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ABSTRACT 

In tissue engineering, tissue scaffolds are used as temporary supports to promote 

regeneration of dysfunctional tissues. Of the available strategies, scaffolds produced from 

hydrogels and living cells show the great potential for their enhanced biological properties. 

To produce such scaffolds, three-dimensional (3D) bioprinting has evolved and is showing 

promise as a fabrication technique. However, its applications for fabricating customized 

hydrogel scaffolds containing living cells is still in its infancy. The major challenge with 

this approach is to print scaffolds while preserving cell viability and functionality as well 

as ensuring the structural integrity of the scaffold. To overcome this challenge, the present 

thesis aims to investigate the influences of hydrogel properties and the bioprinting process 

on cell viability and functionality, while also ensuing structural integrity, and on this basis, 

to develop bioprinting processes to produce tissue scaffolds with living cells for potential 

tissue engineering applications.  

This thesis first examined the influence of the mechanical properties of hydrogel 

on cell viability and functionality, utilizing alginate hydrogels and Schwann cells (the 

major glial cells of peripheral nervous system). Due to its poor cell adhesion, the alginate 

hydrogel was modified in this study with cell-adhesion supplements, including fibronectin, 

poly-l-lysine (PLL), and RGD (Arg-Gly-Asp) peptides. The RGD-modified alginate 

substrates were prepared with varying alginate concentrations in order to alter the 

mechanical properties of hydrogels, which were then seeded and encapsulated with 

Schwann cells. Cell viability and functionality, including proliferation, morphology, and 

expression of the extracellular matrix protein, were examined and correlated to the 

hydrogel mechanical properties. The results demonstrate that the viability and functionality 

of Schwann cells within alginate-based hydrogel vary with hydrogel mechanical properties, 

thus highlighting the importance of regulating the mechanical properties of hydrogel for 

improved cell viability and functionality in scaffold bioprinting.  

During the bioprinting process, cells are subject to process-induced forces, such as 

shear and extensional stresses, which can result in cell damage and therefore loss of cell 

function and even cell death. A method was developed to study the cell damage introduced 

by the shear and extensional stresses in the bioprinting process. A plate-and-cone 

rheometer was adopted to examine the effect of shear stress on cell damage. In these 
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experiments, the relationship of cell damage to the shear stress was examined and 

quantified, which was then applied to identify the cell damage attributed to shear stress in 

bioprinting. On this basis, the damage to cells caused by extensional stress was inferred 

from the difference between the total cell damage occurring during the bioprinting process 

and the cell damage attributed to shear stress. This developed method allowed a 

relationship to be established between cell damage and both shear and extensional stresses 

during bioprinting. The experiments on this method provide insight into both the cell 

damage that occurs during bioprinting and the effect on cell viability and proliferative 

ability thereafter, which can be used to optimize the bioprinting process so as to preserve 

cell functionality.  

Based on the previous investigations, bioprinting processes were developed to 

fabricate tissue scaffolds containing Schwann cells for potential applications in nerve tissue 

engineering. Composite hydrogels consisting of alginate, fibrin, hyaluronic acid, and RGD 

peptide were prepared, and their hydrogel microstructures, mechanical stiffness after 

gelation, and capability to support the Schwann cell spreading were examined for 

identifying appropriate composite hydrogel for bioprinting processes. The flow behavior 

of composite hydrogel solutions and bioprinting process parameters (e.g., dispensing 

pressure, dispensing head speed, crosslinking process) were then examined with regard to 

their influence on the structure of the printed scaffolds and on this basis, bioprinting process 

were developed to fabricate scaffolds with Schwann cells. The functionality of Schwann 

cells within the printed scaffolds were assessed in terms of cell viability, proliferation, 

morphology, orientation, and protein expression, demonstrating that the printed scaffolds 

have potential for nerve tissue engineering applications.  

This thesis presents a comprehensive study on the bioprinting of scaffolds with 

living cells. The method developed and the study results will pave the way to fabricate 

scaffolds with living cells for more tissue engineering applications. 
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CHAPTER 1 

Introduction 

1.1 Tissue engineering and scaffolds 

 The loss or failure of human tissues and organs has become one of the most 

devastating and costly issues in health care. For example, injuries to the peripheral nervous 

system (PNS) due to crushing or transection of axons lead to the disconnection of axonal 

pathways, causing the dysfunction of the body components attached to the nerve distally 

from the site of injury, leading to deficits such as movement, sensation, and autonomic 

function [1, 2]. Although nerve axon regeneration is triggered automatically following 

injuries by the pro-regenerative response of resident Schwann cells, the function recovery 

is very limited due to poor axonal re-innervation between the separated nerve segments [3]. 

To promote the regeneration of axons, therapies such as autografts and allografts 

transplantation of the donor nerves into the targeted sites have been developed. However, 

problems remain due to the limited availability of donor nerves, mismatch between the 

injured and donor nerves, and a lack of a supportive construct to organize the growth of 

nerve tissues and axons [4]. To help alleviate these kinds of problems, a new field, tissue 

engineering, has emerged.  

 Tissue engineering is an interdisciplinary field that combines the principles and 

technologies from engineering, material science, cell biology, and biomedicine with an aim 

to develop functional substitutes or scaffolds to support injured or damaged tissue 

regeneration [5]. Over the past decades, researchers have utilized cells, biomaterials, and 

other biomolecules to create numerous types of functional scaffolds for restoring or 

replacing the damaged tissues [6]. Scaffolds are three-dimensional (3D) porous structures 

that contain essential characteristics that support and guide the regeneration of targeted 

tissues [7]. To achieve the required functionality, the scaffolds must 1) be porous structures 

that allow for cell growth and ensure the diffusion of nutrients and metabolic wastes to and 

from the cells; 2) be biocompatible, maintain and facilitate cell functionality, and match 

the growth of cells and tissues; 3) have suitable chemical and biological properties for cell 

attachment, proliferation, migration, differentiation, and other cellular functions; and 4) 
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have sufficient mechanical strength to support structural integrity. Depending on specific 

applications, more functional requirements may be imposed upon scaffolds. 

Encapsulating cells within scaffolds during fabrication (or scaffold biofabrication) 

has emerged recently to fulfill the above functions. Different from seeding cells on the 

scaffolds, scaffold biofabrication allows for production of scaffolds with spatial control of 

cells within, thereby creating scaffolds with highly-organized cell arrangement mimicking 

that of native tissues or organs [8]. To this end, the major challenges include the synthesis 

of biomaterials that are suitable for cell encapsulation and scaffold biofabrication from cell-

encapsulated biomaterials.  

1.2 Biomaterials for cell encapsulation  

 Hydrogel materials are generally required for cell encapsulation. Hydrogels are 3D 

polymeric structures that contain large amounts of water trapped by large numbers of 

linked polymer chains [9]. This ability to retain a high water content makes hydrogels 

compatible with cell encapsulation and delivery, as cells can stay between the polymer 

chains inside hydrogels [10]. Hydrogels are predominantly classified as either natural or 

synthetic biomaterials. Natural hydrogels are typically derived from organisms, and they 

generally support good cellular functionality. Alginate, a naturally derived polysaccharide 

extracted from seaweed, is an extensively used hydrogel for building scaffolds for cell 

encapsulation and delivery due to its ability to maintain cell viability, and convenient 

gelation process achieved by crosslinking with calcium ions under mild physiological 

conditions [11]. However, it is noted that alginate hydrogel has limited capability to 

provide cues for cell attachment, which significantly reduce other cellular functions of 

encapsulated cells. To address this deficiency, the most common method of alteration is to 

add proteins and peptides like laminin, fibronectin, or RGD (Arg-Gly-Asp) peptides into 

alginate prior to its gelation. With sufficient cell-binding sites provided by supplements 

with stable connections to alginate, outcomes such as cellular attachment and proliferation 

can be greatly improved.   

In addition to the supplement proteins, to develop a functional scaffold that gives 

conductive environments for cells, some of the natural characteristics of the targeted tissues 

can be designed into the scaffold [12]. Among these characteristics, the mechanical 
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property of alginate hydrogel scaffold is important because the interactions of encapsulated 

cells with the scaffold can be influenced by the mechanical cues [13, 14]. These cues that 

cells experience include the resistance from alginate itself and the applied external forces 

to the hydrogel scaffold during scaffold handling or implantation. The resistance due to the 

hydrogel stiffness is the most common mechanical cue that change the fate of cells, as cells 

respond differently based on the stiffness of hydrogel, therefore the performance of cells 

can be regulated and improved if a mechanically-favourable environment is provided [15]. 

By changing the concentrations of alginate, the mechanical stiffness after crosslinking can 

be tuned. By measuring cell performance in culture following scaffold fabrication, the 

alginate concentrations favoured by cells can be identified, which can then be selected as 

the hydrogel concentration for scaffold biofabrication.  

1.3 Extrusion-based bioprinting and bioprinting process-induced cell damage 

Fabrication of scaffolds is one of the essential step towards the success in tissue 

engineering as it can decide the properties of scaffolds, including structural architecture, 

mechanical stability, and biocompatibility [16]. Conventional fabricating techniques, such 

as solvent-casting, gas-leaching, gas foaming, phase separation, and melt modeling, often 

rely on prefabricating a solid framework [17]. These techniques normally require extreme 

processing conditions for scaffold fabrication (e.g., high temperature, non-neutral pH, 

chemical or biological toxicity, etc.), affecting the ability to manipulate biological 

components such as living cells in the process, and therefore demanding post-fabrication 

cell seeding, which is inefficient. In addition, such methods normally result in disorganized 

and random fabrication of scaffold in structures and cell seeding that cannot be designed 

and repeated. All of these mentioned issues negatively influence the functions of scaffolds 

in their interacting with cells and tissue for tissue regeneration [17]. With the advancements 

in biofabrication techniques, such as 3D bioprinting technique, these major limitations of 

traditional techniques can be significantly alleviated, particularly for fabricating scaffolds 

with encapsulated cells. 

Three-dimensional bioprinting techniques are the most promising methods because 

of the ability to deposit biomaterials, cells, and other biological components in a 

controllable, layer-by-layer pattern for fabricating scaffolds [18]. Among developed 
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bioprinting techniques, extrusion-based bioprinting (often referred to simply as bioprinting) 

works by dispensing biomaterials, components, and living cells to form continuous strands 

or fibers through a computer-controlled, automated fluid-dispensing head [8]. During the 

process of printing loaded materials in a fluid state are extruded through a small-bore 

needle and deposited in a location in a defined structure based on a computer model. A 

pneumatic extruding system, which utilizes pressurized air to drive the solution, has been 

extensively utilized in fluid-dispensing systems. By adopting extrusion-based bioprinting 

techniques, the fabrication of cell-encapsulated scaffolds using hydrogels and cells with 

desired cell distribution, reproducible and customized architecture can be facilitated.  

As previously mentioned, the hydrogel-cell suspension can be loaded and then 

dispensed through a needle by the applied air pressure to build 3D scaffolds with 

encapsulated cells. In this process, the movement of the hydrogel and the cells contained 

therein through the needle can induce sustained shear and extensional stresses on the cells, 

which can elicit the deformation of cells and thus may breach the cell membranes [19]. 

This failure of the cell membrane leads to cellular dysfunction and damage, thereby 

reducing the viability of the cells [20]. Thus, knowledge regarding the stresses that 

influence the bioprinting-induced cell damage is important, and it can be used to guide the 

design of the printing process to maximize the preservation of cell viability and function. 

The shear stress that cells experience during bioprinting, which mainly occurs as cells are 

driven through the narrow needle tip, is considered to be one of the major factors that 

causes cell damage [21]. To investigate this effect, a specified shear stress should be 

provided, and the resulting damage to the cells subjected to this shear stress should be 

examined. Using a plate-and-cone rheometer can provide uniform and controllable shear 

stress on cells when the suspension is sheared. By setting the rheometer parameters, the 

resulting amount of cell damage associated with the level of shear stress, shearing time (or 

the exposure time), and cell density can be determined. Thus, a relationship between cell 

damage and shear stress can be built and then used to investigate cell damage in the 

bioprinting process. It is also worth noting that cell types from different tissue origins 

would respond differently to stresses. As such, evaluating cell damage using various cell 

types under shearing is necessary for understanding of the control of the bioprinting process 

to maintain high cell viability. 
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Besides the effects on cells due to shear stress, evidence demonstrates that the 

extensional stress that cells experience during the bioprinting process can also introduce 

cell damage and thus influence their viability after bioprinting [22]. Extensional stress is 

generated due to the abrupt velocity change as the cell suspension is driven through the 

geometrically-contracted region of the needle. Compared to shear stress, extensional stress 

may lead to more acute cell damage [23, 24]. Therefore, considering extensional stress is 

important for establishing a relationship between cell damage and the bioprinting process, 

however, this has rarely been taken into account. Whereas the cell damage caused by shear 

stress can be investigated using a rheometer, investigating cell damage introduced by 

extensional stress has proved challenging due to the difficulty in producing a pure 

extensional flow with cell suspensions to evaluate. To address this issue, a novel method 

should be developed by considering the cell damage in bioprinting as an aggregation of 

both shear and extensional stress-induced cell damage and extrapolating from there. As 

cell damage attributed to shear stress in bioprinting can be determined from the established 

relationship using the rheometer, and the resulting percent damage of cells in bioprinting 

can be measured, an accurate approximation of cell damage due to extensional stress can 

be obtained, and then the relationship between cell damage and extensional stress can be 

built. With the achieved relationship, the overall representation of the cell damage 

introduced by the bioprinting process can be given. It has also been noticed that cell damage 

can reduce the viability of cells in a short period after bioprinting; however, the influence 

of the bioprinting process on the functionality of cells, such as cell proliferation, after a 

longer period has not been well documented. To maintain high viability of cells and 

biological functions of a scaffold, the investigation of cell performance in a long-culture 

period after bioprinting is important.  

1.4 Bioprinting of scaffold with encapsulated cells 

In order to produce a scaffold that maintains the expected cell functionality and is 

also mechanically stable, with a structure that has fully interconnected porosity, a 

bioprinting method which considers and controls the parameters of the bioprinting 

processing conditions needs to be investigated and developed [25]. From the 

aforementioned investigations on the influences of hydrogel properties and the bioprinting 
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process on cell functionality, hydrogels with processing conditions that are cytocompatible 

need to be further studied for use in scaffold fabrication. One of the major challenges of 

using hydrogels for scaffold bioprinting is their mechanical printability, which refers to the 

ability to be dispensed into an integrated architecture with sufficient mechanical stability. 

To improve the printability of hydrogels, increasing the of viscosity of hydrogels by tuning 

the concentration of hydrogels is normally used. However, using a higher concentration 

also affects the functionality of cells due to the stiffer substrate that forms after hydrogel 

gelation [26]. Therefore, investigations on both hydrogel solution viscosity and the related 

cell performances within the gelled hydrogels is of importance for a hydrogel-based 

bioprinting. Printability of hydrogels is also heavily determined by the crosslinking 

condition [27]. Bioprinting with submerged crosslinking, whereby the hydrogel solution is 

deposited and gelled in a crosslinking medium, is one of the promoted method to alleviate 

the printability problem when relatively low viscosity hydrogel solutions are printed. This 

technique favours the formation of scaffolds because the medium prevents the vertical 

collapse due to the buoyancy provided by the medium. However, this method is only 

suitable when the appropriate amount of crosslinking agent is used, otherwise the buoyancy 

would have negative effect on scaffold stacking by either not preventing collapse due to 

insufficient concentration and thus reduce buoyancy, or preventing adherence of the 

subsequent layers due to excessive concentration and buoyancy. Thus, the crosslinking 

process in scaffold bioprinting should also be considered and adjusted. Additionally, the 

bioprinting process parameters, including the dispensing pressure and the dispensing head 

speed, not only affect the viability and functionality of cells, but also predicts the integrity 

of the scaffold by influencing the size and continuity of the scaffold strands. By tuning and 

optimizing all the mentioned processing conditions in the bioprinting process, a 

structurally-integrated and cytocompatible scaffold can be produced, which can be verified 

by long-term evaluation of the structure and cellular activities in vitro.  

1.5 Research objectives 

This research aims to investigate the influences of hydrogel properties and the 

bioprinting process on cell viability and functionality, and on this basis, develop 
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bioprinting processes to produce tissue scaffolds with encapsulated living cells for tissue 

engineering applications. The specific objectives of this thesis are to: 

• Investigate the influence of hydrogel properties on the performances of 

encapsulated cells within scaffolds, including cell attachment, viability, 

proliferation, and cellular protein expression. Alginate and Schwann cells, as 

examples, are used for examination. 

• Examine the cell damage to Schwann cells, fibroblasts, and myoblasts under 

shearing, and thus relate cell damage to shear stress, exposure time, cell density, 

and cell type. On this basis, the influence of cell damage on cell proliferation is 

further studied. 

• Develop methods to assess the bioprinting process-induced cell damage due to both 

shear and extensional stresses. On this basis, models to characterize cell damage 

related to these stresses are established. 

• Develop 3D bioprinting processes to fabricate hydrogel-based Schwann cell-

encapsulated scaffold with desired structural integrity and cell functionality. 

1.6 Organization of this thesis 

 This thesis includes seven chapters, which are this chapter of introduction, five 

chapters adapted from manuscripts, and a chapter on conclusions and areas of future study.  

 Chapter 2 presents a review on various extrusion-based bioprinting processes and 

associated methods developed for tissue scaffold biofabrication. The working principles of 

extrusion-based bioprinting are explained and achievements in cell-encapsulated scaffold 

fabrication are described. Advanced extrusion-based bioprinting strategies that have been 

developed for scaffold biofabrication are subsequently presented. Recommendations for 

future research to overcome the limitations identified from current extrusion-based 

bioprinting processes are also provided.  

 Chapter 3 investigates the influence of the properties of hydrogel substrates on the 

viability, proliferation, morphology, and protein expression of Schwann cells as a prelude 

for bioprinting tissue scaffolds for nerve tissue engineering. Schwann cells were integrated 

within alginate-based hydrogels for culture, and their morphology and viability were 

analyzed when the hydrogels were supplemented with the cell adhesion-enhanced 
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materials that included fibronectin, poly-l-lysine (PLL), and RGD peptide. After 

comparing the performances of cells for 7 days, the RGD-modified alginate hydrogels with 

different levels of stiffness were prepared by varying alginate concentrations, and the 

influence of the mechanical properties of alginate on the performance of encapsulated cells 

was investigated.  

 Chapter 4 presents a study on the flow behavior of alginate/cell suspensions and 

cell damage under shearing conditions. Schwann cells, fibroblasts, and myoblasts were 

selected and respectively mixed with alginate solutions for evaluation. Experiments to 

examine flow behavior were conducted using the prepared alginate solutions of varying 

concentrations, cell types, and cell densities. Experiments aimed at examining the effects 

of shear stress on cell damage were then carried out, with the percent cell damage measured 

and quantified as a function of shear stress, exposure time, and cell density. Cells from 

both sheared and non-sheared suspensions were also cultured, and their ability to recover 

from the injured situation and proliferate over 48 h were examined.  

 Chapter 5 investigates the bioprinting process-induced cell damage by considering 

both shear and extensional stresses. Because studying cell damage caused by extensional 

stress has proved challenging due to the difficulty in producing a pure extensional flow 

with cell suspension, a novel method is developed to determine cell damage models, or 

laws. Since cell damage in the bioprinting process is the result of both shear and extensional 

stress, experiments were conducted in which living cells integrated in alginate solutions 

were dispensed and the resulting percent cell damage was measured. Since percent cell 

damage attributed by shear stress can be determined experimentally and used to build a 

shear stress-based cell damage law, cell damage due to extensional stress in bioprinting 

can be analyzed and extensional stress-based cell damage law can be established. The 

degree of cell damage within 6 h after bioprinting, as well as the viability and proliferation 

of cells after 24-to-72 h were also evaluated, the results of which could be used to 

understand the influence of cell damage on the long-term preservation of biological 

functions in produced scaffolds.  

 Chapter 6 presents the development of bioprinting processes to fabricate Schwann 

cell-encapsulated scaffolds using cell-hydrogel suspensions comprised of alginate, fibrin, 

hyaluronic acid (HA), and RGD peptide. The influence of fibrinogen with varying 
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concentrations on the properties of formed hydrogels were examined. With correlated 

Schwann cell morphological spreading inside hydrogels, suitable hydrogel compositions 

were identified for scaffold bioprinting. The flow behavior of identified hydrogel solutions 

was evaluated, and on this basis, processing parameters for 3D bioprinting, including the 

dispending pressure, dispensing head speed, and concentrations of crosslinkers, were 

investigated and identified so as to fabricate scaffolds with structural integrity and 

improved cellular performance.  

 Finally, chapter 7 concludes the results drawn from this research, followed by 

recommendations for possible research in the future.  

1.7 Contributions of the primary investigator 

 Contributions of all authors are greatly appreciated and acknowledged as 

manuscripts involved in this thesis are co-authored. However, it is the mutual 

understanding that Liqun Ning, as the first author, is the primary investigator of these 

research works.  
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CHAPTER 2 

A Brief Review of Extrusion Based Tissue Scaffold Bioprinting 

This chapter has been published as "Liqun Ning and Xiongbiao Chen, A Brief Review of 

Extrusion Based Tissue Scaffold bioprinting. Biotechnology Journal. 2017, 12, 1600671." 

According to the Copyright Agreement, "the authors retain the right to include the journal 

article, in full or in part, in a thesis or dissertation". 

2.1 Abstract 

Extrusion based bioprinting has great potential as a technique for manipulating 

biomaterials and living cells to create 3D scaffolds for damaged tissue repair and function 

restoration. Over the last two decades, advances in both engineering techniques and life 

sciences have evolved extrusion based bioprinting from a simple technique to one able to 

create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, 

the complexities associated with synthesis of materials for bioprinting and manipulation of 

multiple materials and cells in bioprinting pose many challenges for scaffold fabrication. 

This chapter presents an overview of extrusion based bioprinting for scaffold fabrication, 

focusing on the prior-printing considerations (such as scaffold design and materials/cell 

synthesis), working principles, comparison to other techniques, and to-date achievements. 

This chapter also briefly reviews the recent development of strategies with regard to 

hydrogel synthesis, multi-materials/cells manipulation, and process induced cell damage 

in extrusion based bioprinting. The key issues and challenges for extrusion based 

bioprinting are also identified and discussed along with recommendations for future works, 

aimed at developing novel biomaterials and bioprinting systems, creating patterned 

vascular networks within scaffolds, and preserving the cell viability and functions in 

scaffold bioprinting. The address of these challenges will significantly enhance the 

capability of extrusion based bioprinting. 

2.2 Introduction 

Tissue engineering is an interdisciplinary field that combines knowledge and 

technologies in engineering, materials science, cell biology, and biomedicine to improve 
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or replace natural or biological tissues [1]. Notably, natural tissues consist of highly-

organized cells and cellular components that perform specific functions. Over the past three 

decades, researchers have utilized cells, biomaterials growth factors, and other supporting 

components to create functional constructs for facilitating the regeneration of natural 

tissues following injury or disease [2-5]. A particularly promising tissue engineering 

approach involves the development of ‘tissue scaffolds’, which are 3D constructs 

comprised of biomaterials and cells to support and guide the regeneration of targeted 

tissues by facilitating the cell differentiation, migration, and proliferation [6, 7]. Tissue 

scaffolds are porous structures with interconnected architectures and used to facilitate the 

metabolism of cells by mimicking the cellular environment, meanwhile providing 

appropriate mechanical support to maintain the stability of structures both in vitro and in 

vivo [8]. Tissue scaffolds should also be degradable with a rate that, ideally, matches cell 

and tissue regeneration. 

Traditionally, scaffolds are fabricated from biomaterials and subsequently seeded 

with cells. With the advance of bioprinting techniques, living cells can be incorporated in 

bioprinting scaffolds with the structure of highly-organized cells. In the bioprinting process, 

biomaterials, living cells, and other relevant biological molecules 

are deposited in a layer-by-layer pattern to form spatially controlled structures [9, 10]. 

Among the bioprinting approaches developed to date, extrusion based bioprinting, which 

is based on pneumatic or mechanical mechanisms to extrude or dispense materials and cells 

through nozzles, has been widely used in the development of tissue scaffolds [11–14]. 

Using the extrusion based bioprinting techniques, tissue scaffolds can be fabricated with 

biological and mechanical properties appropriated for the restoration of damaged-tissue 

functions. To this end, one big challenge is to manipulate multiple materials and cell types 

that can reproduce the complex architecture and composition of natural tissue, in order to 

facilitate the restoration of functions of damaged tissues. 

The present chapter reviews various extrusion based bioprinting processes as well 

as associated strategies developed for creating tissue scaffolds. An overview of extrusion 

based bioprinting for tissue scaffold fabrication is presented and the advanced strategies 

that have been developed for incorporating cells in scaffolds are discussed. 
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Recommendations for future research to overcome the limitations and/or issues identified 

from current extrusion based bioprinting processes are also provided. 

2.3 Overview of extrusion based tissue scaffold bioprinting 

A typical tissue scaffold bioprinting process involves several key steps, as shown 

in Figure 2.1. Structural design is the first step in producing a tissue scaffold that can 

faithfully represent the composition and organization of the tissue of interest. Therefore, a 

comprehensive understanding of the targeted tissue structure is necessary. After the design, 

synthesis of cells and biomaterials that can appropriately support the desired cellular and 

extracellular functions of the tissue is the next step. The selected materials must be not only 

compatible with the functions of selected cells and targeted tissues but also with the 

bioprinting process [15]. The extrusion based bioprinting method is then applied based on 

the structural design and materials/cells selected to produce tissue scaffolds, which are then 

cultured in vitro or implanted into the localized tissue area for in vivo applications. If 

adverse performance or undesired effects are observed, the outcomes from both in vitro 

and in vivo applications can be evaluated and the results used to modify the bioprinting 

process to improve the fabrication of tissue scaffolds [16]. 

 

Figure 2. 1 Schematic of tissue scaffold bioprinting process 
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2.3.1 Considerations before tissue scaffold bioprinting  

A comprehensive understanding of the composition and organization of the 

targeted tissue is important for tissue scaffold design, and is the first step for tissue scaffold 

bioprinting. Generally, the combination of medical imaging and computer-aided design 

(CAD) techniques is used for tissue scaffold design. Medical imaging techniques such as 

computed tomography (CT) and magnetic resonance imaging (MRI) are the most 

frequently adopted methods to detect tissue components, as they are able to provide 

information on tissue composition at the cellular, tissue, and organ levels [17, 18]. Once 

imaging data have been acquired, 3D models of the tissue components can be built with 

the help of CAD techniques, which are used to reproduce three-dimensional views that 

reflect the anatomical structures derived from the imaging modalities [19, 20]. The CAD 

models are then recognized by the bioprinting system and used to produce tissue scaffolds 

for the repair of tissues that are defective due to disease or injury. Therefore, ensuring 

adequate resolution of the imaging techniques to precisely represent the structural of tissues 

as well as the accuracy of CAD techniques to rebuild the tissue components are important 

for producing tissue scaffolds with expected organization and structure. 

Materials play a central role in tissue scaffold bioprinting by providing the physical 

support and structural interface necessary for interactions with cells and tissues. Before the 

bioprinting process, understanding the performance of materials, predominantly based on 

their intrinsic properties, is necessary for material synthesis. The first and the most 

important property is biocompatibility, which refers to the material characteristic of 

passively allowing or actively producing desirable effects on cells and tissues [21]. In tissue 

scaffold bioprinting, a biocompatible material is expected to have positive contributions to 

the biological functions of cells and tissue components, which include the support of 

cellular activity (e.g. cell proliferation, migration, and differentiation) without leading to 

cell functional damage or death, the facilitation of molecular signaling, and the protection 

of cells from the immune system. In addition, a biocompatible material should be suitable 

for supporting long-term transplantation. This requires the degradation rate of the material 

to be controllable so as to allow the scaffold to be gradually replaced by the extracellular 

matrix (ECM) proteins secreted from the associated cells. Thus, a candidate biocompatible 

material should have a degradation rate that matches the ECM secretion rate and produce 
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only non-toxic degradation byproducts that can be metabolized or rapidly cleared from the 

body. The other crucial property to be considered during material synthesis is 

bioprintability, which indicates the materials can be deposited in a controllable pattern and 

have suitable stability after deposition to avoid structural collapse [22]. Particularly for 

extrusion based bioprinting, a bioprintable material should have an appropriate fluidic 

viscosity so it can be deposited in a controlled manner as well as suitable crosslinking 

mechanisms that allow solidification of the designed structure with appropriate mechanical 

properties to ensure structural stability [23]. For tissue scaffold bioprinting, cells are mixed 

or encapsulated inside the material solutions, which requires the adopted material to be 

permeable, non-toxic, pH neutral, able to provide an aqueous environment for cell 

metabolism, and able to be processed under mild conditions to maintain cell viability. 

Before loading materials into the bioprinter, proper selection by considering both 

biocompatibility and bioprintability, including cell-material interactions, material 

degradation, material viscosity, crosslinking mechanism, and mechanical properties, is 

necessary to achieve scaffolds with desired functions. 

Hydrogel polymers are one of the biomaterial types extensively used in extrusion 

based bioprinting for tissue scaffold fabrication due to their inherent ability to provide a 

compatible, aqueous environment for mixed cells both in and after the printing process. 

Hydrogel materials can be crosslinked to form a polymeric structure that contains a large 

amount of water and possesses similar properties to tissue ECM [24, 25]. Generally, 

hydrogel polymers are predominantly classified as either natural polymers or synthetic 

polymers. Natural polymers such as polysaccharides (e.g. alginate, chitosan, agarose) and 

protein-based polymers (e.g. collagen, gelatin, fibrin, elastin, resilin), have been widely 

used in tissue scaffold bioprinting. Polysaccharides normally have crosslinking rates that 

ensure bioprintability, but are limited with respect to cell attachment due to the lack of cell 

adhesion sites [26-28]. Protein-based polymers are biocompatible for cell attachment and 

functions, but have relatively slow crosslinking rates and weak mechanical stabilities [29]. 

Synthetic polymers such as poly(ethylene glycol) (PEG) and poly(ethylene oxide) (PEO) 

have more uniform and tailorable properties compared to natural hydrogels, but lack the 

biocompatibility to facilitate cellular functions; toxic degradation byproducts may also 

limit their utilization if they are used independently in tissue scaffold bioprinting [30]. 
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Therefore, selecting appropriate material types before the bioprinting process is important 

and can determine the performance of the printed tissue scaffolds. 

Mixing cells into the material solution and then loading the solution into the 

bioprinter is the last step before tissue scaffold bioprinting. One advantage of extrusion 

based bioprinting for tissue scaffold fabrication is that it allows a wide range of cell 

densities to be mixed into the material solutions, which can reach physiological density 

(108-109 cells/mL) in tissues. This greatly reduces the preparation period for cell 

proliferation and maturation before scaffold implantation [21]. 

2.3.2 Working principles of extrusion based tissue scaffold bioprinting 

Extrusion based tissue scaffold bioprinting refers to a technique that is capable of 

depositing filaments, fibers, or droplets of biomaterials and cells to form tissue scaffolds 

in a controllable layer-by-layer pattern [31]. An extrusion based bioprinting system 

combines a fluid dispensing head and an automated robotic system [32]. During bioprinting, 

the dispensing head is moved along X and Y axes controlled by the robotic system to 

deposit biomaterial/cell solutions onto a stage, and moved up or down along the Z axis (or 

the stage is controlled while the head is fixed) to deposit different layers and form the 

scaffolds as directed by the CAD models. Based on deposition mechanisms, extrusion 

based bioprinting methods can be classified into three categories: pneumatic-, piston-, and 

screw-based bioprinting (Figure 2.2). Pneumatic-based bioprinting is a simple and 

extensively used method that utilizes compressed air to drive biomaterials/cells from a 

syringe and nozzle at a controllable volume flow rate (Figure 2.2A). The accuracy of 

material deposition is heavily dependent on the flow properties of the material solution and 

can be significantly affected by the solution viscosity [33]. In piston- or screw-based 

bioprinting systems, biomaterial cell solutions are mechanically pushed by a linear moving 

piston or a rotating screw-driven configuration (Figure 2.2B and 2.2C) [34]. Both printing 

mechanisms can provide large deposition forces for control over solution volumes. Thus, 

a larger pressure drop from the inlet of the syringe to the outlet of the nozzle is of benefit 

of printing higher viscosity suspensions. Mechanically driven mechanisms often require 

relatively complex components, and the large driving forces may induce the rupture of cell 

membranes in the dispensing process [35]. 
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Figure 2. 2 Schematic of extrusion based bioprinting methods and configurations for 

hydrogel scaffold bioprinting. A, pressurized air; B, moved piston; C, rotated screw; D, 

thermal based bioprinting; E, spray based bioprinting; F, bioplotting; and G pre-

crosslinked bioprinting 

Extrusion based bioprinting is compatible with a wide range of fluid viscosities. 

Higher viscosity materials are more suitable in terms of providing structural support for 

the tissue scaffolds while lower viscosity materials are more appropriate for cellular 

bioactivities [36, 37]. Therefore, synthesis of materials with expected flow behavior must 

be carefully considered to ensure both mechanical stability of structures of tissue scaffolds 

and cell functionalities [38]. Increasing the diameter of dispensed filaments and fibers or 
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reducing the porosity by controlling the bioprinting process or the nozzle diameter can 

increase the mechanical stability of structures, but thicker filaments and lower porosities 

reduce cellular diffusion and thus prevent the exchange of nutrients and metabolic wastes 

[39]. On the other hand, reducing the diameter of filaments can eliminate diffusion barriers 

but weakens mechanical properties. Because different cell types require specific 

environments, adjusting the mechanical properties of scaffolds by regulating material types, 

material viscosities, or the bioprinting process is necessary to meet the requirements of 

structural stability and cellular functionality [40, 41]. 

Various crosslinking methods, including physical crosslinking (e.g. via temperature) 

and chemical crosslinking (e.g. via ionic or covalent bonding), have been developed for 

various hydrogels in bioprinting [42]. Thermal crosslinked hydrogel polymers (e.g. 

collagen, gelatin) are fluid within a certain temperature range but crosslink into hydrogels 

at a given temperature (Figure 2.2D) [43]. This process needs no extra crosslinking agent 

to trigger hydrogel solidification, but maintaining the mechanical stability of the printed 

structure can be relatively difficult due to the material properties. Ionic or covalent 

crosslinking results in chemical bonds between hydrogel polymers and crosslinking agents 

upon mixing [44-46]. Therefore, one method developed to promote the encounter is to 

atomize crosslinking agents and spray them onto the bioprinted materials (Figure 2.2E) 

[47]. Challenges for the atomization approach include control of the distribution of 

atomized agents on the materials as well as incomplete crosslinking due to a lack of 

crosslinking agent. Maintaining the stability of bioprinted structures becomes more 

challenging if low viscosity material solutions are applied [16]. A method to deposit 

material solutions into the related crosslinking solutions has been developed and is capable 

of addressing the issues faced by atomization crosslinking. As this method provides 

sufficient crosslinking agents in solution, the crosslinking process can be rapidly and 

uniformly completed. This method is also known as bioplotting (Figure 2.2F) [48]. 

Bioplotting is suitable for material types that have a fast crosslinking rate, as otherwise 

structural collapse is likely to occur due to the buoyancy of the crosslinking solution [49, 

50]. Furthermore, if unmatched concentrations of material and crosslinking solutions are 

conjugated, the printed structures may float up or stack at the point of deposition and result 

in structural failure [50]. Pre-crosslinked materials are also used due to the regulated flow 
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properties of material solutions (Figure 2.2G) [51]. Controlled pre-crosslinking can 

significantly improve the viscosity of material flows, and thus ensure the bioprintability of 

the solutions. During pre-crosslinking, selecting the appropriate amount of crosslinking 

agent is crucial because too much may alter the flow properties of materials by inducing 

material phase change [52]. 

2.3.3 Comparison between extrusion based bioprinting and other bioprinting 

techniques 

Bioprinting techniques besides extrusion based bioprinting have been used to 

produce tissue scaffolds, and, these techniques are generally classified as laser-based 

bioprinting (including stereolithography (SLA), two photon-polymerization (2PP), mask-

assisted bioprinting) and inkjet-based bioprinting (including thermal inkjet and 

piezoelectric inkjet) based on their working principles (Table 2.1). Compared to these two 

bioprinting methods, extrusion based bioprinting has several advantages [53]. It is able to 

dispense a wide array of biomaterials and cells, including both native and synthetic 

hydrogel polymers, cell aggregates, and decellularized extracellular matrix, while other 

techniques are limited to bioprinting hydrogel polymers with suspended cells [54]. 

Depositing biomaterials with physiological cell density, which is a major challenge for 

other bioprinting techniques, is feasible with the extrusion based bioprinting method [55]. 

Due to its fast deposition speed, extrusion based bioprinting is also often used to produce 

large-scale scaffolds. 

Table 2. 1 Comparison of three 3D bioprinting techniques 

Techniques Sub-classified 

systems 

Principles of 

operation 

Advantages Disadvantages References 

Extrusion 

based 

bioprinting 

3D 

bioprinting 

 

 

 

 

 

 

3D bioplotting 

Layer-by-layer 

deposition of 

material-cell 

suspensions onto a 

predefined location 

(without crosslinking 

solution) 

 

Simple 

components and 

simple control; 

compatible with 

a wide range of 

materials; mild 

printing 

environment for 

cells; able to 

Limited printing 

resolution; 

solidification 

rate 

requirements; 

tip clogging; 

cell number 

reduced in 

[13, 59-64] 
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Layer-by-layer 

deposition of 

material-cell 

suspensions onto a 

predefined location 

(with crosslinking 

solution) 

produce large-

scale scaffolds; 

possible to print 

high cell 

densities 

large-scale 

printing 

Inkjet-based 

bioprinting 

Thermal 

inkjet 

 

 

 

 

 

 

Piezoelectric 

inkjet 

Layer-by-layer drop-

based deposition of 

material-cell 

suspensions driven by 

pulses of pressure 

from electrical 

heating. 

 

Layer-by-layer drop-

based deposition of 

material-cell 

suspensions driven by 

pulses of pressure 

from piezoelectric 

material. 

Simple and 

affordable; fast 

deposition 

speed; relatively 

high printing 

resolution and 

precision 

 

 

Low viscous 

solution 

required; 

probable cell 

damage induced 

by printing 

forces and 

temperature 

changes; 

difficult to 

achieve 

physiological 

cell densities 

[12, 18, 39, 

65, 66] 

Laser-based 

bioprinting 

SLA 

 

 

 

 

 

 

 

2PP 

 

 

 

 

 

 

Mask-assisted 

Photopolymerization 

in a reservoir by using 

a laser-based beam. 

3D structures are 

formed by controlling 

the movement of light 

beam and platform. 

 

Photopolymerization 

using two photons 

that are absorbed by a 

photon initiator at the 

focal point of a laser-

based beam. 

 

Use of a mask for 

photopolymerization 

to crosslink polymers 

and form designed 

High 

bioprinting 

resolution and 

precise spatial 

control; no 

clogging 

problem; 

compatible with 

biomaterials 

with diverse 

viscosities 

Fast gelation 

kinetics 

requirements; 

time-consuming 

for 

manipulation of 

multiple cell 

types; toxic 

photon initiators 

to cells 

[27, 30, 56, 

67-69] 
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constructs by the 

mask. 

Despite the benefits, extrusion based bioprinting also has several disadvantages. It 

has limited bioprinting resolution (typically more than 100 μm) mainly due to the 

compromised consideration of the pressure required to drive a scaffold solution through 

the nozzle and the nozzle mechanical strength to bear such a pressure. Organizing 

deposition at the micro level is challenging compared to other bioprinting techniques (e.g. 

laser-based bioprinting can reach the highest resolution of 1 μm [56], and inkjet-based 

bioprinting produces droplets less than 50 μm in diameter [12]). The bioprintability of 

hydrogels is heavily dependent on the crosslinking speed in extrusion based bioprinting, 

and the utilization of slow crosslinking speed biomaterials can be restricted [57]. Preparing 

biomaterial/cell suspensions with appropriate flow properties is important for 

bioprintability and cell functions but is time-consuming, especially for depositing multiple 

types of biomaterials and cells [16]. Cell viability after dispensing has proven to be lower 

than inkjet-based bioprinting due to process-induced stresses in bioprinting that become 

worse if higher pressures or smaller diameter nozzles are used [58]. Using extrusion- based 

bioprinting for large-scale construct fabrication may also have negative effects on living 

cells because they are exposed to a non-tissue culture environment for a long period. 

Nozzle clogging caused by biomaterial solidification is another problem in extrusion based 

bioprinting that is not found in nozzle-less techniques such as laser-based bioprinting; 

indeed, severe clogging can completely interrupt biomaterial deposition and therefore 

scaffold integrity. 

2.3.4 Achievements using extrusion based bioprinting 

Extrusion based bioprinting can produce tissue scaffolds using various cells types, 

including both primary cells and stem cells. Primary cell types, which are isolated from 

animals and humans and include osteocytes, chondrocytes, and keratinocytes, have already 

been used in tissue scaffolds to faithfully represent tissue components such as bones, 

cartilage, and skin [70-72]. Recently, the fabrication of lung analogues using alveolar 

epithelial type II cells and endothelial cells has demonstrated the feasibility of extrusion-

base bioprinting for producing lung components [73]; the human air-blood barrier analogue 
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produced had a high cell viability and similar function to native lung analogues. Functional 

skeletal muscle scaffolds with different structures have been created by an extrusion based 

bioprinting technique using myoblast cells for muscle tissue regeneration [74]. Cells can 

be aligned in a spatial pattern within the constructs via bioprinting process control, with 

expected myogenic differentiation and myotube formation after a certain period in culture. 

Scaffolds with high viability and the expected function of hepatocytes have also been 

printed, indicating the potential of extrusion based bioprinting techniques for restoration of 

human liver function [75]. Artificial valve conduits built from smooth muscle cells (SMC) 

and aortic valve leaflet interstitial cells (VIC) have been produced and applied to replace 

traditional prosthetic substitutes for heart valve disease treatment [61]. The alpha-smooth 

muscle actin and vimentin secreted by the printed cells demonstrate the ability of extrusion 

based bioprinting to fabricate valve-like tissue constructs. Mechanisms of neuro 

regeneration after injury include various cues aimed at promoting axon growth [46], and 

printed tissue scaffolds with encapsulated aligned glial cells have been created to facilitate 

this procedure [76]. In many cases, isolating primary cells from living tissues is difficult 

or they are challenging to culture [77]. In such cases, stem cells are often used as a 

substitute for primary cells in tissue scaffold bioprinting. Stem cells can self-renew and 

differentiate into specific cell types when certain cues are provided. The extrusion based 

bioprinting technique has shown great potential for regulating and conducting stem cell 

growth and differentiation in many applications, such as those targeting brain tissue, 

gingival tissue, adipose tissue, and bone marrow tissue and [52, 64, 78, 79]. 

In addition to the ability of the extrusion based bioprinting method to manipulate 

diverse cell types, various printed structures such as beads, filaments, fibers, channels, 

sheets, rolls, grids, and porous 3D constructs that mimic the tissue components have been 

successfully printed at micro or macro levels. Among these structures, the formation of 

vasculature is a major challenge in tissue engineering. The function of vascularization is to 

supply oxygen, nutrients, and metabolites of cellular activities to ensure the long-term 

viability of cells and tissues. In extrusion based bioprinting, vessel-like permeable channels 

have been produced and used to facilitate vascularization with the expectation of forming 

vascular networks. Supporting cells such as endothelial cells are often deposited in vessel-

like channels during bioprinting to initiate the formation of vasculatures and subsequently 
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support their stabilization and function, which can further facilitate the angiogenesis of 

vessel networks [80]. 

2.4 Advanced strategies for extrusion based 3D bioprinting 

As noted above, the production of tissue scaffolds contains varying cells types, 

ECM components, and other functional materials in an organized pattern to mimic tissues 

using typical extrusion based bioprinting techniques is challenging [81]. New materials 

and bioprinting approaches to produce tissue scaffolds from multiple materials and cells 

types with high deposition resolution and expected biological 

2.4.1 Strategies of hydrogel preparation for extrusion based tissue scaffold 

bioprinting 

Satisfying the demands of biocompatibility and bioprintability in tissue scaffold 

bioprinting is difficult using a single hydrogel polymer. As such, mixing different materials 

can be undertaken to create more suitable hydrogel blends that may demonstrate synergistic 

properties. For example, adding proteins such as laminin or fibronectin to hydrogels such 

as alginate results in a large improvement in cell adhesion while maintaining the desired 

bioprintability; however, the major challenge of this method is avoiding the escape of 

materials in the long-term due to their weak connections [83]. The same limitation affects 

hydrogels mixed with nanoparticles (e.g. bio-glass and carbon tubes) [84, 85]. Using 

blended hydrogels can prevent the material from escaping because all of the materials can 

be solidified. In this application, hydrogel materials with rapid crosslinking are selected to 

support the bioprinting process and mechanical requirements of tissue scaffolds, while 

other hydrogels are used to ensure biocompatibility for cell functions [86]. Using blended 

hydrogels introduces the problem of discrepant biodegradation, which brings challenges 

with respect to structural replacement by cell-secreted ECM. 

Modification of bioprintable hydrogels can also be undertaken to improve their 

biocompatibility. Materials such as proteins or peptides are normally permanently 

immobilized in the molecular chains of hydrogel polymers under controllable conditions, 

thus improving the interaction of hydrogels and cells [87]. Modification by proteins 

introduces the risk of inducing non-specific interactions with hydrogels, such as undefined 
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bonds due to protein complexes, and therefore the reaction process is relatively difficult to 

control [88]. This issue can be overcome by introducing modifications with peptides, which 

are specific sequences in proteins such as Arg-Gly-Asp-Ser (RGDS) derived from 

fibronectin and Tyr-Ile-Gly-Ser-Arg (YIGSR) and Ile-Lys-Val-Ala-Val (IKVAV) from 

laminin; this approach is widely used for improving cell attachment [26]. Peptides can 

activate particular groups of hydrogel chains to form covalent amide bonds and therefore 

a hydrogel with improved cell adhesion properties [89]. Meanwhile, peptides are normally 

costly, and the reactive environment of each chemical (e.g. pH value, temperature, 

concentration) must be carefully selected. 

Hydrogels have also been modified using special materials and approaches to 

improve their bioprintability. Some hydrogels have good biocompatibility but poor 

bioprintability. For example, gelatin is an inexpensive, denatured collagen that retains 

natural cell binding sites [48]. Addition of methacrylate groups to the amine-containing 

side groups of gelatin results in the formation of gelatin methacrylate (GelMA), which is a 

photopolymerizable hydrogel that can be lightly crosslinked. Therefore, by controlling 

both the temperature and light (e.g. UV light), the stability of bioprinted GelMA scaffolds 

can be ensured [45, 62]. This method of modifying materials to be photopolymerizable has 

also been applied to other hydrogels with poor bioprintability, such as hyaluronic acid and 

PEG [30, 90], but requires the integration of a light generator into the bioprinting system. 

2.4.2 Multi-material/cell manipulation in extrusion based bioprinting 

Tissue scaffolds produced from multiple materials/cells are in high demand because 

they have the potential to faithfully represent the composition and organization of tissues 

components. The most straightforward method to build this type of scaffold is to deposit 

physically mixed materials/cells [91]. Obviously, the drawback of this method is that 

materials and cells can hardly be organized individually in the desired spatial pattern. 

Depositing cells and materials in a certain arrangement is challenging in typical extrusion 

based bioprinting, and the development of advanced techniques is required [54]. Extrusion 

based bioprinting systems with multiple dispensing heads make organizing the deposition 

of multiple materials/cells more feasible as they can be loaded and dispensed from separate 

heads (Figure 2.3A1) [92]. Multiple heads also extend the range of available material types, 
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allowing materials with a poor crosslinking rate to be adopted in tissue scaffold bioprinting 

because of the utilization of other bioprintable materials (such as polycaprolactone (PCL) 

and poly(lactic-co-glycolic acid) (PLGA)) that can provide mechanical support to those 

that solidify more slowly [60, 93]. Figure 2.3A1 shows that bioprinting systems are clearly 

limited with respect to simultaneously dispensing individual materials/cells from separate 

heads as only one head can be activated at a time; exchanging heads would reduce the 

printing efficacy and raise the risk of nozzle clogging when the head is inactive. Other 

multiple head bioprinting systems with simultaneously controllable dispensing functions 

have also been developed (Figure 2.3A2 and A3) [94, 95]. These systems allow 

materials/cells to be deposited individually and simultaneously by operating each 

dispensing head, which can greatly improve the printing efficiency and avoid nozzle 

clogging during printing. 

The utilization of microfluidics in extrusion based bioprinting increases the 

feasibility of processing multiple materials to produce micro level blocks for tissue scaffold 

fabrication. Microfluidics is based on laminar flows in parallel using a multiplex technique 

to organize low-scale fluid volumes [51, 96]. Multiple materials can be used to form the 

parallel streams, and therefore special printed blocks such as multiple-phase filaments 

(containing several materials) and micro-channels can be produced [97]. In extrusion based 

bioprinting, two microfluidic methods including co-axial capillaries and lab-on-a-chip 

have been developed and can be adopted to create parallel flows between different material 

solutions. Co-axial capillary is a configuration featuring two or more capillaries connected 

in a co-axial form (Figure 2.3B1). When different material solutions are loaded and 

dispensed from the separate capillaries (e.g. outer and inner capillaries), they can coaxially 

flow inside the capillaries in parallel based on the laminar flow behavior [98]. The 

structures created are predominantly determined by the dispensed materials. For example, 

if two materials (e.g. PCL and collagen) are dispensed separately from outer and inner 

capillaries, a two-phase filament made by these two materials in a coaxial distribution can 

be achieved after solidification [71]. If a material is dispensed from the outer capillary 

while the associated crosslinking solution is dispensed from the inner capillary (e.g. 

alginate and calcium solutions), a hollow fiber can be produced [99]. In this case, the 

selected material must have rapid solidification speed to avoid the collapse of the hollow 
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channel. If the material is loaded into the inner capillary and the crosslinking solution is 

outside, a single-phase filament can be printed [100]. This method avoids the buoyancy 

issue faced by 3D bioplotting because the crosslinking reservoir can be omitted; the printed 

filament can be solidified inside the capillaries before being dispensed [96]. The sizes of 

printed filaments or hollow channels can range widely, from the millimeter- to micrometer-

scale depending on the capillary diameter, and can be easily adjusted by regulating the 

dispensing pressures. 

The morphologies of printed filaments or fibers from co-axial capillaries are limited 

to relatively simple structures such as core-shell-type or hollow shapes, and therefore lack 

the ability to represent tissue components with complex and highly organized cells [101]. 

Lab-on-a-chip is an alternative method that has been applied in extrusion based bioprinting 

to assist in the fabrication of tissue scaffold blocks with more complicated cross sections. 

Lab-on-a-chip is a device that integrates several tiny channels into one chip (Figure 2.3B2). 

These channels with various cross-sectional shapes (e.g. round, square) are normally 

carved using photolithography or electroplating at the micrometer to millimeter scale [102]. 

Therefore, micro fibers or filaments made from multiple materials with a controllable 

cross-sessional morphology can be achieved. Micro fibers made from multiple hydrogels 

have been successfully printed using lab-on-a-chip [103]. In this example, two material 

solutions are dispensed from separate inlets, and flow in parallel inside the gelation channel 

after they emerge from the focusing nozzle with a special cross-sectional shape. The 

multiple phase fiber is then gelled by the crosslinking solution flowing in the parallel 

channel dispensed from the other inlet. Because flows in the micro channel can be easily 

affected by capillary forces, surface roughness, and even chemical interactions, ensuring 

the printed fiber shape is a challenge with the lab-on-a-chip method. A full understanding 

of the lab-on-a-chip technique, including both its manufacturing requirements and utility 

for bioprinting process control, has not yet been achieved. 
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Figure 2. 3 Advanced extrusion based bioprinting approaches for multi-biomaterial/cell 

manipulation. A1, one-arm multi-nozzle bioprinting system with one activated dispensing 

head; A2, one-arm multi-nozzle bioprinting with multiple activated dispensing heads; A3, 

multi-arm/nozzle bioprinting with multiple activated dispensing heads; B1, coaxial 

capillaries; B2, lab-on-a-chip; C1, integration of multi-nozzle bioprinting and coaxial 

capillaries; C2, integration of bioprinting and electrospinning; C3, integration of 

bioprinting and laser beam; C4, integration of bioprinting and valves. 

Integrating extrusion based bioprinting technique with other fabrication methods 

can be undertaken to bring together advantages from each approach while reducing their 

limitations. Table 2.2 summarizes such integration approaches. For example, one 

integration method is to combine multi-head bioprinting systems with microfluidics 

configurations (Figure 2.3C1). With the help of microfluidics in a multi-head dispensing 

system, microchannels can be printed into the main constructs that are formed using 

materials and cells [23, 63]. Electrospinning uses an electric field to produce nanofibers 

that can be used for cell adhesion [104]. Integrated extrusion based bioprinting and 
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electrospinning has been used to produce orthogonal arrays of hydrogel filaments in a grid-

like arrangement with embedded nonwoven nanofibers (Figure 2.3C2) [105, 106]. 

Adopting laser beams (e.g. UV light beams) in extrusion based bioprinting supports the 

gelation of materials therefore the bioprintability (Figure 2.3C3) [100, 107]. The 

crosslinking of materials can be triggered by the laser beam during or after bioprinting, 

which greatly strengthens the mechanical stability of printed structures, especially for those 

materials with poor bioprintability [53]. Material droplets produced in inkjet-based 

bioprinting have a higher resolution compared to those produced in normal extrusion based 

bioprinting. Adopting a micro-valve technique in extrusion-base bioprinting to produce 

micro droplets as blocks for tissue scaffolds can be preferable because it not only improves 

the printing resolution by controlling the pressure and pulse frequency but is also 

compatible with a wide range of material types (Figure 2.3C4) [73, 108]. Microvalves are 

a typical mechanical configuration regulated by a controller to open and close the valve via 

applied air pressure or other forces, such as electromagnetic or piezoelectric forces [109]. 

A droplet can be produced within an open-and-close period by regulating the valve, or 

fibers can be deposited if the valve is forced to open. Similar to other nozzle-based systems, 

however, clogging is still a challenge when micro-valves are incorporated. 

Table 2. 2 Extrusion based bioprinting approaches for multi-biomaterial/cell 

manipulation 

Bioprinting system Materials Cell types References 

Multi-head extrusion 

based bioprinting 

system (one head 

activated at a time)  

 

Alginate 

Alginate/PCL 

Alginate/hyaluronic acid (HA) 

 

Bone marrow stromal cells 

Chondrocytes 

Schwann cells 

 

[22] 

[92] 

[50] 

 

Multi-head extrusion 

based bioprinting 

system (two or more 

heads activated at a 

time) 

 

Alginate/gelatin; Collagen/HA 

Gelatin/fibrinogen/HA/glycerol/tr

icalcium phosphate/PCL 

Matrigel 

Gelatin/alginate/fibrinogen 

Alginate/gelatin 

 

Osteoblasts 

Human embryonic kidney 

cells 

Human amniotic stem cells 

Alveolar epithelial type II 

cells 

Hela cells 

[48], [28] 

[59] 

[116] 

[73] 

[117] 

[61] 
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Polyurethane/alginate/gelatin/fibri

nogen 

 

Porcine aortic valve 

interstitial cell/smooth 

muscle cells 

Adipose-derived stem cell 

[118] 

Multi-arm extrusion 

based bioprinting 

system 

Alginate/PCL Chondrocytes [60] 

Microfluidic system 

of co-axial capillaries 

 

Alginate/gelatin methacroyl 

Alginate/carbon nanotube 

Alginate/PCL 

Alginate/collagen/fibrinogen 

Collagen/alginate 

Endothelial cells 

Human coronary artery 

smooth muscle cells 

Fibroblasts 

Epithelial cells/nerve 

cells/fibroblasts 

Keratinocytes/fibroblasts 

[100] 

[110] 

[101] 

[51] 

[71] 

Microfluidics system 

of lab-on-a-chip 

 

PEGDA 

Alginate/propylene glycol 

alginate 

Chitosan 

Fibroblasts 

PC12 cells 

Schwann cells 

[115] 

[103] 

[119] 

Integrated system of 

multi-arm and 

microfluidics 

techniques 

Alginate Cartilage progenitor cells [63] 

Integrated system of 

extrusion based 

bioprinting and 

electrospinning 

Alginate/gelatin/PCL 

Alginate/ PCL 

 

Human adipose-derived stem 

cells  

Osteoblasts 

 

[106] 

 

[105] 

 

Integrated system of 

extrusion based and 

laser-based 

bioprinting  

Gelatin methacrylamide 

Gelatin methacrylamide/HA/PCL 

PEGDA 

HepG2 cells 

Articular cartilage cells 

Breast epithelial cells 

[120] 

[45] 

[121] 

Valve integrated 

bioprinting system 

Alginate 

Culture medium 

Human induced pluripotent 

stem cells 

Human embryonic kidney 

cell/RC-10 cells 

[108] 

 

[109] 

One typical example of multi-material/cell manipulation in extrusion based 

bioprinting is bioprinting micro- or macro-channels to form vasculatures. The literature 

reports two alternative approaches, direct and indirect bioprinting, that have been 
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developed to produce channels [110, 111]. In direct bioprinting, channels with smooth 

lumen are continually bioprinted with the assistance of lab-on-a-chip or co-axial capillaries 

(Figure 2.4A). Materials that have fast crosslinking speed are often used to build the 

channels, combined with supporting cell types such as endothelial cells. One major 

challenge of direct vessel bioprinting for vascularization is guiding angiogenesis in an 

expected path, which requires precise deposition of channels in designated regions [112]. 

Thus, bioprinters with high printing resolution and more precise robotic systems are needed. 

Indirect vasculature bioprinting normally uses several materials, including fugitive or 

sacrificial ones (Figure 2.4B) [62]. Generally, sacrificial and functional materials are 

deposited from different bioprinting heads in a designated pattern. After the formation of 

scaffolds, the sacrificial materials are de-crosslinked as triggered by special conditions 

such as temperature change. As such, channels can be formed while the functional parts of 

the scaffolds remain [113, 114]. Indirect bioprinting is good for ensuring the mechanical 

stability of channels as they are formed after the solidification of structures, but it is 

difficult to encapsulate supporting cells because the de-crosslinking removes the 

incorporated cells [115]. Therefore, additional manipulations, such as cell seeding after de-

crosslinking, are required to facilitate vascularization. 
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Figure 2. 4 Methods of vasculature bioprinting in tissue scaffolds. A1, schematic of the 

coaxial nozzle assembly for direct conduit printing; A2, printed meter-long conduit with 

successful medium perfusion. A2 is reused from [110]; B1, schematic of the 

interconnected lattice to serve as the sacrificial element for the indirect printing of 

vascular architectures; B2, primary rat hepatocytes and stabilizing stromal fibroblasts in 

agarose gels (slab versus channeled) after eight days. Cells survive at the gel perimeter 

and near perfused channels, but survival decays deeper in the gels. B2 is reused from 

[114]. 

2.4.3 Characterization of cell damage induced by the bioprinting process 

Cells are subjected to stresses (e.g. shear stress, extensional stress) induced by the 

bioprinting process as they are forced to flow through the nozzle. Such stresses can elicit 

the deformation of cells and thus may breach the cell membrane [122]. Although cells can 

resist a certain level of these stresses, cell membranes may succumb to the stresses and lose 

the capacity to recover if the forces exceed a physiological threshold [123]. Cell membrane 

failure leads to cell dysfunction and damage, thus reducing the viability of cells. Therefore, 

investigation of the cell damage induced by the bioprinting process is important to 

understand how to preserve cell survival during the creation of tissue scaffolds. 
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Shear stress is believed to be one of the main factors that induces cell damage. 

Evidence shows that more cell damage occurs when higher dispensing pressures are 

applied, as they induce higher shear stress in extrusion based bioprinting [44, 124]. This 

result has been coincided by rheometer experiments in which cells are sheared under 

controllable stresses [125]. Experiments also demonstrate that exposure to shear stresses 

for longer durations greatly increases the number of damaged cells [126]. Compared to 

shear stress magnitude, cells seem more sensitive to exposure time given evidence that 

fewer cells are damaged under higher shear stress and limited shear time but more are 

damaged after longer shearing under low shear stress [120]. This observation is useful for 

determining the nozzle length, as it significantly affects the exposure time cells experience. 

Extensional stress is the other major factor that leads to cell damage in extrusion based 

bioprinting [52]. Extensional stress is generated due to the abrupt contraction in nozzle 

geometry as the materials/cells are forced through it, and has proven to be a more 

significant factor with respect to causing cell damage than shear stress [127]. Thus, 

reducing the extensional stress by modifying the nozzle shape is an important approach to 

reducing the number of damaged cells [58]. 

Maintaining high cell viability is one of the requirements set for the extrusion based 

bioprinting [59]. As mentioned above, using a low dispensing pressure can reduce the 

stresses induced by the bioprinting process but may not be appropriate for depositing 

viscous materials. One option to address this issue is the use of tapered nozzles in place of 

cylindrical ones [120]. Tapered nozzles have a relatively smooth contracting shape to 

achieve the flow of materials, and greatly reduce the effects of extensional stress on cells. 

Furthermore, the pressure to achieve the same volume flow rate can be much lower for a 

tapered nozzle than for a cylindrical nozzle, thus significantly reducing the shear stress 

[128]. The utilization of pre-crosslinked materials is another approach to protect cells from 

process-induced stresses. Gel particles can be formed after pre-crosslinking and used to 

isolate the encapsulated cells from the material solution. Therefore, they can be used as 

micro cell carriers to minimize induced stresses [52]. Pre-crosslinked materials with a 

viscosity that is too high or too low cannot affect the desired protection of cells, and 

determining the appropriate pre-crosslinked solutions often requires a series of tests [49]. 
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Modeling is considered a feasible method to aid extrusion based bioprinting due to 

its ability to predict the physical and biological performance of printed materials and cells. 

Once validated by experiments, optimum designs and control based on the models can be 

achieved without the need for any extensive experiments. Several models have been 

developed to represent and predict cell damage in the bioprinting process. Because cell 

damage is associated with shear and extensional stresses, which are closely related to the 

dispensing pressure and nozzle diameter, empirical models have been established 

considering these two independent factors [129]. Although these models can predict the 

trend of cell damage, their feasibility might be limited because they do not consider cell 

damage mechanisms related to process-induced stresses. Directly selecting process-

induced stresses and associated exposure times as factors when building cell damage 

models can be more effective, and before building the model, the theoretical range of cell 

damage should be considered, e.g. values cannot be less than 0% or over 100%. 

Most existing models have been established based on the simplifying assumption 

that material/cell flows are fully developed as they flow through the nozzle, and only shear 

stress (and not extensional stress) is considered as the factor leading to cell damage. 

Computational fluid dynamics (CFD) has been developed to analyze the dynamic flow 

behavior and can be used to study the effect of extensional stress on cell damage in 

extrusion based bioprinting [130, 131]. Thus, a new model that considers the influence of 

both shear and extensional stresses on cell damage can be established to significantly 

improve the accuracy of cell damage representation and prediction. 

2.5 Recommendations for future research 

Despite all of the remarkable achievements in extrusion based tissue scaffold 

bioprinting technologies, many challenges still exist and prevent the realization of artificial 

tissue constructs. Therefore, more effort is required in the future to address these challenges 

and aid in the creation of tissue-like products for tissue regeneration. 

2.5.1 Development of novel biomaterials for bioprinting 

As materials play a central role in tissue scaffold bioprinting, the development of 

novel materials to overcome the limitations faced by current materials is of high priority. 
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Such materials should be biocompatible and bioprintable so they can faithfully represent 

the functions of complex tissue ECM. The use of a single material type may not be 

satisfactory to produce a suitable tissue environment for more than one functional cell type; 

therefore, using multiple materials in an organized pattern with associated cells would be 

more effective. 

Decellularized ECM is a novel biomaterial derived from living tissue components, 

created by removing the resident cells and major histocompatibility complex but 

maintaining the major tissue structures [132]. Decellularized ECM has great potential to 

serve as a bioprinting material in tissue scaffold fabrication because it naturally satisfies 

the biocompatible requirement [15]. With the application of other bioprintable materials, a 

stable tissue scaffold can be created using decellularized ECM [54]. 

The utilization of programmable self-assembly materials that can be stimulated by 

cell growth or other specific cellular signals to transform into a desired pattern is another 

exciting option in tissue scaffold bioprinting. Using these kinds of materials for printing is 

also known as 4D printing [133]. In response to physiological cues or other external stimuli, 

the materials transform their morphology and functionality to adapt their physiological 

requirements according to pre-programmed properties. The development of such materials 

would significantly simplify the current bioprinting process and thus greatly enhance 

printing efficiency [134]. 

2.5.2 Development of novel bioprinting systems 

The manipulation of multiple materials/cells in bioprinting is an efficient approach 

to produce tissue-like scaffolds. This approach has the potential to deposit different 

materials and cell types in a controllable manner to mimic tissue components [135]. 

Integrating rotational motion into existing linear motion bioprinting systems can greatly 

improve the efficiency and accuracy of manipulating materials and cells [10]. This method 

is versatile with respect to producing more complex 3D tissue scaffolds that have a 

composition and organization similar to tissues [60]. 

Developing a real-time control system to automatically monitor and adjust 

materials deposition during bioprinting can greatly improve the printing quality. In such 

systems, the deposited blocks can be detected, e.g. by a digital camera, and the achieved 
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visual information analyzed in time and subsequently sent back to the bioprinting system 

as a feedback signal. This signal is compared to the CAD model to produce an adjusted 

signal that can be used to control the bioprinting parameters to maintain the consistency of 

printed structures. 

The utilization of nozzles in current extrusion based bioprinting limits the 

bioprinting resolution. Reducing the nozzle diameter is good in terms of resolution but can 

induce considerable cell damage. Therefore, nozzle-free bioprinting systems have great 

potential for improving resolution while maintaining cell viability. One existing option 

mentioned above to improve the resolution is to adopt micro-valve techniques in extrusion 

based bioprinting systems. In large-scale tissue scaffold bioprinting, the durability of 

valves should be carefully considered to maintain the accuracy and reproducibility of 

material/cell deposition. 

2.5.3 Development of methods to create patterned vascular networks with 

bioprinted scaffolds 

Although many studies have been performed, printing vascularized, metabolically 

active thick tissues such as lung or liver tissues still faces challenges. One approach to solve 

the problem of reproducing randomly distributed vasculature within a tissue is to ensure 

the interconnection of vascular networks by producing pre-patterned vasculatures [136]. 

With the assistance of microfluidic techniques, organized micro-channels can be created 

in scaffolds to form initial vascular networks. To avoid the collapse of bioprinted 

vasculatures, stiffer materials can be dispensed as a shell to protect soft inner channels. 

Therefore, co-axial vessels can consist of a hollow channel, a soft layer with cells, and a 

stiff shell from inner to outer, and can be used for later vascularization. 

Growth factors are important regulators for angiogenesis. With the precise 

distribution of temporal or sequential growth factors in the tissue scaffolds, the formation 

of vasculatures including blood capillaries can be guided and facilitated. The maturation 

of vasculatures throughout the scaffold normally takes a long time, which introduces 

challenges with respect to maintaining the survival of other functional cells. One attempt 

to address this issue is using bioreactors. Bioreactors are engineered devices or systems 

that can provide a physiological environment to support the viability of cells while 
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facilitating biological structural fusion, remodeling, and maturation within a shorter time 

frame [137]. With the help of bioreactors, the viability of the encapsulated functional cells 

can be maintained during vascularization. 

2.5.4 Representing and reducing process-induced cell damage 

Developing comprehensive models that include factors such as extensional stress 

is recommended for accurately representing cell damage induced during the bioprinting 

process. These factors should also include cell-cell and cell-material interactions, which 

need to be considered when building cell damage models. 

Modifying nozzle shape to reduce process-induced stresses has been attempted to 

reduce cell damage. Using tapered nozzles in place of cylindrical ones can greatly improve 

the survival of cells by alleviating stresses associated with extrusion [128]. Thus, designing 

and developing new nozzle types to further reduce process-induced stresses is an important 

future research direction aimed at minimizing cell damage and thereby optimizing cell 

viability. 

2.6 Conclusions 

Extrusion based bioprinting techniques have exhibited great versatility and 

feasibility in the fabrication of scaffolds for tissue engineering. For bioprinting a tissue 

scaffold, a typical procedure begins with scaffold design with appropriate structure and 

properties, followed by material/cell synthesis, scaffold bioprinting process, culturing of 

the printed scaffolds, and scaffold implantation for tissue repair or replacement. The 

implantation outcomes can be analyzed in terms of tissue regeneration and function 

restoration, and the result can also be further used as feedback to continuously improve the 

scaffold design and bioprinting process, and eventually the function restoration produced 

by the scaffolds. Over last decades, advances in both engineering techniques and life 

sciences have evolved extrusion based bioprinting from a simple technique to one able to 

create diverse tissue scaffolds from a wide range of biomaterials and cell types, 

significantly contributing to the advance of tissue engineering. 

With encouraging results, current extrusion based bioprinting still faces challenges 

with respect to biomaterials for printing, manipulation of multi-materials/cells, vascular 
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networks within scaffolds, and cell-function preservation in scaffold bioprinting. The 

address of these challenges will significantly enhance the capability of extrusion based 

bioprinting so as to create scaffolds for various tissue engineering applications. 
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CHAPTER 3 

Influence of Mechanical Properties of Alginate-based Substrates on the Performance of 

Schwann Cells in Culture 

This chapter has been published as "Liqun Ning, Yitong Xu, Xiongbiao Chen and David J. 

Schreyer, Influence of mechanical properties of alginate-based substrates on the 

performance of Schwann cells in culture. Journal of Biomaterials Science, Polymer Edition. 

2016, 27, 898-915." According to the Copyright Agreement, "the authors retain the right 

to include the journal article, in full or in part, in a thesis or dissertation". 

3.1 Abstract 

In tissue engineering, artificial tissue scaffolds containing living cells have been 

studied for tissue repair and regeneration. Notably, the performance of these encapsulated-

in-scaffolds cells in terms of cell viability, proliferation and expression of function during 

and after the scaffold fabrication process, has not been well documented because of the 

influence of mechanical, chemical, and physical properties of the scaffold substrate 

materials. This chapter presents our study on the influence of mechanical properties of 

alginate-based substrates on the performance of Schwann cells, which are the major glial 

cells of peripheral nervous system. Given the fact that alginate polysaccharide hydrogel 

has poor cell adhesion properties, in this study we examined several types of cell-adhesion 

supplements and found that alginate covalently-modified with RGD peptide provided 

improved cell proliferation and adhesion. We prepared alginate-based substrates for cell 

culture using varying alginate concentrations for altering their mechanical properties, 

which were confirmed by compression testing. Then, we examined the viability, 

proliferation, morphology, and expression of the extracellular matrix protein laminin of 

Schwann cells that were seeded on the surface of alginate-based substrates (or 2D culture) 

or encapsulated within alginate-based substrates (3D cultures), and correlated the examined 

cell performance to the alginate concentration (or mechanical properties) of hydrogel 

substrates. Our findings suggest that covalent attachment of RGD peptide can improve the 

success of Schwann cell encapsulation within alginate-based scaffolds, and provide 
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guidance for regulating the mechanical properties of alginate-based scaffolds containing 

Schwann cells for applications in peripheral nervous system regeneration and repair. 

3.2 Introduction 

Tissue engineering is an interdisciplinary field, wherein both biological and 

engineering techniques are used to fabricate appropriate tissue scaffolds to restore and 

repair tissues or organs [1-3]. To mimic native tissue structures, various advanced 

fabrication techniques have been developed to create tissue scaffolds from biomaterials 

and living cells [4]. Among these techniques, 3D bioprinting, by which the solution of 

biomaterial(s) with living cells is continuously applied, has shown the most promising due 

to its ability to apply a variety of biomaterial solutions and cells with a high printing 

resolution, layer-by-layer to form 3D constructs [5-7]. Notably, the success of scaffolds 

fabrication based on the 3D bioprinting technique depends on if the scaffold-encapsulated 

cells can survive during the fabrication process and retain the cell functions in the following 

tissue or organ repair process [8].  

Biomaterials serve as a synthetic ECM to support cells during and after 

biofabrication of tissue scaffolds and as such, they must be chosen to be biocompatible and 

amenable to the process of scaffold biofabrication. Among various biomaterials, hydrogels 

have been widely used in tissue repair and drug delivery since they can provide adjustable 

physical and chemical properties [9]. Alginate, a naturally derived polysaccharide 

extracted from seaweed, has been used in the 3D bioprinting based fabrication for decades 

because of its good biocompatibility and convenient gelation process achieved by 

crosslinking with calcium ions at mild physiological conditions [10]. The use of alginate 

as an artificial substrate for culturing different types of cells like Schwann cells [11], 

myoblasts [12], chondrocytes [13], endothelial cells [14], and fibroblasts [15] has been 

reported in previous studies.  

In nerve tissue engineering, Schwann cells play an important role in promoting 

axonal regeneration [16-18]. Our previous study illustrate Schwann cells can be 

incorporated in the biofabrication process to create scaffolds from alginate [19]. 

Meanwhile, it is also noticed that alginate hydrogels are hydrophilic and have limited 

capability to provide cues for cell attachment. For improvement, several approaches have 
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been reported in the literature and the most common method is simply mixing the alginate 

solution with such proteins as laminin and fibronectin prior to its gelation by calcium 

crosslinking [20-23]. Alternatively, isolated peptides derived from these proteins such as 

RGD from fibronectin, YIGSR and IKVAV from laminin can be covalently bound to 

alginate to improve cell adhesion in vitro [24]. Although physically mixing peptides or 

proteins with alginate is quite simple and has been achieved with certain degrees of success, 

the improvement in cell functions is limited because lower and less stable concentrations 

of peptide and protein are achieved [25]. In the other hand, the effects of relatively higher 

concentration of adhesion peptide and protein added to alginate on the cell adhesion and 

proliferation have not been well documented.  

Previous studies have shown that the interactions of cells with artificial 

scaffolds/substrates can be influenced by the mechanical properties of scaffolds/substrates 

[26]., and that mechanical cues can be further used to regulate cell behaviors such as cell 

migration, proliferation and differentiation [27]. Two types of mechanical cues that cells 

experience when cultured on or within hydrogels are the resistance from the hydrogel itself, 

and applied external forces to the hydrogel constructs [24, 27]. The resistance due to 

hydrogel stiffness is the most common mechanical cue that greatly influences the fate of 

both surface-seeded cells and cells encapsulated within gels. Cells can respond differently 

based on the substrate stiffness and it is believed that cell behavior can be improved if 

cultured in a mechanically-favor environment [28-30]. This raises a need to control the 

mechanical properties of substrate for improved cell performance.  

The present study aims to investigate the influence of the stiffness of biomaterial 

substrates on viability, proliferation, morphology indicative of adhesion, and protein 

expression of Schwann cells as a prelude to the development of tissue scaffolds for nerve 

tissue engineering. In two-dimensional (2D) culture experiments, immortalized rat 

Schwann cells were seeded onto the surface of alginate hydrogels, and their morphology 

and viability were examined when the hydrogels were supplemented with the cell adhesion 

enhancing materials fibronectin, PLL and RGD peptide. For RGD peptide, both physically 

mixed RGD-alginate and RGD covalently modified alginate substrates were employed for 

examination. Then, cell adhesion peptide modified alginate hydrogels with different levels 

of stiffness were prepared using various alginate concentrations from 1.0% to 2.5% (w/v), 
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and the influence of the mechanical properties of alginate on the performance of both 

surface-seeded cells (2D culture) and encapsulated cells (3D culture) were investigated, in 

term of Schwann cell viability, proliferation, adhesion, and protein expression.  

3.3 Materials and methods 

3.3.1 Cell culture 

An immortalized rat Schwann cell line (RSC96), provided by American Type 

Culture Collection (Manassas, VA, USA), was cultured in standard Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Sigma-Aldrich, Oakville, ON, Canada) supplemented with 10% 

fetal bovine serum (FBS) (GIBCO, Life Technologies, Burlington, ON, Canada), in a 

humidified incubator at 37°C with a 5% CO2 atmosphere. For the 2D cell culture, 

suspension of Schwann cells with a density of 4×104 cells/mL were added onto the surface 

of pre-gelled alginate (see below) in 24- or 96-well plates. For the 3D culture, Schwann 

cells were added into alginate solution to form the cell suspension with a density of 4×104 

cells/mL, which was then pipetted into 24-well plates and gelled by calcium crosslinking. 

3.3.2 Materials  

Low viscosity sodium alginate with a molecular weight of 12,000 - 80,000 Da was 

obtained from Sigma-Aldrich, Canada. Standard DMEM and calcium-free DMEM cell 

culture media were obtained from GIBCO Life Technologies (Burlington, ON, Canada). 

Calcium chloride (CaCl2), sodium chloride (NaCl), sodium hydroxide (NaOH), PEI 

(polyethyleneimine), BSA (Bovine Serum Albumin), Tween 20, EDC (N-(3-

Dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride), NHS (N-

Hydroxysuccinimide), MES, poly-L-lysine (PLL), DAPI fluorescent dye, fibronectin, 

primary rabbit anti-laminin antibody, and secondary AF 488 anti-rabbit IgG and AF 555 

anti-rabbit IgG antibodies were purchased from Sigma-Aldrich, Canada. Primary rabbit 

anti-S100 was purchased from Abcam (Eugene, OR, USA). RGD peptide (GGGGRGDS), 

calcein-AM, and propidium iodide were purchased from AnaSpec (Freemont, CA, USA). 
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3.3.3 Hydrogel substrate preparation 

Low viscosity sodium alginate (Sigma-Aldrich) with a molecular weight of 12,000 

- 80,000 Da was dissolved in deionized water to form a 0.5% (w/v) solution. A 0.22 μm 

bottle-top filter (Thermo Scientific, Ann Arbor, MI, USA) was used to filter sterilize the 

alginate solution. The filtered alginate solution was frozen (-40° C) for 24 hours and dried 

in a FreeZone Freeze Dryer (Labconco, USA) under sterile conditions. A 5% (w/v) alginate 

stock solution was made by dissolving sterile, freeze-dried alginate in the calcium-free 

DMEM. In our first experiment, alginate solutions (1.0%, 1.5%, 2.0% and 2.5% w/v) were 

used to form gels by ionic crosslinking after submersion in 100 mM CaCl2 for 5 min. 

In other experiments, alginate containing additives to promote cell adhesion were 

prepared and used. Specifically, PLL was mixed into 1.5% (w/v) alginate, forming 

solutions with concentrations of 50, 100, 200, and 500 μg/mL, respectively. Fibronectin 

was added to form solutions with concentrations of 100, 250, and 500 μg/mL. RGD peptide 

was added to obtain a final peptide concentration of 50 and 100 μg/mL. The 

aforementioned process of mixing was performed gently using a pipette to ensure the 

homogenous distribution within the solution.  

RGD peptide was also covalently bound to alginate in solution as per the previous 

study [12], with the weight ratio of 1:100 and 1:250 (w/w) compared to alginate. Briefly, 

305 mM EDC, 115 mM NHS and 300 mM NaCl were dissolved in 100 mM MES buffer, 

and 10 N NaOH was dropped into the solution to adjust the pH value near to 6.5; RGD 

solution and alginate solution with designed concentrations were mixed in and rotated over 

48 hours for reaction at a room temperature and then dialyzed for 3 days at 4°C to remove 

all small and unreacted reagents; the obtained solution was eventually  lyophilized and 

dissolved in calcium-free DMEM to obtain the RGD modified alginate solution at 

concentrations of 1.0%, 1.5%, 2.0% and 2.5% w/v, respectively. 300 μL of each alginate 

solution was loaded into the wells of 24-well plates, or 50 μL to each well of 96-well plates. 

100 mM CaCl2 of the double volume of alginate was layered over the alginate solution, 

allowing for crosslinking for 5 minutes [31]. Then, the medium was aspirated and the 

resultant alginate gels were washed using 10 mM PBS and then DMEM (normal calcium 

concentration). Plastic wells coated with 50 μg/mL PLL (24 hours at 37 °C) were used as 

a positive control. Five samples were prepared for each material (n=5).  
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To investigate the influence of hydrogel stiffness on the 2D cell culture, RGD 

modified alginate at various concentrations (1.0%, 1.5%, 2.0% and 2.5% w/v) was tested. 

Alginate solution was dropped onto glass coverslips coated with 0.1% w/v PEI solution, 

and gelled in a 24-well plate before cell seeding. For the 3D cell culture, the same 

concentrations of RGD modified alginate (1.0%, 1.5%, 2.0% and 2.5% w/v) was used to 

form gels; a suspension of Schwann cells was added in each alginate solution prior to 

crosslinking; 50 μl of alginate containing Schwann cells was then loaded onto glass 

coverslip coated with 0.1% w/v PEI solution and crosslinked using 100 mM CaCl2 for 5 

min in 24-well plates. 

3.3.4 Evaluation of hydrogel mechanical properties 

The alginate hydrogels formed with different concentrations of alginate solution 

were tested using a compressive testing instrument (Texture Technologies Corp., USA), to 

evaluate the hydrogel mechanical properties. Alginate at various concentrations (1.0%, 

1.5%, 2.0% and 2.5% w/v) was pipetted into cylindrical molds with a diameter 7 mm and 

a height of 12 mm. Gelation was initially obtained by immersing the molds into 100 mM 

calcium ion solution for 24 hours. Then the samples were removed from the molds and 

soaked in calcium solution again for another 24 hours. In the compressive tests, a speed of 

0.1 mm/s was applied to move a total distance of 10.5 mm and data were collected at a 

sampling rate of 50 Hz. The compressive modulus (or the Young’s modulus) for each gel 

sample was calculated from the linear section of the measured stress-strain curve, or before 

the gel yields. In each test, four samples were compressed and their compressive moduli 

were averaged for evaluation. 

3.3.5 Evaluation of Schwann cell morphology 

To investigate the effects of the alginate substrates on cell spreading and extension, 

morphological observation of cells was performed using an optical microscope (Zeiss 

Axiovert). One mL cell suspension (2×104 cells/mL) was seeded, respectively, onto pure 

alginate hydrogels; alginate hydrogels containing PLL, RGD, and fibronectin; and alginate 

hydrogel modified/bound with RGD. After culturing for 2 days and 7 days, respectively, 
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images were randomly captured from three areas of each sample to observe cell 

morphology in 2D culture.   

The circularity analysis tool of ImageJ was used to provide a quantitative index of 

cell shape, where a cell with a perfectly circular outline was assigned a circularity level of 

1.0. In each image, individual cells were identified, their shapes were manually traced, and 

their calculated circularity values were averaged for evaluation. 

3.3.6 Evaluation of Schwann cell viability 

Schwann cells were added into varying concentrations of RGD-modified alginate 

hydrogels (1.0%, 1.5%, 2.0% and 2.5%) for both 2D and 3D culture. A Live/dead assay 

was used to measure cell viability by manually counting the live and dead cells after 

staining cells with the fluorescent dyes, calcein-AM and propidium iodide, which 

selectively stain live or dead cells, respectively. A solution of DMEM containing calcein-

AM (1 μg/mL) and propidium iodide (10 μg/mL) was added to each well and incubated 

for, respectively, 20 min in 2D culture and 40 min in 3D culture, both at 37°C. Viability 

was assessed by counting stained cells on images randomly taken from samples observed 

with a fluorescence microscope (Carl Zeiss Axiovert 100). For each sample, three random 

images were taken and analyzed using ImageJ (National Institutes of Health, Bethesda, 

Maryland, USA), and viability was calculated as a percent of live cells among the total 

number of live and dead cells.  

3.3.7 Evaluation of Schwann cell proliferation 

An MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay 

was performed to measure cell number and evaluate cell proliferation [32]. For the cell 

cultures grown in 96-well plates without hydrogel, 10 μL MTT solution (5 mg/mL) was 

added to the cell medium and incubated for 3 hours at 37°C; the medium was removed and 

dimethyl sulfoxide (DMSO) solution (100 uL) was then added to dissolve the formazan 

precipitate. Absorbance was measured at 555/650 nm using a microplate reader 

(SpectraMax 250, Molecular Devices, USA).  
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  Before the MTT tests of Schwan cells on or in hydrogels, the relationship between 

Schwann cell number and MTT absorbance was identified. Briefly, for 96-well plates (100 

μL DMSO), cell numbers of 1×103, 2×103, 4×103, 8×103, 1.6×104 and 3.2×104 cells per 

well were examined, and the correlated average MTT absorbance values were found 

around 0.05, 0.10, 0.14, 0.22, 0.43, and 0.83 respectively. For 24-well plates (1 mL DMSO), 

cell numbers of 4×103, 8×103, 1.6×104, 3.2×104, 6.4×104 and 1.2×105 cells per well were 

checked, and the correlated average MTT absorbance values were found around 0.06, 0.11, 

0.21, 0.49, 1.02, and 2.44 respectively. These results showed the linear relation between 

MTT absorbance and cell numbers, which were used to relate the MTT absorbance to the 

cell number in the following MTT tests.    

 MTT assay was applied to measure the cell numbers on Day 1 and Day 2 for cells 

seeded on alginate-based hydrogels in 96-well plates with different additives. Also, it was 

used to check the cell proliferation by measuring the cell numbers on Day 2 and Day 7 for 

both seeded (or 2D) and encapsulated (or 3D) Schwann cell cultures with RGD-modified 

alginate hydrogels. For the 2D culture, the MTT tests had the same procedure as described 

above, but was scaled up since the cells were cultured in 24-well plates, where 100 μL 

MTT reagent was loaded to each well and 1 mL DMSO was added after removing the 

culture medium 3 hours later. For the 3D culture, modified MTT tests based on the previous 

study were conducted [32]. Briefly, 100 μL MTT reagent (5 mg/mL) was added to the 

hydrogels in each well; the medium was aspirated after five hours; and the gels were frozen 

at -40°C for 24 hours and then freeze-dried for another 24 hours. Upon the completion of 

dehydration of the alginate gels, 1 mL of DMSO was added to dissolve the formazan 

precipitate; and absorbance was measured at 555/650 nm using the microplate reader.  

3.3.8 Evaluation of Schwann cell protein expression 

Immunocytochemistry was employed to investigate cell phenotype with regard to 

S100 and laminin protein expression at Day 2 and Day 7 in the 2D and 3D Schwann cell 

cultures. Briefly, cell cultures were rinsed twice with 10 mM TBS (Tris-buffered saline) 

plus 10 mM calcium chloride, then fixed in 100% methanol (Sigma) for 1 hour. Blocking 

solution (10 mM TBS + 0.05% Tween 20 + 1% BSA + 3% horse serum + 10 mM calcium 

chloride) was then added to each well for another 2 hours. After that, primary anti-S100 or 
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anti-laminin (1:500) was dropped into each well for 2 hours staining for the 2D culture, or 

5 hours for the 3D culture. After the primary antibody, samples were washed overnight in 

10 mM TBS plus 10 mM calcium chloride plus 0.05% Tween 20 at 4°C. Secondary 

antibodies AF 488 anti-rabbit IgG or AF 555 anti-rabbit IgG (1:500) with DAPI (1:10,000) 

were then added for 2 hours (2D) or 5 hours (3D) staining. After another overnight washing, 

the coverslips were mounted on glass slides using Fluoromount G. Cell circularity was 

assessed on anti-S100 stained images randomly taken from samples observed with a 

fluorescence microscope (Zeiss Axioimager M1). For the 3D culture, 5-6 images of the 

same field were z-stacked for clarity. Fluorescent intensity was measured from anti-laminin 

stained cells. For each alginate concentration, three samples were prepared, and three 

random images were taken and analyzed from each sample using ImageJ. 

3.3.9 Statistical analysis 

The mean values and standard error of the mean (SEM) of all data were calculated. 

The statistical significance of experimental data was determined by one-way analysis of 

variance (ANOVA), and pairwise comparisons were performed by the Tukey’s test using 

Graphpad Prism (GraphPad Software, San Diego, CA, USA) with an acceptable 

significance level of P < 0.05.  

3.4 Results 

The morphology and proliferation of RSC96 immortalized Schwann cells in 2D 

culture on various alginate-based substrates after 48 hours were examined, with the results 

presented in Figure 3.1.  It is seen that cells seeded on the surface of pure alginate hydrogels 

were spherical and clustered (Figure 3.1A), which is due to the lack of cell adhesion, as 

compared the ones on the more adhesive substrate (Figure 3.1B). With the addition of PLL 

or fibronectin (50 μg/mL for each type), fewer clusters were observed and the quantitative 

measurement of average cell circularity was found about 0.8 in average (Figures 3.1C and 

3.1E), which suggests most of the cells remained nearly spherical. Figure 3.1D and 3.1F 

show no significant change of cell morphology if a higher concentration (500 μg/mL) of 

fibronectin or PLL was used. In contest, for the alginate hydrogels with RGD peptide, 

either mixed or covalently modified, less clustering of cells and more cells with stretched 
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morphology are seen in the imagines (Figures 3.1G and 3.1H), suggesting that both 

physically mixed or chemically bonded RGD can promote the cell adhesion.  

 

Figure 3. 1 Morphology of RSC96 cells cultured on 2D alginate substrates with different 

additives after 48 hours. A, negative control (1.5% w/v alginate only); B, positive control 

(no alginate, PLL coating); C, alginate mixed with 50 μg/mL PLL; D, alginate mixed 

with 500 μg/mL PLL; E, alginate mixed with 50 μg/mL fibronectin; F, alginate mixed 

with 500 μg/mL fibronectin; G, alginate mixed with 50 μg/mL RGD peptide; H, RGD-

modified alginate (1:250). Scale bar represent 50 μm. 
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MTT is a colorimetric assay for accessing metabolic activity of cells and thus the 

number of living cells. With the linear relationship between absorbance and the number of 

living cells, the reading of absorbance is used for the presentation of living cells in the 

following. In our study, 2000 cells and 8000 cells were added to each well of a 96-well 

plate and a 24-well plate, respectively, and the MTT assay was used to evaluate the number 

of Schwann cells cultured on the hydrogel substrates with the addition PLL, fibronectin, 

and RGD peptide of varying concentrations. The results illustrate that with the addition of 

PLL (Figure 3.2B), the peak MTT absorbance takes place at a concentration of 100 and 

200 μg/mL among the four concentrations examined; and with addition of fibronectin 

(Figure 3.2C), the absorbance shows increasing with its concentration varying from 50 to 

500 μg/mL; and that with the addition of RGD peptide, the influence of concentration on 

absorbance is mixed although the four concentrations examined all increases the readings 

of absorbance of Day 2 as compared to Day 1.  

 

Figure 3. 2 MTT assay for RSC96 cell proliferation with different cell adhesion 

materials. A, negative control (1.5% alginate only) and positive control (no alginate, PLL 

coating); B, alginate including PLL; C, alginate including fibronectin; D, alginate 

including RGD peptide. One-way ANOVA, ∗∗represents P < 0.01 and ∗∗∗represents P < 

0.001 
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The use of RGD peptide as a cell adhesion additive to alginate hydrogel was further 

examined by culturing Schwann cells on alginate gels with RGD either mixed or covalently 

bound, for a time period of 7 days, with the result shown in Figure 3.3. It is seen that most 

of cells on RGD-mixed alginate after 7 days became more spherical again (Figure 3.3A), 

while the cells on RGD-modified alginate continued to be of spindle shape (Figure 3.3B). 

The results of cell circularities (Figure 3.3C) shows that at Day 2, they are at the similar 

level, around 0.65, for both RGD-mixed and RGD-bound alginate hydrogels, and that at 

Day 7, however, the cell circularities become much different, with a value of 0.78±0.05 for 

the RGD-mixed alginate and 0.44±0.03 for RGD-modified alginate. On this basis, RGD-

modified alginate hydrogels were selected for the Schwann cell culture in the experiments 

presented in the following.  

 

Figure 3. 3 Morphology of RSC96 cells cultured on 2D alginate substrates including 

RGD peptide after 7 days. A, alginate hydrogel mixed with 100 μg/mL RGD peptide; B, 

alginate hydrogel covalently modified by RGD peptide (250:1 w/w); C, cell circularity on 

two different alginate substrates. Scale bar represent 50 μm. 

From the compression tests, the curves of strain vs. strain of hydrogels with 

different concentrations of alginate are presented in Figure 3.4A, which is reproduced in 

Figure 3.4B for zoomed region to evaluate the Young’s moduli. For 1.0%, 1.5%, 2.0%, 
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and 2.5% alginate hydrogels, the Young’s moduli were determined as 1.17±0.48 KPa, 

2.62±0.77 KPa, 9.54±1.93 KPa, and 12.53±2.57 KPa, respectively. The result also indicate 

that Young’s modulus increases with the alginate concentration.  

   

A                                                                                   B 

Figure 3. 4 Stress-strain curve of alginate hydrogel with different concentrations. B is 

reproduced from A with a changed range of strain. 

We investigated the performance of Schwann cells seeded on RGD-modified 

alginate hydrogels with varying stiffness. A live/dead assay was applied to examine the 

viability of Schwann cells attached to the surface of alginate hydrogel formulated with 

different concentrations (thus mechanical properties) at Days 1, 2 and 7.  Figures 3.5A and 

3.5B are the images showing live cells (green) and dead cells (red) on the 1.5 % and 2.5% 

alginate hydrogels, respectively, suggesting that the most cells survives, and that the 

number of living cells decreases with the alginate concentration. Live/dead cell counts 

(Figure 3.5C) shows that the cell viabilities of four alginate groups was all greater than 

90%. To examine the cell proliferation, cell number was assessed in 2D cultures using the 

MTT assay at Day 2 and Day 7 (Figure 3.5D). The readings of MTT absorbance were at 

the similar level for hydrogels with 1.0% or 1.5% alginate, and since then decreased as the 

concentration of alginate was increased. This result illustrates that the cell proliferation 

would prefer on the softer substrates. Also, the lowest absorbance reading was observed 

from the negative control group (1.5% alginate without RGD peptide), suggesting the 

positive influence of RGD peptide on the cell proliferation. 
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Figure 3. 5 Viability and proliferation of RSC96 seeded on alginate substrates with 

different stiffness, where a live/dead assay was used to identify live cells by calcein-AM 

staining (green) and dead cells by propidium iodide staining (red). A, cells on 1.5% 

alginate hydrogel at Day 2; B, cells on 2.5% alginate hydrogel at Day 2; C, live/dead 

quantification of cell viability; D, MTT assay of cell proliferation. One-way ANOVA, 

∗represents P < 0.05 and ∗∗∗represents P < 0.001 

Immunocytochemical staining was employed to quantitatively investigate cellular 

performance of Schwann cells in 2D culture on the alginate-based substrates, in terms of 

their morphological circularity and expression of the ECM protein laminin. The results of 

of S100 labeled cells (Figures 3.6A, 3.6B and 3.6C) revealed that circularity values were 

increased as the alginate hydrogel became stiffer. For example, the average cell circularity 

values on 1.5% and 2.5% alginate surface were 0.72±0.08 and 0.81±0.05 at Day 2, and 

were 0.65±0.05 and 0.73±0.04 at Day 7, respectively. The statistical result confirmed that 

spreading of Schwann cells can be altered by regulating the mechanical stiffness of alginate 

substrates, and that cells preferred soft alginate hydrogels with a Young’s modulus in a 

range from 1.17 to 2.62 KPa.  

Analysis of protein expression of anti-laminin stained cells (Figures 3.6D, 3.6E and 

3.6F) showed that at both Days 2 and 7, the expression of laminin intensity decreases as 

the alginate concentration increases in a nonlinear pattern. It is also noticed that at the 
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alginate concentration of 2.5%, the laminin expression by cells decreases to a level that is 

significantly lower than the one of other concentrations. Overall, the result suggested a 

negative effect of higher stiffness on the Schwann cells’ expression of the ECM protein 

laminin.  

 

Figure 3. 6 Immunocytochemical staining for RSC96 cells seeded on alginate hydrogels 

in 2D culture. A and B, cells on 1.5% and 2.5% alginate hydrogels stained by anti-S-100 

after 2 days; C, cell circularity analysis of S100 stained cells; D and E, RSC96 cells 

seeded on 1.5% and 2.5% alginate hydrogels stained by anti-laminin after 2 days; F, 

quantitative analysis of laminin expression. One-way ANOVA, ∗∗represents P < 0.01. 

Through 3D culture, we also examined the performance of Schwann cells that were 

encapsulated within alginate hydrogels. The viability of cells in 3D culture was 

investigated at Days 1, 2 and 7 (Figures 3.7A, 3.7B and 3.7C). Microscopic observation 

revealed that propidium iodide-labeled dead cells were fewer in 3D culture, at all alginate 

concentrations tested over 7 days (Figure 3.7C), and the percentage of cell viability for all 

four alginate groups was all greater than 90%. From images 3.7A and 3.7B it was noticed 

that many cells clustered in 3D culture, which differed from the observations in 2D culture. 

Furthermore, cell clustering became more prominent as the concentration of alginate 

increased.  

We investigated cell proliferation in 3D culture as a function of gel stiffness using 

the modified MTT assay. Cell-number changes in 3D culture shared a similar trend with 

those in 2D culture, i.e., decreasing with the concentration in a nonlinear pattern (Figure 

3.7D). It is also noticed that a significant decrease takes place if the concentrations is 
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changed from 1.5% to 2.0% (Figure 3.7D), indicating better cell proliferation taken place 

in softer gels. Figure 3.7D also demonstrates that Schwann cells were quite sensitive to the 

covalent-bound RGD peptide, since the cell number in 1.5% pure alginate hydrogel was 

much less than the one in the RGD-bound alginate hydrogels after 7 days. Compared with 

2D culture (Figure 3.5), the values of MTT absorbance for 3D culture were similar at 1.0% 

and 1.5% alginate hydrogels (Figure 3.7), however the values for 2D seeded cells was much 

higher than those for 3D encapsulated cells after 7 days, at the alginate concentration of 

2.5%. Taken together, these results illustrate the negative effect of cell substrate stiffness 

on cell proliferation is stronger if Schwann cells are encapsulated within the hydrogel as 

compared to those seeded on the surface of hydrogel.  

 

Figure 3. 7 Viability and proliferation of RSC96 encapsulated in alginate substrates with 

different stiffness. A live/dead assay was used to identify live cells by calcein-AM 

staining (green) and dead cells by propidium iodide staining (red). A, cells in 1.5% 

alginate hydrogel after 7 days; B, cells in 2.5% alginate hydrogel after 7 days; C, 

live/dead quantification of cell viability; D, MTT assay of cell proliferation. One-way 

ANOVA, ∗∗represents P < 0.01 and ∗∗∗represents P < 0.001 

Anti-S100 staining and measurement of Schwann cell circularity in 3D culture was 

conducted at Days 2 and 7. A more spherical morphology was observed in 3D culture in 

the images (Figures 3.8A and 3.8B) as compared in 2D culture (Figure 3.6A and 3.6B), 
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which is also seen from the calculated cell circularity (Figures 3.8C and 3.6C). Furthermore, 

it was noticed that higher alginate concentration led to bigger and more cell clusters (Figure 

3.8C), indicating that cell extension within the hydrogel can also be affected by the stiffness 

of gel.  

The analysis of protein expression (Figures 3.8D, 3.8E, and 3.8F) demonstrated the 

same trend of laminin intensity in 3D culture as seen in 2D culture at Day 2 and 7 (Figure 

3.6F). The laminin staining intensity was stronger if cells were cultured in 1.0% and 1.5% 

alginate hydrogels, then sharply decreased as alginate concentration further increased. For 

example, from Figure 3.8F, the value of laminin staining intensity per cell in 2.5% alginate 

hydrogel was 47.72% less than that seen in 1.0% alginate at Day 7, suggesting a negative 

effect of higher stiffness on the extracellular deposition of laminin by encapsulated cells.    

 

Figure 3. 8 Immunocytochemical staining for RSC96 cells encapsulated in alginate 

hydrogels in 3D culture. A and B, cells on 1.5% and 2.5% alginate hydrogels stained by 

anti-S100 after 7 days; C, cell circularity analysis of S100 stained cells; D and E, RSC96 

cells encapsulated in 1.5% and 2.5% alginate hydrogels stained by anti-laminin after 7 

days; F, quantitative analysis of laminin expression. One-way ANOVA, ∗represents P < 

0.05, ∗∗represents P < 0.01 and ∗∗∗represents P < 0.001 

3.5 Discussion  

Recent sophisticated strategies such as 3D bio-printing enable fabrication of tissue 

scaffolds with incorporated living cells to more closely resemble tissues or organs, since 

high cell density with controlled distributions in biomaterials can be achieved in the 
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printing process [32-35]. Bio-fabrication of tissue scaffolds that contain living cells is a 

complex undertaking with many parameters to harmonize, such as the type of biomaterial, 

crosslinking technique, cell type, and fabrication process. Appropriate biomaterials are 

fundamental for tissue scaffolds to provide cells with an appropriate microenvironment 

containing cell-specific cues to promote cell health and function [36-38]. In addition to 

biochemical factors, these cues can include physical properties such as adhesive cues and 

mechanical stimuli, both of which can affect cell survival and regeneration significantly 

[39-41]. 

Schwann cells, the major glial cells for peripheral nervous system, have been 

widely used for nerve repair and regeneration [42, 43]. In the intact nerve, they wrap myelin 

around the axons, and provide other supportive roles. Following injury, they become 

mobilized to produce ECM and various growth factors to promote axonal growth. Spindle-

like stretched Schwann cells in shape with high proliferation rates are sought in culture or 

implantation, which can improve their in vivo behavior to produce such ECM proteins as 

laminin and neural growth factors for promoting axon growing. Because of source tissue 

and tissue culture heterogeneity in the isolation of primary Schwann cells, a clearer 

understanding of Schwann cell biology might be obtained from an immortalized Schwann 

cell line that can be cultured more consistently [44]. Thus, the immortalized Schwann cell 

line RSC96 was selected for this study. Alginate was applied as the main cell substrate 

biomaterial because of its fast gelation ability during scaffold fabrication, which provides 

the mechanical support to ensure the integrity of produced constructs. However, alginate 

alone is not suitable for Schwann cells as it lacks biochemical cell adhesive properties. In 

order to improve alginate adhesion characteristics, PLL, fibronectin, and RGD peptide 

were examined as additives to alginate in the present study. 

The mechanical properties of hydrogels have significant impact on cell behavior, 

including the extension of axons [24], Schwann cell proliferation and the expression of 

cellular proteins [25]. The stiffness of hydrogels can be tuned by adjusting its concentration 

and the molecular weight, or the density of crosslinking agent [27]. For alginate hydrogel, 

more alginate-calcium bonds are formed if alginate concentration became higher, which 

would reduce the porosity and diffusion of alginate hydrogel structure and thus increase its 

stiffness. In this study, compressive tests were used to evaluate the elasticity of the 
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substrates of varying alginate concentrations, from 1.0% to 2.5%.  It is noted that in our 

scaffold fabrication, if the concentration of alginate is lower 1.0%, it is hard to fabricate 

scaffolds with the structure integrity. Thus, 1.0% alginate was used here as the lowest 

concentration. In this study, RCS96 Schwann cells were cultured on either the surface or 

inside of the alginate substrates; and cell viability, proliferation and phenotype were 

investigated using the live/dead assay, the MTT assay, and morphological and 

immunocytochemical analysis, respectively. Our studies of Schwann cells indicated that 

softer alginate hydrogels (Young’s modulus range from 1.17 to 2.62 KPa) with covalently-

bound RGD peptide promoted good cell performance and could be selected as suitable 

substrates for bio-printing peripheral nerve repair scaffolds.  

For analysis of cells in 3D cultures, the standard MTT assay has an issue given that 

the hydrogel structure could impede reagent availability and thus affect the results. In order 

to address this issue, ethylenediaminetetraacetic acid (EDTA) or sodium citrate solution 

have been used previously to dissolve alginate hydrogels so as to release cells [12, 45]. 

However, these chemical components may stimulate reactions and change the color of cell 

suspensions. In this study, we modified MTT method for 3D cell culture as follows. Cell 

substrates were lyophilized, during which the formazan produced by cells was kept the 

same as the one before lyophilization; and then the formazan was dissolved using DMSO, 

leaving the dried and porous alginate behind. 

RGD peptide, corresponding to integrin recognition sites in fibronectin [25], was 

first simply mixed into alginate in our experiments. The result showed that most cells had 

spindle-like shapes in the presence of 100 μg/mL RGD after 2 days, similar to Schwann 

cells cultured on tissue culture treated surfaces. This indicated that addition of RGD peptide 

promotes cell adhesion. However, when the culture period was extended to 7 days, most 

of cells became more spherical again. This is probably caused by the leaking of RGD 

peptide from hydrogel due to the daily medium changes. Previous study showed extensive 

myoblast spreading if cultured on the surface of RGD covalently-modified alginate 

hydrogel [12]. The highest efficiency of RGD-alginate bond formation was found when 

the pH of the reaction solution was around 6.5. Compared with the RGD mixing alginate, 

chemically-modified alginate by RGD peptide in this study appeared to be much better for 

promoting Schwann cell phenotype. As a result, RGD-modified alginate was selected as 
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cell the substrate in our experiments to test the influence of mechanical properties on cell 

performance. 

Results in this study confirmed that more Schwann cells are generated if more 

fibronectin was added. However most of the cells remained spherical and did not exhibit 

their expected bipolar morphology. This is probably because of the inherent hydrophilicity 

of alginate hydrogels that prevents the attachment of Schwann cells [46]. Increased density 

of fibronectin in alginate is believed to have positive effects on Schwann cells stretching, 

because more integrin binding sites are involved [31]. However, since the amount of RGD 

sequence in fibronectin is much lower than derived RGD peptide solution at the same 

density, a significantly higher concentration of fibronectin would be needed for 

improvement of cell adhesion, increasing the cost. Some studies also show that it is more 

favorable to apply cell adhesion ligands rather than a whole protein because smaller 

peptides can sustain their bioactivities in the harsh processing conditions [24]. The artificial 

polypeptide PLL is commonly used to promote cell attachment in culture due to its positive 

charge property. Mixing PLL in alginate hydrogels showed limited improvement of cell 

proliferation, and even a negative effect was found as the concentration of PLL reached 

500 μg/mL. This may be due to the toxicity of PLL itself for cells.  

To explore the effects of hydrogel stiffness on Schwann cell, the performance of 

cell in both 2D and 3D cultures was examined by varying the concentration of alginate. It 

was found that alginate hydrogels with relatively low Young’s modulus (1.17 KPa to 2.62 

KPa) led to higher Schwann cell proliferation, good cell morphology and protein 

expression, showing the consistency with the previous study [46]. The viabilities of 

Schwann cells for both 2D and 3D culture are consistently high in our study, demonstrating 

that alginate hydrogel is compatible with cell survival. Proliferation analysis shows that no 

significant difference between 2D and 3D cell cultures if the elasticity of substrate is less 

than 2.62 KPa, and that the cell proliferation becomes less active in 3D culture at Day 7 as 

more alginate is included.  

Cell circularity values of S100 stained cells increased as alginate hydrogels became 

stiffer in both 2D and 3D cultures. Interestingly, the values of cell circularity from optical 

microscopic examination are less than those from florescent immunocytochemical analysis 

for the same samples, which is likely due to the different operating processes of these two 
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tests. For optical images, cells were alive in culture medium with a temperature of around 

37°C, while for florescent pictures, cells were rinsed in buffer at room temperature then 

chemically fixed, which would cause cells to shrink and increase their circularity.  

Expression of ECM protein laminin by Schwann cells shares a similar trend in both 

2D and 3D cultures, i.e., the florescent intensity rapidly goes down as the stiffness exceeds 

2.62 KPa. It is likely that Schwann cells are able to sense the elasticity of their substrates 

through their adhesion receptors during growth, and that relatively high stiffness may 

restrict laminin expression capacity [31]. Cell metabolism and protein expression can be 

influenced by signals that they receive from each other and from the ECM. As higher 

concentrations of alginate are used, more alginate/calcium crosslinking occurs, leading to 

lower porosity and lower diffusion within the alginate hydrogel, which may block signal 

transmission to cells.  

Unexpectedly cell clusters were found after 2 days and 7 days in all 3D cultures 

using both the live/dead assay and immunocytochemical visualization. The situation was 

improved as less alginate was used, suggesting that lower alginate concentration may be 

more beneficial for cell spreading. Similarly, proliferation was higher in softer gels used 

for 3D culture. However, alginate solutions of less than 1% cannot easily be printed into 

well-defined structures using the post-extrusion calcium gelation technique based on our 

preliminary bioprinting experiences. On the other hand, when the substrate is too stiff, cells 

experience higher mechanical restriction leading to lower metabolic performance. Thus a 

trade-off between the structural stable and Schwann cell performance should be carefully 

considered in the design of tissue scaffolds for peripheral nerve regeneration. Taken 

together, our present results suggest that 1.0 – 1.5% alginate solutions may be the best for 

the fabrication of scaffolds under the light of aforementioned trade-off consideration.  

3.6 Conclusions 

This chapter presents our study on the influence of mechanical properties on the 

Schwann cell performance including cell, viability, proliferation, morphology and cellular 

protein expression and further illustrates that the Schwann cell performance can be 

regulated by the tunable stiffness of alginate-hydrogel substrates. Several cell adhesive 

additives including PLL, fibronectin, and RGD peptides with various concentrations were 
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investigated and among them, alginate hydrogels covalently-modified with RGD peptide 

were determined to be the most appropriate substrate for promoting Schwann cell 

attachment and proliferation due to the level of cell spreading. The influence of the 

mechanical properties of alginate-based hydrogel on cell performance was evaluated and a 

suitable range of concentration of alginate with the associated stiffness was suggested for 

used in tissue repair scaffolds with living Schwann cells. Our results illustrate cell survival 

and phenotype can be controlled and promoted by appropriate biological and mechanical 

properties of substrates. The data collected in this study also provide useful specific 

information for future design of Schwann cell encapsulated scaffolds for nerve tissue 

engineering.  
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CHAPTER 4 

Characterization of Flow Behavior of Alginate-Cell Suspensions and the Influence of 

Shear Stress on Cell Viability and Proliferation 

This chapter has been published as "Liqun Ning, Arther Guillemot, Jingxuan Zhao, 

Georges Kipouros, and Xiongbiao Chen, Influence of flow behavior of alginate-cell 

suspensions on cell viability and proliferation. Tissue Engineering, Part C Method. 2016, 

22, 652-662" According to the Copyright Agreement, "the authors retain the right to 

include the journal article, in full or in part, in a thesis or dissertation". 

4.1 Abstract 

Tissue scaffolds with living cells fabricated by three-dimensional bioprinting/plotting 

techniques are becoming more prevalent in tissue repair and regeneration. In the 

bioprinting process, cells are subject to process-induced stresses (such as shear stress) that 

can result in cell damage and loss of cell function. The flow behavior of the biomaterial 

solutions that encapsulate living cells in this process plays an important role. This study 

used a rheometer to examine the flow behavior of alginate solution and alginate-Schwann 

cell (RSC96), alginate-fibroblast (NIH-3T3), and alginate-myoblast (L8) suspensions 

during shearing with respect to effects on cell viability and proliferation. The flow behavior 

of all the alginate-cell suspensions varied with alginate concentration and cell density and 

had a significant influence on the viability and proliferation of the cells that exposed to 

shear stress as well as on the recovery of cells. These findings provide a mean to preserve 

cell viability and/or retain cell proliferation function in the bioprinting process by 

regulating the flow behavior of cell-biomaterial suspensions and process parameters. 

4.2 Introduction 

Biomimic scaffolds have emerged as a method for tissue repair and regeneration in 

tissue engineering [1-3]. Among the techniques for fabricating these biomimic scaffolds, 

3D bioprinting/plotting is promising due to its versatile features that can be used to generate 

organized living tissue constructs in a controllable and repeatable manner [4-6], which 

would be impossible using traditional approaches [7-9]. Dispensing-based bioprinting, in 
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which a pneumatic or other volumetrically driven extruder is used to apply biomaterials or 

biomaterial-cell mixtures, is one of the most promising methods due to its efficient material 

manipulation with high printing resolution [10-12]. The mild conditions used in 

dispensing-based bioprinting also enable cells to be incorporated within the biomaterial 

solutions for scaffold fabrication [13-15]. However, dispensing-based bioprinting still 

faces several challenges, such as achieving the scaffold structures as designed [16,17], 

promoting the formation of artificial vascularization within scaffolds [18,19], manipulating 

multi materials/cells for mimicking natural tissues [20–23], and retaining the function of 

the cells incorporated or encapsulated during scaffold fabrication [24,25]. Understanding 

the flow behavior of biomaterial solutions and how it influences the bioprinting process is 

essential to address these issues [26,27]. 

In the bio-printing process, the biomaterials selected for cell encapsulation facilitate 

the transport of necessary nutrients without causing an immunoreaction from the host after 

implantation [28]. However, encapsulating cells into biomaterials in the bio-printing 

process is challenging because the cells are subjected to process-induced stresses, such as 

shear stress, that may cause cell damage and thus loss of cell functions [29]. Billiet et al. 

report that printing pressure and needle geometry used in a cell-laden scaffold fabrication 

process play important roles in the viability of blended cells (hepatocarcinoma cells) 

because both factors affect the shear stress induced as well as the time period that cells are 

exposed to shearing (i.e., the exposure time) [30]. They also noticed that the density of 

blended cells affects the apparent viscosity of the medium, but unfortunately were not able 

to quantitatively examine the relationship between shear stress/exposure time and cell 

viability or the influence of cell density on cell viability. While previous investigations 

show that cell damage occurring in printing/plotting depends upon cell manipulation 

parameters, temperature, and needle geometry [31-33], a comprehensive investigation into 

cell viability and proliferation as well as their correlation to the flow behavior of 

biomaterial solutions has yet to be conducted. 

 Process-induced stresses that cells experience in bio-printing cause the 

deformation of the cell structure and, as a result, can rupture the cell membrane or 

cytoskeleton if the stress and/or expose time exceed certain thresholds [34]. Following bio-

printing, some cells have the ability to recover from the damage caused by process-induced 
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stresses [35,36]. However, most investigations have focused on cell survival in the bio-

printing process [37-39] with few reports on cell recovery thereafter. In addition, the 

process-induced stresses can affect cell growth or proliferation even after they are removed; 

this is of importance for the ensuing tissue repair and regeneration and highlights the need 

to investigate cell viability and proliferation subsequent to the bio-printing process.  

This chapter presents a comprehensive study of cell viability and proliferation 

during and after the shear stress that cells experience during bio-printing. Alginate was 

chosen as the biomaterial for cell encapsulation and three different types of cells, Schwann 

cell line RSC96, fibroblast cell line, NIH-3T3, and myoblast cell line L8 were selected due 

to their common use in tissue engineering. Experiments to examine flow behavior were 

designed and conducted using alginate solutions of varying concentrations and featuring 

varying cell types and densities. Experiments aimed at examining the effects of shear stress 

on cell damage were also carried out, with the percent cell damage measured and quantified 

as a function of shear stress, exposure time, and cell density. Cells from both sheared and 

non-sheared suspensions were cultured and their ability to recover and proliferate over a 

48 h time frame was evaluated. The results of this study inform methodologies for 

regulating the flow behavior of biomaterial solutions to preserve cell viability and/or retain 

cell function during and after the bio-printing process.  

4.3 Methods 

4.3.1 Cell culture 

 The Schwann cell line (RSC96), fibroblast cell line (NIH-3T3), and myoblast cell 

line (L8) purchased from American Type Culture Collection (Manassas, VA, USA) were 

maintained in a humidified incubator at 37 °C, with a 5% CO2 atmosphere and standard 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich, Oakville, ON, Canada) 

supplemented with 10% fetal bovine serum (FBS) (GIBCO, Life Technologies, Burlington, 

ON, Canada) for culturing.  

4.3.2 Materials 

 Sodium alginate of medium viscosity (Sigma-Aldrich, Alginic acid sodium salt 

from brown algae, A2033, Canada) was thoroughly dissolved in calcium-free DMEM 
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(Gibco, Thermo Fisher Scientific, USA) to create a 4.0% w/v alginate stock solution for 

the flow behavior tests. To prepare alginate solutions for the cell recovery tests, sodium 

alginate was first dissolved in deionized water to form a 0.2% w/v solution. A 0.22 μm 

bottle-top filter (Thermo Scientific, Ann Arbor, MI, USA) was used to sterilize the alginate 

solution. The filtered medium was then removed to a -40 °C freezer for 24 h and later 

freeze-dried (FreeZone freeze dryer, Labconco, USA) under sterile conditions for 72 h. 

The freeze-dried alginate was dissolved again in calcium-free DMEM with 1.0% anti-

biotic (Penicillin 100x, Sigma-Aldrich, Canada) to achieve a 2.5% w/v alginate stock 

solution. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] powder 

purchased from Sigma-Aldrich (Canada) was dissolved and filter sterilized to obtain a 5 

mg/mL solution in 10 mM PBS. Calcein-AM, propidium iodide, and Hoechst stain were 

purchased from AnaSpec (Freemont, CA, USA). Trypan blue was purchased from Sigma-

Aldrich (Canada). 

4.3.3 Characterization of flow behavior    

4.3.3.1 Influence of alginate concentration and temperature on flow behavior  

 Alginate solution flow behavior was characterized on a rheometer with a cone-and-

plate geometry and a CP-41 spindle (RVDV-III, Brookfield, USA) (Figure 4.1A). For each 

test, 2 mL of alginate solution of various concentrations (1.0, 2.0, 3.0, and 4.0% w/v, 

respectively) were loaded into the gap between the cone and plate (Figure 4.1B). During 

the shear process, the cone is programmed to rotate at preset speeds and the shear stress 

applied to the sample is recorded. To evaluate the influence of temperature on the flow 

behavior, shearing experiments for all alginate solutions were conducted at temperatures 

of 15, 20, 25, 30, 35, and 40 °C controlled using a water bath (TC-102 calculating water 

bath, Brookfield, USA). For each condition, five samples were sheared and the average 

thereof is reported herein.   
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Figure 4. 1 Schematic of rheometer. A, the device and tools; B, applied cone and plate of 

rheometer 

4.3.3.2 Influence of cell densities on flow behavior  

 RSC96, NIH-3T3, and L8 cells were each mixed by pipette with a 1.0% alginate 

solution to obtain uniform cell suspensions with cell densities of 5×105, 1×106, 5×106, and 

1×107 cells/mL. Before this step, detached cells in a 50 mL plastic tube were centrifuged 

for 5 min and the standard DMEM with 10% FBS was then replaced by calcium-free 

DMEM so as to avoid gelation of alginate by calcium ions. A 2 mL alginate-cell suspension 

was loaded into the rheometer to test the flow behavior at different shear rates. For all three 

kinds of cells, the experiment for each cell density was repeated five times at room 

temperature.  

4.3.4 Characterization of cell damage under shearing  

4.3.4.1 Influence of alginate concentration on cell damage  

 For shearing, 2 mL cell-alginate mixtures with a cell density of 1×106 cells/mL were 

loaded into the rheometer, which was rotated at a speed of 40 rpm. Cell suspensions with 

varying alginate concentrations (1.0, 1.5, 2.0, and 2.5% w/v) were sheared for 10 s at room 

temperature (~21 °C) and the cell viability examined. To ensure a sterile experimental 

environment, the rheometer was placed underneath a hood that had been cleaned three 

times with 70% ethanol. The parts of the rheometer to be in immediate contact with cells, 

including the plate and cone, were immersed in 70% ethanol for 10 min and then dried for 

more than 15 min in the hood prior to use. To examine cell damage, 100 μL of cell 

suspension after shearing were transferred to a plate, 30 μL of 0.2% Trypan blue (a dye 
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used to stain damaged cells) were added, and the number of damaged or dead cells then 

counted and recorded with the help of an optical microscope (Leica Microsystems, 

Germany). The examination of cell damage was repeated on five cell suspension samples 

sheared by the rheometer. As a positive control, a group of cell-alginate suspensions were 

retained in tubes and not sheared. The difference in cell damage (calculated as a percent) 

between the sheared and control groups was attributed to the corresponding shear stress.  

4.3.4.2 Influence of exposure time on cell damage 

A 2% cell-alginate suspension with a cell density of 1×106 cells/mL was loaded into 

the rheometer, which was set at a speed of 40 rpm. Shearing periods of 10, 30, 60, and 120 

s were examined to evaluate the influence of exposure time on cell damage. The same 

procedure using Trypan blue and a microscope as described above was conducted for cell 

damage examination. Each test was repeated five times for each of the three cell types.  

4.3.4.3 Influence of cell density on cell damage  

 2.0% alginate-cell suspensions with cell densities of 5×105, 1×106, 5×106, or 1×107 

cells/mL were prepared using a pipette to ensure a homogenous distribution of cells. For 

each test, a 2 mL cell suspension was delivered to the rheometer, which was set as a speed 

of 40 rpm for suspensions with a low cell density (5×105 or 1×106 cells/mL) and 45 rpm 

for suspensions with a high cell density (5×106 or 1×107 cells/mL). This test was repeated 

five times for each cell density.   

4.3.5 Evaluation of cell recovery and proliferation after shearing  

4.3.5.1 Live/dead assay for cell viability evaluation 

 To investigate the recovery of cells after experiencing shear stress, a live/dead assay 

was performed to evaluate the viability of the three cell types 3, 6 and 48 h later after the 

removal of shear stress. An alginate-cell suspension with a cell density of 1×106 cells/mL 

was loaded into the rheometer and sheared at a speed of 40 rpm. After shearing, 100 uL of 

the cell suspension were transferred into a well of a 12-well plate, to which 900 μL of cell 

culture medium (calcium-free DMEM, 10% FBS, and 1% antibiotic) were then added. 

After placing the plate into a cell culture incubator for 3 h, a DMEM solution containing 
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0.5 μg/mL calcein-AM and 25 μg/mL propidium iodide (PI), which selectively stain live 

and dead cells, respectively, was added to the well. The plate was incubated for an 

additional 30 min at 37° C before examination using a fluorescent microscope (Carl Zeiss 

Axiovert 100). Both live and dead cell numbers were manually counted and analyzed using 

ImageJ (National Institutes of Health, Bethesda, Maryland, USA) from six images 

randomly taken from the cell suspension well, and the viability of cells was calculated as 

the percentage of live cells among the total cells. The same evaluation was conducted after 

6 and 48 h. The shearing test and subsequent examination of cell viability were repeated 

three times. As a positive control, the cell viability of cell suspensions retained in the tube 

without shearing was examined. The recovered cell numbers were then obtained by 

comparing the observations made at different time points. 

The influence of exposure time on viability and recovery of the three types of cells 

was subsequently examined. Alginate-cell suspensions with an alginate concentration of 

2% and a density of 1×106 cells/mL were sheared for time periods of 60 or 120 s using the 

rheometer. The cell viability assay described above was utilized at 3, 6, and 48 h later upon 

removal of shear stress. To investigate the effect of cell density, 2% alginate-cell 

suspensions with cell densities of 1×105 or 1×107 cells/mL were sheared at either low speed 

(40 rpm) or high speed (45 rpm), respectively, for 60 s. Then, 10 μL of the high cell density 

suspension and 200 μL of the low cell density suspension were transferred into the 12-well 

plate and the viability assay conducted as described above.  

4.3.5.2 MTT assay for cell proliferation evaluation  

 The influence of shear stress, exposure time, and cell density on the proliferation 

of cells was analyzed using an MTT assay. Suspensions of the three cell types were 

prepared as before, and delivered into 12-well plates after being sheared in the rheometer. 

To determine the effect of shear stress and exposure time on cell proliferation, 100 μL cell 

suspensions were pipetted into each well of the 12-well plate, to which 700 μL of cell 

culture medium (calcium free DMEM with 10% FBS and 1% antibiotic) were then added. 

To determine the effect of cell density on cell proliferation, 10 μL of the high density 

(1×107 cells/mL) cell suspension or 200 μL of the low density (5×105 cells/mL) cell 
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suspension were delivered into wells of the 12-well plate. Alginate-cell suspensions not 

subject to shear stress were treated as positive controls, and alginate solutions with no cells 

were prepared as the negative control.  

An MTT assay was performed to evaluate cell proliferation. Cell suspensions 

(including positive and negative controls) in the 12-well plates were treated with 80 μL 

MTT reagent (5 mg/mL) and incubated for 3 h at 37 °C in a 5% CO2 atmosphere. The 

culture medium was then carefully removed and replaced by a dimethyl sulfoxide (DMSO) 

solution (800 μL per well) to dissolve the formazan precipitate. After incubating for another 

15 min, the uniformly dissolved formazan precipitate medium was transferred to 96-well 

plates (100 μL per well) and read by a microplate reader (SpectraMax 190, Molecular 

Devices, USA) at 555/650 nm at room temperature. Absorbance was read after 3, 6, and 

48 h of incubation time. Each test was repeated three times of individual cell types.  

Because MTT absorbance values can be significantly disturbed if alginate gels form 

in the medium, it is essential to eliminate the formation of alginate hydrogels before the 

MTT assay. A test used to examine the gelation of alginate triggered by FBS was conducted 

due to the minute amount of calcium ions present in the FBS. A 900 μL pure FBS solution 

was delivered into a micro-tube that contained 100 μL of 2.5% alginate solution. Alginate 

gelation was examined after 30 min, 2 h, and 24 h of uniform mixing at room temperature. 

Three micro-tubes were prepared to ensure the reliability of the result.  

4.3.5.3 Hoechst/PI staining for cell viability and proliferation evaluations 

 Hoechst/PI staining for cell viability and proliferation evaluations was also 

performed to verify the recovery ability of cells after experiencing shear stress. Fluorescent 

Hoechst and PI dyes were used to selective stain live and dead cells (Hoechst) and dead 

cells only (PI). Solutions including alginate-NIH-3T3 suspensions with a fixed cell density 

(1×106 cells/mL) but different alginate concentrations (1.5 and 2.5%), 2% alginate-L8 

suspensions with a fixed cell density (1×106 cells/mL), and 2% alginate-RSC96 

suspensions with varying cell densities (5×105 and 1×107 cells/mL) were prepared and 

sheared using the rheometer. Cell suspensions were then cultured in 96-well plates (special 

plates for fluorescent plate reader, 100 μL per well) in an incubator after the shear stress 

was removed. Before observation, cells were stained using Hoechst (1 μg/mL) and PI (25 
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μg/mL) for 20 min in the incubator, and the culture medium with fluorescent dyes then 

transferred into micro-tubes to centrifuge for 10 min at 800 rpm. After aspirating the old 

medium and adding fresh DMEM to the micro-tubes, the retained cells (including live and 

dead cells) were delivered back to the same 96-well plates with 100 μL per well. The 

fluorescent absorbance was obtained at an excitation/emission wavelength of 355/460 nm 

for Hoechst and 520/617 nm for PI using a fluorescent microplate reader (SpectraMax M2e, 

Molecular Devices, USA) after the cells were cultured for 3, 6, and 48 h. This entire 

evaluation was conducted three times.  

4.3.6 Statistical analysis  

Mean values and standard error of the mean (SEM) of all data were calculated. 

Statistical significance was determined by ordinary one-way analysis of variance (ANOVA) 

and multiple comparisons were performed using Tukey’s test and Graphpad Prism 

(GraphPad Software, San Diego, CA, USA) with an acceptable significance level of P < 

0.05.  

4.4 Results 

 Figure 4.2 illustrates the effect of temperature and alginate concentration on 

measured shear stresses applied to an alginate solution. The shear stress decreases with 

temperature for all alginate concentrations, which suggests the alginate solution becomes 

less viscous as the temperature increases. The shear stress also increases with alginate 

concentration for any given temperature, which suggests the alginate solution becomes 

more viscous as the alginate concentration increases. The 3 and 4% alginate solutions were 

observed during these experiments to be much more viscous than the 1 and 2% solutions. 

Due to limits in the shear stress that could be measured by the rheometer, shearing 

experiments were performed at a lower shear rate of 5 s-1 for 3 and 4% solutions (Figure 

4.2A) and a higher shear rate of 100 s-1 for 1 and 2% solutions (Figure 4.2B). 
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Figure 4. 2 Influence of temperature and alginate concentration on flow behavior of 

alginate solution. A, 1 and 2% alginate solution under shear rate of 100 S-1; B, 3 and 4% 

alginate solution under shear rate of 5 S-1. 

Figure 4.3 depicts the influence of cell density on the flow behavior of 1% alginate 

solutions mixed with three kinds of cells. Similar to the alginate only solution, the alginate-

cell suspensions responded to shear in a non-linear fashion. The solution without cells 

experienced the highest shear stress compared to the alginate-cell suspensions for the same 

shear rate. As cell density increased the shear stress decreased, and the change in shear 

stress depended on the both the type of cells and the number of cells added. At a shear rate 

of 400 s-1, for example, the shear stress was reduced by 7.73, 6.19, and 10.83% with the 

addition of 5×105 RSC96 (Figure 4.3A), L8 (Figure 4.3B), and NIH-3T3 (Figure 4.3C) 

cells/mL, respectively, as compared to the solutions without cells. If the cell density 

increased to 1×107 cells/mL, the shear stress was reduced by 36.21% for RSC96 cells, 

40.08% for NIH-3T3, and 32.35% L8 cells.  
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Figure 4. 3 Influence of cell type and density on flow behavior of alginate-cell 

suspension. A, RSC96; B, L8; C, NIH-3T3. 

Figure 4.4 shows the cell damage measured after cells were exposed to varying 

shear stresses for 10 s. For all cell types, the damage not surprisingly worsened as the shear 

stress increased. For example, Figure 4.4A shows that 4.89±0.89% and 5.21±0.74% of 

RSC96 cells were damaged after being sheared at 300 Pa (1.0% alginate solution) and 600 

Pa (1.5% alginate solution), respectively; these percentages increased to 10.73±0.80% and 

21.36±2.39% for shear stresses of 1100 Pa (2.0% alginate solution) and 1700 Pa (2.5% 

alginate solution), respectively. The same cell damage trends were also observed for L8 

and NIH-3T3 cells (Figures 4.4B and 4.4C). Low levels of damage (2.62±0.30% for L8 

and 2.94±1.26% for NIH-3T3) were induced by a low shear stress of 300 Pa (1.0% alginate 

solution), but increased with the shear stress applied. For a shear stress of 1700 Pa (2.5% 

alginate solution), the percent cell damage rose to 13.87±1.65% and 14.10±2.79% for L8 

and NIH-3T3 cells, respectively, both of which are lower than corresponding data for 

RSC96 cells.  
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Figure 4. 4 Percentage of damaged cells in alginate-cell suspension at varying shear stress 

from 300 Pa to 1700 Pa. A, RSC96; B, L8; C, NIH-3T3. One-way ANOVA,* represent P 

< 0.05, ** represents P < 0.01 and *** represents P < 0.001 

Figure 4.5 exhibits the effects of shear period on cell damage for the three cell types. 

It is clear from figures that the number of damaged cells increased with shear time. In 

Figure 5A, for example, the percent damaged RSC96 cells slowly grew from 10.73±0.80% 

to 12.64±1.01% as the shear period extended from 10 and 60 s, and then rapidly increased 

to 28.50±1.63% after cell were exposed to shear stress for 120 s. Damage to NIH-3T3 cells 

(Figure 4.5C) follows a similar trend, and reached 25.97±0.29% after being sheared for 

120 s. In contrast, damage to L8 cells increased slowly and steadily as the shear period 

increased to 120 s (Figure 4.5B), with a consequent lower percent damaged cells 

(15.76±2.15%) than observed for either RSC96 or NIH-3T3 cells.  

 

Figure 4. 5 Percentage of damaged cells in alginate-cell suspension at varying shear time. 

A, RSC96; B, L8; C, NIH-3T3. One-way ANOVA,* represent P < 0.05, ** represents P 

< 0.01 and *** represents P<0.001 

Figure 4.6 shows the effect of cell density on cell damage after the shearing process. 

Overall, cell damage for the three cell types for a fixed shear period declined as cell density 
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increased. Figures 4.6A and 4.6C show that 12.21±1.94% and 12.64±1.01% of RSC96 cells 

were damaged and 12.59±2.81% and 12.20±2.91% of NIH-3T3 cells were damaged for 

densities of 5×105 and 1×106 cells/mL, respectively. The L8 cell damage rate was higher 

(18.67±3.09%; Figure 4.6B) for the low density cell suspension (5×105 cells/mL). Notably, 

the percent damage for all cell types decreased when cell densities increased to 1×107 

cells/mL, at 4.03±1.22%, 4.82±0.86%, and 4.62±0.76% for RSC96, L8, and NIH-3T3 cells 

respectively.  

 

Figure 4. 6 Percentage of damaged cells in alginate-cell suspension affected by cell 

density. A, RSC96; B, L8; C, NIH-3T3. One-way ANOVA,* represent P < 0.05, and ** 

represents P < 0.01 

Microscopic observations of live and dead cells at 3, 6, and 48 h for the three tested 

cell types indicate greater cell death was induced by higher shear stress (Figures 4.7A-

4.7C), longer exposure time (Figures 4.7D-4.7F), and lower cell density (Figures 4.7G-

4.7I). After the cells were sheared at controlled shear stresses of 600 Pa (1.5% alginate) or 

1700 Pa (2.5% alginate), cell viabilities for NIH-3T3 cells (Figure 7J) were 93.29±1.37% 

and 82.99±1.85% after 3 h and 95.50±1.37% and 87.71±3.64% after 48 h, respectively. 

The comparable viabilities of L8 cells (Figure 7K) were 91.27±1.83% and 81.27±3.09% 

after 3 h and 95.42±0.60% and 89.45±1.82% after 48 h. Figure 4.7L shows the effect of 

cell density on the viability of RSC96 cells. Cell viability values were 93.82±1.62% (1×107 

cells/mL) and 87.03±2.75% (5×105 cells/mL) after 3 h but, as observed for the other two 

cell types, grew to 95.19±1.26% and 91.11±2.24% after 48 h. There is very little change in 

cell viability for all cell types between 3 and 6 h of culture time, which suggests that only 

a few cells die during this period. 
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Figure 4. 7 Cell viability upon removal of the shear stress. A, D and G, non-sheared 

suspensions of NIH-3T3, L8 and RSC 96, respectively; B and C, sheared NIH-3T3 at 

different shear stress (600 Pa and 1700 Pa respectively); E and F, sheared L8 at different 

shear time (30 seconds and 120 seconds respectively); H and I, sheared RSC 96 affected 

by cell density (10×105 and 100×105 cell/mL). All the images were taken at 6 hours of 

cell culture; J-L, analysis of the viabilities of NIH-3T3, L8 and RSC96 respectively. 

An MTT assay was performed to evaluate the proliferation and recovery properties 

of three cell types 3, 6, and 48 h after shear stress was removed. As our methods indicated 

that gel was seldom formed by FBS, the effect of alginate hydrogel on the MTT assay was 

considered insignificant. Figure 4.8 shows the effect of shear stress on cell proliferation. 
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The absorbance values of all sheared cell suspensions were less than for non-sheared cells 

after 6 h, which verifies that cells are damaged during shearing. The two positive controls 

(1.5 and 2.5% alginate-cell suspensions) had close absorbance values, so data for only the 

1.5% alginate non-sheared cell suspensions are presented. The absorbance values of 

sheared RSC96 cells after 6 hours in culture were 90.32% (1.5% alginate) and 82.58% (2.5% 

alginate) of those of non-sheared controls (Figure 4.8A); corresponding data for L8 were 

95.97% and 86.29% (Figure 4.8B) and 99.46% and 85.94% for NIH-3T3 (Figure 4.8C). 

After 48 h, the MTT absorbance for sheared cells decreased compared to non-sheared cells, 

specifically to 83.96% and 72.61% for RSC96 cells, 89.50% and 82.22% for L8 cells, and 

90.77% and 85.27% for NIH-3T3 cells respectively, suggesting that the proliferation rate 

of cells slowed after they were disturbed by shear stress.    

 

Figure 4. 8 MTT absorbance of cells affected by varying shear stress. A, RSC96; B, L8; 

C, NIH-3T3. 

Figure 4.9 shows the effect of shear period on cell proliferation. Similar to the effect 

of shear stress, cell proliferation as indicated by MTT absorbance for cell suspensions 6 h 

post-shearing was less than for corresponding non-sheared cell suspensions. For instance, 

the MTT absorbance values of RSC96 cells (Figure 4.9A) were 93.85% (30 s) and 86.15% 
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(120 s) that of non-sheared cell suspensions; corresponding values for L8 and NIH-3T3 

cells were 92.63 and 86.32% (Figure 4.9B) and 94.48 and 84.83% (Figure 4.9C), 

respectively. These results verify observations from the cell damage tests that indicate a 

longer shear period leads to greater cell death, but compared to non-damaged cell 

percentages indicated from Figure 4.5, the percentages of MTT absorbance are higher. 

Damage to sheared RSC96 cells decreased after 48 h to 92.83 and 81.73% after being 

sheared for 30 or 120 s, respectively, with the same decreasing trends found for both L8 

cells (90.72 and 82.02%) and NIH-3T3 cells (92.42 and 82.53%). 

 

Figure 4. 9 MTT absorbance of cells affected by varying shear time. A, RSC96; B, L8; C, 

NIH-3T3. 

The influence of cell density on the proliferation of different types of cells was also 

evaluated. Absorbance values after 6 h suggest fewer living cells in the sheared cell 

suspensions than in the non-sheared cell suspensions (Figure 4.10). Specifically, the 

absorbance of sheared RSC96 cells with high cell density (1×107 cells/mL) was 93.33% of 

that for non-sheared cells after 6 h; the percentage decreased to 91.00% for the low cell 

density (5×105 cells/mL) cell suspension (Figure 4.10A). The absorbances of L8 cells 
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(Figure 4.10B) were 96.97 and 90.91% of the positive control for high and low cell density 

cell suspensions, respectively. The response of NIH-3T3 cells to shear stress shares (Figure 

4.10C) the same trend as the other two cell types, at 94.74% (1×107 cells/mL) and 88.42% 

(5×105 cells/mL), respectively. The percentages for all cell types were decreased at 48 h 

compared to the values at 6 h, and more decrease was observed for the sheared suspensions 

with low cell density which suggests that the proliferating rate of sheared cells is further 

reduced if fewer cells are included in the suspension.  

 

Figure 4. 10 MTT absorbance of cells affected by cell density. A, RSC96; B, L8; C, NIH-

3T3. 

The results of the Hoechst/PI staining assay are presented in Figures 4.11 and 4.12, 

with absorbance values of the cell suspensions presented as a percent of that for non-

sheared controls. For each cell type under different shear conditions, only a slight change 

of fluorescent absorbance occurred from 3 to 6 h, while the distinctions became obvious 

after 48 h (Figures 4.11A to 4.11C). Compared to non-sheared cells, the absorbance of 

sheared cells decreased as cell culture time extended to 48 h for all conditions evaluated. 

Overall, increasing shear stress or shear time, or decreasing cell density, adversely affected 

cell proliferation. The results from PI staining confirm the results of the cell viability tests, 
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i.e., that more cells were damaged with higher shear stress, longer exposure time, or lower 

cell density (Figures 4.12A to 4.12C). The figure also shows that the absorbance 

percentages of sheared cells were relatively steady across the different time points, which 

suggests that the number of dead cells did not change much within the first 48 h after 

shearing. 

 

Figure 4. 11 Absorbance of cells stained by Hoechst. A, NIH-3T3; B, L8; C, RSC96. 
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Figure 4. 12 Absorbance of cells stained by PI. A, NIH-3T3; B, L8; C, RSC96. 

4.5 Discussion 

3D bio-printing/plotting techniques for tissue scaffold fabrication have become 

popular due to their ability to manipulate biomaterial-cell suspensions with a high density 

of living cells. Cells in suspensions for tissue scaffold fabrication can be protected from 

immunoreactions by the biomaterials or the later-formed gels once the scaffolds are 

implanted into hosts [7,40,41]. However, the performance of the cells can be significantly 

affected by the flow behavior of the cell suspensions in the printing process. Thus, the 

present study evaluated the flow behavior of cell-alginate suspensions as expressed by 

stress-strain curves. The collected data demonstrate that the flow behavior of the 

suspensions can be notably altered by the concentration of alginate, the environmental 

temperature, or the incorporated cells type and number.  

Our results agree with conclusions that more incorporated cells reduce the shear 

stress of suspensions [32]. This phenomenon is likely due to cell-cell and cell-biomaterial 

solution interactions, because the flow behavior of the single-phase alginate solution 

changes as it becomes a two-phase solution as cells are encapsulated [30]. One percent 

alginate solution was used to form the cell suspensions evaluated for flow behavior using 
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a rheometer. This is because cell suspensions in a high alginate concentration solution 

would significantly increase the viscosity, which introduces the potential errors in 

suspension delivery. Therefore, the lowest alginate concentration among the four 

concentrations considered at the outset of the present study was employed for the remainder 

of the experiments to ensure the accuracy of the transferred volume and the reliability of 

the results obtained.  

Cells are subjected to shear stress in the bio-printing process when the cell 

suspensions are forced to flow through the nozzle tip. The shear stress applied to the cells 

is not only determined by the properties of the suspension but also by the dispensing 

pressure and nozzle size [31]. The elastic capability of cells normally allows them to 

withstand deformation induced by shear stress and recover to their original shape once the 

stress is removed [42]. However, cell damage caused by structural failure occurs when the 

stresses applied to the cells exceeds their tolerance limits [34]. In the present study, over 

15% of cells were damaged when a shear stress of 1700 Pa was applied for just 10 s. This 

demonstrates the negative effects of shear stress on the cells, and informs the choice of 

appropriate values of dispensing pressures and nozzle diameters in scaffold bio-printing to 

ensure high cell viability. The effect of exposure time on cell viability suggests that cell 

manipulations should not exceed 2 min at a shear stress of 1100 Pa or the percent damaged 

cells climbs above 15%. This result informs nozzle selection for scaffold bio-printing, 

because the shear time cells experience may exceed the threshold of cell toleration and lead 

to significant cell death if the nozzle tip is too long.      

Different types of cells in various organs and tissues have different physical, 

chemical, and biological properties [43]. Cells in either soft or mineralized tissues subject 

to uniform situations of mechanical stress transmission and sensation would have various 

responses the external stimulation. Estimates of mechanical properties of cells using a wide 

range of methods indicates that the measured elastic modulus of isolated cells generally 

ranges from 0.1 kPa (alveolar epithelial) to an approximate upper limit of 40 kPa (myocytes) 

[44]. The magnitude of the elastic properties is believed to be determined by diverse 

molecular structures, such as the cell membrane and cytoskeleton, which can distinguish 

the abilities of diverse cell types to withstand forces and recover to their normal phenotype 

[45]. In this study, Schwann cells were the weakest of the three cell types with respect to 
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the applied shear stress because more cells were damaged when the shear stress or exposure 

time increased. This can be explained by the inherent elastic ability of cells themselves. 

Schwann cells are the major glial cells in the peripheral nervous system and have inherently 

weak mechanical properties compared to other tissues such as skeletal muscles or bones 

[46-48]. Thus, the ability of Schwann cells to endure external stresses would be limited by 

their intrinsic characteristics, which makes them more susceptible damage.  

The results of this study also demonstrate that increasing cell density has a positive 

effect on protecting cell viability. For all three cell types tested, the number of damaged 

cells decreased with increasing cell density (Figure 4.6). When the cell density reached a 

relatively high level (e.g., 1×107 cells/mL), less than 5% of the cells were damaged after 

being subjected to 1100 Pa of shear stress for 60 s. This indicates that interactions between 

cells likely protect them from damage caused by shearing, and greater cell numbers 

heighten this protection.     

An evaluation of cell recovery and proliferation was carried out using multiple 

methods, including an MTT assay, a live/dead assay, and Hoechst/PI staining, to ensure 

the reliability of results. We expected our results to reflect the existence of three distinct 

cell states after shearing: unchanged cells with regular phenotypes, cells that survived but 

are damaged or quiescent, and dead cells. Cells that are damaged but still alive may have 

the ability to recover their regular functions, or may remain quiescent without any cellular 

expression and slowly die. With the assistance of the live/dead assay (Figure 4.7), an 

increase in live cell numbers for all cell types was observed after culturing the sheared cells 

for 6 h as compared with results from cell damage tests (Figures 4.4-4.6). This can be 

explained by the recovery of damaged cells after a certain period of time in culture. The 

assumption is supported by the steady number of living non-sheared cells, which changed 

only slightly after 6 h, indicating that the increase in the viability of sheared cells represents 

the recovery of injured cells. Moreover, the MTT assay results indicate similar absorbance 

values after 3 and 6 h for all examined cells; this suggests that cell proliferation does not 

occur within this short period and supports the premise that the increase in cell viability is 

due to the recovery of damaged cells. Cell proliferation continued to 48 h as confirmed by 

the results of both the live/dead assay and MTT assay; absorbance values kept increasing 

while a relatively constant number of dead cell were found under the fluorescent 
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microscope, which indicates the increasing cell numbers are due to cell regeneration. 

Hoechst/PI staining results also verify the occurrence of cell proliferation because the 

absorbance of Hoechst stained cells continued to increase while values from PI staining 

remained constant. 

Alginate solution can gel upon encountering calcium ions, which would affect the 

accuracy of absorbance values for the MTT assay when utilized for cell proliferation tests. 

To avoid this complication, the present study used calcium-free DMEM and confirmed that 

gelation was insignificant. Irregular MTT values for sheared and non-sheared cells were 

noted for the 3 h samples wherein the absorbance of non-sheared cells was lower than 

sheared cells in some cases (Figures 4.8-4.10). This was attributed to the loss of poorly 

attached cells when the culture mediums were aspirated out (MTT protocol) just 3 h after 

cell suspensions were delivered into 12-well plates [49]. To address this issue, Hoechst/PI 

staining tests were applied and special manipulations in the examining process were 

conducted. The results of the Hoechst/PI staining assay agree with observations from the 

cell damage testing, and the absorbance values at 6 and 48 h concur with results from both 

the live/dead and MTT assays. After 48 h, results from the MTT assay and Hoechst/PI 

staining indicated a significant increase in cell numbers for all samples although the 

absorbances of the sheared cell suspensions were less than for corresponding control 

samples. However, cell proliferation of sheared cells was less than controls, especially for 

cells subjected to a higher shear stress or a longer shear period. Thus, the selection of 

dispensing pressure and nozzle size in tissue scaffold bio-printing is important because the 

related shear stress and shear time not only lead to cell damage but also significantly 

reduced cell proliferation if improper parameters are utilized. Our results also indicate that 

cell density plays an important role in preserving cell proliferation because cell suspensions 

with high cell densities were able to better maintain their proliferation capacity after 

shearing compared to those with low cell densities.  

The combined results of the cell damage test, live/dead assay, MTT assay, and 

Hoechst/PI staining from the present study show relatively constant dead cell numbers for 

all of the sheared cell suspensions, indicating that few living cells died within the first 48 

h in culture. The proliferation rate of sheared cells was lower than for non-sheared cells, 
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which demonstrates that some sheared cells might have still been alive after 48 h but had 

lost their proliferation capacity. 

4.6 Conclusions  

This chapter presents our investigations into the flow behavior of biomaterial-cell 

suspensions and the impact of shear stress on cell viability and proliferation, as exemplified 

using alginate-Schwann cell, alginate-fibroblast, and alginate-myoblast suspensions. The 

examination of flow behavior extends previous studies and demonstrates that not only 

temperature and biomaterial concentration but also cell density can significantly alter the 

flow behavior of cell suspensions. Furthermore, data for all cell suspensions examined in 

this study indicate that increasing the cell density can reduce the shear stress for a given 

shear rate. Moreover, our results show cell viability and proliferation can be affected by 

shear stress, shear time, and cell density. These findings provide a means to preserve the 

cell viability and/or to retain cell proliferation function in the bio-printing process by 

regulating the flow behavior of cell-biomaterial suspensions and process parameters. Also, 

the data and results of this study provide useful information for future characterization of 

the cell damage in 3D printing processes using mathematical models to predict the viability 

and proliferation of cells encapsulated in biomaterials/scaffolds.    
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CHAPTER 5 

Characterization of Cell Damage and Proliferative Ability during and after Bioprinting 

This chapter has been submitted as "Liqun Ning, Nicholas Betancourt, David J. Schreyer, 

and Xiongbiao Chen, Characterization of cell damage and proliferative ability during and 

after bioprinting. Biofabrication". It is under reviewing. According to the Copyright 

Agreement, "the authors retain the right to include the journal article, in full or in part, in a 

thesis or dissertation". 

5.1 Abstract 

When a fluid containing living cells is subject to bioprinting, the cells experience process-

induced stresses including shear and extensional stresses. These process-induced stresses 

breach cell membranes and can lead to cell damage, thus reducing cell viability and 

functioning within the printed constructs. Several studies have been conducted to 

determine the influence of shear stress on cell damage; however, the effect of extensional 

stress has been typically ignored in the literature despite recent evidence of its importance. 

This chapter examines the influence of both extensional and shear stress on cell damage 

and, on this basis, a novel method to characterize the cell damage that occurs during 

bioprinting is developed. In this method, cell damage caused by shear stress is evaluated 

with a rheometer while cell damage caused by extensional stress is inferred from the 

difference between the total cell damage that occurs throughout the bioprinting process and 

the cell damage attributed to shear stress. From the results, a relationship between cell 

damage and shear and extensional stresses in bioprinting is established. The proliferative 

ability of cells in the first 72 h after bioprinting is also investigated with the results 

illustrating that the process-induced stresses affect not only cell viability but also their 

proliferative ability after bioprinting. The method developed and the study results provide 

insight into the cell damage that occurs during bioprinting and the effect on proliferative 

ability thereafter, and can be used to optimize the bioprinting process so as to preserve cell 

viability and function.  
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5.2 Introduction 

3D bioprinting techniques have been extensively utilized for the fabrication of 

viable, artificial biological constructs such as tissue scaffolds [1-5]. The key features of 3D 

bioprinting include the ability to print viable cells suspended in a biomaterial solution and 

deposit the biomaterial-cell suspensions in a spatially-controlled manner [6-8]. During the 

bioprinting process, the biomaterial-cell suspensions are loaded into the syringe of a bio-

printer, then extruded or dispensed through a needle by force (e.g., applied pressure) to 

build 3D constructs. This printing force can induce sustained shear and extensional stresses 

on the cells, which can breach the cell membranes and damage the cells [9]. The resulting 

cell damage can significantly reduce cell viability and functioning within the printed 

structures [10, 11]. Thus, knowledge regarding the factors that influence process-induced 

cell damage is of importance as it can be used to guide the design and optimization of the 

printing process so as to preserve cell viability and functioning.   

The shear stress cells experience during the bioprinting process, which mainly 

occurs as the cell/biomaterial suspension is forced to flow through the narrow needle tip, 

is considered to be the major factor causing cell damage [12]. To measure this effect, 

experiments have examined cell damage in cell suspensions subjected to shearing stresses 

using a plate-and-cone rheometer to provide uniform and controllable shear stress on cells 

suspended in a solution; and the results illustrate that cell damage is associated with the 

level of shear stress and shearing or exposure time for a given type of cells [11, 12]. A 

relationship between cell damage and shear stress, termed the cell damage law, has been 

established and then used to investigate cell damage in the bioprinting process [13]. Recent 

evidence indicates the extensional stress that cells experience during the bioprinting 

process can also play a crucial role in determining their viability after bioprinting [14, 15]. 

Extensional stress is generated due to the abrupt velocity change the cell suspension 

experiences as it is driven through the geometrically contracted region of the needle. 

Compared to shear stress, extensional stress can lead to more acute cell damage [16, 17]. 

Therefore, considering both shear and extensional stresses is of importance when 

establishing a relationship between cell damage and the bioprinting process, but this has 

rarely been taken into account.  
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Whereas the cell damage caused by shear stress has been investigated with the help 

of a plate-and-cone rheometer [18], studying cell damage caused by extensional stress has 

proved challenging due to the difficulty in producing a pure extensional flow with cell 

suspensions. In this chapter, a novel method is developed to determine a cell damage law 

considering extensional stress using cultured Schwann cells (RSC96) and myoblasts (L8). 

Specifically, because cell damage in the bioprinting process is an aggregation of both shear 

and extensional stress-induced cell damage, we conducted experiments in which we 

dispensed living cells in alginate solutions and measured the resulting percent cell damage. 

As we can determine the percent cell damage attributable to shearing from the established 

cell damage law, cell damage due to extensional stress can be calculated and then an 

extensional stress-based cell damage law established. This approach provides an overall 

representation of the cell damage introduced by the bioprinting process. We also evaluated 

the degree of cell damage (injured or dead) within 6 h of bioprinting as well as the viability 

and proliferation of printed cells after 24 and 72 h to understand the influence of cell 

damage on the longer-term preservation of biological functions in biological constructs.  

5.3 Modelling cell damage in the bioprinting process 

5.3.1 Cell damage in bioprinting 

During bioprinting, several assumptions are made as the cell suspension is 

dispensed through the cylindrical needle (Figure 5.1): (1) the printed cell suspension is 

incompressible; (2) the fluid flow inside the needle tip is considered to be developed flow, 

and thus the velocity profile does not change with time; (3) there is no slip between the cell 

suspension and the wall of the needle; and (4) the pressure at the exit of the needle equals 

the ambient air pressure.  
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Figure 5. 1 Schematic of bioprinting needle and distributions of extensional and shear 

stresses inside the needle during bioprinting. D1=4.2mm; D=100 - 330 μm and R=50 - 

165 μm; L=11 mm.  

Cell damage in the form of membrane damage or breakage may occur during the 

bioprinting process due to process-induced stresses, i.e., both shear and extensional stresses 

(the influence of hydrostatic pressure on cell damage in bioprinting is ignored as concluded 

by [13]). For given bioprinting conditions, cell damage can generally be expressed as a 

function of stress and exposure time, i.e., 

 𝐷𝑡 = 𝑓1(𝐷𝑒𝑡(𝜏𝑒, 𝑡𝑒), 𝐷𝑠𝑡(𝜏𝑠, 𝑡𝑠), ),     (5.1) 

where Dt represents the percent cell damage caused; Det is the percent extensional stress-

induced cell damage; τe and te are the magnitude of extensional stress and associated 

exposure time, respectively; Dst is the percent shear stress-induced cell damage; and τs and 

ts are the magnitude of shear stress and associated exposure time, respectively.  

Figure 5.2 shows a simulation (details given later) of the velocity change rate for 

both extensional (left) and shear (right) flow of a non-Newtonian solution as it is driven 

through a bioprinting process. The left figure shows that the major velocity change in the 

fluid at the contraction of the needle is along the flow direction, which causes significant 

extensional stress on the cells; in contrast, the major velocity change in the needle tip (right 

figure) is perpendicular to the flow, which results in significant shear stress on the cells. 

Based on these observations, it is rational to assume that cell damage in the contractive 
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area is mainly caused by extensional stress but in the needle tip is mainly caused by shear 

stress. Thus, the total cell damage caused by both external and shear stresses during the 

bioprinting process can be expressed by  

 𝐷𝑡 = 𝐷𝑒𝑡 + (1 − 𝐷𝑒𝑡) ∙ 𝐷𝑠𝑡.     (5.2) 

 

Figure 5. 2 Simulation of extensional (left) and shear (right) rate of a non-Newtonian 

fluid inside a bioprinting needle   

5.3.2 Shear stress-induced cell damage in bioprinting 

The development of a shear stress-induced cell damage law aims to bridge the 

relation between cell damage and shear stress within a certain exposure time. Previously 

reported models to describe cell damage induced by shear stress include power law models 

and polynomial models [19, 20]. These have simple formations and are good at fitting 

experimental data when sufficient data are available. However, they are limited to 

accurately represent and predict the trend with upper and lower limits, such as a theoretical 

value of cell damage from 0 to 100%. Exponential equations and modifications thereof 

have been used in statistics for their inherent ability to confine the output of an equation 

within a numerical range. Previous cell damage evaluations show that the trend in cell 

damage is similar to an exponential equation as stress or exposure time increases [13, 20]. 

Therefore, an exponential-based equation is used in this chapter to describe cell damage 

related to both stress and exposure time: 

  𝐷(𝜏, 𝑡) = (1 − 𝑒𝑓2(𝜏,𝑡)) × 100%, 𝜏, 𝑡 ≥ 0, 𝑓2(𝜏, 𝑡) ≤ 0.      (5.3) 

 Cell damage is expected to increase from zero (no shear stress or exposure time) to 

100% as the applied stress or exposure time increases. For shear stress-induced cell damage, 

the cell damage law can then be written as 
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 𝐷𝑠(𝜏𝑠, 𝑡𝑠) = (1 − 𝑒−𝑎1∙𝜏𝑠
𝑏1 ∙𝑡𝑠

𝑐1
) × 100%,     (5.4) 

where a1, b1, and c1 are constant coefficients that can be determined from experiments. The 

format of this cell damage law is reasonable because the percent damaged cells follows the 

expected trend, growing from 0 to 100%. Also, it mathematically guarantees the theoretical 

situation that no cell damage occurs if either τs or ts equals zero.  

 Biomaterial-cell suspensions show non-Newtonian flow behavior. Thus, a power 

law model is often used [21]: 

 𝜏𝑠 = 𝐾𝛾𝑛 + 𝜏0,     (5.5) 

where K is the consistency index [Pa∙sn], n is the dimensionless flow behavior index, γ is 

the shear rate [s-1], and τ0 is the yield stress. 

 Based on the assumptions for biomaterials and cells employed in bioprinting, the 

pressure drop in the needle can be given by 

 ∆𝑃 = 𝑃 − 𝑃𝑒𝑛,     (5.6) 

where P is the applied air pressure and Pen is the pressure drop at the abrupt contraction 

area of the needle. Based on the force balance and assumptions, the shear stress distribution 

along the radial direction in the needle tip can be written as 

 𝜏𝑠(𝑟) =
∆𝑃𝑟

2𝐿
 ,    (5.7) 

where L is the length of the needle tip [11 mm] and τs(r) is the shear stress at radial position 

r. For cell suspensions characterized by Eqn. 5.5, the flow velocity V in the needle tip can 

be given by [13] 

 𝑉(𝑟) =
𝑛

𝑛+1
(
∆𝑃𝑅

2𝐾𝐿
)
1

𝑛 ∙ 𝑅[1 − (
𝑟

𝑅
)
𝑛+1

𝑛 ],     (5.8) 

where R is the inner diameter of the needle tip. The velocity of a cell suspension in the 

needle tip is known to be a function of radius r. Thus, the length of time required for cells 

to go through the needle tip will differ for different radial distributions, according to 

 𝑡𝑠(𝑟) =
𝐿

𝑉(𝑟)
.     (5.9) 

 For a cell suspension with a given cell density, the total cell number and the 

damaged cell number in the needle tip can be calculated if the needle size is known. By 

employing the cell damage law, the percent cell damage caused by shear stress in the needle 

tip, Dst, can be calculated using  
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 𝐷𝑠𝑡(𝜏𝑠, 𝑡𝑠) =
2∫ 𝑟∙𝐷𝑠(𝜏𝑠,𝑡𝑠)𝑑𝑟

𝑅
0

𝑅2
× 100%.     (5.10) 

5.3.3 Extensional stress-induced cell damage in bioprinting  

The extensional stress caused by the sudden velocity change in the direction of flow 

as the fluid is flowing through the abrupt contraction of the bioprinting needle can be 

determined if the velocity change and extensional viscosity of the fluid are known [22]. 

Unlike a Newtonian fluid in which the extensional viscosity is proportional to the shear 

viscosity, the extensional viscosity for a non-Newtonian fluid is complicated. Although 

many extensional rheometers have been made to measure extensional viscosity, their use 

is time-consuming and obtaining the viscosity over a wide range of extensional strain rates 

is challenging [23, 24].  

 When the fluid flows across the contraction of a needle, the entry contraction flow 

is subject mainly to extensional deformation, and an entry pressure drop accordingly occurs 

[25]. Compared to methods to measure extensional viscosity, those for the measurement 

and calculation of entry pressure drop are easy to perform [26]. If the pressure drop is 

known, the average extensional stress can be determined using the following equation if 

the geometrical angle of the contraction is close to 90° [27, 28]: 

 𝜏𝑒 =
3

8
(𝑛 + 1)𝑃𝑒𝑛,     (5.11) 

where n is the flow behavior index, which can be determined from a flow behavior test. 

 Capillary rheometers can be employed to detect the pressure drop of a fluid at the 

contraction of the capillary [29]. The fluid is extruded with a prescribed shear rate from 

circular capillaries that have various length-diameter ratios (L/D), and the contraction 

pressure drop then determined with Bagley’s method, which plots the pressure drop at a 

constant shear rate versus L/D ratio by imposing a linear fit on the data [30]. The linear 

Bagley plot is then extrapolated to zero, and that point is recognized as the entrance 

pressure drop. 

The conditions of bioprinting are similar to those of a capillary rheometer, where 

cell suspensions are extruded through a capillary-like cylindrical needle with a large L/D 

ratio. Therefore, Bagley’s method to determine the pressure drop can be applied to 

bioprinting. However, this can be challenging for experimental methods that use trial-and-
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error to adjust the dispensing pressure so as to achieve the proposed shear rate when needles 

with different L/D values are used, and becomes more time-consuming if many bioprinting 

conditions (e.g., printing pressures, needle diameters, and biomaterial-cell suspension 

types) are examined.  

Compared to experimental methods, simulation analysis, once verified by 

experiments, is more efficient and economical. In this study, computational fluid dynamics 

(CFD) is applied to simulate the flow profile (i.e., mass flow rate) of biomaterial-cell 

suspensions inside the printing needle [31]. After verification, the simulated data are then 

used to determine the pressure drops with the assistance of Bagley’s method.  

As the cell suspension is treated as an incompressible fluid, the conservation of 

mass and momentum equations are used as the governing equations: 

 ∇ ∙ 𝐮 = 0,     (5.12) 

 𝜌(𝐮 ∙ ∇𝐮) = −∇𝑃 + 𝜇∇2𝐮 + 𝐅,     (5.13) 

where u is the velocity vector, ρ is the fluid density, μ represents the viscosity of the fluid, 

P is pressure, and F is external force. Considering the small value of the Reynolds number 

of biomaterial-cell suspensions flowing in the needle [16], the flow profile is solved in a 

laminar stationary state. 

 Assuming the time the cells are exposed to extensional stress can be neglected due 

to the quite limited effective contractive length (Figure 2), the cell damage law (Eqn. 5.3) 

for extensional stress can be modified and derived as   

 𝐷𝑒𝑡(𝜏𝑒) = (1 − 𝑒−𝑎2∙𝜏𝑠
𝑏2) × 100%,     (5.14) 

where a2 and b2 are constant coefficients that can be obtained using experimental data.  

5.4 Materials and Methods 

5.4.1 Cell culture 

A Schwann cell line (RSC96) and a myoblast line (L8) purchased from the 

American Type Culture Collection were each maintained in a 5% CO2, humidified 

incubator at 37 °C with standard Dulbecco’s modified Eagle’s medium (DMEM; Sigma-

Aldrich) supplemented with 10% fetal bovine serum (FBS; Gibco, Life Technologies) for 

culturing. 
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5.4.2 Materials preparation 

Medium viscosity sodium alginate powder (alginic acid sodium salt from brown 

algae, A2033, Sigma-Aldrich) was first dissolved in deionized water to form a 0.2% w/v 

alginate solution. A 0.22-μm bottle-top filter (Thermo Fisher Scientific) was applied to 

sterilize the dissolved alginate solution, and the filtered medium then transferred into a 

−40 °C freezer for 24 h and later freeze-dried (FreeZone Freeze Dryer; Labconco). The 

sterilized alginate was thoroughly dissolved in calcium-free DMEM (Gibco, Life 

Technologies) with 1% antibiotic (100× penicillin and streptomycin; Sigma-Aldrich) 

added to form a 2.0% w/v alginate stock solution. Trypan blue was purchased from Sigma-

Aldrich. Calcein AM, ethidium homodimer-1, propidium iodide (PI), and Hoechst 33342 

were purchased from AnaSpec. Annexin Ⅴ-FITC and associated binding buffer were 

purchased from Biovision. Ultrapure salmon sperm DNA solution was purchased from 

Thermo Fisher Scientific. 

5.4.3 Characterization of cell damage under shearing using a plate-and-cone 

rheometer 

Cell damage was evaluated using a cone-plate type rheometer (RVDV-Ⅲ; 

Brookfield) with a CP-52 spindle cone at room temperature (~22 °C). RSC96 and L8 cells 

were separately mixed with alginate solution to obtain 1.5% uniform alginate/cell 

suspensions with a cell density of 1×106 cells/mL. The rheometer was placed within a 

laminar flow sterile air hood and wiped with 70% ethanol three times in the sterile 

atmosphere. The cone and plate of the rheometer (which directly contact the cells) were 

immersed in 70% ethanol for 10 min and then dried for another 15 min in the hood before 

use. A 2-mL prepared cell suspension was then transferred into the plate of the rheometer 

and subjected to varying shear rates (10, 40, 80, 120, and 160 rpm) for 10, 30, 60, and 120 

s at room temperature. To examine cell damage, 100 μL of the sheared cell suspension 

were removed and mixed with 30 μL of 0.2% trypan blue (a dye to stain the damaged cells 

with ruptured membranes), and the number of damaged cells manually counted with the 

assistance of an optical microscope (Leica Microsystems). Cell damage was examined on 

four suspensions, and the percent cell damage calculated as the number of damaged cells 
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divided by the total cell number. Cell suspensions retained in tubes were treated as positive 

controls. The difference in cell damage between the sheared and control groups was 

attributed to the corresponding shear stress.  

5.4.4 Characterization of cell suspension flow behavior using the rheometer  

The flow behaviors of alginate solution, the alginate-RSC96 cell suspension, and 

the alginate-L8 cell suspension were evaluated using the same rheometer at room 

temperature. A 2-mL cell suspension containing 1.5% alginate and a cell density of 1×106 

cells/mL was loaded into the gap between the cone and plate of the rheometer for each test. 

During shearing, the cone was pre-set to rotate at a series of angular speeds, and the 

associated shear stress recorded. Five samples were tested for each cell type, with the 

average reported herein.  

5.4.5 Characterization of mass flow rate of cell suspensions in bioprinting 

Alginate-RSC96 cell and alginate-L8 cell suspensions each with a cell density of 

1×106 cells/mL were separately loaded into the syringe of the bio-plotter (3D bio-plotter, 

EnvisionTEC, Germany) to determine the mass flow rate. Suspensions were driven under 

varying dispensing pressures (50, 100, 200, and 400 KPa) through a 200-µm needle as well 

as through needles of varying diameters (100, 200, 250, and 330 µm) at a fixed bioprinting 

pressure of 200 KPa. The mass flow rate was then examined using a digital weight scale. 

By controlling the printing time, three printed droplets for each printing condition were 

weighed and the average thereof used to represent the flow rate.  

5.4.6 Simulation of flow profiles of alginate-cell suspensions in bioprinting 

 Due to the structural symmetry of the bioprinting needle, two-dimensional 

representations of needles were built instead of 3D structures using CFD software 

(COMSOL, Stockholm, Sweden). The geometry was then fitted with grids, with refined 

grids in the region of the wall of the tip and contraction. Flow behaviors of cell suspensions 

and dispensing pressures were given as initial conditions. The boundary conditions were 

specified such that the pressure at the exit of needle was equal to ambient air pressure, and 

there was no slip flow at any needle wall. After initial simulations, the meshed grid was 
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refined until the magnitude of the velocity for different areas in the domain did not change 

significantly.  

 The simulated mass flow rate could then be obtained from the solved flow model. 

Once verified by experiments, the flow profile of each suspension could be obtained, and 

thus the pressure drop at the contraction of the needle determined with the help of Bagley’s 

method. 

5.4.7 Characterization of cell damage in the bioprinting process 

Cell suspensions with a cell density of 1×106 cells/mL were loaded into a sterilized 

syringe of the 3D bio-printer for printing. The suspensions were first extruded under 

varying dispensing pressures (50, 100, 200, and 400 KPa) through a cylindrical needle with 

a 200-µm tip diameter. Cells were stained both immediately and 6 h after bioprinting with 

Hoechst 33342, Annexin V-FITC, and PI. For immediate staining, 100 µL of the bio-

printed cell suspensions were transferred into 15-mL tubes containing 3 mL of cell culture 

medium. The solution was uniformly mixed and then centrifuged for 10 min at 1000 rpm. 

After aspirating the medium, 500 µL of 1X binding buffer with 5 µL Annexin V-FITC, 25 

µg/mL PI, and 1 µg/mL Hoechst 33342, which selectively stain damaged cells (injured cell 

membrane), dead cells (cell nucleus), and cell DNA, respectively, were added to the tube 

for 10 min in a 37 °C incubator. Cells were then transferred onto a glass slide and analyzed 

under a fluorescence microscope (Axioimager M1, Carl Zeiss). Three samples for each 

bioprinting pressure were examined, and the number of damaged cells, dead cells, and total 

cells manually counted from images randomly taken from three fields of each glass slide 

(three slides for each testing sample) using ImageJ software (National Institutes of Health, 

Bethesda, Maryland, USA). 

 For the 6 h examination, a 100-µL cell suspension was first transferred after 

bioprinting into the well of a 12-well plate that contained 900 µL of cell culture medium. 

After 6 h in the cell culture incubator, the culture medium in the well was transferred to a 

15-mL tube; attached cells were detached using 200 µL trypsin + EDTA (Sigma-Aldrich) 

and then transferred into the same tube. The cells were examined using the same procedure 

as described above. 
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 Cylindrical needles of varying diameters (100, 200, 250, and 330 µm) were also 

considered under a constant printing pressure of 200 KPa. Cell damage was examined 

immediately and 6 h after bioprinting following the same procedures as described above.  

5.4.8 Characterization of cell viability after bioprinting 

Alginate-RSC96 cell and alginate-L8 cell suspensions were respectively printed 

under varying dispensing pressures (50, 100, 200, and 400 KPa) and then cultured in 12-

well tissue culture plates. A live/dead assay was applied to evaluate the viability of cells 6, 

24, and 72 h after bioprinting. Briefly, calcein AM (1 μg/mL) and ethidium homodimer-1 

(0.5 μg/mL), which selectively stain live or dead cells, respectively, were added into the 

wells with cells. After 20 min staining in the cell culture incubator, the culture plates with 

stained cells were moved to the fluorescence microscope for image capture (Carl Zeiss 

Axiovert 100). Cell viability was assessed by counting stained cells on images randomly 

taken from samples. For each bioprinting pressure, three wells were used for the printed 

cells, and three random images of each well were taken and analyzed using ImageJ. 

Viability was calculated as the percent live cells among the total number of live and dead 

cells.  

5.4.9 Characterization of cell proliferation after bioprinting  

Total cell number represented by the fluorescent labelling of cell DNA was applied 

to quantify the proliferation of cells. Before testing, standard values of Hoechst-labeled 

DNA were investigated followed the procedure reported in [32]. Briefly, serial dilutions of 

the stock solution of ultrapure salmon DNA were prepared in TNE buffer (10 mM Tris, 1 

mM EDTA, 2 M NaCl, pH 7.4). Then, 100 µL of TNE buffer with varying DNA content 

(20, 50, 200, 500, 2000, or 5000 ng) were pipetted into the wells of a black opaque 96-well 

plate. An additional 100 µL of TNE buffer with 20 µg/mL Hoechst were added to obtain a 

solution with a final concentration of 10 µg/mL in 200 µL per well. The fluorescence was 

measured 15 min later using a fluorescence microplate reader (SpectraMax M2e; 

Molecular Devices) after the DNA was sufficiently stained. The detected fluorescence 

values were used to calculate a DNA standard curve.  
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 RSC96 and L8 cells were suspended separately in DMEM plus 10% FBS and 

counted after trypsinization. Serial dilutions were made in the DMEM solution so that 100 

µL contained 1×103, 5×103, 1×104, 2.5×104, 5×104, 7.5×104, 1×105, and 1.25×105 cells. 

Wells were seeded with 100 µL of cell solution and the plate incubated for 12 h at 37 °C 

in 5% CO2 to allow cell attachment. The culture medium was then gently pipetted out and 

the remaining cells rinsed once with PBS. The black plate was then moved to a −40 °C 

freezer for 1 h. After thawing at room temperature, 100 µL of deionized water were added 

to each well and the plate incubated for another 1 h. Before the examination, 100 µL of 

TNE buffer with 20 µg/mL Hoechst were added to each well to stain the DNA for 15 min, 

and then the plate removed to the plate reader. The values obtained were used to calculate 

a cell standard curve. For both DNA and cell standard curves, five samples were prepared 

for each DNA amount or cell concentration.  

 Alginate-RSC96 and alginate-L8 suspensions, both with a cell density of 1×106 

cells/mL, were dispensed under varying air pressures (50, 100, 200, and 400 KPa). Then 

10 µL of the printed suspension was transferred into the well of a black opaque 96-well 

plate, with subsequent addition of 90 µL of cell culture medium. After culturing for 24 and 

72 h, cell DNA were examined following the same procedure of cell standard curve plotting 

as outlined above; results were recorded from five samples of each printing. The same 

volume of medium without cells was used as a negative control.  

5.4.10 Statistical analysis 

Mean values and standard deviation (SD) values of all data were calculated. 

Statistical significance was determined by ordinary one-way analysis of variance, and 

multiple comparisons were performed using Tukey’s test and GraphPad Prism (GraphPad 

Software) with an acceptable significance level of P < 0.05. 

5.5 Results 

5.5.1 Cell damage under shearing 

 Shearing experiments demonstrate that both shear stress and exposure time 

influence cell damage, as shown in Figure 5.3. For both RSC96 and L8 cells, the percent 

damaged cells increases as the shear stress increases. Moreover, the percent damaged cells 
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increases with exposure time for a given shear stress. RSC96 cells appear to be more easily 

injured by shear force compared to L8 cells because the percent damaged RSC96 cells is 

higher than for L8 cells under the same shear stress and exposure time, (e.g., at 100 Pa for 

10 s, the average damage for RSC96 cells is 2.32 vs. 2.12% for L8 cells; at 1000 Pa and 

120 s, the average damage for RSC96 cells is 31.10 vs. 25.49% for L8 cells).   

 

Figure 5. 3 Experimental and model results of shear stress-induced cell damage 

Based on the experimental data, the shear stress-induced cell damage law (Eqn. 5.4) 

was applied to describe the damage, and the fitted cell damage percentages plotted in 

Figure 5.3. For alginate-RSC96 cells, the percent cell damage is given as, 

 𝐷𝑠𝑅𝑆𝐶96(𝜏𝑠, 𝑡𝑠) = (1 − 𝑒−3.9×10
−4×𝜏𝑠

0.48×𝑡𝑠
0.71

) × 100%  (5.15) 

and for L8 cells is given by  

 𝐷𝑠𝐿8(𝜏𝑠, 𝑡𝑠) = (1 − 𝑒−3.2×10
−4×𝜏𝑠

0.61×𝑡𝑠
0.52

) × 100%.   (5.16) 

 The reliability of the damage laws for RSC96 and L8 cells was verified by fitted R-

squared values of 0.93 and 0.91, respectively.   

5.5.2 Flow behavior characterization of alginate-cell suspensions 

The flow behavior of the alginate-RSC96 and alginate-L8 cell suspensions has been 

achieved in our previous work [18]. All of the alginate-based solutions demonstrate non-

Newtonian flow behavior with respect to non-linear relations of shear stresses and shear 

rates. At the low concentration of alginate used, the yield stress τ0 was taken to be zero [33]. 

Therefore, a power-law model (i.e., Eqn. 5.5) can be applied to describe the flow behavior. 

 A method to calculate the flow behavior directly based on the bioprinting flow rate 

can be used if the printed solution can be expressed by a power-law flow model [21]. 

Compared to analyzing flow behavior from a rheometer test, this method is more accurate 
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and efficient for obtaining flow behavior parameters (K and n) by eliminating the errors 

induced by the inconsistent experimental environments of the rheometer and bioprinting 

tests. With the mass flow rates obtained and shown in Table 5.1, K and n values for RSC96 

cells, written as KR and nR, were calculated to be 30.01 and 0.34, respectively; for the 

alginate-L8 cell suspension, KL and nL equaled 21.64 and 0.38, respectively. 

Table 5. 1 Measured mass flow rates under different bioprinting conditions 

Measured 

flow rate  

Applied air pressure (KPa) 

50 100 200 300 400 

RSC96 

cell 

suspension 

(g/s) 

(2.0±0.5)×10-4 (1.9±0.34)×10-3 (2.1±0.52)×10-2 (4.8±0.56)×10-2 (1.1±0.12)×10-1 

L8 cell 

suspension 

(g/s) 

(3.5±0.93)×10-4 (2.2±0.28)×10-3 (1.2±0.47)×10-2 (3.9±0.71)×10-2 (8.3±1.45)×10-2 

 

5.5.3 CFD flow profile verification using mass flow rates  

 The experimental flow rates suggest that larger volumes of cell suspensions can be 

dispensed when the dispensing pressure or the diameter of the needle is larger, as shown 

in Figure 5.4. COMSOL simulation was conducted to represent the flow rate of the cell 

suspension, with the results plotted in Figure 5.4. The simulated mass flow rates match the 

experimental flow rates well, indicating the COMSOL model is reliable for predicting the 

mass flow rate of cell suspensions under varying bioprinting conditions, and appropriately 

represents the flow pattern of cell suspensions. 
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Figure 5. 4 Experimental and simulated mass flow rate of bioprinting: mass flow rate of 

(A) alginate/RSC96 suspension and (B) alginate/L8 suspension at varying dispensing 

pressures from 50 to 400 kPa (fixed needle diameter of 200 μm); mass flow rate of (C) 

alginate/RSC96 suspension and (D) alginate/L8 suspension at varying needle sizes from 

100 to 330 μm (fixed pressure of 200 kPa). 

5.5.4 Pressure drops at the contraction of the bioprinting needle 

 Verified by the experimental results, the CFD flow model combined with Bagley’s 

method was then adopted for determining the pressure drop at the abrupt contraction of the 

needle during bioprinting. The results shown in Table 5.2 indicate that both higher air 

pressure or larger needle diameter can lead to a higher pressure drop at the contractive 

region for our cell suspensions, which results in larger extensional stress as from Equation 

(5.11). The calculated extensional stresses displayed in Table 5.2 are used later to evaluate 

extensional stress-induced cell damage.  
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Table 5. 2 Pressure drops and related extensional stresses under varying bioprinting 

conditions 

Dispensing 

pressure (KPa) 

Needle 

diameter (μm) 

Pressure drop (Pa) / Extensional stress (Pa) 

RSC96 L8 

50 

200 

843 / 424 846 / 438 

100 1683 / 846 1689 / 874 

200 3363 / 1690 3369 / 1743 

400 6571 / 3302 6629 / 3431 

200 

100 1803 / 906 1804 / 934 

200 3363 / 1690 3369 / 1743 

250 4438 / 2230 4454 / 2305 

330 5699 / 2864 5767 / 2984 

 

5.5.5 Cell damage introduced in the bioprinting process 

 Cell damage after bioprinting was measured by counting fluorescently labeled cells 

(see section 5.4.7), with the results shown in Figure 5.5. Both injured cells (green only, 

indicating injured membrane) and dead cells (green and red, indicating injured membrane 

and nucleus) are observed after bioprinting (Figures 5.5B, D, F, and H), indicating that 

cells are damaged during bioprinting by the process-induced stresses. The results also show 

that larger bioprinting pressures damage more cells (including both injured and dead cells), 

presumably due to the higher process-induced shear and extensional stresses. Figures 5.5I 

to L show that the percentage of dead cells is higher compared to injured cells, which 

suggests that cells are sensitive to the process-induced stresses and their status can be 

quickly altered from unaffected to dead within the bioprinting period. The number of 

damaged RSC96 cells is slightly higher than for L8 cells under the same conditions, which 

suggests that RSC96 cells are more sensitive to process-induced stresses than L8 cells.  
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Figure 5. 5 Evaluation of cell damage immediately after bioprinting: Hoechst stained 

RSC96 cells printed at (A) 100 kPa and (C) 400 kPa; Damaged and dead RSC96 cells 

stained by Annexin V-FITC and PI printed at (B) 100 kPa and (D) 400 kPa; Hoechst 

stained and Annexin V-FITC/PI stained L8 cells printed at 100 kPa (E, F) and 400 kPa 

(G, H), respectively; percent injured (I, J) and dead (K, L) RSC96 and L8 cells, 

respectively, for different printing pressures.  

The percent damaged cells due to the bioprinting process and shear stress in 

bioprinting are given in Figure 5.6. Cell damage introduced by shear stress during 

bioprinting can be calculated using Equations (5.6)-(5.10), as well as the established cell 

damage law (Eqns. 5.15 and 5.16). For both RSC96 and L8 cells, Figure 5.6 shows that the 

percent shear stress-induced cell damage in bioprinting is low, and decreases slightly as 
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the bioprinting pressure increases from 50 to 400 KPa. However, the total percent damaged 

cells is significantly higher than can be expected from shear stress alone, which indicates 

additional factors contribute to cell damage during bioprinting. This additional factor is 

believed to be extensional stress.   

 

Figure 5. 6 Percent bioprinting process-induced and shear stress-induced cell damage 

The percent cell damage introduced by extensional stress can be obtained using 

results from Figure 5.6 and Equation (5.2), and the extensional stress-induced cell damage 

law for both RSC96 and L8 cells in Equation (5.14) can be rewritten as  

 𝐷𝑒𝑡𝑅𝑆𝐶96 = (1 − 𝑒−5.46×10
−5×𝜏𝑒

1.04
) × 100%,     (5.17) 

 𝐷𝑒𝑡𝐿8 = (1 − 𝑒−1.35×10
−4×𝜏𝑒

0.91
) × 100%,     (5.18) 

with R-squared values of 0.98 and 0.97, respectively. 

Cell damage after passing through needles of varying diameters (under the same 

dispensing pressure of 200 KPa) was also evaluated immediately after bioprinting, and the 

percent cell damage recorded and used to verify the developed method. Figure 5.7 shows 

the experimental cell damage and predicted results considering both extensional and shear 

stresses. The predicted results match the experimental data for both RSC96 and L8 cells 

well, which confirms the reliability and accuracy of our method for predicting cell damage 

for a wide range of bioprinting conditions.  

Cell damage was also evaluated 6 h after bioprinting. Most damaged cells at this 

time point are dead; very few merely injured cells are seen in the fluorescent microscopy 

images, indicating that the status of injured cells changes within 6 h of printing.  
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Figure 5. 7 Experimental and predicted cell damage for cell suspensions printed from 

needles with various diameters 

5.5.6 Cell viability and proliferation after bioprinting 

  The viability of RSC96 and L8 cells was evaluated 6, 24, and 72 h after bioprinting, 

with the results given in Figure 5.8. More cells are dead for higher bioprinting pressures at 

each time point. Compared to the cell damage evaluation in section 5.5.5, the percentages 

of dead cells for these two cell types are lower than when tested immediately after 

bioprinting (Figures 5.5 and 5.8). For RSC96 cells, the average percent damaged cells 

immediately after bioprinting for dispensing pressures of 50, 100, 200, and 400 KPa were 

7.20, 11.62, 15.57, and 25.95% but 6 h later were 6.79, 10.42, 14.49, and 23.45%, 

respectively. For L8 cells, the immediate values for cell death were 6.99, 11.70, 15.53, and 

23.08% but after 6 h were 6.53, 11.67, 15.00, and 20.13%, respectively. The percentage of 

dead RSC96 cells within 72 h did not change significantly regardless of printing pressure, 

but was greatly reduced for L8 cells after 72 h. This indicates the cell reproduction rate of 

RSC96 cells is close to its death rate during post-bioprinting culture, while L8 cell 

reproduction appears to exceed cell death during this period.  
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Figure 5. 8 Live/dead assay of cell viability in the first 72 h after bioprinting: viability of 

RSC96 cells printed at (A, B) 50 kPa or (C, D) 400 kPa after 6 and 72 h, respectively; 

viability of L8 cells printed at (E, F) 50 kPa or (G, H) 400 kPa after 6 and 72 h, 

respectively; statistical summary of percent dead (I) RSC96 and (J) L8 cells 72 h after 

printing. 

Linear relationships between fluorescent DNA staining and cell number are shown 

in Figures 5.9A to C. Based on these correlations, absorbance values can be used to 

represent the number of cells and thus cell proliferation. The fluorescence values in Figures 

5.9D and E confirm that bioprinting reduces the number of living cells, and higher 

bioprinting pressures can bring about more cell damage. Moreover, the proliferation rates 

of cells after bioprinting decrease compared to control cells from 24 to 72 h (e.g., for 

RSC96 cells printed at 50 and 400 KPa, the ratios of fluorescence are 89.49 and 70.93% 

after 24 h and 82.75 and 67.08% after 72 h, respectively; for L8 cells, the values are 90.37 

and 72.67% after 24 h and 86.71 and 71.65% after 72 h, respectively), which suggests the 

proliferation of surviving cells is reduced after bioprinting.  
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Figure 5. 9 Cell proliferation assay: standard curves of the amount of (A) pure DNA, (B) 

RSC96 cell number, and (C) L8 cell number versus fluorescence; absorbance of (D) 

RSC96 cells and (E) L8 cells printed at varying pressures and tested at 24 and 72 h. 

5.6 Discussion 

Alginate is a biological material derived from natural seaweed [34, 35]. It is a low-

cost and biocompatible material that can be used with many cell types to maintain cell 

viability [36, 37]. DMEM is a general nutrient medium that has been extensively used for 

cell culture. Therefore, the use of DMEM-dissolved alginate solution in this study was not 

expected to result in any adverse effects on cell survival, and cell damage could therefore 

be attributed to the bioprinting process. Note that the standard DMEM formulation includes 

a physiological level of calcium ions, which can react with alginate to form alginate 

hydrogel [17, 38]. To avoid this reaction, calcium-free DMEM was used. 

In this study the effect of shear stress on cell damage was evaluated using trypan 

blue, a dye that can traverse the membrane of injured cells [39]. Because a large number 

of testing groups and samples were prepared for shear stress-induced cell damage 

experiments, the use of trypan blue is efficient and economical. However, trypan blue 

stains all damaged cells with injured membranes, and is unable to distinguish between 

merely injured and dead cells. This limits our investigation of cell status. The more 

sophisticated utilization of a panel of fluorescent dyes including Hoechst, PI, and Annexin 
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V can separately identify all cells, dead cells, and injured cells with broken membranes. 

Therefore, cell status can be distinguished more clearly and studied statistically.   

Our experimental results verify that bioprinting process-induced stresses are the 

major factors that introduce cell damage, because the cell membrane of both injured and 

dead cells were recognized using Annexin V but few cells were stained by PI only. The 

results also show that most damaged cells are dead immediately after bioprinting, 

indicating they are sensitive to bioprinting process-induced stresses; furthermore, those 

cells that are injured immediately after printing advance from injury to death very quickly.  

Cells derived from different tissue components have various physical, chemical, 

and biological properties [40]. For example, cells in soft or mineralized tissues subject to 

uniform situations of mechanical stress transmission and sensation would have different 

responses to external stimulation. Estimates of cell properties indicate that the elastic 

modulus of isolated cells generally ranges from 0.1 KPa (alveolar epithelium) to an 

approximate upper limit of 40 KPa (myocytes) [41]. The magnitude of the elastic modulus 

is determined by diverse cell molecular structures, such as the cell membrane and 

cytoskeleton, and can determine the ability of different cell types to withstand stresses and 

recover their normal phenotype [42, 43]. The present study shows that Schwann cells 

(RSC96) are weaker than myoblasts (L8) because more RSC96 cells are damaged under 

similar mechanical stresses. This can largely be explained by the inherent elastic nature of 

these cell types. Schwann cells are the major glial cells in the peripheral nervous system 

and have inherently weak elastic properties compared to cells from other tissues (e.g., 

muscle) [36, 44]. Thus, it is reasonable to expect that Schwann cells will be more 

susceptible to mechanical damage.  

 The bioprinting process involves both shear and extensional stresses, which are 

acting on cells as the cell suspensions are forced to flow. Establishing a relationship 

between these stresses and cell damage is important for understanding the mechanism of 

cell damage introduced by the bioprinting process and the performance of cells after 

bioprinting. Here, a novel method was developed to establish the relation between both 

shear and extensional stresses and cell damage. The results indicate that shear and 

extensional stresses can introduce cell damage depending on the magnitude of the stresses 

and exposure time. Higher pressures applied during bioprinting cause a larger shear stress 
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in cells travelling through the needle tip; on the other hand, the exposure time as they flow 

through the needle simultaneously decreases. This explains why less shear stress-induced 

cell damage is observed when higher bioprinting pressures are used (Figure 5.6). Cells 

appear to be more sensitive to extensional stress because, at the same pressure, extensional 

stress causes a higher percent cell damage over a much shorter time compared to that 

introduced by shear stress (Figures 5.3, 5.5, and 5.6). Therefore, reducing the extensional 

stress during bioprinting is important to improve the viability of printed cells.  

 Evaluating the effect of extensional stress that occurs at the abrupt contraction of 

flow on cell damage requires information about the flow profile at that region and the 

percent cell damage introduced by the stress. As the flow at the contraction of the needle 

is complicated, in this chapter we simplified the situation to try and determine the average 

extensional stress. This is reasonable because we obtained statistical results for cell damage 

from bulk cell suspension flow under various conditions. If the aim is to investigate the 

effect of extensional stress on a single cell during bioprinting, then the dynamic flow profile 

of each streamline at the contraction must be considered.  

 A cell damage law must be reliable with acceptable error, must ensure that the 

percent damage is between 0 and 100%, and should have incremental trends in percent cell 

damage as the magnitude of stress and exposure time increases from zero to infinity. Based 

on the experimental results, exponential functions were applied to describe the cell damage 

introduced by shear and extensional stresses and performed according to expected 

incremental trends with acceptable errors.  

 We examined three cell states after bioprinting: unchanged cells with regular 

phenotypes, cells that survived but are injured or quiescent, and dead cells. The immediate 

and 6 h cell damage tests show that most injured cells remain quiescent and die within 6 h. 

As the total percentage of damaged cells at 6 h is slightly lower than immediately after 

bioprinting, we believe some injured cells have the ability to recover to their regular 

phenotypes [12, 18]. This assumption is also supported by live/dead assay results 6 h after 

bioprinting. The cell proliferation assay showed that the proliferation rate of bio-printed 

cells is slower than non-printed cells under different bioprinting conditions within 72 h. 

This demonstrates that most living cells maintain their ability to proliferate after 

bioprinting, while some cells are alive but injured and may lose this function.    
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Our method represents an advance in predicting cell damage; only the flow 

behaviors of RSC96 and L8 cell suspensions and the printing conditions are required, 

which greatly simplifies the experimental procedures to evaluate cell viability in 3D 

bioprinting. The model clearly points out that high cell viability can be obtained if the shear 

or extensional stresses are small. One way to reduce the stresses is to use a tapered (instead 

of cylindrical) needle due to the lower dispensing pressure required if the bioprinting flow 

rate is fixed [45, 46].   

5.7 Conclusions 

The cell damage that occurs in the 3D bioprinting process reduces the viability and 

functioning of cells within the printed construct. Improving the viability of cells thus 

becomes important. This paper characterized the bioprinting process-induced cell damage 

for RSC96 and L8 cells and, and based on the results, developed a novel method that 

considers not only the process-induced shear stress but also the extensional stress to 

describe the cell damage in bioprinting. The model illustrates the importance of extensional 

stress on cell damage. Limited cell damage was observed at low bioprinting pressures, 

where the effect of shear stress was dominant; however, more cell damage occurred at 

higher pressures due to extensional stress. Moreover, this study characterized the type of 

cell damage as well as the viability and proliferative functions of printed cells. Dead cells 

constitute a large proportion of the total number of damaged cells, with most injured cells 

dying within 6 h of printing. The proliferation rate of printed cells is slightly lower than 

non-printed cells, demonstrating that bioprinting can affect the ability of some printed cells 

to proliferate.  

The established models satisfactorily describe the bioprinting process-induced cell 

damage for RSC96 and L8 cells, and thus can be used to predict cell damage and optimize 

the viability of cells. They also can be applied to analyze the bioprinting process-induced 

cell damage for other cell types; however, modifications may be needed to consider other 

factors, such as cell-cell and cell-materials interactions, if they become significant with 

respect to cell damage.  
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CHAPTER 6 

3D Bioprinting of Scaffolds Containing Living Schwann Cells for Potential Nerve Tissue 

Engineering Applications 

This chapter has been submitted as " Liqun Ning, Haoying Sun, Tiphanie Lelong, Romain 

Guilloteau, Ning Zhu, David J. Schreyer, and Xiongbiao Chen, 3D Bioprinting of Scaffolds 

Containing Living Schwann Cells for Potential Nerve Tissue Engineering Applications. 

Biofabrication". It is under reviewing. According to the Copyright Agreement, "the authors 

retain the right to include the journal article, in full or in part, in a thesis or dissertation". 

6.1 Abstract  

 3D bioprinting shows great potential for producing tissue-like constructs with 

encapsulated cells to support the regeneration of tissues after injury or disease. Preparing 

tailored biomaterials to maintain the viability and functions of cells is challenging. 

Moreover, producing such constructs with sufficient structural support and functions that 

promote the reorganization of encapsulated cells so as to mimic natural tissues requires 

even more effort. This chapter presents a comprehensive research of 3D bioprinting of 

scaffolds with encapsulated Schwann cells using composite hydrogels based on varying 

concentrations of alginate, fibrin, hyaluronic acid, and RGD peptide. In hydrogel 

investigation, the composited hydrogel microstructures and mechanical stiffness after 

gelation were examined and, based on the morphological spreading of cells, suitable 

hydrogel combinations by adjusting the concentration of fibrin were identified and 

prepared. During the bioprinting process, the flow behavior of hydrogel solutions and 

bioprinting process parameters (e.g., dispensing pressure, dispensing head speed, 

crosslinking process) which determine the structure of the printed scaffolds were evaluated 

and regulated, and based on the results, scaffolds with fully interconnected channels were 

produced. Schwann cell performance in the scaffold was investigated in terms of viability, 

proliferation, orientation, and the ability to produce laminin, an extracellular matrix protein 

thought to be beneficial in guiding nerve regeneration. The developed bioprinting 

processes promote the alignment of Schwann cells inside scaffolds, and maintains high cell 
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viability and other cellular functions, demonstrating its great potential for applications in 

the field of nerve tissue engineering.  

Key words: 3D bioprinting, hydrogel, scaffold, cell function, cell alignment 

6.2 Introduction 

 A major objective of tissue engineering is to create bioengineered tissue substitutes 

with properties that promote the regeneration of tissues rendered dysfunctional by disease 

or damage [1]. For example, to promote the repair of peripheral nervous system (PNS) 

injuries caused by crushing or transection of axons, bioengineered tissue substitutes act as 

bridges to link separated nerve segments and stimulate axon growth and reconnection [2]. 

Bioengineered scaffolds are 3D porous tissue substitutes made from biomaterials and living 

cells. They are designed to support and guide the regeneration of targeted tissues by 

facilitating cell differentiation, migration, and proliferation [3, 4]. To fabricate such 

scaffolds, a major challenge is successfully orchestrating the formation of structures with 

expected tissue functions by using suitable biomaterials and cells. From this challenge, the 

first key consideration is preparing biomaterials with tailored biological and chemical 

properties that can maintain the viability and facilitate the functions of incorporated cells 

and, subsequently, facilitate the migration and organization of host cells after implantation. 

The second key consideration is the fabricating techniques that manipulate the biomaterials 

and cells so as to produce bioengineered constructs with high structural fidelity and 

sufficient mechanical properties that can offer necessary cues to support cell organization 

and ECM deposition [5, 6].  

 The preparation of biomaterial is crucial in scaffold fabrication because it provides 

the fundamental support and necessary structural interface for interactions with cells and 

tissues [7]. In biomaterial preparation, biocompatibility, which refers to the characteristic 

of passively allowing or actively producing positive effects on cells and tissues, should be 

considered at the outset [8]. Hydrogels are one of the most extensively used biomaterial 

types in scaffold fabrication due to their inherent ability to provide an aqueous environment 

for cells [9]. High water content retention makes hydrogels compatible with cell delivery 

and encapsulation [10-13]. Despite these advantages, the use of individual hydrogel for 

scaffold fabrication is challenging because it either faces the problem of providing cell-
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binding domains to facilitate the attachment of incorporated cells, or suffers from poor 

manipulative ability during the scaffold fabricating process. 

 Therefore, tailored hydrogels that contain adequate cell-binding domains for cell 

attachment while can be manipulated into a desired architecture are demanded [14, 15]. 

The feasibility of fabricating scaffolds from hydrogels is also heavily dependent on the 

fabrication technique [7]. The 3D bioprinting technique has been generating great interest 

in hydrogel-based scaffold fabrication. With recent advances in bioprinting, living cells 

incorporated within the hydrogel can be deposited in a layer-by-layer pattern to form 

spatially controlled porous structures [16, 17]. In this process, a hydrogel solution 

containing cells is loaded into a syringe of the bioprinter, forced to flow through a 

connected needle, and deposited to a predefined location by controlling the printing force 

(e.g., dispensing pressure) and speed of the printing head (or dispensing head). Feasibility 

of using a hydrogel in 3D bioprinting is also known as bioprintability; a hydrogel with 

good bioprintability is identified to have a flow behavior and viscosity that ensure regular 

deposition, and an appropriate crosslinking mechanism to generate a structure with 

sufficient mechanical strength to avoid structural failure [18]. Preparing biocompatible and 

bioprintable hydrogels in 3D scaffold bioprinting is important and challenging. Moreover, 

using prepared hydrogels to produce a scaffold that can reorganize encapsulated cells to 

mimic natural tissues is also a demanding task.  

 Alginate is a natural hydrogel that has been extensively used in scaffold bioprinting 

due to the availability of a simple calcium-based crosslinking mechanism and its ability to 

maintain cell viability [19]. However, its utilization is limited due to its poor cell adhesion 

support. High concentration of alginate increases the viscosity, which can relieve the 

challenge in the scaffold bioprinting process, however, it also reduces proliferation and 

other measures of cell performance [13, 20]. The situation can be improved if RGD (Arg-

Gly-Asp) peptide, a special protein sequence recognized by specific cell-adhesion 

molecules, is used to modify low concentration alginate hydrogels [19]. Hyaluronic acid 

(HA) is another compatible hydrogel to cell viability and has been used in bioprinting to 

regulate the viscosity of the printed solution [21], although it lacks adhesion sites for cell 

attachment. Fibrin is a protein hydrogel that can be obtained via proteolysis of fibrinogen 

with thrombin, the key proteins involved in blood clotting [22, 23]. When factor XⅢ, 
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another plasma protein involved in blood clotting is contained, the covalent crosslinks 

between fibrin fibers can be introduced, resulting in improved gel stability [24]. Unlike 

alginate and HA, fibrin hydrogels contain adequate cell-binding sites to promote cell 

attachment and therefore other cellular functions [25]. However, bioprinting fibrinogen 

independently is challenging due to its poor inability to form fibrin scaffolds with sufficient 

mechanical stability. Hence, although the three hydrogels mentioned above have 

limitations, using them together may capitalize on the benefits of each. 

In the PNS, Schwann cells are the major glial cells which promote axonal 

regeneration by producing a favorable growth pathway, and eventually forming myelin 

around axons [5, 13]. Therefore, the utilization of scaffolds with organized Schwann cells 

has great potential to facilitate the reconnection of axons in PNS injuries. This chapter 

presents a comprehensive study on 3D bioprinting scaffolds using cell-biomaterial 

suspensions comprised of alginate, HA, fibrin, RGD peptide, and Schwann cells. In this 

studied, two parts which include hydrogel investigation and bioprinting process 

development were majorly investigated. For hydrogel preparation, the influence of initial 

fibrinogen concentrations on the properties of the hydrogel formed, including the 

microstructures and mechanical stiffness was examined and a suitable concentration 

determined experimentally in terms of the ability to support Schwann cell spreading. In 

scaffold bioprinting, the flow behavior and viscosity of the tailored hydrogel solution were 

evaluated and, on this basis, bioprinting parameters including the dispensing pressure, 

speed of the dispensing head, and concentration of crosslinkers were determined 

experimentally so as to obtain scaffolds with desired outer shape and inner structure. 

Multiple cellular analyses, including cell viability, proliferation, morphology, orientation, 

and protein expression, were then conducted over a period of 10 days in culture for the 

scaffolds containing the encapsulated Schwann cells. The results demonstrate the ability of 

our bioprinting process developed to produce scaffolds that have great potential for nerve 

tissue regeneration.  
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6.3 Materials and methods 

6.3.1 Materials 

 Low-viscosity sodium alginate (MW 12000-80000 Da) and hyaluronic acid were 

obtained from Sigma-Aldrich, Canada. Fibrinogen and thrombin TISSEEL VHSD kits 

were purchased from Baxter, Canada. Calcium chloride (CaCl2), sodium chloride (NaCl), 

sodium hydroxide (NaOH), PEI (polyethyleneimine), MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide], BSA (bovine serum albumin), DMSO, Tween 20, EDC 

[N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride], NHS (N-

hydroxysuccinimide), MES, DAPI fluorescent dye, aprotinin (from bovine lung), EACA 

(6-aminocaproic acid), and 100× penicillin-streptomycin (PS) were purchased from Sigma-

Aldrich, Canada. Hoechst 33342, RGD peptide (GGGGRGDS), calcein-AM, and 

propidium iodide (PI) were purchased from AnaSpec, USA. Primary S100 antibody 

(EP1576Y) was purchased from Abcam, USA.  

6.3.2 Bulk hydrogel preparation 

 Sodium alginate powder was first dissolved in deionized water to form a 0.2% w/v 

solution. A 0.22-μm bottle-top filter (Thermo Scientific) was then used to sterilize the 

prepared alginate solution. The filtered solution was removed to a -40 °C freezer for 24 h 

and later freeze-dried using a freeze-dryer (FreeZone, Labconco) under sterile conditions 

for 72 h. The alginate powder obtained was combined with sterilized HA powder and 

dissolved in 0.9% NaCl to achieve a final 2% w/v alginate plus 1% w/v HA solution.  

 Alginate was also covalently bonded with RGD peptide as described in a previous 

study [26]. Briefly, 305 mM EDC, 115 mM NHS, and 300 mM NaCl were dissolved in 

100 mM MES buffer, with 10 N NaOH added dropwise to the solution to adjust the pH to 

near 6.5. Sterilized alginate solution and RGD solution (RGD to alginate ratio 1:250, w/w) 

were mixed in a centrifuge tube that was then rotated over 48 h for complete reaction at 

room temperature. The reacted solution was dialyzed for 3 d at 4 °C to remove all unreacted 

reagents, and the dialyzed solution was lyophilized and dissolved in 0.9% NaCl with HA 

powder to eventually form a 2% RGD modified alginate with 1% HA solution.  
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 Fibrinogen (containing 1U/mL factor XⅢ [23]) and thrombin powder were 

prepared in sterile solution according to the manufacturer’s instructions. Fibrinogen 

powder was dissolved in 500 μg/mL aprotinin solution at 37 °C to obtain a 90 mg/mL stock 

solution. Thrombin was dissolved in 0.9% NaCl and 40 μM CaCl2 solution to obtain a 500 

U/mL stock solution.  Six independent hydrogel solution groups were prepared using the 

stock hydrogel solutions: (1) 1% alginate + 0.5% HA (hereafter AH); (2) RGD modified 

1% alginate + 0.5% HA (hereafter RAH); (3) 1% alginate + 0.5% HA + 10 mg/mL 

fibrinogen (hereafter 10FAH); (4) 1% alginate + 0.5% HA + 20 mg/mL fibrinogen 

(hereafter 20FAH); (5) 1% alginate + 0.5% HA + 40 mg/mL fibrinogen (hereafter 40FAH); 

and (6) 1% RGD modified alginate + 0.5% HA + 40 mg/mL fibrinogen (hereafter FRAH). 

A 40-uL aliquot from each group was then transferred onto a PEI-coated (0.5% w/v PEI 

dissolved in deionized water, filtered sterilized) round glass slide to cover the slide surface, 

and crosslinked for 10 min with 100 mM CaCl2 solution (for AH only) or 100 mM CaCl2 

+ 25 U/mL thrombin (for groups including fibrinogen) for gelation.  

6.3.3 Characterization of bulk hydrogels 

The composition of each of the six hydrogel preparations (plus a fibrin-only gel) 

was assessed using Fourier transform infrared spectroscopy (IlluminatIR II FTIR 

microscope accessory, Smith’s Detection) equipped with an attenuated total reflectance 

(ATR) objective. Spectra were obtained from 4500 to 550 cm-1 at a resolution of 2 cm-1. 

Hydrogels of each group were lyophilized before scanning.  

The microstructure of each crosslinked hydrogel was also evaluated. Lyophilized 

samples of each of the hydrogels were sputter-coated with a thin layer of gold and analyzed 

by scanning electron microscopy (SEM; SU8010, Hitachi). Representative images of each 

sample were recorded at magnifications of 400 x and 2000 x. 

 A plane strain compression test, also known as a Watts-Ford test, was performed 

on all prepared hydrogel groups except RAH and FRAH. Since these two composited 

hydrogels included only a small amount of RGD peptide compared to AH and 40FAH, 

respectively, we assumed that inclusion of RGD peptide would not significantly alter the 

physical properties. Figure 6.1 is a schematic of the mechanical test procedure. A 200-μL 

of hydrogel solution from each group was first loaded into a cuboid mold, and crosslinked 
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from above by spraying an atomized calcium medium (100 mM) for 5 min. After the 

hydrogel was pre-gelled in the mold, liquid crosslinkers were then carefully pipetted into 

the mold for extended crosslinking overnight at room temperature. The obtained hydrogel 

was demolded and transferred into a well containing crosslinking solution for another 24 h 

for complete gelation. The result was a hydrogel sheet 9 mm × 17 mm × 1.2 mm in size, 

which was then flattened between two parallel anvils of a compressive testing instrument 

(Texture Technologies Corp.). During the compressive test, the lower anvil (with a width 

of a) remained fixed, while the upper anvil was lowered at a preset speed v of 0.01 mm/s. 

The loading force F and the associated displacement D of the upper anvil were 

automatically measured during the compression, and later used to calculate the equivalent 

compressive stress σ and strain ε using equations for classical plastic deformation in a plane 

strain compression test [27]: 

 σ =
√3

2

𝐹

𝑎𝐿
 ,     (6.1) 

 ε =
2

√3
ln⁡(

ℎ0+2𝐷

ℎ0
) .    (6.2) 

 

Figure 6. 1 Schematic of process to test the mechanical stiffness of hydrogels. 

6.3.4 Schwann cell culture and preliminary evaluation of morphology 

Schwann cells were isolated from the sciatic nerve of Sprague-Dawley rats using a 

previously described D-valine selection method [28]. Briefly, the sciatic nerve was isolated, 

stripped of the epineurium, teased, and cut into 2-mm fragments. The fragments were 

digested in collagenase for 1 h at 37 °C, then strained to remove debris. Cells were cultured 
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in Dulbecco's Modified Eagle's Medium (DMEM, Sigma) with D-valine (Sigma-Aldrich, 

Canada) and 10% fetal bovine serum (FBS, Sigma) in a humidified incubator at 37 °C with 

5% CO2, and their purity assessed with immunofluorescence staining for Schwann cell 

marker protein S100 and DAPI [23]. Cultures from passages 4 through 12 were used for 

experiments. All live animal procedures were performed after approval by the University 

(of Saskatchewan) Committee on Animal Care and Supply. 

Hydrogel solution from each group was gently mixed with Schwann cells (1×106 

cells/mL) to obtain uniformly blended cell-biomaterial suspensions. Forty-uL aliquots of 

this cell suspension were then transferred onto round glass slides for 10 min crosslinking. 

The cell-encapsulating hydrogels obtained were rinsed twice with TBS (Tris buffered 

saline), and then cultured in a 24-well plate using DMEM culture medium containing 10% 

FBS, 10 mM CaCl2, and 1% penicillin-streptomycin. After 4 d, calcein-AM solution with 

a final concentration of 1 μg/mL was added to each well for 30 min, and the stained 

hydrogel was observed under a fluorescence microscope (Carl Zeiss Axiovert 100). Three 

hydrogels were prepared for each group and three random images taken for each hydrogel 

sample. Cell circularity was analyzed using ImageJ software (National Institutes of Health, 

USA). Fibrin hydrogels with cells were also prepared and used as a positive control group. 

6.3.5 Bioprinting parameter analysis and 3D scaffold bioprinting 

6.3.5.1 Characterization of flow behavior  

 The process of 3D bioprinting scaffolds using 40FAH and FRAH hydrogel 

solutions with or without the inclusion of Schwann cells was studied (Figure 6.2). For 

Schwan cell scaffold bioprinting, cells were carefully added to the hydrogel solutions in a 

sterilized environment to obtain final biomaterial suspensions containing 1×106 cells/mL. 

The uniformly mixed suspensions were then loaded into the autoclaved syringe of the 

bioprinter (3D Bio-plotter, EnvisionTEC.), extruded through a 200-μm autoclaved needle, 

and deposited into a container containing calcium/thrombin solution to stabilize the printed 

hydrogel into a scaffold structure at room temperature (~22 °C).  

 The flow behavior of 40FAH solution was characterized on a rheometer with a 

parallel geometry (AR G2 rheometer, TA Instruments). A 150-μL aliquot of the hydrogel 

solution was loaded between the upper and lower plates. The upper plate was preset to 

https://en.wikipedia.org/wiki/Tris-buffered_saline
https://en.wikipedia.org/wiki/Tris-buffered_saline


140 
 

rotate at a series of speeds with the lower plate remaining immobile. Shear stress on the 

suspension under each rotating speed was recorded during the shearing, with the 

temperature set at either 4 or 22 °C. Also, the viscosity of 40FAH under these two given 

temperatures was recorded (2% alginate with 1% HA solution was also tested as a control 

group under 22 °C). The test was repeated three times and the average shear stress value 

was calculated.  

 

Figure 6. 2 Schematic of process for both cell-incorporated and non-cell scaffold 

bioprinting 

6.3.5.2 Evaluation of the mass flow rate 

 The mass flow rate of the hydrogel solution was evaluated before scaffold 

bioprinting. 40FAH solution loaded into the syringe was extruded under a series of 

bioprinting pressures (20, 30, 40, 50, and 60 KPa) over a defined time period, with the 

solution droplet deposited on a weighting paper later transferred to a digital scale. The 

average mass obtained from three droplets was recorded and used to calculate the mass 

flow rate.  

6.3.5.3 Regulation of calcium concentration and speed of the dispensing head 

 Crosslinking solutions containing 10 U/mL thrombin and a series of calcium 

concentrations from 10 to 60 mM were prepared. Then, 1 mL of crosslinking solution was 

pipetted into the wells of a 12-well plate that had been coated with 0.5% PEI at 37 °C for 

24 h. 40FAH was extruded into these wells at a pressure of 30 KPa and a dispensing head 

speed of 6 mm/s to build three-layer scaffolds, with the strand angle of each layer set at 90° 
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relative to the printing stage. For each crosslinking solution, the hydrogel material was 

printed five times into separate wells. If at least three scaffolds with stable layers and pores 

could be observed, the calcium concentration of the crosslinking solution was deemed 

appropriate for scaffold bioprinting.  

 The influence of the speed of the dispensing head on scaffold bioprinting was also 

investigated by varying the speed from 1 to 11 mm/s. The other bioprinting parameters 

were held constant, including bioprinting pressure at 30 KPa and the concentration of 

CaCl2 in crosslinking solution at 20 mM. Again, five scaffolds were printed at each speed. 

If at least three integrated scaffolds could be built, the speed was considered appropriate 

for scaffold bioprinting.  

6.3.5.4 Influence of dispensing head speed on strand diameter  

 To determine the influence of dispensing head speed on strand diameter, the 

dispensing head speed was set at 4, 6, and 10 mm/s and the applied pressure held at 30 KPa. 

40FAH was extruded and deposited into wells of a 12-well plate containing 1 mL 20 mM 

calcium and 10 U/mL thrombin to build one-layer scaffolds. After 3 min pre-gelation, the 

crosslinking solution was replaced by a new medium that contained 100 mM calcium and 

25 U/mL thrombin for another 15 min to complete the crosslinking of the printed scaffolds. 

Five images of the printed strands for each dispensing head speed were then captured using 

an optical microscope (Carl Zeiss Axiovert 100) and the strands widths were measured.  

6.3.5.5 Influence of dispensing head speed on the orientation of fibrin fibers inside 

the printed strand 

 One-layer scaffolds made from the alginate, fibrin, and HA mixtures were created 

as described above, except that bioprinting speeds of 2, 6, and 9 mm/s were applied and 

the fibrinogen concentration reduced to 10 mg/mL (equivalent to 10FAH). Droplets were 

also produced and crosslinked as a negative control group. After complete gelation, 

scaffolds and droplets were fixed in -20 °C methanol for 1 h, rinsed with TBS containing 

10 mM CaCl2, then blocked with 1% BSA, 3% horse serum, 10 mM calcium, and 0.1% 

Tween 20 in TBS for 2 h. Goat anti-fibrinogen (1:1000, Sigma Aldrich) in blocking 

solution was then added to each well for 3 h at room temperature. Printed hydrogels were 
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washed three times in TBS containing 10 mM calcium and 0.05% Tween 20 (first time, 1 

h at room temperature; second time, overnight at 4 °C; third time 1 h at room temperature). 

Hydrogels were then incubated with Alexa Fluor 488 mouse anti-goat antibody (1:1000, 

Thermo Fisher Scientific) in blocking solution for 3 h at room temperature, and washed a 

second time following the same procedure. Each scaffold coverslip was mounted on a glass 

slide using ProLong Gold antifade mountant (Thermo Fisher Scientific).   

 Images of stained scaffolds were captured using a fluorescence microspore (Axio 

Imager M1, Zeiss) with a 40× oil immersion objective lens. The orientations of fibrin fibers 

inside the scaffold strand and the droplet were measured using the orientation distribution 

function of ImageJ.  

6.3.5.6 3D scaffold bioprinting  

 Predesigned, multilayer 3D scaffolds with dimensions of 8 mm × 8 mm × 2 mm 

were printed using 40FAH. The strand angle of each layer was set at 90° relative to the 

printing stage. Spacing between the centers of adjacent strands was preset at 1 mm.  Each 

biomaterial solution was printed into a crosslinking solution containing 20 mM CaCl2 and 

10 U/mL thrombin at a dispensing head speed of 9 mm/s and dispensing pressure of 30 

KPa. After 3 min pre-crosslinking, the crosslinking solution was replaced by 100 mM 

calcium and 25 U/mL thrombin for another 15 min to complete gelation.  

6.3.5.7 Evaluation of 3D printed scaffolds morphology 

Both the external shape and internal porous structure of printed scaffolds were 

imaged at 05ID-2 beamline at the Biomedical Imaging and Therapy facility (BMIT) at the 

Canadian Light Source (CLS), with the technique of synchrotron-based X-ray inline phase 

contrast imaging-computed tomography (SR-inline-PCI-CT). In this process, the printed 

scaffold was held in a special plastic holder and placed on a rotating scanning stage. The 

data were collected at a photon energy of 30 keV by means of a beam monitor AA-60 

(Hamamatsu) combined with a digital camera (Hamamatsu C9300-124), with an effective 

pixel size of 8.6 μm. 3000 projections were captured in 180 degree CT scan with the 

exposure time of 20 ms per projection. Phase retrieval and reconstructed were done by 

PITRE 3.1. The 3D model of the construct was built by Avizo 9.1 (FEI Company).  
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6.3.6 Evaluation of Schwann cells encapsulated in printed scaffolds  

6.3.6.1 Evaluation of cell viability 

40FAH and FRAH hydrogels mixed with Schwann cells were used for scaffold 

bioprinting following the printing procedure described above. After printing, solidified 

scaffolds were rinsed twice with DMEM solution, and then submerged in culture medium 

(DMEM with 10% FBS, 5 ug/mL EACA, 10 mM CaCl2, 50 ug/mL aprotinin, and 1% 

antibiotics) in a 37 °C incubator containing 5% CO2. A live/dead assay was used to assess 

cell viability. Fluorescent dyes calcein-AM and PI, which selectively stain live or dead 

cells, were applied to the scaffold at final concentrations of 1 and 25 μg/mL, respectively. 

After a 30-min incubation, cell viability was assessed by manually counting stained cells 

on images randomly taken from scaffolds observed with a fluorescence microscope (Carl 

Zeiss Axiovert 100). Cell viability for both 40FAH and FRAH scaffolds was measured on 

day 1, 4, and 10; five images for each group were obtained and analyzed using ImageJ, 

with viability calculated as percent live cells among the total number of cells.  

6.3.6.2 Evaluation of cell proliferation 

 An MTT assay was performed to analyze cell number and thus the proliferation of 

cells. Before the evaluation, the standard relation between Schwann cell number and MTT 

absorbance was identified. Briefly, Schwann cells (cell number of 2×103, 4×103, 8×103, 

2×104, 4×104, 8×104, 1.2×105, and 2×105) were either laid over the surface of wells of a 

12-well plate, or uniformly mixed with AH solution that was then loaded into another 12-

well plate. After gelation, both seeded cells and encapsulated cells were cultured for 12 h 

in an incubator in 1 mL of DMEM solution containing 10% FBS. A 100-μL aliquot of 

MTT solution (5 mg/mL) was then added to each cell well for another 2 h (for seeded cells) 

or 5 h (for encapsulated cells) of incubation. After removing the medium, DMSO solution 

(1 mL) was added to the wells with seeded cells to dissolve the formazan precipitate 

produced. For encapsulated cells, the hydrogel was first frozen at -40 °C for 24 h and then 

freeze-dried for another 24 h. Upon completion of dehydration, 1 mL DMSO was added 

for 24 h at room temperature to dissolve the formazan precipitate. Absorbance of dissolved 
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formazan was measured at 555/650 nm using a microplate reader (SpectraMax 250, 

Molecular Devices).  

The proliferation of Schwann cells encapsulated in scaffolds was examined 

following the same processing method described above on day 1, 4, and 10, with the 

absorbance value obtained for day 1 normalized to 100%.   

 Cell number was also assessed using a fluorescent staining method. Cells 

encapsulated in scaffolds were first stained with Hoechst 33342 (1 μg/mL) and incubated 

for 30 min at 37 °C. Scaffolds were then observed under a fluorescence microscope (Carl 

Zeiss Axiovert 100), images of scaffold strands were captured randomly. Cell number was 

assessed by manually counting stained cells on five images taken from each of three 

scaffolds prepared from each hydrogel solution. The average cell number in one single 

strand counted on day 1 was normalized to 100%.  

6.3.6.3 Evaluation of cell alignment and circularity within scaffolds 

 The spreading and growth orientation of Schwann cells encapsulated in 40FAH and 

FRAH scaffolds printed in a two-layer pattern were analyzed on day 4 and 10 using S100 

immunocytochemistry. Printed scaffolds were fixed, rinsed, and blocked as in Section 2.5.5. 

Rabbit anti-S100 (1:200; Abcam) in blocking solution was then used to stain cells for 3 h. 

Scaffolds were washed three times and then labeled with Alexa Fluor 488 goat anti-rabbit 

antibody (1:500) and DAPI (1:1000) for another 3 h. After washing, scaffolds were 

mounted and observed in a confocal fluorescence microspore (Leica SP5). The long axis 

alignment and circularity of S100 stained Schwann cells were measured from images 

obtained from the examined scaffolds with the assistance of ImageJ. Three images were 

analyzed for each scaffold.  

6.3.6.4 Evaluation of extracellular matrix protein expression in scaffolds 

 Immunocytochemistry was also employed to investigate Schwann cell phenotype 

with respect to laminin protein expression at day 4 and 10. The staining procedure was the 

same as for S100 staining, except that the primary antibody used was rabbit anti-laminin 

(1:200, Sigma) and the secondary antibody was Alexa Fluor 555 goat anti-rabbit (1:500). 
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Images were observed using confocal fluorescence microscopy, and the fluorescence 

intensity associated with Schwann cells was measured using ImageJ.  

6.3.7 Statistical analysis 

 Mean values and standard deviation (SD) values were calculated for all quantitative 

measures. The statistical significance of experimental data was calculated using one-way 

analysis of variance (ANOVA). Pairwise comparisons were performed using Tukey’s test 

using Graphpad Prism (GraphPad Software) with an acceptable significance level of p < 

0.05.  

6.4 Results 

6.4.1 Characterization of hydrogel properties  

The composition of each hydrogel group after gelation was investigated using IR 

spectroscopy. Figure 6.3A shows that hydrogels prepared using a combination of alginate 

and HA demonstrate spectral characteristics related to carboxylate anions: an 

antisymmetric stretch at 1597 cm-1 and a symmetric stretch at 1417 cm-1. These band 

positions are in agreement with those previously reported without significant shifts (i.e., 

less than 5 cm-1) [29], indicating that both alginate and HA remain intact in the hydrogels 

formed. Figure 6.3B shows that the inclusion of RGD peptide results in an additional 

absorption peak at 1650 cm-1, which represents amine groups of the RGD peptide, 

suggesting that the RGD successfully bonded to the alginate [30]. Fibrin spectral 

characteristics in Figure 6.3C show absorption bands at 1535 and 1238 cm-1, which 

represent amide groups Ⅱ and Ⅲ [31]. These two peaks are absent in the AH hydrogel 

spectra but appear in the 40FAH hydrogel spectra, confirming the inclusion of fibrin. 

Notably, the carbonyl peak of the AH hydrogel has merged and shifted from 1597 to 1642 

cm-1, which might indicate that carboxyl groups have reacted with protonated NH2 groups 

on fibrin [19].  
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Figure 6. 3 FTIR spectra of hydrogels: A, AH; B, AH and RAH; and C, AH, fibrin, and 

40FAH 

The microstructures of each gelled biomaterial group were examined using SEM. 

Figure 6.4 shows no significant structural differences between AH and RAH at the 

microscale (Figures 6.4A, B). Images of AH and RAH feature similar sheet-like structures 

with limited pores. With the inclusion of fibrinogen (to form fibrin), microfibers appear 

along with the AH structures (Figures 6.4C-F); more microfibers can be identified at higher 

fibrinogen concentrations. In addition, more micropores appeared at fibrinogen 

concentrations of 40 mg/mL compared 10 or 20 mg/mL (Figures 6.4C-E). Morphological 
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differences between 40FAH and FRAH hydrogels are not significant; both share a similar 

microstructure that features high porosity and prominent fibers (Figures 6.4E, F).   

 

Figure 6. 4 SEM images of prepared hydrogels: A, AH; B, RAH; C, 10FAH; D, 20FAH; 

E, 40FAH; and F, FRAH. 

 Figure 6.5 shows the demolded hydrogel samples as well as their equivalent stress-

strain states as the strain range extends up to 70-80%. The molded homogeneous hydrogels 

sheet shown in Figures 6.5A and 6.5B ensures the reliability of results from our 

compressive tests. The continuous increase of the equivalent stress-strain responses shown 

in Figures 6.5C and 6.5D demonstrates that the addition of fibrinogen to the hydrogel 

enhances stiffness: more formation of fibrin makes the hydrogels stiffer. Results from the 

first 30% of the strain curve in Figure 6.5D show that the effect of fibrin on the mechanical 



148 
 

properties of the 10FAH, 20FAH, and 40FAH hydrogels is not significant, as the responses 

within this strain range have close values.  

 

Figure 6. 5 Evaluation of mechanical stiffness of hydrogels: A and B, Demolded AH and 

FAH hydrogels; C, equivalent stress-strain responses as the strain range extends up to 70-

80%; and D, equivalent stress-strain responses at a strain level of 30%. 

 Schwann cells encapsulated in each hydrogel were stained with calcium-AM for 

preliminary investigation of cellular morphology. Cell circularity was measured as an 

indicator of Schwann cell attachment to the hydrogel: failure of attachment is expected to 

result in spherical cell morphology. Figure 6.6 shows that Schwann cells cultured in pure 

fibrin hydrogel, which is expected to provide the best matrix attachment, have the lowest 

circularity at 0.521±0.070 (Figure 6.6G) while those in the AH hydrogel have the highest 

circularity at 0.905± 0.015 (Figure 6.6A), indicating that most cells in the AH hydrogel 

maintain their roundness and do not achieve an attachment-mediated spreading phenotype 

after 4 d of culture. The circularity of cells in the RAH hydrogel was lower at 0.854±0.022 

(Figure 6.6B). Compared to the AH hydrogel, cell circularity values also decreased as 

fibrinogen was added. For example, the average circularity values of cells in the 10FAH, 

20FAH, and 40FAH hydrogels were 0.885±0.025, 0.876±0.020, and 0.738±0.066, 

respectively (Figures 6.6C-E). Cellular circularity in the FRAH hydrogel had a smaller 

value of 0.658±0.014 after culture compared to the 40FAH hydrogel, which contained the 

same amount of fibrin (Figure 6.6F); this demonstrates that the spreading of Schwann cells 
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can be facilitated not only by regulating the fibrinogen concentration but also by adding 

RGD peptide to the alginate.  

 Based on this preliminary study, 40FAH and FRAH hydrogels were used as 

biomaterials for scaffold bioprinting in all subsequent experiments.  

 

Figure 6. 6 Circularity assessment of Schwann cells encapsulated in diverse hydrogels: A, 

fibrin; B, AH; C, RAH; D, 10FAH; E, 20FAH; F, 40FAH; G, FRAH; and H, Statistical 

results of cellular circularity. Scale bar represents 200 μm; *** represents p<0.001 
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compared to the first four groups, # represents p<0.05 compared to the 40FAH and 

FRAH. 

6.4.2 Evaluation of 3D scaffold bioprinting 

 The results of flow behavior analysis for the 40FAH solution at 4 and 22 °C are 

shown in Figures 6.7A, B. The hydrogel solution exhibits a non-Newtonian, shear thinning 

flow behavior because the resulting shear stress-shear rate curve has a nonlinear, concave 

pattern [32]. Figure 6.7A also verifies that the yield stress of the 40FAH solution at both 

temperatures approximately equals zero [33]. Therefore, a power law model without 

considering the yield stress can be used to represent the flow behavior of the hydrogel 

solution [34]. Figure 6.7C exhibits low viscosity values of 40FAH at both 4 °C (1.23-7.35 

Pa∙s) and 22 °C (0.56-4.36 Pa∙s) in the tested range of shear rate. The viscosity of the 

control group (alginate and HA solution) at 22 °C shows a litter lower viscosity than the 

performance of 40FAH solution. Compared to previous study with alginate and HA 

solution, the 40FAH solution at 22 °C could be dispensed under controllable manner [20].   

 One important element for controlled production of a scaffold by bioprinting is the 

solution mass flow rate of the printed biomaterial, which can be regulated by changing the 

dispensing pressure. Figure 6.7D shows the mass flow rate of the 40FAH solution under a 

series of dispensing pressures ranging from 20 to 60 KPa. A higher pressure will extrude 

more hydrogel solution from the bioprinting needle. Based on the flow behavior pattern 

obtained from the rheometer test, the flow rate trend can be described and predicted [33], 

with the result shown in Figure 6.7D.  

 If the pressure is known, the mass flow rate can be obtained accordingly from the 

relationship described above. Based on the flow rate, the dispensing head speed is therefore 

determined in terms of scaffold structural requirements, such as the porosity and structural 

stability. Because our bioprinting method is combined with the submerge technique by 

which the hydrogel solution is deposited in a reservoir containing crosslinking solution for 

scaffold gelation, the concentration of crosslinkers becomes another crucial element to 

determine the success of scaffold bioprinting. Figure 6.7E shows how the printability is 

affected by the dispensing head speed and concentration of the calcium crosslinker. In 

detail, the influence of dispensing head speed on structure’s integrity shows that, in a fixed 
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20 mM of calcium ions, a wide range of speeds (2 to 10 mm/s) can be applied to build 

scaffolds. In contrast, when the speed is too fast (over 11 mm/s) or too slow (less than 1 

mm/s in this case), stacked scaffold with multiple layers is hard to produce. Meanwhile, 

when the dispensing head speed is preset at a given value, low concentrations of calcium 

ions (20 to 40 mM) are adequate for the success of scaffold bioprinting. However, three-

layer scaffolds are hard to achieve at calcium concentrations >50 mM or <10 mM.  

 

Figure 6. 7 Bioprinting control for building scaffolds: A, shear stress of 40FAH hydrogel 

at a low shear rate; B, flow behavior of 40FAH hydrogel over a wide range of shear rates; 

C, mass flow rate under various dispensing pressures; and D, printability under various 

dispensing head speeds and calcium concentrations (check represents adequate 

printability, × represents poor printability). 

 The speed of the dispensing head not only affects the printability of scaffolds but 

also determines the diameter of scaffold strands and their inner stresses if the dispensing 

pressure is known. Theoretically, the diameter of a printed strand equals the inner diameter 

of the bioprinting needle if the dispensing head speed is preset [35]: 

 𝑣 =
4𝑄

𝜋𝜌𝑑2
,      (6.3) 

where v is the speed of the dispensing head, Q is the mass flow rate, ρ is the solution density 

(close to 1 g/mL herein), and d is the inner diameter of the bioprinting needle. Figure 6.8 

shows the variation of strand diameters (top view) under different dispensing head speeds 

for a constant dispensing pressure and crosslinking solution concentration. A faster speed 
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can lead to narrower strands under the same dispensing pressure; however, the strands all 

display larger diameters than predicted by theoretical calculations for the dispensing head 

speeds applied (theoretical values: 4 mm/s, bigger than needle diameter; 6 mm/s, close to 

needle diameter; 10 mm/s, less than needle diameter). This is probably due to surface 

tension of the hydrogel solution as it deposited on the preset surface, and the effect of 

crosslinking rate [36].  

 

Figure 6. 8 Influence of dispensing head speed on the diameter of printed strands: strands 

formed at A, 4 mm/s; B, 6 mm/s; and C, 10 mm/s. D, Comparison of actual and 

theoretical diameters. 

 Immunofluorescence staining of fibrin allowed for the observation of fibrin fibers 

inside the printed strands. Thus, the influence of dispensing head speed on the orientation 

of fibrin fibers within strands can be observed. Fibrin fibers appeared to be oriented parallel 

to the printing direction, with this orientation being more obvious when higher dispensing 

head speeds were applied (Figures 6.9A-C). For example, the strand printed at 2 mm/s had 

74.67±8.34% of fibrin fibers distributed within ± 20° of the strand orientation, with this 

value increasing to 94.36±3.51% at 9 mm/s. However, fibrin fibers in droplets formed 

random mesh networks, with only 40.67±7.23% of fibers oriented within ±20° relative to 

the 0° orientation defined for image analysis (Figures 6.9D1, D2).  
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Figure 6. 9 Orientation of fibrin fibers inside printed strands and dispensed droplets: 

fibrin fiber orientation at a dispensing head speed of A, 2 mm/s; B, 6 mm/s; and C, 9 

mm/s. D, Fibrin fiber orientation inside a droplet. 

 After investigating elements including the flow behavior of the hydrogel solution, 

dispensing pressure, speed of the dispensing head, and crosslinking agent concentration, 

scaffolds were produced using low viscosity 40FAH and FRAH solutions, resulting in the 

printed structures. Figure 6.10 reveals the example of scaffold produced by 40FAH. The 

3D multi-layer scaffold has integrated morphologies with predesigned pores and 

architecture (Figures 6.10A to 6.10C), indicating that porous tissue structures can be 

achieved using a low viscosity hydrogel solution following our bioprinting method. The 

sufficient mechanical support from subjacent layers of the scaffold made it stable to be 

handled by hands or forceps during the transition for image capturing. Both phase retrieval 

images and 3D reconstructed structure after SR-inline-PCI-CT imaging confirm that the 

scaffold with fully interconnected channels and pore networks can be fabricated (Figures 

6.10D to 6.10F), with the quantitatively average porosities of 39.42±11.93% and 

43.65±8.42% for 40FAH and FRAH hydrogel scaffolds, respectively.  
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Figure 6. 10 Observations of printed 40FAH scaffolds. A, scaffold in the crosslinking 

medium after bioprinting; B, top view of scaffold shape and size; C, side view of 

scaffold; D, a phase retrieval slice of printed scaffold captured using our SR-inline-PCI-

CT imaging technique; E, top view of a scaffold after reconstruction; and F, 

reconstructed 3D scaffold 

6.4.3 Performance of Schwann cells encapsulated in 3D scaffolds 

 The viability of Schwann cells encapsulated in 40FAH and FRAH hydrogel 

scaffolds was evaluated at days 1, 4, and 10 in culture. Figures 6.11A-F shows that more 

than 89% of cells were alive in both the 40FAH and FRAH scaffolds at day 1, and this 

number increased to over 95% by day 4 and 10 (Figure 6.11M). This indicates that our 

bioprinting technique does not significantly reduce Schwann cell viability, with almost all 

cells surviving inside the scaffolds for at least 10 days. 

 Both MTT assay and fluorescent staining were conducted to evaluate the 

proliferative functions of Schwann cells encapsulated in the scaffolds (Figure 6.11). 

Standard MTT curves verified the feasibility of our method to analyze the proliferation of 

both seeded and encapsulated cells due to the linear relations between cell numbers and 

absorbance (Figure 6.11N). MTT absorbance readings (Figure 6.11O) increased with 

culture time, demonstrating that the cells were able to proliferate. Absorbance values 

obtained from the two different scaffolds were similar, suggesting that 40FAH and FRAH 

hydrogels have similar abilities to maintain the ability of encapsulated cells to proliferate. 
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Manual counts of Hoechst-stained cells also showed that Schwann cell numbers inside the 

two scaffolds were continuously increasing, verifying the results of the MTT assay (Figures 

6.11G-L, P).  

 

Figure 6. 11 Viability and proliferation of Schwann cells encapsulated in 40FAH and 

FRAH scaffolds. A-F, live and dead assay by fluorescent staining on days 1, 4, and 10; 

G-K, Hoechst staining of cells on days 1, 4, and 10; M, statistical cell viability analysis; 

N, MTT standard curves; O, MTT assay for cell proliferation; P, Statistical cell 

proliferation analysis from Hoechst staining. 

 Immunocytochemical staining was employed to quantitatively investigate the 

performance of the Schwann cells encapsulated in the scaffolds in terms of cell alignment, 

morphological circularity, and expression of ECM protein laminin. The results for S100 

labelled cells are shown in Figure 6.12. Over 52.49±9.50% of cells tended to align parallel 

to the printed strand (oriented ±20° relative to strand direction) in the 40FAH scaffolds at 

day 4, with this number rising to over 64.55±7.94% at day 10. Quantitative alignment of 

cells encapsulated in the FRAH scaffolds was notably higher, at 55.81±8.42% at day 4 and 

over 76.36±8.77% at day 10. Cellular circularity values for the S100 stained cells of 0.62 

and 0.55 at day 4 and 0.56 and 0.53 at day 10 for the 40FAH and FRAH hydrogels, 

respectively (Figure 6.12G), indicate that the encapsulated cells were well attached to the 

matrix.  

 The expression of laminin by Schwann cells was also investigated using laminin 

immunocytochemistry (Figure 6.12H) because production of this extracellular matrix 



156 
 

protein is thought to be one way in which Schwann cells promote axon growth. The 

intensity of stained laminin was markedly increased at longer culture times, indicating that 

the Schwann cells produce increasing amounts of laminin in culture. The intensity was also 

higher for FRAH scaffolds than for 40FAH scaffolds, but the difference was not significant.  

 

Figure 6. 12 Immunocytochemical staining for Schwann cells encapsulated in hydrogel 

scaffolds. Schwann cells in 40FAH scaffolds stained with S100 at A1, day 4 and B1, day 

10. Schwann cells in FRAH scaffolds stained with S100 at C1, day 4 and D1, day 10. A2, 

B2, C2, D2 cell alignment statistics. Cells in E1, E2 40FAH scaffolds and F1, F2 FRAH 

scaffolds stained with anti-laminin at day 4 and 10. G, quantification of cell circularity in 

40FAH and FRAH scaffolds. H, quantification of laminin expression in 40FAH and 

FRAH scaffolds. *represents p<0.05. 

6.5 Discussion 

The success of scaffold bioprinting with encapsulated cells normally needs first, 

tailored hydrogels to support functions of cells, and second, bioprinting method to produce 
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a scaffold with expected stability and structure. Since most individual hydrogel faces either 

biological or printable problems, using multiple hydrogels becomes one option which 

covers drawbacks from individual hydrogel and may capitalize on the benefits of each. By 

tuning the concentrations, the tailored hydrogel mixture can be achieved to promote the 

functions of cells. It is also known that using high concentrations of hydrogel usually 

increases the solution viscosity, making for easier manipulation in bioprinting and 

production of scaffolds with good structural support. Low concentrations decrease solution 

viscosity and can compromise bioprintability, but it often provides more suitable 

environment for cells after gelation [7]. Here, we kept low concentrations of 1% alginate 

and 0.5% HA in the mixture based on the performance of Schwann cells [13, 20], while 

examined fibrinogen (to produce fibrin) concentrations from 10 to 40 mg/mL. We also 

used RGD modified alginate (1%) as a biomaterial because covalently bonding RGD 

peptide to alginate provides adhesion sites and thus improves cell attachment to alginate 

[26].  

The hydrogel microstructures and cell morphologies observed indicate that 

encapsulated Schwann cells perform better in an environment with a high concentration of 

fibrin that offers sufficient micro-scale pores and fibers for cell metabolism and attachment. 

Although low concentrations of fibrin provide cell-binding fibers in the hydrogel, 

inadequate porosity can still restrict achievement of the spreading phenotype of Schwann 

cells. SEM images showed that alginate and RGD modified alginate have similar 

microstructures, but that more cells spread in the RGD modified alginate when other 

conditions are held constant.  

The mechanical stiffness of a hydrogel has significant effects on both surface-

seeded and encapsulated cells [37, 38]. Previous study illustrated that Schwann cells prefer 

a softer environment in culture when alginate is used as a cell substrate [13]. Here, we 

employed the plane strain compression test to measure hydrogel stiffness. This method is 

usually applied in metal forming and tribological simulation, and becomes useful for thin 

or soft material samples that pose challenges for classical tensile or uniaxial compression 

tests. It can determine stress-strain curves up to considerably higher strains than tensile 

tests using far less material, thus allowing the exploration of a wider range of deformations 

without instability [39]. Results here show that adding fibrin can enhance the mechanical 
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stiffness of hydrogels, but not significantly. In the first 30% of equivalent strain, all 

hydrogel samples share a similar stress-strain trend. As combined with cell circularity 

results, it appears that Schwann cells are more sensitive to biological cues compared to the 

mechanical properties when the mechanical stiffness of hydrogel substrates is at a low level. 

The bioprintability of a hydrogel solution can generally be determined by its flow 

behavior and crosslinking mechanism [40-42]. A bioprintable solution should be regulated 

and controlled in the bioprinting process, and crosslinked with sufficient mechanical 

stability after structural deposition. Therefore, the evaluation of flow behavior is very 

important and provides four important pieces of information for bioprinting. First, flow 

pattern. Most biomaterial solutions exhibit non-Newtonian flow behavior, and those with 

a shear thinning flow pattern are commonly recommended in bioprinting due to their ability 

to reduce the viscosity at high shear rates, i.e., in the bioprinting needle, therefore making 

it easy for solution to flow through the needle [43]. Second, viscosity. High viscosity 

materials are easily deposited but may restrict cell functions and cause cell damage because 

a high dispensing pressure is required [34, 44]. Low viscosity biomaterial solutions are 

good with respect to cell performance, but may have problem in bioprinting control and 

structural stability. Therefore, evaluating the viscosity of a biomaterial solution indicates 

if the solution is appropriate for the bioprinting process. The viscosity of biomaterial 

solutions can be altered not only by the hydrogel concentration but also by temperature 

[45]. Increasing temperature normally decrease solution viscosity and vice versa; therefore, 

selecting suitable temperatures is required for the expected viscosity to be obtained. 

Generally, printing temperature is kept within a certain range (0 - 37°C) in order to preserve 

cell viability. Third, the flow rate in bioprinting can be calculated beforehand if the flow 

behavior is known [33, 46]. For a given needle size and dispensing pressure, the flow rate 

of a solution can be predicted and thus the dispensing head speed selected based on the 

required strand size. Last, as biomaterial solution is forced through the needle, stresses such 

as shear stress and extensional stress can be introduced, which can deform cells and 

potentially breach cell membranes [45, 47]. By evaluating the flow behavior of the 

biomaterial solution, the stresses produced during bioprinting can be theoretically 

calculated, which helps the prediction of cell damage during bioprinting [7, 34].  
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 Bioprinting with submerged crosslinking technique used in present study can 

relieve the problem in bioprinting scaffolds by low viscosity hydrogel solution. It provides 

adequate crosslinking agents and keeps the construct moist during strands deposition, 

therefore ensures the gelation of biomaterials and the stack of scaffold layers without 

causing shrinkage. Moreover, it favors the formation of porous structures and preserve the 

vertical collapse because of the buoyancy provided by the crosslinking medium.  However, 

this method is only suitable for materials that have a relatively rapid crosslinking rate, 

otherwise the buoyancy would have negative effect on structural stacking [7]. Our previous 

work illustrates that coating the predefined deposition area with the polycation PEI is 

essential for ensuring the stability of the first structural layer; the buoyancy effect and 

crosslinking rate can be adjusted by adding polyvinyl alcohol (PVA) to the crosslinking 

medium to fabricate multiple-layer alginate scaffolds [20]. In the present study, we 

simplified the procedure by only modulating the calcium ion concentration and the 

dispensing head speed to adjust the crosslinking rate, with scaffolds being successfully 

produced.  

Effectively directing the growth of cells and facilitating tissue regeneration is in the 

ultimate goal of scaffold-based tissue engineering [48].  For nerve repair, it is important to 

provide a linearly arrayed substrate for the growth of regenerating axons in one direction. 

Here, we studied the alignment of fibrin fibers within the strand because the molecular 

structure of fibrin enables fibrin fiber networks to undergo reorganization when external 

stresses or tensions are applied [49]. The shear stress and shear thinning experienced by 

the hydrogels as they are dispensed through the needle could be used to reorganize the 

polymeric chains such as fibrin into a more linear and stretched conformation [50]. The 

present study also demonstrates that fibers can be further aligned by increasing the 

dispensing head speed at a given dispensing pressure because higher speeds can further 

stretch it in the direction of movement thus provide tensile stress inside the printed strand 

after gelation. Compared to other methods, controlling the dispensing head speed in 3D 

bioprinting is much easier to organize the orientation of fibers [51, 52].  

Structural evaluation of scaffold provides necessary evidence to verify the 

feasibility of bioprinting method. An efficient, accurate and nondestructive evaluation 

technique which faithfully represents the structure of scaffold is therefore demanded. The 
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SR-inline-PCI-CT shows promise for the non-invasive 3D visualization of hydrogel 

scaffolds both in vitro and in longitudinal animal studies. It has great utility for soft tissue 

engineering due to its capacity to overcome the limited absorption difference between 

hydrogel scaffolds and natural tissues by deriving contrast from refraction or phase effects 

rather than absorption [53]. Compared to other evaluation method such as laboratory based 

micro-CT scanning, hydrogel scaffold can be scanned directly without any further 

treatment, overcoming the problem of partial damage in post-processing. In addition, the 

scanning process is much faster compared to laboratory based micro-CT scanning, which 

makes it possible to investigate many samples within a short period. Here, clear 3D images 

of porous scaffolds with fully interconnected channels were reconstructed, proving the 

feasibility of our bioprinting method in hydrogel scaffold fabrication, demonstrating the 

great potential of synchrotron phase-based X-ray imaging techniques to inform tissue 

engineering and biofabrication.  

The live/dead assay showed over 89% live Schwann cells at 1 day after bioprinting, 

demonstrating the effectiveness of our bioprinting method in preserving the viability of 

Schwann cells. This is attributed to the low bioprinting pressure and therefore low process-

induced stresses [54]. Results of cell viability in 10 days also verifies the biocompatibility 

of the materials and the suitability of scaffold structures to maintain high cell viability [7, 

45]. Cell proliferation results demonstrate that the proliferative functions of Schwann cells 

can be maintained in both 40FAH and FRAH scaffolds, with similar trends of cell number 

increase in the two scaffolds types.  

Immunocytochemical labeling of Schwann cells demonstrates that the cellular 

alignment along the longitudinal axis of the strand can be induced. At day 4 of culture, 

Schwann cells started to spread along the longitudinal axis of strand, and after culturing 

for 10 d, most of cells were elongated and reoriented following the direction of strand. This 

is probably due to the physical guidance cues provided by aligned fibrin fibers as tensile 

stress is included. It can predict that simply encapsulating Schwann cells in hydrogels 

cannot regulate cellular organization, and the alignment of cells would not be induced if 

only carbohydrate-based hydrogels are used to build the structure [20, 55]. Because the 

orientation of fibrin fiber is highly responsive to mechanical stress and tension, a simple 
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strategy based on controlling bioprinting pressures and dispensing head speeds can be 

employed to regulate the orientation of cells inside scaffolds [56].  

Laminin is a major glycoprotein of the extracellular matrix of nerve tissue and 

appears to be an important guidance molecule for axon growth. It can also stimulate the 

mitosis of Schwann cells that form myelin around mature axons in the PNS [57, 58]. The 

location of anti-laminin labeled cells indicated the extensive penetration of laminin inside 

the scaffolds, demonstrating the ability of encapsulated Schwann cells to express proteins 

within the hydrogel matrix. Quantitative analysis of laminin intensity showed that the 

expression of laminin can be facilitated by regulating biomaterial composition, e.g., if RGD 

is included in the scaffold biomaterials. However, the difference in laminin deposition 

between RGD and non-RGD scaffolds was not statistically significant. This result verifies 

the importance of fibrin as a scaffold biomaterial to ensure the beneficial performance of 

Schwann cells. 

6.6 Conclusions 

 This chapter presents a comprehensive study for bioprinting hydrogel scaffolds 

with encapsulated Schwann cells. Properties of prepared hydrogels were investigated 

including the microstructure and mechanical stiffness. It is determined that not only the 

cell-binding sites, but also the porosity of hydrogel can significantly affect the attachment 

of Schwann cells. With observed Schwann cell spreading, hydrogel compositions including 

40FAH and FRAH were determined for further scaffold bioprinting. Mechanically stable 

scaffolds with integrated structures can be printed using the prepared hydrogel 

compositions by controlling the dispensing pressure, dispensing head speed, and 

concentration of calcium in crosslinking solution in certain ranges. The scaffolds obtained 

from this developed bioprinting process can support the performance of encapsulated 

Schwann cells in terms of high cell viability, proliferation and cellular protein expression. 

Moreover, high bioprinting speed in the printable range can realigning fibrin fiber in the 

longitudinal axis of strand, and the reorganized fibers facilitate Schwann cell elongation 

and alignment in the same direction. Overall, hydrogel preparation and bioprinting 

processes developed in this chapter is feasible to produce scaffolds bearing living, oriented 



162 
 

Schwann cells, which have great potential for supporting peripheral nerve regeneration 

after injury. 
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CHAPTER 7 

Conclusions and Future Recommendations 

7.1 Conclusions 

Extrusion-based bioprinting has evolved, showing great promise for fabricating 

scaffolds in tissue engineering. Despite its advances, fabricating customized scaffolds from 

hydrogels containing living cells, however, is still in its infancy, where the major issues 

are the viability and functionality of the incorporated cells and the scaffold structural 

stability and integrity. As these issues are heavily influenced by the properties of hydrogel 

and the bioprinting process, this thesis was aimed at addressing these issues, particularly 

(1) investigating the influences of hydrogel properties and the bioprinting process on cell 

viability and functionality, and (2) developing bioprinting processes to fabricate cell-

encapsulated, hydrogel-based scaffolds. From this research, several main conclusions were 

achieved and outlined as follows: 

• The limited cell-binding property of alginate hydrogel can be improved with the 

addition of cell-adhesion supplements. Additionally, the physiological performance 

and morphological appearance of cells also can be improved and regulated by the 

mechanical stiffness of hydrogel substrate. Softer hydrogels provide a more conducive 

environment for biological functions (i.e., proliferation, spreading, and protein 

secretion) for Schwann cells in culture. 

• Cell damage is associated the magnitude and duration of shear stress that the cells 

experience; particularly, increasing the magnitude and/or duration of shear stress 

increases the percent cell damage, resulting in the reduction of cell viability and 

proliferation. Inherently, different cell types demonstrate variation in ability to resist 

shear stress based on their own cellular properties. 

• Cell damage occurring in the bioprinting process is caused by both shear and 

extensional stresses that the bioprinting process inflicts on the cells. With the help of 

developed models, the bioprinting process-induced cell damage can be represented 

and predicted.  
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• Most damaged Schwann cells and myoblasts die within a short period of time after 

bioprinting, while only a small number of the damaged cells can recover and survive 

during culture subsequently.  

• The addition of fibrin at an appropriate concentration in alginate/HA/RGD composited 

hydrogels can greatly improve cell attachment.  

• The developed extrusion-based 3D bioprinting process is able to fabricate hydrogel-

based, cell-encapsulated scaffolds, with the appropriate structural stability and 

biologically-conducive support for the encapsulated cells during culture.  

• The parameters set for the bioprinting process, such as dispensing pressure, dispensing 

head speed, and concentration of crosslinking agent, are important to the stability of 

printed scaffolds and the cell viability/functionality. It is illustrated that with the 

appropriate settings of process parameters, scaffolds can be printed with structural 

integrity and a fully interconnected channel architecture, and suitable for supporting 

cellular functions, as examined in terms of viability, proliferation, spreading, 

alignment, and protein secretion in vitro.  

7.2 Future Recommendations  

 With achievements from this thesis, some recommendations and suggested projects 

for future studies are given as follow: 

1. It is always important to explore new hydrogel or other material types, or significantly 

simplify the process for synthesizing current materials to achieve the required cell 

functions in scaffold bioprinting. This thesis verified the compatibility of a multi-

component hydrogel for scaffold biofabrication with incorporated living cells, which 

also suggested the potential of hydrogels for incorporating other biological elements, 

such as bioactive molecules in bioprinting. Using multiple hydrogels in creating a 

scaffold takes the advantages from each type, and shows improvements for scaffolds 

and living cells, however, the process presented in this thesis is normally time-

consuming and requires elaborate preparation. To overcome this issue, the 

development of novel biomaterials which possess both biocompatibility and 

bioprintability are highly recommended. Recent studies indicate that the developed 

gelatin methacryloyl (GelMA) has properties to maintain the structural integrity while 
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facilitate the performance of cells in scaffold bioprinting for several cell types. 

Therefore in the future, bioprinting scaffolds by GelMA and Schwann cells can be 

conducted for nerve tissue engineering applications.  

2. The physical mechanism behind the cell damage during the 3D bioprinting process 

needs to be investigated and understood by taking into account cellular mechanisms. 

Models which describe the relationship between cell damage to the bioprinting 

process-induced extensional and shear stress have been established in this thesis. As 

these models are empirically built based on cell damage experiments in bioprinting, 

they lack the ability to describe the physical mechanism of cell damage induced by 

stresses, therefore, it would be interesting to explore the cell damage by considering 

the cellular mechanisms induced under stress. With such an investigation, the model 

of describing the relationship between the mechanical resistance of a cell to stress can 

be built, which would then be used to represent cell damage caused by the bioprinting 

process. This would be beneficial for predicting cell damage and optimizing cell 

viability. It is noteworthy that using a tapered needle to replace a cylindrical one 

significantly reduces the percent cell damage. This result suggests that by optimizing 

the structural design of the bioprinting needle, the viability of cells after bioprinting 

might be significantly improved, which can be a research recommendation in the 

future.  

3. The 3D bioprinting process can be further improved in terms of scaffold stability and 

integrity. Although the feasibility of the bioprinting process presented in this thesis, 

including hydrogel solution preparation, dispensing parameters control, and 

crosslinking evaluation, has been proved for hydrogel-based scaffold biofabrication, 

the structural stability of printed scaffolds is still limited by inherent mechanical 

properties of hydrogels. To overcome this, development of a multi-material 

bioprinting process is suggested for producing scaffolds. As an example of this process, 

polymers such as PCL can be printed as frame to provide sufficient structural support, 

while hydrogels containing living cells can subsequently be printed onto the formed 

frame to perform the biological functions of scaffolds.  

4.  Scaffolds with Schwann cells need to be examined in vivo for nerve tissue regeneration. 

This thesis has shown the promising biological performances of 3D printed scaffolds 
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with encapsulated Schwann cells by means of the in vitro evaluations, which 

preliminary proves the function of printed scaffolds to facilitate the reconnection of 

peripheral nerve axons. In the future, long-term in vivo investigation on the 

continuation of nerve tissue regeneration using scaffolds implanted between the 

injured nerve segments would be highly recommended. Moving forward with in vivo 

test, a more challenging problem in nerve tissue engineering is to guide the growth of 

segmented axons towards their target tissue. As peripheral nerve tissue is spatially-

organized by cells and other biological components, to facilitate the regeneration of 

nerve tissue, investigating the capability of making customized, biomimetic, and cell-

localized scaffolds using 3D bioprinting methods is suggested. In this thesis it was 

demonstrated that the alignment of Schwann cell inside the scaffold can be regulated 

by simply controlling the dispensing head speed. Such a scaffold has the potential to 

efficiently guide the growth of axons. Therefore, developing novel bioprinting 

processes to produce spatially-organized, Schwann cell-containing scaffolds which are 

designed to direct axon growth in nerve tissue engineering is highly recommended in 

the future.  

 

 


