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Abstract

The general application of soft X-ray spectroscopy in the study of the electronic structure

of materials is discussed, with particular emphasis on broad band materials. Several materials

are studied using both soft X-ray spectroscopy and density functional theory to provide

experimental and theoretical electronic structures, respectively. In particular, bonding, cation

hybridization, and band gaps for several binary oxides (the alkali oxides: BeO, MgO, CaO,

SrO, BaO; the post-transition metal oxides: ZnO, CdO, HgO; and the period 5 oxides In2O3,

SnO, SnO2, Sb2O3, Sb2O5, and TeO2) are studied. The technique of using the peaks in the

second derivatives of an X-ray emission and an X-ray absorption spectrum to estimate the

band gap of a material is critically analyzed, and a more accurate “semi-empirical” method

that involves both measured spectra and theoretical calculations is proposed.

The techniques used in the study of binary oxides are then applied to a more interest-

ing (and industrially relevant) group of ternary oxides based on TiO2 (PbTiO3, Sn2TiO4,

Bi2Ti4O11, Bi4Ti3O12, and ZnTiO3), and a general rule for the band gaps of these materials

is suggested based on empirical data. This research may help direct efforts in synthesizing a

hydrogen-producing photocatalyst with a band gap that can efficiently harness the bulk of

the solar spectrum.

Finally, several layered pnictide superconductors and related compounds (CaFe2As2, Co-,

Ni- and Cu-doped BaFe2As2, LiFeAs, LiMnAs, CaCu1.7As2, SrCu2As2, SrCu2(As0.84Sb0.16)2,

SrCu2Sb2, and BaCu2Sb2) are studied. The X-ray spectra provide rather strong evidence

that these materials lack strong on-site Hubbard-like correlations, and that their electronic

structures are almost entirely like those of a broad band metal. In particular, it is shown

that the notion that the transition metals are all divalent is completely wrong for copper in

a layered pnictide, and that at best in these systems the copper is monovalent.
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Chapter 1

Introduction

High performance materials are essential to the modern world, and there is almost no facet

of our society that could not be improved with access to better and cheaper materials. To

list a few suggestions; buildings could be made stronger, roads could be made more durable,

aircraft could be made lighter without sacrificing structural integrity, computers could be

made faster and more efficient, medical drugs could be delivered directly to target areas of

the body, bones could be repaired with artificial splints, and solar power could be made

cheaper and more efficient.

The keys to developing the next generation of high performance materials obviously rests

in materials science and condensed matter, and here the problem is not just one of synthesizing

advanced materials but also accurately characterizing their properties. For one thing, a

novel substance can usually only be synthesized with great difficulty and in small amounts,

and knowing whether the new material substantially improves upon commonplace materials

(perhaps the new material has improved structural, electronic, optical, or magnetic properties

compared to an existing industry standard) is essential when deciding whether to devote

considerable time and money into devising cheaper and better ways of synthesizing that

material. There is little point in putting a great deal of effort into efficiently making a

new material if it offers poorer performance than the current industry standard. Secondly,

knowing the properties of novel substances helps determine how the new substances relate to

similar materials (say with the similar atomic compositions or crystal structures). The “holy

grail” of materials science is to be able to start from a list of desired material properties and

work backwards to identify the appropriate chemical composition necessary to realize those

properties. For this reason, novel materials are useful for testing the applicability of existing

theory, even if these materials may not promise useful practical applications.
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The electronic structure of a material is almost solely responsible for practically all the

properties that make a material relevant to industry. Hardness, electrical conductivity, optical

transparency, luminescence, and magnetism are all driven entirely by the arrangement of

electrons within a material [3], and consequently directly measuring the electronic structure

is very useful. When synthesizing a novel material is very difficult and/or expensive, it is

useful to have techniques of characterizing the electronic structure of that material that are:

• Unambiguous and directly comparable to existing standards,

• Non-destructive but still bulk-sensitive, and

• Insensitive to phase (i.e. powder, polycrystalline, or single crystal) and trace impurities.

In addition to these practical needs, it should not be forgotten that measuring and providing

a suitable theoretical description of the spin and charge distributions in a material, especially

in the context of magnetic and orbital ordering near quantum critical points, is one of the

largest open questions in condensed matter physics today.

X-ray spectroscopy is currently one of the best techniques to realize these goals. X-

ray spectroscopy has been recognized as a valuable tool in studying the electronic structure

of materials for decades [4, 5], indeed for almost as long as the concept of band structure

in periodic solids has been known [6]. After the discovery of synchrotron radiation, X-

ray spectroscopists had access to unprecedented X-ray brightness, and X-ray spectroscopy

became a truly indispensable technique in materials science.

All spectroscopic techniques measure transitions between different states (usually elec-

tronic or vibrational) in a material. The aspect of X-ray spectroscopy that sets it apart from

other spectroscopic techniques (such as optical spectroscopy) is that it probes electronic tran-

sitions between a state that is well-known and relatively universal, and a state that is highly

dependent on the specific material [4,7]. The former is either a tightly bound core level that

depends only on the atomic species — not the material structure (used in X-ray absorption

or emission spectroscopy), or a continuum state (used in X-ray photoelectron spectroscopy),

and the latter is a valence or conduction band state. In fact, because most types of X-

ray spectroscopy involve electronic transitions to or from a core level, the resulting X-ray

spectrum is a probe of the electronic structure local to a particular atomic species.
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This thesis is a summary of my efforts to study various materials with X-ray spectroscopy.

I have limited the discussion herein to “broad band” materials; materials whose electronic

structure is adequately described by band theory [6], and accurately calculated with density

functional theory [8, 9]. Over the course of my research I have used X-ray spectroscopy to

measure the electronic structure and gain insight into very specific properties of certain ma-

terials; whether the iron surplus in FeSex (where x < 1) is due to interstitial iron or vacant

selenium sites [10], what drives the metal-insulator transition in NiS2−xSex [11], whether

the electride 12(CaO)·7(Al2O3) conducts electricity through lattice hopping or a “cage con-

duction band” [12], and how porous silicon might act as a selective detector for airborne

explosives [13], to cite some examples. However in an effort to present a coherent narrative I

have focussed on using X-ray spectroscopy to study more general properties of materials in

this thesis.

With that in mind, the text is organized as follows:

• A brief outline of X-ray spectroscopy from a practical experimental standpoint is given.

This section is short on specific technical details because these tend to vary considerably

depending on the specific equipment used. The research contained herein was typically

conducted on more than one type of experimental apparatus, and I was responsible for

neither the design, construction, nor maintenance of the equipment. Technical details

can be found in the references noted in this section, and in the documentation provided

by the specific laboratory that hosts the equipment.

• A brief outline of density functional theory is given. I use a commercially available

software package (WIEN2k [14]) for my electronic structure calculations, so again the

technical intricacies of the code are omitted. However I do provide technical details on

the parameters used in my calculations.

• The theoretical basis for X-ray transitions is derived, in particular within the scope of

density functional theory.

• The technique of using X-ray spectroscopy to determine the electronic structure of a

material is discussed using some simple binary oxides as model compounds. Particular

3



attention is paid to methods of determining the band gap, which is possibly the most

important single parameter of the electronic structure of a material. The research

discussed herein has been published in References [15–17].

• The techniques of studying electronic structure and band gaps with X-ray spectroscopy

and density functional theory are applied to the more interesting (and practical) case

of band gap engineering in photocatalysts. The research discussed herein has been

published in References [18,19].

• The relatively novel iron pnictide superconductors, and some related materials, are

studied with X-ray spectroscopy and theoretical methods. These materials are shown

to be broad band materials, and not strongly correlated systems like cuprate supercon-

ductors. The research discussed herein has been published in References [20–23].

Ultimately, while X-ray spectroscopy is a well-established experimental technique, there are

still challenges in interpreting the resulting spectra in manners more rigorous than simply

comparing the spectral shapes to that of reference compounds. My research identifies a few

ways that X-ray spectra can be interpreted without relying on extensively calculating the

electronic structure of a material, but there is still much progress to be made before relevant

physical parameters can be unambiguously extracted from X-ray spectra.
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Chapter 2

Experimental Techniques

X-rays are an excellent tool for probing the properties of matter. Every atom, except

for H and He, has a distinct set of core electrons which are well-separated in energy, and

these energies are within the X-ray energy range. By tuning a monochromatized X-ray beam

to the appropriate energy, one can excite a specific set of core electrons. Coupled with the

fact that X-ray penetration depths range from hundreds of nanometres to millimetres, X-ray

spectroscopy provides a bulk-sensitive element specific probe of the properties of matter, and

can be used to obtain in situ non-destructive measurements.

My research outlined in this thesis is entirely based on soft X-ray spectroscopy. Soft X-

rays span an energy range of about 50 eV to about 2000 eV, and are important for materials

research because the core levels of many elements found in novel materials or used in practical

applications fall within this range; most notably the organic (C, N, and O) 1s core levels,

and the transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) 2p core levels. This

chapter briefly outlines the equipment required for a soft X-ray spectroscopy measurement,

and explains the X-ray spectroscopic techniques I use in my research. The theory behind

X-ray transitions in matter is developed more thoroughly in Chapter 4.

2.1 Synchrotron Radiation

To perform X-ray spectroscopy efficiently and effectively, a monochromatic source of X-rays

is necessary, and while some techniques can use laboratory sources to obtain publication-

quality data, for most types of X-ray spectroscopy there is no substitute for a synchrotron.

In a synchrotron, relativistic bunches of electrons travel along a pipe in vacuum, tracing the

perimeter of a polyhedron. At each corner of the polyhedron the electrons emit a fan-like
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distribution of intense electromagnetic radiation over a broad energy range. Electromagnetic

radiation can also be generated in the straight sections by having the electron bunches pass

through an array of alternating magnets, called “insertion devices”. The dimensionless figure

of merit for an insertion device, K, is defined as [24]:

K =
eB0λu
2πmec

, (2.1)

where e is the charge of the particles (these are almost always electrons), B0 is the magnetic

field of the insertion device, λu is the length of the magnetic period, me is the mass of the

particles (again, typically an electron), and c is the speed of light. The insertion devices with

K ≤ 1 are called “undulators”, while those with K � 1 are called “wigglers”.

A synchrotron is essential for X-ray spectroscopy not only because it provides a very

bright source of X-rays, but also because it provides a tunable source of X-ray energy. All

the measurements reported in this thesis were obtained from the Advanced Light Source

synchrotron (ALS) at the Lawrence National Berkeley Laboratory, in Berkeley CA, and the

Canadian Light Source synchrotron (CLS) at the University of Saskatchewan in Saskatoon,

SK. The former normally operates with a ring energy of 1.9 GeV (the mass-energy of the

relativistic electrons), while the latter normally operates at 2.9 GeV. More information on

synchrotrons can be found in Chapter 2 of my Master’s thesis [25].

2.2 Soft X-ray Beamlines

The X-rays are generated by bending magnets or insertion devices inside the synchrotron ring;

these X-rays are then piped outside the ring, through some X-ray optics (such as focussing

mirrors) towards an experimental endstation; this arrangement is called a “beamline”. Most

of the spectra reported herein were acquired at Beamline 8.0.1 (BL8) at the ALS, others were

collected at the Spherical Grating Monochromator beamline (SGM) at the CLS.

BL8 has a soft X-ray fluorescence endstation, and is suitable for both X-ray absorption

spectroscopy (XAS) and X-ray emission spectroscopy (XES). The X-rays are generated with

an undulator made of permanent magnets with a periodicity of 50 mm, and a spherical

grating monochromator is used to select the X-ray energy with a resolving power (E/∆E) of
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about 104. BL8 has an energy range of 70 to 1200 eV, and when optimized for maximum

flux can deliver on the order of 1013 photons per second focussed to a 100 µm × 100 µm spot

on the sample plate [26].

BL8 has a graphite channeltron total fluorescence detector and a picoammeter to obtain

XAS specta in both the bulk sensitive total fluorescence yield (TFY) and the surface sensitive

total electron yield (TEY) modes. BL8 also has a large spherical grating spectrometer, using

a Rowland circle geometry, to measure high resolution XES spectra. For the measurements

reported herein, the spectrometer’s resolving power was between 500 and 1000. Because soft

X-rays are readily absorbed by the atmosphere, the entire spectroscopy apparatus is within

ultrahigh vacuum (UHV) chambers; at the point of measurement the pressure is 10−7 torr

or better.

The samples are affixed to a steel plate with carbon tape (an electrically conducting,

vacuum compatible adhesive). This plate is screwed onto a copper holder, and the holder

is transferred into the main measurement chamber under vacuum. More information on the

technical details of BL8 can be found in Reference [26].

The SGM is a soft X-ray absorption beamline, and as such is suitable for XAS spec-

troscopy. The SGM also uses a spherical grating monochromator (obvious, given the name

of the beamline) and a permanent magnet undulator with a periodicity of 45 mm. The SGM

operates over an energy range of 250 to 2000 eV, and below 800 eV the resolving power of

the monochromator is better than 104. Because of the higher resolution (and often better

signal-to-noise), I often try to remeasure XAS spectra that were originally acquired with BL8

with the SGM, but otherwise the operation of the SGM is quite similar to that of BL8. More

information on the technical details of the SGM can be found in References [27] and [28].

Finally, the Resonant Elastic/Inelastic X-ray Scattering (REIXS) beamline at the CLS

was open for commissioning during the last few months of my thesis reseach. This beamline

uses a grating spectrometer similar in design and energy range to the one at BL8, but

promising higher resolution. It also has an elliptical polarizing undulator, so the polarization

of the incident X-ray beam can be tuned based on the experimentalist’s needs. The REIXS

beamline will probably play a prominent role in my future research, but at this time I have

acquired only a few emission spectra using this beamline. Therefore, unless explicitly noted,
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all XES spectra were taken at BL8.

2.3 X-ray Absorption Spectroscopy

When an incident X-ray has an energy greater than the binding energy of a core electron,

there is the possibility that the core electron will absorb the X-ray and be promoted to an

excited state. Most of these transitions are uninteresting, since the X-ray absorption cross-

section of a given edge varies slowly and smoothly over a broad energy range [29]. The

exception to this is when the incident X-ray energy is resonant, or close to resonant, with the

the binding energy of a core electron. In this case the electron can be promoted to a bound

state within the conduction band of the material, and in this regime the X-ray absorption

cross-section varies considerably over a small energy range. For historical reasons, the type

of XAS spectrum is labelled according to the core level that is close to resonance; when the

1s electrons are excited a K edge spectrum is acquired, when the 2s, 2p1/2, or 2p3/2 electrons

are excited an L1, L2, or L3 edge spectrum is acquired, respectively, and so on.

The near resonant regime is where where XAS provides useful information about the

material. By monitoring the quantity of X-rays absorbed by a material with respect to the

incident X-ray energy over a range close to the binding energy of a core electron, the density of

states (DOS) of the conduction band can be investigated. As shown schematically in Figure

2.1, conduction band states of energy E can be probed by exciting an electron from a known

core level of energy Ebind with incident X-rays of energy hν = E − Ebind. The best way of

measuring X-ray absorption is by measuring the intensity of the X-ray beam before and after

passing through the sample, referred to as a “transmission measurement”. This technique is

routinely used when the incident X-rays have energies well in excess of 2000 eV, but in the

soft X-ray regime the X-rays have very short penetration depths and consequently samples

for soft X-ray transmission measurements must be only a few nanometres thin. Therefore

other methods of measuring soft X-ray absorption are more common.

During the X-ray absorption transition, a core electron is excited to a conduction band

state, and a vacant core level (a “core hole”) is left behind. This core hole is filled almost

immediately with an electron from a state higher in energy (either another core level or a
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Figure 2.1: An example of an X-ray absorption transition. An incident X-ray of
energy hνin excites an electron with a binding energy of Ebind to a conduction band
state of energy E = hνin + Ebind. This figure shows an O K XAS spectrum (taken in
TEY mode) and calculated DOS for rutile TiO2.

valence state), and the resulting energy released can be absorbed by other electrons or emitted

as an X-ray. In the former process, excited electrons near the surface of a sample in UHV

can be ejected, leaving the surface with a net electric charge. If the sample plate is grounded,

the current drawn from the ground to balance the surface charge can be measured with a

picoammeter, and the magnitude of this current is related to the magnitude of the X-ray

absorption. This XAS technique is called “total electron yield” (TEY). Since electrons have

a very short penetration depth this technique is quite surface sensitive (TEY probes only 10

nm deep or less [30]), and if the surface of the sample is oxidized or otherwise contaminated a

TEY XAS spectrum may not be representative of the true XAS spectrum of the bulk sample.

For TFY, the emitted X-rays can be measured with a spectrometer or a non-energy

dispersive detector like a channeltron. In this process, the total intensity of emitted X-

rays is related to the magnitude of the X-ray absorption. This XAS technique is called

“total fluorescence yield” (TFY). X-rays have a much longer penetration depth (TFY can

probe hundreds of nanometres [29]) so this technique is bulk sensitive, but there is always

9



the possibility that emitted X-rays can be reabsorbed by the sample before reaching the

detector. This “self-absorption” of X-ray fluorescence can suppress or distort features in the

XAS spectrum. If an energy dispersive detector is available, often only a small energy range

of the X-ray fluorescence will be integrated in a XAS measurement; this technique is called

“partial fluorescence yield” (PFY) but is otherwise very similar to to TFY.

When a TFY (and/or PFY) spectrum matches the TEY spectrum, then the surface of

the sample is free from contamination, self-absorption is not a significant problem, and the

surface electronic states are representative of those in the bulk. In this situation the XAS

spectra can be trusted to be representative of the true sample; however often this is not

the case. Self-absorption is typically not a significant problem with light non-metal K edge

spectra (i.e. those from B, C, N, O, and F), so TFY mode is often used when measuring those

edges. However self-absorption is a major problem with transition metal L2,3 edge spectra, as

is surface oxidation, so great care must be taken to get a trustworthy XAS measurement [31].

One final method of measuring an XAS spectrum is to use “inverse partial fluorescence

yield” (IPFY). With this method, the PFY of a non-resonant edge that has an energy less

than the edge of interested is monitored. As the edge of interest begins to absorb photons, the

PFY of the other edge is reduced (since those photons are no longer available for absorption).

When the PFY of this non-resonant edge is inverted, the absorption spectrum of the edge in

question is revealed. This technique is both bulk sensitive and free from self-absoprtion, [31]

but it can only be done on materials with low energy edges that produce lots of X-ray

emission. IPFY is typically used when one wants to measure the transition metal L2,3 XAS

of a material containing oxygen. For most of the materials I study herein, IPFY is not a

viable option for measuring XAS.

2.4 X-ray Emission Spectroscopy

As mentioned above, after the X-ray absorption process has occurred a core hole exists that

is quickly filled by an electron from a higher energy state. Sometimes the energy gained

from this transition is released as an X-ray, and when the X-ray fluorescence intensity is

integrated as a function of incident X-ray energy, a TFY mode XAS spectrum is acquired. If

10



5 1 0 5 1 5 5 2 0 5 2 5 5 3 0- 5 0

- 5 3 0 - 5 2 5 - 1 5 - 1 0 - 5 0 0

1

2

Oc
cup

ied
 DO

S (
sta

tes
/eV

 ato
m)

E n e r g y  o f  S t a t e s  ( e V )

O  K  X E S

O  2 p

X - r a y  E n e r g y  ( e V )

e -

X-
ray

 Em
iss

ion
 (a

rb.
 un

its)
O  1 s

h ν o u t

 
Figure 2.2: An example of an X-ray emission transition. A valence band electron
of energy E decays to fill an unoccupied core level of energy Ebind. This releases an
outgoing incident X-ray of energy hνout = E − Ebind. This figure shows an O K XES
spectrum and calculated DOS for rutile TiO2.

a high resolution spectrometer is available (like the one at BL8), then an XES spectrum can

be acquired: the incident X-ray energy is fixed, and the intensity of the X-ray fluorescence

is measured as a function of emission energy. An XES spectrum can be acquired from the

decay of another core state to fill the deeper core hole, but the most interesting spectra (and

certainly the spectra most relevant to material properties) are when a weakly bound valence

electron decays to fill the core hole. This process is shown schematically in Figure 2.2, note

that the same nomenclature (K, L2,3, etc.) is used to describe XES spectra as is used for

XAS spectra: Since there is often more than one transition in which an electron can fill a

core hole with via fluorescence decay, often an XES spectrum is described by the same letters

and numbers as an XAS spectrum but followed by a Greek letter indexing the fluorescence

decay (Siegbahn notation). For example, a Cu 2p3/2 core hole could be filled by a “semi-core”

3s state, resulting in L3` emission, or by a valence state, resulting in L3α1,2 emission [32].

However, since all of my XES measurements are of valence to core level transitions, I have

omitted the Greek letters in my labels for XES spectra.
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Figure 2.3: An example of some RXES measurements on commercial nanodiamond
(Sigma Aldrich, measured at the REIXS beamline at the CLS): (a) Various C K XES
spectra at different energies, note the changes in the shape of the spectrum. The elastic
scatter is clearly visible in the top-most spectrum. (b) The C K XAS spectra, in both
TEY and TFY modes. Also shown are the normalized integrated intensities of each
XES spectrum (only 4 of which are shown in (a)).

By probing the occupied states, XES is an excellent compliment to XAS for studying a

material. Since XES relies on emitted X-rays, it is bulk sensitive in the same manner that

TFY (or PFY) mode XAS is. Since XES has a fixed incident X-ray energy, and the emitted

X-rays have energies below the absorption threshold, an XES spectrum is rarely significantly

distorted by self-absorption. Strong or weak self-absorption will change the total amplitude

of the XES spectrum, but since the total amplitude is rarely quantitatively meaningful,

self-absorption is usually not a problem with XES measurements. The main difficulty with

XES is technical: the only high resolution detectors available at present are rather large and

expensive grating spectrometers, so there are far fewer beamlines practising XES than XAS.

Typically an XES spectrum is acquired when the incident X-ray energy is well above

resonance, this effectively decouples the absorption transition from the emission transition.

However XES spectra can also be acquired when the incident X-ray energy is resonant with a

particular absorption feature (RXES), this can reveal many interesting properties, most no-

tably inelastic scattering from charge transfer, dd, or magnetic transitions [33], or momentum-

preserving transitions within the band structure [34]. An example of this is shown in Figure
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2.3, note how the shape of the XES spectrum changes as the excitation energy changes.

2.5 X-ray Photoemission Spectroscopy

One final X-ray spectroscopic technique is X-ray photoemission spectroscopy (XPS). Just

like XES is related to TFY mode XAS, XPS is related to TEY mode XAS. In an XPS

measurement, the incident X-ray energy is fixed and the kinetic energy of the electrons ejected

from the sample is measured. The number of electrons measured with a given kinetic energy

Ekin excited with a known X-ray energy hνin is related to the number of occupied states at

energy E = Ekin − hνin + φ (where φ is the correction for the work functions of both the

sample and the detector). XPS therefore requires an energy dispersive detector of electrons;

these can be much smaller and are much more commonplace than X-ray spectrometers.

Since XPS does not, strictly speaking, require a tunable X-ray source, nor a particularly

bright X-ray source (since electron detectors have much higher efficiencies than X-ray detec-

tors), XPS is often measured in laboratory systems, typically sourced with X-rays from a Mg

or Al target, however there are many synchrotron XPS beamlines as well. XPS can probe

core states as well as the valence level, as shown in Figure 2.4. Since XPS relies on emitted

electrons, it is highly surface sensitive. However when an uncontaminated surface can be

provided (typically by cleaving a sample in vacuum), XPS is a valuable technique that is

complementary to XAS and XES, as the former probes the total occupied states while the

latter two probe partial unoccupied or occupied states, respectively.

I have only performed a few XPS measurements personally, and none of those data are

reported herein. In my published work the XPS data I have analysed has been measured

by Dr. Anna Buling of the University of Osnabrück, Osnabrück, Germany and some more

recent spectra have been measured by Dr. Dmitry Zatsepin of Ural Federal University,

Yekaterinburg, Russia.
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Figure 2.4: An example of an X-ray photoelectron transition. An incident X-ray
of energy hνin excites an electron of energy Ebind to a continuum state, the electron
ends up at a detector with kinetic energy Ekin = hνin + Ebind − φ where phi is the
correction for the work functions of both the sample and the detector. This figure
shows an O 1s and a valence band XPS spectrum and calculated DOS for rutile TiO2.
XPS measurements were performed by Dr. Dmitry Zatsepin, Ural Federal University,
Yekaterinburg, Russia.
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2.6 Measurement Details

Unless explicitly noted, all samples reported herein were prepared for XES and XAS mea-

surements by affixing them to a metallic sample holder with carbon tape. All measurements

were conducted near 10−7 torr at ambient temperature with linearly polarized incident X-

rays. All SGM XAS spectra were acquired with the incident X-rays at normal incidence

to the sample, while all BL8 XAS spectra were acquired with the incident X-rays 30◦ from

normal incidence. The BL8 XES spectrometer is orthogonal to the incident beam, so the

XES spectra were acquired with the emitted X-rays at 60◦ from normal incidence.
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Chapter 3

Density Functional Theory

While the many-body Hamiltonian that describes a crystal lattice is easy to write down, it

is an extremely challenging task to solve that Hamiltonian to obtain the ground state many-

body wavefunction so that ground state properties of the system can be calculated. Density

functional theory (DFT) is an increasingly common and powerful theoretical approach for

studying material properties by finding approximate solutions to the many-body Hamiltonian

of a periodic solid or an isolated cluster (such as a molecule of a nanoparticle), and despite

the inherent simplifications, DFT often yields accurate predictions on the properties of many

materials.

In the context of my research I almost exclusively use the WIEN2k software package

for DFT calculations. WIEN2k is a “full potential, all electron” code, meaning that the

behaviour of every electron in the system is calculated — including the tightly bound core

states — and the true potential of the atomic nuclei is used [14]. This is in contrast to

“pseudopotential” codes, such as SIESTA, that replace the Coulomb potential of the atomic

nuclei with a specially constructed potential that already includes the contribution from the

core states [35–37]. A well-constructed pseudopotential can describe ground state properties

with the same accuracy as a full potential approach, but is often much faster to calculate. On

the other hand, since my experimental data is all obtained from X-ray spectroscopy which

involves transitions from core levels, for my purposes it is advantageous to have explicitly

calculated core state wavefunctions.

There are several textbooks outlining the DFT method (see, for example, References [35,

38,39]), this chapter will just briefly outline the theory behind DFT.
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3.1 The Many-Body Hamiltonian

Solving the many-body Hamiltonian is the central problem in solid state physics. For n

atomic nuclei, and ne electrons, the many-body Hamiltonian in the Schrödinger picture of

quantum mechanics is [40]:

H = −~2

2

n∑
i

∇2
~Ri

Mi

− ~2

2

ne∑
i

∇2
~ri

me

− 1

4πε0

n,ne∑
i,j

e2Zi

~Ri − ~rj

+
1

8πε0

ne∑
i 6=j

e2

|~ri − ~rj|
+

1

8πε0

n∑
i 6=j

e2ZiZj∣∣∣~Ri − ~Rj

∣∣∣ , (3.1)

where ~Ri, Mi, and Zi are the position, mass, and atomic number of nuclei i, respectively,

and ~ri is the position of electron i. This Hamiltonian is analytically intractable because of

the Coulomb interaction terms between the nuclei and the electrons, given by the last three

terms in the above equation.

In order to simplify this Hamiltonian, we first make the approximation that the atomic

nuclei have infinite mass. This is called the “Born Oppenheimer approximation” [39], and as

a result the first term (the kinetic energy of the atomic nuclei) and the last term (the Coulomb

interaction between nuclei) drop out of the equation since the atomic cores are no longer free

to move. A second important consequence is that the third term (the Coulomb interaction

between nuclei and electrons) becomes separable since the atomic cores now provide a fixed

Coulomb potential that each electron interacts with individually. Therefore the Coulomb

potential of the atomic cores is treated as an “external potential” acting on a self-interacting

electron gas, and the many-body Hamiltonian is simplified to:

H = −~2

2

ne∑
i

∇2
~ri

me

+
1

8πε0

ne∑
i 6=j

e2

|~ri − ~rj|
+ Vext(~r) (3.2)

where Vext(~r) = − 1

4πε0

n,ne∑
i,j

e2Zi∣∣∣~Ri − ~rj
∣∣∣ ,

The key to density functional theory, as was noted by Hohenberg and Kohn, is that the

ground state electron density ρ(~r) of a system is uniquely defined by the external potential

Vext(~r) and vice versa [8]. This is easy to prove by contradiction:
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1. Assume that ρ(~r)) is the ground state electron density for two different Vext(~r), say V1

and V2.

2. Assume the systems H1 and H2, corresponding to the two external potentials, V1 and

V2(~r), respectively, have ground state wavefunctions ψ1(~r) and ψ2(~r), respectively.

3. Since ψ1(~r) is the ground state wavefunction of the system H1, the ground state energy

energy E1 = 〈ψ1|H1 |ψ1〉 is the minimum energy for this system.

4. The same is true for system H2; E2 = 〈ψ2|H2 |ψ2〉 is the lowest energy.

5. Therefore E1 < 〈ψ2|H1 |ψ2〉.

6. However the only difference between H1 and H2 is the external potential, so E1 <

〈ψ2|H2 + V1 − V2 |ψ2〉, or E1 < E2 + 〈ψ2| (V1 − V2) |ψ2〉.

7. Likewise, E2 < E1 − 〈ψ1| (V1 − V2) |ψ1〉.

8. We also have 〈ψ2| (V1 − V2) |ψ2〉 =
∫
dV~r(V1 − V2)|ψ2|2 =

∫
dV~r(V1 − V2)ρ(~r) = ∆Eext.

9. Since we assumed the ground state electron density was the same for each system, we

also have 〈ψ1| (V1 − V2) |ψ1〉 = ∆Eext.

10. Therefore, E1 < E2 + ∆Eext and E2 < E1 −∆Eext.

11. Adding these equations together, we have E1 +E2 < E1 +E2, an obvious contradiction.

This shows that any observable (some operator A) is a unique functional of the ground

state electron density, i.e. 〈ψ|A |ψ〉 = A(ρ). Hohenberg and Kohn also showed that the

Hamiltonian functional, H(ρ), providing the ground state energy (E0);

E0 = H(ρ) = 〈ψ|

[
−~2

2

ne∑
i

∇2
~ri

me

+
1

8πε0

ne∑
i 6=j

e2

|~ri − ~rj|

]
|ψ〉+ 〈ψ|Vext(~r) |ψ〉

= FHK(ρ) +

∫
dV~rρ(~r)Vext(~r), (3.3)

exhibits two important properties [8]:
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1. The “Hohenberg-Kohn” functional FHK(ρ), involves terms dealing solely with the elec-

trons, not the atomic nuclei. Therefore this functional is universal for describing the

self-interacting and kinetic behaviour of electrons in any many-body system, and

2. The ground state energy functional H(ρ) reaches a global minimum when ρ is the

ground state electron density of Vext.

I should note that due to the electron-electron Coulomb interaction, the functional FHK(ρ)

is intractable. However the first property shows that if FHK(ρ) can be found (or suitably

approximated) it can be applied to every many-electron system. The second property shows

that if FHK(ρ) can be found (or suitably approximated), a simple variational scheme can be

used to find the true ground state electron density ρ(~r) by minimizing the energy [40]. One

of the nice things about Hohenberg and Kohn’s theory is that to some degree it separates the

work of theorists from experimentalists; the former can toil away attempting to find better

solutions for FHK(ρ) using abstract systems without worrying about whether these systems

are physical, while the latter can use these (approximate) solutions to predict the properties

of real materials with little concern for how they were obtained. (Although, obviously, since

FHK(ρ) can only be approximately solved this separation between theory and practice is not

entirely complete.)

3.2 The Kohn-Sham Equations

The work of Hohenberg and Kohn on a self-interacting electron gas in an external potential

provide important insight on what is necessary to determine the ground state properties of a

periodic lattice or cluster of atoms, but did not provide a means of finding the ground state

density. It was Kohn and Sham who later determined a method for finding ρ(~r) [9]. The key

step was to rewrite the functional FHK(ρ) as:

FHK(ρ) = K(ρ) + V (ρ)

= K0(ρ) + VH(ρ) + (V (ρ)− VH(ρ)) + (K(ρ)−K0(ρ))

= K0(ρ) + VH(ρ) + Vx(ρ) + Vc(ρ) (3.4)
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Here K(ρ) and V (ρ) are the kinetic energy and self-interaction Coulomb potentials of the

many-electron system (see above, where FHK(ρ) is explicitly defined). K0(ρ) is the kinetic

energy of a non-interacting electron gas, and VH(ρ) is the Hartree potential [35], defined by:

VH(ρ) =
e2

4πε0

∫
dV~rdV~r′

ρ(~r)ρ(~r′)

|~r − ~r′|
(3.5)

Finally, Vx(ρ) is the “exchange potential” functional, given by the difference between the

exact many-electron Coulomb potential functional and the Hartree potential functional, and

Vc(ρ) is the “correlation potential” functional, given by the difference between the exact

many-electron kinetic energy functional and the non-interacting electron gas functional. Typ-

ically the exchange and correlation potential functionals are treated as a single “exchange

correlation” functional, Vxc(ρ) = Vx(ρ) + Vc(ρ).

When the Hamiltonian functional is written as above, Kohn and Sham showed that the

ground state electron density of an n electron system was [9]:

ρ(~r) =
n∑
i

|φi(~r)|2 , (3.6)

where {φi(~r)} are the n eigenfunctions solutions to [35,40]:

HKSφi(~r) = εiφi(~r)

where HKS = K0 + VH + Vxc

Vxc =
d

dρ
Vxc(ρ) (3.7)

Kohn and Sham’s theory therefore reduces a problem involving n self-interacting particles

to an analogous one involving n independent particles. While each of these analogous in-

dependent particles, described by the single particle wavefunctions φ(~r), have absolutely no

physical meaning, all of these particles together reproduce the true ground state electron den-

sity (within the limits of the approximations made to obtain Vxc(ρ)) and consequently the

true ground state wavefunction (by Hohenberg and Kohn’s theory as described above) [40].

3.3 Exchange Correlation Potential

With Kohn-Sham theory, what was seemingly the insurmountable problem of solving the n-

electron Schrödinger equation was reduced to the far more approachable problem of finding
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n independent solutions to the Kohn-Sham Hamiltonian. Fortunately, due to Hohenberg-

Kohn theory, whether or not DFT can be a useful theoretical tool rests with whether or not

theorists can come up with approximations to the true exchange correlation potential Vxc

that produce accurate results.

Fortunately there are many such solutions available, and consequently DFT is a very pop-

ular and powerful theoretical tool [35]. Since Hohenberg-Kohn theory assures us that a good

approximation for Vxc will be independent of any specific material (i.e. any specific crystal

lattice), experimentalists like myself can more or less freely choose an exchange correlation

potential for the material under study without worrying about the specific theoretical details

of that potential. Therefore this section will just provide a brief overview of the exchange

correlation potentials used in my work.

The simplest exchange correlation functional is the “local density approximation” (LDA)

functional, wherein the potential energy at a point ~r depends only on the electron density

ρ(~r). This is written as [35]:

Vxc(ρ) =

∫
dV~rρ(~r)εxc(ρ(~r)), (3.8)

where εxc(ρ(~r)) is the solution to the exchange correlation energy calculated for a self-

interacting electron gas (calculated for a variety of possibilities of ρ(~r) by Quantum Monte

Carlo methods) [40]. Again, the usefulness of DFT relies on the fact that some theorist need

calculated εxc(ρ(~r)) only once, the resulting function can then be used in every subsequent

DFT calculation for an arbitrary system.

The LDA exchange correlation functional is quite useful, but it can be improved upon

by using a functional that depends not only on the local electron density, but also on the

gradient of the local electron density. These are called “generalized gradient approximation”

(GGA) functionals. Unlike the LDA functional, GGA functionals depend on specific param-

eters addressing how the gradient ∇ρ(~r) is incorporated [41], and therefore there are many

different GGA functionals (see, for example, References [42–44]). In a sense, because GGA

functionals use specific parameters, calculations involving these functionals are not truly ab

initio [40]. However in actual practice one particular GGA functional, that of Perdew, Burke,

and Ernzerhof (the “PBE” functional) [44] is overwhelmingly used for almost every material.
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Finally, I should mention that for non-magnetic, or collinear magnetic situations the DFT

calculation can be split into separate spin channels (for LDA this is often called the “local

spin density approximation”, or LSDA; the GGA term applies to both non-spin polarized

and spin polarized calculations).

GGA functionals have been shown to improve many material parameters over LDA func-

tionals [35, 44], but tend to overestimate magnetic moments [35]. On the other hand, both

GGA and LDA functionals are known to significantly underestimate the band gaps of in-

sulators [45]. Recently a modification of a GGA developed by Becke and Johnson [46] was

shown to greatly improve the band gap predictions (the “modified Becke Johnson”, or mBJ

functional) [47].

Band gaps are underestimated in DFT because the exchange part of the exchange corre-

lation functional significant underestimates the influence of the Pauli exclusion principle (in

contrast, the Hartree-Fock method, which calculates the exact exchange, often significantly

overestimates band gaps [48]). The mBJ functional uses both a generalized gradient and

a term involving the kinetic energy of each single particle state; this essentially produces

an “effective potential” which mimics the influence of exact exchange on the single particle

wavefunctions [46, 47].

In the DFT calculations described herein, I often start with the PBE functional. In

the case of insulators I often follow up with an mBJ calculation using the ground state

calculated with PBE (at present, the mBJ functional “corrects” the electronic structure

already calculated with an LDA or GGA functional). However LDA and GGA functionals

only work well for systems where an averaged electron density is a good approximation, i.e.

systems where the electron-electron interactions do not manifest as localized increases in

electron density. [49]

For certain systems it is necessary to modify the LDA or a GGA functional with some

additional potential that is localized to a particular atomic site and often a particular orbital

symmetry (typically d - or f -states). These calculations are definitely not ab initio, since the

modifications to the exchange correlation functional are made in a material specific manner,

but are sometimes necessary to obtain an electronic structure that agrees with experimental

measurements. There are two types of modifications that I have used; the first is to mix
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in partial amounts of the exact Fock (or Hartree-Fock) exchange-correlation functional —

applied only to the charge local to a particular site and possessing a particular angular

symmetry — to the over-all LDA or GGA function [50]. The second method is to add a

Hubbard-like localized Coulomb potential of a specified energy U — again only to the charge

local to a particular site and possessing a particular angular symmetry — to the over-all

LDA or GGA function (this is the LDA+U or GGA+U approach) [49,51].

This latter approach derives from the Hubbard model, which in mean field theory, adds

an interaction Hamiltonian to specific orbitals (as noted above, usually valence d - or f -states

of transition metals, lanthanides, or actinides) defined as [49]:

HU =
1

2

∑
i

U
[(
〈n↑i 〉+ 〈n↓i 〉

)(
n↑i + n↓i

)
(3.9)

−
(
〈n↑i 〉 − 〈n

↓
i 〉
)(

n↑i − n
↓
i

)]
−1

4

∑
i

U

[(
〈n↑i 〉+ 〈n↓i 〉

)2

−
(
〈n↑i 〉 − 〈n

↓
i 〉
)2
]
,

where n↑i (n↓i ) is the number operator of spin up (spin down) states. This expression will

tend to create a separation energy of U between the occupied and unoccupied orbitals,

this expression also includes a correction for the double counting error (or self interaction

correction) that is inherent in mean field approximations.

3.4 DFT Basis Sets

Hohenberg-Kohn and Kohn-Sham theory, combined with an appropriate approximation to

the exchange correlation potential, provide a means of solving the many-electron Schrödinger

equation in terms of “quasi”-single particle wavefunctions φi(~r). In practice, these wavefunc-

tions are expressed in terms of a known basis set. One of the first practical basis sets used

was the “augmented planewave” (APW) basis set, originally described by Slater [6]. In this

basis set the single particle wavefunctions are composed of planewaves in the spatial regions

that were predetermined to be “interstitial” (i.e. sufficiently far from an atomic nuclei)

and atomic-like wavefunctions consisting of solutions to the radial Schödinger (or Dirac, for

scalar relativistic systems) equations and spherical harmonics in regions predetermined to be
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within an appropriate radius of an atomic sphere. In this basis set, the planewaves ensure

the periodicity conditions dictated by Bloch’s theorem are met, while the use of atomic-like

wavefunctions close to atomic nuclei greatly reduce the number of planewaves needed to de-

scribe the significant localization of charge that occurs in this region. Appropriate scaling

factors are included for the atomic-like wavefunctions so they smoothly match the planewaves

at the boundaries of the atomic spheres.

In practice, Slater’s APW basis is rarely used because each single particle wavefunction

depends on the as-yet undetermined eigen-energy εi. The “linearized augmented planewave”

(LAPW) basis, developed by Andersen [52], improves on this by using a pre-determined

fixed energy (or sometimes a separate energy for each choice of angular momentum `) for

all of the radial parts of the wavefunction within a given atomic sphere, and including an

additional energy derivative of the radial part of the wavefunction. These two components

(with two appropriate scaling factors) typically allow the atomic-like wavefunction to match

the interstitial planewave in amplitude and spatial derivative at the sphere boundary; while

the number of scaling factors is doubled (since one is needed for both the radial wavefunction

and the energy derivative of that wavefunction) the problem is greatly simplified since the

energy at which that the wavefunction is evaluated does not depend on the as-yet unknown

eigen-energy solution to the Kohn-Sham Hamiltonian [40].

Finally, while Andersen’s LAPW basis is much more computationally expedient than

Slater’s APW basis, it has problems accurately accounting for “semi-core” states, that is

states considered to be inside the valence energy range but well separated from the top-

most part of the valence band (most top-row transition metal 3s- and 3p-states fall into

this category). To fix this problem, often “local orbitals” (LOs) are added to the LAPW

basis; these orbitals are chosen only for specific atomic species and angular momenta, and

the energies are centred on the expected energy of the “semi-core” states [40]. Because

these states are only weakly influenced by the crystal structure, the appropriate LO angular

momenta and energies can be chosen almost entirely based on the atomic species, rather than

the specific crystal lattice in question. These LOs are defined such that their amplitudes go

to zero outside the atomic sphere.

In fact, WIEN2k uses a heavily mixed basis consisting of LAPW states, LAPW + LO
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states, “APW + lo” states (using Slater’s APW basis with a fixed radial wavefunction energy

and a single local orbital, as defined above, to improve the charge distribution across multiple

bands), and “APW + lo + LO” states (that use both the previously defined APW-like local

orbital and an additional local orbital to define “semi-core” states). The definitions of these

states and the appropriate coefficients may be found in Appendix B.

In closing, I should mention that the choice of atomic sphere size is very important in

pseudopotential and “muffin-tin” calculations (where the nuclei potential is only used up to

the atomic sphere size, and in the interstitial region a constant average potential is used).

However in “full potential” codes, like WIEN2k, the atomic sphere size only defines where

the atomic-like basis set is traded for the planewave basis set. Since the basis sets are defined

so the amplitude of the wavefunction is continuous across the sphere boundary, a judicious

choice of atomic sphere size may improve the speed and convergence of a calculation but

will not significantly affect the ground state density. However the atomic sphere size will

strongly influence what is considered to be the “local” DOS (for example, the O 2p DOS

is only the p-symmetry DOS within the O atomic sphere, not the projection of the entire

electronic charge onto a basis of spherical harmonics centred on the O atomic site). Since X-

ray spectroscopy involves transitions to and from a core wavefunction, any atomic sphere size

which sufficiently contains that core wavefunction (i.e. the core wavefunction is sufficiently

close to zero for any point beyond the atomic sphere) is appropriate.

3.5 Calculation Details

Unless explicitly noted, all calculations were conducted with the PBE exchange-correlation

functional, all calculations involved discretizing the first Brillouin zone into a k -point mesh of

1000 points per fundamental unit cell, and a cut-off of -6.0 Ryd (measured with respect to the

average interstitial potential) was used to discriminate between core and valence (or “semi-

core”) states. All calculations were extended to outer Brillouin zones such that Rmin
MTKmax =

7; that is the product of the smallest atomic sphere and the largest reciprocal lattice vector

was 7. All ground state electron densities were calculated self-consistently from initial guesses

until the calculated electron density converged within margins of less than 0.0001 Ryd in
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energy and 0.001 e− in charge (both per unit cell).

The zero for the energy scale of the calculated DOS is always placed at the top of the

valence band, i.e. the energy of highest occupied state. All states at negative energies are

therefore occupied in the ground state, while all states a positive energies are unoccupied. I

also refer to this energy as the “Fermi level”; this is rigorously accurate for metallic systems

(since the DFT calculations are implicitly performed at temperatures of 0 K), for insulators

and semiconductors this should be considered just a naming convention. Strictly speaking

the Fermi level is undefined in insulators and semiconductors, [3] but it is also common to

call the chemical potential the “Fermi level” in insulators and semiconductors, in contrast to

the notation used in this thesis.

Finally, unless explicitly noted, the experimental crystal structures determined by X-ray

diffraction (XRD) were used.
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Chapter 4

X-ray Transitions

The X-ray transitions discussed here will all involve excitations from, or to, a core level.

Because a core electron is extremely spatially localized compared to the wavelength of an X-

ray with sufficient energy to promote that core electron to an unoccupied state, the operator

governing this transition can be simplified considerably without significantly affecting the

accuracy of the result. This not only simplifies the mathematics involved in calculating a

soft X-ray spectrum; it also provides the selection rules which dominate a soft X-ray spectrum.

X-ray transitions are governed by the Fermi golden rule; consequently all of these X-ray

transitions discussed here are equivalent to the probability amplitude of the projection of a

valence (or conduction) band state on a transition-operator modified core level state.

4.1 Transition Operator for Electrons in a Radiation

Field

From time-dependent perturbation theory, the interaction between electrons and classical

radiation field is [53]:

T = − e

mc
exp

(
i
Ef − Ei

~c
n̂ · ~r

)
~p · ~A. (4.1)

Here Ef is the energy of the final state, Ei is the energy of the initial state, n̂ is the propagation

direction of the radiation, ~r is the position of the electron, ~p is the momentum of the electron,

~A is the vector potential of the radiation field, m is the mass of an electron, c is the speed

of light, e is the charge of an electron, and ~ is the reduced Planck’s constant. For linearly

polarized light we have ~A = Aê for polarization direction ê.
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The exponential exp
(
i
Ef−Ei

~c n̂ · ~r
)

represents the retardation of the field across the atom.

Since the X-ray energies are typically less than 2000 eV, and the distance r is less than 1 Å,

the argument for the exponent is less than 1 (for the C K-edge with r = 0.5 Å the argument

is about 0.07). Therefore we can expand the exponent in a McLauren series:

exp

(
i
Ef − Ei

~c
n̂ · ~r

)
' 1 + i

Ef − Ei

~c
n̂ · ~r −

(
Ef − Ei

~c
n̂ · ~r

)2

+ · · · . (4.2)

We typically only retain the first term in this expansion, which limits the transitions to those

allowed by dipole selection rules. We therefore use the transition operator:

Tif ' − eA
mc

~p · ê. (4.3)

From quantum mechanics we know that for a ground state Hamiltonian H0 = ~p2

2m
+ V (~r)

we have the commutation relation:

[~r,H0] = ~rH0 −H0~r

= ~r

(
~p2

2m

)
−
(
~p2

2m

)
~r

=
i~
m
~p, (4.4)

and we can therefore also write the transition operator as:

Tif '
eA

i~c
[~r,H0] · ê. (4.5)

The probability, Γif (ê), of a given X-ray transition is then:

Γif (ê) =
2π

~
|〈ψf |Tif |ψi〉|2 δ(Ef − Ei − hν)

' 2πe2A2

~3c2
|〈ψf |[~r,H0] · ê|ψi〉|2 δ(Ef − Ei − hν)

' 2πe2A2

~3c2
|〈ψf | (~rH0 −H0~r) · ê|ψi〉|2 δ(Ef − Ei − hν)

' 2πe2A2

~3c2
|〈ψf | (Ei − Ef )~r · ê|ψi〉|2 δ(Ef − Ei − hν)

' 2πe2A2

~3c2
(Ef − Ei)

2 |〈ψf |~r · ê|ψi〉|2 δ(Ef − Ei − hν).
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We can expand the dot-product ~r · ê using the addition theorem for spherical harmonics [54]:

P`(x̂ · ŷ) =
4π

2`+ 1

∑
m

Y`m(x̂)Y †`m(ŷ)

~r · ê = rP1(r̂ · ê) (4.6)

=
4π

3
r

1∑
q=−1

Y †1q(ê)Y1q(r̂), (4.7)

where P`(x) is a Legendre polynomial of degree `, and Y`m(x̂) is a spherical harmonic of

degree ` and order m. If we take into account that the delta function will set (Ef −Ei) = hν,

the X-ray transition probability is now:

Γif (ê) ' 4(2π)6e2A2ν2

9hc2

∣∣∣∣∣∑
q

Y †1q(ê)〈ψf |rY1q(r̂)|ψi〉

∣∣∣∣∣
2

δ(Ef − Ei − hν). (4.8)

4.2 The Dipole Matrix Elements

Evaluating an X-ray transition involves solving the matrix elements of 〈ψf |rY1q(r̂)|ψi〉. We

can express the many-body wavefunctions as the product of the single particles involved in

the transition with the remainder of the system:

|ψi〉 = |φi〉 |Φi〉

|ψf〉 = |φf〉 |Φf〉 (4.9)

〈ψf | rY1q(r̂) |ψi〉 = 〈φi| rY1q |φf〉 〈Φf |Φi〉 ,

where here φi,f represents the single particle wavefunction in the initial and final states,

respectively, and Φi,f represents the wavefunction of the (many) remaining particles in the

system in the initial and final states. Since X-ray transitions are highly spatially localized

and the transitions occur very rapidly [55], it is common to assume 〈Φf |Φi〉 = 1, and this ap-

proximation is usually sufficient to explain the majority of the features in any X-ray spectrum

from a broad-band material [56].

Since X-ray transitions typically involve a core state which is tightly bound to an atomic

site, it is convenient to express the single particle wavefunctions in terms of spherical har-

monics centred on that site. A core state would then be defined simply as:

φcore = u`(r, E)Y`m(r̂), (4.10)
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where u`(r, E) is the radial solution to the Schrödinger equation for the atomic potential at

energy E, while a band state would be defined as (refer to Appendix B for the specifics of

an APW, LAPW, LAPW+LO, or APW+lo+LO band state):

φband =
∑
`m

f`m(r, E)Y`m(r̂) (4.11)

for some radial expression f`m(r, E) which would in general depend on the energy of the band

state, as well as the crystal momentum.

Even for systems that provide a more rigourous description of core states than is found in

Hydrogen-like wavefunctions (i.e. take spin-orbit splitting and other many-body effects into

account) the wavefunctions for electrons would still consist of the sum of one or more radial

functions and spherical harmonics [57].

The general matrix element for an X-ray transition therefore involves a radial integral

and an integral over spherical harmonics:

〈φi| rY1q |φf〉 '
∫
r2drfi(r, Ei)rff (r, Ef )

∫
dΩrY

†
`imi

(r̂)Y1q(r̂)Y`fmf
(r̂). (4.12)

Integrals of three spherical harmonics over a complete sphere, like the one shown above, have

analytic solutions. These can conveniently be expressed in terms of Wigner 3j symbols [57],

and are discussed in more detail in Appendix C. Since outside of the simple Hydrogen-like

atom the radial wavefunctions do not have an analytic solution, the radial integral shown

above must be evaluated numerically (and the radial wavefunctions contributing to this

integral must be solved by numerically integrating the radial Schödinger or Dirac equation).

It is important to stress that because the core level radial wavefunction is spatially con-

fined to a particular atomic site, the radial integral for any core level X-ray transition can

be limited to a finite radius from the particular atomic nucleus. Since WIEN2k requires

the regions local to an atomic site be defined as part of that “atomic sphere” (refer back

to Section 3.4), the integral described above can be evaluated fairly expediently. As long as

the atomic sphere is large enough to essentially enclose the core level wavefunction (and this

condition is, in fact, necessary for a well-converged calculation, because otherwise core charge

can “leak” out and not be properly accounted for), an X-ray transition can be completely

evaluated within that atomic sphere.
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Referring back to Equation 4.8, we can consider the situation where either the initial

state (for an absorption transition) or the final state (for an emission transition) is a core

state, and the incoming (or outgoing) photons are unpolarized (or, alternatively, the sample

is polycrystalline). If the core state is a solution to the Dirac equation (note that relativistic

considerations are important for core states in heavy atoms) [58], then m for the core state

is not a good quantum number and should be summed over (since a specific m cannot be

selected experimentally). If the photons are unpolarized, or the sample consists of randomly

oriented grains, then all possible polarization states should be integrated. In this situation

(consider the core state as the initial state) we therefore have:

Γif ∝
∑
mi

∫
dΩê

∣∣∣∣∣∑
q

Y †1q(ê)〈ψf |rY1q(r̂)|ψi〉

∣∣∣∣∣
2

δ(Ef − Ei − hν)

∝
∑
mi

∑
qq′

∫
dΩêY

†
1q(ê)Y1q′(ê)〈ψf |rY1q(r̂)|ψi〉〈ψi|rY †1q′(r̂)|ψf〉δ(Ef − Ei − hν)

∝
∑
mi

∑
q

〈ψf |rY1q(r̂)|ψi〉〈ψi|rY †1q′(r̂)|ψf〉δ(Ef − Ei − hν). (4.13)

Referring back to the general expressions for core states (Equation 4.10) and band states

(Equation 4.11), and using the notation for spherical harmonic integrals given in Appendix

C, we have:

Γif ∝
∑
`fmf

∑
`′fm

′
f

∫
r2drf`fmf

(r, Ef )ru`i(r, Ei)

∫
r2drf`′fm′

f
(r, Ef )ru`i(r, Ei)

×
∑
mi,q

Ω (`imi, 1q, `fmf ) Ω
(
`imi, 1q, `

′
fm
′
f

)
δ(Ef − Ei − hν)

∝
∑
`fmf

[∫
r2drf`fmf

(r, Ef )ru`i(r, Ei)

]2

W (`1, 1, `f )δ(Ef − Ei − hν). (4.14)

This leads to an X-ray transition probability of:

Γif ∝
∑
`fmf

W (`i, 1, `f )

[∫
r2drf`fmf

(r, Ef )ru`i(r, Ei)

]2

δ(Ef − Ei − hν),

where : W (`i, 1, `f ) =

((
`i

2`i + 1

)
δ`i−1,`f +

(
`i + 1

2`i + 3

)
δ`i+1,`f

)
. (4.15)

This form of the X-ray transition probability works for both emission and absorption transi-

tions in broad band materials, since the only difference between the two is whether the core
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state is the initial or final state, and whether the band state is a nominally occupied or unoc-

cupied state. This simpler expression obtained by averaging the polarizations is widely used

when calculating X-ray spectra using the WIEN2k code [59–61], but when using a computer

code it is still relatively simple to include the influence of photon polarization.

Finally, it should be stressed that since X-ray transitions are governed by the Fermi

golden rule; the “final state” of the transition has a dominant influence on the spectrum.

For an X-ray emission transition, the final state is a full core level, a hole in the valence

band, and an excited electron. The perturbation from a single valence hole and an excited

electron on the ground state electronic structure is very minor, and consequently the ground

state electronic structure often provides a very accurate description of the XES spectrum.

However the final state in an X-ray absorption transition has a hole in a deep core level, and

an excited electron. The perturbation from this “core hole” can be quite significant [62], and

it is often necessary to explicitly include a vacancy in a core level to accurately calculate an

XAS spectrum [63,64].

4.3 Practical Polarized X-ray Spectra

The dependence of the X-ray transition probability in Equation 4.8 on the polarization vector

ê allows one to use the results of a band structure calculation to obtain the X-ray spectrum

for an arbitrary polarization with respect to the coordinates of the unit cell. However this is

not usually an experimentally realizable situation; typical samples will have less than perfect

ordering. In fact, since many samples are polycrystalline, the unpolarized formula derived

in the previous section is appropriate even for measurements obtained with highly polarized

synchrotron light.

In between the extremes of perfect polarization in a perfect crystal, and a completely

polycrystalline or amorphous material, there are several possibilities of intermediate disorder

that present different methods of treating the polarization. Some possibilities that I con-

sidered are shown in Figure 4.1. The first case (part a of Figure 4.1) is the aforementioned

situation of a perfect crystal exposed to linearly polarized light. In this case the polarization

vector, defined relative to the crystal axes, sufficiently describes the situation. The second
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Figure 4.1: Some different ways of partially averaging the polarization vector, due to
partial disorder in the sample or the light. The grey hexagons represent small crystalline
pieces of material, with the coordinate system labelled {x, y, z}. The normal vector of
the incident light is shown (labelled n̂), and the polarization (labelled ê) is either fixed
or consists of all possibilities normal to n̂. For X-ray emission, simply treat the incident
light as outgoing (emitted) light.

case (part b of Figure 4.1) is the situation where a perfect crystal is exposed to unpolarized

light with a known incidence vector. This is a useful description of X-ray emission from per-

fect crystals, where the vector of the emitted light is known (by the geometry of the sample

with the X-ray detector), but the detector is unable to measure X-ray polarization. This

situation can be treated by integrating the polarization over all angles (θ,φ) that are normal

to the incident vector n̂. This form of polarization is completely described by specifying the

direction of the incident light (n̂ = {θ, φ}).

The third case (part c of Figure 4.1) is the situation where the sample consists of poly-

crystalline pieces that have a preferred orientation (in this case in the z direction), and the

sample is exposed to linearly polarized light. Thin films or highly-oriented planar graphite

(HOPG) are good examples of these types of systems. In this situation there is no clear x and

y axes of the crystal, and this is effectively treated by integrating the polarization over all

angles that change the projection of the polarization in the plane of the sample. In situations

where the z axes is the preferred orientation, the integration is over the longitudinal angles

(φ ∈ {0, 2π}), and can be performed analytically. However the preferred orientation of a sys-

tem does not always correspond to the z axis of the maximum-symmetry coordinates of an

atomic site, so in general the integration must be done numerically. This form of polarization
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is completely described by specifying the azimuthal angle of the polarization with respect to

the preferred orientation of the sample (i.e. the θ angle of ê if the preferred orientation is z).

The fourth and final case (part d of Figure 4.1) is a combination of the previous two

situations; here the sample has a preferred orientation (again shown here for the z direction),

and the light is unpolarized but has a known incident (or outgoing) direction n̂. This is an

appropriate treatment for angle-resolved X-ray emission spectra from HOPG, for example.

This situation is treated by integrating the polarization over all angles (θ,φ) that are normal

to the incident (outgoing) vector n̂, and also integrating over all incident (outgoing) vectors

n̂ that have different projections in the plane of the sample. As before, in situations where

the z axes is the preferred orientation, this corresponds to integrating over all longitudinal

angles (φ-component of n̂). This form of polarization is completely described by specifying

the azimuthal angle of the incident vector with respect to the preferred orientation of the

sample (i.e. the θ angle of n̂ if the preferred orientation is z).

An example of polarized XES and XAS spectra is shown in Figure 4.2 for perfect graphite;

this compares favourably with measured spectra (see, for example, Reference [65]). The

linear and circular polarizations in Figure 4.2 refer to methods (c) and (d), respectively,

shown schematically in Figure 4.1. Of course actually measuring linearly polarized XES

measurements would require a X-ray spectrometer capable of detecting and discriminating

incoming X-ray polarizations. It should also perhaps be mentioned that while the formalism

for calculating polarized X-ray spectra within a DFT framework is not new, I implemented

these algorithms for the WIEN2k code myself.

4.4 Resonant X-ray Transitions

The concept of RXES was briefly mentioned in Section 2.4 as a spectroscopic technique

that essentially couples the X-ray absorption and X-ray emission transitions together. In

the context of a broad band material, where the XES and XAS measurements are close to

probing the ground state electronic structure, RXES measurements can be thought of as

“momentum selective” XES spectra. Because the absorption and emission transitions are

linked, and because an X-ray can carry negligible crystal momentum, the X-ray emission can
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Figure 4.2: Calculated linearly and circularly polarized spectra from graphite: (a)
the C K XES spectra (polarization is given for the emitted X-rays), where the angle
between the sample normal (crystalline c axis) and the spectrometer is given, and (b)
the C K XAS spectra (polarization is given for the incident X-rays), where the angle
between the sample normal (crystalline c axis) and the incident X-ray beam is given.
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only occur from sites within the band structure that have the same crystal momentum as

the unoccupied bound states that were involved in the X-ray absorption transition.

Resonant X-ray emission is best described as a second order effect (compared to non-

resonant X-ray emission or X-ray absorption, both first order effects) of the perturbation of

an electromagnetic field on a system of electrons. To describe this, it is perhaps better to use

the interaction Hamiltonian between electrons and an electromagnetic field (rather than just

the simple classical electromagnetic field from Equation 4.1), which is (neglecting spin) [33]:

Hint =
∑
i

[
e

m
~A · ~p+

e2

2m
~A2

]
, (4.16)

where e and m are the usual charge and mass of an electron, ~A is the vector potential of the

radiation field (in the gauge ∇ · ~A = 0), and ~p is the electron momentum operator [33]. To

second order, the Fermi golden rule for this interaction Hamiltonian is then:

Γif =
2π

~
∑
f

∣∣∣∣∣〈ψf |Hint|ψi〉+
∑
m

〈ψf |Hint|ψm〉〈ψm|Hint|ψi〉
Ei + hν − Em + iγm

∣∣∣∣∣
2

δ(Ef − Ei − hν),(4.17)

where there is a sum over all final states f , and all intermediate statesm (and γm is the lifetime

of the intermediate state). The first term in the square is just the regular X-ray emission,

already describe in Section 4.1, while the second term is the resonant X-ray emission. In the

interaction potential the ~A2 term describes Thompson scattering, which is not very sensitive

to resonant excitation. [33] If the first term (the regular X-ray emission) in Equation 4.17

and the Thompson scattering from the interaction Hamiltonian are neglected, we obtain the

the Kramers-Heisenberg formula [33, 53, 66], which reduces to (by the same procedure used

to derive Equation 4.8):

I(νin, νout) =
∑
f

∣∣∣∣∣∑
m

〈Ψf |~rf · êf |Ψm〉〈Ψm|~ri · êi|Ψi〉
Em − Ei − hνin − iΓ

2

∣∣∣∣∣
2

δ (Ef + hνout − Ei − hνin) ,

(4.18)

where Ψf is the final state, Ψm is the intermediate state, and Ψi is the initial state. Γ is the

lifetime of the intermediate state, and ê1 is the polarization of the incident light.

Since the Kramers-Heisenberg Formula involves two-particle interactions, in a single-

particle band structure each wavefunction is the product of two single particle wavefunctions.
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Figure 4.3: The initial, intermediate, and final wavefunctions for a Kramers-
Heisenberg X-ray transition in a single particle band structure.

For a core state ψc, a valence band state ψV B, and a conduction band state ψCB we have:

|Ψi〉 = |ψc(~ri)〉 |ψV B(~rf )〉

|Ψm〉 = |ψCB(~ri)〉 |ψV B(~rf )〉

|Ψf〉 = |ψCB(~ri)〉 |ψc(~rf )〉 (4.19)

These wavefunctions are shown schematically in Figure 4.3. Note that there is only one final

state core level available, and it is the same as the initial state core level (assuming only

radiative decay).

With single particle wavefunctions the two transitions matrix elements are therefore:

〈Ψm|~ri · êi |Ψi〉〉 = 〈ψCB(~ri)| 〈ψV B(~rf )|~ri · êi |ψc(~ri)〉 |ψV B(~rf )〉

= 〈ψCB(~ri)|~ri · êi |ψc(~ri)〉 〈ψV B(~rf )|ψV B(~rf )〉

= 〈ψCB(~ri)|~ri · êi |ψc(~ri)〉

and 〈Ψf |~rf · êf |Ψm〉 = 〈ψc(~rf )|~rf · êf |ψV B(~rf )〉 (4.20)

With these definitions for the valence and conduction band states, the choice of initial and

final state completely determines the intermediate state, and therefore there is only one

state Ψm to sum over (this is in contrast to model-Hamiltonian RIXS calculations that have

multiple intermediate states). Using the definitions of core and band states given above in
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Equations 4.10 and 4.11, and the expansion of ~r · ê in terms of spherical harmonics [54], we

have:

I(νin, νout) =

(
4π

3

)4 ∑
mcm′

c

∑
qiq′i

Y †1qi(êi)Y1q′i
(êi)

∑
qf q

′
f

Y †1q′f
(êf )Y1qf (êf )

δ (Ef + hνout − Ei − hνin)∣∣Em − Ei − hνin − iΓ
2

∣∣2
×

∑
`V BmV B

[∫
r2drf`V BmV B

(r, EV B)ru`c(r, Ec)

]
Ω (`cmc, 1qi, `V BmV B)

×
∑

`′V Bm′
V B

[∫
r2drf`′V Bm′

V B
(r, EV B)ru`c(r, Ec)

]
Ω (`cmc, 1q

′
i, `
′
V Bm

′
V B)

×
∑

`CBmCB

[∫
r2drf`CBmCB

(r, ECB)ru`′c(r, Ec′)

]
Ω (`′cm

′
c, 1qf , `CBmCB)

×
∑

`′CBm′
CB

[∫
r2drf`′CBm′

CB
(r, ECB)ru`′c(r, Ec′)

]
Ω
(
`′cm

′
c, 1q

′
f , `
′
CBm

′
CB

)
(4.21)

In the case of polycrystalline or powder samples, we can integrate over all incoming and

outgoing polarizations to obtain:

I(νin, νout) =

(
4π

3

)4
δ (Ef + hνout − Ei − hνin)∣∣Em − Ei − hνin − iΓ

2

∣∣2 ∑
`V BmV B

[∫
r2drf`V BmV B

(r, EV B)ru`c(r, Ec)

]
×

∑
`′V Bm′

V B

[∫
r2drf`′V Bm′

V B
(r, EV B)ru`c(r, Ec)

]∑
mcqi

×Ω (`cmc, 1qi, `V BmV B) Ω (`cmc, 1qi, `
′
V Bm

′
V B)

×
∑

`CBmCB

[∫
r2drf`CBmCB

(r, ECB)ru`′c(r, Ec′)

]
×

∑
`′CBm′

CB

[∫
r2drf`′CBm′

CB
(r, ECB)ru`′c(r, Ec′)

]
×
∑
m′

cqf

Ω (`′cm
′
c, 1qf , `CBmCB) Ω (`′cm

′
c, 1qf , `

′
CBm

′
CB)

=

(
4π

3

)4
δ (Ef + hνout − Ei − hνin)∣∣Em − Ei − hνin − iΓ

2

∣∣2
×

∑
`V BmV B

[∫
r2drf`V BmV B

(r, EV B)ru`c(r, Ec)

]2

W (`c, 1, `V B)

×
∑

`CBmCB

[∫
r2drf`CBmCB

(r, ECB)ru`′c(r, Ec′)

]2

W (`′c, 1, `CB) (4.22)

In other words, a non-polarized RXES spectrum from a band structure material is just the

product of the non-polarized XES and XAS spectra, subject to both energy conservation and
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Figure 4.4: A photon-in, photon-out map of the C K edge of diamond: (a) calculated,
(b) measured (using a nanodiamond sample, on the REIXS beamline at CLS). Each
horizontal line corresponds to an emission spectrum at a given energy. The non-resonant
portion of the spectrum has been subtracted, as described in Reference [34].

that the valence and conduction band states have the same crystal momentum. Note also

that in most practical cases the core level in the final state will be the same as the core level

in the initial state (i.e. Ec = Ec′ , `c = `c′).

As an example, a “RXES map”, or 2D image consisting of a RXES spectrum for every

point in a XAS spectrum, is shown in Figure 4.4 for nanodiamond. It is clear that near the

conduction band onset (in the energy range from around 290 eV to 300 eV) the calculated

and measured spectral shapes are in reasonably good agreement. There is also some elastic

scatter in the bottom right corner of the measured map (Figure 4.4(b)) that the calculation

did not attempt to reproduce (no elastic scatter was calculated), and there is also a strong

emission feature near 277 eV when excited at 290 eV that is not part of the ground state

band structure (it is a resonance feature and is related to the core hole perturbation). Above

290 eV the agreement between the calculated and measured spectra is less accurate, it is

possible that the momentum selectivity of the measured spectra is too weak to manifest in

dramatic changes in the emission line shape.
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Figure 4.5: A photon-in, photon-out map of the Fe L3 edge of LiFeAs: (a) calculated,
(b) measured. Each horizontal line corresponds to an emission spectrum at a given
energy.

Unfortunately this type of spectroscopic mapping to determine band structure is useful

only in broad band materials that contain only a few bands with relatively large curvatures.

Diamond, graphite, and silicon carbide, among a few others, have been successfully studied

with this approach (see Reference [34] for a review). However in many other broad band

materials, the band structure is too “flat” to provide much contrast between RXES spectra

excited at different energies.

The iron pnictides are an excellent example of this; while it could be argued that a Fe

L3 RXES is not a good probe of band structure (due to the possible influence from LS-

coupling multiplets and on-site correlation effects), it is certainly clear that the calculated Fe

L3 RXES map of the iron pnictide LiFeAs (see Figure 4.5(a)) provides no readily apparent

band structure information, and looks similar to the measured RXES map (see Figure 4.5(b)).

This is because the bands in LiFeAs are relatively flat: for a given excitation energy, certain

conduction bands are populated with electrons. Because the bands are relatively flat, an

electron in each conduction band can access almost the entire valence band by a momentum-

conserving transition, so the RXES spectra are essentially the same as the non-resonant XES

40



(which probes the entire valence band because it is not restricted by momentum conservation).

The electronic structure of LiFeAs is analysed in greater detail in Section 7.4.
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Chapter 5

Electronic Structure of Binary Oxides

While chemically simple, binary oxides are interesting materials in their own right; even

the very simple alkaline oxides (BeO, MgO, CaO, SrO, BaO) are useful materials in cataly-

sis [67–69], while transition metal oxides may be used as photocatalysts (such as TiO2) [70–

72], exhibit metal-insulator transitions (like V2O3, Fe3O4, etc.) [73], or are strongly correlated

systems (FeO, NiO, etc.) [49,62,74–76]. Finally the post-transition metal oxides (ZnO, CdO,

HgO) and several non-metal oxides (such Ga2O3, In2O3, SnO, SnO2, etc.) are semiconductors

used in optoelectronics [77–88].

Secondly, binary oxides are a useful class of test materials for comparing measured X-ray

spectra and calculated electronic structure, because these materials are cheap, stable, and

often have simple crystal structures. Further, the oxygen-cation bonding in these materials

can range from ionic to covalent, so a variety of hybridization strengths can be expected.

This chapter details my research into probing the electronic structure of binary oxides

with X-ray spectroscopy. Three groups of oxides are studied here; the alkaline oxides (BeO,

MgO, CaO, SrO, and BaO), the post-transition metal oxides (ZnO, CdO, HgO), and several

period 5 oxides (In2O3, SnO, SnO2, Sb2O3, Sb2O5, TeO2). These findings are also reported

in my published work on the subject, see References [15–17].

5.1 Alkaline Oxides

The alkaline oxides are extremely simple materials; in all cases they have only 8 valence

electrons per formula unit and are very ionic. Since these systems have no d - or f -states,

DFT should be able to accurately calculate the electronic structure of these systems. The

crystal structures of BeO, MgO, CaO, SrO, and BaO are listed in Table 5.1. Apart from BeO,
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Table 5.1: Crystal structures for the alkaline oxides. BeO is the only compound with
a non-cubic structure; so for this compound the a and c lattice constants are listed here
as well as the z coordinate for the atomic sites.

Space Lattice Atomic Sites Bond

Group Constant (Å) Cation, O Length (Å) Reference

BeO P63mc 2.698, 4.380 (2b) (2b) z = 0, 0.378 1.65 [89]

MgO Fm3̄m 4.211 (4a), (4b) 2.10 [90]

CaO Fm3̄m 4.815 (4a), (4b) 2.41 [91]

SrO Fm3̄m 5.160 (4a), (4b) 2.58 [92]

BaO Fm3̄m 5.523 (4a), (4b) 2.76 [92]

all of the other materials have the same cubic space group; structurally the only difference

between the non-BeO alkaline oxides is the species of cation and the lattice constant of the

unit cell.

These materials make an ideal series to study with oxygen K -edge XES and XAS: oxygen

K -edge XES and XAS will probe the local occupied or unoccupied 2p-states, respectively,

which represent the primary bonding states for oxygen. Secondly, since these samples are

studied from the same X-ray edge, the energy scale and experimental resolution is consistent.

Finally, since MgO, CaO, SrO, and BaO have the same crystal structure, any differences in

the spectra (or electronic structure) must be due to the different cations and bond lengths,

rather than related to the point group symmetry of the oxygen site.

These oxides were obtained from a commercial vendor in powder form (Alfa Aesar, 99%

purity or higher). The O K -edge XES and XAS spectra for the alkaline oxides is shown

in Figure 5.1. The O K XES spectrum for these compounds consists mainly of a single

Gaussian-shaped feature that is around 526 eV above the binding energy of the oxygen 1s

core level and has a relatively consistent width. Since these systems are highly ionic, one

might expect this feature to be representative of a full 2p6 shell that is highly localized

to the oxygen site. There is, however, obviously some hybridization evident in the O K

XES spectrum of BeO, MgO, CaO, and BaO. In the two former compounds this is due to
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hybridization with the cation states (at an energy of about 523 eV for both), while in the

latter two this is due to hybridization with carbon sp-states and is indicative of a surface

carbonate layer (noted by the arrows on the O K -edge XES spectrum of CaO and BaO in

Figure 5.1, indicative of CaCO3 and BaCO3 , respectively) [15].

In contrast to the O K XES, the O K XAS shown in Figure 5.1 for these samples are

all quite distinct from each other. This is again expected since the systems are highly ionic;

any unoccupied O 2p-states occur almost entirely from hybridizations with unoccupied cation

states. Since each system has a different cation, it is not unexpected that these hybridizations

with the cation unoccupied s-, p-, and d -states should occur at different energies and have

different spectral intensities.

Finally, since the O K XES and XAS provide independent probes of the occupied and

unoccupied states, the energy separation between the two should be related to the band

gap of the material. Of course an X-ray transition can, in principle, represent a rather

drastic perturbation from the ground state. As mentioned in Chapter 4, for X-ray transitions

that can be expressed in terms of the Fermi golden rule, the final state of the transition

dominates [64]. In an XES spectrum the final state is a filled core level with a hole in the

valence band, while in an XAS spectrum the final state is a hole in a deep core level and an

electron in the conduction band. It is pretty clear that the latter state is much further from

the ground state than the former, and therefore we expect an XES spectrum (in the absence

of strong many-body effects) to be a much closer representation of the ground state valence

band than an XAS spectrum is of the ground state conduction band. However, despite these

caveats, a cursory analysis of the XAS is still possible. In particular, a core hole represents

an increase in the local potential (i.e. the nuclear charge is less screened than in the ground

state), and due to this greater attractive potential one can expect the onset of an XAS

spectrum would be lower in energy than the onset of the true ground state conduction band,

but not higher [63], and therefore the separation between the XES and XAS spectra from the

same edge should provide a lower limit on the band gap in the material. From the spectra in

Figure 5.1 we can anticipate that the band gap of BeO is by far the largest of these materials,

the band gap of MgO is perhaps the next largest and the remaining three compounds have

rather similar band gaps.
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Figure 5.1: The measured O K XES and XAS (TFY mode) spectra for the alkaline
oxides. The XES spectra were excited near 540 eV. The arrow points to the spectral
signature of a carbonate species (BaCO3 in the XES spectrum of BaO and CaCO3

in the XES spectrum of CaO) indicating some surface contamination. This figure is
adapted from data published in Reference [15].
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The calculated DOS of these alkaline oxides is shown in Figure 5.2. These DOSes were

all calculated using the Perdew, Burke, and Ernzerhof’s generalized gradient approximation

(PBE) exchange-correlation functional [44]. It is reasonably clear that the O K XES is an

accurate probe of the ground state O 2p occupied DOS; the O 2p valence band of BeO is

considerably wider than in the other compounds, with a distinct broad low energy shoulder,

qualitatively the same trends are apparent in the BeO O K XES spectrum. The O 2p valence

band in MgO is the second broadest, this band also has a distinct secondary peak at lower

energies, again in qualitative agreement with the trends in the measured O K XES spectra.

Finally, the remaining three compounds all have rather sharp and narrow valence bands (less

than 3 eV wide).

The onset of the conduction bands in BaO, SrO, and CaO, shown in Figure 5.2, are

dominated by the unoccupied 5d -, 4d -, and 3d -states, respectively. In MgO and BeO, on the

other hand, there is a rather weak weighting of d -like states (as one might expect), in fact

it is O 2p-states that dominate the onset of the conduction band. The cation 2s, 2p- and

3s,3p-states do not become dominant until some 10 eV above the edge in BeO and MgO,

respectively. This is again in qualitative agreement with the O K XAS spectra shown in

Figure 5.1, suggesting that even with the perturbative influence of a core hole some ground

state properties may be deduced from a XAS spectrum.

In an effort to provide a quantitative estimate of the band gap from a XES and XAS

spectrum, our group often uses peaks in the second derivative of each spectrum [62]. This

method is without any real theoretical justification, but it does provide a consistent and

repeatable empirical method of estimating the onsets of the valence and conduction bands

(although, of course, the latter may be perturbed by the core hole). The band gap is arguably

the most important single parameter in the electronic structure of a material, and any bulk

sensitive technique of estimating the band gap is valuable [16]. In fact, the exact band gap is

controversial for many materials because it can depend greatly on the probing depth of the

measurement [93]. An example of applying this method to the O K XES and XAS spectra of

MgO and CaO is shown in Figure 5.3. For a thorough treatment of all materials in this series

please refer to Reference [16]. The second derivative method can also provide a consistent

and repeatable estimate of the width of the valence band, as shown in Figure 5.3. This is
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Figure 5.2: The calculated partial DOS for the alkaline oxides. The top of the
valence band is at 0 eV. In the legend, X refers to the cation (Ba, Sr, Ca, Mg, or Be,
as appropriate). Note that the all of the unoccupied partial DOSes have been scaled
by a factor of 2. This figure is adapted from data published in Reference [15].
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another value that can be directly compared to the results from a theoretical calculation, and

since DFT calculations typically underestimate the band gap by a significant amount [45],

any disagreement between measured and calculated band widths may be a more accurate

indication of a problem with the calculation (or perhaps a contaminated measurement) than

a disagreement between band gaps. Although not relevant for these compounds, the valence

band width is also important in judging the correlation strength in materials with a large

on-site Hubbard potential [49,74].

As shown in Figure 5.3, the O K XES spectrum is in reasonable agreement with the

(broadened) O 2p occupied DOS of MgO and CaO, and the second derivative of the O K

XES gives a reasonably accurate estimate (error of ±0.5 eV or less) of the valence band

width. The O K XAS spectrum, on the other hand, is in only qualitative agreement with

the calculated unoccupied O 2p-states. It is reasonably clear that the calculated band gap is

too small, as expected. However because of the core hole in the final state of the measured

XAS spectrum, we should not expect the ground state conduction band to be the same as

the measured XAS spectrum.

The XES and XAS spectra can be calculated from the DOS, using the procedure for

calculating the transition matrix elements outlined in Chapter 4. The calculated O K XES

and XAS spectra for the alkaline oxides is shown in Figure 5.4. The XAS spectra shown here

were calculated using the “ground state” of a system with an explicit core hole in a single

O 1s level and a background charge of +1 e in a 2 × 2 × 2 supercell (see Reference [15] for

details). This method is also called the “full core hole” approach, but I will use the label

“core hole” (or CH for short) in this thesis. The XES spectra are accurately described by

the ground state of the system, sometimes this is described as “no core hole” but I will use

the terminology “ground state” (or GS for short) in this thesis.

The top of the valence band was aligned with the highest energy peak in the second

derivative of the measured O K XES (as shown in Figure 5.3). The alignment between

the calculated and measured O K XES shows nicely the caveats of the second derivative

method; since BaO, SrO, and CaO have very narrow valence bands, and very sharp onsets at

the top and bottom of the valence band (especially BaO), as shown in Figure 5.2, the peak

in the second derivative is in the low or high energy tails of the lifetime- and instrumentally-
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Figure 5.3: The calculated O 2p DOS and measured O K XES and XAS (TFY mode)
spectra for (a) MgO and (b) CaO. The second derivatives of these spectra are shown
in the bottom panels, the peaks are used to estimate the widths of the valence bands
(∆VB) and the band gaps (∆g) as shown. The excitation energy for the XES spectrum
is indicated by the arrow on the XAS spectrum. The calculated DOS have been aligned
with the measured spectra using the high energy peak in the second derivative of the
XES spectrum as an indication of the top of the valence band. Note the occupied and
unoccupied DOS have different vertical scales, but these scales are consistent for (a)
and (b). This figure is a modification of one published in Reference [15].
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broadened spectrum. In contrast, since BeO has a relatively broad valence band, and the

bottom and top of the valence band have much more gradual onsets than in the other

compounds, it seems that the peaks in the second derivative of the O K XES are at points

that are within the valence band. Only in situations where the intensity in the onset of the

valence band is “just right” does this method accurately line up the peaks of the calculated

and measured spectra, as is the case for MgO.

This alignment also makes it clear that the band gaps in the calculated DOS are too small

in all cases (except perhaps MgO), as can be seen by comparing the calculated and measured

XAS spectra in Figure 5.4. The calculated XAS spectra shapes are only in qualitative agree-

ment with the measured XAS spectra, if the calculated XAS spectra is shifted appropriately,

features in the calculated XAS spectra can be tentatively identified in the measured XAS

spectra but the relative intensities are often poorly reproduced. The general influence of

the core hole provides more important information; however, in comparison to the ground

state unoccupied O 2p-states, the calculated XAS show that in addition to shifting to lower

energies the core hole also greatly increases the intensity of features near the onset of the

conduction band [16,63,64]. The poor agreement between the calculated and measured XAS

can be attributed partly to the size of the supercell (a larger supercell, such as a 3×3×3 cell

is better), and more importantly to the failings of calculating the effect of a core hole pertur-

bation using time independent DFT. In all of the core-hole perturbed calculations discussed

herein, the electronic structure is fully relaxed; essentially the core hole lifetime is taken as

being infinite. This is likely why the core hole perturbed calculated XAS spectrum is in such

poor agreement with the measured XAS spectrum for BeO — since Be is so light compared

to O, a fully relaxed O 1s core hole introduces a much more significant perturbation to the

ground state band structure than in a system with a heavier cation.

5.2 Post-Transition Metal Oxides

The post-transition metal oxides (ZnO, CdO, and HgO) have the same formal valencies as

the alkaline oxides; however unlike the alkaline cations the post-transition metals have a

nominally full d10 shell that is very close to the valence level. It is of interest to determine
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Figure 5.4: The calculated O K XES and XAS spectra for the alkaline oxides,
compared with the measured spectra from Figure 5.1. The arrow points to the spectral
signature of a carbonate species in the measured O K spectrum; no attempt was made
to calculate the spectrum of the contamination phase. This figure is adapted from data
published in Reference [15].
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Table 5.2: Crystal structures for the post-transition metal oxides. The z coordinates
of the Zn and O sites are given for ZnO, as are the x and z coordinates for the Hg and
O sites in HgO, respectively.

Space Lattice Atomic Sites Bond

Group Constant (Å) Cation, O Length (Å) Reference

ZnO P63mc 3.2494, 5.2038 (2b) (2b), z = 0, 0.3821 1.98 [94]

CdO Fm3̄m 4.70 (4a) (4b) 2.35 [95]

HgO Pnma 6.6129, 5.5208, 3.5219 (4c) (4c), 1.89 [96]

z = 0.2456, 0.5955, 2.05

x = 0.1136, 0.3592

how chemically active this shell is, and whether it plays a key role in the optoelectronic

properties of these materials. Fortunately the most common phase of ZnO, wurtzite [94],

is isostructural to BeO [89], and CdO has the same rocksalt structure as the other alkaline

oxides [95]. This again helps with the analysis of the O K -edge X-ray spectra, because

any differences between spectra from isostructural systems can be attributed directly to the

different chemical properties of the cations rather than to the point group symmetry of the

oxygen site. The structures of ZnO, CdO, and HgO are summarized in Table 5.2.

These oxides were obtained from a commercial vendor in powder form (Alfa Aesar, 99%

purity or higher). The O K XES spectra of the post-transition metal oxides has a great

deal more structure than those from the alkaline oxides, as shown in Figure 5.1. Like the

alkaline oxides, all of these XES spectra have a rather sharp peak at 526 eV, this seems to be

a general characteristic of bonding 2p-states in oxides. All of these XES spectra also have a

low energy shoulder around 524 eV. The O K XES spectrum from both BeO and MgO had

a low energy shoulder as well, since it appears in cubic (MgO, CdO), hexagonal (BeO, ZnO),

and orthorhombic (HgO) structures, and does not appear in other cubic (CaO, SrO, BaO)

structures, this feature is probably due to the specific species of cation, rather than driven by

the particular point group symmetry of any one structure. Finally, all of the post transition

metal compounds have a secondary low energy peak between 520 and 522 eV in the O K
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Figure 5.5: The measured O K XES and XAS (TFY mode) spectra for the post-
transition metal oxides. The XES spectra were excited near 540 eV. Note the low energy
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full-shell nd10 states. This figure is adapted from data published in Reference [15].

53



XES spectrum. This peak is not related to a carbonate phase or any other contaminant,

rather it is due to hybridization between the O 2p-states and the cation d10 shell [15].

Secondly, the O K XAS spectra of the post-transition metal oxides are all rather smooth

and lack sharp features, especially close to the edge; qualitatively these spectra are closer

to those from BeO and MgO than the other alkaline oxides (refer back to Figure 5.1). This

is also expected because the sharp near-edge features in CaO, SrO, and BaO are due to

hybridization between the unoccupied O 2p-states and the unoccupied cation nd -states. In

terms of simple atomic orbitals, the cations in neither BeO (with an atomic valence state of

1s2) nor MgO (with an atomic valence state of 2s2) are expected to have vacant d -like states

right at the edge of the conduction band, so we expect the major hybridizations present in

the O K XAS to be between unoccupied the cation ns- and possibly np-states. Likewise,

ZnO, CdO, and HgO all have a full nd10 shell so we expect the next unoccupied d -like states

to be reasonable high in energy — and not appear near the edge of an XAS spectrum.

This description of the X-ray spectra is supported by the calculated DOS, shown in

Figure 5.6. These DOS were all calculated with a “hybrid functional” consisting of the

local spin density approximation (LSDA) exchange functional mixed with 35% of the exact

Fock potential [50] (hereafter, this is labelled as “LSDA+αHF”). This is necessary because a

simple GGA or LSDA functional does not localize the full-shell nd10 states sufficiently [16].

It is clear from Figure 5.6 that the O K XES should show three features; a main peak a

close to the top of the valence band, a secondary shoulder due to hybridization between O

2p- and cation s-,p-, and d -states (at −4 eV in these systems), and a secondary peak due to

O 2p-states weakly hybridizing with a the localized cation nd10 shell (below −5 eV in these

systems). Secondly, as anticipated by the O K XAS, the conduction band has very weak

cation d -character; the near edge is predominantly unoccupied O 2p- and cation ns-states,

and cation np-states start to become prevalent several eV above the edge of the conduction

band.

As discussed, X-ray spectra can be predicted from the electronic structure. The calculated

O K XES and XAS spectra for ZnO, CdO, and HgO are shown in Figure 5.7. As was the

case for the binary oxides, the XAS spectrum was calculated with an explicit 1s core hole at

a single O atom in a 2× 2× 2 supercell. As expected, the calculated O K XES spectra show
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Figure 5.6: The calculated partial DOS for the post-transition metal oxides. The top
of the valence band is at 0 eV. The cation full-shell nd10 states (i.e. those below −5
eV) have been reduced in intensity by a factor of 10, and the all the unoccupied partial
DOSes have been scaled by a factor of 2. This figure is adapted from data published in
Reference [15].
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Figure 5.7: The calculated O K XES and XAS spectra for the post-transition metal
oxides, compared with the measured spectra from Figure 5.5. This figure is adapted
from data published in Reference [15].
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the same three features identified in the measured spectra, however the energy alignment of

these is not entirely consistent with the measured spectra (see Figure 5.7). This discrepancy

is likely due to the simple choice of the Fock mixing in the hybrid functional; I chose a mixing

of 35% simply because this was previously shown to be a “good” generic value [50]. In fact

because a partial weight of the exact on-site Fock exchange correlation energy was used these

calculations are no longer ab initio and better agreement could be reached by tuning the

mixing factor.

Interestingly, the calculated XAS spectra of these post-transition metal oxides are closer

to the experimental spectra than was the case in the alkaline oxides (refer back to Figure

5.4). I believe the reason is two-fold: as previously mentioned the near edge of the conduction

band is dominated by O 2p — cation ns hybridization; this near edge region is also the area

most significantly influenced by the core hole perturbation. Because s- and p-like states

are more accurately treated with DFT than d - and f -like states, one can expect that the

influence of the local core hole perturbation will be more accurately treated as well. This is

also the case for BeO and MgO, but the cations in ZnO, CdO, and HgO are all much more

massive relative to O than the cations in BeO and MgO: Since I expect the influence of the

O 1s core hole on cation states to be inversely related to the size of the cation potential, this

means that the core hole should have a weaker perturbative effect on ZnO, CdO, and HgO

compared to BeO and MgO, and consequently the approximations inherent in the calculated

core hole perturbed XAS spectrum to be less significant [15].

To readdress a point brought up above, I have attempted to match the experimental

XES spectra of ZnO with the electronic structure of ZnO calculated using several different

functionals, as shown in Figure 5.8. This approach is hardly ab initio, indeed since adding

an on-site Hubbard potential U for the Zn 3d will simply reduce the average energy of these

states by U/2 from that in a regular GGA calculation [49], I specifically chose a value of

U = 8 eV because the bulk of the Zn 3d -states in the GGA calculation were 4 eV too

high [16]. The weakly correlated calculation the using the PBE potential clearly fails to

localize the Zn 3d -states sufficiently (see Figure 5.8(b)); this localization, at 8 eV or so below

the edge of the valence band, is clearly apparent in the O K and Zn L3 XES shown in Figure

5.8(a). One important aspect of this study is that the “modified Becke Johnson” functional

57



0
1
2 ( b ) L D A + U

De
nsi

ty 
of 

Sta
tes

 (st
ate

s/e
V a

tom
)

 O  2 p
 Z n  3 d / 4 d  ( × 0 . 2 )

5 2 0 5 2 5 5 3 0

 O  K

O  K  E m i s s i o n  E n e r g y  ( e V )

( a )
1 0 1 0 1 0 1 5 1 0 2 0

Z n  3 d O  2 p

O  2 p - Z n  4 d
h y b r i d i z a t i o n

 Z n  L 3

No
rm

ali
zed

 in
ten

sity
 (a

rb.
 un

its)

Z n  L 3  E m i s s i o n  E n e r g y  ( e V )

0
1
2 G G A  ( P B E )

0
1
2 L S D A + αH F

- 1 2 - 1 0 - 8 - 6 - 4 - 2 0 20
1
2 G G A  ( m B J )

E n e r g y  ( e V )
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Figure 5.9: The band gaps and band widths of the alkaline and post-transition metal
oxides. (a) The band gaps calculated with both PBE and mBJ functionals as well as the
band gap measurements found in the literature (all optical gaps except for HgO which
was determined from XPS + XAS) [78,97–103], as a function of the gap estimated from
the peaks in the second derivatives of the O K XES and XAS (refer back to Figure
5.3 for an example). The diagonal line indicates perfect agreement. The dotted lines
represent linear fits of the PBE and mBJ band gaps to the estimated gaps. (b) The
valence band widths calculated with PBE as a function of the band widths estimated
from the peaks in the second derivative of the O K XES (refer back to Figure 5.3 for
an example). This figure is adapted from data published in References [15,16].

(mBJ), a recently developed GGA exchange-correlation functional which greatly improves

the calculated band gaps [47], still fails to properly localize the Zn 3d10 states, in contrast

to initial claims that the mBJ functional would also accurately reproduce the DOS in these

types of systems [50].

Despite the caveats mentioned above, the practice of using the peaks in the second deriva-

tive of the XES and XAS spectra is a reasonable empirical approach in general, especially if

no theoretical electronic structures are available. Figure 5.9(a) plots the band gaps calculated

with the PBE and mBJ exchange correlation functionals and the band gaps obtained from

optical experiments available in the literature, all with respect to the band gaps estimated
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from the second derivatives of the XES and XAS. Although the band gap of any single ma-

terial may not be accurately described by the second derivatives of the XES and XAS, the

linear fits of the calculated band gaps with respect to gaps estimated from the second deriva-

tives have a slope very close to unity; so the band gaps estimated from the second derivative

method are rather close to the calculated gaps for these materials within an energy shift that

is constant for all materials in this series. For the PBE and mBJ calculated gaps the best fit

lines are (where Gsxs is the second derivative estimate of the band gap):

GPBE = (0.92± 0.12)Gsxs − (1.51± 0.67) eV; R2 = 0.89

GmBJ = (1.00± 0.13)Gsxs − (0.48± 0.75) eV; R2 = 0.89

It is also worth pointing out that the valence band widths estimated from the second

derivative method and obtained from the PBE calculation are even more accurate, as shown

in Figure 5.9(b). Again, although the second derivative estimate of the valence band width

for any single material may be too large or too small compared to the calculated value, the

average from all of these materials is very close to a perfect fit. As previously mentioned,

using peaks in the second derivative of a spectrum to determine the energy of the band

edges has little theoretical justification. However, based on the linear fits of the calculated

band gaps and band widths as a function of the second derivative estimates, the using the

“second derivative method” to estimate the band gaps is justifiable if no deeper insight

or accurate theoretical electronic structures of the material in question is available. The

same argument holds when comparing the second derivative estimate to the optical band

gaps found in the literature, as shown in Figure 5.9(a) (the optical gaps are obtained from

References [78,97–102], also see References [15,16] for more discussion).

5.3 Period 5 Oxides

The alkaline and post-transition metal oxides were notable because the cations, all with

the same nominal 2+ oxidation state, did not contribute significant occupied states to the

valence band (with the exception of the localized nd10 shell in the post-transition metal
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Figure 5.10: The calculated O 2p DOS and measured O K XES and XAS for (a) SnO
and (b) SnO2. The second derivatives of these spectra are shown in the bottom panels,
this figure has the same style as Figure 5.3. Note how poorly the calculated DOS and
measured XES spectrum in (a) line up when the peak in the second derivative of the
O K XES is used to find the top of the valence band. This figure uses data published
in Reference [17].

oxides, which interacted only weakly with the oxygen 2p-states). The set of binary oxides

formed with non-metal cations from period 5 (In, Sn, Sb, Te, and I) also contains systems

where the cation is fully oxidized (i.e. In2O3, SnO2, Sb2O5, and TeO3), so my analysis of the

valence and conduction bands of these types of systems can be continued to this set. There

are also similar oxides with cations in a lower oxidation state (i.e. SnO, Sb2O3, TeO2, I2O5)

where the cation could contribute 5s2 states to the valence band. As an aside, these aspects

are not innate to the period 5 cations, of course. There are analogous oxides with cations

from periods 4 and 6 (that are sufficiently stable solids at ambient conditions to study with

soft X-ray spectroscopy). I have studied these period 5 oxides mostly because they were the

easiest to obtain and work with. These oxides were obtained from a commercial vendor in

powder form (Alfa Aesar, 99.99% purity).

Using the peaks in the second derivative of the O K XES and XAS spectra is not particu-

larly useful for several of these systems, as shown in Figure 5.10. For instance, the O K XES

spectrum from both SnO and SnO2 has weak low-energy structure that makes it impossible
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to unambiguously find the peak in the second derivative representative of the bottom of the

valence band. The same is true for the top of the valence band of SnO; using the peak in the

second derivative to indicate the top of the valence band, as shown in Figure 5.10(a) clearly

seriously misaligns the spectrum with the O 2p-states. The second derivatives in the peaks

of the O K XES and XAS of SnO2, on the other hand, provide a rather good estimate of

the band gap. These two systems show a key failing of the second derivative method; when

the DOS has a very gradual slope towards the band edge (as is the case in SnO and SnO2 at

the bottom of the valence bands, and at SnO at the top of the valence band), no unambigu-

ous peak in the second derivative can be identified. However without any prior knowledge

of the electronic structure it can be difficult to determine whether the second derivative is

appropriate for a given material. In my opinion, the second derivative method should still

be used to analyse spectra if no other information about the electronic structure is available,

but these caveats should be remembered.

The calculated DOS (using the PBE functional, but shifted to incorporate the mBJ band

gap) and the calculated and measured O K XES and XAS (the latter calculation involves

an explicit core hole) for In2O3, SnO2, and Sb2O5 are shown in Figure 5.11. Although the

cations in these systems should formally have no valence electrons (the cations are In3+,

Sn4+, and Sb5+), there is significant hybridization between the cation 5s-states and the O

2p-states at the bottom of the valence band (marked by the arrows in Figure 5.11(a)). This

hybridization is real, because it is reproduced in the O K XES (both measured and calculated,

as shown in Figure 5.11(b)) [17]. In fact, the calculated spectra for these compounds are in

excellent agreement with the measured spectra. Because of this, the calculated spectra can

be accurately aligned with the measured spectra. In this manner, once the calculated XES

spectrum is aligned with the measured one, it is clear if the calculated band gap and core

hole shift are inadequate to correctly align the calculated XAS with the measurements. The

shift required to correct the alignment can then be used to correct the calculated band gap.

The calculated DOS (again using the PBE functional with the mBJ band gap) and the

calculated and measured O K XES and XAS (again involving a core hole) for SnO, Sb2O3,

TeO2 are shown in Figure 5.12. In these systems the cations have a nominal valence state of

5s2, so we expect to see significant cation contribution to the valence band. In fact, the cation
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Figure 5.11: Electronic structure of period 5 oxides with a 5p0 ground state con-
figuration. (a) The partial DOS calculated using the PBE functional with the mBJ
band gap, (b) the calculated and measured O K XES (excited near 540 eV) and XAS
(TFY mode). The arrows in (a) and (b) point out the 5s-O 2p hybridized states at
the bottom of the valence band in each oxide. This figure is reproduced in part with
permission from Reference [17], Copyright 2012 American Chemical Society.
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Figure 5.12: Electronic structure of period 5 oxides with a 5p2 ground state con-
figuration. (a) The partial DOS calculated using the PBE functional with the mBJ
band gap, (b) the calculated and measured O K XES (excited near 540 eV) and XAS
(TFY mode). The arrows in (a) and (b) point out the 5s-O 2p hybridized states at the
bottom and top of the valence band in each oxide. This figure is reproduced in part
with permission from Reference [17], Copyright 2012 American Chemical Society.
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Figure 5.13: The band gaps and hybridization energies in the period 5 oxides. (a) The
band gaps obtained from mBJ calculations and aligning the calculated and experimental
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states. This figure is reproduced in part with permission from Reference [17], Copyright
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5s2 states are split: they are predominately found at both the top (in occupied antibonding

states) and bottom (in bonding states) of the valence band, as shown by the arrows in Figure

5.12(a) [17]. The hybridization between the cation 5s- and oxygen 2p-states are again real,

as shown in Figure 5.12(b) there is again excellent agreement between the measured and

calculated spectra, and the hybridization features at the top and bottom of the valence band

are visible (as shown by the arrows in Figure 5.12(b)).

As mentioned above, because the the calculated spectra for these compounds are so close

to the measured ones, the band edges for each spectrum can be determined by aligning the

calculated spectrum with the measured one. Combined with the calculated energy shift in

the conduction band edge due to the core hole, one can obtain a semi-empirical estimate of

the band gap the ground state and core hole-perturbed electronic structures by the following

method:

1. We assume that the average interstitial potential (conveniently set as 0 Ryd for the

internal energy scale in a WIEN2k calculation) is unaffected by the core hole potential;
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in other words, the zero of the native WIEN2k energy scale is the same for both

ground state and core hole-perturbed electronic structures. Because a good core hole

calculation involves a large supercell, and only a single atom within this cell has the

core hole vacancy, this is a reasonable assumption.

2. We then align the calculated (ground state) XES spectrum with the measured one.

(This can be done visually, or perhaps by adjusting the energy shift of the calculated

spectrum so the cross-correlation with the measured spectrum is maximized.) Once

this is done we know where the top of the valence band (of the calculated spectrum, at

least) is on the X-ray energy scale.

3. We then align the calculated (core hole perturbed) XAS spectrum with the measured

one. Once this is done we know where the bottom of the (core hole perturbed) conduc-

tion band is on the X-ray energy scale, and can determine the difference between that

and the top of the (ground state) valence band on the X-ray energy scale (∆X).

4. We then take the calculated Fermi levels (relative to the average interstitial potential,

as noted above) and band gaps from the core hole perturbed (Ech
F Egs

G , respectively)

and the ground state (Egs
F and Egs

G , respectively) calculations.

5. The core hole shift is then δch = (Ech
F + Ech

G ) − (Egs
F + Egs

G ). This is the shift in the

onset of the conduction band caused by the core hole perturbation.

6. The new semi-empirical band gap (∆G) is then the core hole shift subtracted from the

difference between the aligned XES and XAS spectra; ∆G = ∆X − δch.

Because of the core hole perturbation, as previously noted, the gap between an XES and XAS

spectrum will always be smaller than the calculated gap. In fact, assuming the calculated

core hole shifts are accurate (or at least not over estimated), the gaps calculated with the

mBJ exchange correlation functional are all slightly too small, as shown in Figure 5.13(a).

Assessing the accuracy of the calculated and semi-empirical gaps is troublesome because there

is considerable discrepancy in the band gaps of these systems reported in the literature [17],

but the suggested gaps shown in Figure 5.13(a) are reasonable.
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Another potential problem with using XES and XAS spectra to estimate band gaps should

be mentioned: even in perfect crystals, many structures have multiple inequivalent sites of

the same atomic species, and the binding energy of (for example) the 1s core state may not

necessarily be the same for each inequivalent site. Indeed, the binding energies for a given

core state of a particular atom at different inequivalent sites calculated with WIEN2k can

differ by a tenth of an eV or so even if the local environment for all sites is quite similar (and,

of course, for sites with considerably different bonding environments the binding energies

can differ by a much greater amount). Since an XES or XAS measurement samples all these

sites (weighted by multiplicity, of course), in a very real sense there is not a single “valence

band edge” or “conduction band edge” in the spectra; the energy of a band edge will be

different for each inequivalent site, and likely impossible to distinguish in a spectrum. This

effect can be corrected, at least approximately, by modifying the method outlined above to

include adding the maximum binding energy difference to the semi-empirical band gap to

represent the fact that the “top of the valence band” in the XES spectrum will be due to the

tightest-bound site, while the “bottom of the conduction band” in the XAS spectrum will be

due to the weakest-bound site. This assumes, however, that the core hole shifts for each site

will be the same — so in general care must be taken when attempting to use this method to

accurately determine the band gap.

A final point of interest in these materials is that the central energy for the bonding cation

5s-, 5p-, and 5d -states in the valence band is independent of the oxidation state, as shown

in Figure 5.13(b). (Note that the antibonding cation 5s-states in SnO, Sb2O3, and TeO2 are

omitted.) This is an interesting result; the cation hybridizations in the valence band depend

largely on the cation species, not the cation valence state.

5.4 Concluding Remarks

Determining the band gap of a material from XES and XAS spectra is a challenging task,

and while the second derivative method is an easy approach to obtain a first estimate of the

band gap, it will fail to properly determine the band edges in materials in which the DOS

has a very gradual rise in intensity after the edge. Secondly, no matter what the method, a
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purely empirical approach to determining the band gap from XES and XAS spectra will only

work if the core hole perturbation has a negligible effect on the edge of the conduction band

(as probed by XAS). Attempting to calculate the influence of the core hole perturbation,

and in general replicate the shape of the XES and XAS spectra, is the best approach to

determining the band gap. For the relatively simple binary oxides discussed herein, this is

straightforward, but for more complicated systems or heterostructures the computational

requirements to accurately compute the influence of a core hole may be quite demanding.

On the other hand, O K XES and XAS spectra do provide an excellent probe of hybridiza-

tion features within the valence and conduction bands, and interestingly, the approximate

energy of cation s,p,d — O 2p hybridization features within the valence band tend to follow

atomic-like rules [15], and seem to be rather independent of cation valency [17].
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Chapter 6

Band Gap Engineering in Ternary Oxides

As mentioned in the previous chapter, TiO2 and ZnO are currently being studied to

improve their performance in photocatalysts, photovoltaics, and other optoelectronic appli-

cations [70, 71, 78]. Despite the promise of these materials, they each have drawbacks which

reduce their effectiveness in optoelectronics. One possible route for improving the properties

of these binary oxides is to investigate ternary oxides that ideally preserve the best aspects

of the electronic structure of the binary oxide while avoiding some of the shortcomings. In

particular, the band gap of TiO2 and ZnO is the largest shortcoming of these materials for

optoelectronic purposes; in both materials it is too large (3.0 – 3.2 for TiO2 [104, 105] and

3.3 – 3.4 eV for ZnO [78,106,107]) to efficiently use of the solar spectrum. Therefore finding

a ternary oxide with a smaller band gap is a major focus of this research.

This chapter details my research into band gap engineering in ternary oxides using DFT

and X-ray spectroscopy. I have studied materials based on TiO2 and lone pair oxide percur-

sors (Sn2TiO4, PbTiO3, Bi4Ti3O12, and Bi2Ti4O11) and the ternary material based on TiO2

and ZnO precursors (ZnTiO3). These findings are also reported in my published work on the

subject, see References [18, 19].

6.1 Lone Pair — Titanium Ternary Oxides

Rutile TiO2 is an almost ideal photocatalyst for generating hydrogen: it is cheap, corrosion

resistant, and has a band gap that straddles the reduction potential of water [70,71,108]. The

process of splitting water with TiO2 is very simple: a TiO2 electrode can absorb light, creating

electron-hole pairs, as long as the energy of the light exceeds the band gap of TiO2 (i.e. hν >

Eg fwhere ν is the frequency of the light and Eg is the band gap of TiO2). If the electrode is
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immersed in water, the holes generated in the TiO2 can transfer to water molecules, breaking

them apart (denoting a hole by h+, the reaction is 4h+ + 2H2O → 4H+ +O2) [70]. Under an

applied voltage (around 5 V) the electrons created in the photoexcited TiO2 electrode can

be driven out into a metal electrode, and transfer to the H+ making hydrogen gas [70].

The key to this process is efficiently creating electron-hole pairs through the absorption of

light. Unfortunately, the band gap of TiO2 is in the ultraviolet energy range, and therefore

only a small portion of the solar spectrum is energetic enough to excite the electron-hole

pairs. To efficiently harness the solar spectrum the band gap needs to be reduced to 2.2 eV

or less [109]. It should be mentioned that water splitting can also be realized by anatase

TiO2 (the other common phase of TiO2), however this system has an even larger band gap

than rutile TiO2 [105]. Therefore, in this research, I have focussed on rutile TiO2 exclusively.

The titanium in TiO2 is nominally Ti4+, with a 3d0 valence state, so the conduction band

is dominated by these empty Ti 3d -states. Since the conduction band energy is only slightly

greater than the reduction potential of water [110], ternary oxides whose conduction bands

are dominated by Ti 3d0 states are a good starting point in the search for an appropriate

photocatalyst with a smaller band gap.

An interesting class of candidate materials are ternary oxides involving Ti4+ and “lone

pair” cations, like Sn2+, Pb2+, and Bi3+. These cations are called “lone pair” cations because

historically it was believed that the ns2 states did not participate in chemical bonding [111],

and although it is now known that this is not the case [17, 112–114], the name is still often

used. As discussed in Section 5.3, antibonding cation 5s- and O 2p-states form the tops

of the valence bands in SnO, Sb2O3, and TeO2; a similar phenomenon occurs in PbO and

Bi2O3 [17,113,114]. This raises the question: If the valence band in a lone pair binary oxide

is defined by the cation ns2 states, and the conduction band in TiO2 is defined by the Ti 3d0

states, then are these features preserved in the ternary compound?

6.2 Lead Titanates

Several ternary oxides containing lone pair cations and Ti4+ are readily available. The most

notable one is the perovskite PbTiO3, which is widely used as a piezoelectric crystal when
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Ti O

Pb

Figure 6.1: Crystal structures of (left to right): rutile TiO2 (from Reference [117]),
perovskite PbTiO3 (from Reference [116]), and litharge PbO (from Reference [118]).
A single unit cell is outlined for each system. These, and all other crystal structures
shown herein, were drawn with VESTA [119].

alloyed with PbZrO3 [115]. The structure of this system [116] features the same Ti4+ — 6

O2− octahedra as found in rutile TiO2 [117], and the same Pb2+-capped — 4 O2− square

pyramids as found in litharge PbO [118], as shown in Figure 6.1. If the bulk electronic

structure of PbTiO3 is only weakly dependent on long range order, and is dominated by

the atomic arrangement of nearest neighbours, then we can predict that it will be close to a

superposition of the electronic structures of TiO2 and PbO [18].

Indeed, this hypothesis is supported by the calculated electronic structure of TiO2, PbO,

and PbTiO3, as shown in Figure 6.2(a). Like litharge SnO (refer back to Figure 5.12), the

bottom and top of the valence band of PbO is defined by hybridized Pb 6s — O 2p bonding

and antibonding states, respectively. The bulk of the O 2p-states are in the middle of the

valence band, the dominant cation states in this region are Pb 6p-states. As expected, the

only significant hybridization in TiO2 is between the Ti 3d - and O 2p-states. Despite being

nominally Ti4+, there are some Ti 3d -states in the valence band, these are mostly at the

bottom of the valence band, identifying strong Ti — O bonding. The conduction band,

however, is definitely dominated by Ti 3d -states throughout (note that the conduction band

Ti 3d -states in Figure 6.2(a) have been reduced in intensity by a factor of 3 for clarity).

These features in the electronic structures of PbO and TiO2 are also found in the electronic

structure of PbTiO3, as shown in Figure 6.2(a). Like PbO, the valence band of PbTiO3 has

bonding Pb 6s-, O 2p-states at the very bottom of the valence band, and antibonding Pb
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Figure 6.2: Electronic structure of TiO2, PbO, and PbTiO3: (a) The calculated DOS,
the conduction band Ti 3d -states have been scaled by a factor of 1/3 for clarity. The
top of the valence band is at 0 eV. (b) The calculated and measured O K XES (excited
near 540 eV) and XAS spectra (TFY mode). The various spectral features are labelled.
This figure is adapted from data published in Reference [18] and newly calculated core
hole perturbed XAS spectra.

6s-, O 2p-states at the top of the valence band. The middle of the valence band has some Pb

6p-states, as in PbO, but the dominant hybridization is between bonding Ti 3d -, O 2p-states

as in TiO2. Like TiO2, the conduction band of PbTiO3 is dominated by Ti 3d -states, with

Pb 6p-states becoming significant at 8 eV and above, as shown in Figure 6.2(a). While the

subtle shape of the valence and conduction bands of PbTiO3 is obviously dependent on the

crystal structure, the general features and distribution of states in the electronic structure of

PbTiO3 can be predicted by a simple superposition of the electronics structures of TiO2 and

PbO.

The measured O K -edge XES and XAS spectra of these compounds (all are powders

purchased from Alfa Aesar, 99.9% purity) are in rather good agreement with the calculated

spectra, as shown in Figure 6.2(b), suggesting that the calculated electronic structure is fairly

accurate. Note that a 3×3×3 supercell was used to calculated the influence of the core hole

on these materials; my previously published work used the ground state XAS spectra [18].
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As expected, the O K XES spectra of PbO and PbTiO3 shows the bonding and antibonding

Pb 6p — O 2p hybridizations, labelled S 1 and S 2, respectively, in Figure 6.2. The S 1 feature

is somewhat weaker in intensity and at somewhat lower energies in the O K XES spectrum of

PbTiO3 than was predicted by the calculation, but it is still clearly present. As suggested by

the calculated DOS, all O K XES spectra have a low energy shoulder (labelled A in Figure

6.2) that is due to Ti 3d, Pb 6p — O 2p hybridization in the valence band, and all spectra

have a main peak (labelled B in Figure 6.2(b)) due to the bulk of the O 2p-states. As an

aside, note that the calculated O K XES spectrum of PbO is in very good agreement with

the measured spectrum; this shows that spin-orbit coupling (from the heavy Pb cation) in

the valence band (which was not accounted for in these calculations) is not significant to the

bulk electronic structure.

The calculated core hole perturbed XAS spectra are in reasonable agreement with the

measured XAS spectra, as shown in Figure 6.2(b). The O K XAS spectrum of TiO2 is

dominated by two major features near the edge of the conduction band; since the local

environment of Ti is nearly octahedral, these can be labelled as O 2p hybridization with

t2g and eg symmetry 3d -states [76]. The measured O K XAS spectrum of PbO also has

two rather prominent features near the edge of the conduction band; these are very close

to the energies of the features in the XAS spectrum of TiO2 although obviously are due

to completely different hybridizations. These features are repeated in the calculated O K

XAS spectrum of PbO, although there is definitely a discrepancy in the relative intensities.

Finally, the near-edge shape of the measured O K XAS of PbTiO3 has three rather minor

peaks on a broad background while the calculated XAS spectrum has only two clear peaks

in this region.

To analyse the XAS spectra of these systems in more detail, the XAS spectra calculated

from both the ground state and core hole perturbed states are shown in Figure 6.3 along with

the appropriate DOS. It is immediately clear in Figure 6.3 that the XAS spectra calculated

from the ground state conduction band are very similar in shape to the XAS spectra calcu-

lated from the core hole perturbed conduction band. In general the core hole perturbation

has two effects on the XAS spectrum: the intensity of the lowest energy peaks is increased

relative to the higher energy features, and the spectrum is shifted to lower energies. The
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influence of the core hole on the XAS spectrum of TiO2 is rather dramatic, as shown in

Figure 6.3 (a); the local O 2p-states are localized in energy to two rather narrow-band states

immediately below the energy of the two main Ti 3d features (the t2g and eg bands, which

are relatively unaffected by the O 1s core hole, as was expected due to the localization of

the perturbation). This is in contrast to the ground state conduction band, shown in Figure

6.3(d), where the O 2p-states are weighted towards the high-energy side of the main Ti 3d

t2g and eg bands.

Likewise, in PbO, as shown in Figure 6.3 (b), the core hole perturbation localizes the near-

edge O 2p-states into a rather narrow band that is at lower energies than the corresponding

states in the ground states DOS, shown in Figure 6.3 (e). The core hole perturbation causes

the hybridizations higher up in the conduction band to be shifted to slightly lower energies,

but otherwise not significantly affected. Since the measured XAS spectrum for PbO (refer

back to Figure 6.2) has slightly different fine structure after the first near-edge peak than the

calculated XAS spectrum, it is possible that the core hole perturbation has a greater influence

on the O 2p — Pb 6p hybridized states than is predicted by the calculated spectrum.

The behaviour of the core hole perturbation in PbTiO3 is as expected (see Figure 6.3(c,g));

there is a combination of greater localization (in energy) of O 2p-states at the low energy

side of the Ti 3d bands (as in TiO2, see Figure 6.3(a)), and a general shift of the O 2p-states

to lower energies. Note that the crystal structure of PbTiO3 has two oxygen sites, and the

ground state WIEN2k calculation suggests that the binding energies of 1s-states at these two

sites differs by about 0.11 eV. This complicates the core hole perturbed DOS, because the

core hole perturbation was calculated separately for each site, but the resulting XAS spectra

and DOS were added together in Figure 6.3(c). This is why the extremely sharp O 2p DOS

feature in Figure 6.3(c) at about 2 eV seems misaligned with the calculated XAS; when the

appropriate binding energy and core hole shift is taken into account this feature actually

contributes to the XAS spectrum peak at 531.4 eV. The XAS spectrum shown in Figure

6.3(c) is the sum of the two separate spectra from each site (weighted by the multiplicity

of each site), after each spectrum has been shifted by the appropriate difference in Fermi

levels and binding energies. The DOS, on the other hand, has just been weighted by the

multiplicity of each site and shifted by the appropriate difference in Fermi levels; so it is
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expected that the XAS does not perfectly align with the DOS. The XAS has been shifted to

resemble what is actually measured (i.e. relative to the O 1s binding energy), the perturbed

DOS cannot be measured relative to the Fermi level directly. For the XAS calculated from

the ground state, shown in Figure 6.3(f), this difference in binding energies has been taken

into account but since there is no core hole perturbation in this calculation the Fermi levels

are consistent for all sites, and therefore the agreement between spectrum and DOS is much

closer.

As previously mentioned, the near-edge of the measured XAS spectrum of PbTiO3, shown

in Figure 6.2, has three features on a broad background, but the calculated XAS spectrum

(whether core hole perturbed or ground state) basically has only two features in this region.

One possible explanation is that the perturbative effect on the O 2p — Pb 6p hybridized

states is miscalculated (as I suggested was the case for PbO, as well). The first two features

in the measured XAS spectrum would then be O 2p-states localized at the bottom of the Ti

3d t2g and eg bands, as in TiO2, the third higher energy feature would be from O 2p — Pb

6p hybridized states.

6.3 Tin Titanates

Since SnO is isostructural to PbO, and has a smaller band gap, it seems reasonable to ex-

pect that a tin titanate perovskite could be synthesized that would be analogous to PbTiO3.

In fact, it was the search for such a material that started my involvement in this research;

my collaborator Prof. Nobihiro Kumada (University of Yamanashi, Kofu, Japan) was at-

tempting to synthesize SnTiO3/SnZrO3 to see if it could act as a replacement piezoelectric

for PbTiO3/PbZrO3; since although the latter is already widely used commercially it would

still be preferable to find a less toxic replacement for lead in these compounds. This search

lead to the accidental synthesis of Sn2TiO4 [120], and the initial research focussed on the

structure and synthesis of Sn2TiO4 as a possible gateway to a perovskite SnTiO3, not on

the properties or potential applications of Sn2TiO4 itself [120, 121], although the possibility

of using Sn2TiO4 as a test case for band gap engineering in lone pair — d0 materials was

soon investigated [122]. Despite this interest, most of the research into band gap engineering
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Ti

Sn
O

Figure 6.4: Crystal structures of Sn2TiO4 (from Reference [120]). A single unit cell
is outlined. Note that SnO is isostructural to PbO, shown in Figure 6.1 (the structure
of SnO is from Reference [123]).

was conducted by strictly theoretical methods, so it was appropriate for me to study these

materials with X-ray spectroscopy.

Sn2TiO4 has a rather large unit cell with the P42/mbc space group, as shown in Figure 6.4.

Like PbTiO3, Sn2TiO4 contains the same Ti4+ — 6 O2− octahedra as TiO2, and Sn2+ capped

square pyramids based with 4 O2− as found in litharge SnO [123]. However while the larger

scale structure of PbTiO3 was layered, Sn2TiO4 has channels running through it; the empty

hemisphere required for stabilization of the lone pair Sn 5s2 states faces into these channels.

Despite these structural differences, the electronic structure of Sn2TiO4 is quite similar to

that of PbTiO3, and is again close to a superposition of the electronic structures of SnO and

TiO2, as shown in Figure 6.5. The valence bands of SnO and Sn2TiO4 are sandwiched between

bonding (at the bottom) and antibonding (at the top) Sn 5s — O 2p-states, as in PbO and

PbTiO3, while the conduction band of Sn2TiO4 features the same two Ti 3d t2g and eg bands

as TiO2. Single crystals of Sn2TiO4 were generously provided by Prof. Nobuhiro Kumada

(Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi,

Kofu, JP), and the crystal structure was verified by XRD by members of Prof. Kumada’s

research group [120].
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Figure 6.5: Electronic structure of TiO2, SnO, and Sn2TiO4: (a) The calculated DOS.
(b) The O K XES (excited near 540 eV) and XAS (TFY mode) spectra. This figure is
organized the same as Figure 6.2, and is adapted from data published in Reference [18].

The calculated XES spectrum of Sn2TiO4 is in good agreement with the measured XES

spectrum, as are the previously discussed spectra of SnO and TiO2 (SnO powder purchased

from Alfa Aesar, 99.9% purity). As in the case of the lead, titanium oxides, the hybridized

states responsible for each of the main features of the experimental XES spectrum can be

identified with the aid of the calculated electronic structure; the bonding Sn 5s — O 2p

hybridization is responsible for feature S 1, the Sn 5p, Ti 3d — O 2p hyridization within

the valence band is responsible for feature A, the main O 2p-states are feature B, and the

antibonding Sn 5s — O 2p hybridization is feature S 2. For a more detailed discussion of the

hybridizations in the electronic structure see Reference [18].

Interestingly, the XAS spectrum for Sn2TiO4 calculated from the ground state electronic

structure is in quite good agreement with the measured XAS spectrum, as shown in Figure

6.5(b). The calculated (mBJ) band gap also puts the XAS spectrum in the right place

relative to the measurement; once the calculated XES spectrum is aligned with the measured

spectrum, if the exact same shift is applied to the calculated XAS spectrum it lines up

with the measured spectrum as shown in Figure 6.5(b). However this does not preclude the
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possibility that the actual band gap should be larger, since the measured XAS spectra could

occur at lower energies due to a core hole shift; and indeed my calculations suggest that

Sn2TiO4 has a core hole shift of about 0.4 eV.

6.4 Bismuth Titanates

The third class of ternary oxides that I have studied are those based on Bi3+. There are

two readily available candidate materials, Bi2Ti4O11 and Bi4Ti3O12 (there are actually many

Bismuth titanate polymorphs; these two were the ones I was able to easily obtain). The

former material is an antiferromagnet that exhibits some photocatalytic activity [124], crys-

tallizes in the C2/c spacegroup, and has 6 inequivalent oxygen sites [125]. The latter mate-

rial is ferroelectric [126] and crystallizes in either the B2cb space group or the B1a1 space

group [127, 128]. Electronic structure calculations suggest there is very little difference be-

tween the calculated DOS of the B2cb-phase Bi4Ti3O12 and the high-temperature I4/mmm-

phase Bi4Ti3O12 [126], so I only bothered to calculate the DOS from the B2cb phase. Since

neither B2cb nor B1a1 are standard space groups, the actual structure I used was a simplified

transform of B1a1, given in Table 6.1. This structure has 12 inequivalent oxygen sites. The

structures of Bi2O3 and the bismuth titanates are shown in Figure 6.6. While the structures

of the bismuth titanates are much more complex than the other lone pair-Ti4+ ternary oxides,

they have the same local structure: the Ti4+ are at the centre of 6 O2− octahedra, and the

Bi3+ are coordinated by 3 O2− and these Bi3+ have a the vacant hemisphere characteristic

of lone pair cations.

The calculated DOS and measured and calculated O K XES and XAS spectra for these

materials are shown in Figure 6.7. Bi2Ti4O11 and Bi2O3 powders were obtained from Alfa

Aesar (99.9% purity), while Bi4Ti3O12 powders were generously provided by Dr. Alexei Belik

(National Institute for Materials Science, Tsukuba, JP), members of Dr. Belik’s research

group verified the crystal structure of Bi4Ti3O12 with XRD and found it was consistent with

other reports found in the literature [126].

As with the other ternary oxides, the electronic structure of Bi2Ti4O11 and Bi4Ti3O12

resembles a superposition of the electronic structures of Bi2O3 and TiO2. Importantly, the
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Ti

O

Bi

Figure 6.6: Crystal structures of (left to right): α-phase Bi2O3 (from Reference [129]),
α-phase Bi2Ti4O11 (from Reference [125]), and Bi4Ti3O12 (see text, structure adapted
from References [127] and [128]). A single unit cell is outlined for each system.

Table 6.1: Crystal structure of Bi4Ti3O12. The space group is Pc, the lattice constants
are a = 5.45 Å, b = 16.64 Å, and c = 5.41 Å. The lattice angles are α = 90.0◦,
β = 90.0◦, and γ = 80.6◦. All positions are in the 2a Wyckoff site, and given in
fractional coordinates.

Atom x y z Atom x y z

Bi1 0.2425 0.6088 0.2477 O4 0.8176 0.755 0.9679

Bi2 0.3916 0.3208 0.2707 O5 0.1535 0.2456 0.9929

Bi3 0.1105 0.8762 0.2523 O6 0.0288 0.8586 0.6913

Bi4 0.9648 0.1660 0.2315 O7 0.3894 0.723 0.526

Ti1 0.2551 0.4856 0.7504 O8 0.1573 0.2444 0.4942

Ti2 0.1343 0.742 0.7513 O9 0.6474 0.6224 0.1795

Ti3 0.0 0.0 0.7498 O10 0.8055 0.3784 0.3084

O1 0.9409 0.1044 0.7941 O11 0.4999 0.5192 0.53

O2 0.7712 0.965 0.0159 O12 0.4349 0.4946 0.0541

O3 0.7059 0.9888 0.5336
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bonding and antibonding Bi 6s-states define the bottom and top of the valence bands, respec-

tively, and the unoccupied Ti 3d -states define the onset of the conduction bands of Bi2Ti4O11

and Bi4Ti3O12. The calculated XES spectra are also quite close to the measured XES spectra,

as shown in Figure 6.7, although the calculated XAS seems to overestimate the intensity and

energy of the O 2p— Bi 6p hybridization at the bottom of the valence band in Bi4Ti3O12.

The calculated XAS spectra shown here for Bi2O3, Bi2Ti4O11, and Bi4Ti3O12 were calculated

from the ground state conduction band, no core hole perturbation was considered. This is

mainly because the bismuth titanates have so many inequivalent sites and such low symmetry

crystal structures that calculating the core hole perturbed XAS is probably not worth the

effort — even using a large cluster like Westgrid it would take a week or two to obtain the

core hole perturbed XAS spectrum from each site; and the ground state unoccupied DOSes

already exhibit the same basic features as the measured XAS spectra. The measured XAS

spectra of Bi2Ti4O11 and Bi4Ti3O12 have two sharp peaks in the near-edge region that are

very close in energy to the peaks in the XAS spectrum of TiO2; it is reasonable to expect

— as has been the case for PbTiO3 and Sn2TiO4 — that the first of these peaks is due to

localized O 2p-states at the low energy side of the Ti 3d t2g band, while the second peak is

spread out somewhat due to both localized O 2p-states at the low energy side of the Ti 3eg

band and a core hole perturbed distortion of the ground state Bi 6p — O 2p-states.

One possible problem with this analysis is that the calculated ground state XAS spectrum

of Bi2O3 bears very little resemblance to the measured XAS spectrum, as shown in Figure

6.7. The measured XAS spectrum of Bi2O3 is rather similar to the measured XAS spectrum

of PbO, as shown in Figure 6.2, but while both the core hole perturbed and ground state

calculated XAS spectrum for PbO has a sharp near-edge peak similar to that in the measured

spectrum, there is no such fine structure in the ground state calculated XAS spectrum of

Bi2O3. This is somewhat unsettling, because the ground state calculated XES spectrum of

Bi2O3 (see Figure 6.7) is in rather good agreement with the measured spectrum, arguably

just as good as the agreement between the calculated and measured XES spectra of PbO

(see Figure 6.2).

In fact, including a core hole perturbation does not remedy the situation, as shown in

Figure 6.8, and even including the spin-orbit interaction on the valence states of Bi (which
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one might expect are necessary, since Bi is a rather heavy element) does not improve the

agreement between the calculated and measured spectra. (Although one could argue that

the XES spectrum calculated by including the spin-orbit interaction is in slightly better

agreement with the measured spectrum — note the more clearly resolved shoulder in the

“mBJ+so” calculated XES spectrum in Figure 6.8 — than the spectrum calculated without

the spin-orbit interaction.) Unless the crystal structure used in the calculation is completely

different from that of the actual sample that was measured — unlikely, in my opinion,

given the agreement between the calculated and measured XES — I do not have a good

explanation for the discrepancy. The core hole perturbation does not seem to have a very

large impact on the band gap of Bi2O3; as shown in Figure 6.8 the difference between the

ground state and core hole perturbed band gaps is a reduction of only about 0.2 eV in a

gap that is originally about 3.4 eV. In fact all calculated gaps, even the gap calculated with

the PBE function (which is expected to significantly underestimate the true band gap) are

larger than the estimated gap using the peaks in the second derivatives of the XES and

XAS spectra. Unless the core hole effect is significantly more influential than calculated;

the measured XAS cannot be reconciled with the calculated XAS. The band gap estimated

with the second derivatives is also significantly smaller than the optical gap reported in the

literature (of 2.91 eV [130]), although that measurement was rather old and the authors also

report an indirect band gap of 2.15 eV estimated from temperature dependent conductivity

measurements [130], which is very close to the second derivative estimated gap of about 2.2

eV. Ultimately I think it is best to rely on the calculated band gaps, given the consistency

between different techniques; it is easier to attribute the low band gap estimates from the

XAS and conductivity measurements to some empirical error (or phase impurity, etc.) than

to explain why all these calculations significantly overestimate the band gap of Bi2O3. It

should also be mentioned that the electronic structure of Bi2O3 has previously been fairly

extensively studied by X-ray spectroscopy [114], and these measurements are essentially the

same as mine.
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Figure 6.8: Electronic structure of Bi2O3: (a) The ground state electronic structure
(calculated with the mBJ functional) of Bi2O3 and the measured O K XES and XAS
spectra, compared to the spectra calculated with the PBE or mBJ functional, including
spin-orbit interaction within the valence band (so) and a core hole perturbation (core).
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spectra.
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6.5 Trends in the Band Gaps

All of the ternary oxides studied herein have electronic structures that are very similar to a

simple superposition of the electronic structures of their “precursor” binary oxides; the lone

pair binary oxide (SnO, PbO, or Bi2O3) and TiO2. Consistent with my starting hypothesis,

the spectral features (taken from the experimental XES and XAS spectra, with guidance

from the calculated spectra) labelled in Figures 6.2, 6.5, and 6.7 of the ternary oxides are

at a logical progression in energy relative to those in the precursor binary oxides, as shown

in Figure 6.9. The energy of the bonding lone pair — O 2p feature (labelled S 1) in the

ternary oxides is very material dependent; there is little consistent trend relative to the

energy of the S 1 feature in the corresponding lone pair binary oxide. In contrast, however,

the antibonding lone pair — O 2p feature (labelled S 2) progresses to lower energies in the

ternary oxide compared to the lone pair binary oxide; and this feature gets closer in energy to

the main O 2p XES feature (labelled B) in TiO2 as the ternary oxide has a greater proportion

of TiO2 as a fraction of the formula unit. The near-edge XAS spectral feature (labelled t)

of the ternary oxides is close to that in the XAS spectrum of TiO2; certainly in the XAS

spectrum of PbTiO3 and Sn2TiO4, this feature has practically the same energy as that in

the spectrum of TiO2. While this does not appear to be the case in the bismuth titanates,

these systems have far more inequivalent sites (6 for Bi2Ti4O11 and 12 for Bi4Ti3O12) with

a relatively wide range of binding energies (the WIEN2k ground state calculation suggests

the O 1s binding energies are spread over a range of 0.4 eV for Bi2Ti4O11 and 0.7 eV for

Bi4Ti3O12). Even if the core hole perturbation is exactly the same for all of these sites the

electronic structure features observed in the XAS should still be spread over the range of

binding energies. It is therefore not unexpected that the spectra of the bismuth titanates

does not perfectly fall within this type of analysis.

The band gaps of these ternary and binary oxides estimated from the peaks in the second

derivatives of the measured O K XES and XAS spectra, calculated with WIEN2k using

the mBJ functional, estimated by semi-empirically aligning the calculated and measured

spectra and accounting for the core hole shift, and found from the literature (mostly optical,

although the aforementioned “indirect optical” and electrical conductivity band gap estimates
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XAS (higher energy line). This figure is adapted from data published in Reference [18].

for Bi2O3 are also shown) are shown in Figure 6.10. The problem with using the second

derivative method to estimate the band gap of SnO was mentioned previously in Section 5.3.

It is clear from Figure 6.10(a) that this is also a problem with Sn2TiO4 for the very same

reason (the antibonding Sn 5s-states at the top of the valence band have a very gradual slope

towards the band edge, making it difficult to unambiguously detect the appropriate peak in

the second derivative). For the other materials, the second derivative, semi-empirical, and

calculated band gaps are all in reasonable agreement; the largest discrepancy is the previously

mentioned band gap of Bi2O3.

Determining the correct band gaps for these systems is important, because if the formula

unit of these ternary oxides is rewritten as a mixture of the precursor binary oxides: (lone pair

binary oxide)1−x(TiO2)x — for example Sn2TiO4 would be (SnO)2/3(TiO2)1/3 — then, when

the band gaps of these systems are plotted as a function of x (the “TiO2 fraction”), the band

gaps of the ternary oxides fall almost exactly on the straight line connecting the band gap of

the lone pair binary oxide with the band gap of TiO2, as shown in Figure 6.10(b). Therefore,
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if these calculated gaps can be trusted, intermediate stoichiometries of these ternary oxides

could be designed to obtain a particular band gap.

This approach seems legitimate, because the semi-empirical estimates of the band gaps

also are approximately linear in terms of the “TiO2 fraction”, as shown in Figure 6.10(c)

(note that since no core hole calculations were performed for the bismuth titanates, the

gaps here are rather the second derivative estimates, and consequently have larger estimated

errors). Finally, although there is a somewhat large discrepancy between the calculated and

semi-empirical band gap of SnO, both are well below 2.2 eV, and therefore I expect a tin

titanate could be designed to have the appropriate band gap to act as an efficient solar-

powered photocatalyst for hydrogen production in water. (Of course Sn2TiO4 may already

be the appropriate candidate to fulfil that role.)

6.6 Post Transition Metal — Titanium Ternary Oxides

A second way of possibly engineering the band gap of TiO2 is to introduce cations with full

d10 shells. The previous approach, creating ternary oxides composed of lone pair cations and

d0 metals, worked because the former largely defined the edges of the valence band while the

latter defined the edge of the conduction band. A similar approach might be expected to

work for full d10 cations, because the full d10 shell forms a separated and largely chemically

inert band at the bottom of the valence band (refer back to Section 5.2), and p-d repulsion

between the oxygen 2p and cation full shell d10 states may be expected to drive the valence

band of the ternary oxide higher in energy (consequently reducing the band gap) [135].

With this in mind, I have studied the electronic structure of ZnTiO3 [19]. ZnTiO3 is a

perovskite ceramic with potential applications in catalysis and nonlinear optics [136], and

is just one of many stoichiometries of zinc titanates [137]. There is also CdTiO3 [138] and

HgTiO3 [139] — to complete the range of post transition metal oxides — but unfortunately

ZnTiO3 was the only sample I had available to me at the time. ZnTiO3 exists in both a

cubic perovskite and a rhombohedral ilmenite structure [140, 141], the latter is the most

interesting to me because it has the closest structural resemblance to rutile TiO2, while the

Ti4+ octahedra in the former have a long range order closer to that in anatase TiO2 [142].
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Zn

O

Ti

Figure 6.11: Crystal structures of (left to right): wurzite ZnO (from Reference [94])
and ilmenite ZnTiO3 (from Reference [141]). A single unit cell is outlined for each
system.

Ilmenite ZnTiO3 was generously provided by Dr. Aleksandra Wypych, Dr. Izabela Bobowska,

and Ms. Agnieszka Opasinska (Dept. of Molecular Chemistry, Technical University of Lodz,

Lodz, PL), they also verified the crystal structure using XRD [143].

The crystal structure of ZnTiO3 is shown in Figure 6.11, note the planar arrangement

of TiO6 octahedra similar to rutile TiO2 (see Figure 6.1). The Zn cations are sandwiched

between these planes of TiO6 octahedra; while the Zn sites in ZnTiO3 do have the same

three-fold symmetry as those in ZnO, the Zn in ZnTiO3 is coordinated by 6 oxygen atoms

instead of the 4 in ZnO. For a lone pair cation the similarity in local structure was crucial

to preserving the important bonding/antibonding ns2 states (indeed, one of the challenges

with incorporating Sn2+ in ternary oxides lies with ensuring it does not increase its coor-

dination environment and become Sn4+ [122]). However, since the important contribution

from Zn is the full 3d10 shell, which is insensitive to the local environment, the increase in

Zn coordination should not be a problem.

The presence of Zn raises the same computational problems as with ZnO (refer back to

Section 5.2); the Zn 3d10 shell will not be properly localized at the bottom of the valence

band when the electronic structure is calculated with LDA or a GGA functional. Guided by

my previous work on ZnO (refer back to Section 5.2), in addition to the basic calculations

with the PBE and mBJ exchange correlation functionals, I also performed calculations with

the hybrid functional LSDA+αHF (with the same mixing of α = 0.35% as previously used
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DOS. (b) The O K XES (excited near 540 eV) and XAS spectra (TFY mode). This
Figure is organized the same as Figure 6.5, and is adapted from data published in
Reference [19].

for ZnO) and both PBE and mBJ with an on-site Hubbard potential of U = 8 eV. As with

ZnO, the LSDA+αHF, PBE+U , or mBJ+U functionals were necessary to properly localize

the Zn 3d10 states. The electronic structure of TiO2, ZnTiO3, and ZnO (the latter two both

calculated using the PBE+U functional) is shown along with the measured and calculated

O K XES and XAS spectra in Figure 6.12. Again the DOS of ZnTiO3 has the same basic

features as the DOS of ZnO and TiO2; both ZnO and ZnTiO3 have a localized Zn 3d10 shell

at the bottom of the valence band with minimal hybridization with O 2p-states. There is a

also secondary feature near the bottom of the valence band (just above the 3d10 shell) due

to bonding between O 2p and Zn or Ti 3d -states, and finally the conduction bands of both

TiO2 and ZnTiO3 are dominated by the same two Ti 3d t2g and eg bands.

The calculated spectra are very close to the measured spectra, as shown in Figure 6.12 (the

ZnO powder was the same as that used in Section 5.1, 99.9% purity). Note that the calculated

XAS for ZnTiO3 and ZnO were conducted by perturbing the simple PBE functional with a

core hole; because the conduction bands calculated for these materials are almost exactly the

same no matter which functional was used, I stuck with the most computationally simple
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functional for the more intensive super-cell core hole calculations.

However despite these similarities in the DOS, the idea of using these materials for band

gap engineering almost totally breaks down: the semi-empirical band gap of TiO2 is 3.0±0.1

eV (refer back to Figure 6.10), the semi-empirical gap of ZnO is 3.5±0.1 eV (refer back to

Figure 5.9), while the semi-empirical band gap for ZnTiO3 is 3.8±0.1 eV; larger than both of

the band gaps of the precursor oxides. These band gap estimates seem to be quite accurate;

as previously mentioned the band gap of TiO2 has been reported to be 3.03 eV [104], the

band gap of ZnO has been reported to be 3.4 eV [107], while the band gap of ZnTiO3 has

been reported to be 3.75 eV [144].

Interestingly (or maddeningly, depending on your perspective), the band gaps estimated

from the peaks in the second derivatives of the O K XES and XAS spectra suggest that the

band gap engineering scheme works: the second derivative band gap estimates are 2.6±0.2

eV for TiO2 (refer back to Figure 6.10), 3.4±0.2 eV for ZnO (refer back to Figure 5.9), and

3.0±0.2 eV for ZnTiO3 [19]. This naively suggests that the band gap of ZnTiO3 is halfway

between the band gaps of ZnO and TiO2, as suggested by my band gap engineering scheme

for lone pair ternary oxides. However this occurs because there is a rather large core hole

shift in ZnTiO3 (of about 0.8 eV), a core hole shift of about 0.4 eV in TiO2, and a negligible

core hole shift in ZnO (< 0.1 eV) [19]. The influence of 3d10 and 3d0 cations on the electronic

structure in a ternary oxide is therefore more complicated than the influence of ns2 and 3d0

cations. This does not preclude the possibility that CdTiO3 or HgTiO3 might have band

gaps lower than TiO2 (since the gaps of CdO and HgO are smaller than those of TiO2, refer

back to Figure 5.9), just that it might be unwise to assume this to be the case [19]. The

toxicity of Cd and Hg would probably preclude their widespread use as photocatalysts.

Thus far my actual research results have focussed exclusively on oxygen K XES and XAS

spectra. Although many of the heavy cations in the binary and ternary oxides lack interesting

core levels in the soft X-ray range (i.e. those with the appropriate angular momentum to select

the interesting valence or conduction states, as governed by the dipole selection rules, and

those with a sufficiently large X-ray cross-section to permit acquisition of a good spectrum),

certainly the Ti L2,3 level is both within the soft X-ray range and appropriate for measuring

the Ti 3d -states, and it is fair to ask why these spectra have not been considered in my
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Figure 6.13: XES spectra of ZnTiO3: (a) O K, (b) Ti L2,3, and (c) Zn L2,3. Both
measured spectra and spectra calculated using a variety of exchange correlation func-
tionals are shown. The on-site Hubbard potential U = 8 eV for Zn 3d -states, and the
hybrid functional (HF) was the LSDA+αHF function with a mixing of α = 35%, again
only for Zn 3d -states.

analysis.

ZnTiO3 is perhaps the most ideal ternary oxide discussed herein to study with X-ray

spectroscopy because all of the interesting valence and conduction band states, namely the O

2p, Ti 3d, and Zn 3d -states can be studied by soft X-ray spectroscopy. The XES spectra of

ZnTiO3 for these edges is shown in Figure 6.13 along with the XES spectra calculated using

the various exchange-correlation functionals. The spectral features labelled in Figure 6.12

have been reproduced in Figure 6.13 as well. This figure shows the utility of the O K XES

spectrum over the Ti L2,3 XES and Zn L2,3 XES spectra; the top of the valence band in the

former is obscured by the overlapping L2 band (and the L2 band is of weaker intensity making

the top of this band difficult to unambiguously determine), while the lifetime broadening of

the relatively intense 3d10 shell obscures any other hybridizations in the latter. It is therefore

difficult to determine which calculation provides the best electronic structure; it is quite clear

from the O K XES that only the electronic structure calculated with PBE+U or mBJ+U

functionals provides the proper localization of the Zn 3d10 shell (feature D1 in Figure 6.13),
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because the O K XES only probes the relatively weak O 2p hybridization with the Zn 3d10

shell, these states do not overwhelm the spectra as they do in the Zn L2,3 XES.

6.7 Concluding Remarks

From my study of several ternary oxides (PbTiO3, Sn2TiO4, Bi2Ti4O11, and Bi4Ti3O12), it

seems that the band gaps of ternary oxides that involve lone pair cations (Sn2+, Pb2+, Sb3+,

Bi3+, Te4+, etc.) and d0 metals (Ti4+, Zr4+, Mo6+, etc.) can be predicted by a simple

weighted average of the band gaps of the binary lone pair and metal oxides precursors, when

the ternary oxide formula unit is expressed as a fraction of these two oxides. For example,

PbTiO3 can be rewritten as (PbO)1/2(TiO2)1/2 so the predicted band gap for PbTiO3 is

EPbTiO3
G = 1

2
EPbO

G + 1
2
ETiO2

G . This occurs because the lone pair cation has a strong influence

on the valence band, forming bonding and antibonding cation ns2 — O 2p hybridizations

at the bottom and top of the valence bands, respectively, while having only a rather weak

influence on the edge of the conduction band, while the d0 metal has a very weak influence

on the valence band but dominates the bottom of the conduction band with unoccupied

d -states. The DOS of the ternary oxide is therefore very close to a simple weighted sum of

the DOSes for each precursor binary oxide; the gap is linear in the relative “concentrations”

of the precursor oxides because one influences the valence band while the other influences

the conduction band, both somewhat independently.

On the other hand, the band gaps of ternary oxides involving full d10 shell metals (Zn,

Cd, Hg) and d0 metals cannot be predicted in such a simple manner, even though the d10

metal does dominate the valence band and contributes very little to the conduction band.
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Chapter 7

Electronic Structure of Layered Pnictides

Layered pnictides are materials whose structure is composed of planar arrangements of

transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn) and pnictides (P, As, Sb), with charge-

balancing cations (Li, Na, K, Ca, Sr, Ba, etc.) or rare-earth/oxygen pairs (LaO, EuO, GdO,

SmO, etc.). The crystal structures of these materials were studied decades ago [2, 145], but

over the last 6 years there has been an immense surge of interest in these materials.

Driven by the success of high-Tc cuprate superconductors, in which the phenomenon of

superconductivity seemed to be linked to copper-oxide planes, Prof. Hosono’s research group

(Tokyo Institute of Technology, Yokohama, Japan) began searching for superconductivity

in other layered materials, and in 2006 they discovered superconductivity at Tc = 3.2 K in

LaOFeP [146]. Because of the rather low transition temperature this discovery alone did

not gain much attention, although it was pointed out that despite the layered structure,

the Fe2+ in LaOFeP was tetrahedrally coordinated, suggesting the Fe 3dxy,3dxz,3dyz orbitals

formed the Fermi level, rather than the Cu 3dx2−y2 orbitals in the square-planar coordinated

Cu2+ in cuprate superconductors [146]. Just over a year later, however, the same group

discovered superconductivity at Tc = 26 K in La(O1−xFx)FeAs [147], and interest in the field

sky-rocketed.

One of the early questions in iron pnictide research was whether the Fe 3d -states were

correlated in the same manner as the Cu 3d in the cuprates [148], i.e. a large on-site

Coulomb interaction manifesting as a Hubbard-like potential U [51]. Driven initially by

theoretical studies, this question naturally prompted many contradictory answers: there

were claims that the on-site Coulomb correlation effects were large [149], moderate [150,151],

and weak [152]. Because X-ray spectroscopy provides a direct probe of the Fe 3d -states, my

research provided an experimental probe of the correlation strength in these pnictides.
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Ca

As

Figure 7.1: The crystal structure of CaFe2As2. A single unit cell is outlined in black,
the crystal structure used is from Reference [154].

This chapter details my research on iron, manganese, and copper pnictides. These findings

are also reported in my published work on the subject, see References [10,20–23,153].

7.1 Electronic Structure of CaFe2As2

The layered iron pnictide CaFe2As2 was one of the first pnictides I studied. Like many

iron pnictides, CaFe2As2 undergoes a phase transition from a tetragonal to an orthorhombic

phase at 170 K [154], if this phase is suppressed via doping or hydrostatic pressure (2 – 10

kbar) superconductivity with Tc between 10 and 20 K can be realized [155]. CaFe2As2 is

a typical iron arsenide superconductor, and is an interesting material to study with X-ray

spectroscopy because both the Fe 3d -states and the Ca 3d -states can be probed with soft

X-ray spectroscopy. Examining the Ca 3d -states might give insight into whether the Ca

is simpy acting as a charge balancing cation, or whether it has an influence on the Fermi

level. The behaviour of Ca in CaFe2As2 is likely similar to that of Sr in SrFe2As2 and Ba in

BaFe2As2, but the latter two elements are not conducive to measuring the 4d - or 5d -states

with soft X-ray spectroscopy.

At room temperature, CaFe2As2 has a tetragonal crystal structure with the I4/mmm

symmetry group, as shown in Figure 7.1. CaFe2As2 has a first-order phase transition to an

orthorhombic Fmmm structure below 170 K, similar phase transitions (at various tempera-
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Figure 7.2: The DOS of CaFe2As2: (a) The partial DOSes which contribute sig-
nificantly to the valence and conduction bands; the Ca and Fe 3d -states and the As
4s,4p-states. All other symmetries contribute only a few percent or less to the total
intensity. (b) The total DOS compared to the measured XPS spectrum, this allows the
states responsible for the peaks in the XPS spectrum to be identified. This figure is
adapted from data published in Reference [21].

tures) occur in BaFe2As2 and SrFe2As2 [154]; but I did not investigate this phase. Although

it is possible to perform X-ray spectroscopy measurements below 170 K, the bulk electronic

structure is not significantly affected by these sort of minor phase transitions [156], and

certainly not within the resolution of X-ray spectroscopy measurements.

The calculated electronic structure of CaFe2As2 is shown in Figure 7.2(a). Like almost

all iron pnictides, CaFe2As2 is a “bad metal” with no separation between the valence and

conduction bands. The electronic structure is also typical of most iron arsenides; the Fe

3d -states provide the dominant contribution to the valence band and lower conduction band,

the As 4s-states are localized some 12 eV below the Fermi energy (EF ) and are only weakly

hybridized with other states, and the As 4p — Fe 3d bonding states are between -2 and -5

eV relative to EF . Finally, the Ca 3d -states only become significant rather deep into the

conduction band, some 3 eV above EF [21].

The synthesis laboratory of Prof. Paul Canfield (Ames Laboratory, Ames, IA) was able to

96



make excellent quality single crystals of CaFe2As2. These crystals were grown with the “self

flux” technique, and the structure was verified with XRD by members of Prof. Canfield’s

research group (see References [154,157] for more details on purity and structure characteri-

zation). Because of the crystal quality, these samples could therefore be cleaved in vacuum

and high quality XPS measurements could be obtained. As shown in Figure 7.2(b), the

XPS measurements (courtesy of Dr. Anna Buling, University of Osnabrück, Osnabrück,

Germany) are in quite good agreement with the calculated DOS, although the calculated

DOS does underestimate the binding energy of the Ca 3p shell by 2 eV or so, and seems to

underestimate the binding energy of the As 4s-states by perhaps as much as 1 eV.

It should be stressed that the calculated DOS was performed using the simple PBE GGA

functional; I did not add any additional on-site potential (through a Hubbard U) to the

Fe sites, or attempt to treat the Fe 3d -states with any hybrid functionals (i.e. with the

LSDA+HF+α functional, or something similar). The DOS calculated from the generic DFT

method seems quite adequate to explain the observed spectra.

As mentioned above, the Ca and Fe 3d -states can be probed with Ca and Fe L2,3 XES,

respectively. However there are very few occupied Ca 3d -states (as seen in the calculated DOS

in Figure 7.2(a)) and the inherent life-time broadening in a (non-resonant) XES spectrum

increases with energy, so the relatively high energy Fe 2L2,3 spectra may be too broad to

identify features in the DOS. While for the binary and ternary oxides discussed in Chapters

5 and 6 I was content to calculate the XES and (core-hole perturbed) XAS spectra to directly

compare to the measured spectra, for CaFe2As2 I tried to curve-fit the measured XES spectra

to identify the underlying DOS features, and largely ignored the XAS spectra. At the time,

my reasoning was as follows:

1. The valence band of CaFe2As2 is only about 5 eV wide, and the lifetime broadening

at the Fe L3 XES spectrum is at least 0.5 eV [158], and the instrumental broadening

is about 0.7 eV; therefore due to these relatively large broadening factors the natural

width of the spectrum will be considerably greater than the actual valence band width,

and a wide range of possible DOSes could be broadened to resemble the measured

spectrum.
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Figure 7.3: The XES spectra of CaFe2As2: (a) The Ca L3 spectrum (excited at 360
eV), compared to the Ca 3d DOS. (b) The Fe L3 spectrum (excited at 730 eV), compared
to the Fe 3d DOS. In each plot the spectrum has been curve fit with pseudo-Voigt
components; the insets show the how the “goodness of fit” depends on the number of
pseudo-Voigt components. This figure is adapted from data published in Reference [21].

2. The perturbation by the Fe 2p core hole is significant [62]; the core hole perturbed

calculation may be too distorted from the ground state conduction band to be of much

use.

With this in mind I attempt to “deconvolute” the Ca and Fe L3 XES spectra by fitting

them with several pseudo-Voigts. The pseudo-Voigts were just a superposition of a Gaussian

and a Lorentzian profile:

fV = A (ηfG + (1− η) fL) (7.1)

fG =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(7.2)

fL =
1

π


Γ

2

(x− µ)2 +

(
Γ

2

)2

 , (7.3)

where A was the amplitude of the pseudo-Voigt peak, η was the mixing fraction of Gaussian

and Lorentzian components, µ was the centre point of the pseudo-Voigt peak, and σ and
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Γ were the Gaussian profile standard deviation and the Lorentz profile half-width at half-

maximum, respectively. The Gaussian standard deviation σ was set so the full-width at

half-maximum of the Gaussian component matched the experimental broadening (which was

not material specific), but all other parameters were varied in a non-linear least-squares

fitting routine.

The relevant question now is: how many pseudo-Voigt components are appropriate?

Clearly one can obtain perfect agreement by fitting one pseudo-Voigt per data point in the

measured spectrum, but that fit is meaningless. To try to eliminate as much bias as possible,

I performed several pseudo-Voigt fits of the Ca and Fe L3 XES spectra with between 1 and

7 components (for multicomponent fits the variables A, η, σ, Γ, and µ were independent for

each component). The quality of the fit was estimated by the quantity:

F ′′ =

√∑
i

(fexp.(Ei)− ffit(Ei))
2 (7.4)

For each spectrum a plateau was reached in the quality of fit parameter F ′′ with increasing

number of components; in the case of the Ca L3 XES spectrum 3 pseudo-Voigt components

provided a significantly better fit than 2 components, but increasing to 4 or higher did not

improve F ′′, while for the Fe L3 XES spectrum 4 pseudo-Voigt coponents were necessary to

reach the plateau in quality of fit. These fits — the “simplest, best fits” — and the raw

spectrum are shown in Figure 7.3.

Apart from the two obvious features in the Ca L3 XES spectrum in Figure 7.3(a), the

experimental data is too noisy (again this is due to the fact that Ca has almost no occupied

3d -states) to determine whether the third peak is meaningful (i.e. is it identifying a DOS

feature that is not present in the calculated DOS, or is it just a consequence of the asymmetry

of the main peak at 345.5 eV?), but the four pseudo-Voigt components in the Fe L3 XES

spectrum all line up within 0.5 eV of a local peak in the Fe 3d DOS. This process is therefore

somewhat useful in analysing XES spectra [10,20,21].

In view of my later research, I should point out that I later found that my second argument

listed above was wrong; because the iron pnictides are metallic the core hole perturbation

cannot shift the edge of the conduction band to lower energies (there is no band gap to reduce,

all states below the conduction band edge are already full), and apart from an increase in
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Figure 7.4: The calculated and measured spectra of CaFe2As2: (a) The Ca L2,3 XES
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spectra, (c) the Fe L2,3 XAS spectra, and (d) the Fe L2,3 XAS spectra.

the intensity of the near edge features the XAS calculated from the ground state electronic

structure is often sufficient to explain the measured spectra. However my early work on iron

pnictides was hampered by a second problem: the surfaces were often oxidized so TEY mode

Fe L2,3 XAS was not useful (rather, those measurements all showed a mixed-valent Fe-oxide)

and the TFY mode Fe L2,3 XAS suffered from considerable self-absorption.

Therefore, despite my original arguments, using the ground state electronic structure to

calculate the XES and XAS spectra is still useful. The Ca L2,3 XES and XAS are not very

useful probes of the electronic structure of CaFe2As2, as mentioned above. The calculated

and measured Ca L2,3 XES and XAS spectra are shown in Figure 7.4(a) and (b), respectively.

Note how the calculated spectrum has the same features as the measured Ca L2,3 XES and

XAS spectra, although the relative widths and intensities are not completely correct. I should

point out that DFT is not expected to reproduce the correct relative intensities of the L2 and

L3 bands. The calculated Fe L2,3 XES and XAS spectra are in much better agreement with

the measured spectra, as shown in Figure 7.4(c) and (d), respectively. In fact, the calculated

XES spectrum is almost exactly the same as the measured XES, while the relative L2 and
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L3 intensities are incorrect and the 2p spin-orbit splitting is somewhat underestimated, these

inaccuracies are somewhat expected with DFT. The Fe L2,3 XAS spectrum calculated from

the ground state electronic structure could be in excellent agreement with the true XAS

spectrum, but since the measured TEY XAS spectrum shows signs of surface oxidation (as

noted in Figure 7.4(d)) and the intensity of the Fe L3 band is suppressed in the TFY XAS

spectrum due to self-absorption, it is difficult to directly compare the calculated and measured

spectra.

Ultimately I think that both curve-fitting — especially in a manner where the number

of components is selected based on some quantitative gauge of fit quality, rather than at the

whim of the person conducting the fitting — and calculating the XES and XAS from the

electronic structure are suitable approaches to analyzing the measured XES and XAS spectra

of iron pnictides.

7.2 Transition Metal Substitution in BaFe2As2

As might be expected, the layered pnictide BaFe2As2 (also referred to as Ba122) has quite

similar properties to CaFe2As2. It has basically the same crystal structure (see Figure 7.1),

again undergoes a phase change to an orthorhombic form at moderately low temperature

(around 140 K [159]), and likewise requires doping or hydrostatic pressure to suppress the

phase transition and exhibit superconductivity [159,160].

Something interesting occurs when Ba122 is doped with transition metals, however. While

substituting Fe with a modest fraction of Co, Ni, or Cu (in the range of 5-10% substitution)

can suppress the phase transition, superconductivity is only realized after substitution with

Co and Ni, and not after substitution with Cu [159]. Early studies presented a rather

confusing picture: BaFe2As2 doped with Co (Ba122:Co) seems to follow the predictions of

a simple rigid band model (where the Co is assumed to simply contribute electrons to the

Fermi level) [161, 162], Ba122:Ni does not [159]. Later DFT studies suggested that all the

substituted transition metals were isovalent with Fe [163], in other words neither Co, Ni,

nor Cu substitutions should contribute additional states to the Fermi level. This picture is

supported by Mössbauer measurements that suggest no change in the localized 3d shell [164],
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Figure 7.5: The measured Fe L2,3 spectra of doped Ba122: (a) The Fe L2,3 XES
spectra (the arrows denote the excitation energy for the resonantly excited spectra, the
non-resonant spectra were excited at 745 eV), (b) the Fe L2,3 XAS spectra (TFY mode,
except for FeO which was IPFY mode). For both (a) and (b) reference spectra of Fe
metal and FeO are provided. This figure is adapted from one published in Reference [22].

but contradicts Hall effect measurements suggesting an increase in the free carriers near the

Fermi level [165–167].

Naturally I think the prescription for this conundrum is studying these materials with soft

X-ray spectroscopy. Glib remarks aside, there is a good reason for this: L2,3 XAS is eminently

suited to determining the 3d -shell occupancy of transition metals [168]. Before proceeding

with my findings, I should note that it has been pointed out that “doping” is probably the

wrong word to describe these systems; “doping” is usually used in semiconductor physics to

identify additives that increase or decrease the number of carriers and therefore “substitution”

may be a better word [163]. However for the purposes of this discussion I will use the term

“doping” to be equivalent in meaning to the word “substitution”, mostly because that is the

terminology I used in my paper on the subject (see Reference [22]).

The Fe L2,3 XES spectra of Ba122:M (M = Co, Ni, Cu) are shown in Figure 7.5. As

one would expect there is practically no difference between the spectra of Ba122 doped with

different transition metals, while there are some small differences in absolute intensity these
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are more likely due to slightly different surface conditions. The Fe L2,3 XES of Ba122:M is

almost the same as that of CaFe2As2 (refer back to Figure 7.4), and also quite close to that

of Fe metal. In fact, resonantly excited XES spectra show no evidence of multiplet structure

or other energy-loss features commonly associated with correlated materials [168]. The lack

of inelastic scatter features in the resonant XES spectra is perhaps even better evidence than

the agreement between the non-resonant XES spectra and the electronic structure calculated

with a GGA functional [169], and even in the non-resonant regime note that the Fe L2,3 XES

of FeO (a typical strongly correlated oxide [170]) is broader and has more structure than

that of the spectra of Fe metal or the iron pnictides. All together this presents rather good

evidence that iron pnictides are not strongly correlated materials [20–22,169].

These Ba122:M samples were excellent quality single crystals (provided by Prof. Paul

Canfield, Ames Laboratory, Ames, IA; again the crystal structure of these samples was

measured using XRD by members of Prof. Canfield’s research group [171]) and for this

system I had learned from my mistakes with CaFe2As2 and I cleaved these samples under N2

directly before inserting them into the vacuum chamber on the SGM beamline. Because of

this I managed to acquire Fe L2,3 XAS spectra without any significant oxygen contamination,

as shown in Figure 7.5(b), despite the samples being rather old (about a year and a half) at the

time of measuring. (The best Fe L2,3 XAS of Ba122 is probably that in Reference [169], but

my measurements are in good agreement with the one published therein; note the lack of the

Fe3+ feature indicative of oxidation that is present in Figure 7.4(d).) Like the XES spectra,

the XAS spectra of Ba122:M are rather featureless and similar to the XAS spectrum of Fe

metal, and is quite different from the sharp multiplet features present in the XAS spectrum

of FeO. Note that the TFY spectrum of Fe metal is shown here because my Fe foil had

significant surface oxidation, and this spectrum suffers from significant self-absorption. A

much better Fe measurement in TEY mode can be found in Reference [169] (Fe foil from

Alfa Aesar, 99.99% purity). The FeO XAS spectrum is courtesy of Robert Green, on FeO

powder (from Alfa Aesar, 99.5% purity).

The main advantage of studying these systems with X-ray spectroscopy is of course that

one can probe the electronic structure local to a particular species of atom. In this case, the

most interesting (and important) spectroscopic findings ought to lie with the doped sites,
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Figure 7.6: The measured L2,3 spectra of the doped metals in Ba122: (a) the Co
L2,3 XAS spectra, (b) The Co L2,3 XES spectra (excited at 800 eV), (c) the Ni L2,3

XAS spectra, (d) The Ni L2,3 XES spectra (excited at 890 eV), (e) the Cu L2,3 XAS
spectra, and (f) The Cu L2,3 XES spectra (excited at 960 eV). For each case a reference
spectrum from the appropriate metal (M) and metal monoxide (MO) are provided.
All XAS spectra were acquired in TFY mode, except for the metal monoxide spectra
(which were acquired in TEY mode). This figure is adapted from one published in
Reference [22].
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since these are the ones that define whether the system is superconducting (Ba122:Co, Ni)

or not (Ba122:Cu). The L2,3 XES and XAS for the doped sites is shown in Figure 7.6, along

with the spectrum from the appropriate metal and metal monoxide. All of the doped XAS

spectra were measured in bulk sensitive TFY mode; because the concentration of dopants

was rather low self-absorption in these spectra was minimal. In fact, self-absorption in the

TFY mode spectra is actually advantageous for the spectrum from Ba122:Co; because the

Ba M 4,5 absorption edges unfortunately almost coincide with the Co L2,3 absorption edges,

by taking the spectrum in TFY mode the Ba M 4,5 fluorescence will be suppressed by self-

absorption allowing the Co L2,3 XAS to be more visible (see Figure 7.6(a)). Since the Ba

site has negligible occupied 5p or 4f -states, there is negligible Ba M 4,5 emission (see Figure

7.6(b)).

For all of the doped metals it is clear that the spectra from Ba122:M are much closer

to those of the appropriate pure metal (all metal foils from Alfa Aesar, 99.99% purity) than

the strongly correlated metal monoxide (all powders from Alfa Aesar, 99.5% purity), this

shows that the doped transition metals do not act as localized impurities (in the Anderson

impurity model sense) that create an on-site Coulomb potential or Hubbard U . However the

doped transition metals affect the electronic structure of Ba122, it seems they do so more as

making the doped material effectively an alloy of FeAs-M As, rather than providing a local

perturbing potential.

Secondly, the usefulness of X-ray spectroscopy in probing these doped sites is immediately

clear in the case of the Cu L2,3 XAS spectra of Ba122:Cu, shown in Figure 7.6(e): because

L2,3 XAS probes transitions between the 2p- and unoccupied 3d,4s-states, there is a huge

difference between the spectrum of Cu metal and CuO. The latter has a 3d9 valence state, and

this single unoccupied 3d state creates a massive resonance peak in the L2,3 XAS spectrum.

On the other hand the former has a 3d104s1 valence state, and with a full 3d shell there

are no unoccupied 3d -states for the XAS transition to probe; only the relatively distributed

4s-states contribute to the XAS spectrum and consequently the XAS of Cu metal lacks the

sharp features found in the L2,3 XAS spectra of most other transition metals (the ones that

do have empty 3d -states). Comparing the XAS spectrum of Ba122:Cu to that of Cu metal

and CuO, it is clear that the Cu dopants in Ba122:Cu can not have a 2+ valency, at best it
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Figure 7.7: The measured metal 2p XPS spectra of doped Ba122: (a) Fe 2p, (b) Co
2p, (c) Ni 2p, and (d) Cu 2p. For each case a reference spectrum of the appropriate
metal (M) and metal monoxide (MO) are provided. Note that for brevity the Fe 2p
XPS spectra for each of the doped Ba122 samples are the same colour and superimposed
in panel (a), it should be clear that all spectra are essentially the same. This figure is
adapted from one published in Reference [22].

can be 1+ since no resonance with an unoccupied 3d state appears in the XAS spectrum [22].

Even the Cu1+ in Cu2O has a rather large resonance XAS peak (larger than that seen

in the spectrum of Ba122:Cu in Figure 7.6(e)), since “partial” 3d holes are created through

hybridizing with oxygen [172]. Unfortunately the XAS onset in Cu2O is at the same energy

as that in Cu metal [173], so the possibility of Cu1+ in Ba122:Cu cannot be completely ruled

out. But it is quite clear that Cu2+ is not present in Ba122:Cu, and therefore if the transition

metals are isovalent substitutions, then Fe2+ may not be present either. I believe that it is

more appropriate to refer to the FeAs plane as entirely metallic, with no formal valency for

either the Fe or the As, rather than the conventional chemistry notation of Fe2+As3−.

Core level XPS spectroscopy is also a useful technique for determining on-site correlation

strength [170]. The metal 2p XPS spectra of the Ba122:M samples and the relevant pure

metals and metal monoxides are shown in Figure 7.7 (these spectra were measured by our

collaborator Dr. Anna Buling, University of Osnabrück, Osnabrück, Germany). Again the

spectra from Ba122:M are much closer to that of the appropriate metal rather than the metal

monoxide; in particular the spectra from Ba122:M lack the large satellite features that are
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Figure 7.8: Valence band structure of doped Ba122: (a) The calculated DOS (solid
lines) and doped metal L3 XES (dotted lines), note how the calculated DOS overesti-
mates the energy of the Cu 3d -states. (b) The measured XPS spectra and doped metal
L3 XES, note how the measured XPS spectra has features connected with the doped
states. This figure is adapted from one published in Reference [22].

indicative of a strongly correlated system [170].

Finally, the XES and XAS measurements of the doped sites in Ba122:M should facilitate

reconstructing the location of these states in the valence and conduction bands. Although

it is easy to calculate the electronic structure of these systems, it is tricky to show that

the calculation gets the doped states “right” without resorting to XES; the most common

approach of using valence XPS will fail because the contribution from the small number of

dopants will not be clearly visible. Even simply measuring the XES is problematic; how

should these spectra be aligned with spectra from other edges within the valence band, if the

states responsible for the spectra are too few to provide noticeable hybridization features in

the other spectra? One can certainly use core level XPS spectra to get the binding energy,

but even this has an error of an eV or so; for systems like Ba122 that have a valence band

only 5 eV wide this can be problematic.

For Ba122, I think an easy solution is to align the edges of the XAS measurements for each

metal site. Because Ba122 is metallic, the core hole perturbation cannot reduce the energy of

the conduction band onset, and due to hybridization this onset should be the same for each

site [22]. Using this approach I can align the Co, Ni, and Cu L3 XES with the calculated
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DOS, as shown in Figure 7.8(a). (The Fe L3 XES spectra are omitted, since they agree with

the calculated DOS in the same case as in CaFe2As2.) Using this approach, the Co and Ni L3

XES suggests that the Co and Ni 3d -states are close to where the DFT calculation predicts

they should be (although perhaps the DFT calculation places the Co 3d some few tenths of

an eV too deep in the valence band), but the Cu L3 XES reveals that the Cu 3d -states in

Ba122:Cu are right at the bottom of the valence band, about 1 eV lower than predicted by

the DFT calculation. Encouragingly, this method of aligning the XES with the electronic

structure is supported by the valence XPS spectra; as shown in Figure 7.7(b) a weak local

maxima occurs in each of the valence XPS spectra local to the placement of the L3 XES.

From this analysis the difference between Ba122:Cu and Ba122:Co,Ni is clear: the Cu has

a valency of 1+ (at most), and the full 3d10 shell is located at the very bottom of the valence

band and is probably relatively chemically inert (somewhat similar to the 3d10 shell in ZnO

and ZnTiO3, refer back to Sections 5.2 and 6.6). It is also probable that the Fe, Co, and Ni

are also not fully 2+, although since a valency of 0+, 1+, or 2+ has no impact on the filling

of the 3d shell in these elements this is difficult to prove. In any event, Cu contributes quite

differently to the electronic structure of Ba122 than Co and Ni, so it is not unreasonable that

superconductivity is exhibited in Ba122:Co and Ba122:Ni but not Ba122:Cu.

7.3 Electronic Structure of Copper Pnictides

Following from the discussion of Ba122:Cu, the general influence of Cu on the electronic

structure of layered pnictides is worth further study. It is obvious from the existence of

cuprate superconductors that copper does not impede superconductivity in general, and

even in layered pnictides LiCu2P2 exhibits superconductivity at Tc = 3.7 K [174]. There are

several copper pnictides that are structurally analogous to iron pnictides, such as BaCu2As2

and SrCu2As2 — which, apart from replacing Fe with Cu, have the same structure as their

FeAs-counterparts, shown in Figure 7.1 — and some early theoretical work on these systems

suggested that the Cu was monovalent with a chemically inert 3d10 [175]. Recently several

of these copper pnictides were re-examined (like most layered pnictides, their structure and

synthesis methods had been known for several decades, but their electronic structure was
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Figure 7.9: Crystal structures of (left to right): SrCu2Sb2 and BaCu2Sb2. The a
axis of both structures is directly out of the page, a single unit cell is outlined for
each system. Note there are two types of CuSb planes, in contrast to CuAs or FeAs
structures. In SrCu2Sb2 the plane stacking is ABABAB, while in BaCu2Sb2 the plane
stacking is ABAABA. The crystal structures are from Reference [177].

largely unknown) and their electronic and thermal properties were measured; as expected no

superconductivity was found [176,177].

I thought it would be useful to study some copper pnictides with soft X-ray spectroscopy;

it would be possible to directly compare the Cu L2,3 XES and XAS spectra from these

systems with that from Ba122:Cu, and it would be possible to verify whether these copper

pnictides were indeed Cu1+ systems. To that end I was able to obtain polycrystalline pieces

of SrCu2As2, SrCu2(As0.84Sb0.16)2, SrCu2Sb2, BaCu2Sb2, and CaCu1.7As2 and measure Cu

L2,3 XES and XAS spectra. I also calculated the electronic structure of these materials with

WIEN2k (using the simple PBE exchange-correlation functional) using the crystal structures

determined with XRD [176, 177]. The copper pnictide samples were graciously provided by

Prof. David Johnston and Dr. Vivek Anand, at Iowa State University, Ames, IA (grown

with the “self flux” technique, and the crystal structure was verified by XRD by members

of Prof. Johnston’s research group [176, 177]). The reference copper foil and CuO powders

were the same as those used as references in Section 7.2 (Alfa Aesar, foil was 99.99% purity,

the powder was 99.5% purity).
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SrCu2As2 and CaCu2As2 are isostructural to CaFe2As2 (refer back to Figure 7.1). It turns

out that CaCu2As2 is actually copper deficient [178], so for the calculated electronic structure

I used a 2 × 2 × 1 supercell and removed 2 Cu atoms (resulting in a P42/mmc structure)

to make CaCu1.75As2. I should note that the Cu vacancies in CaCu1.7As2 are random [177],

while obviously they are ordered in the structure used in my DFT calculation. However the

same is true for the core holes when calculating the core hole perturbed XAS, and these

calculations tend to do a reasonable job of reproducing experimental data. Therefore, for a

sufficiently large unit cell, I do not think that long range order shows any observable effects

in the calculated XES or XAS spectrum (this does not include resonant X-ray scattering

features, however).

The crystal structures of the copper antimonides are slightly different. In these compounds

there are two types of CuSb planes; one with a central plane of Cu coordinated with 4 Sb

atoms above and below the central plane (this is the structure that all layered metal arsenides

have, refer back to Figure 7.1), and one with a central plane of Sb coordinated with 4 Cu

atoms above and below the central plane (this is basically the inverse of the regular metal

arsenide plane structure). Secondly, the stacking of these planes depends on the cation. As

shown in Figure 7.9, SrCu2Sb2 has an alternating “ABAB” type of vertical arrangement of

the planes (here “vertical” refers to along the c axis of the unit cell), while BaCu2Sb2 has

an alternating “ABAABA” arrangement of these CuSb planes. This raises another question

relevant to X-ray spectroscopy: will these two different Cu sites have different local electronic

structures? The local symmetry of the Cu site changes considerably between the two types

of CuSb planes, if the Cu 3d -states are chemically active (and certainly if the Cu is divalent)

then perhaps the Cu L3 XES spectrum of (for example) SrCu2As2 will be quite different from

that of SrCu2Sb2.

However, despite the structural differences, the DOS of the copper antimonides is quite

similar to the DOS of the copper arsenides, as shown in Figure 7.10. Like the iron arsenides

previously discussed, the Sb 5s or As 4s-states form a separate band some 10 eV or so

below the Fermi level. In the case of SrCu2(As1.875Sb0.125)2 the Sb 5s and As 4s-states are

hybridized in this region. The Sb 5p or As 4p-states hybridize with the Cu 3d -states at the

bottom of the main valence band, around -6 eV, again like the As 4p and Fe 3d -states in
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Figure 7.10: DOS of the copper pnictides: (a) BaCu2Sb2, (b) SrCu2Sb2, (c)
SrCu2(As1−xSbx)2 for x = 0.125, (d) CaCu1.75Asx, (e) SrCu2As2, and (f) Cu metal
for reference. Note that the vertical axis scale is consistent for each panel. The Fermi
level is at 0 eV. This figure is adapted from one that will be published in our forthcoming
paper [23].
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the iron arsenides. However like the Cu 3d -states in Ba122:Cu, the Cu 3d -states in these

copper pnictides are located some 3 eV below the Fermi level, and in general the number of

states at the Fermi level in a copper pnictide is considerably smaller than in a comparable

iron pnictide. These Cu 3d -states of copper pnictides do seem to form a narrow-band full

shell, and they are limited to a smaller energy range than in copper metal, despite the similar

d -shell occupancy.

The distribution of Cu 3d -states in the valence band of SrCu2As2 is not appreciably

different (in terms of peak intensity or band width) than that in SrCu2Sb2, despite the latter

having two inequivalent Cu sites with rather different local geometries. For that matter, the

Cu 3d DOS in BaCu2As2 is more or less the same as the Cu 3d DOS in both strontium

materials; certainly one could expect the two to be the same within the resolution of a Cu

L3 XES spectrum.

Indeed, the measured and calculated Cu L3 XES spectra of these copper pnictides systems

are quite similar to one another, and the calculated spectra are in good agreement with the

measured spectra, as shown in Figure 7.11. Like the previously mentioned L3 XES spectra

from Fe, Co, Ni, and Cu in Ba122:X, the Cu L3 XES spectra from copper pnictides are

almost exactly the same as the spectrum from copper metal. The Cu 3d10 shell present in

copper pnictides provides an interesting counterpoint to the Zn 3d10 shell present in ZnO and

ZnTiO3; the properties of the former seem quite adequately predicted by the PBE exchange-

correlation functional, while the properties of the latter required an on-site Coulomb potential

or a hybrid functional to reproduce the correct distribution. These differences are perhaps

especially surprising given the fact that the Cu 3d10 shell has a smaller binding energy than

the Zn 3d10 shell. (Certainly the PBE functional was sufficient to localize the In 4d10 in

In2O3, refer back to Section 5.3.)

The Cu L3 XAS spectra shown in Figure 7.11 were measured in surface sensitive TEY

mode, since surface oxidation would lead to some Cu2+, the XAS of which has a character-

istic sharp pre-edge peak, it is clear that these samples were almost entirely free of surface

oxidation. Only a very small amount of surface Cu2+ is present in the spectra of SbCu2Sb2,

SrCu2(As0.84Sb0.16)2, SrCu2As2, and Ca Cu1.7As2, as shown by the arrows in Figure 7.11. The

XAS spectra calculated from the ground state electronic structure is in rather good agree-
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Figure 7.11: Measured and calculated Cu L3 XES (excited at 1000 eV) and XAS
spectra of the copper pnictides. The label SrCu2(As,Sb)2 refers to SrCu2(As1−xSbx)2,
for x = 0.16 in the measured spectra, and x = 0.125 for the calculated spectra. For
CaCu2−xAs2, x = 0.3 in the measured spectra and x = 0.25 in the calculated spectra.
All XAS spectra were measured in TEY mode, note a trace amount of surface oxidation
in the XAS spectra of SrCu2Sb2, SrCu2(As1−xSbx)2, SrCu2As2, and CaCu2−xAs2, noted
by arrows. All XAS spectra were calculated from the ground state DOS except for
CaCu2−xAs2, here there is also a XAS spectrum of stoichiometric CaCu2As2 calculated
with a core hole perturbation. This figure is adapted from one that will be published
in our forthcoming paper [23].
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ment with the measured XAS spectra in the cases of Cu metal, BaCu2Sb2, and SrCu2Sb2.

For SrCu2(As0.84Sb0.16)2 and SrCu2As2 the calculated XAS spectrum has two sharp peaks in

the pre-edge, these features are at least qualitatively present in the measured XAS spectrum

as a shoulder and a peak (denoted by the vertical lines in Figure 7.11).

For CaCu1.7As2 the agreement between the measured and calculated Cu L3 spectrum is

perhaps the worst; the near-edge of the measured spectrum has one peak and two shoulders

(denoted by the vertical lines in Figure 7.11) while the spectrum calculated from the ground

state electronic structure has two peaks in this region, quite similar to the calculated XAS

spectrum of SrCu2As2. There are two likely causes for the discrepancy between the calcu-

lated and measured spectra of CaCu1.7As2: The core hole perturbation could cause greater

distortion in this system than in the other copper pnictides, or the implicit ordering of the Cu

vacancies in the calculated spectrum (an ordering which is not present in the actual sample)

could have a significant effect on the conduction band. The former argument is easier to

test than the latter; to that end I calculated the core hole perturbed XAS for stoichiometric

CaCu2As2. My assumption here was that the local perturbation from a core hole was more

significant than a vacant site that could be no closer than the second coordination shell.

This spectrum is shown in Figure 7.11, and it is much closer to the measured XAS spectrum

than the one calculated from the ground state electronic structure. While the features in the

core hole perturbed calculated XAS spectrum are perhaps a bit too sharp, and the relative

intensities are not quite correct, the general shape is in good agreement with the measured

XAS spectrum. In a sense this supports the idea that the core hole effect is more significant

in systems with lighter cations (Ca compared to Sr or Ba, As compared to Sb) that was

mentioned in Chapter 5.

The measured Cu L3 XAS spectra also suggest that describing Cu as monovalent may

be an overstatement. As previously mentioned for Ba122:Cu (refer back to Section 7.2), the

Cu L3 XAS of Cu2O also has a sharp 3d resonance peak at the same energy as the onset

in Cu metal [173], and while the Cu L3 XAS spectrum of Ba122:Cu did have a reasonably

sharp peak in the near edge region that could be the spectral signature of Cu1+, the Cu L3

XAS spectra from these copper pnictides clearly do not have any features of the required

sharpness or intensity. Like copper metal, the Cu L3 XAS spectrum of a copper pnictide is
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entirely due to unoccupied Cu 4s-states. Of course one cannot rule out the possibility that

Cu1+ — As2− bonding has less hybridization than Cu1+ — O2− bonding, and that the cause

of the 3d resonance in the XAS spectrum of Cu2O is not applicable to a copper pnictide, but

I think the Cu L3 XAS of copper pnictides offers a strong argument that attaching a formal

valency to any site in a metal pnictide layer is incorrect.

As a final observation on the X-ray spectra, it is worth mentioning that only the calcu-

lated XES spectra were individually aligned with the measured XES spectra in Figure 7.11;

the calculated XAS spectra were shifted in the same manner as the XES spectra so agreement

in the onset and energy of particular features in the calculated and measured XAS spectra

is not necessarily guaranteed. (For the core hole perturbed XAS spectrum of CaCu1.7As2

the average interstitial potential was aligned with that in the ground state calculation, as

described in Section 5.3.) In fact the calculated and measured XAS spectra in Figure 7.11

are in excellent alignment, this suggests that the calculated electronic structure accurately

reproduces the binding energy of the Cu 3d10 shell. Recall that this is in contrast to the Cu

3d10 states in Ba122:Cu; in that system the calculated 3d10 states were about an eV or so

higher in energy than the measured L3 XES spectrum suggests. In general my research sup-

ports the original prediction that copper pnictides are typical sp-metals [175], since Ba122:Cu

is not as “well-behaved” it may be fruitful to further study the electronic structure of the

Ba(Fe1−xCux)As2 family.

After this chapter was written, a manuscript based on the research discussed above was

published in Physical Review B [23].

7.4 Magnetic Ordering in LiFeAs and LiMnAs

LiFeAs is a simple layered pnictide that is somewhat unusual because it naturally super-

conducts at around 18 K without needing doping, vacancies, or external pressure [179, 180].

LiFeAs also has no long range magnetic order [180]; for these reasons LiFeAs is a good “model

compound” for studying the general phenomenon of superconductivity in layered pnictides.

I first studied LiFeAs and the related compound NaFeAs (with a T c = 9 K [181]) with

soft X-ray spectroscopy for the purposes of understanding the basic electronic structure [20],

115



a project which resulted in findings very similar to those described for CaFe2As2 in Section

7.1. These LiFeAs and NaFeAs samples were pressed pellets of powders made by sintering

elemental powders, and the crystal structure was verified with XRD [1]. The synthesis and

structural study was conducted by members of Prof. Simon Clarke’s research group, Dept.

of Chemsitry, University of Oxford, Oxford UK.

I recently acquired higher quality polycrystalline samples of LiFeAs, LiMnAs, and

Li(Fe0.95Mn0.05)As (these samples were provided by Prof. Chang-Qing Jin, Chinese Academy

of Sciences, Beijing, China, grown with the “self flux” method, the crystal structure was

verified by XRD performed by members of Prof. Jin’s research group [182]) and consequently

obtained higher quality measurements of LiFeAs.

My main interest here was to compare the electronic structure of LiFeAs with that of

LiMnAs. The electrical properties of LiMnAs are quite different from those of LiFeAs; while

at ambient conditions the latter is a bad metal and an itinerant magnet [180], the former is

an insulating (or at least semiconducting) antiferromagnet [183]. Systems like LiMnAs have

recently been studied as possible spintronic materials [184], and while there has been some

theoretical work done on the electronic structure of LiMnAs [185], there is little experimental

data currently available. In this context I think it is useful to examine the electronic structure

and magnetic ordering of LiFeAs and LiMnAs in more detail.

Both LiMnAs and LiFeAs have the same layered structure typically of all layered pnictides

(both structures belong to the P4/nmm spacegroup). The unit cell contains 2 transition

metals sites, so to systematically investigate longer-ranged antiferromagnetic ordering in these

systems I started with a 2×2×2 supercell and initialized the spins of all the transition metal

atoms independently. To simplify the possible structures, I assumed that magnetic coupling

between the FeAs (or MnAs, as appropriate) layers was minimal, so I only considered the

distinct orderings within a single 2 × 2 layer and either treated the second layer exactly

the same, or with the spins completely reversed from that of the first layer. I describe the

former arrangement as ferromagnetic (FM) order along the c axis (the total structure is still

antiferromagnetic, of course), while I describe the latter arrangement as antiferromagnetic

(AFM) order along the c axis.

For each 2× 2 layer there are 8 transition metal sites, for in-plane AFM order there must
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(f) the six unique orderings labelled by name. (g) a 2 × 2 × 2 unit cell (of LiMnAs;
LiFeAs is essentially the same) showing checkerboard with FM vertical order as an
example.

be 4 “up” and 4 “down” sites. Therefore there are: 8

4

 =
8!

4!(8− 4)!
= 70 (7.5)

total possible arrangements of atoms. However since origin of the supercell is arbitrary, as

is the direction chosen for “up” there are much fewer than 70 distinct arrangements. Since

any given structure is equivalent to a structure with all spins reversed (up ↔ down), it is

clear there can be no more than 35 distinct arrangements. In fact, after drawing out all the

structures and tiling them, I have found only 6 distinct arrangements, as shown in Figure 7.12.

In addition to the six in-plane AFM orderings, I also considered an in-plane FM order where

all 8 sites had the same spin (which I call “sheets” order). This makes a total of 7 in-plane

structures and 2 different plane stackings (“AA” stacking, resulting in the aforementioned

FM order along the c axis, and “AB” stacking, resulting in the aforementioned AFM order

along the c axis), or 14 different structures in total.

Hereafter the in-plane magnetic order will be referred to by the names given in Figure

7.12, while the c axis order will be called FM or AFM as appropriate. For each of these
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Table 7.1: Spacegroups of magnetic ordering in LiFeAs and LiMnAs. The fundamental
unit cell for both is P4/nmm, the lattice constants are in terms of the fundamental unit
cell lattice constants (a, b, c). For the fundamental unit cell structure, see References [1]
and [2]. For FM triangles, β = 149.25◦ while for AFM triangles, β = 130.04◦.

Structure Spacegroup Metal Sites Lattice Constants

FM Sheets P4/nmm 1 a× b× c

AFM Sheets P4/nmm 2 a× b× 2c

FM Zig-zag Pma2 4 2a× 2b× c

AFM Zig-zag Pma2 8 2a× 2b× 2c

FM Boxes P4mm 2 2a× 2b× c

AFM Boxes P4mm 4 2a× 2b× 2c

FM Checkerboard P 4̄m2 2 a× b× c

AFM Checkerboard P 4̄m2 4 a× b× 2c

FM Lines Pccm 2
√

2a×
√

2b× c

AFM Lines Pccm 4
√

2a×
√

2b× 2c

FM Triangles C2 6 2
√

2a× 2
√

2b× c/ sin(β)

AFM Triangles C2 12 2
√

2a× 2
√

2b× 2c/ sin(β)

FM Stripes P21/m 2 2a× b× c

AFM Stripes P21/m 4 2a× b× 2c

structures I reduced the 2 × 2 × 2 supercell as much as possible while still preserving the

appropriate tiling (therefore the “FM sheets” order is the same as the spin-polarized single

unit cell); this was done to both increase the speed of the calculations (by increasing the

symmetry) and to maintain the magnetic ordering during the SCF cycle, while the spins

were initialized to a certain magnetic order neither the direction nor the magnitude of the

magnetic moments were constrained during the SCF cycle. The space groups and number of

metal sites for each type of magnetic ordering is summarized in Table 7.1.

Some relevant parameters from each structure are presented in Figure 7.13. The most

important parameter in determining the optimal magnetic ordering is the energy gain relative
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to the non-magnetic structure, which I define as:

∆i
E =

ENM
tot

nNM
− Ei

tot

ni
(7.6)

where Ex
tot is the total energy (NM for the non-magnetic structure, i for the ith magnetic

structure) and nx is the number of formula units per unit cell in structure x. If a particular

magnetic structure is more stable than the non-magnetic structure it should have a lower

total energy per formula unit, so consequently the structure i with the largest ∆E is the most

stable.

As shown in Figure 7.13(a), the AFM lines structure is the most stable magnetic config-

uration for LiFeAs. It should be pointed out that the energy gains of the FM lines, FM and

AFM zig-zag, and the AFM triangles structures are all within room-temperature (0.025 eV)

of the FM lines structures, and the total energy gains are only 0.15 eV or less compared to the

non-magnetic structure. Taken together this supports the experimental findings that LiFeAs

has little long range magnetic order [179, 180], the energy gains shown in Figure 7.13(a)

suggest that at room temperature a random distribution of antiferromagnetic domains, pos-

sibly with different internal orderings, is likely to exist and fluctuate over time in LiFeAs. I

should also point out that the lines structure in DFT is often identified as the signature of

spin density wave ordering [186], a key magnetic structure that typically manifests at low

temperatures in layered pnictides and must be suppressed before superconductivity can be

realized [187].

On the other hand, the magnetic structures in LiMnAs all provide much larger energy

gains than those in LiFeAs, as shown in Figure 7.13(b), and it is clear that the checkerboard

structure is the most stable. These calculations therefore support the experimental findings

that LiMnAs is a well-ordered antiferromagnet [183]. There is very little difference between

the AFM and FM c axis orderings for LiMnAs (and, in most cases, very little difference

between AFM and FM in LiFeAs), this suggests that my assumption that there is very

little magnetic coupling between the MnAs (or FeAs) layers, and therefore there is little

value in explicitly considering other stacking arrangements along the c axis (for example, an

alternating stacking of lines and boxes planes is possible, as are many others, but not likely to

be physically realized). I should point out that the checkerboard magnetic structure in DFT
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is often identified as a signature of Mott insulators, like the parent compounds for cuprate

superconductors [188].

There is a relatively large amount of variation in the magnetic moments per Fe site in

the LiFeAs structures, as shown in Figure 7.13(c) the average magnetic moments vary from

1.18 ± 0.04 µB/Fe for AFM sheets to 2.00 ± 0.06 µB/Fe for AFM lines, this variation is

another indication of random or itinerant magnetic ordering or spin-density wave behaviour

at finite temperatures in LiFeAs. Here the “margin or error” should be interpreted as the

standard deviation of magnetic moments; since the magnetic moments were not fixed in the

the DFT calculation, each transition metal site could have a slightly different moment. I

should also point out that DFT calculations are known to overestimate magnetic moments

in iron pnictides [186], so it is not unexpected that all of these values are significantly greater

than the measured moment of 0.9 µB/Fe for LiFeAs [189]. All of the magnetic moments are

quite similar in LiMnAs, as one would expect for a robust antiferromagnet; here the average

magnetic moment (averaged across all LiMnAs structures) is 3.96 ± 0.04 µB/Mn. Because

all the moments are essentially the same, I have omitted plotting the moments for LiMnAs

as was done for LiFeAs in Figure 7.13(c).1

Finally, all LiFeAs structures predicted metallic behaviour (i.e. no band gap), again this

is reassuring since LiFeAs is known to be a bad metal [152], while all LiMnAs structures

except for the non-magnetic, FM and AFM sheets, and FM stripes structure have a non-zero

band gap. The highest gap is 0.62 eV for the FM checkerboard structure, while the band

gap of the lowest energy structure, AFM checkerboard, is 0.534 eV (the energy gain of the

AFM checkerboard structure is only 1.41 meV better than the FM checkerboard structure,

however), as shown in Figure 7.13(d). The band gap of LiMnAs has been reported to be

between 0.39 eV and 0.81 eV, measured by scanning tunnelling microscopy [183], so my

calculations are in reasonable agreement with experimental results.

The DOSes of the most stable magnetic structures for LiFeAs and LiMnAs (the AFM

lines and AFM checkerboard orderings, respectively) is shown in Figure 7.14. Since both

structures are antiferromagnetic, only the spin up DOS is shown in Figure 7.14(a), (b).

1I should also point out that I used the PBE exchange correlation functional for all of these calculations,
which is known to overestimate magnetic moments [35]. I intend to recalculate these moments with the LDA
functional, and also attempt to optimize the atomic positions.
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Figure 7.13: The energy gain (with respect to the non-magnetic case) for the different
magnetic structures in (a) LiFeAs and (b) LiMnAs. (c) The average magnetic moment
per Fe site in LiFeAs, the “error bars” indicate the standard deviation of the moments
for each inequivalent Fe site. (d) The band gaps of the LiMnAs structures.
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Figure 7.14: The average spin up DOSes of (a) LiFeAs (AFM lines order) and (b)
LiMnAs (AFM checkerboard order). The transition metal spin separated 3d DOS is
given for (c) LiFeAs and (d) LiMnAs.

Apart from the small band gap in LiMnAs, the electronic structures of both systems seem

rather typical of all layered pnictides; there is an As 4s band some 10 eV or so below the

Fermi energy, the main valence band is only about 5 eV wide, the As 4p-states are hybridized

with the transition metal 3d -states at the bottom of the valence band, and the transition

metal 3d -states dominate near the top of the valence band. In LiMnAs, however, the bulk

of the Mn 3d -states is deeper in the valence band than the Fe 3d -states in LiFeAs. The

bandwidths in LiMnAs are also somewhat narrower than in LiFeAs; even the As 4s band is

narrower in LiMnAs than in LiFeAs.

The Mn 3d -states in LiMnAs have a much greater spin separation than the Fe 3d -states

in LiFeAs, as shown in Figure 7.14(c),(d). Of course this is due to the greater magnetic

moment of Mn compared to Fe, and the fewer 3d electrons in Mn compared to Fe. Near the

Fermi level, however, the two spin densities are essentially the same in LiMnAs; this may

present challenges in using LiMnAs in spintronics.
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Like all layered iron arsenides I have studied, the Fe L2,3 XES and XAS spectra of LiFeAs

are very similar to that of iron metal, and resonantly excited XES shows an almost depressing

lack of fine structure or inelastic scatter. I was able to transfer the LiFeAs sample from a

glass vial (where it had been sealed immediately after synthesis) into the beamline vacuum

chamber without the surface becoming noticeably oxidized; as shown in Figure 7.15(a) the

Fe L2,3 XAS spectrum of LiFeAs, measured in surface sensitive TEY mode, does not show

the two peak structure at the L3 edge that is indicative of surface oxidation (this structure

can be seen in the spectrum from CaFe2As2 in Figure 7.4(d)), and with the other pnictides,

a ground state XAS calculation does a rather good job of reproducing the measured XAS

spectrum. The non-resonant Fe L2,3 XES spectrum is also reasonably reproduced by the

calculated XES spectrum, and the resonantly-excited Fe L2,3 XES spectra are very similar

to those from other iron pnictides (refer back to Figure 7.5 and References [20–22, 169]), as

shown in Figure 7.15(b). I should also point out that each XES spectrum can be scaled so

the low energy side of the Fe L3 bands align perfectly, as shown in Figure 7.15(c). In fact,

as long as the excitation energy is above the Fe L3 absorption threshold, the shape of the

Fe L3 XES spectrum is almost entirely insensitive to excitation energy. This behaviour has

been previously noted in other iron pnictides, and is further evidence that there is no on-site

Hubbard U potential, or any other strong local correlations [169].

Similarly, the Mn L2,3 XAS spectrum of LiMnAs is very similar to that of manganese

metal, and has none of the sharp fine structure associated with most manganites [168, 190–

192], as shown in Figure 7.15(d). The Mn L2 edge is, however, different from the L3 edge, and

this is not the case for pure Mn metal [193,194], so there is at least some ligand interaction at

work here. However the Mn L2,3 XAS calculated from the ground state electronic structure

does a reasonable job of reproducing the shape of the Mn L3 edge, and while I am not sure

I can identify the correlation strength in LiMnAs at present, it certainly has weaker on-site

correlations than any other Mn-ligand compound I have studied or seen in the literature.

The Mn L2,3 XES spectra of LiMnAs (shown in Figure 7.15(e)) are also free from any

prominent multiplet or charge-transfer features, unlike those from MnO [192]. The elastic

scatter is surprisingly intense for some spectra, but generally these spectra are very reminis-

cent in shape of the Fe L2,3 XES from LiFeAs, and like the spectra from LiFeAs, all of the Mn
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Figure 7.15: The X-ray spectra of LiFeAs: (a) Fe L2,3 XAS, (b) Fe L2,3 XES as
measured, and (c) Fe L2,3 XES spectra scaled to show the similarity in the low energy
spectral shape, and for LiMnAs: (d) Mn L2,3 XAS, (e) Mn L2,3 XES as measured, and
(f) Mn L2,3 XES scaled to show similarity in low energy spectral shape. The black ticks
show the appropriate excitation energy, or the energy is labelled (if off the scale of the
plot). All XAS spectra were measured in TEY mode.

L2,3 XES spectra of LiMnAs can be scaled so the low energy side of the Mn L3 XES spectra

align perfectly, as shown in Figure 7.15(f), ruling out the possibility of significant energy loss

features in the XES spectra. Combined with the XAS spectrum mentioned above, it seems

relatively clear that there is no significant on-site Hubbard U potential present in LiMnAs,

which to me seems somewhat odd for a half-filled 3d metal in system with a finite band gap

and Mott insulator-like antiferromagnetic ordering. There was some recent theoretical work

suggesting that Hund’s rule coupling is the significant correlation effect on layered pnictides,

and further that half-shell filling should promote a Mott-like band gap [195], and I am hop-

ing to work with Robert Green to calculate model Hamiltonian resonant XES spectra for

LiMnAs to investigate the possibility of strong Hund’s rule correlations in this system.

Finally, I would like to conclude this section by briefly reporting some of my preliminary
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results from studying Li(Fe1−xMnx)As. For this system I simply took the LiFeAs structure

with the AFM lines order and substituted one Fe site with Mn on each plane (the two Mn

were substituted in opposite spin sites), making Li(Fe0.875Mn0.125)As. One should obviously

consider other (many other) possibilities. Since LiMnAs is isostructural to LiFeAs, and since

DFT calculations suggest that magnetic moment of Mn is at least double that of Fe, a

variety of structures should be calculated to test for the possibilities of Mn clustering, or

long range magnetic coupling between Mn sites. This single calculation is sufficient only for

a preliminary analysis.

The DOS of Li(Fe0.875Mn0.125)As is shown in Figure 7.16(a). Naturally, the DOS is very

similar to that of LiFeAs (refer back to Figure 7.14(a)). In particular note how the Mn 3d -

states are hybridized with the Fe 3d -states throughout the valence band, although the natural

valence band of LiMnAs is narrower than that of LiFeAs and the Mn 3d -states in LiMnAs are

weighted more towards the bottom of the valence band than in Li(Fe0.875Mn0.125)As (refer

back to Figure 7.14). The magnetic moment of Mn is also reduced to 2.0 µB/Mn, a bit

larger than the magnetic moments of Fe (roughly 1.8 µB/Fe), and it is clear from the spin

separated 3d DOS shown in Figure 7.16(b) that the large spin separation found in LiMnAs is

not preserved in Li(Fe0.875Mn0.125)As (or at least in this structure for Li(Fe0.875Mn0.125)As).

Despite these differences in the electronic structures, the Mn L2,3 XAS spectrum of

Li(Fe0.95Mn0.05)As is almost the same as that of LiMnAs, as shown in Figure 7.16(c). The

DFT calculations suggest that Li(Fe0.95Mn0.05)As is metallic; this is possibly reproduced in

the XAS spectra since the onset of the Mn L2,3 XAS spectrum of Li(Fe0.95Mn0.05)As occurs

perhaps as much as 0.5 eV lower than that in LiMnAs. This is close to the calculated band

gap of LiMnAs, but one should be cautious: I have not yet investigated the effect of a core

hole on the XAS spectrum of LiMnAs, and because LiMnAs has a band gap it is quite possible

that a core hole can shift the onset of the conduction band.

The Mn L2,3 XES spectra of Li(Fe0.95Mn0.05)As are also almost the same as those of

LiMnAs, as shown in Figure 7.16(d). Importantly, the peak of the Mn L3 band is at

slightly higher energies in Li(Fe0.95Mn0.05)As compared to LiMnAs, this is expected since

the latter has a greater weight of occupied Mn 3d -states deeper in the valence band than

Li(Fe0.95Mn0.05)As. There is one very interesting feature in the non-resonant Mn L3 XES
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Figure 7.16: For synthesized Li(Fe0.95Mn0.05)As and calculated Li(Fe0.875Mn0.125)As:
(a) the average spin up DOS, (b) the Fe and Mn spin separated 3d DOS, (c) the Mn
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126



spectrum of Li(Fe0.95Mn0.05)As that is not present in that of LiMnAs; a very strong re-

emission line that is due to states about 2 eV above the Fermi level. (Note the shoulder

at high energies in the L3 line in the lower-most spectrum of Li(Fe0.95Mn0.05)As in Figure

7.16(d)). A very similar re-emission feature has previously been observed in Heusler alloys,

and was attributed to the existence of a “spin trap” that collected long-lifetime excited elec-

trons [196]. This re-emission feature is in almost exact agreement in terms of alignment and

relative intensity as the minority spin unoccupied Mn 3d -states. My tentative hypothesis is

that excited electrons (likely generated indirectly by Auger processes, but some from direct

excitation on other Mn sites) will be trapped in the conduction band at regions local to these

“defect-like” Mn sites in the LiFeAs lattice, and are therefore available to fill an Mn 2p3/2

core hole if that site subsequently absorbs and incoming X-ray. This type of behaviour has

not been observed in any other transition metal substituted iron pnictide (certainly not the

Ba122:Co,Ni,Cu studied in Section 7.2), and I hope to remeasure this system in an external

magnetic field and with different polarizations of incident X-rays to further investigate this

phenomenon.

7.5 Concluding Remarks

I have studied a wide range of layered iron pnictides with Fe L2,3 XES and XAS: CaFe2As2 [21],

LiFeAs and NaFeAs [20], BaFe2As2 doped with Co, Ni, and Cu [22], and a few more that I

have not yet had time to publish (KFe2As2, SrFe2As2 doped with Ni), and in all cases the

spectra are essentially the same as those from iron metal. In general, simple DFT calcula-

tions using the PBE GGA exchange-correlation functional adequately reproduce the DOS

and appropriate XES and XAS spectra; often a core hole perturbation is not even necessary

for the latter. Taken together this is pretty conclusive evidence that there are no strong local

correlation effects (like an on-site Hubbard U potential) in layered iron pnictides; the metal

3d -states are more accurately described by single-electron band structure wavefunctions (i.e.

identified by crystal momenta quantum numbers) rather than single-electron orbital wave-

functions (i.e. identified angular momenta quantum numbers), and consequently multiplet

splitting (which is dependent on LS coupling, and therefore on valence electrons being well
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defined by specific orbitals) does not manifest in the X-ray spectra of layered iron pnictides.

Copper pnictides (CaCu1.7As2, SrCu2As2, SrCu2Sb2, BaCu2Sb2) are an even more ex-

treme case; these have full 3d10 shells that are relatively chemically inert and certainly

insensitive to local coordination geometry [23]. It is fairly clear that copper pnictides are

relatively typical sp metals.

In general, metallic behaviour seems to be the norm for iron pnictides substituted with

heavier transition metals (Co, Ni, Cu), but not for iron pnictides substituted with lighter

transition metals. At least in the case of “fully Fe substituted” LiMnAs a finite band gap

developes, a more rigid antiferromagnetic ordering is present, and at least some correlation

effects are visible in the X-ray spectra. For partially substituted Li(Fe0.95Mn0.05)As, the Mn

“defect sites” may act as spin (or at least charge) traps for excited electrons, a behaviour

that does not seem to manifest in Co, Ni, or Cu-substituted iron pnictides.
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Chapter 8

Conclusions

8.1 Summary of Results

Hopefully it is clear by now that X-ray spectroscopy can provide very valuable information

about the electronic structure of almost any material. Soft X-ray spectroscopy in particular

has sufficient resolution to provide a wealth of information, and only requires the material to

be vacuum compatible. I think it is important to emphasize the usefulness of XES, even in

the non-resonant regime: these measurements provide atomic- and symmetry-specific probes

of the entire valence bands, and give valuable insight into the deep bonding states as well

as those close to the Fermi level. The accuracy of DFT in dealing with bonding states deep

in the valence band is sometimes an aspect that is overlooked in theoretical studies that are

supported by measurements that do not probe the full valence band, as an example there are

a few relatively recent studies on ZnO available in the literature wherein the authors used a

simple LDA (or GGA) exchange correlation functional [197, 198] — and it would take only

a single look at a non-resonant O K XES spectrum to reveal how the Zn 3d10 states were

improperly treated [15,16].

At this point, XES and XAS are still most useful when combined with a theoretical

calculation of the electronic structure (and, ideally, a theoretical calcualtion of the relevant

XES and XAS spectra), as opposed to comparing with spectra from reference compounds

only. From a purely empirical standpoint, specific types of bonding or antibonding (i.e. metal

3d — ligand 2p) can be identified from the appropriate ligand XES spectrum when suitable

related reference spectra are available; the O K XES spectrum of ZnTiO3 can be readily

interpreted when compared with that from ZnO and TiO2, for example, [19] but electronic

structure calculations are still needed for a full analysis, especially to distinguish whether
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hybridization features truly are occupied antibonding orbitals or not [17].

If the core hole perturbation can be accurately calculated, the actual band gap (i.e.

the appropriate correction factor for the typically underestimated band gap obtained from

DFT) can be determined relatively accurately from a XES and XAS spectra from the same

edge [17]. However without theoretical insight, estimating the band gap is subject to quite a

bit of error; while empirical methods like using the peaks in the second derivative can often

work quite well [15], there are other materials where this technique fails entirely [17], and

it is difficult to recognize these cases without some other information about the electronic

structure. Ultimately, a study of the electronic structure of a particular material is likely to

yield better results if the X-ray spectra are part of a suite of spectra from related compounds

(all with respect to the same absorption edge) rather than measuring spectra from multiple

edges on the same compound.

Having mentioned these caveats, I have shown that the electronic structure, hybridization,

bonding environment, and band gaps can be accurately deduced with XES and XAS spectra

combined with DFT calculations for a wide range of materials [15–19]. For ternary lone

pair-TiO2 oxides, in particular, the band gap of intermediate phases can be predicted from

the pure binary oxides [18]; this provides a road map for band gap engineering in potential

photocatalysts. Finally, l have shown how the total valence band, including the electronic

states from dopants can be reconstructed from experimental data; this lead to the conclu-

sion that DFT was not accurately accounting for the 3d10 states from Cu substituted into

BaFe2As2 [22].

8.2 Future Research

As mentioned in Chapters 6 and 7, there are several regions where the research conducted

herein can be extended. In particular, there are many existing ternary oxides that contain

lone pair cations and d0 metals, and these systems should be studied with DFT calculations

and soft X-ray spectroscopy to see if they too support the strategy for band gap engineering

outlined in Section 6.5. For example, the ternary oxides PbZrO3 and BiVO4 are both com-

mercially available (Alfa Aesar, for example) and have simple enough crystal structures that
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studying these systems would be straightforward. There are also a large range of interme-

diate phases in the Bi2O3 — TiO2 system, and PbZrO3 can be easily alloyed with PbTiO3.

Studying these systems would be more challenging, since most intermediate phases would

have large, low-symmetry unit cells, but these intermediate phases would provide a very

powerful test of the strategy for band gap engineering.

The ZnO — TiO2 is also quite rich in intermediate phases, and these could provide useful

insight into the nature of the core hole perturbation in broad band systems. Given how the

core hole perturbation provides a much greater distortion to the conduction band in ilmenite

ZnTiO3 than in either wurtzite ZnO or rutile TiO2, it would be interesting to study what

happens in rhombohedral ZnTiO3 or intermediate phases like Zn2TiO4 or Zn2Ti3O8 [199].

Finally, studying iron pnictides with soft X-ray spectroscopy may not provide much insight

into the physics of these materials unless the experimental resolving power is high enough

to detect magnetic scattering. The iron chalcogenides, on the other hand, show evidence of

having stronger on-site correlations [10], and may be a more fruitful area to study with soft

X-ray spectroscopy. The most promising area for future reseach, however, might lie with

layered pnictides with transition metal substitutions that cross the boundary of a half-filled

3d shell (i.e. Mn substitution in LiFeAs, as mention in Section 7.4, or Fe, Co, Ni, or Cu

substitution in LiMnAs).
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Portal. The SIESTA method for ab initio order- N materials simulation. J. Phys.:
Condens. Matter, 14(11):2745, 2002.

[38] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods, chapter 2,
6, 7, 8. Cambridge University Press, Cambridge, 2004.

[39] D. S. Sholl and J. A. Steckel. Density Functional Theory: A Practical Introduction,
chapter 1. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

134



[40] S. Cottenier. Density Functional Theory and the family of (L)APW-methods: a step-
by-step introduction. Instituut voor Kern-en Stralingsfysica, K. U. Leuven, Belgium,
2004. ISBN 90-807215-1-4.

[41] F. Herman, J. P. Van Dyke, and I. B. Ortenburger. Improved statistical exchange
approximation for inhomogeneous many-electron systems. Physical Review Letters,
22:807, 1969.

[42] A. D. Becke. Density-functional exchange-energy approximation with correct asymp-
totic behaviour. Physical Review A, 38:3098, 1988.

[43] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-
gas correlation energy. Physical Review B, 45:13244, 1992.

[44] J. P Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made
Simple. Phys. Rev. Lett., 77:3865, 1996.

[45] P. Dufek, P. Blaha, and K. Schwarz. Applications of Engel and Vosko’s generalized
gradient approximation in solids. Phys. Rev. B, 50:7279, 1994.

[46] A. D. Becke and E. R. Johnson. A simple effective potential for exchange. J. Chem.
Phys., 124(22):221101, 2006.

[47] F. Tran and P. Blaha. Accurate Band Gaps of Semiconductors and Insulators with a
Semilocal Exchange-Correlation Potential. Phys. Rev. Lett., 102:226401, 2009.

[48] J. E. Jaffe and A. C. Hess. Hartree-Fock study of phase changes in ZnO at high pressure.
Phys. Rev. B, 48(11):7903, 1993.

[49] V. I. Anisimov, J Zaanen, and O. K. Andersen. Band theory and Mott insulators:
Hubbard U instead of Stoner I. Phys. Rev. B, 44(3):943, 1991.

[50] F. Tran, P. Blaha, K. Schwarz, and P. Novák. Hybrid exchange-correlation energy func-
tionals for strongly correlated electrons: Applications to transition-metal monoxides.
Phys. Rev. B, 74:155108, 2006.

[51] V. I. Anisimov, F Aryasetiawan, and A. I. Lichtenstein. First-principles calculations
of the electronic structure and spectra of strongly correlated systems: the LDA+U
method. J. Phys: Condens. Matt., 9:767, 1997.

[52] O. K. Andersen. Linear methods in band theory. Phys. Rev. B, 12(8):3060, 1975.

[53] J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics, chapter 5, page 365.
Addison-Wesley, San Francisco, CA, 2nd edition, 1994.

[54] E. Merzbacher. Quantum Mechanics, chapter 5, page 497. John Wiley & Sons, Inc.,
Hoboken, NJ, 3rd edition, 1998.

[55] E. McGuire. K-shell Auger transition rates and flurescence yields for elements Be-Ar.
Physical Review, 185(1):1, 1969.

135
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S.-J. Cho, and H. Morkoc. A comprehensive review of ZnO materials and devices. J.
Appl. Phys., 98:041301, 2005.

[79] Y. Azzaz, S. Kacimi, A. Zaoui, and B. Bouhafs. Electronic properties and stability of
ZnO from computational study. Physica B: Condensed Matter, 403:3154, 2008.

[80] X. Liu, C. Li, S. Han, J. Han, and C. Zhou. Synthesis and electronic transport studies
of CdO nanoneedles. Appl. Phys. Lett., 82(12):1950, 2003.

[81] C. H. Champness and C. H. Chan. Optimization of CdO layer in a Se:CdO photovoltaic
cell. Solar Energy Mater. Solar Cells, 37:72, 1995.

[82] F. A. Benko and F. P. Koffyberg. Quantum efficiency and optical transitions of CdO
photoanodes. Solid State Commun., 57:901, 1986.

[83] H. L. Hartnagel, A. L Dewar, A. K. Jain, and C. Jagadish. Semiconducting Transparent
Thin Films. IOP Publishing, Bristol, 1995.

137



[84] C. Kilic and A. Zunger. Origins of Coexistence of Conductivity and Transparency in
SnO2. Phys. Rev. Lett., 88:095501, 2002.

[85] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason.
Chemical and Structural Factors Governing Transparent Conductivity in Oxides. J.
Electroceram., 13:167, 2004.

[86] M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi. The effect of high acceptor dopant
concentration of Zn2+ on electrical, optical and structural properties of the In2O3 trans-
parent conducting thin films. Semicond. Sci. Technol., 18:97, 2003.

[87] L. F. J. Piper, A. DeMasi, S. W. Cho, K. E. Smith, F. Fuchs, F. Bechstedt, C. Körber,
A. Klein, D. J. Payne, and R. G. Egdell. Electronic structure of In2O3 from resonant
x-ray emission spectroscopy. Appl. Phys. Lett., 94:022105, 2009.

[88] P. D. C. King, T. D. Veal, F. Fuchs, Ch. Y. Wang, D. J. Payne, A. Bourlange, H. Zhang,
G. R. Bell, V. Cimalla, O. Ambacher, R. G. Egdell, F. Bechstedt, and C. F. McConville.
Band gap, electronic structure, and surface electron accumulation of cubic and rhom-
bohedral In2O3. Phys. Rev. B, 79:205211, 2009.

[89] Y. N. Xu and W. Y. Ching. Electronic, optical, and structural properties of some
wurtzite crystals. Phys. Rev. B, 48:4335, 1993.

[90] R. M. Hazen. Effects of temperature and pressure on the cell dimension and X-ray
temperature factors of periclase. American Mineralogist, 61:266, 1976.

[91] G. Fiquet, P. Richet, and G. Montagnac. High-temperature thermal expansion of lime,
periclase, corundum and spinel. Physics and Chemistry of Minerals, 27:103, 1999.

[92] R. W. G. Wyckoff. Crystal Structures 1. Interscience Publishers, New York, New York,
2 edition, 1963.

[93] M. Bär, S. Nishiwaki, L. Weinhardt, S. Pookpanratana, O. Fuchs, M. Blum, W. Yang,
J. D. Denlinger, W. N. Shafarman, and C. Heske. Depth-resolved band gap in
Cu(In,Ga)(S,Se)2 thin films. Appl. Phys. Lett., 93(24):244103, 2008.

[94] K. Kinhara and G. Donnay. Anharmonic thermal vibrations in ZnO. Can. Mineral.,
23:647, 1985.

[95] J. Zhang. Room-temperature compressibilities of MnO and CdO: further examination
of the role of cation type in bulk modulus systematics. Phys. Chem. Min., 26(8):644,
1999.

[96] K. Aurivillius. Least-Squares Refinement of the Crystal Structures of Orthorhombic
HgO and of Hg2O2NaI. Acta Chem. Scand., 18:1305, 1964.

[97] A. V. Emeline, G. V. Kataeva, V. K. Ryabchuk, and N. Serpone. Photostimulated
Generation of Defects and Surface Reactions on a Series of Wide Band Gap Metal-
Oxide Solids. J. Phys. Chem. B, 103:9190, 1999.

138



[98] U. Schönberger and F. Aryasetiawan. Bulk and surface electronic structures of MgO.
Phys. Rev. B, 52:8788, 1995.

[99] R. C. Whited, C. J. Flaten, and W. C. Walker. Exciton thermoreflectance of MgO and
CaO. Solid State Commun., 13:1903, 1973.

[100] A. S. Rao and R. J. Kearney. Logarithmic Derivative Reflectance Spectra of BaO and
SrO. Phys. Stat. Sol. (b), 95:243, 1979.

[101] W. H. Strewlow and E. L. Cook. Compilation of Energy Band Gaps in Elemental and
Binary Compound Semiconductors and Insulators. J. Phys. Chem. Ref. Data, 2:163,
1973.

[102] T. K. Subramanyam, S. Uthanna, and B. Srinivasulu Naidu. Preparation and charac-
terization of CdO films deposited by dc magnetron reactive sputtering. Mater. Lett.,
35(3-4):214, 1998.

[103] P.-A. Glans, T. Learmonth, K. Smith, J. Guo, A. Walsh, G. Watson, F. Terzi, and
R. Egdell. Experimental and theoretical study of the electronic structure of HgO and
Tl2O3. Phys. Rev. B, 71(23):235109, 2005.

[104] J. Pascual, J. Camassel, and H. Mathieu. Resolved Quadrupolar Transition in TiO2.
Phys. Rev. Lett., 39(23):1490, 1977.

[105] H. Tang, H. Berger, P. E. Schmid, and F. Lévy. Optical properties of anatase (TiO2).
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[178] I. Pilchowski and A. Mewis. Ternäre BaAl4-Varianten. Darstellung und Struktur von
CaCu2As2, Ca2Cu6P5 und Ba2Cu3P4. Z. anorg. allg. Chem., 581(1):173, 1990.

[179] C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lorenz, B. Lv, K. Sasmal, Z. J. Tang,
J. H. Tapp, and Y. Y. Xue. The synthesis and characterization of LiFeAs and NaFeAs.
Physica C, 469(9-12):326, 2009.

[180] M. Wang, M. Wang, H. Miao, S. V. Carr, D. L. Abernathy, M. B. Stone, X. C. Wang,
L. Xing, C. Q. Jin, X. Zhang, J. Hu, T. Xiang, H. Ding, and P. Dai. Effect of Li-
deficiency impurities on the electron-overdoped LiFeAs superconductor. Phys. Rev. B,
86(14):144511, 2012.

144



[181] D. R. Parker, M. J. Pitcher, P. J. Baker, I. Franke, T. Lancaster, S. J. Blundell, and
S. J. Clarke. Structure, antiferromagnetism and superconductivity of the layered iron
arsenide NaFeAs. Chem. Commun., 16:2189, 2009.

[182] X Wang, Q Liu, Y Lv, W Gao, L Yang, R Yu, F Li, and C Jin. The superconductivity
at 18 K in LiFeAs system. Solid State Commun., 148(11-12):538, 2008.
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Appendix B

Basis Sets used in WIEN2k

This appendix explicitly derives the coefficients used in the basis sets for WIEN2k. For
more details see References [14,35,38–40].

In WIEN2k, the electronic states are denoted by band indices n, a set of points within
the first Brillouin zone {~k}, and a set of reciprocal lattice vectors {~G}. Each atomic site t
has a an atomic sphere radius rtMT , while the unit cell has a volume V .

Each band n and k-point ~k is defined by a wavefunction ψn
~k

(~r). These wavefunctions are
composed of a basis of trial wavefunctions as follows:

ψn
~k

(~r) =
∑
~G

cn,
~k

~G
φ
(
~r, ~G,~k, n

)
,

where cn,
~k

~G
is a scaling constant and φ

(
~r, ~G,~k, n

)
is a known eigenfunction of some complete

basis.

B.1 APW Basis

For the Augmented Planewave (APW) basis, the trial functions are as follows:

φAPW

(
~r, ~G,~k, n

)
=


1√
V

exp
(
i
(
~k + ~G

)
· ~r
)
, ~r ∈ I∑

`,mA
t,~k+ ~G
`m ut`

(
r′, En~k

)
Y`m (r̂′) , ~r ∈ rtMT

,

where ~r′ = ~r − ~rt, I denotes interstitial space, and ~r ∈ rtMT indicates that ~r is within the

atomic sphere radius rtMT of atomic nuclei t. The coefficients At,~k+ ~G
`m are chosen to match the

planewave at the sphere boundary, by using the planewave expansion:

1√
V

exp
(
i ~K · ~r

)
=

4π√
V

exp
(
i ~K · ~rt

)∑
`m

i`j` (Kr′)Y †`m

(
K̂
)
Y`m (r̂′)

⇒ At, ~K
`m =

4π√
V
i` exp

(
i ~K · ~rt

) j` (KrtMT )

ut`

(
rtMT , E

n~k
)Y †`m (K̂)

Note that the APW functions are discontinuous in the first derivative at the sphere boundary,
however the total many-body wavefunction is smooth and continuous everywhere [40]. As

mentioned in Section 3.4, since the APW basis relies on the eigenfunction energy En~k, and
the complete APW wavefunction is needed to define the electron density that is required

to solve for the eigenfunction energy En~k, the APW basis requires more diagonalizations to
obtain and is therefore slower to converge. Consequently the APW basis is almost never
used.
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B.2 LAPW Basis

For the Linearized Augmented Planewave (LAPW) basis, the trial functions are as follows:

φLAPW

(
~r, ~G,~k, n

)
=


1√
V

exp
(
i
(
~k + ~G

)
· ~r
)
, ~r ∈ I∑

`,m

(
At,~k+ ~G

`m ut` (r′, Et
`) +Bt,~k+ ~G

`m u̇t` (r′, Et
`)
)
Y`m (r̂′) , ~r ∈ rtMT

In this case rather than using the specific energy eigenvalues En
~k

to define the radial portion
of the wavefunction inside the atomic sphere, an atomic-specific and angular momentum
dependent set of energies Et

` are used instead. The LAPW basis comes from using a Taylor
expansion of ut`(r, E) around Et

`, and for this reason the energy derivative ∂
∂E
ut`(r, E) =

u̇t`(r, E) is not normalized, and is orthogonal to ut`(r, E).

The coefficients At, ~K
`m , Bt, ~K

`m are chosen by making the LAPW function match the planewave
in both value and derivative at the sphere boundary:

1√
V

exp
(
i ~K · ~r

)
=

4π√
V

exp
(
i ~K · ~rt

)∑
`m

i`j` (Kr′)Y †`m

(
K̂
)
Y`m (r̂′)

1√
V

∂

∂r′
exp

(
i ~K · ~r

)
=

4π√
V

exp
(
i ~K · ~rt

)∑
`m

i`
∂

∂r′
j` (Kr′)Y †`m

(
K̂
)
Y`m (r̂′)

⇒ 4π√
V
i` exp

(
i ~K · ~rt

)
j`
(
KrtMT

)
Y †`m

(
K̂
)

= At,~k+ ~G
`m ut`

(
rtMT , E

t
`

)
+Bt,~k+ ~G

`m u̇t`
(
rtMT , E

t
`

)
⇒ 4π√

V
i` exp

(
i ~K · ~rt

)
j′`
(
KrtMT

)
Y †`m

(
K̂
)

= At,~k+ ~G
`m ut′`

(
rtMT , E

t
`

)
+Bt,~k+ ~G

`m u̇t′`
(
rtMT , E

t
`

)
or : αj` = Au` +Bu̇`

αj′` = Au′` +Bu̇′`
so that αj`u̇

′
` = Au`u̇

′
` +Bu̇`u̇

′
`

αj′`u̇` = Au̇`u
′
` +Bu̇`u̇

′
`

A (u`u̇
′
` − u̇`u′`) = α (j`u̇

′
` − j′`u̇`)

and αj`u
′
` = Au`u

′
` +Bu̇`u

′
`

αj′`u` = Au`u
′
` +Bu`u̇

′
`

B (u̇`u
′
` − u`u̇′`) = α (j`u

′
` − j′`u`)

The normalization condition for u̇t` (r, Et
`) so that it is a true Taylor expansion of ut`(r, E),

i.e. ut`(r, E) = ut`(r, E
t
`) + (E − Et

`)u̇
t
`(r, E

t
`) requires that:(

rtMT

)2 (
ut`
(
rtMT , E

t
`

)
u̇t′`
(
rtMT , E

t
`

)
− u̇t`

(
rtMT , E

t
`

)
ut′`
(
rtMT , E

t
`

))
= −1,

so we therefore have:

At, ~K
`m = −4π (rtMT )

2

√
V

i` exp
(
i ~K · ~rt

) (
j`
(
KrtMT

)
u̇t′`
(
rtMT , E

t
`

)
− j′`

(
KrtMT

)
u̇t`
(
rtMT , `

t
))
Y †`m

(
K̂
)

Bt, ~K
`m =

4π (rtMT )
2

√
V

i` exp
(
i ~K · ~rt

) (
j`
(
KrtMT

)
ut′`
(
rtMT , E

t
`

)
− j′`

(
KrtMT

)
ut`
(
rtMT , `

t
))
Y †`m

(
K̂
)

155



B.3 LAPW+LO States

For localized states, local orbitals (LOs) are added to the LAPW basis as follows:

φt
`m,LO (~r) =

{
0, ~r ∈ I(
At

`mu
t
` (r′, Et

`) +Bt
`mu̇

t
` (r′, Et

`) + Ct
`mu

t
`

(
r′, Et,LO

`

))
Y`m (r̂′) , ~r ∈ rtMT

.

Since these wavefunctions are identically zero outside the atomic sphere, they do not connect
to the planewaves and have no ~k or ~G dependence. These wavefunctions must be normalized,
have zero value and zero slope outside the sphere. The coefficients At

`m, Bt
`m, and Ct

`m are
therefore:

0 = Au` +Bu̇` + Cu`,2

0 = Au′` +Bu̇′` + Cu′`,2 at r′ = rtMT

⇒ A =

(
u̇`u

′
`,2 − u̇′`u`,2

u`u̇′` − u′`u̇`

)
C = −xacr2

MTC

⇒ B = −
(
u`u

′
`,2 − u′`u`,2

u`u̇′` − u′`u̇`

)
C = xbcr

2
MTC

and 1 =

∫
r2dr (Au` +Bu̇` + Cu`,2)2

=

∫
r2dr

(
A2u2

` +B2u̇2
` + C2u2

`,2 + 2ABu`u̇` + 2ACu`u`,2 + 2BCu̇`u`,2
)

= A2 +B2

∫
r2dru̇2

` + C2 + 2AC

∫
r2dru`u`,2 + 2BC

∫
r2dru̇`u`,2

⇒ 1

C2
=

(
xacr

2
MT

)2
+
(
xbcr

2
MT

)2
∫
r2dru̇2

` + 1− 2
(
xacr

2
MT

) ∫
r2dru`u`,2

+2
(
xbcr

2
MT

) ∫
r2dru̇`u`,2

B.4 APW+lo States

For quasi-localized states, WIEN2k uses the technique of adding local orbitals (los) to energy-
independent APW functions. These states consist of a mixture of two basis functions, the
normal ~k,~G-dependent APW functions with a fixed energy Et

` rather than the eigenvalue
En

~k+ ~G
:

φAPW+lo

(
~r, ~G,~k, n

)
=

 1√
V

exp
(
i
(
~k + ~G

)
· ~r
)
, ~r ∈ I∑

`,mA
t,~k+ ~G
`m ut` (r′, Et

`)Y`m (r̂′) , ~r ∈ rtMT

At, ~K=~k+ ~G
`m =

4π√
V
i` exp

(
i ~K · ~rt

) j` (KrtMT )

ut` (rtMTE
t
`)
Y †`m

(
K̂
)
,

and a local orbital (lo) for particular atoms and angular momenta:

φt
`m,lo (~r) =

{
0, ~r ∈ I
(At

`mu
t
` (r′, Et

`) +Bt
`mu̇

t
` (r′, Et

`))Y`m (r̂′) , ~r ∈ rtMT

.
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Here the choice of Et
` for the lo is the same as for the APW, above. The coefficients At

`m and
Bt

`m are chosen such that the lo is normalized and has zero value (but not zero slope) at the
sphere boundary:

0 = Au` +Bu̇` at rtMT

⇒ A =

(
u̇`
u`

)
B

1 =

∫
r2dr (Au` +Bu̇`)

2

= A2 +B2

∫
r2dru̇2

`

⇒ 1

B2
=

(
u̇`
u`

)2

+

∫
r2dru̇2

`

B.5 APW+lo+LO States

For localized states that are somewhat coincident in energy with states already described
by the APW+lo basis, and additional local orbital (LO) is added with an additional energy
parameter, just as with the LAPW basis, as follows:

φt
`m,LO (~r) =

{
0, ~r ∈ I(
At

`mu
t
` (r′, Et

`) + Ct
`mu

t
`

(
r′, Et,LO

`

))
Y`m (r̂′) , ~r ∈ rtMT

.

These wavefunctions are slightly different from LAPW+LO wavefunctions in that they do
not depend on the energy derivative of the radial wavefunction u̇` (r)). The coefficients At

`m

and Ct
`m are chosen such that the LO is normalized and has zero value (but not zero slope)

at the sphere boundary:

0 = Au` + Cu`,2 at rtMT

⇒ A =

(
u`,2
u`

)
C

1 =

∫
r2dr (Au` + Cu`,2)2

= A2 + 2AC

∫
r2dru`u`,2 + C2

⇒ 1

C2
=

(
u`,2
u`

)2

+ 2

(
u`,2
u`

)∫
r2dru`u`,2 + 1
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Appendix C

Integrals of Three Spherical Harmonics

An integral of three spherical harmonics over all solid angles occurs quite often in solid
state quantum mechanics, and it can conveniently be expressed in terms of Wigner 3j sym-
bols [57]:

Ω (`1m1, `2m2, `3m3) =

∫∫
Y †`1m1

(r̂)Y`2m2(r̂)Y`3m3(r̂) sin θdθdφ

= (−1)−m1

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3

0 0 0

)
×
(

`1 `2 `3

−m1 m2 m3

)
.

The Wigner 3j symbols, of the form:(
`1 `2 `3

m1 m2 m3

)
,

have an analytic solution, although explicitly calculating the solution for arbitrary sets of `
and m is tedious. There are several important restrictions on the sets of ` and m, however:
the 3j symbol is identically zero unless m1 + m2 + m3 = 0, `i + `j ≥ `k for i, j, k as any
permutation of the indices 1, 2, 3 [57]. For the special case when m1 = m2 = m3 = 0, the 3j
symbol is identically zero unless `1 + `2 + `3 is an even integer [57]. Finally the 3j symbol is
always real.

From these properties of the 3j symbol, we know that the integral of three spherical
harmonics, Ω (`1m1, `2m2, `3m3), obeys these properties:

1. The set of ` and m is constrained: Ω (`1m1, `2m2, `3m3) = 0 unless m1 +m2 +m3 = 0,
`i + `j ≥ `k for i, j, k as any permutation of the indices 1, 2, 3, and `1 + `2 + `3 is an
even integer.

2. Cyclic permutations are identical: Ω (`1m1, `2m2, `3m3) = Ω (`2m2, `3m3, `1m1)
= Ω (`3m3, `1m1, `2m2).

3. Self-adjoint: Ω (`1m1, `2m2, `3m3) = Ω† (`1m1, `2m2, `3m3).

These 3j symbols also obey a useful orthogonality relation [57]:

∑
m1,m2

(
`1 `2 `3

m1 m2 m3

)(
`1 `2 `4

m1 m2 m4

)
=

δ`3,`4δm3,m4

2`3 + 1
(C.1)

Using the properties of Wigner 3j symbols we can simply several expressions consisting of
partial sums over the product of several integrals of three spherical harmonics; these occur
in the expressions for transitions between different single-particle electronic states.
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The first expression is the following:

∑
m1,m

Ω (`1m1, `m, `2m2) Ω (`1m1, `m, `3m3) =
∑
m1,m

(−1)−m1

√
(2`1 + 1)(2`+ 1)(2`2 + 1)

4π

×
(
`1 ` `2

0 0 0

)(
`1 ` `2

−m1 m m2

)
×(−1)−m1

√
(2`1 + 1)(2`+ 1)(2`3 + 1)

4π

×
(
`1 ` `3

0 0 0

)(
`1 ` `3

−m1 m m3

)
=

1

4π
(2`i + 1)(2`+ 1)

√
(2`2 + 1)(2`3 + 1)

×
(
`1 ` `2

0 0 0

)(
`1 ` `3

0 0 0

)
×
∑
m1,m

(
`1 ` `2

−m1 m m2

)(
`1 ` `3

−m1 m m3

)

=
1

4π
(2`1 + 1)(2`+ 1)

(
`1 ` `2

0 0 0

)2

δ`2,`3δm2,m3

= W (`1, `, `2)δ`2,`3δm2,m3 (C.2)

The second expression is:∑
m1m2m3m4m5

Ω (`1m1, `2m2, `5m5) Ω (`3m3, `5m5, `7m7) Ω (`1m1, `6m6, `4m4) Ω (`2m2, `3m3, `4m4)

=
∑

m1m2m3m4m5

Ω (`1m1, `2m2, `5m5) Ω (`3m3, `5m5, `6m6) Ω (`1m1, `6m6, `4m4)

×Ω (`2m2, `3m3, `4m4) δ`6,`7δm6,m7 (C.3)

This can be demonstrated by numerically calculating the sum; an analytic proof would be
too tedious to be worthwhile.

Finally, Wigner 3j symbols with m1 = m2 = m3 = 0 have a relatively compact analytic
solution, given by: [57]

(
`1 `2 `3

0 0 0

)
= (−1)L

√
(2L− 2`1)!(2L− 2`2)!(2L− 2`3)!

(2L+ 1)!

L!

(L− `1)!(L− `2)!(L− `3)!
.

For X-ray dipole transitions, where `2 = 1, we know from the properties of Wigner 3j symbols
given above that for an arbitrary `1 (i.e. the known core level angular momentum), and
`2 = 1, the Wigner 3j symbol will be zero unless `3 = `1 ± 1 (this is the only way we can
have |`1 − 1| ≤ `3 ≤ `1 + 1 and the sum `1 + 1 + `3 be an even integer), so we can simplify
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this expression to:(
`1 1 `1 + 1
0 0 0

)
= (−1)`1+1

√
2(2`1)!

(2`1 + 3)!

(`1 + 1)!

(`1)!

= (−1)`1+1

√
2

(2`1 + 1)(2`1 + 2)(2`1 + 3)
(`1 + 1)(

`1 1 `1 + 1
0 0 0

)2

=
2(`1 + 1)2

(2`1 + 1)(2`1 + 2)(2`1 + 3)

=
`1 + 1

(2`1 + 1)(2`1 + 3)
, and(

`1 1 `1 − 1
0 0 0

)
= (−1)`1

√
2(2`1 − 2)!

(2`1 + 1)!

`1!

(`1 − 1)!

= (−1)`1

√
2

(2`1 − 1)(2`1)(2`1 + 1)
`1(

`1 1 `1 − 1
0 0 0

)2

=
2`2

1

(2`1 − 1)(2`1)(2`1 + 1)

=
`1

(2`1 − 1)(2`1 + 1)
.

Therefore:

W (`1, 1, `1 − 1) =
3

4π

(
`1

2`1 + 1

)
, and

W (`1, 1, `1 + 1) =
3

4π

(
`1 + 1

2`1 + 3

)
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Appendix D

X-ray Transitions in WIEN2k

As mentioned in Section 4.2, X-ray transitions from a core level to a band state (or vice
versa) can be evaluated entirely within the rMT sphere of the particular atomic site, since the
core wavefunction is zero outside this region. Without loss of generality, for the derivations
herein I will treat the initial state as a core level state and the final state as a band state (in

band n with momentum ~k):

ψi = u`c(r, E)Y`cmc(r̂)

ψf =
∑
`m

fn~k
`m(r, E)Y`m(r̂),

Strictly speaking, this just defines an absorption transition, but the end result is symmetric
under the exchange ψi ↔ ψf so the end result works for emission transitions as well. Since
all of these derivations are within the Schödinger picture of quantum mechanics, there are
no operators used to create or annihilate particles. Therefore one must know beforehand
which states are unoccupied and occupied, and restrict the calculation to the appropriate
states (i.e. occupied core levels and unoccupied conduction band states for X-ray absorption,
unoccupied core levels and occupied valence band states for X-ray emission).

D.1 X-ray Transitions in the APW Formalism

Within the APW basis (refer back to Section B.1) we have the following for the band states:

ψf =
∑
`m

an
~k

`mu`(r, E
n~k)Y`m(r̂)

We also need to sum across the core level magnetic moment mc, since that is not a good
quantum number (i.e. can not be experimentally selected), and we therefore have the X-ray
transition intensity at a given band and crystal momentum of:

In
~k(hν) =

∑
mc

∑
qq′

Y †1q(ê)Y1q′(ê)
∑
`m

∑
`′m′

(
an

~k
`′m′

)†
an

~k
`m

∫
r2dru`c(r, Ec)ru`(r, E

n~k)

×
∫

(r′)2dr′u`c(r
′, Ec)r

′u`′(r
′, En~k)Ω(`cmc, 1q, `m)Ω(`cmc, 1q

′, `′m′)δ(En~k − Ec − hν).

As mentioned in Section 4.2, when using unpolarized light or a polycrystalline sample, we can
integrate ê over a full sphere, and this introduces a factor of δqq′ . Subsequently we can sum
over the spherical harmonic terms, which introduce factors of δ``′ and δmm′ , so the expression
is reduced to:

In
~k(hν) =

∑
`

(∑
m

∣∣∣an~k`m∣∣∣2
)[∫

r2dru`c(r, Ec)ru`(r, E
n~k)

]2

W (`c, 1, `)δ(E
n~k − Ec − hν).
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Since we cannot observe the intensity from a specific band or crystal momentum, we should
sum over the former (restricting ourselves to occupied or unoccupied bands, for XES or XAS,
respectively) and integrate over the latter:

I(hν) =
∑
`

ρ`(hν + Ec)

[∫
r2dru`c(r, Ec)ru`(r, hν + Ec)

]2

W (`c, 1, `)

where ρ`(E) =
∑
m

∑
n

∫
dVk

∣∣∣an~k`m∣∣∣2 δ(En~k − E)

Since u`(r, E) is only dependent on the energy, not the band or crystal momentum, we were

justified in replacing u`(r, E
n~k) with u`(r, hν + Ec), to avoid including it in the summation

over bands and integral over crystal momentum. This is done because the X-ray intensity

is now the product of some transition matrix element
[∫
r2dru`c(r, Ec)ru`(r, E)

]2
W (`c, 1, `)

and the local, partial, DOS ρ`(E) [59, 60].

D.2 X-ray Transitions in the Mixed Basis Formalism

As mentioned in Section 3.4, the APW basis is almost never used in WIEN2k. Rather, each
state is either a LAPW or APW+lo state (refer back to Sections B.2 and B.4) and may
also include local orbitals (LAPW+LO, Section B.3 or APW+lo+Lo, Section B.5). For both
LAPW+LO or APW+lo+LO the band state (where there are j = 1...n` LOs for state `) is
defined as:

ψf =
∑
`m

(
an

~k
`mu`(r, E`) + bn

~k
`mu̇`(r, E`) +

∑
j

cj`mu`(r, E
j
` )

)
Y`m (r̂) ,

where the definitions of an
~k

`m, bn
~k

`m, and cj`m depend on whether the state is an APW or LAPW
state, and whether or not it has one or more LOs (if not, the cj`m = 0).

In this case the radial integral is no longer separable into a transition matrix part and a
density of states part. Although the integration is greatly simplified because there are only a
few radial wavefunctions for each ` (rather than one for every energy, as was the case with the

APW formalism), the square of the integral mixes the various an
~k

`m, bn
~k

`m, and cj`m coefficients.

Because of the partial DOS is an observable, it should not depend on the choice of basis
set. Therefore the APW method outlined in Section D.1 should be applicable for calculating
non-polarized XES and XAS spectra, even when using the partial DOS calculated with
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WIEN2k’s mixed basis set. The implicit argument here is:∣∣∣an~k`m;(APW)(r, E
n~k)
∣∣∣2 =

∣∣∣an~k`m∣∣∣2 +
∣∣∣bn~k`m∣∣∣2 ∫ r2dru̇2
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+

(
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`m

(
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~k
`m

)†
+
(
an

~k
`m

)†
bn

~k
`m

)∫
r2dru`(r, E`)u̇`(r, E`)

+
∑
j

(
an

~k
`m

(
cj`m
)†

+
(
an

~k
`m

)†
cj`m
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r2dru`(r, E`)u`(r, E

j
` )

+
∑
j

(
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(
cj`m
)†

+
(
bn

~k
`m

)†
cj`m

)∫
r2dru̇`(r, E`)u`(r, E

j
` )

+
∑
j 6=j′

(
cj`m

(
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′

`m

)†
+
(
cj`m
)†
cj

′

`m

)∫
r2dru`(r, E

j
` )u`(r, E

j′

` ),

(where it is assumed that all regular solutions to the radial Dirac equation u`(r, E) are
normalized over the atomic sphere) which is reasonable since the charge density at a given

band n and crystal momentum ~k should not depend on the choice of basis set. In fact, the
APW method outlined in Section D.1 might be preferable to explicitly calculating the X-ray
transitions from the LAPW basis because the former assures of a smoothly varying transition
matrix, and will be more accurate at high energies (in the conduction band) or low energies
(in the valence band) that are far from the single energy points E` used in the mixed basis
set.

The difference between an X-ray spectrum calculated with the APW method outlined
in Section D.1 and the explicit calculation using the mixed basis is shown in Figure D.1.
Note how the amplitude of the “LAPW” spectrum (here “LAPW” is used as a shorthand
for “mixed LAPW+LO and APW+lo+LO basis”) varies rather erratically with respect to
the Cu 3d DOS in the valence band, while the behaviour of the “APW” spectrum (here
“APW” is used as a shorthand for “using APW transition matrix elements and WIEN2k
partial DOS”) is much smoother. Note also how the APW 4s part smoothly increases in the
conduction band, while the LAPW 4s part is close to the partial DOS throughout. These
differences may be ascribed to the fact that WIEN2k uses the APW+lo basis set for the Cu
3d states, and the lo is centred in the middle of the valence band, while the Cu 4s states have
no localized orbital (lo or LO) in the valence or conduction regions. This mixed basis set has
been converged to a ground state charge density (i.e. expectation value of the wavefunction),
not an X-ray transition intensity (i.e. overlap of the wavefunction with a core wavefunction
and the dipole operator); hence when the basis set is used to calculate the X-ray transitions
explicitly, there are regions of anomalous intensity depending on whether a localized orbital
(lo or LO) is “switched on” or not.

However when the X-ray intensity depends on polarization dependence, the `′ 6= `, m′ 6= m
cross terms are not always zero, so the transition is not always proportional to some partial
DOS, and consequently the polarized X-ray spectra may need to be calculated explicitly from
the wavefunction in the original (mixed) basis set.

Since RXES using the Kramers-Heisenberg formula (refer back to Section 4.4) is just the
~k-dependent product of an XES and an XAS spectrum, it is fairly straightforward to obtain
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Figure D.1: A Cu L3 unbroadened X-ray spectra (with no distinction between oc-
cupied and unoccupied) calculated with the partial DOS and the APW transition ma-
trix elements (labelled as “APW”), and explicitly from the mixed LAPW+LO and
APW+lo+LO wavefunctions (labelled as “LAPW”), compared to the calculated par-
tial DOS. The X-ray spectrum `c + 1 and `c−1 parts, probing the Cu 3d and 4s states,
respectively, are shown separately.

a RXES spectrum using the APW or mixed basis methods.
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