
MOLECULAR CLONING AND FUNCTIONAL CHARACTERIZATION OF GENES INVOLVED IN THE 

BIOSYNTHESIS OF POLYUNSATURATED FATTY ACIDS IN OAT (AVENA SATIVA L.) 

 

 

 

 

 

 

 

A Thesis Submitted to the 

College of Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science 

In the Department of Food and Bioproduct Sciences 

College of Agriculture and Bioresources 

University of Saskatchewan 

Saskatoon, Saskatchewan 

Canada 

 

 

 

by 

 

 

 

MATTHEW HUNTER BERNARD 

 

 

 

 

 

© Matthew Hunter Bernard, May 2014. All Rights Reserved. 
  



i 

 

PERMISSION TO USE 

 

In presenting this thesis/dissertation in partial fulfillment of the requirements for a 

Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this 

University may make it freely available for inspection. I further agree that permission for 

copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may 

be granted by the professor or professors who supervised my thesis/dissertation work or, in their 

absence, by the Head of the Department or the Dean of the College in which my thesis work was 

done. It is understood that any copying or publication or use of this thesis/dissertation or parts 

thereof for financial gain shall not be allowed without my written permission. It is also 

understood that due recognition shall be given to me and to the University of Saskatchewan in 

any scholarly use which may be made of any material in my thesis/dissertation.  

 

DISCLAIMER 

 

Reference in this thesis/dissertation to any specific commercial products, process, or 

service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its 

endorsement, recommendation, or favoring by the University of Saskatchewan. The views and 

opinions of the author expressed herein do not state or reflect those of the University of 

Saskatchewan, and shall not be used for advertising or product endorsement purposes. 

 

Requests for permission to copy or to make other uses of materials in this 

thesis/dissertation in whole or part should be addressed to:  

 

The Head of the Department of Food and Bioproduct Sciences 

51 Campus Drive, University of Saskatchewan  

Saskatoon, Saskatchewan S7N 5A8  

Canada  

 

OR  

 

Dean College of Graduate Studies and Research  

University of Saskatchewan  

107 Administration Place  

Saskatoon, Saskatchewan S7N 5A2 Canada 

  



ii 

 

ABSTRACT 

 
This thesis research started with analysis of oat fatty acids by using three different 

transmethylation methods. Basic sodium methoxide was compared with traditional acidic 

methanol for the total fatty acid analysis, while diazomethane was used to analyze free fatty 

acids. Epoxy FAs were readily hydrolyzed to dihydroxy fatty acids under the acidic condition, 

which suggest an overestimation of hydroxyl fatty acids and underestimation of epoxy fatty acids 

in previous analyses. The sodium methoxide method proved more reliable to quantify the oat 

seed fatty acid composition. CDC Dancer oat seed analyzed here was comprised mostly of 

palmitic acid (PA), oleic acid (OA) and the polyunsaturated fatty acid (PUFA) linoleic acid (LA) 

in quantities of 23%, 32%, and 37% of total seed FA, respectively. As well, the seed contained 

small quantities of another PUFA, α-linolenic (ALA) and several unusual oxygenated fatty acids 

(UFAs), Δ15-hydroxy fatty acid (15HFA) and epoxy fatty acids in quantities of 0.85%, 0.68%, 

and 2.3%, respectively. This thesis further aimed to identify and assemble all FAD2-like genes 

from an oat Expressed-Sequence Tag (EST) database using FAD2 and FAD2-like proteins from 

other organisms as query sequences in order to clone all putative FAD2-like genes-of-interest 

(GOIs) from oat. From the contig assemblies of retrieved oat ESTs, four distinct, putative genes 

were identified. From the Δ12-desaturase (FAD2) queries, a putative FAD2-like (AsFAD2) gene 

was identified; the Δ15-desaturase (FAD3) queries revealed two putative oat FAD3-like 

(AsFAD3-1 and AsFAD3-2) genes, while an ω-3 desaturase (FAD7) query identified a fourth 

putative full-length FAD6-like coding sequence of two possible lengths, AsFADX and 

AsFADX+. The GOIs were then subcloned into a yeast expression vector and functionally 

characterized. AsFAD2a and AsFAD2b both demonstrated Δ12 desaturation on 18:1-9c 

substrate. AsFAD3-1 had no activity on any substrates present, while AsFAD3-2 exhibited weak 

Δ15-desaturation activity specifically on 18:2-9c,12c. Finally, AsFADX converted 18:1-9c to 

18:2-9c,12c, while AsFADX+ had no activity. Then, a comparative analysis of transcript levels 

of these GOIs via quantitative real-time PCR (qRT-PCR) was performed across oat germinating 

seed, root, leaf, and developing seed. AsFAD2 transcript abundance was generally much higher 

than AsFAD3-1 and AsFAD3-2 in all tissues. AsFAD3-1 mRNA level was highest in developing 

seed tissue, slightly lower in leaf tissue, and lowest in root. AsFAD3-2 mRNA was highest in 

germinating seed, and lowest in leaf tissue. In summary, the data produced from this thesis could 

be used to enhance breeding efforts for establishing oat cultivars with healthier oil content.  
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1. INTRODUCTION 

Oat (Avena sativa L.) is an annual cereal crop originating from the eastern Mediterranean 

area, gaining attention as a health food in recent years (Coffman, 1977). This crop has been 

popular as both a feed and food crop, due to its relatively unique seed composition amongst 

cereals: it contains cholesterol-lowering β-D-glucan, antioxidant & antimicrobial 

avenanthramides, the storage protein globulin, and an exceptionally high oil content unusually 

dispersed throughout the starchy endosperm (Coffman, 1977; Leonova et al., 2008; Leonova et 

al., 2010). The fatty acid (FA) composition of the seed oil is particularly interesting, not only for 

its quantity but also for the unique FAs present (Hamberg & Hamberg, 1996; Leonova et al., 

2008). In addition to the “healthy” polyunsaturated FAs (PUFAs) (Health Canada, 2012), oat 

seed oil contains several unusual oxygenated fatty acids (UFAs), some of which have not been 

observed in any other organism to date (Hamberg & Hamberg, 1996; Hamberg et al., 1998; 

Leonova et al., 2008). Despite its global yearly production of 25 million tonnes (Mt) 

(Agriculture Saskatchewan, 2008), the nutritional value of oat has not been optimized; thus, this 

thesis aimed to clone and functionally characterize genes underlying the biosynthesis of FAs in 

oat while establishing the most ideal method of FA analysis for such a diverse pool of FAs.  

Previous analyses mostly utilize acidic methanol to transmethylate oat FAs, which may 

hydrolyze unusual epoxy fatty acids resulting in their inaccurate quantification (Leonova et al., 

2008). Therefore, this thesis research started with reanalysis of oat fatty acids by using three 

different transmethylation methods. Sodium methoxide is an alkaline treatment which is less 

conventional than the more common sulfuric methanol transmethylation procedure, due to 

relative cost and safety concerns (Christie, 2011). The diazomethane method can be used to 

specifically analyze the free fatty acid (FFA) content. After eluting the fatty acid methyl esters 

(FAMEs) via gas chromatography (GC), comparing results of the different methods can 

demonstrate whether epoxy FAs were readily hydrolyzed to dihydroxy fatty acids under the 

acidic condition, which could result in an overestimation of hydroxyl fatty acids and 

underestimation of epoxy fatty acids. Then, the most ideal transmethylation procedure can be 

identified for future oat seed FA analyses.  
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The PUFAs and UFAs are the resulting product of the activity of Δ12-fatty acid desaturases 

(FAD2s) and FAD2-like enzymes believed to have diverged from FAD2 progenitors, such as 

Δ15-fatty acid desaturases (FAD3s) or fatty acid hydroxylases (FAHs) (van de Loo et al., 1995). 

It has been demonstrated previously that FAD2-like enzymes (both desaturases and 

hydroxylases) have evolved from FAD2 proteins, as those functional proteins (and thus, their 

underlying genes) share high homology (van de Loo et al., 1995; Broun et al., 1998). As such, 

this research will attempt to search for all FAD2-like genes from an oat Expressed-Sequence Tag 

(EST) database using FAD2 and FAD2-like proteins from other organisms as query sequences, 

then to clone all putative FAD2-like genes-of-interest (GOIs) from oat. Then, the putative GOIs 

can be cloned into a Saccharomyces cerevisiae (S. cerevisiae) yeast expression vector, 

transformed into yeast cells, fed the appropriate FA substrate(s), and finally functionally 

characterized.  

Comparative expression analyses of these GOIs via quantitative real-time PCR (qRT-PCR) is  

increasingly used for insight into GOI expression patterns (Rajwade et al., 2013); thus, it will be 

applied across oat germinating seed, root, leaf, and developing seed for comparative analysis of 

mRNA abundance patterns in oat. These data can then be used for marker-assisted breeding 

programs (Xu & Crouch, 2008; Kumar et al., 2009) to contribute to enhancing breeding efforts 

to continually improve oat as a health food and strengthen the Canadian agriculture industry.  
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2. LITERATURE SURVEY 

2.1. Dietary Oil and Human Health 

In a normal, healthy human diet, oil can have some of the most significant influences on an 

individual’s overall well-being. More specifically, the types of fatty acids (subcomponents of 

which oils are comprised) as well as the quantities ingested on a regular basis impact the long-

term health consequences of the individual (Health Canada, 2012). Fatty acids are under 

increasing scrutiny as they pertain to health issues especially in the North American diet, and 

include the omega (ω)-6 and ω-3 polyunsaturated fatty acids (PUFAs). These fatty acids have 

two or more double bonds, with the last double bond occurring six carbons (ω-6) and three 

carbons (ω-3) from the methyl end of the molecule, and may or may not include functional 

groups on the same molecule. These attributes all impact their function in a biological system. 

The physiological effects of these PUFAs in the diet can be widespread, and many reviews and 

studies have suggested how these dietary PUFAs may directly affect cardiovascular health, 

mental/neurological health, skeletal health, inflammation and immune response, and digestive 

tract function, amongst others (Pan et al., 2012; Davidson et al., 2011; Russo 2009;  Siddiqui et 

al., 2008; Dangour et al., 2012; Karr et al., 2011; Orchard et al., 2012; Cleland et al., 2005; 

Simopoulos, 2002; Simopoulos, 1998). 

Both ω-6 and ω-3 desaturation occur on long-chain fatty acid (LCFA) substrates, which 

are common in vegetable oils and, to a lesser extent, in cereal seed tissue; arguably, the most 

important plant PUFAs are 18:2-9c,12c (linoleic acid; LA), and 18:3-9c,12c,15c (α-linolenic 

acid; ALA) (Figure 1). Other ω-6 and ω-3 very long chain PUFAs (VLCPUFAs) crucial to 

human health are eicosapentaenoic acid (EPA; 20:5-5c,8c,11c,14c,17c), and docosahexaenoic 

acid (DHA; 22:6-4c,7c,10c,13c,16c,19c) (Figure 1). (For clarification, the ω-naming will be used 

in the context of general health discussion, while the Δ-naming will be used more specifically 

within biosynthesis context, as illustrated in Figure 1.) 

For quantities adequate for human physiological requirements, EPA, DHA, ALA and LA 

must be obtained from the diet. Although small amounts of EPA and DHA can be converted 
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from ALA substrate in humans, they are increasingly considered “conditionally essential” due to 

the small amount inefficiently produced. Due to the health benefits as well as their low 

production endogenously, an individual’s diet should provide these VLCPUFAs (Brenna, 2002; 

Carnielli et al., 1996). However, the diet must provide both essential PUFAs LA and ALA, since 

these two cannot be synthesized by humans (Brenna, 2002; Carnielli et al., 1996; Burdge et al., 

2002). The synthesis and metabolism of these FAs are summarized in Figure 2. 

Until relatively recently throughout history, the ratio of ω-6 to ω-3 fatty acids obtained 

through the diet was typically 1:1 or 2:1 and was ideal for human health; today in North 

America, this ratio has shifted to 10:1 to 25:1 (Simopoulos, 2002). Since earlier evidence was 

uncovered suggesting that not only the types of PUFAs but the relative ratio between ω-6 and ω-

3 fatty acids is vital to whether their effect on an individual’s health is beneficial or detrimental, 

the concept has been well reviewed and supported (Li et al., 1994; Simopoulos, 2002; Cleland et 

al., 2005; Schmitz & Ecker, 2008).  

The effect of the recent skewed ω-6 to ω-3 ratio may be most notable as it pertains to 

inflammation (Simopoulos, 2002). Eicosanoids, a group of fatty acid-derived signaling 

molecules, have vital functions relating to the health issues mentioned; yet, in excess, certain 

eicosanoids are pro-inflammatory, pro-thrombotic, and/or pro-atherogenic (Box A, Figure 1) (Li 

et al., 1994; Schmitz & Ecker, 2008). As the eicosanoids with negative physiological effects are 

oxidized derivatives of arachidonic acid (ARA; 20:4-5c,8c,11c,14c), and ARA is synthesized 

from LA precursor, excessive LA is viewed as a pro-inflammatory fatty acid (Simopoulos, 

2002). Furthermore, evidence suggests that ω-3 fatty acids such as ALA have antithetic effects in 

the presence of ω-6 fatty acids to mitigate ARA levels and thus minimize excess harmful 

eicosanoid levels, subsequently curtailing the dietary-induced inflammatory response and even 

promote biosynthesis of beneficial eicosanoids (Box B, Figure 1) such as neuroprotectants (Li et 

al., 1994; Schmitz & Ecker, 2008).The competing effects of LA and ALA in the inflammation 

pathway result from the Δ6 desaturase that can use both the fatty acid substrates, while 

concurrently, high LA can interfere with ALA desaturation and elongation (Simopoulos, 2002). 

Essentially, there is FA substrate competition by the enzymes (Figure 2) for ω-6 and ω-3 FAs to 

use in their subsequent conversion pathways (Schmitz & Ecker, 2008). Triggering the desaturase 

cascade from LA substrate in most mammals increases AA, which is largely the main precursor 

to several pro-inflammatory molecules such as prostaglandin H2 and its eicosanoid derivatives  
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Figure 1. Linoleic Acid (A), α-Linolenic Acid (B), Eicosapentaenoic Acid (C), and 

Docosahexaenoic Acid (D). The relative positions of the first carbon numbered with the ω-

nomenclature, from the methyl end, and with the Δ-nomenclature, from the carboxyl (polar) end 

(adapted from the American Oil Chemists’ Society, 2012c). 

 

 

Figure 2. Overview of the ω-6 and ω-3 (or, n-6 and n-3) synthesis pathways (Adapted from 

Schmitz & Ecker, 2008). Boxes A and B show metabolized eicosanoids of both pathways. 

A 
B 
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(Box A, Figure 2); conversely, ALA substrate is the precursor to EPA and thus DHA 

biosynthesis (Salem et al., 1999). Hence, maximizing ALA and minimizing LA content of the 

same food source is conducive to human biosynthetic pathways that favour the anti-

inflammatory pathway by diminishing prostaglandin H2 production – the same pharmacological 

goal as non-steroidal anti-inflammatory drugs (NSAIDs) (Kurumbail et al., 1996).  

Ideally, EPA, DHA, and the two essential fatty acids LA and ALA would be obtained 

directly from the food sources in which they are naturally and most abundantly found, and in 

ideal proportions. Sufficient EPA and DHA food sources for human demands, however, are 

mostly limited to marine organisms (Dieticians of Canada, 2013). The accessibility and cost of 

including these food sources in a daily diet become increasingly challenging as proximity from 

the marine sources lengthens. Thus, it is important to aim for all components of a diet to have an 

ω-3 to ω-6 ratio as close to optimal as possible. In the prairies, a source of these FAs is oat 

(Avena sativa L.), a crop with a strong history of production, and established markets. 

2.2. Oat 

Oat is a tall-standing, 2-flowered dark-green cereal with 7 to 9 nodules, preferring cooler 

climates such as the northern plains of the United States, Great Lakes area, and southern plains 

of Canada. Naturally, oat is autogamic (self-pollinating) (Coffman, 1977). Oat is sought after as 

feed crop, although around the world it is also an important food crop as it can yield up to 100 

bushels per acre (bu/acre) (Agriculture Saskatchewan, 2008). As a crop, Saskatchewan producers 

seed 2 million acres of oat, producing 2 million tonnes (Mt) per year, with production trending 

upward over 20 years (Saskatchewan Ministry of Agriculture, 2011). In Canada, 3.57Mt of oat 

per year is produced, accounting for 83% of total oat exports and globally; oat is a 25Mt annual 

commodity (Saskatchewan Ministry of Agriculture, 2011; Agriculture and Agri-Food Canada, 

2010a). This annual cereal is not a new crop; it was first cultivated in the Mediterranean area 

more than four thousand years ago. After being brought from Europe, the first evidence of oat in 

North America was in 1565, and, in Canada, in 1617 (Schrickel, 1986; Coffman, 1977).  

The Avena (A.) genus belongs to the Graminiae family, with a name derived from the Latin 

Aveo (“desire”), Ava (“nourishment”), and Avesa (“pasture”) (Coffman, 1977). Linnaeus (L.) 

first began characterizing cultivated oats in 1753 by comparing their morphologies (Coffman, 

1977). Four species were initially categorized: A. sterilis, which dropped seeds upon maturation; 

A. fatua (“fatuous”), named to imply “without value;” A. sativa L. (“sativ”), meaning “sown and 
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cultivated;” and A. nuda, lacking pericarp (it has been generally accepted, however, that A. nuda 

is a sub-species of A. sterilis) (Coffman, 1977). A. byzantine has been identified as the fourth 

distinct group of cultivated oat. While some dispute the origins of oat, Coffman declared that all 

current cultivated oats evolved from A. sterilis (1977), while Rajhathy and Thomas conclude that 

A. sativa evolved from either A. fatua or A. sterilis.  

Although these four species are distinct, they are all hexaploids and thus genetically belong 

to the same group. Oat exhibits polyploidy, the “heritable condition of possessing more than two 

complete sets of chromosomes” (Comai, 2005). The basic chromosome number (x) is 7 

(Rajhathy & Thomas, 1974). Indeed, three genetic classes of oat exist: Diploid (2x=14) which 

includes A. pilosa, A. ventricosa, A. prostrata, A. damascena, A. longiglumis, A. canariensis, A. 

wiestii, A. hirtula, and A. strigosa; the tetraploids (4x=28), comprised of A. barbata, A. 

vaviloviana, A. abyssinica, A. magna, and A. murphyi; and hexaploids (6x=42), comprised of A. 

fatua, A. sterilis, A. byzantina, and A. sativa, the latter from which all cultivars today are 

developed (Rajhathy & Thomas, 1974).  

Although the earliest forms of oat are believed to be the diploids, the tetraploids and 

hexaploids are generally believed to have diverged from the hybridization of various diploids to 

result in new combinations of two or more diploid genomes (A, B, C, and D). This resulted in 

more complex combinations of the A, C, or D genomes, typically to result in heterosis; 

speciation via polyploidy in plants is not uncommon, and it has been estimated that 15% to 35% 

of plants have evolved this way (Wood et al., 2009). Tetraploids are typically AADD or AACC 

(A. magna), but AABB also exist (A. barbata). These are segmental allopolyploids of hybrids of 

two partly homologous genomes and are bivalent in chromosome pairing. These more complex 

oat genomes are similar to diploids in morphology, karyotype, and biochemical properties. To 

date, it is unsure if the B genome is a distinct fourth genome since it is partially homologous to A 

and will not be discussed in this scope. While A. magna and A. murphyi are similar in 

morphology and hybridization of the two is possible, definite sterility exists amongst their 

offspring. Hybridization can occur between other tetraploid hybrids as well; when successfully 

hybridized, F2 generations are fertile but often regress to 2n or 4n genotype. 

The hexaploids (AACCDD) are well-suited for backcrossing for desirable traits, and their 

interspecie fertility grants their relative ease of cultivation. The precise progenitors of this class 

of allopolyploids is unclear; however, with regards to karyotype, pairing, morphology, and 
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geographical origins, A. canariensis and A. strigosa diploids are partially homologous with their 

A-genome, while A. ventricosa shows some homology with the C-genome. Furthermore, A. 

magna x A. murphyi crosses result in one shared chromosome with hexaploids. Conversely, A. 

damascene (diploid) exhibits no hybridization with A. sativa. 

The genetic duplication characteristic of hexaploids acts as a buffer for mutation. They are 

tolerant to chromosome loss, and some chromosomal homology exists between chromosomes in 

A. sativa; this enables compensation to occur in nullisomes, and these mutants are vigorous and 

fertile (Coffman, 1977). Despite this evidence of duplication, during meiosis, multivalents are 

uncommon and hexaploids typically form 21 bivalents. Wild hexaploid species are free-threshing 

(seeds separate by articulation at maturity), and have extended seed dormancy; contrary to this, 

the cultivars retain their seeds well and maturation is comparable to wheat. These agronomic 

characteristics as well as nutritional elements led to the selection of A. sativa for cultivar 

development, particularly for food use (Coffman, 1977). 

2.3. Oat Oil 

Oat is a somewhat unique cereal for several reasons. It is high in bran, soluble fibre (β-

glucans), contains avenanthramides (antioxidants) and its storage protein is globulin (Deshpande 

& Damodaran, 1990). It has a relatively high sulfur requirement amongst cereals, but is quite 

hardy as it is tolerant to moisture levels above and temperature ranges below those ideal for 

many cereals (Agriculture Saskatchewan, 2012; Coffman, 1977). Furthermore, it has the highest 

oil content of cereals reaching 16% of the dry weight (dwt) which can be highly heritable 

(Holland et al., 2001; Schrickel, 1986).   

Oat seed, as a cereal, mostly stores the carbon as starch or protein in the endosperm, 

whereas oil stores are largely found in the embryo (Ekman et al., 2008). Mature oat has the most 

varied neutral lipids of cereal cultivars; although lipids are primarily found in the bran and germ, 

the highest concentration of oil bodies (up to 8% of total oil content) are transiently deposited 

into the sub-aleurone cells of the endosperm (Schrickel, 1986; Banas et al., 2007; Heneen et al., 

2008). This partitioning of the oil into the same kernel endosperm cells where typically only 

starch accumulates is rare, but has been previously observed in monocots (Alexander & Seif, 

1963; Oo et al., 1985). Furthermore, oat is unique in that the oil is synthesized and accumulated 

relatively early in the development of the seed, while starch develops throughout the course of 

the seed development, although mechanisms are not yet fully understood (Ekman et al., 2008). 
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What is more, oat contains some minor quantities of oxygenated UFA variants mostly derived 

from PUFA precursors, a HFA and several epoxy FAs, in addition to the more common PUFAs 

previously mentioned (Leonova et al., 2008; Figure 3). 

In this thesis, the cereal’s exceptionally high total oil content and its quality are of interest. 

Of the total fatty acid content in oat, the pro-inflammatory LA can be as high as 43%; in contrast, 

the ALA (that can attenuate the potentially negative effects of LA) has only been found in 

amounts as high as 2% (Leonova et al., 2008; Table 1). 

In cultivated A. sativa-derived cultivars, highest LA quantities were found in Allyur 

(43.1%), Fakir (43.1%), and Astor (41.5%). Some other notes of interest include a negative 

correlation comparing polar lipid (PL) to triacylglycerol (TAG) as well as to 18:1-9c, but PL was 

positively correlated with 18:2-9c,12c content in hexaploids (Leonova et al., 2008). Alleles for 

high oil content in A. sativa and A. sterilis were found to be complementary. In wild oats, LA 

content is higher than oleic acid (OA) only in tetraploids, although this genetic class also had 

lower overall oil content (Leonova et al., 2008).  

Improving oat as a source of ω-3 and ω-6 fatty acids for human health necessitates deeper 

genetic insight of the cereal on which breeders and producers can capitalize. One challenge is 

that the oat genome has not yet been fully annotated. So to date, attention must be given to the 

genetic sequences underlying the ω-3 and ω-6 fatty acid biosynthesis in oat. The focus of this 

thesis is to elucidate all potential genes responsible for encoding enzymes similar to fatty acid 

desaturases (FAD-like) which most likely confer catalytic mechanisms responsible for PUFA 

synthesis in oat: Avena sativa Δ12 fatty acid desaturase (AsFAD2), and Avena sativa Δ15 fatty 

acid desaturase (AsFAD3). 

2.4. Main Functions of PUFAs 

As discussed, PUFAs from plants are indeed beneficial to human health. Yet, PUFAs in 

the plant cell membrane and the ability of plants to control and adjust their presence and 

composition are very pragmatic to their survival in their changing environments. The 

biosynthetic pathways of the vast variety of lipids or derivatives found in plants, as well as their 

functions, can be complex. Plant lipid fate within the organism may be essential to its survival, 

can be multifaceted, or may even be unknown under the context in which they have been studied 

to date. 
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Table 1. Oat Seed Fatty Acid Compositions of Various Cultivars (Percent of Total Fatty 

Acid) (Adapted from Leonova et al., 2008) 
Cultivar 14:0 16:0 16:1 18:0 18:1-

9 

18:1-

11 

18:2 18:3 20:1 20:x 7-

OH 

18:2 

15-

OH 

18:2 

Epoxy 

18:x 

Astor 0.2 16.4 0.3 1.3 34.4 1.0 41.5 1.6 0.7 0.2 0.0 2.4 0.4 

Lodi 0.2 16.4 0.3 1.4 34.5 1.0 40.9 1.6 0.7 0.2 0.1 2.3 0.5 

Borrus 0.3 16.2 0.2 1.3 36.5 1.0 39.1 1.6 0.8 0.2 0.1 6.1 0.3 

Spear 0.2 16.0 0.2 1.5 34.6 1.2 40.5 1.7 1.0 0.3 0.1 3.8 0.6 

Wright 0.3 17.5 0.3 1.5 39.9 1.2 35.6 1.2 1.0 0.3 0.1 2.2 0.4 

Fakir 0.2 15.1 0.1 1.3 35.1 1.1 43.1 1.5 0.5 0.1 0.1 3.0 0.4 

Allyur 0.2 17.4 0.4 1.2 31.4 1.3 43.1 2.1 0.8 0.2 0.1 3.2 0.4 

Argamak 0.2 16.0 0.1 1.6 36.2 1.0 40.8 1.3 0.8 0.3 0.1 3.1 0.3 

Torch 0.2 16.1 0.3 1.7 36.7 0.9 39 1.3 0.7 0.3 0.1 1.9 0.3 

Kynon 0.2 13.9 0.1 0.8 40.4 1.0 38.3 1.4 0.9 0.3 0.1 3.1 0.4 

mean 0.2 15.9 0.2 1.4 35.8 1.1 40.4 1.5 0.8 0.2 0.1 3.1 0.4 

 

 

 

 

Figure 3. The minor oxygenated oat UFAs (Adapted from Christie, 2012b & Buist, 2004). 
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Of the diverse functions contributed to a plant by these complex molecules, there are some 

outstanding and generally accepted characteristics (van Meer et al., 2008). Generally, lipids 

fulfill three main roles in the organism: for energy stores or as physical material reserves for 

further molecular structure biogenesis, mostly as neutral TAGs or steryl esters; as signal 

molecules and messengers of molecular recognition/signal transduction across membranes; and 

as an amphiphatic lipid-derived barrier between the cell contents and the external environment, 

while allowing for aggregation or dispersion of specific proteins integrated in the membrane 

itself (van Meer et al., 2008). Through these three main functional contributions within the cell, 

lipids offer vital adaptability for the organism’s survival. 

The fluid characteristic of the cell membrane allows for proper aggregation or dispersion 

of membrane-bound proteins as mentioned, facilitating the lateral movement for the appropriate 

healthy-state receptor-ligand reactions to occur (Helmreich, 2003). Other activities directly 

impacted by the physical state of a membrane include translocation of small molecules and ion 

channel function (Sukharev, 1999), receptor-associated protein kinases (Wood, 1999) and sensor 

proteins (Tokishita & Mizuno, 1994).  

The cell membrane is the primary site of environmentally-induced stress damage, since it 

is the separating barrier between the cell and the environment; as such, it is crucial for an 

organism to have the capacity to adjust membrane composition to adapt to the stress effects 

(Rodriguez-Vargas et al., 2007). More specifically, the membrane lipids create a dynamic barrier 

that, depending on the environmental temperature and the membrane lipid composition, can 

transition between solid (ordered) or fluid (disordered) phases, or dynamically exhibit two fluid 

phases (liquid-ordered and liquid-disordered) simultaneously (van Meer et al., 2008; Laroche et 

al., 2001). The membrane property changes are accomplished by adjusting the degree of 

movement as well as spatial positioning of each lipid comprising the membrane. The ability of 

lipid movement within the membrane as well as their positioning result largely from the physical 

structure of each fatty acid specie (and their relative abundances) from which the membrane is 

composed (Murata & Los, 1998), although the actual phase transition temperatures may vary 

depending on the ambient temperatures imposed on the cell (Laroche et al., 2001). There is 

evidence suggesting membrane lipid unsaturation directly affects membrane fluidity (Tasaka et 

al., 1996). These altered membrane lipid profiles are thus largely the aggregate sum of 

physically-modified end-product fatty acids that result from a lipid-modifying, membrane-bound 
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enzyme (or enzymes) acting upon one or several lipid substrate precursors, whose activity is 

induced by environmental stresses. Often, the stressors are temperatures lower than what is ideal. 

This adaptation of various plant tissues to tolerate temperature extremes has been known 

for decades and thoroughly reviewed (Lyons & Raison, 1970; Graham & Patterson, 1982; 

Nishida & Murata, 1996; Murata & Los, 1998; Browse & Xin, 2001; Los & Murata, 2004). 

Without the ability to adapt to reduced temperatures, the cell membrane is prone to physical 

damage due to the ice crystals formed (Morris et al., 1988) or due to equilibration from exposure 

to the hyperosmotic condition outside the cell (Wolfe & Bryant, 1999), or biochemical damage 

of oxidative stress resulting from thawing (Hermes-Lima & Storey, 1993). Preventing the 

membrane from rupturing while maintaining its fluidity is critical for ensuring biochemical 

processes can ensue as normal and thereby enabling the survival of the organism as a whole.  

As plants are obligated to adapt to the sometimes unpredictable temperatures inflicted by 

nature, mechanisms have arisen to induce a cascade of events to result in modified membrane 

lipid profiles (Murata & Los, 1998; Los & Murata, 2004). Particularly, the ability to increase the 

degree of unsaturated fatty acids of the membranes at lower temperatures has evolved in order to 

maintain fluidity and counter the otherwise normal tendency of the membrane to transition 

phases and lose fluidity (Tasaka et al., 1996). The mechanisms of cold-induced membrane lipid 

unsaturation are not thoroughly understood, but there is insight into the area. To date, it is 

believed that a membrane phase that increases membrane rigidification alters the physical 

conformation of membrane proteins, triggering transcription of one or more of three classes of 

cold-inducible genes (Inaba et al., 2003). It is believed that these triggers activate transcription of 

various genes involved with sulfate transport, histidine kinase (involved with cross-membrane 

signal transduction), RNA helicases, and RNA-binding proteins (potentially involved with 

transport or localization, or post-transcriptional regulation) which catalyze increased fatty acid 

desaturase transcription and/or activity (Inaba et al., 2003). Just as the diversity of the structures 

and functions of membrane lipids contribute to their function in the cell, so too do their 

abundance and proportions. 

The plant seed is a self-contained package assembled to bring all its genetic material from 

one generation to the next, with the necessary nutrients for this to occur. Once germination 

begins, the nutrient stores of the seed are diminished as they are redirected to the growing 

cotyledons, until the plant has established the ability to photosynthesize (Ekman et al., 2008). 
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Storage forms of carbon include protein, starch and oil; TAGs, of which oil is mostly comprised, 

are created during seed development as sucrose is directed from the leaves (Ekman et al., 2008). 

The physiological demands specific to the plant define the lipid profile. 

2.5. Biosynthesis of PUFAs: Fatty Acid Desaturation 

FADs belong to a unique sub-category of oxygenases, one of two classes of enzymes that 

can activate atmospheric dioxygen (O2) to catalyze one of several possible reactions (the other 

type, oxidase, is outside of the scope of this study) (Bugg, 2003). Typically, mono- or di- 

oxygenases result in the addition of one or two oxygen atoms into the catalytic product, 

respectively (Bugg, 2003). Similarly to oxygenases, desaturases involve the abstraction of 

hydrogen from a fatty acid substrate; yet, in contrast, desaturases do not incorporate oxygen into 

the product but rather create a double bond from the single bond precursor (Brash et al., 2012; 

Buist, 2004). Functionally, FADs introduce a double bond into an acyl chain, involving the 

reduction of a molecule of O2 with products being a FA with a new double bond, and water. At 

each double bond created, the first hydrogen abstraction occurs at the carbon atom closer to the 

carboxyl end; this is also the rate-limiting step of desaturation (Brash et al., 2012). The resulting 

double bond is typically cis (c) conformation, although small amounts of trans (t) conformation 

can occur (Shanklin & Cahoon, 1998; Brash et al., 2012). The general reaction is illustrated in 

Figure 4A. FADs, in general, can be soluble or integral membrane enzymes; membrane-bound 

FADs may be localized in the endoplasmic reticulum (ER) or plastid (Shanklin & Cahoon, 

1998), although the main site of lipid biosynthesis occurs by membrane-bound enzymes in the 

ER (Bell et al., 1981). 

The O2–dependent fatty acid desaturation or hydroxylation reaction is dependent upon 

two main factors (Buist, 2004). First, the orientation of the β carbon-hydrogen bond(s) (relative 

to the half-filled orbital of the carbon radical of the substrate) as indicated by white arrows in 

Figure 4, and secondly by the positioning of the diiron hydroxyl relative to the two carbons of 

the substrate on which the enzyme will act (Figure 4, A & B). Therefore, these O2–dependant 

reactions are generally believed to be regio- and stereo-specific, respectively, which probably 

accounts for their highly-specific (and sometimes bifunctional) nature. A third factor, the ligand 

and thermochemical environment of the diiron complex, has also been theorized to affect the 

reaction completion (Buist, 2004). 
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Figure 4. A general mechanism for fatty acid desaturation (A) and hydroxylation (B). These 

generally-accepted reaction mechanisms illustrate the slight but relatively stringent differences of 

the outcomes of the oxygen-bound diiron complex of the FAD or FAH enzyme relative to the 

specific position and orientation of the FA substrate. The interaction of the half-filled orbital of a 

carbon-centered radical intermediate is indicated by the half arrow. Roman numerals indicate 

oxidation state (Adapted from Buist, 2004). 

 

In higher organisms such as oat, double bonds of long-chain (16C to 20C) FAs are 

established aerobically via the action of FADs (Shanklin & Cahoon, 1998). This method of 

desaturation is more energetically costly than the anaerobic method (Bloch, 1969) facilitated by 

some lower organisms such as E. coli. This evolution of desaturation is thought to have occurred 

after the transition from anaerobic fermentation to the more efficient aerobic respiration had 

already occurred which, overall, sanctioned more available energy for desaturation as well as 

other energetically-costly processes (Shanklin & Cahoon, 1998). Each desaturation event to 

produce a new double bond requires two electrons donated from a reducing source; for ER-

bound FADs, this source is NADH, and for plastidial FADs, NADPH (Shanklin & Cahoon, 

1998). In both cases, the electron pairs are first transferred from the donor source to a carrier 

protein via a flavoprotein transfer step. For the ER proteins, the flavoprotein is cytochrome b5 

reductase, while the plastid employs ferredoxin-NADP
+
 oxidoreductase; the electron carrier 

proteins in the ER and plastid are cytochrome b5 and ferredoxin, respectively (Shanklin & 
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Cahoon, 1998). In lower organisms, the function of FADs is likely to allow for responsiveness to 

environmental conditions, to allow adjustment of membrane fluidity and thus enhance their 

adaptability and evolutionary potential.  

Several functional and genetic characteristics are conserved between FAD2s and FAD3s 

(Browse et al., 1993; van de Loo, 1995; Broun et al., 1998b; Napier, 2007). Membrane-bound 

FADs are present not only in higher plants, but also fungi, mammals, insects, and cyanobacteria 

(Shanklin et al., 1994).  The high homology between FAD2s and FAD3s has been known for 

quite some time. In 1990, the Δ12-oleate desaturase gene from the cyanobacterium Synechocystis 

PCC6803 was characterized in hopes of introducing better cold-tolerance to plants (Wada et al., 

1990). Not long after, Arondel et al. deduced the amino acid sequence of the product of a FAD3 

from Brassica napus using the homologous cDNA of a closely related organism, Arabidopsis 

thaliana (1992). The following year, the highly homologous relationship between the FADs was 

documented by Browse et al. (1993), not only uncovering homology between FAD-producing 

genes, but high genetic conservation across kingdoms.  

In 1994, a study was conducted by Shanklin et al. comparing the peptide sequence 

similarities of several eukaryotic FADs, each demonstrating enzymatic activity at one of the Δ6, 

Δ9, Δ12 and ω-3 positions of 18-carbon fatty acids. Aside from the obvious desaturase activity of 

each membrane-bound FAD, the likelihood of genetic homology was further suggested by the 

enzymatic catalytic commonalities of each: the requirement of iron for catalytic activity, the 

catalytic inhibition following the addition of metal chelators, their stereospecificity, and finally 

the kinetic isotope effects necessary to cleave C-H bonds. Moreover, O2 was required for all 

these enzymes to activate.  

Iron (Fe) is an ideal catalyst with these enzymes, as it is a Group 8 transition metal: its 

oxidation states span -2 to +6, it is reactive with both oxygen and water and can thus give rise to 

cations (IUPAC, 2013). The characteristics of shared catalytic sites led to further indications of 

homology between FADs, particularly when compared with the Mossbauer absorption spectrum 

of the only purified FAD, Δ9-stearoyl-CoA-desaturase from rat liver (Strittmatter et al., 1974). 

The spectrum of such a FAD enzyme exhibits the pattern of that of an oxo-bridged diiron cluster, 

as identified in hemerythrin, ribonucleotide reductase, and other model compounds by Sanders-

Loehr et al. (1989). Chosen for their catalytic characteristics, bacterially-produced, oxo-bridged 

diiron cluster-containing hydroxylases with unknown structures were compared to this: one from 
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an alkane hydroxylase from Pseudomonas (P.) oleovorans, and one from the P. putida methane 

monoxygenase with hydroxylase activity (Shanklin et al., 1994). A third enzyme exhibiting this 

catalytic centre, stearoyl-acyl carrier protein Δ9 desaturase originating from plants was also 

compared. Enzyme activity of all three enzymes was found to be O2-activated, with these oxo-

bridged diiron clusters (Figure 4) as the catalytic centre, adding evidence of divergence from one 

ancestral origin and further suggesting that not only FADs but FAHs are highly conserved and 

homologous (Shanklin et al., 1994). Later, Shanklin and Cahoon compared the primary 

structures of known diiron-binding proteins which interact with O2, such as methemerythrin, R2, 

and a subunit of ribonucleotide reductase, disclosing a highly conserved motif within a four-α-

helix bundle, [(D/E)X2H]2 (1998). After searching for homologs of this sequence in GenBank, 

several enzymes proved to contain this sequence, and due to the nature of the UFA-producing 

enzymes in which they were found, this sequence was proposed to be the consensus diiron-

binding motif (Shanklin & Cahoon, 1998). 

Prior to determining the amino acid sequence of these enzymes, Shanklin et al. identified 

conserved regions between all FADs and FAHs known at the time; the highest degree of 

similarity, 85%, was found amongst some Δ15FADs of plants (1994). Three specific histidine 

(HIS)-rich “boxes,” in sum containing eight conserved HIS residues, were identified in all 

proteins, with the following sequences: HX(3 or 4)H, HX(2 or 3)HH, and HX(2 or 3)HH (where 

numbers represent number of undefined or variable amino acids [X] between HIS residues; slight 

variability can occur depending on source organism). The HIS-boxes, to date, are conserved 

within each enzyme class as well; for example, all of the first HIS-box in FAD2s will have the 

pattern H(XY)HH. There was also high conservation of interval sequence length separating the 

three boxes. When the HIS residues were mutated in the Δ9-oleate desaturase, loss of enzymatic 

activity resulted, likely due to the inability of the HIS-lacking catalytic centre to properly bind 

ferric iron (Los & Murata, 2004). And, accounting for the homology between FADs and FAHs, 

it is reasonable to postulate that these conserved motifs are essential for desaturase as well as 

hydroxylase activity (Figure 4).  

To investigate structural orientation of FADs within the cell, hydropathy analysis was 

performed on two oxo-bridged diiron membrane proteins, an alkane hydroxylase and a xylene 

monooxygenase (Shanklin et al., 1994). This identified specific hydrophilic regions (containing 

the HIS boxes) interrupted by two hydrophobic regions in the amino acid sequence. The 
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hydrophobic regions were long enough to span a membrane, strongly suggesting a membrane-

bound characteristic, and the HIS boxes are believed to be on the cytosolic side of the membrane 

for fatty acid substrate modification. These characteristics were apparent in all FADs in the 

study. In 2001, Dyer and Mullen confirmed that both the C-termini and N-termini of FAD2s and 

FAD3s are oriented on the cytosolic side of the ER membrane. Soon after, McCartney et al. 

determined that both of these FAD types are co-translationally inserted into the ER membrane by 

means of a signal recognition particle (SRP)-mediated mechanism (2004). A study by 

McCartney et al. surveyed the C-termini of various membrane-bound enzymes, including FAD2s 

and FAD3s (2003). Both FAD2s and FAD3s contain conserved motifs, although unique 

depending on which position the FAD acts upon. These conserved motifs are both pentapeptide 

sequences of the C-termini: an aromatic amino acid-containing -YNNKL motif in FAD2, and a 

dilysine ER retrieval motif, -KSKIN, in FAD3. The localization of these FADs in the ER 

membrane is facilitated by the recognition of the retrieval motif pentapeptide sequences by post-

ER compartments, enabling co-translational integration of the enzyme into the membrane. As 

McCartney et al. describe, two molecular targeting signals are required (2003). One signal sorts 

the molecules into the ER, while the second one retains or retrieves proteins in the ER from other 

pathway compartments. Mutation of these conserved pentapeptide sequences resulted in less 

efficient localization of the enzymes at the membranes, and thus reduced enzyme activity. 

Meesapyodsuk et al. confirmed the catalytic necessity of two conserved amino acid residues 

relative to the HIS boxes for different desaturation activities: two residues preceding the first HIS 

box, and ten residues in front of the second HIS box (2007). Meesapyodsuk et al. also found C-

termini sequences to be significant in regioselectivity of desaturases, as ratios of Δ12 to Δ15 

desaturated C18 FAs were affected after the adjustment of the C-termini (2007). The abundant 

evidence suggesting the high homology and close evolutionary relationship between FAD2s, 

FAD3s, and FAHs, may be imperative when investigating oat genes involved in PUFA 

biosynthesis.  

2.6. Biosynthesis of Epoxy & Hydroxy Fatty Acids 

The enzymes responsible for synthesizing HFAs and epoxy FAs are believed to be 

divergent of a FAD2 progenitor, and utilize similar FA substrates as those of FADs (van de Loo 

et al., 1995; Broun et al., 1998a). Both FA epoxygenases and hydroxylases are believed to be 

extraplastidial and localized in the ER membrane of the plant, catalyzing substrate to product 
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reactions on FA substrate subcomponents of phosphatidylcholine (PC), although there is 

variation in their catalytic mechanisms. Both types of UFAs are mostly found in the seed, in 

contrast to many PUFAs which can be found throughout various tissues. 

To date, three distinct biosynthetic pathways have been identified for the biosynthesis of 

epoxy FAs, although they all replace a double bond of a FA substrate with an epoxy group. One 

pathway catalyzes this transformation via a FAD2-like epoxygenase (Lee et al., 1998), while 

another similar pathway achieves the same end-product but via a p450-like epoxygenase 

(Cahoon et al., 2002). A third epoxygenation pathway catalyzed by the activity of a 

peroxygenase was more recently confirmed (Meesapyodsuk & Qiu, 2011). As the biosynthesis of 

epoxy FA in oat has been elucidated, it is outside the scope of this study (Meesapyodsuk & Qiu, 

2011). 

In the context of cloning genes related to PUFA biosynthesis, oat offers a minor, unique 

opportunity to confirm a new FAH. As oat contains several oxygenated UFAs (Leonova et al., 

2008), aside from the FADs in this study and the epoxy FA-producing peroxygenase, there 

remains only one unknown PUFA-related oat gene (encoding for another UFA-producing 

enzyme) to characterize : Δ15 fatty acid hydroxylase (FAH15). Moreover, it is the only known 

source of avenoleic acid (15-OH 18:2-9c,12c; 15HFA) (Hamberg & Hamberg, 1996). In 

cultivated A. sativa-derived cultivars, highest avenoleic acid content was uncovered in Borrus 

(6.1%), Spear (3.8%), and Allyur (3.2%). Furthermore, in wild and cultivated oat, locations of 

avenoleic acid included 12.7% and 9.8% in phospholipid, 1.2% and 1.0% in 1,3-DAG, and 0.4% 

and 2.4% in TAG1, respectively. Aside from these neutral lipid fractions, all other locations were 

comprised of less than 1.0% avenoleic acid. Although epoxy fatty acids have been UFAs of 

interest in the past, analyses confirmed significantly higher levels of 15-OH 18:2-9c,12c than 

epoxy fatty acids (Meesapyodsuk & Qiu, 2011; Hamberg & Hamberg, 1996; Ishimaru & 

Yamazaki, 1977; Leonova et al., 2008). Cultivars typically had lower OA than LA, yet had lower 

15HFA content, suggesting the hydroxylase in wild oat has higher activity than in cultivars. 

15HFA, although present in very small quantities in the oat seed, may impose undesirable 

physiological effects once ingested (Leonova et al., 2008). Hydroxy fatty acids are known to 

have laxative effects and induce uterus contraction via interaction with prostaglandin EP3 

receptors, as well as cause abnormal myoelectric patterns in mammalian small intestine resulting 

in altered motility (Tunaru et al., 2012; Mathias et al., 1978). Minimizing or eliminating this 
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UFA would enhance the healthfulness of oat even further. Because the hydroxylase responsible 

for producing this unusual fatty acid is hypothesized to be divergent of and highly homologous 

to a FAD (van de Loo et al., 1995; Hamberg et al., 1998), this study will also attempt to clone 

and functionally characterize the putative Δ15 hydroxylase, FAH15.  

The precise biosynthesis behind this HFA production in plants is unknown, although 

plant FA hydroxylases are believed to have diverged from a FAD2 (van de Loo et al., 1995). In 

contrast to the PUFAs and epoxy FAs, though, large quantities of the HFA in oat have been 

found on a digalactosyldiacylglycerol (DGDG) rather than PC (Hamberg et al., 1998; Figure 5). 

This 15HFA was present in an estolide at the sn-2 position of the DGDG; this makes the oat 

HFA somewhat unique, and even more unusual is their presence as an oxygenated FA in a 

galactolipid. This combination is rare not only in plants but in general, and has only been 

observed previously in algae (Jiang & Gerwick, 1990; Jiang & Gerwick, 1991). 

van de Loo et al. (1995) identified the first Δ12 fatty acid hydroxylase (FAH12) in 

Ricinus communis L. (castor bean) that has high homology to a FAD2 from Arabidopsis. As the 

lipid content of castor bean is nearly all 12-hydroxyoctadec-cis-9-enoic acid (ricinoleic acid; 12-

OH 18:1-9) which is derived from oleic acid substrate, and FAD2 introduces a double bond at 

the Δ12 position of oleic acid, it was hypothesized that the FAH12 was likely derived from 

FAD2 (van de Loo et al., 1995; Figure 6). After transformation of Nicotiana tabacum – to which 

ricinoleic acid is not endogenous – with the FAH12 clone, GC-MS confirmed production and 

accumulation of ricinoleic acid in the Nicotiana tabacum seeds. 

Furthermore, a FAH12 of non-plant origin was cloned and functionally characterized in 

Claviceps purpurea (Meesapysodsuk & Qiu, 2008). By isolating RNA from tissue in which the 

FAH was known to be present, cDNA was derived for PCR amplification using highly conserved 

sequences of fungal FADs for consensus sequences (both Δ12 and Δ15); likewise, primers were 

developed, and homology of the successful clones with other plant and fungal FADs was 

validated via BLASTp database searches (Meesapyodsuk & Qiu, 2008). Furthermore, they 

confirmed function of this previously-uncharacterized FAH12 in yeast via the identification of its 

product, as the product was non-endogenous to the new host.  

A study by Broun et al. strongly supports the homology of FADs and FAHs (1998a). 

Comparing the amino acid sequences of FAD2s of several species revealed seven critical 

conserved amino acid residues; in the FAHs of the same position, some of these residues were  
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Figure 5. The sn-2, Δ15-OH 18:2-9c,12c estolide-containing DGDG (1-[(9′Z),(12′Z)-

octadecadienoyl]-2-[(15″R)-{(9′″Z),(12′″Z)-octadecadienoyloxy}-(9″Z),(12″Z)-

octadecadienoyl]-3-(α-D-galactopyranosyl-1-6-β-D-galactopyranosyl)-glycerol) (Adapted from 

Hamberg et al., 1998). 

 

 

divergent. The FAH12 of L. fendleri showed 81% identity with the FAD2 of A. thaliana, and 

71% identity with the FAH12 of R. communis. Using site-directed mutagenesis, the seven 

residues in the FAH12 of L. fendleri were replaced with the corresponding equivalent residues 

from FAD2 of A. thaliana, and vice versa. Both mutated enzymes showed dual functionality, 

both desaturating and hydroxylating oleic acid, and verifying the highly homologous nature of 

the enzymes. By focusing on those closest to the catalytic HIS sites, the conserved residues were 

further narrowed down to discover only six of these residues were required to convert the FAD 

to a FAH, and only four needed for conversion of the FAH to a FAD. The homology of these 

enzyme types is thought to be paralleled in FADs and FAHs with activity at other molecular 

positions. Although the majority of these studies focuses on enzymes having activity on the 

substrate Δ12 position, the theory will be applied to Avena spp. enzymes putatively thought to 

have activity on the Δ12 and Δ15 positions of substrates, as illustrated in Figure 7. 
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Figure 6. The conversion of oleic acid to either linoleic acid, by a FAD2, or to ricinoleic acid 

(in castor bean) by a FAD2-divergent hydroxylase, Δ12FAH. The dashed and dotted arrows 

show the known pathways through which substrate is converted to product, while the solid arrow 

indicates the evolutionary relationship between the two enzymes (Adapted from van de Loo et 

al., 1995; Buist, 2004). 

 

 

 

 

 

 

 

Figure 7. The putative biosynthetic pathway of avenoleate (Δ15-OH 18:2-9c,12c) in oat 

seed. The dashed arrows show the putative pathways through which oleic acid substrate is 

converted to either Δ15-OH 18:2-9c,12c or 18:3-9c,12c,15c, while the solid arrows with question 

marks indicate potential divergence of the oat Δ15FAH from either a FAD2 or FAD3 progenitor. 

As=Avena sativa 
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Other requirements, in addition to those suggested previously, may have effects on PUFA 

and UFA production and on their accumulation (Napier, 2007; Lu et al., 2009). Since 

cytochrome b5 is the preferred electron donor for many plant FA-modifying enzymes, and thus 

cytochrome b5 reductase is required, expression of this reductase in the transgenic plant is also 

crucial – particularly for those expressing a hydroxylase (Carlsson et al., 2011). The high 

accumulation of the HFA ricinoleic acid in castor bean, derived from oleic acid and with little to 

no accumulation at its site of synthesis at the membrane, further suggests that there are additional 

mechanisms required in addition to the modifying enzyme (Napier, 2007). In Arabidopsis, a 

study by Lu et al. distinguished a gene whose product is phosphatidylcholine:diacylglycerol 

cholinephosphotransferase (PDCT), an enzyme that regulates TAG composition via the transfer 

of 18:1 to PC for modification, then brings the newly desaturated FAs for TAG synthesis (2009). 

PDCT is needed to transfer the PC head group from PC to DAG then to TAG, and once 

eliminated, lack of PDCT reduced seed TAG by 40% (Lu et al., 2009). Thus, presence of a 

functional PDCT can be crucial for significant accumulation & assembly of UFAs into TAGs.  

Abiotic factors may also be significant for the successful accumulation of PUFA and UFAs in 

seeds. A study by Los and Murata (1998) demonstrated noticeable differences in the presence 

and concentrations of different unsaturated FAs in A. thaliana with changes in temperatures; a 

lower temperature triggered more production of desaturated FAs and to higher degrees of 

desaturation. A higher level of desaturation maintains membrane fluidity at lower temperatures 

(Los & Murata, 1998). Although the study was focused on desaturase activity, it suggests that if 

the function of the hydroxylase in developing tissue is fully understood, then control over the 

catalyst of its production may be achieved in a manner similar to that of desaturases.   

Once the genes involved in the biosynthesis of PUFAs in oat have been identified, oat 

breeders can exploit these as targets for marker-assisted selection (MAS) in breeding programs. 

Selecting for or against specific PUFA-related traits by targeting these GOIs will enhance the 

efficiency by which new, healthier oat cultivars can be established. The practicality of this 

concept has been successfully achieved and reviewed (Xu & Crouch, 2008; Kumar et al., 2009). 

This will contribute to both the accessibility of healthier food options, and to enhancing the 

Canadian agriculture economy.  
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3. RESEARCH STUDIES 

3.1. Study 1: Oat Fatty Acid Survey 

3.1.1. Abstract 

In attempts to expand the genetic diversity available for oat breeding efforts aiming to 

optimize oat oil for human health, the FA composition of oat has been examined previously. 

However, these studies typically neglect UFAs such as HFAs and epoxy FAs; these UFAs are 

naturally present in very small amounts. Epoxy FAs are prone to degradation via the acidic 

conditions of the typical transmethylation process, employed previously. A broken epoxy group 

could result in two free hydroxyl groups on consecutive carbons; artifacts of the transmethylation 

process can overestimate total HFA and underestimate total epoxy FA content. To determine 

presence, identity, and relative quantity of PUFAs and UFAs as well as more common FAs for 

establishing the complete FA profile, oat seed FAs were extracted from CDC Dancer cultivar 

and transmethylated with three different methods: a typical acidic method used 1% sulfuric 

methanol for comparison to the second basic method which used sodium methoxide, and the 

third method employed diazomethane to allow identification of free fatty acids (FFAs) only. To 

discriminate HFAs from the pool of oat seed FAs, trimethylsilyl (TMS) derivatization was also 

carried out on a duplicate of each sample. TMS treatment of HFA derivatizes any free hydroxyl 

group present on a FA through an etherification reaction (Langer, 1958; Christie, 2011); the 

derivatized molecule acquires a different overall polarity relative to its non-derivatized form, 

discernible by a shifted peak on the chromatogram output of the TMS-derivatized sample. 

Chromatograms were generated for each sample via gas chromatography (GC), and mass 

spectrometry assisted identification of UFAs via GC-MS. Additionally, the derivatized 

duplicates from both alkaline and acidic treatments can be compared to distinguish whether or 

not poly-hydroxyl transmethylation artifacts result. The comparisons showed that the epoxy FAs 

were indeed degraded in the acidic method resulting in an overestimation of HFAs in previous 

studies and inaccurate identification of a dihydroxy FA that was actually an artifact from the 

acidic conditions. The reliable alkaline-treated sample was used to quantify the oat seed FAs. 
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The major proportions of the total FAs were comprised of 18:2-9c,12c, 18:1-9c, and 16:0, in 

quantities of 37.3%, 31.9%, and 23.1%, respectively. The UFA were 2.35% and 0.68% for total 

epoxy FAs and 15-OH 18:2-9c,12c, respectively. The proportion of the main PUFA of interest in 

this study, 18:3-9c,12c,15c was present as 0.85% of total FAs. Quantities of all FAs here were in 

agreement with previous literature, except that 15HFA quantity was approximately 4-fold lower 

and epoxy FA quantity was more than 4-fold higher than mean values in literature. 

3.1.2. Hypothesis 

Analyses of oat seed FAs to date have overestimated HFA content and underestimated 

epoxy FA content due to the acidic transmethylation procedure used, as epoxy FAs are sensitive 

to acid and yield unnatural hydroxy groups once hydrolyzed from acidic conditions. Because of 

this, employing a basic transmethylation procedure will preserve all UFA integrity and thus give 

a more reliable overall FA profile of the mature seed, allowing accurate identification of the 

PUFAs and UFAs of interest to this study. 

3.1.3. Experimental Approach 

3.1.3.1. Oat Tissue Growth and Harvest 

A paper filter was placed in the bottom of 2 gallon pots, and then filled with Sunshine 

LG3 peat growth mix. About 20 seeds were inserted 4 cm below the surface, and pots were 

watered with tap water 2-3 times per week, as needed. Water-soluble fertilizer (20-20-20 N-P-K) 

was mixed with water starting 10 days post-emergence, and added at a rate of 0.35g/L once per 

week. After 2 weeks, 30g of slow-release fertilizer (14-14-14 (N-P-K)) was spread over the 

surface of the growth medium of each pot. Within the growth chambers, a photoperiod of 18 

hours was used, with a 22°C day temperature, and 16°C night temperature at ambient relative 

humidity.  

Once tillering began, pots were weeded back to 6 plants per pot. Those plants removed 

were harvested for leaf, stem, and root tissue, placed immediately in 50mL Falcon tubes in liquid 

nitrogen for transport, and stored at -80°C. The remaining plants were allowed to grow to milky-

stage seed; at each watering, tillers were cut at the crown level to allow the main culm to grow. 

Once milky-stage seeds were developed, hulls were removed and seeds immediately placed in a 

50mL Falcon tube in liquid nitrogen for transport to -80°C for storage. Concurrently, leaf, stem, 

and root tissue were harvested and stored in the same fashion.  
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Seeds were germinated by placing seeds in between several folds of paper towel inside a 

petri dish. The paper was regularly dampened at room temperature to keep moist over 7 days, 

and stored in aluminum foil to keep dark. 

3.1.3.2. Fatty Acid Analyses 

Ten seeds were placed in a dichloromethane (CH2Cl2)-washed 15mL glass screw-top 

tube, and soaked in 6mL chloroform/methanol (2:1 v/v). After 15 minutes, the seeds were 

ground as fine as possible using a glass rod. The total sample and solution was centrifuged at 

2500 rpm for 5 minutes, after which the total supernatant was transferred to a new CH2Cl2-

washed 15mL glass tube. 2mL of 0.9% NaCl water was added, and again centrifuged at 2500 

rpm for 5 minutes. The chloroform phase was extracted, and divided into three equal portions, 

each aliquoted into a new CH2Cl2-washed 15mL glass tube. The three aliquots were dried under 

a stream of N2 gas, and the protocols Total Fatty Acid – Basic method, Total Fatty Acid – Acidic 

method, and Free Fatty Acid methods were performed. 

 Total Fatty Acid – Basic method 3.1.3.2.1.

FAs were methylated using a basic treatment to preserve the acid-sensitive epoxy groups 

of the epoxy FAs. To one N2-dried sample, 2mL of 0.5M sodium methoxide was added. The 

sample was incubated at 50°C for 30 minutes, and then cooled on ice. The sample was then 

acidified with 6M glacial acetic acid to pH 3-4 dropwise with a Pasteur pipette. Then, 1mL of 

0.9% NaCl water and 2mL of hexane was added; the tube was centrifuged at 2500rpm for 5 

minutes. The hexane phase was transferred to a clean CH2Cl2-washed 15mL glass tube and set 

aside. 2mL hexane was added to the remaining water phase for a second extraction. This solution 

was centrifuged at 2500 rpm for another 5 minutes, and this separated hexane phase was 

combined with the first hexane phase and then dried under a stream of N2 gas. 100µL was added 

to resolubilize the lipid sample, and this volume was divided into two clean insert-containing GC 

screw-top vials. One of these was used directly for GC analysis. The other was dried under a 

stream of N2 gas, followed by addition of 50µL trimethylsilylating reagent (TMS), 30 minute 

incubation at 80°C, and then analyzed by GC-MS. 

 Total Fatty Acid – Acidic method 3.1.3.2.2.

To another one of the N2-dried samples, of 2mL of 1% (v/v) sulfuric methanol was added 

and allowed to sit at room temperature for 5 minutes. The sample was then incubated for 60 mins 
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at 80°C. The samples were cooled on ice before adding 1mL of 0.9%NaCl H2O and 2mL hexane. 

The tubes were then vortexed and centrifuged for 5 mins at 2500 rpm. The upper phase was 

extracted with at 2mL glass pipette, placed in a new CH2Cl2-washed 15mL glass tube, and dried 

under nitrogen gas. 100µL of hexane was added to the dried sample, gently vortexed, after which 

50µL from each sample was aliquoted in duplicate to insert-containing screw-top GC vials. 

Sample in one tube was analyzed directly via GC, while 50µL of TMS was added to the other, 

incubated at 80°C for 30 minutes, and analyzed via GC-MS. 

 Free Fatty Acid 3.1.3.2.3.

To the final N2-dried aliquot, 50µL methanol and 100µL diazomethane were added. The 

sample was incubated at room temperature for 5 minutes, then dried again under a stream of N2-

gas. After drying, 100 µL ethyl acetate was added; after resolubilizing the lipid sample, the 

volume was separated into two 50 µL aliquots, each in a clean insert-containing screw-top GC 

vial. One was analyzed directly via GC-MS, while the other was dried under N2-gas. 50µL TMS 

was added, incubated at 80°C for 30 minutes, and then analyzed via GC-MS. A FA standard 

sample was analyzed with all GC and MS samples. The standard contained the following FAs: 

14:0, 14:1, 15:0, 16:0, 16:1-9c, 17:0, 18:0, 18:1-9c, 18:1-11c, 18:2-9c,12c, 18:3-6c,9c,12c, 18:3-

9c,12c,15c, 20:0, 20:1-5c, 20:1-8c, 20:1-11c, 20:2-11c,14c, 22:0, 22:1-13c, 24:0, 24:1-15c, and 

26:0. 

3.1.4. Results 

3.1.4.1. Oat Tissue Growth and Harvest 

CDC Dancer was grown to 23 days post flowering to allow seed to reach the milky-stage 

of development. Seeds were harvested by hand and immediately placed in a 50mL plastic Falcon 

tube cooled by suspension in liquid nitrogen. Samples were either used directly, or stored at -

80°C. Root, stem, and leaf tissue were also harvested at the same time in the same manner and 

stored at -80°C for RNA isolation. 

3.1.4.2. Fatty Acid Analyses 

The alkaline sodium methoxide fatty acid methyl esterification and the acidic sulfuric 

methanol fatty acid methyl esterification methods were performed on duplicates of the same oat 

lipid samples. Both methods are used to transmethylate all fatty acids esterified on neutral lipids 
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such as triacylglycerols (TAGs) and on polar lipids such as glycolipids (GLs) and phospholipids 

(PLs). In the acidic treatment, the fatty acid is protonated to result in an oxonium ion, which then 

undergoes exchange reaction with an alcohol resulting in an intermediate; finally, the 

intermediate becomes an ester after losing a proton. In contrast, in the basic condition, the fatty 

acid forms an anionic intermediate from an ester, and can then form a new ester with a methyl 

group. 

Samples were analyzed via GC-MS, thus identity comparisons are in the form of 

chromatographic peaks representing relative retention time in the GC column; identities were 

verified by using a FA standard (not pictured) containing FAs with known identities and 

retention times as well as MS spectra which could be compared to an MS spectra library 

containing spectra of previously-identified compounds. 

3.1.4.3. Total Fatty Acid – Basic method 

Using the basic methyl esterification protocol, the FAs of both the FAME sample and the 

TMS-derivatized FAME (TMS FAME) sample were analyzed using GC-MS (Figure 8). 

Common FAs were identified by comparing relative retention times with a FA standard 

(not pictured), as well as GC-MS. UFAs whose positions did not coincide with those of the 

standard were investigated with GC-MS. As it was believed the shifted peak between the 

chromatograms A & B of Figure 8 was 15-OH 18:2-9c,12c, MS was performed on the labelled 

15HFA peak (Figure 8A) to verify; the results here agree with data from the MS library (Figure 

9). 

One peak shifted after TMS derivatization, as indicated by an asterisk in Figure 8 B. The 

mass spectrum of this peak was compared with that of a published TMS-derivatized 15HFA 

spectrum (Figure 10). 

Figure 9 and Figure 10 confirm the only peak that had shifted (in Figure 8) represents the 

15HFA, and provides evidence of the mild nature and thus appropriateness of this method for FA 

analysis of samples containing such UFAs as the epoxy FAs were not degraded (maintained 

positions) across both chromatograms of Figure 8 while the HFAs can be selectively identified. 

The identities of the epoxy FA peaks (or, those unshifted peaks with elution times 

different from the FAs of the standard) in Figure 8A were also investigated via MS to provide 

evidence of the reliability of the mild nature of the alkaline method (Figure 11). 
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Figure 8. GC analysis of FAMEs of CDC Dancer mature seeds derived from the basic 

transmethylation (A) and of the duplicate TMS-derivatized FAMEs (B). One shifted peak 

between the two treatments is indicated by an asterisk. 

 

 

 

 

Figure 9. Mass spectrum and predicted structure of the 15HFA FAME.  

The spectrum of the 15-OH 18:2-9c,12c peak in Figure 8A (A), compared to the published 

spectrum of the same HFA (B) (Christie, 2012)). 

FAME 

TMS FAME 
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Figure 10.  Mass spectrum and predicted structure of the TMS-derivatized putative 15HFA 

FAME. Spectrum of the peak marked with an asterisk in Figure 8B, compared to the published 

spectrum of the same derivatized HFA (American Oil Chemists’ Society, 2012). 

 

 

Figure 11. MS spectrum of 9,10-epoxy 18:0 peak (as labelled in Figure 1A) (A), compared to a 

published spectrum (B, Meesapyodsuk & Qiu, 2011). 

The MS spectrum (Figure 11A) of the larger epoxy peak of 9,10-epoxy 18:0 (labelled in 

Figure 8A) is identical to the published spectrum (Figure 11B), confirming its presence here. The 

predicted identities of the two minor epoxy FAs, with peaks labelled “?A” and “?B” in Figure 

8A, were less definitive.  

The mass spectrum (Figure 12A) from peak “?A” is similar, but not identical to the 

reference spectrum of methyl 9,10-epoxy-octadec-12-enoate (9,10-epoxy 18:1-12c ), while the 

spectrum from peak “?B” is less clear yet the main ionic species of which it is comprised are 

similar to the reference for methyl 12,13-epoxy-octadec-9-enoate (12,13-epoxy 18:1-9c). It is 

worth noting the high similarity between the spectra of both the 9,10-epoxy 18:1-12c and 12,13-

epoxy 18:1-9c standards (Figure 12), which increases difficulty in distinguishing between the 

two FAs in a sample; this is especially true for samples with very small amounts of the two FAs, 

which increases the background noise of a sample and results in a more challenging comparison  
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Figure 12. Literature mass spectra of 9,10-epoxy 18:1-12 and 12,13-epoxy 18:1-9 (Christie, 

2012b) 

 

of samples either lacking the entire ionic profile, or with additional ions. However, our lab group 

has previously identified low levels of 9,10-epoxy 18:1-12c and 12,13-epoxy 18:1-9c in oat seed, 

and retention times agree with peaks in Figure 8. Therefore, these two peaks might be the two 

epoxy fatty acids. 

The relative quantities of each FA, as represented by peaks in Figure 8 A, are 

summarized in Table 2. Quantification proportions were determined by calculating the relative 

proportion of the chromatogram peak area of each individual FA to the total peak area of all FAs 

in the chromatogram (Table 2). 

The major fatty acids in oat seeds were linoleic acid accounting for about 37%, oleic acid 

for more than 30% and palmitic acid for about 23%. Among UFAs, three epoxy fatty acids 

comprised just over 2%, four-fold higher than in literature (Table 1) with 9,10-epoxy 18:0 

making up about 1.5%, and 9,10-epoxy 18:1-12c and 12,13-epoxy 18:1-9c both accounting for 

just below 0.5% each. 15-OH 18:2-9c,12c comprised less than 1% of total FAs, three-fold lower 

than levels in literature (Table 1). 7-OH 16:0 was undetected here, and aside from the minor 

UFAs, FA composition was in agreement with literature. 

In Figure 8B, an unexpected peak appears beside each of the peaks representing 18:1-9c 

and 18:2-9c,12c. These unexpected peaks are inconsistent across samples (Figure 8A vs. Figure 

8B) and are also inconsistent with literature; GC-MS was unable to confirm an identity for these 

peaks. 
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Table 2.  CDC Dancer mature seed fatty acid composition  (percent of the total FAs) 

Fatty Acid Replicate 1 Replicate 2 Replicate 3 Mean percent of total FA ± SD 

14:0 0.12 0.03 0.05 0.07 ± 0.05 

16:0 22.82 24.33 22.02 23.05 ± 1.17 

16:1-9c 0.14 0.42 0.13 0.23 ± 0.16 

18:0 1.01 1.51 0.98 1.17 ± 0.30 

18:1-9c 32.65 31.08 31.95 31.89 ± 0.79 

18:1-11c 2.38 0.45 2.89 1.91 ± 1.29 

18:2-9c12c 36.34 37.65 37.93 37.31 ± 0.85 

18:3-9c,12c,15c 0.72 1.07 0.75 0.85 ± 0.19 

20:0 0.14 0.03 0.05 0.08 ± 0.06 

20:1-9c 0.34 0.50 0.42 0.42 ± 0.08 

9,10-epoxy 18:0 1.52 1.26 1.66 1.48 ± 0.21 

9,10-epoxy 18:1-12c 0.50 0.48 0.34 0.44 ± 0.09 

12,13-epoxy 18:1-9c 0.55 0.43 0.31 0.43 ± 0.12 

15-OH 18:2-9c,12c 0.77 0.75 0.52 0.68 ± 0.14 

 

3.1.4.4. Total Fatty Acid – Acidic method 

A sulfuric methanol protocol was employed to demonstrate the inaccurate identification 

of HFAs due to presence of epoxy FAs which are prone to degradation by acidic conditions. The 

FAMEs as well as TMS-derivatized FAMEs analyzed via GC-MS are shown in Figure 13. In 

contrast to the alkaline method, this protocol resulted in a shift of three distinct peaks, shown in 

Figure 13. 

As the FA standard used in GC analysis did not include the UFAs, the identities of the 

UFAs (represented by peaks in the insert, Figure 13A) were investigated with GC-MS, and the 

spectra and their predicted FA structures were determined (Figure 14). Those identifiable were 

labelled as “?A,” “?B,” and “?C” in the chromatogram insert (Figure 13A). 

Identities of some peaks in the chromatogram in Figure 13A were unclear, and labelled as 

“?A,” and “?B,” and “?C.” As the epoxy FAs were undetected, peaks “?A” and “?B” are 

probably the minor epoxy FAs 9,10-epoxy 18:1-12 and 12,13-epoxy 18:1-9. Peak “?C” had MS 
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Figure 13. GC analysis of FAMEs of CDC Dancer mature seed derived from the acidic 

transmethylation (A) and of the duplicate TMS-derivatized FAMEs (B). Shifted peaks are 

indicated with numbers 1, 2 and 3. Question marks indicated peaks having no clear predicted 

identities based on the MS spectra library. The insert shows a magnified region of the 

chromatogram with UFAs. 

 

 

 

 

Figure 14. The predicted identities of the UFA FAME peaks labelled in Figure 13A insert: 

15-OH 18:2-9c,12c (A), and 9,10-dihydroxy 18:0 (B) probably derived from hydration of 9,10-

epoxy-18:0 (as shown in Figure 11). 

 

FAME 

TMS FAME 
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library matches of very low probability, including various epoxy and hydroxy FA structures. As 

oat seed has been documented to contain very small quantities of 7-OH 18:2 (Table 1) yet was 

undetected in this study, it is likely that peak “?C” represents this hydroxy FA. Ideally, the 

sample could be run with a standard known to contain these epoxy FAs, however they were 

unavailable. 

In Figure 13B, the UFAs represented by the shifted peaks 1 and 2 were identified by 

reference to an MS spectra library after GC-MS analysis (Figure 15) for comparison to the non-

derivatized FAMEs in Figure 14.  

As expected with this method, identification of the UFA peaks proved to be more 

challenging than in the basic treatment. Peaks 1 and 2 (from Figure 13B) were identified as the 

TMS-derivatizations of 15-OH 18:2-9c,12c and of 9,10-dihydroxy 18:0, which supports the 

initial hypothesis that the acidic method degrades the epoxy group (as the dihydroxy was not 

identified in the basic-treated sample). Peak 3 in Figure 13B, however, was less definitive, and 

several possible identity matches were retrieved from the MS library, all with low predicted 

probabilities.  

Given the inconsistencies of MS data of this acidic treatment, the presence of a dihydroxy 

FA not found in the basic-treated sample, and observations previously made in our lab group, it 

can be extrapolated that Peak 3 is probably a dihydroxy FA artifact induced from the conditions 

and degraded from one or two of the monounsaturated epoxy FAs. The width of the base of Peak 

3 also suggests that perhaps two molecular species are inseparable. 

These results also provide evidence that acidic methods will overestimate HFA and 

underestimate epoxy FA content; in addition to being inaccurate with regards to epoxy FA 

quantity, the acidic treatment is also inconsistent with the amount of the epoxy FAs measured by 

the basic transmethylation method. Thus, this method is less reliable and not ideal for FA 

analysis of samples containing both HFAs and epoxy FAs. 
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Figure 15.  Mass spectra of the peaks 1 and 2 from Figure 13B. Peak 1 was identified as the 

TMS-derivatized FAME of 15HFA, and Peak 2 as the TMS-derivatized FAME of 9,10 

dihydroxy octadecanoic acid (probably derived from hydration of 9,10-epoxy-18:0). 

 

3.1.4.5. Free Fatty Acid 

To investigate whether UFAs were present in the FFA form, a third protocol was 

employed. Conditions used for this diazomethane protocol allow rapid reaction of diazomethane 

with non-esterified FAs to result in fatty acid methyl esters, and can therefore provide methyl 

esters representing FFA content of oat seed. Several FAs were identified in the FFA form in 

mature oat seed (Figure 16 A). A duplicate of the same sample (Figure 16 B) was derivatized 

with TMS to identify if the presence of any FFA form of a HFA, epoxy FA or dihydroxy groups 

resulting from degraded epoxy FAs as described above. 

Two prominent peaks appearing in both Figure 16A and B remain unidentifiable, as 

indicated on the chromatograms with “?”. Since they maintained their retention times across both 

chromatograms, they must not be HFAs, nor be artifacts of hydrolyzed epoxy FAs. Neither peak 

aligned with the FA standard, nor was any obvious matching identity found with GC or MS.  

However, in Figure 16A, the bases of the two unidentified peaks are quite spread out and seem to 

encompass >1 molecule as if there were multiple compounds present with very similar elution 

times that were inseparable. In addition, there is a small peak near 18.5 mins in Figure 16A, but 

neither GC or MS could confirm it as anything other than background noise.  

The relative proportions of the common FFAs were relatively quantified as described for 

the first two methods (Table 3). As this method solely analyzes FFA form, the abundance of each 

FA is relative within the pool of FFAs only. The composition of this pool is specifically the FFA 

content of the oat seed; their abundance relative to all FAs of the seed would be too small to have 
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Figure 16. GC analysis of FFAs of mature CDC Dancer seed. A duplicate of the 

diazomethane methylated sample (A) was derivatized with TMS (B). 

 

 

 

Table 3. Individual FFA percentages of total FFAs. The “?” denotes quantity of the identified 

peaks. 

FFA Relative Abundance (% of total FFA) 

14:0 0.7 

16:0 20.7 

18:0 1.7 

18:1-9c 20.0 

18:2-9c,12c 40.1 

18:3-9c,12c,15c 3.0 

? 13.8 

 

  

TMS FAME 

FAME 

? 

? 
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significance in comparing their quantities to fatty acids derived from the other forms. 

3.1.5. Discussion 

To determine the FA composition of CDC Dancer oat seeds, fatty acids were 

transmethylated from lipids that had been extracted from the seeds using three different methods. 

Two of the methods, an alkaline and an acidic treatment, were used to compare their 

effectiveness for analyzing UFA-containing lipids for the same total fatty acids from the seed 

lipids. The total FA composition of the mature oat seed (Table 2) was largely consistent with the 

other cultivars examined in the study by Leonova et al. (2008). Although CDC Dancer seed did 

not have the highest 15HFA content when compared with their study, both 18:2-9c,12c and 18:3-

9c,12c,15c content of CDC Dancer was higher than the mean values of their study.  

As the sodium methoxide was used to preserve sensitive epoxy groups, peaks 

representing epoxy FAs should not shift after TMS derivatization (Figure 8 B). Thus, any peaks 

in a new position when compared to Figure 8 A represent a HFA. Figure 8 reveals only one peak 

had shifted after derivatization, which was confirmed to be the 15HFA (Figure 9). However, the 

study by Leonova et al. (2008) consistently shows higher 15HFA content than results in this 

study. Their FA extraction methods include a sulfuric methanol step and derivatization step as 

well, but do not include specific information about epoxy fatty acids; this is relevant since harsh 

acidic conditions can cause deterioration of the cyclic epoxide structure, opening the epoxy ring 

to result in di-hydroxy artifacts (Greenspan & Gall, 1956). The resulting hydroxyl groups are 

free to bind with TMS, as would any naturally-occurring hydroxy group. The overestimation of 

15HFA may be due to the influence of a hydrolyzed epoxy group in the FA. 

This is further reinforced when comparing the total epoxy FA content; in this study, the 

epoxy FA content (Table 2) after alkaline transmethylation is approximately three-fold higher 

than the results by Leonova et al. (2008). If the epoxide ring of a FA in the sample was broken 

and being detected as dihydroxy FA, the total epoxy FA content would thus be expectedly lower. 

Leonova et al. did not examine epoxy FAs in detail as all epoxy FAs are grouped 

together, and detailed HFA analysis discussion is limited to 7-hydroxyhexadecanoic acid (2008). 

Interestingly, methods used here did not detect this HFA, perhaps due to sensitivity threshold, 

lack of information in the MS library, or a different GC column used. By comparing 

chromatograms in Figure 8 and Figure 13, it can be suggested that acidic degradation of some 
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epoxy FAs is occurring and thus that method is less reliable in compiling an accurate FA profile 

for mature oat seed. 

The predicted structures from MS analysis that lower confidence are two 

monounsaturated epoxy fatty acids which have been shown to exist in oat previously 

(Meesapyodsuk & Qiu, 2011). 9,10-epoxy 18:1-12c & 12,13-epoxy 18:1-9c are both produced 

from 18:2-9c,12c substrate; relative quantities of both substrates are abundant. However, the MS 

spectra predictions are somewhat limited to the information in the MS spectra library, and may 

not be capable of discriminating between two ionized structures with high similarity (or these 

two minor epoxy FAs ionize with differences below the accurate detection capabilities of the 

detector). Furthermore, the structures predicted via GC-MS consistently identified FAs that have 

never been observed in oat seed oil previously, which were always rated with very low 

probability and therefore increased the difficulty in identifying them. The mass spectra software 

likely determined the best option available when a perfect match of a structure and its ionization 

pattern were unavailable. Thus, for the two minor epoxy FAs (Figure 8), given the evidence here, 

as well as the known data regarding oat epoxy FAs, the evidence strongly supports 9,10-epoxy 

18:1-12c & 12,13-epoxy 18:1-9c identities. 

The MS data of the putative peak representing the 15HFA and either the closed or opened 

epoxy FAs were consistent with the literature (Figure 9, Figure 10, Figure 15; American Oil 

Chemists’ Society, 2012). MS of a neighboring peak (Figure 15-2) verifies the presence of a 

derivative of a di-hydroxy FA which is probably the degraded product of an epoxy. Therefore, if 

a harsh acidic condition is used for the transmethylation process of an epoxy-containing FA pool, 

there is a risk of overestimating HFA content in the seed while underestimating total epoxy FA 

content. 

The presence of small amounts of FFAs is not unusual, and they are typically present as 

second messengers for transferring extracellular signals, modifying metabolic processes, or 

altering gene expression, although the latter is typically influenced by the non-saturated 

LCPUFAs (American Oil Chemists’ Society, 2012b). Since none of the peaks obtained in the GC 

analysis of FFAs shifted after TMS treatment, this indicates that there are no hydroxy (or epoxy-

derived di-hydroxy artefacts) FAs in the FFA pool. This is not unexpected, since plant FFA 

abundance declines with increasing oil biosynthesis & seed maturity, FAD-like gene 

transcription (and the product’s activity) are active during an earlier development stage, and 
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15HFA is esterified to form digalactosyldiacylglycerol (DGDG) (May & Hume, 1995; Hamberg 

& Hamberg, 1996; Napier, 2007 Hamberg et al., 1998). Since the plants were grown in optimal 

conditions in the growth chambers, the FFA content should be accurate as a result of natural 

biochemical processes of the plant rather than from poor environmental influence which has 

been shown to increase seed FFA levels (Frey & Hammond, 1975). However, oat is known to 

have high lipase activity, which exhibit activity even at 7.5% moisture levels (Frey & Hammond, 

1975). Although extraction after grinding the sample in solution is one of the most effective 

methods to minimize system-induced lipase activity, acid treatment is ineffective in deactivating 

the enzymes completely (Frey & Hammond, 1975).  

The species present and relative quantities of major FFA species in the mature seed 

(Table 3) largely reflect their FAME levels of the seed total FA composition (Table 2; Figure 8), 

although there is substantial presence of the two unknown peaks in FFA form (Figure 16). It is 

surprising that the clarity of the two unknown peaks in Figure 16 improves after TMS 

derivatization, whereas that of all others is slightly deteriorated. Neither of these peaks appears in 

the expected positions of the 15HFA, in the FAME or the TMS FAME chromatograms, nor do 

they change positions; thus, they cannot be HFAs. The small peak that appears in the FAME 

chromatogram at 18.5 mins is in the expected position of a HFA, and does not appear in the TMS 

FAME chromatogram suggesting that there was a free hydroxyl group present that was etherified 

by the TMS reagent; however, it was impossible to determine whether the small peaks of Figure 

16B were background noise, or new peaks that shifted due to the etherified form. For all these 

peaks, perhaps better identification could be established by either increasing the concentration of 

the FA or the amount run on the GC, or by using a column with a different stationary phase or 

polarity. 

Of particular interest to this study, in the FFA pool there are higher levels of both PUFAs 

relative to the monounsaturated 18:1-9c. Comparing FFA relative quantities of OA and LA to 

ALA (Table 3), ratios are 6.7:13.4:1, respectively. The ratio of total relative amounts of the same 

FAs in the seed (Table 2) is approximately 37:44:1. Thus, relative to ALA, OA is more than five-

fold higher while LA is approximately is three-fold lower in the FFA form.  
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3.2. Study 2: Oat FAD-like gene Cloning & Sequence Analysis 

3.2.1. Abstract 

To identify the genes encoding enzymes involved in the biosynthesis of PUFAs and/or 

hydroxyl fatty acids, bioinformatics techniques were carried out. Previously-characterized 

FAD2, FAD3 and FAH protein sequences from NCBI databases were used as query sequences to 

find highly homologous EST matches from an oat-specific EST pool in CORE’s sequence 

database using NCBI’s Basic Local Alignment Search Tool (BLAST).  The homologous ESTs 

were then assembled into contigs to establish full-length candidates for the Avena FAD2-like 

sequences. From the Δ12-desaturase (FAD2) queries, two isoforms of one putative FAD2-like 

(“AsFAD2a” and “AsFAD2b”) genes were found; the Δ15-desaturase (FAD3) queries revealed 

two oat FAD3-like (“AsFAD3-1” and “AsFAD3-2”) putative oat genes, while an ω-3 desaturase 

(FAD7) query identified a fourth putative full-length FAD6-like CDS, “AsFADX” as well as a 

longer variation of the same sequence, “AsFADX+,” which had additional 288 bp upstream of 

the putative translation initiation site of AsFADX. All were cloned from cDNAs and ligated into 

pGEM-T, an E. coli intermediate vector, for sequencing. Detailed sequence analyses were 

carried out with these sequences. 

3.2.2. Hypothesis 

FADs are well-conserved across species, and oat FAD3s and the 15FAH are believed to 

have diverged from a FAD2. By using previously-characterized query proteins from other 

organisms that have demonstrated FAD or FAH activity, putative oat FAD-like ORFs can be 

identified from an oat EST database and used as templates for designing primers. The primers 

can be used to clone the gene from oat seed cDNA, and then ligated into appropriate vectors for 

sequencing. 

3.2.3. Experimental approach 

3.2.3.1. Contig Construction from Avena ESTs 

All EST sequences were obtained from either the Collaborative Oat Research Enterprise 

(CORE) database (United States Department of Agriculture, 2010) or from the National Center 

for Biotechnology Information (NCBI) database (National Center for Biotechnology 

Information, 2012).  
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Each query protein sequence was individually entered in the tBLASTn function of either 

the CORE database, or NCBI’s public database (specific to oat ESTs as defined in the search 

options) using default search algorithm parameters. At least one previously-characterized protein 

sequence from each HIS-box-containing FAD or FAH class was used as a query sequence in the 

tBLASTn searches. Resulting ESTs were compiled into a single file as general oat EST-

containing text files, and also divided further into cultivar-specific files. Both the general and 

specific sets of ESTs were used separately for constructing contigs, if adequate number of ESTs 

were available to cover the entire putative CDS. Putative sequences were derived from the 

cultivar-specific EST files, if available; otherwise, the total collection of homologous ESTs was 

used to construct the full-length ORF of the putative gene. ESTs were assembled using 

DNAstar’s SeqMan offline software. Manual corrections of all outstanding nucleotide 

inconsistencies across assembled ESTs were performed. ORFs were determined by aligning the 

maximum length of the contig (putative UTRs and ORFs included) with the query sequence, and 

determining the translation initiation and stop codons. This was based in part on the length of the 

reference gene ORFs, and relative positions of the HIS-boxes as well as their initiation and stop 

codons; additionally, putative oat genes were determined to be distinct based on the putative 

UTR regions both upstream (Figure 45, 5.2) and downstream (Figure 46, 5.2) from the putative 

ORFs (Figure 44, 5.1). The finalized contigs were translated in DNAstar’s SeqBuilder program, 

and aligned with the original query sequences in DNAstar’s MegAlign program to verify the 

entire protein was translated and to verify that they contained the HIS-boxes. Primers for cloning 

were designed using a combination of DNAstar’s PrimerSelect and the criteria described by 

Sambrook & Russel (2001); the putative CDS (3.2.3.1) of each GOI was used as the template. 

Where sequences of previously-characterized templates originating from organisms very closely 

related to oat were unavailable, those from well-studied model organisms Arabidopsis thaliana 

and/or characterized proteins of other plants were used (The Arabidopsis Genome Initiative, 

2000). 

 Δ12 Desaturase/Hydroxylase query: FAD2-like 3.2.3.1.1.

Products of previously characterized genes exhibiting activity on the Δ12 position of 

oleate substrate were used as query sequences. The Δ12 desaturases used as queries included 

those from Arabidopsis thaliana (AtFAD2; Okuley et al., 1994; accession number L26296.1) 

and the fungal Claviceps purpurea (CpFAD2A & B; Meesapyodsuk et al., 2007; accession 
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numbers EF536897 and EF536898). Other queries included enzymes with either Δ12 

hydroxylase activity, (RcFAH12; van de Loo et al., 1995; accession number U22378), or those 

with dual Δ12 hydroxylase and desaturase activity (LfFAD2FAH12; Broun et al., 1998a; 

accession number AF016103; CpDesX; Meesapyodsuk & Qiu, 2008; NCBI accession number 

EU661785).  

 Δ15 Desaturase/Hydroxylase query: FAD3-like 3.2.3.1.2.

Products of previously characterized genes that act upon the Δ15 position of α–linolenate 

substrate were chosen for FAD3 queries, such as that of Arabidopsis thaliana (AtFAD3; Arondel 

et al., 1992; accession number L01418) and those of Linum usitatissimum (LuFAD3A & B; 

Vrinten et al., 2005; accession numbers DQ116424 and DQ116425).  

 ω-3 Desaturase/Hydroxylase query: FAD7-like 3.2.3.1.3.

A chloroplast membrane-bound FAD7 from Arabidopsis thaliana  with ω-3 desaturase 

activity on 16:2 and 18:2 substrates to produce linolenic and hexadecatrienoic acids, 

respectively, was used as the query sequence (AtFAD7; Iba et al., 1993; accession number 

D014007).  

The putative CDS from each contig assembly or assemblies were used as templates on 

which to design primers for amplification of each putative GOI target from cDNA template. 

3.2.3.2. Isolation of total RNA 

CDC dancer germplasm was selected for experiments. All seeds were found and obtained 

from Agriculture & Agri-Food Canada’s Genbank (2010; 2012). The total RNA was isolated 

from the developing seed tissue of CDC Dancer cultivar using Invitrogen’s TRIzol Reagent 

(Invitrogen, 2010a). The reagent is a solution of phenol, guanidine isothiocyanate as well as 

proprietary components designed for effective isolation of the RNA, by disrupting cells, 

dissolving their components, and inhibiting RNase. It is ideal since it can be performed in one 

hour on a large number of samples. 

For each tissue type in all RNA extractions, 200 mg of oat tissue was kept frozen with 

liquid nitrogen and ground with a mortar and pestle. 1mL of TRIzol Reagent per 50-100mg of 

sample was added to prevent DNA contamination of the RNA sample. To phase separate the 

sample, it was incubated at 5 minutes at room temperature for total dissociation of the 

nucleoprotein complex. 0.2mL of chloroform per 1mL of TRIzol Reagent (from 
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homogenization) was added, capped, and shaken for 15 seconds by hand. The sample was then 

be incubated for 2-3 mins at room temperature, centrifuged for 15 mins at 4ºC at 12,000xg, then 

the aqueous phase (containing the RNA) was pipetted out by holding the sample tube at 45º 

angle. This aqueous phase was placed in a new sample tube for RNA isolation. 

0.5mL of 100% isopropanol (per 1mL of TRIzol Reagent from homogenization) was 

added to the aqueous phase, incubated at room temperature for 10 mins, then centrifuged at 

12,000xg for 10 minutes at 4ºC, after which the RNA wash was performed. This is done by 

taking the RNA pellet, washing with 1mL of 75% ethanol (per 1mL of TRIzol Reagent from the 

initial homogenization), vortexed, and centrifuged at 7500xg for 5 minutes at 4ºC. The wash was 

discarded, the pellet air or vacuum dried for 5-10 mins, and resuspending the pellet in RNase-

free water (or 0.5% SDS solution) via passing the solution up and down several times in a 

pipette. Concentrations were measured with a Nanodrop spectrophotometer. Remaining samples 

were stored at -80°C. 

3.2.3.3. First-strand cDNA Synthesis 

Using Invitrogen’s SuperScript III (Invitrogen, 2004) the cDNA was synthesized. This 

system utilizes a reverse transcriptase from Moloney Murine Leukemia Virus (M-MLV) and is 

purified and modified to minimize RNase H activity (to minimize RNA/DNA hybrids) and 

increase thermal stability for synthesizing cDNA, from 100bp to 12kbp in length, up to 55ºC. 

Using 5 μg of total RNA, 1 μL of oligo(dT)20 (50 μM), 1 μL of 10mM dNTP at neutral 

pH, and 13 μL of water was added to a nuclease-free microcentrifuge. The mix was heated to 65 

ºC for 5 mins and incubated on ice for 1 minute. The contents were briefly centrifuged, after 

which 4 μL 5X First-Strand Buffer, 1 μL 0.1M DTT, 1 μL RNaseOUT Recombinant RNase 

Inhibitor, and 1 μL of SuperScriptIII RT was added. The solution was mixed via pipetting up and 

down, then incubated at 55 ºC for 30-60 mins, followed by reaction inactivation by heating to 70 

ºC for 15 mins. cDNA used as template in cloning was diluted 1/10, and remaining cDNA was 

stored at -20°C. 

3.2.3.4. Primer Design, DNA polymerase selection, PCR amplification 

 Primer Design 3.2.3.4.1.

Primers designed are listed in Table 4 to Table 7 based on the criteria described by 

Sambrook and Russell (2001).  
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Table 4. AsFAD2 primers 

Target Sequence (5’→3’) Description 

AsFAD2 
1
TTGAATTCGCCATGGGTGCCGGTGGCAGGATG AsFAD2 sense primer 

 
1
CTGAATTCATCTAGAACTTGTTGCTGTAC AsFAD2 antisense primer 

 ACGAGTGGAGCACCAGGC AsFAD2 nested antisense primer 

Restriction sites underlined; 
1
EcoRI site; translation initiation & termination sites in bold. 

 

Table 5. AsFAD3 primers 

Target Sequence (5’→3’) Description 

AsFAD3-1 TTGAATTCAGCCATGGCCGCGGAAGC AsFAD3-1 sense primer 

 TAGAATTCTATCACTTGTGCTTGTCAGTTC AsFAD3-1 antisense primer 

 AGGTGGCCGACGACGCTGTTGAGC AsFAD3-1 nested sense primer 

AsFAD3-2 GCCATGGCCCCCGCAATG AsFAD3-2 sense primer 

 TCACTTTTGCTTGCCATTTTTCGTC AsFAD3-2 antisense primer 

 GGCCAGTGCCGGTGCTCAAAC AsFAD3-2 nested sense primer 

Restriction sites underlined; translation initiation & termination sites in bold. 
 

 

Table 6. AsFADX & AsFADX+ primers 

Target Sequence (5’→3’) Description 

AsFADX 
1
TTAAGCTTCGATGTCTGAAGATTATGGGTTCAAAC AsFADX sense primer 

 
2
GCTCTAGATCAAGCATAATCTGGCATGAACTTC AsFADX & AsFADX+ antisense 

primer 

 AGGCGCAATTAAATGGCACAGTTC AsFADX nested primer 

AsFADX+ 
1
TTAAGCTTGGATGCGCGCGCGCACTCC AsFADX+ sense primer 

Restriction sites underlined; 
1
HindIII site; 

2
XbaI site; translation initiation & termination sites in bold. 

 

For screening insert presence and orientation in the vectors (the intermediate pGEM-T 

vector, and for the expression vector pYES2.0), primers flanking the MCS of each were used 

(Table 7). 

Table 7. Generic vector-specific primers 

Target Sequence (5’→3’) Description 

pGEM-T TAATACGACTCACTATAGGG T7 region forward primer 

pYES2.0 CCTTCCTTTTCGGTTAGAGCGG SP6 region reverse primer 
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 Polymerase & PCR 3.2.3.4.2.

To clone each GOI from cDNA, NEB’s Q5® high-fidelity polymerase was used with the 

supplied 5X Q5® buffer or 5X Q5® high-GC enhancer, and dNTP and primer concentrations of 

200µM and 0.5µM, respectively (New England Biolabs Inc., 2013). ~200ng of template cDNA 

was used per reaction. PCR amplification was carried out in 35 cycles, consisting of 1 or 2 

stages. The first attempt was with one stage for 35 cycles. If two stages were required due to low 

or no amplification from the first attempt, the first part included 10 cycles with an anneal 

temperature (Tm) ~5°C below the recommended Tm of the primer pair used, then the next 25 

cycles had the anneal temperature increased to ideal Tm. The 2-part process helped eliminate the 

non-specific binding of non-target DNA. Reaction cycles were conducted in an Eppendorf 

Mastercycler. 

For AsFAD2, 0.5U of Phusion® polymerase (Finnzymes, 2012) was used in a 25µL 

reaction containing 3% dimethylsulfoxide (DMSO). Initially the reaction was held at 98°C for 

2mins, followed by the first 10 cycles of denaturation at 98°C for 15sec, annealing at 55°C for 

30sec, and elongation at 72°C for 1min; the second stage had 25 cycles of 98°C for 15sec, 

59.2°C for 30sec, and 72°C for 1min. The reaction was held at 72°C for 10 minutes, then run on 

an agarose gel. To amplify the oat FAD3s, 0.5U of Phusion® polymerase was used in each 

reaction containing 3% DMSO. Initially the reaction was held at 98°C for 2mins, followed by the 

first 10 cycles of 98°C for 15sec, 54°C for 30sec, and 72°C for 45sec; the second stage had 25 

cycles of 98°C for 15sec, 59°C for 30sec, and 72°C for 45sec. The reaction was held at 72°C for 

10 minutes, then run on an agarose gel. For amplifying both AsFADX and AsFADX+, 0.5U of 

Q5® was used in a 25µL reaction with 1X of the high GC enhancer buffer. The reactions were 

first held at 98°C for 3mins, followed by the first 10 cycles of denaturation at 98°C for 10sec, 

anneal at 55°C for 30sec, and elongation at 72°C for 1min; the second stage had 25 cycles of 

98°C for 10sec, 68°C for 30sec, and 72°C for 1min. Each was held for an additional 2mins at 

72°C. 

The sample was then run on an agarose gel with wide-toothed comb wells. Where several 

bands appeared on the gel and/or there is no dominant band, the total DNA from this region was 

isolated and extracted, followed by another amplification procedure with the same primers. 
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Amplicons of expected size were cut from the gel and eluted/purified using BioBasic’s miniprep 

kit (2013). 

3.2.3.5. Vector Recombination, E.coli Transformation, & Sequencing 

For cloning the GOIs into intermediate pGEM-T vectors, a single-nucleotide dATP-

overhang was added to the purified inserts. 21µL of the gel-extracted amplicon was transferred 

to a 0.2mL tube, followed by addition of 2.5µL of Invitrogen’s 10X PCR buffer (-MgCl2), 

0.75µL of 50mM MgCl2, 0.5µL of 10mM dNTPs, and 0.25µL of Invitrogen Taq. The reaction 

mixture was incubated for 20 minutes at 72°C. The GOI with dATP overhangs was cloned into 

pGEM-T vector using Promega’s kit (2009). 5µL of 2X rapid ligation buffer, 1 µL of pGEM-T 

linearized vector, 3 µL of GOI with dATP-overhangs, and 1 µL of T4 DNA (Invitrogen, 2002) 

ligase were combined, and ligated at 4°C overnight.  

Electrocompetent TOP10 E. coli cells were prepared, and then transformed with the 

GOI/pGEM-T recombinant vectors. Transformation was carried out using an electroporator, set 

at 1800mV, and using glass cuvettes with 1mm gap, as follows: For each transformation, 40 µL 

of TOP10 cells were thawed for 3 minutes on ice, and 1 µL of the overnight ligation of the 

GOI/pGEM-T recombinant vector was added to these cells, and gently mixed. The 41 µL 

volume was transferred into the cuvette, and set on ice for 5 minutes. The cuvette was transferred 

to the electroporator permeabilize the cells,  immediately followed by addition of 1mL liquid LB 

medium into the cuvette. The total sample was transferred into a plastic 15mL tube, incubated at 

37°C for 1 hour, and plated on LB agar containing 100µg/mL carbenecillin (CB) for selection. 

The plates also contained 40µL of X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-

pyranoside) and 40µL of 0.1M of IPTG (isopropyl β-D-1-thiogalactopyranoside). The plates 

were incubated at 37°C overnight, after which several white colonies were selected, subcultured, 

and screened via PCR. For PCR screening to confirm GOI presence in the intermediate vector, 

the same gene-specific primer pair was used in a PCR reaction. A small amount of each of the 

three random, individual white colonies was used as template in each reaction, ensuring that the 

PCR parameters reached adequate temperature to disrupt the cells and release the DNA (95°C, 5 

minutes). To establish the real sequence of each GOI, plasmids of 3 GOI-positive colonies were 

inoculated into 5mL of liquid LB growth medium + 100µg/mL (CB) and incubated in a shaker at 

37°C overnight. Plasmids were extracted from each, using BioBasic’s miniprep kit (2013), and 

isolated plasmids were stored at -20°C. For all sequencing of samples, purified recombinant 
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GOI/plasmid were extracted from at least three individual colonies per GOI. 10µL of 100ng/µL 

of GOI/plasmid were sent to the National Research Council of Canada (NRC) at 110 

Gymnasium Place Saskatoon, Saskatchewan S7N 0W9 for sequencing. After sequencing results 

were obtained, each of the three replicates was compared with the nucleotide sequence of the 

putative gene. If there were discrepancies across the three sequenced samples, the one with the 

highest homology to the putative sequence was selected.  

For preparing the GOIs for transfer into the yeast expression vector, 1µg of GOI/plasmid 

DNA, 2µL of 10U/µL restriction enzyme(s) and 5µL of corresponding 5X buffer were added to 

15µL water and digested for 3 hours at 37°C. The GOIs were digested from the intermediate 

pGEM-T backbone (for transformation and selection in E. coli), separated via gel 

electrophoresis, and purified from the gel. pYES2.0, the expression vector to be used, was 

digested in another reaction with the restriction enzymes compatible with each GOI to which it 

will be ligated. After digestion, each was electrophoresed on a gel, cut, and purified using the 

BioBasic kit (2013). The pYES2.0 cut and purified DNA had Calf Intestinal Alkaline 

Phosphatase (CIAP) added to dephosphorylate the 5’ terminus in order to eliminate self-ligation 

prior to insert/vector ligation.  The GOI:pYES2.0 were combined in a 3:1 ratio. The volumes 

were combined with 2µL 5X buffer, 0.5µL T4 ligase, and brought to 10 µL final volume. The 

reactions were incubated at 16°C overnight. TOP10 cells were then transformed with these 

ligations, plated on CB-containing LB agar plates, extracted and sequenced as described above. 

Using the DNA map of the GOI/vector, specific restriction enzymes were chosen that, 

once used to digest the circular GOI/vector, would yield one of two unique patterns of varying 

DNA fragment lengths. The patterns of both possible outcomes of the digestion were determined 

by the orientation of the GOI relative to the vector backbone, and thus the digestion was 

performed on the plasmids extracted from the sequenced sample having highest homology to the 

putative template. 1µg of GOI/plasmid DNA, 2µL of 0.02U/µL restriction enzyme(s) and 5µL of 

corresponding 5X buffer were added to 15µL water and digested for 3 hours at 37°C and run on 

a gel to determine fragment sizes. Once proper orientation of the GOI in pYES2.0 was 

confirmed, one colony from this original stock was inoculated into 5mL of liquid LB growth 

medium + 100µg/mL (CB) and incubated in a shaker at 37°C overnight followed by plasmid 

extraction. These GOI/pYES2.0 samples were stored at -20°C until the yeast transformation. 



47 

 

For all gel electrophoreses, 1.2% agarose gel was run at 110V for 30mins unless otherwise 

specified.  Each well was loaded with the total reaction volume after adding 2µL of 6X DNA 

loading dye to the solution, and 5µL of 1kb marker was used. For RNA, 5µL of samples + 4µL 

of 5X RNA loading buffer + 11µL of water was incubated at 65°C for 5 mins before loading. 

20% glycerol stock of each GOI/vector-containing E. coli strain was stored at -80°C. 

3.2.3.6. Protein Sequence Analysis 

Total aa length of each protein was determined by translating the nucleotide sequencing 

results of each gene in DNAstar’s SeqBuilder; histidine boxes were found by aligning each 

protein sequence with the query sequence with which its comprising ESTs were found. Protein 

families were predicted using NCBI’s conserved domain BLAST tool (2013b), conserved motifs 

predicted with the same conserved domain BLAST function and with ExPASy’s Prosite scan 

tool (NCBI, 2013; Swiss Institute of Bioinformatics, 2013a) and transit peptide predictions were 

performed with ChloroP and TargetP online tools (Emanuelsson, 1999; Nielsen et al., 1997). 

Membrane-spanning regions and sizes were predicted using the TMPred online tool (Swiss 

Institute of Bioinformatics, 2013c), which could then be compared to the predictions by the 

Kyte-Doolittle hydropathy plots (1982). 

Kyte-Doolittle hydropathy plots were generated using ExPASy’s ProtScale function 

(Kyte & Doolittle, 1982; Swiss Institute of Bioinformatics, 2013b). Window size was set to 19, 

relative weight of the window edges compared to the window center was set at 100%, weight set 

to linear, and without normalizing the scale. Extinction coefficients were predicted with 

ExPASy’s ProtScale and predicted values based on measurement in water at 280nm (M
-1

 cm
-1

). 

To determine if there was probability of AsFADX+ being a type I membrane-bound 

protein, which would also give better insight into its likely in vivo cellular destination, the 

sequence was analyzed for predicted chloroplast transit peptide sequences. This is of particular 

interest for AsFADX+, since it was unclear whether the 288 bp 5’ segment preceding the 

putative translation initiation codon of AsFADX was indeed in-frame, and since the overall 

length of AsFADX+ was nearly 100 AA longer than all other putative oat FADs. Both ChloroP 

1.1 (Emanuelsson et al., 1999) and TargetP 1.1 (Nielsen et al., 1997) Servers were used. ChloroP 

1.1 is to detect presence of chloroplast transit peptides as well as their cleavage sites, using the 

default settings. TargetP 1.1 was used to predict presence and subcellular location of AsFADX+ 

as well as the 96aa N-terminus only. For TargetP 1.1, “plant” organism was selected, scope to 
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“Perform cleavage site predictions,” and “no cutoffs; winner-takes-all (default).” The same 

TargetP 1.1. parameters were run again on AsFADX+ as well as the 96aa N-terminus only, but 

also selecting “specificity >0.95 (predefined set of cutoffs that yielded this specificity on the 

TargetP test sets)” were selected. 

3.2.4. Results 

3.2.4.1. Contig Construction from Avena ESTs 

To identify oat genes involved in the biosynthesis of oat PUFA and HFAs, query 

sequences (the previously-characterized FADs and FAHs) were entered in the tBLASTn search 

function in both CORE and NCBI databases. Homologous ESTs identified were assembled into 

contigs. Putative ORFs in these contigs were determined in the oat sequences based on overall 

length of the gene, presence and positions of the HIS-boxes, length of intervals between HIS-

boxes, presence and positions of putative transcription initiation and termination codons, and 

presence of termination codons upstream the putative start codon when compared to the query 

sequences. All queries used returned oat ESTs that, once assembled, comprised the CDS of one 

of four putative sequences: one FAD2-like, two FAD3-like, and one FAD6-like. Four distinct, 

putative oat genes were identified from three different FAD query sequences: the Arabidopsis 

FAD2 (AtFAD2) yielded one oat FAD2-like putative gene, AsFAD2, comprised of 54 oat ESTs. 

Query using a FAD3 from Arabidopsis (AtFAD3) found two oat FAD3-like putative genes, 

AsFAD3-1 and AsFAD3-2, comprised of 94 and 101 oat ESTs, respectively. Finally, assembly of 

oat ESTs resulting from a query with an Arabidopsis FAD7 (AsFAD7) resulted in a fourth 

putative oat FAD6-like gene, AsFADX (with a longer variation, AsFADX+, as a fifth putative oat 

gene); these were comprised of 31 and 19 oat ESTs, respectively. The contigs are listed below, 

and putative protein products from each of these putative ORFs are aligned in Appendix 5.1 to 

highlight the distinctiveness of each. 

 Δ12 Desaturase/Hydroxylase query: FAD2-like 3.2.4.1.1.

Using the FAD2 or FAH12s, 5 and 49 homologous oat ESTs were retrieved from NCBI 

and CORE databases, respectively. The entire contig length comprising these ESTs was 1736bp, 

presumably comprised of a 117bp 5’ UTR, 1167bp ORF, and a 452bp 3’ UTR. 
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 Δ15 Desaturase/Hydroxylase query: FAD3-like 3.2.4.1.2.

For the first oat FAD3-like sequence (AsFAD3-1), 12 and 82 homologous oat ESTs were 

retrieved from NCBI and CORE databases, respectively. For the second oat FAD3-like sequence 

(AsFAD3-2), 12 and 89 homologous oat ESTs were retrieved from NCBI and CORE databases, 

respectively. The entire contig lengths for AsFAD3-1 and AsFAD3-2 comprised of these ESTs 

were 1648bp and 1436bp, respectively; AsFAD3-1 contig consists presumably of a 175bp 5’ 

UTR, 1164bp ORF, and a 309bp 3’ UTR, while AsFAD3-2 differs slightly with a 204bp 5’ UTR, 

1146bp ORF, and an 86bp 3’ UTR.  

 ω-3 Desaturase/Hydroxylase query: FAD6-like 3.2.4.1.3.

For the shorter oat FAD6-like sequence (AsFADX), 15 and 16 homologous oat ESTs were 

retrieved from NCBI and CORE databases, respectively. For the longer oat FAD6-like sequence 

(AsFADX+), 9 and 10 homologous oat ESTs were retrieved from NCBI and CORE databases, 

respectively. These entire contig lengths for AsFADX and AsFADX+ comprised of these ESTs 

were 1597bp and 1596bp, respectively. AsFADX contig consists presumably of a 332bp 5’ UTR, 

1083bp ORF, and a 182bp 3’ UTR; in contrast, AsFADX+ differs slightly with a 43bp 5’ UTR, 

1371bp ORF, and a 182bp 3’ UTR. 

These putative ORF sequences were used to design primers for amplification from cDNA 

template for cloning and expression studies. 

3.2.4.2. Cloning of oat FAD-like genes 

 Primer Design 3.2.4.2.1.

Primers listed in Table 4 to Table 7 were used amplification of each GOI. All were 

obtained from Sigma-Aldrich, 2149 Winston Park Dr, Oakville, ON L6H 6J8. 

 RNA Extraction & cDNA synthesis 3.2.4.2.2.

CDC Dancer developing seed was selected as tissue sample for RNA isolation. Before 

any other experiment, RNA integrity must be confirmed as poor-quality (containing impurities) 

or degraded RNA may compromise subsequent experiments. After the TRIzol extraction of the 

total RNA from developing seeds, a denatured aliquot of each was run on an ethidium bromide 

(EtBr)-stained gel to verify presence, quality and integrity (Figure 17). 
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Figure 17. Biological triplicates of total RNA from milky stage CDC Dancer seed. The 

sample from which replicate 3 originates was used for subsequent DNAse treatment and cDNA 

synthesis. M=DNA marker. 

 

As seen in Figure 17, clear bright bands representing two abundant RNA species, the 28 

Svedberg units (S) and 18S ribosomal RNA (rRNA), are observed; the relative intensity ratio of 

the bands from these conserved molecules should be approximately 2:1. Sample 1 (Figure 17) 

was used as template for the reverse-transcribed first-strand cDNA. First-strand cDNA was 

successfully synthesized and stored at -20°C which was used for all subsequent experiments 

unless otherwise stated.  

 PCR amplification 3.2.4.2.3.

The 1
st
 strand cDNA synthesized from total RNA was used as template from which each 

specific gene was amplified; total PCR reactions were run on EtBr-stained agarose gels (Figure 

18).  Using primers targeting AsFAD2 (Table 4), an amplicon of expected 1.2kb was amplified. 

For the AsFAD3 targets, primers (Table 5) were used to amplify products of expected 1.2kb. 

Expected band sizes of 1.1 and 1.3kb were amplified using primers in Table 6, which targeted 

AsFADX and AsFADX+, respectively; amplification reactions were run on agarose gel for 

visualization. 

Each amplicon of expected size (Figure 18) was cut from the gels, purified with the 

BioBasic kit, and eluted in water. To each of the purified, eluted DNA amplicons, a single 

deoxyadenosine triphosphate (dATP)-overhang was added to create cohesiveness with the 

pGEM-T vector, followed by ligation into pGEM-T vectors with T4 DNA ligase.  

M           1        2        3 M          1        2        3 

3 kb 

1.5 kb 

1.0 kb 

500 bp 
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Figure 18. FAD-like amplicons, amplified from oat developing seed cDNA template. 

AsFAD2 (A), AsFAD3-1 (B), AsFAD3-2 (C), AsFADX & AsFADX+ (D). M=DNA marker; 

kb=kilobase pair. 

 E. coli transformation 3.2.4.2.4.

The recombinant plasmids were transformed into TOP10 E. coli cells via electroporation. 

After the electroporation was performed, selection for GOI-containing colonies was achieved by 

the antibiotic-containing plates, as well as the blue/white colony screening. Additionally a 

minimum of three white colonies from the overnight plated cultures were screened for the 

presence of each GOI via PCR amplification of each GOI with gene-specific primers. This was 

achieved by using a small amount of white colonies as template in each PCR reactions, followed 

by heat disruption of the cells and amplification using GOI-specific primers; PCR reaction 

products were run on the gel to confirm one distinct amplicon was visible in the expected 

position on the gel when compared to a marker.  

After the colony screening, colonies positive for the GOI were inoculated into LB 

medium with carbenecillin overnight, followed by plasmid extraction from the cultures using the 

BioBasic kit. Recombinant plasmid samples from at least three different colonies were sent to 

Plant Biotechnology Institute (PBI) for sequencing. 

3.2.4.3. Sequence Analyses 

The aa sequences for each Avena GOI were determined after obtaining at least three 

nucleotide sequences of each insert inside the pGEM-T vectors extracted from E. coli. For each 

GOI, the sequence having the highest nucleotide homology to the previously-established putative 

CDS sequences (as described in 3.2.3.1) was determined to be the most accurate and thus the real 

sequence for each, and was subsequently translated to its protein product. 
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 Avena sequence analyses: AsFAD2a 3.2.4.3.1.

The ORF of AsFAD2 is 1167 base pairs (bp) in length and encodes a protein 388 amino 

acids (aa) in length. This protein is predicted to have a molecular weight (MW) of 44,593 

Daltons (Da) with an isoelectric point (pI) of 8.44. It is predicted to belong to the Δ12 FAD-like 

family (National Centre for Biotechnology Information, 2013b), and to not contain chloroplast-

targeting sequences (Emanuelsson et al., 1999; Nielsen et al., 1997) (Figure 19). 

 

 

Figure 19. AsFAD2a ORF cDNA and its translated protein sequence. Histidine boxes are 

shaded. 
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 Avena sequence analyses: AsFAD2b 3.2.4.3.2.

A second allele of the same gene, whose products differ by 3 aa, was also confirmed; the 

polymorphisms occurring at base pairs 60, 688, and 756 result in amino acid variations (Figure 

20). Of the five total SNPs (Figure 20), three nonsynonymous SNPs cause an amino acid 

substitution (Figure 21). 

Both AsFAD2a & AsFAD2b are 1167 bp in length, encoding for a protein 388 aa long.  

The HIS-boxes are located at residues 111-115, 147-151, and 322-326, inclusively. The 

membrane spanning hydrophobic regions are predicted to be located at residues 63-81, 89-109, 

123-143, 186-203, 258-276 (TMPred, 2013). This protein sequences are aligned in Figure 21 to 

illustrate the effect of the SNPs between both oat FAD2 isoforms, while comparing to the query 

sequence (Figure 21). 

 

 

 

 

 

Figure 20. SNPs between AsFAD2a (line 1) and AsFAD2b (line 2). The polymorphisms 

occurring at base pairs 60, 688, and 756, as indicated by asterisks, result in amino acid 

variations. 
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Figure 21. Query AtFAD2 aligned with both Avena FAD2 isoforms. Conserved residues are 

highlighted in black, histidine boxes are underlined, and the SNP-induced residue changes 

between the Avena FAD2s are marked with an asterisk. 

 

 

 

Table 8. Relative percent identities of Avena FAD2s with their query sequences. 

 

 

 

MGAGGRMPVPTSSKKSET- - - - - - DTTKRVPCEKPPFSVGDL KKAI PPHC 44AtFAD2

MGAGGRMTEKEREKQEQL GRADVGATL QRSPT DKPPFTL GQI KKAI PPHC 50AsFAD2a

MGAGGRMTEKEREKQEQL GHADVGATL QRSPT DKPPFTL GQI KKAI PPHC 50AsFAD2b

FKRSI PRSFSYL I SDI I I ASCFYYVATNYFSL L PQPL SYL AWPL YWACQG 94AtFAD2

FQRSVI KSFSYVVHDL VI VAAL L YAAL VWI PT L PSVL QL GAWPL YWI VQG 100AsFAD2a

FQRSVI KSFSYVVHDL VI VAAL L YAAL VWI PT L PSVL QL GAWPL YWI VQG 100AsFAD2b

CVL TGI WVI AHECGHHAFSDYQWL DDTVGL I F HSFL L VPYFSWKYSHRRH 144AtFAD2

CVMTGVWVI AHECGHHAFSDYSL L DDI VGL VL HSWL L VPYFSWKYSHRRH 150AsFAD2a

CVMTGVWVI AHECGHHAFSDYSL L DDI VGL VL HSWL L VPYFSWKYSHRRH 150AsFAD2b

HSNTGSL ERDEVFVPKQKSAI KWYGKYL NN- PL GRI MML T VQFVL GWPL Y 193AtFAD2

HSNTGSMERDEVFVPKQKDAL AWYT PYI YNNPI GRL VHI VVQL TL GWPL Y 200AsFAD2a

HSNTGSMERDEVFVPKQKDAL AWYT PYI YNNPI GRL VHI VVQL TL GWPL Y 200AsFAD2b

L AF NVSGRPYDGFACHF FPNAPI YNDRERL QI YL SDAGI L AVCFGL YRYA 243AtFAD2

L SMNASGRPYARFACHF DPYGPI YNDRERI QI F I SDVGVVATAFTL FKL A 250AsFAD2a

L SMNASGRPYARFACHF DPYGPI YNDRERVQI F I SDVGVVATAFTL FKL A 250AsFAD2b

AAQGMASMI CL YGVPL L I VNAFL VL I TYL QHT HPSL PHYDSSEWDWL RGA 293AtFAD2

SVF GFWWVVRI YGVPL L I VNAWL VL I TYL QHT HPAL PHYDSTEWDWL RGA 300AsFAD2a

SAF GFWWVVRI YGVPL L I VNAWL VL I TYL QHT HPAL PHYDSTEWDWL RGA 300AsFAD2b

L AT VDRDYGI L NKVFHNI TDT HVAHHL F STMPHYNAMEAT KAI KPI L GDY 343AtFAD2

L AT MDRDYGI L NRVFHNI TDT HVAHHL F STMPHYHAMEAT KAI KPI L GEY 350AsFAD2a

L AT MDRDYGI L NRVFHNI TDT HVAHHL F STMPHYHAMEAT KAI KPI L GEY 350AsFAD2b

YQF DGT PWYVAMYREAKECI YVEPDREGDKKGVYWYNNKL            383AtFAD2

YQF DPT PVAKATWREAKECI YVAPT E- - DRKGVFWYSNKF .           389AsFAD2a

YQF DPT PVAKATWREAKECI YVAPT E- - DRKGVFWYSNKF .           389AsFAD2b

* 

* 

* 
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 Avena sequence analyses: AsFAD3-1 3.2.4.3.3.

The FAD3 query retrieved ESTs of two distinct FAD3-like genes. The first, AsFad3-1, is 

1164 bp in length and encodes for AsFAD3-1 protein of 387 aa, a predicted MW of 44,021 Da, 

and pI of 8.22 (Figure 22). 

 

 

Figure 22.  AsFAD3-1 ORF cDNA and its translated protein sequence. Histidine boxes are 

shaded. 
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The HIS-boxes occur at residues 102-106, 138-142, and 304-308 aa. This protein is also 

predicted to be in the ω-6 FAD families (National Center for Biotechnology Information, 2013b; 

UniProt, 2013). There are two N-myristoylation sites at positions 113-118 and 282-287 aa 

(MyHits, 2013). Although neither ChloroP nor TargetP predicted a chloroplast targeting peptide, 

there are five predicted transmembrane regions at positions 80-101, 114-134, 172-189, and 214-

235, 240-261 aa using TMPred (Swiss Institute of Bioinformatics, 2013c). 

 Avena sequence analyses: AsFAD3-2 3.2.4.3.4.

A second FAD3, AsFAD3-2, was identified using the same query sequence. The ORF of 

this FAD3 gene is 1146 bp in length, and encodes for a 381 aa protein. This protein has a 

predicted MW of 43,415 Da, and a pI of 7.81 (Figure 23). 

AsFAD3-2 has three conserved HIS-boxes at positions 96-100, 132-136, and 298-302 aa. 

The predicted membrane-spanning regions are at positions 63-81, 89-109, 123-143, 186-203, and 

258-276 aa (Swiss Institute of Bioinformatics, 2013c). It is predicted to be part of the ‘Δ12 FAD-

like family’ and ‘FA_desaturase family’ (National Centre for Biotechnology Information, 

2013b). One N-myristoylation site is predicted at position 276-281 aa (SIB, 2013). No 

chloroplast targeting sites are predicted (Emanuelsson et al., 1999; Nielsen et al., 1997). The 

products of the two oat FAD3s are highly homologous, but can be distinguished by the N- and C- 

termini (Figure 24). 
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Figure 23. AsFAD3-2 ORF cDNA and its translated protein sequence. Histidine boxes are 

shaded. 
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Figure 24. Both Avena FAD3s compared to the query Arabidopsis FAD3. HIS-boxes are 

underlined. 

 

 

Table 9. Percent identity of the Avena FAD3s as compared to the AtFAD3. 

 

  

MVVAMDQRTNVNGDPGAGDRKKEER- - - FDPSAQPPFKI GDI RAAI PKHC 47AtFAD3

- MAAEAMRQQRR- EQEASCKAT EDHRSVFDAAKPPPFRI GDVRAAVPAHC 48AsFAD3-1

- MGAAARRAP- - - EQEQSCKAT ED- - - - FDAAKPPPFRI GDVRAAVPAHC 42AsFAD3-2

WVKSPL RSMSYVVRDI I AVAAL AI AAVYVDSWF L WPL YWAAQGTL FWAI F  97AtFAD3

WRKSPL RSL SYVARDVVVVAAL AAAAWGL DSWAVWPL YWAVQGTMFWAL F  98AsFAD3-1

WRKSPL RSL SYVARDVAAVAAL AL AAWGI DTWAVWPL YWAAQGTL FWAL F  92AsFAD3-2

VL GHDCGHGSF SDI PL L NSVVGHI L HSF I L VPYHGWRI SHRT HHQNHGHV 147AtFAD3

VL GHDCGHGSF SDSGTL NSVVGHL L HT F I L VPYNGWRI SHRT HHQNHGHI  148AsFAD3-1

VL GHDCGHGSF SDSATL NSVVGHL L HT F I L VPYNGWRI SHRT HHQNHGHI  142AsFAD3-2

ENDESWVPL PERVYKKL PHSTRML RYT VPL PML AYPL YL CYRSPGKEGSH 197AtFAD3

EKDESWHPI TEGL YQKL EARTKKL RFSVPF PL L AFPVYL WYRSPGKTGSH 198AsFAD3-1

DKDESWHPI TENVYKEL EPSTKKL RFSL PYPL L AFPVYL WYRSPGKNGSH 192AsFAD3-2

FNPYSSL F APSERKL I ATSTTCWSI MF VSL I AL SFVFGPL AVL KVYGVPY 247AtFAD3

FNPSSGL F TPKERQDVI I STTCWF TMI AL L I GMACMFGPVPVL KVYGVPY 248AsFAD3-1

FNPSSDL F SPKERRDVI I STTCWF TMI AL L I AMACVFGPVPVL KL YGVPY 242AsFAD3-2

I I FVMWL DAVT YL HHHGHDEKL PWYRGKEWSYL RGGL TT I DRDYGI FNNI  297AtFAD3

VVFVMWL DL VT YL HHHGHQD- L PWYRGEEWSYL RGGL TT VDRDYGWI NNI  297AsFAD3-1

VVFVMWL DL VT YL HHHGHQD- L PWYRGEEWSYL RGGL TT VDRDYGWI NNI  291AsFAD3-2

HHDI GTHVI HHL FPQI PHYHL VDATKAAKHVL GRYYREPKTSGAI PI HL V 347AtFAD3

HHDI GTHVI HHL FPQI PHYHL VEATKAASPVL GRYYREPEKSGPL PVHL V 347AsFAD3-1

HHDI GTHVI HHL FPQI PHYHL VEATKAARPVL GRYYREPEKSGPL PTHL F  341AsFAD3-2

ESL VASI KKDHYVSDTGDI VFYET DPDL YVYASDKSKI N.            387AtFAD3

SVL L KSL RVDHFVSDEGDVVFYQT DPSL SGDNRI GT DKHK.           388AsFAD3-1

SI L L RSL RVDHFVSDVGDVVFYQT DPSL DSDSWTKNGKQK.           382AsFAD3-2
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 Avena sequence analyses: AsFADX & AsFADX+ 3.2.4.3.5.

The ORF of AsFADX is 1080 bp in length and encodes a protein 360 aa in length. This 

protein is predicted to have a MW of 42,309 Da with a pI of 8.17 (Figure 25).  

As there was a substantial, continuous sequence upstream of AsFADX, with three 

additional putative translation initiation codons and few ESTs available in that region, it was 

unclear whether AsFADX or the longer version or both were functional genes or if one was an 

artifact. The longer version, AsFADX+, was thus also isolated after assembling the putative 

contig with the additional 288 bp (96 aa) region upstream from the translation initiation codon of 

AsFADX, termed ‘AsFADX+.’ The region of 288 bp upstream from the putative ORF of 

AsFADX, when translated, showed a continuous segment of 96 aa, shifted out-of-frame relative 

to the AsFADX ORF by one nucleotide. In an area of seven repeated nucleotides at a position 114 

bp upstream from the putative ORF of AsFADX, which was otherwise identical across the eight 

ESTs (from which that region of the contig was assembled), there was disagreement on one 

nucleotide across these ESTs, as well as one nucleotide gap slightly upstream of this region in 

two of the ESTs. Deleting the nucleotide responsible for causing the disagreement across the 

ESTs resulted in the entire 288 bp region at the 5’ end upstream from the putative ORF of 

AsFADX to shift into frame, bringing both AsFADX putative ORF and the upstream region into 

one frame to form AsFADX+. ). No additional putative translation initiation codons upstream of 

those of AsFADX+ were identified; putative UTRs can be examined in Appendix 5.2. Once 

sequenced, the results showed the longer 5’ region of the putative ORF of AsFADX+ to be in-

frame with the putative ORF of AsFADX (Figure 25) which suggests that AsFADX is an 

incomplete ORF, despite its length being more similar to the expected length of a FAD than that 

of AsFADX+. 

AsFADX+ is 1368 bp in length and encodes for a protein 456 aa in length. This protein is 

predicted to have a MW of 53164Da with a pI of 9.4. Both AsFADX and AsFADX+ have three 

conserved HIS-boxes; these are at positions 84-88, 120-124, and 280-284 aa, and at 180-184, 

216-220, and 376-380 aa, respectively. TMPred predicts four membrane spanning regions for 

both proteins (Swiss Institute of Bioinformatics, 2013c). These are located at residues 42-58, 62-

82, 96-115, and 190-208 aa in FADX, and in FADX+ at 138-154, 158-178, 192-211, 286-304 aa.  
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Figure 25. AsFADX+ ORF cDNA and its translated protein sequence. Histidine boxes are 

shaded. The black arrow indicates the translation initiation codon of the shorter AsFADX, while 

the white arrow indicates the position of the nucleotide that was deleted and shifted the upstream 

nucleotide segment in-frame with AsFADX to result in three possible translation initiation codons 

of the putative AsFADX+ (indicated by the grey arrows). 
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 Both AsFADX and AsFADX+ are predicted to each have two N-myristoylation sites at 

residues 73-78 and 260-265, and at 169-174, and 354-360, respectively (SIB, 2013). Both are 

predicted to belong to FAD-like and FA_desaturase protein families when analyzed with NCBI’s 

conserved domain tool (2013b). Neither was predicted to have chloroplast targeting peptide 

sequences (Emanuelsson et al., 1999; Nielsen et al., 1997). 

Additionally, the 96 aa N-terminal of AsFADX+ was submitted separately into the 

ChloroP 1.1 Server and predicted to not be a chloroplast-targeting peptide sequence.  

The AsFADX (and AsFADX+) product sequences yield relatively low (<30%) protein 

homology to the AtFAD7 with which its comprising ESTs were found (Figure 26; Table 10). 

(An additional alignment of AsFADX+ with all Arabidopsis FADs can be found in Appendix 

5.3). 

To investigate if the unique sequence inside the third HIS-box was consistent with 

another class of desturase or hydroxylase, it was aligned with other HIS-box-containing FADs 

and FAHs to specifically examine the HIS-box regions (Figure 27). The AsFADX sequences 

yield a unique aa pattern inside the third HIS-box as emphasized in Figure 27C. The third 

conserved HIS-box of the AsFADX sequences, although ESTs were retrieved from a FAD7 

query, showed aa identity unique from all other HIS-box-containing proteins. Although the 

sequence is not identical within th HIS boxes, valine (V) and isoleucine (I) are extremely similar 

in size, structure and properties as they differ by only one carbon atom, so the catalyitic function 

is likely retained, and AsFADX is likely a FAD6.  

Although based on the HIS-boxes, the sequences suggest that the AsFADXs are FAD6s, 

but this comparison shows the unique aa residue pattern inside the third histidine box of FADX 

& FADX+, indicated by the bracket and black arrows. Despite the aa difference, the biochemical 

similarity between the third HIS-box of AsFADX and that of AtFAD6 suggest AsFADXs fall 

under the FAD6 classification. 

AsFADX+ was searched back into NCBI as the query sequence, using the tBLASTn 

function and general parameters not specific to any organism. Several matches were found 

sharing various levels of protein homology within a wide range of sequence query coverges, 

however each was either a mRNA/cDNA or predicted protein sequence. Of particular interest to 

this study, and included in the tBLASTn results was two mRNA sequences originating from the 

leaf (GenBank Accession # DV482249.1) and flower (GenBank Accession # GT830484.1) of  



62 

 

 

Figure 26. The Arabidopsis FAD7 query aligned with both lengths of the Avena FAD-like 

sequence. The third histidine box is unique from other FAD classes. Homologous regions are 

highlighted in black. Conserved histidine boxes are underlined. 

 

Table 10. Relative percent identities of the query FAD7 and the resulting Avena FAD6-like 

protein sequences. 

 

- - - - - - - - - - - - - - - - MANL VL SECGI RPL PRI YTT PRSNFL SNNNKFRP 34AtFAD7

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFADX

MRARTPFRPPRREWMAT ASAL CAPMQL L SL RRAPAKEL SPRRAAAVAL SG 50AsFADX+

SL SSS- - SYKTSSSPL SFGL NSRDGFTRNWAL NVST PL TT PI FEESPL EE 82AtFAD7

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MSED 4AsFADX

SL I VKRDFL HNGRSHHQFL PL KQRGKL QAAVL PL TPL L DDEEKRKQMSED 100AsFADX+

DNKQRF DPGAPPPF NL ADI RAAI PKHCWVKNPWKSL SYVVRDVAI VFAL A 132AtFAD7

YGF KQI GEQL PDNVTL KDVMDTL PKEVF EI DNVKAWGSVL I SVTS- YAF G 53AsFADX

YGF KQI GEQL PDNVTL KDVMDTL PKEVF EI DNVKAWGSVL I SVTS- YAF G 149AsFADX+

AGAAYL NNWI VWPL YWL AQGT MFWAL FVL GHDCGHGSFSNDPKL NSVVGH 182AtFAD7

I FL I SKAPWYL L PL AWAWAGT AVTGFFVI GHDCAHKSFSRNKL VEDI VGT 103AsFADX

I FL I SKAPWYL L PL AWAWAGT AVTGFFVI GHDCAHKSFSRNKL VEDI VGT 199AsFADX+

L L HSSI L VPYHGWRI SHRTHHQNHGHVENDESWHPMSEKI YNTL DKPTRF 232AtFAD7

L AF L PL I YPYEPWRFKHDRHHAKTNML VEDTAWQPVWQKEI ESSSL L RKA 153AsFADX

L AF L PL I YPYEPWRFKHDRHHAKTNML VEDTAWQPVWQKEI ESSSL L RKA 249AsFADX+

FRF TL PL VML AYPF YL WARSPGKKGSHYHPDSDL FL PKERKDVL TSTACW 282AtFAD7

I I F GYGPI RPWMSI AHWL - - - - - - - - MWHFDL KKFRPNEL PRVKI SL ACV 195AsFADX

I I F GYGPI RPWMSI AHWL - - - - - - - - MWHFDL KKFRPNEL PRVKI SL ACV 291AsFADX+

TAMAAL - L VCL NFT I GPI QML KL YGI PYWI NVMWL DFVTYL HHHGHEDKL  331AtFAD7

FAF MAI GWPL I I L QTGI AGWF KFWF MPWMVYHFWMSTFTMVHHT- - APHI  243AsFADX

FAF MAI GWPL I I L QTGI AGWF KFWF MPWMVYHFWMSTFTMVHHT- - APHI  339AsFADX+

PWYRGKEWSYL RGGL T- TL DRDYG- L I NNI HHDI GT HVI HHL FPQI PHYH 379AtFAD7

PFKSPEEWNAAQAQL NGTVHCSYPRWI EI L CHDI NVHVPHHI SPRI PSYN 293AsFADX

PFKSPEEWNAAQAQL NGTVHCSYPRWI EI L CHDI NVHVPHHI SPRI PSYN 389AsFADX+

L VEATEAAKPVL GKYYREPDKSGPL PL HL L EI L AKSI KEDHYVSDEGEVV 429AtFAD7

L RAAHDSI KKNWGKYMNDADWNWRL MKT I L TACHVYDKERYYVSFD- EVV 342AsFADX

L RAAHDSI KKNWGKYMNDADWNWRL MKT I L TACHVYDKERYYVSFD- EVV 438AsFADX+

YYKADPNL YGEVKVRAD.                                  447AtFAD7

PEESQPI RFL KKFMPDYA.                                 361AsFADX

PEESQPI RFL KKFMPDYA.                                 457AsFADX+
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Figure 27. HIS-box protein alignment. AsFADX & AsFADX+ are shown in lines 1 and 2, 

with previously characterized FADs (lines 3-7), Δ12 hydroxylases (lines 8 & 10), and a 

bifunctional Δ12 hydroxylase/desaturase (line 11). At=Arabidopsis thaliana; As=Avena sativa; 

Rc=Ricinus communis; Cp=Claviceps purpurea; Lf=Lesquerella fendleri. Black arrows indicate 

the 3rd HIS-box of the AsFADX proteins, and the white arrow indicates the 3rd HIS-box of the 

query AtFAD7 with which they were found. 

 

Brachypodium distachyon (Bd) sharing 96% and 95% protein identity (within 61% and 57% 

query coverage) to the AsFADX+ query sequence, respectively. 

Although both of the Brachypodium sequences were cDNA clones, the second sequence 

had the same “HVPHH” sequences in the third putative HIS-box (Figure 28) with high similarity 

to a FAD6. This prompted a more specific search within the Brachypodium distachyon genome. 

Brachypodium distachyon is a member of the Pooideae family of annual grasses and is a 

model organism of growing interest and applicability for such studies (The International 

Brachypodium Initiative, 2010). This grass has a relatively short flowering period and small 

genome, making it an ideal model; although to date it has not been explored as deeply as 

Arabidopsis, as a monocot Brachypodium may be more ideal as a reference to oat, although 

queries using FADs from either organism should be effective as dicots were not distinct from 

monocots until approximately 150 million years ago (Chaw et al., 2004).  

The predicted Brachypodium distachyon FAD2 (Accession # XP_003574539.1, termed 

“BdFAD2” for these purposes and encoded by the predicted gene termed “BdFAD2,” accession  
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Figure 28. Protein alignment of AsFADX+ with the homologous Brachypodium ESTs, 

DV482249.1 and GT830484.1.  Histidine boxes are underlined. 

 

 

 

Table 11. Protein percent identities of both Brachypodium ESTs with AsFADX+. 

 

 

number XM_003574491) and a predicted FAD3/ω-3 desaturase (Accession # XP_003558157.1, 

termed here “BdFAD3” encoded by the predicted gene termed “BdFAD3,” accession number 

XM_003558109.1) sequences were retrieved from NCBI to align with the AsFADX+ query 

sequence, as shown in Figure 29. 

MR A R T P F R P P R R E WMA T A S A L C A P MQL L S L R R A P A K E L S P R R A A A V A L S G 50AsFADX+

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P R - - - - - - - - -  2Brachypodium EST (DV482249.1)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Brachypodium EST (GT830484.1)

S L I V K R D F L H N GR S H H QF L P L K QR GK L QA A V L P L T P - L L D D E E K R K QMS E  99AsFADX+

- - - - V R - - - - - - - - - - - - - - L K QK GR L QA A V L P I T P P L L D D E E K R K QMS E  34Brachypodium EST (DV482249.1)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Brachypodium EST (GT830484.1)

D Y GF K QI GE QL P D N V T L K D V MD T L P K E V F E I D N V K A WGS V L I S V T S Y A F G 149AsFADX+

D Y GF K QI GE QL P D N V T L K D V MD T L P K E V F E I D N V K A WA S V L I S V T S Y A F G 84Brachypodium EST (DV482249.1)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Brachypodium EST (GT830484.1)

I F L I S K A P WY L L P L A WA WA GT A V T GF F V I GH D C A H K S F S R N K L V E D I V GT  199AsFADX+

L L L I S K A P WY L L P L A WA WA GT A V T GF F V I GH D C A H K S F S R N K L V E D I V GT  134Brachypodium EST (DV482249.1)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Brachypodium EST (GT830484.1)

L A F L P L I Y P Y E P WR F K H D R H H A K T N ML V E D T A WQP V WQK E I E S S S L L R K A  249AsFADX+

L A F L P L I Y P Y E P WR F K H D R H H A K T N ML V E D T A WQP V WQK E I E S S S F L R K A  184Brachypodium EST (DV482249.1)

- - - L P L I Y P Y E P WR F K H D R H H A K T N ML V E D T A WQP V WQK E I E S S S F L R K A  47Brachypodium EST (GT830484.1)

I I F GY GP I R P WMS I A H WL MWH F D L K K F R P N E L P R V K I S L A C V F A F MA I GW 299AsFADX+

I I F GY GP I R P WMS I A H WL MWH F D L K K F R P N E I P R V K I S L A C V F A F MA I GW 234Brachypodium EST (DV482249.1)

I I F GY GP I R P WMS I A H WL MWH F D L K K F R P N E I P R V K I S L A C V F A F MA I GW 97Brachypodium EST (GT830484.1)

P L I I L QT GI A GWF K F WF MP WMV Y H F WMS T F T MV H H T A P H I P F K S P E E WN A  349AsFADX+

P L I I L QS GI A GWF K F WF MP WMV Y H F WMS T F T MV H H T A P H I P F K S S E E WN A  284Brachypodium EST (DV482249.1)

P L I I L QS GI A GWF K F WF MP WMV Y H F WMS T F T MV Y H T A P H I P F K S S E E WN A  147Brachypodium EST (GT830484.1)

A QA QL N GT V H C S Y P R WI E I L C H D I N V H V P H H I S P R I P S Y N L R A A H D S I K K  399AsFADX+

A QA                                                 287Brachypodium EST (DV482249.1)

A QA QL N GT V H C S Y P R WI E I L C H D I N V H V P H H I S P E F P S Y N L R A A H D S Y . T  197Brachypodium EST (GT830484.1)

N WGK Y MN D A D WN WR L MK T I L T A C H V Y D K E R Y Y V S F D E V V P E E S QP I R F L K  449AsFADX+

                                                   287Brachypodium EST (DV482249.1)

E L GK                                                201Brachypodium EST (GT830484.1)

K F MP D Y A .                                            457AsFADX+

                                                   287Brachypodium EST (DV482249.1)

                                                   201Brachypodium EST (GT830484.1)
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Figure 29. A ClustalW protein alignment of the AsFADX+ with the Brachypodium 

distachyon (Bd) FAD2 (BdFAD2) and FAD3 (BdFAD3). Histidine boxes are underlined. The 

arrow indicates the location of the beginning of the shorter AsFADX. 

 

 

Table 12. Relative percent protein identities of the sequences aligned in Figure 29. 

 

 

It is generally believed that FAD3s diverged from FAD2s, and FAHs diverged from 

either FAD2s or FAD3s throughout evolution. To compare these oat FAD2-like sequences of 

this study with the Arabidopsis FAD2 query as well as with the Brachypodium BdFAD2, all 

FAD-like protein sequences from this thesis were aligned with these two putative progenitors 

(Figure 30).  
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Figure 30. Protein alignment of all Avena FAD-like sequences in this study (sequences 2-7), 

compared with the AtFAD2 (sequence 1) and BdFAD2 (sequence 8). HIS-boxes are 

underlined. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AtFAD2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD2a

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD2b

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD3-1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD3-2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFADX

MR A R T P F R P P R R E WMA T A S A L C A P MQL L S L R R A P A K E L S P R R A A A V A L S GS L I V K R D F L H N GR S H H QF L P L K QR G 75AsFADX+

- - - - - - - - - - - - - - MA T A S GL S GP L QL L S L R R A P A K N L F QR R A A A GA L T GS V I V K R GF V Y D GR GD H QF L P L K QK G 61BdFAD2

- MGA GGR MP V P - - T S S K K S E T - - - - - - D T T K R V P C E K P P F S V GD L K K A I P P H C F K R S I P R S F S Y L I S D I I I A S C F  66AtFAD2

- MGA GGR MT E K - - E R E K QE QL GR A D V GA T L QR S P T D K P P F T L GQI K K A I P P H C F QR S V I K S F S Y V V H D L V I V A A L  72AsFAD2a

- MGA GGR MT E K - - E R E K QE QL GH A D V GA T L QR S P T D K P P F T L GQI K K A I P P H C F QR S V I K S F S Y V V H D L V I V A A L  72AsFAD2b

- MA A E A MR QQR - - R E QE A S C K A T E D H - - R S V F D A A K P P P F R I GD V R A A V P A H C WR K S P L R S L S Y V A R D V V V V A A L  70AsFAD3-1

- MGA A A R R A P - - - - E QE QS C K A T E D - - - - - - F D A A K P P P F R I GD V R A A V P A H C WR K S P L R S L S Y V A R D V A A V A A L  64AsFAD3-2

- - - - - - - - - - - - - - - - - - - - - - MS E D Y GF K QI GE QL P D N V T L K D V MD T L P K E V F E I D N V K A WGS V L I S V T S Y A F G 53AsFADX

K L QA A V L P L T P - L L D D E E K R K QMS E D Y GF K QI GE QL P D N V T L K D V MD T L P K E V F E I D N V K A WGS V L I S V T S Y A F G 149AsFADX+

R L QA A V L P I T P P L L D D E E K R K QMS E D Y GF K QI GE QL P D N V T L K D V MD T L P K E V F E I D N V K A WA S V L I S V T S Y A F G 136BdFAD2

Y Y V A T N Y F S L L P QP L S Y L A WP L Y WA C QGC V L T GI WV I A H E C GH H A F S D Y QWL D D T V GL I F H S F L L V P Y F S WK Y S H  141AtFAD2

L Y A A L V WI P T L P S V L QL GA WP L Y WI V QGC V MT GV WV I A H E C GH H A F S D Y S L L D D I V GL V L H S WL L V P Y F S WK Y S H  147AsFAD2a

L Y A A L V WI P T L P S V L QL GA WP L Y WI V QGC V MT GV WV I A H E C GH H A F S D Y S L L D D I V GL V L H S WL L V P Y F S WK Y S H  147AsFAD2b

A A A A WG- - - - - - - L D S WA V WP L Y WA V QGT MF WA L F V L GH D C GH GS F S D S GT L N S V V GH L L H T F I L V P Y N GWR I S H  138AsFAD3-1

A L A A WG- - - - - - - I D T WA V WP L Y WA A QGT L F WA L F V L GH D C GH GS F S D S A T L N S V V GH L L H T F I L V P Y N GWR I S H  132AsFAD3-2

I F L I S K - - - - - - - - A P WY L L P L A WA WA GT A V T GF F V I GH D C A H K S F S R N K L V E D I V GT L A F L P L I Y P Y E P WR F K H  120AsFADX

I F L I S K - - - - - - - - A P WY L L P L A WA WA GT A V T GF F V I GH D C A H K S F S R N K L V E D I V GT L A F L P L I Y P Y E P WR F K H  216AsFADX+

L L L I S K - - - - - - - - A P WY L L P L A WA WA GT A V T GF F V I GH D C A H K S F S R N K L V E D I V GT L A F L P L I Y P Y E P WR F K H  203BdFAD2

R R H H S N T GS L E R D E V F V P K QK S A I K WY GK Y L N N - P L GR I MML T V QF V L GWP L Y L A F N V S GR P Y D GF A C H F F P N A P  215AtFAD2

R R H H S N T GS ME R D E V F V P K QK D A L A WY T P Y I Y N N P I GR L V H I V V QL T L GWP L Y L S MN A S GR P Y A R F A C H F D P Y GP  222AsFAD2a

R R H H S N T GS ME R D E V F V P K QK D A L A WY T P Y I Y N N P I GR L V H I V V QL T L GWP L Y L S MN A S GR P Y A R F A C H F D P Y GP  222AsFAD2b

R T H H QN H GH I E K D E S WH P I T E GL Y QK L E A R T K K - - - - - L R F S V P F P L L A F P V Y L WY R S P GK - - - - T GS H F N P S S G 204AsFAD3-1

R T H H QN H GH I D K D E S WH P I T E N V Y K E L E P S T K K - - - - - L R F S L P Y P L L A F P V Y L WY R S P GK - - - - N GS H F N P S S D  198AsFAD3-2

D R H H A K T N ML V E D T A WQP V WQK E I E S S S L L R K A I I F G- - - Y GP I R P WMS I A H WL MWH F D L K - - - - - - - - - - - - - -  178AsFADX

D R H H A K T N ML V E D T A WQP V WQK E I E S S S L L R K A I I F G- - - Y GP I R P WMS I A H WL MWH F D L K - - - - - - - - - - - - - -  274AsFADX+

D R H H A K T N ML V E D T A WQP V WQK E I E S S S F L R K A I I F G- - - Y GP I R P WMS I A H WL MWH F D L K - - - - - - - - - - - - - -  261BdFAD2

I Y N D R E R L QI Y L S D A GI L A V C F GL Y R Y A A A QG- MA S MI C L Y GV P L L I V N A F L V L I T Y L QH T - H P S L P H Y D S S E WD  288AtFAD2

I Y N D R E R I QI F I S D V GV V A T A F T L F K L A S V F G- F WWV V R I Y GV P L L I V N A WL V L I T Y L QH T - H P A L P H Y D S T E WD  295AsFAD2a

I Y N D R E R V QI F I S D V GV V A T A F T L F K L A S A F G- F WWV V R I Y GV P L L I V N A WL V L I T Y L QH T - H P A L P H Y D S T E WD  295AsFAD2b

L F T P K E R QD V I I S T T C WF T MI A L L I GMA C MF G- P V P V L K V Y GV P Y V V F V MWL D L V T Y L H H H GH QD L P WY R GE E WS  278AsFAD3-1

L F S P K E R R D V I I S T T C WF T MI A L L I A MA C V F G- P V P V L K L Y GV P Y V V F V MWL D L V T Y L H H H GH QD L P WY R GE E WS  272AsFAD3-2

K F R P N E L P R V K I S L A C V F A F MA I GWP L I I L QT GI A GWF K F WF MP WMV Y H F WMS T F T MV H H T - A P H I P F K S P E E WN  252AsFADX

K F R P N E L P R V K I S L A C V F A F MA I GWP L I I L QT GI A GWF K F WF MP WMV Y H F WMS T F T MV H H T - A P H I P F K S P E E WN  348AsFADX+

K F R P N E I P R V K I S L A C V F A F MA I GWP L I I L QS GI A GWF K F WF MP WMV Y H F WMS T F T MV H H T - A P H I P F K S S E E WN  335BdFAD2

WL R GA L A - T V D R D Y G- I L N K V F H N I T D T H V A H H L F S T MP H Y N A ME A T K A I K P I L GD Y Y QF D G- - - - - - - - T P WY V  353AtFAD2

WL R GA L A - T MD R D Y G- I L N R V F H N I T D T H V A H H L F S T MP H Y H A ME A T K A I K P I L GE Y Y QF D P - - - - - - - - T P V A K  360AsFAD2a

WL R GA L A - T MD R D Y G- I L N R V F H N I T D T H V A H H L F S T MP H Y H A ME A T K A I K P I L GE Y Y QF D P - - - - - - - - T P V A K  360AsFAD2b

Y L R GGL T - T V D R D Y G- WI N N I H H D I G- T H V I H H L F P QI P H Y H L V E A T K A A S P V L GR Y Y R E P E K - - - - - - S GP L P V  344AsFAD3-1

Y L R GGL T - T V D R D Y G- WI N N I H H D I G- T H V I H H L F P QI P H Y H L V E A T K A A R P V L GR Y Y R E P E K - - - - - - S GP L P T  338AsFAD3-2

A A QA QL N GT V H C S Y P R WI E I L C H D I N - V H V P H H I S P R I P S Y N L R A A H D S I K K N WGK Y MN D A D WN WR L MK T I L T A C  326AsFADX

A A QA QL N GT V H C S Y P R WI E I L C H D I N - V H V P H H I S P R I P S Y N L R A A H D S I K K N WGK Y MN D A D WN WR L MK T I L T A C  422AsFADX+

A A QA QL N GT V H C S Y P R WI E I L C H D I N - V H V P H H I S P R I P S Y N L R A A H D S I K QN WGK Y I N E A S WN WR L MK T I L T A C  409BdFAD2

A MY R E A K E C I Y V E P D R E GD K K GV Y WY N N K L                                               383AtFAD2

A T WR E A K E C I Y V A P T E - - D R K GV F WY S N K F .                                              389AsFAD2a

A T WR E A K E C I Y V A P T E - - D R K GV F WY S N K F .                                              389AsFAD2b

H L V S V L L K S L R V D H F V S D E GD V V F Y QT D P S L S GD N R I GT D K H K .                                 388AsFAD3-1

H L F S I L L R S L R V D H F V S D V GD V V F Y QT D P S L D S D S WT K N GK QK .                                 382AsFAD3-2

H V Y D K E R Y Y V S F D E V V P E E S QP I R F L K K F MP D Y A .                                          361AsFADX

H V Y D K E R Y Y V S F D E V V P E E S QP I R F L K K F MP D Y A .                                          457AsFADX+

H V Y D K E R Y Y V P F D E L V P E E S QP I R F L K K F MP D Y A                                           443BdFAD2
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Table 13. Relative percent identities of all Avena FAD-like protein sequences identified in 

this study, compared with the FADs of both model organisms. At=Arabidopsis thaliana; 

As=Avena sativa; Bd= Brachypodium distachyon. 

 

 

The comparison indicated four distinct enzymes: a FAD2 (in two isoforms), two FAD3s, 

and a FAD6-like (with potentially a transit peptide sequence at the N-terminus, despite software 

prediction tools refuting this conjecture). The FADXs are slightly anomalous relative to the other 

oat proteins in this study based on their HIS-box sequence, and in length; AsFADX+ is nearly 

~100 aa longer than the others, while AsFADX is ~20 aa shorter, and both have gaps of ~10 aa 

preceding the first HIS-box and ~20 aa between the first and second HIS-boxes. Generally, there 

is high conservation in regions surrounding the HIS-boxes, particularly ~10-20 aa preceding the 

first HIS-box. There are other seemingly HIS-rich regions, although outside of the conserved 

“HIS-box” sequences; one precedes the 3
rd

 HIS-box by 5 aa, a second by ~50 aa, and another 

follows the 3
rd

 HIS-box by ~7 aa. Amongst the oat proteins of this study, AsFAD3-2 is most 

similar to AsFAD2 sharing 37.6% identity, while AsFAD3-1 is slightly less homologous sharing 

36.8% identity. AsFADX shares only 22.7% identity with AsFAD2, while AsFADX+ is least 

similar to AsFAD2 sharing 22.0% identity.  

A graphical representation of the relative lengths of each oat FAD-like sequence and 

relative positions of each conserved region encoding for the HIS-boxes is better understood 

when aligned at the C-terminal ends (Figure 31). 

The phylogenetic relationship between the evolutionary divergences of the oat FAD-like 

proteins (aligned in Figure 30) from a FAD2 progenitor can be better visualized with a 

phylogenetic tree (Figure 32), as well as their evolutionary relationships to other FAD and FAH 

classes of proteins (Figure 33). 



68 

 

 

Figure 31. A graphical representation of each oat FAD-like sequence aligned from the C-

terminal end. Hatched regions indicate relative positions HIS-boxes. ORF=open reading frame. 

As=Avena sativa. 

 

Figure 32. A phylogenetic tree comparing all Avena FAD-like sequences with AtFAD2 and 

BdFAD2. At=Arabidopsis thaliana; As=Avena sativa; Bd= Brachypodium distachyon. 

 

Figure 33. A phylogenetic tree comparing all Avena FAD-like sequences with the different 

Arabidopsis FAD queries, FAH queries, and the hypothetical Brachypodium FAD. 

As=Avena sativa, Bd=Brachypodium, At=Arabidopsis thaliana, Lf=Lesquerella fendleri, 

Cp=Claviceps purpurea, Rc=Ricinus communis. 

AsFAD2a 
AsFAD2b 
AtFAD2 
AsFAD3-1 
AsFAD3-2 
AsFADX 
AsFADX+ 
BdFAD2 
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As expected, the AsFAD2s are highly homologous and most closely related to the 

previously-characterized FAD2. The AsFAD3s are less homologous to the AtFAD2 than the 

AsFAD2s. Interestingly, the BdFAD2 is most closely related to the AsFADXs, although the 

BdFAD2 is merely a predicted protein. 

 In Figure 33, there are three distinct clusters of related proteins. In the first cluster, the oat 

FAD2s are most closely related to the castor bean hydroxylase, but are homologous with the 

FAHs and FAD2s, overall. The oat FAD3s are share highest homology with the AtFAD3, but are 

also highly homologous with the characterized FAD7 and FAD8, as observed in the second 

cluster. The third cluster shows the homology of the oat FADX with the characterized AtFAD6 

as well as with the predicted BdFAD2 

3.2.5. Discussion 

As multiple codons may encode for one amino acid, the preliminary BLAST searches were 

based on more highly-specific amino acid sequence of the established FAD2 and FAD-like FAH 

enzyme sequences. The BLAST search that was employed (tBLASTn) compared the query 

protein sequence to any resulting matches across all six possible translated frames of the 

overlapping ESTs from the EST databases, which would later become the putative oat contig. 

Ideally, the source of query sequences would originate from plant species more closely related to 

oat, such as Hordeum vulgare or Triticum aestivum, rather than an oilseed such as Brassica 

napus, although the lesser-related sequences were used when information was unavailable from 

the more closely related organisms. As there has not been a FAH15 previously identified and 

characterized, and therefore no direct reference, their characterizations must begin by the 

extrapolation of information from indirect but evolutionarily-related sequences, a FAD2, FAD3, 

and FAHs.  

Once new putative oat sequences were identified, their nucleotide sequences were used as 

the query sequence to BLASTn (nucleotide) search within the oat-specific EST database. 

Contigs were constructed from various oat ESTs available from the unpublished CORE database 

that had high protein (>67% identity) homology to the previously-established FAD or FAH 

query sequences. Any oat contig matches to the NCBI FAD or FAH query sequences, assumed to 

partially contain nucleotide sequences of the desired FAH15, were downloaded for assembling 

new oat contigs using DNAstar’s SeqMan program. The new contigs were then edited for any 

sequencing errors or gaps in the contig consensus sequences (when compared to the queries or 
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amongst the total set of overlapping ESTs), translated to the putative protein sequence in 

DNAstar’s EditSeq, and finally compared with one another as well as with their query sequences 

in DNAstar’s MegAlign to (1) determine the full length ORFs and conserved HIS boxes are 

present, homologous to other FAD or FAHs; and (2) identify enough homology to confirm 

identity as a probable candidate as a FAH, while having adequate divergence to reasonably 

hypothesize to be a putative oat FAD or FAH and thus justify pursuing cloning of its gene. The 

putative GOIs were cloned by PCR using two specific primers at both ends of the ORF and 

encompassing the putative start and stop codon, and designed with specific restriction sites 

protruding beyond the ends of the ORF. 

Given the polyploidy nature of the Avena sativa genome, and the common belief that 

hexaploids have evolved from the hybridization of either diploids with diploids, or diploids with 

tetraploids, thus two distinct isoforms of each FAD-like oat gene are expected to have originated 

from a tetraploid progenitor or, three paralogs of each FAD-like gene in hexaploids. Both FAD2 

and FAD3 queries each identified two isoforms of oat FAD2s and FAD3s, respectively. 

Although the two AsFAD2s differed by only three amino acid residues, it was worthwhile to 

pursue their functional characterizations, particularly in the context of searching for a putative 

FAH; it has been demonstrated previously that as few as 3 amino acid changes can convert a 

FAD to a FAH (Broun et al., 1998). Although both FAD2-like oat genes were desaturases, the 

substrate-product conversion efficiency difference is not unexpected.  

Since 15-OH 18:2-9c,12c is known to be present in all diploid, tetraploid, and hexaploid 

oat classes, the evolution of the number of paralogs of the AsFAH15 is expected to be the same 

as with AsFAD3; unexpectedly, no additional FAD3-like genes were identified from the ESTs 

available. However, it is possible that one of the putative AsFAD3s is actually the AsFAH15, in 

which case the two enzymes share very high homology, but the presence of only one gene 

coding for an AsFAD3 and one for an AsFAH15 would also be unexpected. Moreover, it is 

possible (to a lesser extent) that the putative AsFAD3s have dual function primarily as a Δ15 

desaturase and secondarily as a Δ15 hydroxylase, considering such enzymes have been 

confirmed and considering the relative 18:3-9c,12c,15c to 15-OH 18:2-9c,12c levels 

accumulated in the seed. All classes of HIS-box-containing FAD-like sequences were used as 

query sequences to maximize the identification of homologous FAD-like ESTs from the oat EST 

database. Although query sequences from all available classes of the HIS-box-containing 
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proteins were queried, only four distinct Avena genes were defined - a FAD2-like, AsFAD2; two 

FAD3-like, AsFAD3-1 and AsFAD3-2; and a FAD6-like, AsFADX (as well as an extended 

variation, AsFADX+, with additional 288bp upstream of the translation initiation codon of 

AsFADX).  

As a reference to all of the oat genes and proteins here, a previously-characterized plant 

FAD2 from Arabidopsis (AtFAD2) was used in the same online tools and analyses for 

comparison (Okuley et al., 1994), as well as a predicted FAD2 from Brachypodium (BdFADX). 

Except for AsFADX+, the all Avena genes in this study are analogous with AtFAD2: AtFAD2 is 

383 aa with the three conserved HIS-boxes occurring at positions 105-109, 141-145, and 315-

319 aa. There are five predicted membrane spanning regions at positions 55-71, 83-103, 117-

137, 179-196, 225-245 and 251-272 aa. There are no transit peptide sequences predicted, and 

unexpectedly there are no ER-targeting C-terminus sequences predicted. Table 14 summarizes 

sequence information of all oat genes and proteins, in comparison to the two model organism 

FAD2s. 

Various software tools were employed to predict the number of transmembrane domains 

of these oat desaturases. However, the number varies with the software used. The discrepancy 

between the predicted number of transmembrane regions from the different tools employed 

suggests the unreliability of these types of tools, and therefore the hesitation with which the 

predicted topology structures must be taken into consideration. As well, the topology predictions 

require some manipulation of membrane-spanning versus integral membrane regions in order to 

achieve the proper putative orientation of the catalytic sites, for example the HIS-boxes, relative 

to one another. 

With the exception of the AsFADX-type proteins, all the encoded proteins are within 10 

aa of one another in length. The shorter length of AsFADX suggests that some part of the 

sequence is lacking and thus some length beyond that sequence should be taken into 

consideration. Additionally, the relative positions of the HIS-boxes aligned with the C-termini 

ending in nearly the same position, thus examination of the sequence upstream from the putative 

start codon of the ORF coding for AsFADX was logical. However, the nearest upstream start 

codons were substantially further than expected, based on the other FAD-like gene lengths, so it 

was unclear whether AsFADX or the longer AsFADX+ was the ORF sequence, if one was an 

artifact, or if it was erroneously induced by cloning procedure or as a result of an evolutionary  
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Table 14. Sequence detail comparisons of all oat sequences with the AtFAD2 and BdFADX. 

gene AsFAD2a AsFAD2b AsFAD3-1 AsFAD3-2 AsFADX AsFADX+ AtFAD2 BdFADX

length (nt) 1167 1167 1164 1146 1083 1371 1152 1332

GC proportion (%) 64.1 64.3 60.8 59.9 41.7 44.8 49.7 43.8

protein AsFAD2a AsFAD2b AsFAD3-1 AsFAD3-2 AsFADX AsFADX+ AtFAD2 BdFADX

length (AA) 388 388 387 381 360 456 383 443

# of predicted 

transmembrane 

regions (TMPred) 

5 5 5 5 4 4 6 5

# of predicted 

transmembrane 

regions (Kyte-

Doolittle)

3 3 3 3 3 3 1 3

 

 

event in the plant itself. It may be possible to determine this by cloning each length for 

expression in yeast individually, with a different sense primer amplifying from each of the 

putative initiation codons. However, based on both the amino acid similarity at the histidine 

boxes and entire sequences, AsFADX might be a FAD6-like, chloroplast-localized desaturase.  
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3.3.   Study 3: Functional Characterization of Putative Oat FADs in S. cerevisiae 

3.3.1. Abstract 

In order to functionally characterize these putative Avena genes from Study 2, each gene 

was cloned into a yeast expression vector, after which the recombinant vectors were used to 

transform S. cerevisiae. Fatty acid analysis of transformants indicated that both AsFAD2 

isoforms as well as AsFADX demonstrated Δ12 desaturase activity on 18:1-9 substrate; 

AsFAD3-1 had no function on substrates provided, while AsFAD3-2 resulted in Δ15 

desaturation of strictly 18:2-9,12. AsFADX+ had no function on substrates provided 

3.3.2. Hypothesis 

The yeast S. cerevisiae has been widely employed to functionally characterize eukaryotic 

genes involved in the lipid/fatty acid biosynthesis. In the presence of appropriate FA substrate, 

expression of the oat genes in yeast will elucidate the function of these putative genes. 

3.3.3. Experimental Approach 

3.3.3.1. Yeast Transformation 

For all GOI/pYES2.0 recombinant vectors, S. cerevisiae INVSc1 cells (genotype: 

Genotype: MATa his3Δ1 leu2 trp1-289 ura3-52/MATα his3Δ1 leu2 trp1-289 ura3-52; 

phenotype: His-, Leu-, Trp-, Ura-) were first plated on SC medium lacking uracil (-U). 

Transformations were performed similar to the protocol by Gietz and Schiestl (2007). A single 

colony was grown in 5mL YPD overnight in a 50mL flask at 30°C on a shaker till 

OD600=0.4/mL. This volume was then added to 50mL of pre-warmed (to 30°C) 2XYPAD 

medium in a 250mL flask. It was incubated on a shaker at 30°C until the OD600 reached 2.0/mL. 

The yeast was then transferred to a 50mL Falcon tube, centrifuged at 3000xg at 4°C for 5 

minutes, and supernatant was discarded. The cells were washed twice with 25mL water volumes 

(centrifuge each time 3000xg at 4°C for 5 minutes), and then resuspended in 1mL water. This 

was then transferred to a 1mL microcentrifuge tube, centrifuged at top speed for 30 seconds, and 

supernatant was discarded. Then, the cells were resuspended in 1mL water. 100µL of the 

suspended cells were used for each GOI/pYES2.0 transformations to be performed. One volume 

was prepared for the positive control, CpDesX /pYES2.0 construct; this gene has confirmed ω-3, 

Δ15 and Δ12 desaturase activity (Meesapyodsuk et al., 2007). The cyclic, non-recombinant 
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pYES2.0 vector was also used to transform another volume of these competent cells as the 

negative control. To each of the 100µL volume, the following transformation mix was added: 

240µL PEG 3550 (50% w/v), 36µL 1.0M lithium acetate (LiAc), 50µL 2.0mg/mL single-

stranded carrier DNA (previously boiled for 5 minutes and set aside on ice), and 34 µL of water 

containing 1µg of GOI/pYES2.0 plasmid DNA (or empty vector, for the negative control).  The 

total mixture was vortexed to resuspend the pellet, incubated at 42°C for 12 minutes, centrifuged 

at top speed for 30 seconds followed by discard of the supernatant, and 1mL water was added. 

The sample was vortexed/resuspended, and then 2µL, 20 µL, and 200µL volumes from each 

transformation were plated on SC –U agar plates. These were incubated for 3 days at 30°C.  

3.3.3.2. Selection and Screening for Transformants 

The yeast was plated on SC -U plates, deficient in uracil. Three colonies for each 

transformation were selected for screening. A small amount of each yeast colony was transferred 

to 20µL of 0.02M NaOH and incubated for 30 minutes at 95°C to disrupt the cells. 1µL of each 

of these solutions was used as templates for colony PCR screening. Presence and orientation 

were screened for each GOI via PCR using one GOI-specific primer and one pYES2.0-specific 

primer, as described above, for a minimum of 3 colonies per GOI. 

3.3.3.3. Functional Analysis: Expression Induction and Fatty Acid Analysis 

From a GOI-positive yeast colony, a toothpick was used to transfer it into 15mL of liquid 

SC –U medium, incubated for 2 days on a shaker at 30°C. From this sample, a required volume 

to achieve OD600=4 in a subsequent 5mL volume was calculated. The supernatant was removed 

after centrifuging at 1500xg for 5 minutes, then washed twice with 1mL of water (centrifuging 

for 1500xg for 5 minutes after each). The pellet was then resuspended in galactose-containing 

SC –U induction medium, with 0.1% Tergitol, and 250µM of an appropriate FA substrate (if 

required) to reach a final volume of 5mL for the expression assay. The samples were incubated 

on a shaker for 2 days at 30°C. For those with weaker activity, slight adjustments were made for 

AsFAD3s and AsFADX/AsFADX+, incubating for 1 day at 30°C, 1 day at 20°C, and 1 day at 

15°C, as stronger activity with FAD3s is often observed at lower temperatures. 

After incubation, the entire culture was transferred to a 15mL Falcon tube and 

centrifuged at 1500xg for 5 minutes. The pellet was washed in a 1% Tergitol solution, then 

washed twice with 5mL water (centrifuged 1500xg for 5 minutes after each; final centrifuge is 



75 

 

after transferring to a 15mL glass screw-top tube). The pellet was dried with N2 gas, after which 

2mL of 1% sulfuric acid methanol was added. The samples were incubated for 1 hour at 80°C 

then cooled on ice. 2mL hexane and 1mL 0.9%NaCl water was added, then the tubes were 

vortexed and centrifuged for 5 minutes at 2000xg. The upper hexane phase was transferred to a 

new glass tube and dried with N2 gas. 100µL of hexane was added to resolubilize the lipid, and 

divided equally into two insert-containing GC vials. One was analyzed directly via GC. To 

account for possible bifunctional (both FAD and/or FAH) activity of each putative enzyme, the 

other duplicate was dried under N2 gas followed by addition of 50µL TMS and incubated for 30 

minutes at 80°C, then analyzed by GC. 

3.3.3.4. Substrate Specificity 

Expression assays were carried out with the yeast transformants containing the functional 

FAD3-2/pYES2.0 plasmid. The same protocol as in 3.3.3.3 was performed, but replacing the 

250µM FA substrate with the same concentration of other ω-6 FAs including 18:3-6c,9c,12c γ-

Linolenic Acid (GLA), 20:3-8c,11c,14c Dihomo-γ-Linolenic Acid (DGLA), or 20:4-

5c,8c,11c,14c Arachidonic Acid (AA). 

3.3.4. Results 

3.3.4.1. Expression of the oat FAD-like Genes in Yeast  

After confirming the sequence, the oat GOI inserts were cut from the pGEM-T vector 

with appropriate restriction enzymes and inserted into yeast expression vector pYES2.0. The 

recombinant vectors were used to transform E. coli competent cells, and plated on selection 

medium. The transformed cells were screened via colony PCR to verify correct orientation of the 

insert inside the vector relative to the GAL10 promoter in pYES2.0.  In addition, restriction 

enzyme digestion was also performed to verify proper orientation of the inserts in the vector. A 

restriction site (different from that of the flanking primer site) with cutting sites both inside the 

GOI insert as well as in the vector was selected. The plasmids that yielded the expected fragment 

sizes of properly-orientated inserts were used for yeast transformation. Yeast colonies were 

screened via PCR using gene-specific and vector-specific primers to confirm the presence and 

correct orientation of each GOI in pYES2.0. Yeast colonies from the selection plates that were 

screened positive for the properly-orientated GOI/pYES2.0 were grown in induction medium in 

the presence of appropriate FA substrates. 
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3.3.4.2. Fatty acid analysis of Products from Yeast Transformants 

From GOI/pYES2.0-transformed yeast culture, FAs were extracted and analyzed with 

GC or GC-MS. Peaks from each sample chromatogram below were compared to a FA standard 

containing FAs of known identity and retention times (not pictured), or analyzed with GC-MS to 

compare mass spectra to a library database of known spectra.   

 Functional Characterization: AsFAD2a 3.3.4.2.1.

From the AsFAD2a-transformed culture, 18:2-9c,12c was identified confirming FAD2 

activity of AsFAD2a from 18:1-9c substrate. A TMS-derivatization was also performed on the 

same sample, but as this resulted in no peaks shifting, it was concluded that there is no HFA 

produced from substrates present (Figure 34). 

Figure 34A shows the empty vector. Figure 34B shows the FAs produced by the yeast 

which has been transformed with the AsFAD2a/pYES2.0 construct; as yeast produces 18:1-9c, 

and that is the putative substrate for AsFAD2a, no FA substrates were added. Peak 1 in Figure 

34B represents the 18:2-9c,12c produced by the transformant. To verify whether or not any HFA 

was produced, in addition to the GC-MS results, a TMS-derivatization was performed on the 

FAMEs; Figure 34C demonstrates that no HFA is present, as all peaks are in the same position as 

the non-derivatized sample. 

 Functional Characterization: AsFAD2b 3.3.4.2.2.

An isoform of the oat FAD2 containing three SNP-induced residue changes (relative to 

AsFAD2a) was also characterized, and thus S. cerevisiae was transformed with this 

AsFAD2b/pYES2.0 vector and subjected to the same conditions as the AsFAD2a/INVSc1 

transformants. The AsFAD2b/INVSc1 showed FAD2 activity as well (Figure 35), although lower 

quantities of its FA product resulted when compared to FAs of the AsFAD2a transformant. 

Figure 35A shows the empty vector. Figure 35B shows the FAs produced by the yeast 

which has been transformed with the AsFAD2b/pYES2.0 construct without substrate added. Peak 

1 in Figure 35B represents the 18:2-9c,12c produced by the transformant. To verify whether any 

HFA was produced, a TMS-derivatization was also performed on the FAMEs; Figure 35 

demonstrates that no HFA is present, as all peaks are in the same position as this non-derivatized 

sample. 
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Figure 34. A GC chromatogram of the FAMEs of the empty vector control (A), S. cerevisiae 

AsFAD2a transformant (B), and the TMS-derivatized duplicate (C). Peak 1 shows the 18:2-

9c,12c product produced by the transformant. 

 

Figure 35. A GC chromatogram of the FAMEs of the empty vector control (A), S. cerevisiae 

AsFAD2b transformant (B), and the TMS-derivatized duplicate (C). Peak 1 shows the 18:2-

9c,12c product produced by the transformant. 
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 Functional Characterization: AsFAD3-1 3.3.4.2.3.

Since AsFAD3-1 putatively desaturates 18:2-9c,12c to produce 18:3-9c,12c,15c, the LA 

substrate was provided to the AsFAD3-1/INVSc1 cells and FAs were extracted for GC analysis 

(Figure 36).  

Figure 36A shows the empty vector. Figure 36B shows the FAs produced by the yeast 

which has been transformed with the AsFAD3-1/pYES2.0 construct without substrate added. No 

new peaks are observed, thus it has no FAD2 function on this substrate. Peak 1 in Figure 36C 

represents the 18:2-9c,12c fed to the transformant. No new peaks are observed after feeding 

substrate, so thus it has neither Δ12 nor Δ15 desaturase function on the substrates present. 

 Functional Characterization: AsFAD3-2 3.3.4.2.4.

The other putative FAD3, AsFAD3-2, was also fed 18:2-9c,12c substrate with the 

expected outcome of 18:3-9c,12c,15c production. A new peak, representing 18:3-9c,12c,15c, 

was observed as is shown in Figure 37. 

Figure 37A shows the GC results of the FAMEs extracted from the yeast transformed 

with the empty vector and analyzed via GC-MS. Figure 37B shows the AsFAD3-2 transformant 

without putative substrate fed. The result of feeding the same transformant with 18:2-9c,12c 

substrate (peak 1) can be seen in Figure 37C (and insert), and a small new peak (peak 2) 

identified as 18:3-9c,12c,15c  is produced. To verify if a hydroxyl group was present on FAs 

produced, the FAMEs of the same sample were derivatized with TMS to observe if the peak 

shifted. No shift was observed, which supports the GC-MS data for the production of only 18:3-

9c,12c,15c, suggesting that AsFAD3-2 has weak FAD3 activity. The insert shows a closer view 

of the region in which the new peak was observed. 
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Figure 36. A GC chromatogram of the FAMEs of the empty vector control (A), S. cerevisiae 

AsFAD3-1 transformant (B), and the same transformant fed with 18:2-9c,12c substrate (C). 

Peak 1 shows the exogenous 18:2-9c,12c. The insert shows a closer view of the same 

chromatograms. 

 

Figure 37. A GC chromatogram of the FAMEs of the empty vector control (A), S. cerevisiae 

AsFAD3-2 transformant (B), and the same transformant fed with 18:2-9c,12c substrate (C), 

and the TMS-derivatized FAMEs of the FA-fed transformant (D). Peak 1 shows the 

exogenous 18:2-9c,12c; peak 2 shows the 18:3-9c,12c,15c product. The insert shows a closer 

view of the same chromatograms. 
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 Functional Characterization: AsFADX 3.3.4.2.5.

Figure 38A shows the empty vector control. Figure 38B shows the new peak (peak 1) 

representing 18:2-9c,12c, produced from AsFADX activity; the insert shows a closer view of the 

region in which the new peak was observed. To investigate potential FAH activity of FADX, the 

same FAMEs in Figure 38B were derivatized with TMS, however no peaks were observed to 

shift, as demonstrated in Figure 38C. The Figure 38 chromatogram demonstrates that AsFADX 

has Δ12 desaturase activity on 18:1-9c and it is not of dual FAD2/FAD3 function, and FADX is 

also not a FAH (Figure 38). 

 Functional Characterization: AsFADX+ 3.3.4.2.6.

The longer form of AsFADX, AsFADX+, was also expressed in S. cerevisiae followed 

by GC-MS analysis. No activity was observed (Figure 39). 

Figure 39A shows the FAME profile of the FAs extracted from the empty vector-

transformed yeast cells; Figure 39B shows the FAs produced by the AsFADX+ transformed 

yeast cells, no new peak was observed suggesting that no endogenous substrates present are 

appropriate for this FAD-like enzyme, or that the longer version of AsFADX does not produce a 

functional protein in this yeast system used. To examine if AsFADX+ had FAD3 activity, the 

same construct was provided with 18:2-9c,12c substrate, as shown in Figure 39C, indicated by 

peak 1. However, no new peaks were observed, and it is concluded that AsFADX+ has no 

function on any substrates present.  

3.3.4.3. Substrate Specificity 

Since the yeast transformant with the AsFAD3-2 was the only sample showing activity 

upon the ω-3 position of a substrate, which is the same position on which the putative substrate 

is hydroxylated by the uncharacterized Avena FAH15, several other ω-3 FAs were provided to 

this transformant. This would determine if the oat AsFAD3-2 had strictly Δ15 desaturase activity 

on LA substrate, or if it had a general ω-3 desaturase activity from the methyl end of the 

substrate. Two more ω-6 FAs in addition to LA were fed as substrates to FAD3-2: Gamma-

Linolenic Acid (GLA): 18:3-6c,9c,12c and Dihomo-gamma-linolenic acid (DGLA) 20:3-

8c,11c,14c. Of the substrates tested, FAD3-2 only had a desaturase activity on LA. AsFAD3-2 

showed no activity upon the three ω-6 FAs, suggesting that it is not an ω-3 FA desaturase but 

rather it has activity specific to the Δ15 carbon of LA substrate (Table 15). 
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Figure 38. A GC chromatogram of the FAMEs of the empty vector control (A), S. cerevisiae 

AsFADX transformant (B), and the TMS-derivatized duplicate (C). Peak 1 shows the 18:2-

9c,12c product produced by the transformant. The insert shows a closer view of the same 

chromatograms. 

 

Figure 39. A GC chromatogram of the FAMEs of the empty vector control (A), S. 

cerevisiae AsFADX+ transformant (B), and the TMS-derivatized duplicate (C).Peak 1 

shows the exogenous 18:2-9c,12c FA substrate. The insert shows a closer view of the same 

chromatograms. 
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Table 15.  Substrate-to-product conversion efficiencies of oat FAD-like products in yeast. 

pYES2.0 insert Substrate Product Mean % ± SD 

AsFAD2a 18:1-9c 18:2-9c,12c 20.4 ± 11.4 

AsFAD2b 18:1-9c 18:2-9c,12c 3.92 ± 3.21 

AsFAD3-1 18:1-9c 18:2-9c,12c 0.00 

   18:2-9c,12c* 18:3-9c,12c,15c 0.00   

AsFAD3-2 18:1-9c 18:2-9c,12c 0.00 

 

 

18:2-9c,12c* 18:3-9c,12c,15c 0.60 ± 0.48 

  18:3-6c,9c,12c* 18:4-6c,9c,12c,15c 0.00   

  20:3-8c,11c,14c* 20:4-8c,11c,14c,17c 0.00   

  20:4-5c,8c,11c,14c* 20:5-5c,8c,11c,14c,17c 0.00   

AsFADX 18:1-9c 18:2-9c,12c 0.91 ± 0.23 

  18:2-9c,12c* 18:3-6c,9c,12c 0.00   

AsFADX+ 18:1-9c 18:2-9c,12c 0.00   

  18:2-9c,12c* 18:3-9c,12c,15c 0.00   

*provided to the samples, 250μM final concentration     

 

3.3.5. Discussion 

pYES2.0 is a common vector for gene cloning and inducible expression of eukaryotic genes 

in yeast. pYES2.0 is a 5.9kb vector containing a GAL1 promoter, allowing high expression in 

yeast induced by galactose, while being repressed by glucose, as well as URA3, enabling 

selection of uracil prototrophic genotype transformants in yeast (Invitrogen, 2008). It also 

contains the CYC1 transcription terminator, and ampicillin resistance gene (for selection in E. 

coli). This vector, when used to transform yeast, is compatible with the INVSc1 strain yeast host. 

Other features of the vector are the T7 promoter/priming site, which allows in vitro transcription 

in the sense strand, and sequencing through the insert. The multi cloning site contains the 

insertion site for EcoRI and XbaI, among others. The 2μ origin maintains high copy number in 

yeast, and the f1 origin allows rescue of a single strand DNA. Yeast hosts were successfully 

transformed with all GOI/pYES2.0 constructs.  



83 

 

3.3.5.1. AsFAD2 

Efficiency of AsFAD2 activity on 18:1-9c substrate to produce LA in this study is 

consistent with other in vivo yeast expression studies of other FAD2s. An Arabidopsis FAD2 

under control of the GAL1 promoter, once transformed into S. cerevisiae, resulted in 

accumulation of 9.2, 6.4, and 0.6% LA of total FAs at incubation temperatures of 15°C, 22°C, 

and 28°C, respectively (Covello & Reed, 1996). Another study examining the function of FAD2s 

from Exocarpos cupressiformis and Santalum acuminatum also used pYES2 expression vectors 

for in vivo expression (Okada et al., 2013). Efficiencies of conversion of 18:1-9c to 18:2-9c,12c 

ranged from 23% to 63%, although incubation temperatures are not specified (Okada et al., 

2013). 

3.3.5.2. AsFAD3 

It was necessary to feed the appropriate LA substrate to the transformants with the 

constructs expressing AsFAD3s, although only one of the two putative AsFAD3s had activity on 

substrates present. Comparing the new peak from the AsFAD3-2 sample with the empty vector 

control, the FA standard and the mass spectra confirm FAD3 activity of this gene. The AsFAD3 

conversion of LA into ALA is relatively low when compared with efficiency of the FAD2 

substrate to product conversions; however, it is not unexpected. Low conversion rates of LA to 

ALA in transformed yeast have been observed previously with other FAD3s (Dyer et al., 2004; 

Reed et al., 2000). A FAD3 (GenBank accession number L01418) from Brassica napus 

introduced into S. cerevisiae using the pYES2.1 vector and the same GAL1 promoter as this 

study resulted in only 1.5% ALA accumulation of total FA in the yeast (Dyer et al., 2004).  A 

similar study observed 1.3% conversion of LA to ALA (Reed et al., 2000). Accumulated ALA 

levels of total FA in transformant yeast have been observed at levels <1% (Dyer et al., 2001). 

The FAD3 activity may be influenced by temperature; increased ω-3 desaturation of LA 

substrate with lower growth temperatures was observed in both plants and transformed yeast 

(Gibson et al., 1994; Dyer et al., 2001).  Data from Dyer et al. (2001) suggest that the change is a 

cold-induced post-transcriptional adaptation, as FAD3 transcript levels remain constant. Highest 

levels of accumulated ALA in FAD3-transformed yeast have been found to be at 20°C (Dyer et 

al., 2001) and 15°C (Dyer et al., 2004), although the total accumulated ALA between these 
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parameters differs by ~3% of total FA. 20°C is often effectively employed for FAD3-

transformed S. cerevisiae for ALA accumulation (Vrinten et al., 2005; Dyer et al., 2001). 

The initial putative contigs were constructed from the best-available material, and 15HFA 

is present in the germplasm, yet none of these genes have the hydroxylase activity. This suggests 

that 15HFA may be derived from a different pathway, or that it is modified in a form other than a 

fatty acid linked to phosphatidylcholine (PC). There is also a possibility that the original EST 

database either contains sequence errors, or that it is lacking necessary sequence information 

from the specific development stage in which the FAH15 is actively transcribed. In that case, it 

would be impossible to identify an authentic FAH15 gene.  

The lack of AsFAD3-1 function on substrates provided may be due to some other 

possibilities. Sometimes, ORFs having high homology to cloned genes (either from the same 

genome, or from other organisms) known to encode functional products may arise, although 

produce no evident functional product as a result of some small nucleotide-induced mutation; in 

this event, AsFAD3-1 would be a pseudogene (Jacq et al., 1977; Vanin, 1985). However, it is 

possible some small amount of ALA is produced but undetectable by methods used, as very little 

ALA is typically produced in these yeast in vivo assays. Moreover, conversion efficiency 

between two FAD3s sharing 94.5% identity (Vrinten et al., 2005) differed by >2%, and at such 

low ALA production levels as in this study may be enough to keep ALA produced below the 

detection threshold. 

The majority of 15-OH 18:2-9c,12c, which is putatively the product of a FAD-derived 

enzyme,  was found in digalactosyldiacylglycerol (DGDG), as an estolide thus without a free 

hydroxy group (Hamberg et al., 1998). Although ricinoleic acid, derived from OA in castor oil is 

thought to be structurally (and therefore, the preceding relevant biochemical processes) closely 

related to 15HFA production in oats, the glycolipid location of oat hydroxyl fatty acid suggests 

the fundamental biosynthetic mechanism(s) for this fatty acid might be different from that of 

castor ricinoleic acid. S. cerevisiae does not encode a DGDG synthase, so the galactolipid 

precursor to which linoleate is bound which in turn is putatively and subsequently hydroxylated 

would be absent, thus resulting in the complete absence of the appropriate substrate for 

AsFAH15.  
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3.3.5.3. AsFADX & AsFADX+ 

Initially, it was hypothesized that the longer N-terminus portion of AsFADX+ must be a 

transit peptide sequence to direct it into the chloroplast; this would be logical since its query 

sequence was the plastidial FAD7, and the region is long enough to comprise such a sequence 

(Bhushan et al., 2006). However, none of the prediction programs indicated the presence of a 

targeting sequence, nor do the hydropathy plots show exceptionally hydrophobic residues, a 

feature characteristic of transit peptides (Zhang & Glaser, 2002). Nevertheless, both CDS lengths 

were cloned for expression studies, as these indications may be the best tools available but are 

merely predictions. 

AsFADX is highly homologous to a FAD6, has conserved similarities in the HIS boxes 

to FAD6s, has an N-terminus peptide region of similar length to that of an expected transit 

peptide, and exhibits Δ12 desaturation function. Because of the similarity to these query 

sequences, once AsFADX is expressed in vivo, the FAME GC profile should yield either 18:2-

9c,12c from the yeast’s endogenous 18:1-9c substrate, or yield 18:3-9c,12c,15c from 18:2-9c,12c 

provided to the assay. Indeed, the Figure 38 chromatogram demonstrates that AsFADX has weak 

Δ12 desaturase activity on 18:1-9c. This evidence suggests that AsFADX is a FAD6 with a 

hypothetical transit peptide sequence on the N-terminus to target it for chloroplast localization. 

These results suggest that this upstream region of AsFADX+ may be a transit peptide 

portion of the AsFADX ORF. Another possibility, albeit unlikely, is that the upstream initiation 

codons are out of frame and the region creates an apparent artifact that is in-frame with AsFADX, 

so the start codon of the shorter AsFADX must be the proper start codon as this ORF did code for 

a functional enzyme. Another explanation is that the prediction software tools used algorithms 

incompatible with this AsFADX+ sequence used, and thus the prediction results were unreliable 

and this upstream region of AsFADX+ is indeed a transit peptide; in such a case, AsFADX+ 

would be destined for a chloroplast membrane and, in yeast, this uncleaved additional length of 

the N-terminus may cause steric hindrance to render the protein functionless, accounting for the 

lack of function of the longer version of the functional AsFADX. Yet, even if this N-terminus 

sequence is a cellular targeting sequence, the similar lengths with known targeting sequences, as 

well as the FAD2 activity of the shorter AsFADX, suggest that the extended portion of 

AsFADX+ would be cleaved and the final functional form would actually be the AsFADX. 

Finally, it is unclear which of the three translation initiation codons in the AsFADX+ portion is 
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correct. It may be possible to clone each length of the ORF for expression analysis in yeast, or 

knock down the unique 5’ regions of the genes in vivo, using RNAi, for example; then, 

phenotypic changes could be observed. 

3.3.5.4. Substrate Specificity (AsFAD3-2) 

Some desaturases and hydroxylases have multiple functions. Therefore, different 

substrates were thus fed to the FAD3-2/pYES2.0/INVSc1 to investigate substrate specificity of 

the enzyme. A FAD3 from Brassica napus was found to have regiospecificity for ω-3 

desaturation rather than a Δ15 desaturation (Reed et al., 2000). No activity was observed on any 

substrate other than the LA fed. This is consistent with results of a similar study by Vrinten et al. 

(2005) in which FAD3s were specific to only one substrate. This suggests that the activity of 

FAD3-2 is dependent on the Δ9 and Δ12 double bonds in the FA structure, rather than being a 

generic ω-3 desaturase of ω-6 FAs.  

Of all the substrates present with each gene, the TMS derivatives show no peak shifts or 

new peaks. This suggests that either none of these Avena genes are hydroxylases, or that none are 

capable of hydroxylating any of the substrates tested in their current forms.  

One major challenge of yeast in vivo expression studies of enzymes related to PUFA 

biosynthesis is the optimal temperature. In plants, PUFA biosynthesis increases with decreasing 

temperature, particularly below 20°C (Graham & Patterson, 1982). The ideal growth temperature 

for S. cerevisiae is 28°C, however yeast increases its 18:1-9 membrane proportion to maintain 

membrane fluidity when grown at lower temperatures (Rodriguez-Vargas et al., 2007). However, 

some nutrient uptake by the yeast is limited with these lower temperatures, and thus may 

influence the deficiency of certain amino acids as well as inhibit yeast growth (Torija et al., 

2003; Rodriguez-Vargas et al., 2007; Tai et al., 2007).  
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3.4. Study 4: qRT-PCR Analysis of Oat FAD-like Transcripts 

3.4.1. Abstract 

mRNA levels of the oat GOIs were quantitatively analyzed using the real-time PCR 

(qRT-PCR) as an indication of their relative levels gene of expression. After normalizing 

expression levels relative to two internal housekeeping genes (HKGs), a comparative Ct method 

was used to determine relative expression levels. In general, AsFAD2 mRNA levels were more 

abundant than AsFAD3-1 and AsFAD3-2 in all tissues, while AsFAD3-1 mRNA levels exhibited 

lowest abundance. AsFAD2 transcript level in root was lowest, abundant in relative levels 1.5 

fold, 3.3 fold, and 3.8 fold higher in germinating seed, leaf, and developing seed tissues, 

respectively. AsFAD3-1 transcript was least abundant, with relative transcript levels 10.2 fold, 

11.6 fold, and 18.3 fold higher in root, germinating seed, and developing seed tissues, 

respectively. AsFAD3-2 relative transcript abundance was 3.6 fold, 6.4 fold, and 8.0 fold higher 

than that of leaf tissue in root, developing seed, and germinating seed tissues, respectively. When 

examining different GOI transcript levels within a particular tissue, fold differences were more 

extreme when compared to AsFAD3-1 levels (which were least abundant in all tissue types).  In 

germinating seed, AsFAD2 and AsFAD3-2 abundance was 12.8 and 3.5 fold higher, respectively. 

In root, these levels were 7.3 and 2.0 fold higher than AsFAD3-1, respectively. In leaf tissue, 

AsFAD2 and AsFAD3-2 transcript relative abundance were 916.1 and 9.2 fold higher than 

AsFAD3-1, respectively, while in developing seed, the relative fold differences were 18.6 and 3.0 

above AsFAD3-1 transcript abundance. 

3.4.2. Hypothesis 

Quantitative real-time PCR (qRT-PCR) is widely used for mRNA quantification, due to 

its sensitivity and reliability. Conducting a qRT-PCR analysis of oat GOIs here relative to 

internal controls, the relative expression of each GOI across different oat tissues can be 

determined. Results can then be compared to the FA profile of mature seed, enhance insight into 

whether correlation exists between expression and activity of genes and proteins involved in 

PUFA biosynthesis.  



88 

 

3.4.3. Experimental approach 

3.4.3.1. RNA Extraction and 1
st
 strand cDNA synthesis 

cDNA synthesis with a Quanta qScript cDNA synthesis kit was carried out on total RNA 

from biological triplicates from each germinating seed, root, leaf and milky-stage seed from 

tissues harvested in Study 1. Extractions were performed with a TRIzol method as described in 

2.3.1 followed by Qiagen’s RNeasy cleanup (Qiagen, 2013). Total RNA from each sample was 

thawed on ice when used. In each cDNA synthesis reaction, 1µg of RNA was added, with 1µL of 

qScript reverse transcriptase, 4µL of 5X qScript reaction mix, and brought to 20µL total volume 

with nuclease-free water. The mixtures were vortexed gently, centrifuged briefly, and reactions 

were carried out in a Biorad cfx connect™ real-time system thermocycler for 5 minutes at 22°C, 

30 minutes at 42°C, and 5 minutes at 85°C. cDNA originating from each was diluted 1/10 and 

either used for quantification or stored at 4°C.  

3.4.3.2. Oat Internal Control Sequences for qRT-PCR 

For comparative Ct qRT-PCR studies, it has been recommended to use more than one 

stably-expressed constitutive gene, since they have constant expression across tissue types and 

development stages due to their function in basic homeostasis (Huis et al., 2010). The relative 

expression of the oat GOIs in this study were calculated using the comparative Ct method after 

normalizing their expression levels to two internal reference genes, similar to the method used by 

Pan et al., 2013. Two commonly used HKGs for these types of studies are glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and Actin (Jian et al., 2008; Huis et al., 2010). Since the oat 

genome has not been sequenced, and housekeeping genes remain uncharacterized, two putative 

oat housekeeping genes, GAPDH (AsGAPDH) and Actin1 (AsActin1), were established using the 

bioinformatics techniques previously described in this study.  A previously characterized, 

1014bp from Triticum aestivum (Sander et al., 2001; accession number FN429985) and a 1618bp 

Actin1 from Arabidopsis thaliana (An et al., 1996; accession number U39449) genes were used 

as queries to search in the CORE and NCBI oat-specific sequence databases for selecting oat 

ESTs with highest homology to these two targets, as the putative oat AsActin1 and AsGAPDH. 

Gene-specific primers for the three putative GOIs as well as for two internal controls (Actin1 and 

GAPDH) were designed using Primer3Plus software.  
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3.4.3.3. qRT-PCR Primer Design 

Primer sequences are listed in Table 16 and designed using the sequences in Figure 40 

and Figure 41; qRT-PCR primers targeting the housekeeping genes were designed with the 

online Primer3Plus software (Whitehead Institute for Biomedical Research, 2006). Sequences in 

3.2.4.3 were used to design the primers targeting the GOIs. 

3.4.3.4. qRT-PCR Relative Quantification  

From each biological triplicate, technical triplicates of each target were analyzed using a 

Sybr Green fluorescence SsoFast™ EvaGreen® supermix kit from BioRad (2013). From each 

replicate of a tissue type, 1µg of cDNA (from the Quanta syntheses) was combined with 10µL of 

SsoFast EvaGreen supermix, both forward and reverse primers (each at 500nM final 

concentration), and brought to 20µL total reaction volume with nuclease-free water; each 

technical triplicate reaction was prepared in 96-well white plates. Also, template-free negative 

controls were run in the same reaction plates. Additional negative controls with RNA added were 

included for each plate to verify RNA template initially extracted for cDNA synthesis was free 

of DNA contamination. The reactions were carried out for 30 seconds at 95°C for an initial 

denaturation step, then 95°C for 5 seconds/60°C for 15 seconds for 45 cycles, and then a final 

cycle starting at 65°C and increasing to 95°C (increasing 5°C increments each 5 seconds). qRT-

PCR reactions were carried out in a Bio-Rad CFX96 detection system and corresponding CFX 

Manager software. 

For comparing relative quantification of each GOI to multiple internal references, a 

normalization factor was generated from two stably-expressed housekeeping genes (HKGs). 

Multiple internal controls for relative Ct comparative studies have been effectively used (Pan et 

al., 2013). First, cycle threshold (Ct) values were obtained at the point that each amplification 

curves crossed; thresholds were set at the lowest point within the exponential phase of the curve. 

Mean Ct values were calculated from the technical triplicates of each HKG. The normalization 

factor was generated from both HKG expression levels using the geometric mean of the 

transcript quantity values from both HKGs. To depict expression levels graphically, expression 

of GOI with the lowest relative level was adjusted to equal 1, and all expression levels and SDs 

were adjusted to this value. Formulas 6.4.1 to 6.4.13 were used for the calculations. 
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Table 16. Primers used for qRT-PCR analysis.  

Target Sequence (5’→3’) Description Target locations in 

Sequence (amplicon 

length) 

AsFAD2 TTCCACAACATCACGGACAC AsFAD2 qPCR sense primer 943-962 

 TCACCGAGGATTGGCTTGATC AsFAD2 qPCR antisense primer 1026-1046 

   (104) 

AsFAD3-1 ACCATGGCCACATCGAAAAG AsFAD3-1 qPCR sense primer 431-450 

 AGTTTCTTGGTCCGTGCTTC AsFAD3-1 qPCR antisense primer 496-515 

   (85) 

AsFAD3-2 TGTGGCTTGATTTGGTGACG AsFAD3-2 qPCR sense primer 740-759 

 TGCCAATGTCATGGTGGATG AsFAD3-2 qPCR antisense primer 870-889 

   (150) 

AsGAPDH TGCACCACAAACTGTCTTGC AsGAPDH qPCR sense primer 422-441 

 TGCTGCTGGGAATGATGTTG AsGAPDH qPCR antisense primer 491-510 

   (178) 

AsACTIN1 TGTGTTGCTCACTGAAGCTC AsACTIN1 qPCR sense primer 107-126 

 TGGCAGGCACATTGAAAGTC AsACTIN1 qPCR antisense primer 265-284 

   (89) 
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Figure 40. The Actin1 from Arabidopsis (AtActin1) nucleotide query sequence aligned with 

the oat putative EST. The oat EST retrieved and used as the putative oat Actin1 (AsActin1) was 

(ASAEN3NG-UP-091_D05). Identical nucleotides are highlighted in black. qRT-PCR primers 

are underlined. 

 

 

Figure 41. The GAPDH from Triticum aestivum (TaGAPDH) nucleotide query sequence 

aligned with the putative oat GAPDH. The oat EST (ASAEN3NG-UP-105_C05) sequence was 

retrieved and used as the putative oat GAPDH (AsGAPDH). Identical nucleotides are highlighted 

in black. Primers are underlined. 
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Mean Ct (x   Ct) = (Ct1+Ct2+Ct3)/3 (6.4.1) 

SD(x   Ct) = σ(x   Ct)  = √[((Ct1- x   Ct)+(Ct2- x   Ct)+(Ct3- x   Ct))/3] (6.4.2) 

Quantity = (Q) = 2
(x   Ct) (6.4.3) 

SDQ = (x   Ct)(SD(x   Ct))(ln(3)) (6.4.4) 

 

Normalization Factor (NF) = nth root of the product of the numbers, where n = number of HKGs 

used 

 

NF = √(Q(GAPDH))(Q(Actin1)) (6.4.5) 

SDNF = (NF)[(SDQ(Actin1)/(Q(Actin1)x3))
2
+ (SDQ(GAPDH)/(Q(GAPDH)x3))

2
]

0.5
 (6.4.6)  

Normalized Expression Level (EL) = NF/Q (6.4.7) 

SDEL = (EL)[(SDNF/NF)
2
+(SDQ/QGOI)

2
]

0.5
 (6.4.8)  

Mean EL = (ELGOIa,rep1+ELGOIa,rep2+ELGOIa,rep3)/3  (6.4.9) 

SDMean EL = σ(Mean EL)  = √[(ELGOIa,rep1+ELGOIa,rep2+ELGOIa,rep3)/3] (6.4.10) 

 

 

Multiplication factor (MF) = 1/EL(of GOI with lowest expression) (6.4.11) 

Mean EL(Adjusted) = (Mean EL)(MF) (6.4.12) 

SDMean EL(Adjusted)  = (SDMean EL)(MF) (6.4.13) 

 

An X-axis arbitrary baseline for graphing was set relative to that GOI with the lowest 

relative transcript abundance in this study (AsFAD3-1 in root), which was assumed to be equal to 

1. Fold values were based on the normalization factor (NF) value generated from the expression 

levels of the two HKGs from the calculations above. 

3.4.4. Results 

3.4.4.1. Oat Internal Control Sequences for qRT-PCR 

The putative oat AsActin1 and AsGAPDH were selected as internal references for the 

qRT-PCR on which primers were designed. Both originated from CDC Dancer ESTs; for the oat 

Actin1, an EST (ASAEN3NG-UP-091_D05) of 700bp and 82% nucleotide homology to the 
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Arabidopsis query was selected as the template, and for the AsGAPDH, an EST (ASAEN3NG-

UP-105_C05) of 689bp and 91% nucleotide homology to the Triticum aestivum query was 

selected as the template (Figure 40 & Figure 41). These oat sequences retrieved were used to 

design oat HKG primers for the qRT-PCR comparative expression analysis. 

3.4.4.2. Primer Design for qRT-PCR 

The qRT-PCR primers targeted locations in AsFAD2, AsFAD3-2, and AsFAD3-2 to 

amplify regions of 104bp, 85bp, and 150bp, respectively. To target the AsActin1 (Figure 40), the 

two primers were at nucleotide positions 422-441 and 491-510, to amplify a target size of 89 bp. 

To target the AsGAPDH (Figure 41), the two primers were at nucleotide positions 107-126 and 

265-284, to amplify a target size of 178bp. These 10 primers were utilized in the following qRT-

PCR steps after 1
st
 strand cDNA was synthesized from total RNA samples of each tissue. 

3.4.4.3. RNA Extraction, 1
st
 strand cDNA synthesis 

Total RNA was extracted from biological triplicates from each of germinating (7 days) 

seed, root, leaf, and milky-stage developing seed; after clean-up treatment, integrity and quality 

was screened by running an aliquot on agarose gels (Figure 42). 

1
st
 strand cDNA was synthesized from each of the biological triplicate RNA; for each of 

the nine cDNA samples, primers (Table 16) were employed in technical triplicate reactions for 

qRT-PCR and mean values of the technical triplicate reactions from each of the biological 

triplicates were used to relatively quantify expression levels of the GOIs (Figure 43). 

3.4.4.4. qRT-PCR Data Analysis 

As an equal quantity of RNA and thus cDNA was used in each reaction replicate, 

amplification levels of each target GOI relative to the two internal controls directly represent 

GOI transcript abundance in the tissue at the time of harvest. Raw data are shown in Table 22-

Table 25, Appendix 5.4. The fold-differences of their expression patterns are shown in Figure 43. 

The baseline in this figure is set as 1 at the lowest relative expression level after the 

normalization (in this case, AsFAD3-1 in leaf). The adjusted relative expression levels of all 

other genes across different tissues are graphed in Figure 43. 
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Figure 42. Total RNA extractions from biological triplicates from CDC Dancer tissues. 

Germinating seed (A), root (B), leaf (C), and milky-stage seed (D). M=DNA Marker. 

 

 

Figure 43. Relative fold-levels of AsFAD2, AsFAD3-1, and AsFAD3-2 in various oat tissues. 

Expression levels are normalized to the two HKGs, and fold-differences are relative to Leaf 

AsFAD3-1 level, assigned the value of “1.” 
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The results indicate that AsFAD2 showed highest expression levels across all tissue types, 

and AsFAD3-1 had the lowest expression in all tissues. In developing seeds, AsFAD2 had the 

highest expression, followed by AsFAD3-2 and AsFAD3-1, while in germinating seeds and roots 

the trend is the same. In leaves, the expression level of AsFAD2 is high, but almost no expression 

was observed for AsFAD3-1 and AsFAD3-2. The relative expression levels of these GOIs are 

represented numerically in Table 17 and Table 18. 

 

Table 17. Transcript levels of each oat GOI. Abundances are shown in fold differences 

relative to its lowest abundance across the four tissues.  

 AsFAD2 AsFAD3-1 AsFAD3-2 

Germinating Seed 1.5 11.6 8.0 

Root 1.0 10.2 3.6 

Leaf 3.3 1.0 1.0 

Developing Seed 3.8 18.3 6.4 

 

 

Table 18. Relative transcript abundance of different oat GOIs within each tissue type. 

Abundances are shown in fold differences relative to the GOI exhibiting lowest abundance 

within the tissue type. 

 Germinating Seed Root Leaf Developing Seed 

AsFAD2 12.8 7.3 916.1 18.6 

AsFAD3-1 1.0 1.0 1.0 1.0 

AsFAD3-2 3.5 2.0 9.2 3.0 
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3.4.5. Discussion 

Relative AsFAD2 mRNA levels were observed highest to lowest was in developing seed, 

leaf, germinating seed, then root tissue. For AsFAD3-1, highest to lowest levels were in 

developing seed, germinating seed, root, and leaf, while for AsFAD3-2, it was in germinating 

seed, developing seed, root, and leaf tissue. 

Within each tissue type, AsFAD2 was generally expressed much higher than the other 

two genes; AsFAD3-1 was expressed at lowest levels in all tissues, with AsFAD3-2 being 

expressed slightly higher than AsFAD3-1 in all tissues.  

The comparative expression data here demonstrates that there are dramatic differences 

between transcript levels of FAD2s and FAD3s. The ratio of accumulated LA:ALA (Table 2) in 

oat seeds is 44:1; this disproportionate balance is observed in relative mRNA levels of 

AsFAD2:AsFAD3-1, which is 25:1, and also reflected in AsFAD2:AsFAD3-2, which is 14:1 

(Table 18). But since the ratio of LA:ALA accumulation compared to the ratio of expression of 

AsFAD2:AsFAD3 differ by 2 fold and 3 fold, respectively, some evidence is ascertained of 

transcriptional regulation of PUFA biosynthesis in oat developing seed.  

FAD transcript profiling studies in cereals to date are sparse. In a comparative expression 

study of FAD2s and FAD3s in flax, however, Rajwade et al. (2013) showed that relative 

expression of a FAD3 was approximately three-fold higher than that of FAD2, and in most 

cultivars the ALA:LA accumulation in the seed was >3-fold, although they did not perform in-

depth analyses of this apparent correlation. A study of FAD3 transcription correlation to ALA 

accumulation in flax has been performed, and found high correlation between transcript levels of 

FAD3 and ALA accumulation (Banik et al., 2011).  

Interestingly, a previous study has noted low hydroxylase protein accumulation despite high 

levels of its transcript (Broun et al., 1998a).  The authors suggest hydroxylase protein 

accumulation and thus hydroxylase activity must be controlled by a mechanism, different from 

the transcriptional regulation of the desaturases (Broun et al., 1998a). This evidence could also 

suggest that the rate of translation is slower, or that the hydroxylase protein itself is less stable 

than the desaturases, once translated, perhaps due to altered post-translational modifications in 

the yeast expression system. One plausible explanation could be specificity of an E3-ubiquitin 

enzyme for a FAH substrate over a FAD. In S. cerevisiae, this would increase its proteasome-

mediated degradation, as E3 is known to induce ubiquination of a substrate by ligating ubiquitin 
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and its activating enzyme to the target substrate (Leach & Brown, 2012). From another 

perspective, the varying stability of the two types of proteins may be the result of the degree of 

sumoylation on the ubiquinated protein which, when elevated, may enhance the stability of a 

protein such as a FAD by antagonizing conjugation of ubiquitin to thus circumvent the 

ubiquination labelling of the substrate for degradation (Leach & Brown, 2012). This added 

complexity of the hydroxylase, considered with the lack of function of AsFAD3-1 (and assuming 

it is not a pseudogene or artifact) as well as definite expression of its gene, suggests there may be 

an additional factor required for achieving Δ15 hydroxylase activity or perhaps a more ideal in 

vivo system may be more appropriate. 
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4. GENERAL DISCUSSION AND CONCLUSIONS 

 

This thesis research started with oat seed fatty acid analysis. The lipids from CDC Dancer 

mature seed were extracted and fatty acids were transmethylated and qualitatively analyzed via 

GC to determine the total FA profile; TMS derivatization was performed in duplicate to identify 

presence of hydroxyl groups of any UFAs. Three different transmethylation procedures were 

employed to contrast effectiveness of basic and acid conditions in the context of presence of 

epoxy and hydroxy FAs. The common FA profile of CDC Dancer was consistent with previous 

studies (Leonova et al., 2008; Dhanda, 2011), however, the basic transmethylation procedure 

gave better results in terms of accurate quantitation of epoxy and hydroxy FAs. Thus, this 

method was more reliable in examining oat samples with these UFAs.  

The study was then focused on cloning and characterization of genes involved in the 

biosynthesis of PUFAs in oat. The oat EST databases were search for cDNA fragments 

exhibiting high homology to non-oat FAD2-like genes with the intention of identifying full-

length oat ORFs encoding enzymes involved in PUFA and UFA biosynthesis. Using various 

previously-characterized FADs and FAHs as query sequences in several tBLASTn searches, one 

oat FAD2-like, two FAD3-like, and one FAD6-like sequence were identified. Using cDNA 

synthesized from CDC Dancer total RNA of the developing seed, these four distinct ORFs were 

cloned: AsFAD2 (of which two isoforms, AsFAD2a and AsFAD2b were confirmed), AsFAD3-1, 

AsFAD3-2, and AsFADX (of which a second version with an extended N-terminal, AsFADX+, 

was observed and investigated). The AsFADX proteins showed an aa pattern inside the 3
rd

 HIS-

box unique from any other FAD or FAH class. 

To functionally characterize the genes, all six sequences were cloned into an expression 

vector, the recombinant plasmids were introduced into a S. cerevisiae strain fed with appropriate 

FA substrates, if required. After inducing the expression, lipid fractions were extracted from the 

yeast transformants; FAs were transmethylated (with TMS derivatized duplicates) and analyzed 

via GC and GC-MS. Both AsFAD2s demonstrated Δ12 desaturation on OA substrate, with 

AsFAD2a having notably higher activity; AsFAD3-1 had no function on any FA substrates 
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present; AsFAD3-2 showed specific ∆15/ω-3 desaturation on LA substrate; and, the shorter 

AsFADX resulted in Δ12 desaturation while the longer AsFADX+ had no function. Although all 

oat protein sequences in this study retained the conserved HIS-boxes, the third HIS-box of 

AsFADX validated a novel amino acid sequence within the HIS residues which differs from that 

of all other FAD and FAH enzyme classes. 

Finally, a comparative expression analysis using qRT-PCR revealed relative mRNA levels 

of AsFAD2, AsFAD3-1 and, AsFAD3-2 across germinating seed, root, leaf, and developing seed 

tissue of CDC Dancer. Across the plant, highest relative expression of AsFAD2 was found in the 

developing seed, and lowest in the root. Highest relative AsFAD3-1 expression was in the 

developing seed, while AsFAD3-2 was expressed at highest relative amounts in the germinating 

seed; the leaf showed lowest expression of both AsFAD3s. 

Developments of the past decade have led to the complete genome sequencing of more than 

1000 organisms (National Centre for Biotechnology Information, 2014a), of which more than 50 

are plants of varying significance, genome size, and from all parts of the world (National Centre 

for Biotechnology Information, 2014b). These include many of the crops from which human 

obtain nearly half of their calories (Muthamilarasan, 2013), such as sugar beet (Dohm et al., 

2014), tomato (Tomato Genome Consortium, 2012), potato (Potato Genome Sequencing 

Consortium, 2011), cassava (Prochnik et al., 2012), cannabis (van Bakel et al., 2011), soybean 

(Schmutz et al., 2010), rice (Goff et al., 2002), and corn (Schnable et al., 2009); others, with 

more immediacy to agriculture in Saskatchewan, include flax (Wang et al., 2012), wheat (A- 

genome; Ling et al., 2013), and barley (International Barley Genome Sequencing Consortium, 

2012). 

Barley and wheat, specifically, have many molecular markers available, centralized in 

online databases (Wanamaker & Close, 2014; Wheat CAP, 2007), whereas the entire genome of 

Avena sativa has yet to be sequenced and thus markers are scarce. Therefore, new oat genetic 

provisions can enhance insight into this unique and complex crop. This thesis has identified new 

pertinent information concerning PUFA biosynthesis in Avena sativa and can now be targeted in 

MAS breeding. Such insights of genetic resources are crucial in closing the information gap 

between oat to those of other main Canadian and Saskatchewan crops; the application of such 

resources in oat will increase its attractiveness as a viable option for producers in today’s 

economy, while fostering the general availability of resources for comparative plant genomics. 
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Overall, data from this thesis will assist in positioning oat to be competitive with the tools of 

modern genomics through development of tools for molecular breeding. 
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5. APPENDICES 

5.1. Appendix 1: Putative full-length Avena FAD-like sequence alignments 

 

 

Figure 44. Putative Avena FAD2, FAD3-1, FAD3-2, FADX, FADX+ protein sequence 

alignment.  HIS-boxes are underlined. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Putative oat FAD2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Putative oat FAD3-1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Putative oat FAD3-2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0Putative oat FADX

MRARTPFRPPRREWMATASAL CAPMQL L SL RRAPAKEL SPRRAAAVAL SG 50Putative oat FADX+

- - - - - - - - - - - - - - - - - - - - - - - - - - - MGAGGRMTEKEREKQEQL GHADV 23Putative oat FAD2

- - - - - - - - - - - - - - - - - - - - - - - - - - - MAAEAMRQQRR- - EQEASCKATE 21Putative oat FAD3-1

- - - - - - - - - - - - - - - - - - - - - - - - - - - MGAAARRAP- - - - EQEQSCKATE 19Putative oat FAD3-2

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MSED 4Putative oat FADX

SL I VKRDF L HNGRSHHQFL PL KQRGKL QAAVL PL TPL L DDEEKRKQMSED 100Putative oat FADX+

GATL QRSPTDKPPFTL GQI KKAI PPHCF QRSVI KSF SYVVHDL VI VAAL L  73Putative oat FAD2

DHRSVFDAAKPPPFRI GDVRAAVPAHCWRKSPL RSL SYVARDVVVVAAL A 71Putative oat FAD3-1

D- - - - FDAAKPPPFRI GDVRAAVPAHCWRKSPL RSL SYVARDVAAVAAL A 65Putative oat FAD3-2

YGFKQI GEQL PDNVTL KDVMDTL PKEVF EI DNVKAWGSVL I SVT SYAF GI  54Putative oat FADX

YGFKQI GEQL PDNVTL KDVMDTL PKEVF EI DNVKAWGSVL I SVT SYAF GI  150Putative oat FADX+

YAAL VWI PTL PSVL QL GAWPL YWI VQGCVMTGVWVI AHECGHHAFSDYSL  123Putative oat FAD2

AAAWG- - - - - - - L DSWAVWPL YWAVQGT MFWAL FVL GHDCGHGSFSDSGT 114Putative oat FAD3-1

L AAWG- - - - - - - I DTWAVWPL YWAAQGT L FWAL FVL GHDCGHGSFSDSAT  108Putative oat FAD3-2

FL I SK- - - - - - - - APWYL L PL AWAWAGT AVTGFFVI GHDCAHKSFSRNKL  96Putative oat FADX

FL I SK- - - - - - - - APWYL L PL AWAWAGT AVTGFFVI GHDCAHKSFSRNKL  192Putative oat FADX+

L DDI VGL VL HSWL L VPYFSWKYSHRRHHSNTGSMERDEVF VPKQKDAL AW 173Putative oat FAD2

L NSVVGHL L HTF I L VPYNGWRI SHRTHHQNHGHI EKDESWHPI T EGL YQK 164Putative oat FAD3-1

L NSVVGHL L HTF I L VPYNGWRI SHRTHHQNHGHI DKDESWHPI T ENVYKE 158Putative oat FAD3-2

VEDI VGTL AFL PL I YPYEPWRFKHDRHHAKTNML VEDTAWQPVWQKEI ES 146Putative oat FADX

VEDI VGTL AFL PL I YPYEPWRFKHDRHHAKTNML VEDTAWQPVWQKEI ES 242Putative oat FADX+

YTPYI YNNPI GRL VHI VVQL TL GWPL YL SMNASGRPYARF ACHF DPYGPI  223Putative oat FAD2

L EARTK- - - - - KL RFSVPFPL L AF PVYL WYRSPGK- - - - T GSHF NPSSGL  205Putative oat FAD3-1

L EPSTK- - - - - KL RFSL PYPL L AF PVYL WYRSPGK- - - - NGSHF NPSSDL  199Putative oat FAD3-2

SSL L RK- - - AI I FGYGPI RPWMSI AHWL MWHF DL K- - - - - - - - - - - - - - K 179Putative oat FADX

SSL L RK- - - AI I FGYGPI RPWMSI AHWL MWHF DL K- - - - - - - - - - - - - - K 275Putative oat FADX+

YNDRERVQI F I SDVGVVATAFTL F KL ASAFG- FWWVVRI YGVPL L I VNAW 272Putative oat FAD2

FTPKERQDVI I STTCWFTMI AL L I GMACMFG- PVPVL KVYGVPYVVFVMW 254Putative oat FAD3-1

FSPKERRDVI I STTCWFTMI AL L I AMACVFG- PVPVL KL YGVPYVVFVMW 248Putative oat FAD3-2

FRPNEL PRVKI SL ACVFAFMAI GWPL I I L QTGI AGWFKFWFMPWMVYHFW 229Putative oat FADX

FRPNEL PRVKI SL ACVFAFMAI GWPL I I L QTGI AGWFKFWFMPWMVYHFW 325Putative oat FADX+

L VL I TYL QHT- HPAL PHYDSTEWDWL RGAL A- TMDRDYG- I L NRVFHNI T  319Putative oat FAD2

L DL VTYL HHHGHQDL PWYRGEEWSYL RGGL T- TVDRDYG- WI NNI HHDI G 302Putative oat FAD3-1

L DL VTYL HHHGHQDL PWYRGEEWSYL RGGL T- TVDRDYG- WI NNI HHDI G 296Putative oat FAD3-2

MSTF TMVHHT- APHI PFKSPEEWNAAQAQL NGTVHCSYPRWI EI L CHDI N 278Putative oat FADX

MSTF TMVHHT- APHI PFKSPEEWNAAQAQL NGTVHCSYPRWI EI L CHDI N 374Putative oat FADX+

DTHVAHHL FSTMPHYHAMEATKAI KPI L GEYY- - - - - - - - - - QF DPTPVA 359Putative oat FAD2

- THVI HHL FPQI PHYHL VEATKAASPVL GRYYREP- - - - - - EKSGPL PVH 345Putative oat FAD3-1

- THVI HHL FPQI PHYHL VEATKAARPVL GRYYRES- - - - - - EKSGPL PTH 339Putative oat FAD3-2

- VHVPHHI SPRI PSYNL RAAHDSI KKNWGKYMNDADWNWRL MKT I L TACH 327Putative oat FADX

- VHVPHHI SPRI PSYNL RAAHDSI KKNWGKYMNDADWNWRL MKT I L TACH 423Putative oat FADX+

KATWREAKECI YVAPT EDRKGVFWYSNKF.                      389Putative oat FAD2

L VSVL L KSL RVDHFVSDEGDVVFYQTDPSL SGDNRI GTDKHK.         388Putative oat FAD3-1

L FSI L L RSL RVDHFVSDVGDVVFYQTDPSL DSDSWT KNGKQK.         382Putative oat FAD3-2

VYDKERYYVSFDEVVPEESQPI RF L KKF MPDYA.                  361Putative oat FADX

VYDKERYYVSFDEVVPEESQPI RF L KKF MPDYA.                  457Putative oat FADX+
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5.2. Appendix 2: Untranslated (UTR) Regions of Putative oat FAD-like genes 

 

Figure 45. A ClustalW nucleotide alignment of 5' untranslated regions (UTRs) identified 

upstream from the putative translation initiation codon of each putative oat FAD-like gene 

CDS. 

 

Table 19. Relative percent nucleotide identities of the 5’ UTRs of each putative oat FAD-

like gene CDS. 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD2_UTR_5prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - T C C C GGGA T C GA GA C GA GA GG 21AsFAD3-1_UTR_5prime

- - - - - - - - - - - - C C GGGA C A T C C A T C GA C C C A C A C A T A T GGT A C GT A T C G 38AsFAD3-2_UTR_5prime

- GA A T T C C C GGGA T C A C A C T C T C GC C A GT A C C C C T T C C C GGGA T GC GC GC  49AsFADX_UTR_5prime

GGA A T T C C C GGGA T C A C A C T C T C GC C A GT A C C C C T T C C C GGG         42AsFADX+_UTR_5prime

- - - - - - - - C C A C T C GT T C GT C C C GT C A A C A A - GA GGA GC A GA GGC GA GGG 41AsFAD2_UTR_5prime

A GGA GGA GGC C GT A T GC C C C GC C C C C GGC C A C C C C A A GC C A A GC C C A C GG 71AsFAD3-1_UTR_5prime

T C GT A GGA GGT GC A C A C A GC A A C GGC A A A T T T GA T GGC T T A T A A A T A GGG 88AsFAD3-2_UTR_5prime

GC GC A C T C C GT T T C GC C C GC C GC GA C GGGA GT GGA T GGC GA C GGC GA GC G 99AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime

A C T C - - - GC GC T C GC GT GT GT GGT GT C C T T C C C T C GA T C T GC C C C T C T C C  88AsFAD2_UTR_5prime

C C C C - - - C C T C C C C C C C C C G- A A T T C C T C C T C C T C C C C C T C C C C C T C C C C  117AsFAD3-1_UTR_5prime

C C C C GT C C C GT C C C T GC A T C GA T C T C C T C C C C T C C C C T C C GGC C A C C A C C  138AsFAD3-2_UTR_5prime

C C C T - - - C T GC GC C C C C A T GC A GC T C C T C T C T T T GC GGC GGGC A C C T GC C  146AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime

GGC C A GT T C - - - - T A T C A GC T C C T A T C A GC A A C                   117AsFAD2_UTR_5prime

A C T T GC C C C - - - - C C T A C GA C GC A C C C A C C C GC GC A GA T C C A T C C A T C C A  163AsFAD3-1_UTR_5prime

A C C C A A C C C GC GGC C C C A A A T C T C T GC T C T GC C C C C GGC T T T C C C GGA GA  188AsFAD3-2_UTR_5prime

A A GGA A C T C - - - - T C GC C T C GGA GA GC A GC C GC GGT A GC T C T GT C A GGT T  192AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime

                                                   117AsFAD2_UTR_5prime

C C C A C C C A GC C                                         174AsFAD3-1_UTR_5prime

C A GA T C C A GC C T A GC C                                    204AsFAD3-2_UTR_5prime

C A C T T A T T GT GA A GA GA GA T T T T T T T A C A C A A C GGGA GA A GT C A C C A C C A  242AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime

                                                   117AsFAD2_UTR_5prime

                                                   174AsFAD3-1_UTR_5prime

                                                   204AsFAD3-2_UTR_5prime

A T T T T T A C C A T T GA A A C A A A GA GGA A A GT T GC A A GC A GC A GT A C T A C C T C  292AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime

                                                   117AsFAD2_UTR_5prime

                                                   174AsFAD3-1_UTR_5prime

                                                   204AsFAD3-2_UTR_5prime

T T A C T C C A C T GC T T GA T GA T GA GGA A A A GA GGA A GC A G             330AsFADX_UTR_5prime

                                                   42AsFADX+_UTR_5prime
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Figure 46. A ClustalW nucleotide alignment of entire 3' UTRs identified downstream from 

the putative translation termination codon of each putative oat FAD-like gene CDS. 

 

 

Table 20. Relative percent nucleotide identities of the 3’ UTRs of each putative oat FAD-

like gene CDS. 

 

A T T C GT C A T GGGA C C T GC T GT GC T GC T GGA A T GT GA GGA GGA A GA A GT C A GT A A T A C A C C  60AsFAD2_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD3-1_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFAD3-2_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFADX_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  0AsFADX+_UTR_3prime

A A GT A T C C A T C C A T C T A C C T A C A T A T GGT T GGGGGT T A GT A GT C T T T A GA T A GA A GA GA G 120AsFAD2_UTR_3prime

- - - - - - - - - - - - - - - T A A A A A GA C T GA A A C T GA A GT T A C T A C T GT T GA - - A GGA A GA A T G 43AsFAD3-1_UTR_3prime

- - - - - - - - - - - - - - - - T GC A A GA T T GC A A C T GA A GT T A C T A C T GT C C C - - T GGA GGA A T G 42AsFAD3-2_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - T GA T GC A A T T GC T A C T GT T GA C - T A GT T A A GA G 32AsFADX_UTR_3prime

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T GC A A T T GC T A C T GT T GA C - T A GT T A A GA G 29AsFADX+_UTR_3prime

C GT T GT T T GG- GC A C A A GGA A A A GA C T A T GA C C A C C GT GC C A A T GC T A GA A GA GT C GA A G 179AsFAD2_UTR_3prime

C C T GA T A GA A - - - - - - - - - GA T A GA GA GA GA T C A T A GC C T GC T GA GA A T A A GC A GA A A GG 94AsFAD3-1_UTR_3prime

C C T GGA GGA A T GC C T C GT A GA T A T A GA GA T A T C A T A GC C T GC T G                 86AsFAD3-2_UTR_3prime

T A T T T T C GA C - - - - - - - - - - A T A GA GA A A A A T C A T A - C A C A C T A A A GA A A T GGC GC A GC A  81AsFADX_UTR_3prime

T A T T T T C GA C - - - - - - - - - - A T A GA GA A A A A T C A T A - C A C A C T A A A GA A A T GGC GC A GC A  78AsFADX+_UTR_3prime

C A GGT GC A A C GA GGA GT A GC GT GT C GGGT GT C C GT GGC T - T T GGT C A GT T C C GT C C T GT G 238AsFAD2_UTR_3prime

C C GC C C C T GC T GA A A T C A A A GC A T GGA GC T C T GT GA C C GA C A GGA A GC A T T GA T T C GGT T  154AsFAD3-1_UTR_3prime

                                                             86AsFAD3-2_UTR_3prime

C A GA T GT C T C GA A A A C C A T C GC A GA C GGC T T T - T C - - T - - - T GGT A T C T C T GA T C C A C A G 135AsFADX_UTR_3prime

C A GA T GT C T C GA A A A C C A T C GC A GA C GGC T T T - T C - - T - - - T GGT A T C T C T GA T C C A C A G 132AsFADX+_UTR_3prime

T C T - T T A C T T C C T A GT C GC C GGT T T A GT T T T GC C GGT GGT C GGT C GT C GT T GGT GT C C GT  297AsFAD2_UTR_3prime

C A T C A T GGGA T T C A GA T C A T T GC T T A GA GT T A GC A T T C T C C A A T T G- T GGT T GT A A C T GG 213AsFAD3-1_UTR_3prime

                                                             86AsFAD3-2_UTR_3prime

T C T A T A A T GGC T C A GT T C T T - - C T T A GA C GT T GGT A T T GC T A A T C A - C A T A T T         185AsFADX_UTR_3prime

T C T A T A A T GGC T C A GT T C T T - - C T T A GA C GT T GGT A T T GC T A A T C A - C A T A           180AsFADX+_UTR_3prime

GGC C A T GA C A T GGC C GT C C GT C C GT C C GT C C GT C C GT GT GT T GT GA GT GT GC GT C T GT C A  357AsFAD2_UTR_3prime

GC A GA T GT T GT T T C A GT T T T T T A C T A A GT T T T GC A T GT GGA A C T GT GT A A A C A A A T GA T T  273AsFAD3-1_UTR_3prime

                                                             86AsFAD3-2_UTR_3prime

                                                             185AsFADX_UTR_3prime

                                                             180AsFADX+_UTR_3prime

T T GC A T T GGC GT C A T C T C T C T GT C C GT GT C GT GC T GT T GT A GA C C A T C T GGT GC T T T T A T  417AsFAD2_UTR_3prime

A A T T A T T A T C C A A A T T GA T A T T A C A A A A A A A A A A A A                          309AsFAD3-1_UTR_3prime

                                                             86AsFAD3-2_UTR_3prime

                                                             185AsFADX_UTR_3prime

                                                             180AsFADX+_UTR_3prime

GGC GGA A T A A C T A GA A A A T C A A GGGC T A A C T T T                             450AsFAD2_UTR_3prime

                                                             309AsFAD3-1_UTR_3prime

                                                             86AsFAD3-2_UTR_3prime

                                                             185AsFADX_UTR_3prime

                                                             180AsFADX+_UTR_3prime
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5.3. Appendix 3: AsFADX+ aligned with all Arabidopsis FADs 

 

Figure 47. A ClustalW alignment of the Avena AsFADX+ with Arabidopsis (At) FAD-like 

proteins.  Histidine boxes are underlined. 

 

Table 21. Relative percent identities of AsFADX+ to Arabidopsis FAD-like proteins. 
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MA S R - - - - - - - - - I A D S L F A F T GP QQ- - C L P R V P K L A A S - - - S A R V S P GV Y A V K P I D L L L K GR T H R S R R C V  57AtFAD6
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5.4. Appendix 4: qRT-PCR Data 

Table 22. qRT-PCR results from germinating seed tissue. 
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Table 23. qRT-PCR results from root tissue. 
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Table 24. qRT-PCR results from leaf tissue. 
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Table 25. qRT-PCR results from developing seed (milky stage) tissue. 
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