ON THE ORIGIN OF SIPHONARIID POLYPROPIONATES:
TOTAL SYNTHESIS OF CALOUNDRIN B
AND ITS ISOMERIZATION TO SIPHONARIN B

A Thesis Submitted to the
College of Graduate Studies and Research
In Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy
In the Department of Chemistry
University of Saskatchewan
Saskatoon

By

FABIOLA BECERRIL-JIMÉNEZ

© Copyright Fabiola Becerril-Jiménez, February 2012.
All rights reserved.
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to:

The Head
Department of Chemistry
University of Saskatchewan
110 Science Place
Saskatoon, SK S7N 5C9
CANADA
ACKNOWLEDGMENTS

I want to take this opportunity to express all my gratitude to my supervisor Dr. Dale Ward for his guidance during the past five years. You taught me to perceive chemistry from a different perspective. Thank you!
I would like to thank my advisory committee members, Dr. Soledade Pedras, Dr. Marek Majewski, and Dr. Nicholas Low for their suggestions throughout my graduate studies.
Special thanks are given to the Department of Chemistry, University of Saskatchewan, Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support.
I am very thankful to Dr. Keith Brown, Dr. Gabriel Schatte, and Ken Thoms for their technical support.
Special acknowledgments to Dr. Pia Wennek for her support and interest in my teaching development, I had a wonderful time teaching under your supervision!
All my appreciation to Dr. Michel Gravel and his group, in particular to Miss. Karen Thai and Dr. Eduardo Sánchez for those wonderful moments.
I want to thank to all my friends for their support and encouragement especially to Dr. Alfredo Vázquez, Lucille and Francisco Otero, Armando Marenco, Vishal and Jackie Jheengut, Sandip Pardeshi and Nancy Bawa, Gerry and Shirley Falk.
I would like to thank all the former and current members of the Ward group for the enjoyable moments we shared together and the constructive discussions in the lab: Dr. Garrison E. Beye, Dr. Martin Gillis, Dr. Vishal Jheengut, Dr. Sandip Pardeshi, Dr. Jianheng Shen, Pramod Jadhav, Thano Karagiannis, Alieh Kazemeini, Leon Lai, Nikki Theaker, Mojtaba Biniaz, Muxi Cheng, Sushital Jana, Diptarghya Kundu, Jackie Lu, and Mohammad Mehdi (Pooyan) Zahedi.
Foremost, I am really thankful to my parents for their unconditional support and encouragement.
I would like to thank Dirceu, Juan, and Nelly for their love and support.
Thank you to my husband Lalo for his support, understanding, patience, and those long waits after hours.
With all my love to
Eduardo
Paty and José Luís
TABLE OF CONTENTS

PERMISSION TO USE .. i

ACKNOWLEDGMENTS ... ii

DEDICATION .. iii

ABSTRACT ... vii

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF CHARTS .. xi

LIST OF SCHEMES ... xii

LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION .. 1

1.1 Polypropionates from *Siphonaria zelandica* ... 1

 1.1.1 Structure and isolation ... 2

 1.1.2 Biosynthesis .. 6

 1.1.3 Hypothesis on the origin of siphonariid polypropionates 9

1.2 Total syntheses of siphonarin B .. 10

 1.2.1 Paterson’s synthesis ... 10

 1.2.2 Ward’s synthesis .. 12

 1.2.2.1 Synthesis of siphonarin B from the putative acyclic linear precursor 12

 1.2.2.2 Revised hypothesis on the origin of siphonariid polypropionates 17

1.3 Synthesis of trioxaadamantane ring systems ... 18

 1.3.1 Hoffmann’s synthesis of the trioxaadamantane ring system of muamvatin 18
1.3.2 Paterson’s synthesis of muamvatin... 20
1.3.3 Perkins’ approach to Dolabriferol... 22
1.3.4 Ward’s synthesis of the trioxaadamantane ring systems of muamvatin and caloundrin B .. 23
1.4 Conclusions.. 25
2 RESULTS AND DISCUSSION ... 26
2.1 Research objectives... 26
2.2 Retrosynthetic analysis of caloundrin B ... 27
2.3 Formation of the trioxaadamantane ring system of caloundrin B.................. 29
 2.3.1 Sulphur-bridged trioxaadamantanes from 5-alkanoyl-3-[hydroxy(4-oxotetrahydro-2H-thiopyran-3-yl)methyl]dihydro-2H-thiopyran-4(3H)-one precursors 32
 2.3.1.1 The isopropyl analogue (from the 5-(2-methylpropanoyl) precursor) 32
 2.3.1.2 The 3-benzyloxy-2methylpropyl analogue (from the Roche ester) 36
 2.3.2 Trioxaadamantanes from 2-substituted 7-hydroxy-4,6,8-trimethylundecane-3,5,9-trione precursors .. 37
 2.3.2.1 7-Hydroxy-2,4,6,8-tetramethylundecane-3,5,9-trione precursor 37
 2.3.2.2 2-Methylidene precursor .. 38
 2.3.2.3 2-Benzylxomethyl precursors (from the Roche ester) 39
 2.3.2.4 2-(4-Benzyl oxytetrahydro-2H-thiopyran-3-yl) precursor 45
 2.3.3 Installing the correct configuration at C-10 for caloundrin B 47
2.4 Application of aldol coupling with kinetic resolution to the synthesis of caloundrin B.. 51
 2.4.1 The thiopyran route to polypropionates: design of aldol reactions that proceed with kinetic resolution... 51
2.4.2 Non-linear effects in the enantiotopic group selectivity of aldol reactions of chiral reactants ... 53

2.4.3 Study of the selectivity in the aldol reactions between 3-pentanone and racemic 2-(6-ethyl-3,5-dimethyl-4-oxo-4H-pyran-2-yl)propanal .. 56

2.4.4 Study of the stereoselectivity of aldol reactions between the enantiopure trioxadamantane ketone fragment and the racemic pyrone aldehyde fragment 59

2.5 Synthesis of ent-caloundrin B (ent-3) ... 69

2.6 Isomerization of ent-caloundrin to ent-siphonarin B .. 73

2.7 Conclusions ... 82

3 EXPERIMENTAL PROCEDURES .. 85

3.1 General methods .. 85

3.2 Spectral data .. 86

3.3 Materials ... 87

3.4 Experimental procedures and characterization data .. 87

4 REFERENCES ... 151
ABSTRACT

It has been hypothesized that the polypropionates isolated from *Siphonaria zelandica*, siphonarin B, caloundrin B, baconipyrone A, and baconipyrone C, originate by non-enzymatic processes on a common ‘acyclic’ biosynthetic precursor. In previous work in the Ward group, the putative common precursor was synthesized and transformed into siphonarin B, baconipyrone A, and baconipyrone C. However, caloundrin B was not detected in these experiments and its origin remained as a missing piece of the puzzle. Thereafter, it was hypothesized that caloundrin B could be an unstable biosynthetic product from which the formation of the other polypropionates could be readily explained. To test that hypothesis, a new strategy to synthesize caloundrin B was proposed.

This thesis describes and analyzes the manner in which the first synthesis of *ent*-caloundrin B was achieved. The two key steps towards the target molecule involved the synthesis of the trioxaadamantane motif and the assembly of the complete skeleton of *ent*-caloundrin B via a novel aldol coupling between the trioxaadamantane-containing ketone and the \(\gamma \)-pyrone-containing aldehyde, that proceeds with kinetic resolution.
The studies toward the synthesis of caloundrin B allowed the development of new methodologies and the application of a recently disclosed protocol to design aldol reactions that proceed with kinetic resolution. During the course of those studies, a non-linear effect was identified and characterized.

After completion of the synthesis, *ent*-caloundrin B was isomerized to *ent*-siphonarin B under thermodynamic conditions, thus confirming the relative and absolute configuration of *ent*-caloundrin B. This transformation leads to the conclusion that caloundrin B is much less stable than siphonarin B; as a consequence, caloundrin B cannot be an artifact of isolation as previously proposed, but instead, it could be the biosynthetic product from which siphonarin B, baconipyrone A, and baconipyrone C are formed.
LIST OF TABLES

Table 2.1 Isomerization of trioxaadamantane 120 in CDCl₃ .. 35
Table 2.2 Isomerization to trioxaadamantane 121 in CDCl₃ .. 38
Table 2.3 Aldol reactions of (±)-173 with the TiCl(O'Pr)₂ enolate 177 .. 55
Table 2.4 Aldol reactions between 3-pentanone and racemic 2-(6-ethyl-3,5-dimethyl-4-oxo-4H-
pyran-2-yl)propanal .. 58
Table 2.5 Comparison of ¹³C-NMR chemical shifts of aldol adducts 181, 182, 183, 184, and 185
.. 61
Table 2.6 Comparison of ¹H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, and 185
.. 62
Table 2.7 Comparison of ¹H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, 186, and 188
.. 63
Table 2.8 Comparison of ¹H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, 190, and 192
.. 66
Table 2.9 Comparison of ¹H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, and 191 68
Table 2.10 Comparison of ¹H-NMR spectra of natural 3 and synthetic ent-3 71
Table 2.11 Comparison of ¹³C-NMR spectra of natural 3 and synthetic ent-3 72
Table 2.12 Comparison of ¹H-NMR spectra of natural 2 and synthetic ent-2 75
Table 2.13 Comparison of ¹³C-NMR spectra of natural 2 and synthetic ent-2 (inverse detection
at 600 MHz) ... 76
Table 2.14 Comparison of ¹³C-NMR spectra of ent-3, ent-14-epi-3, 6, and 14-epi-6 80
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Siphonariid polypropionates isolated from Siphonaria zelandica</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Assignment of the absolute configuration of 1 and 2 by synthesis of 9</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Stereochemical comparison of siphonariid polypropionates</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Hypothesis about the biosynthetic origin of siphonariid polypropionates</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Revised hypothesis on the origin of siphonariid polypropionates</td>
<td>18</td>
</tr>
<tr>
<td>2.1</td>
<td>Major objectives of the research</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Ground state energies for the equilibrium conformer of 146, 10-epi-146, 148, and 10-epi-148</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Starting materials to prepare trioxaadamantanes 116, ent-116, 10-epi-116, and ent-10-epi-116</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Formation of 134 and 10-epi-116 after isomerization with imidazole</td>
<td>45</td>
</tr>
<tr>
<td>2.5</td>
<td>Structures of caloundrin B (3) and ent-3</td>
<td>48</td>
</tr>
<tr>
<td>2.6</td>
<td>ORTEP representation for 189</td>
<td>60</td>
</tr>
<tr>
<td>2.7</td>
<td>1H-NMR of the isomerization of ent-3 in a solution of imidazole in CDCl$_3$ at room temperature for 1 day</td>
<td>74</td>
</tr>
<tr>
<td>2.8</td>
<td>HPLC studies for the isomerization of ent-3 in a solution of imidazole in CH$_3$CN at room temperature for 8 days</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF CHARTS

Chart 2.1 Isomerization of trioxaadamantane 120 in CDCl$_3$... 35

Chart 2.2 Comparison of 13C-NMR chemical shifts of 185 with those of the model aldol adducts (181, 182, 183, and 184) ... 62

Chart 2.3 Comparison of 13C-NMR chemical shifts of 188 (major compound) with those of the model aldol adducts (181, 182, 183, and 184) ... 64

Chart 2.4 Comparison of 13C-NMR chemical shifts of 186 (minor compound) with those of the model aldol adducts (181, 182, 183, and 184) ... 64

Chart 2.5 Comparison of 13C-NMR chemical shifts of 190 (minor compound) with those of the model aldol adducts (181, 182, 183, and 184) ... 66

Chart 2.6 Comparison of 13C-NMR chemical shifts of 192 (major compound) with those of the model aldol adducts (181, 182, 183, and 184) ... 67

Chart 2.7 Comparison of 13C-NMR chemical shifts of 191 (major compound) with those of the model aldol adducts (181, 182, 183, and 184) ... 69
LIST OF SCHEMES

Scheme 1.1 Rationale for the transformation of siphonarins to baconipyrones.......................... 3
Scheme 1.2 Proposed cyclization pathways for the two epimers at C-8 of 13 5
Scheme 1.3 Biosynthetic studies on siphonarin A (1).. 7
Scheme 1.4 Paterson’s synthesis of siphonarin B (2)... 11
Scheme 1.5 Ward’s synthesis of acyclic precursor 48 ... 14
Scheme 1.6 Isomerization of acyclic precursor 48... 16
Scheme 1.7 Model studies to form the trioxaadamantane moiety of muamvatin (19)................. 19
Scheme 1.8 Formation of the trioxaadamantane moiety of muamvatin (19)............................ 20
Scheme 1.9 Paterson’s synthesis of muamvatin (19)... 21
Scheme 1.10 Formation of a trioxaadamantane moiety during Perkin’s approach towards the synthesis of dolabriferol (83).. 23
Scheme 1.11 Synthesis of model trioxaadamantanes (58 and 89) from muamvatin (19) and caloundrin B (2).. 24
Scheme 2.1 Synthetic strategies for the synthesis of caloundrin B (3)... 28
Scheme 2.2 Strategies proposed to form trioxaadamantane systems 108 30
Scheme 2.3 Proposed approaches for the generation of trioxaadamantane systems that would allow further manipulation .. 32
Scheme 2.4 Formation of trioxaadamantane system bearing an isopropyl substituent following route A Adamantan.. 33
Scheme 2.5 Isomerization of trioxaadamantane 120 to 121 under basic conditions................. 34
Scheme 2.6 Approach to trioxaadamantane 116 from 102 and Roche ester-derived aldehyde 29 .. 36

xii
Scheme 2.7 Formation of trioxaadamantane system 121 following route B .. 37
Scheme 2.8 Approach to a trioxaadamantane system bearing a 2-propenyl substituent................. 39
Scheme 2.9 Approach to trioxaadamantane 116 from Roche ester-derived aldehyde 29.......... 39
Scheme 2.10 Attempts at folding hemiacetal 134 or 144 to the trioxaadamantane system 116 or 145 ... 41
Scheme 2.11 Synthesis of the trioxaadamantane ent-10-epi-116... 44
Scheme 2.12 Preparation of enantioenriched aldehyde 159... 46
Scheme 2.13 Approach to trioxaadamantane 162 ... 47
Scheme 2.14 Attempts to invert the configuration at C-10 of ent-10-epi-164 or ent-10-epi-167 49
Scheme 2.15 Preparation of ketones ent-10-epi-95 and ent-95.. 51
Scheme 2.16 Rational design of aldol reactions with kinetic resolution................................. 53
Scheme 2.17 Preparation of aldehyde (±)-30 ... 56
Scheme 2.18 Possible products from the aldol reaction of ent-10-epi-95 and (±)-30, assuming that Felkin aldehyde diastereoface selectivity is favored ... 59
Scheme 2.19 Derivatization of 185 to determine the relative configuration......................... 61
Scheme 2.20 Aldol reaction of enantiopure ent-95 and (±)-30 assuming that Felkin aldehyde diastereoface selectivity is favored... 65
Scheme 2.21 Aldol reactions of ent-95 and (±)-30 under different conditions......................... 68
Scheme 2.22 Completion of the synthesis of ent-3 ... 70
Scheme 2.23 Study of the isomerization of ent-3 into ent-2 .. 81
LIST OF ABBREVIATIONS

α observed optical rotation

$[\alpha]_D$ specific rotation (expressed without units; the actual units, (deg⋅mL)/(g⋅dm), are implied)

Ac acetyl

AM1 Austin model 1

ap apparent (spectral)

aq aqueous

Ar aryl

9-BBN 9-borabicyclo[3.3.1]nonyl

Bn benzyl

BORSM based on recovered starting material

bp boiling point

br broad (spectral)

‘Bu tert-butyl

Bz benzoyl

°C degrees Celsius

calcd calculated

Cl chemical ionization

CIF crystallographic information file

cm centimeter(s)

COSY correlation spectroscopy
c-Hex cyclohexyl

δ chemical shift in parts per million

d day(s); doublet (spectral)

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCC \(N,N'\)-dicyclohexylcarbodiimide

DEIPS diethyliospropylsilyl

DEPT distortionless enhancement by polarization transfer

DIBAL-H diisobutylaluminium hydride

DIPEA diisopropylethylamine

DMF \(N,N\)-dimethylformamide

DMP Dess-Martin periodinane

DMSO dimethyl sulfoxide

der diastereomeric ratio

DRIFT diffuse reflectance infrared Fourier transform spectroscopy

ee enantiomeric excess

EI electron impact

\(ent\) enantiomer of

\(epi\) epimer of

equiv equivalent

ESI electrospray ionization

Et ethyl

FCC flash column chromatography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HMDS</td>
<td>hexamethyldisilazane, bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum correlation</td>
</tr>
<tr>
<td>IBX</td>
<td>2-iodoxybenzoic acid</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (in NMR spectroscopy)</td>
</tr>
<tr>
<td>KR</td>
<td>kinetic resolution</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>lit.</td>
<td>literature value (abbreviation used with period)</td>
</tr>
<tr>
<td>LRMS</td>
<td>low resolution mass spectrometry</td>
</tr>
<tr>
<td>M</td>
<td>molar (moles per litre)</td>
</tr>
<tr>
<td>M^+</td>
<td>parent molecular ion</td>
</tr>
<tr>
<td>m</td>
<td>multiplet (spectral)</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MKE</td>
<td>mutual kinetic enantioselection</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>MOM</td>
<td>methoxymethyl</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>Ms</td>
<td>methanesulfonyl or mesyl</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>ν</td>
<td>wavenumber</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>ORTEP</td>
<td>oak ridge thermal ellipsoid plot</td>
</tr>
<tr>
<td>PCC</td>
<td>pyridinium chlorochromate</td>
</tr>
<tr>
<td>Pd/C</td>
<td>palladium on charcoal</td>
</tr>
<tr>
<td>PDC</td>
<td>pyridinium dichromate</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>piv</td>
<td>pivaloyl</td>
</tr>
<tr>
<td>PMA</td>
<td>phosphomolybdic acid</td>
</tr>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl or p-methoxyphenylmethyl</td>
</tr>
<tr>
<td>ppm</td>
<td>part(s) per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium para-toluenesulfonate</td>
</tr>
<tr>
<td>i/Pr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PTLC</td>
<td>preparative thin-layer chromatography</td>
</tr>
<tr>
<td>Py</td>
<td>pyridine</td>
</tr>
<tr>
<td>q</td>
<td>quartet (spectral)</td>
</tr>
<tr>
<td>quant</td>
<td>quantitative</td>
</tr>
<tr>
<td>R</td>
<td>alkyl substituent</td>
</tr>
<tr>
<td>rac</td>
<td>a prefix to denote racemic</td>
</tr>
<tr>
<td>Raney-Ni</td>
<td>Raney®-Nickel</td>
</tr>
<tr>
<td>R<sub>f</sub></td>
<td>retention factor (in chromatography)</td>
</tr>
<tr>
<td>rel</td>
<td>relative</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet (spectral); second(s)</td>
</tr>
<tr>
<td>t</td>
<td>triplet (spectral)</td>
</tr>
<tr>
<td>TAS-F</td>
<td>tris(dimethylamino)sulfonium difluorotrimethylsilicate</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutylammonium fluoride</td>
</tr>
<tr>
<td>TBDMS or TBS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TES</td>
<td>triethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TFAA</td>
<td>trifluoroacetic anhydride</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight (in mass spectrometry)</td>
</tr>
<tr>
<td>Ts</td>
<td>tosyl ((para)-toluenesulfonyl ([p-\text{CH}_3\text{-C}_6\text{H}_4\text{-SO}_2]))</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per unit volume (volume-to-volume ratio)</td>
</tr>
<tr>
<td>wt</td>
<td>weight</td>
</tr>
</tbody>
</table>
CHAPTER 1

1 INTRODUCTION

1.1 Polypropionates from *Siphonaria zelandica*

Marine polypropionates have been poorly studied and very little is known about their biological activity or role in the chemical ecology of the producing organisms.\(^1\)\(^2\) The main difficulties are that only very small amounts of material are available by extraction of marine organisms (e.g., mollusks) and, in many cases, the isolated compounds are thought not to be genuine biosynthetic products but rather artifacts of isolation.

Marine pulmonates of the genus *Siphonaria*, also known as false limpets, are intertidal air-breathing mollusks that are a rich source of polypropionates.\(^3\) For example, the decapropionates siphonarins A (1) and B (2), baconipyrone A (4), B (5), C (6) and D (7) and caloundrin B (3), have been isolated from *Siphonaria zelandica* (Figure 1.1).\(^4\)

![Diagram of polypropionates](image_url)

Figure 1.1 Siphonariid polypropionates isolated from *Siphonaria zelandica.*
1.1.1 Structure and isolation

In 1984, Faulkner et al. reported the isolation of siphonarin A (1) and siphonarin B (2) from *Siphonaria zelandica* collected in the intertidal zone along the coast of New South Wales, Australia, with a yield of ca. 0.05 mg of each siphonarin/animal. The structure and relative configuration of siphonarin A (1) was determined by spectroscopic and X-ray analysis. The homologue siphonarin B (2) has an ethyl rather than a methyl group at C-19 and was assigned the same relative configuration as in 1 by analogy. In 1994, Garson et al. determined the absolute configuration of 1 by X-ray analysis of its *p*-bromophenylboronate derivative. Contemporaneously, Paterson et al. were able to assign the absolute configuration of siphonarins 1 and 2 by enantioselective synthesis of the γ-pyrene acid 9, a degradation product isolated with dihydrosiphonarin B (8) (Figure 1.2). Subsequently, the total syntheses of siphonarin B (2) by Paterson et al. and Beye and Ward confirmed the absolute configuration of 1 and 2.

![Structural diagrams](image)

Figure 1.2 Assignment of the absolute configurations of 1 and 2 by synthesis of 9.
The isolation of the baconipyrones 4-7 from specimens of *Siphonaria baconi* collected at the intertidal zone near Melbourne, Australia (Figure 1.1) was reported in 1989 by Faulkner et al.10 The amounts isolated for each compound were: 4, 0.05 mg/animal; 5, 0.046 mg/animal; 6, 0.016 mg/animal; 7, 0.046 mg/animal; and 1, 0.008 mg/animal. The structure and relative configuration of baconipyrone B (5) was determined by X-ray analysis and showed that the configurations at C-4, C-6, C-10, C-11, C-12, and C-14 were identical to those of siphonarin A (1) (Figure 1.1). In contrast to 1, 2, and 3, the baconipyrones do not contain a contiguous carbon skeleton of polypropionate units. Due to the stereochemical similarities between the siphonarins and baconipyrones, Faulkner et al.10 suggested that baconipyrones A (4) and B (5) are generated from siphonarins A (1) and B (2), respectively, via a retro-Claisen reaction (Scheme 1.1).

Scheme 1.1 Rationale for the transformation of siphonarins to baconipyrones.

* *Siphonaria baconi* is considered synonymous with *Siphonaria zelandica*
Thus, Faulkner et al.\(^\text{10}\) hypothesized that ring opening of siphonarins 1 or 2 followed by a retro-Claisen reaction would produce enolate 12 (Scheme 1.1). Subsequent protonation of 12 would produce baconipyrones C (6) or D (7), while a stereoselective intramolecular aldol reaction on 12 would afford baconipyrones A (4) or B (5). Additionally, 4 or 5 might produce 6 or 7, respectively, via a retro-aldol reaction. Based on the proposed mechanistic rationale, the authors suggested that the relative configuration at the stereogenic centres in baconipyrones C (6) and D (7) are identical to those in baconipyrones A (4) and B (5).

After a careful extraction from \textit{S. baconi}, Garson et al. did not observe the presence of any baconipyrones (4-7). This observation suggested that the baconipyrones could be artifacts formed during metabolites extraction and isolation.\(^\text{11}\)

In 2000, Paterson et al. achieved the total synthesis of baconipyrone C (6) demonstrating that its absolute configuration corresponded with the independently reported siphonarins 1 and 2.\(^\text{12}\) The synthesis of 6 also corroborate previous studies where the absolute configuration of siphonarins 1 and 2 and baconipyrones 4-7 was confirmed through the synthesis of the \(\gamma\)-pyrone acid 9 (Figure 1.2).\(^\text{7}\) Baconipyrone C (6) has also been synthesized by Gillingham and Hoveyda\(^\text{13}\) and Yadav and coworkers;\(^\text{14}\) more recently, Beye and Ward synthesized 4 and 6 from its putative acyclic precursor.\(^\text{9}\)

In 1994, Garson and coworkers reported the isolation of caloundrin B (3) (1.6 mg) together with siphonarins A (1) and B (2) from 160 specimens of \textit{S. zelandica} collected from rock platforms at Caloundra, Australia.\(^\text{15}\) The structure of caloundrin B (3) was deduced by spectroscopic methods providing strong evidence for the presence of a \(\gamma\)-pyrone and the trioxaadamantane motif with the indicated relative configuration. The C-12 to C-21 fragment seemed to match with the same fragment present in baconipyrone C (6) (Figure 1.1). However,
the relative configuration along the chain (C-10 to C-14) and the overall absolute configuration of caloundrin B (3) were assigned based on the presumed relationship with the co-metabolite siphonarin B (2). These isomers were hypothesized to originate from a common intermediate (Scheme 1.2).

Apparently, the trioxaadamantane moiety in caloundrin B (3) was not stable and the isolated sample decomposed during the studies. Attempts to re-isolate 3 or isomerize siphonarin B (2) under acidic conditions to produce 3 were unsuccessful. To date, there have been no further reports of isolation of caloundrin B (3) nor has its total synthesis been disclosed. Therefore, the proposed relative and absolute configuration of 3 as well as the presumed link between 3, siphonarin B (2) and baconipyrones A (4) and C (6) through a common acyclic precursor remain as hypotheses.

Scheme 1.2 Proposed cyclization pathways for the two epimers at C-8 of 13.
1.1.2 Biosynthesis

In 1990, Manker, Garson, and Faulkner studied the biosynthesis of the siphonariids denticulatin A (21) and denticulatin B (10 \textit{epi-21}) isolated from \textit{Siphonaria denticulata} (Figure 1.3).16 The studies revealed that these metabolites arose from condensation of propionate-derived units similar to the biosynthesis of macrolide17 and polyether antibiotics.18 Some years later, Garson et al. studied the biosynthesis of siphonarins A (1) and B (2).6 Similar to the previous observations on denticulatin A (21), incorporation of 14C in 1 and 2 was observed after injection of [1-14C] propionate to the foot tissue of \textit{Siphonaria zelandica}. Therefore, they suggested that 1 is formed from one acetate and nine propionate units, whereas 2 would come from ten propionate units. In order to determine the direction of the chain assembly in 1, they studied the biosynthetic origin of C-19. After degradation of 14C-labeled 1 via ozonolysis and derivatization with \textit{p}-\text{Br(C}_6\text{H}_4\text{)}\text{COCH}_2\text{Br}, they obtained unlabeled \textit{p}-bromophenacyl acetate coming from C-19. This result is consistent with a chain assembly from C-19 to C-1, as described in pathway A (Scheme 1.3).6
Scheme 1.3 Biosynthetic studies on siphonarin A (1).

In addition to the biosynthetic studies, Garson et al. compared the relative configurations of the uncyclized tautomers of siphonarins 1 and 2, muamvatin (19), and denticulatin A (21). This comparison revealed a common tetrapropionate unit among these polypropionates. Interestingly, this tetrapropionate unit also matched with the PAPA model proposed by Cane-
Clemer-Westley\(^\dagger\) for the biosynthesis of polyether antibiotics (Figure 1.3).\(^{18}\) Therefore, it was suggested that siphonariid polypropionates might share a common genetic origin with polyether antibiotics. There were also similarities between the siphonarins and the Celmer macrolide model.\(^{17,20}\)

\[\text{Figure 1.3 Stereochemical comparison of siphonariid polypropionates}\]

\(^\dagger\) PAPA model (Propionate-Acetate-Propionate-Acetate units) is one of the empirical models used as a guide to assign the structure and stereochemistry of polyethers.
1.1.3 Hypothesis on the origin of siphonariid polypropionates

Based on the structural, stereochemical, and biosynthetic studies developed on the siphonariid polypropionates 1 and 2, it was hypothesized that siphonarin B (2), caloundrin B (3), and baconipyrones A (4) and C (6) originated via non-enzymatic processes from a common 'acyclic' biosynthetic precursor (23).11, 15, 20 Considering that C-8 in 23 is stereochemically labile via keto-enol tautomerism, one epimer would produce siphonarin B (2) and the other would generate caloundrin B (3). In addition, the baconipyrones 4 and 6 could be artifacts of isolation coming from rearrangements on 2.11

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.4.png}
\caption{Hypothesis about the biosynthetic origin of siphonariid polypropionates}
\end{figure}
1.2 Total syntheses of siphonarin B

1.2.1 Paterson’s synthesis

The approach for the synthesis of siphonarin B by Paterson et al. involved coupling of the two main fragments 26 and 33 via an aldol reaction producing a protected acyclic precursor 34, which required the introduction of an ethyl group and functional group manipulations to generate siphonarin B (Scheme 1.4). The preparation of the keto fragment 26 started with the synthesis of ketone 24 (≥97% ee) from the (R)-Roche ester in 59% yield over 3 steps. A boron mediated aldol reaction of 24 with propionaldehyde followed by an in situ syn reduction provided diol 25 in 86% yield and > 95:5 dr. Diol 25 was bis-DEIPS protected, hydrolyzed at the least hindered position, and then oxidized to produce the DEIPS protected ketone 26 in 49% yield over 3 steps. The pyrone containing aldehyde fragment 33 was prepared from the (S)-Roche aldehyde 49% yield over 8 steps. A Sn(II) mediated aldol reaction of 33 with the TIPS protected ketone 28 gave 31 in 59% yield. Functional group manipulations on 31 (i.e., Evans-Tishchenko reduction, PMB protection, TIPS and acetyl removal) produced diol 32. Aldehyde 33 was obtained after bis-TMS protection of diol 32, followed by selective deprotection of the primary alcohol, and oxidation.

Aldol coupling of 33 with 26 via its Sn(II) enolate produced a mixture of three aldol diastereomers in 92% yield. Removal of the TMS protecting group and Swern oxidation produced 34 and 8-epi-34, which after DEIPS deprotection, furnished hemiacetal 35. Interestingly, when hemiacetal 35 was exposed to mildly acidic (i.e., SiO$_2$) or basic conditions, it underwent a retro-Claisen reaction producing a fragment similar to baconipyrone C (6). This observation strongly supported the hypothesis that the baconipyrones are rearranged products from siphanarins or artifacts from isolation as Ireland and Garson had proposed.
Scheme 1.4 Paterson’s synthesis of siphonarin B (2).
Careful removal of the Bn group on 35, followed by oxidation and introduction of a vinyl group employing the Kishi-Nozaki conditions (CrCl$_2$, 5% NiCl$_2$, DMF)24,25 provided compound 36, which was then oxidized and hydrogenated to afford siphonarin B (2) in low yield. Interestingly, caloundrin B (3) was not observed as a product in the final cyclization process. Siphonarin B (2) was synthesized in 25 linear steps from the Roche aldehyde 29 in 0.8% overall yield.

1.2.2 Ward’s synthesis

1.2.2.1 Synthesis of siphonarin B from the putative acyclic linear precursor

Ward et al. developed a strategy for the preparation of 48, the putative acyclic precursor of the siphonariid polypropionates 1-5.9 In contrast with Paterson’s synthesis,8 this approach involved the construction of the complete carbon skeleton prior to cyclization. Because the formation of γ-pyrones from cyclization of β-triketides requires special conditions,$^{26-28}$ it was considered unlikely that pyrone formation could occur during the isolation process. Therefore, the γ-pyrone motif was installed in the acyclic precursor. The synthesis of 48 allowed studying its cyclization under different conditions thereby directly testing the previous hypotheses about the origin of 2, 3, 4, and 6.

The synthesis of 48 commenced with the readily available starting materials 38 and 44 prepared via the thiopyran route to polypropionates extensively studied in the Ward group (Scheme 1.5).29 The γ-pyrone was constructed by a sequence where 38 was protected and desulfurized followed by aldol reaction of the resulting ketone 39 with aldehyde 40. The aldol adduct was oxidized to produce the desired γ-pyrone 41; however, the reaction conditions also induced hydrolysis of the acetal and elimination of the pivaloate. To reinstall the required stereogenic centre at C-5” in 41, diastereoselective Luche reduction and O-benzyl protection of
the formed alcohol was followed by oxymercuration30, 31 producing diol 42. Taking advantage of the resistance of the secondary alcohol in 42 to react with triethylsilyl triflate (TESOTf), the primary alcohol was selectively TES-protected, followed by MOM protection of the secondary alcohol. Subsequent removal of the silyl group and oxidation of the resulting alcohol produced the aldehyde 43 which then was coupled with the enantioenriched ketone 44 (>98% ee) via its Ti(IV) enolate to give adduct 45 in 79% yield and >20:1 dr. Simple functional group manipulations on 45 produced the desired acyclic precursor 48, which existed as a complex mixture of keto-enol and ring-chain tautomers with the three hemiacetal forms 49, 50, and 51 or 52 predominating. The synthesis of 48 was achieved in 18 linear steps with an overall yield of 3.1%.
Scheme 1.5 Ward's synthesis of acyclic precursor 48.

1. **Synthesis of acyclic precursor 48**
 - **38**
 - i) Piv-CI, 81%
 - ii) Raney-Ni, then IBX, 86%
 - **39**
 - **40** (±)
 - i) LDA, then (±)-40
 - ii) IBX, DMSO
 - iii) IBX, TFOH, MeCN, 62%
 - **41**
 - i) NaBH₄, CaCl₂
 - ii) KHMDS, BnBn
 - iii) Hg(OAc)₂, then NaBH₄
 - 58% over 3 steps

2. **Synthesis of protected precursor 42**
 - **43**
 - i) TESOTf, lutidine
 - ii) MOMCl, DIPEA
 - iii) TBAF
 - iv) IBX, DMSO
 - 92% over 4 steps
 - **44**
 - TiCl₄, DIPEA, 79% (dr > 20:1)

3. **Synthesis of acyclic precursor 46**
 - **45**
 - i) Raney-Ni, THF
 - ii) FeCl₃·6H₂O
 - 84% over 2 steps
 - **46**
 - i) TESOTf, lutidine
 - 46% monoprotected, 44% bisprotected
 - **47**
 - i) Raney-Ni, EtOH
 - ii) HF·Py
 - 87% over 2 steps

4. **Kinetically stable but thermodynamically unstable**
 - **49 OH**
 - **50**
 - **51 OH**
 - **52**
With the acyclic precursor 48 in hand, its isomerisation was studied under different conditions (Scheme 1.6). This was the first time that the thermodynamic equilibrium of siphonariid polypropionates could be studied starting from 48. As noted above, 48 was a complex mixture of tautomers with three hemiacetal forms 49, 50, and 51 or 52 predominating. This mixture was essentially unchanged after 28 days in CDCl₃. However, treatment of 48 with imidazole in CDCl₃ for 24 h produced 2 in 70% isolated yield. Reaction of 48 with DBU in C₆D₆ solution for 1 h produced a mixture of baconipyrone C (6) (50%) and its C-14 epimer (30%). Treatment of 48 with neutral alumina in refluxing ethanol produced a 10:3:7:3 mixture of 53 (40% isolated), 4 (10% isolated), 6, and 2, respectively. The major product 53, a structural isomer of baconipyrone C (6) arising from retro-Claisen fragmentation of hemiacetal 50 or 52, had not been previously reported. Finally, treatment of 2 with neutral alumina in refluxing ethanol produced a 2.3:3:1:1 mixture of 2, 6, 4, and 48, respectively, but not 53. It is noteworthy that both 4 and 6 were stable to these reaction conditions. Surprisingly, caloundrin B (3) was never detected in the isomerization experiments and its presence remained as a missing piece of the puzzle about the origin of all of those polypropionates.⁹

Preparation of compound 54, where the OH group at C-11 was protected thereby limiting the options for cyclization, allowed the assessment of another isomerisation experiment. After exposure of compound 54 to neutral alumina in refluxing ethanol and then debenzylolation, baconipyrones 4 and 6 were produced in 18% and 70% yields, respectively.
Scheme 1.6 Isomerization of acyclic precursor 48.

\[\text{siphonarin B (2)} + \text{baconipyrone C (6)} \]

\[\text{Al}_2\text{O}_3, \text{EtOH}, \Delta \quad 53 \,(40\%), \; 4 \,(10\%) \]

\[\text{siphonarin B (2)} \]

\[\text{Imidazole, 70\%} \]

\[\text{6 (50\%) + 14-epi-6 (30\%)} \]

\[\text{baconipyrone C (6)} \]

\[\text{Al}_2\text{O}_3, \text{EtOH}, \Delta \]

\[\text{siphonarin B (2)} \]

\[\text{baconipyrone A (4)} \]

\[\text{baconipyrone C (6)} \]

\[\text{acyclic precursor (48)} \]

\[\text{i) Al}_2\text{O}_3, \text{EtOH}, \Delta \]

\[\text{ii) H}_2, \text{Pd/C, EtOH} \]

\[\text{4 (18\%)} \]

\[\text{6 (70\%)} \]

\[\text{baconipyrone A (4)} \]

\[\text{baconipyrone C (6)} \]
1.2.2.2 Revised hypothesis on the origin of siphonariid polypropionates

Very important conclusions emerged from the Ward and Beye syntheses of siphonarin B (2), baconipyrone A (4) and C (6) from the presumed acyclic precursor 48.\(^9\) With the information provided by Ward\(^9\) and Garson\(^11\) it was conclusive that the baconipyrones were likely artifacts from isolation coming from the hemiacetal forms of 48 or by ring-opening of siphonarin B (2). These observations supported the previously proposed hypothesis but also established new questions about the origin of those compounds. In this context, it was proposed that if baconipyrones 4 and 6 came from the acyclic precursor 48; then, the hemiacetal forms 49 and 50,\(^\dagger\) compound 53 and 14-epi-6 should be observed during the isolation process. Because none of these compounds had been isolated from *Siphonaria zelandica*, it was most likely that the baconipyrones 4 and 6 originate from 2. Additionally, 2 could be the biosynthetic product. However, this hypothesis would not explain the origin of 3.

Therefore, it was hypothesized that 3 could be less stable than 2 or that access to 3 involved a high energy barrier. Indeed, 3 could be the biosynthetic product from which the formation of 2, 4, and 6 could be explained. However, this revised hypothesis could only be tested if the synthesis of 3 could be achieved (Figure 1.5).

\(^\dagger\) The hemiacetal forms 49 and 50 coming from the acyclic precursor 48 were stable to storage in CDCl\(_3\) for 28 d and exposure to SiO\(_2\).
1.3 Syntheses of trioxaadamantane ring systems

1.3.1 Hoffmann’s synthesis of the trioxaadamantane ring system of muamvatin

Isolated in 1986 from *Siphonaria normalis*, muamvatin (19; Figure 1.3) was the first natural product identified containing a trioxaadamantane ring system.\(^{32}\) In 1994, initial studies to form the racemic trioxaadamantane model 58 were reported by Hoffmann et al.\(^ {33}\) The synthesis started with methacrolein to produce aldehyde 55 after 7 steps. Aldol reaction of 55 with the (Z)-enol borinate from 3-pentanone afforded 56 as a single diastereomer in 85% yield. Finally, Swern oxidation on 56 gave the protected 3-hydroxy-1,5,7-trione 57, that after exposure to HF•pyridine and H\(_2\)O in THF furnished the trioxaadamantane 58 in 49% yield after 2 steps.
Scheme 1.7 Model studies to form the trioxaadamantane moiety of muamvatin (19).

In order to establish the absolute and relative configuration of muamvatin (19) at C-10, Hoffmann studied the synthesis of aldehydes 65 and 69 (Scheme 1.8).34,35 One of the aldehydes was previously obtained from degradation of muamvatin (19) by Ireland.32

Hoffmann’s approach started from methacrolein and 59 to produce aldehyde 60 in 7 steps. Thereafter, aldol reactions of 60 with the (Z)-enol borinates of 61 or ent-61 produced the aldol adducts 62 and 66, respectively. After Swern oxidation and prolonged exposure to HF•pyridine and H2O in THF, 62 and 66 were converted to 64 (60%) and 68 (45%), respectively. The aldehydes 65 and 69 were obtained from 64 and 68, respectively, by O-debenzylation and subsequent oxidation. Aldehyde 65, which possesses the (S)-configuration at C-10, has the same relative configuration as the trioxaadamantane fragment present in muamvatin (19).
1.3.2 Paterson’s synthesis of muamvatin

In 1993, Paterson achieved the first total synthesis of muamvatin (19), confirming the relative and absolute configuration of the compound. The synthesis of the trioxaadamantane moiety ent-64 involved a Sn(II) mediated aldol reaction between ketone 24 and propionaldehyde, followed by a selective anti reduction of the aldol adduct 70, silyl protection, debenzylolation, and oxidation to produce aldehyde 71. Aldol reaction of 71 with the boron enolate of 24 produced 72, which after silyl deprotection cyclised to the hemiacetal 73 as a single isomer in 72% yield. Further oxidation of 73 produced the hemiacetal 74, a tautomer of the trioxaadamantane ring system. However, exposure of 74 to acidic conditions, only produced dehydration. In contrast,
exposure of 74 to silica gel for 18 h produced the desired trioxaadamantane ring system ent-64 in 92% yield.

Scheme 1.9 Paterson’s synthesis of muamvatin (19).

Hydrogenolysis of the benzyl ether in ent-64 followed by oxidation of the resulting alcohol generated aldehyde ent-65 which was in agreement with the trioxaadamantane aldehyde isolated from degradation of muamvatin 19. Therefore, the relative configuration at C-10 was established. Further manipulations to introduce the diene fragment and establish the configuration at C-11, produced muamvatin (19) in 14 steps. Paterson proposed that due to the
straightforward formation of the trioxaadamantane *ent*-64 under SiO₂ conditions, muamvatin (19) could be an artifact of isolation.

1.3.3 Perkins’ approach to Dolabriferol

It is interesting that in one of the approaches towards the synthesis of dolabriferol (83), Perkins observed the formation of the trioxaadamantane ring system 79 (Scheme 1.10). When compound 78 (Scheme 1.10) was subjected to tris(dimethylamino)sulphonium difluorotrimethylsilicate (TAS-F) to remove the silyl groups, followed by addition of DBU, surprisingly compound 79 was produced in 78%. Similarly, treatment of 78 with HF•pyridine and pyridine in THF efficiently provided the trioxaadamantane 79 in 88% yield. These last conditions used to form 79 were very similar to those used by Hoffmann in his model studies for the preparation of trioxaadamantanes 64 and 68 (Scheme 1.8). To date, this is the only example of the formation of a trioxaadamantane bearing a side chain larger than three carbons from a 3-hydroxy-1,5,7-trione or hemiacetal precursor.

Exposure of 79 to DBU for a longer reaction time produced 80 from a ring opening and retro-Claisen reaction sequence. Finally, the ester was transformed to the enone 81 on prolonged exposure to DBU. On the other hand, spiroketal 82 was obtained when 80 was treated with aqueous HF, a process that presumably involved a Claisen reaction. This is the only example where a retro-Claisen fragmentation (e.g., 79 to 80) has been shown to be reversible.
Scheme 1.10 Formation of a trioxaadamantane moiety during Perkin’s approach towards the synthesis of dolabriferol (83).

1.3.4 Ward’s synthesis of the trioxaadamantane ring systems of muamvatin and caloundrin B

In 2009, Ward et al. performed model studies to form the trioxaadamantane ring systems present in muamvatin (19) and caloundrin B (3). Their strategy, utilized thiopyran fragments to form sulphur-bridged trioxaadamantanes 87 and 93, that subsequently could be desulfurized and finally isomerized to the more stable trioxaadamantane species 89 and 58, respectively. Interestingly, the isomerizations of trioxaadamantanes, 88 and 94, were very different. Whereas isomerization of 94 in the presence of imidazole cleanly formed the more stable trioxaadamantane 58 in excellent yield, isomerization of 88 produced the trioxaadamantane 89.
along with the hemiacetal form 90 and the ester 91; the latter produced from a retro-Claisen reaction of the hemiacetal forms (i.e. 90). This methodology, allowed the selective preparation of compounds 89, 90, and 91, truncated forms of caloundrin B (3), siphonarin B (2), and baconipyrone C (6), by using the appropriate isomerization conditions. This was the first example where the formation of the trioxaadamantane moiety from caloundrin B (2) was demonstrated.

Scheme 1.11 Synthesis of model trioxaadamantanes (58 and 89) from muamvatin (19) and caloundrin B (2).
1.4 Conclusions

To date, the achievements in the synthesis of 2, 4, and 6 and their putative acyclic precursor 48 have confirmed their relative and absolute configurations and afforded the study of their inter-relationships. Yet the synthesis of 3 remains a challenge to be solved. Achievement of the synthesis of 3 would allow confirmation of the proposed structure and would allow testing of the revised hypothesis about the origin of the siphonariid polypropionates.

Since caloundrin B (3) was not observed during the biomimetic synthesis of 2, 4, and 6 from the corresponding acyclic precursor (48), the synthesis of 3 should be approached using a different strategy. As an alternative, a convergent synthesis of 3 is proposed, where the γ-pyrone fragment would be coupled with a preformed trioxaadamantane fragment. Several different procedures to form the trioxaadamantane fragment of muamvatin (19) have been reported by Hoffman, Paterson, Perkins, and Ward. However, the only report for the formation of the trioxaadamantane ring system of caloundrin B was disclosed by Ward et al. in 2009. With this precedent in hand, research was directed towards the synthesis of caloundrin B.
2 RESULTS AND DISCUSSION

2.1 Research objectives

One of the key objectives in this research project was to explore the relationship between the siphonariid polypropionates caloundrin B (3) and its structural isomers siphonarin B (2), baconipyrone A (4) and C (6), all isolated from extracts of *Siphonaria zelandica*. To enable this study, it was essential to have access to caloundrin B (3). However, there are no reports on the synthesis of caloundrin B (3) and the single report on the isolation of 3 (1.6 mg from 160 animals) revealed that it was unstable. Therefore, a carefully designed synthetic route would be required to obtain 3 by total synthesis (Figure 2.1).

Caloundrin B (3) was not observed in various attempts at isomerizations of the putative common acyclic precursor (48)\(^9\) or siphonarin B (2).\(^9,15\) Therefore, a convergent synthesis of 3 was proposed involving aldol coupling of the trioxaadamantane-containing ketone 95 with the \(\gamma\)-pyrone-containing aldehyde (±)-30. The proposed use of the racemic fragment (±)-30 for this strategy would require studies of methodology on the design of aldol reactions that proceed with kinetic resolution (*vide infra*). On the other hand, the stereoselective synthesis of the trioxaadamantane fragment using the thiopyran route to polypropionates\(^{29,40}\) was envisaged. However, the development of a methodology to form a trioxaadamantane possessing an appropriate functional ‘handle’ would be required.
Figure 2.1 Major objectives of the research

2.2 Retrosynthetic analysis of caloundrin B

The failure to produce caloundrin B (3) by attempted isomerization of either 2 or 48 seemed to predicate a synthetic plan based on elaboration of a preformed trioxaadamantane fragment. The presence of the β-hydroxyketone in 3 suggested a convergent approach based on aldol coupling of two fragments of similar size. The perhaps more obvious disconnection of the C-11, C-12 bond was rejected because of anticipated difficulties in forming an enolate in the presence of a pyrone and in achieving the required 10,11-anti-11,12-anti-12,14-anti stereoselectivity. Instead, disconnection of the C-12, C-13 bond was envisaged to produce the two key fragments, 95 and (±)-30 (Scheme 2.1). Both enantiomers of the aldehyde 30 are known7,12,41 and the unknown (±)-30 should be available from the γ-pyrones 96,42 easily prepared.
by oligomerization of propionic acid as described by Mullock and Suschitzky.43 The more challenging fragment 95 could be prepared by strategically cleaving the bond between C-8 and C-9 in its open tautomeric form 97, which would generate the synthon 98 and fragment 99. The later fragment (99) is easily accessible in enantioenriched form employing the methodology developed in the Ward group for the synthesis of tetrapropionate units.29, 40, 44 Finally, the enantiopure fragment 98 could be generated by several different methods; for example, from a thiopyran fragment (i.e. 100), by hydroboration of an olefin and then insertion of an ethyl group, or employing the Roche ester (\textit{ent-27}) followed by functionalization and chain extension.

\textbf{Scheme 2.1} Synthetic strategies for the synthesis of caloundrin B (3).
2.3 Formation of the trioxaadamantane ring system of caloundrin B

To date, the only study on the formation of the trioxaadamantane ring system present in caloundrin B (3) was reported by Ward et al.39 In that work, the pentacyclic sulphur-bridged trioxaadamantane 106 (R = Et) was produced directly during FeCl\textsubscript{3} mediated deprotection of the TES ether and ethylene acetal present in 104 (R = Et). The latter was easily prepared by an aldol/oxidation sequence on readily available tetrapropionate precursor 102. Desulfurization of 106 (R = Et) produced the isolable 107 (R = Et) as a thermodynamically unstable protected form of a 3-hydroxy-1,5,7-trione. Ring-chain tautomerism of 107 (R = Et) was studied under various reaction conditions and under thermodynamic control, the isomeric trioxaadamantane 108 (R = Et) was virtually the exclusive product. The transformation of 107 to 108 required isomerization at C-8 and this was shown to occur via keto-enol tautomerism of the open form 112 (R = Et). It should be noted that because 108 (R = Et) was produced under thermodynamic control, it could be anticipated that the synthesis of any of the tautomers [e.g., 107 (R = Et), 112 (R = Et), 113 (R = Et)] would also lead to 108 (R = Et) under thermodynamic control.

In the present research, two different approaches were proposed to study the formation of trioxaadamantane fragments with different substituents at C-9 that might be suitable for elaboration into the desired 95. The first route (route A in Scheme 2.2) was analogous to the approach previously developed by Ward et al. to form 108 (R = Et) as a model trioxaadamantane ring system for caloundrin B.39 Alternatively, in route B it was proposed to start with the desulfurized aldol adduct 109. Aldol reaction of 109 with a suitable aldehyde would give 110. In contrast to 103, an oxidation/deprotection sequence on 110 would be unproductive as 3-hydroxy-1,5,7-triones are known to be unstable to the acidic conditions necessary to remove an ethylene acetal.8, 33, 36 Acid mediated deprotection of 110 should be feasible but would require a chemoselective oxidation of the resulting diol 111 to obtain a tautomer of the desired 108.
The goal of this study was to identify suitable precursors for the formation of a trioxaadamantane bearing a substituent at C-9 that would allow further manipulation to ketone 95. The 'R groups' illustrated in Scheme 2.2 were selected for several reasons. The trioxaadamantane needs to be formed under thermodynamic control and it was anticipated that
the steric and electronic properties of the C-9 substituent would influence the equilibrium. Examination of the isopropyl substituent (from iPrCHO) would confirm whether use of a substituent more hindered than ethyl would still favour trioxaadamantane formation. Successful formation of trioxaadamantane 114 with a 2-propenyl substituent (from acrolein) would allow functionalization, for example via hydroboration to give 115 (Scheme 2.3). Alternatively, producing a trioxaadamantane system such as 117 would require minimal functional group manipulations to produce the desired ketone 95. Finally, the use of Roche ester-derived aldehyde 29 could provide the minimally functionalized trioxaadamantane system 116. The protected hydroxypropyl substituent in aldehyde 29 is similar in size to the isopropyl group and the configuration at C-10 in the resulting trioxaadamantane 116 would be fixed. Subsequently, that substituent could be elongated by addition of an ethyl group to produce the desired 95.

With the above objectives in mind, studies on the formation of the proposed trioxaadamantane ring systems were pursued and are described in this section.
Scheme 2.3 Proposed approaches for the generation of trioxaadamantane systems that would allow further manipulation.

2.3.1 **Sulfur-bridged trioxaadamantanes from 5-alkanoyl-3-[hydroxy(4-oxotetrahydro-2H-thiopyran-3-yl)methyl]dihydro-2H-thiopyran-4(3H)-one precursors**

2.3.1.1 **The isopropyl analogue (from the 5-(2-methylpropanoyl) precursor)**

Previously in the Ward group, it was demonstrated that the formation of a trioxaadamantane system bearing an ethyl substituent was possible using route A in Scheme 2.2. Thus, the first question in this project was if the size and complexity of the substituent were increased, would the trioxaadamantane still be thermodynamically favoured? In order to gain some insight on the impact of the size of the C-9 substituent, formation of the isopropyl analogue
following route A (Scheme 2.2) was attempted. The aldol reaction of the boron enolate of racemic 102§ with isobutyraldehyde produced 118 as a single diastereomer in 82% yield (Scheme 2.4). Based on previous studies in the Ward group,45, 46 aldol reactions of the TES protected boron enolate of (±)-102 are known to produce aldol adducts with a 3,5-trans,5,1''-anti relative configuration. The aldol product 118 was subjected to oxidation with IBX in DMSO for 10 h; subsequently, the crude product from oxidation was treated with FeCl₃•6H₂O in refluxing acetone for 12 h affording 63% of the desired trioxadithiopentacycle 119. Raney-Ni desulfurization of 119 afforded trioxaadamantane 120 in 61% yield. Exposure of 120 to imidazole at 40 °C for 8 days gave the thermodynamically more stable isomer 121 in 40% isolated yield.

Scheme 2.4 Formation of trioxaadamantane system bearing an isopropyl substituent following route A.

The mechanism for the isomerization of 120 to 121 involved a ring opening of the trioxaadamantane 120 to initially produce hemiacetal 123 that would be in equilibrium with the open form 122 and the other three hemiacetal forms 124, 125, and 126 (Scheme 2.5). The more

§ Preparation of the TES deprotected (±)-102 was optimized to produce 10 g of product in 81% yield.39
stable trioxaadamantane 121 would result from cyclization of 125. In addition to this isomerization process, other side reactions could occur, which in principle are responsible of the reduced yield of 121. For instance, a retro-Claisen reaction can occur from any of the formed hemiacetal forms 123-126. Sequentially, the retro-Claisen product 128 can undergo elimination to produce the enone 129. Additionally, the hemiacetal forms are susceptible to dehydration furnishing dihydropyrone 127.

Scheme 2.5 Isomerization of trioxaadamantane 120 to 121 under basic conditions.

In order to gain more insight about the equilibration process, a sample of trioxaadamantane 120, was exposure to imidazole in CDCl₃ at 40 °C and its isomerization was followed by ¹H-NMR (Table 2.1). After 8 days, the reaction was worked up and fractionated. During this process, the formation of trioxaadamantane 121 and hemiacetal 124 were observed along with 127, 128, and 129. Plotting the relative amounts of 120, 121, and 124 as a function of
time (Chart 2.1) revealed that the isomerization reached equilibrium after 96 h with a 6:1 ratio of trioxaadamantanes 121:120. At longer reaction times the amount of 121 was reduced because there were increasing amounts of other products formed by irreversible reactions (i.e. retro-Claisen, dehydration, elimination).

Table 2.1 Isomerization of trioxaadamantane 120 in CDCl₃.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>120</th>
<th>128</th>
<th>129</th>
<th>124</th>
<th>127</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>58</td>
<td>4</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>41</td>
<td>27</td>
<td>12</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>70</td>
<td>14</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>57</td>
</tr>
<tr>
<td>96</td>
<td>10</td>
<td>17</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td>142</td>
<td>8</td>
<td>19</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>53</td>
</tr>
<tr>
<td>169</td>
<td>8</td>
<td>21</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>51</td>
</tr>
<tr>
<td>209</td>
<td>8</td>
<td>21</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>45</td>
</tr>
<tr>
<td>a</td>
<td>9</td>
<td>20</td>
<td>12</td>
<td>6</td>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>b</td>
<td>6.5</td>
<td>17</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>40</td>
</tr>
</tbody>
</table>

a Crude product obtained after 210 h. *b* Isolated products from crude.

Chart 2.1 Isomerization of trioxaadamantane 120 in CDCl₃.
2.3.1.2 The 3-benzyloxy-2-methylpropyl analogue (from the Roche ester)

With the successful synthesis of 121, the next step was to investigate the formation of a trioxaadamantane bearing a (1-benzyloxy)-isopropyl substituent at C-9 using the sequence of reactions described in route A (Scheme 2.2). The boron mediated aldol reaction of enantiopure 102 with the Roche ester-derived aldehyde 29 produced a single diastereomer in 82% yield. Oxidation of the alcohol with IBX in DMSO for 5.5 h followed by deprotection of the TES and acetal groups by treatment with FeCl₃•6H₂O for 12 h produced the desired trioxadithiopentacycle 131 in 58% yield over 2 steps. Raney-Ni desulfurization of 131 provided a mixture of trioxaadamantane 133 and its debenzylated form 132 in low yield. Surprisingly, isomerization of 133 in the presence of imidazole at 40 °C gave only hemiacetal 134 by ¹H-NMR without evidence for the presence of the expected 116.

Scheme 2.6 Approach to trioxaadamantane 116 from 102 and Roche ester-derived aldehyde 29.
Because of the problems encountered in the formation of the trioxadithiopentacycle 131 and its subsequent desulfurization with Raney-Ni, the possibility for preparation of a trioxaadamantane such as 116 employing route B (Scheme 2.2) was considered.

2.3.2 Trioxaadamantanes from 2-substituted 7-hydroxy-4,6,8-trimethylundecane-3,5,9-trione precursors

2.3.2.1 7-hydroxy-2,4,6,8-tetramethylundecane-3,5,9-trione precursor

To study route B in Scheme 2.2, the precursor 135 was prepared by desulfurization of aldol 118 in 92% yield. Subsequently, the protecting groups (i.e., TES and ethylene acetal) were hydrolyzed by treatment with FeCl₃•6H₂O in acetone at room temperature for 1 h to afford 136 in 72% yield. Reaction of 136 with TESOTf was attempted to determine which of the two alcohols was more reactive. At moderate conversion the C-9 protected 137 was produced selectively in 50% yield along with unreacted starting material suggesting that selective oxidation of the C-9 alcohol in diol 136 could be achieved.

Scheme 2.7 Formation of trioxaadamantane system 121 following route B.

As anticipated, diol 136 was oxidized with DMP observing predominantly a selective oxidation at C-9 to produce the 5-hydroxy-3,7,9-trione as a mixture of three hemiacetal forms (i.e., 124 and 124a) along with minor amounts of other tautomers (i.e. enol and keto forms).
Submission of this mixture of tautomers to imidazole at 40 °C in CDCl₃, afforded the expected trioxaadamantane 121. Monitoring the isomerization by ¹H-NMR indicated that the maximum amount of 121 (ca. 70%) was present after ca. 2 days; Table 2.2). After a reaction time of 125 h, 121 was isolated in 35% yield.

Table 2.2 Isomerization to trioxaadamantane 121 in CDCl₃.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>122</th>
<th>128</th>
<th>129</th>
<th>124</th>
<th>127</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>68</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>71</td>
</tr>
<tr>
<td>71</td>
<td>0</td>
<td>18</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>116</td>
<td>0</td>
<td>20</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>63</td>
</tr>
<tr>
<td>a</td>
<td>7</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>61 (35)</td>
</tr>
</tbody>
</table>

a Crude product after 125 h. b Isolated product from crude.

2.3.2.2 2-Methylidene precursor

Raney-Ni desulfurization of the tetrapropionate unit (−)-102 afforded the enantioenriched ketone (+)-109 in 85% yield (Scheme 2.8). A boron mediated aldol reaction of (+)-109 with methacrolein produced 138 as a single diastereomer in 55% yield. Deprotection of the TES and ethylene acetal groups was achieved with FeCl₃·6H₂O to give diol 139 in 52% yield. Although attempted selective oxidation of 139 with MnO₂ did not produce the desired product, treatment with DMP was successful. The resulting product 140, a mixture of tautomers, was directly submitted to imidazole in CDCl₃ at room temperature for 19 h to give the retro-Claisen product 141 in 24% yield as the only isolable material without evidence of the presence of the desired trioxaadamantane 114. In view that those results were not promising for the formation of the 2-propenyl substituted trioxaadamantane system, it was decided to investigate other suitable substituents at C-9.
Scheme 2.8 Approach to a trioxaadamantane system bearing a 2-propenyl substituent.

2.3.2.3 2-Benzylxoymethyl precursors (from the Roche ester)

Following route B in Scheme 2.2, aldol reaction of the Roche ester-derived aldehyde 29 with the enantioenriched ketone (+)-109 via its Ti ‘ate’ or Li enolate produced keto alcohol 142 as a mixture of 3 or 4 diastereomers. In a three step procedure, hydrolysis of the TES and ethylene acetal protecting groups in 142 followed by chemoselective DMP oxidation of the resulting diol and then exposure to imidazole produced mainly hemiacetal 134 along with traces of the desired trioxaadamantane 116 (Scheme 2.9).

Scheme 2.9 Approach to trioxaadamantane 116 from Roche ester-derived aldehyde 29.
Several experiments were performed with hemiacetal 134 with the objective of inducing its isomerization to the trioxaadamantane 116 (Scheme 2.10). Exposure of hemiacetal 134 to imidazole at 40 °C for 33 h, provided recovered hemiacetal 134 in ca. 75% with traces of the desired trioxaadamantane 116 together with other species (e.g., retro-Claisen and elimination products). It was hypothesized that hemiacetal form 134 could be stabilized by H-bonding, thereby disfavouring the trioxaadamantane form 116. Therefore, it was proposed that the use of a polar solvent for the isomerization step (i.e. THF or MeOH), might disrupt the putative intramolecular H-bond in hemiacetal 134, and facilitate the formation of the desired trioxaadamantane 116. When the hemiacetal 134 was submitted to imidazole in refluxing THF or MeOH for 1 h, the starting hemiacetal form 134 remained as the major compound in the mixture. Motivated by Paterson’s report on the synthesis of muamvatin, where their respective hemiacetal (76 in Scheme 1.9) produced the desired trioxaadamantane ring system on exposure to silica, a sample of hemiacetal 134 was adsorbed on a SiO₂ PTLC plate and extracted after 18 h. The resulting mixture consisted of hemiacetal 134 (ca. 40%), desired trioxaadamantane system 116 (ca. 15%) and other species (e.g. retro-Claisen and/or elimination products; ca. 45%) by ¹H NMR. However, these results were not very promising because the hemiacetal 134 was always the predominant component after attempted isomerization and, at best, only a small amount of the desired trioxaadamantane 116 was formed along with significant amounts of side products. Concluding that this method would not provide synthetically useful amounts of trioxaadamantane 116, a final approach involved the use of a TIPS protecting group to disfavour the putative stabilizing intramolecular H-bond in 134. The TIPS protected trioxaadamantane 143 was prepared by desulfurization of 131 (in Scheme 2.6) followed by treatment with TIPS-OTf. Trioxaadamantane 143 was stable to imidazole in CDCl₃ at room temperature for 10 h; however,
after 5 days at 40 °C 143 was completely consumed and hemiacetal 144 was the only isolated product.

Scheme 2.10 Attempts for folding hemiacetal 134 or 144 to the trioxaadamantane system 116 or 145.

The unfavourable results in these experiments deserved a careful conformational analysis in order to find an explanation for the observed outcomes. At this time, it was hypothesized that the configuration at C-10 could be playing an important role in the formation of the trioxaadamantane system. Simple molecular mechanics calculations, employing the software
Spartan,** on the trioxaadamantanes 148 and 10-epi-148 suggested that the latter was ca. 0.5 Kcal/mol more stable (Figure 2.2). Similar calculations on the most stable hemiacetal tautomers 146 and 10-epi-146 suggested that 146 was considerably more stable (4.4 Kcal/mol) primarily due to a favourable H-bond between the hemiacetal OH and methyl oxygen. The above calculations suggested that the unfavourable equilibrium observed in the attempted formation of 148 might be reversed in the 10-epi diastereomer. To test that hypothesis, the preparation of 10-epi-116 following route B in Scheme 2.2 was attempted.

** Figure 2.2 Ground state energies for the equilibrium conformer of 146, 10-epi-146, 148, and 10-epi-148.

** All calculations were performed using the software Spartan ’08 V 1.1.2 for Mac from Wavefunction, Inc. The calculations were performed by finding the equilibrium conformer using Molecular Mechanics / MMFF (Merck Molecular Force Field) model and the ground state energies were taken.
The preparation of 10-\textit{epi}-116 would require ketone 109 and \textit{ent}-29; however, \textit{ent}-10-\textit{epi}-116 could be prepared from \textit{ent}-109 and 29. Experimentally, the second option was used because aldehyde 29 was on hand and both enantiomers of 109 were available.\footnotemark

\footnotetext{The preparation of the Roche ester-derived aldehyde 29 required 3 steps starting from the commercially available Roche ester.46}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2_3.png}
\caption{Starting materials to prepare trioxaadamantanes 116, \textit{ent}-116, 10-\textit{epi}-116, and \textit{ent}-10-\textit{epi}-116.}
\end{figure}

Following the same route as illustrated in Scheme 2.9, aldol reaction of 29 with the Ti ‘ate’ or Li enolates of \textit{ent}-109 gave a mixture of aldol adducts 149 (79-81\%). Gratifyingly, after TES and acetal deprotection, DMP oxidation and isomerization with imidazole, 149 was converted to the desired trioxaadamantane \textit{ent}-10-\textit{epi}-116 in 42\% overall yield.
Scheme 2.11 Synthesis of the trioxaadamantane ent-10-epi-116.

In view of these experimental results and the molecular mechanics calculations, it seemed clear that H-bonding was playing an important role for the stabilization of certain hemiacetal forms, thus favouring the equilibrium towards the hemiacetal 134 in the first attempt (Scheme 2.9) and towards the trioxaadamantane ent-10-epi-116 in the second attempt (Scheme 2.11). Comparing hemiacetals 134 and 10-epi-134 (Figure 2.4) where both have all the large groups in equatorial orientations in a chair conformation, H-bonding between the anomeric OH and OBn group in 134 can occur without any syn pentane interactions in the molecule. In contrast, the same H-bonding in 10-epi-134 results in a syn pentane interaction between the methyl groups as illustrated in Figure 2.4.
2.3.2.4 2-(4-benzyloxytetrahydro-2H-thiopyran-3-yl) precursor

In view of the successful preparation of trioxaadamantane ent-10-epi-116, the formation of a trioxaadamantane with a 2-(4-benzyloxytetrahydro-2H-thiopyran-3-yl) substituent could be another possibility towards the synthesis of caloundrin B (3) because this would have all the necessary carbons in place to generate 10-epi-95 (Scheme 2.3). The main question was if the trioxaadamantane could be formed with this relatively more hindered substituent. The preparation of the required aldehyde 159 began with a baker's yeast reduction of 154 to yield the enantioenriched syn-β-hydroxy ester 155 in 75% and 93% ee (Scheme 2.12). Subsequently, reduction of the ester 155 with NaBH₄ produced diol 156 that was protected as its benzylidene acetal 157. Regioselective reduction of the acetal in 157 with DIBAL-H afforded the primary alcohol 158 that was treated with IBX to produce the desired enantioenriched aldehyde 159.
Because 159 was prone to isomerization and decomposition (elimination) it was used immediately in the aldol reaction with 109.

Scheme 2.12 Preparation of enantioenriched aldehyde 159.

Reaction of 159 with 109 via its (Z)-lithium enolate gave 160 as a mixture of at least three aldol adducts in 77% yield. This mixture of aldol adducts 160 was submitted to the standard three step procedure of FeCl₃•6H₂O mediated deprotection of the TES and ethylene acetal groups, chemoselective oxidation of the resulting diol with DMP, and finally submission to imidazole; however, the hemiacetal product 161 was the only product isolated (31% yield over 3 steps) without detection of the desired trioxaadamantane 162.
Scheme 2.13 Approach to trioxaadamantane 162.

At this point, it seemed that the nature of C-9 had a profound effect on the facility to fold a trioxaadamantane ring system under thermodynamic control. It was concluded that the best option was to continue towards the synthesis of caloundrin B (3) via the trioxaadamantane system ent-10-epi-116, because from all previous attempts, this was the only system that would afford the preparation of synthetically useful amounts of the trioxaadamantane.

2.3.3 Installing the correct configuration at C-10 for caloundrin B

Despite several attempts to prepare a trioxaadamantane fragment suitable for application towards the synthesis of caloundrin B, only ent-10-epi-116 could be obtained in a reasonable yield. Therefore, it was decided to use ent-10-epi-116 towards the synthesis of ent-caloundrin B (ent-3). However, to pursue this objective, the configuration at C-10 in ent-10-epi-116 had to be corrected (Figure 2.5).
Figure 2.5 Structures of caloundrin B (3) and ent-3.

In order to prevent unfolding of the acid- and base-sensitive trioxaadamantane ring system in ent-10-epi-116, the alcohol was protected as its TMS ether by treatment with TMSOTf to furnish ent-10-epi-163 in 87% yield. Then debenzylation using Pd/C, H\textsubscript{2} of ent-10-epi-163 produced alcohol ent-10-epi-164 in 86% yield. At this point, efforts were directed towards elimination of the alcohol group in ent-10-epi-164 with the expectation that the desired relative configuration could be installed by hydroboration of the resulting alkene; however, all attempts under different conditions (i.e. selenation49,50 mesylation) failed (Scheme 2.14).
Scheme 2.14 Attempts to invert the configuration at C-10 of ent-10-epi-164 or ent-10-epi-167.

Oxidation of ent-10-epi-164 with IBX in DMSO51 successfully afforded aldehyde ent-10-epi-167 in quantitative yield. It was attempted to form the enol ether ent-10-epi-167 with hopes of producing the desired aldehyde ent-167 by hydrolysis under kinetic control. Again, all attempts exploring this approach failed.

Finally, the isomerization of ent-10-epi-167 under basic conditions was investigated. When a solution of ent-10-epi-167 in CDCl\textsubscript{3} was exposed to imidazole at 40 °C for 1 day52 a separable 4:1 equilibrium mixture of ent-10-epi-167 and ent-167 was produced. Similarly,
exposure of a solution of ent-10-epi-167 in DMSO to L-proline53 at room temperature for 10 days produced the same ratio of the two aldehydes. Despite the unfavourable equilibrium, submission of ent-10-epi-167 to six isomerization cycles allowed aldehyde ent-167 to be obtained in 49% yield along with recovered ent-10-epi-167 in 28% yield.

An alternative method for epimerizing C-10 was attempted with ketone ent-10-epi-95. This ketone was prepared from aldehyde ent-10-epi-167 by reaction with EtMgBr to afford essentially a single diastereomer of ent-10-epi-169 in 88% yield that was oxidized with IBX in DMSO51 to produce ketone ent-10-epi-95 in 99% yield. Unfortunately, ent-10-epi-95 proved to be quite stable and no isomerization was observed in the presence of imidazole in CDCl\textsubscript{3}. Nevertheless, the preparation of ent-10-epi-95 was useful in the study of aldol reactions with kinetic resolution (see Section 2.4.4).

Reaction of aldehyde ent-167 with EtMgBr produced ent-170 as a 4:1 mixture of the two possible diastereomers in 99% yield. Without separation, ent-170 was oxidized with IBX in DMSO51 to produce the desired ketone ent-95 in 87% yield (Scheme 2.15). The preparation of ent-95 opened the possibility to continue with the study of the next key step towards the synthesis of ent-3.
Scheme 2.15 Preparation of ketones ent-10-epi-95 and ent-95.

2.4 Application of aldol coupling with kinetic resolution to the synthesis of caloundrin B

2.4.1 The thiopyran route to polypropionates: design of aldol reactions that proceed with kinetic resolution.

The development of new strategies and their application in the synthesis of polypropionates is one of the main topics of research in the Ward group. A very solid methodology based on the aldol reaction of thiopyran units has been developed and applied to the synthesis of diverse marine polypropionates.‡29 My contribution to this area involved the study of aldol reactions that proceed with kinetic resolution.‡46

In all aldol reactions between two chiral fragments, three stereocontrol elements contribute to the stereochemical outcome of the resulting aldol products. These are: i) aldehyde diastereoface selectivity, ii) enolate diastereoface selectivity, and iii) relative topicity of the aldol reaction. Therefore, if the three stereocontrol elements are highly selective,‡‡ it would be possible

‡ In Heathcock’s studies for acyclic stereoselection in aldol reactions he postulated that: “In reactions involving two chiral racemic compounds, the magnitude of mutual kinetic resolution depends upon the diastereoselectivity shown by the two reactants in their reactions with achiral reaction partners”. Thus, application of the multiplicativity rule
to predict which would be the stereochemical outcome of the major product by application of the multiplicity rule.54-56

From previous studies in the Ward group, it was established that the enolate diastereoface selectivity of tetrapropionate aldol adducts 171 (Scheme 2.16) could be manipulated by the absence (i.e. 3,5\textit{-syn} selectivity) or presence (i.e. 3,5\textit{-trans} selectivity) of a protecting group on the C-1' OH group.45 In addition, the diastereoface selectivity of the aldehyde 173 was shown to be highly Felkin selective; i.e., leading to products with a 1\textquoteright,6\textquoteright\textit{-syn} relative configuration.45 In this research, the development of conditions to switch the relative topicity (5,1\textquoteright\textit{-anti} or 5,1\textquoteright\textit{-syn}) of the aldol reactions between (±)-171 and (±)-173 were studied. Thereafter, the optimized conditions for the aldol reactions were performed with enantiopure ketone 171 in order to achieve kinetic resolution.§§

High 5,1\textquoteright\textit{-anti} selectivity (i.e. 174, \(s = 15\textendash 20\)) was achieved in reactions between (±)-173 and the enol dicyclohexylborinates of the four diastereomeric aldol adducts (±)-171, whereas high 5,1\textquoteright\textit{-syn} selectivity (i.e. 175, \(s = 10\textendash 20\)) was achieved in the same reactions by using the Ti(IV) 'ate' enolates of (±)-171 formed by reaction of the LDA-generated Li enolates with Ti(O\textsubscript{i}Pr\textsubscript{4}) (Scheme 2.16). The same aldol reactions using enantiopure ketones 171 with (±)-173 proceeded with kinetic resolution allowing access to enantiopure aldol adducts 174 and 175, which are useful for further application in synthesis. In addition, this strategy for achieving kinetic resolution was thought to be applicable to aldol reactions with suitable substrates and to other related processes.

to calculate the kinetic resolution selectivities (\(s = k_{\text{fast}}/k_{\text{slow}}\)) in aldol couplings of chiral reactants gives: \(s = (E\cdot R\cdot A + E + R + A)/(E\cdot R + E\cdot A + R\cdot A + 1)\), where \(E\) = enolate diastereoface selectivity; \(A\) = aldehyde diastereoface selectivity; \(R\) = relative topicity of the coupling.

§§ This work was developed in collaboration with Mohammad M. Zahedi.
2.4.2 Non-linear effects in the enantiotopic group selectivity of aldol reactions of chiral reactants

To identify conditions for kinetic resolution, reactions of racemic reactants 171 and 173 were screened under numerous conditions. When both reactants are racemic these reactions occur with mutual kinetic enantioselection (MKE) and appropriate analysis of the distribution of diastereomers formed allows determination of the ratio of rate constants in the related KR when one of the reactants is enantiopure and the other is racemic (i.e. \(s = \frac{k_{\text{fast}}}{k_{\text{slow}}} \)).

After optimization of the reaction between (±)-176 and (±)-173 with TiCl\(_2\)O\(^{i}\)Pr\(_2\) to produce 5,1\(^{"}\)-syn selectivity, the same conditions were applied using enantioenriched enolate 177 (i.e. >94% ee) and racemic (±)-173 in order to perform KR and produce enantioenrich aldol adduct 178. Surprisingly, the selectivity of this reaction did not follow the expected behaviour (i.e. \(SR/SS = k_{SR}/k_{SS} \)).
Performing a series of aldol reactions of racemic (±)-173 with ketone 176 of varying enantiomeric purities (Table 2.3, entries 1-7) demonstrated that the diastereoselectivity of the reaction decreased as the ee of 176 increased. In addition, similar results were observed when ketone aldol adduct (3,1'-syn, 6',1’-anti 171, R = Ac) was used.*** Non-linear relationships between the enantiopurity of a reagent and the enantioselectivity of its reactions have been observed previously and are usually attributed to reaction mechanisms involved dimeric or oligomeric species.\(^{59-62}\) However, there appears to be no previous reports of a non-linear relationship between the enantiopurity of a reactant and its enantiomer selectivity in a kinetic resolution.

It is known that Ti(IV) species can exist as dimers in solution.\(^{63}\) Therefore, if dimeric Ti species are formed during the reaction and both reactants are racemic, then the presence of homochiral or heterochiral Ti(IV) 'dimers' can be present in solution. In contrast, if both reactants are enantiopure, only homochiral 'dimers' are possible. As a consequence, it was hypothesized that different reactivities and concentrations of diastereomeric Ti(IV) 'dimers' were the cause of the observed change in the selectivities of the reactions with racemic vs. enantiopure 177. That is, the formation of the putative homochiral Ti(IV) 'dimers' would become increasingly favored as the enolate used was increasingly enantioenriched. If the reaction of the putative homochiral Ti 'dimer' was less selective than that of the heterochiral 'dimer' and if the formation of the heterochiral 'dimer' was thermodynamically favored, then the results observed in Table 2.3, entries 1-7, could be rationalized.

*** Reactions performed by Mohammad M. Zahedi.
Table 2.3 Aldol reactions of (±)-173 with TiCl(OiPr)$_2$ enolate 177.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enolate a</th>
<th>(±)-173 (equiv)</th>
<th>ee of 176 (%)</th>
<th>Conversion d (%)</th>
<th>178/179 d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(±)-177</td>
<td>2</td>
<td>0</td>
<td>81</td>
<td>15 : 1</td>
</tr>
<tr>
<td>2</td>
<td>(-)-177</td>
<td>2</td>
<td>20</td>
<td>73</td>
<td>13 : 1</td>
</tr>
<tr>
<td>3</td>
<td>(-)-177</td>
<td>2</td>
<td>39</td>
<td>70</td>
<td>10 : 1</td>
</tr>
<tr>
<td>4</td>
<td>(-)-177</td>
<td>2</td>
<td>60</td>
<td>77</td>
<td>6 : 1</td>
</tr>
<tr>
<td>5</td>
<td>(-)-177</td>
<td>2</td>
<td>78</td>
<td>72</td>
<td>4.5 : 1</td>
</tr>
<tr>
<td>6</td>
<td>(-)-177</td>
<td>2</td>
<td>98</td>
<td>81</td>
<td>4 : 1</td>
</tr>
<tr>
<td>7</td>
<td>(-)-177</td>
<td>3</td>
<td>98</td>
<td>81</td>
<td>4 : 1</td>
</tr>
<tr>
<td>8</td>
<td>(±)-177b</td>
<td>2</td>
<td>0</td>
<td>84</td>
<td>16 : 1</td>
</tr>
<tr>
<td>9</td>
<td>(±)-177c</td>
<td>2</td>
<td>0</td>
<td>55</td>
<td>19 : 1</td>
</tr>
<tr>
<td>10</td>
<td>(-)-177b</td>
<td>2</td>
<td>98</td>
<td>82</td>
<td>4 : 1</td>
</tr>
<tr>
<td>11</td>
<td>(-)-177c</td>
<td>2</td>
<td>98</td>
<td>56</td>
<td>9 : 1</td>
</tr>
<tr>
<td>12</td>
<td>(±)-177</td>
<td>0.5</td>
<td>0</td>
<td>quant</td>
<td>17 : 1</td>
</tr>
<tr>
<td>13</td>
<td>(±)-177b</td>
<td>(+) 0.5</td>
<td>0</td>
<td>quant</td>
<td>4 : 1</td>
</tr>
</tbody>
</table>

a Reactions at -78 °C in CH$_2$Cl$_2$, TiCl$_2$(OiPr)$_2$ (4.0 equiv), iPr$_2$NEt (4.0 equiv), enolization time 4 h, reaction time 3 h, reaction concentration 0.06 M. b Reaction concentration 0.1 M. c Reaction concentration 0.02 M. d Conversions and 178/179 ratios were determined by 1H-NMR from the crude sample.

Interestingly, when the reaction was performed at lower concentrations, the selectivity slightly improved (Table 2.3, entries 1 and 9). Because lower concentrations should reduce proportion of Ti(IV) 'dimers', this observation implied that the reaction of monomeric species was more selective than that of 'dimers.' Consistent with that observation, when the reactions of enantioenriched enolate were conducted at lower concentration, the selectivity increased markedly (Table 2.3, entries 6 and 11).

Surprisingly, performing the aldol reaction between racemic enolate 177 and a deficiency of enantioenriched aldehyde 173 also showed poor selectivity (Table 2.3, entries 12 and 13). The
observed result indicates that the enantiopurity of the aldehyde was also contributing to the non-linear behavior. Thus, it seems that a more complex system perhaps involving coordination of aldehyde 173 to a dimeric species of the Ti(IV) enolate of 177 was involved.

In conclusion, the nonlinear effect in the selectivity was characterized using two different substrates. Apparently, both ketone 176 and aldehyde 173 contributed to the selectivity in the reaction, and as a consequence, the relative facility of the like vs. unlike combination of reactant enantiomers (i.e., k_{SR}/k_{SS}) is dependent on the ee of both reactants, this observation appears to be unprecedented.

2.4.3 Study of the selectivity in the aldol reactions between 3-pentanone and racemic 2-(6-ethyl-3,5-dimethyl-4-oxo-4H-pyran-2-yl)propanal

The racemic aldehyde bearing the γ-pyrene fragment (30) was successfully elaborated from propionic acid using the conditions of Mullock and Suschitzky to generate the γ-pyrene 96.\(^{43} \) Subsequently, an aldol-type reaction of paraformaldehyde with the anion generated by treatment of 96 with NaHMDS afforded alcohol 180,\(^{42} \) that was oxidized with IBX to produce the desired racemic aldehyde 30 in quantitative yield.\(^{\dagger\dagger} \)

Scheme 2.17 Preparation of aldehyde (±)-30.

To establish the diastereoface selectivity of aldehyde 30, various aldol reactions were performed with 3-pentanone (Table 2.4). Reaction of the LiHMDS-generated Li enolate of 3-pentanone\(^{64} \) with (±)-30, produced a mixture of 181 (39%), 182 (9%), and 183 (10%); i.e., 83%.

\(^{\dagger\dagger} \) The procedure for preparation of aldehyde (±)-30 was studied and developed by Leon Lai, unpublished results.
of products resulted from Felkin addition to 30. Similar reaction of the Sn(II) enolate of 3-pentanone (prepared by reaction with Sn(OTf)$_2$/Et$_3$N, known to produce Z enolates) with (±)-30 gave the Felkin adduct 181 as the sole product. Reaction of the (E)-boron enolate of 3-pentanone (c-Hex)$_2$BCl/Et$_3$N gave a 20:1 mixture of the Felkin adducts 182 and 181, respectively. In contrast, reaction of the (E)-lithium enolate of 3-pentanone (LiNtBu(SiMe$_3$)) gave a 1.8:1 mixture of the same adducts. Despite the poorly selective relative topicity observed in the reaction, addition to the aldehyde (±)-30 was highly Felkin selective. Finally, exchange of the LiNtBu(SiMe$_3$)-produced Li enolate of 3-pentanone with (c-Hex)$_2$BCl, in order to produce a boron enolate, followed by reaction with (±)-30 produced a 5.9:1 mixture of 182 and 181, respectively. In contrast to the aldol reaction of the unadulterated Li enolate, addition of (c-Hex)$_2$BCl resulted in marked improvement in stereoselectivity favoring the 4,5-anti product 182, but was less selective than the reaction of the traditionally prepared boron enolate. Again, high Felkin selectivity was observed for addition to (±)-30.
Table 2.4 Aldol reactions between pentanone and racemic 2-(6-ethyl-3,5-dimethyl-4-oxo-4H-pyran-2-yl) propanal.

![Aldol reaction diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enolate</th>
<th>Aldol products[^f]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1[^a]</td>
<td>LiHMDS</td>
<td>181 (39%), 182 (9%), 183 (10%)</td>
</tr>
<tr>
<td>2[^b]</td>
<td>Sn(OTf)₂</td>
<td>181 (67%)</td>
</tr>
<tr>
<td>3[^c]</td>
<td>(c-Hex)₂BCl</td>
<td>182:181 (20:1), 95% conversion</td>
</tr>
<tr>
<td>4[^d]</td>
<td>LiN'tBu(SiMe₃)</td>
<td>182:181 (1.8:1), 90% conversion</td>
</tr>
<tr>
<td>5[^e]</td>
<td>i) LiN’tBu(SiMe₃), ii) (c-Hex)₂BCl</td>
<td>182:181 (5.9:1), 91% conversion</td>
</tr>
</tbody>
</table>

[^a]: 3-pentanone (0.480 mmol, 2 equiv), (±)-30 (0.240 mmol, 1 equiv), LiHMDS (0.504 mmol, 2.1 equiv), at -78 °C in THF for 30 min. Isolated yield after FCC.
[^b]: 3-pentanone (0.692 mmol, 3 equiv), (±)-30 (0.230 mmol, 1 equiv), Sn(OTf)₂ (0.899 mmol, 3.9 equiv), Et₃N (1.037 mmol, 4.5 equiv) at -78 °C in CH₂Cl₂. Enolate formation 30 min and aldol reaction for 2 h. Isolated yield after FCC.
[^c]: 3-pentanone (0.120 mmol, 1 equiv), (±)-30 (0.120 mmol, 1 equiv), (c-Hex)₂BCl (0.132 mmol, 1.1 equiv), Et₃N (0.144 mmol, 1.2 equiv), enolate formation at 0 °C for 1 h and aldol reaction at -50 °C for 3 h in ethyl ether. Conversion calculated from ¹H-NMR of the crude.
[^d]: 3-pentanone (0.120 mmol, 1 equiv), (±)-30 (0.120 mmol, 1 equiv), LiN’tBu(SiMe₃) (0.132 mmol, 1.1 equiv) at -78 °C in THF. Enolate formation 30 min and aldol reaction 5 min. Conversion calculated from ¹H-NMR of the crude.
[^e]: Same amounts as in entry 4. Li enolate formation 15 min and then (c-Hex)₂BCl (0.120 mmol, 1 equiv) for 15 min.
[^f]: The set of aldol adducts 181, 182, 183, and 184 were previously synthesized and characterized by Leon Lai.

From the above studies, it was observed that the aldol reactions of 3-pentanone with aldehyde (±)-30 were highly Felkin selective under a variety of experimental conditions. Therefore, the study of enolate diastereoface selectivity for ent-95 and ent-10-epi-95 under different experimental conditions in order to produce the precursor to ent-caloundrin B (ent-3) were investigated.
2.4.4 Study of the stereoselectivity of aldol reactions between the enantiopure trioxaadamantane ketone fragment and the racemic pyrone aldehyde fragment

Having in mind that aldehyde (±)-30 is highly Felkin selective, aldol reactions of (±)-30 with ketones ent-95 and ent-10-epi-95 can produce up to four adducts with Felkin selectivity (Scheme 2.18).

Scheme 2.18 Possible products from the aldol reaction of ent-10-epi-95 and (±)-30, assuming that Felkin aldehyde diastereoface selectivity is favored.

As was observed in the aldol reaction of (±)-30 with 3-pentanone, the aldol reaction of the LiHMDS-generated Li enolate of ent-10-epi-95 with (±)-30 exhibited poor stereoselectivity producing a mixture of four diastereomers in a 1.3:1.3:0.8:1 ratio as determined by ¹H-NMR of the crude reaction mixture. In contrast, addition of (±)-30 to the putative (Z)-boron enolate prepared from reaction of ent-10-epi-95 with 9-BBN-OTf and Et₃N gave a 7:1 mixture of two aldol adducts. The major adduct, 185, was isolated in 74% yield. Reduction of 185 with NaBH(OAc)₃ afforded 78% yield of crystalline diol 189. X-ray analysis of diol 189 established the indicated relative configuration of the molecule.
The structure of 189 shows that the initial aldol reaction of ent-10-epi-95 with (±)-30 proceeded predominantly with 12,13-syn relative topicity, Felkin aldehyde diastereoface selectivity (13,14-syn), and 10,12-syn enolate diastereoface selectivity. The relative topicity of the reaction agreed with the reports in the literature for the diastereoselectivity observed from (Z)-enolates in acyclic systems. However, the Felkin aldehyde diastereoface selectivity observed was opposite to the generally expected results in aldol reactions of chiral Z-enolates and chiral 2-Me aldehydes (i.e. 10,12-anti-12,13-syn-13,14-anti). A possible explanation could be that the pyrone group in aldehyde (±)-30 resembles that of a phenyl group, where the addition to the aldehyde occurs predominantly at the Felkin face.

In addition, the 13C chemical shifts from C-12 to C-16 of aldol adduct 185 were very close to those of the model aldol adduct 181 (Table 2.5 and Chart 2.2).
Scheme 2.19 Derivatization of 185 to determine the relative configuration.

Table 2.5 Comparison of 13C-NMR chemical shifts of aldol adducts 181, 182, 183, 184, and 185.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>13C (ppm)</th>
<th>13C (ppm)</th>
<th>13C (ppm)</th>
<th>13C (ppm)</th>
<th>13C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12,13-syn</td>
<td>12,13-syn</td>
<td>12,13-anti</td>
<td>12,13-anti</td>
<td>12,13-anti</td>
</tr>
<tr>
<td>C-11</td>
<td>216.3</td>
<td>216.3</td>
<td>218</td>
<td>217.3</td>
<td>215.4</td>
</tr>
<tr>
<td>C-12</td>
<td>46.8</td>
<td>47.6</td>
<td>47.0</td>
<td>47.0</td>
<td>48.6</td>
</tr>
<tr>
<td>C-13</td>
<td>72.5</td>
<td>72.4</td>
<td>77.0</td>
<td>77.6</td>
<td>71.9</td>
</tr>
<tr>
<td>C-14</td>
<td>38.2</td>
<td>38.8</td>
<td>40.5</td>
<td>40.0</td>
<td>38.4</td>
</tr>
<tr>
<td>H$_3$CC-12</td>
<td>9.3</td>
<td>10.0</td>
<td>15.9</td>
<td>15.9</td>
<td>10.1</td>
</tr>
<tr>
<td>H$_3$CC-14</td>
<td>14.7</td>
<td>15.7</td>
<td>15.2</td>
<td>15.5</td>
<td>16</td>
</tr>
<tr>
<td>C-15</td>
<td>164.1</td>
<td>163.9</td>
<td>164.5</td>
<td>164</td>
<td>164.4</td>
</tr>
<tr>
<td>C-16</td>
<td>119.7</td>
<td>119.0</td>
<td>118.7</td>
<td>119.5</td>
<td>119.1</td>
</tr>
<tr>
<td>H$_3$CC-16</td>
<td>9.8</td>
<td>9.9</td>
<td>9.7</td>
<td>10.1</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Chart 2.2 Comparison of 13C-NMR chemical shifts of 185 with those of the model aldol adducts (181, 182, 183, and 184).

In addition, when the 1H-NMR chemical shifts of 185 and those of the model adducts 181, 182, 183, and 184 were compared, the characteristic signal for HC-13 indicated that the product had a 12,13-syn selectivity and that for H$_3$CC-14 indicated that the product had a 13,14-syn selectivity (Table 2.6). This is, the relative topicity of the aldol reaction was 12,13-syn and the diastereoface selectivity for addition to the aldehyde was Felkin (13,14-syn) (Table 2.6).

Table 2.6 Comparison of 1H-NMR chemical shifts of aldol adducts 181, 182, 183, 184 and 185.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>183 13C δH (ppm)</th>
<th>181 13C δH (ppm)</th>
<th>182 13C δH (ppm)</th>
<th>184 13C δH (ppm)</th>
<th>185 13C δH (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC-12</td>
<td>2.71</td>
<td>2.37-2.28</td>
<td>2.54-2.42</td>
<td>2.78</td>
<td>2.92</td>
</tr>
<tr>
<td>HC-13</td>
<td>4.20</td>
<td>4.18</td>
<td>3.68</td>
<td>3.74</td>
<td>4.32</td>
</tr>
<tr>
<td>HC-14</td>
<td>3.08</td>
<td>3.00</td>
<td>3.04</td>
<td>3.12</td>
<td>3.07</td>
</tr>
<tr>
<td>H$_3$C-12</td>
<td>1.22</td>
<td>1.08</td>
<td>1.22</td>
<td>1.29</td>
<td>1.14</td>
</tr>
<tr>
<td>H$_3$C-14</td>
<td>1.13</td>
<td>1.33</td>
<td>1.32</td>
<td>1.23</td>
<td>1.34</td>
</tr>
<tr>
<td>H$_3$C-16</td>
<td>1.95</td>
<td>1.96</td>
<td>1.84</td>
<td>1.97</td>
<td>1.98</td>
</tr>
<tr>
<td>H$_3$C-18</td>
<td>1.92</td>
<td>1.92</td>
<td>1.91</td>
<td>1.94</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Aldol reaction of (±)-30 with the putative (E)-boron enolate prepared from ent-10-epi-95 and (c-Hex)2BCl/Et3N66 produced a 4:1 mixture of adducts in 83% yield. Following the trends from previous results with the (Z)-enolate and knowing that the aldehyde (±)-30 has a strong bias for aldol addition with Felkin selectivity, it was presumed that both products resulted from Felkin addition (13,14-syn). Because the products were derived from a (E)-boron enolate, presumably both products had a 12,13-anti relative configuration. Therefore, it was hypothesized that the enolate diastereoface selectivity led to a major product with 10,12-syn relative configuration and a minor compound with 10,12-anti relative configuration. Although the relative configurations for the aldol adducts were not confirmed, comparison of their 1H-NMR signals for HC-13 and H3CC-14 (Table 2.7) and 13C-NMR chemical shifts with those for the model adducts 181, 182, 183, and 184 suggested that the major product was 188 and the minor product was 186 (Chart 2.3 and 2.4).

Table 2.7 Comparison of 1H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, 186 and 188.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>183</th>
<th>181</th>
<th>182</th>
<th>184</th>
<th>186</th>
<th>188</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δH (ppm)</td>
<td>δH (ppm)</td>
<td>δH (ppm)</td>
<td>δH (ppm)</td>
<td>δH (ppm)</td>
<td>δH (ppm)</td>
</tr>
<tr>
<td></td>
<td>12,13-syn</td>
<td>12,13-syn</td>
<td>12,13-anti</td>
<td>12,13-anti</td>
<td>12,13-syn</td>
<td>12,13-anti</td>
</tr>
<tr>
<td>HC-12</td>
<td>2.71</td>
<td>2.37-2.28</td>
<td>2.54-2.42</td>
<td>2.78</td>
<td>3.04</td>
<td>3.12</td>
</tr>
<tr>
<td>H3C-C12</td>
<td>3.08</td>
<td>3.00</td>
<td>3.04</td>
<td>3.12</td>
<td>3.38</td>
<td>2.91</td>
</tr>
<tr>
<td>H3C-C14</td>
<td>1.22</td>
<td>1.08</td>
<td>1.22</td>
<td>1.29</td>
<td>1.28</td>
<td>1.13</td>
</tr>
<tr>
<td>H3C-16</td>
<td>1.95</td>
<td>1.96</td>
<td>1.84</td>
<td>1.97</td>
<td>1.88</td>
<td>2.02 or 1.87</td>
</tr>
<tr>
<td>H3C-18</td>
<td>1.92</td>
<td>1.92</td>
<td>1.91</td>
<td>1.94</td>
<td>1.93</td>
<td>2.02 or 1.87</td>
</tr>
</tbody>
</table>
Chart 2.3 Comparison of 13C-NMR chemical shifts of 188 (major compound) with those of the model aldol adducts (181, 182, 183, and 184).

![Chart 2.3](chart2.3.png)

Chart 2.4 Comparison of 13C-NMR chemical shifts of 186 (minor compound) with those of the model aldol adducts (181, 182, 183, and 184).

![Chart 2.4](chart2.4.png)

In summary, it was confirmed that the aldehyde (±)-30 had a strong preference towards Felkin selectivity in aldol reactions under the experimental conditions examined. In addition, the enolate diastereoface selectivity for both (E) and (Z) boron enolates of ent-10-epi-95 led
preferentially to 10,12-syn aldol adducts and reactions with (+)-30 proceeded with kinetic resolution with moderate selectivity.

In order to synthesize ent-3, it was necessary to prepare aldol adduct 191. Compound 191 would arise from an aldol reaction between ent-95 and (S)-30. From the studies above, it was anticipated that aldol reactions of an (E)-boron enolate of ent-95 would produce adducts with 10,12-syn-12,13-anti relative configuration and that reaction with the Felkin-selective (+)-30 would proceed via kinetic resolution with preferential reaction of (S)-30 to give 191. However, attempted reaction of ent-95 with (c-Hex)2BCl/Et3N followed by addition of (+)-30 gave a mixture of mainly anti aldol adducts, apparently corresponding to 191 and 193 (Scheme 2.20), in very low yield. The low conversion was attributed to ineffective formation of the boron enolate; thus, alternative conditions to produce the (E)-enolate of ent-95 were investigated.

Scheme 2.20 Aldol reaction of enantiopure ent-95 and (+)-30 assuming that Felkin aldehyde diastereoface selectivity is favored.

There are few reports on the stereoselective formation of (E) Li-enolates.\(^ {67, 74, 75} \) As previously attempted with 3-pentanone, the reaction of ent-95 with Li\(^ + \)BuSiMe\(_3\), known to
produce (E)-Li enolates from ethyl ketones,\(^6\) followed by addition of (±)-30 produced a mixture of 4 different aldol adducts. After fractionation, the two major aldol products were obtained that were tentatively assigned as 12,13-syn aldol adducts 190 and 192 by comparison of their \(^1\)H and \(^{13}\)C chemical shifts with those of the model compounds 181, 182, 183, and 184 (Table 2.8, Chart 2.5 and 2.6).

Table 2.8 Comparison of \(^1\)H-NMR chemical shifts of aldol adducts 181, 182, 183, 184, 190 and 192.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>183 (\delta_H) (ppm)</th>
<th>181 (\delta_H) (ppm)</th>
<th>182 (\delta_H) (ppm)</th>
<th>184 (\delta_H) (ppm)</th>
<th>190 (\delta_H)</th>
<th>192 (\delta_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12,13-syn</td>
<td>12,13-syn</td>
<td>12,13-anti</td>
<td>12,13-anti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC-12</td>
<td>2.71</td>
<td>2.37-2.28</td>
<td>2.54-2.42</td>
<td>2.78</td>
<td>2.78</td>
<td>2.73</td>
</tr>
<tr>
<td>HC-13</td>
<td>\textbf{4.20}</td>
<td>\textbf{4.18}</td>
<td>\textbf{3.68}</td>
<td>\textbf{3.74}</td>
<td>\textbf{4.08}</td>
<td>\textbf{4.05}</td>
</tr>
<tr>
<td>HC-14</td>
<td>3.08</td>
<td>3.00</td>
<td>3.04</td>
<td>3.12</td>
<td>3.04</td>
<td>3.03</td>
</tr>
<tr>
<td>H\textsubscript{3}CC-12</td>
<td>1.22</td>
<td>1.08</td>
<td>1.22</td>
<td>1.29</td>
<td>1.09</td>
<td>1.07</td>
</tr>
<tr>
<td>H\textsubscript{3}CC-14</td>
<td>\textbf{1.13}</td>
<td>\textbf{1.33}</td>
<td>\textbf{1.32}</td>
<td>\textbf{1.23}</td>
<td>\textbf{1.35}</td>
<td>\textbf{1.34}</td>
</tr>
<tr>
<td>H\textsubscript{3}C-16</td>
<td>1.95</td>
<td>1.96</td>
<td>1.84</td>
<td>1.97</td>
<td>1.99</td>
<td>1.98</td>
</tr>
<tr>
<td>H\textsubscript{3}C-18</td>
<td>1.92</td>
<td>1.92</td>
<td>1.91</td>
<td>1.94</td>
<td>1.95</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Chart 2.5 Comparison of \(^{13}\)C-NMR chemical shifts of 190 (minor compound) with those of the model aldol adducts (181, 182, 183, and 184).
Chart 2.6 Comparison of 13C-NMR chemical shifts of 192 (major compound) with those of the model aldol adducts (181, 182, 183, and 184).

Because formation of the (E)-boron enolate of ent-95 was not efficient using (c-Hex)$_2$BCl /Et$_3$N, it was decided to attempt 'transmetallation' of (E) Li enolate with (c-Hex)$_2$BCl. The conditions used were inspired by the early reports by Hoffmann et al. on the formation of boron enolates by transmetallation of the corresponding Li enolates.68,69

Reaction of ent-95 with LiNtBu(SiMe$_3$) followed by addition of (c-Hex)$_2$BCl and, after 75 min, addition of (±)-30 produced one major aldol adduct isolated in 60% yield along with 18% of a 2:1 mixture of other aldol adducts (Scheme 2.21). The stereoselectivity of this reaction was very different from that observed in the reaction of the LiNtBu(SiMe$_3$)-generated enolate without addition of (c-Hex)$_2$BCl. The major product was tentatively assigned as 191 with 12,13-anti-13,14-syn relative configuration by comparison of its 1H and 13C chemical shifts with those of the model compounds 181, 182, 183, and 184 (Table 2.9 and Chart 2.7). A 10,12-syn relative configuration for 191 was presumed based in literature reports on the diastereoface selectivity of (E)-enolates of chiral ethyl ketones in aldol reactions.$^{76-79}$ Based on its assigned structure, aldol 191 was subjected to the transformations described in Section 2.5 towards the synthesis of ent-3.
Scheme 2.21 Aldol reactions of ent-95 and (±)-30 under different conditions.

Table 2.9 Comparison of 1H-NMR chemical shifts of aldol aducts 181, 182, 183, 184, and 191.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>183 δ_H (ppm)</th>
<th>181 δ_H (ppm)</th>
<th>182 δ_H (ppm)</th>
<th>184 δ_H (ppm)</th>
<th>191 δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12,13-syn</td>
<td>12,13-syn</td>
<td>12,13-anti</td>
<td>12,13-anti</td>
<td>13,14-syn</td>
</tr>
<tr>
<td>HC-12</td>
<td>2.71</td>
<td>2.37-2.28</td>
<td>2.54-2.42</td>
<td>2.78</td>
<td>2.93</td>
</tr>
<tr>
<td>HC-13</td>
<td>4.20</td>
<td>4.18</td>
<td>3.68</td>
<td>3.74</td>
<td>3.89</td>
</tr>
<tr>
<td>HC-14</td>
<td>3.08</td>
<td>3.00</td>
<td>3.04</td>
<td>3.12</td>
<td>3.11</td>
</tr>
<tr>
<td>H$_3$C-C12</td>
<td>1.22</td>
<td>1.08</td>
<td>1.22</td>
<td>1.29</td>
<td>1.12</td>
</tr>
<tr>
<td>H$_3$C-C14</td>
<td>1.13</td>
<td>1.33</td>
<td>1.32</td>
<td>1.23</td>
<td>1.29</td>
</tr>
<tr>
<td>H$_3$C-16</td>
<td>1.95</td>
<td>1.96</td>
<td>1.84</td>
<td>1.97</td>
<td>1.92 or 1.93</td>
</tr>
<tr>
<td>H$_3$C-18</td>
<td>1.92</td>
<td>1.92</td>
<td>1.91</td>
<td>1.94</td>
<td>1.92 or 1.93</td>
</tr>
</tbody>
</table>
Chart 2.7 Comparison of 13C-NMR chemical shifts of 191 (major compound) with those of the model aldol adducts (181, 182, 183, and 184).

In summary, aldol reactions of ent-10-epi-95 and ent-95 with (±)-30 produced various aldol adducts under different conditions and proceeded with kinetic resolution with moderate to good enantioselectivity. It was possible to establish that additions to (±)-30 were highly Felkin selective under all conditions used. The relative topicity of the aldol reaction could be modulated by varying the enolate geometry to produce either 12,13-syn or 12,13-anti products and the enolate diastereoface selectivity preferentially gave 10,12-syn products in most cases.

2.5 Synthesis of ent-caloundrin B (ent-3)

With aldol adduct 191 in hand, the completion of the synthesis of ent-3 was envisaged. A 1,3-syn selective reduction of 191 was achieved by treatment with Et$_2$BOMe and NaBH$_4$ to afford the desired syn-diol 194 in 84% yield (Scheme 2.22). When compound 194 was submitted to TESOTf in the presence of 2,6-lutidine, it was observed that reaction of the OH group at C-11 was faster than that at C-13. Therefore, selective protection would be possible. However, because recycling would be complicated, the reaction was stopped at the first
appearance of the bis-silyl ether (<50% conversion) to give the desired 195 (31%) along with recovered 194 (61%). IBX oxidation of 195 produced ketone 196 in excellent yield. Finally, exposure of 196 to HF·pyidine cleanly produced ent-3 ([α]$_D$ +50; c 0.2, CHCl$_3$), that gave spectroscopic data (MS, IR, 1H and 13C NMR) that matched perfectly with those reported15 for isolated 3 ([α]$_D$ −19; c 0.2, CHCl$_3$) (Tables 2.10 and 2.11).

Scheme 2.22 Completion of the synthesis of ent-3.
Table 2.10 Comparison of 1H-NMR spectra (CDCl$_3$) of natural 3 and synthetic ent-3.

![Ent-3 diagram]

<table>
<thead>
<tr>
<th></th>
<th>Natural a caloundrin B (3)</th>
<th>Assignment</th>
<th>Synthetic b (ent-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ$_H$ (ppm)</td>
<td>multiplicity</td>
<td>J (Hz)</td>
<td>δ$_H$ (ppm)</td>
</tr>
<tr>
<td></td>
<td>(400 MHz)</td>
<td></td>
<td>(500 MHz)</td>
</tr>
<tr>
<td>4.13</td>
<td>q</td>
<td>7</td>
<td>HC-14</td>
</tr>
<tr>
<td>3.95</td>
<td>d</td>
<td>7.9</td>
<td>HOC-11</td>
</tr>
<tr>
<td>3.81</td>
<td>br d</td>
<td>3.5</td>
<td>HC-5</td>
</tr>
<tr>
<td>3.67</td>
<td>ddd</td>
<td>4.7</td>
<td>HC-11</td>
</tr>
<tr>
<td>3.01</td>
<td>dq</td>
<td>7.5</td>
<td>HC-12</td>
</tr>
<tr>
<td>2.6</td>
<td>br s</td>
<td>2.62</td>
<td>HOC-7</td>
</tr>
<tr>
<td>2.55</td>
<td>q</td>
<td>7.6</td>
<td>H$_2$C-20</td>
</tr>
<tr>
<td>2.22</td>
<td>q</td>
<td>6.7</td>
<td>HC-8</td>
</tr>
<tr>
<td>2.09</td>
<td>dq</td>
<td>7, 3.5</td>
<td>HC-4</td>
</tr>
<tr>
<td>2.04</td>
<td>dq</td>
<td>7.6, 4.7</td>
<td>HC-10</td>
</tr>
<tr>
<td>1.96</td>
<td>dq</td>
<td>7, <1</td>
<td>HC-6</td>
</tr>
<tr>
<td>2.06</td>
<td>s</td>
<td></td>
<td>H$_3$CC-16</td>
</tr>
<tr>
<td>1.94</td>
<td>s</td>
<td></td>
<td>H$_3$CC-18</td>
</tr>
<tr>
<td>1.59</td>
<td>q</td>
<td>7.5</td>
<td>H$_2$C-2</td>
</tr>
<tr>
<td>1.36</td>
<td>d</td>
<td>6.7</td>
<td>H$_3$CC-14</td>
</tr>
<tr>
<td>1.15</td>
<td>t</td>
<td>7.6</td>
<td>H$_3$CC-21</td>
</tr>
<tr>
<td>1.08</td>
<td>d</td>
<td>7</td>
<td>H$_3$CC-6</td>
</tr>
<tr>
<td>1.01</td>
<td>d</td>
<td>7</td>
<td>H$_3$CC-12</td>
</tr>
<tr>
<td>0.98</td>
<td>d</td>
<td>6.7</td>
<td>H$_3$CC-8</td>
</tr>
<tr>
<td>0.95</td>
<td>d</td>
<td>7</td>
<td>H$_3$CC-10</td>
</tr>
<tr>
<td>0.91</td>
<td>t</td>
<td>7.5</td>
<td>H$_3$C-1</td>
</tr>
<tr>
<td>0.91</td>
<td>d</td>
<td>7</td>
<td>H$_3$CC-4</td>
</tr>
</tbody>
</table>

a Data and assignments from Garson et al.15 b In this work it was used δ$_H$ CHCl$_3$ = 7.26.
Table 2.11 Comparison of 13C-NMR spectra of natural 3 and synthetic ent-3.

![Table 2.11](image)

<table>
<thead>
<tr>
<th>Natural a caloundrin B (3) δ$_C$ (ppm)</th>
<th>Assignment a</th>
<th>Synthetic b,c (ent-3) δ$_C$ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>213.1</td>
<td>C-13</td>
<td>213.4</td>
</tr>
<tr>
<td>179.6</td>
<td>C-17</td>
<td>179.8</td>
</tr>
<tr>
<td>164.8</td>
<td>C-19</td>
<td>165.0</td>
</tr>
<tr>
<td>160.1</td>
<td>C-15</td>
<td>160.3</td>
</tr>
<tr>
<td>120.2</td>
<td>C-16</td>
<td>120.4</td>
</tr>
<tr>
<td>118.5</td>
<td>C-18</td>
<td>118.7</td>
</tr>
<tr>
<td>102.9</td>
<td>C-9</td>
<td>103.1</td>
</tr>
<tr>
<td>102.8</td>
<td>C-3</td>
<td>103.0</td>
</tr>
<tr>
<td>97.2</td>
<td>C-7</td>
<td>97.4</td>
</tr>
<tr>
<td>78.4</td>
<td>C-5</td>
<td>78.6</td>
</tr>
<tr>
<td>77.4</td>
<td>C-11</td>
<td>77.7</td>
</tr>
<tr>
<td>50.4</td>
<td>C-14</td>
<td>50.7</td>
</tr>
<tr>
<td>46.2</td>
<td>C-12</td>
<td>46.5</td>
</tr>
<tr>
<td>41.7</td>
<td>C-10</td>
<td>42.0</td>
</tr>
<tr>
<td>36.7</td>
<td>C-8</td>
<td>36.9</td>
</tr>
<tr>
<td>36.6</td>
<td>C-4</td>
<td>36.8</td>
</tr>
<tr>
<td>35.6</td>
<td>C-6</td>
<td>35.8</td>
</tr>
<tr>
<td>29.7</td>
<td>C-2</td>
<td>29.7</td>
</tr>
<tr>
<td>24.7</td>
<td>C-20</td>
<td>24.9</td>
</tr>
<tr>
<td>16.1</td>
<td>H$_3$CC-12</td>
<td>16.3</td>
</tr>
<tr>
<td>13.4</td>
<td>H$_3$CC-14</td>
<td>13.6</td>
</tr>
<tr>
<td>13.4</td>
<td>H$_3$CC-6</td>
<td>13.6</td>
</tr>
<tr>
<td>12.3</td>
<td>H$_3$CC-4</td>
<td>12.6</td>
</tr>
<tr>
<td>11.3</td>
<td>H$_3$C-21</td>
<td>11.5</td>
</tr>
<tr>
<td>11.2</td>
<td>H$_3$CC-10</td>
<td>11.4</td>
</tr>
<tr>
<td>10.1</td>
<td>H$_3$CC-16</td>
<td>10.4</td>
</tr>
<tr>
<td>9.5</td>
<td>H$_3$CC-18</td>
<td>9.8</td>
</tr>
<tr>
<td>7.5</td>
<td>H$_3$CC-8</td>
<td>7.7</td>
</tr>
<tr>
<td>6.3</td>
<td>H$_3$C-1</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a Data and assignments from Garson et al. (inverse detection at 500 MHz).13

b 13C-NMR at 125 MHz. c Chemical shifts of ent-3 are consistently 0.2-0.3 ppm higher than natural 3 presumably due to a different standard. In this work it was used δ$_C$ CDCl$_3$ = 77.23.
In conclusion, the first synthesis of \textit{ent-3} was achieved in 16 linear steps starting from \textit{ent-102}. The key steps in the synthesis involved the formation of the thermodynamically stable trioxaadamantane system \textit{ent-10-epi-116} and its transformation to \textit{ent-167} by isomerization of \textit{ent-10-epi-167}. Finally, the rationally designed aldol reaction between the putative (\textit{E})-enolate of \textit{ent-95}, formed by transmetallation of the Li enolate with (\textit{c}-Hex)$_2$BCl, with (\pm)-30 proceeded with kinetic resolution and constituted the first synthetic application of this unusual transformation.

2.6 Isomerization of \textit{ent-caloundrin} to \textit{ent-siphonarin B}

To investigate the thermodynamic stability and possible isomerization of caloundrin B, \textit{ent-3} was treated with imidazole in CDCl$_3$ at room temperature and the reaction was monitored by 1H-NMR (Figure 2.7). The rapid (reversible?) formation of an unidentified species along with the slow accumulation of \textit{ent-2} was observed. After 24 hours, the 1H-NMR of the crude (after work up) showed that \textit{ent-siphonarin B} (\textit{ent-2}) was the predominant component (ca. 50\%). Fractionation of the mixture by PTLC afforded \textit{ent-siphonarin B} (\textit{ent-2}) (50\%), a mixture of hemiacetal forms (22\%), along with traces of \textit{ent-3} and the unidentified new species observed above. Spectroscopic data (1H and 13C-NMR) for \textit{ent-2} ($[\alpha]_D$ -50; c 0.1, CHCl$_3$) were fully consistent with those reported5 for siphonarin B ($[\alpha]_D$ +13.2; c 0.01361, CHCl$_3$) (see Tables 2.12 and 2.13).
Figure 2.7 1H-NMR of the isomerization of ent-3 in a solution of imidazole in CDCl$_3$ at room temperature for 1 day.
Table 2.12 Comparison of 1H-NMR spectra of natural 2 and synthetic ent-2.

![Diagram](image)

<table>
<thead>
<tr>
<th>Natural a siphonarin B (2)</th>
<th>Assignment</th>
<th>Synthetic b (ent-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_H (ppm)</td>
<td>multiplicity</td>
<td>J (Hz)</td>
</tr>
<tr>
<td>5.14</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>3.88</td>
<td>br d</td>
<td>10.5</td>
</tr>
<tr>
<td>3.81</td>
<td>br s</td>
<td>-</td>
</tr>
<tr>
<td>3.28</td>
<td>q</td>
<td>7</td>
</tr>
<tr>
<td>3.11</td>
<td>br s</td>
<td>-</td>
</tr>
<tr>
<td>2.79</td>
<td>q</td>
<td>7</td>
</tr>
<tr>
<td>2.66</td>
<td>q</td>
<td>6.5</td>
</tr>
<tr>
<td>2.61</td>
<td>br q</td>
<td>7</td>
</tr>
<tr>
<td>2.48</td>
<td>dq</td>
<td>18.5, 7</td>
</tr>
<tr>
<td>2.28</td>
<td>dq</td>
<td>10.5, 6.5</td>
</tr>
<tr>
<td>2.25</td>
<td>dq</td>
<td>18.5,7</td>
</tr>
<tr>
<td>2.04</td>
<td>dq</td>
<td>7, 2.5</td>
</tr>
<tr>
<td>2.00</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>1.98</td>
<td>s</td>
<td>-</td>
</tr>
<tr>
<td>1.83</td>
<td>dq</td>
<td>7, 2</td>
</tr>
<tr>
<td>1.25</td>
<td>d</td>
<td>7</td>
</tr>
<tr>
<td>1.21</td>
<td>d</td>
<td>7</td>
</tr>
<tr>
<td>1.20</td>
<td>t</td>
<td>7</td>
</tr>
<tr>
<td>1.18</td>
<td>d</td>
<td>7</td>
</tr>
<tr>
<td>1.07</td>
<td>d</td>
<td>7</td>
</tr>
<tr>
<td>1.07</td>
<td>d</td>
<td>6.5</td>
</tr>
<tr>
<td>0.94</td>
<td>t</td>
<td>7</td>
</tr>
<tr>
<td>0.76</td>
<td>d</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a Data and assignments from Faulkner et al. 5,15 | b In this work it was used $\delta_H CHCl_3 = 7.26$. |
Table 2.13 Comparison of 13C-NMR spectra of natural 2 and synthetic ent-2 (inverse detection at 600 MHz).

<p>| Natural a siphonarin B (2) |</p>
<table>
<thead>
<tr>
<th>Assignment b</th>
<th>Synthetic c (ent-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_C (ppm)</td>
<td>δ_C (ppm)</td>
</tr>
<tr>
<td>213.3</td>
<td>C-3</td>
</tr>
<tr>
<td>206.4</td>
<td>C-7</td>
</tr>
<tr>
<td>179.8</td>
<td>C-17</td>
</tr>
<tr>
<td>165.5</td>
<td>C-19</td>
</tr>
<tr>
<td>161.6</td>
<td>C-15</td>
</tr>
<tr>
<td>121.6</td>
<td>C-16</td>
</tr>
<tr>
<td>117.2</td>
<td>C-18</td>
</tr>
<tr>
<td>105.1</td>
<td>C-9</td>
</tr>
<tr>
<td>103.1</td>
<td>C-13</td>
</tr>
<tr>
<td>74.6</td>
<td>C-5</td>
</tr>
<tr>
<td>74.6</td>
<td>C-11</td>
</tr>
<tr>
<td>50.0</td>
<td>C-8</td>
</tr>
<tr>
<td>46.0</td>
<td>C-4</td>
</tr>
<tr>
<td>45.3</td>
<td>C-6</td>
</tr>
<tr>
<td>42.4</td>
<td>C-14</td>
</tr>
<tr>
<td>38.7</td>
<td>C-12</td>
</tr>
<tr>
<td>38.4</td>
<td>C-10</td>
</tr>
<tr>
<td>35.6</td>
<td>C-2</td>
</tr>
<tr>
<td>24.7</td>
<td>C-20</td>
</tr>
<tr>
<td>13.0</td>
<td>H$_3$CC-10</td>
</tr>
<tr>
<td>12.6</td>
<td>H$_3$CC-12</td>
</tr>
<tr>
<td>11.9</td>
<td>H$_3$CC-14</td>
</tr>
<tr>
<td>11.4</td>
<td>H$_3$CC-20</td>
</tr>
<tr>
<td>10.9</td>
<td>H$_3$CC-16</td>
</tr>
<tr>
<td>9.4</td>
<td>H$_3$CC-18</td>
</tr>
<tr>
<td>9.3</td>
<td>H$_3$CC-6</td>
</tr>
<tr>
<td>8.6</td>
<td>H$_3$CC-8</td>
</tr>
<tr>
<td>8.2</td>
<td>H$_3$CC-4</td>
</tr>
<tr>
<td>7.4</td>
<td>H$_3$C-1</td>
</tr>
</tbody>
</table>

a Data from Faulkner et al. b Assignments from Garson et al. c There were four unresolved ‘missing’ signals at 8.2, 9.3, 13.0, and 74.6.
Following the isomerization of \textit{ent-3} under the conditions used above for 5 days 10 h and then fractionation of the crude by PTLC produced \textit{ent-2} (33\%), \textit{ent}-baconipyrone C (\textit{ent-6}) (19\%), \textit{ent-14-epi}-baconipyrone C (\textit{ent-14-epi-6}) (16\%), and hemiacetal forms from \textit{ent-48} (ca. 20\%).

To follow the isomerization process more closely, to a solution of \textit{ent-3} in CH$_3$CN was added imidazole and the reaction followed by HPLC (Figure 2.8). Using pure samples, retention times for \textit{ent}-caloundrin B (\textit{ent-3}), siphonarin B (2), and the mixture of hemiacetal forms from \textit{ent-48} were established. After 2 hours, ca. 1:1 mixture of \textit{ent-3} and an unknown compound was observed and this ratio remained essentially constant over several days. After 1 day, ca. 20\% of the mixture was \textit{ent}-siphonarin B (\textit{ent-2}) growing to ca. 70\% after 6 days. The mixture was essentially unchanged after 8 days, and consisted of \textit{ent}-siphonarin B (\textit{ent-2}), mixture of hemiacetal forms from \textit{ent-48}, and other unidentified components with no more than traces of \textit{ent-3} remaining.
Figure 2.8 HPLC studies for the isomerization of ent-3 in a solution of imidazole in CH$_3$CN at room temperature for 8 days.
Monitoring the isomerization of ent-3 in the presence of imidazole both by 1H-NMR and HPLC indicated that the process involved a rapid equilibrium between ent-3 and an unknown intermediate. To determine the identity of this intermediate, the reaction of ent-3 with imidazole in CDCl$_3$ was stopped after 1 h affording a 1.3:1 ratio of ent-3 and the unknown intermediate (by 1H-NMR). Analysis of the 13C-NMR spectrum of the mixture clearly indicated that the unknown contained a trioxaadamantane fragment in its structure (signals at δ$_C$ 102.7, 102.8, and 97.6). Comparison of the 13C-NMR chemical shifts of ent-3 and the unknown revealed the same trends as a similar comparison of baconipyrone C (6) and 14-epi-baconipyrone C (14-epi-6) (Table 2.14). Thus, it was concluded that the unknown intermediate was most likely ent-14-epi-3.
Table 2.14 Comparison of 13C-NMR spectra of ent-3, ent-14-epi-3, 6 and 14-epi-6.

<table>
<thead>
<tr>
<th></th>
<th>ent-3 δ<sub>C</sub>(ppm)</th>
<th>ent-14-epi-3 δ<sub>C</sub>(ppm)</th>
<th>Assignment<sup>a</sup></th>
<th>6<sup>b</sup> δ<sub>C</sub>(ppm)</th>
<th>Assignment<sup>a</sup></th>
<th>14-epi-6<sup>b</sup> δ<sub>C</sub>(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>6.5</td>
<td>6.5</td>
<td>C-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>29.7</td>
<td>29.6</td>
<td>C-2</td>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>C-3</td>
<td>103.1</td>
<td>102.8</td>
<td>C-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-4</td>
<td>36.8</td>
<td>36.9</td>
<td>C-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-5</td>
<td>78.6</td>
<td>78.2</td>
<td>C-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-6</td>
<td>35.8</td>
<td>35.7</td>
<td>C-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-7</td>
<td>97.4</td>
<td>97.6</td>
<td>C-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-8</td>
<td>36.9</td>
<td>36.9</td>
<td>C-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-9</td>
<td>103.1</td>
<td>102.8</td>
<td>C-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-10</td>
<td>42.0</td>
<td>42.4</td>
<td>C-10</td>
<td>41.3</td>
<td>42.4</td>
<td></td>
</tr>
<tr>
<td>C-11</td>
<td>77.7<sup>d</sup></td>
<td>76.2<sup>d</sup></td>
<td>C-11</td>
<td>77.8</td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td>C-12</td>
<td>46.5<sup>d</sup></td>
<td>45.1<sup>d</sup></td>
<td>C-12</td>
<td>48.8</td>
<td>47.8</td>
<td></td>
</tr>
<tr>
<td>C-13</td>
<td>213.4</td>
<td>213.5</td>
<td>C-13</td>
<td>210.7</td>
<td>210.6</td>
<td></td>
</tr>
<tr>
<td>C-14</td>
<td>50.7<sup>d</sup></td>
<td>47.5<sup>d</sup></td>
<td>C-14</td>
<td>51.2</td>
<td>48.7</td>
<td></td>
</tr>
<tr>
<td>C-15</td>
<td>160.3<sup>d</sup></td>
<td>159.7<sup>d</sup></td>
<td>C-15</td>
<td>160.8</td>
<td>160.0</td>
<td></td>
</tr>
<tr>
<td>C-16</td>
<td>120.4</td>
<td>120.4</td>
<td>C-16</td>
<td>120.6</td>
<td>120.4</td>
<td></td>
</tr>
<tr>
<td>C-17</td>
<td>179.8</td>
<td>179.8</td>
<td>C-17</td>
<td>179.9</td>
<td>179.9</td>
<td></td>
</tr>
<tr>
<td>C-18</td>
<td>118.7</td>
<td>118.6</td>
<td>C-18</td>
<td>118.5</td>
<td>118.3</td>
<td></td>
</tr>
<tr>
<td>C-19</td>
<td>165.0</td>
<td>165.1</td>
<td>C-19</td>
<td>164.8</td>
<td>165.0</td>
<td></td>
</tr>
<tr>
<td>C-20</td>
<td>24.9</td>
<td>24.9</td>
<td>C-20</td>
<td>24.9</td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>C-21</td>
<td>11.5</td>
<td>11.6</td>
<td>C-21</td>
<td>11.5</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-4</td>
<td>12.6</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-6</td>
<td>13.6</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-8</td>
<td>7.7</td>
<td>7.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-10</td>
<td>11.4</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-12</td>
<td>16.3</td>
<td>16.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-14</td>
<td>13.6</td>
<td>13.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-16</td>
<td>10.4</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>3</sub>CC-18</td>
<td>9.8</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aData and assignments for 6 according to Faulkner¹⁰.^bTaken from reference⁹.^cFragments from C1-to C-9 are structurally different between ent-3 and 6, therefore those chemical shifts are not comparable. ^dΔδ_C > 0.6 ppm.
Thus, the initial transformation after exposure of \textit{ent-3} to imidazole was the epimerization at C-14, and then \textit{ent-3} isomerized to \textit{ent}-siphonarin B (\textit{ent-2}). Therefore, during the isomerization process the ratio between \textit{ent-3} and \textit{ent-14-epi-3} remained constant, as observed by HPLC. However, once the equilibrium was reached, mainly \textit{ent-2} was formed in the mixture. In addition, longer reaction time in imidazole also produced \textit{ent}-baconipyrone C (\textit{ent-6}) and \textit{ent-14-epi-6} confirming that baconipyrones 4 and 6 correspond to artifacts from isolation.

\textbf{Scheme 2.23} Study of the isomerization of \textit{ent-3} into \textit{ent-2}.

The close correspondence of the spectroscopic data of synthetic \textit{ent-3} with those of isolated 3, clearly demonstrated their enantiomeric relationship. The relative configuration assigned to \textit{ent-3} is based on the relative configuration of the aldol adduct 191. Although the assignment of the 12,13-\textit{anti}-13,14-\textit{syn} relative configuration in 191 was based on spectroscopic
evidence, the assignment of 10,12-syn was tentative and based on literature precedents (see section 2.4.4). The relatively 'clean' isomerization of ent-3 to ent-2 of known structure clearly confirms for the both the relative and absolute configuration proposed for caloundrin B (3) because both compounds share the same configuration at C-4, C-5, C-6, C-10, C-11, C-12, and C-14, differing only at C-8. Besides, it was proved that ent-3 is thermodynamically less stable than ent-2 and therefore, it cannot be an artifact from isolation. In addition, the hypothesis that proposed 3 as the biosynthetic product from which 2, 4, and 6 are formed is more viable.

2.7 Conclusions

In summary, the first synthesis of ent-3 was achieved in 16 linear steps from ent-102. In the presence of imidazole, ent-3 was cleanly isomerized to ent-siphonarin B ent-2 with no more than traces of ent-3 remaining. The isolation of ent-3 from this experiment clearly establishes that caloundrin B (3) and siphonarin B (2) share the same absolute configurations at all stereocentres (except C-8) and confirms the proposed relative and absolute configuration for 3. These results also firmly establish that caloundrin B (3) is thermodynamically much less stable than siphonarin B (2) confirming previous calculations and explaining the failure\(^9\) to obtain 3 by attempted isomerization of 48. Consequently, caloundrin B (3) cannot be an isolation artifact of siphonarin B (2) but presumably is formed in an enzyme-mediated or other templated process. Thus, caloundrin B (2) must now be considered as a plausible biosynthetic product from which the formation of siphonarin B (2), baconipyrone A (4), and baconipyrone C (6) can be readily explained (see section 1.2.2.2).

The synthesis of ent-3 required the development of various methodologies that were crucial for understanding the requirements for formation of the desired trioxaadamantane ring system and for assembling the complete carbon skeleton of ent-3 with the correct relative
configuration. It was discovered that the C-10 configuration had a profound influence on the thermodynamic stability of the trioxaadamantane ring system. Because of avoidance of syn-pentane interaction between the methyl groups at C-8 and C10, the C-10 configuration dictates the orientation between the side chain and the trioxaadamantane. This orientation facilitates a stabilizing H-bond in the trioxaadamantane or a hemiacetal tautomer that strongly influences the position of the equilibrium. Unfortunately, the ‘wrong’ C-10 configuration was required to allow formation of the trioxaadamantane under thermodynamic control. As a consequence, a correction of the C-10 configuration after formation of a stable trioxaadamantane was required. The rather lengthy isomerization sequence used was effective but a second generation synthesis will be much more efficient if a better solution to this problem can be designed.

Applying the multiplicativity rule to rationally design aldol reactions that proceed with kinetic resolution was shown to be possible in a proof-of-concept study. During the development of this methodology, an unprecedented non-linear effect was discovered and characterized in which the enantioselectivity was shown to be dependent on the enantiopurity of both reactants. Building on the principles established, aldol reactions of achiral ketones with aldehyde (±)-30 were shown to be highly Felkin diastereoface selective suggesting that (±)-30 would react with kinetic resolution with suitable enantiopure ketones. The synthesis of the epimeric ketones ent-95 and ent-10-epi-95 allowed preliminary studies that informed the prediction that the (E)-boron enolate of ent-95 would react with (±)-30 to produce an aldol adduct with the correct selectivity to permit synthesis of ent-3. During the studies, it was discovered that the desired (E)-enol borinate of ent-95 could be prepared by transmetallation of the LiN\textsubscript{t}Bu(SiMe\textsubscript{3})-generated (E)-Li enolate and its reaction with (±)-30 gave the desired adduct
191 (dr 3.3), as predicted. This method of forming boron enolates will be likely be useful in other difficult cases.
3 EXPERIMENTAL PROCEDURES

3.1 General methods

Anhydrous solvents were distilled under argon atmosphere as follows: Tetrahydrofuran (THF) from benzophenone sodium ketyl; CH$_2$Cl$_2$ from CaH$_2$; MeOH from Mg(OMe)$_2$; DMSO from CaH$_2$ at reduced pressure (stored over 4Å molecular sieves). All experiments involving air- and/or moisture-sensitive compounds were conducted in an oven dried round-bottom flask capped with a rubber septum, and attached via a needle and connecting tubing to an argon manifold equipped with mercury bubbler (ca. 5 mm positive pressure of argon). Low temperature baths were: ice/water (0 °C), CO$_2$/CH$_3$CN (–50 °C), and CO$_2$/acetone (–78 °C). Unless otherwise noted, reaction temperatures refer to that of the bath. Concentration refers to removal of volatiles at water aspirator pressure on a rotary evaporator. Preparative TLC (PTLC) was carried out on glass plates (20×20 cm) pre-coated (0.25 mm) with silica gel 60 F$_{254}$. Materials were detected by visualization under an ultraviolet lamp (254 nm) and/or by treating a 1 cm vertical strip removed from the plate with a solution of phosphomolybdic acid (5%) containing a trace of ceric sulfate in aqueous sulfuric acid (5% v/v) followed by charring on a hot plate. Flash column chromatography (FCC) was performed according to Still et al.1 with silica gel 60 (40-63 µm). All mixed solvent eluents are reported as v/v solutions. Unless otherwise noted, all reported compounds were homogeneous by thin layer chromatography (TLC) and by 1H NMR. HPLC experiments were performed using a reverse-phase Zorbax SB-C18$^\text{®}$ column (3.6 um particle size silica, 3.0-100 mm) and a linear gradient of acetonitrile in water (25% to 75%) was employed as the mobile phase (0 to 35 min).
3.2 Spectral data

High resolution mass spectra (HRMS) and low resolution mass spectra (LRMS) were obtained on a double focusing high resolution spectrometer; only partial data are reported. EI ionization was accomplished at 70 eV and CI ionization at 50 eV with ammonia as the reagent gas; only partial data are reported. Alternatively, HRMS were obtained on an LC-MS/MS time-of-flight high resolution spectrometer with electrospray ionization (ESI) from acetonitrile solution. IR spectra were recorded on a Fourier transform interferometer using a diffuse reflectance cell (DRIFT); only diagnostic and/or intense peaks are reported. Unless otherwise noted, NMR spectra were measured in CDCl$_3$ solution at 500 MHz for 1H and 125 MHz for 13C. Signals due to the solvent (13C NMR) or residual protonated solvent (1H NMR) served as the internal standard: CDCl$_3$ (7.26 δ$_H$, 77.23 δ$_C$). The 1H NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), ap (apparent); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. Coupling constants (J) are reported to the nearest 0.5 Hz (i.e., ±0.25 Hz as consistent with the digital resolution ca. 0.2 Hz/pt). The 1H NMR assignments were made based on chemical shift and multiplicity and were confirmed by homonuclear decoupling and/or two-dimensional correlation experiments (gCOSY, gHSQC, gHMBC). The 13C NMR assignments were made on the basis of chemical shift and multiplicity (as determined by 13C-DEPT or gHSQC) and were confirmed by two-dimensional 1H/13C correlation experiments (gHSQC and/or gHMBC). Specific rotations ([α]$_D$) are the average of 5 determinations at ambient temperature using a 1 mL, 10 dm cell; the units are 10$^{-1}$ deg cm2 g$^{-1}$, the concentrations (c) are reported in g/100 mL, and the values are rounded to reflect the accuracy of the measured concentrations (the major source of error).
3.3 Materials

The following compounds and reagents were prepared as described previously: 96,43 (S)-30,81, 82 (-)-109 (>98% ee) and (+)-ent-109 (>98% ee);40, 46 W-2 Raney nickel,83, 84 IBX;85 DMP (from IBX).86 iPr2NH was freshly distilled under argon atmosphere from CaH2. 2,6-Lutidine was distilled from CaH2 and stored over 4Å molecular sieves. All other reagents were commercially available and unless otherwise noted, were used as received.

3.4 Experimental procedures and characterization data

(35,55S)-rel-3-[(R)-(6S)-1,4-Dioxa-8-thiaspiro[4.5]dec-6-yl(triethylsilyloxy)methyl]-5-[(S)-1-hydroxy-2-methylpropyl]tetrahydro-4H-thiopyran-4-one (118)

A solution of (±)-102 (500 mg, 1.19 mmol) in CH2Cl2 (8 mL) was added via syringe to a stirred solution of (c-C6H11)2BCl (1 M in hexanes; 2.4 mL, 2.4 mmol) and Et3N (0.350 mL, 2.51 mmol) in CH2Cl2 (14 mL) at 0 °C under Ar. After 30 min, the reaction mixture was cooled to –78 °C and a solution of isobutyraldehyde (0.218 mL, 2.39 mmol) in CH2Cl2 (3.5 mL) was added via syringe over ca. 8 min. After 16 h, the reaction was quenched by sequential addition of phosphate buffer (pH=7; 10 mL), methanol (3 mL) and 30% aq H2O2 (6 mL) with vigorous stirring. The mixture was warmed to 0 °C and, after 10 min, was diluted with ice-water and saturated aqueous Na2SO3 and extracted with CH2Cl2. The combined organic layers were dried over Na2SO4 and concentrated to give the crude product whose 1H NMR spectrum suggest the
presence of a single adduct. Fractionation of the crude by FCC (10-20% ethyl acetate in hexanes) afforded recovered 102 (59 mg, 12%) and the title compound as a colorless oil (485 mg, 82%).

IR ν_{max} 3544 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 4.71 (1H, br s, HC-1'), 3.98-3.82 (4H, m, HC-2', HC-3'), 3.65 (1H, ddd, $J = 4, 4, 7.5$ Hz, HC-1''), 3.20 (1H, dd, $J = 11, 13$ Hz, HC-2), 3.06 (1H, d, $J = 4$ Hz, HO), 2.96 (1H, dd, $J = 5.5, 12.5$ Hz, HC-6), 2.90-2.73 (5H, m, HC-3, HC-5, HC-2, H$_2$C-7'), 2.67-2.57 (3H, m, HC-6, H$_2$C-9'), 2.13-2.06 (1H, m, HC-6'), 2.06-1.99 (1H, m, HC-10'), 1.83-1.72 (1H, m, HC-2''), 1.63-1.54 (1H, m, HC-10'), 0.99 (3H, d, $J = 7$ Hz, HC-3''), 0.95 (9H, t, $J = 8$ Hz, H$_2$CCSi \times3), 0.90 (3H, d, $J = 7$ Hz, HC-3''), 0.64 (6H, ap q, $J = 8$ Hz, H$_2$CSi \times3).

13C NMR (125 MHz, CDCl$_3$) δ 211.9 (s, C-4), 109.0 (s, C-5'), 77.7 (d, C-1''), 69.3 (d, C-1'), 64.5 (t, C-2' or C-3'), 63.8 (t, C-2' or C-3''), 60.6 (d, C-3), 51.3 (d, C-5), 47.8 (d, C-6'), 34.5 (t, C-10'), 29.8 (d, C-2''), 29.4 (t, C-7''), 27.1 (t, C-6), 26.8 (t, C-9'), 26.1 (t, C-2), 20.3 (q, C-3''), 15.4 (q, C-3''), 7.1 (q \times3, CH$_3$CSi), 5.3 (t \times3, CH$_2$Si).

LRMS (CI, NH$_3$), m/z (relative intensity): 491 ([M+1]$^+$, 1), 419 (24), 389 (23), 303 (37), 287 (70), 229 (100), 132 (36), 99 (53).

HRMS m/z calcd for C$_{23}$H$_{42}$O$_5$S$_2$Si+H: 491.2321; found: 491.2302 (CI, NH$_3$).
(4S,4aS,5aR,9aS,10R,10aS,12S)-rel-Octahydro-5a,10-(epoxymethenoxy)-4a-hydroxy-12-
(1-methylethyl)-1H,4aH,5aH-bisthiopyrano[4,3-b:3',4'-e]pyran (119)

IBX (1.04 g, 3.71 mmol) was added to a stirred solution of aldol adduct 118 (485 mg, 0.989 mmol) in dry DMSO (70 mL) at room temperature under Ar. After 10 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, H₂O and brine. The organic layer was dried over Na₂SO₄ and concentrated to give the crude product that was taken up in acetone (225 ml). FeCl₃·6H₂O (374 mg, 1.39 mmol) was added to the stirred solution and the resulting dark brown mixture was heated under reflux. After 12.5 h (the solution was yellow), the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, H₂O and brine. The organic layer was dried over Na₂SO₄, concentrated and fractionated by FCC (30% ethyl acetate in hexanes) to give the title compound as a yellow solid (219 mg, 63% over 2 steps).

IR νmax 3397 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 4.28 (1H, d, J = 3 Hz, HC-1'), 3.55 (1H, dd, J = 3.5, 14 Hz, HC-2), 3.40 (1H, dd, J = 3, 14 Hz, HC-6), 2.97 (1H, ddd, J = 3,13.5,13.5 Hz, HC-6'), 2.81 (1H, dd, J = 12.5, 13 Hz, HC-2'), 2.79 (1H, br s, HO), 2.56 (2H, br d, J = 14 Hz, HC-2, HC-6), 2.44 (1H, , J = 2.5, 3, 4, 13.5 Hz, HC-6'), 2.40 (1H, ddd, J = 3, 3, 12.5 Hz, HC-3'), 2.23 (1H, ddd, J = 3, 3, 13 Hz, HC-2'), 2.12 (1H, br s, HC-3), 2.09 (1H, br s, HC-5), 2.04-1.98 (2H, m, HC-2", HC-5'), 1.87
(1H, ddd, J = 4, 13.5, 13.5 Hz, HC-5'), 1.04 (3H, d, J = 7 Hz, HC-3''), 0.90 (3H, d, J = 7 Hz, HC-3').

13C NMR (125 MHz, CDCl$_3$) δ 102.9 (s, C-1''), 99.0 (s, C-4''), 95.1 (s, C-4), 76.8 (d, C-1'), 45.1 (d, C-3'), 41.5 (d, C-5), 37.6 (t, C-5'), 35.6 (d, C-3), 32.8 (d, C-2''), 28.9 (t, C-2), 27.5 (t, C-2'), 25.2 (t, C-6'), 24.4 (t, C-6), 15.9 (q, C-3''), 15.1 (q, C-3').

LRMS (EI), m/z (relative intensity): 330 ([M]$^+$, 100), 242 (34), 209 (29), 154 (31), 153 (35), 126 (52), 99 (37), 71 (61), 67 (70).

HRMS m/z calcd for C$_{15}$H$_{22}$O$_4$S$_2$: 330.0960; found: 330.0968 (EI).

(1R,3R,5R,7R,8S,9S,10S)-rel-3-Ethyl-8,9,10-trimethyl-5-(1-methyl)ethyl-2,4,6-trioxatricyclo[3.3.1.13,7]decan-1-ol (120)

Raney nickel (W2; 2 mL settled volume) was transferred to a solution of 119 (50 mg, 0.15 mmol) in absolute ethanol (1 mL) and the resulting suspension was heated under reflux with vigorous stirring in a (previously heated) oil bath at 80 °C. The reaction was monitored by TLC and after 30 min, additional Raney nickel (0.5 mL) was added. After 40 min, the suspension was allowed to settle and the supernatent was decanted. The solid was resuspended in ethanol and heated under reflux for 10 min. This washing procedure was repeated with ethanol, with methanol and acetone. The combined supernatents were filtered through Celite®, concentrated, and fractionated by FCC (20% ethyl acetate in hexane) to obtain the title compound as a white solid (25 mg, 61%).
IR ν_{max} 3398 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 3.85 (1H, d, $J = 3$ Hz, HC-7), 2.57 (1H, s, HO), 2.13 (1H, dq, $J = 3$, 7 Hz, HC-10), 2.07 (1H, br q, $J = 7.5$ Hz, HC-8), 1.98 (1H, dq, $J = 1.5$, 6.5 Hz, HC-9), 1.86 (1H, qq, $J = 6.5$, 7 Hz, HC-2''), 1.63-1.49 (2H, m, H$_2$C-1'), 1.18 (3H, d, $J = 7.5$ Hz, H$_3$C-8), 1.06 (3H, d, $J = 6.5$ Hz, H$_3$C-9), 0.99 (3H, d, $J = 6.5$ Hz, H$_3$C-2''), 0.92-0.86 (9H, m, H$_3$C-2', H$_3$C-9, H$_3$C-10).

13C NMR (125 MHz, CDCl$_3$) δ 102.9 (s, C-3), 102.7 (s, C-5), 98.9 (s, C-1), 79.1 (d, C-7), 43.8 (d, C-9), 37.3 (d, C-10), 35.4 (d, C-8), 32.7 (d, C-1''), 29.7 (t, C-1''), 16.0 (q, C-2''), 14.6 (q, CH$_3$C-8), 12.9 (q, CH$_3$C-10), 10.4 (q, CH$_3$C-9), 6.4 (q, C-2').

LRMS (CI, NH$_3$), m/z (relative intensity): 271 ([M+1]$^+$, 31), 253 (100), 249 (20), 183 (35), 165 (21), 153 (17), 127 (20), 125 (22), 96 (22), 71 (29).

HRMS m/z calcd for C$_{15}$H$_{26}$O$_4$+H: 271.1909; found: 271.1902 (CI, NH$_3$).

(3S,5S)-3-[(R)-(6S)-1,4-Dioxo-8-thiaspiro[4.5]dec-6-yl(triethylsilyloxy)methyl]-5-[(S)-(2S)-1-hydroxy-2-methyl-3-(phenylmethoxy)propyl]tetrahydro-4H-thiopyran-4-one (130)

![Diagram of molecule 130]

A solution of (-)-102 (300 mg, 0.716 mmol) in CH$_2$Cl$_2$ (4 mL) was added via syringe in 2 min to a stirred solution of (c-C$_6$H$_{11}$)$_2$BCl (1 M in hexanes; 1.4 mL, 1.4 mmol) and Et$_3$N (0.210 mL, 1.50 mmol) in CH$_2$Cl$_2$ (6 mL) at 0 °C under Ar. After 30 min, the reaction mixture was cooled to -78 °C and a solution of Roche aldehyde (S)-29 (241 mg, 1.35 mmol) in CH$_2$Cl$_2$ (4
mL) was added slowly via syringe (ca. 10 min). After 18 h, the reaction was quenched by sequential addition of phosphate buffer (pH 7; 7 mL) and MeOH (2 mL). The mixture was then transferred to an ice bath and 30% aq H$_2$O$_2$ (4.5 mL) was added with vigorous stirring. After 10 min, the mixture was diluted with ice-water and saturated aq Na$_2$SO$_3$ and extracted with CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$, concentrated, and fractionated by FCC (2% ethyl acetate in dichloromethane) to obtain recovered 102 (51 mg, 17%) and the title compound as a colorless oil (350 mg, 82%).

$[\alpha]_D$ = -58 (c 2.2, CHCl$_3$)

IR ν_{\max} 3517 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 7.37-7.25 (5H, m, Ph), 4.70 (1H, br s, HC-1'), 4.52 (1H, d, $J = 12$ Hz, HCPH) 4.49 (1H, d, $J = 12$ Hz, HCPH), 3.90-3.70 (5H, m, HC-1", H$_2$C-2', H$_2$C-3'), 3.65 (1H, dd, $J = 7, 9$ Hz, HC-3"), 3.44 (1H, dd, $H = 5, 9$ Hz, HC-3") 3.43 (1H, d, $J = 4.5$ Hz, HO), 3.17-3.11 (2H, m, HC-2, HC-6), 3.05 (1H, ddd, $J = 6, 6, 9$ Hz, HC-5), 2.91-2.85 (1H, m, HC-3), 2.85-2.77 (3H, m, HC-2, H$_2$C-7'), 2.71 (1H, dd, $J = 9.5, 12$ Hz, HC-6), 2.64-2.61 (2H, m, H$_2$C-9'), 2.11-2.02 (3H, m, HC-2", HC-6', HC-10'), 1.58 (1H, ap ddd, $J = 6, 6, 14$ Hz, HC-10'), 1.03 (3H, d, $J = 7$ Hz, H$_3$CC-2"), 0.96 (9H, t, $J = 8$ Hz, H$_3$CCSi $\times 3$), 0.64 (6H, ap q, $J = 8$ Hz, H$_2$CSi $\times 3$).

13C NMR (125 MHz, CDCl$_3$) δ 211.5 (s, C-4), 138.6 (s, Ph), 128.5 (d $\times 2$, Ph), 127.7 (d, Ph), 127.6 (d $\times 2$, Ph), 109.1 (s, C-5'), 75.2 (d, C-1"), 73.5 (t, CH$_2$Ph), 72.4 (t, C-3"), 69.2 (d, C-1'), 64.5 (t, C-2'), 63.9 (t, C-3'), 60.4 (d, C-3), 51.9 (d, C-5), 47.8 (d, C-6'), 35.6 (d, C-2'"), 34.6 (t, C-10'), 29.5 (t, C-7'), 27.7 (t, C-6), 26.9 (t, C-9'), 26.3 (t, C-2), 15.8 (q, CH$_3$C-2"), 7.2 (q $\times 3$, CH$_3$CSi), 5.3 (t, CH$_2$Si).
LRMS (EI), m/z (relative intensity): 596 ([M]+, 2), 567 (10), 551 (20), 550 (35), 549 (100), 521 (10), 506 (8).

HRMS m/z calcd for C_{30}H_{48}O_{6}SiS_{2}+Na: 619.2553; found: 619.2540 (ESI).

(4S,4aS,5aR,9aS,10R,10aS,12S)-Octahydro-5a,4,10-(epoxymethenoxy)-4a-hydroxy-12-[(S)-1-methyl-2-(phenylmethoxy)ethyl]-1H,4aH,5aH-bisthiopyrano[4,3-b:3',4'-e]pyran (131)

IBX (155 mg, 0.555 mmol) was added to a stirred solution of aldol adduct 130 (88 mg, 0.15 mmol) in dry DMSO (10 mL) at room temperature under Ar. After 5.5 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, H₂O and brine, dried over Na₂SO₄, and concentrated to give the crude dione (mainly enol form by ¹H NMR).

FeCl₃·6H₂O (56 mg, 0.21 mmol) was added to a stirred solution of the above crude in acetone (33.6 mL) and the resulting purple solution was heated under reflux. After 12 h (reaction mixture had turned yellow), the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, H₂O and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (25% ethyl acetate in hexanes). The fraction containing the desired product was refractionated by PTLC (30% ethyl acetate in hexanes x 3) to give the title compound (38 mg, 58%).

[α]D +15 (c 0.7, CHCl₃)

IR νₘₐₓ 3384 cm⁻¹.
^{1}H NMR (500 MHz, CDCl$_3$) δ 7.34 (4H, d, $J = 4.5$ Hz, Ph), 7.31-7.24 (1H, m, Ph), 4.55 (1H, d, $J = 12$ Hz, HCPH), 4.46 (1H, d, $J = 12$ Hz, HCPH), 4.30 (1H, br d, $J = 3$ Hz, HC-1') 4.03 (1H, dd, $J = 3$, 9 Hz, HC-2''), 3.54 (1H, dd, $J = 3.5$, 14 Hz, HC-2), 3.42-3.35 (2H, m, HC-2'', HC-6), 2.95 (1H, dt, $J = 2.5$, 13, 14 Hz, HC-6'), 2.80 (1H, dd, $J = 12.5$, 13 Hz, HC-2'), 2.57-2.53 (2H, m, HC-2, HC-6), 2.43 (1H, dddd, $J = 3$, 3, 4, 14 Hz, HC-6'), 2.35 (1H, ddd, $J = 3.5$, 4, 12.5 Hz, HC-3'), 2.27-2.17 (2H, m, HC-2', HC-2''), 2.14-2.09 (2H, m, HC-3, HC-5), 2.00 (1H, ddd, $J = 2.5$, 3, 14 Hz, HC-5'), 1.81 (1H, dt, $J = 4$, 13, 14 Hz, HC-5'), 1.64 (1H, br s, HO), 1.06 (3H, d, $J = 7$ Hz, HC-3'').

13C NMR (500 MHz, CHCl$_3$) δ 138.9 (s, Ph), 128.5 (d \times2, Ph), 127.8 (d \times2, Ph), 127.6 (d, Ph), 102.9 (s, C-1''), 99.0 (s, C-4''), 95.0 (s, C-4), 76.9 (d, C-1''), 73.4 (t, CH$_2$Ph), 70.8 (t, C-3''), 45.2 (d, C-3'), 41.4 (d, C-5), 38.8 (d, C-2''), 37.5 (t, C-5''), 35.6 (d, C-3), 28.9 (t, C-2), 27.5 (t, C-2'), 25.2 (t, C-6), 24.4 (t, C-6), 11.6 (q, CH$_3$C-1'').

LRMS (EI), m/z (relative intensity): 436 ([M]$^+$, 29), 259 (23), 241 (20), 153 (15), 91 (100), 67 (25), 55 (16).

HRMS m/z calcd for C$_{22}$H$_{28}$O$_5$S$_2$: 436.1378; found: 436.1390 (EI).

(4R,5S,6R)-6-(2-Ethyl-1,3-dioxolan-2-yl)-5-triethylsilyloxy-4-methylheptan-3-one (ent-109).

[Diagram of the molecule]

(-)-109 (ent-109)

Raney nickel (W2; 20 mL settled volume) was transferred to a solution of (+)-102 (4.20 g, 10.0 mmol) in absolute ethanol (30 mL) and the resulting suspension was heated under reflux with vigorous stirring in an oil bath previously heated to 80 °C. The reaction was monitored by TLC
and additional Raney nickel (5 mL settled volume) was added at ca. 40 min intervals. After a 5.5 h (30 mL of additional Raney nickel added), the reaction mixture was allowed to settle and the supernatant was decanted. The solid was suspended in ethanol (50 mL) and heated under reflux for 10 min with vigorous stirring and then the mixture was allowed to settle and the supernatant was decanted. The washing procedure was repeated 4 times and then 5 times using methanol. The combined supernatants were filtered through Celite®, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to obtain the titled compound as a colorless oil (2.9 g, 80%).

\[\alpha \] D = -68 (c 1.0, CHCl₃)

IR \(\nu_{\text{max}} \): 1714 cm⁻¹

¹H NMR (500 MHz, CDCl₃) \(\delta \): 4.26 (1H, dd, \(J = 1.5, 5 \) Hz, HC-5), 3.90-3.70 (4H, m, H₂C-4', H₂C-5'), 2.79 (1H, dq, \(J = 5.5, 7 \) Hz, HC-4), 2.59 (1H, dq, \(J = 18, 7 \) Hz, HC-2), 2.44 (1H, dq, \(J = 18, 7 \) Hz, HC-2), 1.78 (1H, dq, \(J = 1.5, 7 \) Hz, HC-6), 1.68 (1H, dq, \(J = 14.5, 7.5 \) Hz, HC-1''), 1.60 (1H, dq, \(J = 14.5, 7.5 \) Hz, HC-1''), 1.03 (3H, t, \(J = 7 \) Hz, H₃C-1), 1.00 (3H, d, \(J = 7 \) Hz, H₂CC-4), 0.97 (9H, t, \(J = 8 \) Hz, H₃CCSi ×3), 0.90 (3H, d, \(J = 7 \) Hz, H₃C-7), 0.82 (3H, t, \(J = 7.5 \) Hz, H₂C-2''), 0.61 (6H, ap q, \(J = 8 \) Hz, H₂CSi ×3)

¹³C NMR (125 MHz, CDCl₃) \(\delta \): 213.0 (s, C-3), 113.8 (s, C-2'), 70.9 (d, C-5), 65.2 (t, C-4' or C-5'), 64.9 (t, C-4' or C-5'), 54.0 (d, C-4), 40.8 (d, C-6), 36.3 (t, C-2), 26.2 (t, C-1''), 10.9 (q, CH₂C-4), 10.5 (q, C-7), 7.7 (q, C-1), 7.2 (t ×3, CH₂Si), 7.1 (q, C-2''), 5.4 (q ×3, CH₃Si)

LRMS (CI, NH₃), \(m/z \) (relative intensity): 359 ([M]+, 10), 227 (36), 101 (100)

HRMS \(m/z \) calcd for C₁₉H₃₈O₄Si+H: 359.2618; found: 359.2623 (CI, NH₃).
(4S,5R,6S)-6-(2-Ethyl-1,3-dioxolan-2-yl)-5-triethylsilyloxy-4-methylheptan-3-one (109).

Raney nickel (W2; 20 mL settled volume) was transferred to a solution of (-)-102 (0.510 g, 1.22 mmol) in absolute ethanol (43 mL) and the resulting suspension was heated under reflux with vigorous stirring in an oil bath previously heated to 80 °C. The reaction was monitored by TLC and after a 25 min, the reaction mixture was allowed to settle and the supernatant was decanted. The solid was suspended in ethanol (50 mL) and heated under reflux for 10 min with vigorous stirring and then the mixture was allowed to settle and the supernatant was decanted. The washing procedure was repeated 2 times and then 3 times using methanol and 3 times using acetone. The combined supernatants were filtered through Celite®, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to obtain the titled compound as a colorless oil (373 mg, 85%). [α]_D +70 (c 1.0, CHCl₃); NMR data for (+)-109 were consistent with those reported for (-)-109.

(4S,5R,6S)-rel-6-(2-Ethyl-1,3-dioxolan-2-yl)-5-triethylsilyloxy-4-methylheptan-3-one (109).

Raney nickel (W2; 14 mL settled volume) was transferred to a solution of (±)-102 (522 mg, 1.246 mmol) in absolute ethanol (44 mL) and the resulting suspension was heated under reflux with vigorous stirring in an oil bath previously heated to 80 °C. The reaction was monitored by TLC and after 20 min, additional Raney nickel (6 mL settled volume) was added. After 30 min,
the reaction mixture was allowed to settle and the supernatant was decanted. The solid was suspended in ethanol and heated under reflux for 10 min with vigorous stirring and then the mixture was allowed to settle and the supernatant was decanted. The washing procedure was repeated 2 times and then 3 times using methanol and 3 times using acetone. The combined supernatants were filtered through Celite®, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to obtain the titled compound as a colorless oil (360 mg, 80%). NMR data for (±)-109 were consistent with those reported for (-)-109.

\[(2S,3R,4S,6S,7S)\text{-rel-2-(2-Ethyl-1,3-dioxolan-2-yl)-3-triethylsilyloxy-7-hydroxy-4,6,8-trimethylnonan-5-one (135)} \]

\[\text{SiEt}_3 \]

Raney nickel (W2; 10 mL settled volume) was transferred to a solution of aldol adduct 118 (293 mg, 0.597 mmol) in absolute ethanol (10 mL) and the resulting suspension was heated under reflux with vigorous stirring in an oil bath at 80 °C (previously heated). After 40 min, the mixture was allowed to settle and the supernatent decanted. The solid was suspended in ethanol heated under reflux for 10 min, and decanted. The washing procedure was repeated with methanol and acetone. The combined supernatents were filtered through Celite® and concentrated to give the title compound (237 mg, 92%) that was homogeneous by \(^1\)H NMR.

\(\text{IR } \nu_{\text{max}} \text{ 3508 cm}^{-1} \).

\(\text{\(^1\)H NMR (500 MHz, CDCl}_3 \text{) } \delta \text{ 4.27 (1H, dd, } J = 1.5, 5 \text{ Hz, HC-3), 3.90-3.80 (4H, m, H}_2\text{C-4', H}_2\text{C-5'), 3.44 (1H, ddd, } J = 4, 6, 7 \text{ Hz, HC-7), 3.03 (1H, dq, } J = 5, 7 \text{ Hz, HC-4), 2.89 (1H, dq, } J = \)
7, 7 Hz, HC-6), 2.27 (1H, d, \(J = 6\) Hz, HO), 1.90 (1H, dq, \(J = 1\), 7 Hz, HC-2), 1.80-1.57 (3H, m, H\(_2\)C-1", HC-8), 1.07 (3H, d, \(J = 7\) Hz, H\(_3\)CC-6), 1.04 (3H, d, \(J = 7\) Hz, H\(_3\)CC-4), 1-0.95 (12H, m, H\(_3\)C-9, H\(_3\)CCSi \(\times 3\)), 0.94 (3H, d, \(J = 7\) Hz, H\(_3\)C-1), 0.91 (3H, d, \(J = 6.5\) Hz, H\(_3\)C-9), 0.84 (3H, t, \(J = 7.5\) Hz, H\(_3\)C-2"), 0.64 (6H, ap q, \(J = 8\) Hz, H\(_2\)CSi \(\times 3\)).

\[^{13}\text{C}\] NMR (125 MHz, CDCl\(_3\)) \(\delta\) 217.4 (s, C-5), 114.0 (s, C-2'), 79.1 (d, C-7), 69.9 (d, C-3), 65.3 (t, C-4'), 64.9 (t, C-5'), 55.3 (d, C-4), 48.7 (d, C-6), 40.9 (d, C-2), 30.3 (d, C-8), 26.5 (t, C-1"), 20.2 (q, C-9), 15.4 (q, C-9), 13.5 (q, CH\(_3\)C-6), 11.4 (q, CH\(_3\)C-4), 10.7 (q, C-1), 7.3 (q, C-2"), 7.3 (q \(\times 3\), CH\(_2\)CSi), 5.5 (t \(\times 3\), CH\(_2\)Si).

LRMS (CI, NH\(_3\)), \(m/z\) (relative intensity): 431 ([M+1]\(^+\), 10), 430 (6), 429 (20), 401 (52), 386 (100).

HRMS \(m/z\) calcd for C\(_{23}\)H\(_{46}\)O\(_5\)Si+Na: 453.3006; found: 453.3024 (ESI).

\((4S,5S,6S,8S,9S)-rel-5,9-Dihydroxy-4,6,8,10-tetramethylundecane-3,7-dione \(136\))

FeCl\(_3\)·6H\(_2\)O (103 mg, 0.382 mmol) was added to a stirred solution of aldol \(135\) (235 mg, 0.546 mmol) in acetone (124 mL) at room temperature. After 1 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO\(_3\), water and brine, dried over Na\(_2\)SO\(_4\), concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to provide the title compound (109 mg, 72%).

IR \(\nu_{\text{max}}\) 3473 cm\(^{-1}\).
\[^1H\ NMR \ (500\ MHz,\ CDCl_3)\ \delta\ 4.14\ (1H,\ d,\ J = 8.5\ Hz,\ HC-5),\ 3.55\ (1H,\ d,\ J = 4.5\ Hz,\ HC-9),\ 3.48\ (\text{iH, br s, HO}),\ 2.89-2.75\ (3H,\ m,\ HO,\ HC-6,\ HC-8),\ 2.70-2.61\ (1H,\ m,\ HC-4),\ 2.61-2.44\ (2H,\ m,\ HC-2),\ 1.84-1.72\ (1H,\ m,\ HC-10),\ 1.15\ (3H,\ d,\ J = 7\ Hz,\ H_3CC-4),\ 1.06\ (3H,\ d,\ J = 7\ Hz,\ H_3CC-8),\ 1.03\ (3H,\ t,\ J = 7.5\ Hz,\ H_3C-1),\ 1.01\ (3H,\ d,\ J = 7\ Hz,\ H_3CC-6),\ 0.98\ (3H,\ d,\ J = 7\ Hz,\ H_3C-11),\ 0.88\ (3H,\ d,\ J = 7\ Hz,\ H_3C-11).\]

\[^{13}C\ NMR\ (125\ MHz,\ CDCl_3)\ \delta\ 218.8\ (s,\ C-7),\ 216.0\ (s,\ C-3),\ 77.7\ (d,\ C-9),\ 73.0\ (d,\ C-5),\ 50.2\ (d,\ C-8),\ 47.6\ (d,\ C-6),\ 46.7\ (d,\ C-4),\ 34.9\ (t,\ C-2),\ 29.8\ (d,\ C-10),\ 20.3\ (q,\ C-11),\ 15.2\ (q,\ C-11),\ 13.8\ (q,\ CH_3C-4\ or\ CH_3C-8),\ 13.7\ (q,\ CH_3C-4\ or\ CH_3C-8),\ 9.7\ (q,\ CH_3C-6),\ 7.8\ (q,\ C-1).\]

\[LRMS\ (CI,\ NH_3),\ m/z\ (relative\ intensity):\ 273\ ([M+1]^+,\ 52),\ 255\ (100),\ 237\ (74),\ 183\ (70),\ 165\ (52),\ 86\ (43),\ 57\ (96).\]

\[HRMS\ m/z\ \text{calcd for}\ C_{15}H_{28}O_4+H:\ 273.2066;\ \text{found:}\ 273.2069\ (EI).\]

\[((1R,3R,5R,7R,8S,9R,10S)-rel-3-Ethyl-8,9,10-trimethyl-5-(1-methyl)ethyl-2,4,6-trioxatricyclo[3.3.1.1^{3,7}]decan-1-ol\ (121)\]

DMP (65 mg, 0.154 mmol) was added to a solution of diol 136 (30 mg, 0.11 mmol) in CH\(_2\)Cl\(_2\) (8 mL) at room temperature. After 1 h, the mixture was diluted with ethyl acetate and washed sequentially with a 1:1 (v/v) mixture of saturated aq NaHCO\(_3\) and saturated aq Na\(_2\)SO\(_3\), distilled water and brine, dried over Na\(_2\)SO\(_4\), and concentrated to produce the crude hydroxytrione as a mixture of hemiacetal, enol and triketone tautomers (28 mg). A solution of imidazole (24 mg, 0.36 mmol) and crude hydroxytriketone (23 mg, 0.084 mmol) in CDCl\(_3\) (0.6
mL; previously neutralized by passing through basic alumina) was heated to 40 °C (oil bath
temperature). After 5 days (reaction monitored by 1H NMR) the mixture was diluted with ethyl
acetate and washed sequentially with 1% aq citric acid (3), NaHCO$_3$ and brine, dried over
Na$_2$SO$_4$, and concentrated, and fractionated by preparative TLC (20% ethyl acetate in toluene) to
give the title compound (8.5 mg, 34% over 2 steps) in addition to other fractions that contained
mixtures of retro-Claisen 128, dehydrated 127, and hemiacetal 124.

IR ν_{max} 3423 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 3.79 (1H, d, $J = 3$ Hz, HC-7), 2.63 (1H, s, HO), 2.12-2.05 (2H, m, HC-9, HC-10), 2.02 (1H, br q, $J = 7$ Hz, HC-8), 1.85 (1H, qq, $J = 7$, 7 Hz, HC-1''), 1.67-1.53 (2H, m, H$_2$C-1'), 1.11 (3H, d, $J = 7$ Hz, H$_3$CC-8), 1.00-0.87 (15H, m, H$_3$CC-10, H$_3$CC-8, H$_3$C-2', H$_3$C-2''×2).

13C NMR (125 MHz, CDCl$_3$) δ 103.0 (s, C-3), 102.9 (s, C-5), 97.9 (s, C-1), 78.0 (d, C-7), 36.7 (d, C-10), 35.9 (d, C-8), 34.9 (d, C-9), 32.6 (d, C-1''), 29.7 (t, C-1'), 15.2 (q, C-2''), 15.1 (q, C-2''), 13.3 (q, CH$_3$C-8), 12.6 (q, CH$_3$C-10), 6.8 (q, CH$_3$C-9), 6.6 (q, C-2').

LRMS (CI, NH$_3$), m/z (relative intensity): 271 ([M+1]$^+$, 100), 253 (99), 165 (66), 127 (46), 71 (58).

HRMS m/z calcd for C$_{15}$H$_{26}$O$_4$+H: 271.1909; found: 271.1905 (CI, NH$_3$).
(3S,4R,6S,7R,8S)-rel-8-(2-Ethyl-1,3-dioxolan-2-yl)-3-hydroxy-2,4,6-trimethyl-7-
(triethysilyloxy)non-1-en-5-one (138)

(c-C₆H₁₁)₂BCl (1 M in hexane; 0.56 mL, 0.56 mmol) was added via syringe to a stirred
solution of Et₃N (0.078 mL, 59 mg, 0.58 mmol) CH₂Cl₂ (3 mL) at –78 °C under Ar. After 2 min,
a solution of ketone 109 (100 mg, 0.279 mmol) in CH₂Cl₂ (2 mL) was added via syringe. After 2
h, a solution of methacrolein (0.048 mL, 39 mg, 0.56 mmol) CH₂Cl₂ (0.5 mL) was added
dropwise via syringe. After 19.5 h, the reaction was quenched by sequential addition of
phosphate buffer(pH 7; 5 mL), MeOH (1 mL) and 30% aq H₂O₂ (1.5 mL) with vigorous stirring.
The mixture was warmed to 0 °C and after 10 min, was diluted with ice-water and saturated
aqueous Na₂SO₃ and extracted with CH₂Cl₂. The combined organic layers were dried over
Na₂SO₄ and concentrated to give the crude product whose ¹H NMR spectrum suggest the
presence of a single adduct. Fractionation of the crude by FCC (10-20% ethyl acetate in hexanes)
afforded recovered 109 (49 mg, 49%) and the title compound (51 mg, 40%).

IR νₘₐₓ 3470 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 4.94 (1H, br s, HC-1), 4.92 (1H, br s, HC-1), 4.30-4.22 (2H, m,
HC-3, HC-7), 3.96-3.82 (4H, m, H₂C-4', H₂C-5'), 3.38 (1H, br s, HO), 3.08 (1H, dq, J = 4, 7 Hz,
HC-6), 2.87 (1H, dq, J = 9, 7 Hz, HC-4), 2.04 (1H, br q, J = 7 Hz, HC-8), 1.74 (3H, s, H₃CC-2),
1.71-1.53 (2H, m, H₂C-1''), 1.07 (3H, d, J = 7 Hz, H₃CC-6), 0.99 (9H, t, J = 8 Hz, H₃CCSi ×3),
0.94 (3H, d, J = 7 Hz, HC-9), 0.92 (3H, d, J = 7 Hz, H₃CC-4), 0.83 (3H, t, J = 7.5 Hz, HC-2"), 0.65 (6H, ap q, J = 8 Hz, H₂CSi ×3).

13C NMR (125 MHz, CDCl₃) δ 215.9 (s, C-5), 144.2 (s, C-2), 114.6 (t, C-1), 114.3 (s, C-2'), 77.7 (d, C-3), 69.2 (d, C-7), 65.0 (t, C-4'), 64.8 (t, C-5'), 53.9 (d, C-6), 50.7 (d, C-4), 39.9 (d, C-8), 26.2 (t, C-1"), 16.6 (q, CH₃C-2), 14.7 (q, CH₃C-4), 11.11 (q, CH₃C-6), 11.06 (q, C-9), 7.4 (q, C-2"), 7.2 (q ×3, CH₃CSi), 5.5 (t ×3, CH₂Si).

LRMS (Cl, NH₃), m/z (relative intensity): 429 ([M+1]$^+$, 13), 367 (82), 302 (63), 297 (52), 285 (100), 273 (35), 199 (58).

HRMS m/z calcld for C₂₃H₄₄O₅Si+H: 429.3036; found: 429.3029 (Cl, NH₃).

(4S,5S,6S,8R,9S)-5,9-Dihydroxy-4,6,8,10-tetramethylundec-10-ene-3,7-dione (139)

FeCl₃·6H₂O (43 mg, 0.158 mmol) was added to a stirred solution of aldol 138 (48 mg, 0.11 mmol) acetone (26 mL) and the mixture was heated under reflux. After 10 min, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, water and brine, dried over Na₂SO₄, concentrated, and fractionated by PTLC (50% ethyl acetate in hexane; developed twice) to provide the titled compound (21 mg, 52%).

IR νmax 3468 cm$^{-1}$.

1H NMR (500 MHz, CDCl₃) δ 4.94 (1H, br s, HC-11), 4.91 (1H, br s, HC-11), 4.19 (1H, d, J = 9.5 Hz, HC-9), 4.16 (1H, dd, J = 3, 8.5 Hz, HC-5), 3.68 (1H, br s, HOC-5), 3.15 (1H, br s, HOC-
9), 3.04-2.92 (2H, m, HC-6, HC-8), 2.67 (1H, dq, J = 3, 7 Hz, HC-4), 2.62-2.45 (2H, m, H₂C-2), 1.73 (3H, s, H₃CC-10), 1.17 (3H, d, J = 7 Hz, H₃CC-4), 1.04 (3H, t, J = 7.5 Hz, HC-1.), 1.02 (3H, d, J = 7 Hz, H₃CC-6), 0.90 (3H, d, J = 7 Hz, H₃CC-8).

13 C NMR (125 MHz, CDCl₃) δ 219.4 (s, C-7), 215.9 (s, C-3), 144.4 (s, C-10), 114.8 (t, C-11), 80.0 (d, C-9), 74.4 (d, C-5), 50.4 (d, C-8), 49.4 (d, C-6), 47.0 (d, C-4), 34.9 (t, C-2), 16.5 (q, CH₃C-10), 14.2 (q, CH₃C-8), 13.7 (q, CH₃C-6), 9.8 (q, CH₃C-4), 7.9 (q, C-1).

LRMS (Cl, NH₃), m/z (relative intensity): 271 ([M+1]+, 51), 253 (100), 201 (70), 200 (51), 183 (50), 171 (22), 167 (27), 153 (18).

HRMS m/z calcd for C₁₅H₂₆O₄+H: 271.1909; found: 271.1904 (Cl, NH₃).

(4S,6S)-rel-4,6-Dimethyl-3,7-dioxonan-5-yl 2-Methylpropenoate (141)

DMP (20 mg, 0.047 mmol) was added to a stirred solution of diol 139 (9 mg, 0.03 mmol) in CH₂Cl₂ (2.3 mL). After 3 h, the reaction was washed sequentially with a 1:1 (v/v) mixture of saturated aq solution of NaHCO₃ and saturated aq Na₂SO₃ and brine, dried over Na₂SO₄, and concentrated to give the crude product (11 mg) that was mixture of at least 4 major components by 1H NMR. Imidazole (42 mg, 0.62 mmol) was added to a solution of the above crude (11 mg) in CDCl₃ (0.6 mL; previously passed through basic alumina) at room temperature. After 19.5 h, the mixture was diluted in ethyl acetate, washed sequentially with 1% aq citric acid, saturated aq
NaHCO₃ and brine, dried over Na₂SO₄, and fractionated by PTLC (20% ethyl acetate in hexanes; developed twice) to give the title compound (2.4 mg, 24%).

IR ν_{max} 1720 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 6.04 (1H, br s, HC-3), 5.55 (1H, br s, HC-3), 5.53 (1H, dd, J = 6, 7 Hz, HC-5'), 2.97-2.83 (2H, m, HC-4', HC-6'), 2.71 (1H, dq, J = 18, 7 Hz, HC-2 or HC-8), 2.54-2.39 (3H, m, HC-2, H₂C-8), 1.90 (3H, s, H₃CC-2), 1.13 (3H, d, J = 7 Hz, HC₃C-4' or H₃CC-6'), 1.07 (3H, d, J = 7 Hz, HC₃C-4' or H₃CC-6'), 1.04 (3H, t, J = 7 Hz, HC₃C-1' or H₃CC-9'), 1.01 (3H, t, J = 7 Hz, HC₃C-1' or H₃CC-9').

¹³C NMR (125 MHz, CDCl₃) δ 212.2 (s, C-3' or C-7'), 211.9 (s, C-3' or C-7'), 166.4 (s, C-1), 136.0 (s, C-2), 126.1 (t, C-3), 75.0 (d, C-5'), 48.2 (d, C-4' or C-6'), 46.8 (d, C-4' or C-6'), 35.4 (t, C-2' or C-8'), 35.1 (t, C-2' or C-8'), 18.5 (q, CH₃C-2), 13.2 (q, CH₃C-4' or CH₃C-6'), 11.6 (q, CH₃C-4' or CH₃C-6'), 7.9 (q, CH₃C-1' or CH₃C-9'), 7.8 (q, CH₃C-1' or CH₃C-9').

LRMS (Cl, NH₃), m/z (relative intensity): 269 ([M+1]⁺, 13), 183 (61), 165 (100), 139 (18), 126 (14), 125 (18), 69 (44), 57 (64).

HRMS m/z calcd for C₁₅H₂₄O₄⁺H: 269.1753; found: 269.1749 (Cl,NH₃).
(2S,3R,4S,8S)-2-(2-Ethyl-1,3-dioxolan-2-yl)-3-triethylsilyloxy-7-hydroxy-4,6,8-trimethyl-9-(phenylmethoxy)nonan-5-one (142).

LHMDS (1 M in THF; 0.21 mL, 0.21 mmol) was added to a solution of (+)-109 (50 mg, 0.14 mmol) in THF (0.7 mL) at −50 °C. After 1 h, the reaction mixture was cooled to −78 °C and a solution of freshly prepared (S)-29 (28 mg, 0.16 mmol) in THF (0.7 mL) was added slowly via syringe. After 1 h, the reaction was quenched by addition of aq. phosphate buffer (pH= 7) and the mixture was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by FCC (2-100% ethyl acetate in CH₂Cl₂) to give recovered (+)-109 (8 mg, 16%) and the title compound as a ca. 43:25:18:15 mixture of diastereomers (60 mg, 80%).

IR νmax: 3513, 1697 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 7.38-7.24 (5H, m, Ph), 4.60-4.43 (2H, m, H₂CPh), 4.29 (0.25H, dd, J = 1, 5 Hz, HC-3), 4.25 (0.60H, ap dd, J = 1, 5 Hz, HC-3), 4.23 (0.18H, dd, J = 1.5, 5 Hz, HC-3), 4.01 (0.15H, br d, J = 9.5 Hz, HC-7), 3.93 (0.18H, br d, J = 10 Hz, HC-7), 3.91-3.72 (4.5H, m, H₂C-4', H₂C-5', HC-7), 3.69-3.39 (2.2H, m, HC-7, H₂C-9), 3.21 (0.25H, d, J = 7 Hz, HO), 3.12-2.89 (1.7H, m, HC-4, HC-6), 2.85 (0.15H, br q, J = 7.5 Hz, HC-6), 2.83 (0.43H, d, J = 2 Hz, HO), 2.79 (0.18H, dq, J = 1.5, 7.5 Hz, HC-6), 2.02 (0.15H, dq, J = 1, 7 Hz, HC-2), 1.99-1.75 (1.8H, m, HC-2, HC-8), 1.75-1.53 (2H, m, H₂C-1''), 1.15 (1.8H, br d, J = 7.5 Hz, H₂CC-6), 1.10-0.90 (19.2H, m), 0.87-0.80 (3H, m, H₃C-2''), 0.68-0.58 (6H, m, H₂CSi × 3)
\(^{13}\)C NMR (125 MHz, CDCl \(_3\)) \(\delta\) (major diastereomer\(^*\)): 218.1, 216.8, 216.5, 216.2\(^*\), 138.9, 138.8, 138.3\(^*\), 138.2, 128.62, 128.60\(^*\), 128.53, 128.46, 127.9, 127.8\(^*\), 127.78, 127.74, 127.69\(^*\), 127.63, 114.2, 113.99, 113.91\(^*\), 78.7, 74.7\(^*\), 74.6\(^*\), 74.3, 73.69, 73.55, 73.48, 73.44, 72.6, 72.4, 71.9, 70.4, 70.2\(^*\), 69.51, 69.45, 65.2\(^*\), 65.1, 64.95\(^*\), 64.93, 64.8, 55.7, 53.7\(^*\), 53.6, 52.5, 50.6, 49.7, 49.1\(^*\), 47.2, 40.8\(^*\), 40.7, 40.5, 40.0, 36.3\(^*\), 36.2, 35.6, 34.9, 26.5\(^*\), 26.3, 15.7, 14.0, 13.8, 13.3, 12.9\(^*\), 11.8\(^*\), 11.4, 10.99, 10.95, 10.93, 10.92, 10.8\(^*\), 10.7\(^*\), 9.4, 8.9, 7.4, 7.31, 7.26\(^*\), 7.21, 7.18, 5.55, 5.48\(^*\), 5.43

LRMS (Cl, NH\(_3\)), \(m/z\) (relative intensity): 537 ([M+1]\(^*\), 1), 359 (36), 227 (37), 196 (23), 179 (10), 101 (100), 91 (23)

HRMS \(m/z\) calcd for C\(_{30}\)H\(_{52}\)O\(_6\)Si+: 537.3611; found: 537.3592 (Cl, NH\(_3\))

FeCl\(_3\)·6H\(_2\)O (10.5 mg, 0.039 mmol) was added to a stirred solution of aldol adducts 142 (20 mg, 0.037 mmol) in acetone (1.3 mL) at room temperature. After 1 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO\(_3\), H\(_2\)O and brine, dried over Na\(_2\)SO\(_4\), and concentrated. The residue was taken up in CH\(_2\)Cl\(_2\) (2.6 mL) and DMP (16 mg, 0.038 mmol) was added to the stirred solution. After 3 h, the reaction was washed sequentially with a 1:1 (v/v) mixture of saturated aq NaHCO\(_3\) and saturated aq Na\(_2\)SO\(_4\), H\(_2\)O and brine, dried over Na\(_2\)SO\(_4\), and concentrated. The residue was dissolved in a solution of imidazole (22 mg, 0.32
mmol) in CDCl₃ (0.6 mL; previously passed over basic alumina) and heated at 40 °C in an NMR tube. After 19 h, the mixture was diluted in ethyl acetate, washed sequentially with citric acid 1%, saturated aq NaHCO₃ and brine, dried over Na₂SO₄, concentrated, and fractionated by PTLC (20% ethyl acetate in hexanes; multiple elutions) to afford of the titled compound (4.5 mg, 32% over 3 steps). [α]ᵣ₊30 (c 0.4, CHCl₃)

IR νmax: 3408, 1719 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 5.58 (1H, d, J = 2.5 Hz, HO), 4.51 (1H, d, J = 11.5 Hz, HCPH), 4.45 (1H, dd, J = 2.5, 10.5 Hz, HC-6), 4.34 (1H, d, J = 11.5 Hz, HCPH), 3.70 (1H, dd, J = 9, 11 Hz, HC-2"), 3.42 (1H, dd, J = 4, 9 Hz, HC-2"), 2.73 (1H, dq, J = 2.5, 7 Hz, HC-1'), 2.61 (1H, br q, J = 6.5 Hz, HC-3), 2.57-2.42 (3H, m, H₂C-3', HC-5), 2.22 (1H, ddq, J = 4, 9, 7 Hz, HC-1"), 1.18 (3H, d, J = 7 Hz, H₃CC-1'), 1.04 (3H, t, J = 7.5 Hz, H₃C-4'), 104 (3H, d, J = 6.5 Hz, H₃CC-3), 103 (3H, d, J = 7 Hz, H₃CC-5), 0.88 (3H, d, J = 7 Hz, H₃CC-1"

¹³C NMR (125 MHz, CDCl₃) δ: 211.2 (s, C-2'), 209.0 (s, C-4), 137.1 (s, Ph), 128.8 (d ×2, Ph), 128.2 (d, Ph), 127.8 (d ×2, Ph), 104.0 (s, C-2), 74.4 (d, C-6), 73.8 (t, CH₂Ph), 73.4 (t, C-2"), 51.1 (d, C-3), 48.0 (d, C-1'), 46.6 (d, C-5), 38.4 (d, C-1"), 33.3 (t, C-3'), 12.3 (q, CH₃C-1"), 9.4 (q, CH₃C-5), 8.29 (q, C-4' or CH₃C-3), 8.29 (q, C-4' or CH₃C-3), 7.8 (q, CH₃C-1')

LRMS (CI, NH₄), m/z (relative intensity): 394 ([M+18]⁺, 26), 377 ([M+1]⁺, 17), 360 (27), 359 (93), 212 (21), 195 (26), 193 (39), 183 (82), 108 (20), 91 (100)

HRMS m/z calcd for C₂₂H₃₂O₅+NH₄⁺: 394.2593; found: 394.2603 (CI, NH₄⁺).
(2R,3S,4R,8S)-2-(2-Ethyl-1,3-dioxolan-2-yl)-3-triethylsilyloxy-7-hydroxy-4,6,8-trimethyl-9-(phenylmethoxy)nonan-5-one (149).

A solution of freshly prepared LDA (0.17 M in THF; 9.5 mL, 1.6 mmol) at 0 °C was added via cannula to a stirred solution of (−)-109 (ent-109) (527 mg, 1.47 mmol) in dry THF (26 mL) at −78 °C under argon. After 15 min, Ti(O′Pr)₄ (0.99 mL, 0.92 g, 3.2 mmol) was added. The reaction mixture was stirred for 10 min at −78 °C, 30 min at −50 °C, and finally 5 min at −78 °C. A solution of freshly prepared (S)-29 (283 mg, 1.59 mmol) in THF (10 mL) was added over 10 min via syringe. After 19 h, the reaction was quenched by addition of H₂O (14 mL), and the mixture was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by FCC (5% ethyl acetate in CH₂Cl₂) to give recovered ent-109 (85 mg, 16%) and a 82:14:4 mixture of aldol adducts (646 mg, 81%).

[α]D −59 (c 1.0, CHCl₃)

IR νₘₐₓ: 3508, 1699 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ (major diastereomer only): 7.39-7.21 (5H, m, Ph), 4.52-4.48 (2H, m, CH₂Ph), 4.17 (1H, dd, J = 1.5, 4 Hz, HC-3), 3.93 (1H, ddd, J = 2, 3, 7 Hz, HC-7), 3.89-3.71 (4H, m, H₃C-4’, H₃C-5’), 3.43-3.37 (2H, dd, J = 5,2.5 Hz, H₂C-9), 3.36 (1H, d, J = 2 Hz, HO), 3.04 (1H, dq, J = 4, 7 Hz, HC-4), 2.88 (1H, dq, J = 3, 7 Hz, HC-6), 1.98 (1H, dq, J = 1.5, 7 Hz, HC-2), 1.94-1.85 (1H, m, HC-8), 1.66 (1H, dq, J = 14.5, 7.5 Hz, HC-1”), 1.56 (1H, dq, J = 14.5, 7.5 Hz, HC-1”), 1.17 (3H, d, J = 7 Hz, H₃CC-6), 1.09 (3H, d, J = 7 Hz, H₃CC-8), 1.04 (3H, d, J =
7 Hz, H,CC-4), 0.96 (9H, t, J = 8 Hz, H,CCSi ×3), 0.93 (3H, d, J = 7 Hz, H,C-1), 0.82 (3H, t, J = 7.5 Hz, H,C-2’’), 0.61 (6H, ap q, J = 8 Hz, H,CSi ×3)

13C NMR (125 MHz, CDCl₃) δ (major diastereomer only): 217.5 (s, C-5), 138.5 (s, Ph), 128.5 (d ×2, Ph), 127.8 (d, Ph), 127.6 (d ×2, Ph), 114.0 (s, C-2’), 73.9 (t, C-9), 73.5 (t, CH₂Ph), 73.1 (d, C-7), 70.1 (d, C-3), 65.2 (t, C-4’ or C-5’), 64.9 (t, C-5’ or C-4’), 52.6 (d, C-4), 48.9 (d, C-6), 40.4 (d, C-2), 36.3 (d, C-8), 26.2 (t, C-1’’), 14.0 (q, CH₃C-8), 11.2 (q, C-1 or CH₃C-4), 11.1 (q, C-1 or CH₃C-4), 10.6 (q, CH₃C-6), 7.3 (q, C-2’’), 7.2 (q ×3, CH₃CSi), 5.5 (t ×3, CH₂Si)

LRMS (EI), m/z (relative intensity): 507 ([M-29]+, 20), 378 (16), 377 (48), 364 (11), 349 (12), 330 (27), 329 (100)

HRMS m/z calcd for C₃₀H₅₂O₆Si+H: 537.3611; found: 537.3591 (Cl, NH₃).

(2R,3S,4R,8S)-2-(2-Ethyl-1,3-dioxolan-2-yl)-3-triethysilyloxy-7-hydroxy-4,6,8-trimethyl-9-(phenylmethoxy)nonan-5-one (149).

LHMDS (1 M in THF; 2.2 mL, 2.2 mmol) was added to a solution of (-)-109 (1.31 g, 3.65 mmol) in THF (31 mL) at −50 °C. After 1 h, the reaction mixture was cooled to −78 °C and a solution of freshly prepared (S)-29 (677 mg, 3.80 mmol) in THF (2 mL) was added slowly via syringe over 5 min. After 1 h, the reaction was quenched by addition of aq phosphate buffer (pH= 7) and the mixture was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by FCC (2% ethyl acetate in CH₂Cl₂) to give
recovered 29 (110 mg, 16%), ent-109 (262 mg, 20%), and a 73:10:9:8 mixture of aldol adducts (1.51 mg, 77%). \([\alpha]_D = -51 (c 0.95, \text{CHCl}_3)\)

IR \(\nu_{\text{max}}: 3491, 1706 \text{ cm}^{-1}\)

\(^1H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) (major diastereomer only): 7.39-7.23 (5H, m, Ph), 4.57-4.47 (2H, m, H\(_2\)CPh), 4.25 (1H, dd, \(J = 1.5, 5 \text{ Hz, HC-3}\)), 3.92 (1H, ddd, \(J = 2, 2, 9 \text{ Hz, HC-7}\)), 3.90-3.73 (4H, m, H\(_2\)C-4', H\(_2\)C-5'), 3.62 (1H, dd, \(J = 5, 9 \text{ Hz, HC-9}\)) 3.58 (1H, dd, \(J = 7, 9 \text{ Hz, HC-9}\)), 3.51 (1H, d, \(J = 2 \text{ Hz, HO}\)), 3.11 (1H, d7, \(J = 5, 7 \text{ Hz, HC-4}\)), 2.85 (1H, dq, \(J = 2, 7 \text{ Hz, HC-6}\)), 2.00-1.90 (1H, m, HC-8), 1.87 (1H, dq, \(J = 1.5, 7 \text{ Hz, HC-2}\)), 1.68 (1H, dq, \(J = 14.5, 7.5 \text{ Hz, HC-1''}\)), 1.59 (1H, dq, \(J = 14.5, 7.5 \text{ Hz, HC-1''}\)), 1.06 (3H, d, \(J = 7 \text{ Hz, H}_3\text{CC-6}\)), 1.05 (3H, d, \(J = 7 \text{ Hz, H}_3\text{CC-4}\)), 0.97 (9H, t, \(J = 8 \text{ Hz, H}_3\text{CCSi \times3}\)), 0.93 (3H, d, \(J = 7 \text{ Hz, H}_3\text{C-1}\)), 0.92 (3H, d, \(J = 7 \text{ Hz, H}_3\text{CC-8}\)), 0.83 (3H, t, \(J = 7.5 \text{ Hz, H}_3\text{C-2''}\)), 0.63 (6H, q, \(J = 8 \text{ Hz, H}_3\text{CSi \times3}\))

\(^13C\) NMR (125 MHz, CDCl\(_3\)) \(\delta\): 214.5 (s, C-5), 138.0 (s, Ph), 128.6 (d \(\times2\), Ph), 127.9 (d, Ph), 127.8 (d \(\times2\), Ph), 114.0 (s, C-2'), 75.6 (d, C-7), 75.2 (t, C-9), 73.7 (d, C-3), 65.2 (t, C-4' or C-5'), 64.9 (t, C-5' or C-4'), 51.9 (d, C-4), 48.5 (d, C-6), 40.7 (d, C-2), 36.4 (d, C-8), 26.3 (t, C-1''), 13.9 (q, CH\(_3\)C-8), 11.1 (q, CH\(_3\)C-4), 10.8 (q, C-1), 7.7 (q, CH\(_3\)C-6), 7.2 (q \(\times3\), CH\(_3\)CSi), 7.2 (q, C-2''), 5.5 (t \(\times3\), CH\(_2\)Si)

LRMS (CI, NH\(_3\)), \(m/z\) (relative intensity): 537 ([M+1]\(^{+}\), 21), 476 (36), 475 (100), 424 (21), 405 (42), 387 (32), 379 (17), 377 (11)

HRMS \(m/z\) calcd for C\(_{30}\)H\(_{52}\)O\(_6\)Si+: 537.3611; found: 537.3601 (CI, NH\(_3\)).
FeCl₃·6H₂O (43 mg, 0.16 mmol) was added to a stirred solution of aldol adducts 149 (coming from the reaction with Ti ‘ate’ enolate) (123 mg, 0.230 mmol) in acetone (52 mL) at room temperature. After 1.5 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, H₂O and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (30% ethyl acetate in hexane) to afford the titled compound (80 mg, 92%). Usually, the crude from this reaction mixture was used in the following reaction without further purification. [α]D – 20 (c 0.05, CHCl₃)

IR νmax: 3489, 1709 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ (major diastereomer only): 7.39-7.24 (5H, m, Ph), 4.50 (1H, d, J = 12, CHPh), 4.48 (1H, d, J = 12 Hz, CHPh), 4.09 (1H, ddd, J = 2.5, 3, 9 Hz, HC-5), 4.05 (1H, ddd, J = 3, 4.5, 7 Hz, HC-9), 3.48 (1H, dd, J = 4.5, 9.5 Hz, HC-11), 3.43 (1H, dd, J = 4.5, 9.5 Hz, HC-11), 3.38 (1H, d, J = 3 Hz, HOC-5), 3.08 (1H, d, J = 3 Hz, HOC-9), 2.89 (1H, dq, J = 9, 7 Hz, HC-6), 2.85 (1H, J = 4.5, 7 Hz, HC-8), 2.65 (1H, dq, J = 2.5, 7 Hz, HC-4), 2.56 (1H, dq, J = 18, 7.5 Hz, HC-2), 2.50 (1H, dq, J = 18, 7.5 Hz, HC-2), 1.96-1.84 (1H, m, HC-10), 1.13 (3H, d, J = 7 Hz, H₃CC-4), 1.11 (3H, d, J = 7 Hz, H₃CC-8), 1.09 (3H, d, J = 7 Hz, H₃CC-10), 1.05 (3H, t, J = 7.5 Hz, H₃C-1), 0.94 (3H, d, J = 7 Hz, H₃C-6)

¹³C NMR (125 MHz, CDCl₃) δ (major diastereomer only): 217.9 (s, C-7), 216.5 (s, C-3), 138.6 (s, Ph), 128.6 (d ×2, Ph), 127.8 (d, Ph), 127.7 (d ×2, Ph), 74.3 (t, C-11), 73.6 (d, C-5), 73.5 (t,
CH₂Ph), 73.0 (d, C-9), 50.5 (d, C-8), 46.2 (d ×2, C-4, C-6), 36.1 (d, C-10), 35.0 (t, C-2), 14.0 (q, CH₃C-6), 13.6 (q, CH₂C-10), 10.0 (q, CH₂C-8), 9.3 (q, CH₂C-4), 7.8 (q, C-1)

LRMS (EI), m/z (relative intensity): 378 ([M]+, 4), 361 (81), 360 (100), 345 (45), 343 (47), 342 (38)

HRMS m/z calcd for C₂₁H₂₄O₅H: 379.2485; found: 379.2490 (Cl, NH₃).

(4R,5R,6R,10S)-5,9-Dihydroxy-4,6,8,10-tetramethyl-11-(phenylmethoxy)undecan-3,7-dione (150).

FeCl₃·6H₂O (532 mg, 1.97 mmol) was added to a stirred solution of aldol adducts 149 (coming from the reaction with Li enolate)(1.51 g, 2.81 mmol) in acetone (63 mL) at room temperature. After 1.5 h, the mixture was diluted with ethyl acetate and washed sequentially with a saturated aq NaHCO₃, H₂O and brine, dried over Na₂SO₄, concentrated to afford the crude titled compound (1.26 g) that was used directly in the next step. The crude from a smaller scale reaction as above was fractionated by FCC (30% ethyl acetate in hexane) to give the titled compound (90%). [α]D +14 (c 1.1, CHCl₃)

IR νmax: 3479, 1706 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 7.40-7.21 (5H, m, Ph), 4.53 (1H, d, J = 12 Hz, HCPH) 4.50 (2H, d, J = 12 Hz, HCPH), 4.11 (1H, ddd, J = 3, 3.5, 8.5 Hz, HC-5), 3.90 (1H, br d, J = 9 Hz, HC-9), 3.82 (1H, br s, HOC-9), 3.61-3.54 (2H, m, H₂C-11), 3.40 (1H, d, J = 3.5 Hz, HOC-5), 2.99 (1H, dq, J = 8.5, 7 Hz, HC-6), 2.73 (1H, dq, J = 2.5, 7 Hz, HC-8), 2.64 (1H, dq, J = 3, 7 Hz, HC-4),
2.61-2.44 (2H, m, H₂C-2), 1.99-1.85 (1H, m, H₉C-10), 1.14 (3H, d, J = 7 Hz, H₃C-4), 1.14 (3H, d, J = 7 Hz, H₃C-8), 1.04 (3H, t, J = 7.5 Hz, H₃C-1), 1.01 (3H, d, J = 7 Hz, H₃C-6), 0.89 (3H, d, J = 7 Hz, H₃C-10)

¹³C NMR (125 MHz, CDCl₃) δ: 218.6 (s, C-7), 215.9 (s, C-3), 138.1 (s, Ph), 128.6 (d ×2, Ph), 127.9 (d, Ph), 127.9 (d ×2, Ph), 75.3 (d, C-9), 74.9 (t, C-11), 73.9 (d, C-5), 73.6 (t, CH₂Ph), 50.1 (d, C-8), 47.0 (d, C-4), 45.7 (d, C-6), 36.2 (d, C-10), 34.9 (t, C-2), 14.3 (q, CH₃C-6), 13.9 (q, CH₃C-10), 9.7 (q, CH₃C-4), 8.1 (q, CH₃C-8), 7.9 (q, C-1)

LRMS (Cl, NH₃), m/z (relative intensity): 379 ([M+1]+, 43), 265 (51), 218 (27), 201 (39), 196 (50), 183 (38), 179 (28), 108 (27), 91 (100)

HRMS m/z calcd for C₂₂H₃₄O₅+H: 379.2485; found: 379.2487 (Cl, NH₃).

DMP (1.25 g, 2.95 mmol) was added to a stirred solution of the above crude diols (1.26 g; from 1.51 g of aldol adducts) in CH₂Cl₂ (200 mL) at room temperature. After 3 h, the reaction was washed sequentially with a 1:1 (v/v) mixture of saturated aq NaHCO₃ and 10% aq Na₂SO₃, H₂O and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (20-50% ethyl acetate in hexane) to give recovered 150 (200 mg, 19% from 149) and the titled compound as the predominant component in a mixture of ring-chain tautomers (842 mg, 80% from 149).
Resubjecting recovered 150 to the above reaction conditions gave additional 151 (148 mg, 14% from 149).

IR \(\nu_{\text{max}}\): 3429, 1717 cm\(^{-1}\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) (major diastereomer only): 7.40-7.20 (5H, m, Ph), 4.15 (1H, d, \(J = 12\) Hz, HCPH), 4.41 (1H, d, \(J = 12\) Hz, HCPH), 4.32 (1H, dd, \(J = 3, 10.5\) Hz, HC-6), 3.59 (1H, dd, \(J = 6.5, 9.5\) Hz, HC-2"), 3.49 (1H, dd, \(J = 5, 9.5\) Hz, HC-2"), 3.33 (1H, s, HO), 2.77 (1H, br q, \(J = 6.5\) Hz, HC-3), 2.64 (1H, dq, \(J = 3, 7\) Hz, HC-1'), 2.58-2.35 (3H, m, H\(_3\)C-3', HC-5), 2.18 (1H, ddq, \(J = 5, 6.5, 7\) Hz, HC-1"), 1.14 (3H, d, \(J = 7\) Hz, H\(_3\)CC-1'), 1.09 (3H, d, \(J = 6.5\) Hz, H\(_3\)CC-3), 1.02 (3H, t, \(J = 7.5\) Hz, H\(_3\)C-4'), 0.99 (3H, d, \(J = 6.5\) Hz, H\(_3\)CC-5), 0.98 (3H, d, \(J = 7\) Hz, H\(_3\)CC-1"")

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) (major diastereomer only): 211.5 (s, C-2'), 209.0 (s, C-4), 138.0 (s, Ph), 128.6 (d \(\times 2\), Ph), 127.9 (d, Ph), 127.7 (d \(\times 2\), Ph), 102.2 (s, C-2), 74.5 (d, C-6), 73.4 (t, CH\(_2\)Ph), 72.8 (t, C-2''), 51.4 (d, C-3), 47.8 (d, C-1'), 46.5 (d, C-5), 41.4 (d, C-1''), 33.4 (t, C-3'), 12.0 (q, CH\(_3\)C-1''), 9.4 (q, CH\(_3\)C-3 or CH\(_3\)C-5), 9.3 (q, CH\(_3\)C-3 or CH\(_3\)C-5), 8.07 (q, C-4' or CH\(_3\)C-1''), 8.06 (q, C-4' or CH\(_3\)C-1'')

LRMS (Cl, NH\(_3\)), \(m/z\) (relative intensity): 394 ([M+18]\(^+\), 76), 377 ([M+1]\(^+\), 21), 359 (31), 212 (45), 200 (49), 183 (100), 108 (28), 91 (46)

HRMS \(m/z\) calcd for C\(_{22}\)H\(_{32}\)O\(_5\)+NH\(_4\): 394.2593; found: 394.2596 (Cl, NH\(_3\)).
(1S,3S,5S,7S,8R,9S,10R)-3-Ethyl-8,9,10-trimethyl-5-[(S)-1-methyl-2-(phenylmethoxy)ethyl]-2,4,6-trioxatricyclo[3.3.1.1\(^3\)7]decan-1-ol (ent-10-epi-116).

A solution of imidazole (539 mg, 7.92 mmol) and hemiacetals 151 (432 mg, 1.15 mmol) in CHCl\(_3\) (14.4 mL; previously neutralized by passing through basic alumina) was stirred at 40 °C. After 50 h, the mixture was diluted in ethyl acetate, washed sequentially with 1% aq citric acid (×3), saturated aq NaHCO\(_3\) and brine, dried over Na\(_2\)SO\(_4\), concentrated, and fractionated by FCC (20% ethyl acetate in hexane) to crude ent-10-epi-116 (234 mg) and recovered hemiacetals 151 (113 mg, 26%). The hemiacetal fraction was resubjected to the isomerization conditions and the crude ent-10-epi-116 was fractioned by FCC (5% ethyl acetate in toluene) to yield the titled compound (225 mg, 51%). \([\alpha]_D^{–}41\) (c 1.1, CHCl\(_3\))

IR \(\nu_{max}^{\text{cm}^{-1}}\): 3424

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 7.37-7.23 (5H, m, Ph), 4.56 (1H, d, \(J = 12\) Hz, HCPH), 4.46 (1H, d, \(J = 12\) Hz, HCPH), 3.90 (1H, dd, \(J = 2.5, 9\) Hz, HC-2'), 3.73 (1H, d, \(J = 3.5\) Hz, HC-7), 3.35 (1H, dd, \(J = 9, 9.5\) Hz, HC-2'), 2.63 (1H, s, HO), 2.10-1.97 (4H, m, HC-1', HC-8, HC-9, HC-10'), 1.63 (1H, dq, \(J = 14.5, 7.5\) Hz, HCC-3), 1.55 (1H, dq, \(J = 14.5, 7.5\) Hz, HCC-3), 1.11 (3H, d, \(J = 7\) Hz, HCC-8), 1.04 (3H, d, \(J = 7\) Hz, HCC-1'), 0.97 (3H, d, \(J = 6.5\) Hz, HCC-9), 0.92 (3H, t, \(J = 7.5\) Hz, HCC-3), 0.89 (3H, d, \(J = 7\) Hz, HCC-10)

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 139.1 (s, Ph), 128.5 (d ×2, Ph), 127.8 (d, Ph), 127.5 (d ×2, Ph), 103.0 (s, C-3), 102.9 (s, C-5), 97.6 (s, C-1), 78.1 (d, C-7), 73.3 (t, CH\(_2\)Ph), 71.3 (d, C-2'), 38.8 (d,
C-1'), 36.9 (d, C-10), 35.8 (d, C-8), 34.9 (d, C-9), 29.6 (t, CH₂C-3), 13.3 (q, CH₃C-8), 12.5 (q, CH₃C-10), 11.1 (q, CH₃C-1'), 6.8 (q, CH₃C-9), 6.5 (q, CH₃CC-3)

LRMS (Cl, NH₃), m/z (relative intensity): 394 ([M+18]⁺, 70), 377 ([M+1]⁺, 33), 376 (15), 359 (100), 227 (33), 212 (33), 183 (69), 165 (34), 101 (56), 91 (57)

HRMS m/z calcd for C₂₂H₃₂O₅+NH₄⁺: 394.2594; found: 394.2593 (Cl, NH₃).

Methyl (3R,4S)-Tetrahydro-4-hydroxy-2H-thiopyran-3-carboxylate (155)

![Structure of 155]

Procedure adapted from Hayakawa R.; Shimizu M. Synlett 1999, 1328-1330. A suspension of Bakers' yeast (Fleischmann's; 5.59 g) in distilled water (55.5 mL) was stirred (orbital shaker at 150 rpm) at room temperature. After 30 min, DMSO (0.40 mL) was added and stirring continued for 30 min. A solution of 2-ketoester 154 (326 mg, 1.87 mmol) in absolute ethanol (5.5 mL) was added. After stirring for 1 day, Celite® (40 mL) and ethyl acetate (40 mL) were added and stirring continued for 30 min. The resulting mixture was filtered through a bed of Celite® in a sintered glass funnel rinsing with ethyl acetate and the combined filtrate and washings were extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by FCC (50% ethyl acetate in hexanes) to yield the title compound (250 mg, 75%; 93% ee by HPLC analysis of the benzoyl derivative). A similar experiment conducted with 7.3 g of 154 and 130 g of Baker’s yeast (distributed in 15 × 250 mL Erlenmeyer flasks) gave the title compound (4.24 g, 57%; 93% ee).

[α]D +35 (c 1.3, benzene)
IR ν_{max} 3504 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 4.18 (1H, ddd, $J = 2.5, 2.5, 5$ Hz, HC-4), 3.72 (3H, s, H$_3$CO), 3.16 (1H, dd, $J = 10.5, 13.5$ Hz, HC-2), 2.98 (1H, ddd, $J = 2.5, 11, 13.5$ Hz, HC-6), 2.85 (1H, dt, $J = 2.5, 2.5, 10.5$ Hz, HC-3), 2.57 (1H, br d, $J = 13.5$ Hz, HC-2), 2.32 (1H, ddd, $J = 3.5, 4, 13.5$ Hz, HC-6), 2.19 (1H, m, $J = 2.5, 4, 5, 14$ Hz, HC-5), 1.89 (1H, ddt, $J = 2.5, 3, 11, 14$ Hz, HC-5).

13C NMR (125 MHz, CDCl$_3$) δ 174.3 (s, C=O), 65.9 (d, C-4), 52.2 (q, CH$_3$O), 47.6 (d, C-3), 33.5 (t, C-5), 25.1 (t, C-2), 22.9 (t, C-6).

LRMS (EI), m/z (relative intensity): 176 ([M]$^+$, 84), 158 (38), 126 (18), 99 (100), 98 (60), 87 (66), 55 (27).

HRMS m/z calcd for C$_7$H$_{12}$O$_3$S: 176.0507; found: 176.0510 (EI).

(3S,4S)-3-(Hydroxymethyl)-tetrahydro-2H-thiopyran-4-ol (156)

NaBH$_4$ (1.77 g, 45.4 mmol) was added slowly in small portions to a stirred solution of 155 (2.05 g, 11.3 mmol) in methanol (28.3 mL) at room temperature. After 35 min, the mixture was neutralized to pH 7 by addition of 10% aq HCl. The mixture was diluted with MeOH and filtered through a plug of silica gel rinsing with 20% (v/v) methanol in CH$_2$Cl$_2$. The combined filtrate and washings were concentrated. The residue was taken up in 1 M aq NaOH and after stirred for 1 h, the aqueous layer was extracted with CH$_2$Cl$_2$, dried over Na$_2$SO$_4$, concentrated, and fractionated by FCC (50% ethyl acetate in hexanes to 100% ethyl acetate) to yield the title
compound (1.23 g, 73%).[known compound: Hayakawa, R.; Shimizu, M. Synlett 1999, 1298-1300.]

[α]_D +17 (c 0.7, CHCl₃)

IR ν_{max} 3372 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 4.16 (1H, ddd, J = 2.5, 3, 5.5 Hz, HC-4), 3.84 (1H, dd, J = 5.5, 11 Hz, HC-1'), 3.82 (1H, dd, J = 4.5, 11 Hz, HC-1'), 3.03 (1H, dd, J = 105., 13.5 Hz, HC-2), 2.99 (1H, ddd, J = 2.5, 11, 14 Hz, HC-6), 2.85 (1H, br s, HOC-4), 2.59 (1H, br s, HOC-7), 2.37-2.30 (2H, m, HC-2, HC-6), 2.08 (1H, dddd, J = 3, 5.5, 5.5, 14 Hz, HC-5), 2.00 (1H, ddddd, J = 2.5, 3, 4.5, 5.5, 10.5 Hz, HC-3), 1.91 (1H, dddd, J = 3, 3.5, 11, 14 Hz, HC-5).

¹³C NMR (125 MHz, CDCl₃) δ 69.2 (d, C-4), 66.3 (t, C-1'), 43.2 (d, C-3), 34.4 (t, C-5), 25.6 (t, C-2), 23.1 (t, C-6).

LRMS (EI), m/z (relative intensity): 148 ([M⁺], 81), 130 (24), 112 (25), 99 (100), 87 (40), 79 (31), 74 (39), 57 (43).

HRMS m/z calcd for C₆H₁₂O₂S: 148.0558; found: 148.0552 (EI).

(2R,4aS,8aS)-Hexahydro-2-phenylthiopyrano[4,3-d][1,3]dioxine (157)

![Chemical Structure](image)

Benzaldehyde dimethyl acetal (2.65 mL, 18.135 mmol) and p-TsOH (58 mg, 0.30 mmol) were added to a stirred solution of diol 156 (896 mg, 6.04 mmol) in CH₂Cl₂ (60.5 mL) at room
temperature under Ar at rt. After 20 min, the mixture was washed with saturated aq NaHCO$_3$, dried over Na$_2$SO$_4$, and concentrated to provide the title compound that was homogeneous by TLC and 1H NMR (1.38 g, 97%).

$[\alpha]_D +6$ (c 0.9, CHCl$_3$)

IR ν_{max} 2914 cm$^{-1}$.

1H NMR (500 MHz, CDCl$_3$) δ 7.51 (2H, app d, $J = 7.5$ Hz, Ph), 7.42-7.32 (3H, m, Ph), 5.54 (1H, s, HC-2), 4.21 (1H, br s, HC-8a), 4.06 (1H, dd, $J = 2.5$, 11.5 Hz, HC-4), 3.99 (1H, d, $J = 11.5$ Hz, HC-4), 3.57 (1H, dd, $J = 12.5$, 13 Hz, HC-5), 3.07-3.00 (1H, m, $J = 13.5$ Hz, HC-7), 2.36 (1H, br d, $J = 13$ Hz, HC-5), 2.33-2.24 (2H, m, HC-7, HC-8), 2.02-1.92 (1H, m, HC-8), 1.80 (1H, br d, $J = 12.5$ Hz, HC-4a).

13C NMR (125 MHz, CDCl$_3$) δ 138.7 (s, Ph), 129.2 (d, Ph), 128.5 (d \times2, Ph), 126.4 (d \times2, Ph), 102.4 (d, C-2), 74.1 (d, C-8a), 72.8 (t, C-4), 36.4 (d, C-4a), 33.6 (t, C-8), 26.3 (t, C-5), 22.5 (t, C-7).

LRMS (EI), m/z (relative intensity): 236 ([M]$^+$, 100), 205 (24), 130 (94), 105 (68), 99 (61), 74 (81).

HRMS m/z calcd for C$_{13}$H$_{16}$O$_2$S: 236.0871; found: 236.0869 (EI).
Procedure adapted from Takano et al, Chem Lett. 1983, 12, 1593-1596. DIBALH (1 M in toluene; 10.6 mL, 10.6 mmol) was added slowly via syringe (ca. 3 min) to a stirred solution of benzylidene acetal 157 (1.0 g, 4.2 mmol) in CH₂Cl₂ (42 mL) at 0 °C under Ar. After 5 min, the cooling bath was removed and the mixture was allowed to reach ambient temperature. After 13.5 h, the mixture was cooled to 0 °C and a saturated solution of Rochelle's salt (30 mL) was added. The mixture was allowed to warm to ambient temperature and after 2 h, was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated to yield the title compound that was homogeneous by TLC and ¹H NMR (1.0 g, 99%).

[α]D +62 (c 1.2, CHCl₃)

IR νmax 3405 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.39-7.27 (5H, m, Ph), 4.64 (1H, d, J = 11.5 Hz, HCPH), 4.41 (1H, d, J = 11.5 Hz, HCPH), 3.81 (1H, ddd, J = 2.5, 2.5, 5 Hz, HC-4'), 3.73 (1H, dd, J = 6.5, 11 Hz, HC-1), 3.67 (1H, dd, J = 5, 11 Hz, HC-1), 3.02-2.90 (2H, m, HC-2', HC-6'), 2.41-2.29 (3H, m, HC-2', HC-5', HC-6'), 2.20 (1H, br s, HO), 2.05 (1H, dddd, J = 5, 6.5 Hz, HC-3'), 1.84-1.75 (1H, m, HC-5').

¹³C NMR (125 MHz, CDCl₃) δ 138.4 (s, Ph), 128.7 (d ×2, Ph), 128.0 (d, Ph), 127.9 (d ×2, Ph), 75.2 (d, C-4'), 70.6 (t, CH₂Ph), 65.3 (t, C-1), 43.8 (d, C-3'), 29.8 (t, C-5'), 26.1 (t, C-2'), 23.4 (t, C-6').
LRMS (EI), m/z (relative intensity): 238 ([M]+, 10), 132 (38), 129 (27), 99 (30), 91 (100), 65 (15).

HRMS m/z calcd for C_{13}H_{18}O_{2}S: 238.1028; found: 238.1023 (EI).

(3R,4S)-Tetrahydro-4-benzyloxy-2H-thiopyran-3-carbaldehyde (159)

![Structure](image)

IBX (32 mg, 0.11 mmol) was added to a stirred solution of alcohol 158 (12.5 mg, 0.052 mmol) in dry DMSO (0.4 mL) at room temperature under Ar. After 2 h, the mixture was diluted in ethyl acetate, washed sequentially with saturated aq NaHCO₃, H₂O and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (20% ethyl acetate in hexanes) to provide the title compound as a colorless oil that was homogeneous by TLC and ¹H NMR (9.5 mg, 77%).

[α]D −14 (c 1.0, C₆H₆)

IR ν_max 1727 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 9.55 (1H, s, HC-1), 7.39-7.23 (5H, m, Ph), 4.62 (1H, d, J = 12 Hz, HCPh), 4.42 (1H, d, J = 12 Hz, HCPh), 4.23 (1H, ddd, J = 2.5, 2.5, 4.5 Hz, HC-4'), 3.13 (1H, dd, J = 12, 14.5 Hz, HC-2'), 2.98 (1H, ddd, J = 2.5, 12, 13.5 Hz, HC-6'), 2.68-2.59 (2H, m, HC-2', HC-3'), 2.43 (1H, dddd, J = 2.5, 4, 4.5, 14.5 Hz, HC-5'), 2.35 (1H, dddd, J = 1.5, 3.5, 4, 13.5 Hz, HC-6'), 1.84 (1H, dddd, J = 2.5, 3.5, 12, 14.5 Hz, HC-5').
\[^{13}C\] NMR (125 MHz, CDCl\(_3\)) \(\delta\) 202.4 (s, C-1), 138.0 (s, Ph), 128.7 (d \(\times\) 2, Ph), 128.1 (d, Ph), 127.8 (d \(\times\) 2, Ph), 71.7 (d, C-4'), 70.6 (t, CH\(_2\)Ph), 54.0 (d, C-3'), 29.8 (t, C-5'), 23.0 (t, C-2'), 23.0 (t, C-6').

LRMS (EI), \(m/z\) (relative intensity): 236 ([M]\(^+\), 11), 157 (17), 99 (31), 91 (100), 65 (17).

HRMS \(m/z\) calcd for C\(_{13}\)H\(_{16}\)O\(_2\)S: 236.0871; found: 236.0865 (EI).

\((1R,2S,4S,5R,6S)-6-(2-Ethyl-1,3-dioxolan-2-yl)-1-[(3S,4S)-tetrahydro-4-(benzyloxy)-2H-thiopyran-3-yl]-1-hydroxy-2,4-dimethyl-5-(triethylsilyloxy)heptan-3-one (160)\)

\[
\begin{align*}
\text{O} & \quad \text{HO} & \quad \text{OBn} \\
\text{O} & \quad \text{SiEt}_3 \\
1'' & \quad 2'' & \quad 4'' & \quad 5'' \\
1'' & \quad 2'' & \quad 4 & \quad 6 & \quad 7
\end{align*}
\]

LHMDS (1 M in THF; 0.21 mL, 0.21 mmol) was added to a solution of (+)-109 (50 mg, 0.139 mmol) in THF (0.7 mL) at \(-50\) °C. After 1 h, the reaction mixture was cooled to \(-78\) °C and a solution of freshly prepared aldehyde 159 (40 mg, 0.169 mmol) was added dropwise in THF (0.7 mL). After 1 h, the reaction was quenched by addition of phosphates buffer pH= 7 (1 mL), extracted with ethyl acetate, dried over Na\(_2\)SO\(_4\), concentrated and fractionated by FCC (2% ethyl acetate in CH\(_2\)Cl\(_2\)) to provide a mixture of at least 3 diastereomers by TLC (62 mg, 77%). The mixture was used in the next reaction.

IR \(\nu_{\text{max}}\) 3489 cm\(^{-1}\).

\(^1H\) NMR (500 MHz, CDCl\(_3\)) - complex

\(^{13}C\) NMR (125 MHz, CDCl\(_3\)) - complex
HRMS m/z calcd for $\text{C}_{32}\text{H}_{54}\text{O}_6\text{Si}^+$Na: 617.3302; found: 617.3294 (ESI).

$$(2S,3S,5S,6S)-2-((3R,4S)-4-(\text{Benzyloxy})\text{tetrahydro-2H-thiopyran-3-yl})-2\text{-hydroxy-3,5-dimethyl-6-((S)-1-methyl-2-oxobutyl)tetrahydro-4H-pyran-4-one (161)}$$

![Chemical structure](image)

FeCl$_3$ 6H$_2$O (6.5 mg, 0.024 mmol) was added to a stirred solution of aldol adducts 160 (20 mg, 0.034 mmol) in acetone (0.8 mL) at room temperature. After 1 h, the mixture was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO$_3$, H$_2$O and brine, dried over Na$_2$SO$_4$, and concentrated. The residue (14 mg) was taken up in CH$_2$Cl$_2$ (2.4 mL) and DMP (15 mg, 0.035 mmol) was added to the stirred solution. After 3 h, the mixture was washed sequentially with a 1:1 mixture (v/v) of saturated aq NaHCO$_3$ and saturated aq Na$_2$SO$_3$, H$_2$O and brine, dried over Na$_2$SO$_4$, and concentrated. The residue (16 mg) was taken up in CDCl$_3$ (0.6 mL; previously passed through basic alumina), imidazole (22 mg, 0.32 mmol) was added, and the mixture was heated to 40 °C (oil bath temperature). After 19.5 h (reaction monitored by 1H NMR), the mixture was diluted with ethyl acetate, washed sequentially with 1% aq citric acid, NaHCO$_3$, and brine, dried over Na$_2$SO$_4$, concentrated, and fractionated by PTLC (20% ethyl acetate in hexanes; multiple development) to give the title compound (5.1 mg, 31%).

$[\alpha]_D^{+90} (c 0.35, \text{CHCl}_3)$

IR ν_{max} 3384 cm$^{-1}$.
1H NMR (500 MHz, CDCl$_3$) δ 7.39-7.22 (5H, m, Ph), 5.51 (1H, s, HO), 4.57 (1H, d, $J = 11$ Hz, HCP), 4.38 (1H, dd, $J = 2.5, 10.5$ Hz, HC-6), 4.35 (1H, br s, HC-4'), 4.25 (1H, d, $J = 11$ Hz, HCP), 3.09 (1H, dd, $J = 13.5, 13.5$ Hz, HC-2'), 2.96 (1H, dt, $J = 2, 13, 13.5$ Hz, HC-6'), 2.76 (1H, dq, $J = 2.5, 7$ Hz, HC-1''), 2.65 (1H, dq, $J = 10.5, 6.5$ Hz, HC-5), 2.58 (1H, q, $J = 7$ Hz, HC-3), 2.54-2.47 (3H, m, H$_2$C-3'', HC-5'), 2.36 (1H, br d, $J = 13.5$ Hz, HC-6'), 2.17-2.09 (2H, m, HC-2', HC-3'), 1.72 (1H, dddd, $J = 1.5, 3.5, 13, 13.5$ Hz, HC-5'), 1.24 (3H, d, $J = 7$ Hz, H$_3$CC-1''), 1.12 (3H, d, $J = 7$ Hz, H$_3$CC-3), 1.04 (3H, t, $J = 7.5$ Hz, H$_3$CC-4''), 1.02 (3H, d, $J = 6.5$ Hz, H$_3$CC-5).

13C NMR (125 MHz, CDCl$_3$) δ 211.3 (s, C-3''), 210.7 (s, C-4), 137.4 (s, Ph), 128.9 (d ×2, Ph), 128.3 (d, Ph), 127.4 (d ×2, Ph), 102.3 (s, C-2), 74.2 (d, C-6), 73.8 (d, C-4'), 70.1 (t, CH$_2$Ph), 51.5 (d, C-3), 47.6 (d, C-1''), 45.3 (d, C-3'), 41.8 (d, C-5'), 34.0 (t, C-3''), 29.9 (t, C-5'), 22.3 (t, C-2'), 21.9 (t, C-6'), 14.0 (q, CH$_3$C-3), 9.3 (q, CH$_3$C-5), 8.3 (q, C-4''), 8.1 (q, CH$_3$C-1'').

LRMS (EI), m/z (relative intensity): 434 ([M]$^+$, 1), 245 (18), 100 (19), 91 (100), 69 (11), 57 (25).

HRMS m/z calcd for C$_{24}$H$_{34}$O$_5$S: 434.2127; found: 434.2117 (EI).

2,6-Lutidine (0.34 mL, 0.31 mg, 2.9 mmol) and TMSOTf (0.21 mL, 0.26 g, 1.2 mmol) were sequentially added to a stirred solution of trioxaadamantane ent-10-epi-116 (220 mg, 0.584
mmol) in CH₂Cl₂ (7.3 mL) at 0 °C under argon. After 10 min, additional TMSOTf (0.21 mL, 0.26 g, 1.2 mmol) was added. After a further 10 min, the reaction was quenched by addition of 1% aq citric acid (1 mL) and the mixture was diluted with ethyl acetate, washed sequentially with 1% citric acid, saturated aq NaHCO₃ and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (20% ethyl acetate in hexane) to provide the titled compound (229 mg, 87%). [α]D −27 (c 1.0, CHCl₃)

IR νmax: 2973, 2941, 2883, 1454, 1249, 1045, 906, 877, 842 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 4.56 (1H, d, J = 12 Hz, CHPh), 4.45 (1H, d, J = 12 Hz, CHPh), 3.90 (1H, dd, J = 2.5, 9 Hz, HC-2'), 3.70 (1H, d, J = 3.5 Hz, HC-5), 3.33 (1H, dd, J = 9, 9.5 Hz, HC-2'), 2.07-1.92 (4H, m, HC-1', HC-8, HC-9, HC-10), 1.62 (1H, dq, J = 14.5, 7.5 Hz, HCC-3), 1.52 (1H, dq, J = 14.5, 7.5 Hz, HCC-3), 1.06 (3H, d, J = 7 Hz, H₃CC-8), 1.02 (3H, d, J = 7 Hz, H₃CC-10), 0.93 (3H, t, J = 7.5 Hz, H₃CC-1'), 0.90 (3H, d, J = 7 Hz, H₃CC-9), 0.88 (3H, d, J = 7 Hz, H₃CC-10), 0.16 (9H, s, H₃CSi ×3)

¹³C NMR (125 MHz, CDCl₃) δ: 139.2 (s, Ph), 128.5 (d ×2, Ph), 127.8 (d ×2, Ph), 127.5 (d, Ph), 103.5 (s, C-5), 102.8 (s, C-3), 99.8 (s, C-1), 78.3 (d, C-7), 73.3 (t, CH₃Ph), 71.4 (t, C-2'), 39.1 (d, C-1'), 37.4 (d, C-10), 36.9 (d, C-8), 35.5 (d, C-9), 29.6 (t, CH₂C-3), 13.3 (q, CH₃C-8), 12.6 (q, CH₄C-10), 11.1 (q, CH₃C-1'), 7.7 (q, CH₃C-9), 6.5 (q, CH₃CC-3), 2.2 (q ×3, CH₃Si)

LRMS (EI), m/z (relative intensity): 448 ([M]+, 15), 379 (100), 364 (5), 363 (14), 324 (17), 323 (61)

HRMS m/z calcd for C₂₅H₄₀O₅Si: 448.2645; found: 448.2644 (EI).
(S)-2-[(1R,3R,5S,7R,8R,9R,10R)-3-Ethyl-8,9,10-trimethyl-1-trimethylsilyloxy-2,4,6-trioxatricyclo[3.3.1.1^{3,7}]dec-5-yl]propanol (ent-10-epi-164).

10% Pd/C (163 mg, 0.153 mmol) was added to a solution of trioxaadamantane ent-10-epi-163 (228 mg, 0.510 mmol) in ethanol (64 mL) at room temperature. After purging the flask with H₂, the mixture was stirred under an atmosphere of H₂ (balloon). After 15 min, the mixture was filtered through wet Celite® and the combined filtrate and EtOH washings were concentrated, and fractionated by FCC (20% ethyl acetate in hexane) to yield the titled compound (158 mg, 86%). \([\alpha]_D -9\) (c 1.2, CHCl₃)

IR \(\nu_{\text{max}}\): 3469, 2972, 2942, 2884, 1465, 1249, 1193, 903, 877, 843 cm⁻¹

¹H NMR (500 MHz, CDCl₃) \(\delta\): 3.82 (1H, dd, \(J = 3.5, 1\) Hz, HC-7'), 3.75 (2H, ap dd, \(J = 5, 6\) Hz, H₂C-1), 3.07 (1H, t, \(J = 6\) Hz, HO), 2.11 (1H, dq, \(J = 3.5, 7\) Hz, HC-10'), 2.03-1.96 (2H, m, HC-8', HC-9'), 1.92 (1H, ddq, \(J = 5, 5, 7\) Hz, HC-2), 1.66 (1H, dq, \(J = 14, 7.5\) Hz, HCC-3'), 1.54 (1H, dq, \(J = 14, 7.5\) Hz, HCC-3'), 1.07 (3H, d, \(J = 7\) Hz, H₃CC-8'), 0.94 (3H, t, \(J = 7.5\) Hz, H₃CCC-3'), 0.92 (3H, d, \(J = 7\) Hz, H₃C-3 or H₃CC-10), 0.91 (3H, d, \(J = 7\) Hz, H₃C-3 or H₃CC-10), 0.91 (3H, d, \(J = 6.5\) Hz, H₃CC-9'), 0.17 (9H, s, H₃CSi x3)

¹³C NMR (125 MHz, CDCl₃) \(\delta\): 105.5 (s, C-5'), 103.1 (s, C-3'), 99.6 (s, C-1'), 78.4 (d, C-7'), 64.3 (t, C-1), 39.2 (d, C-2), 37.7 (d, C-2), 36.8 (d, C-8'), 35.5 (d, C-9'), 29.6 (t, CH₂C-3'), 13.3 (q, CH₃C-8'), 12.6 (q, CH₂C-10'), 10.1 (q, C-3), 7.6 (q, CH₃C-9'), 6.5 (q, CH₃CC-3'), 2.2 (q x3, CH₃Si)
LRMS (EI), *m/z* (relative intensity): 358 ([M]+, 6), 239 (19), 215 (94), 197 (30), 187 (25), 143 (34), 125 (28), 73 (45), 69 (23), 57 (100)

HRMS *m/z* calcd for C_{18}H_{34}O_{5}Si: 358.2176; found: 358.2180 (EI).

(S)-2-[(1R,3R,5S,7R,8R,9R,10R)-3-Ethyl-8,9,10-trimethyl-1-trimethylsilyloxy-2,4,6-trioxatricyclo[3.3.1.1^{3,7}]dec-5-yl]propanal (**ent-10-epi-167**).

IBX (256 mg, 0.912 mmol) was added to a stirred solution of adamantane **ent-10-epi-164** (294 mg, 0.820 mmol) in dry DMSO (13 mL) at room temperature under argon. After 12 h, the reaction mixture was diluted with ethyl acetate, washed sequentially with saturated aq NaHCO$_3$, water and brine, dried over Na$_2$SO$_4$, and concentrated to yield the titled compound (292 mg, 99%). $\alpha D - 70$ (c 0.8, CHCl$_3$)

IR ν_{max}: 1733 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$) δ: 9.97 (1H, s, HC-1), 3.79 (1H, d, $J = 3.5$ Hz, HC-5'), 2.53 (1H, q, $J = 7$ Hz, HC-2), 2.08 (1H, dddd, $J = 3.5$, 7 Hz, HC-10'), 2.00 (1H, br q, $J = 7$ Hz, HC-8'), 1.96 (1H, q, $J = 6.5$ Hz, HC-9'), 1.68 (1H, dq, $J = 14$, 7.5 Hz, HCC-3'), 1.57 (1H, dq, $J = 14$, 7.5 Hz, HCC-3'), 1.07 (3H, d, $J = 7$ Hz, H$_3$CC-8'), 1.04 (3H, d, $J = 7$ Hz, H$_3$C-3), 0.96 (3H, t, $J = 7.5$ Hz, H$_3$CC-3'), 0.95 (3H, d, $J = 6.5$ Hz, H$_3$CC-9'), 0.92 (3H, d, $J = 7$ Hz, H$_3$CC-10'), 0.18 (9H, s, H$_3$CSi \times3)

13C NMR (125 MHz, CDCl$_3$) δ: 204.3 (s, C-1), 103.8 (s, C-5'), 103.4 (s, C-3'), 99.7 (s, C-1'), 78.6 (d, C-7'), 50.6 (d, C-2), 37.6 (d, C-10'), 36.9 (d, C-8'), 35.5 (d, C-9'), 29.6 (t, CH$_2$C-3'), 13.2
(q, CH₃C-8'), 12.6 (q, CH₂C-10'), 7.9 (q, CH₂C-9'), 6.8 (q, C-3), 6.4 (q, CH₂CC-3'), 2.2 (q x 3, CH₃Si)

LRMS (EI), m/z (relative intensity): 356 ([M]⁺, 3), 231 (40), 187 (20), 173 (13), 149 (13), 141 (16), 75 (14), 73 (31), 69 (17), 57 (100)

HRMS m/z calcd for C₁₈H₃₂O₅Si: 356.2019; found: 356.2020 (EI).

EtMgBr (3 M in diethyl ether; 0.071 mL, 0.21 mmol) was added to a stirred solution of aldehyde *ent-10-epi-167* (63 mg, 0.18 mmol) in THF (3.3 mL) at −78 °C under argon. After 10 min, the reaction was quenched by addition of phosphates buffer (pH=7; 1 mL), diluted with ethyl acetate and washed with phosphate buffer (pH=7). The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over Na₂SO₄, and concentrated to yield the titled compound as a single diastereomer (62 mg, 88%). [α]D −13 (c 0.8, CHCl₃)

IR νmax: 3554 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 4.19 (1H, ap dd, J = 6, 8 Hz, HC-3), 3.82 (1H, d, J = 3.5 Hz, HC-7'), 3.43 (1H, s, HO), 2.14 (1H, dq, J = 3.5, 7 Hz, HC-10'), 2.03 (1H, q, J = 6.5 Hz, HC-9'), 1.99 (1H, br q, J = 7 Hz, HC-8'), 1.69-1.52 (4H, m, HC-2, H₂CC-3', H₂C-4), 1.30 (1H, ddq, J = 8, 14.5, 7.5 Hz, HC-4), 1.07 (3H, d, J = 7 Hz, H₂CC-8'), 0.94 (12H, t, J = 7.5 Hz, H₃CCC-3'), 0.93
13C NMR (125 MHz, CDCl₃) δ: 105.5 (s, C-5'), 102.9 (s, C-3'), 99.5 (s, C-1'), 78.6 (d, C-7'), 70.9 (d, C-3), 40.9 (d, C-2), 37.4 (d, C-10'), 36.9 (d, C-8'), 35.5 (d, C-9'), 27.6 (t, CH₂C-3'), 13.2 (q, CH₂C-8'), 12.6 (q, CH₂C-10'), 11.0 (q, C-5), 7.7 (q, CH₃C-9'), 6.5 (q, CH₂CC-3'), 3.3 (q, C-1, 2.2 (q x3, CH₃Si)

LRMS (EI), m/z (relative intensity): 386 ([M]+, 0.4), 243 (99), 197 (46), 187 (42), 153 (40), 129 (36), 97 (71), 73 (77), 57 (100)

HRMS m/z calcd for C₂₀H₃₈O₅Si: 386.2489; found: 386.2490 (EI).

IBX (90 mg, 0.32 mmol) was added to a solution of adamantane ent-10-epi-169 (62 mg, 0.16 mmol) in dry DMSO (2.6 mL) at room temperature under argon. After 12.5 h, the reaction mixture was diluted with ethyl acetate, washed sequentially with saturated aq NaHCO₃, distilled water and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to yield the titled compound (61 mg, 99%). [α]D −67 (c 1.1, CHCl₃)

IR νmax: 1718 cm⁻¹

1H NMR (500 MHz, CDCl₃) δ: 3.80 (1H, d, J = 3.5 Hz, HC-7'), 2.87 (1H, q, J = 7 Hz, HC-2), 2.76 (1H, dq, J = 18, 7.5 Hz, HC-4), 2.46 (1H, dq, J = 18, 7.5 Hz, HC-4), 2.02-1.92 (3H, m, HC-
8', HC-9',HC-10'), 1.65 (1H, dq, J = 14, 7.5 Hz, HCC-3'), 1.52 (1H, dq, J = 14, 7.5 Hz, HCC-3'), 1.05 (3H, d, J = 7 Hz, H3CC-8'), 1.03 (3H, d, J = 7 Hz, H3C-1), 1.01 (3H, t, J = 7.5 Hz, H3C-5), 0.95 (3H, d, J = 6.5 Hz, H3CC-9'), 0.94 (3H, t, J = 7.5 Hz, H3CCC-3'), 0.87 (3H, d, J = 7 Hz, H3CC-10'), 0.16 (9H, s, H3CSi ×3)

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 211.8 (s, C-3), 103.2 (s, C-3'), 103.1 (s, C-5'), 99.8 (s, C-1'), 78.2 (d, C-7'), 50.6 (d, C-2), 37.4 (t, C-4), 37.2 (d, C-10'), 36.8 (d, C-8'), 35.6 (d, C-9'), 29.6 (t, CH2C-3'), 13.2 (q, CH3C-8'), 12.5 (q, CH3C-10'), 9.7 (q, C-1), 8.1 (q, C-5 or CH3C-9'), 8.0 (q, C-5 or CH3C-9'), 6.5 (q, CH3CC-3'), 2.2 (q ×3, CH3Si)

LRMS (EI), \(m/z\) (relative intensity): 384 ([M]+, 5), 259 (60), 203 (18), 187 (21), 169 (67), 101 (19), 75 (17), 73 (37), 57 (100)

HRMS \(m/z\) calc'd for C\(_{20}\)H\(_{36}\)O\(_5\)Si: 384.2332; found: 384.2334 (EI).

\((R)-2-[(1R,3R,5S,7R,8R,9R,10R)-3-Ethyl-8,9,10-trimethyl-5-[(S)-1-methyl-2-(phenylmethoxy)ethyl]-1-trimethylsilyloxy-2,4,6-trioxatricyclo\[3.3.1.1^{37}\]dec-5-yl]propanal (ent-167).

![ent-167](image)

Imidazole (552 mg, 8.11 mmol) was added to a stirred solution of aldehyde \textit{ent-10-epi-167} (419 mg, 1.18 mmol) in CHCl\(_3\) (14.8 mL) that was previously neutralized by passing through basic alumina. After stirring at 40 °C for 1 day, the mixture was diluted with ethyl acetate, washed sequentially with 1% aq citric acid (x3), saturated aq NaHCO\(_3\) and brine, dried over Na\(_2\)SO\(_4\), concentrated, and fractionated by FCC (5% diethyl ether in hexanes) to yield the titled
compound (62 mg, 14%; dr 16-18) and recovered ent-10-epi-167 (338 mg, 80%; dr 16-18). The latter fraction was re-subjected to the isomerization conditions and after a total of six isomerization cycles, recovered ent-10-epi-167 (119 mg, 28%; dr 16-18) and the titled compound were obtained (208 mg, 49%; dr 16-18). A similar experiment conducted in CDCl$_3$ for several days resulted in a 4:1 ratio of ent-10-epi-167 and ent-167, respectively. $[\alpha]_D^\circ +5$ (c 0.5, CHCl$_3$)

IR ν_{max}: 1727 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$) δ: 9.74 (1H, d, $J = 2.5$ Hz, HC-1), 3.80 (1H, d, $J = 3$ Hz, HC-7'), 2.62 (1H, dq, $J = 2.5$, 7 Hz, HC-2), 2.13 (1H, dq, $J = 3.5$, 7 Hz, HC-10'), 2.03-1.99 (2H, m, HC-8', HC-9'), 1.66 (1H, dq, $J = 14$, 7.5 Hz, HCC-3'), 1.56 (1H, dq, $J = 14$, 7.5 Hz, HCC-3'), 1.15 (3H, d, $J = 7$ Hz, H$_3$C-3), 1.05 (3H, d, $J = 7$ Hz, H$_3$CC-8'), 0.96 (3H, t, $J = 7.5$ Hz, H$_3$CCC-3'), 0.92 (3H, d, $J = 7$ Hz, H$_3$CC-10'), 0.91 (3H, d, $J = 6.5$ Hz, H$_3$CC-9'), 0.16 (9H, s, H$_3$CSi $\times 3$)

13C NMR (125 MHz, CDCl$_3$) δ: 203.0 (s, C-1), 103.2 (s, C-3'), 101.9 (s, C-5'), 99.6 (s, C-1'), 78.6 (d, C-7'), 52.6 (d, C-2), 37.6 (d, C-10'), 37.0 (d, C-9'), 36.7 (d, C-8'), 29.7 (t, CH$_3$C-3'), 13.3 (q, CH$_3$C-8'), 12.7 (q, CH$_3$C-10'), 7.9 (q, CH$_3$C-9'), 7.5 (q, C-3), 6.4 (q, CH$_3$CC-3'), 2.2 (q $\times 3$, CH$_3$Si)

LRMS (EI), m/z (relative intensity): 356 ([M]$^+$, 7), 231 (49), 187 (29), 141 (21), 101 (25), 73 (31), 71 (21), 69 (27), 57 (100)

HRMS m/z calcd for C$_{18}$H$_{32}$O$_5$Si: 356.2019; found: 356.2019 (EI).

EtMgBr (3 M in diethyl ether; 0.075 mL, 0.23 mmol) was added to a stirred solution of aldehyde ent-167 (62 mg, 0.17 mmol) in THF (3.4 mL) at −78 °C under argon. The reaction was monitored by TLC and additional EtMgBr solution (ca. 0.01 mL) was added every 10 min. After 50 min, the reaction was quenched by addition of phosphates buffer (pH=7; 1 mL), diluted with ethyl acetate and washed with phosphate buffer (pH=7). The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over Na₂SO₄, and concentrated to yield the titled compound as a 4:1 mixture of diastereomers (66 mg, 99%). [α]D +5 (c 0.45, CHCl₃)

IR νmax: 3540 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ (major diastereomer only): 3.82 (1H, d, J = 3.5 Hz, HC-7'), 3.79 (1H, ap t, J = 7 Hz, HC-2), 3.31 (1H, s, HO), 2.18 (1H, q, J = 6.5 Hz, HC-9'), 2.08 (1H, dq, J = 3.5, 7 Hz, HC-10'), 1.98 (1H, br q, J = 7 Hz, HC-8'), 1.82 (1H, q, J = 7 Hz, HC-2), 1.71-1.49 (3H, m, H₂CC-3', HC-4), 1.35 (1H, ddq, J = 7, 14, 7 Hz, HC-4), 1.08 (3H, d, J = 7 Hz, H₃CC-8'), 0.96 (3H, d, J = 7 Hz, H₃C-1), 0.94 (3H, t, J = 7.5 Hz, H₃CCC-3'), 0.90 (3H, d, J = 7 Hz, H₃CC-10'), 0.89 (3H, t, J = 6 Hz, H₃C-5), 0.87 (3H, d, J = 6.5 Hz, H₃CC-9'), 0.16 (9H, s, H₃CSi x3)

¹³C NMR (125 MHz, CDCl₃) δ (major diastereomer only): 104.7 (s, C-5'), 102.6 (s, C-3'), 99.7 (s, C-1'), 78.7 (d, C-7'), 70.8 (d, C-3), 40.0 (d, C-2), 37.0 (d, C-10'), 36.9 (d, C-8'), 35.8 (d, C-9'), 34.2 (d, C-9'), 32.4 (s, C-7), 31.2 (t, C-2), 29.9 (t, C-3), 29.6 (s, C-5).
29.6 (t, CH₃C-3'), 27.4 (t, C-4), 13.5 (q, CH₃C-8'), 12.6 (q, CH₃C-10'), 10.7 (q, C-5), 7.9 (q, CH₃C-9'), 6.5 (q, CH₂CC-3'), 4.5 (q, C-1), 2.2 (q x3, CH₃Si)

LRMS (Cl, NH₃), m/z (relative intensity): 387 ([M+1]⁺, 7), 329 (25), 298 (19), 297 (100), 243 (25), 97 (7), 90 (14)

HRMS m/z calcd for C₂₀H₃₈O₅Si+H: 387.2567; found: 387.2556 (CI).

(R)-2-[(1R,3R,5S,7R,9R,10R)-3-Ethyl-8,9,10-trimethyl-1-trimethylsilyloxy-2,4,6-trioxatricyclo[3.3.1.1³⁷]dec-5-yl]pentan-3-one (ent-95).

IBX (217 mg, 0.775 mmol) was added to a stirred solution of ent-170 (148 mg, 0.382 mmol) in dry DMSO (6.4 mL) at room temperature under argon. After 14 h, the reaction mixture was diluted with ethyl acetate, washed sequentially with saturated aq NaHCO₃, distilled water and brine, dried over Na₂SO₄, concentrated, and fractionated by FCC (10% ethyl acetate in hexane) to yield the titled compound (130 mg, 87%) [α]D –20 (c 0.4, CHCl₃)

IR νmax: 2980, 2940, 1705, 1249, 900, 878, 843 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 3.81 (1H, d, J = 3.5 Hz, HC-7'), 2.81 (1H, q, J = 7 Hz, HC-2), 2.62 (1H, dq, J = 18, 7.5 Hz, HC-4), 2.48 (1H, dq, J = 18, 7.5 Hz, HC-4), 2.08 (1H, dq, J = 3.5, 7 Hz, HC-10'), 1.97 (1H, br q, J = 7 Hz, HC-8'), 1.87 (1H, q, J = 6.5 Hz, HC-9'), 1.62 (1H, dq, J = 14, 7.5 Hz, HCC-3'), 1.53 (1H, dq, J = 14, 7.5 Hz, HCC-3'), 1.21 (3H, d, J = 7 Hz, H₃C-1), 1.04 (3H, d, J = 7 Hz, H₃CC-8'), 1.00 (3H, t, J = 7.5 Hz, H₃C-5), 0.94 (3H, t, J = 7.5 Hz, H₃CCC-3'), 0.93 (3H, d, J = 6.5 Hz, H₃CC-9'), 0.90 (3H, d, J = 7 Hz, H₃CC-10'), 0.15 (9H, s, H₃CSi x3)
\[^{13}C \text{ NMR} \] (125 MHz, CDCl\(_3\)) \(\delta \): 212.2 (s, C-3), 103.1 (s, C-3'), 101.5 (s, C-5'), 99.8 (s, C-1'), 78.5 (d, C-6'), 53.2 (d, C-2), 37.3 (d, C-9'), 37.2 (d, C-10'), 36.8 (d, C-8'), 33.9 (t, C-4), 29.7 (t, CH\(_2\)C-3'), 13.4 (q, CH\(_3\)C-8'), 12.6 (q, CH\(_3\)C-10'), 10.4 (q, C-1), 8.1 (q, C-5 or CH\(_3\)C-9'), 8.0 (q, C-5 or CH\(_3\)C-9'), 6.5 (q, CH\(_3\)CC-3'), 2.2 (q ×3, CH\(_3\)Si)

LRMS (EI), \(m/z \) (relative intensity): 384 ([M]+, 9), 259 (45), 239 (16), 197 (17), 187 (23), 169 (61), 73 (33), 57 (100)

HRMS \(m/z \) calcd for C\(_{20}\)H\(_{36}\)O\(_5\)Si: 384.2332; found: 384.2328 (EI).

ent-(10R,12R,13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (185).

\[
\text{185}
\]

9-BBNOTf (0.5 M in hexane; 0.31 mL, 0.16 mmol) was added to a stirred solution of Et\(_3\)N (0.024 mL, 17 mg, 0.17 mmol) in ethyl ether (1 mL) at \(-78^\circ\text{C}\) under argon. After 10 min, a solution of ketone *ent-10-epi-95* (30 mg, 0.078 mmol) in ether (0.3 mL plus 2× 0.1 mL rinses) was added via syringe. After 2 h, a solution of freshly prepared aldehyde (±)-30 (49 mg, 0.23 mmol) via syringe in ether (0.3 mL) was added. After 2 h, the reaction was quenched by sequential addition of phosphate buffer (pH=7; 3 mL), methanol (0.5 mL) and 30% aq H\(_2\)O\(_2\) (0.5 mL) with vigorous stirring. The mixture was warmed to 0 \^\circ\text{C}\) and, after 10 min, was extracted with CH\(_2\)Cl\(_2\). The combined organic layers were dried over Na\(_2\)SO\(_4\), concentrated, and fractionated by FCC (20-50% ethyl acetate in hexane) to provide the titled compound (34.5 mg, 74%). \([\alpha]_D^{\text{29}} \approx -39\) (c 1.9, CHCl\(_3\))
IR \(\nu_{\text{max}}: 3438, 1715, 1656, 1615 \text{ cm}^{-1} \)

\(^{1}H\ \text{NMR} (500 MHz, CDCl\(_3\)) \(\delta: 4.32 \ (1H, d, J = 10 \text{ Hz, } \text{HC-13}), 3.62 \ (1H, d, J = 3 \text{ Hz, } \text{HC-5}), 3.07 \ (1H, dq, J = 10, 7 \text{ Hz, } \text{HC-14}), 3.05-2.96 \ (2H, m, \text{HO, HC-10}), 2.92 \ (1H, br q, J = 7 \text{ Hz, HC-12}), 2.61 \ (1H, dq, J = 15, 7.5 \text{ Hz, HC-20}), 2.48 \ (1H, dq, J = 15, 7.5 \text{ Hz, HC-20}), 1.98 \ (3H, s, \text{H}_3\text{CC-16}), 1.95-1.87 \ (2H, m, \text{HC-6, HC-8}), 1.92 \ (3H, s, \text{H}_3\text{CC-18}), 1.61-1.42 \ (2H, m, \text{H}_2\text{C-2, HC-4}), 1.34 \ (3H, d, J = 7 \text{ Hz, } \text{H}_3\text{CC-14}), 1.18 \ (3H, t, J = 7.5 \text{ Hz, } \text{H}_2\text{C-21}), 1.14 \ (3H, d, J = 7.5 \text{ Hz, } \text{H}_3\text{CC-12}), 1.03 \ (3H, d, J = 7 \text{ Hz, } \text{H}_3\text{CC-10}), 1.00 \ (3H, d, J = 7 \text{ Hz, } \text{H}_3\text{CC-6}), 0.92 \ (3H, d, J = 6.5 \text{ Hz, } \text{H}_3\text{CC-8}), 0.82 \ (3H, t, J = 7.5 \text{ Hz, } \text{H}_3\text{C-1}), 0.76 \ (3H, d, J = 7 \text{ Hz, } \text{H}_3\text{CC-4}), 0.14 \ (9H, s, \text{H}_3\text{CSi} \times 3) \)

\(^{13}C\ \text{NMR} (125 MHz, CDCl\(_3\)) \(\delta: 215.4 \ (s, \text{C-11}), 179.7 \ (s, \text{C-17}), 164.4 \ (s, \text{C-15 or C-19}), 164.3 \ (s, \text{C-15 or C-19}), 119.1 \ (s, \text{C-16}), 118.1 \ (s, \text{C-18}), 103.4 \ (s, \text{C-9}), 103.0 \ (s, \text{C-3}), 99.6 \ (s, \text{C-7}), 78.4 \ (d, \text{C-5}), 71.9 \ (d, \text{C-13}), 48.6 \ (d, \text{C-12}), 48.5 \ (d, \text{C-10}), 38.4 \ (d, \text{C-14}), 38.4 \ (d, \text{C-4}), 36.6 \ (d, \text{C-6}), 35.6 \ (d, \text{C-8}), 29.5 \ (t, \text{C-2}), 24.9 \ (t, \text{C-20}), 16.0 \ (q, \text{CH}_3\text{C-14}), 13.1 \ (q, \text{CH}_3\text{C-6}), 12.7 \ (q, \text{CH}_3\text{C-4}), 11.5 \ (q, \text{C-21}), 10.1 \ (q, \text{CH}_3\text{C-12}), 10.0 \ (q, \text{CH}_3\text{C-10}), 9.9 \ (q, \text{CH}_3\text{C-16}), 9.8 \ (q, \text{CH}_3\text{C-18}), 7.9 \ (q, \text{CH}_3\text{C-8}), 6.0 \ (q, \text{C-1}), 2.1 \ (q \times 3, \text{CH}_3\text{Si}) \)

LRMS (EI), \(m/z \) (relative intensity): 592 ([M]\(^{+}\), 4), 467 (22), 259 (29), 180 (40), 179 (41), 73 (37), 57 (100)

HRMS \(m/z \) calcd for C\(_{32}\)H\(_{52}\)O\(_8\)Si: 592.3432; found: 592.3422 (EI).

NaBH(OAc)$_3$ (32 mg, 0.15 mmol) and acetic acid (77 mg, 73 uL, 1.3 mmol) were added sequentially to a stirred solution of aldol adduct 185 (18 mg, 0.030 mmol) in THF (0.7 mL) under argon at room temperature. After 3 h, distilled water (1.3 mL) was added. The mixture was diluted with ethyl acetate, washed sequentially with saturated aq NaHCO$_3$ and brine, dried over Na$_2$SO$_4$, concentrated, and fractionated by FCC (50% ethyl acetate in hexane) to yield the desired product (14 mg, 78%). $[\alpha]_D$ -5 (c 1.4, CHCl$_3$)

IR ν_{max}: 3440, 1655, 1604 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$) δ: 4.92 (1H, br s, HOC-11), 4.35 (1H, br s, HOC-13), 4.16 (1H, d, $J = 10$ Hz, HC-13), 3.98 (1H, dd, $J = 1.5$, 9 Hz, HC-11), 3.81 (1H, d, $J = 3$ Hz, HC-5), 3.09 (1H, dq, $J = 10$, 6.5 Hz, HC-14), 2.64 (1H, dq, $J = 15$, 7.5 Hz, HC-20), 2.49 (1H, dq, $J = 15$, 7.5 Hz, HC-20), 2.10-1.97 (4H, m, HC-4,HC-6, HC-8, HC-10), 2.00 (3H, s, H$_3$CC-16), 1.92 (3H, s, H$_3$CC-18), 1.71-1.62 (1H, dq, $J = 14.5$, 7.5 Hz, HC-2), 1.54-1.46 (2H, m, HC-2, HC-12), 1.35 (3H, d, $J = 6.5$ Hz, H$_3$CC-14), 1.21 (3H, t, $J = 7.5$ Hz, H$_3$C-21), 1.07 (3H, d, $J = 7$ Hz, H$_3$CC-12), 1.03 (3H, d, $J = 7$ Hz, H$_3$CC-6), 0.93 (9H, d, $J = 6.5$ Hz, H$_3$CC-8), 0.92 (3H, t, $J = 7.5$ Hz, H$_3$C-1), 0.90 (3H, d, $J = 7$ Hz, H$_3$CC-4), 0.57 (3H, d, $J = 7$ Hz, H$_3$CC-10), 0.16 (9H, s, H$_3$CSi x3)

13C NMR (125 MHz, CDCl$_3$) δ: 180.0 (s, C-10), 164.8 (s, C-15), 164.2 (s, C-19), 119.2 (s, C-16), 118.3 (s, C-18), 106.1 (s, C-9), 103.6 (s, C-3), 99.7 (s, C-7), 78.4 (d, C-5), 78.0 (d, C-11), 72.5 (d, C-13), 40.0 (d, C-10), 39.6 (d, C-14), 37.8 (d, C-4), 36.6 (d, C-6), 35.7 (d, C-8 or C-12),
35.6 (d, C-8 or C-12), 29.6 (t, C-2), 25.0 (t, C-20), 15.7 (q, CH₃C-14), 13.2 (q, CH₂C-6), 12.6 (q, CH₂C-4), 11.8 (q, CH₃C-12), 11.4 (q, CH₂C-21), 10.1 (q, CH₂C-16), 9.9 (q, CH₃C-10), 9.7 (q, CH₂C-18), 7.5 (q, CH₂C-8), 6.3 (q, C-1), 2.1 (q x3, CH₃)

LRMS (EI), m/z (relative intensity): 594 ([M]+, 5), 525 (10), 469 (24), 267 (14), 209 (12), 181 (17), 180 (100), 153 (12), 73 (26), 57 (46)

HRMS m/z calcd for C₃₂H₅₄O₈Si: 594.3588; found: 594.3592 (EI).

ent-(10R,12S,13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (186)

10-**epi-anti-aldol-A**

![Chemical Structure](image)

\([\alpha]_D -90 \ (c \ 0.23, \ CHCl_3)\)

IR \(\nu_{\text{max}}: 3364, 1703, 1654, 1612, 1597 \ (\text{sh}) \ \text{cm}^{-1}\)

¹H NMR (500 MHz, CDCl₃) \(\delta: 3.82 \ (1H, \text{ddd}, J = 4, 8, 9 \ \text{Hz, HC-13}), 3.61 \ (1H, \text{dd}, J = 3.5, 1 \ \text{Hz, HC-5}), 3.38 \ (1H, \text{dq}, J = 8, 7 \ \text{Hz, HC-14}), 3.04 \ (1H, \text{dq}, J = 4, 7.5 \ \text{Hz, HC-12}), 2.98 \ (1H, \text{q}, J = 7 \ \text{Hz, HC-10}), 2.89 \ (1H, \text{d}, J = 9 \ \text{Hz, HO}), 2.63-2.53 \ (2H, \text{m, H}_2C-20), 1.97-1.86 \ (2H, \text{m, HC-6, HC-8}), 1.93 \ (3H, \text{s, H}_3C-18), 1.88 \ (3H, \text{s, H}_3C-16), 1.66-1.47 \ (2H, \text{m, HC-2, HC-4}), 1.40-1.29 \ (1H, \text{m, HC-2}), 1.31 \ (3H, \text{d, J = 7 Hz, H}_3C-14), 1.28 \ (3H, \text{d, J = 7.5 Hz, H}_3C-12), 1.20 \ (3H, \text{t, J = 7.5 Hz, H}_2C-21), 1.02 \ (3H, \text{d, J = 7 Hz, H}_2C-10), 1.01 \ (3H, \text{d, J = 7 Hz, H}_2C-6), 0.93 \ (3H, \text{d, J = 6.5 Hz, H}_3C-8), 0.86 \ (3H, \text{t, J = 7.5 Hz, H}_3C-1), 0.74 \ (3H, \text{d, J = 7 Hz, H}_3C-4), 0.14 \ (9H, \text{s, H}_3CSi x3)\)
13C NMR (125 MHz, CDCl$_3$) δ: 215.1 (s, C-11), 179.7 (s, C-17), 165.4 (s, C-15), 164.3 (s, C-19), 118.8 (s, C-16), 118.1 (s, C-18), 103.7 (s, C-9), 103.2 (s, C-3), 99.7 (s, C-7), 78.1 (d, C-5), 76.7 (d, C-13), 49.7 (d, C-12), 48.5 (d, C-10), 39.7 (d, C-14), 37.5 (d, C-4), 36.5 (d, C-6), 35.8 (d, C-8), 29.5 (t, C-2), 24.0 (t, C-20), 16.7 (q, CH$_3$C-12), 15.1 (q, CH$_3$C-14), 13.1 (q, CH$_3$C-6), 12.5 (q, CH$_3$C-4), 11.4 (q, C-21), 9.8 (q, CH$_3$C-18), 9.3 (q ×2, CH$_3$C-10, CH$_3$C-16), 8.1 (q, CH$_3$C-8), 6.3 (q, C-1), 2.1 (q ×3, CH$_3$Si)

LRMS (EI), m/z (relative intensity): 592 ([M]$^+$, 9), 468 (18), 467 (54), 349 (32), 181 (17), 180 (100), 179 (19), 73 (33), 57 (49)

HRMS m/z calcld for C$_{32}$H$_{52}$O$_6$Si: 592.3431; found: 592.3448 (EI).

ent-10$_R$,12$_R$,13$_R$)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (188)

10-epi-anti-aldol-B

![Chemical Structure](image)

Et$_3$N (0.008 mL, 6 mg, 0.06 mmol) and BCl(c-C$_6$H$_{12}$)$_2$ (1 M in hexane; 0.052 mL, 0.052 mmol) were added sequentially to a stirred solution of ent-10-epi-95 (9 mg, 0.023 mmol) in ether (0.2 mL) at 0 °C under argon. After 1 h, the reaction mixture was cooled at $–78$ °C and a solution of freshly prepared aldehyde (±)-30 (16 mg, 0.078 mg) in ether (0.25 mL) was added. After 2 h, the reaction was quenched by sequential addition of of phosphate buffer (pH=7, 0.5 mL), MeOH (0.5 mL), and 30% aq H$_2$O$_2$ (0.5 mL) with vigorous stirring. After 10 min at 0 °C, the mixture was extracted with CH$_2$Cl$_2$ and the combined organic layers were dried over Na$_2$SO$_4$,
concentrated, and fractionated by PTLC (50% ethyl acetate in hexane) to provide 186 (anti-aldol, 3 mg, 16%) and 188 (anti-aldol, 9.3 mg, 67%). $[\alpha]_D$ -60 (c 0.9, CHCl$_3$)

IR ν_{max}: 3379, 1716, 1651, 1595 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$) δ: 3.83 (1H, q, $J = 6.5$, Hz, HC-13), 3.80 (1H, br d, $J = 3$, Hz, HC-5), 3.12 (1H, dq, $J = 6.5$, 7 Hz, HC-12), 2.98 (1H, q, $J = 7$, Hz, HC-10), 2.91 (1H, dq, $J = 6.5$, 7 Hz, HC-14), 2.65 (1H, d, $J = 6.5$, Hz, HO), 2.60 (2H, ap q, $J = 7.5$, Hz, H$_2$C-20), 2.02-1.87 (3H, m, HC-4, HC-6, HC-8), 1.93 (3H, s, H$_3$CC-16 or H$_3$CC-18), 1.92 (3H, s, H$_3$CC-16 or H$_3$CC-18), 1.65 (1H, dq, $J = 15$, 7.5 Hz, HC-2), 1.44 (1H, dq, $J = 15$, 7.5 Hz, HC-2), 1.30 (3H, d, $J = 7$, Hz, H$_3$CC-14), 1.20 (3H, t, $J = 7.5$, Hz, H$_3$C-21), 1.13 (3H, d, $J = 7$, Hz, H$_3$CC-12), 1.03 (3H, d, $J = 7$, Hz, H$_3$CC-6), 1.00 (3H, d, $J = 7$, Hz, H$_3$CC-10), 0.90 (3H, t, $J = 7.5$, Hz, H$_3$C-1), 0.89 (3H, d, $J = 7$, Hz, H$_3$CC-8), 0.86 (3H, d, $J = 7$, Hz, H$_3$CC-4), 0.16 (9H, s, H$_3$Si x3)

^{13}C NMR (125 MHz, CDCl$_3$) δ: 216.9 (s, C-11), 179.7 (s, C-12), 164.9 (s, C-15), 164.3 (s, C-19), 118.6 (s, C-18), 118.4 (s, C-16), 104.0 (s, C-9), 103.1 (s, C-3), 99.7 (s, C-7), 78.4 (d, C-5), 77.4 (d, C-13), 52.5 (d, C-10), 49.4 (d, C-12), 39.9 (d, C-14), 37.9 (d, C-4), 36.6 (d, C-6), 35.6 (d, C-8), 29.7 (t, C-2), 24.9 (t, C-20), 14.5 (q, CH$_3$C-12), 13.7 (q, CH$_3$C-14), 13.2 (q, CH$_3$C-6), 12.6 (q, CH$_3$C-4), 11.5 (q, C-21), 9.72 (q, CH$_3$C-16 or CH$_3$C-18), 9.66 (q, CH$_3$C-16 or CH$_3$C-18), 9.5 (q, CH$_3$C-10), 7.9 (q, CH$_3$C-8), 6.1 (q, C-1), 2.2 (q x3, H$_3$Si)

LRMS (EI), m/z (relative intensity): 592 ([M]$^+$, 5), 467 (45), 349 (28), 180 (100), 179 (54), 169 (15), 153 (33), 73 (36), 57 (86)

HRMS m/z calcd for C$_{32}$H$_{52}$O$_8$Si: 592.3431; found: 592.3418 (EI).
ent-(13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (190)

syn-aldol-A.

![Chemical structure of ent-(13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (190)](attachment)

\[\alpha\] \text{D} = -15 (c 0.2, CHCl\(_3\))

IR \(\nu_{\text{max}}\) = 3421, 1700, 1653, 1616 cm\(^{-1}\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 4.08 (1H, d, \(J = 10\) Hz, HC-13), 3.74 (1H, d, \(J = 3.5\) Hz, HC-5), 1.19 (1H, br s, HO), 3.04 (1H, dq, \(J = 10, 7\) Hz, HC-14), 2.89 (1H, q, \(J = 7\) Hz, HC-10), 2.78 (1H, br q, \(J = 7\) Hz, HC-12), 2.67 (1H, dq, \(J = 15, 7.5\) Hz, HC-20), 2.51 (1H, dq, \(J = 15, 7.5\) Hz, HC-20), 2.08-1.90 (2H, m, HC-4, HC-6), 1.99 (3H, s, H\(_3\)CC-16), 1.95 (3H, s, H\(_3\)CC-18), 1.76 (1H, s, \(J = 6.5\) Hz, HC-8), 1.68-1.42 (2H, m, HC-2), 1.35 (3H, d, \(J = 7\) Hz, H\(_2\)CC-14), 1.20 (3H, t, \(J = 7.5\) Hz, H\(_3\)C-21), 1.14 (3H, d, \(J = 7\) Hz, H\(_3\)CC-10), 1.09 (3H, d, \(J = 7\) Hz, H\(_3\)CC-12), 0.99 (3H, d, \(J = 7\) Hz, H\(_3\)CC-6), 0.87 (3H, t, \(J = 7.5\) Hz, H\(_3\)C-1), 0.87 (3H, d, \(J = 7\) Hz, H\(_3\)CC-4), 0.81 (3H, d, \(J = 6.5\) Hz, H\(_3\)CC-8), 0.14 (9H, s, H\(_3\)CSi x3)

\(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 217.0 (s, C-11), 179.9 (s, C-17), 164.6 (s, C-19), 163.8 (s, C-15), 119.2 (s, C-16), 118.2 (s, C-18), 103.2 (s, C-3), 101.4 (s, C-9), 99.6 (s, C-7), 78.4 (d, C-5), 72.4 (d, C-13), 52.0 (d, C-10), 46.4 (d, C-12), 38.7 (d, C-14), 37.4 (d, C-8), 37.0 (d, C-4), 36.6 (d, C-6), 29.6 (t, C-2), 25.0 (t, C-20), 15.9 (q, CH\(_3\)C-14), 13.2 (q, CH\(_3\)C-6), 12.5 (q, CH\(_3\)C-4), 11.4 (q, C-21), 10.8 (q, CH\(_3\)C-10), 10.1 (q, CH\(_3\)C-12), 9.9 (q, CH\(_3\)C-16), 9.8 (q, CH\(_3\)C-18), 8.3 (q, CH\(_3\)C-8), 6.4 (q, C-1), 2.2 (q x3, CH\(_3\)Si)
LRMS (EI), m/z (relative intensity): 592 ([M]+, 10), 467 (57), 349 (63), 209 (19), 180 (70), 179 (39), 169 (22), 73 (42), 57 (100)

HRMS m/z calcd for C32H52O8Si: 592.3431; found: 592.3446 (EI).

ent-(13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (192)

syn-aldol-B

\[
\text{IR } \nu_{\text{max}}: 3396, 1716, 1653, 1595 \text{ cm}^{-1}
\]

n-BuLi (2.4 M in hexanes; 0.012 mL, 0.027 mmol) was added to a stirred solution of tert-butyl(trimethylsilyl)amine (0.006 mL, 4 mg, 0.03 mmol) in THF (0.1 mL) at 0 °C under argon. After 3 min, the reaction mixture was warmed to room temperature and, after 15 min, was cooled 0 °C. A solution of ketone ent-95 (7 mg, 0.02 mmol) in THF (0.1 mL plus 3× 0.1 mL rinses) was added. After 10 min, the mixture cooled to −78 °C, and a solution of freshly prepared aldehyde (±)-30 (11.5 mg, 0.055 mmol) in THF (0.3 mL) was added. After 20 min, the reaction was quenched by addition of phosphate buffer (pH=7; 1 mL). The mixture was extracted with ethyl acetate. The combined organic layers were dried over Na2SO4, concentrated, and fractionated by FCC (20%-100% ethyl acetate in hexanes) to provide recovered starting ketone ent-95 (2 mg, 28%), and a mixture of aldol adducts that were further fractionated by PTLC (30% ethyl acetate in hexane, multiple elution) to provide a 1.5:1 mixture of two anti aldols (2.5 mg, ca. 23%), syn-aldol-A 190 (2 mg, 18%), and syn-aldol-B 192 (3 mg, 28%). [\(\alpha\)]D +15 (c 0.3, CHCl3)
1H NMR (500 MHz, CDCl$_3$) δ: 4.05 (1H, d, $J = 10$ Hz, HC-13), 3.77 (1H, d, $J = 3.5$ Hz, HC-5), 3.16 (1H, s, HO), 3.03 (1H, dq, $J = 10$, 7 Hz, HC-14), 2.89 (1H, q, $J = 7$ Hz, HC-10), 2.73 (1H, q, $J = 7$ Hz, HC-12), 2.63 (1H, dq, $J = 15$, 7.5 Hz, HC-20), 2.54 (1H, dq, $J = 15$, 7.5 Hz, HC-20), 2.13 (1H, q, $J = 6.5$ Hz, HC-8), 2.01-1.91 (2H, m, HC-4, HC-6), 1.98 (3H, s, H$_3$CC-16), 1.95 (3H, s, H$_3$CC-18), 1.64-1.50 (1H, m, HC-2), 1.50-1.39 (1H, m, HC-2), 1.34 (3H, d, $J = 7$ Hz, H$_3$CC-14), 1.20 (3H, t, $J = 7.5$ Hz, H$_3$C-21), 1.15 (3H, d, $J = 7$ Hz, H$_3$CC-10), 1.10 (3H, d, $J = 7$ Hz, H$_3$CC-6), 1.07 (3H, d, $J = 7$ Hz, H$_3$CC-12), 0.88 (3H, d, $J = 7$ Hz, H$_3$CC-4), 0.84 (3H, t, $J = 7.5$ Hz, H$_3$C-1), 0.81 (3H, d, $J = 6.5$ Hz, H$_3$CC-8), 0.14 (9H, s, H$_3$CSi x3)

13C NMR (125 MHz, CDCl$_3$) δ: 216.5 (s, C-11), 179.9 (s, C-17), 164.5 (s, C-19), 163.9 (s, C-15), 119.2 (s, C-16), 118.3 (s, C-18), 103.1 (s, C-3), 102.0 (s, C-9), 99.7 (s, C-7), 78.6 (d, C-5), 72.4 (d, C-13), 51.3 (d, C-10), 46.1 (d, C-12), 38.9 (d, C-14), 37.4 (d, C-4), 36.7 (d, C-6), 36.0 (d, C-8), 29.6 (t, C-2), 25.0 (t, C-20), 15.9 (q, CH$_3$C-14), 13.3 (q, CH$_3$C-6), 12.6 (q, CH$_3$C-4), 11.6 (q, C-21), 10.7 (q, CH$_3$C-10), 10.0 (q, CH$_3$C-16), 9.9 (q, CH$_3$C-18), 9.7 (q, CH$_3$C-12), 8.1 (q, CH$_3$C-8), 6.3 (q, C-1), 2.1 (q x3, CH$_3$Si)

LRMS (EI), m/z (relative intensity): 592 ([M]$^+$, 11), 468 (24), 467 (73), 349 (76), 209 (25), 180 (97), 179 (44), 73 (64), 57 (100)

HRMS m/z calcd for C$_{32}$H$_{52}$O$_8$Si: 592.3431; found: 592.3451 (EI).
ent-(13S)-11-Didehydro-13-dihydro-7-O-(trimethylsilyl)caloundrin B (191).

\[
\begin{align*}
\text{ent} - 95 & \quad (48 \text{ mg, } 0.12 \text{ mmol}) \\
\text{ent} - 30 & \quad (95 \text{ mg, } 0.45 \text{ mmol})
\end{align*}
\]

\(n\)-BuLi (2.4 M in hexanes; 0.070 mL, 0.17 mmol) was added to a stirred solution of tert-butyl(trimethylsilyl)amine (0.035 mL, 26 mg, 0.18 mmol) in THF (0.7 mL) at 0 °C under argon. After 1 min, the reaction mixture was warmed to room temperature and, after 15 min, was cooled 0 °C. A solution of ketone \(\text{ent-95}\) (48 mg, 0.12 mmol) in THF (0.6 mL plus 3× 0.2 mL rinses) was added. After 10 min, the mixture cooled to −78 °C, and (\(c\)-\(C_6\)\(H_{12}\))\(_2\)BCl (1 M in hexane; 0.169 mL, 0.17 mmol) was added. After 15 min, a solution of freshly prepared aldehyde (±)-30 (95 mg, 0.45 mmol) in THF (0.6 mL) was added. After 7 h, the reaction was quenched by sequential addition of phosphate buffer (pH=7; 1 mL), methanol (1 mL) and 30% aq \(H_2O_2\) (1 mL) with vigorous stirring. The mixture was warmed to 0 °C and, after 10 min, was extracted with \(CH_2Cl_2\). The combined organic layers were dried over \(Na_2SO_4\), concentrated, and fractionated by FCC (20-50% ethyl acetate in hexane) to provide the titled compound (38 mg, 51%) and a mixture of diastereomers including 191 (24 mg, 31%). Fractionation of the latter mixture by PTLC (30% ethyl acetate in hexane, multiple elution) provided a 2:1 mixture of aldol diastereomers (13 mg, 18%) and additional titled compound (7 mg, 9%; total yield of 191 = 60%). \([\alpha]_D^{+15}\) (c 0.9, \(CHCl_3\))

\text{IR } \nu_{\text{max}}: 3378, 1703, 1652, 1596 \text{ cm}^{-1}

\text{1H NMR } (500 \text{ MHz, } CDCl_3) \delta: 3.89 (1H, ddd, \(J = 6, 6.5, 7\) Hz, HC-13), 3.77 (1H, br d, \(J = 3.5\) Hz, HC-5), 3.11 (1H, dq, \(J = 6, 7\) Hz, HC-14), 2.93 (1H, dq, \(J = 7, 7\) Hz, HC-12), 2.88 (1H, q, \(J = 8, 8\) Hz, HC-11).
= 7 Hz, HC-10), 2.70 (1H, d, J = 6.5 Hz, HO), 2.59 (2H, ap q, J = 7.5 Hz, H₂C-20), 2.09-2.00
(2H, m, HC-4, HC-8), 1.97-1.91 (1H, m, HC-6), 1.93 (3H, s, H₃CC-16 or H₃CC-18), 1.92 (3H, s,
H₃CC-16,H₃CC-18), 1.59 (1H, dq, J = 14.5, 7.5 Hz, HC-2), 1.51 (1H, dq, J = 14.5, 7.5 Hz, HC-
2), 1.29 (3H, d, J = 7 Hz, H₃CC-14), 1.20 (3H, t, J = 7.5 Hz, H₃C-21), 1.19 (3H, d, J = 7 Hz,
H₃CC-10), 1.12 (3H, d, J = 7 Hz, H₃CC-12), 1.03 (3H, d, J = 7 Hz, H₃CC-6), 0.92 (3H, t, J = 7.5
Hz, H₃C-1), 0.92 (3H, d, J = 6.5 Hz, H₃CC-8), 0.88 (3H, d, J = 7 Hz, H₃CC-4), 0.14 (9H, s,
H₃CSi ×3)

¹³C NMR (125 MHz, CDCl₃) δ: 215.6 (s, C-11), 179.8 (s, C-17), 164.9 (s, C-15), 164.4 (s, C-
19), 118.6 (s, C-16), 118.3 (s, C-18), 103.1 (s, C-3), 102.2 (s, C-9), 99.8 (s, C-7), 78.5 (d, C-13),
76.6 (d, C-5), 52.1 (d, C-10), 47.5 (d, C-12), 39.0 (d, C-14), 37.2 (d, C-4), 36.9 (d, C-8), 36.8 (d,
C-6), 29.6 (t, C-2), 24.9 (t, C-20), 15.1 (q, CH₃C-12), 13.3 (q, CH₃C-6), 13.0 (q, CH₃C-14), 12.6
(q, CH₃C-4), 11.5 (q, C-21), 10.5 (q, CH₃C-10), 9.7 (q, CH₃C-16), 9.7 (q, CH₃C-18), 8.4 (q,
CH₃C-8), 6.5 (q, C-1), 2.2 (q ×3, CH₃Si)

LRMS (EI), m/z (relative intensity): 592 ([M]+, 8), 523 (11), 467 (53), 349 (55), 180 (100), 179
(43), 169 (22), 73 (54), 57 (56)

HRMS m/z calcd for C₃₂H₅₂O₈Si: 592.3431; found: 592.3441 (EI).

ent-(13R)-13-Dihydro-7-O-trimethylsilyl-caloundrin B (194).

![Structure](image)

Et₂BOMe (1M in toluene; 0.27 mL, 0.27 mmol) was added to a stirred solution of aldol adduct
191 (16 mg, 0.027 mmol) in THF (0.23 mL) and MeOH (0.077 mL) at 0 °C under argon. After
30 min, the solution was cooled to −78 °C and NaBH₄ (44 mg, 1.1 mmol) was added. After 40 min at −78 °C and 2.5 h at 0 °C, phosphate buffer (pH=7; 0.5 mL) and MeOH (0.5 mL) were added to the reaction mixture followed by dropwise addition of 30% aq H₂O₂ (0.5 mL) (caution: exothermic). After 5 min, the mixture was allowed to warm to ambient temperature. After 2 h, the mixture was extracted CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by PTLC (30% ethyl acetate in hexanes) to yield diol 194 (9 mg, 58%) and its borate diester (4.6 mg, 27%). The boronate ester, obtained as above from several experiments, was combined (20 mg) and taken up in THF (2 mL) and N-methyldiethanolamine (0.35 mL, 0.38 g, 0.87 mmol) was added. After 10 min, the mixture was cooled at 0 °C and phosphate buffer (pH=7; 2 mL) and 30% aq H₂O₂ (2 mL) were added sequentially. After 5 min, the mixture was warmed at room temperature and, after 2 h, was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, concentrated, and fractionated by PTLC (50% ethyl acetate in hexanes) to yield diol 194 (17 mg, 91%). Thus, the overall yield of 194 was 84%.

[α]D −3 (c 0.3, CHCl₃)

IR νmax: 3413, 1652, 1592 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 4.42 (1H, br s, HOC-11), 3.98 (1H, br s, HOC-13), 3.80 (1H, d, J = 3.5 Hz, HC-5), 3.78 (1H, dd, J = 6, 6 Hz, HC-13), 3.61 (1H, dd, J = 5, 8 Hz, HC-11), 3.30 (1H, dddd, J = 7 Hz, HC-14), 2.61 (2H, ap q, J = 8 Hz, H₂C-20), 2.20-2.05 (3H, m, HC-4, HC-8, HC-10), 1.99 (1H, br q, J = 7 Hz, HC-6), 1.97 (3H, s, H₃CC-16), 1.94 (3H, s, H₃CC-18), 1.85 (1H, ddq, J = 6, 8, 7 Hz, HC-12), 1.63 (1H, dq, J = 14.5, 7.5 Hz, HC-2), 1.53 (1H, dq, J = 14.5, 7.5 Hz, HC-2), 1.27 (3H, d, J = 7 Hz, H₃CC-14), 1.21 (3H, t, J = 7.5 Hz, H₃C-21), 1.04 (3H, d, J = 7 Hz, H₃CC-10), 1.03 (3H, d, J = 7 Hz, H₃CC-6), 0.97-0.91 (6H, d, J = 7 Hz, H₃CC-8, H₃CC-12), 0.93 (3H, t, J = 7.5 Hz, H₃C-1), 0.90 (3H, d, J = 7 Hz, H₃CC-4), 0.16 (9H, s, H₃CSi x3)
C NMR (125 MHz, CDCl$_3$) δ: 180.1 (s, C-17), 165.9 (s, C-15), 164.5 (s, C-19), 118.3 (s, C-16), 118.1 (s, C-18), 104.9 (s, C-9), 102.9 (s, C-3), 99.6 (s, C-7), 81.0 (d, C-11), 79.0 (d, C-5), 78.4 (d, C-13), 41.8 (d, C-10), 40.2 (d, C-14), 39.6 (d, C-12), 37.7 (d, C-8), 37.4 (d, C-4), 36.7 (d, C-6), 29.7 (t, C-2), 25.0 (t, C-20), 16.8 (q, CH$_3$C-12), 13.8 (q, CH$_3$C-10), 13.5 (q, CH$_3$C-6), 12.8 (q, CH$_3$C-14), 12.6 (q, CH$_3$C-4), 11.6 (q, C-21), 9.8 (q, CH$_3$C-16), 9.7 (q, CH$_3$C-18), 8.8 (q, CH$_3$C-8), 6.5 (q, C-1), 2.2 (q ×3, CH3-Si)

LRMS (EI), m/z (relative intensity): 594 ([M]+, 3), 469 (12), 351 (15), 267 (19), 181 (17), 180 (100), 153 (10), 73 (21), 57 (37)

HRMS m/z calcd for C$_{32}$H$_{54}$O$_8$Si: 594.3588; found: 594.3597 (EI).

ent-(13S)-13-Dihydro-11-O-triethylsilyl-7-O-trimethylsilyl-caloundrin B (195).

![195]

2,6-Lutidine (46 uL, 42 mg, 0.392 mmol) and TESOTf (0.01 mL, 10 mg, 0.044 mmol) were sequentially added to a solution of diol 194 (23 mg, 0.039 mmol) in CH$_2$Cl$_2$ (3.9 mL) at −50 °C under argon. After 6 min, the reaction mixture was diluted with ethyl acetate and washed sequentially with 1% aq citric acid, saturated aq NaHCO$_3$, and brine. The organic layer was dried over Na$_2$SO$_4$, concentrated, and fractionated by PTLC (30% ethyl acetate in hexanes) to yield recovered diol 194 (14 mg, 61%) and the titled compound as a colorless oil (9 mg, 31%; 79% BORSM). [α]$_D$ +10 (c 0.35, CHCl$_3$)

IR ν$_{max}$: 3437, 1653, 1611, 1596 cm$^{-1}$
1H NMR (500 MHz, CDCl$_3$) δ: 4.00 (1H, dd, $J = 3$, 3 Hz, H$_2$C-11), 3.80 (1H, br s, HO), 3.78-3.71 (2H, m, H$_2$C-5, H$_2$C-13), 3.11 (1H, dq, $J = 4$, 7 Hz, H$_2$C-14), 2.62 (2H, ap q, $J = 7.5$ Hz, H$_2$C-20), 2.37-2.25 (1H, m, H$_2$C-12), 2.05 (1H, dq, $J = 4$, 7 Hz, H$_2$C-4), 2.02-1.90 (2H, m, H$_2$C-6, H$_2$C-10), 1.97 (3H, s, H$_3$C-16), 1.95 (3H, s, H$_3$C-18), 1.85 (1H, q, $J = 6.5$ Hz, H$_2$C-8), 1.70-1.46 (2H, m, H$_2$C-2), 1.24 (3H, d, $J = 7$ Hz, H$_3$C-14), 1.21 (3H, t, $J = 7.5$ Hz, H$_3$C-21), 1.09 (3H, d, $J = 7$ Hz, H$_3$C-10), 1.03 (3H, d, $J = 7$ Hz, H$_3$C-6), 0.98 (3H, d, H$_3$C-8), 0.97 (3H, d, $J = 7$ Hz, H$_3$C-12), 0.94 (9H, t, $J = 8$ Hz, H$_3$CCSi ×3), 0.93 (3H, t, H$_3$C-1), 0.89 (3H, d, H$_3$C-4), 0.61 (6H, ap q, H$_2$CSi ×3), 0.17 (9H, s, H$_3$CSi ×3)

13C NMR (125 MHz, CDCl$_3$) δ: 180.3 (s, C-17), 166.5 (s, C-15), 164.6 (s, C-19), 117.9 (s, C-16), 117.7 (s, C-18), 102.7 (s, C-3), 102.6 (s, C-9), 99.7 (s, C-7), 78.4 (d, C-5), 77.7 (d, C-11), 75.6 (d, C-13), 46.6 (d, C-10), 39.0 (d, C-14), 37.5 (d, C-8), 37.3 (d, C-12), 37.0 (d, C-4), 36.8 (d, C-6), 29.7 (t, C-2), 25.1 (t, C-20), 19.2 (q, CH$_3$C-12), 13.4 (q, CH$_3$C-6), 12.6 (q, CH$_3$C-4), 11.5 (q, C-21), 10.6 (q, CH$_3$C-14), 9.8 (q, CH$_3$C-16), 9.7 (q, CH$_3$C-18), 8.6 (q, CH$_3$C-8), 7.8 (q, CH$_3$C-10), 7.0 (q ×3, CH$_3$CSi), 6.5 (q, C-1), 5.2 (t ×3, CH$_2$Si), 2.2 (q ×3, CH$_3$Si)

LRMS (EI), m/z (relative intensity): 708 ([M]$^+$, 3), 381 (12), 255 (17), 209 (37), 181 (15), 180 (100), 115 (15), 73 (20), 57 (22)

HRMS m/z calcd for C$_{38}$H$_{68}$O$_8$Si$_2$: 708.4453; found: 708.4452 (EI).
ent-11-O-Triethylsilyl-7-O-trimethylsilyl-caloundrin B (196).

IBX (41 mg, 0.1467 mmol) was added to a stirred solution of alcohol 195 (13 mg, 0.0183 mmol) in DMSO (2.4 mL) at room temperature under Ar. After 13 h, the reaction was diluted with ethyl acetate and washed sequentially with saturated aq NaHCO₃, distilled water and brine, dried over Na₂SO₄, concentrated, and fractionated by PTLC (30% ethyl acetate in hexane) to provide the titled compound (13 mg, 99%). [α]D +80 (c 0.3, CHCl₃)

IR νmax: 1727, 1657, 1621 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ: 4.10 (1H, dd, J = 2.5, 7 Hz, HC-11), 4.08 (1H, q, J = 7 Hz, HC-14), 3.74 (1H, d, J = 3.5 Hz, HC-5), 2.93 (1H, dq, J = 7, 7 Hz, HC-12), 2.49-2.57 (2H, m, H₂C-20), 2.08 (3H, s, H₃CC-16), 2.02-1.91 (3H, m, HC-4, HC-6, HC-10), 1.95 (3H, s, H₃CC-18), 1.86 (1H, q, J = 6.5 Hz, HC-8), 1.64-1.43 (2H, m, H₂C-2), 1.30 (3H, d, J = 7 Hz, H₃CC-14), 1.14 (3H, t, J = 7.5 Hz, HC-21), 1.01 (24H, d, J = 7 Hz, H₂CC-6), 0.99 (3H, d, J = 6.5 Hz, H₂CC-10), 0.97 (3H, d, J = 6.5 Hz, H₂CC-8), 0.96 (3H, d, J = 6.5 Hz, H₂CC-12), 0.94 (9H, t, J = 8 Hz, H₃CCSi ×3), 0.91 (3H, t, J = 7.5 Hz, H₃CC-1), 0.87 (3H, d, J = 7 Hz, H₂CC-4), 0.577,3.5 (6H, ap q,J = 8 Hz, H₂CSi ×3), 0.16 (9H, s, H₃CSi ×3)

¹³C NMR (125 MHz, CDCl₃) δ: 209.2 (s, C-13), 180.1 (s, C-17), 165.0 (s, C-19), 161.6 (s, C-15), 120.3 (s, C-16), 118.4 (s, C-18), 102.7 (s, C-3), 102.0 (s, C-9), 99.8 (s, C-7), 78.6 (d, C-5), 75.0 (d, C-11), 50.9 (d, C-14), 47.5 (d, C-10), 46.2 (d, C-12), 38.0 (d, C-8), 37.1 (d, C-4), 36.7 (d, C-6), 29.7 (t, C-2), 24.9 (t, C-20), 15.1 (q, CH₃C-12), 13.5 (q, CH₃C-6), 13.2 (q, CH₃C-14),
12.7 (q, CH₂C-4), 11.5 (q, C-21), 10.3 (q, CH₂C-16), 9.7 (q, CH₂C-18), 8.6 (q, CH₂C-10), 7.5 (q, CH₃C-8), 7.1 (q × 3, CH₃Si), 6.4 (q, C-1), 5.4 (t × 3, CH₂Si), 2.2 (q × 3, CH₂Si)

LRMS (EI), \textit{m/z} (relative intensity): 706 ([M]+, 8), 678 (18), 677 (37), 581 (56), 527 (30), 379 (43), 349 (100), 255 (49), 180 (46)

HRMS \textit{m/z} calcd for C₃₈H₆₆O₈Si: 706.4296; found: 706.4270 (EI).

ent-Caloundrin B (ent-3).

![ent-3](image)

Pyridine (0.16 mL, 16 mg, 2.0 mmol), distilled water (0.007 mL, 7 mg, 0.4 mmol), and HF-pyridine (0.108 mL) were sequentially added to a stirred solution of ketone 196 in THF (2 mL) at room temperature. After 2 h, the mixture was diluted with ethyl acetate and washed sequentially with 1% aq citric acid (× 3), saturated aq NaHCO₃ and brine. The organic layer was dried over Na₂SO₄, concentrated, and fractionated by PTLC (50% ethyl acetate in hexanes) to give **ent-caloundrin B** (ent-3) (7 mg, quantitative). \([\alpha]_D +50 \text{ (c 0.2, CHCl}_3)\)

IR \textit{ν}_{\text{max}}: 3385, 1653, 1598 cm⁻¹

¹H NMR (500 MHz, CDCl₃) \(δ: 4.14 (1H, q, J = 7 \text{ Hz, HC-14}), 3.95 (1H, d, J = 7.5 \text{ Hz, HOC-11}), 3.83 (1H, br d, J = 3.5 \text{ Hz, HC-5}), 3.68 (1H, ddd, J = 5, 5, 7.5 \text{ Hz, HC-11}), 3.03 (1H, dq, J = 5, 7 \text{ Hz, HC-12}), 2.62 (1H, br s, HOC-7), 2.62-2.52 (2H, m, H₂C-20), 2.24 (1H, q, J = 6.5 Hz, HC-8), 2.10 (1H, dq, J = 3.5, 7 Hz, HC-4), 2.09-2.03 (2H, m, HC-6, HC-10), 2.07 (3H, s, H₃CC-16), 1.95 (3H, s, H₃CC-18), 1.65-1.54 (2H, m, H₂C-2), 1.38 (3H, d, J = 7 Hz, H₃CC-14), 1.16
(3H, t, J = 7.5 Hz, H₃C-21), 1.09 (3H, d, J = 7 Hz, H₃CC-6), 1.03 (3H, d, J = 7 Hz, H₃CC-12), 0.99 (3H, d, J = 6.5 Hz, H₃CC-8), 0.97 (3H, d, J = 7 Hz, H₃CC-10), 0.93 (3H, t, J = 7.5 Hz, H₃C-1), 0.93 (3H, d, J = 7 Hz, H₃CC-4)

¹³C NMR (125 MHz, CDCl₃) δ: 213.4 (s, C-13), 179.8 (s, C-17), 165.0 (s, C-19), 160.3 (s, C-15), 120.4 (s, C-16), 118.7 (s, C-18), 103.1 (s, C-9), 103.0 (s, C-3), 97.4 (s, C-7), 78.6 (d, C-5), 77.7 (d, C-11), 50.7 (d, C-14), 46.5 (d, C-12), 42.0 (d, C-10), 36.9 (d, C-8), 36.8 (d, C-4), 35.8 (d, C-6), 29.7 (t, C-2), 24.9 (t, C-20), 16.3 (q, CH₃C-12), 13.6 (q ×2, CH₃C-6 anCH₃C-14), 12.6 (q, CH₂C-4), 11.5 (q, C-21), 11.4 (q, CH₃C-10), 10.4 (q, CH₃C-16), 9.8 (q, CH₃C-18), 7.7 (q, CH₃C-8), 6.5 (q, C-1)

LRMS (EI), m/z (relative intensity): 520 ([M]+, 1), 236 (9), 207 (3), 181 (13), 180 (100), 179 (16), 153 (12), 125 (8), 69 (7), 57 (42)

HRMS m/z calcd for C₂₉H₄₄O₈: 520.3036; found: 520.3027 (EI).
4 REFERENCES

57. Horeau, A., Method for obtaining enantiomer containing less than 0.1% of its antipode. Determination of its maximum rotatory power. Tetrahedron 1975, 31 (10), 1307-9.

