriate for evaluating the modern clone detection tools. In this study I demonstrate the accuracy of the

Mutation Framework and motivate the need for a new real-world benchmark to replace Bellon’s Benchmark

(which I address in Part II). I then use the benchmark to extensively evaluate the modern clone detection

tools at a very fine granularity (per type of clone edit from the taxonomy) for Java, C and C# clones, and use

the results to pin-point their strengths and weaknesses (Chapter 5). The Mutation Framework is designed to

be extensible, so that users can produce clone benchmarks for evaluating recall for any type or kind of clone.

I demonstrate this by designing mutation operators for creating gapped clones (identical code fragments,

except for the insertion of a sequence of dissimilar source lines into one copy) for various gap lengths. I

generated a corpora of gapped clones, and evaluate the robustness of the clone detection tools against clones

with gaps of different lengths (Chapter 6). I also show how our mutation and injection technology can be

adapted to benchmark other kinds of software analysis tools. I adapt our technology to build synthetic

5



datasets of software variants (i.e., forks) with known similarities and differences to evaluate software variant

analysis tools (e.g., clone detectors) that support migration towards software product lines (Chapter 7).

1.3.2 Part 2 - Real-World Large-Scale Clone Benchmarking

In this part of the thesis, I present our real-world large-scale clone benchmark, BigCloneBench. I begin

by describing the creation of BigCloneBench (Chapter 8), where I used a novel and scalable clone mining

and validation procedure to discover, without the use of clone detectors, function clones similar by their

implementation of specific functionalities. I built a benchmark of over 8 million reference clones implementing

48 distinct functionalities that span the entire range of syntactical similarity including both intra-project and

inter-project clones. I use this benchmark to perform a thorough evaluation of the state of the art clone

detection tools (Chapter 10), and measure their recall for all four of the primary clones, for intra-project vs

inter-project clones, and across the entire spectrum of syntactical similarity. I compare these results against

those from our Mutation and Injection Framework to justify the need for both synthetic and real-world

benchmarks. I distilled our tool evaluation procedure into an evaluation framework called BigCloneEval

(Chapter 10), which makes it easy for the the community to reproduce, extend and customize our tool

comparison experiment with BigCloneBench. In particular, BigCloneEval handles the complexity of working

with such a large clone benchmark and dataset, and automates recall evaluation experiments.

1.3.3 Part 3 - Large-Scale Clone Detection

In this part of the thesis, I present our work on large-scale clone detection. I begin with an exploratory

study using our Shuffling Framework (Chapter 11) where I investigate the use of non-deterministic input-

partitioning, clone indexing, and coarse-grained code similarity metrics to scale existing non-scalable clone

detection tools. I successfully scale these tools to a large inter-project dataset (25K projects, 250MLOC) with

an acceptable loss of recall and by distribution over a small cluster. I use our experience with the Shuffling

Framework to create a new fast, scalable and user-guided clone detector called CloneWorks (Chapter 12).

CloneWorks detects clones using the efficient Jaccard similarity coefficient. Fast execution time is achieved by

a fully in-memory clone indexing approach with the sub-block filtering heuristic introduced in our published

work [116]. Scalability within available memory is achieved using an index-based input partitioning scheme

inspired by our Shuffling Framework. A user-guided approach is achieved by a customizable and pluggable

source-code parsing and transformation pipeline, which enables the user to target any type or kind of clones

as needed for their scenario or user-case. I evaluate CloneWork’s detection performance and compare against

the state of the art tools using our Mutation Framework (Part I) and BigCloneBench (Part II), and find

it can achieve best-in-class recall and precision performance. CloneWorks is the fastest tool to scale to a

large inter-project dataset (25K projects, 250MLOC) on a single personal computer, just two to ten hours

of execution time depending on the configuration. I evaluate the user-guided approach by detecting clones

with various source transformations targeting different scenarios and use-cases, including a novel API usage

6



clone detection. As part of this evaluation I manually validate over 15K clone pairs to measure the precision

of the user-guided approach, which is the most extensive precision evaluation of any clone detector.

1.4 Outline of the Thesis

• Chapter 1 introduces the research problem and how I addressed it.

• Chapter 2 provides essential background knowledge.

• Part I describes our research developing, evaluating and using our synthetic clone benchmark: The

Mutation and Injection Framework.

– Chapter 3 describes the Mutation and Injection Framework methodology and procedure.

– Chapter 4 contains our study using the Mutation Framework to evaluate state of the art tools,

and to evaluate the state of evaluation of modern clone detection tools, including the evaluation

of a previous benchmark: Bellon’s Benchmark. In this study I justify the need for our synthetic

benchmark, and the need for a new real-world clone benchmark (addressed by our BigCloneBench).

– Chapter 5 contains our study using the Mutation Framework to evaluate the state of the art

tools at a fine granularity.

– Chapter 6 contains our study using the Mutation Framework to evaluate state of the art tools

for gapped clones with gaps of differing sizes. In this way, I demonstrate the extensibility of the

Mutation Framework with custom clone-producing mutation operators.

– Chapter 7 describes ForkSim, our framework for developing synthetic forks for benchmarking

software variant analysis tools (including clone detectors). In this way, I demonstrate how our

source-code mutation and injection technology can be used to build benchmarks for related soft-

ware engineering fields.

• Part II describes our research developing and using our real-world and large-scale clone benchmark:

BigCloneBench.

– Chapter 8 describes the creation of BigCloneBench, and how it can be used to evaluate clone

detection tools.

– Chapter 9 contains our study using BigCloneBench to evaluate state of the art tools, for intra-

project vs inter-project clones and across the spectrum of syntactical similarity, including demon-

strating the need for both real-world and synthetic clone benchmarks.

– Chapter 10 describes our recall evaluation framework, BigCloneEval, built on top of BigClone-

Bench and implementing a customizable recall evaluation procedure.

7



• Part III describes our research exploring and developing clone detection tools for large-scale clone

detection experiments.

– Chapter 11 contains our study exploring procedures and heuristics for scaling the classical non-

scalable clone detection tools to large inter-project datasets.

– Chapter 12 describes CloneWorks, our fast and flexible clone detection tool for large-scale clone

detection experiments.

• Chapter 13 concludes our work, including a summary of our publications, and directions for future

research.

1.5 Manuscript-Style Thesis

The remainder of this thesis is written in the manuscript style. The chapters have been created using

published and unpublished (in-submission or to be submitted to an academic conference or journal) with

some reformatting and editing to fit this thesis. In the introduction to each chapter, I indicate the source

of the manuscript, if and where it has been published, and acknowledge the contributions of any co-authors.

For all of the included works I was the lead researcher and the manuscripts are written by myself as the

lead author. In the included manuscripts, co-authors have either taken a supervisor role for the research,

or contributed towards clone validation efforts. With respect to my supervisor, Chanchal Roy, and my

co-authors, I used the pronoun “we” for the remainder of this thesis, except when explicitly referring to

myself.

The manuscripts forming chapters in this thesis, and their copyright, are as follows:

• J. Svajlenko and C. K. Roy, ”Evaluating Modern Clone Detection Tools,” 2014 IEEE International

Conference on Software Maintenance and Evolution, Victoria, BC, 2014, pp. 321-330. c©2014 IEEE.

(Chapter 4).

• J. Svajlenko, C. K. Roy and S. Duszynski, ”ForkSim: Generating software forks for evaluating cross-

project similarity analysis tools,” 2013 IEEE 13th International Working Conference on Source Code

Analysis and Manipulation (SCAM), Eindhoven, 2013, pp. 37-42. c©2013 IEEE. (Chapter 7).

• J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy and M. M. Mia, ”Towards a Big Data Curated Bench-

mark of Inter-project Code Clones,” 2014 IEEE International Conference on Software Maintenance and

Evolution, Victoria, BC, 2014, pp. 476-480. c©2014 IEEE. (Chapter 8).

• J. Svajlenko and C. K. Roy, ”Evaluating clone detection tools with BigCloneBench,” 2015 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME), Bremen, 2015, pp. 131-140.

c©2015 IEEE. (Chapter 9).

8



• J. Svajlenko and C. K. Roy, ”BigCloneEval: A Clone Detection Tool Evaluation Framework with Big-

CloneBench,” 2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),

Raleigh, NC, 2016, pp. 596-600. c©2016 IEEE. (Chapter 10).

• J. Svajlenko, I. Keivanloo, and C. K. Roy, ”Big data clone detection using classical detectors: an

exploratory study,” June 2015, Journal of Software: Evolution and Process, Volume 27, Issue 6, 430464.

c©2014 John Wiley & Sons, Ltd. (Chapter 11).

9



Chapter 2

Background

2.1 Cloning Theory

Code clones are instances of similar code fragments, for some definition of similarity. Generally, we are

interested in code fragments that are textually, syntactically or functionally similar, although there is no

restriction on the kind of similarity in the clone definition. Code clones are typically documented as clone

pairs or clone classes. The following are standard definitions for these terms [109]:

Code Fragment (or Code Snippet) A contiguous region of source code within a source file. Specified

by the triple (f, s, e), including the source file f , the line the code fragment starts on s, and the line

it ends on e.

Clone Pair A pair of code fragments that are similar, for some definition of similarity. Specified by the

tuple (f1, f2, τ), including the similar code fragments f1 and f2 and their type of similarity τ .

Clone Class A set of code fragments that are similar. Specified by the tuple (f1, f2, ..., fn, τ), including

the n similar code fragments and their type of similarity.

Clone pairs may be reported with or without the type of similarity, τ , explicitly indicated. Additionally,

some clone detectors mix clones of various types within the same clone class. The base requirement of a clone

class is that every pair of code fragments within the class form a valid clone pair.

2.1.1 Clone Types

Researchers agree upon four primary clone types that are mutually exclusive and defined with respect to the

detection capabilities needed to detect them [109]:

Type-1 Identical code fragments, ignoring differences in white-space, code formatting/style and com-

ments.

Type-2 Structurally/syntactically identical code fragments, ignoring differences in identifier names and

literal values, as well as differences in white-space, code formatting/style and comments.

10



Type-3 Syntactically similar code fragments, with differences at the statement level. The code fragments

have statements added, removed or modifiers with respect to each other.

Type-4 Syntactically dissimilar code fragments that implement the same or similar functionality.

The Type-1 and Type-2 clone types are well defined, while the Type-3 and Type-4 clone types are more

open to individual interpretation. While researchers agree upon these definitions, they may disagree upon

what is the minimum syntactical similarity of a Type-3 clone, or the minimum functional similarity of a

Type-4 clone.

2.1.2 Type-1 Clones

Type-1 clones are pairs of identical code fragments, when we ignore trivial differences in extraneous white-

space, code formatting/style and commenting. Type-1 clones can occur when a code fragment is copy and

pasted, with only trivial modifications to match the destination’s formatting and code style, perhaps with

the addition, removal or modification of comments. Clone detectors detect Type-1 clones by parsing the

source-code in a way that removes or normalizes the allowed differences, and detects those code fragments

that become textually or syntactically identical. For example, a clone detector can tokenize the source code,

and search for the identical token sequences to detect Type-1 clones. Tokenization retains only the language

tokens, and drops the commenting, white-space and formatting. In some languages, such as Python, some

white-space are tokens as they have syntactical meaning beyond token separation.

2.1.3 Type-2 Clones

Type-2 clones are pairs of code fragments that are syntactically identical when we ignore differences in

identifier names and literal values, in addition to white-space, layout, style and comments. Type-2 clones can

occur when a developer has reused a code fragment by copy and paste, and has renamed one or more variables

to better match the destination. In addition to renamed variables, Type-2 clones can have renamed/changed

constants, classes, method names, and so on; as well as changes in literal values and types. Type-2 clones

can be detected by normalizing identifier names and literal values, in addition to the Type-1 normalizations,

and detecting syntactically or textually identical normalized code fragments. For example, a clone detector

could tokenize the code, and replace each identifier token with a common token (e.g., ‘identifier’) and the

same for each literal token (e.g., ‘literal’), and detect the token sequences that are identical as Type-2 clones.

2.1.4 Type-3 Clones

Type-3 clones are those that contain line-level (statement) differences, with the code fragments containing

lines added/removed or modified with respect to each other. Type-3 clones can occur when a code fragment

has been duplicated and then modified at the line-level to satisfy new requirements. The duplicated code

fragment could be extended with new statements to add a new feature, statements could be removed to

11



remove an unneeded feature, or statements could be modified to adjust an existing feature for the new

use-case. The Type-3 clone definition also allows for Type-1 and Type-2 differences to occur between the

code fragments. Clone detectors can detect Type-3 clones using clone similarity metrics that measure the

syntactical similarity of two code fragments, perhaps after Type-1 and Type-2 normalizations, then reporting

those that satisfy a given minimum similarity threshold. Another method is to detect nearby Type-1/Type-2

clones that are separated by a dissimilar gap, and merge these to form Type-3 clones. Researchers do not

agree on how much modification can be performed on the copied code fragment before it is no longer a

clone of its original. Since clones can arise for reasons other than copy and paste, for example programming

language limitations and repeated coding styles [109], researchers are concerned with what is the minimum

syntactical similarity of a valid Type-3 clone.

2.1.5 Type-4 Clones

Type-4 clones can occur when the same functionality has been implemented multiple times using different

syntactic variants. Most programming languages allow the same functionality to be specified using different

syntax. For example, a switch statement could be replaced with an if-else chain, or a for-loop could be

replaced by a while loop. Often the statements of a code fragment can be re-ordered without changing

functionality but significantly varying the code fragment’s syntax and structure. As a more extreme example,

two implementations of merge-sort, one recursive and one iterative, could be considered as a Type-4 clone.

Type-4 clones are a relatively unexplored clone type, with very few tools targeting their detection. It is also

difficult to separate the Type-3 and Type-4 clones as many Type-3 clones have the same or share functionality,

while Type-4 clones will often share some degree of syntactical similarity. There is also the question of how

similar must the functionality of two code fragments be for them to be a Type-4 clone, or if implementations

of the same functionality (e.g., stable sort) using different algorithms (e.g., bubble sort and merge sort) is a

Type-4 clone.

2.1.6 Clone Granularity and Boundaries

The general clone definition does not place any constraints on the boundaries of a code fragment except that it

is a contiguous sequence of lines. Therefore, clones can exist at various granularities in source code [109,143]:

File Clone A pair of similar source files.

Class Clone A pair of similar class definitions (in object-oriented code).

Function Clone A pair of similar functions (or methods, constructors, deconstructors, and so on).

Block Clone A pair of similar code blocks (indicated by a matching pair of opening and closing braces,

or a sequence of statements at the same indentation, and so on and depending on the programming

language syntax style).

12



Arbitrary Clone A pair of similar code fragments, whose start and end lines do not necessarily align

to any well-defined syntax unit.

File, class, function and block clones have precise boundaries. The code fragments start and end on the

boundaries of the respective syntax units. For example, a code fragment of a function clone starts on the

line the function definition begins on and ends on the line the function definition ends on.

Arbitrary clones have source lines that do not align to any specific source unit. For example, they could

be an arbitrary sequence of source lines within a function, or they could start in the preamble of a source file

and end in the middle of a function. However, a number of rules for high-quality arbitrary clone reporting

are followed by many tools: (1) the code fragments of an arbitrary clone should not overlap, (2) the start and

end lines should be within the same scope, (3) the start and end lines should not span multiple functions as

function definition order is not relevant in most languages. These are general rules for high-quality arbitrary

clone reporting for human inspection and software maintenance tasks. Not all clone detection tools follow

these guidelines, often because they can be difficult or computationally expensive to enforce. Additionally,

there may be domain-specific applications of clones that violate these rules. For example, clone detection for

code compaction using macros.

2.1.7 Clone Size

The clone definitions do not put any constraints on the size of clones. Clone size is typically measured as the

maximum (or average) length of its code fragments measured in original source lines, pretty-printed source-

clones and/or by token. While there is no minimum size of a clone, very small clones are often spurious. For

example, a pair of identical tokens are not typically considered a clone, neither are pair of identical simple

statements. Clone detection tools typically require a minimum clone size configuration in order to filter those

smaller identical/similar code fragments that are likely to be spurious or uninteresting. Typical minimum

clone sizes are 6-15 original source lines [13,110,121,128], and 30-100 tokens [41,58].

2.1.8 Clone Detection Tools

Clone detection tools are used to detect clones within source code. Given a collection of source code, and

a configuration of its algorithms, the clone detector outputs the set of clones it detected in the collection of

source code.

The collection of source code can be a single software system, a collection of software systems, or just

a loose collection of source files. The tool configuration can include the language(s) of the source files to

process, the granularity(ies) to report clones at (e.g., arbitrary, block, function or file), the minimum and

maximum sizes of clones to report, the source normalizations to apply during parsing, the similarity threshold

or maximum gap size for reporting Type-3 clones, or any other configuration specific to the tool’s detection

algorithms and implementation. The tool outputs the detected clones as a collection of clone pairs or clone

13



classes in a clone detection report. There is no universal standard for clone detection report format or style.

All clone detection tools implement the following abstract procedure. The source code files are parsed,

and all of the code fragments are identified, subject to a minimum and maximum code fragment size (by line

or token), granularity, boundary constraints, file filters, sliding windows, and so on. Let F = {f1, f2, ..., fn}

be the n code fragments found in the source code, after filtering.

This implies a set of potential clone pairs, F × F , that the tool should investigate. The tool may reject

some potential clone pairs, such as pairs of the same code fragment, pairs of overlapping code fragments,

pairs of code fragments that vary too significantly in size, and so on. The remaining potential clones pairs

are investigated by the tool’s detection algorithms and similarity metrics to decide if they are a clone or not.

The tool outputs its detected clones (as clone pairs or summarized in clone classes) – the candidate clone

pairs its algorithms have judged to be clones. This is summarized in Eq. 2.1, where judge() either accepts a

potential clone pair as a true clone, or rejects it as a false clone, as per the tool’s judgment.

D = {(fi, fj) ∈ F × F | i 6= j ∧ judge(fi, fj)} (2.1)

The tools generally do not implement this abstract procedure explicitly, but their algorithms efficiently

implement this procedure implicitly. Surveys by Roy et al. [108] and Rattan et al. [104] found at least 70

clone detection algorithms and tools in the literature. These have been classified into various categories based

on their detection algorithms [108], including: text, token, tree, metric, hash, program dependency graph

(PDG), hybrid, and so on.

The large number and variety of detection techniques motivates the need for clone benchmarks. Clone

detection tools are not perfect, and their detection reports can contain both true positives and false positives.

Additionally, their reporting of a clone’s boundaries may not be precise. It may include additional code not

part of the clone, or miss some code that is part of the clone.

2.2 Benchmarking Clone Detection

Clone detection performance is measured using information retrieval metrics including recall and precision.

Recall is the ratio of the clones within a software system that a clone detector is able to detect, while precision

is the ratio of the clones reported by a clone detector that are actually clones and not false positives. Measuring

recall requires a clone benchmark, a set of known clones within a subject system(s), which is challenging to

build. Precision can be measured without a clone benchmark, but requires extensive clone validation efforts.

2.2.1 Measuring Recall and Precision with an Oracle

Recall and precision can be measured for a specified subject software system as shown in Figure 2.1. Here we

have the universe, U, of all potential clone pairs (every possible pair of code fragments) within the subject

software system. On the left is the set of all true clone pairs, T, in the subject software system. This set is

14



determined by a clone oracle, a hypothetical entity that is perfectly able to judge if a pair of code fragments

is actually a clone (in reality, no such entity exists). The remaining pairs of code fragments, F = U−T, is

the set of false clone pairs – the code fragment pairs the oracle decided are not clones. Then there is the set

of detected clone pairs, D, reported by the clone detector when executed for the subject software system.

From the perspective of clone detection, this splits the universe into four regions:

True Positives The true clones successfully detected by the subject clone detection tool. (Desirable,

improves recall.)

False Positives The false clone pairs incorrectly identified as true clone pairs by the subject clone

detection tool. (Undesirable, harms precision.)

True Negatives The false clone pairs that are (correctly) not reported by the subject clone detection

tool. (Desirable, improves precision.)

False Negatives The true clone pairs that are not detected (missed) by the subject clone detection tool.

(Undesirable, harms recall).

Recall, as shown in Eq. 2.2, is the ratio of the true clone pairs that are detected by the subject clone

detection tool, i.e., the ratio of T that is intersected by D. This is also the ratio of the subject tool’s true

positives to the union of its true positives and false negatives. Therefore, to improve recall, a clone detection

tool wants to maximize its true positives and minimize its false negatives.

recall =
|D ∩T|
|T|

=
|true positives|

|true positives ∪ false negatives| (2.2)

Precision, as shown in Eq. 2.3, is the ratio of the detected clone pairs that are true clone pairs, not

false clone pairs, i.e., the ratio of D that is intersected by T. This is also the ratio of the subject tool’s

true positives to the union of its true positives and false positives. Therefore, to improve precision, a clone

detection tool wants to maximize is true positives and minimize its false positives.

precision =
|D ∩T|
|D|

=
|true positives|

|true positives ∪ false positives| (2.3)

2.2.2 Challenges in building an Oracle

The measurement of recall and precision depends on the identification, or “oracling”, of all the true clone pairs

within a subject system. This process is extremely effort intensive, as it requires the manual examination of

every possible pair of code fragments in a subject system. Even a small system such as cook (51KLOC, 1244

functions) contains on the order of one million code fragment pairs at the function granularity alone [137]. Not

15



Subject Software System

Clone Oracle Clone Detector

True
Positives

False
Positives

False
Negatives

True 
Negatives

T True Clone Pairs D Detected Clone Pairs

U  Universe of Code Fragment Pairs

Figure 2.1: Measuring Recall and Precision with an Oracle

only is this too many potential clones to be examined, the cook subject system does not contain a sufficient

number and variety of true clone pairs on its own to properly evaluate clone detection recall. Additional

subject systems are required, which adds to the workload issue.

Additionally, the classification of a potential clone as true or false clone is a subjective process. Previous

studies [19] have demonstrated that even among clone experts there is disagreement on what constitutes a

true or false clone. A clone expert may even give a different opinion on the same clone when shown it at

different times. There is no universal definition of a true clone, and responses might depend on the current

task and goals of the clone-detection user [137]. Therefore, it is not only a question of if a potential clone is

a true clone, but if it is useful or relevant clone for some clone-related maintenance or development task.

As such, no clone oracle exists, as it is too effort intensive to create. Likely no true oracle can exist, due

to the subjectivity in what constitutes a true clone. Instead, clone detection researchers must come up with

innovative ways to create corpora of convincingly validated reference clones that can accurately estimate the

recall and precision of clone detection tools without the need to fully oracle multiple subject systems. To

overcome subjectivity, benchmarks must be created with a well-defined perspective and scope such that the

results can be properly interpreted.

16



2.2.3 Measuring Recall with a Reference Corpus

Recall can be estimated using a reference corpus, a set R of the known true clone pairs within a subject

system, set of subject systems, or some other collection of source code. Recall is measured with respect

to the known true clones. In most cases, the reference corpus is not complete – it does not contain every

true clone within the subject system. In other words, the reference corpus is a proper subset of an oracle.

Specifically, R ⊂ T. The goal in creating a reference corpus (i.e., a clone benchmark) is to efficiently build a

large and varied reference corpus for accurate estimation of recall with a minimum of bias or subjectivity in

the validation of the clones.

Recall is then measured as the ratio of the true clone pairs in the reference corpus that a clone detection

tool is able to detect [13]. This is shown in Eq. 2.4, where D is the set of detected clone pairs detected by

a tool, R is the known true clone pairs in the reference corpus, and T is the set of all true clones in the

subject system(s). Given a sufficiently large and sufficiently varied reference corpus, we can assume that R

approximates T for the purpose of measuring recall, even if |R| is much smaller than |T|.

recall =
|D ∩T|
|T|

≈ |D ∩R|
|R|

R ⊂ T (2.4)

2.2.4 Clone Matching Algorithm/Metric

The measurement of recall with a reference corpus requires computing the intersection of the detected clones

with the known true clones in the reference corpus. This requires determining which of the reference clones

in the reference corpus are matched by the detected clones in the subject tool’s clone detection report.

However, clone detection tools do not always report clones perfectly, and may have some errors in the

clone line boundaries. In particular, off-by-one line errors are common. Therefore, it is not as simple as

searching the detected clones for an exact match of a reference clone. Additional sources of differences in

clone boundaries is differing clone reporting styles between the reference corpus and clone detection tool, or

even subjectivity in the precise boundaries of the reference clones themselves.

To accommodate these potential discrepancies, a clone matching algorithm/metric is used to evaluate if a

given detected clone is a sufficient match of a specific reference clone for the reference clone to be considered

as detected by the subject clone detector. This matching metric is evaluated for every detected clone until a

sufficient match is found, or all detected clones are checked. This can computed efficiently if the detection

report is inserted into an indexed database table and the algorithm is implemented as a database query.

Various clone matching algorithms have been used, that require the detected clone to: exactly match the

reference clone (with or without an allowed line error), subsume the reference clone, intersect a specified ratio

of the reference clone, and so on. The appropriate matching algorithm usually depends on the properties of

the reference corpus and how it was constructed.

17



2.2.5 Methods for building a Reference Corpus

Many methods for building a reference corpus have been proposed or attempted, all with different advantages,

weaknesses and challenges.

Manual Inspection One method is an exhaustive manual search of a subject system. Every pair of code

fragments can be checked to see if they are a true or false clone, and added to the reference corpus. This

is a reasonable approach for only very small subject systems. However, even a small system such as cook

(51KLOC, 1244 functions) contains nearly one million pairs of code fragments at the function granularity

alone [137], which is far too many candidate clones to check. One solution is to investigate only a statistically

significant random sample of the code-fragment pairs [77]. However, since the chance that two randomly

selected code fragments being a true clone is low, this is an inefficient way to build reference corpus.

Using Clone Detectors A common method is to build the reference corpus using the clone detection

tools themselves.

The union method [13] builds a reference corpus as the union of the clones detected by a set of diverse

clone detection tools. The flaw in this approach is it makes the unreasonable assumption that the tools have

perfect precision. The false positives added to the corpus will harm the measure of recall. Additionally, the

true clones not found by any of the tools are missing from the corpus. The code fragment pairs not found

in the union cannot be assumed to be false clones, as it is not reasonable to assume the union of the tools

has perfect recall for the subject system, so this corpus cannot be used to measure precision. An additional

challenge is the handling of clones that are detected by multiple tools but are reported differently, including

different reporting styles and precise line boundaries.

The intersection method [13] builds a reference corpus as the intersection of the clones reported by a set

of diverse clone detection tools. The flaw in this method is it will trivially measure perfect recall for the tools

used to build it. It cannot be assumed that the clones not found by all of the tools are false clones, so it

can’t be used to measure the precision of the tools either. It could possibly be used to measure the recall

of non-participant tools, but the corpus will likely only contain the clones that are easy to detect (and thus

detected by all the tools).

Another method is to combine these approaches [13], by taking the union, but removing those clones

that are not detected by at least n tools, where n > 1. The idea is that those clones detected by more than

one tools are less likely to be false positives. However, there is no clear choice of an appropriate value of n.

Additionally, it can be the case that n tools report the same false positive, or that n− 1 tools detect a true

clone. The resulting corpus may still be of low quality.

A popular approach is to combine the union method with statistical sampling and manual clone vali-

dation [13]. A random sample is selected from the clones reported by each clone detector and manually

validated to identify the true and false clones. The sample size and distribution must be justified to be

18



statistically significant and fair amongst the tools. The resulting corpora can be used to estimate recall,

while the validation efforts can be used to measure the precision of the participating tools. The resulting

reference corpus is still biased by the detection capabilities of the participating tools, but may be sufficient

to measure relative performance between the participants.

Search Heuristics An alternative to using the clone detectors themselves is to use search heuristics that

are distinct from the clone detectors. Ideally, the search heuristic would be designed to have high recall at the

cost of poor precision, with the true clones identified by manual inspection before inclusion in the reference

corpus. This is similar to the manual inspection approach, except the search heuristic is used to greatly

reduce the manual search space for better efficiency. However, heuristics could also cause some true clones

to be missed and not included in the reference corpus. The heuristics may be designed to build a corpus

with a particular context. Our implementation of this approach uses keywords and source-code patterns

to identify code fragments implementing specific functionalities, which revealed large semantic clone classes

after manual inspection [125]. Another approach uses Levenshtein distance to identify true clones as those

meeting a specified threshold [80], without the need for manual inspection.

Clone Injection A reference corpus can be built by injecting known clones into a subject system, or

authoring new clones within that software system. This is an alternative to mining for clones that already

exist within the subject system. The advantage of this approach is it gives the benchmark creator total

control over the clones in their reference corpus. However, manually creating interesting clones and injecting

them into a software system is very effort intensive [13]. Perhaps only a small reference corpus can be built.

However, the benchmark creator could carefully introduce interesting features into each clone and evaluate

how this affects their detection by the subject clone detectors.

Artificial Clone Synthesis A reference corpus can be automatically synthesized by programmatically

mimicking the creation of a clone by a software developer. We have done this using source-code mutation

operators that mimic the types of edits developers make on copy and pasted code [107,111,131]. This is similar

to manual clone injection, except the clones are constructed automatically. The advantage of this technique

is a large corpus can be constructed with custom distribution of clone types. However, it is challenging to

automatically synthesize complex and realistic clones, which is why benchmarks of real (developer-created)

clones are also needed.

2.2.6 Measuring Precision

Compared to recall, it is easier to measure precision without an oracle. The precision of a clone detection

tool (for a given subject software system) can be estimated by manually validating a statistically significant

sample of its detected clones. Precision is then the ratio of the validated clones that are judged as true clones

and not false positives. The precision of a clone detection tool can vary between software systems, so typically

19



this is repeated for a collection of diverse software systems from a variety of programming domains, and the

precision measurement is averaged. While this procedure is rather simple, there are still some challenges.

Clone validation is a very effort intensive process, and validating detected clones in a variety of software

systems can take a significant amount of time. Clone validation is also subjective [9, 19, 21], so precision

measured by different individuals could vary significantly.

20



Part I

Synthetic Clone Benchmarking with

Mutation Analysis

21



In this part of the thesis, we present our work with synthetic clone benchmarking. We introduce the Mu-

tation and Injection Framework and use it in a number of tool comparison studies. The Mutation Framework

evaluates clone detection recall using synthetic clones in a mutation-analysis procedure. Synthetic bench-

marking is needed to evaluate clone detection recall at a fine granularity for the different kinds of clones

that can exist. Another advantage of synthetic benchmarking is it allows controlled recall experiments to

be conducted, reducing or removing biases in the results. Fine-grained and controlled recall measurement

is more difficult with real-world benchmarks, but real-world benchmarks evaluate for complex and realistic

(developer-produced) clones, which is why both synthetic and real-world benchmarks are needed. In Part II

we discuss our real-world clone benchmark, BigCloneBench.

The Mutation and Injection Framework procedure was previously proposed in the related work [107] and

prototyped [111] for a single clone detection tool (NiCad). For this thesis, we improved the framework in

the following ways: (1) we generalized the framework for compatibility with most clone detection tools, (2)

improved the mutation operators and mutation process for better accuracy and control, (3) designed an

evaluation procedure to allow recall to be compared across the clone types and clone edit types without

bias, and (4) implemented the framework as an extensible tool. The framework enables the users to perform

custom and fully automated recall evaluation experiments, which can then be shared, examined, repeated

and extended by the community. We discuss the methodology and design of the Mutation Framework in

Chapter 3.

In Chapter 4, we use our Mutation Framework to evaluate the state of the art clone detection tools per

clone type. We compare our measurements against our expectations for the tools, and against the previous

and popular clone benchmark: Bellon’s Benchmark [13]. In this experiment, we validate the accuracy of the

Mutation and Injection Framework, and demonstrate the need for synthetic benchmarking. We also show

that Bellon’s Benchmark may not be accurate for modern clone detection tools, creating the need for a new

real-world clone benchmark, which is a motivation for our BigCloneBench (Part II).

In Chapter 5, we evaluate and compare the recall of state of the art tools at a fine granularity using our

Mutation and Injection Framework. Specifically we measure the recall of the tools per edit type from the

editing taxonomy for block and function granularity clones in Java, C and C# systems. In this study we

demonstrate the advantage of the Mutation Framework’s synthetic approach in evaluating the capabilities of

the tools and pin-pointing their individual strengths and weaknesses.

In Chapter 6, we demonstrate how the Mutation Framework can be extended with custom mutation

operators to evaluate clone detection tools for any kind of clone. In our case study, we synthesize Type-3

clones with a single dissimilar gap of variable length. We evaluate the robustness of the Type-3 clone detectors

against Type-3 clones with various sizes of a gap. We generate a reference corpora that can evaluate the

robustness of clone detection tools to small and large dissimilar gaps in otherwise identical Type-3 clones. We

find that even the best of the state of the art tools struggle to detect Type-3 clones with a single dissimilar

gap that is longer than three to five statements.

22



In Chapter 7, we adapt the Mutation Framework technologies to create ForkSim – a framework for

generating datasets of artificial software variants (i.e., software forks) with known similarities and differences.

These datasets can be used to evaluate tools for software variant analysis, such as for migrating variants

towards a software product line architecture. ForkSim demonstrates how our mutation analysis technology

can be used to benchmark clone detection and other software analysis tools, for various applications. We

demonstrate the use of ForkSim by evaluating a clone detection tool for software variant analysis.

23



Chapter 3

The Mutation and Injection Framework

In this chapter, we present the Mutation and Injection Framework, a synthetic clone benchmarking

framework that precisely evaluates clone detection recall at a fine granularity using a mutation-analysis

procedure. The framework begins by selecting a random code fragment from a large repository of sample

source code. It duplicates and mutates this code fragment to produce a code clone of a known clone type

and with a known difference. The mutation operators used in clone synthesis are based on a comprehensive

and empirically validated taxonomy of the types of edits developers make on copy and pasted code. The

clone is then injected into a software system, evolving the system by a single copy-paste and modify clone.

The clone detection tool is then executed for this software system and recall is measured for the injected

clone. Since the framework created the clone itself, it is able to precisely evaluate the tool’s detection of the

clone, including if it appropriately handled the clone-type specific differences between the cloned code. This

is repeated many thousands of times across all of the edit types in the taxonomy, allowing a comprehensive

and exhaustive measurement of recall. The framework fully automates the recall experiment, and allows all

aspects of the experiment to be customized and controlled.

We created the Mutation Framework to overcome challenges in Bellon’s Benchmark [13], which has

been the standard benchmark in clone detection for many years. Bellon built his benchmark by manually

validating 2% of the clones detected by six contemporary (2002) tools for eight subject systems, requiring 77

hours of manual clone validation efforts. While the union may provide good relative performance evaluation

between participating tools [13], there is no guarantee that subject tools have collectively detected all clones

within the subject systems and therefore the measure of absolute performance is questionable. The reference

corpus is therefore biased by the types of clones the participating tools detect. Baker [9] raised concerns

with problems in the creation of Bellon’s benchmark, including clone validation procedures. Charpentier et

al. [19] revalidated a number of the clones and found disagreement in the results. The Mutation Framework

overcomes these challenges by synthesizing clone benchmarks that are independent of the clone detection

themselves, and which requires no subjective manual validation.

The Mutation and Injection Framework has some distinct advantages in measuring recall. It supports

three programming languages (Java, C and C#) and two clone granularities (function and block). These are

abstracted from the procedure, and the framework could be extended to additional languages and granular-

ities. It is fully automated, and requires no manual clone validation efforts from the user. The framework

24



includes mutation operators for every type of edit developers make on copy and pasted code. This allows recall

to be comprehensively measured at a finer granularity than clone type, allowing a tool’s specific capabilities

to be measured. The user configures the properties of the clones to be included in the synthesized reference

corpus, including clone size, syntactical similarity, mutations and granularity. The user can therefore create

a custom benchmark corpus for any general or specific cloning context to evaluate their tool against. Recall

experiments produced by the framework can be easily replicated, duplicated, shared, modified and extended.

This chapter is based on a (currently unpublished) manuscript entitled “The Mutation and Injection

Framework” and authored by myself and Chanchal K. Roy. The manuscript has been edited and reformatted

to better fit this thesis.

This chapter is organized as follows. We discuss essential background knowledge in Section 3.1. We

describe the framework’s methodology in Section 3.2, and its usage in Section 3.3. We discuss the related

work in Section 3.5, and conclude this work in Section 3.6.

3.1 Background

In this section, we provide additional background knowledge for this chapter. General background on clones

and clone detection benchmarking can be found in Chapter 2. Here we describe the clone similarity metric

used in this chapter and by the Mutation Framework. We also describe the editing taxonomy for cloning,

which is an essential to our framework’s clone synthesis process.

3.1.1 Clone Similarity

Clone similarity is the measure of the syntactical similarity between a clone pair’s code fragments. It is

expressed as a ratio between 0.0 (totally different syntax) and 1.0 (identical syntax). It can be measured

by line, by statement, or by language token. The compliment of clone similarity is clone difference, the

measure of the syntactical difference between a clone pair’s code fragments. For this paper, and with our

Mutation and Injection Framework, we measure clone similarity and difference using each code fragment’s

unique percentage of items (UPI).

Code fragments can be considered as either sequences of source code lines or language tokens. We can

detect the differences in these sequences, from an editing perspective, using the Unix diff program (greatest

common subsequences). A code fragment’s UPI, with respect to another code fragment, is the ratio of its

source code lines or tokens that are not found in the other code fragment, when also considering their order.

In other words, the lines/tokens in the code fragment not matched to a line/token in the other code fragment

by the greatest common subsequences algorithm. The UPI of code fragment f1 with respect to code fragment

f2 is expressed mathematically in Equation 3.1, where items can be either source code lines or tokens. We

measure clone dissimilarity as the larger of the clone’s code fragment UPI, as shown in Equation 3.2, with

clone similarity as its compliment, as shown in Equation 3.3.

25



Fragment#1 Fragment#2

void somefunction(int n) { void somefunction(int n) {
int sum = 0; int sum = 0;
int product = 1;
for(int i = 0; i < n; i++) { for(int i = 0; i < n; i++) {
sum = sum + i; sum = sum + i;
product = product * i;
} }

for(int i = 0; i < n; i++) {
product = product * i;
}

return new SomeClass(sum, product); return new SomeClass(sum, product);
} }
#Unique Lines = 2 #Unique Lines = 3
#Lines = 9 #Lines = 10
UPI = 0.22 UPI = 0.30

Difference: 0.3, Similarity: 0.6

Table 3.1: Clone Difference and Similarity Example

upi(f1, f2) =
# unique items in f1 by diff (f1, f2)

# of items in f1
(3.1)

dissimilarity(f1, f2) = max(upi(f1, f2), upi(f2, f1)) (3.2)

similarity(f1, f2) = 1− dissimilarity(f1, f2) (3.3)

An example for line items is shown in Table 3.1. This table shows the item matching as done by the diff

algorithm. Fragment#1 is 9 lines long and has 1 unique line, a UPI of 22%. Fragment#2 is 10 lines long

and has 3 unique lines, a UPI of 30%. The difference for this clone is the larger of the UPI values, 30%.

Similarity is the compliment of difference, 60%. The token metric is evaluated in an identical fashion. By

inserting a newline between each token, the line-based Unix diff algorithm can be used to evaluate the token

based similarity metric without modification.

Cloned code fragments often contain Type-1 (white-space, formatting and layout) as well as Type-2 (iden-

tifier name and literal value) differences. These differences can greatly lower our clone similarity measurement.

These types of differences are often ignored in the cloning context, and a more accurate clone similarity is

measured if these differences are normalized. We therefore apply Type-1 and Type-2 normalizations to the

code fragments before measuring clone similarity. Our Type-1 normalization applies a strict pretty-printing,

which results in a single statement per line with normalized whitespace, and removes all comments and

blank lines. Our Type-2 normalization replaces each identifier with ‘X’, and each literal with ‘0’. With these

normalizations, all Type-1 and Type-2 clones will have a similarity of 100%, while Type-3 clones will have

26



a similarity less than 100%. The clone difference will therefore measure the amount of Type-3 differences

between the code fragments.

3.1.2 The Editing Taxonomy for Cloning

The basis of our clone synthesis technique is the ability to simulate a developer’s copy, paste and modify

cloning behavior. The foundation of the modification step is a comprehensive taxonomy of the types of edits

developers make on copy and pasted code fragments. This taxonomy was created by Roy et al. [108] and

was constructed based upon a literature survey of clone types, clone taxonomies, and empirical studies. The

taxonomy consists of fifteen editing activities that produce clones of the first four clone types. The taxonomy

was empirically validated against copy, paste and modify cloning patterns observed in clones from seventeen

open source Java and C systems. They are confident that their taxonomy is capable of modeling all clone

types defined in the literature. The editing taxonomy is not specific to any particular development task, such

as software maintenance.

The taxonomy is described in Table 3.2, including a description of each editing activity and the clone

type they produce. This is a slightly modified version of the original taxonomy, reducing the 15 editing

activities to 14 due to changes in interpretations of the clone types. Specifically, we removed the Type-2

editing activity: “Replacement of identifiers with expressions (systematically or non-systematically)” [108].

In previous benchmarks this type of edit was considered a Type-2 clone [9, 13]. However, the modern

clone detection tools typically interpret this change as Type-3, and target their detection using similarity

thresholds rather than normalizations. This activity can be safely removed as the existing Type-3 editing

activities already cover it, specifically editing activities 7 and 8. Further details of the editing taxonomy are

available in its original publication [108].

An example of each editing activity is shown in Figure 3.1. We begin with an initial code fragment at

the top left position. We then sequentially apply an example of each editing activity onto the code fragment

in numerical order. The number on the arrows indicate the editing activity applied, and point from the code

fragment before the edit is applied and to the code fragment after the activity is applied. Each version of

the code fragment highlights the changes made by the most recent editing activity. The final version at the

bottom left is after an example of all 14 editing activities having been applied to the original code fragment.

3.2 The Mutation and Injection Framework

The Mutation and Injection Framework measures the recall of clone detection tools using a mutation analysis

procedure. It is a fully automatic framework that requires no manual efforts during either the construction

of the reference corpus nor the evaluation of the subject tools. It achieves this by synthesizing a reference

corpus of artificial clones using source-code mutation and injection, rather than mining for real clones in a

subject system. An advantage of the framework is that it requires no manual clone validation, which has

27



3

6

9

int n = 10;
int mult = 1; //Comment
double fun
 = 0.0;
int sum =    0;
int i = 0;
while (i <= n) {
     fun += funct(sum,n) + n;
     if (i > n/2) mult *= n;
     i++;
}
fun /= 10;

int n = 10;
int mult = 1; //Comment
double fun
 = 0.0;
int sum =    0;
for (int i = 0; i <= n; i++) {
     fun += funct(sum,n) + n;
     if (i > n/2) mult *= n;
}
fun /= 10;

int n = 10;
int mult = 1; //Comment
double fun
 = 0.0;
int sum =    0;
for (int i = 0; i <= n; i++) {
     if (i > n/2) mult *= n;
     fun += funct(sum,n) + n;
}
fun /= 10;

1011

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,n);
}
fun /= 10;

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     fun += funct(sum,n);
}
fun /= 10;

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     if (i > n/2) mult *= n;
     fun += funct(sum,n);
}
fun /= 10;

7 8

int n = 15;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,sum);
}

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,sum,n);
}

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,n);
}

45

int x = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= x; i++) {
     mult *= x;
     sum += x;
     fun += funct(sum,sum);
}

int x = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= x; i++) {
     mult *= x;
     sum += x;
     fun += funct(sum,mult);
}

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun
 = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,mult);
}

1 2

int n = 10;
int mult = 1;
int sum = 0;
double fun = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,mult);
}

int n = 10;
int mult = 1;
int sum =    0;
double fun = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,mult);
}

int n = 10;
int mult = 1; //Comment
int sum =    0;
double fun = 0.0;
for (int i = 0; i <= n; i++) {
     mult *= n;
     sum += n;
     fun += funct(sum,mult);
}

13 14

12

Figure 3.1: Clone Synthesis Example

28



Table 3.2: Editing Taxonomy for Cloning

ID Edit Description Clone Type

1 Change in whitespace.
Type-12 Change in commenting.

3 Change in formatting.

4 Systematic renaming of an identifier.
Type-25 Renaming of a single identifier instance.

6 Change of a literal value.

7 Small insertion within a line.

Type-3
8 Small deletion within a line.
9 Insertion of a line.
10 Deletion of a line.
11 Modification of a line.

12 Reordering of declaration statements.
Type-413 Reordering of statements.

14 Replacement of one type of control statement with another.

been an obstacle in measuring recall. By synthesizing the reference corpus, its properties can be controlled,

and potential biases can be avoided. The framework evaluates tools using the following procedure, which is

also shown in Figure 3.2.

1. A single clone pair is added to a software system by simulating the creation of a copy, paste and modify

clone by a developer. This is accomplished by duplicating and mutating a source code fragment using

cloning mutation operators, and introducing this new clone pair into a subject software system using

source-code injection.

2. The subject clone detection tool is executed for this mutant version of the subject system.

3. The tool’s unit recall is measured specifically for the detection of the injected clone.

4. Steps 1-3 are repeated for a large number and variety of clone pairs.

Subject System

Repository of 

Source Code

4. Repeat for a large number and types of clones.

Clone Synthesis

Mutant System

Clone Injection
Tool

1. Synthesize a clone.

2. Execute subject tool. 3. Evaluate unit recall.

Performance 

Summary

Measure Unit 

Recall

5. Summarize

        performance.

Clone Detection

Report

Figure 3.2: Overview of the Mutation Framework Procedure

29



5. The tool’s average recall across these mutant systems (the reference corpus) is reported.

This is a canonical mutation analysis procedure, very similar to that used in mutation testing. In mutation

testing, mutation operators are used to randomly introduce a bug into a software system and the system’s

testing strategy is evaluated for its ability to detect and isolate the synthetic bug. To evaluate clone detection

tools, we inject duplicate code into a system, and use mutation operators to introduce a random difference

between the duplicated code fragments corresponding to one of the clone types. The subject clone detection

tool is evaluated for its ability to detect the synthetic clone. The mutation operators are based upon a

comprehensive taxonomy of the types of edits developers make on cloned code (Section 3.1.2). This strategy

allows us to measure the subject tool’s recall not only per clone type but also per clone edit (mutation)

type, which provides greater insight into the performance, capabilities and weaknesses of the particular clone

detection tool.

The implementation of the framework splits the mutation analysis into two discrete phases: the generation

phase and the evaluation phase. During the generation phase, the clones are synthesized and injected into

distinct copies of a subject system. These mutant systems and the injected clones they contain form the

reference corpus. The framework allows many constraints to be placed on the generated corpus in order to

control its properties. The evaluation phase executes the subject tools for the mutant systems, and measures

their recall for the injected clones. The implementation is split in this way to allow the corpus to be generated

ahead of time and then shared and reused in multiple tool evaluation experiments.

In the following subsections we describe the framework in full detail. We begin by describing how the

clones are synthesized. Next we outline the generation phase, during which clone synthesis is used to create

the reference corpus. Then we outline the evaluation phase, and how it automates the subject tool execution

and evaluation for the reference corpus.

3.2.1 Clone Synthesis

The framework synthesizes clone pairs by mutating real code fragments mined from a source code repository.

The mutations are based upon the editing taxonomy for cloning (Section 3.1.2), which is a validated and

comprehensive taxonomy of the types of edits developers make on copy and pasted code. This allows a

comprehensive corpus of realistic clone pairs to be synthesized. Mutations are applied by mutation operators

that take a code fragment as input and output the same code fragment with a single random modification of

their edit type. The framework user specifies the types of clones to be synthesized using mutators, which are

sequences of one or more mutation operators. The mutator applies the mutation operators one by one, in

order, to an input code fragment. The original code fragment produced by a real developer, and its mutant

code fragment produced by a mutator, form a synthetic clone pair produced by mimicking the copy, paste

and modify cloning activities of a real software developer. The framework currently supports the synthesis

of Java, C and C# clone pairs of the first three clone types at the function and block syntax granularities,

although it could be extended to other language.

30



An example of clone synthesis is shown in Figure 3.3. The original code fragment is mutated by a mutator

with a mutation operator sequence of length three. The mutation operators apply a single random change

of their edit type. The first mutation operator changes formatting, the second changes the value of a literal,

and the third adds a comment. The mutation operators are applied, in this order, to a copy of the original

code fragment. The mutations have been highlighted in the final mutant code fragment. The first and third

mutation operator apply Type-1 clone differences, while the second mutation operator applies a Type-2 clone

difference. Therefore the original and mutant code fragments form a Type-2 clone pair.

In the following sections, we describe the mutation operators and mutators in more detail.

Mutation Operators

The mutations are performed by mutation operators, a concept of mutation analysis. From the editing

taxonomy, we created fifteen mutation operators that mimic the types of edits developers make on copy and

pasted code. These mutation operators take a code fragment as input, and output the same code fragment

with a single random edit of the operator’s defined edit type. Our mutation operators are summarized in

Table 3.3. This table lists each mutation operators’ name, edit type, how the edit type is realized in its

implementation, and the clone type the edit belongs to.

Our mutation operators cover the types of edits that produce clones of the first three clone types. We

did not create mutators for the Type-4 editing activities as very few tools are able to handle them. The

cost of adding them outweighed the benefit of including them, so we leave them to future work when more

clone detection tools consider Type-4 clones. In the interest of evaluating clone detection at as fine of a

granularity as possible, some of the editing activities from the editing taxonomy were split into multiple

mutation operators.

The Type-1 and Type-2 mutation operators are able to perform any modification of their edit type that

is possible for an input code fragment. For example, the mCW A operator can add whitespace at any

syntactically valid location in the input code fragment. The Type-3 mutation operators instead perform an

example of their type of edit. It is not reasonable to implement the Type-3 operators to be able to apply any

valid modification of their type to an input fragment. For example, for the “injection of a line” mutation

operator, there is an infinite number of possible lines of syntax that could be inserted. Selecting a line

from the fragment itself and duplicating it within the fragment at a randomly selected line is a sufficient

approximation from the point of view of a clone detection tool.

The mutation operators are implemented in TXL [27], a source transformation language. They use a

simple language-dependent grammar to parse the input code fragment into a syntax tree. The grammar

captures both the syntax tokens and the white space (formatting) of the input fragment. The operator’s

mutation is implemented using a subtree search and replacement pattern. The operator applies the mutation

by replacing exactly one randomly selected subtree that matches the search pattern with the corresponding

replacement pattern. The output fragment is produced by un-parsing the modified syntax tree. The result

31



Table 3.3: Mutation Operators

Name Edit Implementation Clone Type

mCW A Addition of whitespace. A tab or space character is inserted between
two randomly chosen tokens.

Type-1

mCW R Removal of whitespace. A (syntactically redundant) random tab or
space character is removed.

Type-1

mCC BT Change in between token (/*
*/) comments.

A /* */ comment is added between two ran-
domly chosen tokens.

Type-1

mCC EOL Change in end of line (//) com-
ments.

A // comment is added at the end of a ran-
domly chosen line.

Type-1

mCF A Change in formatting (addi-
tion of a newline).

A newline is inserted between two randomly
chosen tokens.

Type-1

mCF R Change in formatting (removal
of a newline).

A randomly chosen newline is removed. Type-1

mSRI Systematic renaming of an
identifier.

A randomly chosen identifier, and all of its oc-
currences, are renamed.

Type-2

mARI Arbitrary renaming of an iden-
tifier.

A randomly chosen single instance of an iden-
tifier is renamed.

Type-2

mRL N Change in value of a numeric
literal.

The value of a randomly chosen numerical lit-
eral is changed.

Type-2

mRL S Change in value of a string or
character literal.

The value of a randomly chosen string or char-
acter literal is changed.

Type-2

mSIL Small insertion within a line. A parameter is added to a randomly chosen
method call or signature.

Type-3

mSDL Small deletion within a line. A parameter is deleted from a randomly chosen
method call or signature.

Type-3

mIL Insertion of a line. A line of source code (containing a single state-
ment) is inserted at a random line in the code
fragment.

Type-3

mDL Deletion of a line. A randomly selected line (containing a whole
single-line statement) is deleted.

Type-3

mML Modification of a whole line. A randomly selected line is modified by placing
it in a single-line if statement. For example ’x
= 15*y;’ becomes ’if(X==Y) x=15*y;’

Type-3

32



Original Mutant

Synthetic Type-2 
Clone Pair

Mutation Operators

Source Code
Repository

mCF : Changes formatting.

mCL : Changes a literal value.

mCC : Adds a comment.

public static int factorial(int n) {
    System.out.println( n=  + n);
    int retval = 1;
    for(int i=1; i<=n; i++) {
        retval = retval*i;
    }
    return retval;
}

public static int factorial(int n) {
    System.out.
println( NewValue  + n);
    int retval = 1;
    for(int i=1; i<=n; i++) {
        retval = retval*i; //Comment
    }
    return retval;
}

Original Code Fragment

Mutator

Mutant Code Fragment

mCF mCL mCC

Figure 3.3: Clone Synthesis Example

is an output code fragment that differs from the input code fragment by a single random application of

the intended mutation. The input fragment’s syntax and formatting is otherwise unmodified in the output

fragment. The operators are able to detect when they can not be applied to a particular input fragment (i.e.,

when there is no matches to the search and replace pattern), in which case they return an error.

The operators exist as independent programs that are registered with the Mutation Framework. While

our mutation operators are registered by default, the user is free to register their own custom mutation

operators implemented in any technology of their choosing. Our mutation operators target general clone

detection, and cover our clone taxonomy for the first three clone types. Users of the framework might design

their own mutation operators to target specific clone detection use-cases, or for specific targeted debugging

of their tool (we show an example of this in Chapter 6). Custom mutation operators must conform to the

same input/output procedure. The mutation operator receives the code fragment and language as input, and

outputs the mutated code fragment.

The framework includes mutation operators implemented for Java, C and C# source code. Their im-

plementations rely on simple token grammars for these languages. The mutation operators can be easily

adapted to support additional languages. In particular, for C-style languages like Java, C and C#, the mu-

tation operators can be adapted to a new language by simply adding the language’s token-based grammar,

with no changes the mutation search/replace patterns.

33



Mutators

The framework user specifies the kinds of clones to be synthesized for the reference corpus using mutators,

which are sequences of one or more mutation operators. A mutator synthesizes a clone pair by executing

its mutation operators as an input/output chain, supplying the input code fragment to the first operator,

and retrieving the mutant code fragment from the last mutation operator. Any number of mutators may

be defined using the default and custom mutation operators. By specifying the set of mutators used to

synthesize clones, the framework user can create a reference corpus tailored for the cloning context they wish

to evaluate their subject clone detection tools for.

Since the mutation operators are implementing using a simple grammar they can, in rare cases, introduce

a syntax error. To prevent these errors from contaminating the reference corpus, the mutator validates the

syntax of the mutant code fragment after each application of a mutation operator using a full language

grammar. It also checks that the change applied corresponds to the clone type of the mutation operator.

If a problem is detected, the edit is discarded and the mutation operator is re-attempted. A user-defined

number of mutation operator attempts are tried before the mutator returns an error. If one of the mutation

operators cannot be applied to the fragment, then the mutator returns an error immediately. These checks

guarantee the integrity of the synthesized clone pairs, and therefore the integrity of the reference corpus.

The mutators also support a number of constraints to be placed on the synthesized clones, including:

clone size, clone similarity, and mutation containment. The clone size constraint allows the framework user

to specify the minimum and maximum size, by line and by token, of a synthesized clone pair’s original and

mutant code fragments. The clone similarity constraint allows the framework user to specify the minimum

clone similarity, measured by line or by token as in Section 3.1.1, of the synthesized clones. These constraints

can be used to shape the context and properties of the reference corpus. Clone size and similarity are common

clone detection tool configurations. These constraints allow the subject tools to be appropriately configured

to target the benchmark. Otherwise, the tools may be configured poorly for the benchmark, causing bias in

the measured recall.

The mutation containment constraint guarantees that the mutations occur a particular line distance from

the start and end of the original code fragment. Containment is specified as a percentage of the original

code fragment’s size. For example, with a mutation containment of 20%, if a mutator is given a 10 line

code fragment, it will only allow mutations on lines 3 through 8. The first and last 20% (lines 1-2 and 9-10,

respectively) of the code fragment are left unaltered. This constraint ensures that the code fragments of a

synthesized clone begin and end with exactly cloned code. If the mutation occurs on or very near the edge

of the original code fragment, then the mutation may actually be considered external to the clone pair. We

want the mutation to be a part of the clone so we can measure how well the clone detection tools handle

these particular kinds of clone differences. The mutation containment constraint ensures the introduced clone

differences occur deep enough within the code fragments for them to be, without a doubt, an essential part

of the clone pair. For a clone detection tool to successfully detect this clone, it must therefore include the

34



clone differences as part of its detection of the clone.

It is difficult to program the mutation operators to respect these constraints. Instead, the mutator

checks the containment constraint after each application of a mutation operator, and the clone size and

minimum similarity constraints after the application of the mutator’s mutation operator list. If a constraint

is violated, the mutator will reattempt a mutation operator (containment) or the entire mutation operator list

(size/similarity) until a satisfactory clone pair is produced, or a user-specified maximum attempt threshold

is reached. If it fails to meet the constraints, the mutator will return an error. While this increases the

clone synthesis time somewhat, it simplifies the implementation of the mutation operators, which need to be

error-free.

The framework defaults and recommends the use of a single-operator mutator for each of the registered

mutation operators. This creates a reference corpus that measures a tool’s performance at the edit type

granularity. Multi-operator mutators allow a reference corpus with more complex clones to be generated.

For example, a mutator set could be defined for a variety of sequences of mutation operators that produce

Type-1 clones. This would allow strong evaluation of tools specifically for a variety of Type-1 clones. However,

higher order mutations pose some risk. As more operators are applied, it becomes difficult to predict how the

operators may interact. Later mutation operators in a mutator’s sequence may even reverse previous ones.

Additionally, when mutation operators are mixed, you lose the ability to measure performance per edit type.

Higher-order mutations are advanced use of the framework, and require careful attention and interpretation.

The default single-operator mutators are recommended for standard tool evaluation usage.

3.2.2 Generation Phase

During the generation phase, the reference corpus is constructed by synthesizing clones and injecting them

into unique copies of a subject system. An overview of this phase is shown in Figure 3.4. The generation

process begins by selecting a random code fragment from a repository of source code. This selected code

fragment is then mutated by m user-defined clone-synthesizing mutators. The resulting m mutant code

fragments differ from the selected code fragment by a random application of the mutation defined by their

mutator. The mutant code fragments are paired with the selected code fragment to form m synthesized

clone pairs. For each of these clone pairs, i mutant versions of the subject system are created by injecting

the selected and mutant code fragments into the subject system at a random syntactically correct locations.

Each of these mutant systems evolve the subject system by a single copy, paste and modify clone. In total,

mi mutant systems are created from a single randomly selected code fragment. This process is repeated for

n randomly selected code fragments in order to create a reference corpus containing nmi unique clone pairs.

Each reference clone pair is contained within its own mutant version of the subject system. This is done so

the subject tools may be evaluated for each of the reference clones in isolation.

A database is used to track the specification of each selected code fragment, mutant code fragment, and

mutant system. The selected and mutant code fragment text is stored in files referenced by the database.

35



Random Code 

Fragment 

Selection

Subject

System

Repository of 

Source Code

Random Clone 

Injection
Mutator (2)

Mutator (1)

Mutator (m)

.

.

.

Mutant Systems

Database
Mutant Fragment 

Specification

Mutant System

Specification

Fragment

Specification

Corpus Files

(i)

.

.

.

(i)

(i)

Repeat for n fragments

Figure 3.4: Overview of Generation Phase

This information can be used to construct any of the mutant systems, which contain a single clone from the

reference corpus. Clone detection tools can be evaluated for the reference corpus by executing them for each

of the mutant systems and evaluating their recall for the injected clone, which is the role of the evaluation

phase.

In the following sub-sections we explore the generation phase in detail. We begin by discussing how the

generation phase can be configured to control the properties and contents of the generated reference corpus.

Next, we detail the steps of the generation phase as they are executed per selected code fragments. There

are two primary steps: (1) selecting and mutating a selected code fragment, and (2) injecting the resulting

clone pairs into copies of the subject system.

Configuration

The generation phase is highly configurable, which provides the user full control over the size, properties

and contents of the generated reference corpus. The user provides a repository of source code from which

real code fragments are selected for mutation. The user must also provide the subject software system the

synthesized clones are injected into. The user specifies the types of clones to be generated for the corpus by

defining the set of clone-synthesizing mutators (Section 3.2.1) to be used. The generation phase also allows

numerous constraints to be placed on the generated corpus, such as the language and granularity of the

clones, the size of the corpus, and various clone properties. In this section we describe these configurations

and their effect on the generation phase.

36



Source Code Repository The user provides a source code repository from which real code fragments are

selected for clone synthesis. The repository may be any collection of source code of the target programming

language. Ideally, the repository should be large and varied. For example, a combination of the Java standard

library and popular 3rd party libraries (e.g., Apache Commons) is a good source code repository for generating

a Java clone reference corpus.

Subject Software System The user provides a subject software system into which the clones are injected.

Any subject system of the target language will do, so long as its large enough to have a variety of injection

locations. Since each clone in the reference corpus is injected into its own copy of the subject system, the

subject clone detection tools have to be executed for mutants of this system many times. Therefore, the

subject system should be small enough that the subject tools can be executed for it perhaps thousands of

times within a reasonable time frame.

Mutator Set The user can specify any number of mutators by specifying the sequence of mutation op-

erators they should apply to the selected code fragments. The framework’s default mutator set includes 15

single-operator mutators, one for each of the 15 default mutation operators. The default mutators mutate the

selected code fragment with a single instance of their assigned mutation operator. This creates a reference

corpus that can measure the tool’s performance at the edit type (mutation operator) granularity.

Generation Constraints The generation constraints allow the size, scope and clone properties of the

generated reference corpus to be specified. The available constraints are as follows:

Clone Granularity The granularity of clones to synthesize. The framework supports clone synthesis

at the function and block (a code segment defined by an opening and closing bracket, i.e., {...})

granularities.

Language The programming language of the generated reference corpus. The framework supports the

synthesis of Java, C and C# clone pairs.

Number of Selected Code Fragments The maximum number of code fragments to select for clone

synthesis.

Injection Number The number of times to inject each synthesized clone pair. In other words, the

number of mutant systems to create per clone. Each injection of a clone uses a different injection

location in the subject system.

Clone Size The minimum and maximum size of a clone’s code fragments. Specified by line and by token,

independently.

Minimum Clone Similarity Minimum clone similarity, measured by line and by token using the UPI

method described in Section 3.1.1, after Type-1 and Type-2 normalization.

37



Mutation Containment The minimum distance the mutation must be from the edges (start/end) of

the selected code fragment, specified as a fraction of the fragment’s size in lines.

Fragment granularity and language are used to set the scope of the experiment. By limiting a corpus

to a particular programming language and clone granularity, more specific performance evaluation can be

accomplished. The intention is for the user to perform multiple experiments with the framework using the

different permutations of clone granularity and language. Performance can then be individually measured

per language and granularity.

The number of selected code fragments, n, the injection number, i, and the size of the mutator set, m,

define the maximum size of the generated reference corpus: mni clone pairs. The framework will continue to

select code fragments for clone generation until its specified maximum is reached, or all eligible fragments in

the repository have been exhausted. A larger number of selected code fragments, n, results in larger diversity

in the syntax of the reference corpus’s clones. A larger number of injection locations per clone, i, increases

the diversity in clone location in the reference corpus’s clones. Both are essential for creating a reference

corpus that accurately measures recall.

The clone size and minimum clone similarity constraints make it easier to configure the subject clone

detection tools. Most tools are parameterized by clone size and clone similarity thresholds, which are used

to limit the scope of their clone search and reporting processes. These parameters may also affect a tool’s

execution time and precision. By placing similar constraints on the reference corpus, the tools can be

properly and confidently configured for the corpus. This reduces the incidence of inaccurate performance

measurement due to configuration mismatch between the tool and reference corpus, which is a significant

threat in benchmarking [139]. These constraints may also be used to constrain the corpus for evaluating

specific cloning contexts. For example, a corpus could be generated for evaluating the detection of only small

or large clones, or a corpus could be made for very similar or less similar clones.

The mutation containment constraint is used to ensure that the mutations are an integral part of the

synthesized clone pairs. The framework’s goal is to measure how well the tools perform for specific differences

between cloned code fragments. If the mutation is too near the edge of the clone, it may actually be external

to the clone. This constraint ensures that the mutation occurs far enough away from the edges of the clone’s

code fragments that it is a guaranteed component of the clone pair. And therefore it is correct to require a

clone detection tool to handle the mutation to have successfully detected the clone. Mutation containment is

specified as a ratio of the size of the selected fragment measured in lines. For a mutation containment of 20%

and a selected fragment 10 lines long, all mutant fragments produced will not modify the selected fragment’s

first or last 2 lines.

The configurable mutators and generation options allow the framework user to generate a variety of well

understood benchmark reference corpora. They allow the user to generate a corpus targeting the cloning

context they wish to evaluate their tools for. By generating multiple corpora using different configurations,

the user can evaluate their tools for a variety of cloning contexts. Having a corpus with exactly known

38



properties ensures that the performance results are correctly interpreted. It also allows the tools to be

properly configured for the benchmark.

Step 1 - Code Fragment Selection and Mutation

The first step of the generation phase is to select a real code fragment from a source repository, and mutate

it with the m user-defined mutators to produce a set of m synthetic clone pairs. The framework begins by

extracting all of the code fragments in the source code repository that satisfy the clone language, granularity

and size constraints. The code fragments are tracked by a data structure that allows random selection without

repeats.

The data structure is queried for a random code fragment that has not been selected previously. This

selected code fragment is mutated by each of the m user-defined mutators, and the output mutant fragments

are collected. The mutators are configured to only produce mutant fragments that satisfy the clone size,

minimum clone similarity, and mutation containment constraints. A mutator will produce an error if the

mutation can not be applied, or if the constraints cannot be satisfied. If all of the mutators are successful,

then the selected code fragment is paired with each of its mutant code fragments, and the resulting clone

pairs are added to the reference corpus.

If at least one of the mutators fail, for any reason, then the selected fragment and its mutant fragments

are discarded, and a new code fragment is selected. This is done to ensure that each mutator contributes the

same number of clones to the reference corpus, and to ensure that their clones originate from the same set

of selected code fragments. This makes it possible to measure and compare a subject clone detector’s recall

per mutator without bias due to the code fragment selection or number of synthesized clones per mutator.

This process is repeated until either the maximum number of selected code fragment constraint is reached

(not counting the selected code fragments that are discarded), or when all of the code fragments in the

repository are exhausted. For a large enough source repository, exhausting the available code fragments

should not occur. The generated clones are tracked by a database, including: the origin and text of the

selected code fragment, and the mutator and text of its mutant fragments. These clone pairs are now ready

for injection into the subject system.

Step 2 - Clone Injection and Mutant Systems

For each of the synthesized clone pairs, one or more mutant systems are created by randomly injecting the

clone into the subject system. The mutant system differs from the original subject system by a single copy,

paste and modify clone. The injection simulates the development of a new code fragment in the system

(injection of the selected code fragment of the clone pair) followed by the cloning and modification of this

fragment (injection of the mutant code fragment of the clone pair).

Each clone pair is injected into its own unique copy of the subject system in order to minimize the

amount of simulated development performed on the subject system, and to prevent the injected clones from

39



interacting. This allows the framework to evaluate the clone detection tools for each injected clone in isolation,

and prevents the properties and structure of the mutant system from diverging too far from that of a real

software system.

Clone injection location depends on the clone granularity. Function clones are injected by selecting two

random functions in the subject system, and injecting the selected (function) code fragment after one of

these functions, and the mutant (function) code fragment after the other. The clone is injected after existing

functions rather than before in order to prevent the injection from separating an existing function from its

in-code documentation (e.g., javadoc in Java), which is typically placed before the function. Block clones are

injected by selecting two random code blocks from the subject system, and injecting the selected (block) code

fragment within one of these blocks, and the mutant (block) code fragment within the other. For simplicity,

block code fragments are injected either at the start or the end of the chosen code block. A code block can

be safely injected at the start or end of an existing code block without creating a syntax error. To simplify

tracking of the injected clone, and to prevent any one file in the subject system from diverging too far from

its original state, the selected and mutant code fragments are always injected into different source files.

The injection process guarantees that the modified files remain syntactically correct after the injection

of the clones. As the integrity of the generated reference corpus is very important, the framework verifies

this by validating the modified source files against a full language grammar. While syntactically correct, the

modified files may not compile. The injected code may refer to global variables, fields, functions, types, etc.

that do not exist within the subject system. This is not a problem as most clone detectors do not require

compiled code, or even compilable code, so long as the code is syntactically correct (i.e., can be parsed).

Additionally, it is unlikely that the injected code will be semantically compatible with the source files it is

injected into. As the framework focuses on syntactical clones and syntactical clone detectors, the semantic

mismatch will not affect the tool evaluation.

The injection number configuration controls the number of mutant systems the framework creates per

generated clone. Each additional mutant system created for a clone will use a different injection location.

Using an injection number greater than one is important to the quality of the reference corpus. A clone

detection tool may fail to detect an injected clone not due to the syntax of the clone or its clone difference,

but due to its location. For example, the tool might be unable to parse the file(s) the clone was injected into

due to limitations in its parser, or it may fail to search for clones contained in these files. In this case, the tool

may have successfully detected the clone if it had been injected elsewhere. This way, a tool’s average recall

for different injections of the same clone better reflects it detection of that clone. By varying the injection

location, the overall recall of a tool can be more accurately measured.

Injection locations are chosen per selected code fragment rather than per clone. Therefore, all clones

originating from the same selected fragment use the same injection location (or set of injection locations

if the injection number is greater than one). This way, if the reference corpus is split per mutator, each

sub-corpus has the same injection location representation and variance. Recall can then be measured and

40



compared per mutator without bias due to the injection locations used.

In total, mni mutant systems are created, where m is the size of the mutator set, n is the number of

selected code fragments, and i is the injection number. The number of mutant systems can be very large. It

is not space efficient to store a copy of each of these mutant systems as they differ from the subject system

by only the injected clone. The generation phase builds the mutant systems to verify their integrity, but

deletes them afterwards. Instead it stores only the specifications of the mutant systems. A mutant system is

specified by the clone to be injected (a selected code fragment and one of its mutant code fragments), and the

injection location (the source files and file positions to inject at). The mutant systems are then constructed

as needed during the evaluation phase using this specification. This keeps the reference corpus small enough

for storage on a high performance drive as well as for convenient distribution over the Internet.

3.2.3 Evaluation Phase

During the evaluation phase, the subject clone detection tools are evaluated for the reference corpus syn-

thesized during the generation phase. The subject tools are executed for each of the mutant systems, and

their recall is measured specifically for the injected clones. Remember that the reference corpus contains nmi

mutant systems. The n selected code fragments were mutated by m mutators to produce nm clone pairs

that were each injected into i copies of the subject system to produce nmi mutant systems, each containing

a single injected clone pair. The evaluation phase automates the execution of the subject clone detectors,

requiring only a simple communication protocol be implemented for the tool. This protocol, implemented by

a tool runner, allows the framework to configure and execute the tool, as well as collect and understand its

clone detection report.

The evaluation phase is depicted in Figure 3.5. This processes is repeated per mutant system in the

reference corpus. First, the mutant system is constructed from its specification in the reference corpus. Next,

the subject clone detection tools are automatically executed for the mutant system using their tool runners.

The framework collects and stores the resulting standardized clone detection reports. These reports are

analyzed to measure each tool’s unit recall specifically for the injected clone in the mutant system.

A unit recall of 1.0 is assigned to a subject tool for a mutant system if the tool successfully detected and

reported the injected clone, otherwise it is a assigned a unit recall of 0.0. Successful detection is determined

by a clone matching algorithm. This algorithm requires the tool to report a clone pair that: (1) subsumes the

injected clone, within a given tolerance, (2) handles the clone-type defining mutation in the injected clone,

and (3) exceeds a minimum clone similarity threshold. The reported clone is required to subsume the injected

clone, rather than exactly match it, as there may be additional cloned code surrounding the injected clone due

to the choice of injection location (at least in the case of block granularity clones). The reported clone must

include the mutated portion of the injected clone, as the goal of this framework is to see how well the tools

are able to handle these particular differences between cloned code fragments. The reported clone is required

to exceed a given similarity threshold to prevent false positives reported by a tool, that happen to subsume

41



Construct

Mutant Systems

.

.

.

. . .

. . .

Tool (1)

Tool (2)

Tool (k)

.

.

.

Execute

Tool Runners

 Collect Clone

Detection Reports

Database

Evaluate Unit

Recall

Statistical 

Evaluation 

and Reporting

Average

Recall

Store Unit 

Result

Summarize and 

Report Results

R
ef

er
en

ce
 C

o
rp

u
s

Unit Recall 

Evaluator

. . .

(n)

(m)

(i)

.

.

.

(1)

(2)

(n*m)

(i)

(mni)

Figure 3.5: Overview of Evaluation Phase

the injected clone by chance, from being accepted as a successful match. Therefore, a successful match is a

true clone pair that captures the injected clone and handles the particular clone differences introduced by

mutation.

The framework measures the subject tools’ unit recall for each of the mutant systems. It aggregates these

results and reports the subject tools’ average recall for various subsets of the reference corpus. Specifically,

the framework reports the subject tools’ recall per clone type, per mutator, and per mutation operator.

In the following subsections, we describe the evaluation phase in detail. We begin by overviewing its

configurations options. We then describe the subsume-based clone matching algorithm used to determine

if an injected clone was detected by a subject tool. Next, we outline the individual steps of the evaluation

phase that are executed for each pair of mutant system and subject tool. Including: (1) building the mutant

system, (2) executing the clone detection tool for the mutant system, (3) measuring the tool’s unit recall

for the injected clone. We conclude with an overview of the evaluation phase’s final statistical performance

reporting about the subject tools.

Configuration

The evaluation phase has the following configuration options listed below. These options are used to configure

the subsume-based clone matching algorithm during the evaluation phase. The meaning and consequences

of these parameters are explained in the subsequent sections.

Subsume Tolerance A relaxing tolerance for the subsume-based clone matching algorithm, allowing the

tool to miss a number of lines from the start and end of a reference clone while still being considered

to have subsumed it. Specified as a ratio of the size (measure in lines) of the selected code fragment

of the injected clone in the mutant system of interest. Must be equal to or less than the mutation

containment in order to require the subject tools to detect the clone-type specific mutant aspects of

42



the reference clones.

Required Clone Similarity The minimum clone similarity of a detected clone to be accepted as a

match of a reference clone. Can be disabled by setting to 0.

The evaluation phase is also configured with the subject clone detection tools it is evaluating. For each

subject tool, the framework requires the following information:

Name The name of the tool.

Description A description of the tool.

Tool Runner The subject tool’s tool runner executable.

When a subject tool is registered with the framework, its details are added to the experiment’s database,

which assigns the subject tool an unique identifier. The name and description of the tool are used by the

framework to allow the user to easily identify a subject tool in the performance report. The tool runner

is used by the framework to execute the subject tool automatically, and implements the input and output

specification expected by the framework. The subject tools are specified by the framework user prior to the

execution of the evaluation phase.

Clone Matching Algorithm

The framework uses a subsume-based clone matching algorithm to determine if a given clone pair, C, reported

by the subject clone detector for a mutant subject system sufficiently matches the reference clone pair, R,

injected into that mutant system, for R to be considered as detected by C. The framework considers C as a

sufficient match of R if it meets three criteria: (1) C subsumes R given the configurable subsume tolerance;

(2) C captures the mutations in R, and therefore handles the clone-type specific differences in R; and (3) C

is not an obvious false positive that subsumes R by chance, as determined by a clone similarity threshold.

We overview these three requirements in detail, followed by a mathematical definition of the full algorithm.

(1) Subsumes the reference clone To be a successful match, the reported clone (C) must subsume the

injected clone (R). In other words, there must exist a pairing of C’s and R’s code fragments such that the

code fragments of C subsume those of R. A subsume-based match is used because the injected clone may be

surrounded by additional cloned code due to the selection of injection location. The subject tool may report

this larger clone which subsumes the injected clone.

Clone detection tools may not report the reference clones perfectly. In particular, off-by-one line errors

are common [13]. For this reason a subsume tolerance can be specified, allowing the tool to miss a number

of lines at the start and end of the reference clone while still being considered to have subsumed it. This

is controlled by the subsume tolerance configuration, a ratio. The number of lines that can be missed at

the start and end of the reference clone’s code fragments is equal to the subsume tolerance configuration (a

43



percentage) multiplied by the length (in lines) of the selected code fragment of the injected reference clone,

rounded down to the nearest integer. For example, if the injected clone has a selected code fragment 10 lines

long, and the framework user specified a subsume tolerance of 15%, then the tool is allowed to miss the first

and last 1 lines (b10 ∗ 0.15c = b1.5c = 1) of the clone. This method of specifying the subsume tolerance (in

lines) is done to consider differences in clone size as well as to accommodate the second criteria.

(2) Handles the clone-type specific differences in the clone A goal of this framework is to evaluate

how well the tools detect clones with particular types of differences, i.e., with different editing activities

(mutations) and of different clone types. It is therefore required that the reported clone capture the mutations

in the reference clone to be accepted as a successful detection of the reference clone. It is not sufficient for

the tool to detect only the identical portions of the clone, it must also handle the introduced differences. For

example, it is not sufficient for a subject tool to report only the identical regions of a Type-2 clone, it must

handle and report the Type-2 differences as part of the overall clone.

This requirement is enforced using the subsume tolerance. During the generation of the reference corpus,

the framework user specifies a mutation containment. This is the minimum distance of the mutation from

the edges of the selected code fragment, specified as a ratio of the size of the selected (original) code fragment

in lines. So long as the subsume tolerance is set equal to or less than the mutation containment, the

clone matcher will only accept a reported clone that contains the mutation(s). The framework enforces this

relationship between the two configuration parameters to ensure the subject tools must handle the mutations.

(3) Is not an obvious false positive A problem with the subsume clone matching algorithm is it will

accept any reported clone that trivially subsumes the injected clone, even if the reported clone is an obvious

false positive. In practice, this should not be common, but could be caused if the tool contains a bug causing

it to report line boundaries incorrectly or large selections of mostly dissimilar code as clones. To account for

this, we also require the reported clone to not be an obvious false positive to be accepted as a match of the

reference clone. The clone is considered a false positive if its clone similarity, as measured in Section 3.1.1,

falls below the required clone similarity threshold both by line and by token. This is user configurable, but

should be set low as to only filter the obvious false positives. Clone similarity is measured after Type-1 (strict

pretty-printing) and Type-2 (identifier and literal) normalizations.

Mathematical Definition We now summarize the above clone matching algorithm mathematically in

Equation 3.4, where C is a clone reported by the tool, R is the injected reference clone in the mutant system,

t is the subsume tolerance, and s is the required clone similarity. The sim() function is implemented as

described in Section 3.1.1. The subsume function is evaluated as in Equation 3.5, where C.f1 and C.f2

are the code fragments of the reported clone, R.o is the original code fragment and R.m the mutant code

fragment of the reference clone, and T (t) = bt ∗R.o.lengthc. Equation 3.6 defines if a code fragment f1

subsumes code fragment f2 given a tolerance of T (t) lines.

44



match(C,R) = subsumes(C,R, t) ∧ sim(C) ≥ s (3.4)

subsumes(C,R, t) =

(
C.f1.subsume(R.o, T (t))∧

C.f2.subsume(R.m, T (t))

)

∨

(
C.f2.subsume(R.o, T (t))∧

C.f1.subsume(R.m, T (t))

)
(3.5)

f1.subsume(f2, τ) =

(f1.file = f2.file)∧

(f1.startLine ≤ f2.startline+ τ)∧

(f1.endline ≥ f2.endline− τ)

(3.6)

Step 1 - Construct Mutant System

The first step in the evaluation phase process, as executed per subject tool and mutant system pair, is

to construct the mutant system. The mutant system’s specification is retrieved from the database. This

specification references the selected code fragment and its mutant code fragment that comprise the injected

clone, along with their respective injection locations. The mutant system is constructed by duplicating the

subject system, and copying the code fragments into the specified source files at the specified positions. The

mutant system is then ready to be analyzed by the subject clone detection tools.

While each subject tool must be executed for the same mutant systems, the framework deletes and re-

constructs the mutant systems for each tool. Many tools leave behind analysis files which could interfere

with another tool’s execution, while a bug in a subject tool could cause changes to the mutant system. To

ensure the evaluation is fair, each tool is given a fresh version of each mutant system.

Step 2 - Clone Detection

In this next step, the framework executes the subject tools for the mutant system. The framework is able

to execute a subject tool and collect its detection report automatically. To do this, a tool runner must be

implemented for the subject tool. A tool runner is an executable that implements a simple communica-

tion protocol between the framework and the subject tool. The tool runner wraps the subject tool in an

45



input/output specification that the framework expects. It is the responsibility of the experimenter or tool

developer to implement this tool runner.

For a given mutant system, the framework executes the tool runner and passes it the following input

parameters: (1) the location of the mutant system, (2) the installation directory of the subject tool, (3) the

properties of the reference corpus, including: the minimum and maximum clone size, the minimum clone

similarity, and the mutation containment, and (4) the clone type of the injected clone, and the mutation

operators used to synthesize it. The tool runner uses this information to configure and execute the subject

tool for the mutant system. The framework expects the tool runner to output a clone detection report that

lists the clone pairs the tool found in the mutant system in a simple comma separated format. It is up to the

tool runner to covert the subject tool’s output format to this standardized format. The framework retains a

copy of this clone detection report for evaluation.

The tool runner is free to make use of any of the input data provided to it to configure the subject tool for

the mutant system. By implementing multiple tool runners, it is possible to evaluate a tool’s performance for

different usage scenarios. For example, a tool runner could be implemented that ignores the injected clone

information (clone type and mutation operators). It would configure the tool for generic clone detection, and

the recall measurements would reflect the general usage of the tool. Another tool runner could consider the

injected clone information, and configure itself for targeted detection of the injected clone. This result would

be beneficial for tools which are highly configurable, especially towards the detection of specific clone types.

The recall measurements would reflect highly targeted clone detection by the tool.

Step 3 - Measuring Unit Recall

Next, the subject tool’s detection report is analyzed to evaluate its unit recall for the injected clone in the

mutant system. A subject tool is given a unit recall of 1.0 for a particular mutant system if it successfully

detects the injected clone, or 0.0 if it does not. To successfully detect the injected clone, the subject tool

must report a clone that: (1) subsumes the injected reference clone within a given tolerance (2) captures the

clone-type defining mutation in the reference clone, and (3) is itself not an obvious false positive that happens

to include the reference clone. These conditions are evaluated by the clone-matching algorithm described in

Section 3.2.3. The framework increments through the subject tool’s clone detection report until a clone pair

is found that is determined to be a successful match of the reference clone by the clone matching algorithm

(unit recall = 1.0), or the end of the report is reached (unit recall = 0.0).

The measured recall depends on the configuration of the clone-matching algorithm, including the subsume

tolerance and required clone similarity, as discussed earlier (Section 3.2.3). The subsume tolerance defines

what ratio of the reference clone the tool can miss from the start and end of the clone while still being

considered to have subsumed it. This cannot be set higher than the mutation containment configuration

(of the generation phase) to ensure a detected clone is only considered a match of the reference clone if it

captures the clone-type specific mutation operators. A higher subsume tolerance is more flexible, allowing

46



the tool to miss more of the clone while still being considered a match, favoring the tools in the evaluation. It

acknowledges that when a developer uses the clone detection results, the detected clone is sufficient for them

to identify the clone, as well as the missed lines. A lower threshold is more strict with the tools, expecting

a more perfect capture. This is important for automated tasks that cannot recognize the missed portions

of the clone. The subsume tolerance can also be completely disabled. The framework allows recall to be

efficiently measured with multiple subsume tolerances. The framework user can then compare and interpret

the differences in measured recall for different strictness in the capture.

The required clone similarity is used to judge if a detected clone is an obvious false positive, and should

not be considered a match of the reference clone, even if it happens to subsume it. However, selecting a

threshold for indicating obvious false positive clones can be rigid. To overcome this, the framework supports

multiple efficient executions of the evaluation phase using different threshold configurations. For example,

recall may be measured for a require clone similarity of: 0%, 50%, 60%, 70%.

Using a threshold of 0% disables this aspect of the clone-matching algorithm. A 50% threshold rejects a

reported clone if it shares less than half of its syntax after normalizations. A higher threshold is more strict

when measuring recall. The measurement can be compared against different thresholds, and the results

interpreted. For example, if a tool’s recall drops significantly between a 0% threshold (disabled) and 50%

(weak threshold), this indicates the tool is capturing (subsuming) the reference clones, but its reporting of

the reference clones contains a lot of additional dissimilar code, even after heavy normalization. If recall

remains unchanged as the required clone similarity is increased from 0% to the minimum clone similarity of

the generated clones (70% for example), this indicates that the tool is both capturing the reference clones and

reporting clones that are highly similar syntactically. This threshold cannot be set higher than the minimum

clone similarity threshold used in the generation phase. Note that the similarity threshold only affects the

validation of Type-3 clones as Type-1 and Type-2 clones have 100% similarity after normalization.

Performance Reporting

The evaluation phase concludes by producing an evaluation report of the subject tools’ recall performances

for the generated reference corpus. For each tool, the framework reports its recall per mutation operator,

per mutator, per clone type, as well as across the entire reference corpus. Summary values are calculated

by averaging the unit performances across all mutant systems containing an injected clone part of that

summary set. Per mutator performance is calculated by averaging the unit performance across all mutant

systems containing an injected clone produced by that mutator. Per mutation operator performance averages

the unit performance for all mutant systems containing an injected clone with at least one application of the

mutation operator. While per clone type performance averages the unit performance for all mutant systems

containing an injected clone of that clone type, as determined by the mutator used.

47



3.3 Using the Framework

The framework is operated by a menu-based command-line interface. The user uses this interface to create,

load, configure and execute clone detection tool benchmarking experiments. A command-line interface was

chosen as it allows the framework to be easily and efficiently executed and monitored remotely. Command-

line applications can also be easily scripted and logged using input and output redirection. A menu-based

user interface was chosen as it makes the framework very simple to use. The user is presented with a menu

populated with the actions they can take at the current stage of their experiment. A help option is always

available, which provides documentation on the available actions. An example of this interface is shown in

Figure 3.6. This particular menu allows the user to configure the generation phase of their experiment.

--------------------------------------------------------------------------------

Stage 1/5: Generation Phase Setup

--------------------------------------------------------------------------------

Experiment: /home/user/MyExperiment/

--------------------------------------------------------------------------------

[1]: Configure Mutators and Mutation Operators.

| |

[2]: Review Generation Configurations.

[3]: Set Clone Granularity.

[4]: Set Clone Size.

[5]: Set Minimum Clone Similarity.

[6]: Set Mutation Containment.

[7]: Set Injection Number.

| |

[s]: Begin Generation Phase.

| |

[h]: Help.

[x]: Close Experiment.

--------------------------------------------------------------------------------

:::: _

Figure 3.6: Sample UI Menu

An experiment proceeds sequentially through five stages: (1) generation phase configuration, (2) gener-

ation phase execution, (3) evaluation phase configuration, (4) evaluation phase execution, and (5) results.

In general, experiments progress through these stages sequentially. The exception is that an experiment in

stage 5 may be returned to stage 3. This allows the user to reconfigure the evaluation phase, including: the

addition, removal or modification of subject tools and reconfiguration of the clone matching algorithm and

automatic clone validator. The experiment is then brought back to stage 5 via stage 4. Subsequent executions

of the evaluation phase reuses clone detection reports and evaluated unit recall performances unaffected by

the configuration changes.

Experiments are persisted to disk, and do not need to be completed within a single execution of the

framework. The experiment may be closed during any of the interactive stages (1, 3 and 5). Closed exper-

iments can then be relocated, or even exported to another computer, and be loaded later for continuation.

48



Experiments are self contained within their data directories, and can be duplicated. The user can fork their

experiment by duplicating its directory. The user may wish to do this if they want to re-execute the evalua-

tion phase for different settings or tools without modifying the original experiment. They simply duplicate

the original, load the copy and proceed. The user might duplicate an experiment at the start of stage 3 (just

after the generation phase) in order to archive the generated reference corpus for future use. When evalu-

ating multiple subject tools for the same reference corpus, execution time can be decreased by duplicating

the experiment after the generation phase and executing the evaluation phase for each tool independently on

different computers.

Experiments may be shared with other users by sending them a copy of the experiment’s data directory.

By sharing an experiment, other users can view the results first hand, modify and re-execute the evaluation,

or even extend the experiment with additional subject tools. The primary benefit of sharing experiments is

that generated reference corpora can be shared amongst users. Ideally, a corpus is shared by providing a copy

of the experiment at the start of stage 3 (i.e., after the generation phase but before subject tools have been

added and the evaluation phase configured). However, the framework allows the removal of evaluation data

from an experiment, so it is possible to transition any experiment in stage 3 or beyond to a state equivalent

to the very start of stage 3.

We now overview the stages of the experiment, including the creation of a new experiment:

3.3.1 Experiment Creation

From the root menu, the user chooses to create a new experiment. The framework prompts the user for the

programming language of the experiment (Java, C or C#), as well as the source code repository and subject

system to be used. Once initialization is completed and confirmed by the user, the framework imports the

repository and subject system into the experiment directory, and proceeds to the first stage of the experiment.

Alternatively, the root menu provides the option to load an existing experiment, which resumes from the

stage it was in when closed.

3.3.2 Stage 1 - Generation Phase Setup Stage

In this first stage, the user configures the generation phase. This includes the mutation operators, the mu-

tators, and the generation parameters, including: clone granularity, clone size, minimum clone similarity,

and injection number. The framework provides defaults and assistance in choosing these configurations. By

default, the framework configures one single-operator mutator for each of the 15 included default mutation

operators. These mutators can be removed, and the user can specify their own by providing the mutation

operator sequences for their custom mutators. The user may also register their own custom mutation oper-

ators for use in the mutators. Once they are ready, the user initiates the execution of the generation phase,

and the experiment proceeds to the next stage.

49



3.3.3 Stage 2 - Generation Phase Execution Stage

During this stage, the framework executes the generation phase, using the configuration specified in the

previous stage, as outline in Section 3.2.2. This stage must be executed without interruption; it is not

possible for the user to close or interact with the experiment during this stage. The framework outputs a

detailed generation log so the user can monitor its progress.

3.3.4 Stage 3 - Evaluation Phase Setup Stage

In this stage, the user configures the evaluation phase, including: the participating subject tools and the clone

matching algorithm. Stage 3 can be entered either from stage 2 (the generation phase) or stage 5 (results).

In the former case, the experiment is being configured for its first execution of the evaluation phase, and

no evaluation data exists. In the latter case, the subject tools are already fully evaluated. In this case, this

stage is used to extend and/or re-configure an additional execution of the evaluation phase. The subject

tools’ clone detection reports and unit recall performances are re-used during subsequent executions of the

evaluation phase, unless invalidated by a configuration change.

During this stage, the subject tools can be added, removed or reviewed. To add a subject tool, the user

gives it an identifying name and description, and provides the framework the tool’s installation location and

its tool runner. When a subject tool is removed, its evaluation data (clone detection reports, evaluated unit

performance) from any previous executions of the evaluation phase is deleted from the experiment. The user

may also instruct the framework to delete a subject tool’s evaluation data, including its previously collected

clone detection reports and evaluated unit recall performances. The user may want to do this if they have

modified the subject tool or its tool runner (e.g., the configuration of the subject tool for the experiment).

Alternatively, the user can add another instance of the subject tool to the experiment with a different version

of the tool runner. This way they can evaluate the tool for a different configuration without deleting the

existing evaluation data.

The user must also configure the clone-matching algorithm, including the subsume tolerance and required

clone similarity. The framework provides defaults and recommendations for these values. Changes to these

values may necessitate the deletion of existing unit recall evaluation data for subject tools evaluated during

previous executions of the evaluation phase. The unit recall data is deleted if the subsume tolerance or the

minimum clone similarity is reconfigured The framework warns the user of these consequences before the

changes are made. Alternatively, the user can duplicate the experiment and re-configure the copy so they

don’t lose their previous evaluation data.

3.3.5 Stage 4 - Evaluation Phase Execution Stage

During this stage, the framework executes the evaluation phase, per its configured in the previous stage,

as outlined in Section 3.2.3. It does not re-execute a tool if its clone detection report already exists for a

50



mutant system from a previous execution of the evaluation phase. Likewise it does not re-evaluate unit recall

if these measurements already exist. The previous stage deletes the existing results if configuration changes

invalidate them.

The framework outputs a detailed evaluation log so the user can monitor the progress of the evaluation

phase. The log is updated for each subject tools’ evaluation of each mutant system. Unit recall is shown as

it is evaluated. There is no option for closing the experiment during this phase. However, the framework can

recover the experiment should it be terminated prematurely, either intentionally by the user or unexpectedly

by a system error or power loss. When next opened, the experiment will resume from Stage 3, but retains

any of the clone detection reports collected and unit performances evaluated during the previous execution.

The user can then resume the evaluation phase.

Depending on the number of subject tools and their characteristics, the number of mutant systems, and

the size of the mutant systems, the execution of the evaluation phase may take a significant amount of time.

This time can be reduced by executing the evaluation phase for each subject tool in parallel. This can be

done by closing the experiment in stage 3, duplicating it onto multiple computers, and executing stage 4 for

each tool individually using the same evaluation phase configurations. Multiple experiments can be executed

on the same computer when the subject tools do not require the full system resources. Once the evaluation

phase is complete, the experiment proceeds to the results stage.

3.3.6 Stage 5 - Results Stage

Once the experiment reaches the result stage, the experiment is complete. Each of the subject tools have

been evaluated for the generated reference corpus. The average recall performances of the subject tools can

be viewed within the application. Average performance is summarized per clone type, per mutator, and per

mutation operator. A full evaluation report, which also includes the configurations of the generation and

evaluation phases, can be generated and saved to a file. From the results stage, the user can return their

experiment to the evaluation phase setup stage. This allows the user to fully re-configure and re-execute the

evaluation phase.

3.4 Limitations

The current version of the Mutation Framework supports the synthesis of function and block granularity

clones in the Java, C and C# languages. However, the framework could be extended to support additional

granularities and languages. New granularities require the implementation of code-fragment extraction,

verification and injection code. This could be built by adapting the existing logic, which is implemented on

our TXL-based distribution, and would not require significant re-implementation efforts. Supporting a new

language requires providing a TXL-based grammar for that language, and implementing the granularity-

specific code. The provided mutation operators can work for most procedural languages with C-like syntax

51



with minor modification, requiring just a simple TXL-based token grammar for that language. Procedural

languages without C-like syntax might require re-implementation of the mutation operators. Other types of

programming languages might require the design of new kinds of mutation operators specific to the domain.

For example, the Mutation and Injection Framework has been adapted to Simulink models, which required

mutation operators based on a taxonomy of the types of edits developers make on duplicated models [119].

Our goal in this work was to support the languages we find are most supported by the available clone detection

tools.

A threat with the Mutation Framework is the synthetic clones may not be ones a real developer would

create. The code fragments we randomly select for clone synthesis may not be ones a real developer would

choose to clone. While the editing taxonomy guarantees our random mutations correspond to the types of

edits real developers make on cloned code, it does not guarantee they apply edits a real developer would

apply to the target code fragment. This is not a significant threat as the way clone detectors deal with these

types of edits does not differ for edits performed by a real developer or synthetically. Some loss of realism

is an accepted limitation of synthetic benchmarking, and we can overcome it by contrasting the Mutation

Framework results against a real-world benchmark (such as our BigCloneBench).

We designed the framework to support as many clone detection tools as possible. The framework guar-

antees that the mutated and injected code is syntactically valid, but does not guarantee that the modified

source files will compile. Therefore, clone detectors that rely on compiled code may not be compatible with

the framework. This is not a limitation in the Mutation Framework concept or procedure, but its current

implementation. The framework could be made compatible by adding a repair process which fixes compile

errors after clone injection with additional code injection and modification. This would be very challenging,

and was not considered during implementation of the framework as very few available clone detectors require

compilable code.

During the generation process the framework can constrain the synthesized clones with a minimum simi-

larity threshold measured by line and/or token after source normalizations. This constraint was included to

help the user configure their subject clone detection tools appropriately for the generated corpus. A limitation

here is that not all tools use line-based or token-based similarity metrics, and even those that do may measure

similarity differently. Therefore, the user may still need to experiment with thresholds to find appropriately

configurations for their subject tools. The limitation could be overcome by augmenting the framework with

additional similarity metrics, including variations on line-based and token-based measurements. This is not

a major limitation in the framework as clones can be reliably generated even with this constraint disabled.

3.5 Related Work

Some experiments have ignored recall, and simply measured precision by manually validating a small sample

of a tool’s candidate clones [38,52,70,76,82]. Others have tackled the recall problem by accepting the union of

52



multiple tools’ candidate clones as the reference set, possibly with some manual validation [13,18,35,94,112].

For some experiments, very small subject systems were manually inspected for clones [18, 71, 110]. An ideal

oracle could be made if all the pairs of code fragments in a subject system were inspected. However, this

is not feasible except for toy systems. For example, when considering only clones between functions in the

relatively small system Cook, there is nearly a million function pairs to manually inspect [137].

Bellon’s Benchmark [13] is perhaps the most well-known clone benchmark. It is the product of Bellon

et al.’s benchmarking experiment on tools contemporary to 2002 [13]. Their experiment measured the recall

and precision of six clone detection tools for eight subject software systems. The reference corpus for their

experiment was created by the manual validation of 2% (approximately 77 hours of manual effort) of the

clones found by each of the participating tools. Clones which passed manual verification were added to

the corpus, potentially with modifications to their line numbers as per the Bellon’s judgment. Recall was

reported as the ratio of the clones in the corpus that a tool was able to detect, and precision was reported as

the ratio of the clones proposed by a tool that were accepted into the corpus after validation. The clones to

be validated were chosen at random, and Bellon was kept unaware of which tool proposed a particular clone.

The software used to run this experiment was released by the authors [13].

The primary difficulty with adopting Bellon’s Benchmark as a unified benchmark is it is not convenient

to use with additional detection tools beyond the original six. To add a tool to the framework, additional

clone verification work must be performed on the results of the added tool and its contribution added to the

corpus. If this is not done, the tool will have no representation in the reference corpus which may put that

tool at a disadvantage for performance evaluation. We have demonstrated this in our previous work [128].

Even if a user of the framework does this verification work, they have to be very careful to validate using the

same methodology as Bellon; a process that Baker found was not sufficiently documented to be repeated [9].

Additionally, the corpus is biased by the capabilities of the participating tools as it is limited to the clones the

participating tools are capable of detecting. This also means the benchmark has no or poor representation

of the types of clones the participating tools are unable or struggle to detect.

Roy et al. proposed the use of mutation analysis for clone detection tool benchmarking [107], including

a proof of concept implementation and experiment to demonstrate its value [111]. The prototype framework

was implement specifically for variants of a single clone detection tool (NiCad [110]), which allowed it to be

rapidly implemented. The prototype took advantage of specifics of NiCad’s operation and internal formats

to remove significant complexities from the clone synthesis and tool evaluation procedure. The prototype

was used in an experiment evaluating NiCad variants for a corpus of synthesized clones of types Type-

1 through Type-4. The results of the experiment were consistent with known performance of the NiCad

variants, demonstrating its success. However, significant challenges needed to be overcome to generalize the

framework to all clone detection tools.

53



3.6 Conclusion

In this chapter, we presented the Mutation and Injection Framework: an automatic evaluation framework

for measuring the recall and precision of clone detection tools. This framework uses an editing taxonomy

for cloning to synthesize a reference corpus of artificial but realistic clones. The clone synthesis process

mimics the copy, paste and modify cloning behavior performed by real developers. The framework enables

a comprehensive reference corpus to be built without the need for manual candidate clone validation. The

framework’s capabilities extent to two clone granularities (function and block) and three popular programming

languages (Java, C, C#). The framework user has many controls over the properties of the generated reference

corpus. The framework automates the execution and evaluation of subject tools for the reference corpus.

It provides a full statistical report on the performance of the participating subject tools. The framework is

controlled by a simple user interface, that allows users to control and share their experiments and reference

clone corpora.

54



Chapter 4

Evaluating Modern Clone Detection Tools

Many clone detection tools and techniques have been introduced in the literature, and these tools have

been used to manage clones and study their effects on software maintenance and evolution. However, the

performance of these modern tools is not well known, especially recall. In this chapter, we evaluate and

compare the recall of eleven modern clone detection tools using our Mutation and Injection Framework. We

compare these results against measurements by Bellon’s Benchmark [13, 15], and its variants [94, 128], in

order to comment on the state of the existing clone benchmarks. We compare the benchmark results against

our knowledge and expectations of the subject clone detectors in order to comment on the accuracy of the

benchmarks.

Bellon’s Benchmark [13] was created for an experiment that compared the performance of six tools

contemporary to 2002. It includes a corpus of curated clones mined from 2% of the output of the participating

tools. Murakami et al. [94] extended Bellon’s Benchmark to improve the correctness of its type 3 recall

measurement by making the benchmark gap aware. They manually identified the gap lines in Bellon’s type

3 clone references, and modified the benchmark’s clone matching metrics to ignore these gap lines. As part

of this work, we propose a modification to Bellon’s ok clone matching metric that improves its accuracy and

corrects a fault.

We evaluate the clone detectors using three versions of Bellon’s Benchmark, including: (1) Bellon’s original

version, (2) Murakami et al.’s [94] gap aware extension of the benchmark, and (3) our modification of the

ok clone matching metric. We also evaluate the tools’ recall using our Mutation Framework. Of concern is

the accuracy of Bellon’s Benchmark, as its reference data is based on clones detected by tools over a decade

old (2002). These clones may not be compatible with modern clone detection preferences such as scope,

granularity, or what constitutes a true positive clone. We evaluate our confidence in both benchmarks by (1)

checking for anomalies in their results, (2) checking for agreement between the benchmark, and (3) checking

for agreement with our expectations. We also compare our results with Bellon’s Benchmark against those

of Bellon et al.’s [13] experiment. Our expectations of the tools’ recall are flexible and researched, including

contact with some of the tool developers. While expectations may contain inaccuracies, they define our

confidence in a benchmark’s results. By comparing our expectations with two benchmarks, we can get a

good idea of the tools’ capabilities.

We found that the Mutation Framework measures high recall for many of the tools. Particularly, it

55



suggests that ConQat, iClones, NiCad and SimCad are very good tools for detecting clones of all types.

Many of the other tools also perform well. Clone detection users and researchers can consider these results,

along with the features of the tools, to decide which tool is right for their use case. We find strong agreement

between the Mutation Framework and our expectations, and suggest it is a good solution for measuring the

recall of modern tools. Bellon’s Benchmark frequently disagrees with our expectations and the Mutation

Framework, often measuring considerably lower recall. We found anomalies in its results, including when we

compare it against Bellon’s original experiment. Our findings suggest that Bellon’s Benchmark may not be

accurate for modern tools, and that an updated corpus built by modern tools is warranted.

This chapter is based upon our manuscript [128] “Evaluating Modern Clone Detection Tools” published

by myself and Chanchal K. Roy and in the Research Track of the International Conference on Software

Maintenance and Evolution (2014), c©2014 IEEE. I was the lead author of this paper and study, under the

supervision of my supervisor Chanchal K. Roy. The publication has been re-formatted for this thesis, with

modifications to better fit this thesis.

This chapter is organized as follows. We provide a summary of Bellon’s Benchmark and its variants in

Section 4.1. We detail our experimental setup in Section 4.2, including the subject tools and their configu-

rations. Then in Section 4.3 we analyze and discuss the results of the experiment. In Section 4.4 we discuss

the threats to the validity of our results, and we conclude this work in Section 4.5.

4.1 Bellon’s Benchmark

Bellon’s Benchmark is a product of Bellon et al.’s [13] clone benchmarking experiment, which measured the

recall of six contemporary (2002) tools for four C and four Java systems. The benchmark uses a reference

corpus of real clones built by Bellon’s manual verification (“oracling”) of 2% of the 325,935 candidate clones

detected by the tools. We use three variants of this benchmark including the original, Murakami et al.’s [94]

gap-aware extension, and our version with an modified ok clone matching metric.

Bellon typified and added to the corpus only the true positives clones, as per his judgment, possibly with

improvements to the clones’ boundaries. This process was not formally specified, but from the experiment’s

publication [13], and from Baker’s analysis of the experiment [9], we see that Bellon followed a number of

rules: (1) minimum clone size of six lines including comments, (2) clone fragments may not start or end with

comments, (3) clones must be replaceable by a function, (4) clones must be of the first three clone types,

although Bellon additionally allowed type 2 clones to contain differences in expressions, (5) boundaries of

accepted clones were expanded to the maximal size for their clone type, (6) clones capturing repetitive regions

were left in the reporting style of the reporting tool. Due to disagreement over type 3 similarity requirements,

no formal specification was used, and was instead left to Bellon’s judgment.

Bellon’s Benchmark automatically measures recall by mapping each of the clones detected by a tool

(candidates) to one of the clones in the corpus (references). The mapping is produced using two clone

56



matching metrics, the ok and good values, which measure how well two clones match with a value between 0.0

(total mismatch) and 1.0 (exact match). The benchmark maps each candidate to the reference that maximizes

its ok and good values, with good taking precedence as the stricter metric. A candidate is considered an ok

match of the reference it is mapped to if its ok value exceeds some given threshold p, similarly for good match.

The benchmark reports ok recall and good recall as the ratio of the references that the tool captures by the

ok and good matches, respectively.

The ok metric is shown in Eq. 4.1, and measures how well clone candidate C matches reference R. F1

and F2 are a clone’s first and second code fragments, ordered by file name, start line, and then end line. The

ok metric is based on the contain metric, Eq. 4.2, which measures the ratio of FA that is contained by FB .

For example, if both fragments are in the same file, and FA includes lines 3 through 12 (inclusive) and FB

includes lines 7 through 14, then contain = 6
10 . The ok metric is the minimum containment of F1 and F2. It

measures this for the optimal containment direction (C contains R, or R contains C) per fragment.

ok(C,R) = min(max(contain(C.F1, R.F1),

contain(R.F1, C.F1)),

max(contain(C.F2, R.F2),

contain(R.F2, C.F2))) (4.1)

contain(FA, FB) =
|FA ∩ FB |
|FA|

(4.2)

The good metric is measured as in Eq. 4.3. It is based on the overlap metric, Eq. 4.4, which measures the

ratio of the unique source lines in FA and FB that are in both fragments. For example, if both fragments are

in the same file, FA includes lines 1 through 10 (inclusive), and FB includes lines 5 through 15 (inclusive),

then overlap = 6
15 . The good metric is the minimum overlap of the candidate’s and reference’s first and

second fragments.

good(C,R) = min(overlap(C.F1, R.F1),

overlap(C.F2, R.F2)) (4.3)

overlap(FA, FB) =
|FA ∩ FB |
|FA ∪ FB |

(4.4)

Gap Aware Version. Murakami et al. [94] suggest that type 3 recall can be measured more correctly

by ignoring the gap lines in the type 3 references when evaluating the ok and good metrics. A tool is then

evaluated for how well it matches only the cloned lines in a type 3 reference. To enable this, they manually

inspected Bellon’s type 3 references and identified their gap lines. The ok and good metrics are then modified

to discard the reference’s gap lines. Specifically, C.F1 is replaced with C.F1 − G1, R.F2 by R.F2 − G2, and

57



similarly for R.F1 and C.F2 where G1 and G2 are the gap lines in the reference’s first and second code

fragments.

Our Better-OK Version. The ok match requires that either the candidate’s or the reference’s code

fragments contain some minimum ratio of the other, using the containment direction per fragment that

maximizes this ratio. The critical flaw in the ok metric is that it accepts either containment direction. For

benchmarking, we should only be interested in if the candidate contains some minimum ratio of a reference.

Candidates that are contained by a reference may be a very poor detection of that reference. For example,

consider a 30 line (per fragment) reference clone, and a 6 line candidate whose fragments are fully contained

by the reference. This candidate has an ok metric of 1.0 for the reference, or a perfect ok match. The same

is true even if the reference is 100 lines. Obviously this is a very poor match of the reference, and should

not be accepted. We modify Bellon’s ok metric to only consider the ratio of the reference contained by the

candidate, as shown in Eq. 4.5. We call this the better ok metric or b-ok for short. To evaluate b-ok recall,

we replace Bellon’s ok metric, but do not modify the good metric or the clone mapping procedure.

b-ok(C,R) = min(contain(R.F1, C.F1)), contain(R.F2, C.F2))) (4.5)

4.2 Experiment

4.2.1 Bellon’s Benchmark

We executed the tools for the benchmark’s subject systems, and imported their results into the benchmark.

We executed the benchmark’s mapping and recall evaluation procedures using a clone matching threshold of

0.70. This is the value used in Bellon et al.’s [13] original experiment. The experiment was executed three

times using Bellon’s original clone matching metrics, Murakami’s gap line metrics, and our ’b-ok’ metric.

4.2.2 Mutation and Injection Framework

We evaluated the tools using two generated corpora, one Java and one C, of block granularity clones. For

clone synthesis, we extracted code blocks from JDK6 and Apache Commons (Java), and the Linux Kernel

(C). We injected the clones into IPScanner (Java) and Monit (C). For each corpus, we set the framework

to randomly extract 250 code fragments, and mutate each using the 15 mutation operators, for a total of

3,750 clones. For each clone, 10 mutant systems were created using random injection locations, for a total

of 37,500 unique mutant systems per corpus. We constrained the corpora to the following clone properties:

(1) 15-200 lines in length per fragment, (2) 100-2000 tokens in length per fragment, (3) minimum 70%

similarity measured by token and by line after type 1 and 2 normalization using a diff-based algorithm, and

(4) mutations do not occur within the first and last 15% of a fragment (mutation containment). We selected

the properties as the average default clone size and similarity defaults of the modern tools, which we believe

58



estimates modern clone preferences. Typically, clone detection tools are slower for smaller minimum clone

sizes. We needed to use a larger clone size than Bellon’s to make execution of the tools for 37,500 systems

practical.

For the tool evaluation, we used a subsume tolerance of 15%, and a minimum clone similarity of 60%.

By setting the subsume tolerance to the same value as the mutation containment, we guarantee that any

candidate clone accepted as a match of a reference has captured all clone type specific differences (mutations)

in the reference clone. For comparison against the Bellon’s Benchmark results, we summarized recall per

language and per clone type by averaging the per mutation operator results. Due to limited space, we do not

report recall per mutation operator in this paper. We do not execute Deckard for our Java corpus as it does

not support the needed language specification (Java 1.6).

4.2.3 The Participants

Eleven modern clone detection tools are investigated in this experiment. We used release date to judge the

modernness of the tools. The oldest release of these tools was in 2006, while Bellon et al.’s [13] experiment

was conducted in 2002. The participating tools are listed in Table 4.1. Ideally, we would have included the

tools of Bellon’s original experiment as participants of our Mutation Framework benchmark to compare the

results against Bellon et al.’s original experiment. However, Bellon’s publications [13] [15] do not list the

versions of the six participants, nor their configurations. Most of these tools are no longer available, or the

available versions are now significantly updated (i.e., modern tools).

Configuration. Our goal is to benchmark the performance of these tools from a user perspective. We

want the results to represent what an experienced user would receive for their own systems. An experienced

user has explored a tool’s documentation and is comfortable modifying the default settings as required for

their use case. To emulate this user, we configured the tools by considering: (1) the tool’s default settings, (2)

the tool’s documentation, and (3) the properties of the benchmark, including minimum clone size and clone

types. For settings that are not well documented, we experimented with the tool to find an appropriate value.

We avoided over-configuring or over-optimizing the tools for the benchmark, as a user would not be able to

do this for their own software systems. We also avoided configuring the tools in a way that would maximize

recall at the sacrifice of precision. Generally, we configured the tools for a benchmarks’ minimum clone size,

and enabled type 2 normalization features. The tool configurations for each benchmark are summarized in

Table 4.1. Different configurations are required due to differences in the benchmarks’ minimum clone size.

Since the properties of Bellon’s corpus are not well known, we used more permissive settings with it.

Different configurations may result in better or worse recall for these tools. Wang et al. [139] refer to this

as the confounding configuration choice problem. They propose the use of a genetic algorithm for finding

tool configurations that optimize the tools’ agreement on what is and isn’t clone code in a software system.

Using Bellon’s Benchmark, they demonstrate that their configurations have a higher recall than the tools’

default configurations. In general, compared to the default settings, their algorithm reduced minimum clone

59



Table 4.1: Participating Tools: Our Expectations and Configurations

Tool Language
†Expected

Configuration for Bellon’s
Corpus

Configuration for Mutation
Framework

Recall (Type)
1 2 3

CCFinderX
10.2.6.4 [58]

Java C
min. size: 25 tokens, min. token
types: 6

min. size: 50 tokens, min. token
types: 12

ConQat
2012.9 [57]

Java
min. size: 6 lines, max. editing dis-
tance: 3, max. gap ratio: 0.30

min. size: 15 lines, max. editing dis-
tance: 3, max. gap ratio: 0.30

CPD 5.0.4 [99] Java
min. size: 30 tokens, lit-
eral/identifier normalization

min. size: 100 tokens, lit-
eral/identifier normalization

CPD 5.0.4 [99] C min. size: 30 tokens min. size: 100 tokens
CtCompare

3.2 [133]
Java C

min. size: 30 tokens, max. isomor-
phic relations: 6

min. size: 100 tokens, max. isomor-
phic relations: 3

Deckard
1.2.3 [53]

Java C
min. size: 30 tokens, 5 token stride,
min. 90% similarity

min. size: 100 tokens, 4 token stride,
min. 85% similarity

Duplo 0.2 [32] Java, C
min. size: 6 lines, min. charac-
ters/line: 1

min. size: 15 lines, min. charac-
ters/line:1

iClones
0.1.2 [41]

Java C
min. size: 30, min. block size: 10,
all transformations

min. size: 100, min. block size: 20,
all transformations

NiCad 3.4 [110] Java C
clone size: 4-2500 lines, blind renam-
ing, literal abstraction, function and
block clones, max. 30% dissimilarity

clone size: 10-2500 lines, blind re-
naming, literal abstraction, func-
tion/block clones, max. 30% dissim-
ilarity

Scorpio
2011 [46]

Java
min. size: 6 statements, normalize
identifier/literal to type

min. size: 15 statements, normalize
identifier/literal to type

SimCad
2.2 [136]

Java C
consistent identifier renaming, func-
tion/block clones

consistent identifier renaming, block
clones

Simian
2.3.34 [44]

Java C
min. size: 6 lines, normalize liter-
als/identifiers

min. size: 15 lines, normalize identi-
fiers/literals

†e.g., = 75% Type 1 Recall, 50% Type 2 Recall, 25% Type 3 Recall

size and enabled type 2 normalization features. Our strategy altered the default configurations in a similar

way, although our settings are a little more cautious to prevent loss of tool precision. We also found that

that our targeted configurations perform better than the tools’ default settings with Bellon’s Benchmark.

Some of the tools’ default configurations were optimized for demonstration use (short execution time). Our

configurations may be more appropriate for benchmarking as configurations that optimize agreement between

the tools may restrict the individual tools’ unique detection characteristics and strengths.

Recall Expectations. Before we executed the benchmarks, we evaluated our expectations of each tool’s

recall, which are summarized in Table 4.1. We assigned expected recall in 25% increments, starting at 0%

but capped at 90%. We consider a measured recall to agree with our expectation if it is within ±12.5% of the

expected value. This strategy gives our expectations flexibility, as our expectations are educated estimates.

If agreement is found, then we are confident that the expectation and benchmark are correct. Otherwise, we

suspect that either our expectation and/or the benchmark is inaccurate.

We chose our expectations by consulting the tools’ documentation, publication, and literature discus-

sion [104, 108]. For type 1 and 2 recall, we considered the normalization features directly or indirectly

supported by the tools. For type 3 recall, we considered the tools’ similarity metrics and recommended

sensitivity. We also considered our experiences with these tools in our other studies. Where possible, we

reached out to the tool developers for their opinions of our expectations. We were optimistic about the

quality of the tools, and of the benchmarks’ ability to evaluate them. Despite these efforts, the expectations

may still contain inaccuracies or be controversial between clone researchers. This is why we use a generous

window (25%) around the expectation when determining agreement. These expectations give us the ability

to uniformly evaluate our confidence in the benchmark results.

60



4.3 Results

We present and discuss the performance of the tools as measured by Bellon’s Benchmark in Section 4.3.1.

We comment on observed differences between the ok and good metrics, and discuss some anomalies in the

results. In Section 4.3.2 we discuss how type 3 recall changes when measured by Murakami et al.’s [94] gap

aware extension of the benchmark, and the performance of the tools using our b-ok metric in Section 4.3.3.

We compare our results with the modern tools against Bellon et al.’s [13] original experiment in Section 4.3.4.

We then compare our results with the variants of Bellon’s Benchmark against our expectations for these tools

in Section 4.3.5. In Section 4.3.6 we present and discuss the recall of the tools as measured by the Mutation

Framework, and compare them against our expectations. We compare the results of the two benchmark in

Section 4.3.7. The recall measurements of the two benchmark are summarized in Figure 4.1, and compared

against our expectations in Table 4.2. We summarize agreement between the results and our expectations in

Table 4.6, and agreement between the benchmarks in Table 4.7.

4.3.1 Bellon’s Benchmark Results - Original Benchmark

Java Type 1. Using the ok metric, most of the tools have a recall exceeding 70%, with CPD and iClones

exceeding 90%. Scorpio performs poorly, detecting less than 50%, while CCFinderX only barely exceeds 50%

recall. CtCompare and Duplo obtain fair results, with a little more than 60% recall. Many of these tools’

recall drops considerably when the good metric is used. Only iClones and Simian exceed 70% recall with the

good metric.

C Type 1. Most of the tools have poorer type 1 detection for C than Java. The exceptions are

CCFinderX, which performs better for C, and iClones, which has comparable results for both languages.

Only CPD, iClones and Simian exceed 70% recall with the ok metric. CCFinderX is just shy of 70% with

the ok metric, while the remainder fall below 50%. Only iClones manages a recall over 70% with the good

Table 4.2: Expected Vs. Measured Recall: Mutation Framework (MF) and Bellon’s Benchmark (ok,
b-ok, good metrics)

Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian

Clone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

J
av

a

Expected

MF —
ok

b-ok

good

C

Expected — —
MF — —
ok — —
b-ok — —
good — —

= Indicates recall (0-100%) as ratio of pie filled (e.g., in this case, 75%).

61



0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(a) Java, Type 1

0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(b) Java, Type 2

0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(c) Java, Type 3

0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(d) C, Type 1

0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(e) C, Type 2

0
10
20
30
40
50
60
70
80
90

100
Bellon(OK) Bellon(B-OK) Bellon(GOOD) MF

(f) C, Type 3

Figure 4.1: Measured Recall - Benchmark Results

metric, while CCFinderX, CPD and Simian have a recall greater than 50%.

Java Type 2. Only CPD, Deckard and NiCad exceed 70% recall by the ok metric. CCFinderX, iClones

and SimCad exceed 50%, while the remainder fall below 35%. For the good metric, CPD and Deckard manage

to maintain a recall around 60%, while the remainder fall below 50%.

C Type 2. Again, the tools generally perform worse for C clones. For the ok metric, only iClones and

CCFinderX exceed 50% recall, while all the tools fall below 50% when the good metric is used.

Java Type 3. For the ok metric, only CPD and NiCad achieve a recall greater than 70%, with CPD just

reaching 75%. Of the remaining tools, only Deckard exceeds 50%. With the good metric, NiCad achieves

60%, while the remainder fall below 25%. A notable anomaly is the type 2 detectors’ sizable type 3 recall

with the ok metric, especially CPD (75%). This is resolved by the good metric.

C Type 3. Only iClones exceeds 50% ok recall, with CCFinderX nearly meeting 50%. None of the tools

have a good recall more than a little beyond 25%. Some of the type 2 detectors are achieving a type 3 ok

recall, while their type 3 good recall is correctly near 0%. Type 3 detectors Deckard and NiCad have much

better type 3 performance for the Java clones, while iClones and SimCad perform better for C.

In most cases, recall measured using the good metric is considerably lower than recall measured by the ok

metric. Bellon’s Benchmark suggests that the modern tools are bad at detecting a clone’s precise boundaries.

However, for the type 1 and 2 clones, this may be due to Bellon’s oracling process. When he accepted a

clone he would change the clone’s boundaries (if needed) to the maximal size of its reported clone type [9].

It is possible that the accepted clone could have been contained within a larger clone of a higher clone type.

Likely, the tools prefer to report the larger clone of the higher type. The ok metric (contain) will accept this

larger clone as a match, but the good metric (precise capture) is likely to reject it. For this reason, the good

62



metric may be too strict for the type 1 and type 2 clones. However, our proposal of the b-ok metric shows

why the ok metric is too permissive.

However, the ok metric may be too weak for measuring type 3 recall. A number of type 2 detection tools

were receiving sizable type 3 recalls with the ok metric. Since these tools cannot detect type 3 clones, the ok

metric must be permissive enough to sometimes accept clones which only capture the type 1 or 2 portions of

the type 3 clone. When measuring type-specific recall, this is undesirable. The good metric was appropriately

measuring near-zero recall for these tools.

Overall, we found that many of the tools performed well for type 1 Java clones, and a few had good

performance for type 2 Java clones, when the ok metric is used. Performance was generally weaker for C

clones, and most tools performed poorly for both language’s type 3 clones. The type 2 clone detectors were

surprisingly able to achieve a type 3 recall when the ok metric was used, while the type 3 detectors are

struggling to detect type 3 clones, even when measured by the permissive ok metric.

4.3.2 Bellon’s Benchmark Results - Murakami Extension

Murakami et al. [94] suggest that type 3 recall is more correctly measured when Bellon’s ok and good metrics

ignore the gap lines in the type 3 references. We found that ignoring the gap lines has minimal impact on

the tools’ ok and good type 3 recall. Compared to Bellon’s original metrics, the tools’ gap-ignoring type 3

recall has an absolute change of no more than ±1.5%, with two exceptions. CPD’s type 3 ok recall for Java

has an absolute increase of 7.2%, and iClones’s type 3 good recall for C an increase of 3.7%. Ignoring these

outliers, the average absolute change was ±0.48%. This means that it is extremely rare for these tools to fail

to capture a type 3 reference due to reporting only the cloned regions but not the non-cloned regions.

Murakami et al. investigated this difference for NiCad, Scorpio and CDSW. Their experiment found

significant differences in type 3 recall for Scorpio and CDSW. Their experiment agrees with ours that ignoring

gap lines has negligible effect on NiCad’s recall. Our disagreement over Scorpio may be due to how we handled

Scorpio’s output. Of our subject tools, Scorpio is unique in that it does not report code fragments as source

line regions. It is PDG-based, and reports code fragments as sets of (possibly non-sequential) program

elements. We converted these to continuous line regions using the source lines of the earliest and latest

program elements as the start and end lines. Murakami et al. do not mention how they handled this in their

experiment.

While ignoring gap lines had minimal effects in our experiment, Murkami’s gap line data is still valuable. It

can be used to evaluate the correctness of clone detection tools that identify gap lines in their reported clones.

Bellon’s Benchmark is designed to handle clone detection tools that report code fragments as continuous

source line regions. Knowing the locations of gaps in the type 3 references may make it possible to adapt

Bellon’s Benchmark to support tools that report code fragments as discontinuous source line regions without

(approximate) conversions of their output.

63



4.3.3 Bellon’s Benchmark Results - The Better OK Metric

The recall of the tools using our b-ok metric are compared against Bellon’s ok recall in Figure 4.1. The

relative change in recall going from Bellon’s ok recall to our b-ok recall is summarized in Table 4.3, with the

tools grouped by the maximum clone type they are able to detect. We also average the relative change across

the tools, including specifically for tools that support or do not support particular clone types. The tools’

recall decreases when our b-ok metric is used, with the exception of a marginal increase in CtCompare’s

Java type 2 recall. The decrease in recall means that there are candidates reported by the tool that are

70% contained by references in the benchmark, but none of these candidates contain 70% of these references.

Likely, the tool reported only a small (<70%) portion of these references, which is why our b-ok metric rejects

them as a match. While recall generally decreased, an increase is possible (CtCompare) because Bellon’s

Benchmark maps each candidate to the reference that maximizes its good and then ok values. By replacing

the ok metric by the b-ok metric, the mapping can change in such a way that more references are matched

given the matching threshold (70%).

Tools lacking type 3 support lose the majority of their recall (81-100%), and similarly for tools lacking

type 2 support (55-93%). This improves the anomaly we found in Bellon’s ok recall for which the tools’

have sizable recalls for clone types they don’t support. With Bellon’s ok metric, a tool could match a type

3 reference by reporting a candidate that captures even a minuscule type 1 or 2 region within the reference,

or a minuscule type 1 region in a type 2 reference. Our improved metric will only accept these cases when

the detected lower clone type region is at least 70% of the reference clone. This appears to be rare, as the

average b-ok recall for clone types a tool does not support is 4% with a maximum of 15%.

On average, the relative decrease in recall is larger for higher clone types, considering only the tools

that support the respective types. Type 3 recall reduction was significant for some of the type 3 tools,

with ConQat, Deckard and iClones losing over half of their recall when our b-ok metric is used. Even these

advanced tools are only reporting small (<70%) regions of the references that were matched by Bellon’s

ok match. What is unknown is if this is due to a deficiency in these tools, or disagreement with Bellon’s

definition of a type 3 clone, particularly the amount of dissimilarity allowed. The other type 3 tools had

less significant reductions (12-16% relative decreases). Overall, our correction to Bellon’s ok metric has a

considerable effect on the measured recall.

4.3.4 Bellon’s Benchmark - Modern Vs. Original Experiment

Our expectation is that clone detection has significantly evolved since Bellon’s original experiment in 2002,

especially for type 3 detection. In this section, we examine if Bellon’s Benchmark supports this expectation

by comparing our results with the modern tools against the results of Bellon’s original experiment. In order

to compare the two experiments, we calculated the average and maximum ok and good recalls across the

tools of the individual experiments (Table 4.4).

64



Table 4.3: OK to BetterOK - Relative Change in Recall

Java Clone Types (%) C Clone Types (%)

Tool 1 2 3 1 2 3

1
Duplo -16 -93 -100 -15 -75 -94
CPD - - - -5 -55 -92

2

CCFinderX -3 -18 -81 -7 -18 -88
CPD -3 -3 -81 - - -

CtCompare -1 1 -89 -8 -24 -89
Simian -3 -26 -94 -8 -43 -91

3

ConQat -4 -25 -57 - - -
Deckard -11 -22 -64 -16 -22 -63
iClones -7 -37 -58 -1 -8 -53
NiCad -9 -27 -12 -8 -10 -16
Scorpio -9 -14 -15 - - -
SimCad -10 -31 -22 -10 -9 -22

Avg: Tool Doesn’t Support - -93 -89 - -65 -91

Avg: Tool Does Support -7 -21 -38 -9 -19 -39

Avg: All -7 -27 -61 -9 -29 -68

Table 4.4: New Vs. Old Experiment

OK Metric GOOD Metric
Java 1 2 3 1 2 3

AVG
new 73.6 52.5 37.2 54.4 32.1 14.1
old 61.6 48.9 26.5 43.5 33.0 4.1

MAX
new 95.6 87.7 75.1 81.1 60.7 61.4
old 94.9 85.3 61.6 67.3 48.9 7.5

C 1 2 3 1 2 3

AVG
new 53.8 31.7 32.8 39.3 17.3 10.4
old 52.8 36.6 32.9 41.7 25.8 8.8

MAX
new 96.0 60.9 57.4 79.9 39.9 26.1
old 85.7 79.8 68.3 79.0 68.1 22.2

Java. In general, the new tools outperform the old for the Java clones with both the ok and good metric.

However, the average recall of the new tools is not as significant of an improvement as we expected. At

most, the modern tools lead the old tools by 12%, and fall behind by 1% in one case. Considering the best

performing of the new and old tools (maximum), the new tools perform consistently better. The increase

in maximum recall is marginal with the ok metric, except for type 3 clones (+15%). The new tools have a

considerably higher maximum good type 3 recall (+54%). This advantage is from NiCad, while the other

modern tools had negligible good type 3 recall.

C. For the C clones, both the new and old tools have a very similar average recall by both metrics, with

the old tools having up to 10% better recall for type 2 clones. Considering the best performing of the tools,

the old tools mostly perform better, with the new tools having only a slight advantage in type 3 detection

with the good metric (+3.9%).

The difference in type 3 recall between the old and new tools is strange. Only for the Java clones by the

good metric does the best of the new tools outclass the old tools for type 3 detection. In the other cases,

65



the difference is only 3-15%, with the best of the newer tools performing worse for type 3 C clones by the ok

metric. Type 3 clone detection has been an area of focus in clone detection since Bellon’s original experiment,

so we expected the new tools to perform much better than the old. This suggests that Bellon’s corpus does

not have sufficient type 3 representation to accurately judge these modern tools.

These two experiments are not exactly equivalent. The old tools have the advantage that Bellon’s clone

references are based off the clones the old tools detected. However, the modern tools have the advantage of

up to a decade of clone detection research. Even if the the new tools did not contribute to the benchmark,

they are the state of the art and should not have a problem detecting clones found by their predecessors.

It is interesting to compare CCFinderX to its direct predecessor, CCFinder, that participated in the

original experiment (Table 4.5). We can reasonably assume that CCFinderX (2009) should be an improvement

over CCFinder (2002). However, CCFinderX’s recall is considerably lower than CCFinder’s for all clone types

and both metrics, with the exception of a 6% lead in Java type 3 ok recall. The exception is likely an anomaly,

as both versions of CCFinder lack type 3 support. In the original experiment, CCFinder was executed for its

default settings, while we executed CCFinderX with more permissive settings than its modern default. It is

possible that CCFinderX’s core algorithm is less aggressive in detecting clones, possibly to increase precision.

Or perhaps CCFinderX’s preferences of what constitutes a true positive clone has changed, and disagrees

with Bellon’s definitions. Having a previous version that contributed to the corpus, we expected CCFinderX

to be somewhat attuned to the benchmark. That CCFinderX performs considerably worse than CCFinder

suggests that clone preferences have changed, and that the modern tools cannot be accurately judged by

Bellon’s corpus.

4.3.5 Bellon’s Benchmark Variants Vs. Expectations

In this section we compare the tools’ recall as measured by Bellon’s Benchmark, using both its original and

our improved metrics, against our expectations for these tools. Since we created our expectations in 25%

increments, we consider measured recall to agree with our expectations if their absolute difference is 12.5% or

less. Measured recall is compared against our expectations in Table 4.2, and their agreement is summarized

in Table 4.6.

Type 1. The ok recall agrees with our expectations for 6 of the 11 Java tools, but for only 2 of the 9

C tools. Three of these tools lose agreement when our b-ok metric is used. In the cases of disagreement,

the recall measurements are generally considerably lower than our expectations. Only iClones (Java and C)

and Duplo (Java) agree with our expectations with the good metric. The good recall of the remainder is

considerably lower than our expectations. We expected these tools (with the exception of Duplo) to have a

type 1 recall around 90%. These tools remove type 1 differences when they parse or preprocess input code.

By configuring the tools with the benchmark’s minimum clone size, it should be trivial for these tools to

detect the simple type 1 clones. At the very least, the tools should detect the type 1 references as components

of larger type 2 or type 3 clones, which would be accepted by the ok and b-ok metrics if not the good metric.

66



Table 4.5: CCFinder vs. CCFinderX

OK GOOD
Clone Types 1 2 3 1 2 3
CCX-Java 50.5 60.7 36.7 38.2 32.7 4.3
CC-Java 88.0 85.3 30.9 42.5 48.9 6.3
CCX-C 68.3 54.7 47.8 55.8 34.9 5.0
CC-C 85.7 79.8 68.3 79.0 68.1 13.0

Table 4.6: Agreement Between Measured and Expected Recall, Mutation Framework (MF) and
Bellon’s Benchmark

Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian
% Agree

Clone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

J
av

a

Expected -
MF — 90.0%
ok 30.3%
b-ok 30.3%
good 24.2%

C

Expected — — -
MF — — 74.1%
ok — — 14.8%
b-ok — — 29.6%
good — — 29.6%

= Agree (±12.5%) = Disagree = Recall (0, 25, 50, 75, 90%)

It is strange that recall is further from our expectations in the C cases, despite the tools advertising full C

language support.

Type 2. Recall measurements agree with our expectation for tools that do not support type 2 clones

(Duplo, CPD for C), at least by the b-ok and good metrics. Of the tools supporting type 2 detection, CPD’s

(Java) agrees with our expectations by both the ok and b-ok metrics, as well as Deckard (Java) by only the

ok metric. Otherwise, none of the tools’ type 2 recalls agree with our expectations. Generally, their type 2

recall is considerably lower than our expectations. We expected many of these tools to have near 90% recall

for type 2 clones. Most support the required type 2 normalizations (literal values, identifier names), which

reduces type 2 detection to simple type 1 detection. It is therefore suspicious that not only do these results

not agree with our expectations, but that the results do not mirror the type 1 results. This is at least partially

due to Bellon’s oracling process, which allowed type 2 clones to have an identifier or literal in one fragment

be replaced by an expression in the other, as found by Baker [9]. The modern tools would consider these

replacements to be near-miss gaps, and consider them to be type 3 clones. In this case the type 2 detectors

would fail to report them, while the type 3 detectors may find them similar enough to report. However, this

oracling error may not be too pronounced as the best performing Java type 2 detector is CPD, which lacks

type 3 support.

Type 3. Considering the type 2 detectors, the b-ok and good recalls agree with our expectations (0%

recall), with the exception of CPD for Java clones and the b-ok recall. The strong agreement is because

these metrics generally will not accept a type 2 candidate as a match of a type 3 reference. With the

67



exception of Duplo, the type 2 detectors’ type 3 ok recall does not agree with the expectation. As mentioned

previously, the ok metric is allowing candidates detecting even only small regions of the type 3 clone as

matches. Considering the type 3 detectors, none of the tools’ type 3 recalls agree with our expectations. The

only exception is Deckard whose Java type 3 ok recall agrees with our expectations. However, its b-ok and

good Java type 3 recalls are considerably lower than our expectations. Considering Bellon’s type 3 references

were found by tools contemporary to 2002, and modern tools are considered to excel at near-miss clone

detection, it is strange that they perform so far under our expectations. Perhaps the corpus simply does not

have a large or diverse enough representation of type 3 clones to evaluate modern tools. Or perhaps Bellon’s

type 3 references disagree with the modern tool’s type 3 clone preferences (e.g., scope, minimum similarity,

true vs. false positive, etc.).

Recall measured by Bellon’s Benchmark is generally lower than our expectations. A common belief in

the clone community is that our clone detection techniques are very mature and have high recall. The

disagreement between our expectations has two possible and potentially overlapping conclusions: (1) the

modern clone detection tools are not as proficient as we believe, i.e., our expectations are incorrect, or (2)

Bellon’s Benchmark does not accurately measure the performance of modern tools. To gain further insight

into this question, we consider the results of the Mutation Framework below.

4.3.6 Mutation Framework Results vs. Expectations

In this section we discuss the recall of the tools as measured by the Mutation Framework, and compare

these against our expectations for the tools. As the granularity of our expectations was 25%, we consider

the measured and expected recalls to agree if they have an absolute difference no greater than 12.5%. The

tools’ recall by the Mutation Framework are shown in Figure 4.1, and compared against our expectations in

Table 4.2. Agreement with expectations is summarized in Table 4.6.

Type 1. The Mutation Framework measures a very high recall (> 90%) for most of these tools across both

languages. Scorpio’s and Simian’s recall is a little lower at 80%. These results agree with our expectations

of the tools. Duplo has poor type 1 recall, as it doesn’t normalize for formatting differences, which is within

our expectations for Java but not for C. While CtCompare has strong recall for the Java clones, its type 1

performance was considerably weaker for the C clones, and outside of our expectations. Deckard’s recall for

C is also below our expectations, at 59%.

Type 2. The framework also measures very high recall (>90%) for most of the tools that support type 2

detection. CPD falls a little behind the top performers, with a Java recall of 81%. These results match our

expectations. The framework correctly identifies that Duplo and CPD (for C) do not support type 2 clones,

with a near 0% recall. CtCompare does not support literal value normalization and recommends limits on

identifier normalization, so we are not surprised by its lower recall for Java (64%), although its recall for C

(53%) is lower than anticipated. Scorpio’s recall falls just outside our expectations, with a recall of 76%.

CCFinderX is also less than our expectations, with 67% for Java and 76% for C. Deckard’s type 2 recall

68



matches its type 1, 59% and is considerably less than we expected.

Type 3. iClones and NiCad have near-perfect recall (>95%) for both languages, while ConQat (89%)

and SimCad (90%) also achieve very high recall. These results match our expectations for these tools.

The framework correctly identifies the tools that lack type 3 support, with near 0% recall. The framework

measures recall outside of our expectations for Scorpio (76%) and Deckard (56%).

Compared to the other type 3 detectors, Scorpio and Deckard have lower recalls. Notable is how consistent

their recall is across the clone types. To prevent bias between recall measurements, the Mutation Framework

uses the same original code fragments with each of the 15 mutation operators, and injects each of the 15

resulting clones at the same locations in the subject system. Therefore Scropio and Deckard may not have

any deficiency for any particular clone type, but rather failed to detect these clones due to general deficiencies

in its parser or detection algorithms.

Overall, there is strong agreement between our expected recall and the Mutation Framework’s results.

Agreement is found in 30 out of 33 Java cases, and 20 out of 27 C cases. In the cases of disagreement,

the Mutation Framework consistently measured a lower recall. Strong agreement suggests confidence in the

accuracy of the Mutation Framework. We did not notice any anomalies in the Mutation Framework’s results.

4.3.7 Bellon’s Benchmark vs Mutation Framework

In this section we directly compare the recall measurements of Bellon’s Benchmark and the Mutation Frame-

work. Since the two benchmarks were constructed differently (mined versus synthetic clones), we consider

them to agree if the measured recalls are within 15%. Agreement between the benchmarks is show in Ta-

ble 4.7. Despite the differences in their approaches, it is reasonable to expect the benchmarks to agree. The

Mutation Framework tests the tools against a comprehensive (and empirically validated) taxonomy of the

types of differences that can occur between clones. The base code fragments used for synthesis and injection

locations in the subject system are randomly varied to ensure variety. We expect that if tools perform well

for the Mutation Framework’s synthesized clones, that this performance should transfer to clones naturally

produced by developers.

However, in very few cases do these benchmarks agree. They agree on the type 1 recall of CPD (Java),

Duplo, iClones and Simian, as well as the type 2 recalls of CCFinderX (Java), CPD and Duplo. For CCFind-

Table 4.7: Mutation Framework (MF) vs. Bellon’s Benchmark (ok, b-ok, good)

Tool CCFX ConQat CPD CtComp. Deckard Duplo iClones NiCad Scorpio SimCad Simian
% Agree

Clone Types 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

J
av

a MF vs ok - - - 23.3%
MF vs b-ok - - - 36.7%
MF vs good - - - 26.7%

C
MF vs ok - - - - - - 14.8%

MF vs b-ok - - - - - - 33.3%
MF vs good - - - - - - 29.6%

= Agree (±15%) = Disagree

69



erX (type 2, Java) and Simian (type 1, C), this agreement is only with Bellon’s ok recall. We have shown

that the ok recall can be unreliable. The benchmarks agree in the cases where a tool does not support a

particular clone type if either the b-ok or good recalls are considered. The benchmarks disagree in some of

these cases when the ok recall is used, which supports our findings that the ok metric can lead to incorrect

recall measurements for clone types a tool doesn’t support. In all other cases, the frameworks disagree on

the tools’ recall. Generally, the Mutation Framework measures a higher recall in these cases. With Bel-

lon’s Benchmark, the tools generally had lower recall for C clones, but this is not common in the Mutation

Framework results.

Disagreement between the benchmarks over NiCad and SimCad is not suspicious. These tools detect

clones at the code block granularity: code that starts and ends with matched brackets, i.e., ’{...}’. The

Mutation Framework generates clones at this granularity to support more tools. Tools that search at a lower

granularity (i.e., within code blocks) do not have a disadvantage with the Mutation Framework. However,

NiCad and SimCad may fail to detect clones in Bellon’s corpus that are much smaller than a code block.

Despite this, NiCad has the top Java type 3 recall by Bellon’s Benchmark.

It is particularly strange that the benchmarks disagree for type 1 and type 2 recall. When the Mutation

Framework measures a high recall for these types, it has certified that the tool can handle all 10 of the

variations in type 1 and type 2 clones from the clone taxonomy. Many of the modern tools received this

certification. As per mutation analysis, the Mutation Framework mutates only a single random difference into

the reference clones. The tools detect type 1 and type 2 clones by removing or normalizing these differences

during parsing or preprocessing steps. Therefore, the tools should have no problems detecting type 1 and type

2 clones, no matter the density of the type 1 and type 2 features. It is odd that Bellon’s Benchmark measures

considerably lower type 1 and 2 recall for some of the tools that have very high recalls by the Mutation

Framework. It is possible that this is due to changes in clone detection preferences between the 2002 tools

and the modern tools. Detection preferences may include clone granularity, scope, what constitutes a true

positive, what clones are useful to report, and so on.

The benchmarks do not agree on the type 3 recall of any of the type 3 tools, with the Mutation Framework

consistently measuring a higher recall. The Mutation Framework shows that most of the type 3 detectors are

able to handle the types of differences that can occur between type 3 clones. We constrained the Mutation

Framework to generate clones with similarity no less than 70%. Bellon provided no specification for his type

3 clones. It may be that Bellon’s type 3 clones contain a higher degree of dissimilarity, more than the tools

allow, which would result in a lower recall from Bellon’s Benchmark. It is also possible that Bellon’s corpus

does not have sufficient type 3 representation to accurately measure recall. Bellon’s corpus was built using

tools contemporary to 2002, when type 3 detection was not as well developed. However, is is strange that

the modern tools are not able to detect more of the type 3 clones found by their “outdated” predecessors.

This suggests that type 3 preferences have changed, and the modern tools target a newer specification.

The Mutation Framework has a much stronger agreement with our expectations than Bellon’s Benchmark,

70



as shown in Table 4.6. The Mutation Framework agrees with our expectations in 90% (Java) and 74.1% (C)

of the cases, while Bellon’s Benchmark only agrees in 24.2-30.3% (Java) and 14.8-29.6% (C), depending

on the metric used. We suspect that in the cases where neither tool agrees with our expectation, that our

expectation is incorrect. Bellon’s strong disagreement with our expectation, and the suspicions we raise about

its results, suggest that it is not accurate for modern tools. The Mutation Framework’s strong agreement

with out expectations suggest that it may be a good solution for evaluating the modern tools. In cases where

the Mutation Framework disagrees with our expectations, we suspect that our expectation is incorrect, and

the Mutation Framework accurate.

4.4 Threats to Validity

There are three primary threats to the validity of this study. (1) Our expectations of the tools’ recall may

not be accurate. We maximized our accuracy by consulting the tools’ documentation, publication, literature

surveys, and developers (when available). Furthermore, we allowed a ±12.5% range around our expectation

to compensate for some inaccuracy. We used these expectation ranges as a baseline for our confidence in

the benchmarks. (2) The tool configurations may not be optimal. We created targeted configurations by

consulting the tools’ defaults and documentation, which is how the average user would configure the tools

for their use cases. While other configurations might give higher recall, our configurations measure the recall

the average user can expect. (3) The Mutation Framework uses artificial clones. However, these clones are

generated using mutation analysis, which is a well established technique in other fields including software

testing. The clones are generated using a comprehensive clone taxonomy empirically validated against real

clones [108], so the generated clones should be realistic.

4.5 Conclusion

In this chapter, we compared the recall performance of eleven modern clone detection tools using our Mutation

and Injection Framework and three variants of Bellon’s Benchmark. We began by researching our expectations

for these tools, before evaluating them using the benchmarks. We extensively evaluate and discuss the recall

measurements for the tools by each of the benchmarks. We then compared the benchmark results against our

expectations and against each other. Additionally, we compared results of our experiment against Bellon’s

original experiment for CCFinderX, which is a participant in both experiments. We found anomalies in the

Bellon’s Benchmark results, including significant disagreement with our expectations of the results. Bellon

built his corpus by mining the output of tools contemporary to 2002. These clones and Bellon’s procedures

may not reflect the clone detection and reporting preferences of modern tools. Our findings suggest that

Bellon’s Benchmark may not be accurate for modern tools, and that an updated corpus may be warranted.

In contrast, we did not find anomalies in the measurements of our Mutation and Injection Framework,

and found significant agreement with our expectations. The Mutation Framework indicates that ConQat,

71



iClones, NiCad and SimCad are very good options for detecting all three clone types. We believe the Mutation

Framework is be a good solution for benchmarking modern clone detection tools. In particular the Mutation

Framework’s synthetic benchmarking allows fine-grained measurement of recall in a controlled procedure.

However, benchmarking with real data is also important. The results of this study motivated us to create a

new real-world clone benchmark, which is the topic of Part II of this thesis.

72



Chapter 5

Fine-Grained Evaluation with the

Mutation and Injection Framework

To demonstrate the our Mutation and Injection Framework for fine-grained recall measurement, we use

it to evaluate the recall of ten clone detection tools, including: CCFinderX [58], ConQat [57], Copy Paste

Detector (CPD) [99], CtCompare [133], Deckard [53], iClones [41], NiCad [110], SimCad [136], Simian [44] and

SourcererCC [116]. We evaluated the tools across six benchmarking experiments, covering all permutations

of the two clone granularities (function and block) and three programming languages (Java, C and C#)

supported by the Mutation and Injection Framework. We compare these tools and evaluate their strengths

and weaknesses at a fine granularity, including per clone type and per mutation operator (i.e., clone edit type

from the taxonomy). In these experiments, we demonstrate how fine-grained analysis can reveal new insights

into the clone detection tools. In particular, it can identify the capabilities of a clone detection tool, as well

diagnose the reasons why a tool’s recall may be deficient. Specifically, this is accomplished by comparing a

clone detector’s recall for different mutation operators, and looking at the consistencies and differences.

This chapter is based on a component of a currently unpublished manuscript entitled “The Mutation and

Injection Framework” and authored by myself and Chanchal K. Roy.

This chapter is organized as follows. We discuss our experimental setup including benchmark generation

with the Mutation Framework Section 5.1. We discuss the subject tools and their configurations in Section 5.2.

We then present and discuss the results in Section 5.3. We summarize the positions of the tools in terms of

recall in Section 5.4. We discuss threats to the results in Section 5.5, and conclude this work in Section 5.6.

5.1 Experimental Setup

For these experiments, we used IPScanner (Java), Monit (C) and MonoOSC (C#) as our subject systems.

Code fragments for clone synthesis were randomly selected from the following source repositories: JDK6

and Apache-Commons (Java), the Linux Kernel (C), and Mono/MonoDevelop (C#). For each experiment,

we configured the framework to select 250 random code fragments from the source repository. We used 15

single-operator mutators, one for each of the 15 mutation operators. Each of these mutators apply a single

instance of their assigned mutation operator. From the selected fragments, a total of 3,750 unique clone

pairs were synthesized by the mutators. For each clone, we configured the framework to construct 10 mutant

73



systems using different random injection locations within the subject system. In total, each experiment’s

reference corpus contains 37,500 mutant subject systems. Across the six experiments, we have constructed

225,000 mutant systems (unique clones) for tool evaluation.

We constrained the generation process to give the reference corpora the following clone properties: (1)

15-200 lines in length, (2) 100-2000 tokens in length, (3) a minimum 70% clone similarity measured by line

and by token after Type-1 and Type-2 normalization, and (4) a mutation containment of 15%. Since our

experiments contain a large number of mutant systems, we preferred slightly larger clones for our reference

corpora. Clone detection tools often run significantly faster when configured for larger minimum clone sizes.

This allowed us to evaluate the tools in a reasonable time-frame.

For tool evaluation, we configured the framework’s clone matching algorithm to use a subsume tolerance

of 15%. This matches the mutation containment, and ensures that a successful match captures the mutant

portion of the clone. This is essential for evaluation using mutation analysis, as we want to measure how

well the clone detectors handle clones with these particular types of mutations. This is a flexible subsume

tolerance that favors the tools in the evaluation.

We measured unit recall using four minimum clone similarity thresholds: 0%, 50%, 60% and 70%. With

0% the framework measures the tool’s ability to capture the injected clone, regardless of the quality of the

subsuming clone. The non-zero similarity thresholds measure recall with the expectation that the reported

clone not only subsumes the injected clone, but contains a minimum degree of syntactical similarity. This is

to prevent accepting a match where the candidate clone is suspected to be a buggy clone or a false positive

that happens to subsume the reference clone.

We use a range of similarity thresholds as a single threshold may be too rigid. It is difficult to decide

which threshold provides the best results. We measure recall for a 0% similarity threshold, to see how well

the subject tools capture the reference clones when the quality of the detection is ignored. We use 50% as

our weakest definition of a true clone. This requires the code fragments of the true clone pair to share at

least half of their syntax, by line or by token. This is a reasonable minimum expectation for a true positive

clone of the first three clone types. Our strongest threshold is 70%, which is the minimum similarity of the

clones in the generated reference corpora. We also include the 60% threshold as a balance between these

two. When we evaluate the tools, we consider how their recall changes as the minimum similarity parameter

is varied. This way we overcome the rigidity of a single threshold.

5.2 Participants

The participating subject tools, their programming language and clone type support, as well as their their

configurations for the experiments are summarized in Table 5.1. We configured the tools from an expe-

rienced user’s perspective. An experienced user has explored a tool’s configuration options, defaults and

documentation, and modifies the tool’s settings, where appropriate, for their use case. An experienced user

74



Table 5.1: Participating Subject Tools, Their Language and Clone Type Support, and Configuration

Tool Languages Types Configuration

CCFinderX Java, C, C# 1,2 Min length 50 tokens, min token types 12.
ConQat Java, C 1,2,3 Min length 15 lines, max errors 3, gap ratio 30%.

CPD Java, C, C# 1,2 Min length 100 tokens, ignore annotations/identifiers/literals, skip parser errors.
CtCompare Java, C 1,2 Min length 100 tokens, max 3 isomorphic relations.

Deckard Java, C 1,2,3 Min length 50 tokens, 85% similarity, 2 token stride.
iClones Java, C 1,2,3 Min length 100 tokens, min block 20 tokens.
NiCad Java, C, C# 1,2,3 Min length 15 lines, blind identifier normalization, identifier abstraction, min

70% similarity.
SimCad Java, C, C# 1,2,3 Greedy transformation, unicode support, min 15 lines.
Simian Java, C, C# 1,2 Min length 15 lines, ignore identifiers and literals.

SourcererCC Java, C, C# 1,3 Min length 15 lines, min similarity 70%, function granularity.

is not necessarily a clone expert or researcher, but is comfortable configuring the tools for their target input.

Specifically, we wanted to measure the performance an experienced user can expect when using these tools

with their own subject systems.

To configure the tools we first consulted their documentation and default settings. We enabled any features

that provided Type-1 and Type-2 normalization. Clone size and clone similarity thresholds were configured

with respect to known properties of the benchmarks. We avoided over-configuring the tools, especially where

precision might suffer. We did not execute the experiment for many permutations of a tool’s settings to find

their optimal configuration for the benchmarks as a tool user would not be able to do this for their own

systems.

The tool runners were implemented to execute the tools using these configurations. They then convert

the tool’s output format to the format expected by the framework. We mentioned previously that the tool

runners also receive the clone type of the injected clone, and the mutation operators used to construct it.

Since we wanted to evaluate these tools for general clone detection by experienced users, the tool runners

ignored this input data. The tools were executed for each mutant system with the same configuration.

Full Type-1 and Type-2 normalizations were not enabled for some tools. CPD only supports these nor-

malizations for Java subject systems. SimCad has two identifier normalization options: systematic renaming

and blind renaming. The blind renaming can find more clones, but can hurt precision, so we used systematic

renaming. Simian supports identifier normalization for its supported languages, but we found that it pro-

duced unusually large clone reports for C# systems with identifier normalization enables. This indicates a

bug or a precision problem, so we disabled identifier normalizations with the C# experiments. SourcererCC

does not formally support Type-2 clone detection, as it does not use Type-2 normalizations. Instead it targets

Type-2 and Type-3 clones using its bag-of-tokens source model and similarity threshold. It does, however,

perform stemming on the source tokens which could be seen as a partial Type-2 normalization. We keep

these configurations in mind while evaluating these tools.

In a couple cases we did not execute a tool for its supported languages or settings. Deckard’s Java parser

only supports the Java-1.4 specification, so we did not evaluate it in our Java experiments which use the

Java-1.6 specification. While Deckard can still be executed for such systems, its detection performance is

compromised by the parser. We only executed ConQat for Java. ConQat is a powerful toolkit for rapid de-

75



velopment and execution of software quality analysis. Included is functionality for performing clone detection

with multiple languages. However, only for Java does it include a pre-configured analysis script for Type-3

clone detection.

5.3 Results

The results of the Mutation and Injection framework benchmark experiment are shown in Tables 5.2, 5.3,

and 5.4. These tables summarize the subject tools’ recall performances for the three programming languages

(Java, C, C#) and two clone granularities (functions, blocks) supported by the framework. Recall is summa-

rized per mutation operator, per clone type. Per clone type statistics were measured by averaging the recall

of the respective mutation operators. When comparing the tools’ recall across mutation operators or clone

granularity, we consider them to be notably different only if they differ by at least 5% (absolute difference).

When comparing the recall of the tools, we are using absolute difference of percentage points, not relative

difference, unless otherwise stated.

We measured recall by configuring the clone-matching algorithm with four minimum clone similarity

thresholds: 0%, 50%, 60%, 70%. To be concise, we only include our recall results for a minimum clone

similarity threshold of 60%. Comparing the tools’ recall as the threshold was varied, we found 60% to

provide the best results.

For most of the tools, recall experienced negligible change when the minimum clone similarity was in-

creased to 60%. A handful of tools had recall drop significantly when the minimum clone similarity was

raised to 70%. A 70% threshold may be too strict as this is the same threshold used when generating the

reference corpora, and is therefore the target we used to configure the subject tools. Differences between how

the framework and the subject tools measure clone similarity may cause some conflict. We therefore prefer

the 60% threshold as it is the highest threshold before we see some conflict due to disparate clone similarity

metrics. It is a strong enough threshold to reject obvious false positives when measuring unit recall, but not

so strong as to be overly strict with the tools.

Only CCFinderX has a noticeably higher recall when the clone-matching algorithm is configured with a

minimum clone similarity below 60%. Specifically, CCFinderX’s recall for C# functions decreased by ∼10%

when the similarity threshold was raised from 0% to 50%, but has negligible difference when raised from 50%

to 60%. As a Type-2 clone detector, CCFinderX should not be reporting clones with a similarity less than

100% after Type-1 and Type-2 normalizations, so we can assume these are buggy clones or false positives.

The performance of the remaining tools varied negligibly (0-2.5% difference) between 0% and 60% minimum

clone similarity threshold.

76



Table 5.2: Recall Results for Java Function (F) and Block (B) Clones

CCFX ConQat CPD CtComp. iClones NiCad SimCad Simian Sourc.CC
F B F B F B F B F B F B F B F B F B

mCC BT 98 94 91 94 99 98 97 97 100 100 100 100 100 98 91 90 100 100
mCC EOL 98 94 91 94 99 98 97 98 100 100 100 100 100 98 91 90 100 100

mCF A 98 94 90 94 98 98 96 98 100 100 100 100 100 98 58 66 100 100
mCF R 98 94 91 94 98 98 97 98 100 100 100 100 100 98 66 55 100 100
mCW A 98 94 91 94 99 98 95 98 100 100 100 100 100 98 91 90 100 100
mCW R 98 94 91 94 99 98 96 98 100 100 100 100 100 98 91 90 100 100

mSRI 91 90 88 92 99 98 95 96 85 82 100 100 100 98 91 90 100 100
mARI 22 20 90 94 99 98 95 96 96 98 100 100 83 89 91 90 100 100

mRL N 96 93 91 94 0 0 0 0 99 98 100 100 100 97 89 88 100 100
mRL S 98 94 91 94 99 98 0 0 93 97 100 100 100 97 91 90 100 100
mDL 0 0 85 87 1 1 0 1 94 94 100 100 85 91 0 2 100 100
mIL 0 0 85 87 2 2 0 0 98 97 100 100 90 93 1 1 100 100

mML 0 0 88 90 0 0 0 0 96 97 100 100 83 86 0 0 100 100
mSDL 0 2 86 89 0 0 0 0 95 95 100 100 99 96 0 0 100 100
mSIL 0 2 86 90 0 1 0 1 97 98 100 100 88 87 0 0 100 100

Type-1 98 94 91 94 99 98 96 98 100 100 100 100 100 98 81 80 100 100
Type-2 77 74 90 94 74 74 48 48 93 94 100 100 96 95 90 89 100 100
Type-3 0 1 86 89 0 1 0 0 96 96 100 100 89 91 0 1 100 100

5.3.1 Java

Type-1 Recall

Most of the tools have exceptional Type-1 Java recall. NiCad, iClones, SimCad (functions) and SourcererCC

have perfect detection across the mutation operators. CCFinderX (for the function granularity), CPD,

CtCompare and SimCad (blocks) have an average Type-1 recall greater than 95%. CCFinderX (blocks)

and ConQat have an Type-1 recall greater than 90% but less than 95%. While Simian falls behind the

other tools with an average Type-1 recall around 80%. Most of these tools have negligible difference (<5%)

between the function and block granularities, with the exception of Simian for Type-1 clones with differences

in formatting.

All of the tools, with the exception of Simian, have negligible difference in recall between the mutation

operators. When the tools have stable recall across the mutation operators, it suggests the clones they do

miss is due to the location of the clone, or the syntax of the clone or its containing source files, not the

particular clone differences added by mutation. For example, a tool may have missed a clone due to problems

parsing one or both of the files containing the clone.

Only Simian has significantly different recall between the mutation operators. It has poor recall for Type-

1 clones with differences in formatting: 58-66% recall. Specifically, it poorly handles the addition or removal

of newlines between otherwise identical code fragments. However, it has very good recall for the other Type-

1 clone differences: 90-91% recall. This suggests Simian uses some formatting normalization during clone

detection, but it is not reliable for all locations where a new-line is valid in a code fragment.

77



Type-2 Recall

The tools have a wide range of average Type-2 Java recall. NiCad and SourcererCC have perfect recall for

both granularities. ConQat, iClones, SimCad and Simian have an average Type-2 recall of ∼90% or greater.

CCFinderX and CPD have a lower average recall, around 75%. While CtCompare has a poor average recall,

just below 50%. None of these tools have a significant difference in Type-2 recall between the function and

block clone granularity.

With the exception of ConQat, NiCad, and Simian, the remaining tools have notable differences in recall

for clones with different Type-2 differences (different mutation operators). CCFinderX has very poor recall

(20-22%) for clones with an arbitrarily renamed identifier. However, it has very good recall (90-91%) for

clones with systematically renamed identifiers. Possibly its partial detection of arbitrarily renamed identifiers

is only for cases where the renamed identifier instance was the only instance of that identifier in the clone’s

code fragments.

CPD has near-perfect recall for clones produced by the Type-2 mutation operators, with the exception

of no recall for the mRL N mutation operator, which changes the value of one numeric literal. While CPD

claims to support the normalization of literal values, the results shows it only normalizes string and character

literals, not numeric literals.

CtCompare has exceptional recall for clones that contain differences in identifier names, whether system-

atically or arbitrarily performed. However, it has no recall for Type-2 clones that contain differences in literal

values.

iClones has very good recall across all of the mutation operators. However, compared to the other

mutation operators, its recall for Type-2 clones with systematically renamed identifiers is lower by 11-16%.

However, its detection of clones with arbitrary renamed identifiers is high. In contrast, SimCad has 8-17%

lower recall for Type-2 clones with arbitrarily renamed identifiers compared to the other Type-2 mutation

operators.

ConQat, NiCad, Simian and SourcererCC have very stable recall across the Type-2 mutation operators.

However, ConQat and Simian do not have perfect recall. The uniformity of their per mutation operator recall

suggests that they did not fail to detect these clones due to the type of difference added by mutation, but

rather due to other factors such as the syntax or location of the Type-2 clone.

Type-3 Recall

Only ConQat, iClones, NiCad, SimCad and SourcererCC support Type-3 Java detection. The framework

appropriately measures near-zero Type-3 recall for the strictly Type-2 Java detectors, including: CCFinderX,

CPD, CtCompare and Simian. For some Type-3 mutation operators, these Type-2 detectors have a recall of

1-2%. This is likely coincidental. The tool may have detected a Type-1 region of the Type-3 clone, and due

to an error in reporting the clone boundary, happened to also capture the Type-3 portion.

Looking at the average Type-3 recall, most of the Type-3 detectors performed quite well. NiCad and

78



SourcererCC have perfect detection of these Type-3 clones (100%), followed by iClones with an excellent

recall of 96%. SimCad has a Type-3 recall around 90%, while ConQat falls just below 90% with a recall of

86-89% depending on the clone granularity.

Overall, there is very little performance differentiation between the clone granularities for these tools.

Across the mutation operators, ConQat and Scorpio slightly favor block granularity detection, but the dif-

ference is fairly negligible. SimCad shows a small amount of variability across the granularities, with neither

granularity being uniformly better. The variability is most pronounced for the mDL mutation operator.

Looking at the per mutation operator performance, ConQat, iClones, NiCad and Scorpio have no or very

little difference in recall between the mutation operators. Variance between the mutation operators, within

a granularity, is no larger than 4%. This low variance is likely due to how Type-3 clones are detected. While

the tools target particular Type-1 and Type-2 differences using normalizations, they do not typically target

particular Type-3 differences. Instead they use a uniform clone similarity metric.

When there is variance between the recall of the Type-3 mutation operators, it shows that the different

types of Type-3 differences have a non-uniform affect on the similarity metric used. SimCad shows some

notable variance across the mutation operators. For both granularities, its detection is strongest for Type-3

clones which differ by the insertion of a line, or a small deletion within a line. Its performance suffers (relative

to the other mutation operators) when the Type-3 clones differ by a deletion of a line, or a modification of a

whole line. This performance dip is more strong for the function granularity clones. SimCad detects similar

code fragments by comparing their Similarity Hash (SimHash). It is possible that the different types of Type-

3 differences produce different levels of divergence between the injected code fragment’s SimHash values. The

benefit of our framework is the SimCad developer could use these results to see how the technique can be

modified to improve the detection of the Type-3 clone differences SimCad has lower recall for. Perhaps by

modification to the SimHash algorithm with respect to these Type-3 edit types.

5.3.2 C

Type-1 Recall

Most of the tools have exceptional Type-1 recall for C clones. SourcererCC has perfect recall for both function

and block granularity. CCFinderX, CPD, NiCad and SimCad have nearly perfect recall for both function

and block granularity Type-1 clones. Simian has good recall (82-85%). CtCompare has poor overall Type-1

recall (68-69%), due to no detection of clones that differ by an ‘end of line’ style comment. Deckard performs

poorly with 73% recall for Type-1 function clones, and 59% recall for Type-1 block clones. Deckard is the

only tool to have such a significant difference between its detection at the block and function granularities.

At the per mutation operator level, Simian, with the mCF R mutation operator, is the only other tool to

have a recall variance larger than 4% between the two clone granularities. The other tools have very similar

detection across the clone granularities.

79



Table 5.3: Recall Results for C Function (F) and Block (B) Clones

CCFX CPD CtComp. Deckard iClones NiCad SimCad Simian Sourc.CC
F B F B F B F B F B F B F B F B F B

mCC BT 100 99 98 99 83 81 73 59 100 100 99 100 100 98 97 93 100 100
mCC EOL 100 99 98 99 0 0 73 59 100 100 99 100 100 98 99 97 100 100

mCF A 100 99 96 99 83 81 73 59 100 100 99 100 100 98 63 61 100 100
mCF R 100 99 95 99 83 81 72 58 100 100 99 99 99 97 59 53 100 100
mCW A 100 99 98 99 83 81 73 59 100 100 99 100 100 98 96 94 100 100
mCW R 100 99 98 99 83 81 73 59 100 100 99 100 100 98 96 95 100 100

mSRI 98 98 0 0 80 81 72 59 90 95 99 100 98 97 99 97 100 100
mARI 33 30 0 1 80 81 73 59 99 99 99 100 92 93 99 97 100 100

mRL N 100 99 0 0 0 0 73 59 98 99 99 100 100 98 90 85 100 100
mRL S 100 99 0 0 0 0 73 59 98 96 99 100 100 98 99 97 100 100
mDL 0 0 0 0 0 0 66 54 98 97 99 99 89 88 0 0 100 100
mIL 0 0 0 1 0 1 65 56 99 98 99 100 96 92 0 1 100 100

mML 0 1 0 1 0 1 72 58 99 97 99 100 81 86 0 0 100 100
mSDL 0 0 0 0 0 0 72 58 98 98 99 100 96 95 0 0 100 100
mSIL 0 1 1 1 1 1 72 59 99 98 99 100 84 89 0 0 100 100

Type-1 100 99 98 99 69 68 73 59 100 100 99 99 100 97 85 82 100 100
Type-2 83 82 0 0 40 40 73 59 96 97 99 100 97 96 97 94 100 100
Type-3 0 0 0 1 0 1 69 57 99 98 99 100 89 90 0 0 100 100

CtCompare and Simian are the only tools to have a notable difference in recall across the Type-1 mutation

operators. CtCompare has good performance (81-83%) for most of the Type-1 mutation operators, but does

not detect any of the Type-1 clones that differ by a end-of-line style comment (e.g., ‘//comment’). CtCompare

does not display this weakness for Java clones produced by the mCC EOL mutation operators, which hints

that there is a bug in CtCompare’s C syntax parser or normalizer.

Simian has excellent (90-91%) recall for all of the Type-1 mutation operators, but poor recall (55-66%) for

clones with differences in formatting (the mCF A and mCF R mutation operators). Simian is a line-based

tool, and it seems its normalization for differences in formatting does not work for all cases.

Deckard generally has low recall for the Type-1 clones, but its recall is very uniform across the Type-1

mutation operators. This suggests that Deckard does not struggle with any particular Type-1 difference, but

rather it is struggling with the syntax of the clones, or their injection locations (i.e., the surrounding source

code).

Type-2 Recall

Many of the tools have exceptional Type-2 recall for C clones of block and function granularity. SourcererCC

has perfect Type-2 detection for both granularities, while NiCad has perfect detection for the block granularity

and near-perfect (99%) for the function granularity. iClones, SimCad and Simian have an average Type-2

recall greater than 90%. CCFinderX has a good average Type-2 recall just over 80%. Deckard has poorer

performance with 73% Type-2 recall for function clones, and 59% for block clones. CtCompare has very poor

performance with an average of 40% recall. CPD has 0% recall for Type-2 clones because it does not support

80



Type-2 normalizations with C.

Most of the tools have uniform recall across the clone granularities. Simian for the mRL N mutation

operator, and iClones for the mSRI mutation operator, have a variance of 5% between the clone granularities.

Only Deckard has a consistently different recall for function and block clones. Deckard has a respectable recall

for Type-2 function clones (73%) but a poor recall for Type-2 block clones (59%). Otherwise, these tools

have similar recall between the granularities.

A number of tools have weaknesses for particular Type-2 clone differences. CCFinderX has very poor

recall (30-33%) for Type-2 clones that differ by arbitrary renaming of identifiers (mARI), despite near-perfect

recall for Type-2 clones produced by the other mutation operators. CtCompare has good (80-81%) recall for

Type-2 clones that differ by identifier names, but has no recall for clones that differ by literal values; it must

not support these normalizations. iClones has near-perfect (93-99%) recall for all of the Type-2 mutation

operators except for somewhat lower (82-85%) recall for clones produced by the mSRI mutation operator.

This is for clones with a systematically renamed identifier. Since iClones has near-perfect recall for clones

with arbitrarily renamed single identifier instances, it could be that it struggles when the number of renamed

instances of an identifier is large. SimCad has slightly lower recall for clones with arbitrarily renamed

identifiers. This is likely due to SimCad being configured to systematically normalize identifiers names,

because its arbitrary normalization can cause false positives. Simian, particularly for the block granularity,

has lowered performance (∼10% drop) for Type-2 clones with differences in numeric literal values. This is

odd because it has near-perfect detection for Type-2 clones with differences in string literal values.

Type-3 Recall

The framework correctly measures a near-zero recall for the tools that do not support Type-3 detection:

CCFinderX, CPD, CtCompare and Simian. The detection of Type-3 C clones is supported by Deckard,

iClones, NiCad, SimCad and SourcererCC. SourcererCC has perfect detection, while iClones and NiCad

has nearly-perfect detection (98% and higher). SimCad also has strong detection, averaging around 90%.

Deckard has poor performance that differs slightly between the clone granularities. It has a 69% recall for

function clones, and 57% recall for block clones. The other tools have only negligible variance between the

clone granularities.

NiCad and iClones have negligible variance in recall across the Type-3 mutation operators. Deckard

performs worse for the deletion (mDL) and insertion (mIL) of lines in Type-3 clones compared to the other

mutation operators, but this variance is only significant for the function granularity clones. SimCad has

notable variability in performance across all of the Type-3 mutation operators, ranging from 81-96% recall.

While its performance for the mutation operators ranges from good to excellent, some tweaks to its SimHash

similarity function might reduce this variance. This shows how valuable the Mutation Framework is for

measuring fine grained clone detector performance for tool improvement. It can be used to spot the specific

detection cases a tool could be improved for.

81



5.3.3 C#

Type-1 Recall

NiCad, SimCad and SourcererCC have nearly perfect recall for the Type-1 clones C# clones. CCFinderX

also has good recall, with 90% for the function granularity and 96% for the block granularity. CCFinderX

is the only tool to have a variance in recall of 5% or greater between the granularities. Simian has mediocre

performance, with an average of 75% for the function granularity, and 73% for the block granularity. This

is caused by its poor detection of clones that contain differences in formatting. Its recall for the mCF A

and mCF R is only 49-53%. Its recall for the other Type-1 mutation operators is good, with a steady 84%

for the block granularity, and 88% for the function granularity. Simian is the only tool to show a notable

variance across the Type-1 mutation operators. CPD only detects approximately half of the Type-1 clones.

However, its recall is very uniform across both the mutation operators and granularities. Possibly CPD is

having difficulty handling the C# syntax of the injected clones, or the source files they were injected into.

Type-2 Recall

SourcererCC has perfect detection for Type-2 C# clones, while NiCad has near-perfect recall for all Type-2

mutation operators (98-99%). SimCad also has strong detection, 97-100% for most mutation operators, with

some weakness in the detection of Type-2 C# clones with an arbitrarily renamed identifier. This is due to

SimCad being configured to systemically rename identifiers, rather than arbitrary renaming, as otherwise its

precision can suffer. It still has good recall for the mARI produced clones despite this limitation. CCFinderX

has weaker performance, with an average 75% recall for Type-2 function clones, and an average 80% for

Type-2 block clones. Particularly, CCFinderX has very poor performance for clones with arbitrarily renamed

identifiers. It has good to excellent performance for the other mutation operators. Other than with the

mARI mutation operator, CCFinderX has stronger recall (by 6%) for the block granularity.

Simian has good (82-85%) performance for Type-2 clones with differences in literal values. It has no

detection of the Type-2 clones with differences in identifiers because this normalization was disabled for the

C# experiments. Enabling this normalization caused Simian to produce very large detection reports despite

the smaller size of the C# subject system. It seems this normalization may harm Simian’s precision for C#,

or causes errors in clone reporting. The Mutation Framework correctly identifies CPD as not supporting

Type-2 normalizations in C# systems.

Type-3 Recall

Only NiCad, SimCad and SourcererCC support the detection of Type-3 C# clones. The framework correctly

identifies that CCFinderX, CPD, and Simian do not support Type-3 detection, with near-zero recall for the

Type-3 mutation operators. SoucererCC has very nearly perfect recall, with 99% recall for the mIL mutation

operator at the block granularity. NiCad has almost perfect Type-3 detection, with per mutation operator

82



Table 5.4: Recall Results for C# Function (F) and Block (B) Clone Pairs

CCFX CPD NiCad SimCad Simian Sourc.CC
F B F B F B F B F B F B

mCC BT 90 96 51 50 98 99 100 97 88 84 100 100
mCC EOL 90 96 52 51 98 99 100 97 88 84 100 100

mCF A 90 96 51 51 98 99 100 97 51 53 100 100
mCF R 89 96 52 51 98 98 100 96 50 49 100 100
mCW A 90 96 51 50 98 99 100 97 88 84 100 98
mCW R 90 96 52 51 98 99 100 97 88 84 100 100

mSRI 88 94 0 0 98 99 100 97 0 0 100 100
mARI 33 35 0 0 98 99 88 85 0 0 100 100

mRL N 88 94 0 0 98 99 100 97 86 83 100 100
mRL S 90 96 0 0 98 99 100 97 88 82 100 100
mDL 0 2 1 0 97 98 89 83 1 1 100 100
mIL 0 0 0 0 98 99 93 90 0 0 100 99

mML 0 0 0 0 98 99 78 83 0 0 100 100
mSDL 0 0 0 0 98 99 98 94 0 1 100 100
mSIL 0 0 0 0 98 99 82 82 1 0 100 100

Type-1 90 96 52 51 98 99 100 97 75 73 100 99
Type-2 75 80 0 0 98 99 97 94 43 41 100 100
Type-3 0 0 0 0 98 99 88 86 0 0 100 100

recall ranging from 97% to 99%. NiCad has negligible variance in its recall across the mutation operators and

clone granularities. SimCad has good Type-3 detection, with an average Type-3 recall of 88% for function

clones and 86% for block clones. SimCad has notable variation in recall across the clone granularities for the

mDL and mML mutation operators. It also shows variance across the mutation operators. It performs best

for clones produced by the mSDL and mIL mutation operators, and worst for those produced by mML.

5.4 Summary

We explored the performance of these tools per language and clone type. From these results, we can com-

ment on the overall performance of these tools and make some recommendations. The iClones, NiCad and

SourcererCC clone detectors are perhaps the best contenders, with excellent performance across the lan-

guages, granularities and clone types. The experiments did not find any particular weaknesses in NiCad or

SourcererCC. While iClones has very strong overall performance, it does not support C#, and has a drop in

recall for Type-2 clones with systematically renamed identifiers.

SimCad also has strong detection across the three clone types and languages, but has a couple weaknesses.

In order to maintain precision, its identifier normalization must be applied systematically. This causes it to

miss some Type-2 clones with arbitrarily renamed identifiers (∼80% recall). It also has a high degree of

variance in its Type-3 detection, ranging from 78-99%.

ConQat has good Java recall, with ∼90% for Type-1 and Type-2 clones, and 85-90% for Type-3 clones.

ConQat is a general framework for software analysis. While it appears to support clone detection in other

languages, it only contained a prepared script for Type-3 detection for Java. Deckard has rather poor recall

83



for C clones, with an average of 71% for function clones, and 58% for block clones. While Deckard can be

executed for Java systems, it only supports source files that conform to the Java-1.4 specification, which our

benchmark contains code up to the Java-1.6 specification.

While the Type-2 clone detectors have excellent detection in some cases, they all have a weakness in their

detection. CCFinderX supports all three languages, and has excellent overall Type-1 and Type-2 detection.

However, its detection is very poor for tools with arbitrary renamed identifiers. CPD has very good Type-1

detection for Java and C, but very poor detection with C#. CPD supports Type-2 clone detection with Java

only. It has excellent Type-2 Java recall, except for clones that contain differences in numeric literals, for

which it has no recall. CtCompare has high (90%) recall with Java, and good (80%) recall with C, for the

types of Type-1 and Type-2 clone differences it supports. However, it does not detect any Type-2 clones with

differences in literal values, with either language. Nor does it detect Type-1 C clones that contain differences

in end of line style comments (e.g., ‘//comment’). Simian has good overall Type-1 and Type-2 detection for

Java and C. However, it has weak performance (50-66%) for clones that differ by formatting.

Overall, with the exception of Deckard, we did not find significant differences in recall between the function

and block granularity. The block granularity results are best for measuring the general clone detection recall

of these tools. Function clone detection is important as this is the granularity a developer may first examine

when analyzing the clones in their software system, as function clones can be easier to understand and refactor

than block clones. Functions encapsulate complete logical functionalities, whereas blocks may encapsulate

only a part of a functionality, and therefore the entire function may need to still be considered.

Many of the tools had a weakness in detection clones produced by at least one of the mutation operators

(editing activities of the taxonomy). In most cases the weakness was seen in all of the supported languages.

Although in a few cases a tool supported the detection of a particular kind of clone in one language but not

another. For example, CtCompare could not detect Type-1 clones that differ by an end-of-line style comment

in C, but did not have this weakness with Java.

Many of the tools have particular weaknesses. The advantage of using the Mutation and Injection Frame-

work is it can isolate these weaknesses at a fine granularity. The results can be used by tool developers to

determine aspects of their tool that need improvement. Tool users can use this information to decide which

tool they should use for their task. Users can overcome weaknesses in an individual tool by using multiple

tools and merging their results. This allows the user to benefit from the unique detection characteristics of

multiple tools.

5.5 Threats to Validity

Alternate tool configurations may result in better or worse performance in the tool evaluations. This is

referred to as the confounding configuration choice problem by Wang et al. [139]. We took steps to ensure the

tool configurations were appropriate for our study. We used configurations that target the known properties

84



of the benchmark corpora, such as clone types, size and similarity thresholds. We consulted the default

settings and documentation of the tools to choose these configurations. We were careful not to configure

the tools in a way that would boost recall at a significant reduction in precision. This is the process an

experienced user would use to configure these tools for their own subject system. Therefore our results reflect

what a user can expect from these tools.

5.6 Conclusion

In this chapter, we used the Mutation and Injection Framework to perform fine-grained recall analysis of ten

clone detection tools. We measured recall per clone edit type for function and block clones for the Java, C and

C# programming languages. By comparing a clone detection tool’s recall across the mutation operators and

granularities, we were able to analyze their capabilities at a finger granularity than possible with a real-world

benchmark. This chapter demonstrates the true power of synthetic clone benchmarking.

85



Chapter 6

Evaluating Clone Detection Tools for Gapped Clones

The Mutation and Injection Framework was designed to be extensible by allowing the user plug-in cus-

tom mutation operators. The user can design novel mutation operators and combine them in mutators to

synthesize any kinds of clones for recall evaluations. For example, if a researcher designs a new clone detector

to improve detection of a certain kind or paradigm of clone, perhaps even more specific than one of the clone

types, they can customize the Mutation Framework to randomly generate thousands reference clones of the

kind they are targeting for rigorous evaluation and comparison against other tools. Otherwise, it can be

difficult to demonstrate and evaluate clone detectors that target specific types or novel kinds of clones, which

may not be featured in existing clone benchmark datasets.

As a demonstration of this extensibility, we use our Mutation and Injection Framework to rigorously

evaluate clone detection tools for Type-3 clones with a single dissimilar gap. This is the case where a code

fragment has been copy and pasted, and a number of new sequential source lines (statements) have been

inserted into the copied version. This is a very specific sub-type of a Type-3 clone, although a potentially

interesting one.

An example of a single gap clone is shown in Figure 6.1. A method was implemented to encapsulate

the file copying logic, including a logging message. This was later copied, and the copy was evolved by

adding logic to throw an exception if the source file does not exist, or the destination file already exists. The

code fragments are identical except for the single gap inserted into the copied version. This is potentially a

dangerous clone, as the purpose of the original function may have been to unify the file copying logic used

in the software system. Having two versions creates confusion and may cause bugs when developers expect

consistent behavior. It is desirable to detect clones like this one. However, this clone is not detectable by

most clone detectors as the code fragments are only 50% similar by line, whereas a 70% threshold is standard

in clone detection. Existing clone detectors may only be good at detecting single gap clones with small gaps.

Therefore we are interested in how robust the clone detection tools are against Type-3 clones with a single

dissimilar gap of any size. In Chapter 5 we evaluated the tools for Type-3 clones with added statements, but

only when the gap was a single line. Here we design mutation operators to create Type-3 clones with a single

gap of variable lengths. We evaluate the recall of the clone detection tools for single gapped clones with gap

size of one to twenty lines.

This chapter is organized as follows. In Section 6.1 we discuss the experimental setup, including the

86



// Original:

public copyFile(Path src, Path copy) throws IOException {

Files.copy(src,dest);

Logging.getLogger().log("File " + src + " copied to " + copy);

}

// Cloned with added gap:

public copyFile(Path src, Path copy) throws IOException {

if(!Files.exists(src))

throw new IllegalArgumentException("Source does not exist");

if(Files.exists(copy))

throw new IllegalArgumentException("Destination already exists!");

Files.copy(src, dest);

Logging.getLogger().log("File " + src + " copied to " + copy);

}

Figure 6.1: Example Single Gap Clone

creation of the mutation operators, and the setup of the Mutation Framework for generating a single gap

clone corpus. In Section 6.2 we discuss the participating tools and their configuration. We discuss the results

in Section 6.3 and conclude this chapter in Section 6.4.

6.1 Experimental Setup

6.1.1 Gap Mutation Operator

We created a clone-producing mutation operator for creating Type-3 clones with a single dissimilar gap. This

operator takes a code fragment as input, and outputs a mutant version with a single dissimilar gap inserted

after a randomly selected line. The operator is configured with the size of a gap to construct. The mutation

operator has a database of source lines taken from a collection of software systems which it selects from

randomly to create the gap. For example, for a gap size of five lines, the operator will select five random

statements from its database and insert these in sequence after a randomly chosen line in the input code

fragment.

6.1.2 Corpora Synthesis

We configured the Mutation Framework with twenty mutators using our mutation operator. Each mutator

used a single instance of the operator configured to inject a gap of size one to twenty (each mutator produces

gap clones of a certain gap length). We used IPScanner (Java) as our subject system, and a combination of

JDK6 and Apache Commons libraries as our source repository. We configured the framework to randomly

select 200 code fragments from the source repository and produce a gap clone using each of the mutators.

87



This means we synthesized 200 clones per gap length of one to twenty lines for a total of 2000 synthetic gap

clones.

We constrained clone synthesis to clones that are 15-100 lines in length, and 50-1000 tokens in length. We

did not enforce a mutation containment so the gap could occur anywhere within the clone. We also did not

enforce a minimum syntactical similarity on the synthesized clones, as we want to also generate true clones

with large gaps that cause overall syntactical similarity to become low, and therefore be difficult to detect.

In this way we will see when the tools encounter difficulty in detecting gapped clones due to the affect a large

gap can have on overall syntactical similarity.

6.1.3 Evaluation

For tool evaluation, we configured the framework’s clone matching algorithm to use a subsume tolerance

of one line to ignore any “off by one line” errors, which are common in clone detection [13]. We measured

recall using a minimum required clone similarity of 0%. Since we are generating clones that may have low

syntactical similarity, we cannot put this extra constraint on the matching requirement, as we were able to

previously (Chapter 5).

6.2 Participants

The participating tools and their configurations for this experiment are summarized in Table 6.1. Since we

are producing Type-3 clones, we include only clone detectors that support Type-3 clone detection in this

study. Our interest is to see how their detection performance stands up as the gap length increases.

6.3 Results

The recall of the participating clone detection tools is plotted against gap size in Figure 6.2. For all of the

participating tools, recall falls as the gap size increases. This is due to a large gap size having a higher chance

of dropping the clone’s syntactical similarity below the tools’ minimum similarity configurations.

NiCad has the strongest recall, with perfect detection of the clones with a gap size of one line, and

remaining above 90% until a gap length of four lines. Afterwards, NiCad’s recall quickly drops as gap size

increases. SourcererCC has good recall for gap lengths of one to two lines, but drops quickly after that.

Table 6.1: Participating Tools and their Configuration

Tool Configuration

Deckard [53] Min Length 50 tokens, 85% similarity, 2 token stride.
iClones [41] Min length 50 tokens, min block 20 tokens.
NiCad [110] Min length 10 lines, blind identifier normalization, literal abstraction, min 70% similarity.

SourcererCC [116] Min length 15 lines, min similarity 70%.

88



iClones has poor recall even for clones with a single gap line, and recall quickly drops off after this. This

is because iClones detects Type-1 and Type-2 clones and merges those that are separated by only a small

gap, so it is not robust against large gaps. While we previously found iClones to have good recall for Type-3

clones with a single-line gap (Chapter 5), here we are using a newer version of iClones which appears to have

introduced some regression in Type-3 detection.

Deckard in particular has poor recall even for the single gap line clones. However, Deckard’s parser has

some limitations for Java syntax, which could be hurting its performance.

What we are seeing is that the state of the art tools struggle to detect Type-3 clones that have low overall

syntactical similarity due to a large dissimilar gap. The clones we synthesized are just simple Type-3 clones,

where a code fragment has been copied and pasted and a section of new code added, so there is no doubt

they are true clones. This shows that there is a need for a specialized clone detector that can find these

clones. While existing clone detectors could find them by lowering their thresholds, this would also reduce

overall precision. Possibly a specialized detector could maintain precision by targeting the detection of just

the simple Type-3 clones with a large gap.

6.4 Conclusion

In this chapter we demonstrated how the Mutation Framework can be extended with custom mutation

operators to evaluate clone detection tools for very specific kinds of clones. For our demonstration, we

targeted simple single gap Type-3 clones, where a code fragment has been copy and pasted and a single

gap created by the addition of one or more sequential statements within the cloned fragment. We showed

that even the best of the state of the art tools have trouble detecting clones with gaps larger than five lines

(statements) due to the gap causing low overall syntactical similarity, which the clone detectors rely on for

detection. Despite the simplicity of these clones, they are problematic to detect. A specialized clone detector

is perhaps needed to target these larger gap clones, and the Mutation Framework can be used to motivate

and test such a new clone detector.

We do not focus on larger gap clones further in this thesis. Our goal here was to perform a case study

that demonstrates the value of the Mutation Framework’s extensibility. The Mutation Framework can be

easily extended with new mutation operators to motivate and rigorously evaluate emerging specialized clone

detectors.

89



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15 20

Re
ca

ll

Gap Size (Source Lines)

NiCad
iClones
SourcererCC
Deckard

Figure 6.2: Recall Results

90



Chapter 7

ForkSim: Generating Software Forks for

Cross-Project Analysis Benchmarking

In software development, similar software projects called software variants can emerge in various ways.

Although systematic reuse approaches such as software product lines are known to enable considerable effort

savings [23], existing projects are frequently forked and modified to meet the needs of particular clients and

users [31]. These variants typically undergo further parallel development and evolution, and reuse techniques

are often not explored until after the variants have matured. This leads to an increased maintenance effort

as many tasks are duplicated across the variants.

Maintenance effort can be reduced by merging the forks or by adopting a software reuse approach (e.g.,

software product lines). Berger et al. [16] report that 50% of industrial software product lines developed by

participants of their study were created in an extractive way, i.e., by merging already existing products. This

indicates a substantial practical demand for cross-project similarity detection approaches that help software

developers discover the similarities between their software variants and support decisions on reuse adoption

strategy. Several such approaches have been proposed (e.g., [33,90]), while clone detectors could also be used

for this purpose.

A current need is a benchmark for evaluating the performance of tools which detect similarity between

software variants. Performance is measured in terms of recall and precision. Recall is the ratio of the similar

source code shared between the variants that the tool is able to detect and report. Precision is the ratio of

the similar source code elements reported by the tool which are not false positives.

Measuring recall and precision involves executing the tool for a benchmark dataset (or datasets) and

analysing the tool’s output. Precision can be easily measured by manually validating all (or typically a

random subset) of the tool’s output. However, measuring recall requires that all similar code amongst the

variants of the dataset be foreknown. This makes it very difficult to use datasets from industry or open source

(e.g., BSD Unix forks). Building an oracle by manually investigating the dataset for similar code is, due to

time required, essentially impossible for datasets large enough to allow meaningful performance evaluation.

To address these difficulties, and to reduce the amount of required manual validation to a minimum, we

developed ForkSim, which uses source code mutation and injection to construct datasets of synthetic software

forks. The forks are generated such that their similarities and differences at the source level are known. Recall

91



can then be measured automatically by procedurally comparing a tool’s output against the dataset’s known

similarities. Precision can be measured semi-automatically, as reported similarities which match known

similarities or differences in the dataset can be automatically judged as true or false positives, respectively.

Only the reported similar code not matching known properties needs to be manually investigated.

The forks generated by ForkSim can be used in any research on detecting, visualizing, or understanding

code similarity among software products. The generated forks are a good basis for evaluating automated

analysis approaches, as well as for performing controlled experiments to investigate how well the specific tool

supports users in understanding similar code. ForkSim is publicly available for download1.

This chapter is based upon our manuscript [124] “ForkSim: Generating Software Forks for Evaluating

Cross-Project Similarity Analysis Tool” published by myself, Chanchal K. Roy and Slawomir Duszynski in

the tool paper track of the Working Conference on Software Code Analysis and Manipulation, c©2013 IEEE.

I was the lead author of this paper and study, under the supervision of my supervisor Chanchal K. Roy

and Slawomir Duszynski. The publication has been re-formatted for this thesis, with small modifications to

better fit the thesis.

The remainder of this chapter is organized as follows. Related work is discussed in Section 7.1, and

software forking in Section 7.2. Section 7.3 outlines ForkSim’s fork generation process, Section 7.4 outlines

the comprehensiveness of the simulation, and Section 7.5 discusses the quality of the generated forks. Sec-

tion 7.6 outlines ForkSim’s use cases, while Section 7.7 provides a demonstration of its primary use case: tool

performance evaluation. Finally, Section 7.8 concludes the paper.

7.1 Related and Previous Work

Although automatic tool benchmark construction has been proposed in various problem domains [85], to

the best of our knowledge there are no other tools which generate software fork datasets for evaluating

cross-project similarity analysis tools, nor is there a reference case (e.g., a set of software forks with known

properties) which could be used for tool evaluation. The most related work to ours is a manual validation

of cross-project similarity analysis results obtained through clone detection by Mende et al. [90]. However,

manual result validation has several drawbacks, as discussed in the introduction. ForkSim is unique in that

tool evaluation can be mostly automated for datasets generated by ForkSim, as the similarities and differences

between the generated software forks are known.

7.2 Software Forking

In the forking process, a software system is cloned and the individual forks are evolved in parallel. De-

velopment activities may be unique to an individual fork, or shared amongst multiple forks. For example,

1http://homepage.usask.ca/~jes518/forksim.html

92

http://homepage.usask.ca/~jes518/forksim.html


code may be copied from one fork to another. While forks may share source code, the code may contain

fork-specific modifications, and may be positioned differently within the individual forks. A fork may itself

be forked into additional forks. Table 7.1 provides a taxonomy of the types of source code level development

activities performed on forks. These development activities describe how a fork may change with respect

to its state at the start of the forking process. This taxonomy is based upon our research and development

experience, and discussions with software developers.

Existing code originates from pre-fork development, and new code originates from post-fork develop-

ment. The development activities occur at various code granularities, including: source directory, source file,

function, etc. The result of forking and these further development activities are a set of software variants

containing source code in the following three categories: (1) code shared amongst all the forks, (2) code

shared amongst a proper subset of the forks, and (3) code unique to a specific fork. ForkSim creates datasets

of forks resulting from these development activities, and containing source code in these three categories. It

does this by simulating a simple forking scenario.

7.3 Fork Generation

ForkSim’s generation process begins with a base subject system, which is duplicated (forked) a specified

number of times. Continued development of the individual forks is simulated by repeatedly injecting source

code into the forks. Specifically, ForkSim injects a user specified number of functions, source files, and source

directories. Instances of source code of these types are mined from a repository of software systems, which

ensures the injected code is realistic and varied.

Each of the chosen functions, files and directories are injected into one or more of the forks. The number

and particular forks to inject a source artifact into are selected at random. Injection into a single fork creates

code unique to that fork, while injection into a subset of the forks creates code shared amongst those forks.

Injection locations are selected randomly, but only amongst the code inherited from the base system, i.e., not

inside previously injected code. This prevents the injected code from interacting, which makes the generation

process much easier to track and thereby simplifies tool evaluation using the generated dataset. When code is

injected into multiple forks, the injection location may be kept uniform or varied, given a specified probability.

Forks may share code, but that code may be positioned differently within the individual forks.

Table 7.1: Taxonomy of Fork Development Activities

ID Development Activity

DA1 New source code is added.

DA2 Existing source code is removed.

DA3 Existing source code is modified and/or evolved.

DA4 Existing source code is moved.

DA5
Source code is copied from another fork. It may be copied into a different position than
in the source fork, and it may be modified and/or evolved independently of the source.

DA6 A fork may itself be forked.

93



Before code is injected into a fork it may be mutated, i.e., automatically modified in a defined way, given

a specified probability. This causes code shared by the forks to contain differences, simulating that shared

code may be modified or evolved independently for the needs of a particular fork.

Files and directories may be renamed before injection, given a specified probability. While forks may

share code at the file and directory level, they may not have the same name. For example, they may have

been renamed to match conventions used in the fork.

Each injection operation (injection of a function, a file, or a directory) is logged. This includes recording

the forks the code was injected into, the injection locations used, and if and how the code was mutated and/or

renamed before injection. A copy of the code and any of its mutants are kept separately and referenced by

the log. ForkSim also maintains a copy of the original subject system. From the log and the referenced

data the directory, file and function code similarities and differences inherited from the original system and

introduced by injection, can be procedurally deduced.

Fig. 7.1 depicts this generation process. On the left side are the inputs: the subject system, source

repository and user-specified generation parameters. The subject system duplicates (forks) are modified by

the boxed process, which repeats for each of the source files, directories and functions to be introduced. The

figure shows an example of this process, in which a randomly selected function from the source repository

is introduced into the forks. ForkSim randomly decided to inject this function into three of the four forks

using non-uniform injection locations, and to mutate the function before injection into the latter two forks.

On the right side are the outputs: the generated fork dataset and the generation log.

ForkSim supports the generation of Java, C and C# fork datasets. It is implemented in Java 7 (main

architecture and simulation logic) and TXL [27] (source code analysis, extraction and mutation). ForkSim’s

generation parameters are summarized in Table 7.2.

Injection Directory and file injection is accomplished by copying the directory or file into a randomly

selected directory in the fork. In order to prevent injected directories from dominating a fork’s directory

tree, only leaf directories (those containing no subdirectories) are selected for injection. Function injection is

performed by selecting a random source file from the fork, and copying the function’s content directly after

a randomly selected function in the chosen file. The generation process can be parametrized to only select

functions for injection which fall within a specified size range measured in lines before mutation.

Mutation ForkSim uses mutation operators to mutate code before injection. Fifteen mutation operators,

named and described in Table 7.3, were implemented in TXL [27]. Each operator applies a single random

modification of its defined type to input code. These mutation operators are based upon a comprehensive

taxonomy of the types of edits developers make on cloned code [108], which makes them suitable for simulating

how developers modify shared code duplicated between forks.

Files and functions are mutated by applying one of the mutation operators a random number of times

before injection. The number of mutations is limited to a specified ratio of the size of the file/function

94



Subject System

Repos-
itory

Forks Dataset

1.Select Code

2. Select Forks

3. Select Injection 
Locations

4. Mutate Code

6. Log

5. Inject Code

Repeat for X source files, Y source directories and Z functions.

Generation
Parameters Log

Figure 7.1: Fork Generation Process

measured in lines after pretty printing. This provides an upper limit on how much simulated development is

allowed to occur on a source file or function in a particular fork. Pretty printing (one statement per line, no

empty lines, comments removed) the source artifact before measurement ensures the measure is consistently

proportional to the amount of actual source code contained. This ratio can be specified separately for files

and functions.

A small mutation ratio is recommended (10-15%) as too many changes may cause the variants of a

file/function injected into multiple forks to become so dissimilar that they may no longer be a clone. Detection

tools would be correct not to report them. ForkSim datasets are only useful if the elements declared as similar

are indeed similar.

When directories are injected, each of the source files in the directory may be mutated using the same

process as used for injected files. The directory mutation probability parameter defines how likely a file in

an injected directory is mutated.

As a principle of mutation analysis, ForkSim does not mix mutation operators. This makes it easier

to discover if a similarity analysis tool struggles to detect similar code with particular types of differences.

ForkSim cycles through the mutation operators to ensure that each is represented in the generated forks

roughly evenly. When it is not possible to apply a given operator to the file or function, another operator is

chosen randomly.

95



Table 7.2: ForkSim Generation Parameters

Parameter Description

Subject System The base system which is forked during the generation process.

Source Repository
A collection of systems from which the source files, directories and
functions are mined.

Language Language of forks to generate (Java, C or C#).

# Forks Number of forks to generate.

# Files Number of files to inject.

# Directories Number of directories to inject.

# Functions Number of functions to inject.

Function Size Maximum/Minimum size of functions to inject.

Max Injections
Maximum number of forks to inject a particular function/file/directory
into.

Uniform Injection Rate Probability of uniform injection of a source artifact.

Mutation Rate
Probability of source mutation before injection. Specified separately
for function, file and directory injections.

Rename Rate Probability of renaming before injection.

Max Mutations
Maximum number of mutations to apply to injected code. Specified as
a ratio of the code’s size in lines.

Table 7.3: Mutation Operators from a Code Editing Taxonomy for Cloning

ID Description

mCW A Change in whitespace (addition).

mCW R Change in whitespace (removal).

mCC BT Change in between token (/* */) comments.

mCC EOL Change in end of line (//) comments.

mCF A Change in formatting (addition of a newline).

mCF R Change in formatting (removal of a newline).

mSRI Systematic renaming of an identifier.

mARI Arbitrary renaming of a single identifier.

mRL N Change in value of a single numeric literal.

mRL S Change in value of a single string literal.

mSIL Small insertion within a line (function parameter).

mSDL Small deletion within a line (function parameter).

mIL Insertion of a line.

mDL Deletion of a line.

mML Modification of a whole line.

Renaming The probability of a file or directory being renamed before injection is specified separately from

that of source code mutation, and both are allowed to occur on the same injection. Renamed source files

keep their original extensions.

Usage ForkSim operation is very simple. The user makes a copy of the default generation parameters file,

and tweaks it for the dataset they wish to generate. This includes specifying paths to the subject system

and source repository to use. Once the parameters file and systems are prepared, the user executes ForkSim

and specifies the location of the parameters file and a directory to output the forks and generation log into.

Once execution is complete, the forks and generation log are ready for use in experiments involving similarity

analysis tools.

96



7.4 Simulation of Development Activities

During the generation process, ForkSim simulates all six of the development activities from the forking

taxonomy (Table 7.1). The following subsections describe how the code injection scenarios performed during

the generation process can be interpreted as the six development activities.

DA1 Any of the code injections can be interpreted as the addition of new code to a fork.

DA2 Code injected into a proper subset of the forks can be interpreted as existing code (pre-fork) which

was deleted from the forks it was not injected into.

DA3 Code injected into the forks, with at least one instance mutated, can be interpreted as existing code

which was modified/evolved in one or more of the forks, perhaps inconsistently. The code needs not be

injected into all of the forks to simulate DA3, as the forks missing the code can be interpreted as having lost

this shared code due to DA2.

DA4 Code injected into the forks, with variation in injection location, can be interpreted as existing code

being moved. When the code is not injected into all the forks, the forks missing this existing code can be

interpreted as instances of DA2.

DA5 Code injected into multiple forks can be interpreted as code implemented in one fork and copied into

others. Non-uniform injection, source mutation and renaming simulate that the code may be copied into a

different location than in the source, and continued development may occur independently of the source.

DA6 While the generation process creates all of the forks from the same forking point (the base system),

the resulting dataset can be interpreted as originating from multiple forking points. Code shared due to

injection amongst a subset of the variants can be interpreted as development before a shared forking point,

which may not be shared across all the forks. This activity can also be simulated by using the forks as the

base system for additional executions of ForkSim.

7.5 Discussion

Advantages The primary advantage of ForkSim is that the user can precisely control the amount and type

of similarities and differences among the generated forks. This allows for well-controlled evaluation of tools

which analyse forks. Moreover, as the fork generation process is known and logged, the correct and complete

information on the actual code similarities and differences between the forks is available. This is not the case

when real-world forks are analysed.

97



Disadvantages One of the limitations of ForkSim is that the generated variants may have properties that

differ from real forks, particularity if aggressive injection settings are used. As injection is a random process,

the code-level properties do not represent meaningful development. Also, the distribution of the similar

and dissimilar code might differ from real-world forks. However, to the best of our knowledge, there are

no systematic studies on the amount and distribution of code similarities and differences in real-world forks.

Therefore we are not able to tune our generation algorithm and its parameters to produce very realistic forks.

However, as fork analysis tools likely do not behave differently for less realistic software variants, it is unlikely

that this will have a significant effect on tool evaluations using ForkSim-generated fork datasets.

Unknown Similarities The similarities and differences between the forks inherited from the subject sys-

tem and intentionally created by injection are exactly known. However, there will be some additional simi-

larities between the forks which are unknown. These include: (1) clones within the original subject system

which become similar code within and between the generated forks, (2) unexpected similarity between the

functions, files, and directories randomly chosen from the source repository, and (3) unexpected similarity

between these chosen source artifacts and the subject system.

Since these similarities are unknown, they are not included in the measurement of a tool’s recall for the

dataset. However, this is not a disadvantage as we are not interested in evaluating the tools for intra-project

similarities. The known similarities are sufficient for measuring cross-project similarities. These similarities,

however, must be considered in the measure of a tool’s precision.

7.6 Use Cases

Cross-Project Similarity Tool Performance Evaluation ForkSim datasets can be used to measure

the recall and precision of tools which detect similarity between software projects. It is especially attuned for

tools which focus on similarity detection between software variants (e.g. forks). ForkSim datasets are ideal

for this usage scenario as similarities and differences between the generated forks are known. Recall can then

be measured automatically, and precision semi-automatically. Recall is evaluated by measuring the ratio of

the similar code between the forks, and their relationships, the tool is able to detect and report. The recall

measure considers both the similarities created by injection, and the similarities between each of the forks

due to the duplication of the base system during the generation process.

How tools report similar code is likely to differ. Therefore, to evaluate recall the dataset’s generation log

must be mined and converted into the detection tool’s output format. This process creates the tool’s gold

standard, i.e., its ideal and perfect output for the dataset. Recall is then the ratio of the gold standard the

tool was able to produce. By building the gold standard procedurally, recall evaluation becomes automatic.

The conversion procedure needs only to be written once, and reused for various datasets.

Precision can be evaluated semi-automatically. Any detected similar code which is in the gold standard

can be automatically labeled as true positive. Any reported similarities which match known differences in the

98



dataset can be labeled as false positives. The remaining output requires manual validation to complete the

measure of precision. It is sufficient to validate a random subset (large enough to be statistically significant)

of the remaining output and to estimate precision from these results.

Tool Usability Study ForkSim-generated datasets are valuable for performing controlled experiments

involving tools which analyse and/or visualize similarities and differences between software variants. The

goal of such an experiment can be to measure the level of support for software similarity comprehension the

tools provide to their users. The experiment would have the following procedure: first, a dataset of forks

with known similarities is generated using ForkSim. Then, the study participants, divided into a few groups,

use the tools to analyse the dataset and report their findings. Each user group uses a different tool to solve

the same tasks. For example, the participants can be asked a set of questions related to the similarity of

the analysed variants, which they should answer by discovering and understanding the similarities using the

given tool. The tasks should be designed to evaluate a specific aspect of the tools, e.g. their usability or

the appropriateness of the used similarity visualizations. By checking the correctness of the answers and

recording the amount of needed effort and/or time, user group performance is quantitatively measured. In

this way, the effect of using the different tools is quantified, and the tools can be compared regarding the

properties targeted by the tasks, such as tool usability. Alternatively, the user groups might use the same

tool to solve different tasks, in order to determine which task type is easy or difficult for the users when they

use the specified tool.

Adaptations For the purpose of clone management, detecting and studying clone genealogies is another

important research topic, and there have been a few genealogy detectors (e.g., [113]). The technology used

in ForkSim can easily be adapted to generate software versions rather than software variants for evalu-

ating genealogy detector performance. Such an adaptation could also be used to evaluate clone ranking

algorithms [142], which use multiple versions of a software system to produce a clone ranking.

7.7 Evaluation

As a demonstration of ForkSim’s primary use case, tool evaluation, we evaluated NiCad’s performance for

similarity detection between software variants. While NiCad is a clone detector designed for single systems,

it can be used to detect similarity between forks by executing it for the entire dataset and trimming the

intra-project clone results from its output. To evaluate NiCad, we generated a ForkSim dataset of 5 Java

forks. We used JHotDraw54b1 as the subject system and Java6 as the source repository. The generation

parameters used are listed in Table 7.4. The NiCad clone detector is capable of detecting function and block

granularity near-miss clones. It uses TXL to parse source elements of these granularities from an input

system, and uses a diff-like algorithm to detect clones after these source elements have been normalized to

remove irrelevant differences (e.g., formatting, comments, whitespace, identifier names, and more). For use

99



in this experiment, we extended NiCad to support the detection of clones at the file granularity.

Using NiCad, we detected the file and function clones in the dataset. NiCad was set to detect clones

3-5000 lines long, with at most 30% difference. It was configured to pretty print the source, blind rename

the identifiers, and normalize the literal values in the dataset before detection. The clones were collected

both in clone pair (pairs of similar files or functions) and clone class (set of similar files or functions) format.

Overall, NiCad found 363 file clone classes (16,553 pairs) and 1831 function clone classes (2,198,636 pairs).

To evaluate NiCad’s recall, we converted the known similarities between the forks into file and function

clone classes. Each file injected into multiple forks was converted into a file clone class, as were the files

contained in directories injected into multiple forks. File clone classes were created for each of the files the

forks inherited from the subject system, with the files modified due to function injection trimmed from these

classes. Each function injected into multiple forks was converted into a function clone class. Lastly, a function

clone class was created for each function the forks inherited from the subject system. These clone classes

were also converted to clone pair format.

NiCad’s recall performance is summarized in Table 7.5. Recall was measured per clone granularity (file or

function), and per origin of similarity (file/directory/function injection or original subject system files). As

can be seen, NiCad had 100% recall for all sources of file clone classes, and 98-99% for function clone classes.

If we consider clone pairs instead of clone classes, we see that the function clone detection is marginally

better (+0.1%). These are very promising results for NiCad as a fork similarity analysis tool. These results

are specific to the dataset’s generation parameters. In future we plan to evaluate NiCad’s recall performance

for many datasets with varied parameters; for example, with larger and smaller max mutation values.

Due to time constraints, we did not perform a full precision analysis for this experiment. However, NiCad

is known to have high precision [110]. Using known similarities, we were able to validate 20.7% of NiCad’s

reported file clone pairs, but only 1.46% of its reported function clone pairs. NiCad is reporting a large

amount of cloned code beyond that of the known similarities. Part of this is due to unknown similarities

arising from clones within the original subject system. However, a large fraction of this is due to the NiCad

Table 7.4: ForkSim Generation Parameters: NiCad Case Study

Parameter Value

Subject System JHotDraw54b1

Source Repository Java6

Language Java

# Forks 5

# Files 100

# Directories 25

# Functions 100

Function Size 20-100 lines

Max Injections 5

Uniform Injection Rate 50%

Mutation Rate files: 50%, directories(files): 50%, functions: 50%

Rename Rate files: 50%, directories: 50%

Max Mutations 15% of size in lines

100



Table 7.5: NiCad Case Study Recall Results

Type
File

Injections
Directory
Injections

Function
Injections

Original Files

File Clone Class
100%

(41/41)
100%

(117/117)
- 100% (260/260)

Function Clone
Class

- -
98.7%

(75/76)
99.4%

(2869/2886)

Function Clone
Pair

- -
98.8%

(332/336)
99.5%

(28708/28860)

clone size settings used. A minimum clone size of 3 lines was required to ensure that all cloned functions were

detected. However, small standard functions such as getters and setters are very similar after normalization,

which was a source of a large number of these clone pairs. Likewise, interfaces and simple classes are likely

to be detected as similar after identifier normalization. For practical usage, these small similarities would

likely be filtered out in preference of the larger similarities. In summary, NiCad has very good detection

performance of similarities between forks, but the quantity of output would make its usage difficult. A

post-processing step needs to be added to extract the most useful and important similarity features from its

output.

7.8 Conclusion

In this chapter we have introduced ForkSim, a tool for generating customizable datasets of synthetic forks with

known similarities and differences. These datasets can be used in any research on the detection, visualization,

and comprehension of code similarity amongst software variants. ForkSim datasets allow similarity detection

tools to be evaluated in terms of recall (automatically) and precision (semi-automatically), and can be useful

in experiments aiming at evaluating the usability and visualization of similarity tools. We demonstrated

ForkSim using a case study evaluating NiCad’s cross-project similarity detection for a set of five ForkSim-

generated Java forks.

101



Part II

Real-World Large-Scale Clone

Benchmarking

102



In this part, we present our work with real-world and large-scale inter-project clone benchmarking. In

Chapter 4, we showed that the previous leading real-world clone benchmark, Bellon’s Benchmark, is not

appropriate for evaluating modern clone detection tools. While we had already delivered a high quality

synthetic benchmark with the Mutation and Injection Framework, a new real-world benchmark was warranted

and needed by the community. Additionally, no existing clone benchmark was appropriate for evaluating

clone detection tools in the context of inter-project and large-scale clone detection, an emerging research

topic that we explore in this thesis, so such a benchmark was needed by ourselves and the community.

For these reasons, we introduce BigCloneBench: our real-world big clone benchmark for evaluating all

flavors of clone detection, including inter-project and large-scale clone detection. We built BigCloneBench

by mining IJaDataset, a big inter-project source-code dataset, for clones of distinct functionalities. We

designed a mining and validation procedure capable of building a large benchmark while minimizing the

clone validation efforts and minimizing the subjectivity in the validation results. We built a big benchmark

of eight million reference clones spanning the four clone types as well as the entire spectrum of syntactical

similarity, including intra-project, inter-project and semantic clones. We describe our clone mining procedure,

the contents and properties of our benchmark, and its usages in Chapter 8.

We used BigCloneBench to conduct a clone detection tool comparison study where we measured recall

per clone type, including for each region of syntactical similarity. We measured and compared recall for

intra-project vs inter-project clones, and evaluated how well the tools capture the reference clones using

multiple clone-matching algorithms. We compared the results of our real-world benchmark against those

from our synthetic clone benchmark to demonstrate the need for both styles of benchmarking to get a full

understanding of a tool’s recall performance. This study is presented in Chapter 9.

To make this benchmarking procedure accessible to the community, we distilled our tool evaluation exper-

iment procedure into a customizable framework called BigCloneEval. This framework makes the execution

of recall evaluation experiments with BigCloneBench easy, and handles tool execution, tool scalability, and

recall measurement automatically for the user. The evaluation experiments are customizable, including a

plug-in architecture for using custom clone-matching algorithms. Importantly, BigCloneEval creates a refer-

ence standard for tool evaluation with BigCloneBench. BigCloneEval is presented in Chapter 10.

Later in this thesis (Part III, Chapter 12), we use BigCloneBench to evaluate our CloneWorks clone

detector for large-scale clone detection, including the measurement of recall, precision, execution time and

scalability.

103



Chapter 8

BigCloneBench

There are multiple flavors of clone detection tools. Classical clone detection tools locate syntactically

similar code within a single software system or small repository. These tools have been traditionally used

to cancel out the effects of ad-hoc code reuse (e.g., copy and paste) [108] in software systems. Semantic

clone detectors locate code that implements the same or similar functionalities. These tools target the clones

the classical detectors miss due to a lack of syntactical similarity. Recently, new applications for clone

detection and search have emerged relying on detected clones among a large number of software systems.

Since classical clone detection tools do not support the needs of such emerging applications, new large-

scale clone detection and clone search algorithms are being proposed as an embedded part of the emerging

applications. For example, large-scale clone detection and clone search (e.g., [81]) is used to find similar

mobile applications [22], intelligently tag code snippets [97], find code examples [66], and so on.

A limitation with existing benchmarks is that they only target the classical clone detectors which focus

on the detection of syntactically similar intra-project clones. They typically only consider the clones within

a couple of software systems. Many “flavors” of clone detection cannot be evaluated by these benchmarks.

Semantic clone detectors require a benchmark of semantically similar clones with a wide range of syntactical

similarity. Large-scale clone detectors require a benchmark with many inter-project clones. Clone search

algorithms must be evaluated against large clone classes. By targeting a single benchmark scope, the bench-

mark becomes limited to a specific sub-class of clones. The community needs a standard benchmark that

covers the full range of clone types and clone detection applications.

In this chapter, we introduce BigCloneBench, a large-scale clone benchmark of true and false clones in

IJaDataset 2.0 [4] (25,000 subject systems, 2.3 million files, 250MLOC). Unlike previous real-world bench-

marks (namely Bellon’s Benchmark [13]), we did not use clone detectors to build our benchmark. Rather,

we mine IJaDataset for clones of frequently used functionalities. We used search heuristics to automatically

identify code snippets in IJaDataset that might implement a target functionality. These candidate snippets

are manually tagged as true or false positives of the target functionality by expert judges. The benchmark

is populated with the true and false clones oracled by the tagging process. We use TXL-based [27] auto-

matic source transformation and analysis technologies to typify these clones and measure their syntactical

similarity.

BigCloneBench contains 8.9 million true clone pairs of 43 distinct functionalities, which can be used to

104



measure the recall of all flavors of clone detection. The benchmark contains many intra-project clones for

evaluating classical clone detection tools. Every clone is of a functionality, with wide variety of syntactical

similarity, which makes it ideal for evaluating semantic clone detection tools. Its large number of inter-project

clones makes it an ideal target for evaluating large-scale detectors. It contains large clone classes of distinct

functionalities, which can be used as targets for evaluating clone search algorithms. While not all tools scale to

large-scale, they can be evaluated for BigCloneBench by executing them for subsets of the benchmark within

their scalability constraint. As a standard benchmark, BigCloneBench is the ideal target for comparing the

execution time and scalability of clone detection tools. BigCloneBench also documents 288 thousand known

false positive clones discovered during the mining process. These can be used to evaluate the accuracy of the

clone detectors, but cannot replace a traditional measurement of precision by manual validation of a clone

detection tool’s output. We have focused our efforts on building a benchmark for measuring recall for any

flavor of clone detection.

This chapter is an updated and extended version of our manuscript [125] “Towards a Big Data Curated

Benchmark of Inter-Project Code Clone” which was published in the International Conference on Software

Maintenance and Evolution, c©2014 IEEE. I was the lead author on this work, and my co-authors include

Judith F. Islam, Iman Keivanloo, Chanchal K. Roy and Mohammad Mamun Mia. Iman Keivanloo and

Chanchal K. Roy acted as supervisors for this project, while Judith F. Islam and Mohammad Mamun Mia

contributed functionality selection and clone validation efforts. The publication has been updated to reflect

the latest work on BigCloneBench, and re-formatted for this thesis.

The rest of this chapter is organized as follows. In Section 8.1 we discuss the related work. In Section 8.2

we describe our methodology for building BigCloneBench, in Section 8.3 we discuss our efforts executing

this procedure, and in Section 8.4 we overview the contents of the final benchmark. Then in Section 8.5 we

describe how the benchmark can be used to evaluate clone detection tools, and in Section 8.6 we describe

how it can be used to evaluate clone search tools. We close with a description of the distribution of the

benchmark in Section 8.7, the threats to the validity of the benchmark in Section 8.8, and our conclusions

in Section 8.9.

8.1 Related and Previous Work

Benchmark experiments have been performed that measure the recall and precision of classical clone detection

tools that scale to a single system. However, measuring recall has traditionally been very challenging. Some

experiments have ignored recall, and measured tool precision by manually validating a small sample of a tool’s

candidate clones [38,52,70,76,82]. Other experiments have tackled the recall problem by accepting the union

of multiple tools’ candidate clones as the reference set, possibly with some manual validation [13,18,35,94,112].

For some experiments, very small subject systems were manually inspected for clones [18, 71, 110]. An ideal

oracle could be made if all the pairs of code fragments in a subject system were inspected. However, this

105



is not feasible except for toy systems. For example, when considering only clones between functions in the

relatively small system Cook, there is nearly a million function pairs to manually inspect [137].

Large-scale (Big Data) analysis is a very popular and rewarding field in both industry and academia.

As the benefits and utility of large-scale analysis has become clearer [87], so has the number of technolo-

gies (e.g., [6, 29, 36, 37, 132]) that enable it. To develop, improve, and compare these technologies, quality

benchmarks are needed. This need has been recognized by the international community in such conferences

or workshops as Big Data Benchmarking [140], which began in 2010. There has been significant efforts in

evaluating large-scale analysis technologies [5,7,25,40,98,101]. For example, BigBench [40] models a typical

large-scale scenario and generates a large-scale benchmark problem. The major large-scale technologies could

be compared using BigBench.

In contrast, BigCloneBench is a domain-specific large-scale benchmark for evaluating all types of clone

detection and clone search technologies, especially those that scale to large-scale. It can be used to measure

recall, estimate precision, and compare the execution time and scalability of clone detection and search

tools. The benchmark consists of a curated collection of true and false clone pairs in the large-scale inter-

project repository IJaDataset. Recall and precision are measured by comparing the tool’s output against the

benchmark. Execution time and scalability are compared by using IJaDataset as a common target for the

detection tools.

While the Mutation and Injection Framework could be adapted to large-scale by injecting artificial clones

into them, the importance of evaluating the tools with real data is widely discussed [12, 75, 77, 128]. Krutz

and Le [77] oracled all method pairs between randomly selected files in a subject system using several judges.

While their data has high confidence, their benchmark is very small, only 66 method clone pairs.

These existing benchmarks are not suitable for evaluating the other flavors of clone detection tools, for

example, the emerging large-scale clone detection algorithms. The existing benchmarks are too small, and

only consider intra-project clones from a handful of subject systems. Large-scale clones span thousands

of subject systems, and inter-project clones may have significantly different properties from intra-project

clones. In this paper we present a large-scale benchmark that contains millions of inter-project clones, spans

thousands of subject systems, was built without the use of clone detectors, and has a very clear oracling

procedure.

8.2 Methodology

Our benchmark consists of clones of specific functionalities in IJaDataset. We built this benchmark by mining

IJaDataset [4] for code snippets that implement candidate functionalities, which enables us to identify true

and false clone pairs of the four primary clone types in IJaDataset. For each of the functionalities considered,

the five step process depicted in Figure 8.1 is executed.

In the first step, we select a functionality that is possibly used in open-source Java software, and identify

106



A. Mine Snippets

Benchmark
Typify Clone 

PairsClone
Class

D. Add True Clone Pairs to the Benchmark

Clone Pairs

f1 f2 t

E. Add False Clone Pairs to Benchmark

True +

Sample

False Clone Pairs

sample False+
Sample False +

Sample

Select Target 
Functionality

Identify 
Implementations

Create
Specification

Create Search 
Heuristic

Search
Heuristic

Build 
Candidate Set

IJaDatasetSpecification

Candi-
date

INSERT

B. Tag Snippets

Judges

True+ 
Tag

False+ 
Tag

Tabulate

C. Final Judgment
T>F T<F

True +
Undeci-

ded
False+

T=F
T = # True+ Tags
F = # False+ Tags

Figure 8.1: Methodology (Executed Per Functionality)

some of the possible implementations of that functionality. Using these implementations, we design a search

heuristic to identify snippets in IJaDataset that might implement the functionality. In the second step, these

candidate snippets are manually tagged by one or more expert judges as true or false positives of the target

functionality. In the third step, the tags are tabulated per candidate snippet, and the snippets are judged

as true or false positives considering the majority opinion of the judges. In the case of a tie (even number of

judges) the candidate snippet is judged “undecided” and left unknown until additional tagging is performed.

In the fourth and fifth steps, the oracled true and false positive snippets are used to populate the benchmark

with the oracled true and false clone pairs. This process is repeated for a number of target functionalities,

creating a live benchmark that improves with each iteration.

This methodology can be executed for any snippet granularity (method, block, etc) and programming

language. We target the method granularity as it is the granularity supported by the most tools [104, 106,

108, 109], and because methods nicely encapsulate functionalities [106]. We target the Java programming

language because it is the language most commonly supported by clone detection tools, and because of the

availability of IJaDataset. Additionally, Java is a very popular language discussed on on-line platforms such

as StackOverflow and GitHub, and we expect many cloned functionalities between distinct software projects

in IJaDataset.

In the following subsections we explore the individual steps of the methodology in detail. We highlight

how these steps were executed for the functionality “Shuffle an Array in Place” as our running example.

8.2.1 Mining Code Snippets

In this step, we select a target functionality and mine IJaDatset for code snippets that implement the func-

tionality. IJaDataset contains 24 million (method granularity) snippets, equating 0.288 quadrillion method

pairs, which is far too many to inspect manually. In order to reduce our manual efforts, we construct a search

107



heuristic to identify the snippets that might implement the target functionality. This smaller set of candidate

snippets are manually inspected in Section 8.2.2. Snippet mining occurs over five sub-steps as follows:

(1) Select Target Functionality: We begin by selecting a functionality we believe is needed in open-source

Java projects as our target functionality. We research and select the functionality by browsing Internet re-

sources used by open-source developers, such as: Stack Overflow, Java tutorial sites, standard library docu-

mentation, and popular 3rd party library documentation. We draw from our own development experiences,

we ask developers for sample functions, and we investigate sample open-source systems using the GitHub

API [102]. We select a functionality we believe will appear many times in IJaDataset.

As a running example, we chose the functionality “Shuffle an Array in Place”. Developers sometimes

need to randomly shuffle the contents of an array. This is reflected in the inclusion of a shuffle method for

List data structures in Java’s standard library. However, no such method is provided for array structures,

and sometimes developers need to shuffle arrays that are too large to be stored or temporary transitioned

into a List type object. Thus, while there is no guarantee, we expect IJaDataset to contain methods that

implement an in-place shuffle for arrays.

(2) Identify Implementations: Before we design a search heuristic, we need to identify how the func-

tionality might be implemented in Java. We review Internet discussion (e.g., Stack Overflow) and API

documentation (e.g., JavaDoc) to identify the common implementations of the target functionality. These

resources are frequently used by open source developers, so we expect similar implementations to appear in

IJaDataset. Implementations may use different support methods, data structures and APIs, or they may

express the algorithms using different syntactic constructs (e.g., different control flow statements).

For each of the identified implementations, we collect a sample snippet that uses the implementation to

achieve the functionality. The sample snippets are minimum working examples, and include only the steps

and features necessary to implement the functionality. The sample snippets are added to IJaDataset as

additional crawled open-source code. These play a role in the identified true and false clone pairs. They are

also used to improve the efficiency and accuracy of snippet tagging.

For the running example, our research found that the most common implementation of an in-place array

shuffle is the Fisher-Yates shuffling algorithm. It shuffles an array in place by iterating through an array and

randomly swapping the value at the current index with the value at a randomly selected index. If iteration

begins from the start of the array, the random index is chosen as an index greater than the current. The

reverse is done if iteration begins at the end of the array. Otherwise, implementations differ in the array data

type they shuffle (primitive type or object type), and which syntactical loop structure they use. We chose

three sample snippets that exemplify these differences. One of these snippets is shown in Figure 8.2

(3) Create Specification: We create a formal specification of the functionality, including the minimum steps

108



public static <T> void shuffle(T[] a) {

int length = a.length;

Random random = new Random();

for(int i = 0; i < length; i++) {

int j = i + random.nextInt(length-i);

T tmp = a[i];

a[i] = a[j];

a[j] = tmp;}}

Figure 8.2: Sample Snippet: Shuffle Array

or features a snippet must realize to be a true positive of the target functionality. We derive our specification

from our research into the functionality, as well as the sample snippets. Our specification is what we believe

the average developer would expect the functionality to minimally perform. We validate this with our taggers,

who are developers and software engineering researchers. The specification is designed to be inclusive to the

possible implementations of the target functionality. It should not preclude any implementation, including

any that may not have been identified in step 2.

For our running example, and from our research into its implementations and sample snippets, we decided

our formal specification should simply be “shuffle an array of some data type in place”. This specification is

open enough that it accepts any variation of Fisher-Yates, but also will accept any snippet that shuffles an

array in place using an alternate algorithm.

(4) Create Search Heuristic: We create a search heuristic to locate snippets in IJaDataset that might

implement the target functionality. Drawing from the identified implementations, the sample snippets, and

the specification, we identify the keywords and source code patterns that are intrinsic to the implementations

of the functionality. We expect snippets that implement the functionality to contain some combination

of these keywords and source patterns. These keywords and source patterns are implemented as regular

expression matches and are combined into a logical expression. Keywords and patterns that are expected

to appear together in an implementation are ‘AND’ed, while groups of keywords and patterns that are from

different implementations are ‘OR’ed. The heuristic returns true if an input snippet satisfies the logical

expression.

We design the heuristic with respect to the sample snippets (Step 2). We try to select keywords and

source patterns that not only appear in our identified implementations, but may also appear in unidentified

implementations. We design the heuristic to balance two opposing constraints: (1) the heuristic should

identify as many true positive snippets as possible, but (2) should not identify so many false positives that

the judges are overburdened in their tagging efforts. We balance completeness and required tagging efforts,

preferring completeness. We try several search heuristics and review their results before choosing the one

that provides the best balance.

For our running example, we target its search heuristic for the identified Fisher-Yates implementations.

109



As mentioned in Step 2, the Fisher-Yates algorithm iterates through the array and swaps the current index

with a randomly selected index, with the range of the selected index depending on if iteration begins at

the start or the end of the array. If looping from the start, then the selected index is chosen using the

source code pattern: “j = i + random.nextInt(length-i)”. If looping from the end, the pattern is instead:

“j = random.nextInt(i+1)”. We therefore used both of these cases using an OR clause. We implemented

the patterns as regular expressions, allowing any valid white space as well as any valid alternative variable

names.

(5) Build Candidate Set: The search heuristic is executed for every snippet in IJaDataset to identify

possible candidate snippets that might implement the target functionality. For the current release we search

all method granularity snippets. Manual inspection is required to identify which are true or false positives

of the target functionality, as discussed in Section 8.2.2 below.

For our running example, the search heuristic we designed in Step 4 identified 281 snippets that include

one of the index selection source code patterns. These form our candidate set for the “Shuffle Array in Place”

functionality.

8.2.2 Tagging Snippets

Judges manually tag the candidate snippets as true or false positives of the target functionality. The judges

are provided the specification of the functionality and its sample snippets. They are instructed to tag any

snippet that meets the specification as a true positive of the target functionality. They tag any snippet

that does not fully satisfy the specification as a false positive of the target functionality. True positives may

exceed the specification by performing additional related or unrelated tasks. Due to the sizes of the candidate

sets, we recommended the judges spend on the order of tens of seconds to make their decision. The judges

reported that they needed 10-30 seconds to tag snippets of the simpler functionalities, and 30-60 seconds to

tag snippets of the more complex functionalities. We comment on the accuracy of the judges in Section 8.3.

The judges tag the snippets using an application designed to improve their tagging efficiency and accuracy.

The tagging application shows the current snippet to be tagged. The snippet is pretty-printed and has syntax

highlighting to improve readability. The search heuristic as well as any other relevant keyword or source code

patterns are highlighted to help the tagger locate the target functionality in a true positive snippet faster.

The tagger can also view the snippet in its original file. While external to the snippet, the surrounding

code may help the tagger understand the snippet faster. The main window of this application is shown in

Figure 8.3.

Alongside the current snippet to be tagged, the tagging application provides the specification of the target

functionality and its sample snippets. By displaying the specification within the application, the tagger can

quickly review and reference it, which may reduce tagging errors. By providing access to the sample snippets,

the tagger remains familiar with common implementations of the functionality. This may help the tagger

110



recognize similar true positives faster. Of course, the taggers fully investigate all snippets, even if they do

not resemble one of the sample snippets.

Once the taggers have made their judgment, they select either true or false positive. This decision is

recorded to an output file, including the snippet specification (file name and line numbers), the judgment,

the tagger’s name, when the tag was made, and how long the tagger reviewed the snippet before making their

decision. The input file contains the specification, the sample functions, the keywords/patterns to highlight,

and the snippets to be tagged.

For our “Shuffle Array in Place” example, three judges tagged the candidate set. Together they required

eight hours of manual effort to tag this functionality, including both tagging time and personal research time

to become an expert in the functionality. This effort produced 222 true positive tags and 621 false positive

tags for the 281 candidate snippets.

Our benchmark was built by nine judges. All of the judges have considerable experience in Software

Engineering, and are either clone researchers or have taken a software engineering class that has discussed

clones. Before starting a case, the judges research the functionality they are to tag. They familiarize

themselves with how the functionality can be implemented in Java, as well as our formal specification and

sample snippets. The judges become experts in that functionality so they can tag the functionality with high

confidence. In Section 8.3 we use the results of their efforts to demonstrate their accuracy.

We incrementally increased our number of judges. We began with three judges who were trained on

sample data. The training data was discarded and not used in the benchmark. This phase was used to

formalize the tagging procedure using the taggers’ experiences and feedback. They became our primary

judges. We then brought in additional judges to increase data confidence. The primary judges taught the

new judges the process and tools. The new judges began on the simpler functionalities to gain experience

before tagging the more complex functionalities. Each case has been tagged by at least one of the primary

judges.

8.2.3 Final Judgment

Final judgment for the snippets is determined by considering the tagging of all the judges. A snippet is

considered a true positive of the target functionality if it received more true positive tags than false positive

tags. Likewise, it is considered a false positive if it received more false positive tags than true positive tags.

If the snippets are tagged by an even number of judges then some snippets may have an equal number of

true and false positive tags. These are tagged as “undecided” and are not included in the benchmark. An

additional judge is required to break the tie. The use of multiple judges decreases the risk and effects of

errors or bias in the tagging. The confidence in the judgment of a particular snippets depends on both the

number of judges who tagged the snippet and the absolute difference between the number of true positive

and false positives tags the snippet received. The true and false positive judged snippets, along with the

sample snippets, are used to populate the benchmark with the oracled true and false clone pairs.

111



Figure 8.3: Snippet Tagging Application

For our “Shuffle Array in Place” example, we tabulated the true and false positive tags per snippet. By

majority vote, 77 snippets were judged as true positives, and 204 as false positives. The three judges agreed

upon 54 of the true positives and 190 of the false positives. One judge was in disagreement with the other

two for 13% of the snippets, either due to subjectivity or tagging errors.

8.2.4 Adding True Clone Pairs to Benchmark

From the tagging process, we know that the true positive snippets (from the final judgment, Section 8.2.3)

and sample snippets (chosen in Section 8.2.1) of a target functionality form an oracled true clone class of

snippets that implement the same functionality. If we have p true positive snippets and s sample snippets

that implement a target functionality, a true clone class of s+p snippets, then this results in (s+p)(s+p−1)/2

oracled true clone pairs of that functionality in IJaDataset. Each of these clone pairs implement the target

functionality, and are one of the four primary clone types. To enrich the benchmark with metadata, we typify

the clones, measure their syntactical similarity, measure original and pretty-printed clone size, and measure

our confidence in the clones’ oracling.

For our running example, final judgment found 77 snippets that implement “Shuffle an Array in Place”.

With the 3 sample snippets, this is an oracled clone class containing 80 code snippets. A total of (80)(80−

1)/2 = 3, 160 oracled clone pairs implementing this functionality. These clones were added to the benchmark

and enhanced with metadata as described below.

Clone Type and Syntactic Similarity. We created an automatic TXL-based [27] tool for typifying

clones and measuring their syntactical similarity. A clone pair can be typified as Type-1 or Type-2 if the

snippets become textually identical after the appropriate source normalization. Type-1 normalization includes

removing comments and a strict pretty-printing. Type-2 normalization also includes the systematic renaming

112



of identifiers, and the replacing of literals with default values (e.g., numerics to 0, strings to “default”, and

so on). If the snippets are not identical after these normalizations then, because they implement the same

functionality, they are either Type-3 or Type-4. For such cases we examine and report their syntactical

similarity.

We measure the syntactical similarity of the clones using both a line-based and token-based metric after

full normalization. This includes the removal of comments, a strict pretty printing, the renaming of all

identifiers to a common value (e.g., ‘X’) and the change of all literal values to a common value (e.g., ‘0’).

This blind normalization of identifiers and literals is needed as their values will not align due to changes at

the statement level. The similarity metric measures the minimum ratio of the lines or tokens one snippet

shares with another after normalization. Matching lines or tokens are identified using Unix diff.

These clone pairs implement the same functionality, so they are Type-3 if they are also syntactically

similar, or Type-4 if they are syntactically dissimilar. However, there is no consensus on the minimum

similarity of a Type-3 clone pair, so it is difficult to separate the Type-3 and Type-4 clone pairs in our case.

We accept this ambiguity and instead divide the Type-3 and Type-4 clone pairs into three categories based

on their syntactical similarity values: Strongly Type-3, similarity in range [0.7, 1.0), Moderately Type-3,

[0.5, 0.7), and Weakly Type-3+4, [0.0, 0.5). Where [0.70, 1.0) denotes the range from and including 0.70

up to but not including 1.0. This division by similarity is useful for measuring a tool’s recall for different

contexts. Since we use two similarity metrics, this division can be based on either, or on the averages of the

two metrics.

We define strongly Type-3 clones as those that are at least 70% similar. This is the region we expect

most syntactical detectors to operate in. These clones are very similar, but contain some statement-level

differences. The moderately Type-3 clones share at least half of their syntax, but contain a significant

amount of statement-level differences. Syntactical clone detectors typically do not operate in this range

because there is a higher chance that code snippets with only 50-70% shared syntax are only coincidentally

similar. Detectors may need some level of semantic awareness to operate in this similarity region without

diminished precision. We define the clones that share less than 50% of their syntax as weakly Type-3 or

Type-4 clones.

Clone Size. We measure each clone pair’s original and pretty-printed clone size. Clone size includes the

minimum and maximum sizes of the clone pair’s code snippets, measured by line and by token.

Oracling Confidence. With each clone pair we report the minimum number of judges that examined

the clone’s snippets, and the minimum difference between the number of true positive and false positive tags

the snippets received by the judges. This allows a benchmark user to select a subset of the benchmark that

meets some minimum data confidence. We use this metadata to comment on the accuracy of the judges in

Section 8.3. The use of multiple judges is atypical in major clone benchmarks (e.g., [13]).

113



8.2.5 Adding False Clone Pairs to Benchmark

From manual inspection (Section 8.2.2) we know that the snippets judged (Section 8.2.3) as false positives

of a target functionality do not implement the target functionality, while the sample snippets (Section 8.2.1)

implement only the target functionality. So each pair of sample snippet and false positive snippet for a

target functionality is an oracled false clone pair in our benchmark. If we have s sample snippets for a

target functionality, and found f false positives snippets of this functionality, then this results in s× f false

clone pairs. While the false clones might share some syntactical similarity, our manual tagging process has

validated that this similarity is coincidental. As with the true clone pairs, we add clone size and oracling

confidence metadata to the false clone pairs.

For our running example, final judgment found 204 snippets that do not implement “Shuffle an Array in

Place”, while we know the 3 sample snippets are minimum examples that only implement this functionality.

This is a total of 612 false clone pairs that implement different functionalities, but could contain some

coincidental syntactical similarity. These false clone pairs were added to the benchmark.

8.3 Snippet Tagging Efforts

For the creation of our benchmark, 78 thousand snippets were tagged across 43 distinct functionalities, an

effort that required 514 hours of manual tagging by nine judges. The results of the snippet tagging efforts

are summarized in the left sub-table of Table 8.1 (under the Snippet Tagging sub-heading) per functionality

and overall. The sub-table tabulates the number of sample snippets added to IJaDataset for a functionality,

and the number of snippets judged as true positive, false positive or undecided by the judges. The right

side of the sub-table summarizes the efforts involved, including the number of unique judges assigned to a

functionality, the total number of snippet tags they produced, and their combined tagging hours. When

multiple judges were used, each judge may not have tagged every snippet. We tried to maximize the overlap

to improve data confidence and to measure tagging accuracy.

Tagging hours includes time spent by the judges actively tagging the snippets, and time spent by the

judges reviewing and understanding the functionality, specification and sample snippets. Active tagging time

per snippet was measured by the tagging application, while the other time requirements were estimated

based on feedback from the judges. Tagging hours does not include time spent choosing and researching the

functionalities, designing and testing search heuristics, and preparing the data for the tagging application.

We estimate that approximately two hours was spent per case, for a total of 84 hours. In total at least 600

hours was spent building this benchmark. Note that this does not include all of the research and development

efforts.

In order to measure the reliability of our judges, we had multiple judges tag the same snippets. By ana-

lyzing the agreements or disagreements between judges, we can estimate the frequency in which subjectivity

or human error affects the tagging data. In total, we had multiple judges tag 9,533 of the 77,933 snippets,

114



Table 8.1: Snippet Tagging and Benchmark Contents Summary

Functionality

Snippet Tagging Benchmark Contents
Judged Snippets Tagging Effort True Clone Pairs (s+ p)(s+ p− 1)/2

S
n
ip

p
e
t
s
,
s

T
r
u
e
+

,
p

F
a
ls

e
+

,
f

U
n
d
e
c
id

e
d

#
J
u
d
g
e
s

#
T

a
g
s

H
o
u
r
s

T
1

T
2

S
t
r
o
n
g

T
3

M
o
d
e
r
a
t
e

T
3

W
e
a
k

T
3

&
T

4

F
a
ls

e
C

lo
n
e

P
a
ir

s
,
s
∗
f

Download From Web 3 910 12946 0 1 13856 55.1 1554 9 1599 18359 394807 38838
Secure Hash 1 1342 4564 0 1 5906 27.3 632 587 6396 81903 811635 4564
Copy File 6 3084 34018 0 1 37102 166.6 13805 3116 9297 95191 4651096 204108

Decompress zip archive. 2 7 6 22 2 70 3.4 0 0 1 2 33 12
Connect to FTP Server 11 213 381 92 2 1372 7.3 4 0 94 542 24336 4191

Bubble Sort Array 14 158 1142 237 2 3074 15.9 40 4 466 4167 10029 15988
Setup SGV 1 23 78 0 1 101 1.5 3 7 5 11 250 78

Setup SGV Event Handler 1 10 1272 0 1 1282 7.0 0 0 0 1 54 1272
Execute update and rollback. 2 751 905 44 2 1847 12.2 152 66 1288 13470 268152 1810
Initialize Java Eclipse Project. 1 22 0 0 2 44 2.6 0 0 8 1 244 0

Get Prime Factors 2 22 76 0 3 294 5.8 5 3 27 72 169 152
Shuffle Array in Place 3 77 204 0 3 843 8.4 8 5 290 689 2168 612

Binary Search 4 438 3075 96 3 4968 23.3 273 7 1013 13845 82323 12296
Load Custom Font 3 24 7 1 4 128 4.7 0 0 4 10 337 21

Create Encryption Key Files 3 18 150 2 3 304 7.5 0 0 0 10 200 450
Play Sound 3 36 41 4 2 162 2.7 5 0 10 89 637 123

Take Screenshot to File 1 104 296 55 2 910 5.2 17 2 19 304 5118 296
Fibonacci 1 211 0 0 3 633 3.6 11194 1 1396 5406 4369 0

XMPP Send Message 1 24 40 1 2 130 2.3 1 0 2 20 277 40
Encrypt To File 1 74 106 8 2 248 3.8 1 1 6 89 2678 106

Resize Array 1 439 23 77 2 1078 53.0 200 26 757 5926 89671 23
Open URL in System Browser 1 387 45 5 2 874 3.7 40 20 584 9513 64921 45

Open File in Desktop Application 1 104 177 5 2 572 3.8 4 3 16 474 4963 177
GCD 3 20 117 13 2 278 3.9 1 0 35 61 156 351

Call Method Using Reflection 4 415 126 0 1 541 2.0 3557 8 663 496 82847 504
Parse XML to DOM 2 195 52 0 1 247 1.7 199 10 193 558 18346 104

Convert Date String Format 1 58 154 13 2 330 5.6 15 2 22 79 1593 154
Zip Files 1 1425 691 12 3 2518 10.1 209 33 1022 33943 980818 691

File Dialog 4 476 0 24 2 850 3.9 1926 107 214 3054 109659 0
Send E-Mail 1 239 33 1 2 378 3.9 453 2 416 1171 26638 33

CRC32 File Checksum 1 282 36 20 3 796 5.8 62 7 97 765 38972 36
Execute External Process 2 464 36 10 2 668 4.2 1485 25 921 2238 103676 72

Instantiate Using Reflection 1 861 44 0 1 905 3.2 266 41 468 2587 367729 44
Connect to Database 2 204 3 3 2 365 2.9 90 34 406 515 20070 6

Load File into Byte Array 1 158 202 0 1 360 2.6 42 4 95 1153 11267 202
Get MAC Address String 2 21 2 16 2 78 2.5 0 0 1 17 235 4

Delete Folder and Contents 2 274 73 4 3 681 6.0 253 27 1169 6202 30299 146
Parse CSV File 1 201 49 0 1 250 1.8 482 2 824 614 18379 49

Transpose Matrix 1 542 50 54 2 1292 5.2 484 65 3909 19011 123684 50
Extract Matches Using Regex 1 502 3 0 2 1010 5.1 47 19 109 3754 122324 3

Copy Directory 2 150 183 30 2 513 7.6 3 3 278 977 10215 366
Test Palindrome 1 167 221 0 1 388 1.7 10879 0 152 763 2234 221
Write PDF File 1 158 129 38 4 780 7.6 1 3 168 1103 11286 129

Total 101
15290 61756 887

10 89026 513.9
48392 4249 34440 329155 8498894

288367
77933 8915130

T3 Categories by Syntax Similarity Ranges - Strong: [0.70,1.0) Moderate: [0.50,0.70), Weak: [0.0,0.50)

115



a coverage of 12.2%. We distributed the snippets selected for multiple tagging across 75% of the function-

alities. When two judges tagged the same snippet, they disagreed for 10.8% of the snippets. For three

judges disagreement was 20.4%, and for four judges disagreement was 18.8%. While more judges increases

the chance we discover subjectivity, it also increases the likelihood that one of the judges created an error.

Considering all of the snippets tagged by multiple judges, regardless of the number of judges, at least one

judge disagreed with the others for 14.5% of the snippets. From this, we estimate for the snippets tagged

by only a single judge, 14.5% of them are affected by subjectivity or tagging errors. We believe this is an

acceptable value [137]. However, since no previous major clone oracle (e.g., [13]) has significantly commented

on the accuracy of their judges, we have no basis of comparison.

8.4 The Benchmark

From the tagging data, we were able to identify 8.9 million true clone pairs (Section 8.2.4) and 288 thousand

false clone pairs (Section 8.2.5) across 43 functionalities in IJaDataset. The true and false clone pair contents

of BigCloneBench are summarized in the right sub-table of Table 8.1 (under the Benchmark Contents sub-

heading). Each of the true clone pairs listed is a clone of the listed functionality. The tagging efforts locate

1
2 (s+ p)(s+ p− 1) oracled clone pairs per functionality, as described in Section 8.2.4, where s is the number

of samples, and p is the number of snippets judged as true positive. We summarize the true clones per clone

type, with Type-3 and Type-4 clones divided by their syntactical similarity as described in Section 8.2.4. For

this sub-table we averaged the line and token-based metrics to create the divisions. Each of the false clone

pairs listed is a pair of code snippets that do not share functionality. The tagging efforts locate s ∗ f oracled

false clone pairs as described in Section 8.2.5, where f is the number of snippets judged as false positive.

Clone size can be measured as the size of the smaller snippet, the size of the larger snippet, or the average

sizes of the snippets. Across the benchmark, the average clone pair is 18 lines (by the smaller snippet), 51

lines (by the larger snippet), and 34 lines (average size of the snippets). Clone size is important as minimum

snippet size is a common parameter of clone detection and search algorithms. We have found that tools

typically have a default minimum snippet size of 6-15 lines. In our benchmark, 96% of the clones have

snippets no smaller than 6 lines, 79% have snippets no smaller than 10 lines, and 53% have snippets no

smaller than 15 lines. Tools can be comfortably configured for a minimum clone size of 6 lines for evaluation

against the entire benchmark. Alternatively, the tool can be evaluated for a subset of the benchmark within

its clone size range. The benchmark is large enough that such a subset will remain large for any reasonable

minimum clone size.

Previous benchmarks [13,77] contain only intra-project clones, and most were built using the subject clone

detectors themselves [13]. They do not measure the detection capabilities needed from clone detectors that

target large-scale and/or inter-project detection. They are also missing the low similarity clones that classical

syntactical clone detectors are missing. Our benchmark is needed to measure large-scale inter-project clone

116



detection tools accurately. It also includes clones that the classical syntactical clone detectors are missing.

8.5 Evaluating Clone Detectors

Our benchmark can be used to measure the recall of clone detection tools and estimate their precision.

Recall and precision are shown in (8.1), where Btc is the set of all true clone pairs in the benchmark, Bfc is

the set of all false clone pairs in the benchmark, and D is the set of candidate clone pairs reported by the

detector. Also interesting is measuring a tool’s recall for subsets of Btc. For example, all clone pairs of a

particular functionality, all clone pairs of a particular type, all Type-3 clone pairs within a particular range

of syntactical similarity, and so on. Precision is estimated as the ratio of the known clone pairs (true and

false) found by the detector that are true clones. It ignores the detected clones that are unknown to the

benchmark. However, the primary purpose of our benchmark is to measure recall, which has been an open

problem in the community for the last decade. While the estimate of precision provides some insight, it does

not replace a true measurement of precision: the manual validation of the output of a tool. However, without

benchmarks like ours, it is not possible for tool developers to measure recall because they do not know which

clone pairs exist in a system or repository.

recall =
|D ∩Btc|
|Btc|

precision =
|D ∩Btc|

|D ∩ (Btc ∪Bfc)|
(8.1)

Our benchmark is outside the scalability constraints of classical clone detection tools, which are not

designed for large-scale. While these tools cannot be executed for IJaDataset in its entirety, they can be

executed for subsets of the benchmark. The subsets would need to be small enough such that the tool could

be executed for the relevant source files without scalability issues. The subsets could be randomly chosen,

could be all the true and false clone pairs found for a functionality, or could even be the intra-project clone

pairs found in one of the 25,000 original subject systems crawled for IJaDataset. High confidence could be

1000

10000

100000

1000000

10000000

# 
C

lo
ne

 P
ai

rs

Clone Similarity Range, e.g., [40-50)

Line Token Average

Figure 8.4: Clone Similarity Distribution

117



achieved by evaluating the tool for a large number of subsets.

An advantage of using our large-scale benchmark to evaluate these classical tools is clone variety. In

addition to their inherit weaknesses [9, 128], classical benchmarks only consider 1-10 subject systems, which

provides a limited variety of clones, especially Type-1 and Type-2. In our experience with the subject

systems of Bellon’s benchmark [13], the clone pairs from a single subject system are often dominated by

a few large clone classes, and therefore have very little variety. In contrast, our benchmark considers 43

functionalities across 25,000 subject systems with a total of 8.9 million clone pairs. Also, our benchmark was

built independently of clone detection tools.

Since our benchmark consists of clones of particular functionalities, it is very useful for evaluating semantic

clone detectors (e.g., [38]). To our knowledge, there is also no significant benchmark for semantic clone

detectors. While semantic clone detectors may not be scalable to large-scale, they could be executed for

subsets of the benchmark. Good subsets would be the individual functionalities, or a random selection of

true and false clone pairs from each of the functionalities.

While our focus was on measuring recall and precision, the benchmark can also be used as a common

target for measuring clone detection execution time and scalability. Big data clone detection and search tools

can be compared by their execution time for IJaDataset. Classical tools can be compared by the benchmark

subset size they can handle, and their execution time for common subsets. Additionally, some large-scale

clone detection tools [141] use common large-scale analysis frameworks such as Hadoop [36]. Our benchmark

can be used to evaluate the execution performance (time and scalability) of these frameworks when used in

a clone detection context.

8.5.1 Example Tool Evaluation: D-NiCad

While a tool evaluation experiment is out of the scope of this work, we provide a small demonstration of

an example use of our benchmark. We used our benchmark to evaluate D-NiCad, a distributed version of

NiCad that scales to large-scale. It uses the distributed and deterministic scalability heuristic introduced

by D-CCFinder [84]. This heuristic executes NiCad for subsets of IJaDataset within its scalability limits.

Across a large number of executions, NiCad is exposed to every file pair (and thus every clone) in the dataset.

The executions are distributed over a number of computers. For this case study, we executed D-NiCad for a

subset of IJaDataset that includes the files containing the sample snippets and tagged snippets of the first

ten functionalities in Table 8.1. D-NiCad was configured to detect function clones of size 6 lines or greater

for a 70% similarity threshold and full Type-1/2 source normalization.

D-NiCad’s recall results are as follows: Type-1 (99.7%), Type-2 (99.6%), Strongly Type-3 (93.0%), Mod-

erately Type-3 (0.5%), and Weakly Type-3+4 (0%). Since NiCad is a line-based tool, we separated these

type 3 true clone pairs using the line-based metric. Our benchmark estimates D-NiCad’s precision as 99%.

Our earlier studies [128] have shown NiCad to have very high intra-project recall (99-100)% for the first

three clone types. We see a marked decrease in Type-3 recall (-6%) for strongly Type-3 inter-project clones.

118



Our benchmark reveals that there is many true clone pairs D-NiCad misses because their similarity is be-

low NiCad’s recommended similarity threshold. This detection information can be used to improve NiCad’s

detection performance for large-scale inter-project clone detection. D-NiCad has strong recall and precision

for Type-1, Type-2, and Strongly Type-3 clones. Ideally, future development will lower its recommended

similarity threshold into the Moderately Type-3 clone range while maintaining its superb precision [110].

These results demonstrate the need for our large-scale benchmark. Classical intra-project benchmarks

did not reveal these gaps in NiCad’s detection [128]. Perhaps because these clones have properties that are

specific to inter-project cloning, or perhaps there are edge-case gaps in NiCad’s detection abilities that are

not revealed by the limited number and variety of intra-project clones in a handful of subject systems [13].

A standard clone detector agnostic large-scale benchmark is needed to properly evaluate the clone detection

techniques.

8.6 Evaluating Clone Search

Our benchmark can also measure the recall and precision of large-scale clone search algorithms. Given

a sample snippet of one of our tagged functionalities, the clone search algorithm should return all of the

snippets judged as true positives of the functionality, and none of the snippets judged as false positives.

The clone search algorithm should be executed for each functionality in the benchmark, using each of a

functionality’s sample snippets as a target. This is one execution of the clone search tool per unique sample

snippet. Recall and precision can then be measured for each functionality and sample snippet pair. The

tool’s general recall and precision can be measured by averaging across these cases.

For a single case, recall is measured and precision estimated as in (8.2), where f is the functionality, s is

the sample snippet of f used as the search target, D is the set of detected snippets, Tf is the set of snippets

judged as true positives of f , and Ff is the set of snippets judged as false positives of f .

recall(f, s) =
|D ∩ Tf |
|Tf |

precision(f, s) =
|D ∩ Tf |

|D ∩ (Tf ∪ Ff )| (8.2)

8.7 Distribution

BigCloneBench and IJaDataset can be obtained from our GitHub page1. The benchmark is provided in

database format using the schema shown in Figure 8.5. The database tables are richly populated with all the

data we used, mined, created, etc. Full schema definition is available on the distribution site. The database

gives users full access to our data and query power over it. However, the database is very large and may be

cumbersome for simple benchmark experiments. We therefore also provide the true and false clone pairs in

a simple file format. This includes the full benchmark, as well as strategic subsets of the benchmark. For

1github.com/clonebench/BigCloneBench

119

github.com/clonebench/BigCloneBench


example, all clones of a functionality, all clones for a clone type, etc. Users with complex experiments can

use the query power of the database version.

Benchmarks such as BigCloneBench are very valuable to the community. We are therefore committed to

open distribution of the benchmark. In addition to full distribution of our data, we also provide access to

our snippet tagging and data processing tools. We provide these so that the community may fully review

our process, extend our work, or even apply similar methodologies for benchmarking similar problems.

8.8 Threats to Validity

8.8.1 Limitations in the Universality of the Mining Procedure

A contribution of this study is a mining procedure for efficiently building large-scale clone benchmarks. We

specifically implemented and executed this procedure for mining Java clones at the function granularity.

However, the core procedure should be applicable to other programming languages as well. In particular, we

believe the procedure should work without modification for most procedural languages, such as C, C# and

C++. The mining procedure could possibly be executed for other kinds of programming languages (e.g.,

functional, logic, etc.), but since we have not explored this, we cannot say what additional challenges might

need to be overcome. Since the mining approach is based on shared functionalities, it may be more difficult

to execute it for other syntax granularities, such as code blocks. Functions are ideal as they are whole units

that intend to encapsulate a whole functionality.

8.8.2 Limitations in Human Judgment

Like any other manual validation task, our snippet tagging is affected by human subjectivity and error.

Previous studies have shown disagreement amongst judges during clone validation [9,19,21,137]. We overcame

this problem with the Mutation and Injection Framework (Chapter 3) by synthesizing clones without requiring

human judgment. However, clone synthesis cannot reliably produce complex clones without the risk of the

clones diverging too far from those produced by real developers. So real-world benchmarks produced in part

Snippets

Functionalities

Tagged

Samples

Judged
False Clone 

Pairs

True Clone 

Pairs

Figure 8.5: Benchmark Database Schema

120



by manual clone validation are required.

We attempt to reduce subjectivity and error in the creation of BigCloneBench by validating the clones

indirectly. Instead of asking the judges to validate if two code fragments are similar, we ask them to validate if

an individual function implements a target functionality. We then identify clones as code fragments that share

functionality, and then use automatic analysis to identify the types of these clones. To reduce subjectivity

in this judgment, we give the judges a clear specification on the requirements of a true positive snippet for

each target functionality, and this specification is kept visible and accessible to the judges at all times in

the tagging application. The judges are also trained on sample implementations of the functionality before

tagging. While Charpentier [19,21] found disagreement amongst their judges in clone validation, their judges

validated the clones directly, and they were not provided specific guidelines on how to make their decisions.

While individual subjectivity on what constitutes a real clone is an open and unavoidable problem in clone

research [109], we mitigate this by providing a clear specification of what is a true clone in BigCloneBench.

Specifically, a pair of code fragments that implement the same target functionality, where that functionality

is clearly defined in the benchmark.

Of course, our manual efforts are still subject to errors, and we don’t claim to totally overcome subjectivity.

Of the snippets tagged by multiple judges, for only 14.5% did at least one judge disagree with the others.

We therefore estimate that 14.5% of the snippets tagged by only a single judge are affected by subjectivity

or tagging errors. Given the difficulty of creating clone benchmark data [137], we believe this error rate is

acceptable. Especially considering previous major benchmarks, including Bellon’s Benchmark [13], have used

only a single judge and did not comment on their accuracy. While Kurtz and Le [77] used multiple judges,

their benchmark is very small, only 66 clone pairs.

8.8.3 Limitations in Clone Definitions

A limitation in all clone benchmarks is disagreement between experts on what constitutes a true code clone.

This is reflected in the open-ended definition of a clone as any pair of code fragments that are similar, for

some definition of similarity [11, 13]. Therefore, there is a real threat that experts may disagree on some of

the reference clones included in BigCloneBench. Determining if a pair of code fragments is a true clone is

known to be subjective [20,21], and depends on the intended use-cases for the clones.

Our design of BigCloneBench aims to mitigate this threat. We provide a clear definition of the clones

included in BigCloneBench: pairs of (function) code fragments that both implement some known function-

ality. The functionality may be a small or large part of the code fragments, and the code fragments may or

may not be syntactically similar. Depending on the intended use-cases of a subject clone detector, we may

not want it to detect all of the clones in BigCloneBench. For example, we may not want a tool designed to

find simple refactoring opportunities to detect the clones with low syntactical similarity, as they may not be

useful to this use-case. On the other hand, we would want a semantic clone detector to find these clones.

The reference clones in BigCloneBench have been augmented with metadata so that the benchmark user can

121



select the clones relevant to the use-case they want to evaluate their subject clone detectors against.

8.9 Conclusion

In this chapter, we presented BigCloneBench, a curated benchmark of inter-project clones in IJaDataset,

a large-scale source code repository. This benchmark was created using a novel functionality-based and

heuristic-search clone mining approach. Unique to our benchmark is the identification of both semantically

and syntactically similar clones. Unlike previous clone mining efforts (e.g., [13]), our benchmark was built

independently of clone detection tools, which is the recommended approach for evaluating modern clone

detection tools [9, 12, 128]. This means it is not biased or limited to the clones that detectors are able to

locate. This makes the benchmark ideal for identifying weaknesses in the current detection techniques.

This release of the benchmark contains 8.9 million true clone pairs and 288 thousand false clone pairs

over 43 functionalities. We show how the benchmark may be used to measure recall and estimate precision

for intra-project, inter-project, semantic, and large-scale clone detection and search. With this benchmark,

we have also introduced a large-scale benchmark methodology that may be useful to other domains, maybe

requiring only minor adaptations to our procedure and tools.

122



Chapter 9

Evaluating Clone Detection Tools

with BigCloneBench

In this chapter, we use BigCloneBench to evaluate the recall of ten clone detection. We measure recall

per clone type, including across the entire range of clone syntactical similarity. We evaluate the tools for

both single-system and cross-project detection scenarios. Using multiple clone-matching metrics, we evaluate

the quality of the tools’ reporting of the benchmark clones with respect to refactoring and automatic clone

analysis use-cases. We compare these real-world benchmarking results against results from our synthetic

benchmark, the Mutation and Injection Framework, to reveal deeper understanding of the tools and to

demonstrate the need for both real-world and synthetic benchmarks. We found that the tools have strong

recall for Type-1 and Type-2 clones, as well as Type-3 clones with high syntactical similarity. The tools have

weaker detection of clones with lower syntactical similarity.

In summary, we address the following research questions:

RQ1 What is the recall of these tools as measured by the real-world benchmark BigCloneBench?

RQ2 How does real-world benchmarking compare to synthetic? What do the similarities and differences tell

us about tool performance and benchmark accuracy?

RQ3 How does intra and inter-project clone recall differ, in particular for the case of an ultra-large dataset?

RQ4 What is the clone capture quality of the tools for refactoring and clone analysis use-cases?

This chapter is based upon our manuscript “Evaluating Clone Detection Tools with BigCloneBench”

published by myself and Chanchal K. Roy and in the Research Track of the International Conference on

Software Maintenance and Evolution, c©2015 IEEE. I was the lead author of this paper, under the supervision

of my supervisor Chanchal K. Roy. The publication has been re-formatted for this thesis, with modifications

to better fit the thesis.

This chapter is organized as follows. We overview our benchmarking procedure presented in Section 9.1.

We discuss the benchmark results in Section 9.2, including comparison of the benchmarks to demonstrate

the need for both real-world and synthetic clone benchmarks. In Section 9.3 we use BigCloneBench to study

the recall of the tools specifically for inter-project and intra-project clone detection, and in Section 9.4 we

123



examine how well precisely they capture the reference clones. We close this study with a discussion of the

treats to validity in Section 9.5, and our conclusions in Section 9.6.

9.1 Experiment

9.1.1 Big Clone Bench.

The contents of BigCloneBench considered for this experiment are summarized in Table 9.1. We use only the

clones that are at least 6 lines and 50 tokens in length. This allows us to configure the tools appropriately for

clone size. This is a typical minimum clone size used by tools [109] and previous benchmark experiments [13].

We removed the source files that are 2000 lines in length or longer and their clones. These files make up

an insignificant portion of IJaDataset (6238 files), but significantly impact the execution requirements (time,

memory) of the clone detectors.

Since there is no consensus on the minimum syntactical similarity of a Type-3 clone, it is difficult to

separate Type-3 and Type-4 clone pairs that implement the same functionality, as in our BigCloneBench.

Instead, we divide the Type-3 and Type-4 clones into four categories based on their syntactical similarity.

We define Very-Strongly Type-3 clones (VST3) as those with a similarity in range 90% (inclusive) to

100% (exclusive), Strongly Type-3 (ST3): 70-90%, Moderately Type-3 (MT3): 50-70%, and Weakly

Type-3/Type-4 (WT3/4): 0-50% [125]. We measure similarity as the minimum ratio of lines or tokens

a code fragment shares with another after Type-1 and Type-2 normalization. Shared lines or tokens are

identified by diff [34]. Most tools measure similarity by line or by token. We classify the clones into these

categories using the smaller of their line and token-based clone similarity measures.

We executed the tools for IJaDataset 2.0, and measured their recall for the clones in BigCloneBench.

These subject tools were generally designed for clone detection within a single software system, or a small

collection of software systems. None of these tools can scale to IJaDataset on ordinary hardware. Our goal

is to measure recall using a large number of clones, not to evaluate the scalability of the tools. We avoid the

scalability issue by executing the tools for smaller subsets of IJaDataset that expose the tools to every clone

in BigCloneBench. We executed the tools for one subset per functionality in BigCloneBench. Each subset

includes every file that contains a function judged as a true or false positive of the subset’s functionality

during the mining process. Therefore, each subset contains a mix of true and false clones. If a subset was

too large for a tool to evaluate within memory constraints (12GB), we partitioned the subset into smaller

sets and executed the tool for each pair of partitions. A tool’s clone detection reports were merged before

Table 9.1: BigCloneBench Clone Summary

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

Number of Clone Pairs
35787 4573 4156 14997 79756 7729291

7868560

124



evaluation.

With BigCloneBench, we use a coverage-based clone matching metric to determine if a reference clone

in the benchmark is successfully detected by a candidate clone reported by a tool. The coverage-match,

or c-match for short, is based on our covers metric. A code fragment f1 covers code fragment f2 if it

intersects a ratio t of the source lines of f2, as shown in (9.1), given that the code fragments are in the same

source file. A candidate clone, C, matches a reference clone, R, by the c-match if its code fragments cover

a ratio t of the reference clone’s code fragments, as shown in (9.2). When the metric is evaluated, both

orderings of the candidate clone’s code fragments are tested. We configured the metric with a 70% minimum

coverage threshold. This is a conservative threshold, neither too strict nor too generous, that has been used

in previous benchmarking experiments [13, 128]. A tool’s recall is therefore the ratio of the reference clones

in the benchmark that are matched by candidate clones reported by the tool, as judged by the c-match

clone-matching metric.

covers(f1, f2, t) =
min(f1.e, f2.e)−max(f1.s, f2.s) + 1

f2.e− f2.s+ 1
≥ t (9.1)

c–match(C,R, t) = covers(C.f1, R.f1, t) ∧ covers(C.f2, R.f2, t) (9.2)

9.1.2 Mutation and Injection Framework.

We set the framework to randomly extract 250 functions from a source repository and, from each, create 15

mutant functions using the 15 mutation operators (3,750 clone pairs). Each clone was randomly injected into

10 unique copies of a subject system (37,500 mutant systems). We used IPScanner as our subject system, and

JDK6 and Apache Commons as our source repository. We constrained the benchmark to the following clone

properties: (1) 15-200 lines in length, (2) 100-2000 tokens in length, and (3) mutations do not occur within

the first and last 15% of a code fragment by line. The 15% mutation containment ensures that the introduced

edits occur within the clone, and not on its edges. Clone detection time often scales with minimum clone

size, so we used a larger minimum clone size to make execution of the tools for 37,500 systems practical.

We measured the syntactical similarity of the Type-3 clones and found that they correspond to the Very-

Strongly Type-3 similarity region. These are different clones than we used in our comparison with Bellon’s

Benchmark [128]. Here we generated function clones for best comparison with BigCloneBench, whereas we

previously generated block clones for best comparison with Bellon’s Benchmark.

Recall is measured by a subsume-based clone-matching metric that is parameterized with the mutation

containment. For a mutation containment of 15%, the metric considers a candidate clone to subsume a

reference clone even if the candidate misses the first and/or last 15% of the reference clone’s code fragments.

This is essentially the c-match metric with the added restriction that the candidate must cover the inner

70% of the reference. This restriction ensures that any candidate accepted as a match of a reference clone

has captured the clone-type specific edits added to the reference by a mutation operator. Therefore, recall

125



measured by the Mutation Framework reflects a tool’s ability to handle the specific clone edit types from the

editing taxonomy.

9.1.3 Tool Configuration.

The subject tools, the clone types they can detect, and their configurations for the benchmarks, are summa-

rized in Table 9.2. We wanted the recall measurements to reflect what an experienced user can expect with

their own systems. An experienced user has explored a tool’s parameters and documentation, and modifies

the default settings for their use-case. We configured the tools from a user-perspective by considering: (1)

the default settings, (2) the documentation, and (3) the known properties of the target benchmark, which

include clone types, syntactical similarity, and clone size. We also consulted the tool developers, where avail-

able. We enable any supported Type-1 and Type-2 normalizations. We configured the tools with Type-3

sensitivity thresholds based on their defaults and documentation. While greatly lowering their syntactic

similarity threshold may enable them to detect more clones in BigCloneBench [65], which contains clones

across the entire spectrum of syntactical similarity, their lack of semantic awareness would also cause them

to detect a large number of false positives. Users are most likely to follow the recommended thresholds, so

our results reflect standard usage of the tools. If a setting was not well documented, we experimented with

it to observe its effect. We avoided over-configuring or over-optimizing the tools for the benchmark, as a

user would not be able to do this for their own systems. We also avoided configuring the tools in a way that

would increase recall at the expense of precision. The per benchmark configurations are mostly the same,

except for differences in minimum clone size. Both benchmarks have a strict minimum clone size, so the tools

could be configured for clone size with confidence. While different configurations may improve recall, these

configurations reflect usage by an experienced user.

9.2 Benchmark Results

In this section, we measure the recall of the tools using BigCloneBench (RQ1) and the Mutation Framework.

We compare these results, and interpret what the similarities and differences between the benchmarks tell us

about the tool performance and benchmark accuracy (RQ2). The recall measurements by the benchmarks,

and their differences, are show in Table 9.3. Due to space considerations, we do not show Mutation Framework

recall per mutation operator. Instead, we summarize recall per clone type by averaging across the mutation

operators that produce a particular clone type. The Mutation Framework’s Type-3 clones best match the

syntactical similarity of the Very-Strongly Type-3 clones in BigCloneBench, so we compare using this Type-3

category.

126



Table 9.2: Subject Tools and Configurations

Tool Types BigCloneBench Mutation Framework

CCFinderX [58] 1,2 Min length 50 tokens, min token types
12.

Min length 50 tokens, min token types
12.

ConQat [57] 1,2,3 Min length 6 lines, max errors 5, gap
ratio 30%.

Min length 15 lines, max errors 3, gap
ratio 30%.

CPD [99] 1,2 Min length 50 tokens, ignore
annotations/identifiers/literals, skip
parser errors.

Min length 100 tokens, ignore
annotations/identifiers/literals, skip
parser errors.

CtCompare [133] 1,2 Min length 50 tokens, max 6
isomorphic relations.

Min length 100 tokens, max 3
isomorphic relations.

Deckard [53] 1,2,3 Min length 50 tokens, 85% similarity,
2 token stride.

Min length 100 tokens, 85% similarity,
4 token stride.

Duplo [32] 1 Min length 6 lines. Min 1 character
per line.

Min length 15 lines. Min 1 character
per line.

iClones [41] 1,2,3 Min length 50 tokens, min block 20
tokens.

Min length 100 tokens, min block 20
tokens.

NiCad [110] 1,2,3 Min length 6 lines, blind identifier
normalization, identifier abstraction,
min 70% similarity.

Min length 15 lines, blind identifier
normalization, identifier abstraction,
min 70% similarity.

SimCad [136] 1,2,3 Greedy transformation, unicode
support, min 6 lines.

Greedy transformation, unicode
support, min 15 lines.

Simian [44] 1,2 Min length 6 lines, ignore identifiers
and literals.

Min length 15 lines, ignore identifiers
and literals.

9.2.1 BigCloneBench

Type-1 CCFinderX, CPD, iClones, NiCad and SimCad have perfect Type-1 recall. CtCompare and Simian

also have excellent recall at 95%. Duplo has good recall at 89%. ConQat (67%) and Deckard (60%) fall behind

the others.

Type-2 Only NiCad has perfect recall for the Type-2 clones. CCFinderX, ConQat, CPD and SimCad have

excellent recall, all ≥ 90%. iClones maintains good recall at 82%. CtCompare, Duplo and Simian have decent

recall in the 70%s, while Deckard has poor recall at 58%. Duplo performs well despite not supporting Type-2

Table 9.3: Benchmark Recall Measurements and Difference Per Clone Type

Tool
BigCloneBench Mutation Framework Difference

T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ∆T1 ∆T2 ∆VST3

Duplo 89 74 46 8 0 0 38 0 0 51 74 46

CCFinderX 100 93 62 15 1 0 99 70 0 1 23 62
CPD 100 94 71 21 1 0 99 82 0 1 12 71

CtCompare 95 78 59 17 0 0 96 63 0 -1 15 59
Simian 95 78 53 13 0 0 81 90 0 14 -12 53

ConQat 67 90 73 33 1 0 91 90 86 -24 0 -13
Deckard 60 58 62 31 12 1 39 39 37 21 19 25
iClones 100 82 82 24 0 0 100 92 96 0 -10 -14
NiCad 100 100 100 95 1 0 100 100 100 0 0 0

SimCad 100 98 91 48 8 0 100 94 89 0 4 2

127



Table 9.4: BigCloneBench: Type-3 Recall

Tool
Syntactical Similarity Interval, x% to x+5%

50 55 60 65 70 75 80 85 90 95

ConQat 0 0 2 3 8 18 41 62 85 56
Deckard 10 14 15 18 24 28 39 34 52 75
iClones 0 0 1 2 5 19 36 39 75 91
NiCad 0 0 1 10 85 99 100 100 100 100

SimCad 5 7 13 16 23 45 46 77 85 99

CCFinderX 0 2 2 1 5 8 23 25 51 77
CPD 0 0 2 2 5 20 22 35 73 68

CtCompare 0 0 1 2 4 19 15 29 62 54
Duplo 0 0 0 0 1 3 7 17 36 60
Simian 0 1 0 1 2 5 22 23 45 63

normalizations. These Type-2 clones must contain a significant Type-1 region that Duplo detects and which

is accepted by the c-match’s 70% coverage requirement.

Type-2 detection reduces to Type-1 detection after Type-2 normalizations are applied. Where Type-2

recall is lower than Type-1, we expect the tool is missing or struggling with particular Type-2 normalization(s).

It is strange that ConQat has a very strong Type-2 recall, but the weakest Type-1 recall of these tools.

Specifically, ConQat is not detecting Type-1 clones of a single particular functionality which contributed a

large number of Type-1 clones to the benchmark. We were unable to determine why ConQat was missing

these clones. Re-configuring ConQat for them made no difference. Ignoring these clones, ConQat has a

Type-1 recall of 97%.

Type-3 For the Very-Strongly Type-3 clones, NiCad has perfect recall and SimCad has excellent recall

(91%). iClones has good detection (82%), while ConQat (73%) and CPD (71%) have decent recall. The

remaining tools have poor recall for these clones. NiCad has excellent (95%) detection for the Strongly

Type-3 clones, while the other tools have poor detection. None perform well in the Moderately Type-3 or

Weakly Type-3/Type-4 regions. Semantic-awareness may be needed to detect clones in these regions with

good precision.

Many of the tools that do not formally support Type-3 clone detection (Table 9.2) have recall in the

Very-Strongly Type-3 similarity region. In particular, CCFinderX and CPD have similar recall to the Type-

3 detectors Deckard and ConQat. This is due to these tools detecting significant continuous Type-1 or Type-2

regions that cover at least 70% of a Type-3 reference clone. It is more desirable for a tool to include the

Type-3 regions in its detection of these clones. Otherwise, the user has to manually recognize the larger

Type-3 clone.

The Type-3 detectors have lower Type-3 recall than we expected. We therefore investigate Type-3 recall

for finer grained syntactical similarity regions. Table 9.4 shows Type-3 recall per 5% interval of syntactical

similarity. For example, the 75% interval includes all Type-3 clones with similarity in the range 75% (inclusive)

to 80% (exclusive). We do not show recall below 50% similarity as none of the tools have noteworthy recall

128



in that range. We split the tools in this table based on formal Type-3 detection support. Only the tools

above the splitting line feature Type-3 detection.

ConQat has good recall (85%) for Type-3 clones in the 90% interval. Oddly, it has significantly poorer

recall for the more similar clones in the 95% interval, only 56%. It also has poor (62%) recall for the 85%

interval. Its recall drops as expected for lower intervals. ConQat was configured with a 70% similarity

threshold, and a maximum of 5 errors (Type-3 gaps). The error setting may be holding back ConQat’s

Type-3 detection. This setting has a strong impact on execution time, and we are already using a value

larger than default (3). Deckard does not have high recall for any of the intervals, with only decent (75%)

recall for the 95% interval. It has poor recall for the 85% and 90% intervals, despite being configured with

its default 85% similarity threshold. iClones has excellent (91%) recall for the 95% interval, but only decent

(75%) recall for the 90% interval, with very low recall for the lower intervals. iClones does not present a

setting to increase Type-3 sensitivity. NiCad has perfect recall for Type-3 clones with at least 80% similarity.

It has excellent recall for the 75% interval, and good recall for the 70% interval. Its recall drops sharply

for intervals below 70%, which is expected as it was configured for a 70% similarity threshold. SimCad has

excellent (99%) recall for the 95% interval, and good (85%) recall for the 90% interval. Its recall drops below

50% for the 80% interval and below. SimCad’s SimHash sensitivity threshold was chosen empirically by the

tool authors, so modification is not recommended. Deckard and SimCad are the only tools to have a notable,

although small, recall for similarity intervals below 65%. Their detection strategies (AST, SimHash) may be

more resilient to statement re-ordering.

Of the tools lacking formal Type-3 support, CCFinderX and CPD have the best recall for Type-3 clones,

specifically for clones in the 90% and 95% intervals. Tools lacking Type-3 detection are able to detect Type-3

clones, by the c-match, when the clones contain a continuous Type-1 or Type-2 region covering at least 70% of

the reference clone. These tools have poor Type-3 recall below 90% similarity, showing this scenario becomes

rare for lower syntactical similarity.

Many of these tools have very strong Type-1 and Type-2 recall. Many perform well for the Very-Strongly

Type-3 clones. Only NiCad performs well for the Strongly Type-3 clones. ConQat, Deckard and NiCad

have Type-3 sensitivity configurations, which we left at their default values. Presumably these defaults were

selected by the tool authors considering precision. The default values are what tool users are most likely to

use, so these results reflect typical tool usage. The tools could be improved with increased Type-3 sensitivity,

although this must be done while maintaining precision.

9.2.2 Mutation and Injection Framework

Type-1 Most of the tools have excellent Type-1 recall (≥90%), with perfect detection by iClones, NiCad

and SimCad. The exception is Deckard and Duplo which have poor recall. Simian has good recall, but falls

behind the other tools.

129



Type-2 ConQat, iClones, NiCad, SimCad and Simian have excellent recall, ≥90%. CPD has good re-

call, CCFinderX and CtCompare have decent recall, while Deckard again has poor recall. The Mutation

Framework correctly identifies that Duplo does not support Type-2 normalizations and detection.

Type-3 The Mutation Framework correctly identifies that CCFinderX, CPD, CtCompare, Duplo and

Simian do not support Type-3 detection. While they may be able to detect Type-1 or Type-2 regions within

the Type-3 references, they are unable to capture the Type-3 regions. The Mutation Framework requires

the tool to capture the clone-type specific edit it introduced to the synthesized clones. Most of the Type-3

tools perform well. iClones and NiCad have excellent recall for the Type-3 clones, both >95%. ConQat

and SimCad also perform well, with >85%. Only Deckard performs poorly, with only 37% recall. Deckard

performs uniformly poor across the clone types, suggesting that its weakness is not due to the handling of

any particular clone-type specific difference. We believe this is due to it’s outdated Java parser (Java-1.4

only).

9.2.3 Comparing the Benchmarks

Here we compare the BigCloneBench and Mutation Framework results for these tools (RQ2). These bench-

marks use very different, but complementary, benchmarking strategies. The advantage of the Mutation

Framework’s synthetic benchmarking technique is it measures recall per clone type very precisely. Since it

synthesizes its reference clones, it is able to determine if a tool successfully detected the clone-type specific

regions of a reference clone. For example, the Mutation Framework will not accept a candidate clone as a

match of a Type-3 reference clone if the candidate clone does not capture the Type-3 regions. Additionally,

each reference clone contains only one type-specific change from the taxonomy, so clone-type-specific recall

can be measured without bias due to features from the other clone types. The advantage of BigCloneBench’s

real-world benchmarking technique is it measures recall using real clones in real systems. The distribution

of the clone types and features of the reference clones reflects what is found in real systems. BigCloneBench

has complex clones that contain mixed features of the clone types. While the Mutation Framework can mea-

sure per clone-type recall more precisely, BigCloneBench shows how the tools perform for real clones. The

advantages of both of these benchmarks are essential for understanding clone detection recall. We suggest

that both benchmarking strategies are needed to fully evaluate the tools.

Since the benchmarks use very different methodologies, we consider them to agree if their recall measure-

ment has an absolute difference no greater than 15%. This is the threshold we have used in previous work

when comparing benchmarks [128]. We have highlighted in gray the cases where the frameworks disagree.

The cases highlighted with light gray are cases where we expected disagreement due to the Mutation Frame-

work’s precise clone-type recall measurements. The cases highlighted with dark gray are the cases we did not

anticipate.

The light gray highlighted cases are where the Mutation Framework has measured no recall, while Big-

130



CloneBench has measured a significant (>15%) recall. Neither benchmark is incorrect in these cases. Rather,

each benchmark is telling us something different about the tools, as per their individual benchmarking ad-

vantages. These are cases where a tool does not formally support a clone type. For example, the light

gray highlighted tools under the ‘∆VST3’ header do not formally support Type-3 detection. The Mutation

Framework requires the tools to detect the type-specific changes in the reference clones, so it measures no

Type-3 recall for these tools. However, these tools may detect a significant (≥70%) Type-1 or Type-2 region

in the Type-3 clones, so BigCloneBench measures a sizable recall. BigCloneBench tells us these tools can

detect significant portions of the Type-3 clones, but the Mutation Framework tells us they cannot detect

the portions containing the Type-3 differences. The quality of these tools’ Type-3 detection is therefore very

limited. They are not appropriate for automatic clone analysis, as automated tools will see these clones

as Type-1 or Type-2, and provide incorrect analysis. These tools may also be inconvenient for use-cases

involving manual inspection, as users will need to manually recognize the Type-3 features missed by the tool.

These conclusions also hold for Duplo, which does not formally support Type-2 detection.

The cases highlighted with dark gray were not expected. The benchmarks disagree for Deckard for all

clone types, with the Mutation Framework uniformly measuring lower recall. We believe this is due to

limitations in Deckard’s parser, which only supports the Java-1.4 specification. The Mutation Framework

synthesized clones using code fragments from JDK6 and Apache Commons, both of which make significant

use of generics (Java-1.5). Deckard may perform better for BigCloneBench if Java-1.5+ features are less

commonly used. The Mutation Framework measures a significantly lower Type-2 recall for CCFinderX. We

investigated the per mutation-operator recall of CCFinderX, and observed it only has low recall for Type-2

clones where a single instance of an identifier is renamed, but has good recall for the other Type-2 edit types.

Perhaps this edit-type is rarer than the others in real-world clones, which is why BigCloneBench measures

a higher recall. ConQat has significantly lower Type-1 recall measured by BigCloneBench. This is its poor

detection of Type-1 clones from a particular functionality, as we mentioned earlier. We are not sure why

Duplo’s Type-1 recall is significantly lower with the Mutation Framework.

Overall, the benchmarks agree for most recall measurements. Ignoring the cases where the tools do not

formally support a clone type (light-gray highlight), the benchmarks agree in 70% of the Type-1 cases, 78%

of Type-2 cases, and 80% of Type-3 cases. Half of the cases of disagreement that are not related to clone type

support are from Deckard, which is likely due to its parser limitations. This strong agreement between two

very different benchmarking strategies builds our confidence that the measurements are accurate (RQ2).

9.3 Intra-Project vs. Inter-Project Performance

Traditionally, clone detectors have been designed to locate clones within a single software system. However,

applications of clone detection extend to clones between distinct software systems. Intra and inter-project

clones may have different properties, so the tools may have different recall for these contexts. In this section,

131



Table 9.5: BigCloneBench: Intra-Project vs Inter-Project Recall

Tool
Intra-Project Recall Inter-Project Recall Difference, ∆ = (Intra− Inter)

T1 T2 VST3 ST3 T1 T2 VST3 ST3 ∆T1 ∆T2 ∆VST3 ∆ST3

Duplo 97 34 49 12 50 81 42 6 47 -47 7 6

CCFinderX 100 89 70 10 98 94 53 17 2 -5 17 -7
CPD 100 80 67 18 100 96 76 22 0 -16 -9 -4

CtCompare 96 38 52 14 88 85 66 19 8 -47 -14 -5
Simian 98 82 55 6 77 77 50 16 21 5 5 -10

ConQat 62 60 57 49 98 95 91 25 -36 -35 -34 24
Deckard 59 60 76 31 64 58 46 30 -5 2 30 1
iClones 100 57 84 33 100 86 78 20 0 -29 6 13
NiCad 100 100 100 99 100 100 100 93 0 0 0 6

SimCad 100 95 86 59 100 99 96 43 0 -4 -10 16

we compare the intra and inter-project recall of the tools using BigCloneBench (RQ3). For intra-project

recall, we evaluate the tools only for the reference clone pairs whose code fragments are located in the same

software system. This is the average recall of the tools in a traditional single-system clone detection scenario.

For example, when a developer uses a clone detector to locate the clones in their software project. For

inter-project recall, we consider only the reference clone pairs whose code fragments are located in different

software systems. This is the average recall of the tools in a cross-project clone detection scenario. For

example, when a company uses clone detection to locate code duplication across their products, or when a

researcher studies code duplication across the open-source community.

Table 9.5 summarizes intra and inter-project recall per clone type, as well as their absolute difference. We

do not include the MT3 and WT3/T4 categories as the tools have negligible recall for these clone categories.

We consider a tool’s difference in recall to be significant if it exceeds 15%, and these cases are highlighted

in gray. We choose this threshold based on the distribution of the difference across these 40 per tool, per

clone-type, cases. The average difference is ±13%. The average is pulled up by a handful of cases with

considerable difference. Only 15 of the cases have a difference that meets or exceeds the average. These 15

cases have an average difference of ±28%, while the other 25 cases have a average difference of ±4%. We

use the average difference of the 40 cases, rounded up to 15%, as our threshold. We believe we are being

sufficiently cautious with this threshold, and are confident the cases exceeding the threshold are affected by

differing properties of intra and inter-project clones.

Most of these tools exhibit significant differences between their intra-project and inter-project recall for

at least one of the clone types. Only NiCad exhibits no significant differences between these clone contexts.

ConQat has significantly different recall for four of the clone types. Generally, it has better recall for

inter-project clones, although it has better intra-project recall for the ST3 clones. Duplo has considerably

better intra-project recall for Type-1 clones, yet considerably better inter-project recall for Type-2 clones.

CCFinderX, CPD, CtCompare, Deckard, iClones, SimCad and Simian have a difference in recall for only one

of the clone types.

132



Many of the tools have significant differences in Type-2 recall, with better inter-project recall in each of

these cases. This difference is considerable, with a -35% difference on average. Difference in Type-1 recall is

not uniform, although the difference is considerable for ConQat and Duplo. Similarly for the VST3 recall,

with ConQat and Deckard showing a considerable difference. The differences in ST3 recall are not as strong

as for the other types. Perhaps intra and inter-project Type-3 clones in this similarity range have similar

properties, or the tools are generally not sensitive to their differences.

While the participating tools were primarily designed for single-system clone detection, our findings show

that they do not have a universal weakness in cross-project clone detection. Per clone type, some of the

tools perform better for inter-project clones, some for intra-project clones, and in most cases no significant

difference is found. Of the thirteen cases of significant difference, seven cases prefer inter-project recall, while

six prefer intra-project recall. Five of these cases show significantly better inter-project recall for Type-2

clones, often by a considerable amount. These results can be used by users to decide which tool is best for

their use-case.

9.4 Clone Capture Quality

While high recall is important, it is also important that a tool capture the clones in a way that is useful to a

user’s clone-related task (RQ4). We evaluated the recall of these tools using BigCloneBench and our coverage

clone-matching metric (c-match). This metric accepts a candidate clone that covers 70% of a reference clone’s

source lines. This metric ignores any additional lines the tool reports beyond the boundaries of the reference

clone. Since the reference clones of BigCloneBench are function clones, additional lines reported by the tool

are external to the functions. These source lines may be from other functions surrounding the function clone,

or class-definition syntax. Ideally, clone detection tools should respect function boundaries when reporting

clones. Tools that report clones that extend beyond function boundaries have poorer clone capture quality

because these clones have poorer usability.

Some primary use-cases of clone detection include refactoring, clone management and automatic clone

analysis. Clones that extend beyond function boundaries, or that intersect multiple functions, do not imply

any specific refactoring action [13, 109]. This requires the developer to manually trim and/or split the clone

by functional boundaries before considering any refactoring tasks. In clone management, developers need

to reason about a large number of clones, and the appropriate actions to prevent harm to software quality.

Having to manually trim or split individual clones significantly increases the difficulty and cost of reasoning

about a large number of clones.

Automatic clone analysis is used by development tools that aid clone refactoring and management, as well

as by researchers who study software using clones. An example of automatic clone analysis is a development

tool that monitors the changes a developer makes to a function, and recommends clones detected by a tool

that the developer most likely wants to propagate the changes to. A clone analyzer reasons about clones

133



for the developer or researcher when there are too many clones for them to manually investigate. However,

the analyzer may behave incorrectly, or produce poor results, when the clone spans multiple functions. The

analysis algorithm and metrics likely assume that the input clones are contained within a single logical unit

of code (e.g. function, block). In general, it is not useful for a tool to report a clone that extends beyond

the boundaries of a function. Clones that span multiple functions are not meaningful since the order and

position of functions in a class is not meaningful.

While respecting function boundaries is only one consideration of clone capture (i.e., reporting) quality,

we have shown why it is important to the practical usability of the clones. In this section, we evaluate how

well the tools respect function boundaries in their detection of the reference clones. We do this using two

extensions of our c-match metric.

The strict coverage metric, sc-match, extends the c-match to also require the candidate clone to

not extend more than l lines beyond the reference function clone’s boundaries, as shown in (9.3). For this

evaluation, we use a tolerance of 3 lines. This is a small enough extension beyond the boundaries of a clone

that even automatic analysis could trim the candidate clone to the function boundaries without having to

split the additional lines into an independent clone. It is small enough that a user should require minimal

effort to visually recognize and ignore the extraneous lines past the function boundary.

sc–match(C,R, t, l) = c–match(C,R, t) ∧

C.f1.s ≥ R.f1.s− l ∧ C.f2.s ≥ R.f2.s− l ∧

C.f1.e ≤ R.f1.e+ l ∧ C.f2.e ≤ R.f2.e+ l

(9.3)

Some tools may not respect function boundaries when reporting clones. Such a tool is a poor choice for

automatic refactoring and analysis usages. However, as long as the target reference clone is clearly featured

in the reported candidate clone, a user should be able to visually parse the reference clone with an acceptable

increase in effort. To evaluate the tools from this perspective, we use the featured coverage metric, or

fc-match. This metric requires the candidate clone to cover the reference clone, and for the covered portion of

the reference clone to be a significant feature of the candidate clone. This is the c-match in both directions,

as shown in (9.4). We decided a 70% coverage of the candidate clone is the minimum for the reference clone

to be visually identifiable by the user without a significantly burdensome examination.

fc–match(C,R, t) =c–match(C,R, t) ∧ c–match(R,C, t) (9.4)

If recall measured by the sc-match and the c-match is similar, then we know that the tool respects

function boundaries when reporting the reference clones, and is therefore a good candidate for both manual

and automatic refactoring and analysis use-cases. If recall by the sc-match is much lower than by the c-

match, then the tool does not respect function boundaries. Such a tool is not appropriate for use-cases

that use automatic analysis. However, if the tool has similar recall measured by the fc-match and c-match,

134



than the tool features the function reference clones in its detection of them. Such a tool is appropriate for

use-cases that use manual analysis, although with some increased effort compared to a tool that respects

function boundaries. A tool with significantly lower sc-match and fc-match than c-match recall neither

respects function boundaries nor features the reference clones. Such a tool is likely burdensome to use for

most use-cases.

We compare the tools’ recall per clone type for the c-match, sc-match and f-match in Table 9.6. We

include only the VST3 and ST3 Type-3 categories as the tools do not have appreciable recall for the other

Type-3/4 categories. We observe trends in these results related to the clone types the tools support, so we

organize the tools with those that formally support Type-3 detection above the splitting line. We consider

the sc-match or fc-match recall to be similar to the c-match recall if the relative difference is no greater

than 20%. We use a relative difference because the tools all have different base recall performances. We

use a generous threshold to favor the tools in this evaluation. We highlight in gray these cases of similarity.

A highlighted sc-match recall indicates the tool respects function boundaries for that clone type, while a

highlighted fc-match indicates the tool features clones of that type when it detects them. The threshold

indicates these conclusions hold for at least 80% of the reference clones the tool successfully detects by the

c-match.

The results show that the Type-3 clone detection tools have exceptional respect for function boundaries.

Except for Deckard, recall measured by the sc-match and fc-match is identical to that measured by the c-

match for these tools. Deckard has only minor reduction in recall between the c-match and sc-match. In our

experiences with Deckard, it occasionally has errors in its clone boundaries. However, the effect seems to be

minimal with respect to the reference clones. The Type-3 clone detectors (ConQat, Deckard, iClones, NiCad,

SimCad) have excellent clone capture quality with respect to function boundaries, and are good candidates

for any manual and automatic clone analysis use-cases (RQ4).

Conversely, for most of the clone types, the tools lacking formal Type-3 detection capabilities do not

respect function boundaries, nor strongly feature their detection of the reference clones. In most cases,

particularly for the Type-1 and Type-2 clones, their recall by the sc-match and fc-match is significantly

lower than by the c-match. The exception is for the Strongly Type-3 clones, and a couple other instances.

These tools do not support Type-3 detection. Their recall for Type-3 clones is due to the detection of a

significant (70%) Type-1 or Type-2 region within the Type-3 clones. Most of these tools are respecting

function boundaries for their detection of the ST3 clones. This is not because these tools respect function

boundaries in general, but because the gaps in these clones is bounding the Type-1 or Type-2 region detected

by these tools to within the function boundaries. This is lost with the VST3, where there are fewer gaps,

and therefore it is less likely the the gaps will bound these tools detection within the function boundaries.

Similarly for Duplo, which does not formally support Type-2 detection. Outliers are CCFinderX and Simian,

that feature only the VST3 reference clones in their detection. These results show that the tools lacking

Type-3 detection (CCFinderX, CPD, CtCompare, Duplo, Simian) neither respect function boundaries nor

135



Table 9.6: BigCloneBench: Clone Capture Quality - Metric Comparison

Tool
T1 T2 VST3 ST3

C SC FC C SC FC C SC FC C SC FC

Duplo 89 1 5 74 70 72 46 26 26 8 7 7

CCFinderX 100 8 15 93 10 72 62 33 51 15 9 10
CPD 100 14 21 94 19 20 71 38 55 21 17 17

CtCompare 95 1 3 78 3 4 59 25 27 17 15 15
Simian 95 12 19 78 51 52 53 25 47 13 11 11

ConQat 67 67 67 90 90 90 73 73 73 33 33 33
Deckard 60 59 59 58 58 58 62 57 57 31 25 26
iClones 100 100 100 82 82 82 82 82 82 24 24 24
NiCad 100 100 100 100 100 100 100 100 100 95 95 95

SimCad 100 100 100 98 98 98 91 91 91 48 48 48

feature the function clones in their detection of them. Therefore, these tools are not appropriate for automatic

analysis, and they may be burdensome for use-cases with manual inspection (RQ4).

9.5 Threats to Validity

Alternate configurations of the tools may result in better or worse recall. Wang et al. [139] refer to this as

the confounding configuration choice problem, and it is a challenge in all clone studies. We took steps to

ensure the tool configurations were appropriate for our study. We used configurations that target the known

properties of the benchmark, such as clone types and clone size. Otherwise, we referred to the defaults and

recommendations of the tools with respect to our knowledge of the benchmarks. This is the process a user

would use to configure a tool for their own system, so our results reflect what a user should expect to receive.

We did not execute the tools for various settings until an optimal result is found, as it is not possible for

users to do this in practice. For the Type-3 clone detectors, lowering their thresholds would allow them to

detect more clones in BigCloneBench [65]. However, the tools would have poor precision for low similarity

thresholds.

9.6 Conclusion

We introduced BigCloneBench [125] as a big data, varied and comprehensive clone benchmark for modern

tools. In this study, we evaluated ten clone detection tools using BigCloneBench (RQ1), and compared

these results against our Mutation Framework (RQ2). We found the tools have strong detection of Type-1

and Type-2 clones, as well as Type-3 clones with high syntactical similarity. Improvement is needed in the

detection of Type-3 clones with lower syntactical similarity, as well as Type-4 clones, while maintaining high

precision, which may require semantic awareness. These real-world and synthetic benchmarks have high

agreement, so we are confident in their accuracy (RQ2). Since BigCloneBench contains both intra and inter-

136



project clones, we were able to evaluate the tools for these contexts. We found that while many of the tools

have different recall for single-system and cross-project detection scenarios, neither context was universally

favored by the tools (RQ3). Using multiple clone-matching metrics with BigCloneBench, we showed that

only the Type-3 tools respect function boundaries when reporting clones (RQ4). Clones reported by the other

tools may have poorer usability in refactoring and automatic clone analysis use-cases. With BigCloneBench

and the Mutation Framework, we believe we have created a solid foundation for measuring the recall of clone

detection tools.

137



Chapter 10

BigCloneEval

In order to make BigCloneBench more accessible, we introduce BigCloneEval, a framework for evaluating

clone detection tools using BigCloneBench. It is based on the tool evaluation procedure we have used in our

tool comparison studies [116, 122] (Chapter 9). BigCloneEval makes it very easy for users to evaluate and

compare the recall of clone detection tools with BigCloneBench. The user does not have to write any evalua-

tion code beyond configuring their candidate tools for execution and converting clone detection reports to a

standard format. BigCloneEval handles the execution of the candidate clone detector for IJaDataset, includ-

ing managing possible scalability constraints of the tool using deterministic input partitioning. BigCloneEval

tracks the detected clones, and efficiently determines which of the reference clones in BigCloneBench the

tool was able to detect. The evaluation experiment is highly configurable. The user can specify constraints

on the reference clones considered when measuring recall, can customize the clone matching algorithm, or

can provide their own clone matching algorithm by a plug-in architecture. BigCloneEval produces a tool

evaluation report which summarizes recall per clone type, for both intra-project and inter-project clones, for

different syntactical clone similarity regions, and for clones implementing different functionalities. The goal

of BigCloneEval is to make BigCloneBench accessible to the community, and to provide a standard in tool

evaluations with BigCloneBench.

This chapter is based upon our manuscript [129] “BigCloneEval: A Clone Detection Tool Evaluation

Framework with BigCloneBench” published by myself and Chanchal K. Roy and in the Tool Demonstration

Track of the International Conference on Software Maintenance and Evolution (2016). I was the lead author

of this paper and study, under the supervision of my supervisor Chanchal K. Roy. The publication has been

re-formatted for this thesis, with small modifications to better fit the thesis.

The remainder of this chapter is organized as follows. We describe the version of BigCloneBench included

with BigCloneEval in Section 10.1. The framework is described in Section 10.2, including its commands,

evaluation procedure, customizations, and evaluation report output. Limitations in the framework are dis-

cussed in Section 10.3, and the framework is compared to the related work in Section 10.4. The chapter is

concluded in Section 10.5.

138



10.1 BigCloneBench - BigCloneEval Release

The BigCloneEval version of BigCloneBench contains clones mined for 43 distinct functionalities. As there

is no consensus on the minimum syntactical similarity of a Type-3 clone, it is difficult to separate the Type-3

and Type-4 clone pairs that implement the same functionality. Instead, BigCloneEval separates the clones

into four categories based on their syntactical similarity. We define Very-Strongly Type-3 (VST3) clones

as those with a similarity in range 90% (inclusive) to 100%, Strongly Type-3 (ST3): 70-90%, Moderately

Type-3 (MT3): 50-70%, and Weakly Type-3 or Type-4 (WT3/4): 0-50%. Syntactical similarity is

measured for each reference clone as the ratio of the lines or tokens a code fragment shares with another after

Type-1 and Type-2 normalizations. Shared lines or tokens are identified by unix-diff [34]. We classify the

clones into these categories using the smaller of their line and token-based clone similarity measures. Further

details on BigCloneBench are found in Chapter 8.

10.2 Framework

BigCloneEval makes it easy to measure the recall of clone detection tools using BigCloneBench. It implements

an experimental procedure similar to the one we have used in our previous clone detection tool evaluation

experiments [116, 122]. BigCloneEval automates the major steps of the experiment, and allows the recall

evaluation to be customized. It produces an extensive recall evaluation report that fully highlights the

capabilities of a candidate clone detection tool.

BigCloneEval has four primary components. (1) The BigCloneBench database, which documents the

reference clones of BigCloneBench. (2) IJaDataset, the inter-project Java repository containing the reference

clones. (3) A tools database, which tracks the clone detection tools being evaluated by the framework, and

their detected clones. (4) A set of command-line tools for interacting with the framework, including the

registering of clone detection tools, performing clone detection for IJaDataset, importing the detected clones,

and performing the recall evaluation experiments. Table 10.1 lists the commands, which we describe further

in the following sections.

BigCloneEval is distributed as a git repository, so that users can easily pull updates. BigCloneBench and

Table 10.1: BigCloneEval Commands

Command Description

registerTool Registers a tool with the framework.
listTools Lists the tool(s) registered with the framework.

deleteTool Removes a tool, and its detected clones, from the framework.
partitionInput Partitions a clone detection input given a maximum input size.
detectClones Automates the execution of a tool for IJaDataset.
importClones Imports a tool’s detected clones into the framework.
clearClones Removes the imported clones of a tool from the framework.

evaluateTool Measures the recall of a tool and produces the tool evaluation report.

139



IJaDataset are downloaded separately, and added to the distribution. BigCloneEval uses fast and efficient

embedded databases so that the user does not have to install and setup a database server. The BigCloneBench

database [127] and IJaDataset [127] repository are very large, so BigCloneEval uses special versions of these

that contain only the data and source files needed to perform the recall measurement, reducing their storage

requirements.

10.2.1 Evaluation Procedure

The tool evaluation procedure is shown in Figure 10.1. First the clone detection tool is registered with the

framework, which assigns it a unique tool ID. Next, the tool is executed for IJaDataset, and its detected clones

are collected. As a speedup, the tool only needs to be executed for the files in IJaDataset that contain clones

in BigCloneBench. Clone detection can be executed manually by the user, or the framework can automate

this process, including overcoming possible scalability limits of the clone detection tool using deterministic

input partitioning. Then, the detected clones are imported into the tools database for the given tool. Lastly,

the tool is evaluated against the clones in BigCloneBench. The evaluation is highly configurable, and the

output tool evaluation report summarizes the tool’s recall per clone type, per syntactical similarity region

and per functionality in BigCloneBench. These individual steps, the output, and the framework commands

are detailed in the remaining sections.

10.2.2 Register Tool

The candidate clone detection tool is registered with the framework using the registerTool command, which

requires the name of the tool and a description of its configuration for the experiment. These are stored in

the database for reference, and a unique identifier is provided to the user for specifying this tool with the

commands of the proceeding steps. The registered tools, their IDs, names and descriptions, can be listed

using the listTools command. Tools can be removed from the framework using the deleteTool command.

10.2.3 Detect Clones

Next the user must execute their candidate tool for IJaDataset and collect the detected clones. IJaDataset

is very large, and outside the scalability limits of most clone detection tools. However, the clone detection

tools do not need to be executed for the entire IJaDataset, only for the files containing reference clones in

BigCloneBench. We provide a reduced version of IJaDataset which contains only the relevant source files

and is split into a number of smaller subsets for clone detection. There is one subset per functionality in

BigCloneBench. Each functionality’s subset includes all the files which contain a function tagged as a true

or false positive of that functionality in the creation of BigCloneBench. Therefore each subset is a realistic

subject system, containing both true and false positive clones. The tool must be executed for each subset of

IJaDataset, and the clones collected. This is equivalent to executing the tool for the entire IJaDataset, in

140



1. Register  Tool 2. Detect Clones 3. Import Clones 4. Evaluate Tool

BigCloneBenchDBIJaDataset
Clone

Detection Tool

Detected 

Clones

Tool Evaluation

Report

Tool

ID

ToolsDB

Config.

Clone

Detection

Tool

Figure 10.1: BigCloneEval Evaluation Procedure

terms of measuring recall for the reference clones.

A couple of these subsets may still be too large for some clone detection tools, specifically those that do

not scale well in memory. This can be overcome using a deterministic input partitioning approach [84]. This

involves partitioning the input and executing the tool for each unique pair of partitions. Partition size is

chosen such that a pair of partitions does not exceed the scalability limits of the tool and available hardware.

To perform deterministic input partitioning we provide a partitionInput command. This takes a directory

of source files, a maximum input size in source files, and an output directory. Within the output directory

it creates a subdirectory of source files for each unique pair of partitions given the maximum input size.

Executing the tool for each subdirectory is equivalent to executing it for the original input.

While the user can perform the above manually with their clone detection tool, we also provide the

detectClones command which automates the detection procedure. The user provides a script that configures

and runs their tool, and the maximum input size considering their tool and available hardware, if required.

The framework will automatically execute the tool for each subset of IJaDataset, using partitioning when

needed, and collect the detected clones into a single output.

10.2.4 Import Clones

Now the user imports the clones detected by their clone detection tool into the tools database. This is done

using the importClones command, which takes the ID of the registered tool and a file containing the clones

to import. The clone file must list the clone pairs detected by the clone detection tool in a simple CSV

format.

10.2.5 Evaluate Tool

The evaluateTool command is used to measure the recall of the clone detection tool, and produce its tool

evaluation report. This command requires the ID of the registered tool to evaluate, whose detected clones

have already been imported, and a file to output the recall measurements to. It iterates through each reference

141



clone in BigCloneBench and uses a clone matching algorithm to determine if the candidate tool was able to

detect them. Recall is summarized for strategic subsets of the benchmark (e.g., per clone type) in the tool

evaluation report (discussed further in Section 10.2.6). The user can configure the evaluation procedure with

a number of constraints on the clones considered when measuring recall. They can also customize or provide

their own clone matching algorithm. We describe these further in the following subsections. By default, a

configuration matching our previous clone benchmark experiments is used [116,122].

Reference Clone Selection

The user can specify a number of constraints on the reference clones considered when measuring recall. Users

can select clones for consideration by minimum and maximum clone size as measured by language-tokens,

pretty-printed source lines, and/or original source lines. These options can be used to measure recall for clones

within particular clone size ranges. They are also useful for reducing bias when measuring and comparing the

recall of multiple tools. Clone detection tools typically require at least a minimum clone size configuration,

and most tools measure clone size by token or by source line (original or pretty-printed). By selecting a

strict minimum and maximum clone size by each measure, the tools can be appropriately configured for

BigCloneBench, and their recall results can be compared without bias due to clone size configuration. Users

can also select reference clones by the total number of judges that have examined the code fragments of a

reference clone, and their collective confidence in their judgment of those code fragments (the difference of

true and false positive votes).

Clone Matching Algorithm

Recall is measured using a clone matching algorithm, which judges whether a reference clone in BigClone-

Bench is successfully detected by a candidate tool. BigCloneEval includes our coverage-based clone matcher,

which we have used successfully in our previous work [116, 122], and is based on our covers metric. A code

fragment f1 covers code fragment f2 if it intersects a ratio t of the source lines of f2, as shown in Eq. 10.1,

given that the code fragments are in the same source file. A reference clone R in BigCloneBench is considered

detected by the candidate clone detector if there exists a candidate clone C reported by the candidate tool

that satisfies the clone matcher. The coverage matcher is shown in Eq. 10.2, and requires the code fragments

of C to cover the code fragments of R given a minimum coverage threshold t. Both orderings of the candidate

clone’s code fragments are tested. The coverage clone matcher is implemented as a database query over the

tool’s imported clones. Database indexes are used to make this query efficient, as the number of reference

clones in BigCloneBench is very large.

covers(f1, f2, t) =
min(f1.e, f2.e)−max(f1.s, f2.s) + 1

f2.e− f2.s+ 1
≥ t (10.1)

c–match(C,R, t) = covers(C.f1, R.f1, t) ∧ covers(C.f2, R.f2, t) (10.2)

142



The user can choose the coverage threshold of the coverage matcher (the default is 70%), as well as set a

number of advanced configurations. The user can also provide their own custom clone matcher by a plug-in

architecture. The user specifies the the name of the clone matcher and a configuration string. The clone

matcher is discovered and configured at runtime. The existing coverage clone matcher can be used as a

template by the user when implementing their own algorithm.

10.2.6 Tool Evaluation Report

The tool evaluation report summarizes the tool’s recall performance for BigCloneBench given the configu-

ration of the evaluateTool experiment. Recall is summarized per clone type, including the Type-3/Type-4

categories discussed in Section 10.1. Recall is also measured for different minimum syntactical similarity

thresholds, as well as for different regions of syntactical similarity. Recall is summarized for all clones, for

just the intra-project clones, and for just the inter-project clones. It is also summarized for all clones, and

for each of the individual functionalities in BigCloneBench. The report also summarizes the reference clones

of BigCloneBench considered given the configuration of the experiment (e.g., clone size). The report names

the versions of BigCloneBench and BigCloneEval used to measure recall, as well as the configurations of the

experiment, including the clone matcher, for future reference.

10.3 Limitations

BigCloneEval performs our clone detection tool recall evaluation procedure [116,122]. While it has a number

of customization options, including allowing custom clone matching algorithms, it does not extend beyond

this procedure. The framework is open-source, so users can adapt the procedure if needed. As well, the

full BigCloneBench database is available for users who are developing novel research studies and evaluation

procedures [127]. BigCloneEval does not measure clone detection precision. There is no existing methodology

for measuring precision automatically, and is typically done by manual clone validation. BigCloneEval

measures recall in terms of clone pairs, while some tools also report clones as clone classes. There is not a

standard for measuring recall considering clone class reporting. It is an open topic we would like to explore

in future work, and integrate into BigCloneEval.

10.4 Related Work

Bellon et al. [13] provide a benchmark of four thousand clones and a framework for evaluating clone detectors

against this benchmark. Bellon’s benchmark was built by manually validating a small fraction of the clones

detected by participating tools in their benchmarking experiment [13]. Therefore, it is limited by the clone

detection capabilities of its participating tools, which also introduces some biases [9]. Murakami et al. [93]

extended Bellon’s benchmarking by identifying the gap lines in Bellon’s benchmark. Charpentier et al. [19]

143



re-examined some of the clone validation efforts in Bellon’s Benchmark and found disagreement in the results

when multiple judges are used. We previously found that Bellon’s Benchmark may not be appropriate for

evaluating modern clone detection tools [128]. In contrast, BigCloneBench is a much larger benchmark, and

was built independently of the clone detection tools in order to avoid bias. We introduced the Mutation

and Injection Framework, which automatically measures the recall of clone detection tools in a mutation-

analysis procedure. Its synthetic benchmarking compliments the real-world benchmarking strategy used by

BigCloneEval.

10.5 Conclusion

In this chapter, we introduced BigCloneEval, a framework for measuring the recall of clone detection tools

using our BigCloneBench. BigCloneEval makes it very easy to perform clone detection tool benchmarking

experiments with the reference clones in BigCloneBench. It gives the user flexibility over the configuration of

the evaluation experiment, including the clone matcher used. Recall can be measured for both inter-project

and intra-project clones, with recall summarized per clone type, per syntactical similarity range, and per

functionality in the benchmark.

144



Part III

Large-Scale Clone Detection

145



In this part, we present our work on large-scale clone detection. Specifically, clone detection that can scale

to inter-project source-code datasets on the order of hundreds of millions of lines of code. We performed two

major studies in this area. In our first study, we use input partitioning and input shuffling with heuristics to

scale the classical clone detection tools to large-scale, at the cost of an acceptable reduction in recall perfor-

mance. In our second study, we present our large-scale clone detection tool, CloneWorks, which advances the

state of the art in clone detection in terms of scalability and speed, while introducing our novel user-guided

approach. The user-guided approach allows the user to customize their clone detection experiment to target

any type or kind of clone, as per their scenario or use-case, including to pursue new varieties of clones.

In Chapter 11, we present study on scaling the classical (natively non-scalable) clone detection tools.

We designed the Shuffling Framework, a methodology for reducing a large source dataset into a series of

smaller subsets for clone detection. This successfully scales classical clone detectors to large scale at the cost

of an acceptable loss of their native recall performance. The subsets are kept small enough for the tool to

scale on average hardware without hitting memory or time constraints. We begin with our core Shuffling

Framework, which partitions the dataset, and then randomly shuffles the source files into different partitions

over a number of detection rounds. We then explore heuristics to improve the recall achieved within fewer

detection experiments. We find the best scalability by building the subsets by shuffling together pairs of

similar source files, and efficiently tracking those files which have been shuffled together previously to avoid

repetition. While this framework successfully scales the tools, we find that a small cluster of workstation

computers is necessary to achieve scalability in execution time. The Shuffling Framework enables us to take

advantage of the desirable features and properties of existing tools while targeting inputs outside of their

typical scalability range.

In Chapter 12, we present our large-scale clone detection tool, CloneWorks, which is designed for fast,

scalable and user-guided clone detection experiments. CloneWorks detects clones using a simple Jaccard-

based clone similarity metric, which represents code fragments as sets of code terms, and detects clones

clones as code fragments that share a minimum overlap ratio. This clone detection metric is scaled in

execution time using the sub-block filtering optimization and clone indexing techniques from our previous

works [116, 126]. We implement this technique for speed at the cost of high memory usage, and then scale

within limited memory using an input partitioning technique based on our Shuffling Framework. We achieve a

user-guided approach using our input converter, which allows the user to customize how their code fragments

are transformed into code-term sets. Specifically, the user chooses the source-level transformations, term

splitting and term-level transformations applied the code fragments, including a plug-in architecture for

further customization. This enables the user to target any type of clone, or even new kinds of clones such

as API clones. We design a parallel and efficient architecture that enables best-in-class execution time and

scalability, even on limited hardware. We perform a large-scale tool evaluation experiment that measures

recall, precision, scalability and execution time for CloneWorks and the competing tools. Through scenarios

and case-studies, we demonstrate the user-guided aspect of CloneWorks, including the validation of over 15K

146



detected clone pairs from targeted clone detection. CloneWorks will enable researchers to pursue new areas

of large-scale clone detection research.

147



Chapter 11

Large-Scale Clone Detection using

the Classical Detectors

Scalable clone detection is amongst the most active topics in the clone community. One of its primary

goals is the creation of clone corpora from ultra large inter-project datasets that often contain on the order of

thousands of open-source systems. However, building scalable tools is challenging and it is often impossible

to use existing state of the art tools for big data analysis, except for emerging tools that are built for extreme

scalability. Reasons for their failure include insufficient memory, impractical computation time, and/or

limitations in their underlying algorithms.

In this chapter, we develop and evaluate a scalability heuristic we call the shuffling framework [64] [120].

Our technique allows classical clone detection tools (i.e., those not specifically designed for big data) to be

scaled to big data on standard workstation-class hardware without modification. The framework achieves

scalability by executing the classical tool for subsets of the dataset. The subset size is kept small enough

that the tool does not encounter scalability issues when executed on a standard workstation. The subsets

are chosen by a non-deterministic process that ”shuffles” the dataset’s files into inputs for the classical tool.

Using the tools in their original state ensures that their native precision and detection characteristics are

maintained when executed through the framework. By executing the tool for a sufficient number of subsets

an acceptable ratio of the tool’s native recall is achieved for a dataset outside of its native scalability. The

key to the performance of the framework is the design of the non-deterministic strategies used to choose the

subsets.

This research is motivated by the richness of inter-project clone corpora for software mining experiments

and applications. Inter-project datasets of interest include public open-source repositories (e.g. SourceForge

and GitHub) as well as private corporate repositories. Clone corpora may be mined to study developer be-

havior both globally (e.g., across open-source repositories) or within an organization (e.g., across a company’s

private repository). They can be used to discover frequently re-implemented functionalities that should be

extracted into new software libraries to remove duplicated engineering costs. A corpus may also be used

as a basis for Internet-scale clone search [61], which has applications including API recommendation and

usage support. Scalability in detection is achieved using either novel scalable detection techniques (general

or domain specific), or mixing classical approaches with scalability heuristics.

148



One of our goals is to allow classical tools to contribute towards inter-project clone corpora (e.g., [61]).

It is not sufficient to only consult scalable clone detectors when creating a clone corpus as classical tools

have their own unique strengths and detection characteristics. While general-purpose scalable detection

techniques exist in the literature, most have not been publicly released as user-friendly tools. Additionally,

scalable tools are still novel and their recall and precision have not been proven. Classical tools have matured

and there is more understanding and confidence in their abilities and detection quality. In order to build a

truly comprehensive inter-project clone corpus, a variety of detection tools need to be consulted, including

both scalable and classical tools.

We propose a shuffling framework based on input partitioning. This strategy completely partitions the

dataset into disjoint subsets. The tool is then executed for each subset to locate the clones within these

partitions. Since it is likely that files containing clones will be assigned to different partitions, the contents of

the partitions are randomly shuffled over a number of rounds. Rounds are executed until either the framework

user has met their time constraints, or when the cost of executing an additional round exceeds the expected

benefit (as judged from the previous rounds) in terms of the number of new clones detected. This strategy

relies upon randomization to shuffle clones together. It assumes that while a large number of clones remain to

be found, there is a good chance random selection will shuffle files containing clones into the same partitions.

The technique should reach a point of diminishing returns when a significant portion of the tool’s native recall

has been found. This shuffling strategy is computational cheap, and the creation of the subsets is negligible

compared to the cost of executing the clone detection tool.

We evaluate this partition strategy for the ultra large inter-project dataset IJaDataset 2.0 [60] using a

selection of classical clone detection tools, including Deckard [53], NiCad [105], iClones [41], Simian [44],

SimCad [134] and CCFinderX [58]. We measure the framework’s detection performance as the ratio of a

tool’s native recall that it is able to capture. This study reports our observations and the challenges faced

in executing our framework for these tools and dataset. In order to gauge the expected performance of the

framework for these tools, we also executed it for standard size datasets which allowed us to compare clone

detection with and without the framework. We developed and evaluated a heuristic for estimating framework

performance when the clone output was too large to process on available hardware.

From our performance observations we identified the strengths and deficiencies of the partitioning ap-

proach. Generating the subsets by randomly partitioning the dataset over a number of shuffling rounds is

computationally inexpensive, and ensures the tool is exposed to every file in the dataset. However, we found

a large number of rounds was required to obtain an acceptable ratio of a tool’s native recall. We identified

two attributes of random partitioning that limits its performance.

First, when shuffling the partitions the framework does not consider which files have been shuffled together

previously. It is possible, especially as more rounds are executed, that pairs of files will be randomly shuffled

together more than once. Executing the tool for the same pairs of files repeatedly costs computation time

and resources without discovering new clones (i.e., improving recall). Computing rounds of partitions that

149



never shuffles the same files together more than once is neither simple nor cheap. However, minimizing the

reshuffling of the same files together repeatedly would improve the performance of the framework.

Second, this strategy does not consider the similarity of the files it shuffles together. A significant portion

of a clone detector’s computation time is spent searching for clones between files that do not contain clones.

Shuffling together only those files that contain clones would reduce the amount of wasted time. Of course,

determining if two files contain a clone has the same cost as clone detection. However, a cheap (i.e., O(n),

where n is the combined length of the files) heuristic to estimate if two files contain enough similar code to

possibly contain a clone could be used to prevent files too dissimilar to contain a clone (as judged by the

tool) from being shuffled into the same subsets.

Using these observations, we improved our framework’s subset generation and file shuffling strategy.

Specifically, we explored methods of efficiently tracking seen file pairs, and efficient heuristics to measure

source file similarity. By tracking the seen file pairs, we can guarantee each new subset contains a minimum

number of new detection experiences. By measuring file similarity, we can avoid shuffling together files that

are unlikely to contain a clone as judged by the specific classic tool. The goal of these two heuristics is to

maximize the number of clones found per subset the tool is executed for, which minimizes the number of

subsets needed to obtain an acceptable ratio of the tool’s native recall. This improves the scalability of our

framework. We incrementally introduced these heuristics to the framework, and measured their performance

in an experiment mimicking a real big data scenario.

Using our findings of the computational cost and recall performance of the added heuristics, we specify

a final shuffling algorithm which merged the best features of the partitioning method and the heuristics. We

used this final version of the shuffling algorithm to analyze IJaDataset. We compared the improved algorithm

against the original core algorithm (the original shuffling framework [120] [64]). While the heuristics increased

the cost of generating the subsets of the dataset to analyze, it greatly reduced the number of subsets the

classical tool needed to be executed for to achieve a satisfactory ratio of its native recall, while of course

retaining the tool’s original precision.

In summary, this work answers the following research questions:

RQ#1 What is the accuracy of our heuristic for measuring the recall performance of the shuffling framework?

RQ#2 What is the expected recall performance of the core shuffling framework for these selected clone

detection tools with respect to their native recall performance.

RQ#3 Is our shuffling framework successful in scaling classical detection tools to big data?

RQ#4 By observing the behavior of the shuffling framework, can we modify it to improve its recall perfor-

mance in terms of recall and execution time?

RQ#5 Does the improved shuffling framework perform better for big data?

150



This chapter is based upon our manuscript [126] “Big Data Clone Detection Using Classical Detectors: An

Exploratory Study” published by myself, Iman Keivanloo and Chanchal K. Roy in the Journal of Software:

Evolution and Process (2015), c©2014 John Wiley & Sons, Ltd. I was the lead author of this paper and

study, under the supervision of my supervisor Chanchal K. Roy and Iman Keivanloo. The publication has

been re-formatted for this thesis, with modifications to better fit the thesis.

The remainder of this chapter is organized as follows. We begin with a short survey of related work in

Section 11.1. The procedure of our core shuffling framework as proposed in previous work [64] is outlined

in Section 11.2. Section 11.3 overviews our experimental set-up and defines our metrics, including the

recall evaluation heuristic. We evaluate the expected performance of our core algorithm in the preliminary

experiments detailed in Section 11.4. Section 11.5 discusses our experiences in applying our core shuffling

framework to big data (IJaDataset), and reports our observations regarding the framework’s clone detection

performance. In Section 11.6 we analyze the performance and deficiencies of our core shuffling algorithm. In

Section 11.7 we develop shuffling heuristics to address the deficiencies in the core approach, and incrementally

integrate them into the core shuffling algorithm. Using a test dataset (a sample of IJaDataset) we measure

the effectiveness of these improvements versus the costs the heuristics added to the shuffling algorithm. From

these experiments, we specify an improved shuffling framework in Section 11.8. In Section 11.9, we revisit

IJaDataset with the improved framework and compare our experiences against the core framework in terms

of recall performance and tool scalability improvements. We conclude this research in Section 11.10.

11.1 Related Work

Scalable clone detection research can be summarized as five unique approaches: (1) deterministic novel general

purpose detection (e.g., [73]), (2) deterministic novel domain-specific approaches (e.g., [48]), (3) deterministic

approaches for achieving scalability by altering available tools (e.g., [114]), (4) deterministic approaches

for achieving scalability using an available clone detection tool as is (e.g., [84]), and (5) nondeterministic

approaches for scaling an available tool (e.g., [64]). A variety of use cases can be addressed using each family

based on their unique features. Our Shuffling Framework is an implementation of approach (5).

Deterministic novel general purpose approaches, (1), are designed specifically for scalability. A number of

such techniques for big data have been explored in clone literature, however public tool availability remains

rare. Approaches that achieve scalability on a single machine may require compromises in granularity, recall

and/or precision in order to reduce computational complexity or the clone search space. Other approaches

achieve scalability by targeting scalable hardware, such as cloud-based computing clusters, which can be

costly to purchase or rent.

Deterministic novel domain specific approaches, (2), achieve scalability by optimization for a particu-

lar use case. By exploiting domain knowledge of a particular use case, computational complexity can be

lowered without significant compromise to detection features, recall or precision. However, the approach’s

151



performance is strongly specific to its domain of study. The approach may be ineffective in other use cases.

Existing classical tools may be modified for scalability, (3). These approaches exploit the proven existing

clone detection technique with modifications to improve its scalability. For example, an existing tool may

be modified to distribute its computation. Or an heuristic may be used to reduce the search space the

classical approach must be executed for. Improving the scalability of an existing tool may scale its hardware

requirements, or reduce its recall and/or precision. To implement such an approach, the original tool’s source

code and expert knowledge of its implementation is required. Many tools are closed source, or are released

without extensive design/engineering documentation.

Methods (4) and (5) use classical tools as-is and scale them to big data. These approaches exploit the

known detection characteristics, recall and precision of available tools. Many classical tools are available,

and users are confident in their abilities and correctness due to their widespread use in clone research. By

not requiring modification to the tools, these approaches can scale closed-source tools. While open-source

tools might be modifiable for increased scalability, this requires expert knowledge in their algorithms and

implementations. Our Shuffling Framework exploits the non-deterministic method, (5).

Deterministic methods of scaling classical tools without modification, (4), is the most similar approach to

our Shuffling Framework. An implementation of the deterministic approach (e.g., [84]) begins by partitioning

the input dataset into disjoint subsets half the size manageable by the classical tool on workstation hardware.

The tool is then executed for each pair of these subsets. If the tool’s input scalability limit is 1
n th of the

big dataset, then the deterministic method will partition the input into 2n disjoint subsets, and execute

the tool for n(2n − 1) = O(n2) subset pairs. This strategy maintains a classical tool’s native recall and

precision while scaling it to big data by deterministic exposure of the tool to every file and pair of files in

the dataset. However, for a dataset containing thousands of software systems, the deterministic method may

require several weeks of execution time with a classical tool on a single workstation. Therefore, to achieve

scalability in execution time, the user must distribute the analysis of the subset pairs across a large cluster

of workstations.

Our Shuffling Framework aims to scale classical tools on a single workstation, or on a (small) handful of

available workstations, without modifications to the tool. It executes the tool for some number of manageable

subsets of the dataset. The subsets are chosen by a non-deterministic (random) process, meaning that the

tool is not exposed to every file pair in the dataset. The approach relies upon randomization to allow an

acceptable ratio of a tool’s native recall to be achieved in a manageable number of subsets, at least far

fewer than required by the deterministic method (i.e., approach 4). The probability of files containing clones

ending up in the same subset is higher when a large ratio of a tool’s native recall remains to be found.

This approach maintains the classical tool’s detection characteristics and precision, but sacrifices its recall

to achieve scalability on affordable hardware. In this research, we develop and investigate non-deterministic

methods of choosing these subsets as to reduce the number of subsets needed to achieve an acceptable ratio

of a tool’s native recall.

152



There are a few recent and similar studies to our research. Ishihara et al. [48] exploited inter-project

scalable clone detection to locate commonly used functionalities within 13K open source projects in order

to generate a seed for future APIs and libraries. Schwarz et al. [117] studied cloning between 3K Smalltalk

projects to deploy a database of clones which can be queried. Ossher et al. [96] observed cloning at the file

level using coarse-grained clone detection heuristics. Common to all these studies, the detection approach

is customized and optimized considering the research objectives and requirements. This is contrary to our

research where we show that a clone dataset can be generated using available clone detection tools by copping

with the scalability issue without altering the tools.

11.2 The Core Shuffling Framework

The shuffling framework allows clone detection tools not designed for extreme scalability to scale to ultra large

datasets without modification on standard hardware while achieving an acceptable overall recall and retaining

the tool’s original precision. Summarized below is our core Shuffling Framework approach as proposed in our

earlier work [64]. We begin this research with the analysis of the core approach’s performance for ultra-large

datasets. We discuss improvements to this approach starting in Section 11.8. The core framework executes

the following procedure:

1. The source files of the dataset are randomly partitioned into n disjoint subsets of equal size. Subset

size is chosen such that the clone detection tool can handle a single subset within a single execution on

standard hardware without encountering scalability difficulties.

2. Each subset is searched independently by the clone detection tool. This can be done sequentially, in

parallel, or distributed over independent computers.

3. The detected clone pairs are merged into a clone repository.

4. Steps (1) through (3) are repeated for r rounds. Multiple rounds are required as a single round achieves

limited recall. There is a high chance that cloned contents are assigned to disjoint subsets. Since the

rounds are independent, they may be executed sequentially or in parallel on common or independent

computing resources.

The framework achieves scalability by partitioning the dataset into subsets individually manageable by

the clone detection tool. The tool’s recall is recovered by repeating detection after shuffling the partition

contents. The goal of this non-deterministic approach is to achieve an acceptable fraction of the tool’s native

recall within a manageable number of rounds (O(nr) tool executions).

To use this framework, the user must select an appropriate subset size for their clone detection tool.

Factors affecting this choice include how the tool’s memory requirements, computation time, and algorithmic

complexity scale with input size. Some tools may also have inherit input size limitations in their algorithms

and data structures.

153



A number of rounds to execute must also be chosen. The more rounds executed, the closer the framework

will come to the tool’s native recall. However, the number of rounds executed must be manageable within

available time and computing resource constraints. Preferably, rounds should be executed until the number of

new clones found (i.e., discovered in the most previous rounds) is no longer worth the additional computation

time. This decision depends on the individual use case.

Clones detected in each subset are added to a single clone repository. A clone may be detected in

multiple rounds if its files are randomly shuffled into the same partitions in multiple rounds. Therefore the

clone repository must handle the insertion of duplicate clones by retaining only one copy of the clone. In our

implementation of the framework we used a hash-based set as a clone repository. This provides amortized

O(1) clone insertion and lookup. Our clone pair equivalence function is defined to ignore code fragment

order, so the set will only retain one copy of a clone pair even if the code fragment order is reversed.

11.3 Study Setup - The Corpus, Environment, Tools and Measures

11.3.1 Corpus - IJaDataset 2.0

For our experiment we used the second version of IJaDataset, which was constructed using raw data crawled

in 2012 [60]. The dataset covers source code from approximately 25,000 open source Java projects. This

new version of the dataset contains up-to-date source code and is two times larger than the first version,

which we used in our earlier studies [64]. The dataset is based on source files mined from SourceForge and

Google Code in 2012. The dataset includes nearly 3 million Java source files spanning 356 million lines of

code (LOC). The dataset is publicly available [4].

Of the 3 million files in IJaDataset, 6238 are greater than 2000 lines in length. While these make up an

insignificant portion of the dataset, they may contribute considerably to a clone detection tool’s execution

time. For this reason we consider these files as outliers of the dataset and omitted them from the experiments.

11.3.2 Hardware

Our framework aims to scale classical tools to ultra large datasets using standard hardware. Clone

detection in big data is mostly of interest to researchers and professional developers. For this reason we used

consumer-grade workstation-class desktop computers as our target for standard hardware. We expect such

machines to have 4 or more processing threads on a modern CPU architecture (e.g., Intel Core i5) and 8-32GB

of system memory. These machines should store active data on either a performance hard drive or, ideally,

a solid state drive. At the time of publication, machines meeting these specifications cost approximately

$800-$1500 USD.

The first IJaDataset experiment (Section 11.5) was executed in a distributed fashion on computing in-

stances provided by the Bugaboo cluster of the Western Canada Research Grid (WestGrid) and Amazon

154



EC2. These instances meet our definition of standard hardware, and multiple were exploited in order to

complete this study in a limited time-frame. The average instance included a 2.66GHz quad-core processor,

12GB of memory, and two 10,000RPM hard drives in raid0. All other experiments were executed on our local

hardware, which includes a 3.6GHz quad core processor, 16GB of memory, and a single consumer-grade solid

state drive. For particularly demanding analysis of the experiment’s results (e.g., gold dataset creation and

performance measurement), an EC2 instance with 64GB of memory was utilized. This extraordinary instance

was never used for steps of the shuffling framework, only for analysis of the framework’s performance.

Upon completion of the first IJaDataset experiment, we realized that traditional hard disk drives are

the bottleneck to the framework. Subset creation and clone detection was considerably faster on our local

machine using a consumer-grade solid state drive. For the experiments using standard hard disk drives we

include estimates of what the execution time would have been on our local hardware based upon our findings

with later experiments.

11.3.3 Clone Detection Tools

For this study, we explored six clone detection tools. Being freely available and supporting Java source code

were our major deciding factors. Table 11.1 summarizes our selected tools and their chosen configurations.

When possible, we preferred the tools’ default settings. We used the same tool versions and configurations

across all experiments.

11.3.4 Measures

The performance of our framework is measured as total recall: the ratio of the clones from the target tool’s

gold standard that the framework is able to find. The gold standard is the clones the target tool finds when

run as is (i.e., without our framework). For the application of the shuffling framework for r rounds and n

subsets, total recall is calculated using Eq. 11.1.

tr(r, n) =

∣∣∣(⋃ri=1(
⋃n
j=1 detected clone pairs(i , j ))) ∩ (clone pairs in gold standard)

∣∣∣
|(clone pairs in gold standard)|

(11.1)

The numerator is the number of clone pairs in the tool’s gold standard that it detected when executed

through the framework. The set on the left of the set intersection is the set of unique clone pairs detected by

the tool using the framework. The first union iterates over each round of the framework, while the second

iterates over each subset in a round. detected clone pairs(i, j) is the set of clone pairs detected in subset j

of round i. The denominator is the number of unique clones in the gold standard. As this metric considers

clone pairs, we also refer to it as clone recall or clone pair recall. It measures the ratio of the tool’s native

recall that the framework achieved.

We measure performance in terms of clone pairs instead of clone classes for a number of reasons. All tools

either support clone pairs as output, or their clone class output can be simply converted into clone pairs. For

155



Table 11.1: Tool Configurations

Classical Subject Tools Configurations
Deckard [53] (version 1.2.3) Minimum fragment size of 50 tokens, and a sliding window of 5 tokens.

Minimum 90% clone similarity (tree-based metric).
NiCad [105] (version 3.4) Normalized fragment size of 10-2500 lines and minimum 70% clone

similarity (line-based metric).
iClones [41] (version 0.1.2) Minimum clone fragment size of 100 tokens and minimum cloned block

size of 20 tokens.
Simian [44] (version 2.3.33) Code fragment sizes of 6 lines or greater, no identifier or literal renam-

ing.
SimCad [134] (version 2.1) Detection of clone pairs of all types after consistent identifier normal-

izer.
CCFinder [58] (version 10.2.7.4) Minimum fragment size of 50 tokens, with a minimum unique token

type of 12.

tools that only report clone pairs, it is not trivial to convert their output to clone classes. It would either

require modification to the tool, or the implementation of a clone clustering algorithm that uses the same

decision logic and clone metrics as the tool. Disabling clone clustering in tools where it is an option may

reduce their computation time and memory requirements. We disabled clone class output when possible to

improve the native scalability of the tools.

Finally, considering clone pairs makes the calculation of total recall much more efficient. The clone reports

from a tool executed by the framework can be merged into a hash set. The complexity of determining if a

clone pair in the gold standard has been detected is then O(1). Since the number of clones these tools detect

in IJaDataset is very large, the O(1) complexity is essential. This way, the evaluation of total recall is linear

with respect to the size of the gold standard.

Heuristic-Based Total Recall Measurement

In our experience, a clone detector’s output for ultra large datasets may be too large for the calculation of

total recall in a reasonable time frame, even when extraordinary hardware is utilized (e.g., 244GB of RAM).

Specifically, we experienced this when attempting to measure total recall for the framework’s evaluation of

IJaDataset using Simian. For this reason, a heuristic was devised to estimate total recall using limited time

and resources. This heuristic estimates total recall by measuring the ratio of the cloned fragments, rather

than clone pairs, from the gold standard that are found using the framework. Heuristic recall is measured

using Eq. 11.2. The notation is the same as Eq. 11.1, except for cloned code fragments. As this metric

considers cloned fragments, we also referred to it as cloned fragment recall or fragment recall.

hr(r, n) =

∣∣∣(⋃ri=1(
⋃n
j=1 detected cloned fragments(i , j ))) ∩ (cloned fragments in gold)

∣∣∣
|(cloned fragments in gold)|

(11.2)

156



This heuristic is based on the assumption that if two cloned fragments of a clone pair have been found by

our approach, then there is a good chance that the clone has also been detected, or that the clone could be

recovered by applying the transitive property to all found clone pairs. For example, if fragments f1, f2 and

f3 have been found in clone pairs (f1, f2) and (f2, f3) then the missed clone pair (f1, f3) can be recovered.

A caveat of this approach is that while it holds true for all clones of types 1 and 2, it does not for all type 3

clones.

Evaluation of our Heuristic-Based Recall Measure

In this study, we tested the assumptions of our heuristic-based recall measurement. We searched JDK1.7

using NiCad, Simian and Deckard both as they are and with our shuffling framework. The framework was

parameterized to evaluate the dataset for 15 subsets over 30 rounds. Figure 11.1 compares the total recall

and heuristic recall for the tools after each round. For NiCad and Simian, the transitive property was applied

to recover additional clones. Recovered recall was then evaluated as in Eq. 11.3 by including the recovered

clones per round as part of the tool’s detected clones. Recovered recall was not evaluated for Deckard due

to the size of its output.

rr(r, n) =
|((detected clone pairs) ∪ (recovered clone pairs)) ∩ (clone pairs in gold)|

|clone pairs in gold standard|
(11.3)

As can be seen from these experiments, heuristic recall over estimates the total recall but follows a similar

trend. Both show logarithmic growth in recall across the rounds. Cloned fragment (heuristic) recall starts

higher, but has a slower growth across the rounds. The recovered recall performance for NiCad and Simian

show the correctness of the heuristic. For NiCad the recovered recall approximately matches the heuristic

recall. For Simian the recovered recall approaches heuristic recall after half of the rounds have been executed.

This shows us our heuristic is effective in estimating the recall of our shuffling framework (RQ#1).

In this study we applied the transitive property naively. We assumed it held for all type 3 clones. This

means we ”recovered” false positive clones in the cases where transitivity did not hold between type 3 clones.

However, these false positives do not affect the measure of recovered recall. Therefore, these results represent

the ideal case where the recovery method successfully recovers all transitive clone pairs. In practice, a

recovery technique would need to check that transitivity held before applying it to type 3 clones. It may not

be possible to implement an efficient check that accepts all true positive transitive clones and rejects all false

positive transitive clones. We used transitive clone recovery only in this evaluation of the heuristic recall

measure. Creating an efficient transitive check with high recall (accepts most true positive transitive clones)

and precision (rejects most false positive transitive clones) is a topic of future work. In this paper we use our

total recall and heuristic recall measurements to comment on if a transitive clone recovery method is worth

perusing in future work.

157



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

iv
e 

Re
ca

ll

NiCad
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

iv
e 

Re
ca

ll

Simian

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Round

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Cu
m

ul
at

iv
e 

Re
ca

ll

Deckard

Total Heuristic Recovered

Figure 11.1: Comparison of the recall estimation approaches

158



11.4 Preliminary Experiments

We used the shuffling framework to evaluate three regular size subjects systems. This allowed us to evaluate

the systems with the tools both natively (their gold standard) and with the framework. The goal of this

experiment was to observe the expected performance of the framework for the six selected tools (RQ#2).

We chose JHotDraw (20KLOC - 285 files), ArgoUML (190KLOC - 1845 files) and JDK1.7 (900KLOC - 6916

files) as our regular sized systems. The framework was parameterized for 15 random subsets and 30 detection

rounds.

The framework’s total recall performance for each tool’s detection of JHotDraw54b1 is shown in Fig-

ure 11.2, ArgoUML is shown in Figure 11.3, and of JDK1.7 in Figure 11.4. The legends of these graphs

specify the gold standard size (number of clones) for each tool. The framework performed very well with

NiCad, iClones, and CCFinderX, obtaining a high total recall after 30 rounds. It struggled more for Deckard,

and performed poorly with Simian for JDK1.7. Total recall started and ended lower for JDK1.7, but in-

creased faster than for ArgoUML and JHotDraw, likely due to the differences in the sizes of the two systems

(and gold standards). CCFinderX is omitted from the JDK1.7 experiment due to failure during detection.

In all cases we see approximately logarithmic growth in total recall across the rounds. As total recall

becomes larger, the increase in total recall from each round decreases. This is expected, as the smaller the

ratio of a tool’s native recall that is left to be found, the lower the probability the files containing these

undetected clones will be shuffled into the same subset. We saw the same trend with heuristic and recovered

recall in the heuristic study, Section 11.3.4.

An observation from this experiment is that the larger the gold standard the lower the total recall obtained

by the framework across the same number of rounds and subsets. This is seen here for both variation in

detection tools and subject system size. The exception being Simian, for which the framework achieves a

lower total recall than for tools with larger gold standards. Perhaps Simian has better precision for smaller

datasets, and is therefore not finding the false positives in its gold standard, leading to a lowered total recall.

These results indicate that the framework can achieve an acceptable ratio (>70%) of a tools native recall

given an acceptable number of rounds. The plots here show the expected framework performance for the

tools, which answers RQ#2.

11.5 Motivating Study - IJaDataset

In this experiment, the clone detection tools were executed through the core shuffling framework to evalu-

ate IJaDataset 2.0. This experiment was used to evaluate the performance and feasibility of the shuffling

framework for clone detection in big data using classical tools (RQ#3).

Using a rented Amazon EC2 instance with 64GB of memory and 10,000 IOPS, we were able to obtain

Simian’s gold standard for IJaDataset. This allowed us to compare native versus framework recall in a big

159



1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0

Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
o
ta

l 
R

e
ca

ll

CCFinderX(202)
Deckard(534)
iClones(19)
NiCad(41)
SimCad(915)
Simian(161)

Figure 11.2: Preliminary Experiment - JHotDraw54b1

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0

Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
o
ta

l 
R

e
ca

ll

CCFinderX(18413)
Deckard(221793)
iClones(1182)
NiCad(2184)
SimCad(44299)
Simian(3321)

Figure 11.3: Preliminary Experiment - ArgoUML

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0

Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
o
ta

l 
R

e
ca

ll

Deckard(1834042)
iClones(49716)
NiCad(8105)
SimCad(549923)
Simian(217409)

Figure 11.4: Preliminary Experiment - JDK1.7

160



data scenario. We were unable to obtain gold standards for the other tools. The required processing time and

computer memory exceeded our available time and hardware rental budget. Simian is atypical in that it was

scalable to big data within a reasonable execution time when a large amount of RAM was provided. However,

Simian’s detection capabilities are not as sophisticated as the other tools, for example, it only detected type

1 and type 2 clones.

Of the six selected tools only Simian, NiCad and Deckard were used successfully for this experiment.

CCFinderX, iClones and SimCad were omitted due to compatibility issues with the dataset. These tools

terminated with an error message if a parsing error was encountered instead of skipping the offending file.

Since we used the largest subset size these tools could handle, the chance of a parsing error in a single subset

is very high. This caused the tools to make very little progress in a round of the shuffling framework, as they

used execution time but produced no clone reports for a large number of the subsets. The omitted tools are

further discussed in Section 11.5.4. Table 11.2 summarizes the shuffling experiments performed.

11.5.1 Simian

Setup

Simian was chosen for this experiment as it was possible to obtain its gold standard for IJaDataset. This

allowed us to compare our framework’s performance with Simian against its native performance. For evalu-

ation with the shuffling framework, a subset size of 50,000 files was chosen (58 subsets per round). Simian’s

fast execution allowed us to execute 30 rounds of the shuffling framework. Simian reports clones as clone

classes, which was exploited when analyzing the results. We converted the clone classes into clone pairs to

measure total recall.

Subset generation and round detection took approximately 8-12 and 4-10 hours per round, respectively,

on Westgrid hardware. Based on our later experiments, we estimate that subset generation and construction

would take approximately 1.25 hours, and detection approximately 1.25 hours per round, on our local machine

with a solid state drive. The bottleneck on the Westgrid systems was the IO performance. Specifically, copying

many small files from the dataset into the subsets was much slower on a traditional hard disk drive.

Table 11.2: Summary of the IJaDataset Clone Detection Experiments

Tool Hardware Subset Size (# files) # Sets # Rounds
Deckard 24GB 10K 289 10
NiCad 12GB 10K 289 20
Simian 12GB 50K 58 30

161



Analysis

Since Simian’s gold standard is extremely large (300 billion clone pairs) total recall was estimated using the

heuristic, which is shown in Figure 11.5. After 30 rounds of the framework, 70% of the cloned fragments in

Simian’s gold standard were detected. According to the heuristic study, Section 11.3.4, total recall should

be less than the heuristic, but with faster growth. Specifically for Simian, the study showed that recovered

recall quickly approached heuristic recall when total recall was within 70-90%. From Simian’s heuristic recall

trend for IJaDataset, we estimate it would reach 80% in approximately 10-20 additional rounds. We therefore

conclude that Simian has achieved an acceptable recall for cloned fragments within 30 rounds. The heuristic

recall suggests that within 10-20 additional rounds a transitive clone recovery technique could achieve an

equivalent total recall of clone pairs.

While the heuristic is a worthy approximation of total recall, it is still desirable to directly measure total

recall, which necessitated a reduction in Simian’s output. Investigation into the characteristics of Simian’s

gold standard found that 99.99% of Simian’s clones came from clone classes greater than 100 fragments in

size. Manual investigation into these clone classes revealed that Simian suffered from what we term the

“sliding effect”. It reported some extremely large clone classes containing the same fragment(s) repeated

numerous times with small offsets in line numbers. These clone classes generate an extreme number of self

and overlapping clones and represent a significant threat to Simian’s precision. We therefore reduced Simian’s

output size by trimming clone classes over a certain maximum size. Its gold standard was likewise trimmed.

The remaining clone classes were converted to clone pairs to measure total recall. This post-processing of

the framework’s output for Simian was done solely to aid the evaluation of total recall on our hardware in a

reasonable time-frame, and is not an expected post-processing step for users of the framework.

Figure 11.6 shows our framework’s total recall with Simian for various maximum clone class sizes up

to 100 fragments (limitation of our hardware). The legend of this figure specifies the maximum class size

considered with the gold standard’s size in parenthesis. Total recall was higher and increased faster for lower

maximum clone class size. This suggests that the framework works best for specialized clone detection (i.e.,

focusing on detecting interesting/unique clones rather than all clones). This is due to larger classes requiring

more rounds (on average) to be completely found as they contain more clone pairs that need to be shuffled

together.

For the smaller class sizes a respectable total recall was achievable within 30 rounds (2: 52%, 5: 44%,

10: 40%). This total recall may be acceptable in cases where only a sample of the clones is required. For

example, when building an inter-project clone corpus using many tools, 50% of a tools’ native recall is likely

sufficient for the corpus to benefit from the tool’s unique detection characteristics. Consulting multiple tools

may make up for individual tools’ diminished recall.

While this total recall is low, in each case it is increases nearly linearly, with very little decay in slope.

Additional rounds could bring these to an acceptable level. As can be seen, a 7-10% increase in total recall

is gained per additional 10 rounds. A transitive recovery method could also help boost total recall achieved.

162



In our preliminary studies, we found that the framework performed the worst with Simian. Therefore we

expect the other tools to achieve a higher total recall than Simian.

Figure 11.7 shows heuristic recall for the same trimmed output. As can be seen, the shuffling framework

is finding the cloned fragments very fast, with 52-62% heuristic recall after only 30 rounds. Heuristic recall

increases faster for larger maximum clone class size, meaning that the fragments in large clone classes are

more easily found. This is expected as fragments in large clone classes have a higher chance of being shuffled

into a partition with another fragment from the clone class. This suggests that a transitive recovery method

may work especially well for the clones of large clone classes. This is particularly beneficial as it was for the

clone pairs in larger classes that the framework had a slower increase in total recall (Figure 11.6).

11.5.2 NiCad

Setup

NiCad was included in this experiment for its ability to restrict clone detection to function clones. This

is a beneficial functionality for clone detection within ultra large datasets as line level clones may be too

numerous to process. Function clones are fewer, and may be more interesting as they occur at a higher level

of software design. Function clone corpora built from ultra large inter-project datasets may be especially

useful for mining new APIs.

Through experimentation, it was found that NiCad could consistently handle datasets of 10,000 files.

It occasionally failed for larger input (e.g., 25K, 50K) due to hard coded limits in the sizes of its internal

data structures. These internal limits appear to be intentional and designed to prevent users from beginning

executions that are likely to fail or never complete on standard workstations. The internal data structure

sizes can not be specified by the user without source code modification and recompilation. We left NiCad

as-is for our goal is to scale the tools without modifications.

Based on these observations a subset size of 10,000 files was chosen for running the shuffling framework

(289 subsets per round). As the framework achieved better total recall with NiCad than with Simian in the

preliminary experiments and previous work [64], 20 rounds was deemed sufficient for demonstration of the

framework. Subset generation and detection took 7-15 and 23-31 hours per round respectively on shared

computing resources. Based on our later experiments, we estimate that generating and building the subsets

would require 1 hour per round, and detection 17 hours per round, on a solid state drive.

Analysis

Creating a gold standard for NiCad was not possible, so we could not evaluate total recall. Internal data

structure limits prevent NiCad from being executed on such a large input. Even if we modified these limits,

NiCad would have required more RAM than we had available and likely months of execution time. We

investigated using a deterministic partitioning technique (Section 11.1) to build NiCad’s gold standard, but

163



1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0

Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
e
u
ri

st
ic

 R
e
ca

ll

Figure 11.5: Simian Heuristic (Clone Fragment) Recall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l R
ec

al
l

MaxClassSize(GoldStdSize)
2(1050965)
5(2689744)
10(4201790)
25(7508744)
50(11969417)
100(20507449)

Figure 11.6: Simian Total Recall for Maximum Class Size Trimmed Output

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rounds

0.2

0.3

0.4

0.5

0.6

0.7

He
ur

is
tic

 R
ec

al
l

MaxClassSize(GoldStdSize)
2(2101930)
5(3385568)
10(3855469)
25(4285850)
50(4548703)
100(4796608)

Figure 11.7: Simian Heuristic Recall for Maximum Class Size Trimmed Output

164



our estimates found that this would have required 2 months of execution time on our available hardware,

even with four NiCad instances executing in parallel. Instead we investigated the growth of the cumulative

number of unique clones and cloned fragments found after each round of the framework. This information is

plotted in Figure 11.8. In total, 5.66 million unique clone pairs containing 875 thousand unique cloned code

fragments were found.

The growth of unique detected clone pairs (Figure 11.8, diamond-line) is linear across the twenty rounds.

This tells us that the framework has not detected a large ratio of NiCad’s native recall. Linear growth

per round tells us that the probability of undetected clones being shuffled together has remained constant

over the rounds. Had a considerable ratio of NiCad’s native recall been found, this probability should

have also considerably decreased. Our preliminary study (Section 11.4) with small systems showed that the

growth would appear logarithmic as the framework approaches a considerable ratio of the tool’s native recall.

Therefore, we require more rounds of the shuffling framework to achieve an acceptable ratio of NiCad’s native

recall.

In contrast, we do see logarithmic growth in the detection of unique cloned fragments (Figure 11.8, square-

line). Per round, the number of new cloned fragments found is decreasing noticeably. It is becoming less

probable that a clone (in NiCad’s native recall), that contains an undetected cloned fragment, is randomly

shuffled into a partition. This can only happen if a considerable ratio of NiCad’s native cloned fragment recall

is achieved per round. The growth has considerably declined after 20 rounds, suggesting that a considerable

heuristic recall has been achieved.

These plots suggest that the framework is achieving a good heuristic recall with NiCad (the cloned

fragments are being round quickly), but that the clone relationships between them (total recall) are still

being detected. Applying a transitive clone recovery technique could recover some of the remaining clones

without executing further rounds. As seen in the heuristic study (Section 11.3.4), clone recovery is very

successful for NiCad. However, in that study, we applied transitivity naively to see the ideal results. To

apply it in practice an efficient and accurate method for checking the validity of transitivity for type 3 clones

would need to be designed and implemented.

11.5.3 Deckard

Setup

Experimentation found that Deckard worked for our approach with a subset size of 50,000 files, and could

possibly work for larger subsets up to the entire dataset (untested). However, its execution time for large

inputs was prohibitive (scaling limitation), so a subset size of 10,000 files was used to match NiCad (289

subsets per round). As Deckard has a lengthy execution time, the shuffling framework was executed over

only 10 rounds. Detection was ran on Amazon EC2 and took approximately 5-7 days per round. While this

execution time is very long, it is practical compared to Deckard’s native execution time for the IJaDataset

165



1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

Rounds

0

1000000

2000000

3000000

4000000

5000000

6000000

U
n
iq

u
e
 D

e
te

ct
e
d
 C

lo
n
e
 P

a
ir

s

Clones
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

U
n
iq

u
e
 D

e
te

ct
e
d
 C

lo
n
e
d
 F

ra
g
m

e
n
ts

Fragments

Figure 11.8: Growth of NiCad’s Found Clones and Cloned Fragments

input.

Caveat

One disadvantage of Deckard is that it only supports up to Java 1.4 syntax. Its documentation specifies that

it is able to skip unsupported syntax without error. In our experience, it found plenty of clones despite this

limitation.

Analysis

Creating a gold standard for Deckard was not possible due to the computation time required, so we could not

investigate total recall. Instead we investigated the number of unique clones and cloned fragments detected

across the rounds as we did for NiCad.

Figure 11.9 shows the growth of the number of unique detected cloned fragments. As can be seen, the

growth of detected cloned fragments follows roughly a logarithmic trend. The probability that the random

partitioning shuffles a clone (in Deckard’s recall) containing an undetected cloned fragment into the same

partition decreases as heuristic recall increases. The considerable decrease in the number of new cloned

fragments detected per round suggests that this probability is also considerably decreasing, and thus a

considerable heuristic recall has been found. Unfortunately, we could not measure the detected clone pairs

across the rounds due to the size of Deckard’s output. We can infer from NiCad’s and Simian’s results it

would likely be increasing linearly over these rounds.

In order to confirm our inference, we measured found clone pairs and fragments on a reduction of Deckard’s

output. We reduced the output sized by considering only reported clone classes with a maximum size of 10

166



1 2 3 4 5 6 7 8 9

1
0

Rounds

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

U
n
iq

u
e
 C

lo
n
e
 F

ra
g
m

e
n
ts

1e7

Figure 11.9: Growth of Deckard’s Detected Cloned Fragments

fragments (limitation of our hardware). The growth of detected clones and fragments for this reduced output

is shown in Figure 11.10. As expected we found very similar results to NiCad. The detected clones increase

linearly, while the detected fragments shows logarithmic growth. This suggests that the cloned code fragments

are being found before the clone pairs between them, and that a transitive clone recovery method would be

successful in detecting additional clone pairs.

11.5.4 Other Tools - SimCad, iClones, CCFinderX

Our intention was to include SimCad, iClones and CCFinderX in the main experiment as they showed

promise in the preliminary experiment. During evaluation of a sample from the dataset, these tools ter-

minated without producing a clone report. SimCad and iClones reported encountering an invalid Unicode

character. CCFinderX failed silently, but we believe this is due to the dataset containing Java code of a

newer specification than CCFinderX can parse.

These problems do not indicate special scalability issues with these tools or with our framework. However,

the framework can not make progress with tools that abandon detection when parsing errors are found, instead

of trimming the offending file(s). Since we are executing these tools for partitions of IJaDataset near the

limits of their scalability, there is a high chance that they encounter at least one parsing error. The tools fail

upon the first parsing error detected, so it is not practical to compile a list of offending files in order to trim

the dataset.

167



1 2 3 4 5 6 7 8 9

1
0

Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
n
iq

u
e
 D

e
te

ct
e
d
 C

lo
n
e
 P

a
ir

s

1e8

Clones
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

U
n
iq

u
e
 D

e
te

ct
e
d
 C

lo
n
e
d
 F

ra
g
m

e
n
ts

1e7

Fragments

Figure 11.10: Deckard’s Clone and Fragment Detection for Trimmed Output

Communication with the iClones developers revealed that this problem was fixed in a development branch,

so we included iClones in our experiments in improving the Shuffling Framework (Section 11.7). SimCad

was also corrected upon communication with the developer, but not in time to be used in this publication.

We plan to revisit SimCad in future work. CCFinderX is no longer under active development so we do not

anticipate improvements in its parsing or error handling.

11.5.5 Summary

From these experiments, we found that the clones found by the framework increased nearly linearly, with a

slight decay in slope, across the rounds. This shows that additional rounds would continue to see a healthy

increase in found cloned pairs, and thus an increased total recall. For Simian and considering only clone pairs

originating from smaller clone classes (2-100 fragments) 25-52% total recall was achieved over 30 rounds,

with a (decaying) continued increase of 7-10% per 10 rounds (Figure 11.6). Further rounds could bring total

recall to an acceptable value.

However, the framework was able to find the clone fragments much faster. For each tool, found cloned

fragments experienced logarithmic growth across the rounds. The decay in detection rate indicates that

the probability of a clone containing an undetected clone fragment is randomly shuffled into a partition is

decreasing noticeably. This indicates that the number of remaining undetected clone fragments is decreasing

considerably. With Simian, 70% of the cloned fragments were found within 30 rounds (Figure 11.5).

These findings suggest that our framework finds most of the cloned fragments in few rounds, but may

168



require a large number of rounds to find all of the clone relationships between them. This suggests that a

transitive-based clone recovery process could improve total recall achieved. This is supported by our heuristic

study (Section 11.3.4), which showed that a strong heuristic (clone fragment) recall can be translated into

a strong total (clone) recall by transitive recovery. Implementing an efficient and precise recovery process is

therefore a priority for our future work.

From our experiment, we conclude that the shuffling framework is successful in scaling classical clone

detection tools to ultra large datasets (RQ#3), but many rounds may be needed to achieve a high total

recall. The framework is best suited for applications that accept partial clone detection tool recall as sufficient.

For example, when building a comprehensive inter-project clone corpus (e.g., for IJaDataset) using a variety

of both classical and scalable detection tools, 60-80% of a classical tool’s native recall is likely sufficient to

ensure the clone corpus benefits from its diverse strengths and detection characteristics.

The framework is very suitable for applications that only require knowledge of the cloned fragments within

an ultra large dataset, and not the pairs. Given that we encountered scalability limits (memory and time)

in processing the clone pairs found by this experiment, it is likely that studies on inter-project clone corpora

of similar scale may need to be done on cloned fragments. Analyzing the clone pairs presents an additional

big data challenge.

11.6 Shuffling Framework Performance Analysis

As seen in the IJaDataset experiment above, the shuffling framework is able to scale classical tools to large

datasets. It is able to tackle various scalability issues, including: memory requirements, computation com-

plexity, computation time, and internal tool limitations. However, we observed some inefficiencies in the

original algorithm.

In the IJaDataset experiments with the core shuffling framework a suitable clone fragment recall was

obtained (e.g., Figure 11.5). However, clone pair recall was much lower (Figure 11.6). To obtain a higher

clone pair recall many more rounds would need to be executed, which would require considerable computation

time. Alternatively, post-processing could be used to recover some of the missed clone relationships between

the detected cloned fragments. Previously we showed that clone transitivity is effective at clone recovery

(Section 11.3.4). However, transitivity is only certain for type 1 and type 2 clones. Type 3 clones recovered

by transitivity would need to be verified before accepted. Our experiences with the IJaDataset experiment

indicate that post-processing may be computation and memory intensive. We had considerable difficulties

processing the detection results for statistical reporting. A novel and efficient approach and considerable

computer resources are likely required to apply transitive clone recovery with both high recall and precision.

We decided that the best way to improve the performance of the shuffling framework was to improve the

shuffling algorithm itself (RQ#4). Our goal was to decrease the number of subsets of the dataset a tool had

to be executed for to obtain an acceptable total recall. Looking at the tools’ clone pair detection performance

169



for IJaDataset (Figures 11.6, 11.8, 11.10) we notice a common trend. A large number of clones are detected

in the first round, followed by a lesser but steady increase in subsequent rounds. We studied this behavior

and found that the large increase in the first round is due to the successful detection of all the intra-file clones

in the tool’s gold standard. This occurs because the first round exposes the clone detector to every file in the

dataset. The remaining rounds advance the detection of the inter-file clone pairs in a tool’s gold standard.

Fewer subsets would be required if the shuffling algorithm focused on the detection of the inter-file clones in

rounds 2 through n.

We identified two major characteristics of the core shuffling framework that slow the rate of inter-file clone

detection. First, the shuffling framework has no sense of history. There is nothing to stop it from repeatedly

shuffling the same files into the same subsets. The clone detector will find any inter-file clones between a

pair of files the first time they are shuffled together. Repeated shuffling of previously seen file pairs does

not advance inter-file clone detection, but uses computation time. An improved shuffling framework should

discourage repeated shuffling of the same file pairs.

Secondly, the shuffling framework does not consider file contents when it shuffles. Likely only a small

ratio of the dataset contains inter-file clones. It is wasteful to shuffle dissimilar files together. The framework

would require fewer subsets if it preferred to shuffle together files that contain enough similarity to likely

contain a clone as judged by the classical tool. In the following section we explore incremental improvements

to the shuffling algorithm that address these two limiting characteristics.

11.7 Improving the Shuffling Framework

We identified in the previous section that the shuffling framework’s performance suffers due to the shuffling

together of the same files repeatedly, and the shuffling together of dissimilar files unlikely to contain clones.

Addressing these problems is non-trivial as optimal solutions are not practical for ultra large datasets due

to the high complexities of the required algorithms. Even sub-optimal solutions can quickly increase the

complexity and execution time of the shuffling algorithm. Our goal is to trade detection execution time (i.e.,

fewer subsets) for shuffling execution time (i.e., more valuable subsets). For this to provide a performance

gain the shuffling algorithm needs to maintain a lower complexity and execution time than that of the clone

detection tools. That is the cost of building subsets that provide a larger increase in total recall must be less

than the cost of simply executing the tool for more subsets.

We investigated three new shuffling algorithms which incrementally address the issues of the core algo-

rithm. These include: the unseen pair, the unseen similar pair, and the inverted index shuffling algorithms.

We now term our original algorithm the blind partitioning shuffling algorithm, because it builds its subsets

by blind random partitioning of the dataset.

The three new algorithms use two rounds of shuffling. In the first round, the framework completely

partitions the dataset into disjoint subsets, and the tool is executed for each of these subsets. This is the

170



same as a round generated by the original core algorithm (Section 11.2). This first round exposes the tool to

every file in the dataset, which ensures that the framework does not miss any of the intra-file clones the tool

is able to find. In the second round, the framework pursues the inter-file clones the tool is able to detect.

Since the intra-file clones should have been detected in the first round, it is no longer important to expose

the tool to every file in the dataset in round 2. Therefore the new algorithms drop the partitioning strategy

in round 2. Instead they execute the tool for a series of subsets that prioritize the exposure of the tool to

new inter-file clone detection experiences. These subsets may not completely partition the dataset, they may

overlap, and round 2 may contain any number of subsets. The subsets of round 2 are the same size as those

of round 1, and non-determinism is still exploited in their selection. The difference between the algorithms

in how they choose these subsets. Their goal is to require fewer subsets (fewer executions of the tool) than

the blind partitioning algorithm to achieve some target total recall.

We evaluated these algorithms for three clone detection tools: NiCad, iClones and Simian. NiCad and

Simian were used in our previous experiments. We now include iClones which had been fixed after our

IJaDataset experiment (Section 11.5) had been conducted. The shuffling framework performed very well

with iClones in the preliminary experiments (Section 11.4), so it was ideal to include it as a subject tool in

this experiment. We decided to skip Deckard because while the shuffling framework was able to improve its

scalability, its still required long execution times.

We evaluated the algorithms using random samples of IJaDataset. We choose sample sizes large enough

to be more representative of an ultra large dataset than the systems used in the preliminary experiments

(Section 11.4), while still small enough that we could obtain each tool’s gold standard for measuring total

recall. For NiCad and Simian we used a dataset of 50,000 files randomly selected from IJaDataset. For

iClones we randomly selected 10,000 IJaDataset files. For the 50,000 file sample a subset size of 250 files

was used and 50 file subsets were used for the 10,000 file dataset. This is the same ratio between subset size

and dataset size as used in the IJaDataset experiment (Section 11.5) for NiCad and Deckard. This way the

evaluation of the algorithms approximates their usage with IJaDataset, or another ultra large dataset.

Performance was measured as total recall, the ratio of the clone pairs in a tool’s gold standard the shuffling

algorithm was able to find (Section 11.3, Eq. 11.1). In order to save time we simulated the execution of the

tools. We assumed that for a particular subset, the tool would output the clones from its gold standard that

are within or between files in the subset. For these deterministic code clone detection algorithms, this is a

reasonable assumption.

By simulating the clone detection we are able to measure the framework’s performance more accurately.

Ideally a clone detection tool reports the same clones between a pair of files regardless of number and

particular files also included in the input. In practice, the clone detector may not report clones consistently.

It may report the same clones but with slightly different start/end lines, it may miss some clones or find

additional clones. Its precision (the number of false positives reported) may also vary. This may be caused

by bugs in the clone detector. By simulating the detection using the clone detector’s gold standard, we avoid

171



these issues.

The total recall performance of these four algorithms are shown in Figures 11.11, 11.12, and 11.13. Their

subset generation time is shown in Figures 11.14 and 11.15. The generation time includes only the time

required to generate the list of files to be included in each subset. It does not include the time needed to

copy the files into a temporary directory and execute the tool.

In the following subsections, the algorithms are outlined and their performance discussed. The algorithms

are presented in the order in which they were created as to emphasize our design process and decisions.

11.7.1 Blind Partitioning Shuffling Algorithm

The blind partitioning shuffling algorithm is the original shuffling algorithm as presented in Section 11.2.

It is the cheapest shuffling algorithm in terms of subset generation processing time and complexity. Its

performance is the base line against which the other algorithms are compared. For both the 10,000 and

50,000 file datasets the blind shuffling algorithm partitioned the dataset into 200 subsets per round for 10

rounds. Remember that for each round this algorithm partitions the dataset into mutually exclusive subsets

that together span the entire dataset. The result of its application for NiCad, Simian and iClones can be

seen in Figures 11.11,11.12 and 11.13, respectively. Since the new algorithms do not use the same number

of rounds, the total recall is plotted after each subset. The tick marks of the x-axis correspond to the rounds

of the blind shuffling algorithm. The first round (in which all algorithms use the blind partitioning strategy)

is labeled.

This algorithm achieves a large total recall increase for all tools within the first round. Since the first

round exposes the clone detector to every file in the dataset, all the intra-file clones in the gold standard

should be detected in this round. In the remaining rounds we see linear growth in total recall as the inter-file

clones in the gold standard are located by chance due to blind random file shuffling. Linear growth was

expected as the algorithm applies the same random dataset partitioning in each round. This linear growth

should experience a decay in its slope as more clones are detected and it becomes increasingly less likely the

random partitioning will shuffle the files containing the undetected clones into the same subset.

The increase in total recall due to inter-file clone detection in rounds 2 through 10 is much smaller than

the increase due to inter and intra-file clone detection in round 1. Since the growth is linear across rounds 2

through 10, we expect roughly the same number of inter-file clones were detected in round 1. Therefore the

larger increase in total recall in round 1 must be dominated by the detection of the intra-file clones.

11.7.2 Unseen Pairs Shuffling Algorithm

The first problem we identified with the blind shuffling algorithm is that it does not discourage the repeated

shuffling together of the same files. Our efficient solution is to fill the subsets with randomly selecting pairs of

files from the dataset that have not been shuffled into the same subset previously. This solution guarantees

that each subset includes n/2 new inter-clone detection experiences (i.e., unseen file pairs), where n is the

172



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l R
ec

al
l

Subsets

Round 1

Index

Unseen Pair

Blind

Unseen Similar Pair

Figure 11.11: Shuffling Algorithm Performance Comparison: NiCad, 50,000 File Dataset, 250 File
Subsets

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l R
ec

al
l

Subsets

Round 1

Index

Unseen Similar Pair

Blind, Unseen Pair (overlap)

Figure 11.12: Shuffling Algorithm Performance Comparison: Simian, 50,000 File Dataset, 250 File
Subsets

173



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l R
ec

al
l

Subsets

Index
Unseen Similar Pair

Unseen Pair
Blind

Round 1

Figure 11.13: Shuffling Algorithm Performance Comparison: iClones, 10,000 File Dataset, 50 File
Subsets

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e 
(s

)

Subsets

Index (1239s @ subset 397)

Unseen Similar Pairs

Blind, Unseen Pairs (overlap)

Round 1

Figure 11.14: Shuffling Algorithm Computational Comparison: Subsets Generation Time (ms),
50,000 File Dataset (NiCad/Simian)

174



0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e 
(s

)

Subsets

Index (564s @ subset 243)

Unseen Similar Pairs

Blind, Unseen Pairs (overlap)

Round 1

Figure 11.15: Shuffling Algorithm Computational Comparison: Subsets Generation Time (ms),
10,000 File Dataset (iClones)

number of files in the subset. This is the same number guaranteed by a deterministic approach (Section 11.1).

However, in this non-deterministic case, it is likely that the files in a subset form many additional unseen

pairs other than those specifically chosen. The worst case of only n/2 unseen pairs in a subset should only

occur once most of the file pairs in the dataset have been seen in earlier subsets.

The first round of this algorithm uses blind shuffling to partition the dataset into subsets. This is needed

as the unseen pair strategy does not guarantee nor encourage the detection of all intra-file clones in the

dataset. By the end of the first round, every file has been seen by the clone detector. This first round does

not detract from the unseen pair strategy as all subsets of the first round are made up completely of unseen

pairs.

For round 2, the algorithm fills a user-specified number of subsets with unseen file pairs. Specifically, for

each subset the algorithm performs the following steps:

1. Two files are randomly chosen from the dataset.

2. Efficiently checks if the pair has been seen in a previous subset.

3. If not previously seen, the files are added to the current subset.

4. If the subset is not full the algorithm repeats from step 1. Otherwise, the subset is complete.

5. The specification (file list) of the subset is saved.

175



6. The algorithm repeats from step 1 for some number of subsets.

This subset filling technique is efficient until most of the pairs have been seen, at which time the algorithm

may cycle extensively until an unseen pair is found. For this reason, the algorithm is parameterized with a

stopping condition: the number of times to cycle before giving up on being able to fill the subset. However,

for an ultra-large dataset it is unlikely that this will occur for a practical number of subsets.

This algorithm needs to be able to efficiently check if two files have been seen together in a previous

subset, step (2). This is accomplished by assigning each file in the dataset an id, and tracking the contents of

each subset using a bit vector. Vector[i](id) is 1 if the file with the specified id is in the ith subset. Shuffling

an ultra large dataset like IJaDataset, which contains approximately 3 million files, requires only 0.35MB of

memory per subset. The algorithm can determine if a file pair is unseen in worst case O(b) time, where b

is the number of previously generated subsets. Examining a bit vector is very fast, so this linear search is

acceptable. There are ways to structure the seen pair data to make O(1) possible, but it requires too much

memory for the data structure to fit in RAM. We use this linear approach to avoid disk access times.

The unseen pair shuffling algorithm’s total recall for the three tools is shown in Figures 11.11,11.12 and

11.13, and its subset generation time is shown in Figures 11.14 and 11.15. Remember that the first 200

subsets (round 1) are built using the blind partitioning strategy to ensure intra-file clone detection. This

algorithm performed a little worse than the blind shuffling algorithm for the NiCad experiment, equal in

the Simian experiment, and a little better in the iClones experiment. Its generation time is also essentially

equivalent to that of blind shuffling.

Overall, the unseen pair shuffling algorithm does not perform any better or worse than blind shuffling.

The reason for this is quite simple: the number of pairs in these datasets is so numerous that the blind

shuffling technique is not shuffling the same files together repeatedly as frequently as we feared. However,

the unseen pair strategy would be required if the number of potential file pairs was reduced. We decided to

extend this algorithm to consider the second problem with blind shuffling: we should only shuffle together

files that are similar. As this will likely reduce the number of potential file pairs considerably, we maintain

the unseen pair selection strategy in the next algorithms.

11.7.3 Unseen Similar Pairs Shuffling Algorithm

The unseen similar pairs algorithm extends the unseen pairs algorithm to also address the second problem

with the blind shuffling algorithm: it does not consider the contents of the files it shuffles together. Similar

files are more likely to contain clones, so total recall obtained per subset could be achieved by prioritizing

the shuffling together of similar files. Specifically, our goal was to parametrize the unseen pairs algorithm

with a file similarity heuristic. Under this scheme, unseen file pairs are added to a subset only if the heuristic

decides the files are similar enough to possibly contain a clone as judged by the classical clone detection tool.

The challenge was designing a suitable heuristic that can make a smart decision without significantly

adding to the shuffling algorithm’s complexity and execution time. Most clone detectors report a clone

176



between two files if they share a sequence of similar source code lines of some minimum size. Therefore, if

two files contain this minimum number of similar lines, than it is possible the tool will find a clone between

them. However, searching for similar line sequences between two files has polynomial complexity, which is

also the complexity of most clone detectors. We needed a linear heuristic to ensure the improved shuffling

algorithm was a performance gain.

Our heuristic accepts a file pair if the files share a minimum number of similar source lines. To do this in

linear time we dropped the requirement that the similar lines need to be sequential. The disadvantage of this

speedup is that the heuristic will accept file pairs with similar lines too sparsely distributed to be a clone.

As source line (string) comparison is costly, we pre-computed hashcode (integer) values for each source line

in the dataset. The number of shared lines between two files can then be calculated by measuring the size of

the intersection of the hash-codes they contain.

To improve the heuristic’s clone presence detection and accuracy we normalized and filtered the source

code during the hash coding process. First, the source code was pretty-printed to normalize formatting.

Identifiers were normalized (blind renaming) such that two source lines which differ only by identifier names

will hash to the same value. Inconsequential, but common, source lines (e.g., ’}’) were removed to reduce

the heuristic’s false positive rate. Comments were also removed before hashing as most clone definitions and

detection tools ignore them.

The heuristic is parametrized with the minimum clone size (in identical lines) of the target tool’s config-

uration. For example, if the tool is set to report clones 10 lines or larger with a minimum of 70% similar

lines, then the heuristic should be configured for 7 identical lines. Specifically, this is the minimum number

of identical lines in a type 3 clone as judged by this tool. The heuristic will then accept file pairs that could

contain a clone as judged by the tool, and reject those that do not contain sufficient similar lines for the tool

to report a clone.

Mismatch between how the framework and the tool count source lines may cause some file pairs containing

a clone detectable by the tool to be rejected. Mismatch may occur due to differences in how the framework

and the tool normalize and filter input source code. Also, when tools measure minimum clone size by tokens,

then minimum lines needs to be estimated. Rejected file pairs that contain a clone as judged by the tool

will lead to additional false negatives. This should only occur for small clones that are near the minimum

clone size, and whose files contain no other similar lines. The latter because the heuristic does not consider

the position of the lines when measuring the number of lines shared between two files. This is acceptable

as smaller clones are more likely to be spurious or uninteresting. Compensating for mismatch by setting the

minimum clone size lower than that of the tool is a bad idea as it will cause the heuristic to accept more file

pairs that do not contain clones, which lowers the effectiveness of the heuristic. With the heuristic we trade

some of the tool’s recall for smaller clones in exchange for fewer subsets to meet a target portion of the tool’s

native recall (total recall).

For the evaluation of this algorithm, we parametrized the heuristic with a minimum similar line threshold

177



of 5 lines. By default Simian detects type 1 and 2 clones with a minimum of 6 lines, iClones a minimum of

100 tokens (∼5-10 lines) with gaps, and NiCad a minimum of 10 lines (30% of which may be gap lines). The

5 line threshold should be conservative enough to not skip too many file pairs that contain clones as judged

by these tools. The algorithm’s total recall performance is shown in Figures 11.11, 11.12 and 11.13, and its

subset generation time is shown in Figures 11.14 and 11.15. Again, its first 200 subsets are its first round of

blind shuffling to allow full intra-file clone detection.

For our 50,000 file dataset, subset generation time begins at approximately 1.5 seconds, and increases

linearly as more subsets are generated. The generation time increases as the number of remaining unseen

and similar file pairs in the dataset decreases. It takes longer to randomly locate an eligible file pair as they

become more rare. This is not a defect as the rarer the eligible pairs become, the higher the total recall the

shuffling algorithm has obtained. The number of subsets to generate is therefore a balance between the total

recall goal and available subset generation time.

For all three tools, the unseen similar pair algorithm achieves a higher total recall then both the blind

partitioning and unseen pairs shuffling algorithm within the same number of subsets. This increase is most

pronounced with NiCad and iClones, while only a small increase is achieved with Simian. The algorithm’s

total recall for Simian may be higher if a more conservative similar line threshold were used.

Smaller gains with Simian might indicate the tool has worse precision. This shuffling algorithm only

encourages the shuffling together of file pairs that may contain a true positive clone. The measurement of

total recall does not consider if the clones in the tool’s gold standard are true or false positives. Precision

deficiencies of the tool would manifest in this evaluation as poorer total recall measurement. However, we do

not have sufficient information about Simian’s precision to conclude this.

11.7.4 Inverted Index Algorithm

The unseen similar pairs algorithm successfully increases the performance of the shuffling framework. How-

ever, we believed that considerably better performance could be achieved if the heuristic was sensitive to

the locations of the shared source code between the files. The heuristic needed to be able to detect if two

files had similar lines that were also closely located (e.g., subsequent). We were able to achieve this without

increasing the complexity of the heuristic by computing n-grams across the hashed source lines of the dataset

that were used with the previous algorithm.

The n-grams were calculated by summing each n subsequent hashed source lines using a sliding window.

For example, a file with the hashed source lines A,B,C,D,E has as a 3-gram representation of (A + B +

C), (B + C + D), (C + D + E). The heuristic then approves a file pair if they have a minimum number of

similar n-grams between them. For our evaluation of this algorithm we used a 3-gram representation. We

pre-computed this in linear time in a single pass across the hashed version of the dataset.

The heuristic was parametrized to accept file pairs with at least three shared 3-grams. In effect, the

heuristic considers two files to contain a clone if they share at least three incidents of three similar and

178



subsequent original source lines, which may overlap. File pairs approved by the heuristic therefore have at

minimum between 5 (totally subsequent) and 9 (3 incidents of 3 subsequent) similar source lines.

During our initial investigation of this algorithm we found it had a very lengthy subset generation time.

It was spending a large amount of time randomly selecting file pairs from the dataset that did not satisfy

the heuristic. We minimized this problem by selecting the file pairs from an inverted file index built for the

n-grams. The index maps each n-gram value to the files that contain at least one incidence of that n-gram.

By randomly selecting file pairs from the index we are guaranteed they share at least one n-gram. This

considerably reduces the selection space and allows the subsets to be built faster. The inverted index was

represented by a hash map, and built in linear time by a single pass across the n-grams.

The inverted index can still be too large of a search space. Some n-gram appear very frequently within a

dataset. To counter-act this, the index is trimmed of the n-grams that appear in over a maximum number of

files. Less common n-grams are more likely to denote a clone rather than common structural/stylistic code

(e.g., series of declaration statements at the beginning of a function). For our evaluation, we set the n-gram

appearance threshold for our inverted index to 1000 files.

The evaluation of this algorithm with NiCad, iClones and Simian for 3-grams, a minimum of three

shared 3-grams between file pairs, and an index n-gram appearance threshold of 1000 files is shown in

Figures 11.11, 11.12 and 11.13. The subset generation times are shown in Figures 11.14 and 11.15.

Subset generation time increased exponentially as more subsets were created. We stopped the generation

after 397 subsets (the first 200 of which were the round 1 blind shuffling subsets) because the subset generation

time had increased by two orders of magnitude. The high generation cost means that file pairs that both

satisfy the n-gram similarity heuristic and remain unseen have become rare in the search space (inverted

index). It is taking a long time for the random selection process to find a suitable pair. The fact that the

algorithm is reaching a high generation cost so quickly means that it is reaching its maximum total recall

potential in fewer subsets than the other algorithms.

Not only does this algorithm exhaust its search space in fewer subsets, these subsets provide much higher

increases in total recall. With NiCad and iClones, this algorithm achieved a very high total recall using far

fewer subsets than the other algorithms. With these tools, and given a sufficient number of subsets, nearly

100% of the tool’s native recall was achieved. Considerable gains were also seen with Simian compared to

the other shuffling algorithms, but end total recall was much lower. The heuristic settings may not have

been conservative enough for the types of clones Simian detects. Total recall would also be low if Simian has

low precision. This shuffling algorithm avoids shuffling together files that are not similar as judged by the

file similarity heuristic. A inter-file false positive in Simian’s gold standard may never be shuffled together.

However, we can not conclude this as we do not know Simian’s precision performance for large inputs.

Since subset generation time increases so rapidly, we decided to investigate how quickly it increased with

respect to total recall achieved. We plot this for NiCad and Simian (50,000 file dataset) in Figure 11.16, and

for iClones (10,000 file dataset) in Figure 11.17. With NiCad, subset generation time had only increased by

179



a single order of magnitude (1 to 10 seconds) by the time a 90% total recall was achieved. This is up from

32%, the total recall after blind partitioning in round 1. To reach a near 100% total recall, another order

of magnitude increase in subset generation time was required. The exponentially increasing cost of subset

generation only becomes severe after most of the total recall has been achieved, which is very acceptable.

We see a similar trend for iClones. Total recall increases from 88% to 98% within the first order of

magnitude increase in subset generation cost. We then see very little gains in total recall for the next order

of magnitude increase. The primary difference from NiCad is that the framework had a high total recall

with iClones after the first round (blind partitioning). This was because we had to use a dataset 5x smaller

for this experiment with iClones, due to iClones memory requirements. A smaller dataset will have a larger

intra-file to inter-file clone ration. The average incidence of intra-file clones for samples of IJaDataset will

remain constant no matter the sample size. However, for larger samples the average incidence of inter-file

clones will be higher because the number of file pairs potentially containing clones increases polynomially

with sample size.

11.7.5 Choosing an Algorithm

Of the four algorithms proposed, the inverted index shuffling algorithm achieves the highest total recall in

the fewest subsets. Its subset generation time is much longer due to its smaller search space, but this is an

advantage since it is converging to a high total recall quickly. This equates to far fewer executions of the clone

detection tools, which have higher complexities and longer execution times than subset generation. Using

our simulated experiments using smaller datasets, we have demonstrated success for RQ#4: by observing

the performance of the shuffling framework and incrementally responding to our observations, we were able

to significantly improve its performance.

180



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

To
ta

l R
ec

al
l

T
im

e 
(s

)

Subsets

Simian
Total Recall

Round 1

NiCad
Total Recall

Subset
Generation Time

Figure 11.16: Inverted Index Algorithm - Subset Generation Time vs. Total Recall
(NiCad/Simian, 50,000 File Dataset)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

30

35

40

45

50

0 25 50 75 100 125 150 175 200 225 250

To
ta

l R
ec

al
l

Ti
m

e 
(s

)

Subsets

Subset
Generation

Time

Round 1

iClones
Total Recall

Figure 11.17: Inverted Index Algorithm - Subset Generation Time vs. Total Recall
(iClones, 10,000 File Dataset)

181



11.8 The Improved Shuffling Framework

In this section we summarize the improved shuffling framework as developed in Section 11.7. The improved

shuffling framework executes a classic tool for two rounds of subsets of some ”big data” input source code

dataset. The first round uses the blind partitioning shuffling algorithm, while the second round uses the

inverted index shuffling algorithm. Consider the tool’s hypothetical gold standard for the ultra large dataset.

Round 1 will enable the tool to detect all of the intra-file clones in the gold standard (in addition to some

inter-file). Round 2 aims to enable the tool to detect a large ratio of the remaining inter-file clones in the gold

standard in as few subsets as possible. The steps of the improved framework are summarized in Figure 11.18.

We demonstrated in Section 11.7 that this method can achieve up to 98% of a classical tool’s native recall

given a sufficient number of subsets. However, subset generation became very expensive when 90% of the

tool’s native recall was achieved. The improved shuffling framework must generate the subsets serially as it

needs to track which pairs of files have been seen in a previous subset, necessitating a definite subset order.

However, the clone detection tool can be executed as soon as the first subset has been generated.

The improved framework guarantees that each subset contains at least m/2 unseen file pairs, where m is

the size of the subsets. However, until the majority of the search space has been investigated, the subsets

should contain far more unseen pairs. The similarity heuristic ensures that the guaranteed unseen file pairs

also contain enough similarity to possibly contain a clone. This is done by selecting an n-gram size, n, and

minimum shared n-grams heuristic, s, with respect to the tool’s minimum clone size in identical source lines.

If two files contain exactly s n-grams in common, then they share between n + s (sequential) and n ∗ s (s

occurrences of n sequential) source lines. So n and s should be picked with respect to the tool’s minimum

clone size. We had good results using 3-grams. A trim threshold for the inverted index, t, must also be

selected. We had good results trimming the index of any n-gram that appears in over 1000 files.

11.8.1 Comparison with Deterministic Method

The improved shuffling framework is a non-deterministic method for scaling classical tools. The most similar

previous work to our framework is the deterministic method described in Section 11.1. The deterministic

method scales tools by: (1) partitioning the dataset into partitions half the size of the tool’s maximum input,

and (2) executing the tool for each unique pair of partitions. The deterministic method achieves 100% of a

tool’s native recall after x(x−1)
2 subsets. x is the number of partitions and x = r

0.5m , where r is the size of

the dataset and m is the tool’s maximum input size.

Consider if we split the deterministic method’s subsets into two rounds, as we did with our non-deterministic

shuffling framework. Both methods have r
m (or x

2 ) subsets in their first round, and each of these subsets have

m(m−1)
2 unseen file pairs. In the second round, the deterministic method has exactly m

2 unseen file pairs per

subset. Each of the deterministic method’s partitions have been seen in round 1, so the only unseen pairs

are those between the joined partitions. Our shuffling framework guarantees its subsets in round 2 contain

182



1. Preparation

(a) The maximum input size measured in source files, m, a clone detection tool can reliably handle
on standard hardware is measured.

(b) A hashed version of the dataset is generated. Each source line is replaced by a integer hashcode.
The dataset is normalized (pretty-printed, identifier renaming) and filtered (of common structural
lines) before hashing.

(c) The hashed version is replaced by sliding n-grams, for some value n.

(d) An inverted index is built, which maps each n-gram value to the files that contain at least one
incidence of that n-gram.

(e) The t most popular n-grams are removed from the inverted index, in order to reduce the search
space.

2. Subset Generation: Round 1 - Blind Partitioning

(a) The source files of the dataset are randomly partitioned into non-overlapping subsets of size m.

(b) The specification (file list) of each subset is stored.

3. Subset Generation: Round 2 - Inverted Index

(a) A subset of size m is constructed by randomly selecting pairs of files from the inverted index that
share at least one n-gram. A pair is added to the subset if (1) the files have not previously been
in the same subset, and (2) the files share at least s n-grams.

(b) Once the subset is full, its specification (file list) is stored.

(c) Subsets are generated until either (1) some user-specified maximum has been reached, (2) some
maximum number of randomly selected file pairs have been rejected in a row, or (3) the user
interrupts the process.

4. Clone Detection

(a) A subset’s specification is retrieved and the subset is constructed.

(b) The tool is executed for the subset.

(c) The tool’s clone detection report is merged into a clone repository that efficiently removes dupli-
cates (e.g., hash set, indexed database table).

(d) Clone detection on the subsets may be done serially, in parallel or distributed. Clone detection
can begin as soon as the first subset has been generated. A subset can be analyzed as soon as its
specification has been completed.

Figure 11.18: Improved Shuffling Framework Procedure (Summary)

183



at least m
2 unseen file pairs, but should contain many more until the majority of the search space has been

explored. The shuffling framework’s similarity heuristic means that its subsets will contain more clones on

average than the deterministic method.

Our shuffling framework makes progress faster (i.e., using less subsets) then the deterministic method.

However, the deterministic method is better for some use cases. As seen in Section 11.7, the improved

shuffling framework hits a point of diminishing returns before 100% total recall is achieved. The cost of

generating the subsets becomes too costly. So the shuffling framework is appropriate for cases where some

sacrifice in a tool’s native recall is permissible. The deterministic method is needed when 100% native recall

is required. Note that no clone detector has perfect recall, so 100% native recall does not mean perfect

output.

The subsets of the shuffling framework need to be generated sequentially. There is a limit to how many

computers the execution of the clone detection tool for the subsets can be distributed across before serial

subset generation becomes a bottleneck. In contrast, the deterministic method’s has marginal subset gen-

eration computation cost, and could be distributed up to one computer per pair of partitions. So if a large

cluster of computers is available, the deterministic method may be the better option.

In summary, the shuffling framework is a better option than the deterministic method when partial native

recall is acceptable, and when computational resources are limited. The deterministic method is a better

option when 100% native recall is preferred, and a large cluster is available. Our goal was to enable scalable

clone detection with classical tools using a limited number of standard workstation. Our shuffling framework

satisfies this use case, which was not satisfied by a deterministic method.

11.9 IJaDataset Revisited

In Section 11.5 we used the original ”core” Shuffling Framework (blind partitioning shuffling algorithm) to

evaluate the ultra large IJaDataset. In Section 11.6 we discussed the deficiencies of the original technique,

and in Section 11.7 we incrementally designed a technique which addresses these problems. We demonstrated

the new technique’s superiority by evaluating it using samples of IJaDataset where it was possible to create

gold standards for all of the tools.

In this section we continue our primary experiment by using our new inverted index shuffling algorithm to

evaluate IJaDataset. We compare the two algorithms in their intended use case: for big data clone detection.

We limit our tool selection to Simian and NiCad. We include NiCad as the new algorithm worked best with

it in the simulated experiments (Section 11.7), and because it is fast for function clone detection. We include

Simian because the new algorithm showed the most conservative improvements with it, and because it is the

only tool we have a gold standard for. We omit Deckard because it requires long computation times, even

for smaller datasets. We do not have the computational resources to dedicate to it. We omit iClones because

it did not participate in the previous IJaDataset experiment, so we can not compare the two versions of the

184



framework with it.

Unfortunately, prohibitive memory and execution time requirements prevented us from building gold

standards for IJaDataset for any of the tools except Simian. Simian required a rented Amazon EC2 instance

with 64GB of RAM and days of execution time to evaluate IJaDataset. Simian is quite fast because it only

considers type 1 and type 2 clones. Renting this server for tools that have similar memory requirements, but

much longer execution times, was financially prohibitive.

For these experiments we executed the inverted index shuffling algorithm for a 3-gram representation of

the dataset. The similarity heuristic was parameterized to require selected file pairs to share three 3-grams.

The inverted index was trimmed of any 3-grams appearing in more than 1000 files. These are the same

settings used in the evaluation of the algorithm for the small test datasets. Since these settings produced

good results in the test case (e.g., the framework achieved 98% total recall with NiCad), we are optimistic

they are good parameters for IJaDataset. It took 12 hours to hash IJaDataset, and 40 minutes to build the

3-grams. It took 15 minutes to build the index, and 2.3 minutes to trim it. The hashed dataset only needs to

be produced once and can be used with multiple executions of the shuffling framework with multiple subject

tools. Changes to the dataset only require re-hashing of new or changed files.

As per the previous IJaDataset experiment, we used a maximum subset size of 50,000 files for Simian,

and a maximum subset size of 10,000 files for NiCad. While NiCad could handle the 50,000 file dataset used

in the evaluation of the shuffling algorithm improvements, it does not reliably in the general case, which is

why a smaller subset size is used.

Recall that the inverted index algorithm executes two rounds of detection subsets. In the first round, the

dataset is fully partitioned into subsets using blind shuffling. The first round parallels the original ”blind”

shuffling algorithm, and ensures that the clone detector is exposed to all of the intra-file clones in the dataset.

The number of subsets in the first round is equal to the size of the dataset divided by the subset size for the

tool (rounded up). The second round of subsets are constructed using the algorithm’s new selection criteria.

Pairs of files in the index which share an n-gram are selected at random and added to the subset if they

satisfy the similarity heuristic and have not been previously seen together. The second round can have any

number of subsets.

11.9.1 Simian

Simian detects a very large number of clone pairs in IJaDataset, more than we can process on our hardware.

As with our previous IJaDataset, we instead measured our clone fragment recall heuristic. The framework’s

clone fragment recall for Simian is shown in Figure 11.19. For comparison, we also plot the fragment recall

when the blind shuffling algorithm was used. For the first round (58 subsets), both algorithms use blind

shuffling and obtain essentially identical recalls. Once the inverted index switches to its inter-file detection

strategy, there is a huge difference in algorithm performance. The inverted index algorithm obtains nearly

the same fragment recall within 200 subsets as the blind algorithm does in 900 subsets. In this case, the

185



inverted index reduces the amount of required work by nearly 80%. Interesting to note is that the inverted

index algorithm provides a very quick burst of recall growth across the initial subsets, but the rate of growth

quickly diminishes. It may be possible that it is beginning to reach an asymptote. This is not very desirable,

and suggests that the framework may achieve a higher end recall with Simian with more relaxed file selection

parameters (n-gram length, minimum similar n-grams, and inverted index trim threshold). However, we

had seen some strange behavior in previous experiments with Simian. For example, the sliding effect we

had previously mentioned, where Simian was reporting the same clones repeatedly with small differences in

start/end lines. If the sliding effect was more pronounced when the input size was larger (e.g., the creation

of the gold standard versus the detection of the subsets), it would cause a low total recall to be measured.

For this reason we also decided to simulate Simian’s detection of the subsets.

Also plotted in Figure 11.19 is the fragment recall results of our simulation of Simian’s execution for the

subsets. The simulation assumed a clone pair in Simian’s gold standard was detected if the file(s) containing

the clone were seen within the same subset. For measuring clone fragment recall, the cloned fragments of the

detected clone pairs are also detected. In the simulated case we see much higher cloned fragment recall. This

tells us that Simian fails to report some of the clone pairs in its gold standard even when the files containing

these clones are shuffled together. Simian may be reporting clones inconsistently for a particular pair of files

based on what other files they are input with. Or Simian’s sliding effect defect may be more pronounced for a

larger input size (e.g., large gold standard vs. small subset). The discrepancy between the non-simulated and

simulated Simian subset detection occurs even within the first 58 subsets (round 1). During these subsets,

both algorithms partition the entire dataset using blind shuffling. This suggests that Simian is not reporting

many of the intra-file clones in its gold standard when it is analyzing the files in small subsets rather than

all in one input. Possibly the sliding effect is more pronounced for larger input, specifically reporting many

slight variations on the same fragment as a large clone class. This is consistent with casual observations we

have made of Simian’s gold standard.

From our analysis of Simian, we wished to estimate the general performance of the shuffling framework

with the inverted index algorithm with any clone detection tool. We imagine that the performance lies some-

where between these two evaluations with Simian. The evaluation with real detection data underestimates

our framework’s performance as Simian is failing to detect, or is reporting differently, clones in Simian’s gold

standard that the shuffling framework has exposed Simian to. However, the simulation may be overestimating

the recall. If Simian’s sliding effect produced a large number of intra-file clones, it may be overwhelming the

number of inter-file clones and boosting the recall within the 58 subsets higher than if Simian did not have

this defect.

The framework was executed on a solid state drive which provided greatly improved execution time of both

the shuffling framework and Simian. Building the detection subsets from their specification (i.e., assembling

the files for detection) took less than 5 minutes per subset. Choosing the files for the subsets of round 1

(blind shuffling) took less than 1 second per subset. For round 2, subset generation time started at 30 seconds

186



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

C
lo

ne
d 

Fr
ag

m
en

t R
ec

al
l

Subsets

Index (Simulated)

Index

Blind

Blind (Simulated)

Figure 11.19: Index vs. Blind Shuffling Algorithm For IJaDataset Using Simian

per subset and increased as more subsets were generated up to 44 minutes per subset by the 142th subset in

round 2 (200th subset in total), with a total generation time of 24 hours. From Section 11.7’s study of the

inverted index algorithm, we saw that when subset generation time had increased by 2 orders of magnitude,

that the framework had mostly exhausted its search space, and reached its maximum total recall. Subset

assembly took on average 1.33 minutes per subset. Simian’s execution time per subset was 1.28 minutes on

average, with a range of 7 seconds to 12 minutes, and a total execution time of 5 hours. For Simian, subset

generation time exceeds execution time. This is expected as Simian’s scalability limit for big data is not

execution time, but its memory requirements.

11.9.2 NiCad

Like the previous IJaDataset experiment, we evaluated the shuffling framework’s performance with NiCad

by measuring the number of unique detected clone pairs and cloned fragments across the subsets. We could

not measure total recall as NiCad cannot be scaled to IJaDataset even with extraordinary hardware. It has

internal limitations that restrict the size of the input in terms of the number of source lines and the amount

of cloned code. Even if these limitations are removed, and given sufficient RAM, it could take months of

execution time to produce the gold standard.

In Figure 11.20 we show the shuffling framework’s cumulative detection of unique clone pairs across

the subsets using NiCad. We also show the detection performance using the blind shuffling algorithm for

187



comparison. The blind algorithm data is taken from the previous IJaDataset experiment (Section 11.5). The

detection rounds for both algorithms are indicated by the circle markers.

For the first round, both algorithms use blind shuffling and have nearly identical clone pair detection

performance. Once the index algorithm begins its second round, a considerably better clone pair detection

performance is observed. The index algorithm is able to detect approximately the same number of clone pairs

in 438 subsets as the blind algorithm does in 5780 subsets (20 ”blind shuffling” rounds), a 92% reduction in

subsets. The number of subsets needed to achieve the same result is reduced by a whole order of magnitude.

This is a considerable decrease in the number of required clone detection tool executions.

In Figure 11.21 we show the shuffling framework’s cumulative detection of unique clone fragments across

the subsets using NiCad. Again, for the first round where both algorithms use blind shuffling, the detection

performance is essentially identical. Like with the clone pairs, we see a large improvement in cloned fragment

detection using the index algorithm over the blind algorithm. The index algorithm detected approximately

the same number of cloned fragments within 299 subsets as the blind algorithm did in 5780 subsets, a 95%

reduction in subsets. The index algorithm finds nearly double the cloned fragments within 488 subsets as

the blind algorithm does in 5780 subsets. Considering only the clone pairs detected after the first round

(where both use blind shuffling), the index algorithm detects 3.5x the clone pairs in 200 subsets as the blind

algorithm does in 5493 subsets.

The improvement in cloned fragment detection with the index algorithm is larger than that of the im-

provement in clone pair detection. Unlike with the clone pairs, we see a noticeable decay in the growth of

detected cloned fragments. The average number of new cloned fragments detected per subset is decreasing,

suggesting that they are becoming rarer. This suggests that the cloned fragments are being found faster than

the clone relationships between them. A transitive clone recovery technique could be used to recover these

missing relationships without additional subsets. Since the index algorithm is detecting the cloned fragments

much faster than the blind algorithm, the transitive recovery technique would be even more valuable when

used with the index approach. Before this is possible, an efficient and precise way to apply transitivity to

type 3 clones, for which the validity of transitivity would need to be checked in each instance, needs to be

devised.

The framework was executed on a solid state drive which greatly improved the execution time of the

shuffling framework and NiCad. Building the subsets after their file contents had been chosen took 0.25

minutes on average. Choosing the files for the subsets of the first round (blind partitioning, subset 1-258)

took 60ms on average. For round 2 (inverted index, subsets >248), and consistent with our framework

improvement study, subset generation time started short (a few seconds) and grew as more subsets were

generated, to a couple minutes by subset 1100. NiCad’s execution time per subset was 3.5 minutes on

average, with a range of 1.3-15.6 minutes.

Subset generation time is plotted in Figure 11.22. The gray line shows the subset we stopped executing

NiCad at for this experiment. Between subset 259 (the start of the inverted index algorithm) and subset

188



0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

0 1000 2000 3000 4000 5000 6000

U
ni

qu
e 

D
et

ec
te

d 
C

lo
ne

 P
ai

rs

Subsets

Blind

Index

Subset 438

Figure 11.20: Index vs. Blind Shuffling Algorithm Clone Pair Detection For IJaDataset With NiCad

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 1000 2000 3000 4000 5000 6000

U
ni

qu
e 

D
et

ec
te

d 
C

lo
ne

d 
Fr

ag
m

en
ts

Subsets

Index

BlindSubset 299

Figure 11.21: Index vs. Blind Shuffling Algorithm Clone Fragment Detection For IJaDataset With
NiCad

189



1200, the subset generation time increases by an order of magnitude. When we tested the inverted index

algorithm with NiCad and a dataset of 50,000 files, we found that total recall had reached 90% by the time

that the subset generation time had increased by an order of magnitude. Since we used a similar ratio between

subset size and dataset size in the test experiment as we have in this IJaDataset experiment, perhaps the

shuffling framework would achieve 90% total recall of NiCad’s gold standard for IJaDataset by round 1200.

Unfortunately, we can not verify this as it is not practical to compute NiCad’s gold standard for IJaDataset.

With the inverted index algorithm, the subsets must be generated serially, since the contents of a subset

depend on the contents of previous subsets. This is a potential bottleneck if the execution of the tool for

these subsets is distributed over a number of computers. In Figure 11.23 we plot the time at which each

subset is ready for evaluation. This is the cumulative subset generation time versus subset. Alongside this

we plot the time at which NiCad’s evaluation of a subset is complete when 1, 2, 4, 8, 16 or 32 computers

are utilized. Time is counted in minutes from when the generation of the first subset of round 1 began. For

this calculation we considered a computer occupied for 3.75 minutes to evaluate a subset, which includes the

average NiCad execution time for a 10,000 file subset, and the average time required to assemble a subset

from its specification (a file list). We assume that IJaDataset is on each computer, and that it takes negligible

time for a subset specification to be sent to a computer. Since we are assuming a uniform NiCad execution

time, we consider every nth subset to be sent to a specific computer, where n is the number of computers.

For example, with 4 computers in a cluster, subsets 1, 5, 9, ... goes to computer one, subsets 2, 6, 10 go to

computer two, etc. Therefore, NiCad’s analysis of a subset is complete exactly 3.75 minutes after the later of:

(1) the time the subset’s generation was complete, or (2) the time at which the computer finished analyzing

its previous subset. Case (1) will only happen when a computer is waiting for its first subset, and once

generation time becomes a bottleneck and the computer is idle waiting for its next subset to be generated.

From this distributed execution estimate, we do not see 1, 2 or 4 computers becoming bottle-necked

by subset generation within the 1200 subsets we generated. 8 computers become bottle-necked after 1080

subsets, after which at least one computer is idle. This occurs at subset 854 with 16 computers, and subset 664

with 32 computers. The intention of this framework was to enable the scaling of classical tools on standard

hardware. This plot shows us that the shuffling framework’s subset generation time will not bottleneck a

budget compute cluster of 2-4 computers. The bottleneck may occur at a later subset when the framework is

used with other tools, or even different configurations of NiCad, that require longer execution times. For this

experiment we executed NiCad in its most basic configuration. Since NiCad was only looking for function

granularity clones, and did not perform any normalization beyond pretty printing, its execution time for the

10,000 file subsets was quite fast for type 3 detection. Tools which look for clones at lower granularities will

likely have longer execution time. NiCad’s execution time also grows considerably when its advanced features

are enabled.

The bottleneck could be overcome by generating multiple subsets simultaneously when a computer in the

cluster is idle. When determining if a randomly selected pair of files (that satisfy the similarity heuristics) is

190



0

20

40

60

80

100

120

140

160

180

200

220

0 200 400 600 800 1000 1200

Su
bs

et
 G

en
er

at
io

n 
T

im
e 

(s
ec

on
ds

)

Subsets

Figure 11.22: Subset Generation Time - 10,000 file subsets of IJaDataset - NiCad

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200

T
im

e 
(m

in
ut

es
)

Subset

1 4

16

32

8

Subset
Generation

2

Figure 11.23: Subset Generation Time - 10,000 file subsets of IJaDataset - NiCad

191



unseen, the algorithm would consult the contents of the previously generated subsets, but not the contents

of other subsets currently being generated. As such, some of the same file pairs may be selected for subsets

generated at the same time. However, the probability of this would be low unless total recall was very close

to 100%. This technique would ensure that all the computers in the cluster are continuously utilized. We will

explore such a scheme as part of our future work towards a publicly released tool version of this framework.

11.9.3 Summary

In summary, we experienced considerable gains in detection performance with the inverted index shuffling

algorithm over the blind shuffling algorithm when evaluating IJaDataset using Simian and NiCad. With

Simian we found that the index algorithm allows a higher cloned fragment recall to be obtained with fewer

subsets. With NiCad we found that the index algorithm was able to match the blind algorithm using an

order of magnitude less subsets. From these results we conclude that the inverted index algorithm greatly

exceeds the performance of the blind shuffling algorithm, RQ#5.

11.10 Conclusion

In this research we presented and demonstrated the shuffling framework for scaling classical clone detection

tools to big data on standard consumer-level (i.e., affordable) workstation-class hardware. The shuffling

framework scales classical tools by executing them for non-deterministically chosen subsets of a big data

source dataset. We began with the version of the shuffling framework we proposed in previous work [64],

which we termed the ”core shuffling framework” which used the ”blind partitioning shuffling algorithm”. We

evaluated this version of the framework using ordinary sized systems (for comparison against gold standards)

and for its application to real big data (IJaDatase 2.0). While this version of the framework successfully scaled

the classical tools to big data, the execution time required to obtain a satisfactory ratio of a tool’s native

recall was still high. We used these experiments to identify the deficiencies in the approach. Specifically, the

blind partitioning algorithm did not prevent the same files from being randomly shuffled together repeatedly,

and it did not consider the similarity of the files it was shuffling together.

Considering these deficiencies, we iteratively improved the shuffling framework by modifying the origi-

nal shuffling algorithm. We explored methods of tracking files that have been seen by the tool previously

(to prevent shuffling them together repeatedly), as well as n-gram and inverted index based file similarity

heuristics (to prevent shuffling together of dissimilar files). We evaluated the improvements using a sam-

ple of IJaDataset small enough to evaluate the subject clone detectors’ gold standards. We evaluated the

improvements using the same subset size to dataset size as used in the big data case with IJaDataset. We

termed our final algorithm the ”inverted index shuffling algorithm”. We found from our evaluations that this

algorithm was able to scale clone detectors to big data while capturing up to 90-95% of the a clone detector’s

native recall without sacrificing its precision. We then applied our new algorithm to the big data IJaDataset,

192



and found that it was able to capture the detection performance of our original ”blind partitioning shuffling

algorithm” using 90% fewer subsets of IJaDataset, thereby improving our frameworks scalability by an order

of magnitude.

Using our approach, classical clone detectors can be used to detect clones in big data on commodity

hardware. Researchers and developers can use their familiar, available, proven and well-understood classical

tools to build clone corpora for ultra-large inter-project software datasets. These corpora may be used to

study developer behavior within a corporation or globally (open-source). Duplicated engineering efforts in

open-source or within a corporation can be reduced by extracting the duplication found into new software

libraries. Large corpora can be used within Internet-scale clone search to provide API recommendation and

usage support. Our approach comes at the cost of a fraction of a tool’s native recall. However, a good clone

corpora is built using multiple scalable and classical tools. In this intended use case, lower native recall is

made up for by the consultation of multiple and varied clone detectors.

193



Chapter 12

CloneWorks: Fast, Scalable and User-Guided Clone

Detection for Large-Scale

One of the most active topics in clone research is the detection of clones within big inter-project source

code datasets containing on the order of thousands of software projects or more. This has many potential

applications, including: studying global open-source practices [96], mining the seeds for new APIs [48], license

violation detection [73], similar mobile application detection [22], large-scale clone and code search [61, 81],

code completion [49], API recommendation and usage support [66], and so on. These applications require

clone detectors that scale to hundreds of millions of lines of code or larger. Large-scale clone detection is

also needed for software product line migration [45], and for clone detection in growing industrial software

portfolios which are reaching millions [3] or even billions [91] of lines of code.

In order to achieve these emerging applications, fast, scalable and user-guided clone detection tools are

needed. While a number of scalable tools and techniques have been published [22, 39, 44, 47, 48, 61, 62, 73,

84, 116, 126] they have a number of limitations. Many are domain-specific and designed for particular use-

cases [22,39,62,73,81], and are not suitable for other purposes or for general detection. Many of the techniques

only support Type-1 and Type-2 clone detection [47, 48, 73, 84], where only minor editing changes occur in

the copy and pasted code fragments. Type-3 clones, where further editing such as the addition/removal

and modification of statements are made between the copied code fragments, are the most challenging to

detect in terms of technique and especially scalability. Some require extraordinary hardware, in particular

large amounts of memory [44], or distribution across a compute cluster [39, 47, 84], which can be costly and

difficult to setup. We want large-scale clone detection to execute and scale on even an average workstation

(e.g., i7 CPU, 12GB RAM, SSD) that is accessible and affordable to researchers with minimal setup and

administrative overhead. The execution time of even the fastest near-miss tool in the literature to scale on

an average workstation [116] requires days of execution time for a big inter-project dataset. None of the

existing tools can guarantee scalability to any input size within typical memory constraints.

While the existing scalable tools use various source normalizations to improve clone detection, they

are often not user-guided in their configuration [106]. Researchers would benefit from a user-guided clone

detection tool that lets them customize the source normalization and source representation for clone detection,

including the insertion of custom source transformation code, without needing to re-implement a whole new

194



parser or a completely new clone detection tool. The emerging applications and research of clones in large

inter-project repositories require this domain-specific pre-processing and representation of the source code

before clone detection. This could be to find particular types of clones, to target clones with particular kinds

of differences or patterns, or to explore novel kinds of clones such as API usage clones. A tool that enables

this with a minimum of effort is needed by the community [106,126].

In this chapter, we present CloneWorks, a fast, scalable and user-guided clone detector. As a user-

guided detector, it gives the user fine-grained control over the normalization, transformation, processing and

representation of source-code for clone detection. This way the user can decide on the types of clones they

would like to detect, as per their scenario or use-case (e.g., API clones). Clone detection is achieved using a

fast and efficient modified Jaccard similarity coefficient [67, 116], which represents each code fragment as a

set of terms, for some user-controlled term definition. Scalability in execution time is achieved using the sub-

block filtering optimization [116] with clone indexing. We achieve fast execution time by keeping the index

and the indexed code fragments in-memory in low-complexity data structures. Scalability within memory

constraints, regardless of the input size, is achieved using a targeted input partitioning scheme. CloneWorks

supports the detection of block, function and file clones in Java, C, and C# source code. CloneWorks is

designed to scale on an average workstation, but can also scale up to any number of cores or amount of

memory on extraordinary hardware.

We have extensively evaluated the performance of CloneWorks, and compared it against eight competing

tools. We measure recall using a large collection of real clones within 25K software projects (BigClone-

Bench [122,125,129]). We also measure recall in a controlled experiment using synthetic clones produced by

the Mutation and Injection Framework [111,131]. We measure precision by manually validating 400 random

clones reported by each tool during the BigCloneBench experiment. We evaluate the scalability and execution

time of CloneWorks and the competing tools for inputs up to 250MLOC. From our evaluations, CloneWorks

emerged as the state of the art in general clone detection, with the best recall and precision for Type-1,

Type-2 and Type-3 clones. CloneWorks has the best scalability and execution time for large inputs, and

completes Type-3 clone detection on a 250MLOC input in just 2-10 hours, depending on the configuration,

on an average workstation.

We evaluated the user-guided aspect of CloneWorks by exploiting the different normalization and cus-

tomization options of CloneWorks on IJaDataset [4], an inter-project dataset with 25K systems, to see how

CloneWorks could benefit the users in guided detection. We found that the user-guided approach allows

targeted detection of clones with particular features that may otherwise be missed by traditional detection

procedures. As part of this evaluation, we manually validated 16K clone pairs detected by CloneWorks under

different configurations, and found good precision with the user-guided approach. To our knowledge, this is

the most extensive precision evaluation for any tool to date.

In summary, this chapter makes the following contributions:

• A fast and scalable clone detector. Scales to 250MLOC in just 2-10 hours, depending on the configu-

195



ration, which is an order of magnitude faster than the state of the art.

• A user-guided input converter for clone detection, with various transformations and including a plug-in

architecture.

• Extensive evaluation and comparison with BigCloneBench and Mutation Framework clone benchmarks.

CloneWorks has the top recall and precision of the state of the are tools.

• A demonstration of the user-guided aspect with scenarios and case studies performed on a large inter-

project dataset containing 25K projects, including the validation of 16K detected clone pairs.

CloneWorks has been previously published as a tool [130] and poster paper [123]. This chapter is based

on a manuscript that significantly extends beyond the published versions and is currently under blind review

at a top tier conference. The manuscript has been reformatted to fit this thesis.

This chapter is organized as follows. The CloneWorks approach is shown in Section 12.1, we explain how

it achieves fast clone detection in Section 12.2, its approach to scalability in Section 12.3, and its user-guided

aspects in Section 12.4. Section 12.5 contains our evaluation of CloneWorks, including its comparison against

the competing tools, and an extensive exploration of its user-guided features. We discuss the limitations of

our work in Section 12.6, compare it to the related work in Section 12.7, and summarize the contributions of

CloneWorks in Section 12.8.

12.1 The CloneWorks Approach

CloneWorks has two major components: the user-guided input converter and fast and scalable clone detector,

which are shown in Figure 12.1.

The user-guided input converter is used to prepare the source code for clone detection. This includes

parsing the input source code files, extracting the code fragments of a given granularity, and converting

their source text into a set of terms representation for clone detection. Users customize this set of terms

representation by specifying the pretty-printing, normalizations, transformations, abstractions and filtering

applied to the code fragments, and how the code fragments should be split into terms. This can be as

simple as splitting the code fragments into their language tokens or source lines, or could be as complex as

converting the code fragments into the set of API call patterns they contain. Users can select from a number

of included source processors that can be applied at the source or term levels, or provide their own by a plug-

in architecture. In this way, users can target novel experiments with a minimum of implementation effort,

while taking advantage of our efficient and parallel parsing and transformation architecture. We discuss this

in detail in Section 12.4 and Section 12.5.6.

The clone detector receives the code fragments as term sets from the input builder, and evaluates every

pair of code fragments with the modified Jaccard similarity metric (Eq. 12.1), reporting those satisfying a

minimum similarity threshold as clones. The sub-block filtering optimization [116] is used to avoid comparing

code fragments that cannot satisfy the given minimum similarity threshold. Clone indexing [47,116] is used to

196



Partition 
Size

Input
Source 
Files

Code
Fragment 
Extraction

Pretty
Printing

Code 
Fragment

Code 
Fragment

Processing
Term

Splitter
Ordered
Term List

Term
Processing

Processed 
Term List

Code
Fragments

Input
Partitioning

Sub-Block
Filter

Clone
Index

Jaccard
Similarity

(Same Process For Each)

… ...

… ...

(Same Process For Each)

Source 
File

Input Converter
Clones

Clone Detector

As Term
Sets

Code
Fragments

Minimum Clone 
Similarity Threshold

Figure 12.1: The CloneWorks Approach

quickly identify the potential clones for comparison. We achieve very-fast execution time by storing the code

fragments and index in low-complexity in-memory data structures, and then scale within memory constraints

using a novel input partitioning scheme. We discuss the clone detector further in Sections 12.2 and 12.3.

12.2 Fast Clone Detection

CloneWorks detects clones using a modified similarity coefficient, which is shown in Eq. 12.1. It takes a pair

of code fragments, f1 and f2, as the set of terms (e.g., tokens, statements, API calls, etc.) they contain,

including duplicates, and measures their similarity as the minimum ratio of the intersection of their terms.

A pair of code fragments is reported as a clone if their similarity exceeds a given threshold (e.g., 70%). The

code fragments are stored as hash sets over the terms (as strings) they contain, allowing the modified Jaccard

coefficient to be measured in O(m) time, where m is the size of the larger code fragment. An upper and lower

bound on the similarity is tracked during the computation for early rejection or acceptance of a potential

clone pair. Despite the simplicity of this metric, and the fact that it ignores the original ordering of the code

terms, we find it can achieve both high recall and precision (Section 12.5).

sim(f1, f2) =
|f1 ∩ f2|

max(|f1| , |f2|)
= min(

|f1 ∩ f2|
|f1|

,
|f1 ∩ f2|
|f2|)

) (12.1)

Clone detection is then the measurement of similarity for every distinct pair of code fragments in the

input, I = {f1, f2, ..., fn}, and collecting those that satisfy a minimum clone similarity threshold, as shown

in Eq. 12.2. The code fragments are prepared by the input converter (Figure 12.1 and Section 12.4), and the

clone detector receives them pre-formatted as term sets. The clone detection process is then independent of

the language and granularity of the code-fragments, the transformations applied, and the term definition.

D(I) = {(fi, fj) ε I × I | i < j ∧ sim(fi, fj) ≥ t} (12.2)

We use the sub-block filtering optimization [116] to skip the comparison of many code fragment pairs

that cannot possibly satisfy a minimum similarity threshold. Consider potential clone pair (f1,f2), and let

l1 and l2 be their lists of terms, including duplicates, sorted in a definite term order. In order to satisfy

a minimum similarity threshold t, f1 must share at least dt |f1|e terms with f2, and vice-versa. Then, if

197



sim(f1, f2) ≥ t, it must also be true that the prefix of l1 of length |f1| − dt |f1|e + 1 and the prefix of l2 of

length |f2| − dt |f2|e + 1 must share at least one term. Code fragments whose prefixes do not share at least

one term do not need to be compared as they cannot satisfy the similarity threshold. This optimization

significantly reduces the number of code fragments needing to be fully compared when terms are ordered by

increasing global-term-frequency [116]. Clone detection can then be performed as shown in Eq. 12.3, where

F is the sub-block filter and F (I × I) is the set of code fragment pairs that share at least one term in their

prefixes.

D(I) = {(fi, fj) ε F (I × I) | i < j ∧ sim(fi, fj) ≥ t} (12.3)

We efficiently identify the code fragment pairs that could be clones, as determined by the sub-block filter,

using an inverted clone index [47, 116, 126]. Each code fragment is indexed for its prefix terms. A given

code fragment then only needs to be compared against the set of code fragments returned when the index

is queried for each of the query code fragment’s prefix terms. Clone detection is complete once the index is

queried for each of the code fragments, and the resulting potential clone pairs evaluated with the similarity

coefficient. F (I × I) in Eq. 12.3 is then efficiently computed by querying the index with each code fragments

in I. We use an in-memory index (simple hash map) for fast O(1) access.

Clone detection proceeds in three phases. (1) The code fragments, as transformed into terms sets by

the input converter, are read into memory, and their global term frequencies are computed. (2) The code

fragments’ term sets are sorted by increasing term frequency, their prefixes are computed, and they are

indexed for only their prefix terms. (3) The index is queried by each code fragment’s prefix terms, and

the resulting potential clone pairs are evaluated by the similarity coefficient, with those exceeding the given

similarity threshold output to a detection report file. Each of the phases are parallelized, and can scale to

any number of available threads. To make this very fast, the index is stored in-memory as a hash map for

O(1) access and the code fragments are kept in-memory for immediate access when returned from the index.

12.3 Scalable Clone Detection

We achieve scalability in execution time using the modified Jaccard similarity coefficient, which is a linear

computation, and by reducing the number of code fragment comparisons using the sub-block filtering opti-

mization. We achieve very fast clone detection using a purely in-memory approach. Specifically, we store our

clone index and code fragments in-memory in data structures prioritizing execution performance at the cost

of high memory requirements. We then scale in available memory by partitioning the input code fragments

and creating a separate index for each partition. Clone detection is then executed for each partitioned index

separately, such that only the current partition’s index and its indexed code fragments need to be held in

memory at a given time. Each partitioned index is queried for all of the code fragments, which returns

all potential clone pairs that include at least one code fragment from that partition, subject to sub-block

198



filtering. Clone detection with a particular partitioned index detects all the clones involving at least one code

fragment from that partition. Across all of the executions, all of the potential clones have been investigated,

and those satisfying the similarity threshold reported as clone pairs. Clone symmetry is exploited: given k

partitions, index p only needs to be queried for the code fragments in partitions p through k.

For each execution, only the code fragments within the current partition need to be held in memory to

ensure O(1) access when queried from the index. The code fragments from the other partitions, which are

used to query the index, can be streamed in, but do not need to be retained in memory. This incurs some

overhead, as the code fragments not in the current partition must be streamed from the disk for querying

the index. This is minimal, with each code fragment having to be loaded into memory on average k+1
2 times.

Streaming the code blocks is predictable and sequential IO, so the upcoming code fragments can be preloaded

as to not stall the clone detection threads.

Our partitioning approach maintains the speed of our computational efficient but memory intensive im-

plementation, while scaling within even conservative memory constraints. This approach is formally specified

in Eq. 12.4. The code fragments are split into k non-overlapping partitions: I = {I1 ∪ I2 ∪ ... ∪ Ik}, and an

index is created for each partition: H = {H1, H2, ...,Hk}. The clone detection results are then the union of

our clone detection approach applied for each partitioned index. Fp(Ip:k × Ip) is sub-block filtering applied

on all potential clone pairs between the code fragments in partitions p through k and the code fragments in

partition p using index Hp. This is Ip:k × Ip instead of I × Ip as symmetry can be exploited.

D(I) =

k⋃
p=1

{(fi, fj) ε Fp(Ip:k × Ip)|i ≤ j ∧ sim(fi, fj) ≥ t} (12.4)

12.4 User-Guided Clone Detection

The user-guided input converter is responsible for extracting code fragments from the input source files and

converting them into sets of terms representations for the clone detector. We call this user-guided because

the user has full control over this process, including the plug-in of custom source-code and term processing

logic. Users can configure the input builder to produce a code fragment representation for targeting specific

clone types, or for a novel kind of clone as needed for their experiment. We discuss here the user-guided

procedure, and then discuss how it can be exploited, including empirical case studies, in our evaluation of

the user-guided approach in Section 12.5.6.

As shown in Figure 12.1, each source file is parsed and the code fragments of a specified granularity are

extracted and pretty-printed. Then, for each code fragment in that file, the following processing occurs.

First, a number of user-specified code-fragment processors are applied to the code fragment, which can apply

normalizations and transformations to the source syntax. Then, the terms are extracted by term splitting,

which outputs the code fragment as a list of the terms it contains, including duplicates, in the order of

their occurrence. The term list is then processed by a user-specified sequence of term processors, which

199



take a term list as input and output the same list with some specified modifications, such as term filtering,

splitting, combining, transformation, and so on. The term list is then reformatted to a set of terms, including

duplicates, as expected by the clone detector. The prepared code fragments from all of the input source files

are collected.

Extraction and Pretty Printing: The source file is parsed into a language-specific abstract syntax

tree (AST), and code fragment sub-ASTs of the specified granularity are located and extracted. De-parsing

the code fragment ASTs also applies a strict pretty-printing and removes any comments. The input builder

supports the extraction of block, function and file granularity code fragments in Java, C, and C# source files,

and could be extended to additional languages and granularities. The pretty-printing can be customized to

change how the code fragments are formatted for splitting.

Code Fragment Processors: The user specifies a number of code-fragment processors to be applied, in

their specified order, to the code fragments. These can be used to layout, format, normalize or transform the

code fragments. They can also be used to remove code fragments from consideration, or generate multiple

code fragments (e.g., alternate normalizations) from a single code fragment. The processors are registered

with the input builder as executables along with their configuration parameters. The processors receive the

language and granularity of the code fragments as parameters, and are expected to take the code fragments

as input, and output the transformed code fragments in a simple format. We include a number of processors

for identifier normalization, syntax element abstraction and filtering, which we describe in more detail in

Section 12.5.6. Users can provide their own processors, implemented in any language or technology, by

providing a compliant executable.

Term Splitting: The input builder supports splitting by source line or by language token. By default,

splitting by source line results in code-statements as terms, since the strict pretty-printing results in one code

statement per line. The pretty-printing can be customized, or source transformations can be used, to layout

the code differently in order to customize the term definition when splitting by line. Splitting by language-

token is done using a language-specific token grammar, which splits the source-code into its keywords, literals,

identifiers, separators, operators, and so on.

Term Processors: Term processors allow the user to transform the code fragments at the term level.

Term processors take the list of terms in a code fragment as input and output the term list after some

modification. The term processor may be used to add, split, combine, filter, transform, and so on, the terms

based on some conditions. Term processors can also be used to filter a code fragment from consideration

based on the analysis of its terms. The user can specify any number of term processors, which are applied

in their specified order. We describe some of the included term processors in Section 12.5.6. Users can add

new term processors, by implementing the term processor interface, which are discovered and configured at

runtime.

Implementation: The input builder creates n threads with the parsing, code-fragment, and term pro-

cessor pipeline indicated by the user. Each thread processes a different source file from the input in parallel.

200



Intermediate results are passed along the pipe-line in-memory, instead of written to disk, to avoid unneces-

sary and slow IO operations. A separate thread pre-loads upcoming source files into memory, while another

thread collects the final results and writes them to disk, as to not block the parsing threads.

12.5 Evaluation

In this section, we empirically evaluate the performance of CloneWorks, and compare it against eight well

established clone detection tools, including: CCFinderX [58], CtCompare [133], Deckard [53], iClones [41],

NiCad [110], SimCad [136], Simian [44] and SourcererCC [116]. We compare the tools for their recall,

precision, execution time and scalability. We conduct our evaluation using the recent clone benchmarks: Big-

CloneBench [122, 125, 129] and the Mutation and Injection Framework [111, 131]. We evaluate CloneWorks

for the three configurations shown in Table 12.1. We try a simple line-based approach, a token-based ap-

proach, and a pattern-based approach where we add identifier and literal normalizations to the line-based

configuration. We evaluate execution time and scalability using IJaDataset [4], a large inter-project Java

dataset containing 250MLOC from 25K projects [122, 125, 129]. We only use Deckard in the C experiment,

as its stable version does not support C# and modern Java syntax for parsing. We empirically demonstrate

CloneWorks’s user-guided approach by example and through case studies exploiting custom transformations

using the input converter.

12.5.1 Mutation Framework

We measured the recall of CloneWorks and the competing tools using our Mutation Framework (Chapter 3).

We used the framework to produce clone benchmarking corpora for Java, C and C# clones. We synthesized

clones using 250 randomly selected functions, the 15 mutation operators, and 10 randomly selected injection

locations per clone, for a total of 37,500 unique reference clones per language (112,500 total). We used

IPScanner (Java), Monit (C) and MonoOSC (C#) as the subject systems. We restricted the clones to 15-

Table 12.1: Tool Configurations for Mutation Framework and BigCloneBench Experiments

Tool Mutation and Injection Framework BigCloneBench

CloneWorks
(T3-Line)

15+lines, 70% similarity threshold, split by line 10+ lines, 70% threshold, split by line

CloneWorks
(T3-Token)

15+ lines, 70% similarity threshold, split by language
tokens, filter operator & separator tokens.

10+ lines, 70% similarity threshold, split by language
tokens, filter operator & separator tokens.

CloneWorks
(T3-Pattern)

15+ lines, 70% similarity threshold, arbitrary
identifier-renaming, literal abstraction, split by code-
statements.

10+ lines, 70% similarity threshold, arbitrary-
identifier-renaming, literal abstraction, split by code-
statements.

CCFinderX 100+ tokens, 12+ token types, soft block shaper. 100+ tokens, 20+ token types, hard block shaper.
CtCompare 100+ tokens, max. 3 isomorphic relations. 100+ tokens, max. 6 isomorphic relations.
Deckard Min length 100 tokens, 85% similarity, 4 token stride -
iClones 100+ token clone size, 20+ token blocks. 90+ tokens clones, 20+ tokens.
NiCad 15+ lines, blind-renaming, abstract-literal, max. 30%

dissimilarity.
10+ lines, blind-renaming, abstract-literal, max. 30%
dissimilarity.

SimCad 15+ lines, unicode support, greedy transformation. 10+ lines, unicode support, greedy transformation.
Simian 15+ lines, ignore: identifiers, literals. 10+ lines, ignore: case, subtype names, modifiers.
SourcererCC 15+ lines, 70% similarity threshold. 10+ lines, 70% similarity threshold.

201



Table 12.2: Recall Per Clone Type and Precision Results

Tool
Mutation and Injection Framework BigCloneBench

Java C C# Java
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 VST3 ST3 MT3 Precision

CloneWorks (T3-line) 100 99 100 100 99 100 100 98 100 100 97 90 40 0 100
CloneWorks (T3-token) 100 100 100 100 100 100 100 100 100 100 99 92 65 7 95

CloneWorks (T3-pattern) 100 100 100 100 100 100 100 100 100 100 99 98 92 3 86

CCFinderX 99 77 0 100 83 0 100 83 0 99 93 34 2 0 76
CtCompare 96 48 0 69 40 0 - - - 92 86 7 1 0 17

Deckard - - - 73 72 69 - - - - - - - - -
iClones 100 93 96 100 96 99 - - - 98 90 30 5 0 89
NiCad 100 100 100 99 99 99 98 98 98 100 99 98 92 0 87

SimCad 100 96 89 100 97 89 100 97 88 100 99 89 47 7 16
Simian 81 90 0 85 97 0 75 43 0 65 27 0 1 0 52

SourcererCC 100 100 100 100 100 100 100 100 100 100 99 92 63 4 93

200 lines and 100-2000 tokens in length, and a mutation containment of 15%. We prefer a larger clone

size here because executing some of the tools for a small clone size hundreds of thousands of times is very

time intensive. Previous studies [122,128] show that this configuration gives accurate results. To successfully

detect a reference clone, the tool must reported a clone that subsumes 70% of the reference clone, and handles

the clone-type specific edit introduced by the operator. The configurations of the tools for this experiment

are found in Table 12.1. We configured the tools to use all of their source normalization features.

Recall measured by the Mutation Framework is summarized in Table 12.2. For brevity, we summarize

recall per clone type by averaging across the mutation operators that produce clones of that type. The three

configurations of CloneWorks have perfect (100%) or near-perfect (98-99%) recall for all three clone types.

This shows that CloneWorks can handle any of the types of edits developers make in copy and pasted code

of the first three clone types. SourcererCC and NiCad have similar performance, while the other tools have

weaknesses for some of the clone types.

12.5.2 Recall - BigCloneBench

In this section, we measure the recall of the tools using a real-world benchmark, BigCloneBench (Chap-

ter 8). [122,125,129]. We observe how the capabilities of the tools as measured by the Mutation Framework

translate into real-world performance for real clones produced by real developers. We use the BigCloneE-

val [129] release of the benchmark, which contains the latest version of BigCloneBench with 8 million clones

of 43 distinct functionalities, and a tool for performing recall measurement experiments.

We configure BigCloneEval to evaluate recall for clones that are 10 lines and 50 tokens in length or longer.

While 6 lines is common for benchmarking [13,122,128], this is a small clone size for detection in large inter-

project source repositories [116,126]. We use 10 lines as a realistic minimum clone size in a large-scale clone

detection experiment [116, 126, 126]. Recall was measured using a coverage-based clone matching algorithm

with a 70% threshold. To successfully detect a reference clone, the clone detector must report a clone that

202



covers 70% of the reference clone by source line.

BigCloneEval measures recall per clone type. Since Type-3 and Type-4 clones span a significant region

of syntactical similarity, it divides these into discrete similarity regions. Very-Strongly Type-3 (VST3)

clones are those with syntactical similarity in the range 90% (inclusive) to 100% (exclusive), Strongly Type-3

(ST3) in 70-90%, Moderately Type-3 (MT3) in 50-70%, and Weakly Type-3/Type-4 (WT3/T4) in 0-50%.

Syntactical similarity is measured by line after Type-1 and Type-2 normalizations [125]. We disregard the

WT3/T4 category as the participating tools are syntax-based and do not have meaningful detection in this

category.

We executed the tools for BigCloneBench using empirically chosen configurations, which we summarize in

Table 12.1. We explored the configuration options of the tools, and found good configurations by evaluating

the tools many times while varying their parameters. We choose as our final configurations those that max-

imize recall while balancing precision. We could measure recall for each configuration using BigCloneBench,

but measuring precision for each configuration would require too extensive of manual validation. We esti-

mated the effect of a configuration change on precision by considering the increase in the number of detected

clones relative to the change in recall.

Recall achieved by the Type-3 configurations of CloneWorks, and the configurations of the competing

tools, is summarized per clone type in Table 12.2. With its three Type-3 configurations, CloneWorks has

perfect Type-1 recall (100%), and near-perfect (97-99%) Type-2 recall. The pattern-based configuration has

strong VST3 (98%) and ST3 recall (92%), and matches NiCad for the top Type-3 performance of these tools.

The token-based configuration has strong VST3 recall (92%), but loses some ST3 recall (65%), and has

second best Type-3 recalls, just slightly better than SourcererCC (VST3: 92%, ST3: 63%). The line-based

configuration has good VST3 recall (90%), but poorer ST3 recall (40%), falling just behind SimCad (VST3:

89%, ST3: 47%), but ahead of iClones (VST3: 30%, ST3: 5%). CloneWorks is the best performing tool,

alongside NiCad and followed by SourcererCC. The other tools generally perform well for Type-1 and Type-2,

but have poorer Type-3 performances. None of the tools have notable recall for the MT3 category.

12.5.3 Precision

We measured the precision of the clone detection tools by manually validating a sample of their detected

clones from the BigCloneBench recall experiment. For each tool, we randomly selected 400 clone pairs for

validation. This is a statistically significant sample size, with a confidence level of 95% and interval of 5%.

Four clone experts, including one professional developer, were tasked with validating these clones as true or

false positives. The clones from each tool were shuffled together, and the judges were kept unaware of which

tool a given clone was reported by. The judges were asked to validate the clones as per their judgment, and

were encouraged to mark as false positives the clones that were only coincidentally similar, or were of poor

reporting quality (e.g., clones of only import statements, overlapping clones, etc).

The precision results are summarized in Table 12.2. CloneWorks (line) has perfect precision (100%), fol-

203



lowed by CloneWorks (token) with a precision of 95%, which compliments its competitive recall performance.

CloneWorks (pattern) has lower but competitive precision at 86%, which compliments its top recall perfor-

mance. SourcererCC has good precision, but its recall falls behind CloneWorks. CtCompare and SimCad

have very poor precision. We find that CtCompare has poor reporting quality, while SimCad was report-

ing many dissimilar code fragments. SimCad has been shown to have good precision for standard software

systems [135], so perhaps its SimHash algorithm is too sensitive for accurate inter-project detection.

The recall and precision of the three CloneWorks configurations implies a multi-pass detection strategy.

The user can start with the line-based configuration, which will detect the most similar and highly relevant

clones with perfect precision. They can then use the token-based configuration to extend their recall, although

possibly with a few rare false positives. Then if high recall is very important to their use-case, they can further

extend recall using the pattern-based configuration, however knowing that this may require removing some

false positives from the extended results. We further measure the precision of CloneWorks for different

user-guided features using 25K systems by manually validating more than 16K clone pairs in Section 12.5.6.

12.5.4 Execution Time and Scalability

Execution time primarily scales with the size of the input in terms of the number of lines of code (LOC)

needing to be processed and searched for clones. We built test inputs for each order of magnitude ranging

from 100KLOC to 250MLOC by randomly selecting source files from IJaDataset. The inputs were built in

succession, such that each larger input is a superset to the smaller inputs, ensuring a progression in execution

requirements, with only variation in LOC. The 250MLOC input is the full IJaDataset.

We want a clone detector that can scale with good execution time even on standard hardware, as these

are the computers that are most accessible and affordable to researchers. For our average workstation, we

use a computer with a 3.5GHz quad-core i7 CPU, 12GB of memory and an SSD running Ubuntu 16.04. We

consider this a typical, affordable and accessible workstation.

The execution time and scalability results for the average workstation are summarized in Table 12.3.

Scalability limits are marked by ‘MEM’, ‘LIM’ or ‘ERR’, where ‘MEM’ means the tool failed due to running

out of available memory, ‘LIM’ means the tool failed due to internal input size limits built into the tool, such

as fixed data structure size limits, and ‘ERR’ means some other error. Input partitioning with CloneWorks

was only necessary for the full IJaDatsaet.

CloneWorks is able to scale to the full IJaDataset, and has the best execution time for the large inputs.

SourcererCC also scales to 250MLOC, but with significantly longer execution time. CloneWorks (Type-3

token) reduces execution time by two order of magnitude, with comparable recall and precision to Sourcer-

erCC, while CloneWorks (Type-3 pattern) significantly improves Type-3 recall, while achieving an execution

speed still one order of magnitude faster. The other tools reached design limits or out of memory conditions

before the 250MLOC input. CCFinderX scaled to 100MLOC, but encountered unrecoverable parsing errors

in the 250MLOC input.

204



Table 12.3: Scalability and Execution Time

Tool / LOC 100K 1M 10M 100M 250M

CloneWorks-T3(Line) 3s 28s 8m50s 1h27m 2h7m
CloneWorks-T3(Token) 4s 52s 6m19s 2h5m 4h1m

CloneWorks-T3(Pattern) 6s 59s 9m13s 2h43m 10h12m

CCFinderX 3s 30s 19m1s 6h51m ERR
CtCompare 1s 11s MEM - -

iClones 3s 23s MEM - -
NiCad 20s 3m57s 1h38m LIM -

SimCad 31s 6m32s 1h33m LIM -
Simian 1s 6s 55s MEM -

SourcererCC 5s 21s 13m35s 19h41m 109h49m

For the largest inputs (100MLOC, 250MLOC), CloneWorks has the fastest execution time of the tools.

For the 100MLOC input, it falls only behind Simian. While Simian is very fast, it only detects Type-1 and

Type-2 clones, and despite this we find it has poor precision. For the smaller inputs (100KLOC, 1MLOC)

CloneWorks is not the fastest, but has comparable execution time to the fastest tools. For these inputs, most

of the tools complete within tens of seconds

Scalability and execution time become a problem with clone researchers target large inputs, such as

IJaDataset. We have shown that CloneWorks has the best scalability and execution time in this case.

Our input partitioning scheme means CloneWorks can continue to scale within memory to any input size.

CloneWorks can use any number of available cores, so extraordinary hardware with many cores can be used

to accelerate execution time even further.

12.5.5 Characterizing CloneWorks Performance

In the previous subsection, we empirically evaluated the performance of CloneWorks for our target: a large-

scale inter-project source dataset on the order of hundreds of millions of lines of code. We found good

execution time and scalability with CloneWorks. We expect similar performance for any inter-project source-

code datasets built by crawling open-source repositories. Here we discuss the dominating complexities of

CloneWorks’ input converter and clone detector, and the factors that affect them.

Input Converter Complexity The input converter extracts the code fragments and then executes the

code-fragment and term processors per code fragment before writing the resulting code fragments as term

sets to a file. In terms of the size of the input, extraction scales with the number of source files, and

code-fragment/term processing scales with the number of code fragments.

Code-fragment extraction and each of the code-fragment processors and term processors will have their

own complexities over the size or properties of the source files and code fragments. However, these do not

scale with the size of the input. It does not matter if a given source file is in a small subject system or a

large inter-project dataset, it will have the same code-fragment extraction cost, and its code fragments will

205



have the same code-fragment and term processing costs. We can then consider these as constant costs in the

complexity.

Therefore the complexity of the input converter is approximately O(αf + βn), where f is the number

of source files, n is the number of code fragments, α is the amortized cost of code-fragment extraction per

source file, and β is the amortized cost of the code-fragment and term processing per code-fragment.

The α cost will depend on the properties of the input, including the size of the source files and the

complexity in building their ASTs for code-fragment extraction by sub-tree search and extraction. In general,

this cost is very small for the average source file, perhaps just milliseconds on a single execution thread. Of

course, an extraordinary source file, such as a very large file or a very dense/complex file in terms of AST

construction, may require more significant time. These should be rare in most inputs, and will not significantly

affect α. However, if these do become problematic, it is possible to tune the maximum stack size of the TXL-

based parser to skip source files that require too much execution time to parse. This is primarily done to

skip malformed source files that cause long parsing time before a syntax error is confirmed, but can also be

used to improve execution time by skipping files that are expensive to parse.

The β cost will depend on the code-fragment processors and term processors used. Since the user can use

any number of processors in any order, including their own custom processors by a plug-in architecture, β

is strongly dependent on the configuration. When performing clone detection in large inter-project datasets,

the user will want to prefer fast and inexpensive processing to keep β low. When performing clone detection

in average software systems, a high β due to expensive processing may not cumbersome. Generally, the

processing is going to scale in terms of the code-fragment size measured in lines, tokens or terms. If a

given processor has good execution time but bad complexity, the input converter can be configured with a

maximum code fragment size to keep β low at the cost of missing clones of the large code fragments.

In summary, the complexity of the input converter is linear in the number of source files and the code frag-

ments they contain at the target granularity. Execution time depends on the average costs of code-fragment

extraction and the code-fragment/term processing used. CloneWorks has configurations which can help pre-

vent outliers source files and code-fragments from causing significant increases in the average extraction and

processing costs. The actual runtime depends on the many configurations of the input converter, and the

properties of the actual input under analysis.

Clone Detector Complexity The dominate factor in scalability of the clone detector is the comparison

of the code fragments with the modified Jaccard similarity coefficient. Given an input with n code fragments,

in the worst-case n(n−1)
2 pairs of code fragments must be compared. Each comparison requires worst-case

O(m) time, where m is the number of terms in the smaller code fragment. Therefore clone detection has a

worst-case complexity of O(mn2), where in this case m is the average (amortized) size measured in terms

of the smaller code fragment in the O(n2) code-fragment comparisons. However, a number of optimizations

reduce the actual computation done

206



We reduce the number of code fragment pairs that need to be compared by (1) using sub-block filtering

optimization, (2) skipping the comparison of overlapping code fragments, and (3) skipping the comparison of

code fragments that are too different in size to satisfy the similarity threshold. In our empirical evaluation,

we found these optimizations to be very effective.

When we execute clone detection on IJaDataset for function code fragments 10 lines in length or larger we

find 4.7 million function code fragments, which results in 11 trillion unique code fragment pairs to evaluate

with the similarity metric and threshold. Using the Type-3 (line) configuration with a threshold of 70%,

our optimization reduces the number of comparisons to 150 million code fragment pairs, a reduction of

five orders of magnitude, and detecting 114 million clone pairs. With the Type-3 (token) configuration

and a 70% threshold, our optimization reduces the comparisons to 19 billion, a reduction of 3 orders of

magnitude, and detecting 146 million clone pairs. With the Type-3 (pattern) configuration at 70% threshold,

out optimization reduces the comparisons to 150 billion, a reduction of two orders of magnitude, and detecting

347 million clones. The optimization performs worse with the Type-3 (pattern) configuration as the significant

normalizations decrease the range of unique terms and lower the chance that the prefix of a code fragment

consists of only rare terms, therefore causing more code fragment pairs that don’t meet the threshold to by

missed by sub-block filtering. Therefore, the representation of the code fragments as terms as determined

by the input converter configuration, and the actual terms that exist within a given input, determine the

effectiveness of the sub-block filtering optimization and the actual performance of the algorithm. We find

out three Type-3 configurations perform well in a real large-scale inter-project dataset.

We reduce the cost of comparing two code fragments with the modified Jaccard similarity metric by

tracking an upper and lower bound on the similarity metric. A pair of code fragments can be accepted as a

detected clone as soon as the lower bound meets or exceeds the threshold, or rejected as soon as the upper

bound is falls below the similarity threshold. While measuring the similarity metric is worst-case O(m) in

the size of the smaller code fragment measured in terms, often a decision is made before all of the terms have

been processed.

Therefore, the complexity of the clone detector is approximately O(n
2

γ
m
ε ), where γ is a reduction factor due

to the sub-block filtering optimization and other optimizations that let us skip code-fragment comparisons,

and ε is a reduction factor given that we do not need to fully compute the similarity value of two code-

fragments under comparison. Of course, these reduction factors will depend on the input software system or

source datasets under analysis, the representation of the code fragments as term sets as determined by the

input convert configuration, and the similarity threshold used.

Space Complexity The input converter does not require significant memory, and the memory requirements

do not scale with the size of the input. Code fragment extraction memory requirements scale with the size

and complexity of the source files, but the parser allows a stack limit to be imposed to prevent malformed or

outliers source files from requiring significant space or time to parse. The included code-fragment and term

207



processors also do not require significant space for the typical code fragment, and we have not encountered

any space issues when processing IJaDataset. Of course, users could plug-in custom processors which do

require significant space requirements.

The clone detector has three significant memory requirements: (1) an index over the range of terms linking

them to their global term frequencies, (2) an inverted index over the range of prefix terms linking them to the

code fragments with them in their prefix, and (3) each code fragment as a set of terms and as a ordered list of

terms (with a pre-computed sub-block prefix). The space requirements of the global term frequencies object

scales with the number of unique terms in the input. The space requirements of the inverted index scales with

the number of prefix terms across the code fragments (one insertion per prefix term), which in worst-case is

linear in the total number of terms (if a threshold of 0%). Storing the code-fragments in memory as both sets

and ordered lists for fast and optimized computation of the modified Jaccard similarity coefficient requires

space linear in the total number of terms across all of the code fragments. The terms themselves must also

be stored as strings, which are interred to avoid storing duplicate strings. The space requirement of this

is linear in the total number of characters across the unique terms. In summary, the space requirements is

linear in: (1) the number of code fragments, (2) the number of terms, and (3) the number of characters across

the unique terms (interred strings).

The memory requirements of clone detection can become very significant for large inputs. However,

our partitioning scheme (Section 12.3) allows us to linearly reduce the space requirements by partitioning

the problem. In our experimental evaluation (Section 12.5.4), we find that only for the 250MLOC (full

IJaDataset) did we need to use partitioning while limiting execution to 10GB of memory.

In summary, space complexity is not a major factor with CloneWorks. The input converter has approx-

imately constant space complexity with respect to the size of the input software system or source dataset.

The clone detection has linear space complexity with respect to size parameters of the input code fragments

and their terms, but can be reduced to execute within standard memory limits of a personal workstation

using partitioning.

12.5.6 User-Guided CloneWorks

We have shown above that CloneWorks is the state of the art tool for general clone detection. It has the

best scalability and execution time for large inputs, and matches or exceeds the best of the competing tools

in recall or precision performance for Type-1, Type-2 and Type-3 clones. Now we evaluate the user-guided

aspect of CloneWorks.

In Section 12.4 we showed how the user has full control over how the source-code is transformed and

split into terms for clone detection. Users can add source-level transformations as code fragment processors,

choose how to split into terms, and add term-level transformations as term processors. Using the plug-in

architecture, there is unlimited possibilities. With the user-guided input converter, the user can achieve any

representation of their code fragments, in order to detect any type or kind of clone and pursue novel clone

208



detection studies and their applications thereof.

To evaluate the user-guided aspect, we discuss here some of the transformations made possible by

CloneWorks, and the scenarios or tasks they would be useful for, including: identifier normalization, syntax

abstraction, syntax filtering, term processing and term representation. All the customizations and processors

discussed here are implemented in the current version of CloneWorks. Of course, the user can further extend

these with the plug-in architecture.

We empirically test a few of these possibilities in case studies with IJaDataset [4], a large inter-project

Java dataset with 25K systems. To show we also support other languages, we repeat a number of these case

studies for a C (postgresql) and a C# (mono) system. The effects of the user-guided approach will depend

on the system under study, so we focus on Java as our IJaDataset lets us see their average effect across

25K systems. We begin by detecting clones with our Type-3 (line) configuration as a base case. We then

customize this configuration to target particular kinds of clones using the user-guided aspects. We measure

how many additional clones we detect using the customizations, and specifically measure precision for these

targeted clones, validating up to 1000 clones for each of the 22 measurements of precision. In total, 16,426

detected clones were validated by seven graduate students with knowledge of clones and clone research, which

we believe is the largest evaluation of precision for any one clone detector. The validators were given the

same instructions as our precision experiment in Section 12.5.3. The validated clones are publicly available

for replication studies and comparison with other tools [1]. We find that the user-guided aspect allows us to

target and detect many unique kinds of clones with high precision. This precision measurement is in addition

to the precision experiment in Section 12.5.3. The results are shown in Table 12.4, and we discuss the case

studies in detail in their respective sections below.

Pretty Printing

CloneWorks uses a TXL-based pretty-printing to layout the parsed code-fragments in a consistent manner.

This aligns the code fragments for splitting by newline, so the term sets can be compared using simple

language-independent string matching. The default pretty-printing when split by newline results in code

statements as terms. The user can easily customize the pretty-printing as needed for their clone detection

task by modifying the formatting annotations in the grammar files. This allows the user to customize their

term definition. The finer the granularity of decomposition of statements across multiple lines, the finer the

granularity of comparison after the code-fragment is split into terms by line, and the more emphasis placed

on this statement in the similarity measurement.

For example, when doing function granularity clone detection, we generally do not put emphasis on the

method signature, so we format it on a single line which becomes a single term. A user may find the method

signature is important for their experiment, and modify the pretty-printing to split its components across

multiple lines (as shown below), with each line becoming a distinct term. This would put a greater emphasis

on the method signature during similarity measurement, and allow partial similarity when only certain

209



Table 12.4: Demonstration of User-Guided Approach

Configuration System
100% Threshold 70% Threshold

# Clones Precision # Clones Precision

Type-3 line (base) IJaDataset (Java) 16,557,878 100% 113,964,667 100%
Abstract Identifiers and Literals IJaDataset (Java) +62,478,746 100% +233,345,709 89%
Abstract Arguments IJaDataset (Java) +2,462,012 79% +36,556,835 76%
Filter Generics, Modifiers, Annotations IJaDataset (Java) +855,200 100% +419,800 89%
Remove Exception Handling (Try-Catch) IJaDataset (Java) +101,477 100% +1,641,232 96%
Fingerprinting IJaDataset (Java) +65,921,281 94% - -

Cross-Project API Usage Clones 50 Systems (Java) - - 7685 99%

Type-3 line (base) Postgresql (C) 1 100% 437 100%
Abstract Identifiers and Literals Postgresql (C) +184 98% +1053 97%

Type-3 line (base) Mono (C#) 9540 100% 194,020 99%
Abstract Identifiers and Literals Mono (C#) +95,626 100% +452,784 97%
Filter Generics, Modifiers Annotations Mono (C#) +368 100% +436 94%

components of the signature are modified after cloning. The user could do this for any syntax structure(s)

they are particularly interested in for their clone study or task.

public static

int mymethod(

int one, int two

) throws MyException

As an additional example, considering the pretty-printing of the for loops below. Typically, the opening

of a for statement is formatted on a single line. When splitting by line to produce terms, this would cause

code-fragments with the same for-loop opener to share a single term. However, since for-loop openers contain

three distinct parts, if we pretty-print these parts on separate lines, then we can represent the parts as

distinct terms after splitting. Then two code-fragments with the same for-loop opener will share 3 terms

instead of 1, which is proportional to the number of statements within a for-loop opener. This also makes the

similarity metric more sensitive to localized changes. For example, the first two for-loop below are similar

except for their initialization part. With specialized pretty-printing, they share 2 of 3 terms, instead of 0 of

1 term. We layout the for-loop opener to keep for-loop indicating syntax on each line so that these terms

will only ever match terms from other for-loop openers. For example, for (int i = 0 will only match the

initialization part of a for-loop, and will not match with the statement int i = 0;. We make use of a

number of clone-detection specific pretty-printing in our standard parsing.

for (int i = 0 for(int i = 1 for(line

; i < 10 ; i < 10 : lines) {

; i++) { ; i++) {

210



Identifier Normalization

Essential for the detection of Type-2 clones is the normalization of identifier names. Differences in identifier

names also occur in Type-3 clones, and normalization may be required to detect those Type-3 clones that

appear too dissimilar at the token or line level before normalization to be detected as a clone. CloneWorks

supports both consistent and arbitrary identifier normalizations. With consistent normalization, the first

unique identifier in the code fragment, and all of its instances, is replaced with ‘ID1’, the second with ‘ID2’

and so on. This allows the detection of Type-2 clones with consistently renamed identifiers. With arbitrary

normalization, every identifier is simply replaced with ‘ID’. Arbitrary renaming is also needed for Type-3

detection, where consistent renaming is ineffectual as the identifiers may not align. Using term processors

and simple token optimizations it is possible to normalize only identifiers of a certain type such as variable

names, method names, type names or primitive types. Targeted normalization can help isolate Type-2 clones

with specific kinds of differences that affect their refactorability, making it easier for the user to understand

and manage their Type-2 clones.

In Table 12.4 we show clone detection results with blind identifier renaming for Java, C and C#. We also

include literal value abstraction to match our Type-3 (pattern) configuration used earlier. This normaliza-

tion greatly increases the number of clones detected. With IJaDataset and the 100% threshold we find an

additional 62 million clone pairs above the base configuration, and with the 70% we find an additional 233

million clone pairs. With the 100% threshold, we extend the base detection from Type-1 to Type-2 clones.

With the 70% threshold, we are finding the Type-3 clones that also contain Type-2 differences that dropped

their measured similarity with the base configuration. With the 100% threshold, this normalization does not

negatively affect precision, with precision holding at 99-100%. With the 70% threshold, we only see a drop

in precision in the Java case, although it is still good at 89%. This could be due to detection in a large

inter-project dataset, where there is a higher chance of coincidentally similar code between systems.

Abstraction

CloneWorks includes a TXL-based [27] code-fragment processor for the abstraction of any syntactic structure

in the target language’s grammar. Abstraction is the replacement of a syntactic entity with an abstract

representation such that differences in that syntactic element are removed before clone detection. Abstraction

can be applied at the token level (e.g., literals), for whole statements (e.g., throw statements), or for parts

of statements (initialization part of a for-loop). The user simply specifies the names of the syntax elements

to abstract, and the abstraction is applied globally. For example, abstraction of the conditional part of an

if-statement causes both if(i==10) and if(!buffer.isEmpty()) to be replaced by an identical abstract

form if(condition). Abstracting a whole statement, such as throw statements, replaces all such statements

with its name: throw statement. Users can easily apply advanced abstractions, for example only abstracting

if conditions when the condition is a function call, by writing simple TXL rules.

Abstraction is needed to detect clones with specific kinds of edits. Applying abstractions and then

211



detecting clones with a 100% threshold can detect clones that differ by only a certain kind of difference.

Abstractions could be combined to detect clones with specific combinations of differences. This allows us to

target certain kinds of Type-3 clones even with a 100% similarity threshold. Some kinds of differences can

cause Type-3 clones to have a low similarity measure. Lowering the threshold would detect these clones, but

might also detect many false positives. Abstraction can be used to increase the similarity of Type-3 clones

with particular kinds of differences above the threshold, without increasing the similarity of false positives

with other kinds of differences. We discuss some example uses of abstraction below, including a case study.

Method Arguments Abstraction can be used to improve the recall of clones with particular kinds of

differences. For example, code is often cloned, and an identifier method argument is replaced with an

expression [9, 13]. Clone detectors rely on thresholds to detect these clones. CloneWorks can detect these

even with a 100% similarity threshold by abstracting the method call arguments.

Loop Conditions A code fragment with for loop(s) may be copied and the looping conditions changed,

possible with other modifications. We can detect these clones by abstracting the initialization, condition and

afterthought parts of for-loops. With this abstraction, for-loops like for(int i=0; i<10; i++) are replaced

by for(init; condition; afterthought). Adding this to the Type-1 configuration will detect those clones

only with changes in one or more of their for parts. Adding this to the Type-3 configurations will extend

detection to those clones that fell below the similarity threshold due to differences in their for-parts. The

user may not consider changes in for-loop parts to be significant in their system, so abstracting these parts

is a good way to extend recall without dropping the similarity threshold, which could harm precision.

Whole Loops We could also abstract the whole loops, including its opening statements and contained code-

block. With this abstraction, a loop like for(int i=0; i<10; i++) {System.out.println(i);} would be

completely replaced by for loop statement. This allows the detection of clones that contain completely

different loops. This may hurt precision as code-fragments that are mostly loops will become trivially similar.

However, this may be necessary to detect certain clones in a software system. The user may decide the loss

of precision is worthwhile for their system and use-case.

We can easily imagine some scenarios where this abstraction is necessary. Consider that a code-fragment

has been duplicated that contains a loop. That loop is then extracted into a new function and replaced by

a method call in one version but not the other. If the loop was a significant portion of the code-fragment,

then this clone may no longer be detected even with a Type-3 configuration. Or consider the case where

a code-fragment that accesses a database and queries a table is duplicated many times, but the loop that

iterates through the query results is modified to perform a different computation. It is desirable to detect

this clone as the database access code should be maintained together and possibly extracted and abstracted,

but loops computing different calculations may be significantly different and cause the code-fragments to fall

below reasonable Type-3 similarity thresholds. These clones could be detected by abstracting the for-loops.

212



Fingerprinting Abstraction can also be used for fingerprinting. If we abstract all simple statements

(assignment, throws, declaration, etc) and the conditions of control statements (loops, if, switch, etc), we are

left with the abstract structure of a code fragment (fingerprint). We can then detect clones with the same

or similar programming structure and patterns.

This can have applications in bug detection by detecting clones of buggy programming patterns. While

clone detection using fingerprints could have poor precision, this is less of an issue when we plan to only

investigate the fingerprint clones of code fragments with known bugs or security flaws. An example of a

code-fragment finger-print is shown in Figure 12.2

Case Study As a case study, we executed the abstract arguments and fingerprint cases for IJaDataset,

and the results are shown in Table 12.4. There are 2.5 million clones in IJaDataset that only differ by their

method call arguments, while 36.6 million are missed by the base configuration due to method arguments

lowering their similarity below 70%. In addition to changes in identifier arguments, this also detects the

cases where an identifier or expression argument is replaced with a different expression, which is a common

occurrence in cloning [9]. However, argument abstraction has a hit on precision (76-79%). This is because in

Java, developers sometimes place significant parts of their code within method call arguments, such as long

call chains and anonymous classes.

With fingerprinting, we used only the 100% threshold as the 70% threshold is too relaxed with such

significant abstractions. We find 66 million additional clones with this abstraction and the 100% threshold.

With fingerprinting, we are finding the code fragments that have the same overall structure in terms of kinds

of statements, but which may express these statements differently. With a 100% threshold we are finding

clone pairs with the same programming pattern, and which are often Type-3 clones, and we are finding more

clones with good precision at 94% despite heavy abstraction.

Filtering

CloneWorks includes a TXL-based [27] code-fragment processor that can filter any syntax element before clone

detection. For example, filtering generics syntax would transform the statement List<String> strings;

into List strings;. In this way, the user can detect clones ignoring certain syntax elements during similarity

measurement. CloneWorks can filter parts of specific kinds of statements, whole kinds of statements, or even

significant syntactical structures. Filtering is applied globally to all of the code-fragments. More advanced

filtering, which might require conditional filtering or additional transformation, can be done by the user by

implementing simple TXL rules.

With a 100% similarity, filtering will detect the clones that differ only by the removed syntax. With a lower

threshold (e.g., 70%), filtering will allow the detection of clones that previously fell below the threshold due

to dissimilarity caused by the targeted syntax. Filtering syntax that may cause dissimilarities unimportant

to the user is an alternative to reducing the similarity threshold when trying to improve recall, and could

213



================================================================================================|

| ORIGINAL CODE FRAGMENT | NORMALIZED CODE FRAGMENT |

================================================================================================|

| private void fireTargetRemoved(TargetEvent targetEvent) { | method_header { |

| TargetListener[] listeners = listenerList.getListenerList(); | local_variable_declaration |

| for (int i = listeners.length - 2; i >= 0; i -= 2) { | for (condition) { |

| try { | try { |

| if (listeners[i] == TargetListener.class) { | if(condition) { |

| listeners[i + 1].targetRemoved(targetEvent); | expression_statement |

| } | } |

| } catch (RuntimeException e) { | } catch (condition) { |

| LOG.warn("An error was thrown.");\ | expression_statement |

| } | } |

| } | } |

| } | } |

|===============================================================================================|

Figure 12.2: Example of Fingerprint Abstraction

help preserve precision. As well, filtering allows the targeting of certain kinds of clones, and helps address

common clone detection scenarios. We discuss a few examples of filtering below, including a case study.

Irrelevant Syntax Filtering can remove syntax elements that cause mismatch of otherwise similar source

lines/terms during clone detection, even when those elements do not have much of an impact on whether

two code fragments are clones. For example, access modifiers, generics and annotations should perhaps be

filtered before clone detection, as they are minor changes in otherwise identical syntax.

Assertions Some developers make use of assertions during development and maintenance of the software.

However, it may not be desirable for the assertions to be considered during clone detection. In particular, if

assertions are not used everywhere in the code, and when differences in assertions may cause Type-3 clones

to be further syntactically dissimilar. Therefore, developers that make use of assertions may want to filter

the assertion statements before clone detection.

Declaration and Simple Initialization Statements Declaration and (simple) initialization statements

can be detrimental to clone detection. Code fragments with long lists of variable declaration/initializations

can be found to be trivially similar, especially when identifier normalization is used, leading to false positives.

Conversely, differences in declaration and initializations can cause otherwise similar cloned code fragments

to not be detected.

Filtering the declaration statements and simple initialization statements could allow additional clones

to be detected, and some false positives to be eliminated. We write a custom filtering program in TXL

to achieve this. This program filters the declaration statements (e.g. int x;) and simple initialization

statements (e.g., int x = 0 and int x = y) from the code-fragments. It does not filter the initialization

statements that assign an expression (e.g. int x = y + z), as these contain important program logic, but

214



instead normalizes them to an assignment statement by filtering the declaration aspect (e.g. x = y + z).

When used with a 100% threshold, this filtering allows the detection of clones that are nearly identical

except for differences in declaration and simple initialization. With a threshold such as 70%, filtering the

declaration and simple initialization statements allows the detection of clones that otherwise fell below the

similarity threshold (70%) due to differences in these often more trivial statements. This filtering may cause

some clones to no longer be detected when their similarity is mostly within the declaration statements, would

could be a benefit when trying to find the most relevant clones.

Exception Handling Differences in exception handling can cause otherwise identical or similar code frag-

ments to appear different and be missed during clone detection. This can occur when a code fragment is

cloned, and its exception handling evolves independently. For example, one version might simply throw its

exceptions while the other logs and handles them. We developed an advanced filtering processor that removes

exception handling by searching for instances of try-catch-finally blocks and replacing them with only the

code within the try and finally blocks, effectively filtering the exception handling. We implemented this in

TXL using replacement rules like the one shown in Figure 12.3. An example of a code-fragment after the

application of this rule is shown in Figure 12.4.

Retain Statements Filtering can also be used to remove all except a particular kind of syntax for clone

detection. For example, we can filter all statements except switch statements, retaining only the switch

condition and cases, but not the surrounding statements, or the statements within the switch cases. This

would detect code fragments with the same or similar switch skeletons as clones. Switch cases encode domain

knowledge that must be properly maintained and evolved, and detecting these cloning relationships would

help the developer synchronize the domain knowledge during evolution. This kind of clone detection has

uses in program comprehension, such as linking code fragments with similar domain knowledge, enabling

knowledge extraction from poorly documented code and design recovery from poorly structured code. This

filtering would also be interesting for if-else chains and for-loop headers.

rule removeTryCatchFinally

replace $ [statement]

’try ’{ TryBlock [repeat declaration_or_statement] ’}

CatchPart [repeat catch_clause]

’finally ’{ FinallyBlock [repeat declaration_or_statement] ’}

construct CombineStmts [repeat declaration_or_statement]

TryBlock FinallyBlock

by

CombineStmts

end rule

Figure 12.3: TXL Code for Removing Exception Handling

215



====================================================================================================|

| ORIGINAL CODE FRAGMENT | NORMALIZED CODE FRAGMENT |

====================================================================================================|

| public void method(Type1 obj1, Type2 obj2) { | public void method(Type1 obj1, Type2 obj2) { |

| try { | obj1.method1(obj2); |

| obj1.method1(obj2); | obj2.method2(obj1); |

| obj2.method2(obj1); | obj1.dipose(); |

| } catch (Exception e) { | obj2.dipose(); |

| logger.print(e + ": " + obj1 + ", " + obj2); | } |

| } finally { | |

| obj1.dispose(); | |

| obj2.dispose(); | |

| } | |

| } | |

=====================================================================================================

Figure 12.4: Example of the Try-Catch-Finally Normalization

Case Study As a case study, we executed our trivial syntax filtering example (generics, modifiers, anno-

tations) for Java and C#, with the results shown in Table 12.4. We find that many clones are missed both

with the 70% and 100% threshold due to these trivial (from the perspective of cloning) syntax differences

between code fragments. For IJaDataset we find an additional 855,200 clone pairs with the 100% threshold,

and an additional 419,800 clone pairs with the 70% threshold. Generally we find that this filtering does not

harm precision (94-100%), with only a noticeable reduction in precision (89%) in the Java case with a 70%

threshold. We also executed our exception handling filtering example for IJaDataset, with the results shown

in Table 12.4. We find 101,477 clones that are identical (100% threshold) only when we ignore exception

handling, showing that developers copy and paste code and then modify only the exception handling or

evolve it differently. With the 70% threshold, we find that 1.6 million clones were not found by the base

configuration due to differences in their exception handling. We find good precision with filtering exception

handling (96-100%).

Term Processing

After the code-fragments have been pretty-printed, normalized, abstracted, etc. and then split into lines or

tokens, CloneWorks allows flexible processing of the terms before clone detection. As discussed previously

in Section 12.4, the term processors receive the terms in their original order, and output the same after

processing. Term processors must be implemented as Java classes which can be plugged into CloneWorks,

although they are free to execute external processes to help their computations. CloneWorks includes a

number of useful term processors.

A number of term processors are designed for the case where the code-fragments are split into language

tokens. FilterSeperators and FilterOperators remove specific tokens that might hurt the precision

of clone detection across sets of language tokens. These can be used as the basis to build processors for

filtering any token types. NormalizeStrings can be used to normalize string tokens to a common value,

216



SplitStrings splits string tokens into their words, while Stemmer stems identifiers which might help in the

case of slightly renamed identifiers (e.g., Tokenize and Tokenizer are stemmed to Tokeniz).

A number of term processors are designed for both split by line and split by token. The Joiner processor

combines all the terms into a single term with uniform whitespace delimitation, which can be used for exact

(after normalization) detection. We have a Hashing processor which replaces the term strings with a hash

string. This can avoid long string comparisons and reduce memory requirements when term strings are

long, for example when the Joiner processor is used. Hashing supports both MD5 and SHA hashing, so

collisions should be very rare. As well we have the NGram processor, which applies an n-gram filter across

the terms. This can be used to maintain some token/line order information in the term list after they are

converted to an unordered set for similarity measurement, although this can reduce recall when Type-3 edits

are dispersed. We have a RetainUnique processor which removes duplicate terms when it is desirable to

ignore term frequency during detection.

Of course, the user can easily implement any term processing they need and plug it into CloneWorks.

Custom Term Representation

With the input converter, any definition of a term, or representation as term sets, is possible. By customizing

the pretty-printing, applying transformations with code-fragment processors, and then splitting by line,

the developer can produce any representation imaginable. By customizing the representation of a code

fragment as terms, for any definition of a term, the user can explore new clone types, which could have many

applications across software analysis research.

For example, we could represent the code fragments by the set of normalized API calls they contain. We

use a code fragment processor to transform the code fragments into a newline delimited list of normalized API

calls they contain, in the order they are called. We built such a processor using SrcML [24], and an example

transformed code fragment is shown in Figure 12.5. Splitting by line results in our target of code fragments

as sets of normalized API calls for clone detection. This representation would allow us to detect clones of API

usages. This would be useful to researchers studying Internet-scale code duplications, as developers learn

API usage patterns from the web. It could also be used by API designers to see how open-source is using

their APIs.

Term processors could then further refine or customize this detection. An NGram term processor would

limit the detection to code fragments with similar API call chains. Alternatively, duplicate terms could be

removed by RetainUnique, and API calls are used as a set of topics about a code fragment. Detecting code

fragments with similar topics or that perform similar actions could be useful for design recovery, reverse

engineering and restructuring [86,118].

As a case study, we executed our API usage clone detection across 50 open-source Java systems taken

from GitHub and SourceForge. We used our API term processor to transform the code-fragments into their

list of API calls and then split by line. We used our RetainUnique term processor to remove duplicate

217



Figure 12.5: API Call Extraction Example

============================================================================

| ORIGINAL CODE FRAGMENT | TRANSFORMED |

============================================================================

| public void endOverlay() { | requestFocus(0) |

| fContainer.requestFocus(); | setVisible(1) |

| if (fEditScrollContainer != null) { | remove(1) |

| fEditScrollContainer.setVisible(false); | getBounds(0) |

| fContainer.remove(fEditScrollContainer); | getX(0) |

| Rectangle bounds = fEditScrollContainer.getBounds(); | getY(0) |

| fContainer.repaint(bounds.getX(), bounds.get(Y), | getWidth(0) |

| bounds.getWidth(), bounds.getHeight)); | getHeight(0) |

| } | repaint(4) |

| } | |

============================================================================

API call terms. This allows us to represent the code fragments as the set of API topics they contain. We

performed clone detection with a 70% threshold and considering the code-fragments with at least 5 unique

API terms (to consider only those implementing an API usage). We targeted inter-project detection, to find

API usage duplication between projects, and found 7685 API clones. We validated 1000 of these clones and

found a precision of 99%. These are not traditional clones, and often the code fragments are syntactically

dissimilar, but use the same APIs to perform a common task. These kinds of clones may be useful to those

studying the propagation of API usage patterns between software projects. Our goal here was not to perfect

API clone detection, but with this example we have demonstrated how the user-guided approach can be used

to target new kinds of clones for studies in software engineering practices.

12.6 Limitations

A limitation in all clone studies is tool configuration [139]. We configured the tools by evaluating permuta-

tions of their settings against BigCloneBench, and choosing settings that appeared to maximize recall while

balancing precision. We could not exhaustively evaluate every configuration permutation, and we may not

have found the best configurations. However, since BigCloneBench contains a wide variety of clones, we are

confident we found good general configurations for accurate comparison of tool performance.

CloneWorks relies on the sub-block filtering optimization [116] for scalability in execution time. The

performance of this optimization depends on the distribution of the code terms of the input code fragments,

which depends both on the properties of the input source system and on the configuration of the input

converter. The optimization will work best when there is a variety of terms, both common and rare, and

with the code fragments containing a mix of both. In this study, we demonstrated good scalability across a

large variety of software systems (IJaDataset), and with a variety of input converter configurations. When

configuring the input converter, the user should take some care to ensure their normalization and transfor-

218



mations preserve unique aspects about the code-fragments such that the sub-block filtering optimization is

successful.

12.7 Related Work

Rattan et al. [104] found at least 70 clone detectors in the literature. However, very few scale to large inter-

project repositories like IJaDataset, and they have limited user-guided features. There have been CCFind-

erX [58], CtCompare [133], iClones [41], NiCad [110], SimCad [136], Simian [44], and SourcererCC [116],

which we extensively compared with CloneWorks in Section 12.5.

Liveri et al. [84] scaled CCFinder [58] using input partitioning. The large input was partitioned into smaller

inputs, and CCFinder was executed for each pair of partitions. Scalability in execution time was achieved

using a large compute cluster. Ishihara et al. [48] scale the detection of Type-1 and Type-2 method clones by

comparing their MD5 hash values after normalization. However, this does not detect the important Type-3

clones. Hummel et al. [47] proposed the use of indexes for scalable clone detection in large inter-project

repositories. However, their index is quite large, requiring the index and computation to be distributed

over a compute cluster, and their technique detects only Type-1 and Type-2 clones. Others have scaled

clone detection in domain-specific ways, which cannot be used for general detection. Koschke [73] scaled

license violation detection using suffix trees. Chen et al. [22] detect Android application clones in application

marketplaces. Keivanloo et al. [61] use a clone index to scale code search to large inter-project repositories.

Our [126] Shuffling Framework scales existing clone detectors, without modification, to large repositories

using non-deterministic input partitioning with file pair shuffling and filtering optimizations. This scales the

tools with some loss of recall, and requires a small cluster for scalability in execution time. The sub-block

filtering approach was proposed by Sanjani et al. [116].

CloneWorks provides a finer granularity of control over the source transformations and processing, in-

cluding a plug-in architecture for providing custom source transformation and processing. We provide a

implementation and architecture of the sub-block filtering and partial index approach that uses fast, low

complexity, but memory intensive, parallel data structures. Scalability within typical memory constraints is

achieved using our novel input partitioning approach, which is inspired by the Shuffling Framework [126].

CloneWorks achieves top recall with good precision while reducing execution time by one or two orders of

magnitude for IJaDataset compared to SourcererCC.

12.8 Contributions of CloneWorks

CloneWorks was built by combining and improving upon the best techniques found in the literature. These

influencing works were acknowledged in this chapter and described alongside the other related work in the

previous section. To better highlight the contributions of CloneWorks, we summarize in this section the

219



techniques which have been taken from the literature, how they were adapted or improved for CloneWorks,

and what unique contributions we provide with CloneWorks.

CloneWorks measures clone similarity using a Jaccard-based metric. The use of Jaccard and similar set-

based metrics is common in clone detection [63,115,116,126]. We use this metric as it is efficient to compute

(scalability) and simple to understand (essential to predict how source normalization/transformation will

affect detected clones). A contribution of this work is we showed that the Jaccard-based metric can achieve

high recall and precision in the detection of various types and kind of clones, including with various source-

code normalizations and representations.

To achieve scalability in execution time, CloneWorks uses the sub-block filtering optimization with a

partial clone index. The sub-block filtering optimization was introduced by Sajnani et al. [115, 116], and

they proposed the use of a (partial) clone index to efficiently apply sub-block filtering to an input set of code

fragments. The use of clone indexes to scale clone detection is a well known approach [47, 61, 115, 116, 126].

The first implementation of the sub-block filtering and partial clone index approach is in SourcererCC,

which we introduced with Sajnani et al. [116]. We previously demonstrated that this approach provides a

significant improvement in scalability compared to the other state of the art tools [116]. Our contribution with

CloneWorks is a new implementation of this approach. Our multi-threaded implementation stores the index

and code fragments in-memory for instant lookup and in data-structures optimized for efficient computation

of the Jaccard metric and sub-block filter. We demonstrate that this improves execution speed by up to one

to two orders of magnitude compared to the original implementation in SourcererCC.

Our new implementation is fast but has high memory requirements. To scale within the available memory

of even a modest workstation, we use a novel deterministic input partitioning procedure designed specifically

for the sub-block filtering and partial clone indexing approach. While input partitioning has previously been

used for clone detection, including a general deterministic approach by Livieri et al. [84], and a general non-

deterministic approach with our Shuffling Framework [126]; our contribution with CloneWorks is a custom

deterministic approach specifically for index-based clone detectors.

The input converter is one of the primary contributions of CloneWorks. It is inspired by the flexible source

normalizations options provided by NiCad [110]. CloneWorks extends this concept by allowing the user to

fully customize the entire pipeline of the source-code parsing, extraction, normalization, transformation

and representation. The input converter is designed for scalable clone detection with an optimized multi-

threaded implementation. While NiCad allows the user to provide custom transformations via TXL scripts,

CloneWorks allows custom transformations to be implemented in any technology.

12.9 Conclusion

In this chapter, we introduced CloneWorks, our fast, scalable and user-guided clone detector. It includes

our user-guided input converter, which allows the user to fully customize their source code transformations

220



and representation for general-purpose and targeted clone detection experiments. Fast clone detection is

achieved by our efficient fully in-memory Jaccard-based clone detector, which uses sub-block filtering with

a clone index to scale in computation time, and input partitioning to scale within the memory constraints

of a personal workstation. We compared CloneWorks against eight competing clone detection tools in an

extensive evaluation experiment measuring and comparing their recall, precision, scalability and execution

time. CloneWorks can scale to IJaDataset, a large-scale source-code repository containing 250MLOC, in

just 2-10 hours with excellent recall and precision. To the best of our knowledge, CloneWorks is the fastest

clone detector for large inter-project repositories. We demonstrated user-guided clone detection in a series

of scenarios and case studies on a large inter-project dataset (25K systems) that demonstrate CloneWorks’s

strength in customized clone detection. The experimental dataset is available online [1] for replication and/or

comparison purpose.

221



Part IV

Closing

222



Chapter 13

Conclusion

In this thesis, we advanced the state of art in clone detection tool evaluation and large-scale clone detection.

To advance the state of tool evaluation, we introduced two new clone benchmarks: the Mutation and

Injection Framework, a synthetic benchmark that can measure recall at a fine granularity, and BigCloneBench,

a real-world and large-scale clone benchmark that can measure recall for inter-project and intra-project clones

of the four primary clone types, including across the entire spectrum of syntactical similarity. We used these

benchmarks in a number of studies evaluating the state of the art tools as well as the benchmarks and

evaluation procedures themselves. We compared our benchmarks against the previous and related work, and

found ours are the highest quality benchmarks. Synthetic and real-world benchmarking is very complimentary,

and provides a full understanding of clone detection recall.

To advance the state of large-scale clone detection, we introduced the Shuffling Framework for scaling

existing clone detectors to large scale, and a dedicated tool, CloneWorks, for fast, scalable and user-guided

large-scale clone detection experiments. The Shuffling Framework scales existing tools by reducing a large

source-code input into a series of manageable subsets within scalability limits. It can successfully scale

ordinarily non-scalable tools, but with a reduction to clone detection tool’s native recall performance, and

requiring a small compute cluster. With CloneWorks, we introduce a clone detection tool designed for

achieving large-scale clone detection experiments, particularly in large inter-project source-code datasets.

Compared to the state of the art, CloneWorks has the best execution time and scalability for large inputs.

It uses an efficient and parallel architecture, which makes use of partitioning heuristics from our Shuffling

Framework, and scalability heuristics from our related work [116]. CloneWorks has user-guided source-code

parsing and transformation, which enables users to target any type or kind of clone. CloneWorks is the best

tool for exploratory clone detection in large inter-project datasets.

The remainder of this chapter is organized as follows. Section 13.1 summarizes the contents of this thesis.

Section 13.2 summarizes our contributions to the state of the art in clone detection tool benchmarking and

evaluation, and large-scale clone detection techniques. In Section 13.3 we discuss directions of future research

made possible by this thesis.

223



13.1 Research Summary

In Part I we introduced a synthetic clone benchmark, the Mutation and Injection Framework, which syn-

thesizes corpora of reference clones using clone-producing mutation operators (Chapter 3). The advantage

of this benchmark is it can measure the recall of clone detection tools at a fine granularity, not only per

clone type but also for each kind of edit developers make on copy and pasted code of the first three clone

types. The framework implements an evaluation procedure that allows recall to be compared per clone type

and per edit type without bias. We demonstrated the Mutation Framework in a tool comparison experiment

(Chapter 4) where we compared its results against our expectations and against a previous real-world clone

benchmark, Bellon’s Benchmark. We found that the Mutation Framework is accurate and had no anomalies

in its results. In contrast, we found Bellon’s Benchmark to be inaccurate for modern clone detection, with

anomalies in its measurements, suggesting that a new real-world benchmark was needed (which we address

in Part II). We measured the recall of the clone detection tools at a fine granularity for both block-level and

function-level clones in Java, C and C# languages (Chapter 5). We also showed how the Mutation Frame-

work can be extended for rigorous evaluation of any kind of clones, such as gapped clones (Chapter 6). We

adapted our clone-producing mutation technology to create ForkSim, a framework for generating artificial

software variants (i.e., forks) with known similarities and differences. ForkSim can be used to evaluate the

recall of software variant analysis tools (including clone detectors) that are used to migrate software variants

towards a software product line architecture. ForkSim is a demonstration on how our Mutation Framework

technology can be adapted to create benchmarks in related software analysis fields.

In Part II we introduced a real-world benchmark, BigCloneBench (Chapter 9), which is a collection

of reference clones in IJaDataset, a big inter-project source dataset (25K projects, 250MLOC). We built

this benchmark by mining IJaDataset for clones of 48 distinct functionalities. We developed a novel clone

mining approach which minimizes the manual clone validation efforts while also reducing subjectivity in the

resulting clone benchmark. The advantage of BigCloneBench is its size and breadth of scope. It can be

used to evaluate clone detection tools for all four primary clone types, for intra-project and inter-project

clones, for semantic clones, and for clones across the entire spectrum of syntactical similarity. We used

BigCloneBench in a tool comparison study (Chapter 9) and compared its results against our Mutation and

Injection Framework, demonstrating the need for both real-world and synthetic clone benchmarks to fully

understand clone detection tool recall. We implemented our procedure as a benchmarking framework called

BigCloneEval (Chapter 10), which makes it easier for the community to replicate, extend and customize our

study and evaluate their new clone detection tools using BigCloneBench.

In Part III we presented our work on large-scale clone detection. In Chapter 11, we presented our Shuffling

Framework with which we scaled classical (ordinarily non-scalable) clone detection to large scale by reducing

the large input into a series of smaller subsets. We explored the use of various heuristics for choosing these

subsets. We found good results by building subsets of similar source files (identified by an inverted clone

224



index) and by tracking the pairs of similar source files already seen by the clone detector to avoid repetition.

Then in Chapter 12, we presented our new clone detection tool, CloneWorks, which provides best-in-class

scalability and execution time for inputs up to large inter-project datasets. CloneWorks uses a Jaccard-based

similarity metric, and achieves scalability in execution time using the sub-block filtering heuristic with clone

indexing, and scalability within commodity memory using an index-based input partitioning. CloneWorks

is user-guided, allowing the user to customize the source transformations and normalizations applied before

detection, to target any type of kind of clone. We performed a tool comparison study that extensively

compared our CloneWorks against the competing tools in terms of recall, precision, execution time and

scalability. We evaluated the user-guided aspect by customizing CloneWorks for various scenarios. As part

of our case studies, we validated over 15K user-guided clones detected by CloneWorks. To our knowledge,

this is the most extensive evaluation of precision for any one clone detection tool.

13.2 Contributions

Our research towards clone detection tool evaluation and comparison contributes to the state of the art in

the following ways:

• A synthetic clone benchmark: The Mutation and Injection Framework. The benchmark

can measure recall at a very fine granularity: for each type of edit developers make on copy and

pasted code of the first three clone types. The implementation of the framework automates recall

measurement experiment, including: clone synthesis, executing the clone detectors, recall measurement,

and evaluation summary. The framework allows experiments to be shared, repeated, and extended.

The framework can be extended to evaluate tools for any kind of clone using custom clone-producing

mutation operators.

• A software variant analysis benchmark: ForkSim. ForkSim generates datasets of artificial soft-

ware variants (i.e., artificial forks), with known similarities and differences. These can be used to

evaluate software variant analysis tools, including clone detection tools, for tasks such as fork con-

solidation and migration towards a software product line. ForkSim is built upon our Mutation and

Injection Framework technology, and demonstrates how this benchmarking strategy can be transfered

to other software analysis domains.

• A real-world and big clone benchmark: BigCloneBench. BigCloneBench contains eight million

reference clones across 48 distinct functionalities, including the four primary clone types, semantic and

syntactic clones, inter-project and intra-project clones, and clones spanning the entire spectrum of

syntactical similarity. It is the only clone benchmark for evaluating clone detection tools for large inter-

project datasets, which has many potential applications. We also provide a benchmarking framework,

BigCloneEval, that automates configurable recall measurement experiments on top of BigCloneBench.

225



• Tool comparison studies evaluating and comparing the recall of modern clone detection

tools, and the state of modern clone benchmarks. We measure and compare recall using our

Mutation and Injection Framework and the popular real-world benchmark Bellon’s Benchmark. We

show that Bellon’s Benchmark is not appropriate for modern clone detection tools, and demonstrate

the accuracy of synthetic benchmarking strategies. We then compare the Mutation and Injection

Framework and our modern real-world benchmark BigCloneBench to demonstrate the need for both

benchmarking strategies to get a complete understanding of the tools. We investigate recall for inter-

project vs intra-project clones, for the spectrum of syntactical similarity, and evaluate how precisely

the individual tools capture the reference clones. We also measure the precision, execution time and

scalability of the state of the art tools, including our CloneWorks. We provide the most up to date and

complete comparison studies of the state of the art tools.

• Tool comparison studies evaluating recall at a fine granularity. Using our Mutation and

Injection Framework, we measure recall per clone type and per edit type (from the editing taxonomy

for cloning) for block and function clones in Java, C and C# programming code. Additionally, as

a demonstration of the extensibility of the Mutation Framework, we design mutation operators for

producing gapped clones and measure the recall clone detection tools for different Type-3 gap lengths.

• A tool comparison study evaluating clone detection tools for large-scale clone detection.

As part of our CloneWorks tool, we evaluated the recall, precision, execution time and scalability of

the state of the art clone detection tools for large-scale clone detection.

Our research into large-scale clone detection contributes to the state of the art in the following ways:

• Large-Scale clone detection using the classical clone detectors: the Shuffling Framework.

We investigated the use of non-deterministic input partitioning, coarse similarity analysis and heuristics

to scale classical (natively non-scalable) clone detection tools to large inter-project source-code datasets.

We found success by executing the clone detectors for a series of subsets of the large input, within their

scalability limits, built by and randomly selecting pairs of similar source files without repetition. This

approach exploits an inverted clone index with efficient tracking of the pairs of similar source files

already exposed to the clone detector in previous subsets to avoid needless repetition. Our study found

that we could successfully scale the classical detectors using a small number of commodity workstations

at the cost of an acceptable loss in native recall performance.

• CloneWorks: Fast, Scalable and User-Guided Clone Detection for Large-Scale. CloneWorks

is the best-in-class tool for execution time and scalability with large inter-project source datasets. Its

recall and precision performances meets or exceeds the best of the state of the art tools. It is also the

only large-scale clone detector to be user-guided, meaning the user can configure and customize it to

target any type or kind of clones. In particular, it is the only scalable tool to have a plug-in architecture

226



for extensibility. For CloneWorks, we performed the most extensive tool evaluation and comparison

study available in the literature.

13.3 Publications from this Thesis Research

Here we summarize our publications from and related to this thesis. In total we have published thirteen

papers, including two journal papers and eleven conference and workshop publications.

Refereed Journal Publications

1. Jeffrey Svajlenko, Iman Keivanloo, Chanchal Roy, “Big Data Clone Detection Using Classical Detec-

tors: An Exploratory Study,” Journal of Software: Evolution and Process, vol. 27, no. 6, pp. 430-464,

June, 2015. [Special Issue Invitation]

2. Jeffrey Svajlenko, Chanchal K. Roy, ”A Machine Learning Based Approach for Evaluating Clone De-

tection Tools for a Generalized and Accurate Precision.”, International Journal of Software Engineering

and Knowledge. 32 pp. [Special Issue Invitation]

Refereed Conference and Workshop Publications

1. Jeffrey Svajlenko, Chanchal K. Roy, “Fast and Flexible Large-Scale Clone Detection with CloneWorks”,

In Proceedings of the Tool Demonstration Track of the 39th International Conference on Software En-

gineering (ICSE 2017), 4 pp., Buenos Aires, Argentina, May 2017. [32% Acceptance Rate]

2. Jeffrey Svajlenko, Chanchal K. Roy, “CloneWorks: A Fast and Flexible Large-Scale Near-Miss Clone

Detection Tool”, In Proceedings of the Poster Track of the 39th International Conference on Software

Engineering (ICSE 2017), 2 pp., Buenos Aires, Argentina, May 2017. [Invitation]

3. Jeffrey Svajlenko, Chanchal K. Roy, “BigCloneEval: A Clone Detection Tool Evaluation Frame-

work with BigCloneBench”, In the Tool Demonstration Track of the 32nd International Conference on

Software Maintenance and Evolution (ICSME 2016), Raleigh, North Carolina, October 2016.

4. Jeffrey Svajlenko, Chanchal K. Roy, “Efficiently Measuring an Accurate and Generalized Clone

Detection Precision using Clone Clustering”, In Proceedings of the 28th International Conference on

Software Engineering and Knowledge Engineering (SEKE 2016), 426-433, Redwood City, California,

July 2016. [30% acceptance rate] [First Place Best Papers Award]

5. Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes, “Sourcer-

erCC: Scaling Code Clone Detection to Big Code”, In Proceedings of the 38th International Conference

on Software Engineering (ICSE 2016), 12 pp., Austin, Texas, May 2016. [19% Acceptance Rate]

227



6. Jeffrey Svajlenko and Chanchal K. Roy, “Evaluating Clone Detection Tools with BigCloneBench”,

In Proceedings of the 31st International Conference on Software Maintenance and Evolution (ICSME

2015), 10 pp., Bremen, Germany, September 2015. [22% Acceptance Rate]

7. Jeffrey Svajlenko and Chanchal K. Roy, “Evaluating Modern Clone Detection Tools”, In Proceedings

of the 30th International Conference on Software Maintenance and Evolution (ICSME 2014), Victoria,

Canada, September 2014, pp. 321-330. [19% Acceptance Rate]

8. Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy and Mohammad Mamun

Mia, “Towards a Big Data Curated Benchmark of Inter-Project Code Clones”, In Proceedings of the

Early Research Achivements track of the 30th International Conference on Software Maintenance and

Evolution (ICSME 2014), Victoria, Canada, September 2014, pp. 476-480. [36% Acceptance Rate]

9. Jeffrey Svajlenko, Chanchal K. Roy and Slawomir Duszynski, ”ForkSim: Generating Software Forks

for Evaluating Cross-Project Similarity Analysis Tools”, In Proceedings of the Tool Paper track of

the 13th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM

2013), Eindhoven, the Netherlands, September 2013, pp. 37-42.

10. Jeffrey Svajlenko, Chanchal Roy, and James Cordy, ”A Mutation Analysis Based Benchmarking

Framework for Clone Detectors”, In Proceedings of Short/Tool Papers Track of the ICSE 7th Interna-

tional Workshop on Software Clones (IWSC 2013), San Francisco, CA, May 2013, pp. 8-9.

11. Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K. Roy, ”Scaling Classical Clone Detection Tools for

Ultra-Large Datasets: An Exploratory Study”, In Proceedings of the ICSE 7th International Workshop

on Software Clones (IWSC 2013), San Francisco, CA, May 2013, pp. 16-22.

13.4 Future Research Directions

Expansion of BigCloneBench

As part of this thesis, we built BigCloneBench to include clones of 48 distinct functionalities, and found eight

million reference clones. A portion of these clones were validated by multiple judges, so that we could measure

the accuracy of our clone-mining procedure, which we found to be excellent. An avenue of future research

would be to continue to expand BigCloneBench to additional functionalities. As well, additional validation

work would continue to improve the benchmark. An interesting extension would be to move the clone mining

and validation procedure to the cloud for community-wide collaborative efforts. As well, BigCloneBench

could be expanded to include multiple reference corpora built on top of IJaDataset. We showed that we have

taken the initial steps to adding a validated corpora built on tool-detection results. As well the Mutation

Framework could be adapted to introduce synthetic clones to IJaDataset.

228



Higher-Order Mutations for Clone Synthesis and Benchmarking

With the Mutation and Injection Framework, we evaluated the tools using simple order-one clone-producing

mutations. Complex clones could be synthesized using higher-order mutations (various combinations of order-

one mutation operators). However, higher-order mutations are known to be unpredictable and could result in

synthetic clones that are too different from real clones. An interesting future work would be to study higher-

order clone-producing mutations, and to see whether they could be properly controlled to produce complex

and realistic clones. For example, such a study could examine real clones in practice, and use properties

about these clones to guide complex clone synthesis by higher-order mutations.

Domain-Specific Clone Benchmarks

In this thesis, we introduced two general benchmarks for measuring clone detection recall, one a using

synthetic benchmarking strategy and one using real-world data. Also of interest are benchmarks for evaluating

clone detection tools in a domain-specific ways. For example, a benchmark of only bug-related clones, or

a benchmark of clones suitable for refactoring by function merging. We show an example of such domain-

specific clone benchmark with ForkSim in this thesis. An interesting future work would be to produce

more domain-specific clone benchmarks with the Mutation Framework principals. Of course, the greater the

number of variety of clone benchmarks, the more confident we can be in the tool evaluation results, so new

high-quality benchmarks are always valuable.

Improving the Measure of Clone Detection Precision

In our published work, we performed an exploratory study on using clone clustering to improve the measure-

ment of precision. We found that choosing clones from a clustering yielded a wider variety of clones, and

reduced biases in the measurement of precision by up to an order of magnitude. A future work would be to

further explore this technique to standardize it as the method of measuring clone detection precision.

Exploratory Clone Detection in Large Inter-Project Datasets

With CloneWorks, we have produced a user-guided tool for large-scale clone detection experiments. A future

work is to develop various configurations for the CloneWorks input builder in order to explore and discover

new kinds of clones in large inter-project datasets. Our chapter on CloneWorks has motivated such studies,

for example we showed how CloneWorks can be used to detect API usage clones, which could be used in an

interesting exploratory study.

Source Transformation and Clone Detection

With CloneWorks, we can insert any kind of source transformation into clone detection, and produce different

representations of the code fragments as terms sets affects clone detection results. CloneWorks makes it

229



possible to study how various source transformations, normalizations and alternate representations affects

clone detection. Our benchmarks would allow an investigation in how various transformations affect recall

and precision. There is great potential with CloneWorks to experiment within clone detection, as well to

pursue new kinds of clones.

Automatic Clone Validation

Manual clone validation was frequently needed in this thesis, in particular for measuring precision and for

building BigCloneBench. To overcome this effort-intensive task, an automatic or at least computer-assisted

clone validator is needed. As part of this thesis, sufficient clone reference data has been produced to be used

as an input for a machine-learning based approach for clone validation. The efforts required in this thesis

and in the clone literature is motivation for such a work.

230



References

[1] Bigclonebench experimental artifacts, 2017. https://goo.gl/h8V1zw.

[2] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning by accident: an empirical study of source
code cloning across software systems. In 2005 International Symposium on Empirical Software Engi-
neering, 2005., pages 10 pp.–, Nov 2005.

[3] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Analysis and clustering of model clones: An automo-
tive industrial experience. In IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pages 375–378, Feb 2014.

[4] Ambient Software Evoluton Group. SECold IJaDataset 2.0. http://secold.org/projects/seclone,
January 2013.

[5] Amplab. Big data benchmark. https://amplab.cs.berkeley.edu/benchmark/.

[6] Apache. Apache pig project. http://pig.apache.org/.

[7] Atlassian. Pigmix benchmark. https://cwiki.apache.org/confluence/display/PIG/PigMix.

[8] B. S. Baker. On finding duplication and near-duplication in large software systems. In Proceedings of
2nd Working Conference on Reverse Engineering, pages 86–95, Jul 1995.

[9] B.S. Baker. Finding clones with dup: Analysis of an experiment. IEEE Transactions on Software
Engineering, 33(9):608–621, 2007.

[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax
trees. In Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272), pages
368–377, Nov 1998.

[11] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax
trees. In Proceedings. International Conference on Software Maintenance (Cat. No. 98CB36272), pages
368–377, Nov 1998.

[12] Ira D. Baxter, Michael Conradt, James R. Cordy, and Rainer Koschke. Software clone management
towards industrial application (dagstuhl seminar 12071). Dagstuhl Reports, 2(2):21–57, 2012.

[13] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Transactions on Software Engineering, 33(9):577–591, Sept 2007.

[14] Stefan Bellon. Stefan bellon’s clone detector benchmark. http://www.softwareclones.org/

research-data.php.

[15] Stephen Bellon. Vergleich von Techniken zur Erkennung duplizierten Quellcodes. Master’s thesis,
Universität Stuttgart, 2002. 156 pp.

[16] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker, Krzysztof Czarnecki,
and Andrzej Wasowski. A survey of variability modeling in industrial practice. In Proceedings of the
Seventh International Workshop on Variability Modelling of Software-intensive Systems, VaMoS ’13,
pages 7:1–7:8, New York, NY, USA, 2013. ACM.

231

http://secold.org/projects/seclone
https://amplab.cs.berkeley.edu/benchmark/
http://pig.apache.org/
https://cwiki.apache.org/confluence/display/PIG/PigMix
http://www.softwareclones.org/research-data.php
http://www.softwareclones.org/research-data.php


[17] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe. On the use of clone detection for
identifying crosscutting concern code. IEEE Transactions on Software Engineering, 31(10):804–818,
Oct 2005.

[18] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative maintenance. In
Proceedings. Second IEEE International Workshop on Source Code Analysis and Manipulation, pages
36–43, 2002.

[19] Alan Charpentier, Jean-Rémy Falleri, David Lo, and Laurent Réveillère. An empirical assessment
of bellon’s clone benchmark. In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’15, pages 20:1–20:10, New York, NY, USA, 2015. ACM.

[20] Alan Charpentier, Jean-Rémy Falleri, David Lo, and Laurent Réveillère. An empirical assessment
of bellon’s clone benchmark. In Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’15, pages 20:1–20:10, New York, NY, USA, 2015. ACM.

[21] Alan Charpentier, Jean-Rémy Falleri, Floréal Morandat, Elyas Ben Hadj Yahia, and Laurent Réveillère.
Raters’ reliability in clone benchmarks construction. Empirical Software Engineering, 22(1):235–258,
2017.

[22] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalability simultaneously in detecting
application clones on android markets. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 175–186, New York, NY, USA, 2014. ACM.

[23] Paul Clements and Linda Northrop. Software product lines: practices and patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[24] Michael L. Collard and Jonathan I. Maletic. srcml, 2017. http://www.srcml.org.

[25] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmark-
ing cloud serving systems with ycsb. In SoCC ’10, pages 143–154, 2010.

[26] J. R. Cordy. Comprehending reality - practical barriers to industrial adoption of software maintenance
automation. In 11th IEEE International Workshop on Program Comprehension, 2003., pages 196–205,
May 2003.

[27] J.R. Cordy. The txl programming language. http://www.txl.ca/.

[28] A. M. Dalgarno. Jump-starting software product lines with clone detection. In 2008 12th International
Software Product Line Conference, pages 351–351, Sept 2008.

[29] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008.

[30] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler techniques for code
compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, March 2000.

[31] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czar-
necki. An exploratory study of cloning in industrial software product lines. 17th European Conference
on Software Maintenance and Reengineering, pages 25–34, 2013.

[32] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting duplicated
code. In Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Conference on,
pages 109–118, 1999.

[33] Slawomir Duszynski, Jens Knodel, and Martin Becker. Analyzing the source code of multiple soft-
ware variants for reuse potential. In Proceedings of the 2011 18th Working Conference on Reverse
Engineering, WCRE ’11, pages 303–307, Washington, DC, USA, 2011.

[34] Paul Eggert, Mike Haertel, David Hayes, Richard Stallman, and Len Tower. Diffutils - gnu project -
free software foundation. http://www.gnu.org/software/diffutils, 2015.

232

http://www.srcml.org
http://www.txl.ca/
http://www.gnu.org/software/diffutils


[35] Raimar Falke, Pierre Frenzel, and Rainer Koschke. Empirical evaluation of clone detection using syntax
suffix trees. Empirical Software Engineering, 13(6):601–643, 2008.

[36] The Apache Software Foundation. Apache hadoop. http://hadoop.apache.org/.

[37] The Apache Software Foundation. Apache hive project. http://hadoop.apache.org/hive.

[38] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of semantic clones. In ICSE ’08,
pages 321–330. ACM, 2008.

[39] Mark Gabel, Junfeng Yang, Yuan Yu, Moises Goldszmidt, and Zhendong Su. Scalable and systematic
detection of buggy inconsistencies in source code. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA ’10, pages 175–190,
New York, NY, USA, 2010. ACM.

[40] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and Hans-
Arno Jacobsen. Bigbench: Towards an industry standard benchmark for big data analytics. In SIGMOD
’13, pages 1197–1208, New York, NY, USA, 2013.

[41] N. Göde and R. Koschke. Incremental clone detection. In Software Maintenance and Reengineering,
2009. CSMR ’09. 13th European Conference on, pages 219–228, March 2009.

[42] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of source code entities.
IEEE Transactions on Software Engineering, 31(2):166–181, Feb 2005.

[43] Sam Grier. A tool that detects plagiarism in pascal programs. SIGCSE Bull., 13(1):15–20, February
1981.

[44] Simon Harris. Simian. http://www.harukizaemon.com/simian/.

[45] A. Hemel and R. Koschke. Reverse engineering variability in source code using clone detection: A case
study for linux variants of consumer electronic devices. In 2012 19th Working Conference on Reverse
Engineering, pages 357–366, Oct 2012.

[46] Y. Higo and S. Kusumoto. Enhancing quality of code clone detection with program dependency graph.
In Reverse Engineering, 2009. WCRE ’09. 16th Working Conference on, pages 315–316, Oct 2009.

[47] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection: incre-
mental, distributed, scalable. In 2010 IEEE International Conference on Software Maintenance, pages
1–9, Sept 2010.

[48] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-project functional clone detection
toward building libraries - an empirical study on 13,000 projects. In 2012 19th Working Conference on
Reverse Engineering, pages 387–391, Oct 2012.

[49] Tomoya Ishihara, Yoshiki Higo, and Shinji Kusumoto. How Often Is Necessary Code Missing? — A
Controlled Experiment —, pages 156–163. Springer International Publishing, Cham, 2014.

[50] J. F. Islam, M. Mondal, and C. K. Roy. Bug replication in code clones: An empirical study. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 68–78, March 2016.

[51] Patricia Jablonski and Daqing Hou. Cren: A tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the ide. In Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology
eXchange, eclipse ’07, pages 16–20, New York, NY, USA, 2007. ACM.

[52] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In ICSE ’07, pages 96–105. IEEE Computer Society,
2007.

233

http://hadoop.apache.org/
http://hadoop.apache.org/hive
http://www.harukizaemon.com/simian/


[53] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard: Scalable and
accurate tree-based detection of code clones. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 96–105, Washington, DC, USA, 2007. IEEE Computer Society.

[54] Lingxiao Jiang, Zhendong Su, and Edwin Chiu. Context-based detection of clone-related bugs. In
Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC-FSE ’07, pages 55–
64, New York, NY, USA, 2007. ACM.

[55] J. H. Johnson. Substring matching for clone detection and change tracking. In Proceedings 1994
International Conference on Software Maintenance, pages 120–126, Sep 1994.

[56] J. Howard Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of the
1993 Conference of the Centre for Advanced Studies on Collaborative Research: Software Engineering
- Volume 1, CASCON ’93, pages 171–183. IBM Press, 1993.

[57] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. Clonedetective - a workbench for clone
detection research. In Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 603–606, Washington, DC, USA, 2009. IEEE Computer Society.

[58] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone detection
system for large scale source code. Software Engineering, IEEE Transactions on, 28(7):654–670, Jul
2002.

[59] C. Kapser and M. W. Godfrey. ”cloning considered harmful” considered harmful. In 2006 13th Working
Conference on Reverse Engineering, pages 19–28, Oct 2006.

[60] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis, and J. Rilling. A linked data
platform for mining software repositories. In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 32–35, 2012.

[61] I. Keivanloo, C. Forbes, and J. Rilling. Similarity search plug-in: Clone detection meets internet-scale
code search. In 2012 4th International Workshop on Search-Driven Development: Users, Infrastructure,
Tools, and Evaluation (SUITE), pages 21–22, June 2012.

[62] I. Keivanloo, J. Rilling, and P. Charland. Internet-scale real-time code clone search via multi-level
indexing. In 2011 18th Working Conference on Reverse Engineering, pages 23–27, Oct 2011.

[63] I. Keivanloo, C. K. Roy, and J. Rilling. Java bytecode clone detection via relaxation on code fingerprint
and semantic web reasoning. In 2012 6th International Workshop on Software Clones (IWSC), pages
36–42, June 2012.

[64] I. Keivanloo, C. K. Roy, J. Rilling, and P. Charland. Shuffling and randomization for scalable source
code clone detection. In 2012 6th International Workshop on Software Clones (IWSC), pages 82–83,
June 2012.

[65] I. Keivanloo, F. Zhang, and Y. Zou. Threshold-free code clone detection for a large-scale heterogeneous
java repository. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 201–210, March 2015.

[66] Iman Keivanloo, Juergen Rilling, and Ying Zou. Spotting working code examples. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014, pages 664–675, New York, NY,
USA, 2014. ACM.

[67] Iman Keivanloo, Chanchal K. Roy, and Juergen Rilling. Sebyte: Scalable clone and similarity search
for bytecode. Science of Computer Programming, 95, Part 4:426 – 444, 2014. Special Issue on Software
Clones (IWSC’12).

234



[68] Miryung Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and paste pro-
gramming practices in oopl. In Empirical Software Engineering, 2004. ISESE ’04. Proceedings. 2004
International Symposium on, pages 83–92, Aug 2004.

[69] Miryung Kim and David Notkin. Program element matching for multi-version program analyses. In
Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06, pages
58–64, New York, NY, USA, 2006. ACM.

[70] Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify Duplication in Source Code, pages
40–56. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[71] K. Kontogiannis. Evaluation experiments on the detection of programming patterns using software
metrics. In WCRE, pages 44–54, 1997.

[72] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein. Pattern matching for clone
and concept detection. Automated Software Engineering, 3(1):77–108, 1996.

[73] R. Koschke. Large-scale inter-system clone detection using suffix trees. In 2012 16th European Confer-
ence on Software Maintenance and Reengineering, pages 309–318, March 2012.

[74] Rainer Koschke. Large-scale inter-system clone detection using suffix trees and hashing. Journal of
Software: Evolution and Process, 26(8):747–769, 2014.

[75] Rainer Koschke, Ettore Merlo, and Andrew Walenstein, editors. Duplication, Redundancy, and Simi-
larity in Software, 23.07. - 26.07.2006, volume 06301 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[76] J. Krinke. Identifying similar code with program dependence graphs. In Proceedings Eighth Working
Conference on Reverse Engineering, pages 301–309, 2001.

[77] Daniel E. Krutz and Wei Le. A code clone oracle. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 388–391, New York, NY, USA, 2014. ACM.

[78] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In 1997 Proceedings International Conference on
Software Maintenance, pages 314–321, Oct 1997.

[79] Thomas Lancaster and Fintan Culwin. A comparison of source code plagiarism detection engines.
14:101–112, 06 2004.

[80] Thierry Lavoie and Ettore Merlo. Automated type-3 clone oracle using levenshtein metric. In Proceed-
ings of the 5th International Workshop on Software Clones, IWSC ’11, pages 34–40, New York, NY,
USA, 2011. ACM.

[81] Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, and Sunghun Kim. Instant code clone search. In
Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE ’10, pages 167–176, New York, NY, USA, 2010. ACM.

[82] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on Software Engineering, 32(3):176–192, March 2006.

[83] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: A tool for finding copy-paste
and related bugs in operating system code. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages 20–20, Berkeley, CA, USA,
2004. USENIX Association.

[84] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis and visualization
of open source programs using distributed ccfinder: D-ccfinder. In 29th International Conference on
Software Engineering (ICSE’07), pages 106–115, May 2007.

235



[85] D. Lo and Siau-Cheng Khoo. Quark: Empirical assessment of automaton-based specification miners.
In Reverse Engineering, 2006. WCRE ’06. 13th Working Conference on, pages 51–60, 2006.

[86] Chung-Horng Lung, Marzia Zaman, and Amit Nandi. Applications of clustering techniques to software
partitioning, recovery and restructuring. Journal of Systems and Software, 73(2):227 – 244, 2004.
Applications of statistics in software engineering.

[87] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data:
The next frontier for innovation, competition, and productivity. Technical report, McKinsey Global
Institute, 2011, 2011.

[88] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the automatic detection of function clones
in a software system using metrics. In 1996 Proceedings of International Conference on Software
Maintenance, pages 244–253, Nov 1996.

[89] D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta. Jdeodorant: Clone refactoring. In 2016
IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), pages 613–
616, May 2016.

[90] Thilo Mende, Rainer Koschke, and Felix Beckwermert. An evaluation of code similarity identification
for the grow-and-prune model. Journal of Software Maintenance and Evolution, 21(2):143–169, March
2009.

[91] Cade Metz. The next big os war is in your dashboard, 2015.

[92] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality analysis by code clones
in industrial legacy software. In Proceedings Eighth IEEE Symposium on Software Metrics, pages 87–94,
2002.

[93] Hiroaki Murakami, Yoshiki Higo, and Shinji Kusumoto. A dataset of clone references with gaps.
http://sdl.ist.osaka-u.ac.jp/~h-murakm/2014_clone_references_with_gaps/.

[94] Hiroaki Murakami, Yoshiki Higo, and Shinji Kusumoto. A dataset of clone references with gaps. In
MSR’14, pages 412–415, 2014.

[95] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen. Clone management for
evolving software. IEEE Transactions on Software Engineering, 38(5):1008–1026, Sept 2012.

[96] Joel Ossher, Hitesh Sajnani, and Cristina Lopes. File cloning in open source java projects: The good,
the bad, and the ugly. In Proceedings of the 2011 27th IEEE International Conference on Software
Maintenance, ICSM ’11, pages 283–292, Washington, DC, USA, 2011. IEEE Computer Society.

[97] Jin-woo Park, Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, and Sunghun Kim. Surfacing code
in the dark: an instant clone search approach. Knowledge and Information Systems, pages 1–33, 2013.

[98] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden,
and Michael Stonebraker. A comparison of approaches to large-scale data analysis. In SIGMOD ’09,
pages 165–178, New York, NY, USA, 2009. ACM.

[99] PMD. Cpd. http://pmd.sourceforge.net/.

[100] Lutz Prechelt and Guido Malpohl. Finding plagiarisms among a set of programs with jplag. 8, 03 2003.

[101] Tilmann Rabl, Michael Frank, Hatem Mousselly Sergieh, and Harald Kosch. A data generator for
cloud-scale benchmarking. In TPCTC’10, pages 41–56. Springer-Verlag, 2011.

[102] M. M. Rahman and C. K. Roy. On the use of context in recommending exception handling code exam-
ples. In 2014 IEEE 14th International Working Conference on Source Code Analysis and Manipulation,
pages 285–294, Sept 2014.

236

http://sdl.ist.osaka-u.ac.jp/~h-murakm/2014_clone_references_with_gaps/
http://pmd.sourceforge.net/


[103] Damith C. Rajapakse and Stan Jarzabek. An investigation of cloning in web applications. In David
Lowe and Martin Gaedke, editors, Web Engineering, pages 252–262, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[104] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software clone detection: A systematic review.
Information and Software Technology, 55(7):1165 – 1199, 2013.

[105] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In 2008 16th IEEE International Conference on Program
Comprehension, pages 172–181, June 2008.

[106] C. K. Roy, M. F. Zibran, and R. Koschke. The vision of software clone management: Past, present,
and future (keynote paper). In IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pages 18–33, Feb 2014.

[107] Chanchal K. Roy and James R. Cordy. Towards a mutation-based automatic framework for evaluating
code clone detection tools. In Proceedings of the 2008 C3S2E Conference, C3S2E ’08, pages 137–140,
New York, NY, USA, 2008. ACM.

[108] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program., 74(7):470–495, May
2009.

[109] Chanchal Kumar Roy and James R. Cordy. A survey on software clone detection research. Technical
Report TR 2007-541, School of Computing, Queens University, 2007. 115 pp.

[110] C.K. Roy and J.R. Cordy. Nicad: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In Program Comprehension, 2008. ICPC 2008. The 16th
IEEE International Conference on, pages 172–181, June 2008.

[111] C.K. Roy and J.R. Cordy. A mutation/injection-based automatic framework for evaluating code clone
detection tools. In Software Testing, Verification and Validation Workshops, 2009. ICSTW ’09. Inter-
national Conference on, pages 157–166, April 2009.

[112] F. Van Rysselberghe and S. Demeyer. Evaluating clone detection techniques from a refactoring per-
spective. In Proceedings. 19th International Conference on Automated Software Engineering, 2004.,
pages 336–339, Sept 2004.

[113] R.K. Saha, C.K. Roy, and K.A. Schneider. An automatic framework for extracting and classifying near-
miss clone genealogies. In Software Maintenance (ICSM), 2011 27th IEEE International Conference
on, pages 293–302, 2011.

[114] H. Sajnani, J. Ossher, and C. Lopes. Parallel code clone detection using mapreduce. In 2012 20th
IEEE International Conference on Program Comprehension (ICPC), pages 261–262, June 2012.

[115] Hitesh Sajnani, Vaibhav Saini, and Cristina Lopes. A parallel and efficient approach to large scale
clone detection. Journal of Software: Evolution and Process, 27(6):402–429, 2015. JSME-13-0129.R2.

[116] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V Lopes. Sourcerercc:
scaling code clone detection to big-code. In Proceedings of the 38th International Conference on Software
Engineering, pages 1157–1168. ACM, 2016.

[117] N. Schwarz, M. Lungu, and R. Robbes. On how often code is cloned across repositories. In Software
Engineering (ICSE), 2012 34th International Conference on, pages 1289–1292, Zurich, Switzerland,
2012.

[118] Chintakindi Srinivas, Vangipuram Radhakrishna, and C.V. Guru Rao. Clustering software compo-
nents for program restructuring and component reuse using hybrid xnor similarity function. Procedia
Technology, 12:246 – 254, 2014. The 7th International Conference Interdisciplinarity in Engineering,
INTER-ENG 2013, 10-11 October 2013, Petru Maior University of Tirgu Mures, Romania.

237



[119] M. Stephan. Model clone detector evaluation using mutation analysis. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 633–638, Sept 2014.

[120] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling classical clone detection tools for ultra-large datasets:
An exploratory study. In 2013 7th International Workshop on Software Clones (IWSC), pages 16–22,
May 2013.

[121] J. Svajlenko and C. K. Roy. Evaluating clone detection tools with bigclonebench. In Software Mainte-
nance and Evolution (ICSME), 2015 IEEE International Conference on, pages 131–140, Sept 2015.

[122] J. Svajlenko and C. K. Roy. Evaluating clone detection tools with BigCloneBench. In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages 131–140, Sept 2015.

[123] J. Svajlenko and C. K. Roy. Cloneworks: A fast and flexible large-scale near-miss clone detection tool.
In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C),
pages 177–179, May 2017.

[124] J. Svajlenko, C. K. Roy, and S. Duszynski. Forksim: Generating software forks for evaluating cross-
project similarity analysis tools. In 2013 IEEE 13th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 37–42, Sept 2013.

[125] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Mohammad Mamun Mia.
Towards a big data curated benchmark of inter-project code clones. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and Evolution, ICSME ’14, pages 476–480, Wash-
ington, DC, USA, 2014. IEEE Computer Society.

[126] Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K. Roy. Big data clone detection using classical
detectors: an exploratory study. Journal of Software: Evolution and Process, 27(6):430–464, 2015.
JSME-13-0126.R1.

[127] Jeffrey Svajlenko and Chanchal Roy. Bigclonebench. http://www.jeff.svajlenko.com/

bigclonebench.html.

[128] Jeffrey Svajlenko and Chanchal K. Roy. Evaluating modern clone detection tools. In The 30th Inter-
national Conference on Software Maintenance and Evolution, ICSME 2014, page 10, 2014.

[129] Jeffrey Svajlenko and Chanchal K. Roy. Bigcloneeval: A clone detection tool evaluation framework
with bigclonebench. In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2016.

[130] Jeffrey Svajlenko and Chanchal K. Roy. Fast and flexible large-scale clone detection with cloneworks.
In Proceedings of the 39th International Conference on Software Engineering Companion, ICSE-C ’17,
pages 27–30, Piscataway, NJ, USA, 2017. IEEE Press.

[131] Jeffrey Svajlenko, Chanchal K. Roy, and James R. Cordy. A mutation analysis based benchmarking
framework for clone detectors. In Proceedings of the 7th International Workshop on Software Clones,
IWSC ’13, pages 8–9, Piscataway, NJ, USA, 2013. IEEE Press.

[132] Teradata. Teradata database - teradata inc. http://www.teradata.com.

[133] W. Toomey. Ctcompare: Code clone detection using hashed token sequences. In Software Clones
(IWSC), 2012 6th International Workshop on, pages 92–93, June 2012.

[134] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle. On the effectiveness of simhash for detect-
ing near-miss clones in large scale software systems. In 2011 18th Working Conference on Reverse
Engineering, pages 13–22, Oct 2011.

[135] Md. Sharif Uddin. Dealing with clones in software: A practical approach from detection towards
management. Master’s thesis, University of Saskatchewan, Saskatoon, Saskatchewan, February 2014.

238

http://www.jeff.svajlenko.com/bigclonebench.html
http://www.jeff.svajlenko.com/bigclonebench.html
http://www.teradata.com


[136] M.S. Uddin, C.K. Roy, and K.A. Schneider. Simcad: An extensible and faster clone detection tool
for large scale software systems. In Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on, pages 236–238, May 2013.

[137] A. Walenstein, N. Jyoti, Junwei Li, Yun Yang, and A. Lakhotia. Problems creating task-relevant clone
detection reference data. In WCRE, pages 285–294, 2003.

[138] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware analysis. In Rainer
Koschke, Ettore Merlo, and Andrew Walenstein, editors, Duplication, Redundancy, and Similarity in
Software, number 06301 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[139] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. Searching for better configurations: A
rigorous approach to clone evaluation. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 455–465, New York, NY, USA, 2013. ACM.

[140] WBDB. 5th workshop on big data benchmarking. http://clds.sdsc.edu/wbdb2014.de.

[141] Lin Ye and Guoxiang Yao. Parallel clone code detector in mapreduce. Journal of Software, 9(6), 2014.

[142] Minhaz F. Zibran and Chanchal K. Roy. A constraint programming approach to conflict-aware optimal
scheduling of prioritized code clone refactoring. In Proceedings of the 2011 IEEE 11th International
Working Conference on Source Code Analysis and Manipulation, SCAM ’11, pages 105–114, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[143] Minhaz F. Zibran and Chanchal K. Roy. The road to software clone management: A survey. Technical
Report TR 2012-03, Department of Computer Science, University of Saskatchewan, 2012. 62 pp.

239

http://clds.sdsc.edu/wbdb2014.de

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Research Problem
	Addressing the Research Problems
	Decomposing our Research behind Addressing the Problem
	Part 1 - Synthetic Clone Benchmarking with Mutation Analysis
	Part 2 - Real-World Large-Scale Clone Benchmarking
	Part 3 - Large-Scale Clone Detection

	Outline of the Thesis
	Manuscript-Style Thesis

	Background
	Cloning Theory
	Clone Types
	Type-1 Clones
	Type-2 Clones
	Type-3 Clones
	Type-4 Clones
	Clone Granularity and Boundaries
	Clone Size
	Clone Detection Tools

	Benchmarking Clone Detection
	Measuring Recall and Precision with an Oracle
	Challenges in building an Oracle
	Measuring Recall with a Reference Corpus
	Clone Matching Algorithm/Metric
	Methods for building a Reference Corpus
	Measuring Precision


	I Synthetic Clone Benchmarking with Mutation Analysis
	The Mutation and Injection Framework
	Background
	Clone Similarity
	The Editing Taxonomy for Cloning

	The Mutation and Injection Framework
	Clone Synthesis
	Generation Phase
	Evaluation Phase

	Using the Framework
	Experiment Creation
	Stage 1 - Generation Phase Setup Stage
	Stage 2 - Generation Phase Execution Stage
	Stage 3 - Evaluation Phase Setup Stage
	Stage 4 - Evaluation Phase Execution Stage
	Stage 5 - Results Stage

	Limitations
	Related Work
	Conclusion

	Evaluating Modern Clone Detection Tools
	Bellon's Benchmark
	Experiment
	Bellon's Benchmark
	Mutation and Injection Framework
	The Participants

	Results
	Bellon's Benchmark Results - Original Benchmark
	Bellon's Benchmark Results - Murakami Extension
	Bellon's Benchmark Results - The Better OK Metric
	Bellon's Benchmark - Modern Vs. Original Experiment
	Bellon's Benchmark Variants Vs. Expectations
	Mutation Framework Results vs. Expectations
	Bellon's Benchmark vs Mutation Framework

	Threats to Validity
	Conclusion

	Fine-Grained Evaluation with the Mutation and Injection Framework
	Experimental Setup
	Participants
	Results
	Java
	C
	C#

	Summary
	Threats to Validity
	Conclusion

	Evaluating Clone Detection Tools for Gapped Clones
	Experimental Setup
	Gap Mutation Operator
	Corpora Synthesis
	Evaluation

	Participants
	Results
	Conclusion

	ForkSim
	Related and Previous Work
	Software Forking
	Fork Generation
	Simulation of Development Activities
	Discussion
	Use Cases
	Evaluation
	Conclusion


	II Real-World Large-Scale Clone Benchmarking
	BigCloneBench
	Related and Previous Work
	Methodology
	Mining Code Snippets
	Tagging Snippets
	Final Judgment
	Adding True Clone Pairs to Benchmark
	Adding False Clone Pairs to Benchmark

	Snippet Tagging Efforts
	The Benchmark
	Evaluating Clone Detectors
	Example Tool Evaluation: D-NiCad

	Evaluating Clone Search
	Distribution
	Threats to Validity
	Limitations in the Universality of the Mining Procedure
	Limitations in Human Judgment
	Limitations in Clone Definitions

	Conclusion

	Evaluating Clone Detection Tools with BigCloneBench
	Experiment
	Big Clone Bench.
	Mutation and Injection Framework.
	Tool Configuration.

	Benchmark Results
	BigCloneBench
	Mutation and Injection Framework
	Comparing the Benchmarks

	Intra-Project vs. Inter-Project Performance
	Clone Capture Quality
	Threats to Validity
	Conclusion

	BigCloneEval
	BigCloneBench - BigCloneEval Release
	Framework
	Evaluation Procedure
	Register Tool
	Detect Clones
	Import Clones
	Evaluate Tool
	Tool Evaluation Report

	Limitations
	Related Work
	Conclusion


	III Large-Scale Clone Detection
	Large-Scale Clone Detection using the Classical Detectors
	Related Work
	The Core Shuffling Framework
	Study Setup - The Corpus, Environment, Tools and Measures
	Corpus - IJaDataset 2.0
	Hardware
	Clone Detection Tools
	Measures

	Preliminary Experiments
	Motivating Study - IJaDataset
	Simian
	NiCad
	Deckard
	Other Tools - SimCad, iClones, CCFinderX
	Summary

	Shuffling Framework Performance Analysis
	Improving the Shuffling Framework
	Blind Partitioning Shuffling Algorithm
	Unseen Pairs Shuffling Algorithm
	Unseen Similar Pairs Shuffling Algorithm
	Inverted Index Algorithm
	Choosing an Algorithm

	The Improved Shuffling Framework
	Comparison with Deterministic Method

	IJaDataset Revisited
	Simian
	NiCad
	Summary

	Conclusion

	CloneWorks: Fast, Scalable and User-Guided Clone Detection for Large-Scale
	The CloneWorks Approach
	Fast Clone Detection
	Scalable Clone Detection
	User-Guided Clone Detection
	Evaluation
	Mutation Framework
	Recall - BigCloneBench
	Precision
	Execution Time and Scalability
	Characterizing CloneWorks Performance
	User-Guided CloneWorks

	Limitations
	Related Work
	Contributions of CloneWorks
	Conclusion


	IV Closing
	Conclusion
	Research Summary
	Contributions
	Publications from this Thesis Research
	Future Research Directions

	References


