beneficial plant-microbial interactions in agroecosystems: deciphering the rhizosphere microbial community in two field grown crops

Zelalem Mengiste Taye
PhD Student

2018 Soils and Crops Conference
March 6, 2018
Co-Authors

Dr. Eric Lamb
Dr. Bobbi Helgason
Dr. Sally Vail
Dr. Steven Siciliano
Dr. Melissa Arcand
Dr. Steve Shirtliffe

Dr. Steven Mamet
Tanner Dowhy
Jenifer Bell
Shanay Williams-Johnson
Zayda Morales

Acknowledgment

Alix Schebel
Summer lab and field crews
Many others
Canola Lines Show Variation in Selecting their Rhizosphere Bacterial Members

2018 Soils and Crops Conference
March 6, 2018
Introduction

Plant Microbiome

- Rhizosphere
- Alter soil microbes
- Source of genetic variability
Objectives

- Characterize the core microbiome of *Brassica napus* (Canola).

- Identify bacterial taxa (SNVs) that are differentially abundant among Canola lines.
Methods

How are microbes studied?

- DNA sequencing
- Samples
- Extraction
- “Universal primers”
- Amplify 16S rRNA
- Gene
- NG Sequencing
- Match to a database
Methods

Processing raw sequence reads

Sequencing Data – High-throughput

Trimommatic (Bolger et al., 2014)
Cutadapt (Marcel, 2011)
DADA2 (Callahan et al., 2016)

Sequence (SNV) and Taxonomy table

http://2016.igem.org/Team:Dalhousie_Halifax_NS/Description
Methods

Experimental Design

- Experimental site: Llewelyn Farms near Saskatoon, SK
 - Oilseed ... wheat ... barely ... and fallow
- Sixteen canola (Brassica napus) lines
- Design: RCBD with three blocks + three reps
- Sampling: weekly for ten weeks
Methods

Statistical Analysis

- Core Microbiome:
 - Phyloseq R package (McMurdie and Holmes, 2013)
 - Microbiome R package (Leo et al., 2017)
 - Detection threshold of 0.1 and prevalence 50 to 95 %

- Differential abundance
 - DESEQ2: phyloseq extension (Love, Huber, and Anders 2014)
 - Generalized linear model with negative binomial distribution
 - False discovery rate of 1% (alpha value of 0.01)
 - P value: Benjamini-Hochberg (BH) adjustment (Benjamini and Hochberg 1995)
Results

Major Bacterial Taxa in Canola Rhizosphere

- 49526 taxa in 6 taxonomic ranks

39 DAP Flowering start
60 DAP Flowering end
Results

Major Bacterial Taxa in Canola Rhizosphere

- 49526 taxa in 6 taxonomic ranks
Results

Major Bacterial Taxa in Canola Rhizosphere by Canola Line
Results

Core Microbiome of Canola

- Of observed 49526 taxa

<table>
<thead>
<tr>
<th>Prevalence</th>
<th>50</th>
<th>60</th>
<th>65</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td># Core taxa</td>
<td>39</td>
<td>23</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- At 90%:
 - *Pseudarthrobacter* (Actinobacteria)
 - *Bradyrhizobium* (Proteobacteria)
Results

Core Microbiome of Canola (75%)

<table>
<thead>
<tr>
<th>Phylum</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteobacteria</td>
<td>Stenotrophomonas</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>Bradyrhizobium</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>Skermanella</td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>Skermanella</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>Pseudarthrobacter</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>Arthrobacter</td>
</tr>
<tr>
<td>Actinobacteria</td>
<td>unclassified</td>
</tr>
<tr>
<td>Acidobacteria</td>
<td>unclassified</td>
</tr>
</tbody>
</table>
Results

Core Microbiome of Canola

Core Microbiome

Co-occurrence Pattern

Microbial hub
Result

Differential Abundant Bacterial Taxa

- Number of differentially abundant taxa in fifteen Canola lines compared with the reference line
- False discovery rate of 1% (Adj. p value < 0.01)

<table>
<thead>
<tr>
<th></th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>L8</th>
<th>L9</th>
<th>L10</th>
<th>L11</th>
<th>L12</th>
<th>L13</th>
<th>L14</th>
<th>L15</th>
<th>L16</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>273</td>
<td>476</td>
<td>193</td>
<td>375</td>
<td>223</td>
<td>214</td>
<td>274</td>
<td>239</td>
<td>220</td>
<td>274</td>
<td>226</td>
<td>230</td>
<td>244</td>
<td>279</td>
<td>204</td>
</tr>
</tbody>
</table>
Result

Differential Abundant Bacterial Taxa

- Significantly differential abundant bacterial taxa in Line 2 at a false discovery rate of 1%

Up: 156
Down: 117
Result

Differential Abundant Bacterial Taxa

- Significantly differential abundant bacterial taxa in Line 2 at a false discovery rate of 1%
Take Home Message

- Rhizosphere Microbiome can be a potential source of genetic variability needed for breeding the next generation Canola varieties.
THANK YOU

Questions?