Mapping of QTL associated with seed phytic acid concentration in pea recombinant inbred lines

Arun Shunmugam
Crop Development Centre
University of Saskatchewan

Soils and Crops
11 March 2014
Outline

- Background
- Phytate in environment
- Low phytate pea lines
- Mapping phytic acid QTL
- Conclusion
Background

• Phytic acid
 - Storage form of P
 - Mixed cationic salt

• Binds K^+, Mg^{++}, $Ca^{++]$, Mn^{++}, Zn^{++}, Fe^{+++}
Phytate in environment

Storage of P as Phytate in mature seeds

Growth to maturity

Use of seeds for food

Harvest

Seed used to feed non-ruminants

Unable to digest phytate

Phytate decreases the bioavailability of iron and other minerals

Manure with undigested phytate is used to fertilize lands

Industrial P added to fertilizer

Pools of P in soil

80% of applied P in immobilized in soil & can’t be taken up by plants

P taken up from soil

Eutrophication

(Modified from Brinch-Pedersen et al., 2002)
• Consequences
 - Micro nutrient deficiency
 - Environmental phosphorus pollution

• Strategies to reduce Phytate
 - Fermentation
 - Soaking
 - Processing

Plant Breeding – Low Phytate Crops
Low Phytate Pea Lines

- Two low phytate (lpa) pea lines
 - Chemical mutagenesis of CDC Bronco

(Raboy.V., Plant Science 2009)
What do we know about these *lpa* pea lines?

 - approx 60% reduction
- **High in Inorganic Phosphorus**
- **Agronomic performance**
 - similar to CDC Bronco
 - slower flowering time and maturity
 - lower seed weight and yield
Mapping of QTL for Phytate-P concentration

• Hypothesis

QTL associated with seed phytic acid concentration can be identified from the recombinant inbred lines developed

• Objective

Mapping of QTL associated with seed phytic acid concentration in pea recombinant inbred lines
Materials and Methods

- PR-15
 - Recombinant Inbred lines
 - Sutherland 2011
 - Sutherland & Rosthern 2012, 2013

- Phenotyping
 - Phytate –P estimation

- Genotyping
 - GoldenGate assay
 - 1536 SNP markers

- Statistics
 - SAS 9.3 PROC MIXED
Results – Phytate-P concentration

Distribution of Phytate P in PR-15 lines at Sutherland 2011

Distribution of Phytate P in PR-15 lines at Sutherland & Rosthern 2012
Results – Phytate-P concentration

ANOVA for phytate-P concentration in 2012 & 2013

<table>
<thead>
<tr>
<th>Effect</th>
<th>Num DF</th>
<th>Den DF</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety</td>
<td>164</td>
<td>344</td>
<td>2.45</td>
<td><.0001</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>2</td>
<td>2.57</td>
<td>0.2498</td>
</tr>
<tr>
<td>Year*Variety</td>
<td>164</td>
<td>344</td>
<td>1.45</td>
<td>0.0025</td>
</tr>
</tbody>
</table>
PR-15 Linkage Map with SNP markers
Results – QTL for Phytate P

GenoPlot display in GenomeStudio showing PR-15 lines with 2 distinct clusters for PsC14876p245 SNP marker

PsC14876p245 associated with phytate-P in PR-15
Results – QTL for Phytate P

QTL associated with Phytate-P in PR-15 lines across 5 site years

<table>
<thead>
<tr>
<th>Year</th>
<th>Locus</th>
<th>Linkage Group</th>
<th>LOD</th>
<th>Phenotypic variation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sutherland 2011</td>
<td>PsC14876p245</td>
<td>5-A</td>
<td>21.96</td>
<td>47.1</td>
</tr>
<tr>
<td>Sutherland 2012</td>
<td>PsC14876p245</td>
<td>5-A</td>
<td>19.1</td>
<td>42.5</td>
</tr>
<tr>
<td>Rosthern 2012</td>
<td>PsC14876p245</td>
<td>5-A</td>
<td>20.68</td>
<td>45.1</td>
</tr>
<tr>
<td>Sutherland 2013</td>
<td>PsC14876p245</td>
<td>5-A</td>
<td>20.11</td>
<td>44.2</td>
</tr>
<tr>
<td>Rosthern 2013</td>
<td>PsC14876p245</td>
<td>5-A</td>
<td>20.46</td>
<td>44.7</td>
</tr>
</tbody>
</table>
Conclusion

• Phytate P QTL
 - consistent in all 5 site years
 - explains high phenotypic variation

• Validation of QTL
 - in PR-15 and other lines

What are the possible outcomes of this project?
• SNP marker - Marker assisted selection (MAS)
• Lpa pea varieties with improved mineral nutrition
• Reduced environmental pollution

We don’t eat nutrients….
We eat food that gives us nutrients….
Acknowledgement

Dr. Tom Warkentin, CDC, University of Saskatchewan

Dr. Gene Arganosa
Crop Science Field Lab Crew
Technicians at Crop Development Centre, University of Saskatchewan