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ABSTRACT 

 

A strategy to develop Prairie grapes (Vitis) with high trans-resveratrol production potential is 

proposed.  Young greenhouse grown vines were induced to flower through training and pruning 

and were screened for resveratrol in ripe berry skins.  The fourteen genotypes were selected 

based on percentage of V. riparia Michaux in their pedigrees.  Based on reported percentage of 

riparia (0, ~25, 50 and 100%), four groups of genotypes were selected that had at least three 

genotypes per group.  It was hypothesised that accessions with a higher percentage of riparia 

would produce more resveratrol and that pedigree could be used to predict production potential.  

The 50% V. riparia group included two additional accessions that were anthocyanin-deficient 

clones of ‘Frontenac’.  Resveratrol production in grape skins was elicited with UVC light (254 

nm) placed above and below detached berries. Incubation-day five was chosen as the day of 

highest observed resveratrol concentrations. All Vitis vinifera Linnaeus cultivars tested on this 

day were lower producers of trans-resveratrol than V. riparia selections.  Of the cultivars tested, 

V. riparia x F1 hybrid ‘Valiant’ was the highest producer with an average of approximately 693 

µg g
-1

 fresh weight.  Pure V. riparia selection ‘DG Riparia’ was similar to ‘Valiant’ in its 

resveratrol production potential.  The ‘gris’ and ‘blanc’ anthocyanin-deficient mutants of 

‘Frontenac’ have similar capacity to produce resveratrol as the original cultivar.  In conclusion, 

resveratrol production potential cannot be predicted purely on % V. riparia in pedigree but it was 

generally true that hybrids based on this species were higher producers than classic V. vinifera 

cultivars.  Genotypes ‘DG Riparia’ and ‘Valiant’ will be useful as parents in breeding Prairie-

adapted grapes high in trans-resveratrol. Greenhouse culture offers an effective means of early 

selection for resveratrol production potential through flower induction pruning.  This induction 

protocol will also be a useful tool in breeding grapes at the University of Saskatchewan. 
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1.0 INTRODUCTION 

 

In this thesis methodologies were developed for screening grape (Vitis) germplasm for 

trans-resveratrol (‘resveratrol’) production in ripe berry skins.  Technologies were developed 

during the course of this thesis project that could accelerate the selection process through the 

utilization of greenhouse culture.  Resveratrol production screening through induction with 

ultraviolet-C (UVC) was carried out on diverse grape germplasm.   Of primary focus were Vitis 

riparia M and northern grape cultivars descended from this species.  This type of screening was 

previously done on V. vinifera L cultivated varieties (cultivars) (Cantos et al. 2003b).  To the 

best of this author’s knowledge this is the first study elucidating the trans-resveratrol production 

potential of V.  riparia and its descendants following the UVC irradiation of ripe berries. 

Resveratrol is a compound found in Vitis and other plant genera that has shown potential 

to reduce cancer and cardiovascular disease (Csiszar 2011; Petrovski et al. 2011; Shukla and 

Singh 2011).  These are the two major causes of death in Canada which place considerable strain 

on this country’s heathcare system (Statistics Canada 2010).  Grape and grape products are the 

most important dietary source of resveratrol, but the levels vary in different varieties and 

products (Barreiro-Hurle et al. 2008; Zamora-Ros et al. 2008).  One option is to increase the 

production of this compound at the plant level through selection. 

Grape breeding has been largely absent on the Canadian Prairies.  The major constraint 

has been that many of the Vitis cultivars used for breeding high quality fruit are not adapted to 

this region.  Tender germplasm to be used in crosses must be maintained in the greenhouse out of 

necessity.  The indigenous Canadian Prairie grape species, V. riparia, also known as the 

‘riverbank grape’, has been used in northern breeding programs as the source of hardiness 

(Hemstad and Luby 1998).  V. riparia is also among the highest producers of resveratrol within 

Vitis (Langcake 1981).  New cultivars descended from V. riparia could have a high resveratrol 

production potential and therefore greater “functionality” than V. vinifera cultivars (Li et al. 

2006).  Increased functionality could offer a competitive advantage for prairie grape growers. 

The purpose of the present study was to employ new methodologies to screen this Vitis 

germplasm for high resveratrol production potential.  Grape germplasm collected for use in this 

thesis project could serve as breeding stock in the development of cultivars adapted to 
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Saskatchewan.  Germplasm with high fruit quality consisted of “classic” V. vinifera wine grapes 

and interspecific cultivars.  Adapted germplasm were selections of V.  riparia which would 

presumably carry the alleles for high resveratrol production potential.  Once identified, high 

producers of resveratrol could be utilized as parent vines in the new grape breeding program at 

the University of Saskatchewan.   

Previous research indicated that a few V. riparia accessions produced more resveratrol 

than dozens of V. vinifera accessions (Langcake 1981; Li et al. 2006).  This study examined 

germplasm with varying percentages of V. riparia in their lineage and hypothesised that trans-

resveratrol production in ripe berry skins would be increasingly higher in selections that have 

more V. riparia.  The null hupothesis (Ho) was that there would be no difference between select 

V. riparia/interspecifics and V. vinifera cultivars.   

Other objectives of this thesis study were to investigate the resveratrol production 

potential of the two white mutants of the V. riparia x F1 hybrid ‘Frontenac’, the ‘gris’ and 

recently discovered ‘blanc’ (Plocher and Parke 2008) compared to the original genotype.  V. 

riparia hybrids produce very high concentrations of resveratrol (Li et al. 2006).  F1 hybrids of 

this species are also usually exclusively black-fruited (Hemstad and Luby 1997).  Therefore, this 

was a unique opportunity to identify white wine grapes ideally suited to the production of 

functional white wines.   

The ‘Frontenac’ mutations ‘blanc’ and ‘gris’ (Appendix A1.1) were ideal genotypes to 

investigate the possible competition between chalcone synthase (CHS) and stilbene synthase 

(STS) enzymes.  This idea of substrate competition was proposed by Jeandet et al. (1995) to 

explain the declining levels of stilbenes in ripening grapes.  If applicable, the original 

‘Frontenac’ would conceivably require more substrate to produce anthocyanins and therefore 

fewer stilbenes.  Therefore the hypothesis was that there would be increased resveratrol 

production in the anthocyanin deficient ‘Frontenac’ mutants ‘gris’ and ‘blanc’.  The ‘blanc’ 

should produce the highest levels of the three.  The Ho was that there would be no differences 

between ‘Frontenac’ and its two mutant clones. 
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2.0 LITERATURE REVIEW 

 

2.1 Importance of grape (Vitis spp) 

 

Grapevine or Vitis species is a very important horticultural crop with a history that spans 

many thousands of years (Olmo 1996; Unwin 1991).  Historically, the chief product has been the 

fermented beverage wine (McGovern 2003).  Grape juice and raisins are popular grape products 

but the majority of the world’s grape crop is still devoted to wine production (OIV 2007).  Wine 

and grape products in a social and religious context are well ingrained in western culture 

(Musselman 2007).  As such, the grape has become well established as the most important 

temperate fruit crop.  An estimated 67 million tons of grapes from 8 million hectares are 

produced worldwide (OIV 2007) with the North American grape and wine industry estimated to 

be worth greater than $160 billion annually (ARS 2007).    

 

2.2 Breeding system in Vitis  

 

Within the genus Vitis there are nearly one hundred interfertile species of diploid 2n=38 

woody perennial climbers (McGovern 2003; Olmo 1996).  All wild grape species are dioecious 

and wind pollinated.  Natural populations usually consist of equal numbers of male and female 

vines (Zohary 1996).  The selection of hermaphrodites or perfect flowering types was a product 

of domestication resulting from pistil development in male genotypes (Srinivasan and Mullins 

1979).   

Being true vines, grapes must use trees or other supports to serve as their core 

architecture.  In the wild, the vine will rapidly scale its symbiotic host in search for light which it 

requires before flowering (Olmo 1996).  The climbing habit of Vitis is the result of an adaptation 

that evolved when floral structures were modified to become tendrils (Srinivasan and Mullins 

1979).  Therefore, the appearance of tendrils in young vines indicates that its juvenile phase is 

ending (Mullins et al. 1992).    
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Unusual among plant genera, grapevines appear to have few crossing barriers between 

species other than physical/geographical impediments to gene flow (Zohary 1996).  Vitis is 

therefore conducive to genetic improvement through deliberate breeding and selection because 

of ease of intra and interspecific hybridization.   

 

2.3 Wild grape species 

 

Divergence within Vitis goes back to the Tertiary period when the progenitor species was 

separated onto three different continents (McGovern 2003).  This resulted in the tremendous 

diversity of today’s grape species.  Wild grapes are numerous outside Western Europe which has 

only one native species, V. vinifera subsp sylvestris (Zohary 1996).  This species is indigenous to 

Mediterranean coastal forests and river valleys extending to Asia, the Black Sea region and into 

the Rhine and Danube valleys of Western Europe (Zohary 1996).     

A species referred to as the ‘Amur Grape’, V. amurensis Rupr. is found growing along 

the Amur River valley which borders eastern Russia and China (USDA 2011).  The Amur grape 

is also part of a larger Asian family of Vitis which accounts for one third to half of the world’s 

grape species (Mullins et al. 1992).  The remaining half of the nearly hundred species described 

worldwide, are native to North America (McGovern 2003; Olmo 1996).   

  

2.3.1 Eastern V. vinifera subsp sylvestris L and grape domestication 

 

Grape is one of the oldest horticultural crops with the earliest domestication estimates at 

6000 B.C. (Olmo 1996; Unwin 1991).  This likely occurred in the Caucasus Black Sea region 

with viticulture spreading eastward and south to the Fertile Crescent (McGovern 2003; Myles et 

al. 2010; Zohary 1996).  Therefore, domesticated grapes are descended from eastern ecotypes of 

Vitis vinifera subsp sylvestris (Myles et al. 2010). 

The domesticated grape or ‘European wine grape’ is V. vinifera subsp vinifera (herein V. 

vinifera) (Zohary 1996).  This species is responsible for the majority of grape production 

worldwide and is considered to have the highest fruit quality among Vitis.  Early taxonomic 
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classifications divided vinifera from sylvestris but now it is grouped as a subspecies of V. 

vinifera with its progenitor (Zohary 1996). 

Genetic improvement in the domesticated grape was relatively slow due to the use of 

clonal or asexual reproduction of superior vines (Myles et al. 2010).  These genotypes were 

hermaphroditic or self-pollinating.  Gene flow and recombination events were therefore 

restricted and most self-pollinated seedlings were weak due to inbreeding depression (Olmo 

1996).  When outcrossing was successful among vinifera genotypes, heterozygosity was 

maintained and healthy seedlings would arise.  Among the most notable of “chance” crossings 

between domesticated grapes occurred by the 17
th

 Century between ‘Cabernet Franc’ and 

‘Sauvignon Blanc’ (Bowers and Meredith 1997).  The resulting genotype has become one of the 

world’s most important wine grapes, ‘Cabernet Sauvignon’ (Clarke and Rand 2007; Imwold and 

Doig 2004).   

 

2.3.2 Western V. vinifera subsp sylvestris L and grapevine improvement 

 

Grape improvement in Europe continued as vine cultivation spread westward.  

Intraspecific hybrids arose with the fruit quality of V. vinifera and the local adaptability of 

indigenous sylvestris (Aradhaya et al. 2003).  Today Western European cultivars account for the 

majority of wine grape production worldwide and are considered the “classic” varieties (Clarke 

and Rand 2007).  The German grape ‘Riesling’ is an example of a classic wine cultivar thought 

to be descended from a wild Western European V. vinifera subsp sylvestris plant and the 

domestic cultivar ‘Traminer’ (VIVC 2007).   Molecular marker analysis has now confirmed 

introgression of sylvestris genes into many Western European cultivars as the domesticated grape 

spread westward (Aradhaya et al. 2003; Lacombe et al. 2003; Myles et al. 2010).   

This natural process of concentrating favourable fruit quality and hardiness alleles in one 

genotype is also the strategy deliberately employed in grape breeding programs.  In breeding 

grapes for the Canadian Prairies, the breeding strategy would be to combine V. vinifera-type fruit 

quality with the adaptability of indigenous grapes.   
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2.3.3 Wild North American Vitis spp  

 

So prevalent were vines in North America that upon arrival on its eastern coast, the 

Vikings declared this new continent to be “Vinland” (Younger 1966).  Early utilization of native 

grapes in North America was mainly limited to the eastern species V. labrusca L the “fox” grape 

(Johnson 1989).  This species has a very distinct aroma combined with large berries and low acid 

(Rombough 2002), the latter being two traits also common in V. vinifera.  However, as a wine 

grape, V. labrusca was undesirable as its musky aroma survives the fermentation process and is 

far too strong for the palates of most wine consumers (Johnson 1989).  This species has found its 

niche in preserves, candies, the juice markets and sweet fortified wines where it has become 

synonymous with the North American concept of true ‘grape’ flavour.  It’s most renowned 

representative is the cultivar ‘Concord’ (Appendix A1.4).  Most other wild grape species are 

commonly described as being small-berried and acidic thus possibly accounting for the early 

preference for the fox grape in North America (Rombough 2002).  The result of early selection 

and hybrids based on V. labrusca was the negative association of “hybrid aromas” in wines from 

North American grapes that persists even today (Johnson 1989).   

Although high in acid, some of the indigenous grape species of North America are 

actually quite “neutral” or vinifera-like with little to no objectionable or overpowering 

flavours/aromas.  Balanced flavours/aromas are essential for making wine and neutral genotypes 

from V. asetivalis Michaux, its subspecies ‘lincecumii’, and ‘bicolor’, V. longii Prince and V. 

riparia have been selected from the wild (Pierquet 2010; Rombough 2002).   

The wild North American grape species that has come close to matching the quality 

characteristics of vinifera is V. aestivalis, the summer grape (Kilman 2010; Rombough 2002).  

This species has a neutral flavour, large berries with the proper acid to sugar ratios and skins 

with tannins necessary for making a quality red wine (Rombough 2002).  A V. aestivalis cv 

‘Norton’ varietal wine (non-blended) even won a gold medal placing it among the top red wines 

of all the nations in Vienna, 1873 (Kilman 2010).  The success of a wild North American grape 

species competing with vinifera in quality and hardiness illustrates this and other members of 

this group’s potential for use in breeding.  Unfortunately, eastern species like V. aestivalis are not 

hardy on the Canadian Prairies (Rombough 2002). 
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2.4 Vitis riparia Michaux 

 

  The riparian grape of North America is perhaps its most widely adapted species with a 

native range in the east to Quebec (western face of the Appalachians), Nova Scotia, south to 

Texas and north/northwest into Montana and the Canadian Prairies (Mullins et al. 1992).  This is 

the only grape species native to the Canadian Prairies and is found in Manitoba and south eastern 

Saskatchewan.  In this northernmost range, riparia annually endures winter lows of -40°C and 

occasionally lower than -45°C (Pierquet and Stushnoff 1980).  The extreme western forms of 

riparia found in Montana are said to survive winters temperatures of -50°C and lower 

(Rombough 2002).  The extreme hardiness of this species’ northern and north western forms are 

essential to the adaptability of future cultivars bred for the Canadian Prairies.   These ecotypes 

show the most promise for adapted germplasm for the grape breeding program at the University 

of Saskatchewan. 

 

2.4.1 Role of Vitis riparia in grape breeding 

 

In the late 1800’s, the North American-imported phylloxera (Daktulosphaira vitifoliae 

Fitch) root aphid created an epidemic in European vineyards (Mullins et al. 1992).  French 

breeders like Baco and Kuhlmann utilized resistant V. riparia in interspecific crosses to create 

“French hybrids” or “hybrid direct producers (HDP)” (Johnson 2008).   Of concern is a typical 

“herbaceous” aroma associated with the fruit of riparia.  Fortunately, these early hybridizers 

were successful in selecting offspring with little to none of this off-flavour (Rombough 2002).  

Notable genotypes resulting from this century-old breeding work include ‘Maréchel Foch’, 

‘Leon Millot’ and ‘Baco Noir’.  Due to their good fruit quality and hardiness, these three 

varieties are still widely cultivated in North America.  They have found a niche in the colder 

parts of Canada’s Niagara, ON and Midwestern US states like Wisconsin and Minnesota (Clarke 

and Rand 2007; Plocher and Parke 2008; Schreiner 2009).  Unfortunately these cultivars are not 

hardy enough to survive the Canadian Prairies.  They are descended from more southern and 

eastern ecotypes of riparia that evolved in milder climates.   
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Hardy cultivars descended from northernmost riparia have recently expanded the range 

of viticulture.  For example, South Dakota State University created the popular juice cultivar 

‘Valiant’ by crossing ‘Fredonia’ and a male Montana riparia selection (Rombough 2002).  

‘Valiant’ is currently considered the hardiest grape cultivar in existence (Plocher and Parke 

2008; Rombough 2002).  In addition, the University of Minnesota has recently produced new 

wine cultivars that have gone beyond the traditional “French hybrid” range of hardiness.  This 

was in part achieved by utilizing Canadian Prairie riparia from Manitoba’s Riding Mountain 

National Park (Hemstad and Luby 1998; Pierquet 2010).  Manitoba riparia descendant 

‘Marquette’ has better juice colour and tannin structure than the standard hybrid variety 

‘Maréchel Foch’ (Hemstad 2009).  As a result, a thriving grape/wine industry in Minnesota has 

been created based on varieties bred from northern riparia (Tuck and Gartner 2008).  

Pioneering breeding work done with riparia in France and the northern USA reveals the 

enormous untapped potential of this species in the development of superior grapevine cultivars.  

Cultivars descended from riparia can approach vinifera in fruit quality and surpass it in 

adaptability to abiotic and biotic stresses, particularly disease pressure (Hemstad 2009).  The 

tolerance to some common diseases has been correlated to this species’ high production of an 

anti-fungal compound called resveratrol (Langcake 1981).   

 

2.5 Resveratrol in the human diet 

  

Resveratrol is found in many edible plant species and common sources include nuts such 

as peanuts (Arachis hypogaea L.) and pistachios (Pistacia vera L.) (Tokusoglu et al. 2005) and 

berries such as Vaccinium  species (Rimando et al. 2004), strawberry (Fragaria x ananassa 

Duch.) (Wang et al. 2007) and grape (Vitis vinifera L.) (Zamora-Ros et al. 2008).  Of the 

potential foods high in resveratrol, grapes and red wine are consumed regularly by the general 

population so represent important dietary sources (Cantos et al. 2001; Guerrero et al. 2010; 

Zamora-Ros et al. 2008).  
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2.5.1 Resveratrol content in grapes, juice and wine 

 

Grapes that produce greater than 100 µg g
-1

 fresh weight (FW) in berry skins are said to 

be have “extremely high extractable amounts of resveratrol in berry skins” (Li et al. 2006).  It 

requires approximately 1090 g of grapes to make a 750 ml bottle of wine or juice (Cox 1999).  

Resveratrol is produced primarily in the skins of grape berries (Creasy and Coffee 1988) and 

skins account for approximately 13% of total berry weight (Cantos et al. 2001).  Therefore 

varieties producing around 100 µg g
-1

 could supply approximately 4 mg of resveratrol per 200 ml 

serving of juice or wine (Cantos et al. 2001).  The amount of actual resveratrol imparted to a 

potential juice or wine will depend on efficiency of extraction and processing (Cantos et al. 

2003a; Gonzalez-Barrio et al. 2009).  As a result, a typical commercial wine is considered “high 

in resveratrol” at ~ 1 mg/glass (Cantos et al. 2001).   

 Red wines usually contain more resveratrol compared to white wines because they are 

fermented on the skins (Fuhrman et al. 2001) resulting in more efficient extraction.  White wine 

fermentation usually does not include skin contact; grapes are crushed and juice is separated 

from skins before fermentation.  However, white grapes do possess concentrations of resveratrol 

similar to red varieties (Romero-Perez et al. 2001).  Accordingly, fermentation on the skins of 

some white grapes does produce white wines high in resveratrol (Darias-Martin et al. 2000).  

However, fermenting white grapes on the skins can result in the extraction of undesirable 

flavours and colours from oxidative browning (Guerrero et al. 2010).  These negative attributes 

may be due to high skin tannins (Vidal et al. 2003).  If white wine cultivars high in resveratrol 

and low in tannins were utilized, a market currently monopolised by red wines could be accessed 

(Darias-Martin et al. 2000; Guerrero et al. 2010).    

 

2.5.2 Therapeutic effects of trans-resveratrol 

 

Epidemiological research in France found that wine and alcohol (ethanol) consumption 

exerted a cardio protective effect to this population (Renauld and de Lorgeril 1992).  Low 

incidences of cardiovascular diseases were observed despite high saturated fat consumption, a 

phenomenon coined “The French Paradox” (Renauld and de Lorgeril 1992).  Later it was found 
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that the presence of resveratrol may partly account for the specific protective effects of red wine 

beyond that of the ethanol alone (Pace-Asciak et al. 1995).   

The therapeutic potential of resveratrol in the human diet is beginning to be realized due 

to the nearly 2,000 reports of preliminary research devoted to this compound in the last decade 

(Pezzuto 2008).  The landmark study of Howitz et al. (2003) established trans-resveratrol as a 

potential anti-aging compound that may increase longevity by mimicking the effects of calorie 

restriction.  Reviewers have described the multi-faceted therapeutic actions of this compound as 

being anti-cancer (Shukla and Singh 2011), anti-diabetic (Szkudelski and Szkudelski 2011) and 

cardio-protective (Csiszar 2011; Petrovski et al. 2011).   

The delivery of resveratrol and other polyphenols via grapes and research into therapeutic 

actions has enabled this crop to meet many US health-claim requirements (Gross 2010).  This 

coveted marketing status is informative to consumers which creates greater demand and 

therefore benefits grape producers.  Based on a “health claim pyramid” model, Gross (2010) 

predicted that grapes might achieve this status by 2012.  The pyramid is characterized by at least 

ten initial years of discovery of a potential therapeutic compound which includes animal studies 

and can eventually lead to human clinical trials which generally require another decade of 

research (Gross 2010).  The health claim status of resveratrol is within the final tier of Gross’ 

model with more than thirty phase I-III trials registered with the National Institutes of Health in 

2011 (Pasinetti 2011). 

 

2.5.3 Functional foods and grape products  

 

In Canada, a functional food is defined as being “similar in appearance to, or may be, a 

conventional food that is consumed as part of a usual diet, and is demonstrated to have 

physiological benefits and/or reduce the risk of chronic disease beyond basic nutritional 

functions” (Health Canada 1998).  Grapes and grape products with high concentrations of 

resveratrol would fit into the category of functional foods/ nutraceuticals (Cantos et al. 2001; Li 

et al. 2006) so there remains much untapped market potential for this crop.  Enhancement with 

existing cultivars was first proposed by Cantos et al. (2001) in regard to functional table grapes.  

Recently, Barreiro-Hurle et al. (2008) surveyed Spanish consumers and found favourable market 
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acceptance/demand for resveratrol enhanced wines.  Nearly all consumers in their study viewed 

wine as a healthy product but only six percent were aware that the therapeutic effect was related 

to polyphenol content (Barreiro-Hurle et al. 2008).  It is encouraging that grapes/grape products 

are already viewed as healthy, independent of health-claim status. 

The growing awareness of nutraceutical and functional foods in the public sphere 

prompted the Canadian government to revise its definition and regulation of these products in the 

late 1990’s (Health Canada 1998).  According to a 2007 market survey of “Functional Foods and 

Natural Health Products”, functional foods products generated $621 million in revenues to 

respective firms in Canada (Cinnamon 2009).  Awareness and demand for these products also 

benefits Canada’s agriculture sector because, “functional foods and nutraceuticals provide an 

opportunity to improve the health of Canadians, reduce health care costs and support economic 

development in rural communities” (AAFC 2011).  The province of Saskatchewan produces 

greater than $50 million in functional food and/or natural health products annually and the global 

market for these products continues to expand with estimates in the functional food category 

alone to be worth US$ 85 billion in 2006 (SMA 2008).   

 

2.5.4 Saskatchewan’s climate and potential functional grape production 

 

Saskatchewan is uniquely situated within a continental climate zone that lies at both a 

high latitude and high elevation coupled with sparse cloud cover (Fung 1999).  These factors 

combine to create a growing season characterized by long days of intense sunshine and 

significant diurnal variation.  Saskatchewan’s major crop growing areas lie at latitudes higher 

than 49° and elevations between 500 and 1200 metres above sea level (m.a.s.l.) (Fung 1999).  

These elevations are comparable to some mountainous viticulture regions (Berli et al. 2008; 

Clarke and Rand 2007).  This high latitude and elevation also results in progressively lower night 

temperatures.   Low night temperature of 15°C was shown by Mori et al. (2005) to maintain 

expression of key phenylpropanoid genes in grape whereas high night temperatures of 30°C 

reduced expression of these genes.  Expression of these phenylpropanoid genes are involved in 

the production of resveratrol (Sparvoli et al. 1994).  Higher altitudes also generally have 

increased UVB intensities which increase at a rate of up to 10% for every 305m gain in elevation 
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(Rigel et al. 1999).  Grapes grown at elevations comparable to those found in Saskatchewan 

(>1000 m.a.s.l.) have been shown to produce more UVB-induced resveratrol and polyphenols 

(Berli et al. 2008).   

A highly valuable fruit crop has the potential for development that would be suited to the 

Canadian Prairies and the functional food/nutraceutical markets.  Early research on grape has 

allowed for a solid foundation of the knowledge of the physiological role that resveratrol plays 

within the plant itself (Langcake and Pryce 1977a). This information can be used to ultimately 

increase production of this chemical through genetic and post-harvest enhancement (Cantos et al. 

2001; Versari et al. 2001) and could lead to greater utilization in the human diet.   

 

2.6 trans-resveratrol  

 

The compound referred to as trans-resveratrol or simply resveratrol is 3,5,4'-trihydroxy-

trans-stilbene.  Resveratrol, like other polyphenols, is a product of phenylpropanoid metabolism 

(Sparvoli et al. 1994).    All polyphenolics are characterized by their structure of two or more 

aromatic hydrocarbon rings that possess or previously possessed one or more hydroxyl groups on 

each ring (Croteau et al. 2000).  The aglycone trans-resveratrol molecule (Figure 2.1) is the 

“backbone” structure for the rest of the members of the stilbene family in grape (Langcake and 

Pryce 1977b).  There are many alterations to the primary resveratrol structure including 

glycosylated, methylated and polymerized forms represented by piceid, pterostilbene and the 

viniferins respectively (Cantos et al. 2002; Langcake and Pryce 1977a).  Resveratrol can also 

become altered via light-induced isomerisation to cis-resveratrol (Langcake and Pryce 1977a).  

Trans-resveratrol is the focus of this thesis.  This primary form has been shown to exhibit 

therapeutic effects in animals and most research into health have used this aglycone (Howitz et 

al. 2003; Prajitna et al. 2007) 
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                        Figure 2.1 The structure of the aglycone, trans-resveratrol molecule. 
                               (Adapted from: Langcake and Pryce 1977b) 

 

2.6.1 Physiological role of resveratrol in grapevines 

 

The primary role of trans-resveratrol in Vitis is as a precursor to the production of 

defence molecules (Bavaresco and Fregoni 2001).  Resveratrol and its derivatives like 

pterostilbene and viniferins are classed as phytoalexins and are rapidly produced in response to 

pathogenic attack from Botrytis cinerea (Langcake and Pryce 1976), Plasmopara viticola 

(Purkayastha 1995) and Uncinula necator (Romero-Perez et al. 2001).   

The defensive action of grape stilbenes on pathogens is hypothesized to be a combination 

of membrane protein alterations, decreased O2 uptake and lipid peroxidation which affect both 

spore and fungal cells (Pezet and Pont 1995).  These stilbene effects on the pathogen B. cinerea 

include cellular leakage in conidia, inhibited mycelial growth or death of hyphal tip cells and 

formation of curved germ tubes (Adrian et al. 1997). 
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2.7 Genetic control of resveratrol production in grape 

 

Resveratrol is a polyphenol that is regulated through the transcription of stilbene synthase 

(STS) genes (Goodwin et al. 2000).  Polyphenols including flavonoids and stilbenes are derived 

from the enzymatic conversion of phenylalanine via phenylalanine ammonia-lyase (PAL), the 

first step of the phenypropanoid pathway (Sparvoli et al. 1994).  Within this biosynthetic 

pathway there is a divergence point in which p-Coumaroyl-CoA and 3 x Malonyl-CoA are either 

enzymatically synthesized into the primary molecule of the flavonoid class or into trans-

resveratrol (Croteau et al. 2000).  One of the enzymes responsible for the divergence of this 

pathway at the Malonyl-CoA substrate level is stilbene synthase (Goodwin et al. 2000) (Figure 

2.2).   

 
 

      

               

                         Figure 2.2 Phenypropanoid pathway initiated by phenylalanine ammonia-lyase   

                          (PAL) and divergence of flavonoids and stilbenes by chalcone synthase (CHS)   

                           and stilbene synthase (STS) enzymes.  
                           (Adapted from: Sparvoli et al. 1994) 
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Grapevine stilbene synthase enzymes are produced from large a family of greater than 

twenty genes (Richter et al. 2006; Sparvoli et al. 1994; Velasco et al. 2007).  These genes are 

differentially expressed in various vine tissues.  Resveratrol and other stilbenes are constitutively 

produced in woody tissues but induced in leaves and berry skins (Creasy and Coffee 1988; 

Langcake and Pryce 1976; Langcake and Pryce 1977b).  After induction, expression is also 

differential; 12 hours post induction, two STS genes varied in production by a factor of 100 

(Wiese et al. 1994).  This differential expression may be due to differences in introns and 

promoter region sequences (Wiese et al. 1994).  Differences in the degree of induction of the 

STS pathway in ripe grape berries have also been noted in response to different elicitors (Versari 

et al. 2001).  Both biotic and abiotic stresses can induce many of the same phenylpropanoid 

pathways (Dixon and Palva 1995) as illustrated by the diverse elicitors of STS. 

 

2.8 Stress and resveratrol elicitation 

 

  Resveratrol production is inducible in grape skins so in the absence on an elicitor or 

stressor, concentrations will remain at nearly undetectable levels (Cantos et al. 2001).  This trait 

is therefore highly sensitive to environmental stimuli.  The primary biotic elicitors of trans-

resveratrol in grapevines are fungal pathogens (Langcake and Pryce 1976; Romero-Perez et al. 

2001).    

Resveratrol production may be induced by drought and some genotypes such as 

‘Cabernet Sauvignon’ are responsive to this stressor (Deluc et al. 2011).  The agronomic practice 

of cluster thinning is commonly recommended to increase fruit quality (Fisher 2009) and has 

been shown to increase resveratrol production in grape (Prajitna et al. 2007).  Vineyard altitude 

may also influence resveratrol production in grapes.  ‘Malbec’ grapes grown at three different 

sites (500, 1000 & 1500 m.a.s.l.) showed significantly more resveratrol and total polyphenolic 

production in berries at the highest site (Berli et al. 2008).  This increase in resveratrol was 

attributed to increased exposure of berries to UVB radiation (Berli et al. 2008). 

The UVB radiation in sunlight can stress plant cells by causing dimerization and DNA 

breakage (Dixon and Palva 1995) and excess light intensities can induce photodamage through 

free radical production (Dugald and McArthur 2002).  Phenylpropanoids such as resveratrol may 

protect plant cells from photodamage by acting as antioxidants (Dugald and McArthur 2002).   
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The UV spectrum is classified into ‘UVA’ with long wavelength (320-400 nm), ‘UVB’ 

with medium wavelength (280-320 nm) and ‘UVC’ with short wavelength (<280 nm) (Rigel et 

al. 1999; Shultz 2000).  Sunlight contains all three UV light but wavelengths <290 nm which 

includes UVC are blocked or reflected in the upper atmosphere and does not reach the Earth’s 

surface (Rigel et al. 1999; Shultz 2000).  With UV light, shorter wavelengths produce more 

energy and damage than longer wavelengths. 

Many artificial elicitors of resveratrol in post-harvested berries have been identified 

including applications of salicylic acid (Li et al. 2008), methyl jasmonate (Belhadj et al. 2008), 

ozone (Gonzalez-Barrio et al. 2006; Sarig et al. 1996) and UVC irradiation (Cantos et al. 2001; 

Creasy and Coffee 1988; Langcake and Pryce 1977b; Li et al. 2008; Takayanagi et al. 2004).   

 

2.8.1 Inducing resveratrol production with UVC 

  

UVC irradiation has become the artificial elicitor of choice in grapevine research as it 

induces large accumulations of trans-resveratrol in various grapevine tissues and can be 

employed in a reproducible manner (Cantos et al. 2001; Douillet-Breuil et al. 1999; Langcake 

and Pryce 1977b; Takayanagi et al. 2004).   

Pioneering irradiation experiments conducted on grape tissues utilized low intensity (16 

W) 254 nm lamps coupled with short distances of 12 to 17 cm and duration exposures of 10 to 

15 minutes (Langcake and Pryce 1977b; Pool et al. 1981).  Irradiations conducted on ripe berries 

were followed by an incubation of 24 hours which was chosen as indicative of resveratrol 

production potential (Creasy and Coffee 1988).  Incubating ripe irradiated berries for greater than 

48 hours allowed resveratrol production to continue to evolve so longer incubations may be 

necessary to achieve peak concentrations (Adrian et al. 1997).   

High wattage, longer distance and short duration UVC irradiation (510 W, at 40 cm for 

60 seconds) produced 11-fold more resveratrol (than control) in the ripe berries of the cultivar 

‘Napoleon’ (Cantos et al. 2001).  The maximum concentration recorded was 115 µg g
-1

 fresh 

weight following this protocol (Cantos et al. 2001).  It was concluded that higher irradiation 

wattage resulted in progressively shorter incubation times to elicit comparable resveratrol 

concentrations (Cantos et al. 2001).  In addition, low storage temperature of 2°C slowed the 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DBelhadj,%2520Assia%26authorID%3D15724264100%26md5%3Ddfc1fbcdd05c05f123a165d13cfd551a&_acct=C000051260&_version=1&_userid=1069128&md5=28e89a7a156227d6d379cbfef7fbf73e
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evolution of resveratrol and maintained near-peak concentrations in grape berries that were 

previously incubated at the standard 22°C post irradiation (Cantos et al. 2002).  From this, one 

would expect incubation temperatures below 22°C would slow the time course evolution of 

resveratrol.  Thus, the factors contributing to maximum production in ripe grape skins include 

irradiation distance, wattage, duration, length of incubation and incubation temperature (Cantos 

et al. 2001; Cantos et al. 2002).   

Uneven elicitation may cause differences in accumulation among genotypes that could 

obscure their genetic potential to produce resveratrol.  Whole cluster irradiation may result in 

shading of some berries, and over-irradiation in others (Cantos et al. 2001) especially in tight-

clustered genotypes.  Individual berries irradiated from one side were shown to have different 

induction kinetics (Cantos et al. 2001).   The signal to produce resveratrol migrates from the 

irradiated side of the berry to the non-irradiated parts (Figure 2.3) and will only produce half the 

concentration on the shaded portion (Cantos et al. 2001).  Resveratrol synthesis throughout the 

whole berry surface may take three days to begin (Cantos et al. 2001).  Irradiation of detached 

berries from multiple angles may resolve this issue (Guerrero et al. 2010) (Figure 2.3). 

The UVC irradiation protocol of 510 W at 40 cm for 60 seconds (Cantos et al. 2001) is 

now a patented process whereby lamps are set on an assembly line for induction on a commercial 

scale (Guerrero et al. 2010).  This process has been successfully used on various cultivars to 

increase resveratrol concentrations in table, juice and wine grapes (Cantos et al. 2001; Cantos et 

al. 2002; Cantos et al. 2003b; Gonzalez-Barrio et al. 2009).  The full description of this process 

(WO/2002/085137,  ES 2177465) has not been disclosed due to EU regulations (Cantos et al. 

2002; WIPO 2002). 

Takayanagi et al. (2004) reported comparatively high trans-resveratrol concentrations in 

ripe berry skins of the interspecific cultivar, ‘Muscat Bailey’ and the pure vinifera cultivars 

‘Koshu’ and ‘Chardonnay’.  Using 30 watts coupled with an irradiation distance of 10cm for 10 

minutes ‘Muscat Bailey’ achieved concentrations averaging around 500 µg g
-1

 resveratrol fresh 

weight after 72 hours incubation at 25°C (Takayanagi et al. 2004).  Resveratrol evolution in 

‘Muscat Bailey’ was continuing in an upward trend in this Japanese study.  The induction 

protocol used by Takayanagi et al. (2004) could be employed to compare the resveratrol 

production potential of Vitis genotypes of diverse genetic backgrounds if evolution is tracked for 

greater than 72 hours.   
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      Figure 2.3 Evolution of resveratrol from the point of irradiation on a grape berry. ‘A’ =       

      single point irradiation from above. ‘B’ = irradiations from two points illustrating possible      

      pattern of resveratrol evolution. 
       (Adapted from: Cantos et al. 2001) 

 

 

2.8.2 UVC elicitation and screening Vitis germplasm for trans-resveratrol 

 

The previously mentioned irradiation protocol of Cantos et al. (2001) was also used to 

screen wine grapes for high stilbene induction capacity (Cantos et al. 2003b).  All seven red wine 

grapes in this study were vinifera cultivars including the classic ‘Cabernet Sauvignon’ (Cantos et 

al. 2003b).  Li et al. (2006) screened grape germplasm that included not only commercial 

vinifera wine and table grapes but also interspecific hybrids and rootstocks.  However, this 

survey of Chinese germplasm was done under natural field conditions relying on uncontrolled 

elicitation so may not have illustrated the true potential of each genotype to produce resveratrol.  

It was however concluded that two genotypes descended from riparia produced the highest 

concentrations of trans-resveratrol and Li et al. (2006) suggested that this species be exploited in 
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the development of cultivars that possess high levels of resveratrol for the table, juice and wine 

markets.   

Before the health properties of grapes were of interest, resveratrol research in grape 

berries was conducted in the context of disease resistance screening (Creasy and Coffee1988; 

Pool et al. 1981).  Initially, the term “resveratrol production potential” was used to describe a 

phytoalexin response so peak time frame for rapid accumulation was established at only 24 hours 

post irradiation (Creasy and Coffee1988).  The focus of grapevine resveratrol research has 

partially shifted to functional food research so “peak resveratrol production day” is a reflection 

of highest concentrations achieved or “day of maximum concentration” (Dm) (Cantos et al. 

2001).  To achieve maximum concentrations, stilbenes must be tracked over many days as the 

work of Cantos et al. (2001) has revealed.  Resveratrol concentrations continued to rise for up to 

two to six days post UVC irradiation (Cantos et al. 2001; 2002; 2003b; Guerrero et al. 2010).   

   

2.9 Challenges of studying resveratrol production in Vitis spp 

 

 Tracking the resveratrol production potential among different grape genotypes is 

challenging due to the very complex nature of this quantitative trait (Velasco et al. 2007).  Both 

genetic and physiological factors affect the production of resveratrol in grape berry skins 

including the developmental stage of the berries and the individual genotype (Creasy and Coffee 

1988; Takayanagi et al. 2004) and the species from which that genotype is derived (Langcake 

1981; Li et al. 2006).  These and other potential sources of variance will be addressed before 

germplasm is screened. 

 

2.9.1 Variance at the genotypic level 

 

Reviewers have noted that in grape research, enormous variability in stilbene production  

was observed not only among different species but among different clones, replicates and tissues 

on the same genotype (Dercks et al. 1995).  One of the best ways to minimize this variance was 

by using homogenous, greenhouse-grown material (Creasy and Coffee 1988; Dercks et al. 1995; 

Pool et al. 1981).  However, given the polygenic (Sparvoli et al. 1994; Velasco et al. 2007) 
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nature controlling this trait, extreme variance was expected to occur (Dercks et al. 1995).  This is 

a known constraint and variance at the genotypic level (between and within biological replicates) 

is therefore expected to be high. 

There has also been variance within the same genotype on Dm following UVC treatment.  

Using the same irradiation protocol the cultivar ‘Napoleon’ had Dm=3 in one study but Dm=5 in 

another study (Cantos et al. 2001; Cantos et al. 2002).  Similarly, Guerrero et al. (2010) reported 

Dm differences  over two vintages (2007 & 2008) in various wine grape cutlivars with ‘Syrah’ 

exhibiting the most variability with Dm=7 in 2007 and Dm=4 in 2008.  Thus, the growing 

conditions in a given year can have a profound influence (Guerrero et al. 2010).  Use of a single 

Dm is desirable as tracking resveratrol evolution in each replicate over many days would be 

highly impractical in a screening scenario.  Most studies investigating the resveratrol 

concentrations in grape berry skins have employed high performance liquid chromatography 

(HPLC) (Adrian et al. 2000; Cantos et al. 2001; Li et al. 2006; Romero-Perez et al. 2001; 

Takayanagi et al 2004).  Costs would be compounded if multiple HPLC runs were required 

 

2.9.2 Vitis species vary in berry morphology 

 

The genus Vitis is composed of many 2n=38 species that differ greatly in berry 

morphology.  Cultivars of Vitis vinifera tend to have comparatively thicker skins than other 

species or interspecific hybrid cultivars.  Given that the majority of trans-resveratrol production 

in grape berries occurs in the skins (Creasy and Coffee 1988), the differences in exocarp 

structure will also influence how berry skin samples will be extracted and handled.  Some 

members of vinifera and the interspecific ‘Marquette’ have flesh that adheres to the exocarp.  

This complicates comparisons between varieties since some berry skin samples may have dried 

flesh attached when weighed.  Skins with adherent flesh may then seem to have lower 

concentrations of resveratrol.  Other factors such as excessive juice and solutes may also add to 

the weight of samples and interfere with HPLC separation (Marles 2010 personal 

communication).  A single skin extraction protocol is needed to prepare grape samples of 

different species in a uniform manner whereby only exocarp tissue is excised and excessive 

juice, solutes and secondary metabolites are minimized prior to freeze drying. 
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A major concern when handling and preparing grapes skins is the release of polyphenol 

oxidases from broken cells, particularly tyrosinase which has an affinity for the aglycone trans-

resveratrol and will rapidly degrade it (Regev-Shoshani 2003).  In excising grape exocarps for 

the purpose of extracting DNA from the tissue, Negri et al. (2008) separated skins from pulp and 

seeds by squeezing the berry followed by gentle rubbing of the inner exocarps on cheesecloth to 

remove excess pulp.  This method proved successful in maintaining the integrity of the skin 

cells.  The majority of stilbene synthase (STS) expression in grape skins takes place in the walls 

of the outer hypodermal cells just beneath the epidermal layer (Fornara et al. 2008; Pan et al. 

2009) so resveratrol concentrations should remain unaffected by the “rubbing” method as these 

cell layers will be largely untouched.   

 

2.9.3 Determining ripeness in diverse genotypes 

 

Brix could be used as the prime indicator of ripeness.  Because solute range is a reliable 

indicator of harvest date in commercial vineyards, these optimum values are well-established for 

many cultivars.  Brix level in grape berries is little affected by temperature when all other factors 

are uniform (Mori et al. 2005) and may be a reliable indicator of ripeness in greenhouse 

experiments to allow for valid comparisons.   

Grape species and genotypes vary in time required to ripen fully.  For example, the 

northern cultivar ‘Valiant’ and species V. riparia require between 800 and 1000 growing degree 

days (GDD) at base 10°C to ripen their fruit to around 20°Brix but ‘Frontenac’ and ‘Cabernet 

Sauvignon’ require more than 1250 GDD to achieve 25 and 22°Brix respectively (Cox 1999; 

Plocher and Parke 2008).  For the purpose of screening, the following could be used to determine 

“optimum ripeness”: the seeds of harvested berries must be dark brown (Figure 2.4), the berries 

must possess typical “varietal” flavours/aromas (if applicable) such as the apricot/Muscat aromas 

typical in ripe ‘LaCrescent’ berries, and each genotype near its ideal Brix range (Plocher and 

Parke 2008).  
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            Figure 2.4 Fully “ripe” grape seeds (left) & under ripe seeds (right). 

 

2.9.4 Efficient resveratrol extraction 

 

In a high throughput research scenario such as germplasm screening, the tedious and 

time-consuming process of roto-evaporating extracts is highly impractical.   Field based 

protocols relied on relatively large amounts (g) of fresh sample from which to extract resveratrol 

from grape berry skins with a high ratio of extraction solvent to sample (Table 2.1).  A project to 

screen young vines would have limited amounts of fruit to work with.  Analyzing large amounts 

(>1g) of tissue may not be possible.  An ideal resveratrol grape skin extraction protocol would 

have the following characteristics: uses an H2O-compatible extraction solvent, does not require 

roto-evaporation and requires only small amounts of sample from which to extract.   

Many protocols developed for the extraction of resveratrol used large amounts of solvent 

followed by roto-evaporation of that solvent to concentrate the extract (Romereo-Perez et al. 

2001) and/or re-dissolved this dried extract in a second more concentrated solvent (Cantos et al. 

2003b; Li et al. 2006).  Using an extraction solvent like ethyl acetate (EtOAc) selectively avoids 

the extraction of large polyphenols such as anthocyanins (Cantos et al. 2003b) which would 

complicate HPLC separations of stilbenes.  Unfortunately EtOAc is not an H2O compatible 

solvent so must be evaporated and replaced prior to injection.  Water is necessary as a solvent to 

elute more polar compounds during elution.  The roto-evaporation step also concentrates the 
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extract which would allow for smaller injection volumes in HPLC thereby allowing more 

sensitive separation and quantification.   

 

 

Table 2.1 Review of protocols for the extraction of resveratrol from grape berry skins 

Extraction Solvent (ES) 
ES/ Sample 

Weight* (ml/g) 
Roto-evap Reference 

MeOH (80%) 10 Yes Adrian et al. (2000) 

MeOH/formic acid (97:3) 4 No Cantos et al. (2002) 

EtOAc 2 Yes Cantos et al. (2003) 

EtOAc 5 Yes Li et al. (2006) 

EtOH (80%) 20 No Romereo-Perez et al. (2001) 

MeOH (100%) 3.75 No Takayanagi et al. (2004) 
*Fresh weight grape skins 

 

 

The extraction protocol used by Takayanagi et al. (2004) has the desired characteristics of 

a protocol for high throughput sampling.  They demonstrated very large amounts of resveratrol 

could be extracted and quantified from comparatively small amounts of extraction solvent (Table 

2.1).  As well, the aglycone form of resveratrol could be studied using 100% methanol (MeOH) 

which would make an ideal extractor since trans-resveratrol was highly soluble in this solvent 

which is H2O compatible.  This eliminates the need to use EtOAc and avoids roto-evaporating.  

In order to liberate as much resveratrol from grape skin cells as possible, the extraction protocol 

of Romereo-Perez et al. (2001) could be added as it was determined that stilbene extraction was 

more efficient when solvents were heated to 60°C for 30 minutes combined with gentle shaking.  

The addition of 20% water to the extraction solvent used by Romereo-Perez et al. (2001) may be 

unnecessary as only the aglycone form of resveratrol is of interest and not the potentially more 

polar other stilbenes. 

 

2.10 Vitis riparia in breeding grapes high in resveratrol 

 

Early germplasm screening used resveratrol accumulation as a marker of resistance to 

certain fungal pathogens such as grey mold (B. cinerea) and downy mildew (P. viticola) 
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(Langcake and Pryce 1976; Pool et al. 1981).  These are two major afflictions of European 

vinifera which require careful management in the vineyard.  North American riparia is tolerant 

to these pathogens (Langcake 1981).  This species quickly accumulates higher concentrations of 

resveratrol in leaves after fungal infection compared to vinifera (Langcake 1981).  Hybrids of 

riparia also produce more resveratrol in their berries than vinifera and in the case of the cultivar 

‘Beta’ are quite tolerant to disease (Li et al. 2006; Rombough 2002).  Thus, use of indigenous 

Vitis riparia in northern breeding programs seems a likely strategy to produce cultivars with the 

added benefit of fruit high in resveratrol. 

Cultivars with V. riparia in their lineage selected after rigorous disease screening may 

carry the alleles for high and rapid resveratrol production (Li et al. 2006).  In breeding programs 

that initially screen in fields with naturally high disease levels, the selection cycle takes fifteen 

years or more to complete (Hemstad and Luby 2003; Reisch 2009).   

 

2.11 Juvenility and selection 

 

The selection cycles in woody perennial breeding programs are influenced by selection 

criteria and breeding systems, but the length of juvenile period is one the greatest constraints 

(Hansche 1983).  Grapes usually take three or more years to flower and fruit after planting a 

seedling in a field (Johnson 2008).  The result may be considerable costs that are compounded if 

several generations are required before fruit can be evaluated (Hansche 1983).  Grape breeding 

programs usually use mass or phenotypic selection where parent vines are chosen based on 

desirable phenotypes and inter-crossed (Hansche 1983).  Mass selection is effective for this crop 

because many important fruit-quality traits in grapes are under additive genetic control (Hansche 

1983; Hernández-Jiménez et al. 2009; Liu et al. 2007).   

In a Prairie-based breeding program, the genes for adaptability will likely have to come 

from the low fruit quality V. riparia with at least two initial generations of intercrossing needed 

to introgress the quality alleles from V. vinifera (Hemstad and Luby 1997).  Long juvenility will 

therefore negatively affect the efficiency of a Prairie grape breeding program utilizing mass 

selection with selection criteria based on V. vinifera-like fruit quality. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hern%C3%A1ndez-Jim%C3%A9nez%20A%22%5BAuthor%5D
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2.11.1 Juvenility in Vitis 

 

Although it takes many years for a seedling to reach sexual maturity in the field (Johnson 

2008; Mullins et al. 1992), the vine’s juvenility is technically over after the production of six to 

ten leaves and the emergence of tendrils (Mullins et al. 1992).  Tendrils have evolved as 

modified flower clusters so can be viewed as potential reproductive structures even in a young 

vine (Srinivasan and Mullins 1979).  The formation of tendrils generally occurs in seedling vines 

around three months old.  Young vines will usually not flower at this age because of small size 

and unfavourable environment (Mullins et al. 1992). 

Insight into the length of the juvenile phase of Vitis is illustrated by the gibberellin-

deficient mutant ‘Pixie’.  ‘Pixie’ is derived from the L1 or surface layer of meristematic tissue 

(mutation of ‘Pinot Meunier’ which produces insufficient amounts of the phyto-hormone 

giberellin (GA3) (Cousins and Tricoli 2007).  As a result of the mutation, ‘Pixie’ has 

characteristically short internodes and produces only flower clusters and no tendrils.  This dwarf 

vine takes up little space in the greenhouse and flowers in as little as two to three months out of 

tissue culture (Dhingra 2011 personal communication).  ‘Pixie’ has been recommended for grape 

research to study the sexual phase of the vine (Cousins and Tricoli 2007; Dhingra 2011).  The 

development of ‘Pixie’ also verifies the role of GA3 and another phyto-hormone, cytokinin, in 

the control of flowering in Vitis.   

In grape, higher endogenous ratios of cytokinin:GA3 caused differentiation of anlagen 

(undifferentiated tissues) in latent buds into floral structures (Mullins et al. 1992).  This is further 

illustrated through the application of hydrogen cyanimide, which increased endogenous vine 

cytokinin concentrations resulting in increased fertility and bud break of vines grown under 

conditions of low chilling (Lombard et al. 2006).  Likewise, exogenous applications of cytokinin 

resulted in pistil development in male vines and converted tendrils of young vines into 

inflorescences, thus confirming the role of this hormone in the control of flowering in Vitis 

(Srinivasan and Mullins 1979).   
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2.11.2 Potential for combining techniques to induce precocious flowering in Vitis  

 

If one were to combine flower induction (Srinivasan and Mullins 1979) and fast seed 

germination (Ellis et al. 1983) protocols, it should be possible to shorten breeding cycles in Vitis 

from three or four years to approximately eight months (Johnson 2008).  These two protocols 

both used exogenous hormones to manipulate vine physiology.  These procedures do not rely on 

introgression of mutant genes such as in ‘Pixie’ thus allowing precocious flowering in a wide 

genebase which is essential to breeding programs.   

Alternatively, pruning protocols (Srinivasan and Mullins 1979) could be used instead of 

exogenous cytokinin.  Vitis genotypes of both seedling and clonal origin were made to flower 

precociously under greenhouse conditions through the use of judicious pruning (Kaban 2009).  

This was done by training vines vertically for approximately five months, pruning and removing 

leaves and shoots from top four nodes (Mullins and Rajasekaran 1981; Srinivasan and Mullins 

1979).  In this way, endogenous cytokinin may be manipulated in a source-sink scenario by 

hormone redirecting to latent buds (Mullins and Rajasekaran 1981).    
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3.0 MATERIALS AND METHODS 

 

3.1 Plant Material 

 

 The Vitis germplasm collected for this thesis project included fourteen genotypes that 

were pure V. vinifera, pure V. riparia genotypes or interspecific hybrid cultivars (Table 3.1).  

The three V. vinifera cultivars ‘Cabernet Sauvignon’, ‘Pinot Noir’ and ‘Riesling’ represent 

“classic” wine grapes of Western European origin.  ‘Cabernet Sauvignon’ was deliberately 

included in this experiment as it is the world’s most important red wine grape (Clarke and Rand 

2007; Imwold and Doig 2004).   

Based on reported percentage of riparia in their pedigree (0, ~25, 50 and 100%), four 

groups of genotypes were selected that had at least three genotypes per group.  It was 

hypothesised that accessions with a higher percentage of riparia would produce more 

resveratrol.  Group 3 included two additional accessions that were anthocyanin-deficient clones 

of ‘Frontenac’ (Table 3.1).  The three ‘Frontenacs’ were included in the main comparative study 

as well as analyzed separately to elucidate differences within this genotype group.            
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 Table 3.1 Pedigrees, origin and source of thesis germplasm. 

 
a
 Hemstad 2009, 

b
 Hemstad and Luby 2003, 

c 
Clarke and Rand 2007, 

d
 Rombough 2002, 

e
 Plocher and Parke 2008 

 

 

 

 

 

 

 

 

 

Group Genotype 
Vitis riparia    

(%) 
Species Provenance Source (cuttings) 

1 

Cabernet 

Sauvignon 
0 V. vinifera France

c Gemmrich W. 

Nursery Inc. 

(Niagara-on-the-

Lake, Ontario) 

Riesling 0 V. vinifera Germany
c 

Pinot noir 0 V. vinifera Ancient
c 

2 

Marquette 19
a
 interspecific Minnesota 

Alain Breault (St. 

Paul d’Abbotsford, 

Quebec) 

Maréchal 

Foch 
25 interspecific France

d 
U of Sk 

LaCrescent 28
b
 interspecific Minnesota 

Bert Dunn 

(Schomberg, 

Ontario) 

3 

Frontenac 50 interspecific Minnesota 

Frontenac 

gris 
50 interspecific Minnesota 

Frontenac 

blanc 
50 interspecific Quebec

e 
Alain Breault (St. 

Paul d’Abbotsford, 

Quebec) 

Ripinot 50 interspecific U of Sk
 

U of Sk 

Valiant 50 interspecific 
South 

Dakota
d U of Sk 

4 

Riparia K 100 V. riparia  Manitoba U of Sk 

DG Riparia 100 V. riparia Manitoba U of Sk 

Montana 

Riparia 
100 V. riparia Montana U of Sk 
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3.2 Greenhouses 

 

Two greenhouses were divided into three blocks each to account for possible gradients in 

moisture, temperature and light (Figure 3.1).         

                                                            

                                                          South 

                               GH ‘G’                                           GH ‘B3’  

 

                              Block                                                Block 

                   1             2           3                             4            5            6 

   

                    

                                                             North 

 

                             

                        

             Figure 3.1 Top view of Agriculture Greenhouses ‘G’ and ‘B3’ showing block  

             orientation to account for possible East-West environmental gradients. 

 

 

Supplemental lighting in greenhouse ‘G’ included six 400 Watt high pressure sodium 

(HPS) lamps placed 102cm from ground level and set at 16 hours daylight.  This greenhouse has 

flood-floor  irrigation which watered the vines twice daily and delivered a steady nutrient 

dilution of approximately 250ppm N (20-20-20).  Film type in greenhouse ‘G’ is constructed of 

corrugated Lexan poly walls with an inflated two-ply poly (AT Plastics) roof. 

   

      = grow lamps 

         = moisture gradients 
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Supplemental lighting in greenhouse ‘B3’ included three 400 W HPS lamps placed 

102cm from ground level and set at 16 hours daylight.  ‘B3’ is constructed entirely of 4 mm clear 

tempered glass. 

 

3.3 Propagation and care of planting stock 

 

In January of 2010, softwood cuttings of V. vinifera cultivars ‘Riesling’, ‘Pinot noir’ and 

‘Cabernet Sauvignon’, V. riparia selections ‘DG Riparia’, ‘Riparia K’ and ‘Montana Riparia’ 

and the interspecific hybrids ‘Ripinot’, ‘Maréchel Foch’ and ‘Valiant’ were taken from 

greenhouse grown parent stock.  Along with the softwood cuttings, hardwood cuttings of the 

following cultivars were rooted: ‘Frontenac’, ‘Frontenac gris’, ‘Frontenac blanc’, ‘LaCrescent’ 

and ‘Marquette’.  All cuttings were treated with 10,000 ppm IBA (Indole-3-butyric acid) using a 

five second dip and placed into a 25°C bottom-heated mist bed with misting every 60 minutes 

for 30 seconds.   

All genotypes were rooted by February of 2010 and transplanted to 13 x 13 cm pots.  

Sunshine® Mix #4 (Sun Gro Horticulture, Vancouver, BC) was the potting medium used 

throughout this study.  Plants were fertilized with liquid starter (10-52-10) (Plant Products Co. 

Ltd., Brampton, ON) and acclimated in greenhouse ‘A1’.  Young vines were fertilized weekly 

thereafter with 400 ppm 20-20-20 until March 2010 when all replicates were transplanted to 15 x 

18 cm pots.  All vines were placed on the flood floor of greenhouse ‘G’ in May 2010.  The 

healthiest six plants were chosen for each genotype for the six greenhouse blocks.  On June 1st 

vines were transplanted into 21 x 21 cm pots and placed back on the flood floor in ‘G’.  All vines 

were pruned back to a height of aproximately 152 cm on June 14
th

 2010.  After pruning vines 

back, the top four nodes of the trunk were stripped of leaves and shoots leaving mature latent 

buds (Srinivasan and Mullins 1979).  Latent, fertile buds on the majoirty of vines broke within 

21 days of pruning.  Once inflorescences were visible, basal shoots and leaves were removed 

surrounding the flowering structures as per Mullins and Rajasekaran (1981) (Figure 3.2). 
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Figure 3.2 Flower induction procedures developed based on the protocols of Mullins and 

Rajasekaran (1981) and Srinivasan and Mullins (1979): Leaves and shoots were stripped from 

the top four nodes of five month old vines that has been pruned back to aprox 152 cm. Fertile 

latent buds broke two weeks later, leaves surrounding inflorescences were removed to avoid 

source/sink hormone competition. 
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The majority of vines flowered between July 7 and 24
th

.  The ‘Frontenacs’ and ‘DG 

Riparia’ failed to bloom so were cut back a second time on August 1
st
 and August 20

th
 

respectively.  All flowered between August 20
th

 and September 14
th

.  One ‘DG Riparia’ replicate 

failed to produce sufficient flowers/berries so was excluded from the experiment.  As individual 

genotypes flowered, half (three) of the plants were transferred to greenhouse ‘B3’.  Vines in‘B3’ 

were watered by hand once daily and fertilized every third day with 400ppm N 20-20-20.  In 

both greenhouses, pots were spaced with approximately 91 cm between vines in all directions 

(Figure 3.3). 

 

 

   

Figure 3.3 Vines in greenhouse ‘G’ (left) and ‘B3’ (right). 
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3.3.1 Berry harvest and resveratrol elicitation 

 

 Individual replicates were harvested based on ripeness criteria of optimum Brix range, 

skin colour, varietal flavour (Table 3.2) and dark brown seed colour.  All available clusters were 

harvested from each replicate and divided into 10 berry sub-samples after irradiation.  Replicates 

from same genotypes were harvested within ten days of each other to ensure that Brix values 

were within optimum range.  All Brix readings were carried out using a hand held portable 

refractometer (Model RHW-25, Huake Instrument Co., Ltd., China)  Berries were removed from 

clusters using secateurs leaving the pedicel still attached to minimize shrivelling during 

incubation and to allow for even irradiation (Cantos et al. 2001) (Figure 3.4).  

 

 

 

 

                Figure 3.4 UV-C irradiation of grape berries with pedicels attached. Berries                               

                    are resting directly on an aluminum screen with lamps placed above and below.    

                    Plastic hoop is in place to prevent samples from rolling. 
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Table 3.2 Ripe fruit characteristics of fourteen grape genotypes studied. 

Genotype 
Skin 

Colour 
Use 

Optimum 

Brix 

Range (°) 

Varietal 

Flavour/ 

Aroma 

Reference 

Cabernet 

Sauvignon 
Black wine 22-24 ------- Cox 1999 

Riesling White wine 20-22 ------- Cox 1999 

Pinot noir Black wine 20-22 ------- Cox 1999 

Marquette Black wine 24-26 ------- U of Minn 2008 

Foch Black wine 20-22 Cherry Plocher and Parke 2008 

LaCrescent White wine 22-26 
Apricot/ 

Muscat 

U of Minn 2008; 

Aberfoyle.org 2010 

Frontenac Black wine 24-26 ------- U of Minn 2008 

Frontenac gris Red wine 24-26 ------- U of Minn 2008 

Frontenac blanc White wine 24-26 ------- U of Minn 2008 

Ripinot Black wine 22-24 ------- --------------------- 

Valiant Blue juice 20-22 V. labrusca 
Rombough 2002; 

Plocher and Parke 2008 

Riparia K Black ------ 20-22 ------- ---------------------- 

DG Riparia Black ------ 20-22 ------- ---------------------- 

Montana 

Riparia 
Black ------ 20-22 ------- ---------------------- 

 

  

 The UVC protocol chosen for this thesis is similar to the one employed by Takayanagi et 

al. (2004) but modified to allow for more even irradiation; two 30 W lamps were used instead of 

one.  One lamp was placed above the grape berries and one below.  The duration of irradiation 

was shortened from 10 minutes (Takayanagi et al. 2004) to 5 minutes to account for the doubled 

wattage used and to reduce possible damage to the cell from over irradiation (Cantos et al. 2001).  

Takayanagi et al. (2004) in studying the berries of three genotypes reported a time course rise in 

trans-resveratrol over a three day period.  It seemed reasonable to extend the time course to five 

days as the induction kinetics of many of interspecific genotypes are unknown.  For the purposes 

of this project, resveratrol in the skins of six out of fourteen genotypes were tracked over a time 

course of five days.  The purpose of this initial investigation was to establish the maximum 

observed range of resveratrol production following UVC treatments for the remaining eight 
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genotypes.  Two, UVC germicidal lamps each being 30 W at 254 nm and 96.5 cm long (model 

RK-97505-30, Cole Parmer Canada Inc, Montreal,QC) were used to irradiate the berries.  Each 

bulb delivered 76µW·cm
-2

 intensity at 115 vac·60HZ
-1

.  Berries were on an aluminum screen 

with UV lamps placed 10cm above and below which enabled uniform irradiation of the whole 

berries (Cantos et al. 2001).  The distance from the lamp to the berries was set at 10 cm as per 

Takayanagi et al. (2004) with the top lamp offset by 1.25 cm to account for the width/height of 

the grapes.   Post irradiation, berries were  randomly sub-sampled into smaller plastic bags for 

incubation and labelled “T-0” to “T-120” for every 24hrs until day 5 (Appendix A2.1). All 

samples were incubated in the dark at 22°C as per Cantos et al. (2003b).  Post irradiation, all 

handling of samples was done in darkness or dimmed light to avoid isomerization of trans-

resveratrol (Langcake and Pryce 1977a).  

Ten berries per sub sample as per Takayanagi et al. (2004) were randomly chosen unless 

there were more than 150 berries total at which time two separate replicates were taken for each 

day as technical replicates to determine sources of variance in extractions and/or HPLC 

separation and analysis.   

 

3.3.2 Grape skin extraction  

 

Skins from individual grapes were separated from the pulp by squeezing the berries 

between thumb and index finger.  Inner exocarps were immediately rubbed on a clean paper 

towel similar to Negri et al. (2008).  Grape skins were then washed beneath a stream of distilled 

water and patted dry on another clean paper towel.  The cleaned exocarps were then transferred 

into small bags, weighed and then placed in a -20°C freezer and within a week transferred to a     

-40°C freezer. 

Grape skin samples were then dried for 48 hours with a freeze-dryer (FreeZone, 

Labconco Corp., Kansas City, Missouri) maintained at -55°C achieving  a vacuum of 0.018 

mBar.  Transfers of samples were done in the dark or dim light and the sample cylinders were 

covered in aluminum foil to prevent isomerization of trans-resveratrol (Langcake and Pryce 

1977a).  After freeze drying, samples were weighed again to allow back-conversion to fresh 

weight.  Samples were stored in a -40°C freezer until ground to a fine powder with a mortar and 
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pestle.  To ensure sample particle size was as homogeneous as possible, dried samples were 

dipped in liquid nitrogen prior to grinding.  Mortar and pestle were wiped with 95% ethanol and 

allowed to dry between grindings to avoid cross sample contamination.  Ground samples were 

stored at -40°C until extraction. 

 

3.3.3 Resveratrol extraction  

 

An illustration of irradiation and extraction protocols is in Appendix (A2.1).  On the day 

of HPLC injections, no more than sixty samples were extracted.   Individual 50±1 mg ground, 

freeze-dried grape skin samples were put into 2 ml screw cap microcentrifuge vials.  All samples 

were weighed using the same scale (HR-120, A&D Co.LTD, Milpitas, CA) that measured to 

0.0001g.  Samples were kept on ice while 1.5 ml of 99.9% MeOH was pipetted into each vial.  

All samples were placed in a water bath (Model 129, Fisher Scientific, Waltham, MA) at 60°C 

with gentle shaking for 30 minutes (Romereo-Perez et al. 2001).  After shaking, all vials were 

immediately run under cold water and placed on ice.  Samples were centrifuged at 10,000 g for 

20 minutes (model 5415C, Eppendorf Corp., Enfield, USA).  The supernatant was removed and 

approximately 0.5 ml was placed in a syringe barrel.  The remaining extract was transferred to a 

clean 2 ml screw cap mircrocentrifuge vial which was placed in a -40°C freezer for storage as 

backup.  The supernatant in the syringe barrel were then filtered through a 0.45 micron  

polytetrafluoroethylene (PTFE) syringe filter (AF0-3102-52, Phenomenex, Torrance, CA) into 

HPLC vials having 350 µL inserts (National Scientific, Rockwood, TN).  HPLC vials were 

stored at -40°C until injected.  All procedures of resveratrol extraction, filtration and HPLC 

injection were carried out within a 24 hour period.   

 

3.4 Technical replication 

 

Due to the limited plant material, the inclusion of technical replicates for all biological 

replicates was impossible.  Where adequate berries were produced (>150), technical replicates 

were taken.  Two plants each of ‘Cabernet Sauvignon’, ‘Foch’, ‘Valiant’ and ‘Montana Riparia’ 

produced adequate berries.  These four genotypes represented each of the four groups based on 
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theoretical percentage of V. riparia in their background.  Biological replicates were divided into 

technical replicate ‘A’ and ‘B’ to test whether significant variance was coming from the 

extraction process and/or HPLC. 

 

3.5 HPLC  

 

Resveratrol analysis of grape samples was carried out on a HPLC Separations Module 

(model 2695, Waters Corp., Milford, MA) with a Photodiode Array Detector (model 2998, 

Waters Corp., Milford, MA).  Separation was achieved by coupling two 5 micron columns (100 

x 4.6 mm each) (Gemini C-18 100Å, Phenomenex, Torrance, CA).  The universal column 

coupler (47450-04, MicroSolv Tech Corp, Eatontown, NJ) had an internal diameter of 0.25 mm.  

The guard kit (SecurityGuard™, Phenomenex, Torrance, CA) used cartridges with the same 

packing material as the Gemini columns (KJ0-4282).  Mobile phase solvents were filtered 

through 0.2 µm filters (Supro®-2000, Pall Corp., Port Washington, NY) prior to use. 

 

3.5.1 Standards and reagents 

 

99.9% pure trans-resveratrol, (3,5,4’-trihydroxy-trans-stilbene) (Sigma-Aldrich, St. 

Louis, MO) was used as a standard.  HPLC and analytical grade 99.9% methanol (MeOH) and 

acetonitrile (ACN) (Fisher Scientific, Waltham, MA) were used.  All water used in HPLC runs 

was purified using reverse osmosis (Milli-Q RG Ultra-Pure Water System, Millipore, Billerica, 

MA, USA).   
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3.5.2 ‘2010’ Instrument Method Set 

 

To establish the day of highest observed concentrations (response variable) in the 

germplasm of this experiment, the time course evolution was tracked in six of the fourteen grape 

genotypes in December 2010.  The six genotypes were ‘Frontenac’, ‘Frontenac gris’, ‘Frontenac 

blanc’, ‘Riparia K’, ‘Pinot Noir’ and ‘Ripinot’.  This ‘2010’ method employed a column 

temperature of 30°C and sample temperature of 10°C.  Solvent ‘B’ was methanol (MeOH) and 

solvent ‘D’ was H2O with the addition of 0.1% trifluoroacetic acid (TFA).  Resveratrol eluted at 

~19.4 minutes (Appendix A2.4) and was confirmed against a trans-resveratrol standard. 

 

 

 

Table 3.3 ‘December 2010’HPLC Instrument Method                                     

Set of the flow and solvents used to separate trans-res- 

veratrol in samples of six Vitis genotyypes over a five  

day period following UVC irradiation. Separations were 

done with Gemini C-18 (Phenomenex, Torrance, CA) col- 

umns using a Separations Module (model 2695, Waters  

Corp., Milford, MA) with a Photodiode Array Detector  

                                    (model 2998, Waters Corp., Milford, MA). 

Time*       

(min) 

Flow 

(ml/min) 

Mobile Phase 

Solvents (%) 

B
a 

D
b 

 0.8 20.0 80.0 

5.0 0.8 40.0 60.0 

8.0 0.8 40.0 60.0 

16.0 0.6 55.0 45.0 

24.0 0.5 55.0 45.0 

25.0 0.8 100.0 0.0 

26.0 1.0 100.0 0.0 

30.0 1.0 100.0 0.0 

31.1 0.8 100.0 0.0 

36.0 0.8 20.0 80.0 

42.0 0.8 20.0 80.0 

43.0 0.0 20.0 80.0 
                                   a

 MeOH, 
b
 H2O 

                                           *developed by Adithya Ramachandran of Plant Sciences Department,  

                                             University of Saskatchewan 
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3.5.3 ‘2011’ Instrument Method Set 

 

Due to possible inconsistencies from varying flow rates used in ‘2010’ (Marles 2010 

personal communication), a steady flow rate method set was adopted for ‘2011’.  The instrument 

method set used in January 2011 (Table 3.4) combined a steady, isocratic low flow rate of 0.6 

ml/min with a gradient flow at 20 – 26 minutes.  Column temperature was maintained at 32°C 

and sample temperature at 10°C.  Solvent ‘A’ was acetonitrile (ACN) with the addition of 0.05% 

TFA and solvent ‘D’ was H2O with 0.05% TFA.  Resveratrol eluted at 14.6 minutes and was 

confirmed against a trans-resveratrol standard and spiked sample (Appendix A2.2 & A2.3).  This 

method set proved successful for the separation of trans-resveratrol in all fourteen genotypes 

studied in this experiment. 

 

 

                                   Table 3.4 ‘January 2011’ HPLC Instrument Method Set   

                                   of the flow and solvents used to separate trans-resveratrol  

                                   in samples of fourteen Vitis genotypes on day five following                               

                                   UVC irradiation. Separations were done with Gemini C-18                                      

                                   (Phenomenex, Torrance, CA) columns using a Separations  

                                   Module (model 2695, Waters Corp., Milford, MA) with                                                     

                                    a Photodiode Array Detector (model 2998, Waters Corp. 

                                    , Milford, MA).  

Time       

(min) 

Flow 

(ml/min) 

Mobile Phase 

Solvents (%) 

A
a 

D
b 

 0.6 27.5 72.5 

16.0 0.6 27.5 72.5 

20.0 0.6 90.0 10.0 

26.0 0.6 90.0 10.0 

31.0 0.6 27.5 72.5 

39.0 0.6 27.5 72.5 

40.0 0.0 27.5 72.5 
                                       

a
 acetonitrile , 

b
 H2O 

                                      *developed by Adithya Ramachandran of Plant Sciences Department,  

                                    University of Saskatchewan 
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3.5.4 Resveratrol quantification 

 

  Peak areas were interpreted using software that came with the HPLC equipment 

(Empower Pro Version 2, Waters Corp., Milford, MA).  Calibration curves were established for 

both instrument method sets by plotting the area of integrated peaks against various known 

concentrations of a trans-resveratrol standard.  In quantifying the peaks, the lower linear range 

was achieved by injecting 10 ng µL
-1

 trans-resveratrol standard concentrations in quantities of 2, 

4 & 10 µL.  Upper range was achieved by injecting 100 ng µL
-1

 trans-resveratrol standard 

concentrations in quantities 2, 4, 7, 10 & 15 µL. The resulting regression equation: y= 12470x – 

200451, R
2
= 0.9985 was used to quantify resveratrol concentrations in ‘2011’ berry samples.  

Peaks areas were quantified at 306 nm. 

 

 

3.6 Experimental Design & Statistical Analysis 

 

In each greenhouse, three replicates of each of the fourteen grape genotypes were 

randomly assigned to one of three blocks (randomized using data sets generated by 

www.randomizer.org).  The replicates were “blocks” in this randomized complete block design 

(RCBD).  “Genotype” was nested within “block” which was nested within “greenhouse”. 

All statistical analysis and graphics were generated using the ‘R’ statistical program (R 

Development Core Team 2010).  The response variable was log-transformed to meet the linear 

model assumption of normality (Crawley 2007).  Main statistical analysis of response variable 

resveratrol day 5 (“T-120”) was performed using a linear mixed effects model (R package 

“nlme”) (Bates and Maechler 2010) with fixed effect being “genotype” and random effects being 

“block” nested in “greenhouse”.  This ‘maximal’ linear mixed effects model was simplified 

using pairwise comparisons (Ramasay 2004).  Treatments with the shortest pairwise difference 

distances were grouped.  Simplified models were based on AIC (Akaike’s Information Criterion) 

to obtain the ‘minimally adequate model’ (MAM) (Crawley 2007).  The MAM was not 

significantly different (at α= 0.05) than the ‘maximal’ model but had greater explanatory power 

http://www.randomizer.org/
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based on AIC.  This is based on the principle of Occam’s razor where “simple is best”.  In this 

case, the model with the fewest parameters is best (Crawley 2007).   

Differences between method sets and technical replicates were analyzed with a 

correlation test based on Pearson’s product- moment correlation and variance components 

calculated from nested random effects of LME output.   

Three ‘Frontenac’ clones were analyzed independently of the rest of the germplasm to 

identify possible differences within this genotype group.  This analysis also utilized a LME 

model with fixed effect being “genotype” and random effects being “greenhouse” and “block”. 
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4.0 RESULTS & DISCUSSION 

 

4.1 Developing a Methodology for Screening 

 

 An important part of this project was to design a workable screening protocol that 

combined greenhouse growing conditions with germplasm likely to be used for breeding prairie-

adapted grapes.  Previous research that used UV induction was based on field grown crops in 

which large amount of fruit was available (Cantos et al. 2001, 2002, 2003a; Guerrero et al. 2010; 

Takayanagi et al. 2004).  Rarely did such earlier research use the genotypes such as those 

presented here.  It was therefore important to experiment with methodology before proceeding 

with screening of germplasm of interest.  A special challenge in moving to a greenhouse 

environment was that only about half the amount of fruit expected was produced.  Another 

challenge was that wild grape species and interspecifics yield berries or exocarps of much 

smaller size and weight than the much studied typical V. vinifera genotypes.  However, the 

relative uniformity of the greenhouse environment was essential in this exploratory experiment.    

 

4.1.1 Determining response variable 

 

Concentrations of resveratrol levels continued on an upward trend over the five day 

observation period for the six genotypes (Figure 4.1).  Peak concentrations may not have been 

achieved but highest observed levels of all genotypes were on day five.  Total standard error 

tended to increase as resveratrol biosynthesis proceeded.  For the purpose of screening grape 

germplasm, the five day incubation period was seen as sufficient as berries began to slightly 

dehydrate in incubation and multiple HPLC runs compound costs.  Therefore, day five was 

chosen as the response variable for this project. 
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         Figure 4.1. Berry skin resveratrol production five-day response curves of six Vitis    

         genotypes following UVC irradiation. Vertical bars are ±SEM. Resveratrol quant-  

         ification through HPLC based ‘2010’ instrument method set. 
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A previous protocol was modified in this thesis which apparently resulted in a delayed 

rise in resveratrol concentrations.  The irradiation protocol used by Takayanagi et al. (2004) used 

a 30 W UVC lamp placed at a distance of 10 cm from berries for 10 minutes.  The modification 

included two 30 W lamps; one placed above and one below the berries at a distance of 10 cm in 

each direction.  The irradiation duration was shortened from 10 minutes to five minutes to 

account for the doubled wattage.  This assumption was based on previous research that found 

increases in irradiation power (wattage) resulted in correspondingly lower irradiation times to 

achieve peak concentrations of resveratrol (Cantos et al. 2001).  For example, the berries of 

cultivar ‘Napoleon’ required 60 seconds irradiation at 90 W to achieve comparable 

concentrations after 10 seconds at 510 W (Cantos et al. 2001).   

Despite the extended incubation time of this experiment and the doubled wattage of UVC 

used, resveratrol concentrations did not peak over five days.  As well, the incubation temperature 

used was 3°C lower than that used by Takayanagi et al. (2004).  Likely this also contributed to 

the somewhat delayed production of resveratrol.  To reach peak concentrations, resveratrol 

evolution would have to be tracked for greater than five days and/or incubated at higher 

temperatures 

   The results of this project were consistent with a study of vinifera cultivars in which a 

single Dm was established for seven red wine grapes (Cantos et al. 2003b).  However, these 

varieties peaked on day six of 12 (Cantos et al. 2003b).   Similarly, the interspecific cultivar 

‘Muscat Bailey’ did not decrease in resveratrol production within three days of incubation 

following the protocol used by Takayanagi et al. (2004).   

  Several studies show multiple days of maximum concentrations when multiple genotypes 

were assessed with various induction protocols.  V. vinifera cultivars ‘Chardonnay’ and ‘Koshu’ 

peaked at 48 of 72 hours incubation using the same protocol as Takayanagi et al. (2004).  

However, following the irradiation protocol of Cantos et al. (2001) Dm ranged from day two to 

six in multiple studies of various genotypes (Cantos et al. 2001,2002, 2003a; Guerrero et al. 

2010).   Concentrations in the cultivar ‘Napoleon’ peaked on the third of seven days incubation 

(Cantos et al. 2001).  When tracked over nine days, seven red and white table grapes peaked 

from day two to five (Cantos et al. 2002).   The cultivar ‘Monastrell’ peaked on day five of 10 

(Cantos et al. 2003a).  Wine grapes ‘Merlot’, ‘Syrah’ and ‘Orion’ peaked between days four and 

six when tracked over seven days (Guerrero et al. 2010).    
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4.1.2 Method adjustments 

  

Most replicates had less than 80 berries, although 150 berries were expected.  The young 

vines in this experiment produced only one to four clusters (Appendix A1.2).  As vines age they 

become more productive.  Multiple solute readings were not possible and Brix readings were 

based on the10 berry sample of “T-0” (Appendix A2.1).   

The results of the statistical analysis (Appendix A2.8, A2.9 & A3.5) on the technical 

replicates reveals that much variability exists at the grinding and extraction levels and/or at the 

genotypic level.  The two method sets used in quantifying resveratrol were highly correlated 

even though the ‘2011’ method set appeared to produce better separations (Appendix A2.7).   

Small exocarp samples (50 mg) and low volumes of MeOH (1.5 mls) were adequate for 

the extraction and quantification of trans-resveratrol.  This result is in agreement with previous 

studies.  Pezet et al. (2003) noted in the extraction of resveratrol from grapevine leaves that many 

of the sophisticated and time-consuming stilbene extractions reported is unnecessary.  Stilbenes 

can be efficiently extracted from very small tissue samples (1-100mg) with low volumes of 

MeOH (100-500 µL) (Pezet et al. 2003).  Being able to quantify with small exocarp samples is 

amenable for screening young vines with limited fruit production. 

 

4.1.3 Instrument method set optimization 

 

Two different instrument method sets were utilized in the separation of trans-resveratrol 

from grape skin extracts. While the ‘2010’ method showed peaks of many compounds 

(Appendix A2.4) the ‘2011’ method was adopted as being easier to use with less interference 

(Appendix A2.5).  In using the ‘2010’ instrument method set, a “forced drop line” integration 

was employed.  This method did not attain baseline separations of trans-resveratrol (Appendix 

A2.4).  The detection was acceptable as these runs were used to establish the response variable  

(Figure 4.1) and correlation analysis showed comparable quantification accuracies between the 

two method sets (Appendix A2.7).   

In December 2010, a gradient method set (Table 3.3) was utilized to establish the day of 

highest observed concentrations post irradiation in six of the fourteen Vitis genotypes studied.  
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With this method set there was difficulty in separations of some of the interspecific hybrid 

samples.  The interspecifics apparently possessed different chemical constituents that eluted at 

different times compared to pure V. vinifera (Appendix A2.4).  For the remainder of the study all 

fourteen genotype samples were separated with the ‘2011 method set’ (Table 3.4) which was 

primarily isocratic in nature and had much less interference.   The ‘2011’ instrument method set 

achieved baseline separation of resveratrol (Appendix A2.5) from surrounding peaks making the 

drop line integration more reliable for quantification. 

 

4.1.4 Greenhouse culture & flower induction: impacts on selection 

 

 The estimated timeline of eight months (Johnson 2008) from rooting of cuttings to 

production of ripe fruit and seeds was confirmed .   The implications for grape breeding include 

early selection and evaluation of fruit quality traits and faster generation cycles.  These 

techniques would be especially useful in a grape breeding program utilizing wild species that 

may need several generations of improvement.  As well, non-adapted grape germplasm can be 

maintained indefinitely and breeding activities can be performed year-round.  When vines 

become too large they can be either cycled to the cooler or discarded and replaced with younger 

clones through vegetative propagation. 

The induction of precocious flowering in diverse genotypes demonstrated here may be 

attributed to the favourable greenhouse environment.  Buds receiving high light and high 

temperatures are associated with greater fertility in grapes (Fisher 2009).  When the young vines 

are pruned and competing tissues removed, cytokinin may be re-directed to latent buds thereby 

inducing bud-break and inflorescence development (Mullins and Rajasekaran 1981; Mullins et 

al. 1992; Srinivasan and Mullins 1979).   

 

4.2 Resveratrol production in V. vinifera & other Vitis 

 

The hypothesis was that trans-resveratrol production in ripe berry skins will be 

increasingly higher in selections that have more V. riparia.  From the experimental design, it 
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followed that genotypes used in this study would be classed into four groups of resveratrol 

production based on percentage of V. riparia (Table 4.1).   

 

 

Table 4.1 trans-resveratrol production of fourteen Vitis genotypes. Detached berries were treated 

with 30 watts UVC x 2 at 10cm for 5 min. Initial concentration is compared to that on day 5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
 mean of six replicates ± SEM. 

b
 mean of five replicates.

c 
FW= fresh weight after conversion from dry weight 

based on 80% initial moisture content. 

 

 

 

This study, in fact, revealed five distinct classes of resveratrol production potential 

following pair-wise difference comparisons (Appendix A3.1).  All V. viniferas fell in the lowest 

group which was consistent with the original hypothesis.  ‘Pinot Noir’ was significantly lower (at 

α= 0.10) in resveratrol production potential than the other V. viniferas (Appendix A3.1).  All the 

V. vinifera genotypes fell within the bottom two classes so it may have been appropriate to 

combine them together in the lowest production ‘group 1’ (Figure 4.2).       

 

  

Group 
Vitis 

Genotype 

Resveratrol conc.                         

(µg g
-1

 dry weight) 
Mean Day 5 

(µg g
-1

 

FW
c
) Day 0

a
 Day 5

a 

1 

Cabernet 

Sauvignon 
37.2 ± 12.3

 
666.6 ± 177.5 133.2 

Riesling 12.6 ± 7.5 763.6 ± 125.7 152.7 

Pinot Noir 81.6 ± 44.5 513.8 ± 194.9 102.8 

2 

Marquette 3.1 ± 1.6 764.6 ± 229.5 152.9 

Foch
b
 4.7 ± 2.2 1226.8 ± 92.1 245.4 

LaCrescent 16.1 ± 7.2 834.3 ± 79.6 166.9 

3 

Frontenac 6.2 ± 2.1 1758.3 ± 584.8 351.7 

Frontenac 

gris 
14.9 ± 3.0 1344.1 ± 335.3 268.2 

Frontenac 

blanc 
12.3 ± 3.6 1029.6 ± 270.8 205.9 

Ripinot 8.4 ± 3.3 731.3 ± 146.9 146.3 

Valiant 42.5 ± 11.9 3466.4 ± 1271.0 693.3 

4 

Riparia K 26.3 ± 10.1 1200.5 ± 367.6 240.1 

DG Riparia
b
 58.4 ± 32.0 2189.6 ± 717.9 437.9 

Montana 

Riparia 
12.2 ± 7.3 867.5 ± 97.6 173.5 
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           Figure 4.2 Resveratrol concentrations in berry skins. Based on model generated                         

           by linear mixed effects in the ‘R’ statistical program. The four groupings consist  

           of 14 genotypes (treatments) which were combined following pairwise difference   

           comparisons. Vertical bars are ± standard error on means of six replicates (‘DG                          

           Riparia’ & ‘Foch’ n= 5). 

 

 

 

Intermediate genotypes were classed into two groups (groups ‘2 & 3’) which varied in 

percentage of V. riparia.  The groupings were not consistent with the original hypothesis as two 

of the pure V. riparia selections were in the second lowest group with ‘LaCrescent’ and the 

white ‘Frontenac’ mutants (Figure 4.2).  As well, ‘Foch’ at 25% V. riparia was among the 

highest producers.  The vines with the highest production potential, ‘DG Riparia’ and ‘Valiant’ 

were significantly higher (at α= 0.05) and placed in ‘group 4’.   
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It was unexpected for the V. riparia x F1 hybrid ‘Valiant’ to be grouped as a top producer 

of resveratrol and the F1 hybrid ‘Ripinot’ to be among the lowest producers.   Interspecific 

hybrid ‘Marquette’ was also grouped with the V. viniferas.  That some hybrids lost their capacity 

for high resveratrol production indicates a need for screening in every generation.   

The V. vinifera cultivars averaged around 130 µg g
-1

 approximate fresh weight after 

conversion from dry weight while the V. riparias averaged more than double at around 284 µg g
-

1 
(Table 4.1).   The two white mutants of ‘Frontenac’ and ‘Foch’ averaged greater than 200 µg g

-1
 

fresh weight; considerably less than the original ‘Frontenac’ that averaged 352 µg g
-1

 fresh 

weight. 

The juice cultivar ‘Valiant’ was significantly different (at α = 0.05) than the vinifera 

cultivars in its very high potential to produce resveratrol in berry skins.  The trans-resveratrol 

concentration of ‘Valiant’s’ ripe berry skins would average 693 µg g
-1

 fresh weight.  This very 

high concentration is comparable to that produced constitutively in lignified vine tissues 

(Langcake and Pryce 1976) and UV-induced leaf tissues of V. rupestris (Douillet-Breuil et al. 

1999).   

The average of 130 µg g
-1

 trans-resveratrol of Vitis vinifera cultivars in this study was 

similar to several studies.  For example, the table grape, ‘Napoleon’, produced 115 µg g
-1

 fresh 

weight after UVC elicitation (Cantos et al. 2001).  Similarly, the classic wine grape 

‘Chardonnay’ produced around 100 µg g
-1

 fresh weight in two independent studies following 

UVC elicitation (Adrian et al. 2000; Takayanagi et al. 2004).   

The resveratrol in greenhouse-grown ‘Cabernet Sauvignon’ was estimated at 133 µg g
-1

 

resveratrol fresh weight in berry skins.  Based on grape skins being 22% of the berry weight, this 

cultivar produced an estimated 48.6 µg g
-1

 fresh weight in field-grown material (Cantos et al. 

2003b).  This discrepancy could be attributed to the different irradiation protocols or to the 

different environments in which the berries were grown (Cantos et al. 2003b; Creasy and 

Coffee1988).  

North American species and interspecific hybrids of V. riparia and V. labrusca were 

among the highest amounts of trans-resveratrol in the literature.  In this thesis, interspecifics and 

V. riparia genotypes ranged from approx. 150 to 700 µg g
-1

 fresh weight.  This range is 

consistent to values observed by others.  For example, labrusca cv ‘Concord’ averaged 235 µg g
-

1
 fresh weight and hybrid ‘Chancellor’ averaged 372 µg g

-1
 resveratrol in berry skins after UV 
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irradiation (Creasy and Coffee 1988).  The V. riparia x F1 hybrids ‘Zhi 168’ and ‘Beta’ 

produced concentrations of 356 µg g
-1

 and 230 µg g
-1

 fresh weight under field conditions 

respectively (Li et al. 2006).  ‘Muscat Bailey’ averaged nearly 500 µg g
-1

 fresh weight after UVC 

elicitation (Takayanagi et al. 2004).  High resveratrol producing labrusca ‘Concord’ and hybrids 

‘Valiant’, ‘Beta’ and ‘Muscat Bailey’ indicates that this species may also be particularly 

responsive to elicitation. 

Among the interspecific hybrids observed in this study, ‘Marquette’ was the lowest in 

percentage of V.riparia so it was expected to be among the lowest in resveratrol.  This was the 

result, which is in agreement with the original hypothesis.  After multiple generations of 

selection, allele count from a specific source may be halved with each generation.  Several 

generations of selection from the original V. riparia parent has resulted in recombination of 

stilbene synthase (STS) alleles from other species.  Therefore, ‘Marquette’ with only a 

theoretical 19% of its genome attributed to V. riparia (Hemstad 2009) may not possess high 

producing STS alleles from riparia.   

UV induction was suggested as an alternative to inoculation tests in breeding programs 

when selecting for disease resistance (Pool et al. 1981).  This is because UV-elicited resveratrol 

production in grape leaves has been positively correlated to disease resistance (Dercks and 

Creasy 1989).  Shiraishi et al. (2010) found a strong negative correlation (R
2
=0.8367) between 

UV-induced resveratrol in grape flowers and infection index of gray mold (B. cinerea).  These 

same authors also found a strong negative correlation (R
2
=0.9242) between UV-induced 

resveratrol in green berries and infection index of powdery mildew (E. necator) (Shiraishi et al. 

2010).  From this, one could assume that cultivars identified in this study as having high 

resveratrol production potential may also have tolerance to these fungal diseases. 

‘Marquette’ has gone through rigorous disease screening (Hemstad 2009), but still 

requires a minimal spray program to control black rot (Guignardia bidwellii) and mildews (E. 

necator and P. viticola) (Plocher and Parke 2008).  As such the results in this study that indicate 

only moderate resveratrol production potential in this genotype following UVC irradiation is not 

too surprising.      

That ‘Ripinot’ at 50% V. riparia was in the lowest grouping for resveratrol producers 

indicates that one cannot assume F1 hybrids with this species will be high producers.  This result 

is not in accordance with the original hypothesis, however, this may be explained by the 
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production potential of the parents of ‘Ripinot’.  ‘Riparia K’ and ‘Pinot Noir’ were among the 

lower producers of resveratrol (Figure 4.2 & Table 4.1).  As well, ‘Ripinot’ is a greenhouse 

selection based on fruit quality and did not go through disease screening unlike other hybrids in 

this study.   

In a study of stilbenes in leaves, V. riparia was classed in the “high” group and V. 

vinifera cultivars classed in the “intermediate to low” groups (Dercks and Creasy 1989).  

However, determining species differences in berry skin resveratrol would require examining 

more genotypes.  In this thesis study, three genotypes each representing V. vinifera and V. 

riparia were not enough to maintain a clear species difference.  Therefore, the results presented 

here only pertain to differences among those specific genotypes tested. 

  

4.3 ‘Frontenac’ clone comparison 

 

The H0 that there is no difference in resveratrol production potential among the three 

‘Frontenac’ clones was accepted.  In comparing the ‘Frontenacs’ independently in this 

experiment, no significant differences (at α=0.05) were seen between the three clones in regards 

to day 5 resveratrol concentrations in berry skins (Appendix A3.4).  This result is in agreement 

with the findings of Takayanagi et al. (2004) where there was no interaction between CHS and 

STS pathways after UVC irradiation of ripe grapes.   

However, following pairwise difference comparison analysis of all 14 Vitis genotypes 

(Figure 4.2), ‘Frontenac’ was grouped separately from its clones.  This discrepancy may be 

attributed to a single replicate of ‘Frontenac’ from greenhouse ‘G’ that produced very high 

concentrations relative to the others.  This outlier was not excluded from the statistical analysis 

as it was not shown to carry ‘leverage’ (Appendix A2.10).  Leverage is normally attributed to 

points far away from the mean making them highly influential (Crawley 2007). 

 

4.3.1 Functional wine from Frontenac blanc 

 

A 200 ml glass of ‘Frontenac blanc’ wine could contain up to 8 mg of trans resveratrol if 

fermented on the skins.  This calculation was based on skins being 13% of berry weight (Cantos 
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et al. 2001).  The ‘blanc’ is particularly promising as a “functional” white wine grape because of 

its desirable fruit qualities and chemistry.  Frontenac’s berries, regardless of which of the three 

variations, exhibit thin exocarps, high Brix, low pH juice (U of Minn 2008) and very low skin 

condensed tannins (Plocher and Parke 2008).   As such, the ‘blanc’ clone may be an ideal white 

grape to ferment on the skins if negative flavour/aromas such as herbaceousness could be 

minimized (Butzke et al. 2010; Plocher and Parke 2008).   

 

4.4 ‘Functional’ products from Northern cultivars  

 

This study showed that a northern cultivar like ‘Valiant’ could supply 17mg trans-

resveratrol per 5g serving of freeze-dried powder.  The high concentration could mean that 

powdered, freeze-dried grape berry skins could be used in natural health products without further 

extractions or concentration procedures needed.   This form has been used in research to provide 

physiologically relevant doses in clinical trials (Pezzuto 2008).  It seems reasonable to assume 

that additional interspecifics could be bred for the natural health product market as the value of 

pure trans-resveratrol is estimated at around US$3000 per kg (Rayne et al. 2008).   

Using the calculations of Cantos et al. (2001) and Cox (1999) northern grapes 

investigated in this study could supply 7.5 to 26 mg resveratrol per 200 ml serving of wine or 

juice.  The lower end is comparable to irradiated ‘Cabernet Sauvignon’ and ‘Merlot’ grapes 

estimated to produce wines with potentials of 6.6 and 4.5 mg stilbenes/200 ml (Cantos et al. 

2003b).  New varieties at the higher range of resveratrol production would likely have a 

marketing advantage.  Since most northern wines are blended from several varieties, perhaps a 

very high resveratrol variety could also be useful in the marketplace.  

 

4.5 Viniferins, trans-resveratrol and downy mildew resistance 

 

Resveratrol and its derivatives absorb radiation at a spectrum between 303 & 330 nm 

(Guerrero et al. 2010; Pezet et al. 2003; Romero-Perez et al. 2001; Takayanagi et al. (2004) with 

many of the viniferins absorbing at >320 nm (Guerrero et al. 2010; Pezet et al. 2003).  In this 

study many peaks were observed in the 322.9 to 325.3 nm range (Appendix A2.6) during HPLC 
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analysis.  With the absence of standards to verify these peaks, one can only speculate as to their 

identity.  However, peaks in the same range were quantified based on the resveratrol calibration 

curve as per Jeandet et al. (2000) and surprisingly, their concentrations were much lower than 

resveratrol in both ‘Frontenac’ and ‘Valiant’ (Appendix A3.6).   

If some of the unknown peaks (>320 nm) do indeed represent viniferins, it is intriguing 

as illustrated in Appendix Table A3.6, that the downy mildew susceptible ‘Valiant’ may produce 

higher concentrations than does ‘Frontenac’.  This was unexpected as ‘Frontenac’ is quite 

resistant to downy mildew (U of Minn 2008) so one may likewise assume high viniferin 

production (Pezet et al. 2004).  This discrepancy may be due to the chosen elicitor and not a 

reflection of disease resistance per se.  UVC irradiation has been shown to be a less effective 

inducer of viniferins compared other elicitors of stilbenes in grape berries (Gonzalez-Barrio et al. 

2006; Schmidlin et al. 2008). 

 ‘Valiant’ is a high producer of trans-resveratrol (Table 4.1, Figure 4.2) with low 

resistance to downy mildew (P. viticola) (Rombough 2002).  This cultivar requires an extensive 

spray program in humid places like Minnesota (Marshall 1993; Plocher and Parke 2008).  Given 

that downy mildew is one of the major elicitors of resveratrol production in grape berries 

(Richter et al. 2006), one would expect that the susceptibility of this cultivar would be reflected 

in a lowered capacity to produce the phytoalexin resveratrol.  This however is not the result seen 

here.  Clearly, there are other factors involved in downy mildew resistance besides resveratrol 

production. 

The disease-resistant cultivar ‘Beta’ (Rombough 2002), like ‘Valiant’, is a hardy V. 

riparia x V. labrusca F1 hybrid.  In a field study, ‘Beta’ produced resveratrol concentrations of 

230.52 µg g
-1

 fresh weight (Li et al. 2006).  This is less than half the amount observed in 

‘Valiant’ (Table 4.1).  In the Chinese study (Li et al. 2006), concentrations were likely higher 

due to the rainy, high humidity season conducive to fungal pathogen growth.  The high amounts 

seen in the V. riparia x F1 genotypes like ‘Beta’ were due to a phytoalexin response (Li et al. 

2006).   

A possible explanation for the ‘Valiant’ classing may be due to inadequate production of 

the more fungitoxic stilbenes.  The trans aglycone of resveratrol has been shown to exhibit low 

fungitoxicity compared to pterostilbene (Bavaresco and Fregoni 2001) and the viniferins 
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(Langcake and Pryce 1977a).  Perhaps ‘Valiant’ is a high producer of trans-resveratrol, but not 

other stilbenes accounting for its downy mildew susceptibility.   

Downy mildew resistance was highly correlated to stilbene production (Malacarne et al. 

2011) and in some instances linked to specific viniferins like δ-viniferin (Pezet et al. 2003; Pezet 

et al. 2004).  For example, susceptible V. vinifera cultivars produced large amounts of trans-

resveratrol in leaves after P. viticola infection but failed to produce significant amounts of δ-

viniferin (Pezet et al. 2004).  Resistant cultivars produced large amounts of both trans-resveratrol 

and δ-viniferin (Pezet et al. 2004).  Malacarne et al. (2011) similarly found that powdery 

mildew-susceptible genotypes produce trans-resveratrol but not viniferins as in resistant types. 

There are instances where resistance to P. viticola in grape is not associated with stilbene 

production (Dercks and Creasy 1989).  Some genotypes have produced low levels of stilbenes 

but have high levels of tolerance (Dercks and Creasy 1989; Malacarne et al. 2011).   

 

4.6 Limitations of current resveratrol screening 

  

Screening within a greenhouse still produced worthwhile results with some variability 

despite the controlled environment and small sample sizes.  Berry production was limited on the 

young vines.  Based on the high variance on day five it may be advisable to examine 50 to 100 

berry samples per biological replicate instead of the typical 10 berries.  This type of screening 

must also have a correlated response to genotypes under natural growing conditions to be 

applicable.   

High throughput screening methods could be further refined to increase efficiency.  

HPLC offers a robust method of quantification but it is costly on a large scale.  Other methods of 

quantification could be explored to minimize the costs of greenhouse culturing of plant material.  

For example, spectrophotometric assessment of trans and cis-resveratrol offers a simple method 

of quantification in aqueous solutions (Camont et al. 2009).  This method was not significantly 

different than quantification by HPLC (Camont et al. 2009).  Resveratrol and viniferin screening 

using thin layer chromatography combined with spectrophotometry can provide high throughput 

quantification necessary for a breeding program (Pool et al. 1981). 
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 Greenhouse culture offers an effective means of phenotyping resveratrol production 

potential.  In the short term, this alone may be a sufficient to screen grape germplasm.  Currently 

the development of molecular markers is expensive and requires a considerable investment of 

time (Cahill and Schmidt 2004).  The use of greenhouse culture and quantification methods like 

HPLC could eventually be replaced by this environment-insensitive approach.  However, the 

costs in comparison to greenhouse screening must be weighed accordingly.   

With the recent sequencing and mapping in the Vitis genome, there is the possibility of 

using molecular techniques in grape breeding (Velasco et al. 2007).  Specific high production 

STS alleles from V. riparia could be identified and tracked in seedling populations as part of 

marker assisted selection (MAS) (Cahill and Schmidt 2004).  The techniques developed in this 

study could play a role in identifying high and low resveratrol producers which in turn could be 

investigated in identifying markers.  The utilization of single nucleotide polymorphism (SNPs) 

markers offers a way of tracking specific STS alleles (Maitti et a1. 2009).  However, tracking 

only STS alleles may not be sufficient for screening for resveratrol production potential. 

The post induction modification of resveratrol could complicate molecular screening.  

These modifier genes may reduce resveratrol content through competition for this substrate (Hall 

and De Luca 2007; Schmidlin et al. 2008).  The trade-off in potential increased resveratrol by 

less conversion to other stilbenes may be reduced production of phytoalexins.  The reduced 

production of pterostilbene and viniferins in particular could make a genotype more susceptible 

to fungal pathogens (Malacarne et al. 2011).  For example, a susceptible genotype such as 

‘Valiant’ could be selected if the only criterion is high resveratrol production potential.  This is 

true with both greenhouse and molecular screening scenarios.   

A glucosyltransferase involved in the synthesis of piceid (Hall et al. 2007; Velasco et al. 

2007) and O-methyltransferases (ROMT) possibly involved in pterostilbene (Schmidlin et al. 

2008) production may need to be tracked along with STS alleles.  This point is elucidated by 

experiments done with STS gene-transferred tobacco (Nicotiana spp) which only produced 

trans-resveratrol and piceid (Hain et al. 1990; Schmidlin et al. 2008).  However, co-expression of 

STS VST1 and ROMT in transgenic tobacco resulted predominately in the production of 

pterostilbene illustrating possible substrate competition (Schmidlin et al. 2008).  In addition, 

several peroxidase enzyme genes have been identified in Vitis (Malacarne et al. 2011; Velasco et 

al. 2007) which may play a role in viniferin synthesis (Jeandet et al. 2002).  Viniferin synthesis 
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could also conceivably compete for trans-resveratrol as a substrate (Langcake and Pryce 1977b).  

The molecular control of these enzymes needs better characterization before they can be 

effectively tracked as part of MAS. 

A final limitation of this study is the tracking of the single stilbene, resveratrol.  The 

therapeutic effects of pterostilbene and viniferins have not been as extensively researched but 

recent studies are finding comparable or better actions against atherosclerosis (Zghonda et al. 

2011) and cancer (Nutakul et al. 2011).  Therefore, from the perspective of the plant breeder, 

total stilbene content should be tracked so genotypes high in total nutraceutical properties and 

disease resistance can be selected.   
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5.0 CONCLUSION 

 

 The percentage of V. riparia in the pedigrees of the fourteen genotypes is not a precise 

predictor of resveratrol production potential.  However, it’s generally true that grapes with more 

V. riparia in their lineage will usually produce more resveratrol.   Some of the interspecific 

hybrids were not significantly different (at α= 0.05) from the standard V. vinifera cultivars.  The 

production of trans-resveratrol alone is not an accurate predictor of disease resistance as the 

downy mildew susceptible ‘Valiant’ was the highest producer.  Anthocyanin-deficient mutants of 

‘Frontenac’ have the same post-harvest resveratrol production potential as the original genotype.   

 

5.1 Role of Vitis riparia in breeding grapes with ‘functionality’ 

 

 The utilization of Vitis riparia in the development of grape cultivars adapted to the 

Canadian prairies will be essential as this is the hardiest species and carries genes for high 

resveratrol production potential.  Among the University of Saskatchewan’s Fruit Program’s V. 

riparia germplasm, genotype ‘DG Riparia’ would be an ideal breeding parent for both wine and 

juice type grapes.  Cultivars descended from this genotype could be selected for the high 

resveratrol production trait.  The juice cultivar ‘Valiant’ would make an excellent breeding 

parent for juice and table grapes as it too carries the alleles for high trans-resveratrol production 

in ripe berry skins. 

 

5.1.1 Benefits to current producers 

 

 Current producers of ‘Valiant’, ‘Frontenac’, ‘Frontenac gris’ and ‘Frontenac blanc’  have 

the opportunity to produce functional grape products from the berries of these cultivars as they 

are all high producers of resveratrol in comparison to standard V. vinifera cultivars.  Products to 

suit the growing “functional foods” market like high resveratrol grape juice and wine can be 

made from the post-harvest elicited berries of these varieties (Cantos et al. 2001; Cantos et al. 

2002; Cantos et al. 2003; Gonzalez-Barrio et al. 2009).  Natural health products/nutraceuticals 
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could also be obtained from the berry skins of these cultivars, particularly the highest producer of 

trans-resveratrol, ‘Valiant’.  However, for Saskatchewan, it is unlikely that any of the Frontenacs 

would survive our winters unprotected. 

 

5.2 Recommendations & future research 

 

 The initial comparison in the greenhouse environment offered insight into the trans-

resveratrol production potential among the fourteen grape genotypes studied.  Future research 

should include studying the production potential on field-grown vines over multiple years and 

locations under commercial conditions.  The elucidation of resveratrol production in hybrid 

grapes utilizing the commercialized, patented UVC irradiation process (Guerrero et al. 2010) and 

comparison among various other post-harvest elicitation methods would aid current producers of 

northern cultivars.  Once identified, practical elicitation methods should be utilized by current 

producers to develop functional grape products. 

 The cultivar ‘Valiant’ should be studied in the context of disease- resistance screening by 

tracking not only trans-resveratrol but other resveratrol derivatives, especially the fungitoxic 

viniferins.  This cultivar could be compared with downy mildew resistant V. vinifera cultivars 

and interspecific hybrids like ‘Frontenac’.  Insight into the true role of viniferins such as δ-

viniferin (Pezet et al. 2003) in resistance to this pathogen will be gained.  In addition, the 

pterostilbene and viniferin induction potentials of UVC irradiation and P. viticola inoculation 

could be compared in these genotypes.  This will determine if UV irradiation is indeed 

comparable to fungal infection in interspecific hybrid grapes, thus confirming or disproving the 

UV elicitation method in downy mildew resistance screening. 

 An efficient screening methodology was developed in this thesis that could be optimized 

further.  Methods to improve greenhouse flower induction in Vitis might include investigations 

of different pruning heights, pot sizes, environmental regimes, or different vernalization 

treatments (Appendix A1.3).  The methodology in this thesis used winter greenhouse production 

but perhaps part of the growing cycle of the vines could be done outdoors.   Improvements would 

be beneficial by either shortening the flowering cycles of grape seedlings or increasing flower 

and fruit production.  Even if no improvements are made, the methodologies developed in this 
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thesis would be very beneficial to the breeding and selection process of grape breeding at the 

University of Saskatchewan. 
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7.0 APPENDIX 

A1 Photographs 

 

 

Figure A1.1 Ripe fruit of the three ‘Frontenac’ clones: original cultivar 

and anthocyanin deficient mutations ‘gris’ & ‘blanc’ (left to right). 

 

 

              Figure A1.2 Fully ripe greenhouse-grown grapes on 8-month old ‘Marquette’. 
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          Figure A1.3 Prolific flowering/fruiting on potted vines post vernalization;  

          two months in the cooler at 2-5°C following initial greenhouse fruiting cycle. 

 

  

 

               Figure A1.4 Three products made from Vitis labrusca cv. ‘Concord. 
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A2 Figures 
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1. Grape clusters are harvested from each replicate/genotype based on 5-berry 

Brix value, harvest of previous replicates, ideal Brix values, skin and seed 

colour and ‘varietal’ flavour 

2. Berries are removed from clusters with pedicels attached to allow for even 

irradiation and moisture conservation during incubation.  Berries are 

irradiated under two 30W UVC lamps at a distance of 10cm for 5min 

(adapted from Takayanagi et al. 2004) 

3. Post irradiation: all procedures/handling of samples at this point will be 

performed in dim light or darkness to prevent isomerisation of trans-

resveratrol to cis form.  Berries are grouped and randomly sub-sampled (10-

berries) into 6 Ziplock® bags labelled to five days post irradiation (T-0 to T-

120hrs).  Remaining samples (excluding ‘T-0’) are incubated in the dark at 

22°C and extracted every 24hrs thereafter.   

4. ‘T-0’ sample is immediately extracted of skin and pulp/juice is used for more 

accurate Brix reading.  Extracted samples are stored at -20°C until freeze-

dried. 

5. Samples as well as sample bags are weighed pre and post freeze drying to 

allow for later conversion back to fresh weight after quantification 

6. Freeze-dried samples are ground to a fine powder using a mortar and pestle 
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7. Each ground sample is transferred to a 1.5ml snap cap microcentifuge vial 

stored at -20°C 

8. 50mg of ground sample is weighed into a 2ml screw cap microcentifuge vial 

and stored at -20°C.  On day of HPLC runs, vials containing 50mg samples 

are extracted with 1.5mls 100% MeOH 

9. To facilitate maximum recovery of resveratrol, samples are then extracted at 

60°C for 30min with shaking (Romero-Pérez et al.,2001) 

10. Samples centrifuged at 10,000g for 20min 

11. ~1ml of supernatant is pipetted into a clean 2ml screw cap microcentifuge 

vial with ~0.5mls pipetted into a syringe barrel and remaining extract stored 

at -40°C 

12. Extract is transferred by syringe into an HPLC vial by passing through a 

0.45micron filter 

 

                         Figure A2.1 Grape skin and resveratrol extraction protocols. 
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Figure A2.2 trans-resveratrol standard eluted at 14.6 minutes at absorbance of 306.2 nm  

following January 2011 method set. 

 

 

 

 

 

 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

        Figure A2.3 Grape skin extract (A) and the same sample spiked with trans-resveratrol 

standard (B) eluting at 14.6 min (peak 1). 
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 Figure A2.4 December 2010 instrument method set separation of trans-resveratrol (peak 1) on 

‘Frontenac’ sample “B3-6”.  Drop-line integration (B) used to determine peak area. 
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Figure A2.5 January 2011 instrument method set separation of trans-resveratrol (peak 1) on 

‘Frontenac’ sample “B3-6”.  Drop-line integration (B) used to determine peak area. 
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                 Figure A2.6 Unknown peaks “1”, “3-7” (A) and absorbance (B) compared to know 

peak “2” trans-resveratrol in sample “B3-6”. 

9.200 Peak 1

220.9 325.3

457.5 486.6 540.2 583.0

A
U

0.00

0.02

14.550 Peak 2

217.4 306.2

486.6

A
U

0.00

0.20

15.866 Peak 3

219.7 325.3

405.4 457.5 486.6 540.2 583.0A
U

0.000

0.010

20.250 Peak 4

205.6
325.3

452.6 486.6 539.0 581.8A
U

0.000

0.005

nm

200.00 250.00 300.00 350.00 400.00 450.00 500.00 550.00 600.00

22.050 Peak 5

A
U

0.00

0.02

0.04

22.700 Peak 6

A
U

0.00

0.10

22.950 Peak 7

A
U

0.000

0.005

0.010

B 

3 

  2 

1 
 4  5 7 

  6 

A 



 

81 

 

 

  

 
 

Figure A2.7 Correlation between ‘2010’ and ‘2011’ separation                        

methods in HPLC to determine if variable flow rates in ‘2010’  

resulted in unreliable quantification. Grape berry skin resveratrol                    

concentration in µg·g
-1

dry weight. Replicates based on multiple                                   

genotypes and extracted on different dates. Pearson’s product-                                          

moment correlation at α = 0.05.                                            

 

 

 

 

 



 

82 

 

 

 

 
 

                  Figure A2.8 Correlation between resveratrol concentration (µg·g
-1

 DW)                                  

                  in technical replicates ‘A’ & ‘B’ separated by isocratic method in HPLC.  

                  Replicates based on multiple genotypes with adequate sample size and  

                  extracted on different dates to determine variance at the genotypic, or   

                  extraction/HPLC level. Pearson’s product-moment correlation at α = 0.05.   
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               Figure A2.9 Correlation between resveratrol concentration (µg·g
-1

 DW)                     

               in technical replicates ‘1’ & ‘2’ separated by isocratic method in HPLC.    

               Replicates based on multiple genotypes and extracted on different dates                                        

               to determine within sample variance. Pearson’s product-moment correla- 

               tion at α = 0.05. 
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                    Figure A2.10 Maximal model leverage check in the ‘R’ 

                    Statistical program showing non- influential (less than the                                               

                    line of ‘influence’) outliers. 

 

 

 

 

A3 Tables 

 

Table A3.1 Dm UVC-elicited postharvest trans-resveratrol production potential among fourteen 

Vitis genotypes based on pairwise groupings. Based on log-transformed response variable.
a
 

 Std. Error t-value p-value 

Cabernet, Riesling, Marquette & Ripinot  0.137 47.00 <0.001 

DG Riparia & Valiant 0.244 4.67 <0.001 

Foch & Frontenac 0.244 3.07 0.003 

Front Blanc & Gris, LaCres`t, Rip K & Mont Rip 0.184 2.02 0.047 

Pinot Noir 0.306 -1.9 0.061 

   
a
trans-resveratrol conc. (µg g

-1
 dry weight) 
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                     Table A3.2 ANOVA output showing significant variance attributed                            

                     to genotype but not to “GH” and “Block” in this experiment. Based                                              

                     on log-transformed response variable values.
a
 

 Df Sum Sq Mean Sq F value Pr (>F) 

GH 1 0.41 0.41 0.80 0.37 

Block 1 0.08 0.08 0.16 0.69 

Genotype 13 17.46 1.34 2.64 0.005 

Residuals 66 33.52 0.51   
                           

a
trans-resveratrol conc. (µg g

-1
 dry weight) 

 

 

 

 

 

                                   Table A3.3 Percentage of variance calculated 

                                   due to nested random effects (GH/Block/Genotype). 

                                   Variance components analysis on random effects                                                              

                                   from lme output. Based on log-transformed response                             

                                   variable.
a 

Random Effects 
Standard 

Deviation 

Variance 

(%)* 

GH 1.60e-05 6.05e-08 

Block 5.03e-06 5.98e-09 

Genotype 0.65 99.99 

Residual 9.45e-04 2.11e-04 
                                  *calculated as [100*vars/sum(vars)] where vars= sds^2 

                                   a
trans-resveratrol conc. (µg g

-1
 dry weight) 

 

 

 

 

 

Table A3.4 LME model output showing no sig. diff. among fixed effects (three ‘Frontenac’ 

clones).  Based on log-trasnformed  response variable day five conc. values.
a
 

Genotype Value Std Error Df t-value p-value 

Frontenac  7.26 0.37 10 19.66 0.00 

Frontenac gris -0.33 0.41 10 -0.79 0.45 

Frontenac blanc -0.51 0.41 10 -1.24 0.24 
a
trans-resveratrol conc. (µg g

-1
 dry weight) 
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                                  Table A3.5 Percentage of variance calculated 

                                   due to extraction and HPLC (sub-rep level) or  

                                   to previous handling/genotype. Variance comp-                                                             

                                   onents analysis on random effects from lme out- 

                                   put. Based on log-transformed response variable.
a 

Random Effects 
Standard 

Deviation 

Variance 

(%)* 

Genotype 256.6 29.8 

Replicate 333.2 50.2 

Sub-replicate 208.6 19.7 

Residual 28.6 0.37 
                                  *calculated as [100*vars/sum(vars)] where vars= sds^2 

                                   a
trans-resveratrol conc. (µg g

-1
 dry weight) 

 

 

 

 

                   Table A3.6 Concentrations
a
 of unknown peaks (and known “peak  

                   2”) corresponding to stilbene absorbance ranges in grape berry skin                                                                  

                   extracts of two cultivars 5 days post UVC irradiation. All peaks                 

                   quantified based on trans-resveratrol standard calibration curve.
b
  

                   Quantified at 306 nm as trans-resveratrol. 

Potenial stilbene 

peak no. 

µg g
-1

 dry weight 

Valiant
 

Frontenac 

1 94.0 ± 18.1
c 

97.9 ± 9.3 

2 (trans-resveratrol) 3466.4 ± 1271.0 1197.8 ± 204.5 

3 163.0 ± 43.3 47.7 ± 2.7 

4 7.7 ± 3.2 9.2 ± 5.8 

5 44.2 ± 1.4 33.4 ± 3.0 

6 90.0 ± 25.0 56.8 ± 16.2 

7 31.6 ± 11.0 16.9 ± 5.7 
                                  a 

µg g
-1

 dry weight 
                                  b

 y= 12470x – 200451, R
2
= 0.9985                                                                                                                      

                       
c
 mean of six replicates ± SEM 

 


