
1 

 

Greenhouse Gas Intensity of an Irrigated Cropping System in 

Saskatchewan 
 

Cody David
1
, Richard Farrell

1
, and Warren Helgason

2 

 
1
Department of Soil Science, University of Saskatchewan, Saskatoon, SK 

2
Department of Chemical & Biological Engineering, University of Saskatchewan, Saskatoon, SK 

 

Key Words: greenhouse gas emissions, greenhouse gas intensity, irrigation, semi-arid prairie 

 

 

Abstract 

 

In response to increasing global food demands, the proportion of irrigated agricultural land 

within the Canadian Prairies is likely to increase. However, the implications of this with respect 

to the agricultural greenhouse gas (GHG) balance are not well understood.  This study 

investigates and compares the greenhouse gas intensity of a typical irrigated and dryland 

cropping system in Saskatchewan, a semi-arid region of the Canadian Prairies.  Compared to 

their dryland counterpart, irrigated cropping systems have higher GHG emissions which are a 

result of the energy used for pumping and larger nitrous oxide (N2O) production rates associated 

with higher N-fertilizer application and moist soil conditions.  These emissions may be partially 

offset by increased carbon sequestration from the greater productivity realized through irrigation.  

This investigation focuses on the quantification of soil GHG emissions through chamber-based 

flux measurements.  Factors driving these emissions have been determined through in-situ soil 

temperature, matric potential, and moisture measurements.  The emissions associated with 

pumping and other crop management activities are accounted for using the Intergovernmental 

Panel on Climate Change (IPCC) literature and methodology.  Preliminary results from the first 

season of study confirm that irrigated cropping systems have greater greenhouse gas intensity.  

Soil N2O emissions from the irrigated system were four times greater than the dryland and were 

the greatest source of emissions for the irrigated system.  Diesel combustion used to power 

equipment was comparable between cropping systems.  Emissions associated with pumping were 

notable; however, due to the wet growing season they remained smaller than could be expected 

most years. The information derived from this study will aid in the development of regional 

specific soil emission factors, improved management strategies, and will identify new 

approaches for mitigating emissions.     
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Introduction 

 

As a rising world population imposes increasing global food demands, irrigated agriculture is 

poised to play a more prominent role in food production.  However, the effect of increased 

irrigated production with respect to the agricultural greenhouse gas (GHG) balance is not well 

understood.  Particularly within the Canadian Prairies, there is potential to see large increases in 

the number of irrigated hectares if the environmental sustainability of these systems can be 

assured.   

 

Irrigation supplements natural precipitation through the application of water, optimizing soil 

moisture to meet crop water requirements.  Compared to their dryland (rainfed) cropping 

systems, typical irrigated cropping system management also involves higher fertilizer rates, 

additional tillage operations, and greater use of chemical for pest and weed management.  

Although these inputs are favorable for production increases, the emissions occurring as a result 

of soil conditions and from fossil fuel derived energy can be substantial.  Of particular interest to 

producers are greenhouse gases produced as a result of soil conditions, especially nitrous oxide 

(N2O) emissions.  The efflux of nitrous oxide from soil gas represents direct losses of soil 

nitrogen, an important nutrient for crop productivity.  These losses directly translate to economic 

losses to producers via lost inputs and reduced productivity.   

 

Emission information specific to irrigated production systems is limited, particularly in the semi-

arid prairie region of Western Canada.  To our knowledge, no studies have attempted to 

understand the emission dynamics from irrigated production within this region.  A regional 

understanding of agricultural greenhouse gas (GHG) emissions will help develop more accurate 

national accounting and aid in improving irrigation management strategies.  Strategies focused 

on mitigating these emissions will help address climatic influence and reduce economic losses 

for crop producers.  

 

Our two-year study aims at quantifying and comparing the GHG intensity of a typical irrigated 

and dryland production system in the Canadian Prairies.  This includes the quantification of soil 

emissions and an investigation into the soil conditions driving these emissions.  The development 

of system specific emission budgets, incorporating soil emissions and emissions pertaining to 

operations, aids in identifying areas of focus for mitigation efforts.  Presented below are 

preliminary results from the 2012 field season that were discussed in an oral presentation at the 

2013 Soils and Crops conference. 

 

Materials and Methods 

 

Study Site  

Located approximately 75 km south of Saskatoon, the study site consists of two neighboring 

quarter sections, one managed under irrigated crop production and the other under dryland 

production.  Both fields were planted to wheat in the 2012 growing season.  The soils at the site 

are dominantly Orthic Dark Brown Chernozem by classification with minimal topographical 

variation.   
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Quantification of Soil Conditions and Emissions  

Soil emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were quantified 

using 20 static chambers installed in each field along a single 125 metre linear transect.  

Chamber bases were installed after seeding and gas samples were collected weekly for the 

duration of the season.  Within the the expected peak emission periods (May through July), 

samples were collected twice per week.  During each sampling event, gas samples were collected 

from the chamber headspace at three 15 minute intervals.  Gas concentrations within each 

sample were determined using gas chromatography (Farrell et al., 2002 in [Ens, 2012]).  Using 

ambient air samples a time zero gas concentration, GHG fluxes were calculated as the slope of 

the gas concentration verse sampling time relationship.  Only fluxes calculated with a p-

value<0.1 were used for calculating average emissions on sampling days.  Seasonal emissions 

were deduced using the fluxes measured from sampling days. 

 

Measurements of soil temperature, moisture, and matric potential were made continually from 

seeding to soil freeze-up using sensors installed into the soil.  Time domain reflectometry (TDR) 

probes (Campbell Scientific CS-650) were used to measure soil temperature and volumetric 

water content.  Soil matric potential was quantified using heat dissipation probes (Campbell 

Scientific CS-229).  Sensors were installed horizontally at a 10 cm depth at four locations along 

each gas sampling transect.  All soil sensors were wired into dataloggers (Campbell Scientific 

CR-3000) to enable continuous measurement.  

 

Estimation of Emission from Cropping Operations 

The emission budgeting includes those emissions or reductions occurring within the scale of the 

farm site.  Fuel usage for all cropping activities were obtained from the cooperator.  Emissions 

resulting from fuel combustion were calculated using the Off-Road Diesel emissions factors used 

in Canada’s national inventory (Environment Canada, 2010a).  The electricity used for irrigation 

operations was determined from the operating hours recorded from the pivot control box and the 

SaskPower energy meter.  The associated greenhouse gas emissions were calculated using 

province specific emission factors for electricity generation (Environment Canada, 2010b).   

 

 

Preliminary Results and Discussion 

 

The results presented are preliminary results from the 2012 growing season. 

 

Soil N2O Emissions and Soil Moisture Conditions 

The 2012 growing season was a wetter than normal growing season with a moisture deficit of 

roughly 100 mm, compared to typical deficits of around 300 mm for this area.  This was 

reflected in high soil moisture conditions throughout the spring and through to mid-July.  In both 

the irrigated and dryland cropping systems, soil N2O emissions corresponded to the high 

volumetric water content and low negative matric potential present during this time (Fig. 1 and 

2).  Daily emission fluxes were larger and more variable in the irrigated system and were 

sustained later into the season as periodic irrigation events maintained conditions of high soil 

moisture (Fig. 2).  Seasonal N2O emissions (measured from May 30
th

 to November 6
th

) from the 

irrigated system measuring 61.36 kg N2O were much greater than the 15.02 kg N2O emitted from 
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the dryland system (Table 1 and 2).  Nitrous oxide emissions of these magnitudes elicit warming 

potentials equivalent to 18254 kg CO2 from the irrigated soil and 4480 kg CO2 from the dryland 

soil (Intergovernmental Panel on Climate Change, 2007).  The greater N2O emissions observed 

in the irrigated system are likely due to a greater nitrogen fertilizer rate, as the irrigated cropping 

system received a total of 110 kg/ha of N while the dryland system received 67 kg/ha.   

 

It is important to note that, due to logistics, soil emissions were not measured prior to seeding 

resulting in an underestimation of seasonal N2O emissions.  In addition, the soil CO2 and CH4 

fluxes and soil temperature data collected during the 2012 season were not discussed due to time 

limitations. 

 

Emissions from Cropping Operations  

Both cropping systems were seeded to wheat in the 2012 season resulting in similar fuel usage 

associated with management operations.  Cropping operations included a fall anhydrous 

application, spring seeding, herbicide application, swathing, and harvest.  However, the irrigated 

system received two additional operations: an application of fungicide for control of fusarium 

head blight and a tillage operation prior to the fall anhydrous application.  As a result, diesel fuel 

usage within the irrigated cropping system was slightly higher than the dryland system at 3639 

litres and 3316 litres, respectively.  This contributes emissions totaling 10898 kg CO2eq for the 

irrigated system and 9931 kg CO2eq for the dryland system (Intergovernmental Panel on Climate 

Change, 2007).   

 

The total electricity used for pumping water and moving the pivot measured 6024 kWh in 2012, 

equating to 4317 kg CO2eq.  Considering the wetter than normal growing, irrigation demands 

were low resulting in relatively low electricity usage.  Average yearly irrigation demand is 

greater by three fold (Irrigation Crop Diversification Corporation, 2012).   

 

Greenhouse Gas Intensity 

Based on the preliminary results, greater greenhouse emissions were associated with the irrigated 

cropping system in 2012.  Total emissions represented in CO2 equivalents were 33469 kg from 

the irrigated system, compared to 14411 kg from the dryland system.  As mentioned previous, 

the greater soil N2O emissions and electricity usage were the major factors contributing to 

greater emissions.  However, differences in productivity must be accounted for when comparing 

these two systems.  The dryland wheat yield was typical to slightly higher than average at 2390 

kg per ha (Saskatchewan Ministry of Agriculture, 2013), while the irrigated wheat yield of 3230 

kg per ha was lower than average (Irrigation Crop Diversification Corporation, 2012).  Overall 

greenhouse gas intensity (GHGI) was greater for the irrigated production system at 0.228 kg 

CO2eq per ha compared to the dryland system at 0.104 kg CO2eq per ha.   

 

As mentioned previously, soil CO2 and CH4 fluxes remain to be incorporated into the GHG 

budget for each cropping system.  Soil carbon dynamics may have a large influence on the GHGI 

as agricultural cropping systems may act as sinks for atmospheric carbon dioxide through carbon 

storage as soil organic carbon (SOC) (Snyder, Bruulsema, Jensen, & Fixen, 2009).  In this 

regard, the enhanced productivity of irrigated cropping systems may contribute to greater GHG 

reductions through greater amounts of residual biomass (Liebig et al., 2005; Smith et al., 2008).   
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 CO2 CH4 N2O 
CO2 

equivalent 

GHG 

intensity 

Source kg kg kg kg 
kg CO2 eq 

per kg yield 
 

Soil   15.03 4 480 0.032 

Diesel Combustion 8 832 0.50 3.65 9 931 0.072 

Total (CO2 eq) 8 832 12 5 567 14 411 0.104 

Figure 1.  Average daily soil volumetric moisture (A, n=4), soil matric potential (B, n=4), and soil 

N2O emissions (C, n=20) for the dryland field during the 2012 growing season.  Dates listed on the 

x-axis represent gas sampling days.  

A 

B 

C 

Table 1.  Greenhouse gas emissions and total greenhouse gas intensity of the dryland cropping 

system during the 2012 growing season. 
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 CO2 CH4 N2O 
CO2 

equivalent 

GHG 

intensity 

Source kg kg kg kg 
kg CO2 eq 

per kg yield 
 

Soil   61.26 18 254 0.124 

Diesel Combustion 9 691 0.55 4.00 10 898 0.074 

Electricity Production 4 277 0.18 0.12 4 317 0.029 

Total (CO2 eq) 13 968 18 19 483 33 469 0.228 

Figure 2.  Average daily soil volumetric moisture (A, n=4), soil matric potential (B, n=4), and soil 

N2O emissions (C, n=20) for the irrigated field during the 2012 growing season.  Dates listed on the 

x-axis represent gas sampling days.  

 

A 

B 

C 

Table 2.  Greenhouse gas emissions and total greenhouse gas intensity of the irrigated cropping 

system during the 2012 growing season. 
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Conclusions and Next Steps 

 

Preliminary results from the first season of study confirm that irrigated cropping systems have a 

greater greenhouse gas intensity compared to their dryland counterparts.  Soil N2O emissions 

from the irrigated system were four times greater than the dryland and were the greatest source 

of emissions for the irrigated system.  Emissions from on-site diesel combustion were 

comparable between cropping systems.  The emissions associated with electricity usage for 

irrigation activities were notable but, due to a wet growing season, remained smaller than could 

be expected most years.  The next steps in the project will focus on improving cropping system 

GHGI estimations through the incorporation of soil carbon dynamics.  Within the irrigated 

system in particular there is potential for substantial GHG reductions through carbon storage as 

SOC.  Data collection will continue through the 2013 growing season, the final season of the two 

year study.  The information derived from this study will aid in the development of regional 

specific soil emission factors, improved management strategies, and will identify new 

approaches for mitigating emissions.     
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