
Towards a Reference Architecture with Modular

Design for Large-scale Genotyping and Phenotyping

Data Analysis: A Case Study with Image Data

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Amit Kumar Mondal

c©Amit Kumar Mondal, December/2017. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

With the rapid advancement of computing technologies, various scientific research communities have

been extensively using cloud-based software tools or applications. Cloud-based applications allow users to

access software applications from web browsers while relieving them from the installation of any software

applications in their desktop environment. For example, Galaxy, GenAP, and iPlant Colaborative are popular

cloud-based systems for scientific workflow analysis in the domain of plant Genotyping and Phenotyping.

These systems are being used for conducting research, devising new techniques, and sharing the computer

assisted analysis results among collaborators. Researchers need to integrate their new workflows/pipelines,

tools or techniques with the base system over time. Moreover, large scale data need to be processed within

the time-line for more effective analysis. Recently, Big Data technologies are emerging for facilitating large

scale data processing with commodity hardware. Among the above-mentioned systems, GenAp is utilizing

the Big Data technologies for specific cases only. The structure of such a cloud-based system is highly variable

and complex in nature. Software architects and developers need to consider totally different properties and

challenges during the development and maintenance phases compared to the traditional business/service

oriented systems. Recent studies report that software engineers and data engineers confront challenges to

develop analytic tools for supporting large scale and heterogeneous data analysis. Unfortunately, less focus

has been given by the software researchers to devise a well-defined methodology and frameworks for flexible

design of a cloud system for the Genotyping and Phenotyping domain. To that end, more effective design

methodologies and frameworks are an urgent need for cloud based Genotyping and Phenotyping analysis

system development that also supports large scale data processing.

In our thesis, we conduct a few studies in order to devise a stable reference architecture and modularity

model for the software developers and data engineers in the domain of Genotyping and Phenotyping. In

the first study, we analyze the architectural changes of existing candidate systems to find out the stability

issues. Then, we extract architectural patterns of the candidate systems and propose a conceptual reference

architectural model. Finally, we present a case study on the modularity of computation-intensive tasks as an

extension of the data-centric development. We show that the data-centric modularity model is at the core of

the flexible development of a Genotyping and Phenotyping analysis system. Our proposed model and case

study with thousands of images provide a useful knowledge-base for software researchers, developers, and

data engineers for cloud based Genotyping and Phenotyping analysis system development.

ii

Acknowledgements

First of all, I would like to express my heartiest gratitude to my respected supervisors Dr. Chanchal

K. Roy and Dr. Kevin A. Schneider for their constant guidance, advice, encouragement and extraordinary

patience during this thesis work. I am deeply indebted to Dr. Banani Roy, the Research Associate of our

group, for her direct supervision of the projects of this thesis work and helping shape the thesis in general.

Without three of them, this work would have been impossible.

I would like to thank Dr. Gord McCalla, Dr. Mark Keil, and Dr. Khan A Wahid for their willingness

to take part in the advisement and evaluation of my thesis work. I also thank to Dr. Kevin Stanley and

William Van Der Kamp for their help.

Thanks to all of the members of the Software Research Lab with whom I have had the opportunity to grow

as a researcher. In particular, I would like to thank Md. Saidur Rahman, Manishankar Mondal, Masudur

Rahman, Kawsar Wazed, Shamima Yeasmin, and Muhammad Asaduzzaman.

I am grateful to the Department of Computer Science of the University of Saskatchewan for their generous

financial support through scholarships, awards and bursaries that helped me concentrate more deeply on my

thesis work.

I thank the High Performance Computing team of the University of Saskatchewan for their support. I

thank the anonymous reviewers for their valuable comments and suggestions in improving the papers produced

from this thesis.

I would like to thank all of my friends and other staff members of the Department of Computer Science

who have helped me to reach at this stage. In particular, I would like to thank Gwen Lancaster, Greg Oster,

and Heather Webb.

I also thank to my wife Joyshree Mallick for her sacrifices. I express my heartiest gratitude to my father

Anukul Chandra Mondal and my mother Arpita Rani Mondal who are the architects of my life. Their endless

sacrifice has made me reach at this stage of my life. My parents, and my wife have always inspired me in

completing my thesis work.

iii

Disclaimer

Chapter 4 in this thesis dissertation has been published in the 2017 International Conference on Software

Architecture (ICSA 2017) with title, "Towards a Reference Architecture for Cloud-Based Plant Genotyping

and Phenotyping Analysis Frameworks". I significantly contributed in analysis, implementation and writing

of the paper under the direct supervision of Banani Roy.

iv

I dedicate this thesis to my father, Anukul Chandra Mondal, whose inspiration helps me to accomplish

every step of my life.

v

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Disclaimer iv

Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Our Contribution . 2
1.4 Related Publications . 4

2 Background 5
2.1 Genotype and Phenotype Analysis Frameworks . 5
2.2 Reference Architecture . 6

2.2.1 Architectural Analysis . 8
2.3 Large Scale Data Analysis with Big Data Platforms . 9

2.3.1 Big Data Technology . 9
2.3.2 Unified Frameworks for Large Scale Data-processing 11
2.3.3 Development Strategies of Big Data Analytic Systems 12

2.4 Conclusion . 12

3 Architectural Change Analysis of Genotyping and Phenotyping Systems 13
3.1 Introduction . 13
3.2 Dataset Collection . 16
3.3 Architectural Properties . 17
3.4 Architectural Change Analysis from the Development History 19

3.4.1 Structural Change Detection . 20
3.4.2 Architectural Commits Detection . 22

3.5 Design Quality Metrics Calculation and Evaluation . 26
3.6 Case Study and Discussion . 30
3.7 Related Work . 30
3.8 Conclusion . 32

4 A Conceptual Reference Architecture 34
4.1 Introduction . 34
4.2 Related Work . 36
4.3 Analysis Methodology . 38
4.4 Product Analysis . 39
4.5 Scenario Development . 41

vi

4.6 Extraction of Candidate Architectures and Scenario Analysis 42
4.6.1 Galaxy . 42
4.6.2 iPlant Collaborative . 44
4.6.3 GenAp . 47
4.6.4 LemnaTec Software . 48

4.7 Comparison of Candidate Architectures . 49
4.8 The Conceptual Reference Architecture . 50

4.8.1 Data-centric Model . 51
4.8.2 Software Component Model . 51
4.8.3 Infrastructure Model . 53
4.8.4 Mapping With Existing Solutions . 54

4.9 Prototype System . 55
4.10 Conclusion . 57

5 Micro-level Modularity of Computation-intensive Programs in Big Data Platforms: A
Case Study with Image Data 58
5.1 Introduction . 58
5.2 Modularising Data-intensive Tasks . 60

5.2.1 Background and Contextual Analysis . 60
5.2.2 Program Synthesis and Extracting Data Processing Patterns 63
5.2.3 Transformation to Data-parallel components . 66

5.3 Proposed Modularity Model . 67
5.4 Impact Analysis of Modularization . 70
5.5 Discussion . 71

5.5.1 Lesson learned . 74
5.6 Related Work . 75
5.7 Conclusion . 75

6 Conclusion 77
6.1 Concluding Remarks . 77
6.2 Limitations and Future Work . 78

References 80

vii

List of Tables

2.1 Core feature model of cloud-based Genotyping and Phenotyping analyses frameworks 6
2.2 Classified Big Data technologies. Adapted from [99] . 10

3.1 Candidate open-source projects for our study (May, 2017) . 16
3.2 SACCS characteristics and their attributes. Adapted from [126]. 19
3.3 Number of releases that changed structurally . 21
3.4 Sample commits that contain the intention of architectural changes 23
3.5 Representational co-occurred terms of architectural change (we have identified 120 co-occurred

terms). Presence of these terms in a sentence are most likely to express architectural commits. 24
3.6 AC commits extracted by our technique . 26
3.7 Detected bug related commits in various releases . 29
3.8 Frequent architecturally changed components and their main actions in the project 31

4.1 Some Important Properties of the Candidate Frameworks . 38
4.2 Scenario-based comparison of the candidate frameworks . 40
4.3 Comparison with Advanced Architecture . 50
4.4 Unified frameworks for large data processing . 54
4.5 Architectures of various systems that use Big Data technology. Here, [*] represents Facebook,

Twitter, LinkedIn, Netflix, BlockMon . 55

5.1 Properties of various open-source APIs for image processing tasks 62
5.2 Image processing tasks we analyzed . 63
5.3 Example of image processing with various steps and produced entities 64
5.4 Performance comparison of two versions of the image processing tasks with Spark cluster

(execution time is presented including I/O operations). 71

viii

List of Figures

2.1 A reference architecture for workflow learning applications. Adapted from Maldonado et al.
[36]. 7

2.2 Official architecture of iPlant Collaborative. Adapted from Merchant et al. [83] 8
2.3 Official architecture of GenAp that add an extra layer for Big Data cluster. Adapted from [68] 9
2.4 A methodology for the evaluation and development of a reference architecture based on SAAM.

Adapted from [60] . 10
2.5 Processing of images with cluster . 11

3.1 Micro-architecture of Galaxy for apps handling module . 14
3.2 Abstract view of ImageJ architecture. High-level modules are: core, app, ui, and plugins. core

module is decomposed into legacy, ui, data, options, updater, and core high-level components
further. 17

3.3 Logical view of static architecture. Adapted from [126]. 18
3.4 Overall steps of our analysis study . 20
3.5 Components changed in Galaxy releases (from each previous adjacent release) 21
3.6 Components changed in iPlant Collaborative (Discovery Environment) releases 22
3.7 Components changed in ImageJ releases . 22
3.8 Key-term Graph related to architectural changes (red edge means not an architectural change) 24
3.9 Architectural quality metrics in different releases of Galaxy. (Here, DRH is Design Rule

Hierarchy, PCD is Package Cyclic Dependency, and IL is Independence Level). 28
3.10 Architectural quality metrics in different releases of iPlant DE 28
3.11 Architectural quality metrics in different releases of ImageJ 29

4.1 Abstract view (from a user) of a Phenotyping framework . 35
4.2 Galaxy Cloud Architecture . 42
4.3 Activity diagram for tool integration in Galaxy. 44
4.4 Component interaction diagram for tools integration in Galaxy 45
4.5 iPlant Collaborative architecture . 45
4.6 Activity diagram for tool integration in iPlant DE . 46
4.7 Interaction of components for tool integration in iPlant . 46
4.8 GenAP architecture . 47
4.9 Activity diagram of Illumina pipeline service . 48
4.10 LemnaTec image analysis (base) plant phenotyping architecture 49
4.11 Software component model (DCM means data centric module). High-level component catego-

rization. 52
4.12 Heterogeneous cloud infrastructure model . 53
4.13 Influence of designing the models. SCM (software-component model) is influenced by ISM

(infrastructure model) and DCM (data-centric model). 53
4.14 Plugin integration diagram for Genotyping and Phenotyping analysis system 54
4.15 Collaborative working environment . 55
4.16 Data-centric modularisation of big data analytic tool. Here, F1 to Ff are core features of a

tool, D1 to Dm are extracted data-centric models (consists of data-storage, I/O, operations,
and patterns), C1 to Cn is first order modular components of the tool, and C11 to CnL are
micro-level modular components of each first order component. 56

5.1 Reproducible workflow composition technique (tasks and operations are reused, algorithms are
customized). 61

5.2 Data processing pattern (some are presented in Table 5.3). 65
5.3 Modularisation of image analysis in data-parallel framework (both minimal and optimal split) 67
5.4 Structure of data-parallel module . 68

ix

5.5 Common interface diagram for Image pipelines . 69
5.6 Options of reusability and customization. Common modules such as DPF can be placed in

BaseModule and tasks (e.g., FlowerCount) can reuse those along with the other modules. Each
canonical step (Si) can be a separate module; they are reused and customized for each of the
tasks with new computational logic without the knowledge of upper layer of (MDP). 72

x

List of Abbreviations

SCUBA Self Contained Underwater Breathing Apparatus
LOF List of Figures
LOT List of Tables

xi

Chapter 1

Introduction

1.1 Motivation

Problems in the lifecycle of software development, maintenance, and adaptation with continuous changes

are well defined by the researchers. Ren et al. [102] report that 90% of software life cost is related to

maintenance. Over the last decades, software researchers have been working for more effective development

methodologies as architectural models [35]. Software systems for various domains have various challenges in

terms of development, maintenance, and adaptation. Data to analyze in scientific research is ever growing.

Management, storage, processing, analysis, and sharing of data impose a great challenge to the researchers.

In light of making scientific computations reproducible to the end users, computer scientists [111] have been

building flexible tools. With the rapid advancement of computing technology, various scientific research

communities have been extensively using both desktop and web-based software tools as eLab. For example,

Genotyping and Phenotyping analysis systems work on various types of data of large volume: Genome data,

Geospatial data, Image data, sensors data, and so on. In this domain, the necessity of cloud based systems

is becoming popular for collaboration and research. Some of the existing systems are: Galaxy [49], iPlant

Collaborative [83], GenAP [68], and so on. To process large data, Big Data frameworks are emerging that

leverage the cluster processing. Among them, many data-scientists are using Spark [7], Hadoop [2], Pig

[96], Google-Data-Flow [11]. Still, Big Data platforms cannot be easily integrated with the interactive data-

analytic framework. Research on Big Data, design methodologies and software architecture are evolving with

the emergence of the latest technologies.

Nonetheless, usual development model might not be a good fit for this domain. For instance, Aniche et

al. [15] illustrate that the mostly used model-view-controller (MVC) architecture has several issues with a

cloud-based system. Likewise, Torres [121] suggests in his article that "Context is the King" for developing a

suitable software architecture. Therefore, more effective design methodologies are warranted for cloud based

Genotyping and Phenotyping analysis systems. Another key thing to remember is that in these systems,

heterogeneous large scale data are processed and analyzed. In a recent study, Saltz et al. [107] report an

interesting finding that even experienced software engineers and data engineers are facing challenges for

large scale data analysis. Consequently, more abstract and flexible frameworks are required to develop that

can reduce the efforts of the developers. Considering the challenges and importance of Genotyping and

1

Phenotyping analysis, in this thesis, we present a case study for developing a reference architecture and

modularity model for this Genotyping and Phenotyping analysis systems.

1.2 Problem Statement

Many cloud based systems are using traditional development methodologies such as model view controller

architecture, three tier architecture, and infrastructure model. However, in the domain of Genotyping and

Phenotyping analysis, only a brief description of their reference architecture is available for a few of them.

Recently, tools in other domains are being developed following layer based and workflow based architec-

tures for large scale data analysis. Unfortunately, none of the works provide extensive study for the design

methodologies and guidelines for the Genotyping and Phenotyping analysis systems. Therefore, an important

research question "How could cloud based Genotyping and Phenotyping analysis system that supports large

scale data analysis be flexibly designed and maintained with minimal efforts?" is required to answer.

To find the answer, an analytical study of the architectural changes in various development phases of

the candidate systems is essential to extract a knowledge-base. After that, complex architectural properties

should be extracted in order to devise an effective architectural model. Finally, a technique for modularizing

complex components with the cloud and Big Data technologies is warranted. However, none of the existing

studies focused on the study of the above-mentioned directions for Genotyping and Phenotyping analysis

systems explicitly.

1.3 Our Contribution

Following the above concerns, we performed a few case studies on architectural model and modularisation.

First Study

Perfect architecture design is still a challenging task for the developers of emerging computer-supported

domain. A few studies show that even the popular MVC architecture creates a serious problem during the

development of a web based system. Genotyping and Phenotyping analysis systems are large and complex in

nature. Identification of recurrent problems related to system architecture, and devising a feasible architec-

tural model is essential to reduce maintenance and development effort. To this end, we present an empirical

study of the architectural changes and issues in the development phases of existing systems in this domain.

We present a key-term based technique to detect architectural change related activities from development

artifacts. Then, employing this technique, we extract commits related to architectural changes. We detect

the subcomponents which are frequently changing architecturally from those extracted commits. We found

these entities are different from usual customer or business based software systems for Genotyping and Pheno-

typing. Moreover, we figure out that architectural quality metrics (which are directly related to maintenance

and bugs/issues) in various releases are also unstable to adopt continuous changes as these systems follow the

traditional model. In addition, those releases are prone to more bugs. Therefore, our empirical study shows

2

that architectural changes are influential during the development phases of the Genotyping and Phenotyping

analysis systems. Our proposed technique will be helpful for the project managers and system architects

for the architectural analysis and maintenance activities, and automatic summary generation of architectural

changes. Furthermore, our empirical study prompts a road map to develop new design principles and concrete

architectural model for adopting continuous changes in this domain.

Second Study

Reproducible computation in the domain of plant Genotyping and Phenotyping is challenging in various

perspectives especially handling the large volume of data. Various tools and systems have been developed

to automate the scientific workflows and support the computational needs of this domain. In this study,

we review a number of widely used systems (i.e., Galaxy, iPlant Collaborative, GenAp, and LemnaTec)

in the domain of plant Genotyping and Phenotyping using the scenario-based architectural analysis method

(SAAM). In particular, we focus on how different stakeholders are using these systems in a variety of scenarios

and to what extent the systems support their needs. Our SAAM analysis shows that the existing systems have

shortcomings. For example, they are limited in their support for high throughput processing of large amounts

of heterogeneous types of data, virtual plant simulation, plugin integration, and so on. Based on our findings

we propose a reference architecture along with a preliminary evaluation in the subject domain. The reference

architecture and its evaluation is aimed at helping developers/architects create suitable architectural designs

and select appropriate technologies when developing plant Genotyping and Phenotyping systems.

Third Study

With the rapid advancement of Big Data platforms such as Hadoop, Spark, and Dataflow, many tools are

being developed that are intended to provide end users with an interactive environment for large-scale data

analysis (e.g., IQmulus). However, there are challenges using these platforms. For example, developers find it

difficult to use these platforms when developing interactive and reusable data analytic tools. One approach to

better support interactivity and reusability is the use of micro-level modularisation for computation-intensive

tasks, which splits data operations into independent, composable modules. However, modularizing data and

computation-intensive tasks into independent components differ from traditional programming, e.g., when

accessing large scale data, controlling data-flow among components, and structuring computation logic. In the

final study, we present a case study on modularizing real world computation-intensive tasks that investigates

the impact of modularization on processing large scale image data. To that end, we synthesize image data-

processing patterns and propose a unified modular model for the effective implementation of computation-

intensive tasks on data-parallel frameworks considering reproducibility, reusability, and customization. We

present various insights of using the modularity model based on our experimental results from running image

processing tasks on Spark and Hadoop clusters.

3

1.4 Related Publications

Some parts of this thesis have been published previously. Architectural change related commit extraction in

our first study is motivated by the key-term based valuable information mining from the software artifacts

discussed in the second paper.

• Banani Roy, Amit K. Mondal, Chanchal K. Roy, Kevin A. Schneider and Kawser Wazed, "Towards

a Reference Architecture for Cloud-based Plant Genotyping and Phenotyping Analysis Frameworks",

In Proceedings of the International Conference on Software Architecture (ICSA 2017), Gothenburg,

Sweden.

• Amit K. Mondal, M. Masudur Rahman and Chanchal K. Roy, "Embedded Emotion-based Classification

of Stack Overflow Questions Towards the Question Quality Prediction", In Proceedings of the 28th In-

ternational Conference on Software Engineering and Knowledge Engineering (SEKE 2016), California,

USA.

In Chapter 2 we discuss some background related to the cloud architecture of Genotyping and Phenotyping

analysis systems, and Big Data technologies. Chapter 3 describes architectural change analysis of existing

Genotyping and Phenotyping analysis systems. Chapter 4 elaborates our study for a conceptual architectural

model. Chapter 5 presents a case study for modularising computation-intensive programs with Big Data

platforms. In Chapter 6 we conclude our thesis and discuss about our future work.

4

Chapter 2

Background

2.1 Genotype and Phenotype Analysis Frameworks

Genotyping [119] is the process of determining differences in the genetic make-up (genotype) of an individual

by examining the individual’s DNA sequence using biological assays and comparing it to another individual’s

sequence or a reference sequence. It expresses the variant form of the given genes an individual has inherited

from their parents. Traditionally genotyping is the use of DNA sequences to define observable traits of

a population. In plant genetics and crop improvement programs, the study of Genomic variation is an

essential task [43]. In many cases, phenotype differences are directly related to DNA polymorphisms such

as genetical linkage to its causative factor or relationships between individuals in the populations [43]. In

phenotyping analysis, image processing plays an influential role [52]. Plant genotyping and phenotyping is

important for ensuring global food security. Plant genotyping and image-based plant phenotyping involve

the generation and management of large amounts of data [32]. Genotyping involves the generation of DNA

sequencing applying different methods (such as next generation sequencing) and results on a huge volume of

data from around the globe. Plant phenotyping is the appraisal of complex plant traits including growth,

development, tolerance, resistance, architecture, physiology, ecology, yield and the basic measurement of

individual quantitative parameters that form the basis for the more complex traits [106]. Plant genotyping

and phenotyping analyses involve numerous steps including physical plant sample collections, data curation,

data conversion into different steps for generating users’ expected end results, and making analysis results

available to researchers and practitioners if needed. For plant genotype and phenotyping analysis, the most

valuable data includes Genome and sequence data, Geospatial data, sensor data, and image data. The

ultimate objective of a cloud based framework is to make scientific computation reproducible (along with

accessibility and transparency) to the users with minimal technical knowledge.

From the perspective of the users, the core features of a cloud-based Genotyping and Phenotyping analyses

framework are presented in Table 2.1. Among them features F1 and F2 are considered the most architecturally

critical features. Feature F3 and F6 are considered as interactive and reproducible data-analysis. With the

advancement of Big Data technology, for large scale data, features F1, F2, and F3 have gained new momentum

in computer science research. Before starting the development of the system, these features are used to

construct a logical structure of the system considering the challenges, feasibility and existing technologies.

5

Table 2.1: Core feature model of cloud-based Genotyping and Phenotyping analyses frameworks

Serial Feature name Description

F1 Data processing Mixed types and various volumes of data are processed

F2 Data management Storage management of mixed types and various volumes of

data

F3 Workflow decomposition Drag-drop working UI for workflow and pipelines composi-

tion for analyzing the data

F4 Third party app commu-

nication

Inter-communication with third party service, app and li-

brary for various utilities including visualization

F5 Collaboration Messaging, Audio, video communication among multiple

data-users

F6 Share data and work-

flows

Export import decomposed workflows and pipelines and re-

sult data

F7 Plugin integration Tools, apps, plugins addition with the system

This logical structure guides the project manager, software architect, programmers, and stakeholders in

various ways during the full development and maintenance phases.

2.2 Reference Architecture

Software architecture [18, 101] is formally defined as the fundamental structures of a software system, the

design guidelines of such structures, and the details description of these structures. Each structure comprises

of [18, 101, 40] software elements, connection and communication among them, and properties of both

elements and relations, logic for the introduction and configuration of each element. Corazza et al. [40]

define software architecture as the partition of classes into groups (based on close relations) for automatic

clustering based on the structure. Czibula and Serban [55] also consider the base of software architecture

as groups of program files such that files within a group are similar to one another and different from those

in other groups. A number of studies [14, 89] illustrated the importance of reference architecture (RA). A

well-defined software reference architecture facilitates a project team reusing architectural knowledge and

components in a systematic way [14]. Nakagawa et al. [89] define a reference architecture as "an architecture

that encompasses the knowledge about how to design concrete architectures of systems of a given application

[or technological] domain; therefore, it must address the business rules, architectural styles (sometimes also

defined as architectural patterns that address quality attributes in the reference architecture), best practices of

software development (for instance, architectural decisions, domain constraints, legislation, and standards),

and the software elements that support development of systems for that domain. All of this must be supported

by a unified, unambiguous, and widely understood domain terminology". For instance, Castelan et al. [36]

6

Figure 2.1: A reference architecture for workflow learning applications. Adapted from Maldonado et
al. [36].

develop a concrete architecture for a workflow learning system following the reference model (shown in

Figure 2.1) defined by the workflow management coalition. They present the RA with Mobile, Cloud and

Collaborative functionalities adapting design science research methodology in an elegant way so that a team

can follow this pattern to develop workflow management system for other domains as well.

Most of the popular cloud based systems such as Galaxy [49], iPlant Collaborative [83] followed tradi-

tional MVC and three tier-architectural patterns. Up to June 2017, they only briefly provide architectural

documentation on how they implemented the systems. But, no standard design guidelines (as presented in

[36]) have been studied yet to present a common reference architecture. Moreover, most of these systems are

struggling to provide an interactive environment for large scale data processing. Although Galaxy project

attempted to follow MVC architectural pattern, it is developed into four high-level components:

• The toolbox: Handles bioinformatic tools, plugins, workflows, and so on

• The job manager: Runs and manages the data processing jobs

• The model: Handles data store and I/O

• The web interface: GUI and user interaction

Therefore, it appears from the Galaxy project documentation that they have not specified any strict develop-

ment strategy. iPlant Collaborative presents their system architecture on cloud-service point of view. iPlant

Collaborative is a combination (shown in Figure 4.5) of three different services implemented with different

technologies and hard to follow their architecture. GenAP [68] has extended the Galaxy project and added

7

Figure 2.2: Official architecture of iPlant Collaborative. Adapted from Merchant et al. [83]

some extra services to interface with Big Data technologies and has similar documentation for the Galaxy

part. Infrastructure part of GenAP is described by the development team as shown in Figure 4.8.

Overall, complexities of these potential systems development are expected to be high for both development

and maintenance perspective. Therefore, feasible design guidelines and reference architecture are essential to

follow. In this thesis, we attempt to analyze the stability of that architecture during the development phases,

extract architecture on components level, and propose a reference architectural model.

2.2.1 Architectural Analysis

Various techniques [78, 35, 34, 58, 126] exist to extract meaningful insights, information about maintenance

related activities, and issues of a software structure. One of the fruitful methods is to analyze development

artifacts [46, 62, 65, 87, 39, 90]: source code, code-base from release to release, commit messages, bugs, and

issues. In order to analyze issues, existing literature [39] also report the importance of examining development

history. However, manual analysis of thousands of artifacts is infeasible. Consequently, either a small portion

is selected or search space is reduced. We attempted to reduce search space during the architectural analysis.

Williams and Carver [126] create a Software Architecture Change Characterizing Scheme (SACCS) to analyze

architectural changes. They presented the reason for changes in architecture: motivation, type, size, impact

on static, impact on dynamic properties and effect on requirements (functional and non-functional). Many

of these important SACCS properties might be used to detect architectural activities from the artifacts.

Moreover, to analyze design quality of a system, different metrics are available [112, 33, 34, 98]. We revisited

this literature for studying the stability of the architecture of the Genotyping and Phenotyping analysis

systems.

8

Figure 2.3: Official architecture of GenAp that add an extra layer for Big Data cluster. Adapted
from [68]

Both for evaluating an architecture and re-engineering an architectural model there are a number of

key attributes [13, 61, 60] to be considered: maintainability, portability, functionality, reliability, efficiency,

modifiability, modularity, and reusability. With this in mind, an underlying architecture and design patterns

of a domain can be identified from existing candidate systems using various analysis techniques [60, 38,

104, 69, 29, 105, 61, 6, 100]. Patidar and Suman [100] surveyed a number of methods for architectural

evaluation from existing systems. One of the most widely used methods is proposed by Kazman et al.

[60, 61] called Scenario-based Architecture Analysis Method (SAAM). SAAM is a pioneering work to evaluate

how an architecture adopts the domain functionality and other nonfunctional qualities. SAAM is the base

method that considers most of the previously mentioned quality attributes. Other methods such as ATAM,

ALMA, SAAMCS, SBAR, ALPSM, ESAAMI focused on a few of the specific quality attributes individually.

Notably, most of these methods are the modification of SAAM and might require extra inputs for evaluation

(e.g., specification, historical maintenance activities, and so on). SAAM has been applied to numerous case

studies for identifying design problems: global information systems, air traffic control, and so on [6, 38].

Considering the context, we followed SAAM to extract architectures and design problems of the existing

Genotyping and Phenotyping analysis systems. The modified steps we adopted for evaluating the candidate

architectures and devising a new architecture based on SAAM is presented in Figure 2.4.

2.3 Large Scale Data Analysis with Big Data Platforms

2.3.1 Big Data Technology

Over the past few years "Big Data" has been a buzzword in computing technology. Big Data is the advance-

ment of cloud computing. Big Data technologies are being used in earth sciences, social sciences, IoT (internet

9

Figure 2.4: A methodology for the evaluation and development of a reference architecture based on
SAAM. Adapted from [60]

of things), astronomy, business, government, industry, journalism, and so on [120]. Marr [81] describes Big

Data using 5Vs:

(i) Volume- Ever growing data that cannot be handled with usual technologies

(ii) Velocity- Fast generation and transmission over the network

(iii) Variety- Various formats, models, and structures

(iv) Veracity- Quality and transparency

(v) Value- Should be valuable for decision making

In Genotyping and Phenotyping, analysis data involves Terabytes of Genomic data, Geospatial data,

Image data and sensors data. These data-sets are expected to grow faster over times. Therefore, Big Data

technologies can handle these datasets. Various platforms, techniques, and models are emerging [81, 99, 63]

for handling Big Data problems. Distributed processing and storage is at the heart of Big Data, and this is

possible with commodity hardware. Various Big Data technologies classified by Pääkkönen and Pakkala [99]

are presented in Table 2.2.

Table 2.2: Classified Big Data technologies. Adapted from [99]

Data Collection and Storage Data analysis Benchmarking

Hive, HBase, HDFS, VoltDB, Volde-

mort, CouchDB, Cassandra, MongoDB,

Graph, EV-cache, G-Store, Virtuoso,

Pregel,GraphLab, Chukwa, Kafka, SparQL

Hadoop, MapReduce, Spark,

Storm, FlumeJava, Pig, MrRun-

ner, Dyrad, D-steams, Avatara,

Mahout, Google-Data-Flow

LinkBench, BigBench,

BigDataBench, As-

terix, Flink

Among large collections of frameworks, map-reduce based distributed cluster processing (Hadoop, Spark,

Google-Data-Flow) is widely used to process large scale data with commodity hardware. MapReduce [41] is

a simple and powerful programming model that facilitates easy parallelization and distribution of large-scale

10

Figure 2.5: Processing of images with cluster

computations achieving high performance on large clusters. MapReduce framework shields us from many

complexities [41] of distributed cluster processing such as parallelization, fault-tolerance, data distribution,

and load balancing. A cluster is a loosely/tightly connected (secure way) multiple computers [80] over the

network that can process a task simultaneously. For the distributed storage and accessing of data [99], HBase,

HDFS, Cassandra, and so on platforms are being used. However, an open-source map-reduce based platform,

Spark (along with Hadoop and HDFS) is optimized and the mostly used [117, 79] map-reduce framework for

Big Data cluster. A Spark cluster [136] consists of a master node and multiple worker nodes as shown in Figure

2.5. Here, we call cluster management technology, map-reduce programming frameworks and distributed

data storage combinedly as Big Data platforms. Cluster manager technologies such as HDP Sandbox [3],

and Cloudera [57] are useful for flexible managing and configuring clusters. Job scheduler [57] (such as Yarn

and Mesos) are also used for multiple jobs running into the cluster. Big Data platforms such as Hadoop

[2], Spark [7], Google Data-flow [11], and so on provide us a high-level abstract interface for implementing

distributed-cluster processing of data (mainly text data). However, researchers and programmers are trying

to develop unified frameworks for their relevant domains for further abstraction for many others complex

data processing such as Genome sequence, Image, and Geospatial data.

2.3.2 Unified Frameworks for Large Scale Data-processing

Unified programming framework is a combination of [54] denotational semantics, operational semantics and

algebraic semantics for abstract programming that reduces complexities and efforts. Researchers and de-

velopers are developing unified frameworks [125, 92] for the relevant domains on top of the parallel and

map-reduce programming API for further abstraction and flexibility of Big Data processing. For example,

SparkSeq [125] is based on Hadoop-BAM [92] data frameworks. Hadoop-BAM is created to overcome the

issues of map-reduce implementation and attempted to include all data formats in bioinformatics. A unified

framework for large scale Geospatial data analysis, SpatialHadoop [45] added three more layers and two

11

abstract components on top of Hadoop to drive efficient map-reduce based processing of GIS data. KIRA

[139] is written using SEP library on top of Spark and FITS data model for analyzing astronomical objects.

FITS is a new data structure that embeds photometric and spatial calibration information together with

image origin metadata with the images. However, for large scale image processing such unified framework

with Big Data platforms is not readily available.

2.3.3 Development Strategies of Big Data Analytic Systems

To better understand the design guidelines as an architectural model, it is important to analyze the recent

trends of application development that use the Big Data technologies. A number of systems have been

attempted to develop an interactive and flexible analysis system for large scale data (in scientific research)

utilizing the Big Data technologies. Among them, some applications follow a workflow based modularity

architecture [70, 115] whereas others follow a layered based architecture [130, 67, 76]. In the workflow based

modularity architecture, applications are designed using a special data model which is much different than

the traditional model view controller model. For example, IQmulus [70] architecture is heavily dependent on

data-analysis workflows. High-level components, job manager, processing services, and so on are designed

focusing the on-the-fly workflow composition. Still, users need to learn a considerable amount of script for

composing workflows for GIS. Similarly, GrayWulf [115] handles two types of workflows: (i) one is for the

data manager, and (ii) another is for the end users. The architectural model is based on these workflows

composition. However, through GrayWulf, a smaller amount of processed result can be shared and retrieved

in the cloud. Another application, IABDT [67] followed multilayer architecture and primarily used Hadoop-

ImageBundle (HIB) for performing basic operations on image data for few cases utilizing Hadoop ecosystem.

All of these development strategies provide useful knowledge-base for devising a flexible design methodology

and guidelines for cloud based Genotyping and Phenotyping analysis systems. Nonetheless, more effective

architectural model and design guidelines are required for the Genotyping and Phenotyping analysis system

development utilizing the Big Data technologies.

2.4 Conclusion

In this chapter, we have discussed Genotyping and Phenotyping analysis systems, architectural structure of

some of the existing Genotyping and Phenotyping analysis systems, and reference architectures of some of

the applications in other domain that utilize Big Data technologies. We have seen that reference architecture,

design guidelines, and unified frameworks are being used for the development and maintenance of the software

systems. We observed that existing studies do not provide concrete experiments on the research question

"How could cloud based Genotyping and Phenotyping analysis system that supports large scale data analysis

be flexibly designed and maintained with minimal efforts?". We have conducted three studies to find the

answer to this question. These studies have been elaborated in the following chapters.

12

Chapter 3

Architectural Change Analysis of Genotyping and

Phenotyping Systems

3.1 Introduction

Software requirements [19] are being changed as change is inevitable. To reflect the changes, sometimes

system structure (e.g., components, infrastructure, interface) is broken which is related to the architectural

changes, and it is considered an expensive [19] task. If the architecture of a system is not defined intelligently

at the early stage of the development, the system undergoes changes and changes cause issues. For example,

in an empirical study, Aniche et al. [15] demonstrate that for the Web-based system development the most

popular architectural model, MVC increases change and defect-proneness, and many experiences the impacts

as severe problems. Therefore, stable architecture is a pressing need to adapt the continuously changing user

requirements.

With the advancement of computing technology, many scientific developers are developing more complex

system than the traditional software system. Recently, cloud based collaborative systems are emerging for

Genotype and Phenotyping data analysis. Genotyping and Phenotyping analysis has an enormous effect

to solve many risks related to the whole mankind. Three high-level requirements of a Genotyping and

Phenotyping analysis system are: (i) scalability, (ii) reusability, and (iii) composability. The core features of

this system are described in Table 2.1. The features list represents that Genotyping and Phenotyping analysis

systems [68, 27, 83] are large and complex to design and implement. For example, Galaxy [49] project has 1190

Python files, and 175 modules (excluding web interface) and components until March 2017 for the Genotype

data analysis. So far, 138 developers are involved in the parallel development of Galaxy. App creation and

integration are few of the major features of Galaxy. If we only consider the app handling module of Galaxy,

the micro-architecture involved for the functionalities consist of many components as shown in Figure 3.1.

A simple structural change for adopting new requirements might increase the development and maintenance

efforts significantly to the project managers and developers.

Above all, maintenance and development efforts of these systems are expected to be high and required to

be handled the complexities arisen from continuous changes and the introduced bugs. Software developers

need domain centric [121] design principles and architectural model easily adaptable to the changes. Due

13

Figure 3.1: Micro-architecture of Galaxy for apps handling module

to the huge number and frequency of changes that mature systems undergo, software maintenance has been

regarded as the most expensive phase of the software lifecycle [126, 102]. Torres [121] provide an empirical

study on the importance of considering the context for designing a software system. Therefore, more research

is warranted to analyze the context and identify challenges before developing a feasible architectural model

for Genotyping and Phenotyping analysis systems. Furthermore, during development, architectural change

analysis of the previous versions is essential for maintenance and decision making for future changes. To that

end, existing studies [126] extracted the benefits of architectural change analysis: (i) Change understanding

and architecture analysis, (ii) Build historical baseline of software change data, (iii) Development group

changes based on impact/difficulty level, (iv) Facilitate discussion among developers, and (v) Facilitate change

difficulty/complexity estimation. Earlier studies [46, 62] focus on to the analysis of the effects of requirement

changes, code changes, and import changes from the software development history. A number of studies

[112, 59, 19, 13] focus on to the architectural evolution and stability analysis in other domains. Maffort et al.

[78] represent a technique for mining architectural violations from high-level specifications and version history.

In this study, we conduct analysis on architectural changes from various perspectives such as structural

changes, design quality metrics, bug-proneness, and intentional change activities.

Developers sometimes express their intention in the description of a commit which could be useful for

architecture-level change impact analysis, the reason of changes, candidate components of change, and trace-

ability analysis (e.g., co-evolution of both the requirements and the architecture). There could be thousands

of commits in the development phases of a system, and manually analyzing all these commits is not feasible.

Therefore, automatic techniques are essential in order to consider various perspectives. However, to the best

of our knowledge, no study directly [90, 126, 58] focuses the architectural changes and their impact during

the development lifecycle of Genotyping and Phenotyping analysis systems. Moreover, we do not find any

automatic technique yet to identify architectural change related activities from software artifacts. To that

end, we also focus on a technique for detecting deliberate architectural commits to reduce search space for

more intuitive analysis from a large collection of development history.

14

In this study, we first detect and filter structurally changed releases. Then we extract architectural

change related commits using a key-term-graph based technique. We found most of the releases that undergo

structural changes contain intentional commits for changing the architecture. After that, by measuring

and analyzing design quality metrics, we observed those releases are unstable in terms of design; bugs are

also introduced in those releases. Finally, from the architectural change related commits, we identified the

frequently changed subcomponents and noticed that actions performed by these components are different

from software systems for business and service organizations. This technique is valuable for the architecture

traceability analysis [19] and decision making for selecting reusable components [16]. Therefore, our empirical

study verifies that the existing Genotyping and Phenotyping analysis systems undergo architectural changes

significantly and the traditional architectural model appears to be problematic for developing these systems.

All things considered, we focus on to the following research questions:

RQ1. Are the architectural changes significant during the development lifecycle of plant Genotyping and

Phenotyping analysis systems?

RQ2. How to automatically analyze development history related to architectural changes from the

development artifacts of Genotyping and Phenotyping analysis systems?

RQ3. What sub-components of Genotyping and Phenotyping analysis systems are prone to changes and

cause issues?

At a higher level view, software architecture is of two type[126]: (i) logical or static, and (ii) runtime

or dynamic. Our study focuses on static architecture (the commits detection technique identify the run

time changes as well). To answer RQ1, we detected static changes from release to release, and calculated

static dependencies related to the changed components. Additionally, we measured design quality metrics

of those releases using state-of-the-art tools and techniques. To answer RQ2, we develop a technique to

automatically identify commits to extract the recurrent activities related to architectural changes. To answer

RQ3, we analyze architectural change related commits and source codes associated with them detected

by our proposed key-term-graph based technique. Our study would be helpful for the system architect

to develop design principles and concrete architectural model for implementing variable (easily adaptable

to continuous changes) systems. The project manager could use the presented technique for the effortless

analysis of the architectural change related commits and bugs. Moreover, frequently changed sub-components

analysis technique can be used as a subtask to repair, restructure and refactor the architecture for future

requirement changes. Furthermore, our study would be a starting point for the researchers to focus more

on the development challenges of Genotyping and Phenotyping analysis systems. In the next sections, we

subsequently describe our experimental methodologies.

15

Table 3.1: Candidate open-source projects for our study (May, 2017)

Project #Commits #Deve-

lopers

#Release Data source

Galaxy 26,782 138 47 https://github.com/galaxyproject/

galaxy

ImageJ 9,080 15 77 https://github.com/imagej/ imagej

iPlant Collaborative

(Discovery Environ-

ment)

7,972 8 39 https://github.com/cyverse-

archive/DE

Bisque 2,876 > 15 8 https://biodev.ece.ucsb.edu/projects/

bisquik

GenAP 1000 > 10 10 https://bitbucket.org/mugqic/

mugqic_pipelines

3.2 Dataset Collection

We have collected code-base, commit history, and releases of some of the popular open-source projects related

to Genotyping and Phenotyping analysis. Each of the projects contains thousands of commits and many

releases. The sources of the code-bases of these open-source projects are mainly GitHub1 and Bitbucket2.

The selected projects for our study are Galaxy, iPlant Collaborative, and ImageJ which mainly work on

Genomic data and Image data along with other users centric data (for few cases GIS data). The description

of the collected datasets is presented in Table 3.1. Another two projects shown in the Table 3.1, GenAP

and Bisque are related to Galaxy and iPlant Collaborative. Our first candidate system, Galaxy provides a

cloud environment for Genotyping analysis (few private instances also provide image based phenotyping) [49].

One of the important features of Galaxy is that it has history and workflow composition along with export

and import options which are unique to Galaxy compared to the other tools. GenAP is an extension of

Galaxy to support large scale data analysis, data hub management pipeline, and options of separate working

environment creation for the users. The second candidate system, iPlant Collaborative [83] provides a cloud

framework for both Genotyping and Phenotyping analysis for plant science and agriculture. In addition,

iPlant Collaborative facilitates flexible app creation, image annotation, Google map service for the images,

and so on, which are unique to iPlant Collaborative. In fact, iPlant Collaborative is a combination of some

separate applications: Discovery Environment (DE), Bisque, Atmosphere, and so on. Please note that in our

study we consider only the Discovery Environment part of iPlant Collaborative. The third candidate system,

ImageJ [110] is a desktop application for various image processing and analysis tasks. ImageJ provides unique

1https://github.com/
2https://bitbucket.org/

16

Figure 3.2: Abstract view of ImageJ architecture. High-level modules are: core, app, ui, and plugins.
core module is decomposed into legacy, ui, data, options, updater, and core high-level components
further.

options for integrating plugins for image analysis tasks. The abstract and major features of these systems are

shown in an earlier Table 2.1. Therefore, these candidate systems cover many functionalities of Genotyping

and Phenotyping data analysis.

3.3 Architectural Properties

In this section, we briefly discuss architectural properties from existing literature. Automated analysis of

the stability and evolution of the architecture of a large system has several challenges [19] due to manual

intervention required in many cases. Software architecture [18, 101] refers to the fundamental structures of a

software system, the guidelines of creating such structures, and the documentation of these structures. Each

structure comprises of software elements, relations among them, properties of both elements and relations, and

logic for the introduction and configuration of each element. Corazza et al. [40] define software architecture

as partitions of classes into groups (based on close relations) for automatic clustering based on the structure.

Czibula and Serban [55] also consider the base of software architecture as groups of program files such that files

within a group are similar to one another and different from those in other groups. Figure 3.2 demonstrates

the high-level view of ImageJ architecture.

Williams and Carver [126] present an empirical study about architectural properties and changes by an-

alyzing about 130 research works. Please note that we have adopted most of the description of this section

from their study. At a very high-level, architectures are described in terms of their logical (static) structure

and their run-time (dynamic) structure [126]. The logical views include dependency relationships, layers,

inheritance structure, module decomposition, and source structure abstractions as shown in Figure 3.3. The

17

runtime views include control flow processing, repository access, concurrent processes, component interac-

tion, distributed components, and component deployment abstractions [126]. Logical changes affect system

structure and consist of changes to systems, subsystems, modules, packages, classes, and relationships. Class

hierarchy changes consist of modifications to inheritance views. Class signature changes describe alterations

to system interfaces [126]. Change can be made to UML diagrams where each diagram type will signify

the nature of changes made to it: class diagrams (i.e., add/delete attributes, change attribute, add/delete

method, change method, add/delete relationship, change relationship, add/delete class, and change class),

sequence diagrams and state charts [126]. A more general description includes changes to entities (i.e., classes

and modules), relations and attributes [126]. Other types of architecture changes include: kidnapping, split-

ting, and relocating. Kidnapping is moving an entire module from one subsystem to another. Splitting

involves dividing the functions of a module into two or more distinct modules. Relocating involves moving

functionality from one module to another. All of these actions have a non-trivial impact on the maintenance

and development of a system.

Figure 3.3: Logical view of static architecture. Adapted from [126].

In this work, we mainly focus our analysis on the logical and static architecture. Considering knowledge-

base from the literature [18]-[35], initially, we consider the architectural changes as kidnapping, removing

modules, merging or splitting of high-level packages/modules/components (as a folder) of a system, and

merging or splitting of program files [126]. Addition of new files or modules is the continuation of existing

structure, thus at the first step, we ignore this action. We will calculate the impact of those changes as the

number of program files affected and the number of places affected. In this study, we also analyze recur-

rent activities related to those changes using attributes of the Software Architecture Change Characterization

Scheme (SACCS). SACCS describes the change’s motivation, type, size, impact on static, impact on dynamic

properties and effect on requirements (functional and non-functional). The detailed change characteristics

identify specific changes that must be made to the major architectural views. The knowledge base of these

SACCS attributes are important to identify specific reasons and intention about why an architecture is chang-

18

Table 3.2: SACCS characteristics and their attributes. Adapted from [126].

SACCS Category Attributes

Motivation Enhancement, Defect

Source Resource constraint, Law/government regulation, Policy, Stakeholder request

Criticality Risk, Time, Cost, Safety, Requested

Developer experi-

ence

Minimal, Localized, Extensive

Granular effect Functional/module, Subsystem- subset attributes: micro-architecture changes,

Architectural– subset attributes: restructuring, refactoring, architecturally sig-

nificant change, structural changes, macro-architecture changes System

Category Corrective– subset attributes: intensive evolution; Perfective– Subset attributes:

performative, groomative, reductive, enhansive, anticipative, evolutive, design

evolution; Preventative; Adaptive– subset attributes: extensive evolution

Properties Static, Dynamic

Features Devices, Data access, Data transfer, System interface, User interface, Commu-

nication, Computation, Input/output

Quality attributes Usability, Reliability, Functionality, Portability, Availability, Maintainability,

Scalability, Efficiency– subset attributes: performance change

Logical Dependency relationship, Layers, Module decomposition– subset attributes:

coupling between modules; Source structure– subset attributes: header file

changes; Inheritance structure– subset attributes: inheritance deviation

Runtime Control flow processing; Concurrent processes; Distributed components ; Repos-

itory access; Component interaction; Component deployment

ing; we also utilize these attributes in our study to extract key-terms for architectural commits. Following

this, we mainly consider the major concepts of architectural change analysis methodologies from the SACCS

characteristics and attributes presented in Table 3.2 as deliberate changes. However, attributes of some of

the SACCS are dependent on user-requirements, stakeholders, and developers. Consequently, in our study,

we exclude those properties: Source, Criticality, Developer experience.

3.4 Architectural Change Analysis from the Development History

In this section, we will discuss in details about the architectural changes and their impact in various releases

of the candidate projects. All of the steps of our study are demonstrated in Figure 3.4. The major steps of

our analysis study are:

(a) Structural change detection

19

(b) Architectural commits detection and analysis

(c) Architectural quality metrics calculation and evaluation

In the discussion section, we will present bug-proneness and frequently changed sub-components along

with their implications.

Figure 3.4: Overall steps of our analysis study

3.4.1 Structural Change Detection

We have written a program to create a dictionary consisting of components (with relative directories) and

all the programs contained in each component for a release of the candidate systems. Our program iden-

tified high-level static architectural changes: kidnapping, splitting, relocating from the dictionary and AST

(abstract syntax tree) parsing. The total number of releases changed of the systems are presented in Table

3.3. The releases that contain static architectural changes are presented in the Figures 3.5, 3.6, and 3.7

with the number of sub-components that are the candidates of the high-level changes. We also calculated

the weights of the structural changes as the number of dependent files (partial static dependency defined in

[78]) of the changed components similar to FAN-IN count described by Aversano et al. [16]. This step is

similar to the retrospective analysis presented by Jazayeri [59]. So far, Galaxy undergoes 19 release changes;

iPlant Collaborative (Discovery Environment) undergoes changes for 11 releases, whereas ImageJ undergoes

changes for 8 releases. Among 19 changed releases of Galaxy we found 10 release contain substantial changes,

for iPlant Collaborative (Discovery Environment), 6 have major changes and ImageJ has 3 major release

changes. Although no rules-of-thumb are defined for measuring the impact of changes explicitly, Williams

and Carver [126] report the impact of changes to one component, several components, and whole architecture

as low, medium, and high respectively. In our context, we consider minor changes if the program dependency

counts < 10 of the affected sub-components, and significant changes if dependency count >= 10.

From Table 3.5, we observed that the highest number of components (14) related to changes are found

in Galaxy version 16.04. Among them, the sub-component of pulsar called the client, and actions sub-

component of Galaxy lib are relocated, removed, or renamed to the next release which is used by many other

20

Table 3.3: Number of releases that changed structurally

Project # Changed

Releases

#Kidnapping,Remove,

Relocate

Modules

added

Galaxy 19 14 5

iPlant Collaborative 11 9 2

ImageJ 8 4 4

important components. Pulsar is a library for an event driven framework to build scalable network program.

In the latest version (17.01), we found this component is implemented in a single file-module (that means

the micro-structures have been merged). The action component contains functionalities of tool configuration

handling.

Furthermore, we studied all the components of all the changed releases. Our investigation found that

these subcomponents are associated with: tools, tool shed, job handling, data, and web-request handling.

Figure 3.5: Components changed in Galaxy releases (from each previous adjacent release)

From the release 1.9.4 (ui) to the release 1.9.5 (ui) of iPlant Collaborative (Discovery Environment) 20

components are changed. Among them, the largest is the events sub-component of the disk-resource module.

This component implements Google GWT library for resource and file event handling on the web.

Studying of all components of all the releases of iPlant Collaborative (Discovery Environment) related to

change we observe most subcomponents are associated with: dynamic UI, client services, data-model, tools,

and messaging.

Similarly, for ImageJ, in the most changed release 2.0.0-beta4, pipesentity and core module are the two

largest subcomponents that are changed structurally. Pipesentity is used for handling different attributes

during pipeline execution. Core/module is used for handling plugins and scripts, as well as workflows, which

are directed acyclic graphs consisting of modules whose inputs and outputs are connected.

Finally, we also investigated all subcomponents related to the changes of all the releases of ImageJ. Most

21

Figure 3.6: Components changed in iPlant Collaborative (Discovery Environment) releases

Figure 3.7: Components changed in ImageJ releases

of the sub-components are associated with workflows/pipelines, tools, plugins, data-handling, services, I/O,

and UI. Therefore, this experiment provides us the information that static architectures of these systems are

changing significantly from release to release due to unstable design. However, more detail information is

necessary such as original reason or intention of the changes, and the sub-components of the systems that are

related to deliberate changes. In the next section, we will present a technique for mining that information

from commit history of the releases.

3.4.2 Architectural Commits Detection

Each release of the projects has commits that contain changes at the code level and short description about

what has been changed. Therefore, from the commit messages, we can extract valuable knowledge-base

about the intention of the changes. Experts and architect can study patterns of information contained

in this history to understand why a piece of code evolved, interested piece of source code or to find and

22

Table 3.4: Sample commits that contain the intention of architectural changes

commit id Text Key-terms

1 ..1ea4a4336441d87ba Migrate imagej.ext classes to imagej base package (We

leave only InstantiableException, temporarily, to avoid an is-

sue with old versions of the ImageJ updater.) This is part

of an effort to make the ImageJ package structure simpler

and easier to understand

migrate

classes pack-

age

2 ..2ab8235d023f0297 Add interface for objects housed by a UI This UICompo-

nent interface is shared between InputPanel and InputWid-

get,and could potentially be useful for other composition-style

UI (i.e,"has a" UI component rather than "is" one) in the fu-

ture.

add inter-

face objects

UI (not ar-

chitectural

change)

3 ..81b6f6bcffec0f90c Tweaks to the recent Tool ShedAPI enhancements, making

them more RESTful.

API en-

hancements

debug faults. Even many attributes of the Software Architecture Change Characterizing Scheme could be

extracted from the commit messages. We leverage the commit information to analyze architectural change

activities as SACCS. However, it is a non-trivial task to manually analyze thousands of commits. Existing

literature [39] illustrated the importance of reducing search space. We also focus on reducing search space

and automatizing the commits analysis. To that end, after structural change detection, we select the most

changed release from each project: 16.04 from Galaxy, ui_1.9.5 from iPlant Collaborative, and 2.0.0beta4

from ImageJ. These releases contain almost ∼ 1500 commits. We analyzed the commit messages and found

that the developers present their intention in the commit messages; thus commit messages are the primary

artifacts for the automatic extraction of the architectural change related insight and reason of changes without

communicating with the stakeholders, developers, and requirement specification. After careful analysis, we

found some interesting natural language patterns consisted of two to four words in a sentence (many of them

are present in SACCS attributes) that express the intention of the developers about architectural changes;

we call them as co-occurred terms. All co-occurred terms should be present in a sentence to express the

architectural change. For example, the terms: make, structure, and simpler (contained in the sample #1

in Table 3.4) express that the structure of a module has been changed to make it more simple. Thus,

we found ∼ 200 commits express architectural changes explicitly. Some samples of commit messages are

presented in Table 3.4. We use the knowledge base of SACCS [126] attributes presented in Table 3.5. We

also observe that some sentences do not mean architectural change even though the co-occurred terms exist

along with some other terms (i.e., UI, visualization, display). Some co-occurred terms are ambiguous about

explicit architectural change. We classified these co-occurred terms into three types: (i) explicitly represent

architectural changes, (ii) implicit, and (iii) do not represent architectural change, are presented in Table 3.5.

23

Table 3.5: Representational co-occurred terms of architectural change (we have identified 120 co-
occurred terms). Presence of these terms in a sentence are most likely to express architectural commits.

Co-occurred-terms Non-terms Implicit-terms

Design improvement Visualizations decompose into distributed object store free

space

Decouple function Repository dependency hierar-

chy

component review approval sta-

tus

Enhance process Enhance installing dependency Processing state runner

Refactoring controller Enhancement displaying Performance improvement

run unless Enhance setting to Adjust logic module

Job state Merge changes Merge job changes

refactoring job preparation Enhance display Dependency resolution

new-style applications module Merged in Context dependency resolution

After a thorough investigation of the 1500 commits, we found that two to four terms are enough to

represent architectural change activities in the commit messages for most of the cases. So far we extracted

100 co-occurred terms that may represent architectural change related activities.

Figure 3.8: Key-term Graph related to architectural changes (red edge means not an architectural
change)

Key-terms (according to the context) are being used in many techniques for mining significant information

from software artifacts. For instance, in a published work [86], we utilized key-terms for predicting question

quality in the developers’ Q/A forum. We represent the key-terms as a graph (hence term-graph), where

vertices correspond to terms, and edges correspond to co-occurrence between the two terms. Specifically,

edges are drawn between vertices if the vertices co-occur within a sentence of a commit message. Termgraph

is used [26] in information retrieval for detecting valuable information from natural texts. In this study, after

collecting those co-occurred terms we first generate a termgraph using the co-occurred terms. A sample term-

graph is shown in Figure 3.8. During scanning all the commits, a temporary term graph of each sentence

of a commit message is generated. After that, we search a path in the temporary graph from each edge

contained in the base graph. If the temporary graph contains a path then that sentence is the candidate

sentence representing the architectural change commit. However, we see many cases where key-terms does

24

not exactly represent architectural changes such as #2 sample containing UI related terms as shown in Table

3.4. Consequently, we discard those sentences as decision-making sentence about the commit. We set the

weight of each edge of the base graph corresponding to the number of the co-occurred terms that represent

actual architectural change. First, an edge containing two terms is matched in the base graph. Then we

check the weight of the edge and consider the sentence as a candidate if it contains a similar number of terms

corresponding to the weight in the adjacent connected edges in the base graph.

Listing 3.1 Algorithm for detecting commits representing intentional architectural change

1 LC <−− {} #Li s t o f a r c h i t e c t u r a l r e l a t e d commits

2 Co l l e c t co−occurred key−terms , Tkey

3 Gkey = developWeightedTermGraph (Tkey)

4 For commit C in Cm do

5 Sc = Sentences (C)

6 For sentence S in SC do

7 Ts <−− Important terms in sentence S

8 Gts = developTermGraph (Ts)

9 I f (va luab l e path from Gkey i s in Gts)

10 LC <−− add (C) , e x i t from second For .

11 End For

12 End For

13 Return LC

Listing 3.1 represents the architectural commit messages detection algorithm. Here, weight is important

to track the number of nodes of a path for filtering non-representative commits. Our technique detects 278

architectural commits from 26,284 Galaxy commits, 23 from 7,905 iPlant Collaborative (Discovery Envi-

ronment) commits, and 127 from 9,800 ImageJ commits. Detected commits in major structural changed

releases are presented in Table 3.6. Most of the static architectural changed releases contain these commits.

We manually verified these detected commits and found relevancy about architectural changed related de-

scription. After manual analysis at the source code level, we found 57% to 77% of the detected commit

messages reflect the deliberate architectural changes (average 66.33%). This is very promising as some com-

mit messages are falsely identified due to the cross natural language effect, for example, "Merge changes from

other branches" originally means merging two commits that may not be architectural components merging.

The number of false positive can be reduced, but in that case, important commits may be skipped. Many

architectural change commits those do not contain explicit natural language about the change may not be

detected with this technique. In future, we will conduct more analysis for this issue considering different

constraints. However, as the commits are detected by information in SACCS attributes, it should be said

that the architecture of Genotyping and Phenotyping systems are changed due to enhancement, defect repair,

restructuring, dependency changing, scalability, technology change, and so on. Furthermore, once these com-

25

Table 3.6: AC commits extracted by our technique

Galaxy (65%) iPlant(DE)(57%) ImageJ (77%)

Version AC com-

mits

Version AC com-

mits

Version AC com-

mits

v13.02 19 /ui/1.9.0 8

v13.04 39 /ui/1.9.4 3 v2.0.0-beta4 127

v13.08 20 /ui/1.9.5 5

v14.06 69 2.5.0 3

v14.08 36 2.6.0 4

v14.10 35

v15.01 22

v15.05 19

v16.04 19

mits are detected from thousands of commits, project manager and software architects can conduct further

analysis; for example, developers profile can be developed for those are more aware (or expert) about good

architectural design.

3.5 Design Quality Metrics Calculation and Evaluation

In this section, we will discuss the design quality of the releases of the candidate systems. Aversano et al.

[16] utilized Core Design Instability (CDI) and Core Calls Instability (CCI) for measuring the stability of the

core module of a system architecture. However, recently, a number of metrics have been proposed to evaluate

design quality of a complete system. To verify whether the logical/static changes reflect the architectural

properties we evaluated various design quality metrics [21, 127, 112, 33, 34, 98]: Design Rule Hierarchy

(DRH) depth [127, 33, 34], independence level (IL) [112], Package Cyclic Dependency (PCD) and Improper

Inheritance [98]. To calculate those metrics we used state-of-the-art tools: SciTools (Understand) 3 and

Titan [129]. SciTools produces dependency matrix (DSM) of all program files of a project, and Titan tool

uses that matrix to calculate other design quality metrics. We will briefly discuss the Design Rule Hierarchy,

Independence Level, and Package Cyclic Dependency as follows:

DRH (Design Rule Hierarchy): The unique feature of a Design Rule Hierarchy clustering is that files

in the same layer are decoupled into modules that are mutually independent of each other. Here, independence

means that changing or replacing one module will not affect other modules in the same layer. Design Rule

Hierarchy is calculated through Augmented Constraint Network (ACN) and Design Structure Matrix (DSM)

3https://scitools.com/trial-download-3/

26

[21, 127] of a project. A Design Structure Matrix is a square matrix in which rows and columns are labeled

with design dimensions where decisions are made; a marked cell emphasizes that the decision on the row

depends on the column [127]. DSM can capture the concept of modules and design rules, as well as their

decoupling effects. To detect design rules and independent modules within a software system, few prior works

define a clustering algorithm, Design Rule Hierarchy (DRH) [127, 33, 34], which clusters a system’s files into

a hierarchical structure with n layers, where layer 1 contains the most influential files, typically interfaces or

abstract classes that have many dependencies. Formally, a Design Rule Hierarchy is a directed acyclic graph

(DAG) [127] where each vertex models a program file; each file is defined as a set of design decisions that

should be made together. Edges in the graph model an assumption relation: an edge (u, v) models that the

decision v assumes decision u. A change in the choice of u may cause a change in the choice for v. The layers

within the Design Rule Hierarchy obey the following rules:

• Layer 0 is the set of program files that assume no other decisions.

• Layer i (i ≥ 1)is the set of all program files that assume at least one decision in level i− 1 and assume

no decisions at a layer higher than i − 1. Within any layer, no program assumes any decisions in

another program of the same layer. Hence, the program files within the same layer can be completed

independently and in parallel.

• The highest layer is the set of independent modules. No decisions outside of these modules make

assumption about any decisions within these modules

Independence Level (IL): Sethi et al. [112] proposed a metric called Independence Level (IL) to

measure the portion of a system that can be decoupled into independent modules within the last layer of its

Design Rule Hierarchy: the better modularized a system is, the larger the proportion of files in the last layer.

Independence Level is calculated from DR (Design Rule) cluster. The modules in layer n, that is, the bottom

layer of the Design Rule Hierarchy are truly Independent Modules because each can be improved or replaced

without influencing any other parts of the system. Design rule theory suggests that more independent modules

create more option values in a system.

Package Cyclic Dependency (PCD): Tosin et al. [98] illustrated that cyclic dependent components are

more defect-prone than non-cyclic dependent components. Therefore, Package Cyclic Dependency (sometimes

called cross-module dependency as well [84]) metric is used to predict defect of a system architecture. Package

Cyclic Dependency is formally defined as:

• Given two packages P1, P2 of the DSM, there exists files f1 in P1 and f2 in P2. Now, let there are two

files fj in P2 and fi in P1 exist, if depend(f1, fj) and depend(f2, fi), then these two packages are said

to be created a Package Cycle (which is called a cyclic dependency between the packages).

Similarly, improper inheritances [84] also indicate the issue within a system structure. Above all, all of

these metrics represent the architectural quality of a software, and detecting changes in their values represent

27

significant architectural changes. We select the releases of the candidate projects which have higher structural

changes that are previously identified programmatically. The value of the design metrics of the releases of

Galaxy, iPlant Collaborative, and ImageJ are presented in Figure 3.9, 3.10, and 3.11 respectively.

Figure 3.9: Architectural quality metrics in different releases of Galaxy. (Here, DRH is Design Rule
Hierarchy, PCD is Package Cyclic Dependency, and IL is Independence Level).

Figure 3.10: Architectural quality metrics in different releases of iPlant DE

From the chart in Figure 3.9, we observe that for most of the releases of Galaxy project, there are

changes of Design Rule Hierarchy, Package Cyclic Dependency, and Independence Level measurement; iPlant

Collaborative and ImageJ have almost steady value for most of the releases. From the charts, we notice that

Package Cyclic Dependency of Galaxy and iPlant Collaborative grows with respect to the age of the projects

that indicate the negativity of the design; by contrast Package Cyclic Dependency of ImageJ decreases at the

latest releases. Initially, the value of the Independence Level of Galaxy was good but decreases in the latest

releases (means negativity). On the other hand, Independence Level value was little for iPlant Collaborative

and ImageJ, but slightly increases for iPlant Collaborative and significantly increases for ImageJ which

represents the positivity of the design. However, Design Rule Hierarchy level of Galaxy and ImageJ are

unstable for various releases. We also calculated the Improper Inheritance metric of all the releases and

found significant value. Average values of IL of those releases for Galaxy, iPlant, and ImageJ are 0.621, 0.158

and 0.373 respectively. Average values of PCD for them are 32.4, 36.4 and 34 respectively. Although no

value is defined as a standard threshold the higher values of IL and lower values of PCD indicate better

28

Figure 3.11: Architectural quality metrics in different releases of ImageJ

Table 3.7: Detected bug related commits in various releases

Galaxy iPlant Collaborative(DE) ImageJ

Version Bug com-

mits

Version Bug com-

mits

Version Bug com-

mits

v13.04 96 /ui/1.9.0 43 v2.0.0-beta4 167

v13.08 68 /ui/1.9.4 3 v2.0.0-beta5 43

v13.11 11 /ui/1.9.5 15 rewritten-

trunk

608

v14.06 116 v2.3.0 16

v14.08 113 v2.5.0 37

v14.10 105

v15.01 158

v15.05 220

v16.04 312

design of a system. Having said that, comparing these design quality metrics, it appears that design quality

of ImageJ tends to be better than those of Galaxy and iPlant Collaborative. Notably, ImageJ is a smaller

desktop-based system, and handle only localized image data. Another key thing to remember is that Galaxy

and iPlant Collaborative (Discovery Environment) use multiple technologies and programming languages

which might increase the complexity. This analysis result verifies that our detected logical structural changes

of these projects are significantly related to architectural quality changes. All things considered, the design

quality metrics reveal that these projects have significant architectural issues which affect maintenance and

development efforts. Moreover, in terms of modularity, there is space for the improvement.

29

3.6 Case Study and Discussion

Analysis study presented in the previous sections identify the releases of the candidate systems that have

been changed architecturally. Furthermore, we detect bug related commits in these releases using technique

presented by Audris and Lawrence [85]. The bug related commits are presented in Table 3.7. This technique

detects 1,997 bug related commits (among 5,230) for major changed releases of Galaxy, 115 commits from

iPlant Collaborative, and 800 bugs from ImageJ. In the latest releases of Galaxy and iPlant Collaborative,

bugs are increased, that means maintenance efforts are also increased. However, ImageJ is exceptional in

this regard but bugs are still produced. A number of studies [85, 74] relate bug-proneness with bad design.

Therefore, this also verifies that architectural issues create other issues. Above all, we analyzed architectural

changes from the various perspectives: structural changes, commits that contain the attributes of Software

Architecture Change Characteristic Scheme, various architectural quality metrics, and bugs-proneness. All

of these analyses verify that existing Genotyping and Phenotyping analysis systems are unstable as they

follow traditional architecture. This instability might be introduced with a change of requirements and new

specifications, and developers and managers might have faced new challenges.

As a case study of our proposed architectural change commits detection technique presented in Section

3.4.2, we detected sub-components from the filtered commits from the associated code-base that are frequently

changed due to SACCS attributes. Top 20 detected sub-components in various releases of Galaxy, iPlant

Collaborative, and ImageJ are presented in Table 3.8. From the project properties, we also attempt to map

the subcomponents with their major tasks in the respective projects which are also presented in Table 3.8.

This information is also useful for the selection and enhancement of reusable components (from existing

systems) for developing Genotyping and Phenotyping analysis system. The components (skipping UI and

Test components) involved in the frequent architectural changes are related to Tools/ APP, Data-transfer/

IO, Data-processing, Plugins/3rd party tool integration, Threading, Job Scheduling, Pipelines/Workflows.

Additionally, during sub-components analysis, we found the structure of some third party packages (i.g., LWR,

pulser, gou, gin) used in the projects are significantly changed, which indicates that available technologies

also prompt architectural changes. Therefore, more stable and feasible architecture is essential to be defined,

especially focusing the dynamic nature of these subcomponents and technologies.

3.7 Related Work

Existing studies have focused on architectural evolution and issues during software development phases in

various domains (business, industry, development tools, and so on). Nowadays, cloud based Genotyping and

Phenotyping analysis systems are emerging, and have multi-complex structure. Despite this, a little effort

had been given for the analysis of architectural issues in this domain.

Cobodon et al. [39] conducted an empirical study over 217 developers and reported that the most

30

Table 3.8: Frequent architecturally changed components and their main actions in the project

Rank Galaxy Major action iPlant Major action ImageJ Major action
1 api app handle lib core actions+ display visual
2 util data op+ presenter file viz plugin plugin handle
3 tools tools handle desktop viz assign data op
4 galaxy mvc op+ pq database tools tool handle
5 tool_dependen

cies
handle dependent
libraries

gou go util event user action

6 recipe handle dependent
lib

gin web routing overlay data op

7 dataset_coll
ections

data op+ diskResource data storage module I/O handle

8 parameters tool param fileViewers viz pivot viz
9 controllers web control iplant dependent sub-

systems
debug logging

10 galaxy_install associated tool util data op+ options data stream
11 lwr_client system job de pipeline han-

dle+
core processing ser-

vice+
12 grids tool repo services system service util data op +
13 runners multi job go-hostpool host manage restructure data strcuture
14 collectl job tracker cells viz api plugin
15 instrumenters job plugin deployed

Components
viz imglib img operation

16 blue viz impl web service interactive viz
17 tool_shed_

unit_tests
Tool repo test config vendor config io I/O

18 jobs job manage base collaboration service data manage
service

19 workflow workflow certs database data data op
20 base toolbox stub viz thread job run

Here, "op"- operations, "viz" - visualization, "+"- more operations, "repo"-repository

developers want to investigate past development history to improve the next challenges. They report that,

58% developers are interested to investigate architectural evolution, but find it difficult to analyze as fully

automatic technique is not yet developed. A number of studies focus on the analysis of software development

history [46, 62, 65, 87, 39, 90] for extracting significant insight about software artifacts. Their analyzed

artifacts are requirement specification, source code changes, and commit messages. In our study, we analyze

commits, architecture, and sub-components from the history of open-source systems in this domain.

Nazar et al. [90] stated different techniques for automatic summarization of software artifacts from

development history, however, no technique for summarizing architecture is reported by them. Fluri et al.

[46] studied source code changes from history and found that change type patterns do describe development

activities and affect the control flow, the exception flow, or change the API. Jim and Lee [62] studied the

effect of IMPORT change from development history and found that import change is a significant factor in

change prediction and change coupling analysis. Moreno et al. [87] proposed an automatic technique for

release generation from change history. However, they did not include architectural change summary due

to lack of automatic technique. Klepper et al. [65] propose a semi-automatic release note generation for

different viewers (customer, project manager, tester, developer). This work did not provide any indication of

architectural changes. Our proposed architectural commits detection technique can be used for generating

automatic architectural change summary.

31

Williams and Carver [126] develop a Software architecture change characterizing scheme for the developers

and maintainers to help decision making on potential changes can be made, given the development constraints

and architectural complexity. Through a systematic review, they identified a number of important facts

related to the software architecture change: (i) How are software architecture elements and relationships

used when determining the effects of a software change (ii) How is the architecture affected by functional and

non-functional changes to the system requirements (iii) How is the impact of architecture changes qualitatively

assessed (iv) What types of architecture changes can be made to common architectural views. However, they

have not provided any experiment with real world projects. We consider their facts during our analysis.

In another study, Jamshidi et al. [58] identify research works on architectural evolution study, identify

shortcomings in the architectural evolution study technique. Based on the lacking of existing techniques

of architectural evolution they suggested to architectural evolution study from software repository using

practical and systematic context and change impact of it. Our study explicitly follows the guidelines and

insight about architectural change characteristics directed by these works.

A few studies focused on to the automatic software change and impact analysis from development artifacts.

Behnamghader et al. [24] analyzed the impact of each commit (their dataset contains ∼ 20,000 commits) to

the main module of a system as error proneness. They describe it as quality evolution analysis of a system.

However, an automated technique is essential to reduce search space. In another study, Nejati et al. [91]

proposed a technique for reducing search space to analyze change impact from requirement statement and

design elements; where requirements and design information is essential as input into their technique. In our

study, we propose a technique to reduce search space for analyzing architectural changes from the historical

commit messages.

A number of studies [112, 59, 19, 13, 78] focused on to the architectural stability from the requirement

specifications, pre-defined rules, design elements, and retrospective. We conducted our study with the de-

velopment artifacts at the sub-component level explicitly using both retrospective and commits. Various

research works [21, 127, 112, 33, 34, 98] focused on identifying the design quality metrics that directly rep-

resent the quality of an architecture. A few studies [85, 74] propose a technique for identifying bug related

commits. We also utilized those techniques to identify architectural change impact from release to release of

the existing Genotyping and Phenotyping analysis systems.

Finally, to the best of our knowledge, our study is the first that reports an extensive analysis of ar-

chitectural changes and issues from the development history of the Genotyping and Phenotyping analysis

systems.

3.8 Conclusion

In this study, we present an analysis of architectural changes from the development artifacts of the releases

of Genotyping and Phenotyping analysis systems. At first, we identified and filtered out the most structural

32

changed releases and analyzed them. After that, we detected intentional commits about architectural changes

using our proposed key-term-graph based technique. We observed that most of the releases filtered in the

first step have such commits as well as bugs. Finally, we measured the design quality metrics of the releases

and noticed the instability from release to release of the candidate systems. Additionally, we figured out the

subcomponents frequently changed (most of them are different compared to usual systems) architecturally

from the detected commits. Our experiment illustrates that existing Genotyping and Phenotyping analy-

sis systems go through major architectural changes (hence unstable) mainly for tools/app, data-processing,

plugins, workflows modules. That is to say, a new architectural model is required focusing the adaptable

nature to the continuous changes which will reduce the maintenance and development efforts of the Geno-

typing and Phenotyping analysis systems. The knowledge-base of our analysis study is helpful for devising

a stable architectural model and modularity design. The summary of frequently changed components and

subcomponents also helps to develop use-cases in our next study.

33

Chapter 4

A Conceptual Reference Architecture

4.1 Introduction

Plant Genotyping and Phenotyping analyses involve numerous steps including physical plant sample col-

lections, data curation, data conversion into different steps for generating users’ expected end results, and

making analysis results available to researchers and practitioners if needed. There are a number of challenges

involved in automating the process of plant genotyping and phenotyping, e.g. reproducibility of experiments,

high throughput processing of large amounts of data in various formats (e.g. structured, semi-structured and

unstructured), identification of appropriate meta-data for the diverse uses of the data, collecting, abstracting,

and loading data into easy accessible structures. Fortunately, several frameworks such as Galaxy [49], GenAp

[68], iPlant Collaborative (or iPlant) [83], and LemnaTec [4] are already available to tackle many of the chal-

lenges. These technologies also attempt to tackle other problems, such as security, workflow management

and accessibility of public datasets.

Architectural stability analysis presented in the previous chapter reveals that core components of the

existing systems are changing significantly. Consequently, more analysis is required in terms of scenarios

and micro-architectures in order to find issues and scopes of improvement in details. In this chapter, we

investigate and analyze the architectures of the candidate frameworks by combining a reverse engineering

process (using various tools and manual analysis) and SAAM [61], which is a scenario-based architecture

analysis method. Both software architectures and scenarios are important tools for understanding a systems’

behaviour. In our investigation, we attempt to understand the four candidate frameworks and determine their

strengths and weaknesses by doing a comparative analysis with a set of scenarios using SAAM. According

to the features described in Table 2.1, the abstract view of a such a system from the perspective of the

users is presented in Figure 4.1. Here, users are mainly various computational biologists and agriculturists.

But, developers face complex scenarios as there are working dependencies among various experts groups.

For instance, image processing group develop algorithms, data-scientists use those algorithms for developing

work-flows or pipelines, and the developers of the main cloud framework use those pipelines to integrate.

Consequently, both users and developers confront with totally different contexts compared to other domains

such as BI (business intelligence) systems [99]. Moreover, a large collection of data (e.g., crops field images)

are required to be processed on daily basis for effective analysis. To process large data, Big Data frameworks

34

Figure 4.1: Abstract view (from a user) of a Phenotyping framework

are emerging that leverage the cluster processing. Among them, many data-scientists are using Spark [7],

Hadoop [2], Pig [96], Google-Data-Flow [11]. Research on Big Data, design methodologies, and software

architecture are evolving with the emergence of the latest technologies.

For an integrated solution, it is expected that a plant phenotyping and genotyping system should sup-

port (i) a data-centric model [11] capable of handling large and heterogeneous data with support for high

throughput data processing, (ii) a software component model [70] supporting loosely coupled interactions

among different independent components of the systems and (iii) an infrastructure model [9] defining services

of the system across various machines in the cloud. However, our SAAM analysis reveals that none of the

candidate architectures fully support these three models. For example, GenAp only partially supports the

data-centric model and the infrastructure model, services of the Galaxy system are not separated into inde-

pendent modules that are easily replaceable and pluggable without redeploying the whole system, and core

subsystems of iPlant run on different machines that cause performance degradation. Consequently, the can-

didate systems are not flexible enough to support some advanced features needed for plant phenotyping, such

as high-throughput image analysis, geo-spatial data analysis, scientific and intelligent workflow management,

and virtual plant modeling and simulation.

Following the challenges of core components and scenarios, we propose a conceptual architectural model

for cloud-based Genotyping and Phenotyping framework. The proposed architecture is a combination of

data-centric model, component integration model, and infrastructure model. For developing the reference

architecture we emphasized both inductive and deductive reasoning [99] which include bisecting existing

systems from various dimensions and analyzing published papers in other big-data domains (this is a strong

point of realizing a reference architecture). Some of the elements in the reference architecture are also adopted

from various existing solutions. We map our proposed model with published works in various other domains.

To the best of our knowledge, no cloud-based reference architecture exists in the subject domain that can

handle the data centric, software component and infrastructure models for large volume data.

Along with discovering capabilities of the candidate frameworks, we also discuss our experience with

SAAM. In this study. For example, while applying SAAM to four different architectures supporting similar

35

functionalities, we realized that when SAAM is applied to already built systems, product analysis is one of

the important steps. It increases an evaluation team’s insights and understanding of the systems.

In short, there are four major contributions of this study:

• Scenario based architectural analysis of four popular systems for plant genotyping and phenotyping

• Product analysis identified as an important/explicit step in SAAM

• The design of a conceptual reference architecture

• Mapping our proposed architectural model with the published works

• A proof of concept subsystem implementation based on the reference architecture

4.2 Related Work

Software architectural evaluation provides assurance to developers that their chosen architecture will meet

both functional and non-functional quality requirements [105]. There have been different architectural eval-

uation methods proposed [38, 104] including surveys and comparison frameworks [69, 29, 105]. Among the

different methods SAAM, proposed by Kazman et al. [61], is one of the most used methods. SAAM has been

applied to numerous case studies: global information systems, air traffic control, and so on [6, 38]. SAAM

identified different design problems in these systems and provided guidelines for fixing them.

Other methods [100] such as ATAM, ALMA, SAAMCS, SBAR, ALPSM, ESAAMI are based on SAAM

and focused on a few of the specific quality attributes individually. ATAM is an architecture trade-off analysis

method for availability, maintainability, security; SAAMCS is devised focusing complex scenarios in specific

problems; ALMA is for architecture level modifiability analysis; ALPSM is the architecture level prediction of

balancing maintainability; SBAR is scenario-based architecture reengineering for reliability and performance;

ESAAMI is the extension of SAAM for reusable knowledge base in the domain; SACAM focused software

architecture comparison method for selecting an architecture. In general, architectural evaluation is a central

element during the entire software life cycle [97] and has been used for identifying architecturally significant

requirements [23], for analyzing and evaluating architectures [38], for managing architectural knowledge [17],

for architecture documentation [48], for architecture design [105], and for checking architecture/implementa-

tion conformance [108]. There are also recent works that use architectural evaluation methods for improving

software product line management [97], for ensuring the security of a software system [63], understanding the

sustainability of software architecture [69], and even early architecture evaluation for large-scale distributed

systems [137]. Given that genotyping and phenotyping domains deal with terabytes of data, the architectures

of the frameworks in these domains should be evaluated whether they meet not only the relevant quality

attributes but also the challenges of Big Data and the specific requirements of the problem domain.

Unfortunately, to the best of our knowledge, there are no studies that evaluate the architectures or

model a common reference architecture of Big Data frameworks in the subject domain. From the described

36

documentation, it appears that the candidate systems use MVC and three-tier model. However, Aniche et

al. [15] illustrate that the mostly used model-view-controller (MVC) architecture has several issues with a

cloud-based system. Models [71] are the major components of the system application that instrument the

core tasks along with database handling. Controllers [71] are used as a way of interaction mechanism between

the model and corresponding views (the interactive user interfaces). Some of the issues of MVC are called

fat repositories (problematic when third party services are essential to handle), the promiscuous controller

(critical when various categories of processing logic are required to handle), meddling service (complexities

arise when there are data services other than only relational database services), and so no. It appears that

these types of concerns are prevalent in this domain than other studied domains. However, in recent years,

studies of some advanced reference architectures for other cross-domain systems that handle mixed and large

data are available [42, 11, 9, 135, 75, 70, 99, 10]. Highlights of these studies include standardizing on a data-

centric model, an infrastructure model, and a software component model that can adapt to the challenges of

mixed data computation. We adopted them to introduce a common reference architecture for a cloud-based

plant genotyping and phenotyping analysis system. Undoubtedly, these systems work on large and mixed

data for diverse and varied sets of use cases. Demchenko et al. [42] discuss a number of aspects of why a

data-centric model is necessary. Pääkkönen and Pakkala [99] define some reference architectures partially

based on a data-centric model. Recently, Apache Beam (Google DataFlow) [11] has been developed based

on a strict data model for processing massive-scale, unbounded, out-of-order data on the cloud.

Recently, a number of studies [42, 99, 70] propose new reference architectures for the modular systems

for Big Data application. Among them, some applications follow a workflow based modularity architecture

[70, 115] whereas others follow a layered based architecture [130, 67, 76]. Multilayer pattern is also followed by

Tomominer [130], IBM Pairs [76] (for GIS data analysis), Bolstar [88], and so on. Bolster basically propose

a straight-forward architecture and technology used in each layer for Big Data processing. Hierarchical

modularity is followed by a National Security system [63] in which top level contains three modules– (i)

Big Data application module, (ii) Framework provider module, and (iii) Cross-cutting module. Each of the

modules has sub-modules. While the analytic module is the core development module, it is described as

compact and no design rule is presented. Pääkkönen and Pakkala [99] extracted reference architecture of

Facebook, Twitter, LinkedIn, Netflix, BlockMon. All of them are designed considering temporary storage of

processed stream data in various stages and what kind of technology is suitable for each stage. A recently

proposed framework, MDEF [53] is developed for redeployment flexibility of statistical models which implicitly

followed data processing pattern. Infrastructure model is adopted by one of our candidate systems GenAP

[68], as well as by HBase [132] and HVistrail [138]. Although HVistrail is for workflow systems, its main

concern is how to orchestrate with high-performance computing environment from the application interface.

In this thesis, we explicitly defined data-centric modularity orchestrating other modules in the system. We

also include components to deal with the data interface, virtual plant modeling, and generic, semi-generic and

customizable plugins integration on-the-fly. It is also necessary to describe a cloud infrastructure that fulfills

37

Table 4.1: Some Important Properties of the Candidate Frameworks

Property Text Galaxy iPlant GenAp LemnaTec
1 What kind of cloud API is used for allocating

virtual resources?
CloudMan Atmosphere Galaxy Cluster

API
Scanalyzer3D

2 What is the name of the cloud service provider? Amazon Ec2 Atmosphere Server Canada HPC SUSE
Linux

3 Does it provide Phenotype image analysis/ stor-
age tools?

No Yes, Bisque No Yes

4 Does it offer third party API support? Yes,
BioBlend

Agave API MUGQIC -

5 What kind of scheduling algorithm is used? SLRUM HTcondor PBS scheduler -
6 What is the underlying database? SQLite MongoDB Spark SQL SQLite
7 How large data files are stored? No BigData

yet
HPI Cluster (IROD,
FUSE)

CVMFS LemnaBase

8 How meta data is stored? Simple XML Sematic
Web(iRODS)

ADAM(R) CSV/SQL

9 Does it support scientific workflow? Yes Yes (Taverna engine) Yes Yes
10 Does it give access to publicly available datasets

or analysis results?
Yes Yes Yes Yes

11 Does it support MapReduce for distributed com-
puting?

No No Yes through
pipeline

No

12 Does it support applications through web por-
tals?

Yes Yes Yes No

13 Does it fully dependent on third party develop-
ers?

Yes No Yes No

14 What kind of visualization tools it offers? IGV+UCSC
+IGB

CoGe Same as Galaxy LemnaMiner

15 Does it support independent 3rd party tool inte-
gration?

Command
Line App

Command Line App Command Line
App

No

16 Does it support role based security management? Through Ad-
min Panel

Through Admin
Panel

Through Ad-
min Panel

No

the diverse requirements within the reference architecture. We adopt a heterogeneous cloud infrastructure

[82, 9, 135, 75] for our conceptual architecture. Our analysis study is helpful for illustrating the challenges

of developing a phenotyping system that handles Big Data, and developers will be able to implement such a

system in a more advanced way by being more aware of the challenges.

4.3 Analysis Methodology

We adapted the architectural evaluation methodologies proposed by Kazman et al. [61, 60] and Roy et al

[104] to evaluate the state-of-the-art platforms for genotyping and phenotyping. Our methodology combines

different techniques in order to find out differences among the candidate platforms’ architectures, including

reverse engineering their software architectures, and scenario-based architectural and dynamic analysis. Re-

verse engineering software architectures [37, 122] alone do not provide a deep understanding of architectures.

If the extracted architectures are refined with evaluation methods, they become more understandable to

developers or architects [104]. Keeping this in mind, we extracted architectures of the candidate frameworks

using tools and evaluated them using SAAM [61].

Major steps of our developed methodology for evaluating candidate architectures is described as follows:

Step 1. Product Analysis: In this step, we studied the candidate frameworks by using their executa-

bles, source code, online documentation, videos, asking questions of the product developers, and presenting

38

and demonstrating them to various practitioners. As an outcome of the step, we devised a question answering

table (Table 4.1) to guide the comparative analysis of the candidate products. This table is helpful to learn

about the products and their important differences quickly. The SAAM authors, Kazman et al. [60] used

this step in their architectural analysis implicitly. In this study, we make this step explicit in our proposed

methodology. Our understanding is that when SAAM is applied to an already implemented system, it is an

effective step to execute during the architectural analysis. Moreover, this step is also helpful for developing

various usage scenarios.

Step 2. Candidate Architecture Extraction: In this step, we extracted the architectures of candidate

frameworks using various tools such as PyDev, PyCharm, ObjectAid and Eclipse since most of the apps are

Python based. These tools generate UML class diagrams based on the class relationship within each module.

However, class diagrams alone are not enough to extract an architecture since it contains other scripts (such

as Linux shell scripts). Therefore, we also manually analyzed the source code ourselves to mine crucial

attributes and used the built-in Python script ModuleGraph to identify dependencies among different source

code modules. Finally, we obtained UML activity diagrams based on our analysis.

Step 3. Scenario Development: In this step, we elicited scenarios (or use cases). Each scenario is a

representation of a particular quality attribute and expresses tasks [61] illustrating the kinds of activities the

system must support and the kinds of anticipated changes to be made to the system over time. These sce-

narios represent tasks relevant to different roles such as end user/customer, marketing, system administrator,

maintainer and developer.

Step 4. Individual Scenario Evaluation: For each scenario, we determine if it is direct or indirect.

A direct scenario describes behaviour that can be supported without any modification in the system whereas

an indirect scenario describes behaviour that is not supported by the system. In order to support an indirect

scenario, the system must undergo some changes. In this study we discuss changes that are required in

different modules/components of candidate systems to support the elicited indirect scenarios. This step

allows us to understand the interactions between different modules of the candidate systems.

Step 5. Candidate Architecture Comparison: In this step, we compare different architectures by

identifying the outstanding properties of the different architectures along with their strengths and weaknesses.

4.4 Product Analysis

As we mentioned earlier, in this step we first explore the features of the candidate frameworks. Our first

candidate system, Galaxy, provides support for biomedical research. One of the important features of Galaxy

is that it has History and Workflow options which are exclusive in their operations compared to other tools.

Recently, Galaxy is hosted in a cloud environment too which helps a user to use it through the web. The

second candidate system, GenAP [68] tried to design a more interactive database analysis framework over

Galaxy. GenAp is a replication of Galaxy, but has a datahub management pipeline and individual server

39

Table 4.2: Scenario-based comparison of the candidate frameworks

Properties# Scenarios Galaxy iPlant GenAp LemnaTec
S1 A biologist or clinician wants to ex-

plore their data using tools available
in the web-based platform.

Direct, well Struc-
tured

Direct, well struc-
tured

Direct, up-
dated and
well struc-
tured

Mainly
Desk-
top

U
sa
b
il
it
y S2 A computational biologist wants to

use state-of-the-art pipelines to ana-
lyze their data without the burden of
installing and maintaining all of the
associated bioinformatics tools.

Direct, well Struc-
tured

Direct, well struc-
tured

complex
initial
setup

Complex

S3 A sequencing centre pushes raw data
into a Web based project created by
a user to facilitate data access and
analysis.

Indirect; Client,
Scripts and Lib codes
need to be changed

Indirect; Services,
Atmosphere and
Models code need
to be updated

Partially
supported;
use uni-
fied data
interface

Limited,
not web

S4 A computational agriculturist wants
to annotate an image (leaf, root) with
paint and brush (if possible), and also
wants to save and update the anno-
tation.

Indirect; Client,
Tools, Scripts and
Lib codes need to
update

Direct, Well Struc-
tured

No tools
found

Support

F
le
xi
b
il
it
y

S5 A developer wants to plug-in his im-
age analysis tool or pipeline for doing
image analysis, registration and seg-
mentation.

Indirect; codes of
Config, Cron, Tools
and Scripts need to
be updated

Direct Less sup-
portive,
difficult to
integrate

Difficult

S6 A developer wants to upload an in-
termediate processed work flow data
in the system for further analysis.

Direct, Updated and
Well Structured

Direct but needs to
be improved, not
user friendly

Direct, up-
dated and
well struc-
tured

Not
Sup-
ported

S7 A computational biologist wants to
add a new RNA analysis tool HISAT
in the existing system.

Direct but not well
structured

Direct and user
friendly

Direct but
not well
structured

Not
Sup-
ported

S
ec
u
ri
ty S8 A phenotypic researcher wants to

work with a visual Map interface to
automatically extract environmental
information (weather, soil info, land-
scape etc.) of a certain region and
integrate it with plant traits analysis.

Indirect, Client, Con-
fig, Lib and Scripts
codes need to be
worked out

Indirect, input pa-
rameter list needs
to be updated
for Migration and
Model components

Not sup-
ported
yet

Not
sup-
ported
yet

S9 A user wants to share data from a
project with another scientist to do
joint data processing and exploration.

Secured Secured Secured Not se-
cured

P
er
fo
rm

. S10 A computational agriculturist wants
to convert a file from one format to
another supported and useful format
within a reasonable amount of time.

Faster Faster Slower than
Galaxy

–

M
od

ifi
ab

il
it
y S11 Get an update after execution of each

of the steps of a workflow or image
processing pipeline.

Indirect; Need to add
in Client, Config, Lib
and Workflow code
design

Indirect; Models
and Core function-
ality need to be
updated

Source
Code not
analyzed

Not
Sup-
ported
yet

S12 A user wants to modify any part of
code base of an available workflow
and wants to save it in his private his-
tory as a new version of the workflow.

Not Available; Need
to modify Config, Lib
and Workflow code
design

Not available;
Models, Core and
Service code design
need to change

Not avail-
able

Not
avail-
able

40

instance creating facilities. For dedicated plant phenotyping, potential candidate frameworks include: iPlant

[83], and LemnaTec [4] which are the third and fourth candidate systems respectively. iPlant supports a

number of applications related to plant phenotyping. In addition, iPlant facilitates flexible app creation,

image annotation, Google map service for the taken image, and HPC options, which are exclusive in their

operations. LemnaTec is a desktop application which provides exclusive options for non-invasive plant data

collection and life cycle observation of plant through imaging. This framework fails to provide support for

collaborative research as it is a standalone desktop application.

As part of the product analysis steps, we did some dynamic analysis to learn the products’ features and

performance. For example, for evaluating the scenario S9 (Table 4.2), we consider the use case Import data

from 3rd party tool and convert the imported file into a different format. For Galaxy and GenAp, we imported

BED format genome file from UCSCB and converted it into GFF format. For iPlant, which does not provide

automatic import, we put the BAM file into our workplace and converted it to BED format. Although both

of them took < 10 minutes, Galaxy is more flexible than iPlant. However, GenAp is two times slower than

Galaxy.

Along with exploring different features, we also develop a question asking framework (shown in Table

4.1) for summarizing different important features. The table helps us to figure out some important difference

between the candidate frameworks quickly and help us in our scenario-based architectural analysis described

in Section 4.6.

4.5 Scenario Development

As discussed in Section 4.3, we have carefully selected 12 scenarios (shown in the third column of Table 4.2).

We selected the scenarios based on our product analyses and conversations with various bio-computation

researchers, agriculturists, and image processing researchers who work with the agriculture group 1 at U of

S. We also collected few scenarios from the GenAP website. These scenarios show important usage of the

system while reflecting various quality attributes such as usability, flexibility, security, and performance by

different stakeholders, such as computational agriculturists, computational biologists and developers. For

example scenario [S2:] A computational biologist wants to use state-of-the-art pipelines to analyze their

data without the burden of installing and maintaining all of the associated bioinformatics tools expresses

usability of the system for data analysis by the computer biologist. On the other hand, the scenario [S7:]

A computational biologist wants to add a new RNA analysis tool HISAT in the existing system. represents

"requires to integrating" facility hence necessitating system flexibility.

1http://p2irc.usask.ca/

41

Figure 4.2: Galaxy Cloud Architecture

4.6 Extraction of Candidate Architectures and Scenario Analysis

In this section, we briefly describe our extracted architectures of candidate frameworks that handle plant

genotyping and phenotyping along with our scenario-based evaluation findings.

4.6.1 Galaxy

The Galaxy [49] architecture consists of reusable software components as shown in Figure 4.2 (extracted

as described in Section 4.3, Step 2). Galaxy infrastructure is developed using the Model View Controller

pattern2 as shown in Figure 4.2. The Model is responsible for adding and retrieving items from the relational

database SQLite. Data entities handling workflow, datasets and history are mapped on to SQLite database

tables. There is a controller for each of the main entities handling workflow, histories, and datasets. One

of the important controllers is the API enriched with libraries for various programming languages helping

the developers in building different applications and tools in the Galaxy platform, e.g. BioBlend [116] is

developed using the Galaxy API. The Job Manager is responsible for executing jobs with the allocation of

resources and keeping track of jobs by adding sequence number whereas the ToolBox collects and manages all

types of tools in a language independent manner using the tool_conf.xml registry file. In addition, Galaxy

allows third party visualization tools as plug-ins.

4.6.1.1 Individual Scenario Evaluation of Galaxy Architecture

In this step (discussed in Section 4.3), we executed the scenarios onto the extracted Galaxy architectural

artifacts including the conceptual architecture (Figure 4.2) and on derived UML diagrams (e.g. Figure 4.3).

From different scenarios discussed in Table 4.2 we noticed that scenarios S1,S2, S6, S7 and S10 are directly

accessible from Galaxy architecture. The rest of the scenarios (such as S3, S4, S8, S11 and S12) are indirect

2http://www.laputan.org/pub/papers/POSA-MVC.pdf

42

scenarios that are not supported by Galaxy but can be integrated or updated with present architecture by

modifying the system. For a complete understanding on what changes are required to add those scenarios

with present architecture are stated in Table 4.2.

For scenario S3, our study shows that Galaxy does not support processing of heterogeneous data yet. It

mainly works on a processed dataset which is already collected and manually inserted in a SQLite database

without having any unified data input mechanism. To add this feature, it would be necessary to change

Galaxy’s code in Client, Scripts and Lib modules. Or a wrapper can be added to support a Unified Data

Interface in Galaxy architecture. One of our candidate architectures, GenAP, which incorporated their

architecture with the Galaxy public instance, has already added this feature in their work.

Similarly, scenario S4 addressing image processing behaviour is also not available in Galaxy. Galaxy is

mainly focused on searching for a data in a flat file database (SQLite) with a user friendly query. Galaxy

developers’ focused on manually extracted (by a researcher or a biologist) genotype and phenotype information

from different gene and chromosomes. Thus, they did not focus much on image processing pipelines or

analysis. But Galaxy supports different options to adapt this behaviour. First, Galaxy developers need to

build a tool which covers the functionality of S4. Then they can add the tool in Galaxy’s Toolshed or like

other available tools they can integrate the tool in their web version by changing the Galaxy source code in

Client, Scripts and Lib modules. Or they can provide direct web-based support for this scenario. S5 relates

to integration of image processing pipelines and as with S4, the main Galaxy instance still needs to work on

it. Galaxy’s code needs to be changed for Config, Cron and Tools modules. As Galaxy is an open source

project, a group of developers have developed BioMina [1] based on Galaxy to support image analysis. But

they do not do image registration or segmentation which is required for phenotyping analysis.

S6 focuses on workflow management and by analyzing the source code of Galaxy, we noticed that its

workflow management system is well-structured. S11 and S12 also deal with workflow or the image processing

pipeline. For S11, in Galaxy, all the submitted tasks and jobs of a user developed workflow run as a background

process and the user gets an update once the whole process executes or fails. If it fails, Galaxy shows logs

which is not user friendly. To make it more usable, it is would be good to inform the user after execution of

each step as a flash message or as a notification. To do this feature needs to be updated in Galaxy’s Client

and Workflow code design. For scenario S12, from our study, it is observed that sometimes a researcher or

a biologist needs to modify steps or the number of time a tool is executed in an existing fully developed

workflow. To add this flexibility, Galaxy’s workflow architecture and code should be updated.

In order to determine the coupling among different components in Galaxy, we worked on the direct

scenario S7 where we look into how a tool can be added to Galaxy. Basically, same approaches discussed

for S4 is followed to add the tool. From the activity diagram of Figure 4.3 we notice that tool integration

involves many actions, such as tool shed configuration, data, datatype and metadata handling and loading

utility library for tools from the toolbox. Each of the actions interact with various modules shown in Figure

4.4. For this scenario, it is clear that Galaxy system interchanges execution flow with numerous components,

43

Figure 4.3: Activity diagram for tool integration in Galaxy.

and hence, we conclude it is a tightly coupled system.

S8 describes important parameters for phenotyping research and analysis. Although Galaxy has a phe-

notype association tool available, it does not support weather, climate or soil information for phenotyping

analysis. To support this, Tools, Lib and Client modules, specially in phenotyping association tool, need to

be updated.

In summary, our architectural analysis reveals that Galaxy’s underlying architecture is modularized. The

modules in the architecture are tightly coupled as different modules interact with each other in order to

execute a scenario while maintaining moderate separation of concern. The public instance of Galaxy does

not support image-based phenotyping as it does not offer image processing pipeline. This can be added

through Toolbox with source code modification as discussed above. However, we have noticed that the

image processing pipeline has been added in one of the galaxy servers, called Image Analysis and Processing

Toolkit3. At present, one of the Galaxy instances, called BioMina, [1] supports image analysis.

4.6.2 iPlant Collaborative

The architecture of iPlant Collaborative [83] is a combination of independent applications as shown in Figure

4.5 and discussed as follows.

Atmosphere is a cloud service that allows users to launch their own virtual machines, whereas Discovery

Environment (DE) is the primary web interface and platform to access the powerful computing, storage, and

analysis application resources. DNA Subway makes high-level genome analysis broadly available to students

3http://cloudimaging.net.au

44

Figure 4.4: Component interaction diagram for tools integration in Galaxy

Figure 4.5: iPlant Collaborative architecture

and educators, and Bisque is the image analysis tool [73]. This platform preserves different scientific APIs

links. If users need to use any of the scientific API, they can easily go to the link and access that. For

job scheduling, they have used HTcondor and for creating cloud VM machines, they have used OpenStack.

iPlant used two steps for storing data, e.g., a central database for smaller datasets for meta data and some

private datasets and IRODS for storing images.

4.6.2.1 Individual Scenario Evaluation of iPlant Architecture

For iPlant, scenarios S1, S2, S4, S5, S6 and S7 are directly supported whereas the rest of the scenarios are

indirect and can be added or updated in their architecture (see Table 4.2 for details).

For S3, as of Galaxy, iPlant does not support raw data input directly. IPlant developers worked on a

processed dataset. To support this, the source code of Atmosphere, Models and Services modules need to be

changed. Moreover, Discovery Environment source code needs to be redesigned.

Scenarios S6 and S7 focus on the workflow management and the tool integration process respectively.

Workflow and tools integration for iPlant are implemented in DE, and it is a Java project. We use a free tool

45

Figure 4.6: Activity diagram for tool integration in iPlant DE

Figure 4.7: Interaction of components for tool integration in iPlant

ObjectAid to extract class dependency diagrams then manually draw the module interaction diagram (Figure

4.7) from the activity diagram (Figure 4.6). DE uses Google GIN API for handling some critical actions of

app handling such as building and executing apps. The interaction diagram in Figure 4.7 only presents some

abstract modules, but in the source code level, each of the modules has numerous sub-packages. However,

from the source code analysis and class dependency diagram, we did not find any reference class or package

of workflow implementation. It appears that the workflow is implemented as an app creation way (there is

an option in DE for creating an app like workflow), and there is no special module for workflow handling in

Discovery Environment. One user can upload her working workflow or create it in the discovery environment.

After a careful observation of the architecture and source code, we noticed that DE of iPlant has complex

modules interaction, and thus imposes heavy coupling (even it is hard to find the reference code of workflow

implementation). Apart from this, iPlant uses some third party APIs for managing tools and apps at the code

46

Figure 4.8: GenAP architecture

level. From source code analysis of DE, Atmosphere and Bisque, we observe that there is little interaction

among these software systems. Although this is convenient as a loosely coupled system, some of them are

developed in different technologies which makes it harder for a developer to modify source code and add new

functionalities. Besides, various application servers need to be deployed for various technologies. There is no

separate module for the workflow management which violates the separation of concern principle in a system

design.

4.6.3 GenAp

GenAp [68] integrates its whole system with one of the Galaxy instances which is locally maintained with

a focus on Big Data handling. GenAp offers its own MUGQIC pipeline tools which do not require any

command-line knowledge. For each project creation, they communicate with Galaxy over HTTP which is a

performance issue for GenAp. As discussed in Section 4.4, our dynamic analysis reveals that GenAp is much

slower than other frameworks. They develop a central database and store smaller files and indexing data in

that storage. At the same time, GenAp communicates with open source database for reference data. For

their own large size files, they have stored them in a different large size database. And they used CVMFS

for managing their file system. Comparatively, it is an easy architecture but is fully dependent on 3rd party

developers4.

4.6.3.1 Individual Scenario Evaluation of GenAp Architecture

The majority of the source code of GenAp is based on the Galaxy project, and workflow and tool integration

are similar to Galaxy. Therefore, most of the scenarios are similar to Galaxy. However, GenAp has an

additional data hub pipeline MUGQIC. So for the scenario S2 (details in Table 4.2), we evaluated Illumina

pipeline processing for workflow execution. By following the similar steps to Galaxy and iPlant, we obtained

an activity diagram for scenario S2 (Figure 4.9). Running Illumina pipelines involves a number of actions

4https://bitbucket.org/mugqic/mugqic_pipelines/src

47

Figure 4.9: Activity diagram of Illumina pipeline service

such as generating index files, fastaq conversion, metrics calculation, even blast tool execution. In summary,

from source code analysis and the activity diagram analysis of Illumina processing, we noticed that every

step of all the pipelines are executed through a job scheduler; therefore this DataHub pipeline for the GenAp

tool can be considered as a loosely coupled system. As GenAp is based on Galaxy, it also does not support

the message queuing architecture.

4.6.4 LemnaTec Software

LemnaTec OS [4] is a well-known plant phenotyping system. An integrated set of modules provides rich

functionality to control any hardware configuration and then record and analyze the resulting sets of data.

LemnaTec’s modular architecture is shown in Figure 4.10.

4.6.4.1 Scenario-based analysis of LemnaTec Architecture

As LemnaTec is commercial desktop software, its source code is not available, so we studied system docu-

mentation and explored only LemnaShare features and extracted the abstract architectural view. Like other

analysis, we tried to evaluate the LemnaTec architecture based on our 12 scenarios (mostly provided by the

LemnaTec development team) which is discussed in Table 4.2. We found scenarios S1, S2, and S4 are directly

supported in the LemnaTec architectural modules. However, others are mostly absent or the developers did

not provide explicit information about the features or the architectural design.

48

Figure 4.10: LemnaTec image analysis (base) plant phenotyping architecture

4.7 Comparison of Candidate Architectures

We compared the four candidate architectures based on our individual scenario evaluation and findings of the

dynamic analysis. Our comparison result is shown in Table 4.2. In the table, we also showed the mapping of

the scenarios to different quality attributes, such as Usability, Flexibility, Security and Performance. From

the table, we see that iPlant supports most of the scenarios, except scenario S3, S8, S11 and S12, whereas

Galaxy, GenAp and LemnaTec do not have support for many scenarios. If we consider S3 and all kinds of

data interchange operations, none of them have full supportive components. We found that GenAP supports

heterogeneous and open cloud infrastructure modules such as data-read write operations from users’ data-

machine (distributed storage too); others do not. For the performance scenario S9, we noticed that Galaxy

and iPlant are much faster than GenAp since GenAp communicates with the Galaxy server via Http request.

In addition, during our scenario analysis, we revealed that in all the four candidate architectures, components

are tightly coupled as none of the architectures support message queuing for components’ interactions. Also

for high performance none of the architectures support image bundling or grouping using the MapReduce

technology for high performance. Moreover, for scenario S4, we found that Galaxy and GenAp do not provide

image analysis pipelines to measure out a plant leaf growth, whereas iPlant and LemnaTec have the support

of this behavior.

We extensively analyzed the micro-architectures of the topmost frequently changed components with Sc-

iTools (Understand) 5, interaction and activity diagrams of some of the scenarios with the help of PyDev,

PyCharm, ObjectAid and Eclipse, and ModuleGraph to identify the high-level relationship among compo-

nents. This enables us to identify architectural issues, re-usable model, and scope for further improvement

of the micro-architectural point of view. We reviewed a number-of-studies related to the architecture of

cloud-based systems utilizing Big Data technologies. We were unable to determine any defined data flow

model interface or message queuing module at the architecture level in any of the candidate architecture.

However, all of them have components for mixed data model, and Infrastructure as service module (although

5https://scitools.com/trial-download-3/

49

Table 4.3: Comparison with Advanced Architecture

Tools UDI MDM DCM BDM RCWM PIM HIOM ISM

GenAp ∼ ∼ � ⊕ � � ∼ ⊕

Galaxy ∼ ∼ � � � ∼ � ∼

iPlant ∼ ⊕ � � � � � ⊕

Here, UDI - Unified data interface, DCM - Data-centric model

DFM- Data flow model component, BDM- Big Data module

RCWM - Real-time collaborative workflow module, PIM - Plugin integration module

HIOM - Heterogeneous and open cloud infrastructure module

ISM - Infrastructure as service module.

⊕ - Full, ∼ - Variant/partial, � - Not exist or found

Galaxy has complex structure). Nonetheless, some other advanced components presented in Table 4.3 are

not included in the architecture of all these tools. Therefore, this analysis leads us to define a reference

architecture for advanced cloud-based plant Genotyping and Phenotyping systems.

4.8 The Conceptual Reference Architecture

Off-the-self reference architecture would be valuable for stakeholders, eScience developers, and researchers

of plant genotyping and phenotyping system. Unfortunately, no common reference architecture (RA) is

available that can serve as a design guideline considering the wide-spread support of cloud-based genotyping

and phenotyping analysis. Moreover, in the previous sections, we have shown that the components of the

systems are changing significantly, major components do not follow the well defined rule, and many scenarios

are not supported by the candidate systems. However, we tried to extract design architectures of these

systems from the development history and scenario evaluation described in previous sections. Adapting

those use-cases, scenarios, and requirements of the P2IRC project of the University of Saskatchewan [5]

we propose a conceptual reference architecture. A reference architecture can be of two [99] types - (i)

High Level and (ii) Subset of System Functionality Level. Here we consider the high-level model and adopt

reference architectures [70, 99] from cross-domain systems (those which handle heterogeneous and large data).

Additionally, we observed that provision of only a software component model of such cloud-based systems is

not sufficient to define a reference architecture; therefore, we include other important aspects of our proposal.

The conceptual reference architecture diagram is presented in Figures 4.11 and 4.12. In fact, our conceptual

architecture is a set of design guidelines and selection of solution patterns described as follows:

50

4.8.1 Data-centric Model

Recently, researchers have started to follow specific data-centric model [42, 11] for efficiently analyzing,

sharing, and handling a varied set of massive data in the cloud system. Table 4.4 represents a number of

applications (mainly scientific data analysis) for large-scale data processing and their architectural model.

Likewise, Table 4.5 shows a number of frameworks for developing large-scale data analytic tool. Developing

most of these applications and frameworks, implicitly, data-model plays an influential role. That is to

say, defining a standard and uniform model for the management, processing, and interchange of data for

a cloud system is one of the most important aspects of a reference architecture. Cloud-based Genotyping

and Phenotyping analysis systems work with structured, unstructured and semi-structured data including -

Genome dataset, Geospatial dataset, and Image dataset. These miscellaneous types of data are processed

and analyzed by various workflows and pipelines. Recently, researchers have focused on specific data models

(as shown in Table 4.5) for more effective and collaborative workspace. A common data-flow model is useful

for implementing discoverable and shareable data processing logic as well. Thus, we recommend extracting

and defining common data processing pattern for each category of data (such as images, Genome sequences)

from features and specifications so that it can easily be instrumented to common workflows and pipelines

in the system. Moreover, data can come as an input to the cloud-based system from heterogeneous sources

(e.g., Genome data from GenBank 6) in the open cloud. In our architecture, we recommend using a unified

data interface (Figure 4.11) for interchanging input and processed data between the system and the user

source. Various data-storage mechanisms should be defined for the cloud system based on the categories of

data rather than a common storage for all categories of data.

4.8.2 Software Component Model

Recently, the modular architectural paradigm for designing a cloud system that handles large and hetero-

geneous data has been in a different direction [70, 99, 10]. Components and subcomponents of the system

are updated, replaced or plugged in by the open community during the lifetime of the product. In order to

develop a flexible and adaptable system with this dynamic context, the components must be independent

unlike traditional MVC or three-tier architecture. Here independent means loosely coupled, smoothly re-

placeable and pluggable. Basically, all other major components should be orchestrated with and converge to

data-centric model.

Workflow/pipeline module, data-centric module (DCM), and unified data-interface are at the heart of

our proposed component model as shown in Figure 4.11. All other modules should just interact and utilize

the actions provided by these core modules. DCM1, DCM2 are corresponding to image data processing,

genome data processing engines and so on. Workflow module facilitates on-the-fly workflow and pipeline

composition combining tasks instrumented in DCMs and contains workflow description language (WDL)

6ftp://ftp.ncbi.nlm.nih.gov/genbank

51

Figure 4.11: Software component model (DCM means data centric module). High-level component
categorization.

module as well. Workflow module runs composed workflow’s using DCMs to cluster through Big Data

Interface module. Collaboration module works at the workflow module level. There should be no common

gateway for interacting with UI. Individual modules (i.e., web services API, common components, plugin

interfaces, Data provenance, WDL) interacts with web pages or mobile application (We have web-based

plant modeling module, and remote sensor module in the common components part). This will facilitate

easily replaceable and pluggable modules without redeploying the whole system. Apart from these, we also

recommend providing API libraries to easily develop workflows, pipelines, and plugins integrable to the base

system. A module that automatically integrates dependable libraries on-the-fly while uploading the plugins

(shown in Figure 4.14) by the users would add more extensibility of the system. The last but not the

least principle is that the multiple workflows, pipelines or data-analysis job execution should be handled by

message-queuing [10] module (MQM) irrespective of whether they run in the base server or in the cloud-

cluster.

52

Figure 4.12: Heterogeneous cloud infrastructure model

Figure 4.13: Influence of designing the models. SCM (software-component model) is influenced by
ISM (infrastructure model) and DCM (data-centric model).

4.8.3 Infrastructure Model

Cloud-based Genotyping and Phenotyping analysis systems need to interact with various machines including

open infrastructures in the cloud. Thus, the infrastructure model is an important part of designing such

systems [135, 75] to firmly define which parts of the infrastructure serves which services, which parts are

open to public access, which parts are restricted to access, and what are the communication protocols among

various parts. We recommend a heterogeneous cloud infrastructure model for Cloud-based Genotyping and

Phenotyping analysis systems presented in Figure 4.12. Here heterogeneous means different sections of the

backbone machines are in different network model as well as there are diverse communication protocols among

the parts. Heterogeneous cloud [75] consists of two critical entities: (i) Cloud, and (ii) Big Data cluster. Cloud

part is composed of an application server and a data storage server, and Big Data cluster is a combination of

distributed storage nodes and a number of connected machines (Hadoop and Spark ecosystem is widely used).

Yu et al. [75] suggest using cloud and Big Data cluster on the same physical servers. However, analyzing the

effectiveness of cloud-based Genotyping and Phenotyping analysis, we recommend using separate physical

machines for them.

53

Figure 4.14: Plugin integration diagram for Genotyping and Phenotyping analysis system

Table 4.4: Unified frameworks for large data processing

Name Base Model Data Framework

SparkSeq [125] Hadoop−− >BAM Genome Spark

BIOSpark [64] Hdfs−− >SFile numeric, image Spark

HIPI [118] HDFS−− >HIB Image Hadoop

KIRA[139] SEP−− >FITS Astronomy(image) Spark

StormCV[8] Topology−− >stream Image Stream Storm

ICP [44] P-Image−− >Big-Image Image Distributed

PCML[114] Layer−− >location Cartography Usual parallelisation

From the above discussion of our proposed model, we observed that the models are influenced by each

other. The influence diagram is shown in Figure 4.13. In the modulrarity model section, we will see how

DCM is influenced by Big Data framework hence ISM. We have developed a prototype system following the

proposed architectural model.

4.8.4 Mapping With Existing Solutions

As a validation of our proposed model, we map with the published architectural model in various domains.

Unified frameworks presented in Table 4.4 are based on modified data-model for large volume which can be

implicitly defined as unified data interface. Among existing popular frameworks in the scientific analysis,

SparkSeq [125] is based on Hadoop-BAM [92] data frameworks. Hadoop-BAM is created to solve the issue of

map-reduce implementation and attempted to include all data formats in bioinformatics. A unified framework

for large scale Geospatial data analysis, SpatialHadoop [45] added three more layers on top of Hadoop to

drive efficient map-reduce based processing of GIS data. KIRA [139] is written using SEP library and FITS

data model for analyzing the astronomical object. All of the evidence prompt that tool development in

Big Data platforms requires different design rule and modularity models. Various architectural models for

Big Data handling are shown in Table 4.5. HVistrail is similar to our Big Data interface and Infrastructure

54

Table 4.5: Architectures of various systems that use Big Data technology. Here, [*] represents
Facebook, Twitter, LinkedIn, Netflix, BlockMon

Name Architecture Data Model Framework

IQmulus [70] Workflow based modularity SpatialHadoop Hadoop

TomoMiner [130] Three layer pattern cryo-ET Distributed Computing

IABDT [67] Five layers modularity HIB Spark & Hadoop

IBM PAIRS [76] Three layer pattern Index-remapping Hadoop

GreyWulf [115] Workflow based modules Pan-STARRS PS1 Distributed data part.

HBase imag [132] Infrastructure Model Hdfs-Image HBase

HVistrail [138] Multitier Infrastructure Image NASA HEC

National Sec.[63] Hierarchical Modularity GIS,Video Kafka, HBase

Bolstar [88] Multilayers Model Semantic data Hadoop, Spark

MDEF [53] Redeployment modularity BI-Data Big Data Tech.

Industrial[*] [99] Data-staging Architecture Stream data Hadoop, Spark

Figure 4.15: Collaborative working environment

interface. MDEF is based on statistical model redeployment facility which implicitly followed data-processing

modularity. Apart from this, usual module decomposition technique is being followed by national security

system [63], and stream data staging (how processed data is temporarily stored for intermediate stages) model

is adopted by a number of industrial systems [99]. However, we could not find any solution that adopted

well defined data-centric modularity model and real-time workflow collaboration on it explicitly. Although,

code-base of our prototype system is not large enough we measured some architectural metrics. The DRH

cluster is 8, IL is 0.906, PCD, and improper inheritance is 0 which mean the architectural model is promising.

In the next section, we will present study on data-centric model development.

4.9 Prototype System

We have developed a subsystem for plant phenotyping as a proof of our conceptual architecture. The context

of our prototype system is described in Figure 4.15. Since the studied candidate systems do not support

high-throughput image analysis pipelines (HIAP), we designed a cloud-based system to support that. In

55

Figure 4.16: Data-centric modularisation of big data analytic tool. Here, F1 to Ff are core features
of a tool, D1 to Dm are extracted data-centric models (consists of data-storage, I/O, operations, and
patterns), C1 to Cn is first order modular components of the tool, and C11 to CnL are micro-level
modular components of each first order component.

this section, we briefly discuss our prototype system that provides a few processing pipeline use cases in

mapping with our conceptual architecture (full analysis is beyond the scope of this study). First, we set up

heterogeneous cloud infrastructure defined in our architecture including a four-node Spark cluster. Then,

we define a common data-flow model for image processing pipelines. We followed the strategy presented in

Figure 4.16. This model leverages the development of HIAPs executed on Big Data cluster. Additionally,

we develop an API library (based on pyspark) for developing high-throughput plugins for our cloud system

following the defined data-model. Pre-built HIAPs in our subsystem inherit data-flow interface in the API.

This data-model and API library also leverage the effort of scientific researchers to smoothly work with

image analysis pipelines/workflows for plant phenotyping (that also ensures flexible collaboration among

researchers). Furthermore, we design a unified data access module which can load large image data-set from

any remote data machine and other cloud sources. We test the high-throughput image analysis pipeline,

plugin integration, and remote data loading use-case with thousands of images with our small Spark cluster.

Thus, our subsystem follows both the data-centric model and heterogeneous infrastructure model. Apart

from these, we introduce an independent module for plant modeling and simulation based on WebGL. We

compare the web-graphics module with traditional graphics library and found that web graphical library

is more effective for plant simulation and modeling. In the cloud-based system, producing a plant model

with a GL library is more flexible on the server side but less-interactive for usage and has a bandwidth

bottleneck on the client side. The independent API, unified-data access module, plant simulation module,

HIAPs module, and HIAP plugin uploading without re-deployment of the system indicate that the design

of our system follows software component model for plant phenotyping. Moreover, our system is capable

of MapReduce distributed processing of large data within the promising time frame. Distributed cluster

processing is different than localized data processing. Components of these two types should be separate. It

56

is better if the cluster processing components are separately placed into master node of the cluster than the

web-server. Only the components should be run through a secure protocol and with the Big Data interface.

Similarly, in our prototype system, plugin integration module will handle localized and distributed version

differently; a block diagram is shown in Figure 4.14. A more detail study on modularity following data

processing model is presented in the next chapter with real world image processing tasks.

In summary, we can conclude that our conceptual architecture is a promising one considering the wide-

spread requirements for cloud-based genotype and phenotype analysis. In future, we will update our con-

ceptual architecture in more details at the functionality level, and test the efficacy with various evaluation

techniques and upgraded system.

4.10 Conclusion

Plant genotyping and phenotyping analysis is required to handle large datasets and involves numerous steps,

from physical plant sample collection to sharing analysis results and scientific workflows. Thus, it is a challenge

to develop an efficient and cost effective integrated environment. In this study, we described our analysis of

some existing popular tools for genotyping and phenotyping analysis using SAAM, examined weaknesses and

strengths of those frameworks, and conducted a comparative analysis (shown in Table 4.2). Our comparative

analysis determined that iPlant Collaborative is a strong tool that, unlike the others, provides support

for image processing and, using Google Maps, for geo-spatial data. Unfortunately, it is not as flexible as

Galaxy for workflow creation. GenAp is based on Galaxy with an extra DataHub server. LemnaTec is a

desktop-based commercial tool dedicated to plant phenotyping. Since each of these tools has limitations,

we introduced a conceptual reference architecture to better support the broad range of requirements, and

developed a subsystem as a proof of concept. We believe that our study would be helpful to overcome the

challenges of developing a cloud-based plant Genotyping and Phenotyping analysis system that deals with

massive and mixed datasets. In the next chapter, we conduct a case study on micro-level modularity following

the data-centric model and component model introduced in the reference architecture.

57

Chapter 5

Micro-level Modularity of Computation-intensive Pro-

grams in Big Data Platforms: A Case Study with Im-

age Data

5.1 Introduction

Data-storage models, data-structures, data-operations, accessing and visualization of large data are complex

to handle. Existing literature [53] suggests that significant effort is spent in developing data processing

pipelines. Besides, a recent empirical study [107] reports that data engineers are facing great difficulties to

work with Big Data platforms. In order to reduce the development efforts and provide better programming

flexibility, a few studies attempted to develop more abstract and unified programming interfaces (especially in

Bioinformatics and GIS research) [125, 64, 45, 8, 139, 118] as a layer on top of these platforms (e.g., Hadoop

and Spark). However, most of them are still in the development phase (e.g., SparkSeq [125]), and some

of them only implemented and tested a few specific tasks within a certain domain. Although, a few works

implemented large scale image processing tasks [8, 139, 118, 67], they did not provide an analysis study about

the underlying challenges and solutions of using these platforms for real world image processing pipelines.

Moreover, common unified frameworks are not readily available to implement reproducible image processing

pipelines covering a wide area with Big Data platforms. A few researchers [130, 124] have attempted to tune

cluster resources for performance optimization of the tasks. Nevertheless, resource enhancement may not

provide a feasible solution even with the availability of enough computing power. Therefore, interactive large-

scale data-analysis with a Big-Data platform is still a challenging task for the programmers and developers.

Modularization is an important paradigm in software design which provides special program constructs,

such as shared data structures or abstract and unified frameworks. Modularization is the action of "de-

composing a system into modules" [34]. Moreover, modularization is essential for scalable and interactive

application development with Big Data platforms [134, 53, 70]. Our focus is on modularising interactive, data-

intensive programs so that they operate effectively on map-reduce frameworks in order to support reusability,

reproducibility, and customization. Splitting tasks considering large scale data processing and computation

logic reusability may have adverse effects when running on Big Data platforms. Well defined rule [128] is

58

available for modularizing a system into a group of related tasks such as model-view-controller is a high-level

pattern which suggests to modularising a software considering data handling (model), business logic on the

data (controller), and visualization of the processed result (view). However, a systematic model should be

defined for further modularizing a complex and computation intensive task (e.g., extracting texts from a

picture), hence we call micro-level modularity. Micro-level modularity has been shown to work successfully

on map-reduce frameworks for a number of applications, including machine learning [79, 72] and graph data

processing [131, 50]. We are also motivated to support developers of Big Data analytic tools. By separating

tasks into further independent micro-components based on data-processing patterns, we hope to develop a

unified programming interface that will provide the flexibility for accelerating the development of interactive,

re-usable Big Data analytics tools.

Although Big Data platforms hide the complexity of distributed computing, they provide a limited number

of methods (e.g., map, filter, reduce) for data parallel operations. Adding an extra data processing step with

those methods could increase the computation and memory overhead in a significant way. For example,

Smith and Albarghouthi [117] discuss the challenge of partitioning computation with data-parallel operators

(map, filter, reduce). Due to the complexity of partitioning, they avoid optimization of their technique.

In order to reduce working efforts, a few authors [134, 53] focused on developing frameworks for running

and re-deploying modular jobs and a statistical model provided by the users. Unfortunately, none of them

conducted an extensive study on any effective techniques for modularity to examine the impact of modularity

on computation-intensive tasks. Moreover, the mechanism of controlling data-flow among intermediate steps

is really important for reproducible computation of large scale data. All things considered, we propose a

modularity model and observe the behaviors of different applications in terms of modularization. Overall, in

our work, we mainly focus on two research questions:

RQ1. How to modularize data and computation-intensive programs to provide a unified abstract frame-

work for developing interactive tools?

RQ2. How does splitting up of run time job-data and processing logic affect the performance of

computation-intensive tasks in map-reduce platforms?

In order to answer RQ1, we analyzed various open source image processing tools and state-of-the-art

image processing techniques that cover a wide range of tasks. We look into the programming models and

data-types that are produced during a full image processing task (some of them are presented in Table

5.3). Then, we categorized the image operations and defined a data processing pattern that is fruitful

for modularizing the tasks with Big Data platform. After that, we proposed a micro-level modularity model

consisting of four major data-parallel modules each having three core layers (the second layer controls parallel

data-flow). For answering RQ2, we implemented six image processing applications following the proposed

modular model. Then we experimented with both the compact and modularised version with various datasets

in a Spark cluster. From the experiment, we found that the task modularization affects system’s performance

and flexibility of pipeline development. Performance varies case by case with some tasks improving, some

59

decreasing, and others unaffected. For all the cases, it opens up the capability of flexible implementation with

data-parallel components. Notably, we also identified the challenges of image processing with data-parallel

frameworks from our experimentation. In summary, our case study provides a modularization technique

and helpful knowledge-base for interactive tools developers for large scale image processing. Our defined

data-pattern and modularity model can be used as a design pattern and design rule in this domain.

The rest of the study is organized as follows. Section 5.2 describes the process of extracting data-processing

patterns. Section 5.3 presents our proposed modular model. Section 5.4 provides our experimental results.

Section 5.5 provides discussion and some useful insights from the lesson learned. Section 5.6 describes related

work. Finally, section 5.7 presents the conclusion and future work of the study.

5.2 Modularising Data-intensive Tasks

In our study we focused on image data since a framework that supports various image processing pipelines

is not readily available. On the contrary, few abstract frameworks [139, 118, 44] are being developed for

a few specific image processing applications and most of the Big Data frameworks support workflows for

text data processing [45, 64]. We conduct our case study following three major strategies: (i) Background

and Contextual Analysis, (ii) Data-processing Pattern Extraction, and (iii) Transformation to Data-parallel

Components.

5.2.1 Background and Contextual Analysis

To develop a unified framework, understanding the context is essential. To that end, literature review and

analysis of various architectures [106, 115, 70, 67], frameworks, tools, techniques, and open-source APIs

in the scientific data analysis are essential to determine the exact support needed for the data scientist.

Analyzing the recent development strategy of analytic tools for large scale data, we notice that some of the

developed applications follow a workflow based modularity architecture [70, 115], whereas others follow a

layered architecture [130, 67, 76]. In the workflow based modularity architecture, applications are designed

using a special data model which is much different than the traditional model view controller model. For

example, the architecture of IQmulus [70], a GIS data processing system, is heavily dependent on data-

analysis workflows. High-level components, job manager, processing services etc. are designed focusing on

the on-the-fly workflow compositions. Still, users need to learn a considerable amount of script for composing

workflows for GIS. Similarly, GrayWulf [115] handles two types of workflows: (i) one is for data manager, and

(ii) another is for end-users. The architectural model is based on these workflows composition. However, using

GrayWulf, a smaller amount of processed result can be shared and retrieved in the cloud. Another application

for image analysis, IABDT [67] followed multi-layer architecture and primarily used HadoopImageBundle

(HIB) for performing basic operations on image data. In a recent study, Roy et al. [106] focus on data-

centric component development for an application that supports large scale data analysis. Besides, most of

60

Figure 5.1: Reproducible workflow composition technique (tasks and operations are reused, algo-
rithms are customized).

the unified frameworks to support applications development as mentioned above followed specialized data-

models for large scale data processing with distributed clusters. Among existing popular frameworks in the

scientific analysis, SparkSeq is based on Hadoop-BAM [92] data frameworks. Hadoop-BAM is created to

solve the issue of map-reduce implementation and attempted to include all data formats in bioinformatics.

A unified framework for large scale Geospatial data analysis, SpatialHadoop [45] added three more layers

on top of Hadoop to drive efficient map-reduce based processing of GIS data. KIRA [139] is written using

SEP library and FITS data model for analyzing astronomical objects. All of the evidence suggests that tool

development in Big Data platforms requires different design rules and modularity models. Yet, the common

obvious advantages of modularization [34] in software development are: (i) Easier to Debug and to Detect

Problems, (ii) More Reusable Code, (iii) Better Readability, and (iv) Enhanced Reliability. Debugging time

is lengthy during the development of Big Data analytic tools. Most of the time, ultimate problems cannot

be detected until the application is run on a live cluster with the full set of data. In summary, for large-scale

data analysis the following trends are emerging:

(i) Suitable architectural model [106, 70, 67],

(ii) Work-flow processing and management [95, 77, 70],

(iii) Data-pipelines [22],

(iv) Data-flow management [11, 96, 103],

(v) Data-centric decoupling of programs [50, 131],

(vi) Efficient data-storage model [45, 76], and

(vii) Intelligent modularization [134, 53].

The central objective of all of these paradigms is to make scientific computation reproducible [111] with

minimal technical knowledge. Figure 5.1 demonstrates how reproducible workflows/pipelines are constructed.

However, large scale image processing domain requires more focus on all of the above-mentioned directions.

Furthermore, in order to understand and develop a knowledge-base, we look into the properties of various

open source image processing tools [110, 52, 93, 66, 73, 139, 118, 8] which are presented in Table 5.1.

Analyzing source code of the open-source tools facilitate us more intuitive insight about the implementa-

tion of real world image analysis applications, programming models, I/O operations, and data entities that

61

Table 5.1: Properties of various open-source APIs for image processing tasks

Tool
name

Major Focus Type I/O Technology Limitation

ImageJ Common
tasks, plugins

Desktop(threading) Local Java Localized processing and
limited I/O

HTPheno Plant growth Desktop Local Java As ImageJ
Fiji Medical Desktop Local Java As ImageJ
PlantCV Plant image

analysis
Desktop Local, database Python As ImageJ

Bisque Crops & biol-
ogy

Web service api web storage Python,
C++

Complex for cluster pro-
cessing

Thunder Few Crops
tasks

Local, Dis-
tributed

Local, AWS,
Google storage

Spark Local processing of few
tasks, limited I/O

KIRA Basic image
operations

Distributed hdfs, hive, dis-
tributed storage

Spark Facilitates object extrac-
tion

HIPI Astronomy
object extrac-
tion

Distributed hdfs, hive Hadoop Few specific tasks, need
to write parallel code from
scratch

DEDIP Agriculture Master-slave
server processing

Local Java High-learning for basic
tasks, no various I/O

MiDas Brain Images
analysis

Batch processing Web storage Python, Sci-
ence Grid

High-learning for basic
tasks

ImageHarvestPlant image
processing

Grid Processing Database, Local Python High-learning for few tasks

StormCV Real Time
video analysis

Distributed Camera stream Java,
ApacheStorm

Limited I/O

analysts, researchers, or end-users might re-use later. We also observe that in image processing tools the

following attributes are influential (some of them are identified by Heit et al. [53] in data mining as well):

(i) Image pipeline composition, reuse and management, (ii) Image processing workflow modeling language,

(iii) Image storage service, (iv) Collaboration between data scientists, (v) Deployment and third party ser-

vice communication, (vi) Scalability, and (vii) Plugin development and integration. Another key thing to

remember is that data structure and computation model of images are complex and diverse [110]. Images (I)

consist of different data units (8-bit, 16-bit and 32-bit), formats (TIFF, GIF, JPEG, BMP, DICOM, FITS),

or dimensions/channels (2D, 3D, 3-channels and so on). Additionally, we found that many algorithms are

operated on an individual image except for machine learning/statistical model and template generations. For

developing a desired image processing task, programmers and researchers need to experiment with various

combinations of techniques and algorithms (hundreds of algorithms are available) along with parameters

tuning for each of the canonical operations. Moreover, these operations are tested on large collections of

images multiple times and the experimental setup needs to be stored for the future run. Many core image

operations can be found within a popular open-source image processing API called OpenCV [28]. Therefore,

if a framework can be devised that also facilitates an automatic transformation of iterative operations for a

single image into a parallel (processing with multiple computers) one for multiple images, this will be valu-

able for data scientists. All of this knowledge-base is useful for unified framework development and reshaping

62

the modularization for Big Data frameworks. In the following sections, we will present an analysis study

of various image processing tasks to extract data-processing patterns and transform the concept into the

data-parallel framework.

5.2.2 Program Synthesis and Extracting Data Processing Patterns

From the previous discussion it is persuasive that in large-scale data processing, most of the techniques,

algorithms, frameworks, and software models are extensively data-centric [106, 133, 103]. In data-centric

development, at first a core-feature model is developed, then data processing patterns are extracted from

feature model, targeted technologies and real-world experience, and finally, components are designed and

modularized based on the pattern. Therefore, understanding data-processing patterns is an important part

of implementing modularised, split and decoupled data processing applications.

Our selected algorithms and techniques cover various image processing tasks in plant science, agricul-

ture, biomedical, astronomy, and general computer vision. A total number of 30 applications we analyzed

are presented in Table 5.2. Some of the selected image processing tasks with the major steps and their

corresponding produced entities are presented in Table 5.3. The high-level steps are shown in Table 5.3 of

extracting texts [56] from a video are: gray-scale conversion and noise removal, feature calculation, detecting

text areas, then extract texts from the segmented areas of the video images. We notice that produced output

of various steps has different data structures in most of the cases. However, it is necessary to figure out an

optimal and unified model that might be fitted for a wide area. Most of the image analysis tasks can be

divided into four re-usable tasks (please note that here we consider a single image analysis task, while two

or more image analysis tasks are used to compose a complex pipeline like HtPheno [52]). Many tasks have

more than four steps. However, in terms of data and program reusability, for image registration (presented

in Table 5.3), matching points calculation (S3) and Homography generation (S4) can be considered as one

logical and independent step. Similarly, in Tomograms generation, refined class objects are reused later, thus

S3 and S4 can be combined into a single step logically.

Table 5.2: Image processing tasks we analyzed

Area of Application Number of Image processing Applications

Plant and Agriculture 15

Medical and Biology 5

Astronomy 4

General computer vision 7

Therefore, analyzing the above-mentioned tools and techniques, we categorize the canonical operations of

image analysis tasks into major four steps:

63

Table 5.3: Example of image processing with various steps and produced entities

Steps
Output

Img Clustering Img Registra-

tion

Text

Extraction[56]

Pattern de-

tection in

Tomograms[130]

S1

Grey conversion

IP

Grey conversion

IP

Decomposition

ID

Gaussian Trans.

IG

S2

Feature extract

VF={F1, ..Fn}

Metrics Calc.

VM={M1, .Mn}

Feature extract

VF

Feature extract

VF

S3

Train & Model

MM=K-mean

Matching points

PM

Train& Model

M=Mlp, An

Cluster objects

OBn

S4

Grouping

Cn {n=1,2.. }

Homography

MH=[..][..]

Area segments

IS={S1, ..Sn}

Refine Class-objs

Cn

S5 –
Warping& align

Ir

Text extraction

Tr

Generate Tomog.

IT

Here, Ip to Ig - processed image, VF - feature vectors, Ir - result

Cn - list of classes

Preprocess/conversion (S1): This step is the first and very common for every image analysis pipeline.

This step may produce different kinds of output (such as grayscale image and Canny edge image) based

on applied techniques or algorithms, such as Gaussian blurring, wavelet transformation, image contrasting,

image enhancement, noise reduction and so on [28]. S1 for all the tasks in Table 5.3 falls in this category.

Estimate/Extraction (S2): In this step, different kinds of algorithms such as SURF, SIFT, ORB,

HOG [28] are applied for calculating features, metrics, and key points. However, other texture generation

techniques are also employed after the feature and keypoint extraction step. This step produces array, vector

or list type data-structures. S2 for all the tasks in Table 5.3 is included in this category.

Model/Fitting (S3): This step uses extracted features, metrics or composed data for fitting, training

or developing models for generating templates based on which final analysis and processing are done. S3 and

S4 of Image Registration and Tomogram extraction in Table 5.3 fall in this category (S3 for other tasks).

Analysis/Postprocess (S4): This final step mainly produces processed images and analysis results

based on the generated template or the model in the model-fitting step. The produced results of this step

include matched images, extracted objects, clusters of images, and registered images along with statistical

results. S4 of Image clustering and S5 for other tasks in Table 5.3 fall in this category.

Such a categorization of the operations based on produced data and computation logic would help devel-

opers and programmers to wrap image processing tasks into a common data model and abstract frameworks.

Furthermore, program synthesis of the above-mentioned image processing tools, their operations, and I/O

64

Figure 5.2: Data processing pattern (some are presented in Table 5.3).

operations allowed us to come to a conclusion that produced data in various steps as discussed in Table 5.3

can also be saved for later reuse. Consequently, these tasks should be modularised not only for program reuse

but also for data entities re-use. In summary, the data processing pattern for image processing tasks can be

described as follows (as shown in Table 5.3):

• Input of Preprocessing step (S1) is generally {I,RS1}, where I is raw images and RS1 is parameters,

produced data are processed images IP . Parameters may be numeric values, meta-data, vectors, or

even raw images.

• The next two steps (Estimation and Model fitting) input are {IP , RS(2/3)}, where IP is the produced

entity of the previous step and RS(2/3) represents parameters of these steps.

• However, in some cases the input of the last step (Result generation) is {I, IP , DM , RS4}; where DM

is the model or template generated in the third step, and IP is the outcome from the first step.

• We observe that many cases, I and IP are required to flow and retain up to the last step which is

handled with disk storage in localized processing.

• For a few cases, images are required to group or bundle during S3 and S4 (e.g., image registration and

panoramic view generation). Likewise, produced results in image processing tasks have various types.

65

Those are a single image, a collection of images or image objects (IR), list of string or numeric values

(Ls), a collection of matrix or vectors (LM), dictionary (DS), a tuple of lists (TL), and so on.

The common data processing model is presented in Figure 5.2. This common pattern is the basis for

interactive image analytic tools development for both usual and large scale data. In the next subsequent

sections, we will discuss in details how to implement this data-processing patterns into map-reduce frameworks

considering a unified programming interface.

5.2.3 Transformation to Data-parallel components

In this section, we discuss how to implement the image processing tasks into modularised and abstract

steps in Big Data frameworks following the extracted data-processing pattern. We focus on Apache Spark

(with HDFS) implementation which is optimized and the mostly used [117, 79] framework. Here, the data-

processing pattern serves as modularity properties. We will use many terms and symbols to avoid frequent

use of the phrases in our description (many of them are introduced by Smith and Albarghouthi [117]).

5.2.3.1 Challenges

Recent works [117, 79, 50, 72, 131] with map-reduce frameworks provide firm evidence that map-reduce

based implementation is non-trivial for flexible and scalable data processing. Moreover, many applications

are not yet a good fit for Big Data platforms using traditional map-reduce techniques due to network induced

non-determinism, data shuffling [117], and run-time data increment [79]. For example, researchers are still

working to make KNN [79] more feasible for large data with Big Data platforms. Storage files of text and

Genome data could be partitioned into further smaller blocks for efficient distributed processing. But data file

of each image and associated meta-data is required to treat as a single unit for image processing. Few images

among thousands of collection might be corrupted and disrupt the whole processing task. This scenario

is also required to handle during large scale processing. However, all the operations in map-reduce based

platform (i.e., Spark) should be done with the data parallel components (
∑

DP): map(), reduce(), filter(),

join(), repartition(), subtractbykey(), count(), collect() along with λ−expressions (PABS) [117]. All the image

operations cannot be easily paralleled with this platform. When data size is big enough, a single additional

operation with
∑

DP takes a significant amount of time. Moreover, broadcasting data entity frequently to the

worker processes might add further overhead. Consequently, programmers are required to be more careful

and thoroughly test with a full dataset. For reusable computation, each step should be independent in terms

of execution, data sharing, and data storing. Having said that, steps should not be divided arbitrarily like

usual programming where a program can be refactored into smaller functions or modules. As we discussed in

Section 5.2.2, raw-data, processed data, and external parameters need to flow from one step to another, and

this might increase both memory and time overhead (with the number of steps). Apart from these, handling

of various types of produced results (as described in the data processing pattern) requires a well-defined rule

to store in a distributed environment.

66

Figure 5.3: Modularisation of image analysis in data-parallel framework (both minimal and optimal
split)

5.3 Proposed Modularity Model

Image processing tasks can be implemented in a various number of modularized steps (one or more) with

data-parallel frameworks as shown in Figure 5.3. Here we introduce data-parallel module, MDP =
n⋃

i=1

DPi as

a combination of one or more data-parallel components in
∑

DP . The split intoMDP is followed by the corre-

sponding data-processing patterns presented in Section 5.2.2. From the analysis of data processing patterns

of image processing applications, we identified four canonical steps: S1, S2, S3, S4. A step is a combination

of many operations (some of them are canonical also), and it is essential to detect which operations require

parallelism and which parts do not. We can represent Si = {POS , NPS}, where POS represents operations

that require parallelism, and NPS represents not parallel. All POS within a MDP (Si) should be combined in

such a way that the number of
∑

DP are minimal (i.e., this rule restricts the modularity of usual computa-

tion). However, for a few steps in some cases, run-time data should be partitioned (based on heuristics [79])

for further optimization (as shown in Listings 5.3). A module, MDP must produce a meaningful outcome

that can be reused in future either by one of the independent operations in S1 to S4 or another task (or

pipelines). However, a complete Image analysis task could be implemented with one or two minimal steps

in map-reduce frameworks (Figure 5.3). As we observe, in most of the cases the first two steps– S1 and S2

can be executed with one component in
∑

DP . These two steps can be combined into one MDP . Other two

steps– S3 and S4 require more than one components in
∑

DP . Another key thing to remember is that in

data-parallel components, input entities and parameters are a different thing (Smith and Albarghouthi [117]

define them as arity and free variable respectively). Sometimes, step S4 requires the input parameters whose

values are calculated from either S1 or S2. Consequently, S3 should be in a separate MDP . Similarly, S4

67

Figure 5.4: Structure of data-parallel module

requires the input parameters calculated from all collective elements from S3. Therefore, S4 is separate from

S3. For many image processing tasks, S3 and S4 are combined into a single data-parallel step. However,

from a reusability and customization perspective, we propose to wrap up the independent meaningful four

steps into four MDP – MDP (S1),MDP (S2),MDP (S3),MDP (S4). As we noticed in data-processing patterns,

in many cases outcomes of the steps are required to flow and be retained among intermediate steps (even up

to the last step). That poses a challenge to data-parallel implementation as this data flow may increase both

run-time memory and execution overhead.

We present a solution considering a common list of data-entities with defined order to link-up data-flows

among the MDP . We recommend a three-layers vertical implementation of MDP for image pipelines as

presented in Figure 5.4. Layer-1 consists of abstract interfaces and
∑

DP , layer-2 handles parallel data-

flow (DPF) and order of data entities (pseudo code is shown in Listing 5.1), and layer-3 contains Si on

images. Data-parallel operations could be optimized using layer-1 without considering others. Layer-3 also

works as a bridge to include image processing libraries (Skimage, OpenCV). Processing logic in this layer

can be improved without the knowledge of Layer-1. Components of Layer-1 call components in Layer-2,

and Layer-2 call components in the lower layer. Therefore, three layers version of data-parallel module,

MDP (Si) =
∑

DP . > DPF. > POS [N,R]{NPS}. Here N is the input entities (similar to RDD elements

in Spark) populated by lambda operations (PABS), and R is the list of parameters as described in data-

processing patterns, I and IP can be common in N. Only
∑

DP (via PABS) will call POS through DPF .

This modularity model provides a multidimensional (3x4, three layers and four modules) separation

of concerns and dependency inversion principle (which is valuable for parallel development as distributed

programming experts and image processing experts are not the same people usually). This will give the tool

developer a common programming model to rapidly implement the sequential tasks into a Big Data platform.

68

Figure 5.5: Common interface diagram for Image pipelines

Finally, we recommend to save IR and LM into distributed storage, other types of result should be stored either

in flat storage or databases. A block diagram is shown in Figure 5.5 on how a common programming interface

could be utilized using the MDP and processing patterns for interactive workflow/pipeline development.

However, in the experimentation phase, we will discuss what will be the impact of modularization and

maintain a common list of data entities for each MDP .

Listing 5.1 Pseudo code of DPF of MDP (S2) and MDP (S3)

1 DPFEstimate (N, obj , Rs2)

2 unpack (N)−−>im_id , I , Ip

3 metr i c s = obj . e s t imate (Ip , Rs2)

4 . . .

5 return pack (im_id , I , Ip , met r i c s)

6 DPFModel(N, obj , Rs3)

7 unpack (N)−−>im_id , I , Ip , met r i c s

8 Dm = obj . model (Ip , metr ics , Rs3)

9 . . .

10 return pack (im_id , I , Ip , Dm)

69

5.4 Impact Analysis of Modularization

In this section, we will discuss our experiments to observe the modularising effect of the image processing

applications based on the modularity model presented in the previous section. Our experimental environment

is Spark standalone and Cloudera cluster consists of seven worker nodes with total 58 cores and 56GB RAM.

The model of the processors is Intel Xeon L5420 and the speed is 2.50GHz. The master node is configured

to 36GB main memory for the cluster driver. We conduct our experiment on three datasets: a set of

CANOLA field images (most of them contain flowers, each image size is 1280x720), and two sets of crop

field images (each image size is 1280x960). We implemented the programs with Spark-2.0.1 and Python 2.7.

We compared the execution time between modularised and compact versions of six image processing tasks:

(i) Image matching [47], (ii) Image classification [123], (iii) CANOLA flower count (modified version of the

base algorithm [20] for B-Channel), (iv) Object extraction [51], (v) Image registration [30], and (vi) Mosaic

image generation [31]. We utilize the OpenCV [28] image processing library to implement the operations in

Layer-3. We found interesting behavior of differences between modularised and non-modularised versions.

In the case of time-intensive operations, there is a significant performance issue when modularization is used

for some tasks (i.e., Image Registration). However, in many cases, there is no significant differences– object

separation, matching, and mosaic image generation.

From Table 5.4, we notice that the difference in execution time ∆(t) for counting flowers from 2K images,

Tmin − Top = 6.1−5.5 = +0.6 minutes, while for 8.6K images, the modular version overcomes the run-time

memory exceeding issue of the master node (with 36GB RAM). That means modularising the tasks facilitates

performance optimization for individual step. For image registration, ∆(t) is about −4 minutes and −13

minutes (slower) for the two datasets for the modular version respectively, thus modularization decreases

performance. The performance is affected because of extensive data flow (image bundles) from MDP (S1)

to MDP (S4). Whereas, the minimal step version has virtually no parallel data-flow. Likewise, for higher

dataset, ∆(t) for modular image classification is −9 minutes. All other cases, ∆(t) is almost 0, meaning no

impact on execution time between modular and non-modular versions. However, we found some challenging

tasks during our experiment those are: flower counting, image grouping, and mosaic image generation. With

the increment of data-size, execution time and run time memory issues increase (with non-modular version).

For 2K images the performance of flower counting is feasible, but we found that for 8.6K images either

execution time is unusual or causing memory exceeding issues during run time. Modularization and further

splitting up the MDP (S3) module (as shown in Listing 5.3) of flower counting program solved the memory

issue. Moreover, the execution time decreases. However, in mosaic image generation, processing 300 images

takes more than 400 minutes (while the well-configured machine takes 210 minutes for the usual program)

for both minimal and modular version; with the increment of images, the complexity arises (603 images take

more than 600 minutes). Above all, although, for a few tasks modularity increases execution time, we can

say that micro-level split (hence modularity) increases the opportunity to further optimization.

70

Table 5.4: Performance comparison of two versions of the image processing tasks with Spark cluster
(execution time is presented including I/O operations).

Tasks #Imgs Tmin, min-

imal

Top, modular #Imgs Tmin,

minimal

Top,

modular

#Min

Steps

Image Match-

ing

2K 3.3mins 3.3 mins 8.6K 13mins 13mins 1

Clustering 2K 11mins 11 mins 4K 18mins 27mins 2

Flower count 2K 6.1 mins 5.5 mins 8.6K Mem is-

sue

19 mins 3

Object Extrac-

tion

2K 0.8min 0.8 min 8.6K 2.1 mins 2.1 mins 1

Image Regis-

tration

0.5K 9.3 mins 13 mins 1.5K 27 mins 40 mins 1

Mosaic Image 0.2K >300mins > 300mins 0.3K >400mins >400mins 2

Apart from these, if we follow common data processing patterns as described in Section 5.2.2, it is possible

to write common data-parallel modules (MDP) at the micro-level for the high-level components of large data

analytic tools. This not only facilities re-usable module development but also we can write a common

abstract interface to work with image processing without much knowledge of data-parallel operations (
∑

DP)

and tuning. If separate operations are implemented as common method signatures (as shown in Figure 5.5)

within a class and its object instances are passed through corresponding MDP , then processing logic can

be reused or customized (shown in Figure 5.6) willingly without the knowledge of data-parallel components.

With our model, the image processing tasks which contains only POS in Si can be easily transformed into

data-parallel programs without knowing the details of Layer-1 and Layer-2. Furthermore, if RS1 to RS4 do

not depend on the outcome of any of the steps in Si (and no NPS) then those image processing tasks can be

automatically converted into MDP . Coupled with the data-processing pattern (in Section 5.2.2), our model

represents a strong design rule [34] in this domain. For instance, consider a project where one team is working

on the web part, one team is working on the efficient large scale data processing support, and another team

is working on the image processing part; here dependency inversion principle (depend upon abstractions; do

not depend upon concretions [94]) is essential. More sophisticated techniques and algorithms might provide

a framework to auto-transform the image pipelines into MDP in future, but this is out of the scope of our

study.

5.5 Discussion

From our experimental analysis with six image processing tasks, we identified three challenging tasks to be

optimized for Big Data platforms which require more research. Even with small data, they take too many

71

Figure 5.6: Options of reusability and customization. Common modules such as DPF can be placed
in BaseModule and tasks (e.g., FlowerCount) can reuse those along with the other modules. Each
canonical step (Si) can be a separate module; they are reused and customized for each of the tasks
with new computational logic without the knowledge of upper layer of (MDP).

hours to finish with enough computing power and in-memory capability. We believe that many others image

processing tasks are existing yet to be improved to good fit with Big Data platforms.

Listing 5.2 Algorithm for flower counting with Spark

1 Pr_RDD <−− RDDraw.map(p r ep roce s s)

2 Es_RDD <−− Pr_RDD.map(histogram , params) . cache

3 avg_hist <−− Es_RDD. reduce (sumhistogram) / length

4 Cr_RDD <−− Es_RDD.map(c o r r l a t i o n , avg_hist)

5 r e s u l t <−− Cr_RDD.map(blobcount , plotmask)

Listing 5.3 Optimized algorithm of step 3 of Flower Counting program

1 Tmp_RDD = Es_RDD. flatMap (histGrm) . zipWithIndex () . cache ()

2 s p l i t = #elements / #maps

3 for i=0 to #maps :

4 s t a r t = i ∗ s p l i t

5 end = s t a r t + s p l i t

6 s p l i t_h i s t = Tmp_RDD. f i l t e r (in range (s t a r t , end)) . c o l l e c t ()

7 sum_histogram = sum_histogram + sumHistograms (s p l i t_h i s t)

8 avg_hist = sum_histogram/#maps

9 Cr_RDD <−− Es_RDD.map(c o r r l a t i o n , avg_hist)

Listing 5.2 represents the usual Spark version of flower count, here line 3 is the most costly step of flower

count. Sometimes, processing of small size raw data may exceed the main memory limit during run-time. In

our case, for 36 GB RAM of the master node exceeds the memory during executing this step for counting

flower [109] of 8.6K images. But, our configuration is a good fit for 2K images. Therefore, this step must

72

be split up more intuitively for feasible execution with the limited resource. We split the data-parallel

components and run-time data in that step to overcome the issue. We choose the value of split of Histogram

calculation by the ratio of number of images (#elements) and number of cores (#maps) used in distributing

the processing. The tuning version of Canola flower count is presented in Listing 5.3. We also found issues

on usual Spark version of mosaic image generation [31] with SIFT features and KNN matching algorithm.

The performance of the most recent (July 2017) map-reduce based algorithm we found based on SSIM and

K-medoids based technique [113] which is not promising as it takes 314 minutes for 5,679 images of 75x75 size.

Moreover, their techniques took extracted features as input. We also observed similar execution time despite

trying four different techniques. Our implementation of mosaic image generation with 200 and 300 images

(similar to 65,536 images of 75x75 size [113]) takes more than 300 minutes and 400 minutes respectively with

color conversion and feature extraction steps. Consequently, mosaic image generation using random selection

does not fit with Spark or Hadoop cluster using the traditional data-parallel components. Therefore, the

execution steps of mosaic image generation are required to be solved more intelligently which appears to be

non-trivial. One of the feasible techniques (among four) is shown in Listing 5.4. However, those techniques do

not improve the execution time in a significant way. The reason for the almost constant execution time lies in

the matching ratio calculation (computation intensive) and maximum matched image selection dynamically

which takes 1.5 to 2 minutes on average in our cluster (the execution happens n-1 times when all the images

are merged). Moreover, the merged (larger) image needs to be broadcasted to the workers in every step. A

similar execution time problem exists for image grouping for which we used the MLib K-Means API of Spark

that is considered to be the most standard one so far. During execution time of image grouping, overall

numeric records for 4K images are ∼133 million. And the input size raises to 50GB during training K-Means

and total time is taking around 18 mins (with minimal steps, but for 8.6K images it takes infeasible time).

We have developed an API for flexible image pipelines development following the proposed micro-level

modularity model. In the API, line 1 and 2 in Listings 5.3 and 5.4 are contained in our proposed MDP (S1)

and MDP (S2) along with few non-parallel operations. Pseudo code in Listings 5.3 and line 3 to line 18 in

Listings 5.4 constructed MDP (S3). MDP (S1) and MDP (S2) are directly reused or sometimes operations are

customized using inherited class without editing MDP for many image pipelines. We also added two more

modules–MDP (R) and MDP (W) for reading images and writing the processed result to/from HDFS and flat

storage. We observe one important fact that I/O with HDFS are more efficient (even works are ongoing

for further efficiency [57]) but have one bottleneck for images. HDFS operations treat images as text files.

Therefore, we need to read and write (data-parallel) the images as text data. However, after processing

the data, for many cases, visualization and further usages require another localized program to convert into

an image format. For thousands of images, it consumes a significant amount of time. To eradicate the

bottleneck, we implemented parallel reading and writing images by the workers to the flat-storage server (ssh

protocol). Nonetheless, we notice that the ssh server cannot handle I/O for more than 2,000 images at the

same (virtually) time and the program fails.

73

Listing 5.4 Splitted algorithm of Mosaic image with Spark

1 Pr_RDD <−− RDDraw.map(p r ep roce s s)

2 Fs_RDD <−− Pr_RDD.map(f a e tu r eExt rac t)

3 Mosaic <−− Fs_RDD. f i r s t ()

4 Tmp_RDD <−− Fs_RDD. zipWithIndex () . cache ()

5 #s p l i t = #elements / s p l i t _ s i z e

6 t r ave r s ed . add (Mosaic)

7 do un t i l a l l_images t r ave r s ed

8 for i=0 to #s p l i t

9 s t a r t = i ∗ s p l i t_ s i z e

10 end = s t a r t + s p l i t_ s i z e

11 Filter_RDD <−− Tmp_RDD. f i l t e r (not (t r ave r s ed) and in (s t a r t , end))

12 MFeature <−− broadcast (f a e tu r eExt rac t (Mosaic))

13 Matched_RDD <−− Filter_RDD .map(matchpoints , MFeature)

14 MaxImg <−− Matched_RDD. reduce (max(matchrat io))

15 i f (MaxImg . r a t i o > prev ious_rat io)

16 SeletedImg <−− MaxImg

17 t r ave r s ed . add (SeletedImg)

18 Mosaic <−− mergeHomography (Mosaic , Se letedImg)

19 r e s u l t <−− Mosaic

5.5.1 Lesson learned

In summary, from our case study we extracted the following important insights:

• Still, I/O operations create a bottleneck for optimal image processing with data-parallel frameworks

• Using modular data-processing patterns will reduce the implementation effort and increase the reusabil-

ity of both the program and the processed entities (in various canonical steps of a task) in data-parallel

frameworks.

• Programmers should avoid arbitrary modularisation.

• Programmers should not rely on usual map-reduce concepts and tuning hardware resources only for

computation intensive tasks.

• Intelligently splitting up the map-reduce operations and run-time data further might solve the limited

resource problems as well as increase performance.

• All image processing tasks may not be a good fit for traditional map-reduce techniques.

74

5.6 Related Work

A number of studies [79, 72, 113, 131] have pointed out the challenges and problems of implementing com-

putation intensive tasks for scientific data with the abstract data-parallel frameworks in spite of having

enough computing resources. To reduce the efforts of the data-scientists for large scale data analysis, some

applications and frameworks are being developed [45, 92, 125, 70] for GeoSpatial and Bioinformatic data

processing by adding more abstract layers on top of map-reduce frameworks. Despite some progress, they do

not support image processing operations. However, a few studies attempted to develop software and tools

[44, 67, 130, 66, 25, 139, 118] for large scale image processing for few specific cases. Nonetheless, they do not

provide a common framework for diverse image processing pipelines. Our objective is to develop a scalable,

unified and abstract framework for developing interactive image processing pipelines for large scale data.

Nowadays, large-scale images are used for analysis in various scientific works and general computer vision.

Although a few studies provide techniques [118, 139, 8, 113, 124] for specific image processing tasks with

data-parallel frameworks, they do not describe the challenges and optimization techniques to overcome the

challenges. In this study, we highlight the challenges of real world large scale image processing tasks as well

as recommend optimization technique with data-parallel components.

It is proven that program modularization is a key concept for developing unified frameworks on top of

distributed and map-reduce programming environment. However, modularising map-reduce jobs (computa-

tion and data-intensive) is still challenging as data-parallel frameworks only provide a limit of few strict API

methods. Yang et al. [134] attempted to develop a framework for running modular map-reduce jobs, but

users need to provide modularized jobs and dependency information. Recently, Heit et al. [53] proposed

a modular architecture for working with statistical models for data mining. However, these studies do not

provide any technique of micro-level modularity and impact of modularizing the tasks. In our work, we

propose a strategy for modularising large-scale image processing tasks at the micro-level and illustrate the

pros and cons of modularising tasks with data-parallel frameworks.

In summary, our study on computation-intensive task analysis strategy, modularity model, and experimen-

tal insights will provide the researchers to focus on such challenges extensively for devising better techniques,

and developers to consider the insights during large scale image processing tools development.

5.7 Conclusion

In this study, we presented a case study on modularising data and computation intensive tasks into micro-level

components. Our focus is on large image data as there is a lack of studies on the implications of running a

wide variety of image processing tasks on Big Data platforms. We synthesize image data-processing patterns

and propose a unified modular model for the effective implementation of computation-intensive tasks on data-

parallel frameworks considering reproducibility, reusability, and customization. Our experimental results with

75

six real world image processing tasks show that splitting and modularising the computation tasks is crucial to

utilize the power of Big Data platforms. However, not all tasks show similar performance in execution time

after modularising. A few of them need more sophisticated techniques for optimization with data-parallel

frameworks. Therefore, our study provides a valuable knowledge-base for abstract and unified frameworks

development for large scale data analysis. In future, we will work on techniques for automatic transformation

of sequential tasks to data-parallel modules.

76

Chapter 6

Conclusion

6.1 Concluding Remarks

Plant Genotyping and Phenotyping are important for tackling global food insecurity. In this thesis, we focused

on the plant Genotyping and Phenotyping analysis systems that work on diverse data types and size. Cloud-

based systems are becoming popular for accessible, reproducible, and transparent computation in this domain.

Some of the existing systems are: Galaxy [49], iPlant Collaborative [83], GenAP [68], and so on. However,

existing systems do not provide all the core large-scale data processing capabilities. Consequently, more

effective and stable solutions and methodologies are required that also reduce maintenance and development

efforts.

To that end, in this thesis, we have presented an empirical study on architectural models and modu-

larization strategies for large-scale data processing support in Genotyping and Phenotyping analysis system

development. In the first study, we analyze architectural stability and detected sub-components that are

frequently changed in the development lifecycle of these systems. We have also proposed a key-term based

technique for extracting architectural change related activities for analysis and maintenance purposes. This

technique will be helpful for the automatic architectural traceability analysis from the development history of

a system as well. The key observations from the first study are: (i) architectures of the existing Genotyping

and Phenotyping analysis systems are unstable, and (ii) the core components of these systems are evolution-

ary due to mainly usability, new scientific algorithms, and technological changes. In the second study, we

have extracted a reference architecture, explored design limitations of candidate systems, and proposed an

architectural model. We recommend that for a Genotyping and Phenotyping analysis systems development,

three design guidelines are useful: (i) data-centric model extraction, (ii) independent component modular-

ization, and (iii) proper infrastructure model following the previous two rules. One of the key observations

from the prototype system development following the proposed reference architecture is that the components

handling high-volume data processing should be kept into the Big Data cluster (hence separate code-base)

to avoid frequently sending those components from the application server during execution. In the third

study, we present a case study on developing modularized components for computation intensive programs

following the data-centric model extraction. Furthermore, we identified some challenges of large-scale image

processing with Big Data platforms. Our last study generated empirical data on the performance of several

77

image processing tasks with varying choices suggested by our architectural model, and this performance data

suggested several special recommendations for micro-level modularization in Big Data platforms. One of

the key findings is that the developers should avoid arbitrary modularisation in MapReduce framework for

large-scale data processing tasks.

Al-Jaroodi et al. [12] suggested that a suitable software development model is essential for Big Data

analytic applications development. Although we emphasized on large-scale Genotyping and Phenotyping

data analysis, our proposed architectural model would be helpful for developing cloud-based systems in the

domains of Astronomy, Bioinformatic, BioMedical, and GIS. Furthermore, adopting our proposed data-centric

model and independent component model (shown in Figure 4.11 and discussed in Chapter 4) could facilitate

the flexible development of various kinds of software (e.g., business intelligence systems [53], and national

security systems [63]) which mainly focus on data handling, processing, and analysis. Because, data-centric

modules are easy to make a design decision and tracking the core components, the independent component

model (developed as an API or library) can be easily changed, updated or restructured without affecting

much of the whole system. Nowadays, many software systems (including mobile applications) need to handle

data accessing from various sources and services, even those systems provide data to the other applications as

services. Structuring all of these data handling components into a unified data interface following well-defined

rules would provide adaptable and flexible system development (Hadoop-BAM [92] provides a good example

of a unified data framework for Bioinformatics).

Performance, security, cost, and disaster recovery are really essential for a large cloud-based system to

serve the uninterrupted demand. Our recommended heterogeneous model [135] of service infrastructure would

be very effective for the web applications in-general that handle high-volume data storage and processing.

In addition, proposed data-centric modularity model (discussed in Chapter 5) in this thesis might provide

a strict rule to modularize components for separation of concerns and parallel development in other contexts

where large volume data need to be handled. For example, Facebook, Netflix, Linkedin, and FIU-Miner,

described by Pääkkönen and Pakkala [99], focus on processing data in different stages with different platforms.

For these systems, unified data interface and data-centric modularity could play an effective role for the

developers.

6.2 Limitations and Future Work

In this thesis, for architectural change analysis from the commit history, we propose an automatic technique

that explores only intentional commits reflecting architecture changes. We will work to extend the technique

for unintentional architectural change analysis as well. However, we have presented an abstract reference

architecture, and the software component model requires more intuitive development patterns. In future, we

will conduct an empirical study of concrete design rules for the software component model. Moreover, we will

focus more on a generic component model for efficient collaboration among the users and stakeholders. In

78

the second study, we are unable to evaluate the reference architecture extensively because of lack of standard

ways. To that end, we will conduct an empirical study for evaluating the architectural model with the

software experts and developers in terms of the bad smells [15] of a software. Besides, we have worked only

on a unified modularity model for image processing tasks. However, unified modularity model for Genome

and GIS data would be fruitful for the design and development of a Genotyping and Phenotyping analysis

system, and we will also focus on that direction. Apart from these, we will work on the following issues:

(1) Efficient programming model and data model to overcome the existing challenges: During

the experimentation, we identified the challenges for large scale image processing tasks for the map-reduce

implementation. We will work on developing an efficient distributed programming model and data-model to

overcome the challenges.

(2) Empirical study on the automatic transformation of image processing tasks to data-

parallel modules: We will conduct experiments for a rule-based automatic transformation of image pro-

cessing logic into distributed programming that will reduce the efforts of programmers.

(3) Empirical study on design guidelines of collaborative and visualization tools for large

scale data analysis: We will work on the design model for a collaboration and visualization tool for large

scale data.

(4) Automatic technique of architectural traceability from commit history: Existing empirical

studies report that traceability of architecture is important for developers, but no effective automatic tech-

nique is available. In our future work, we will work on the automatic technique of architectural traceability

using commit history.

79

References

[1] Biomina. http://biominavm-galaxy.biomina.be/galaxy/. March, 2017.

[2] The hadoop. http://hadoop.apache.org/. June, 2017.

[3] The hdp sandbox. https://hortonworks.com/products/sandbox/. August, 2017.

[4] Lemnatec. http://www.lemnatec.com/products/. March, 2017.

[5] P2irc project. http://p2irc.usask.ca/. University of Saskatchewan, June, 2017.

[6] Sei-saam: http://www.sei.cmu.edu/architecture/scenario_paper/ ieee-sw2.htm. March, 2017.

[7] The spark. http://spark.apache.org/. June, 2017.

[8] The stormcv. https://github.com/sensorstorm. June, 2017.

[9] Enis Afgan, Brad Chapman, Margita Jadan, Vedran Franke, and James Taylor. Using cloud computing
infrastructure with cloudbiolinux, cloudman, and galaxy. Current protocols in bioinformatics, pages
11–9, 2012.

[10] Dinesh Agarwal and Sushil K Prasad. Lessons learnt from the development of gis application on azure
cloud platform. In Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing,
pages 352–359, 2012.

[11] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J Fernández-Moctezuma,
Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, et al. The dataflow model: a
practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing. Proceedings of the VLDB Endowment, pages 1792–1803, 2015.

[12] Jameela Al-Jaroodi, Brandon Hollein, and Nader Mohamed. Applying software engineering processes
for big data analytics applications development. In Proceedings of the 2017 IEEE 7th Annual Computing
and Communication Workshop and Conference, pages 1–7, 2017.

[13] Mamdouh Alenezi. Software architecture quality measurement stability and understandability. Inter-
national Journal of Advanced Computer Science and Applications, 2016.

[14] Samuil Angelov, Paul Grefen, and Danny Greefhorst. A framework for analysis and design of software
reference architectures. Information and Software Technology, pages 417–431, 2012.

[15] M. Aniche, G. Bavota, C. Treude, A. V. Deursen, and M. A. Gerosa. A validated set of smells in model-
view-controller architectures. In Proceedings of the 2016 IEEE International Conference on Software
Maintenance and Evolution, pages 233–243, 2016.

[16] Lerina Aversano, Marco Molfetta, and Maria Tortorella. Evaluating architecture stability of software
projects. In Proceedings of the 2013 20th Working Conference on Reverse Engineering, pages 417–424,
2013.

[17] Muhammad Ali Babar, Torgeir Dingsyr, Patricia Lago, and Hans van Vliet. Software Architecture
Knowledge Management: Theory and Practice. Springer Publishing Company, Incorporated, 1st edi-
tion, 2009.

80

[18] Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, M. Little, Paulo Merson, Robert
Nord, and Judith Stafford. Documenting Software Architectures: Views and Beyond. Addison-Wesley
Professional, second edition, 2010.

[19] Rami Bahsoon and Wolfgang Emmerich. Architectural stability. In Proceedings On the Move to
Meaningful Internet Systems: OTM 2009 Workshops, pages 304–315, 2009.

[20] Neetika Bairwa and NK Agrawal. Counting of flowers using image processing. International Journal
For Technological Research In Engineering, pages 775–779, 2014.

[21] Carliss Young Baldwin and Kim B Clark. Design rules: The power of modularity, volume 1. MIT press,
2000.

[22] Miklós Bálint, Philipp-André Schmidt, Rahul Sharma, Marco Thines, and Imke Schmitt. An illumina
metabarcoding pipeline for fungi. Ecology and evolution, pages 2642–2653, 2014.

[23] M.R. Barbacci, R.J. Ellison, A.J. Lattanze, J.A. Stafford, C.B. Weinstock, and W.G. Wood. Quality
Attribute Workshops QAWs. 3rd edition, 2003.

[24] Pooyan Behnamghader, Reem Alfayez, Kamonphop Srisopha, and Barry Boehm. Towards better un-
derstanding of software quality evolution through commit-impact analysis. In Proceedings of the 2017
IEEE International Conference on Software Quality, Reliability and Security, pages 251–262, 2017.

[25] Haresh S. Bhatt and A. K. Aggarwal. A generalized environment for distributed image processing. In
High Performance Computing Systems and Applications, pages 211–225, 2003.

[26] Roi Blanco and Christina Lioma. Graph-based term weighting for information retrieval. Information
Retrieval, pages 54–92, 2012.

[27] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross Lazarus, Mary
Mangan, Anton Nekrutenko, and James Taylor. Galaxy: a web-based genome analysis tool for experi-
mentalists. Current protocols in molecular biology, pages 19–10, 2010.

[28] Gary Bradski. The opencv library. Software Tools for the Professional Programmer, pages 120–123,
2000.

[29] H. P. Breivold and I. Crnkovic. A systematic review on architecting for software evolvability. In Software
Engineering Conference, pages 13–22, 2010.

[30] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM computing surveys, pages
325–376, 1992.

[31] Matthew Brown and David G Lowe. Automatic panoramic image stitching using invariant features.
Computer Vision, pages 59–73, 2007.

[32] Adrian Caciula. Optimization techniques for next-generation sequencing data analysis. In Scholar
Works Georgia State University, Computer Science Dissertations, 2014.

[33] Yuanfang Cai and Kevin J. Sullivan. Modularity analysis of logical design models. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software Engineering, pages 91–102, 2006.

[34] Yuanfang Cai, Hanfei Wang, Sunny Wong, and Linzhang Wang. Leveraging design rules to improve
software architecture recovery. In Proceedings of the 9th international ACM Sigsoft conference on
Quality of software architectures, pages 133–142, 2013.

[35] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali Babar. 10 years of
software architecture knowledge management: Practice and future. Journal of Systems and Software,
pages 191 – 205, 2016.

81

[36] Edgar Castelán Maldonado, Miguel Ángel Brigos Hermida, and Joaquín Fernández Sánchez. A sofware
reference architecture for the design and development of mobile workflow learning applications. In
Proceedings of the 8th International Technology, Education and Development Conference, pages 6351–
6360, 2014.

[37] Elliot J. Chikofsky and James H Cross. Reverse engineering and design recovery: A taxonomy. IEEE
software, pages 13–17, 1990.

[38] P. Clements and M. Klein R. K. Kazman. Evaluating Software Architectures: Methods and Case Studies.
Addison-Wesley Professional, 2002.

[39] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. Software history under the lens: A study on why
and how developers examine it. In Proceedings of the 2015 IEEE International Conference on Software
Maintenance and Evolution, pages 1–10, 2015.

[40] Anna Corazza, Sergio Martino, Valerio Maggio, and Giuseppe Scanniello. Weighing lexical information
for software clustering in the context of architecture recovery. Empirical Software Engineering, pages
72–103, 2016.

[41] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Com-
munications of the ACM, pages 107–113, 2008.

[42] Yuri Demchenko, Cees De Laat, and Peter Membrey. Defining architecture components of the big
data ecosystem. In Proceedings of the 2014 International Conference on Collaboration Technologies
and Systems, pages 104–112, 2014.

[43] Stephane Deschamps, Llaca Victor, and D. May Gregory. Genotyping-by-sequencing in plants. Biology,
pages 460–483, July 2017.

[44] Le Dong, Zhiyu Lin, Yan Liang, Ling He, Ning Zhang, Qi Chen, Xiaochun Cao, and Ebroul Izquierdo.
A hierarchical distributed processing framework for big image data. IEEE Transactions on Big Data,
pages 297–309, 2016.

[45] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings
of the 2015 IEEE 31st International Conference on Data Engineering, pages 1352–1363, 2015.

[46] B. Fluri, E. Giger, and H. C. Gall. Discovering patterns of change types. In Proceedings of the 2008
23rd IEEE/ACM International Conference on Automated Software Engineering, pages 463–466, 2008.

[47] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. K-nearest neighbor search: Fast
gpu-based implementations and application to high-dimensional feature matching. In Proceedings of
the 2010 17th IEEE International Conference on Image Processing, pages 3757–3760, 2010.

[48] David Garlan, Felix Bachmann, James Ivers, Judith Stafford, Len Bass, Paul Clements, and Paulo
Merson. Documenting Software Architectures: Views and Beyond. Addison-Wesley Professional, 2nd
edition, 2010.

[49] Jeremy Goecks, Anton Nekrutenko, James Taylor, and Galaxy Team. Galaxy: a comprehensive ap-
proach for supporting accessible, reproducible, and transparent computational research in the life sci-
ences. Genome biology, page R86, 2010.

[50] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion
Stoica. Graphx: Graph processing in a distributed dataflow framework. In Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation, pages 599–613, 2014.

[51] Kostas Haris, Serafim N Efstratiadis, Nikolaos Maglaveras, and Aggelos K Katsaggelos. Hybrid image
segmentation using watersheds and fast region merging. IEEE Transactions on image processing, pages
1684–1699, 1998.

82

[52] Anja Hartmann, Tobias Czauderna, Roberto Hoffmann, Nils Stein, and Falk Schreiber. Htpheno: An
image analysis pipeline for high-throughput plant phenotyping. Bioinformatics, page 148, 2011.

[53] J. Heit, J. Liu, and M. Shah. An architecture for the deployment of statistical models for the big data
era. In Proceedings of the 2016 IEEE International Conference on Big Data, pages 1377–1384, 2016.

[54] Charles Antony Richard Hoare and He Jifeng. Unifying theories of programming, volume 14. Prentice
Hall Englewood Cliffs, 1998.

[55] Aftab Hussain and Md. Saidur Rahman. A new hierarchical clustering technique for restructuring
software at the function level. In Proceedings of the 6th India Software Engineering Conference, pages
45–54, 2013.

[56] M. Z. Islam and A. K. Mondal. Towards a standard bangla photoocr: Text detection and localization.
In Proceedings of the 2014 17th International Conference on Computer and Information Technology,
pages 198–203, 2014.

[57] N. S. Islam, M. Wasi ur Rahman, X. Lu, and D. K. D. K. Panda. Efficient data access strategies
for hadoop and spark on hpc cluster with heterogeneous storage. In Proceedings of the 2016 IEEE
International Conference on Big Data, pages 223–232, 2016.

[58] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl. A framework for classifying and comparing
architecture-centric software evolution research. In Proceedings of the 2013 17th European Conference
on Software Maintenance and Reengineering, pages 305–314, 2013.

[59] Mehdi Jazayeri. On architectural stability and evolution. In Proceedings of the 7th Ada-Europe Inter-
national Conference on Reliable Software Technologies, pages 13–23, 2002.

[60] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario-based analysis of software architecture.
IEEE Software, pages 47–55, 1996.

[61] Rick Kazman, Len Bass, Gregory Abowd, and Mike Webb. Saam: A method for analyzing the properties
of software architectures. In Proceedings of the 16th International Conference on Software Engineering,
pages 81–90, 1994.

[62] Jungil Kim and Eunjoo Lee. The effect of import change in software change history. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, pages 1753–1754, 2014.

[63] John Klein, Ross Buglak, David Blockow, Troy Wuttke, and Brenton Cooper. A reference architecture
for big data systems in the national security domain. In Proceedings of the 2nd International Workshop
on BIG Data Software Engineering, pages 51–57, 2016.

[64] Max Klein, Rati Sharma, Chris H. Bohrer, Cameron M. Avelis, and Elijah Roberts. Biospark: scalable
analysis of large numerical datasets from biological simulations and experiments using hadoop and
spark. Bioinformatics, pages 303–305, 2017.

[65] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. Semi-automatic generation of audience-
specific release notes. In Proceedings of the International Workshop on Continuous Software Evolution
and Delivery, pages 19–22, 2016.

[66] Avi C Knecht, Malachy T Campbell, Adam Caprez, David R Swanson, and Harkamal Walia. Image
harvest: an open-source platform for high-throughput plant image processing and analysis. Journal of
experimental botany, pages 3587–3599, 2016.

[67] Kerry Koitzsch. “image as big data” systems: Some case studies. In Pro Hadoop Data Analytics:
Designing and Building Big Data Systems using the Hadoop Ecosystem, pages 235–255, 2017.

[68] Christos Kozanitis and David A Patterson. Genap: a distributed sql interface for genomic data. BMC
bioinformatics, page 63, 2016.

83

[69] Heiko Koziolek. Sustainability evaluation of software architectures: A systematic review. In Proceedings
of the joint ACM SIGSOFT conference–QoSA and ACM SIGSOFT symposium–ISARCS on Quality of
software architectures–QoSA and architecting critical systems–ISARCS, pages 3–12, 2011.

[70] Michel Krämer and Ivo Senner. A modular software architecture for processing of big geospatial data
in the cloud. Computers and Graphics, pages 69–81, 2015.

[71] Glenn E Krasner, Stephen T Pope, et al. A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. Journal of object oriented programming, pages 26–49, 1988.

[72] I. Kusuma, M. A. Ma’sum, N. Habibie, W. Jatmiko, and H. Suhartanto. Design of intelligent k-means
based on spark for big data clustering. In Proceedings of the International Workshop on Big Data and
Information Security, pages 89–96, 2016.

[73] Kristian Kvilekval, Dmitry Fedorov, Boguslaw Obara, Ambuj Singh, and BS Manjunath. Bisque: a
platform for bioimage analysis and management. Bioinformatics, pages 544–552, 2009.

[74] D. Le. Architectural-based speculative analysis to predict bugs in a software system. In Proceedings
of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion, pages
807–810, 2016.

[75] Ling Liu. Computing infrastructure for big data processing. Frontiers of Computer Science, pages
165–170, 2013.

[76] Siyuan Lu, Xiaoyan Shao, Marcus Freitag, Levente J Klein, Jason Renwick, Fernando J Marianno,
Conrad Albrecht, and Hendrik F Hamann. Ibm pairs curated big data service for accelerated geospatial
data analytics and discovery. In Proceedings of the 2016 IEEE International Conference on Big Data,
pages 2672–2675, 2016.

[77] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A
Lee, Jing Tao, and Yang Zhao. Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, pages 1039–1065, 2006.

[78] Cristiano Maffort, Marco Tulio Valente, Ricardo Terra, Mariza Bigonha, Nicolas Anquetil, and André
Hora. Mining architectural violations from version history. Empirical Software Engineering, pages
854–895, 2016.

[79] Jesus Maillo, Sergio Ramírez, Isaac Triguero, and Francisco Herrera. kNN-IS: An Iterative Spark-based
design of the k-Nearest Neighbors classifier for big data. Knowledge-Based Systems, pages 3–15, 2017.

[80] Bruce E Mann, Philip J Trasatti, Michael D Carlozzi, John A Ywoskus, and Edward J McGrath.
Loosely coupled mass storage computer cluster, 1999. US Patent 5,862,312.

[81] Bernard Marr. Big Data: Using SMART big data, analytics and metrics to make better decisions and
improve performance. John Wiley & Sons, 2015.

[82] Masood Masoodian and Saturnino Luz. Heterogeneous client-server architecture for a virtual meeting
environment. In Proceedings of the 8th Euromicro Workshop on Parallel and Distributed Processing,
2000., pages 67–74, 2000.

[83] Nirav Merchant, Eric Lyons, Stephen Goff, Matthew Vaughn, Doreen Ware, David Micklos, and Parker
Antin. The iplant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences.
PLoS biology, page e1002342, 2016.

[84] Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns: The formal definition and auto-
matic detection of architecture smells. In Proceedings of the 2015 12th Working IEEE/IFIP Conference
on Software Architecture, pages 51–60, 2015.

[85] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes using historic
databases. In Proceedings of the International Conference on Software Maintenance, pages 120–130,
2000.

84

[86] Amit Kumar Mondal, Mohammad Masudur Rahman, and Chanchal K. Roy. Embedded emotion-based
classification of stack overflow questions towards the question quality prediction. In Proceedings of the
28th International Conference on Software Engineering and Knowledge Engineering, pages 521–526,
2016.

[87] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and Ger-
ardo Canfora. Automatic generation of release notes. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 484–495, 2014.

[88] Sergi Nadal, Victor Herrero, Oscar Romero, Alberto Abell, Xavier Franch, Stijn Vansummeren, and
Danilo Valerio. A software reference architecture for semantic-aware big data systems. Journal of
Information and Software Technology, 2017.

[89] Elisa Yumi Nakagawa, Pablo Oliveira Antonino, and Martin Becker. Reference architecture and product
line architecture: A subtle but critical difference. In Proceedings of the 5th European Conference on
Software Architecture, pages 207–211, 2011.

[90] Najam Nazar, Yan Hu, and He Jiang. Summarizing software artifacts: A literature review. Journal of
Computer Science and Technology, pages 883–909, 2016.

[91] Shiva Nejati, Mehrdad Sabetzadeh, Chetan Arora, Lionel C Briand, and Felix Mandoux. Automated
change impact analysis between sysml models of requirements and design. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 242–
253, 2016.

[92] Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemelä, Eija Korpelainen, and Keijo Hel-
janko. Hadoop-bam: directly manipulating next generation sequencing data in the cloud. Bioinfor-
matics, pages 876–877, 2012.

[93] Malia A. Gehan Noah Fahlgren, Maximilian Feldman. A versatile phenotyping system and analytics
platform reveals diverse temporal responses to water availability in setaria. Molecular Plant, pages
1520–1535, 2015.

[94] Martin E Nordberg. Aspect-oriented dependency inversion. In Proceedings of the OOPSLA 2001
Workshop on Advanced Separation of Concerns in Object-Oriented Systems, 2001.

[95] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood, Tim
Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: a tool for the compo-
sition and enactment of bioinformatics workflows. Bioinformatics, pages 3045–3054, 2004.

[96] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig latin:
A not-so-foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 1099–1110, 2008.

[97] Femi G. Olumofin and Vojislav B. Mišić. A holistic architecture assessment method for software product
lines. Information and Software Technology, pages 309–323, 2007.

[98] Tosin Daniel Oyetoyan, Daniela S. Cruzes, and Reidar Conradi. A study of cyclic dependencies on
defect profile of software components. Journal of Systems and Software, pages 3162 – 3182, 2013.

[99] Pekka Pääkkönen and Daniel Pakkala. Reference architecture and classification of technologies, prod-
ucts and services for big data systems. Big Data Research, pages 166 – 186, 2015.

[100] A. Patidar and U. Suman. A survey on software architecture evaluation methods. In Proceedings of the
2015 2nd International Conference on Computing for Sustainable Global Development, pages 967–972,
2015.

[101] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes, pages 40–52, 1992.

85

[102] Y. Ren, T. Xing, X. Chen, and X. Chai. Research on software maintenance cost of influence factor
analysis and estimation method. In Proceedings of the 2011 3rd International Workshop on Intelligent
Systems and Applications, pages 1–4, 2011.

[103] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. Optimization of complex dataflows with user-defined
functions. ACM Computing Surveys, page 38, 2017.

[104] Banani Roy and TC Nicholas Graham. An iterative framework for software architecture recovery: An
experience report. Proceedings of the European Conference on Software Architecture, pages 210–224,
2008.

[105] Banani Roy and TC Nicholas Graham. Methods for evaluating software architecture: A survey. School
of Computing TR, page 82, 2008.

[106] Banani Roy, Amit Kumar Mondal, Chanchal K Roy, Kevin A Schneider, and Kawser Wazed. Towards
a reference architecture for cloud-based plant genotyping and phenotyping analysis frameworks. In
Proceedings of the 2017 IEEE International Conference on Software Architecture, pages 41–50, 2017.

[107] J. S. Saltz, S. Yilmazel, and O. Yilmazel. Not all software engineers can become good data engineers.
In Proceedings of the 2016 IEEE International Conference on Big Data, pages 2896–2901, 2016.

[108] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models to manage
complex software architecture. ACM Sigplan Notices, pages 167–176, 2005.

[109] Rajesh S Sarkate, NV Kalyankar, and PB Khanale. Application of computer vision and color image
segmentation for yield prediction precision. In Proceedings of the 2013 International Conference on
Information Systems and Computer Networks, pages 9–13, 2013.

[110] J. Schindelin, C. T. Rueden, and M. C. et al. Hiner. "the imagej ecosystem: An open platform for
biomedical image analysis". Molecular reproduction and development, pages 518–529, 2015.

[111] Matthias Schwab, Martin Karrenbach, and Jon Claerbout. Making scientific computations reproducible.
Computing in Science & Engineering, pages 61–67, 2000.

[112] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna. From retrospect to prospect: Assessing mod-
ularity and stability from software architecture. In Proceedings of the 2009 Joint Working IEEE/IFIP
Conference on Software Architecture European Conference on Software Architecture, pages 269–272,
2009.

[113] J. J. Shen, C. F. Lee, and K. L. Hou. Improved productivity of mosaic image by k-medoids and
feature selection mechanism on a hadoop-based framework. In Proceedings of the 2016 International
Conference on Networking and Network Applications, pages 288–293, 2016.

[114] Eric Shook, Michael E Hodgson, Shaowen Wang, Babak Behzad, Kiumars Soltani, April Hiscox, and
Jayakrishnan Ajayakumar. Parallel cartographic modeling: a methodology for parallelizing spatial data
processing. Journal of GIS, pages 2355–2376, 2016.

[115] Y. Simmhan, R. Barga, C. van Ingen, M. Nieto-Santisteban, L. Dobos, N. Li, M. Shipway, A. S. Szalay,
S. Werner, and J. Heasley. Graywulf: Scalable software architecture for data intensive computing. In
42nd Hawaii International Conference on System Sciences, pages 1–10, 2009.

[116] Clare Sloggett, Nuwan Goonasekera, and Enis Afgan. Bioblend: automating pipeline analyses within
galaxy and cloudman. Bioinformatics, pages 1685–1686, 2013.

[117] Calvin Smith and Aws Albarghouthi. Mapreduce program synthesis. ACM SIGPLAN Notices, pages
326–340, 2016.

[118] Chris Sweeney, Liu Liu, Sean Arietta, and Jason Lawrence. Hipi: A hadoop image processing interface
for image-based mapreduce tasks. University of Virginia., 2011.

86

[119] Ann-Christine Syvänen, Katriina Aalto-Setälä, Leena Harju, Kimmo Kontula, and Hans Söderlund. A
primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein e. Genomics, pages
684–692, 1990.

[120] Alexandru Adrian Tole et al. Big data challenges. Database Systems Journal, pages 31–40, 2013.

[121] F. Torres. Context is king: What’s your software’s operating range? IEEE Software, pages 9–12, 2015.

[122] Feliu Trias, Valeria de Castro, Marcos López-Sanz, and Esperanza Marcos. Re-cms: a reverse engineer-
ing toolkit for the migration to cms-based web applications. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing, pages 810–812, 2015.

[123] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun Lv, Thomas Huang, and Yihong Gong. Locality-
constrained linear coding for image classification. In Proceedings of the 2010 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3360–3367, 2010.

[124] Devin A White and Christopher R Davis. A fully automated high-performance image registration
workflow to support precision geolocation for imagery collected by airborne and spaceborne sensors.
Advances in Geocomputation, pages 383–394, 2017.

[125] Marek S. WiewiÃşrka, Antonio Messina, Alicja Pacholewska, Sergio Maffioletti, Piotr Gawrysiak, and
MichaÅĆ J. Okoniewski. Sparkseq: fast, scalable and cloud-ready tool for the interactive genomic data
analysis with nucleotide precision. Bioinformatics, pages 2652–2653, 2014.

[126] Byron J. Williams and Jeffrey C. Carver. Characterizing software architecture changes: A systematic
review. Information and Software Technology, pages 31–51, 2010.

[127] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. Design rule hierarchies and parallelism
in software development tasks. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 197–208, 2009.

[128] Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton. Detecting software modularity vio-
lations. In Proceedings of the 33rd International Conference on Software Engineering, pages 411–420.
ACM, 2011.

[129] Lu Xiao, Yuanfang Cai, and Rick Kazman. Titan: A toolset that connects software architecture with
quality analysis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 763–766, 2014.

[130] Martin Beck Xu, Min and Frank Alber. Template-free detection of macromolecular complexes in cryo
electron tomograms. Bioinformatics, pages i69–i76, 2017.

[131] Jilong Xue, Zhi Yang, Shian Hou, and Yafei Dai. Processing concurrent graph analytics with decoupled
computation model. IEEE Transactions on Computers, pages 876–890, 2017.

[132] Yuzhong Yan and Lei Huang. Large-scale image processing research cloud. Cloud Computing, pages
88–93, 2014.

[133] Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data and cloud computing:
innovation opportunities and challenges. Digital Earth, pages 13–53, 2017.

[134] Xinsheng Yang, Wei Wang, Lijie Xu, Jie liu, and Jun Wei. Mr-runner: A modularized map-reduce job
management tool. In Proceedings of the 5th Asia-Pacific Symposium on Internetware, page 19, 2013.

[135] Feng Yu, Casey Stella, and Kriss A Schueller. A design of heterogeneous cloud infrastructure for big
data and cloud computing services. Open Journal of Mobile Computing and Cloud Computing, pages
1–16, 2014.

[136] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. 2nd USENIX conference on Hot topics in cloud computing, page 95, 2010.

87

[137] Andrzej Zalewski and Szymon Kijas. Beyond atam: Early architecture evaluation method for large-scale
distributed systems. Journal of Systems and Software, pages 683–697, 2013.

[138] Jia Zhang, Petr Votava, Tsengdar J Lee, Owen Chu, Clyde Li, David Liu, Kate Liu, Norman Xin, and
Ramakrishna Nemani. Bridging vistrails scientific workflow management system to high performance
computing. In Proceedings of the 2003 IEEE 9th World Congress on Services (SERVICES), pages
29–36, 2013.

[139] Zhao Zhang, Kyle Barbary, Frank Austin Nothaft, Evan Sparks, Oliver Zahn, Michael J. Franklin,
David A. Patterson, and Saul Perlmutter. Scientific computing meets big data technology: An astron-
omy use case. In Proceedings of the 2015 IEEE International Conference on Big Data, pages 918–927,
2015.

88

