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Abstract

This thesis is concerned with distributed estimation in a wireless sensor network (WSN)

with analog transmission. For a scenario in which a large number of sensors are deployed un-

der a limited bandwidth constraint, a semi-orthogonal multiple-access channelization (MAC)

approach is proposed to provide transmission of observations from K sensors to a fusion cen-

ter (FC) via N orthogonal channels, where K ≥ N . The proposed semi-orthogonal MAC

can be implemented with either fixed sensor grouping or adaptive sensor grouping.

The mean squared error (MSE) is adopted as the performance criterion and it is first stud-

ied under equal power allocation. The MSE can be expressed in terms of two indicators: the

channel noise suppression capability and the observation noise suppression capability. The

fixed version of the semi-orthogonal MAC is shown to have the same channel noise suppres-

sion capability and two times the observation noise suppression capability when compared

to the orthogonal MAC under the same bandwidth resource. For the adaptive version, the

performance improvement of the semi-orthogonal MAC over the orthogonal MAC is even

more significant. In fact, the semi-orthogonal MAC with adaptive sensor grouping is shown

to perform very close to that of the hybrid MAC, while requiring a much smaller amount of

feedback.

Another contribution of this thesis is an analysis of the behavior of the average MSE in

terms of the number of sensors, namely the scaling law, under equal power allocation. It is

shown that the proposed semi-orthogonal MAC with adaptive sensor grouping can achieve

the optimal scaling law of the analog WSN studied in this thesis.

Finally, improved power allocations for the proposed semi-orthogonal MAC are investi-

gated. First, the improved power allocations in each sensor group for different scenarios are

provided. Then an optimal solution of power allocation among sensor groups is obtained

by the convex optimization theory, and shown to outperform equal power allocation. The

issue of balancing between the performance improvement and extra feedback required by the

improved power allocation is also thoroughly discussed.
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ai power gain at sensor i

Ωn index set of sensors transmitting on the nth orthogonal channel

g(i) channel allocation vector at sensor i

Pn total transmitted power in the nth group

γcn channel signal-to-noise ratio on the nth orthogonal channel (γcn = Pn/σ
2
ω)

x



1. Introduction

A distributed wireless sensor network (WSN), which can be typically deployed for some

special signal processing task (e.g. parameter estimation), is composed of a fusion center (FC)

and a number of sensors (as shown in Figure 1.1) that operate under limited bandwidth and

power resources. Each sensor in the network makes an observation of the quantity of interest,

generates a local signal, and then sends it to the FC via a wireless fading channel. Based on

the data collected from the sensors, the FC conducts certain data processing according to the

tasks of the WSN. Such sensor network applications can be found in military surveillance,

environmental monitoring, precision agriculture and intelligent transportation [2].

Fusion center (FC)

Sensors
Wireless channel

Wireless sensor network
(WSN)

Figure 1.1 A wireless sensor network with a fusion center.

Distributed signal processing in WSNs can be classified into two main categories: dis-

tributed detection [3–11] and distributed estimation. In distributed estimation, there are

two main options to transmit the observation from each sensor to the FC: digital [12–18] or

analog [19–23]. In digital transmission, each sensor first converts its observation into a bit

stream (quantization) and then communicates this bit stream reliably to the FC. In analog

transmission, the sensors simply amplify their observations and then forward them to the FC.

Compared to digital transmission, larger bandwidth is required to transmit analog signals.
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However, the fidelity of the source signals can be better preserved with analog transmission

since the transmitted signal is interfered by quantization noise in digital transmission.

This thesis is concerned with distributed estimation in a sensor network with analog

transmission. Specially, a scalar Gaussian random variable is observed in a memoryless

fashion by K sensors and each observation is subject to white Gaussian noise. The sensors

amplify their observations and then transmit them to an FC via wireless channels. Using

data collected from the sensors, the FC estimates the underlying source signal to within the

smallest distortion possible.

There are many factors that affect the performance of distributed estimation in WSNs.

These include the accuracy of sensors’ observations (which is usually modelled as observation

noise), the available bandwidth and power resources, the fading characteristics of the wireless

channels between the sensors and the FC, the fusion rule used by the FC, etc. Regarding the

wireless communications between the FC and the sensors, many different types of multiple

access channelization (MAC)1 can be used with analog transmission. For different types of

MAC, the impacts of observation noise and channel noise on the estimation performance are

different, and therefore the behaviour of the final estimation performance strongly depends

on the type of MAC used by the sensor network.

In the coherent MAC studied in [21], signals from all sensors are coherently combined

first and then transmitted on one wireless channel. It is bandwidth efficient. In addition,

there is only one channel noise component at the FC and hence the impact of channel

noise on the estimation performance is small. However, to obtain coherent combination,

the channel phase information needs to be transmitted from the FC to the sensors, which

requires a large amount of feedback. On the other hand, there is no need of any feedback in

the orthogonal MAC [22]. This is because signal from each sensor is exclusively transmitted

on one orthogonal channel in the orthogonal MAC. To accommodate multiple orthogonal

channels, the orthogonal MAC requires a large transmission bandwidth. More importantly,

1It is pointed out that, in many research papers on the topic of distributed estimation in WSNs, the

abbreviation MAC is used for “multiple access channel” but really refers to a multiple access technique. In

keeping with the convention, the abbreviation MAC is also used in this thesis but it is clearly meant for

“multiple access channelization” technique.
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using K orthogonal channels means that there are K channel noise components at the

FC, which makes the estimation performance suffer more from channel noise. The hybrid

MAC [23] is a tradeoff between the coherent and orthogonal MACs, in which all sensors are

divided into groups and the coherent MAC is used for sensors within each group, whereas

the orthogonal MAC is used across different groups. Since the bandwidth requirement in

this MAC is proportional to the number of sensor groups, it can be fixed to a small value

to save bandwidth. In this MAC, although coherent combination is only required in each

sensor group, the amount of channel phase information feedback is still the same as that of

the coherent MAC.

Motivated from the above discussion, this thesis focuses on the design of a wireless sensor

network in order to improve the estimation performance under both bandwidth and power

constraints. Specially, considered is a scenario where there are N (a small number due to

bandwidth constraint) orthogonal channels that are shared by K sensors, where K ≥ N ,

for transmitting the sensors’ observations to the FC. An obvious approach to the above

design problem is sensor grouping, and the hybrid MAC discussed above is one solution. A

flexible tradeoff between the coherent and orthogonal MACs can therefore be obtained by

changing the number of groups and the number of sensors in each group. However, in the

hybrid MAC, to obtain coherent combination in each group, the same amount of channel

information feedback from the FC to the sensors as that of the coherent MAC is still required.

In a sharp contrast to the hybrid MAC, the novel sensor grouping proposed in this thesis

is such that sensors in one group transmit on one orthogonal channel without any channel

phase compensation at the transmitter. This means that the signals from sensors within

one group are directly superimposed instead of coherently combined as in the hybrid MAC.

As a result, no channel phase information is required to be transmitted from the FC to the

sensors. To distinguish from the other MACs discussed before, the proposed MAC shall be

called a semi-orthogonal MAC.

Throughout this paper, the average mean squared error (MSE) between the source signal

and its estimated version is adopted as the performance criterion for distributed estimation.

Under a homogeneous assumption that the variances of observation noise and channel noise

are identical for all sensors, two indicators of estimation performance are established based

3



on the MSE distortion: the channel noise suppression capability and the observation noise

suppression capability. These two performance indicators are used extensively throughout

this thesis to investigate and compare the distributed estimation performances of different

MACs.

The proposed semi-orthogonal MAC can be implemented with either fixed or adaptive

sensor grouping. In fixed sensor grouping, each sensor is assigned to transmit on the same

orthogonal channel throughout the process of communication. Under the same bandwidth

and power constraints, the semi-orthogonal MAC has the same channel noise suppression

capability but nearly two times the observation noise suppression capability when compared

to the orthogonal MAC. For adaptive sensor grouping, sensors are grouped according to the

ranges (i.e., sub-regions) that their channel phases fall into. It is shown that, compared

to fixed sensor grouping, the MSE performance of the semi-orthogonal MAC with adaptive

grouping is improved by a large margin. In fact the performance of the semi-orthogonal MAC

with adaptive grouping is very close to the performance of the hybrid MAC under the same

bandwidth and power constraints and the same number of sensors. The only extra cost for

implementing the proposed semi-orthogonal MAC is a few bits of feedback information from

the FC to the sensors to indicate orthogonal channel allocation. However, this amount of

feedback overhead is significantly smaller than what required for channel phase information

in the coherent and hybrid MACs.

Although it is very complicated to derive the exact expression of the average MSE of the

proposed semi-orthogonal MAC, some of its properties can still be studied and analyzed.

For example, one important property of the average MSE, namely the achieved scaling

law which describes the decaying trend achieved by the average MSE as a function of the

number of sensors K, is investigated in this thesis. The scaling laws of different cases of

the semi-orthogonal MAC are established. It is shown that only the semi-orthogonal MAC

with adaptive sensor grouping can achieve the optimal scaling law of 1/K of the estimation

system using wireless sensor networks as defined in this thesis. As a reference, the coherent

MAC can also achieve the optimal scaling law, but it requires a large amount of feedback.

In all previous studies, the estimation is conducted under equal power allocation. In the

last part of this thesis, the issues of improved power allocation in which the total transmitted

4



power is divided and allocated to the sensors according to factors such as observation noise,

channel response, and channel noise are addressed. The task is divided into two steps: power

allocation in each sensor group and power allocation among sensor groups. In each sensor

group, two improved strategies are provided for scenarios with especially large observation

signal-to-noise ratio (SNR) and especially large channel SNR, respectively. In addition,

equal power allocation is recommended for the scenario in which the observation SNR is

comparable to the channel SNR. Among the sensor groups, an optimal power allocation

solution is obtained based on the convex optimization theory and shown to outperform equal

power allocation. Note that to implement the improved power allocation, extra feedback from

the FC to the sensors is required. As a result, it is important to balance the performance

improvement brought by the improved power allocation and the required extra feedback

overhead.

The remainder of this thesis is organized as follows.

Chapter 2 first introduces the basic concepts of WSNs including structure, applications,

design criteria, and protocol stack. Two main classes of distributed data processing in WSNs,

namely detection and estimation, are discussed later. Finally, a general system model of

a sensor network with analog transmission is established for the studies in the following

chapters.

Chapter 3 presents three popular MACs used in WSNs, the coherent, orthogonal and

hybrid MACs. These three MACs are compared in terms of estimation performance and

bandwidth and feedback requirements. Specially, two performance indicators are established

based on the MSE distortion to assess the observation noise and channel noise suppression

capabilities of these MACs.

Chapter 4 proposes a novel semi-orthogonal MAC. Two versions of this semi-orthogonal

MAC, fixed sensor grouping and adaptive sensor grouping, are developed and analyzed in

detail based on the two performance indicators established in Chapter 3. The proposed

semi-orthogonal MAC is also compared with the three MACs studied in Chapter 3.

Chapter 5 includes two main parts. The first part investigates the scaling law achieved

by the proposed semi-orthogonal MAC. Specially, the scaling laws of different cases of the

semi-orthogonal MAC are established. The second part addresses issues of improved power

5



allocation in the semi-orthogonal MAC, including power allocations in each sensor group

and among sensor groups.

Chapter 6 draws conclusions of this thesis and gives suggestions for future research.
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2. Background

2.1 Wireless Sensor Networks

Recent advances in wireless communications and electronics have enabled the develop-

ment of low-cost, low-power, multi-functional sensor nodes that are small in size and can

communicate in short distance. These tiny sensor nodes, which consist of sensing, data

processing, and communicating components, leverage the idea of sensor networks. A sensor

network is composed of a large number of sensor nodes that are densely deployed for cer-

tain tasks, such as military surveillance, environmental monitoring, precision agriculture and

intelligent transportation [2]. An example of sensor network applications of environmental

monitoring is described in the following [1].

Redwood trees are so large that entire ecosystems exist within their physical envelope.

Climatic factors determine the rate of photosynthesis, water and nutrient transport, and

growth patterns. Substantial variations are known to exist over the volume of an individual

specimen, and researchers believe that the micro-climate structure varies over regions of the

forest. In addition, water transport rates and the scale of respiration may influence the

micro-climate around a tree, effectively creating its own weather. All these factors influence

the habitat dynamics of species existing in and on the tree.

Researchers use multiple sensor nodes to monitor the micro-climate around a redwood

tree. As shown in Figure 2.1, an entire weather station fits in a tube about the size of a

film canister. On top, two incident-light sensors measure total solar radiation, specifically

light and photosynthetically active radiation, the bands at which chlorophyll is sensitive.

In addition, on the bottom, there are environmental sensors to monitor relative humidity,

barometric pressure, and temperature. The center of the tube contains a small central

processing unit, a data storage, a battery, and a low-power radio to collect data, process

7



Figure 2.1 Models of a sensor node for environmental monitoring fitting in a tube

about the size of a film canister [1].

it, and route information among the nodes and to the outside world. This provides a cost-

effective means of obtaining simultaneous measurements at many points in the tree, spanning

elevation and radial direction over a prolonged period. For example, in a 36-meter study

tree, 16 nodes are deployed at four elevations to sample climate data every five minutes.

Figure 2.2 shows humidity and temperature profiles over three days, collected from 16

sensor nodes. The WSN samples climate data every five minutes and computes average

humidity and temperature at each elevation.

The design of such sensor networks is influenced by many factors [24–29], including

fault tolerance, scalability, sensor network topology, production costs, hardware constraints,

operating environment, transmission media, and power consumption. Some sensor nodes

may fail or be blocked due to lack of power, or have physical damage or environmental

interference. The failure of sensor nodes should not affect the overall task of the sensor

network. This is the reliability or fault tolerance issue. Depending on the applications, the

number of sensor nodes deployed in studying a phenomenon may range from several to an

order of hundreds or thousands. The sensor network must be able to work with this number

of nodes and utilize the high density of the sensor nodes. When deploying a high number

of nodes densely, it requires careful handling of topology maintenance. In addition, the cost

of each sensor node has to be kept low. Usually, a sensor node is made up of four basic

components: a sensing unit, a processing unit, a transceiver unit, and a power unit. All of

these subunits may need to fit into a match box-sized module. Apart from size, there are
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Figure 2.2 WSN climate data [1].

some other stringent constraints for sensor nodes. For example, these nodes must be light

enough and adaptive to various operating environments. In most operating environments,

the sensor nodes are linked to the network and each other by a wireless medium. These

links can be formed by radio, infrared, or optical media. However, much of the current

hardware for sensor nodes is based on radio-frequency circuit design. For a wireless sensor

node, it usually can be equipped with a limited power source and it might be impossible

to recharge the batteries. As a result, sensor node lifetime shows a strong dependence on

battery lifetime. Hence, power conservation and power management are very important in

wireless sensor network design.

Regarding the topology of WSNs, there are two popular deployments characterized by the

presence or absence of a fusion center (FC). When an FC is present, there is no inter-sensor

communication. All sensors are connected to the FC via wireless channels and communi-

cation is only between the sensors and the FC. Using data collected from the sensors, the

FC conducts certain processing according to the tasks of the WSNs. In ad hoc WSNs, there

is no FC. The network itself is responsible for processing the collected information, and to
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this end, the sensors communicate with each other through the shared wireless medium. In

addition, hybrid topologies are also possible in which the WSN is partitioned into clusters

with a hierarchical structure. Each cluster has a local FC generating intermediate data,

which in turn are combined to obtain a final result for the tasks of the WSN. This thesis

focuses on the data processing in WSNs with a FC.

The protocol stack used by the wireless sensor network consists of five layers: physical

layer, data link layer, network layer, transport layer, and application layer [24]. The phys-

ical layer addresses the needs of simple but robust modulation, transmission and receiving

techniques. In the data link layer, the medium access control protocol is used to minimize

collision with neighbours’ broadcasts. The network layer takes care of routing the data sup-

plied by the transport layer. The transport layer helps to maintain the flow of data if the

sensor network’s application requires it. Depending on the sensing tasks, different types of

application software can be built and used on the application layer. The research in this

thesis focuses on the multiple access channelization in the physical layer of WSNs.

2.2 Distributed Detection and Estimation in WSNs

In distributed signal processing in WSNs, instead of sending all the raw data to the FC,

the sensors use their processing abilities to locally carry out simple computations (e.g., simple

compression) and transmit only the required and partially processed data [4]. Some of the

advantages of distributed signal processing are reduced bandwidth requirement, increased

reliability, and reduced cost. There may be performance loss in distributed systems since the

FC has only partial information as communicated by the sensors. However, the performance

loss can be made small by optimizing signal processing at the sensors. There has been rich

research in distributed signal processing [3–23], including detection and estimation, in WSNs.

The next two subsections review relevant research and results on distributed detection and

distributed estimation.

2.2.1 Distributed Detection

The canonical detection problem is to fabricate a reasonable decision between a pair of

hypotheses, the presence of a signal (hypothesis H1) and the absence of a signal (hypothesis

H0), based on a series of observations [3]. Furthermore, it can be extended to making a
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decision among multiple hypotheses. The detection problem becomes “distributed” when the

observations are quantized prior to their insertion to a decision rule. The existing literature

on distributed detection is abundant [3–11]. However, since distributed detection is outside

the scope of this thesis, only two examples are briefly discussed in the following.

In [4], a binary hypothesis testing problem in which the observations at all sensors either

correspond to the presence of a signal (hypothesisH1) or to the absence of a signal (hypothesis

H0) was studied. Each sensor employs a mapping rule and passes the quantized observation

to the fusion center or other sensors. Based on the received signals, the FC or certain

sensors arrive at a global (for the FC) or local (for the certain sensors) decision which

favours either H1 or H0. Two formulations were considered in [4]. With the Neyman-

Pearson formulation, the task of the distributed detection problem can be stated as follows:

for a prescribed bound on the global probability of false alarm, find optimal global or local

decision rule that minimizes the global probability of miss. With the Bayesian formulation,

the objective is to minimize the Bayesian risk, which is a sum of weighted risks of possible

courses of action. Assignment of costs to different courses of action and knowledge of prior

probabilities are required for the solution of this problem. In addition, some advanced topics

that involve locally optimal detection, sequential detection, non-parametric methods, and

robust procudures are presented in [5].

In [6], an universal distributed detection algorithm, which consists of the local quantiza-

tion at the sensors and the final fusion strategy at the FC, was designed for the hypothesis

problem mentioned above when the distribution of observation noise is unknown. This detec-

tor is especially bandwidth efficient because each sensor only needs to send a 1-bit message

to the FC. In addition, the error probability of this detector decays exponentially as the

number of sensors increases.

2.2.2 Distributed Estimation

In distributed estimation, the source signal is in analog form. Data is collected from the

sensors and then transmitted to the FC to obtain an estimate of the exact value of the source

signal. For analog source signals, there are two approaches to transmit observations from

the sensors to the FC: digital or analog.

In digital transmission, the sensors first convert its observations into a bit stream and
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then communicate this bit stream reliably to the FC. One of the most important topics in

sensor networks with digital transmission is the CEO problem. The CEO problem can be

summarized as follows. A firm’s Chief Executive Officer (CEO) is interested in a data se-

quence X which cannot be observed directly, perhaps because it represents tactical decisions

by a competing firm. The CEO deploys a team of K agents who observe independently cor-

rupted version of X. Since X is only one among many pressing matters to which the CEO

must attend, the combined data rate at which the agents may communicate information

about their observations to the CEO is limited to R bits per second. The agents could use

their R bits per second to provide the CEO with a representation of X with a fidelity D.

The target of the CEO problem is to characterize the rate-distortion function R (D). The

CEO problem was first introduced in [12,13] and the quadratic Gaussian version was solved

in [14].

The R (D) function obtained from the CEO problem serves as a performance benchmark

for distributed estimation under bandwidth constraints. In [15–18], effective local quantiza-

tion schemes and estimators were designed for different source and observation noise signal

models. The corresponding mean square error (MSE) performances were compared with the

performance benchmark obtained from the CEO problem. For example, in the Gaussian

quadratic CEO problem, [14] derived an asymptotic total rate distortion function of the

form D = σ2/ (2R) when both K and R are large, where R is the total rate and σ2 is the

observation noise variance. For the special case of Rk = 1 bit per sensor sample, the total

communication rate R = K, and thus the best achievable MSE performance dictated by

rate distortion theory is no less than σ2/ (2K). In [15], the source signal is a deterministic

scalar and the observation noise is known to be a random variable of Gaussian distribution.

In that paper, a simple distributed estimator which compares the sensor observations with

a certain threshold to obtain the 1-bit transmit signals was designed and it achieves an

asymptotic MSE performance of πσ2/ (2K) when the threshold can be taken close to the

value of the source signal. The MSE only increases by a factor of π with respect to the

performance benchmark. In [16–18], the simple design of local quantizers and estimators

which requires only one to several bits per sensor were extended to more pragmatic signal

models, for example, the probability density function (pdf) of the observation noise is known
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with a finite number of unknown parameters or the pdf is totally unknown. It was shown

that the resulting estimators turned out to exhibit MSEs that can come surprisingly close

to the performance benchmark.

In analog transmission, the sensors simply amplify their observations and then forward

them to the FC. Compared to digital transmission, larger bandwidth is required to transmit

analog signals. However, the fidelity of the source signals can be better preserved with

analog transmission since the transmitted signal is interfered by quantization noise in digital

transmission. As proved in [20], with certain multiple access channelization from the sensors

to the FC, analog transmission is exactly optimal for a simple sensor network with multiple

Gaussian statistical assumptions. In this thesis, several issues of distributed estimation in

such a Gaussian sensor network with analog transmission will be studied.

2.3 Distributed Estimation in a WSN with Analog Transmission:

System Model

Figure 2.3 System model for distributed estimation in a WSN.

In this thesis, a sensor network with Gaussian statistical assumptions is considered.

Specifically, as shown in Figure 2.3, a scalar Gaussian random variable s is observed in

a memoryless fashion by K sensors and each observation is subject to white Gaussian noise.

The observation of the ith sensor can be expressed as

xi = s+ vi, 1 ≤ i ≤ K, (2.1)

where the source signal s and observation noise vi are treated as random variables with zero

mean and variances σ2
s and σ2

v , respectively. Here, an assumption of identical observation
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noise variance for all sensors is used to facilitate the performance analysis. The observation

signal-to-noise ratio (SNR) is defined as γo = σ2
s

σ2
v
. In practice, the observation noise is

affected by various factors and its variance might be different from sensor to sensor. A more

complicated system model with different observation noise variances can be considered in

the future to better fit the reality.

With analog modulation, the ith sensor simply amplifies xi with a gain ai and transmits

the result to the FC. The total transmit power in this WSN is Ptot.

Signals from the sensors will be transmitted to the FC via wireless fading channels. Let

hi, i = 1, . . . , K, represent the channel response from sensor i to the FC. These channel

responses are modeled as independent and identically distributed (i.i.d.) complex Gaussian

random variables with zero mean and unit variance. Let hi = rie
jφi . Then the magnitude ri

and phase φi of a Gaussian wireless channel can be modeled as independent random variables

with Rayleigh and uniform distributions, respectively.

On each wireless fading channel, the transmitted signal will be disturbed by additive

white Gaussian noise (AWGN). The AWGN sample, denoted as ω, is modeled as a complex

Gaussian random variable with zero mean and variance σ2
ω. The channel SNR is defined as

γc =
Ptot

σ2
ω
.

The received signal at the FC is denoted by y = [y1, y2, . . . , yN ], where y can be a scalar

or a vector. The dimension N and expression of y in terms of ai, xi, hi and ω depend on the

type of multiple access channelization (MAC) used from the sensors to the FC. Research on

MAC is the main focus of this thesis and will be elaborated in the next three chapters. Based

on y, the FC estimates the underlying source signal to within the smallest distortion possible.

The Bayesian mean square error (MSE) between the source signal and the estimator š is

adopted as the performance criterion, which is

ϵ = Bmse (š) = E
{
(s− š)2

}
, (2.2)

where the expectation is with respect to the pdf p (y, s). The linear minimum mean square

error (LMMSE) estimator is considered in this thesis [30], in which the estimator is of the

form

š =
N∑

n=1

bnyn + bN+1, (2.3)
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and the weighting coefficients bn’s are chosen to minimize the MSE. The final LMMSE

estimator is

š = E {s}+CsyC
−1
yy y = CsyC

−1
yy y, (2.4)

where C means a covariance matrix. The second equal sign is because that the mean of the

source signal s is assumed to be zero in this case. The corresponding MSE is

ϵ = Css −CsyC
−1
yyCys. (2.5)

Note that the MSE obtained above is for certain realizations of channel responses hi’s.

To evaluate the long-term performance of a WSN, the average MSE (AMSE) is defined as

follows

AMSE = E {ϵ} , (2.6)

where the expectation is taken over channel response realizations.

When calculating š, it is assumed that the FC knows the first-order and second-order

statistics of the source signal, observation noise and AWGN related to all sensors. It is also

assumed that the FC can obtain the channel responses of all links between the sensors and

the FC. These assumptions are reasonable when the network condition and the signal being

estimated change slowly.

2.4 Summary

This chapter discussed the problems of distributed detection and distributed estima-

tion in WSNs. A system model for distributed estimation in a sensor network with analog

transmission was then described in detail. In the following chapters, the effect of the MAC

used in the system on the final estimation performance will be investigated under different

aspects. For a scenario in which a large number of sensors are deployed under limited band-

width constraint, a novel semi-orthogonal MAC will be proposed and its performance will

be analyzed.
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3. Multiple Access Channelizations in WSNs

3.1 Introduction

In wireless sensor networks (WSN), one or several wireless channels may be used for

transmission from the sensors to the FC, depending on the available bandwidth. A multiple

access channelization (MAC) can be considered as a way to decide how the sensors share

those wireless channels. The type of MAC has a strong influence on the performance of

distributed estimation in WSNs based on analog transmission. This is because observation

noise and channel noise are the two main factors that affect the estimation performance. For

different types of MAC, the impacts of observation noise and channel noise on the estimation

performance are different, and therefore the behaviour of the final estimation performance

strongly depends on the type of MAC used by the network.

In this chapter, three different MACs are studied and compared in terms of estimation

performance, bandwidth and feedback requirements. In the coherent MAC [21], signals from

all sensors are coherently combined first and then transmitted on one wireless channel. It is

bandwidth efficient. However, to obtain coherent combination, the channel phase information

needs to be transmitted from the FC to the sensors, which requires a large amount of

feedback. On the other hand, there is no need of any feedback in the orthogonal MAC [22].

This is because signal from each sensor is exclusively transmitted on one orthogonal channel

in the orthogonal MAC. To accommodate multiple orthogonal channels, the orthogonal MAC

requires a large transmission bandwidth. The hybrid MAC [23] is a tradeoff between the

coherent and orthogonal MACs, in which all sensors are divided into groups and the coherent

MAC is used for sensors within each group, whereas the orthogonal MAC is used across

different groups. Since the bandwidth requirement in this MAC is proportional to the number

of sensor groups, it can be fixed to a small value to save bandwidth. In this MAC, although
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coherent combination is only required in each sensor group, the amount of channel phase

information feedback is still the same as that of the coherent MAC.

In terms of estimation performance, two aspects are considered in this chapter: accuracy

and reliability. The average MSE is adopted as the performance criterion of estimation accu-

racy. Two performance indicators, namely the channel noise suppression capability indicator

and the observation noise suppression capability indicator, are developed to quantify the im-

pacts of channel noise and observation noise on the average MSE performance, respectively.

In addition, a performance criterion of estimation reliability, namely the outage probability,

is also studied in this chapter.

3.2 Coherent MAC

Figure 3.1 System model of a wireless sensor network using the coherent MAC.

Figure 3.1 shows a wireless sensor network with the coherent MAC [21]. Signals from all

sensors are transmitted on one wireless channel. This means that there is only one channel

noise component at the FC and hence the impact of channel noise on the estimation perfor-

mance is small. To obtain coherent combination at the FC, phases of channel responses are

compensated at the sensors. To realize phase compensation at the transmitters, knowledge

of wireless channel responses needs to be transmitted from the FC to all sensors, which

represents a large amount of feedback. This requirement presents a serious challenge in

implementing the coherent MAC.
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After phase compensation, the transmitted signal at the ith sensor is xi = ai (s+ vi) e
−jφi .

At the FC, all the useful information resides in the real part of the received signal, which

can be expressed as

y =
K∑
i=1

ai (s+ vi) ri +R{ω} . (3.1)

Based on y, the LMMSE estimator and the corresponding MSE are

š =


(∑K

i=1 airi

)
σ2
s(∑K

i=1 airi

)2
σ2
s +

(∑K
i=1 a

2
i r

2
i

)
σ2
v +

σ2
ω

2

 y (3.2)

and

ϵ =

σ−2
s +

(∑K
i=1 airi

)2(∑K
i=1 a

2
i r

2
i

)
σ2
v +

σ2
ω

2


−1

. (3.3)

With equal power allocation, ai =
√
Ptot/K (σ2

s + σ2
v) and equation (3.3) turns to

ϵ = σ2
s

1 +
(∑K

i=1
ri√
K

)2(∑K
i=1

r2i
K

)
1
γo

+ 1
2γc

(
1 + 1

γo

)


−1

. (3.4)

3.3 Orthogonal MAC

Figure 3.2 System model of a wireless sensor network using the orthogonal MAC.

Figure 3.2 shows a wireless sensor network with the orthogonal MAC [22]. In this MAC,

K sensors transmit their observations to the FC via K orthogonal channels, which can be
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realized with orthogonal frequency-division multiplexing. The orthogonal MAC removes the

requirement of feedback of channel responses form the FC to the sensors, and hence is more

favourable for implementation. However, the key disadvantage of the orthogonal MAC is

that it requires larger transmission bandwidth to realize multiple orthogonal channels. More

importantly, using K orthogonal channels means that there are K channel noise components

at the FC, which makes the estimation performance suffer more from channel noise.

At the FC, the channel phase on each wireless channel is compensated first. After such

phase compensation, all the useful information is found in the real parts of the processed

signals. On the ith wireless channel, by taking the real part, one has1

yi = ai (s+ vi) ri +R
{
ωe−jφi

}
= airis+ aiviri +R

{
ωe−jφi

}
= r̄is+ v̄i + ω̄i, (3.5)

where r̄i = airi, v̄i = aiviri and ω̄i = R{ωe−jφi}. Let y = [y1, y2, . . . , yK ]
⊤, r̄ = [r̄1, r̄2, . . . , r̄K ]

⊤,

v̄ = [v̄1, v̄2, . . . , v̄K ]
⊤ and ω̄ = [ω̄1, ω̄2, . . . , ω̄K ]

⊤. Then equation (3.5) turns to

y = r̄s+ v̄ + ω̄. (3.6)

The LMMSE estimator of s based on y is

š = σ2
s r̄

⊤ (σ2
s r̄r̄

⊤ +Σv̄ +Σω̄

)−1
y, (3.7)

where

Σv̄ = E
{
v̄v̄⊤} = diag

(
a21r

2
1σ

2
v , a

2
2r

2
2σ

2
v , . . . , a

2
Kr

2
Kσ

2
v

)
(3.8)

and

Σω̄ = E
{
ω̄ω̄⊤} = diag

(
σ2
ω

2
,
σ2
ω

2
, . . . ,

σ2
ω

2

)
. (3.9)

The corresponding MSE distortion is

ϵ =
[
σ−2
s + r̄⊤ (Σv̄ +Σω̄)

−1 r̄
]−1

=

(
σ−2
s +

K∑
i=1

a2i r
2
i

a2i r
2
i σ

2
v +

σ2
ω

2

)−1

. (3.10)

With equal power allocation, ai =
√
Ptot/K (σ2

s + σ2
v) and equation (3.10) turns to

ϵ = σ2
s

1 + K∑
i=1

r2i
K

r2i
K

1
γo

+ 1
2γc

(
1 + 1

γo

)
−1

. (3.11)

1For complex scalars, vectors and matrices, R{·} denotes the real part and I {·} denotes the imaginary

part.
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3.4 Hybrid MAC
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Figure 3.3 System model of a wireless sensor network using the hybrid MAC.

Figure 3.3 shows a wireless sensor network with the hybrid MAC [23]. In this MAC,

all sensors are divided into groups and the coherent MAC is used for sensors within each

group, whereas the orthogonal MAC is used across different groups. This MAC provides a

solution for scenarios where are N (a small number due to bandwidth constraint) orthogonal

channels that are shared by K sensors, where K ≥ N . In addition, a flexible tradeoff

between the coherent and orthogonal MACs can be obtained by changing the number of

groups and the number of sensors within each group. As indicated in [23], in such a MAC,

the MSE performance is dominated by intra-group coherent MACs using less sensors and

can be minimized by assigning K sensors to N groups as uniformly as possible.

In this hybrid MAC, to obtain coherent combination in each group, channel phase infor-

mation feedback from the FC to the sensors is still required and the amount of feedback is

the same as that of the coherent MAC. In addition, the required transmission bandwidth in

this MAC depends on the number of sensor groups.

After phase compensation, the transmitted signal at the ith sensor is xi = ai (s+ vi) e
−jφi .

At the FC, on the nth wireless channel, all the useful information is in the real part of the
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received signal, which can be expressed as

yn =
∑

i∈Ωn

ai (s+ vi) ri +R{ωn} , n = 1, 2, . . . , N, (3.12)

=
(∑

i∈Ωn

airi

)
s+

(∑
i∈Ωn

aiviri

)
+R{ωn} = r̄ns+ v̄n + ω̄n,

where Ωn is the index set of sensors in the nth group, r̄n =
∑

i∈Ωn
airi, v̄n =

∑
i∈Ωn

aiviri

and ω̄n = R{ωn}. Let y = [y1, y2, . . . , yN ]
⊤, r̄ = [r̄1, r̄2, . . . , r̄N ]

⊤, v̄ = [v̄1, v̄2, . . . , v̄N ]
⊤ and

ω̄ = [ω̄1, ω̄2, . . . , ω̄N ]
⊤, then similar to the orthogonal MAC, the LMMSE estimator of s

based on y is

š = σ2
s r̄

⊤ (σ2
s r̄r̄

⊤ +Σv̄ +Σω̄

)−1
y, (3.13)

where

Σv̄ = E
{
v̄v̄⊤} = diag
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i∈Ω1
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2
i σ

2
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i∈Ω2

a2i r
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2
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∑
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a2i r
2
i σ

2
v

)
(3.14)

and

Σω̄ = E
{
ω̄ω̄⊤} = diag

(
σ2
ω

2
,
σ2
ω

2
, . . . ,

σ2
ω

2

)
. (3.15)

The corresponding MSE distortion is

ϵ =
[
σ−2
s + r̄⊤ (Σv̄ +Σω̄)

−1 r̄
]−1

=

[
σ−2
s +

N∑
n=1

(∑
i∈Ωn

airi
)2(∑

i∈Ωn
a2i r

2
i

)
σ2
v +

σ2
ω

2

]−1

. (3.16)

With equal power allocation, ai =
√
Ptot/K (σ2

s + σ2
v) and equation (3.16) turns to

ϵ = σ2
s

1 + N∑
n=1

(∑
i∈Ωn

ri√
K

)2(∑
i∈Ωn

r2i
K

)
1
γo

+ 1
2γc

(
1 + 1

γo

)


−1

. (3.17)

3.5 Performance and Overhead Comparison

In previous subsections, three important MACs have been introduced. In the following,

the performance and overhead of these MACs will be studied and compared.

3.5.1 Average MSE Performance

Figure 3.4 shows the average MSE distortion achieved by the coherent, orthogonal and

the hybrid MACs. Each point in the figure is obtained by averaging over 10,000 independent

channel realizations. According to the simulation results, one has the following observations:
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Figure 3.4 Average MSE performance of the coherent, orthogonal and hybrid

MACs: γo = 20 dB.

• For all three MACs, the final average MSE decreases as the total transmitted power

Ptot increases. However, the effect of increasing Ptot on the average MSE fades away as

Ptot approaches infinity. With infinite Ptot (i.e., infinite γc), the average MSE converges

to a positive constant.

• For all three MACs, when the number of sensors K increases from 4 to 8, the average

MSE performance is improved.

• Compared to the orthogonal MAC with the same number of sensors, the coherent MAC

performs better at low γc and worse at high γc.

• The hybrid MAC has performance lying between those of the coherent MAC and the

orthogonal MAC with the same number of sensors. This is expected by the design

philosophy of the hybrid MAC.
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According to the expressions of the MSE, there are two kinds of distortion contributing

to the final MSE: one is caused by channel noise (indicated by γc in ϵ) and the other by

observation noise (indicated by γo in ϵ). Next, two estimation performance indicators are

established for the above two kinds of distortion. First, setting σ2
v = 0 (i.e., γo = ∞) gives

Σv̄ = 0 and the MSE distortion becomes

ϵ =
[
σ−2
s + h̄⊤ (Σω̄)

−1 h̄
]−1

= σ2
s (1 + 2αγc)

−1 . (3.18)

The parameter α indicates the impact of channel noise on the MSE performance. The larger

α is, the lesser the impact is. On the other hand, setting σ2
ω = 0 (i.e., γc = ∞) gives Σω̄ = 0

and the MSE distortion is

ϵ =
[
σ−2
s + h̄⊤ (Σv̄)

−1 h̄
]−1

= σ2
s (1 + βγo)

−1 . (3.19)

In this case, the parameter β indicates the impact of observation noise on the MSE perfor-

mance. The larger β is, the lesser the impact is.

In the following, the expectations of these two parameters over channel realizations, E {α}

and E {β}, are evaluated to explore the long-term effects of channel noise and observation

noise on the MSE performance. E {α} and E {β} are named as the channel noise suppression

capability indicator and the observation noise suppression capability indicator, respectively.

In general, with the same number of sensors, different MACs yield different values of E {α}

and E {β}, implying different capabilities of channel noise suppression and observation noise

suppression.

For the coherent MAC,

Ecoh {α} = E


(

K∑
i=1

ri√
K

)2
 (3.20)

and

Ecoh {β} = E


(∑K

i=1
ri√
K

)2
1
K

(∑K
i=1 r

2
i

)
 . (3.21)

For the orthogonal MAC,

Eorth {α} = E

{
K∑
i=1

r2i
K

}
= 1 (3.22)
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and

Eorth {β} = K. (3.23)

For the hybrid MAC,

Ehyb {α} = E

{
N∑

n=1

(∑
i∈Ωn

ri√
K

)2
}

(3.24)

and

Ehyb {β} = E


N∑

n=1

(∑
i∈Ωn

ri√
K

)2
1
K

(∑
i∈Ωn

r2i
)
 . (3.25)

As K → ∞, according to the central limit theorem,
∑K

i=1
ri√
K

is a Gaussian random

variable with mean
√
KE {ri} and variation D {ri}. Since ri is a Rayleigh distributed random

variable with pdf fri (ri) = 2ri exp (−r2i ), it follows that E {ri} =
√

π
4
and D {ri} = 1 − π

4
.

Thus

Ecoh {α} =
Kπ

4
+ 1− π

4
≈ 0.78K, (3.26)

Ecoh {β} =

E
{(∑K

i=1
ri√
K

)2}
E {r2i }

=
Kπ

4
+ 1− π

4
≈ 0.78K. (3.27)

Similarly, it can be shown that

Ehyb {α} =
Kπ

4N
+ 1− π

4
≈ 0.78

N
K, (3.28)

Ehyb {β} =

N2E
{(∑

i∈Ωn

ri√
K

)2}
E {r2i }

=
Kπ

4
+N

(
1− π

4

)
≈ 0.78K. (3.29)

Table 3.1 E {α} and E {β} for the coherent, orthogonal and hybrid MACs.

Type of MAC E {α} E {β}

Coherent 0.78K 0.78K

Orthogonal 1 K

Hybrid 0.78
N

K 0.78K

The values of E {α} and E {β} for the coherent, orthogonal and hybrid MACs are sum-

marized in Table 3.1. Based on the above two kinds of distortion, the observations of the

average MSE can be explained as follows:
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• Increasing the total transmitted power Ptot can only decrease the distortion caused

by the channel noise. With infinite Ptot, the distortion caused by the channel noise

vanishes and the average MSE converges to E{σ2
s (1 + βγo)

−1}.

• As long as at least one of E {α} and E {β} increases as K increases, the final average

MSE benefits from using more sensors. For all the three MACs discussed here, this

condition is satisfied.

• Compared to the orthogonal MAC with the same number of sensors, the coherent MAC

has a much larger E {α} (especially for large K) and a slightly smaller E {β}. This

means that the coherent MAC is much better at suppressing channel noise while a

little worse at suppressing observation noise. As a result, the coherent MAC performs

better at low γc, where channel noise is dominant, and performs worse at high γc,

where observation noise is dominant. The reason that the orthogonal MAC suffers

much more from channel noise is that there are K channel noise components in the

orthogonal MAC, while there is only one channel noise component in the coherent

MAC.

• The hybrid MAC has a channel noise suppression capability between those of the

coherent and orthogonal MACs and the same observation noise suppression capability

as that of the coherent MAC. In general, the average MSE of the hybrid MAC lies

between those of the coherent and orthogonal MACs.

3.5.2 Bandwidth and Feedback Requirements

The bandwidth requirement for each MAC is directly related to the number of required

orthogonal channels. For the coherent, orthogonal and hybrid MAC (with N groups) with

K sensors, the numbers of orthogonal channels are 1, K and N . The coherent MAC is the

most bandwidth efficient since only one channel is used. In addition, for the hybrid MAC,

N can be fixed to a small value to save bandwidth.

In terms of feedback requirement, there is no need of any information feedback in the

orthogonal MAC. For the coherent MAC, due to the requirement of coherent combination

of signals from all the sensors to be transmitted on one channel, channel phases need to be
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transmitted from the FC to the sensors. The exact number of bits used for such information

feedback depends on the capability of the feedback channel and the required accuracy, but

this is certainly a large amount of overhead. For the hybrid MAC, although more than

one orthogonal channels are used and coherent combination is only required among signals

transmitted on the same channel, the amount of channel information feedback from the FC

to the sensors is still the same as that of the coherent MAC.

3.5.3 Outage Probability

Regarding estimation performance criteria in WSNs, beside the average MSE, another

criterion, the diversity order of the outage probability, has also been proposed to evaluate

the reliability of the estimation system. As defined in [22], the outage probability PD0 of an

estimation system is

PD0 = Prob {ϵ > D0} , (3.30)

where D0 is a predefined threshold. The lower PD0 is, the more reliable the estimation

system is.

In the orthogonal MAC, according to Theorem 3.1 in [22], for a sufficiently large but

finite K and D0 > D∞, the outage probability asymptotically converges to (as K increases)

exp [−KIη (a)], where D∞ is the average MSE achieved by infinite K and Iη (a) is a function

of η = γc/
(
1 + 1

γo

)
and a = σ2

s/ (D0Ptot). It can be seen that K plays the role of estimation

diversity order in that the outage probability decreases exponentially with K. In [22], it has

also been shown by simulation results that the outage probability curve illustrates a diversity

order of K approximately even for small values of K.

On the other hand, although the coherent MAC has favourable average MSE performance,

namely high estimation accuracy, it cannot provide such diversity gain by using more sensors.

The estimation diversity order of the coherent MAC is always 1.

However, as revealed in the following simulation results, in the opinion of the author of

this thesis, the performance criterion of using the diversity order of the outage probability is

not very meaningful to indicate the estimation reliability. According to Figures 3.5, 3.6 and

3.7, one has the following observations:

• For all values of K, D0 and γc, the orthogonal MAC always has a fixed diversity order
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that is proportional to K, which is consistent with the conclusion in [22].

• When D0 is high (e.g., 0.01), in the γc range from 0 dB to 50 dB, the coherent MAC has

the same diversity order as that of the orthogonal MAC, even for a small value K = 2.

In addition, the coherent MAC reaches the same PD0 with a smaller γc compared to

that of the orthogonal MAC. The larger K is, the bigger the gap between the γc’s of

the two MACs for the same PD0 is.

• As D0 decreases (e.g., 0.005 and 0.002), for the coherent MAC with small K working

in high γc range, a fixed diversity order cannot be maintained and the curves become

flat. With D0 = 0.005, the coherent MAC with K = 8 can reach PD0 smaller than

10−4 before the curve becomes flat, while with D0 = 0.002, the PD0 curve becomes flat

at about 10−2.

In general, the diversity order of the coherent MAC is only 1, but this doesn’t mean that

the coherent MAC provides lower estimation reliability than the orthogonal MAC. If the

estimation system works with large K and in a low γc range, since the coherent MAC can

reach a very low outage probability at γc much smaller than that of the orthogonal MAC

(for example, the gap is more than 10 dB for K = 16 and D0 = 0.005), it may provide a

higher reliability compared to the orthogonal MAC.

In the remaining part of this thesis, only the average MSE is adopted as the estimation

performance criterion and the diversity order of the outage probability will not be discussed

any further. More accurate and efficient performance criteria can be established in the future

to evaluate the estimation reliability.

3.6 Summary

In this chapter, three important MACs, the coherent, orthogonal and hybrid MACs,

are studied and compared in terms of estimation performance and bandwidth and feedback

requirements. The coherent MAC is the most bandwidth efficient and has significant ad-

vantage in the average MSE performance at low to moderate γc. The main problem of this

MAC is the requirement of a large amount of feedback. In contrast, the orthogonal MAC

requires no feedback but large transmission bandwidth. In terms of the average MSE, it only
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Figure 3.5 Outage probabilities of the coherent and orthogonal MACs (D0 = 0.01,

γo = 20 dB).

outperforms the coherent MAC a little at high γc. The hybrid MAC is a tradeoff between

the coherent and orthogonal MACs, and both of its average MSE performance and band-

width requirement lie between those of the other two MACs. In addition, as shown in the

last subsection, due to its limitation in indicating the estimation reliability, the performance

criterion of outage probability’s diversity order will not be used in this thesis.

In the next chapter, a novel semi-orthogonal MAC will be proposed and studied. Similar

to the hybrid MAC, this MAC provides a solution for scenarios that a small number of

orthogonal channels are shared by more sensors. However, it is a better tradeoff between

the coherent and orthogonal MACs when the average MSE performance and the feedback

overhead are considered. By using more sensors, the semi-orthogonal MAC can achieve the

same average MSE performance as that of the coherent MAC, while only a small amount of

feedback is required in the semi-orthogonal MAC.
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4. The Proposed Semi-orthogonal MAC

4.1 Introduction

In the previous chapter, three popular MACs were studied and compared. The coherent

MAC has the best average MSE performance and is the most bandwidth efficient. However,

to obtain coherent combination in the coherent MAC, the channel phase information needs to

be transmitted from the FC to the sensors, which represents a large amount of feedback. On

the other hand, the orthogonal MAC removes the requirement of feedback, but it consumes

larger transmission bandwidth. In addition, its final average MSE suffers more from channel

noise compared to the coherent MAC.

Motivated from the above discussion, this chapter focuses on the design of a wireless

sensor network in order to improve the average MSE estimation performance under both

bandwidth and power constraints. Specially, considered is a scenario where there are N

(a small number due to bandwidth constraint) orthogonal channels that are shared by K

sensors, where K ≥ N , for transmitting the sensors’ observations to the FC. An obvious

approach to the above design problem is sensor grouping, and the hybrid MAC discussed

in the previous chapter is one solution. In such a hybrid MAC, all sensors are divided into

groups and the coherent MAC is used for sensors within each group, whereas the orthogonal

MAC is used across different groups. A flexible tradeoff between the coherent and orthogonal

MACs can therefore be obtained by changing the number of groups and the number of sensors

in each group. However, in the hybrid MAC, to obtain coherent combination in each group,

the same amount of channel information feedback from the FC to the sensors as that of the

coherent MAC is still required.

In a sharp contrast to the hybrid MAC, the sensor grouping proposed in this chapter

is such that sensors in one group transmit on one orthogonal channel without any channel
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phase compensation at the transmitter. This means that the signals from sensors within

one group are directly superimposed instead of coherently combined as in the hybrid MAC.

To distinguish from the other MACs discussed before, the proposed MAC shall be called

a semi-orthogonal MAC. In the previous chapter, two indicators of estimation performance

were established based on the MSE distortion: the channel noise suppression capability

indicator and the observation noise suppression capability indicator. These two performance

indicators are also used in this chapter to investigate the estimation performances of the

proposed semi-orthogonal MAC.

The proposed semi-orthogonal MAC can be implemented with either fixed or adaptive

sensor grouping. In fixed sensor grouping, each sensor transmits on fixed orthogonal channels.

In general, more than one orthogonal channel can be allocated to one sensor. However, it

shall be shown that such channel allocation causes correlation among the equivalent channel

responses1 and degrades the estimation performance. As such, fixed sensor grouping should

be done in such a way that the groups are disjoint. It is shown that, under the same

bandwidth and power constraints and when the number of sensors K approaches infinity,

the semi-orthogonal MAC has the same channel noise suppression capability but two times

the observation noise suppression capability when compared to the orthogonal MAC.

For adaptive sensor grouping, sensors are grouped according to the ranges (i.e., sub-

regions) that their channel phases fall into. It is shown that, compared to fixed sensor

grouping, the MSE performance of the semi-orthogonal MAC with adaptive grouping is im-

proved by a large margin. In fact the performance of the semi-orthogonal MAC with adaptive

grouping is very close to the performance of the hybrid MAC under the same bandwidth

and power constraints and the same number of sensors. It should be emphasized again that

channel information feedback is not required in the semi-orthogonal MAC with adaptive sen-

sor grouping. The only extra cost for implementing the proposed semi-orthogonal MAC is a

few bits of feedback information from the FC to the sensors to indicate channel allocation.

This amount of feedback overhead is significantly smaller than what required for channel

information in the coherent and hybrid MACs. It shall also be demonstrated that N = 4

is the optimum setting that gives the best tradeoff between bandwidth consumption and

1The definition and meaning of equivalent channel responses will be made clearer in Section 4.2.

31



estimation performance.

4.2 System Model
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Figure 4.1 System model of a wireless sensor network using the proposed semi-

orthogonal MAC.

Figure 4.1 illustrates the wireless sensor network with the proposed semi-orthogonal

MAC. There are K sensors that are used to monitor a source signal s and communicate

their observations to a FC over N orthogonal channels. The observation of the ith sensor

can be expressed as

xi = s+ vi, 1 ≤ i ≤ K, (4.1)

where the source signal s and observation noise vi are treated as random variables with zero

mean and variances σ2
s and σ2

v , respectively. Using analog modulation, the ith sensor simply

amplifies xi with a gain ai and transmits the result to the FC according to a length-N vector

g(i) =
[
g
(i)
1 , g

(i)
2 , . . . , g

(i)
N

]
, whose element is either 0 or 1. The set of g(i)’s gives an allocation

of N orthogonal channels to K sensors. For the ith sensor, if the nth element of g(i) is 1,

then the ith sensor transmits on the nth orthogonal channel.2

At the FC, the received signal on the nth orthogonal channel is

yn =

[
K∑
i=1

ai (s+ vi) g
(i)
n hi

]
+ ωn, n = 1, 2, . . . , N, (4.2)

2This allocation is similar to the transmission in an overloaded code-division multiple access (CDMA)

systems [31,32] if one views vector g(i) as the signature vector of sensor i.
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where ωn’s are the i.i.d. (over n) complex AWGN components with zero mean and variance

σ2
ω. Note that it is assumed that the orthogonal channels assigned for a particular sensor

have the same response. This assumption is reasonable because typically the orthogonal

channels are composed of adjacent frequency bands or time slots and the wireless channel is

assumed to change slowly.

Equation (4.2) can be rewritten as

yn =

(
K∑
i=1

aig
(i)
n hi

)
s+

(
K∑
i=1

aivig
(i)
n hi

)
+ ωn = ĥns+ v̂n + ωn, (4.3)

where ĥn =
K∑
i=1

aig
(i)
n hi and v̂n =

K∑
i=1

aivig
(i)
n hi are defined as the equivalent channel response

and equivalent observation noise of the nth orthogonal channel, respectively. Since yn is

complex, while s is real, the phase of the equivalent channel response ĥn is compensated to

obtain

ȳn = R

 ĥ∗
n∣∣∣ĥn

∣∣∣yn
 (4.4)

=

∣∣∣∣∣
K∑
i=1

aig
(i)
n hi

∣∣∣∣∣ s+R


(

K∑
i=1

aig
(i)
n h∗

i

)(
K∑
i=1

aivig
(i)
n hi

)
∣∣∣∣ K∑
i=1

aig
(i)
n hi

∣∣∣∣
+R


(

K∑
i=1

aig
(i)
n h∗

i

)
ωn∣∣∣∣ K∑

i=1

aig
(i)
n hi

∣∣∣∣


= h̄ns+ v̄n + ω̄n.

The above phase compensation discards halves of observation noise and channel noise. It

is pointed out that the phase compensation of the equivalent channel response is performed

at the FC. Therefore no phase information is needed at the sensors and feedback of channel

phase information is not required.

Let ȳ = [ȳ1, ȳ2, . . . , ȳN ]
⊤, h̄ =

[
h̄1, h̄2, . . . , h̄N

]⊤
, v̄ = [v̄1, v̄2, . . . , v̄N ]

⊤ and ω̄ = [ω̄1, ω̄2, . . . , ω̄N ]
⊤.

Then one has

ȳ = h̄s+ v̄ + ω̄. (4.5)

The LMMSE estimator is adopted at the FC. Accordingly, the estimate of s based on ȳ is

š = σ2
s h̄

⊤ (σ2
s h̄h̄

⊤ +Σv̄ +Σω̄

)−1
ȳ, (4.6)

33



where

Σv̄ = E
{
v̄v̄⊤} =

{
θn,l = σ2

v

K∑
i=1

a2i g
(i)
n g

(i)
l tnitli; n, l = 1, 2, . . . , N

}
, (4.7)

tni = R{hi}
R
{
ĥn

}
∣∣∣ĥn

∣∣∣ + I {hi}
I
{
ĥn

}
∣∣∣ĥn

∣∣∣ , (4.8)

and

Σω̄ = E
{
ω̄ω̄⊤} = diag

(
σ2
ω

2
,
σ2
ω

2
, . . . ,

σ2
ω

2

)
. (4.9)

The corresponding MSE distortion is

ϵ =
[
σ−2
s + h̄⊤ (Σv̄ +Σω̄)

−1 h̄
]−1

. (4.10)

4.3 Semi-orthogonal MAC with Fixed Sensor Grouping

In this section, for simplicity, it is assumed that the number of sensors that transmit on

each orthogonal channel is the same for all channels and the number of orthogonal channels

used by each sensor is the same for all sensors. Furthermore, the total transmitted power

is equally allocated among sensors and orthogonal channels. Let K1 (0 ≤ K1 ≤ K) denote

the number of sensors transmitting on each orthogonal channel. Then the gain is ai = ā =√
Ptot

NK1(σ2
s+σ2

v)
.

As mentioned in Chapter 3, two indicators of estimation performance can be obtained

based on the expression of the MSE distortion. First, setting σ2
v = 0 gives Σv̄ = 0 and the

MSE distortion becomes

ϵ =
[
σ−2
s + h̄⊤ (Σω̄)

−1 h̄
]−1

= σ2
s (1 + 2αγc)

−1 , (4.11)

where α =
N∑

n=1

∣∣∣∑K
i=1 g

(i)
n hi√

NK1

∣∣∣2. The parameter α indicates the impact of channel noise on the

MSE performance. The larger α is, the lesser the impact is.

On the other hand, setting σ2
ω = 0 gives Σω̄ = 0 and the MSE distortion is

ϵ =
[
σ−2
s + h̄⊤ (Σv̄)

−1 h̄
]−1

= σ1
s (1 + βγo)

−1 , (4.12)

where β = σ2
vh̄

⊤ (Σv̄)
−1 h̄. In this case, the parameter β indicates the impact of observation

noise on the MSE performance. The larger β is, the lesser the impact is. In next section,

the performance of the proposed semi-orthogonal MAC will be investigated in terms of the

expectations of these two parameters, E {α} and E {β}.
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4.3.1 Correlation Analysis of the Equivalent Channel Responses

When assigning N orthogonal channels to K sensors, where K ≥ N , an obvious ques-

tion arises: Should more than one orthogonal channel be assigned to a single sensor and will

this improve the MSE performance of distributed estimation? To answer this question, let’s

examine a simple scenario where there are two orthogonal channels with K1 sensors trans-

mitting on each of them. The gain in this case is ai = ā =
√

Ptot

2K1(σ2
s+σ2

v)
. Note that there

are M = max(2K1 −K, 0) sensors that transmit on both orthogonal channels. Treating the

equivalent channel responses ĥ1 = ā
K∑
i=1

g
(i)
1 hi and ĥ2 = ā

K∑
i=1

g
(i)
2 hi as random variables, the

correlation coefficient between ĥ1 and ĥ2 is computed as

ρ =
E
{
ĥ1ĥ

∗
2

}
√
D
(
ĥ1

)√
D
(
ĥ2

) =
M

K1

. (4.13)

If there is no sensor transmitting on both orthogonal channels, M = 0 and the above

correlation coefficient will be zero. However, such scenario requires that K = 2K1 and all

K sensors are equally divided into 2 disjoint groups with sensors in each group transmitting

on one orthogonal channel.

Next, define h̃1 = 1√
2K1

∑K
i=1 g

(i)
1 hi =

m1√
2
ejϕ1 and h̃2 = 1√

2K1

∑K
i=1 g

(i)
2 hi =

m2√
2
ejϕ2 . Then

α =
∣∣∣h̃1

∣∣∣2 + ∣∣∣h̃2

∣∣∣2 = 1
2
(m2

1 +m2
2).

To obtain the expression for β, first one has

θ1,2 = σ2
v ā

2

K∑
i=1

g
(i)
1 (R{hi} cosϕ1 + I {hi} sinϕ1) g

(i)
2 (R{hi} cosϕ2 + I {hi} sinϕ2)

=
σ2
vPtot

σ2
s + σ2

v

cosϕ1 cosϕ2

(
K∑
i=1

g
(i)
1 g

(i)
2

2K1

R2 {hi}

)
+ sinϕ1 sinϕ2

(
K∑
i=1

g
(i)
1 g

(i)
2

2K1

I2 {hi}

)

+(cosϕ1 sinϕ2 + sinϕ1 cosϕ2)

(
K∑
i=1

g
(i)
1 g

(i)
2

2K1

R{hi} I {hi}

). (4.14)

When K and K1 approach infinity, one has
∑K

i=1
g
(i)
1 g

(i)
2

2K1
R2 {hi} = M

2K1
E {R2 {hi}} = ρ

2
1
2
= ρ

4
,∑K

i=1
g
(i)
1 g

(i)
2

2K1
I2 {hi} = ρ

4
, and

∑K
i=1

g
(i)
1 g

(i)
2

2K1
R{hi} I {hi} = 0. It then follows that

θ1,2 =
σ2
vPtot

σ2
s + σ2

v

ρ

4
(cosϕ1 cosϕ2 + sinϕ1 sinϕ2) =

σ2
vPtot

σ2
s + σ2

v

ρ

4
cos (ϕ1 − ϕ2) . (4.15)
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Similarly, one can show that θ2,1 = θ1,2 = σ2
vPtot

σ2
s+σ2

v

ρnl

4
cos (ϕ1 − ϕ2) and θ1,1 = θ2,2 = σ2

vPtot

4(σ2
s+σ2

v)
.

Therefore,

β =
[ ∣∣∣h̃1

∣∣∣ ∣∣∣h̃2

∣∣∣ ]
 1

4
ρ cos(ϕ1−ϕ2)

4

ρ cos(ϕ1−ϕ2)
4

1
4

−1 
∣∣∣h̃1

∣∣∣∣∣∣h̃2

∣∣∣


=
2 [m2

1 − 2ρ cos (ϕ1 − ϕ2)m1m2 +m2
2]

1− ρ2 cos2 (ϕ1 − ϕ2)
. (4.16)

With the above expressions of α and β, Appendix 7.1 shows that their expectations are

given by

E {α} (4.17)

=
2 (1− ρ2)

2

π

∫ 0

1

(ρ2x2)
2

√
1− x2

[
F
(
1, 3, 2, 1− ρ2x2

)
+ 2F

(
1, 3,

5

2
, ρ2x2

)]
dx+

(1− ρ2)
2

π∫ 0

1

ρ2x2

√
1− x2

[(
1 + 3ρ2x2

)
F
(
1, 3, 3, 1− ρ2x2

)
+ 4

(
1 + ρ2x2

)
F

(
1, 3,

3

2
, ρ2x2

)]
dx,

and

E {β} (4.18)

=
4 (1− ρ2)

2

π

∫ 0

1

(ρ2x2)
2

(1− ρ2x2)
√
1− x2

[
2F
(
1, 3, 2, 1− ρ2x2

)
+

4

3
F

(
1, 3,

5

2
, ρ2x2

)]
dx

+
4 (1− ρ2)

2

π

∫ 0

1

ρ2x2

√
1− x2

[
F
(
1, 3, 3, 1− ρ2x2

)
+ 4F

(
1, 3,

3

2
, ρ2x2

)]
dx,

where F (α, β, γ, z) is the Gauss hypergeometric function [33].

At this point, the connection between the correlation among the equivalent channel re-

sponses of the orthogonal channels and the capabilities of channel noise suppression and

observation noise suppression has been established for N = 2 and K approaching infin-

ity. Figure 4.2 plots the expressions in (4.17) and (4.18) versus ρ together with the values

obtained by simulation for N = 2. As can be seen, E {α} is basically a constant while

E {β} is a monotonically-decreasing function of ρ. This means that, while the correlation

among the equivalent channel responses barely affects the channel noise suppression capabil-

ity, it reduces the observation noise suppression capability. Overall, the correlation among

the equivalent channel responses degrades the estimation performance, and hence should
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be avoided. This can be done by not assigning more than one orthogonal channel to each

sensor.

Simulation results for the more general cases of N > 2 and finite numbers of sensors

are provided next to verify the above conclusions. For N > 2, it is not easy to determine

channel allocation among sensors and perform the corresponding correlation analysis among

the equivalent channel responses of the orthogonal channels. Nevertheless, the following

general channel allocation scheme shall be investigated. Assume thatK is an integer multiple

of N . If (n−1)K
N

+K1 ≤ K, then the nth orthogonal channel is shared by sensors with indices

in the set of
{

(n−1)K
N

+ 1, . . . , (n−1)K
N

+K1

}
. If (n−1)K

N
+ K1 > K, then the set of sensor

indices is
{
1, . . . , (n−1)K

N
+K1 −K

}
∪
{

(n−1)K
N

+ 1, . . . , K
}
. As long as K1 > K

N
, some

sensors will transmit on more than one orthogonal channel and the correlation among the

equivalent channel responses of orthogonal channels is not zero. As K1 increases from K
N

to

K, more and more sensors transmit on more than one orthogonal channel and the correlation

among the equivalent channel responses increases from 0 to 1. Therefore K1 can be used

to approximately indicate the level of correlation among the equivalent channel responses.

As shown in Figure 4.3, for the three settings of (N = 2, K = 16), (N = 4, K = 32) and

(N = 8, K = 64), as K1 increases E {α} basically stays the same, while E {β} decreases,

although not monotonically. As expected, E {β} takes on the largest value when K1 =
K
N
.

From the above theoretical derivations and simulation results, in the rest of this thesis,

only one orthogonal channel is assigned to each sensor. In other words, all sensors are divided

into disjoint groups and those sensors in the same group transmit on one orthogonal channel.

For convenience, allocation of orthogonal channels is indicated by {Ωn}Nn=1, where Ωn is the

index set of sensors that transmit on the nth orthogonal channel.

4.3.2 Estimation Performance with Fixed Sensor Grouping

Fixed sensor grouping considered in this section means that the orthogonal channel used

by each sensor, once assigned, does not change during the communication phase. Considered

is the same channel allocation scheme with zero correlation among the equivalent channel

responses as described in Section 4.3.1, i.e., K1 =
K
N

and Ωn =
{

(n−1)K
N

+ 1, . . . , nK
N

]
. In this

case, with equal power allocation, the gain is ai = ā =
√

Ptot

K(σ2
s+σ2

v)
.

Compared in Figure 4.4 are the average MSE distortions achieved by the orthogonal,
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coherent and the proposed semi-orthogonal MACs. Each point in these figures is obtained

by averaging over 10,000 independent channel realizations. In all of the three MACs, there

are K sensors, while the numbers of orthogonal channels (which translate proportionally

to the amounts of bandwidth) are: K, 1, and N for the orthogonal, coherent, and semi-

orthogonal MACs, respectively. Throughout this thesis, unless stated otherwise, the total

transmitted power is the same for all MACs.

0 5 10 15 20 25 30 35 40 45 50

10
−3

10
−2

10
−1

γc (dB)

A
v
er
ag

e
M
S
E

 

 

Orthogonal, K = 4
Orthogonal, K = 8
Coherent, K = 4
Coherent K = 8
Semi-Orth, (K = 8,N = 4)
Semi-Orth, (K = 32,N = 4)
Semi-Orth, (K = 64,N = 4)

Figure 4.4 Average MSE performance of the orthogonal, coherent and semi-

orthogonal MACs: γo = 20 dB.

Compared to the coherent MAC with the same number of sensors, the semi-orthogonal

MAC consumes more bandwidth and has worse MSE performance. However, the advantage

of the coherent MAC comes at the expensive price of channel phase information feedback,

which is not needed in the semi-orthogonal MAC.

With the same number of orthogonal channels but using more sensors, the semi-orthogonal

MAC outperforms the orthogonal MAC, especially at high γc. As the number of sensors in-

creases, the performance of the semi-orthogonal MAC is enhanced but the performance

improvement due to using each extra sensor reduces. The average MSE asymptotically con-

verges to a lower bound as K goes to infinity. This is similar to the orthogonal MAC. The
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most significant improvement occurs when K increases from 4 (one time of N) to 16 (4

times of N). When K is larger than 32 (8 times of N), the performance improvement due

to increasing K is almost negligible.

Before closing this section, a more detailed performance comparison between the orthog-

onal MAC and the proposed semi-orthogonal MAC is carried out. The comparison is done

for a fixed number of N orthogonal channels (i.e., fixed transmission bandwidth). For the

parameter α, in the orthogonal MAC with N sensors, Eorth {α} = 1, whereas in the semi-

orthogonal MAC with K sensors, one has Esemi {α} = E
{∑N

n=1

∣∣∣∑i∈Ωn
hi√

K

∣∣∣2} = 1, which is

the same as that in the orthogonal MAC. This means that both the semi-orthogonal MAC

and the orthogonal MAC have the same channel noise suppression capability.

For the parameter β, it is a constantN in the orthogonal MAC for any channel realization.

On the other hand, in the semi-orthogonal MAC,

β =
N∑

n=1

βn =
N∑

n=1

∣∣∑
i∈Ωn

aihi

∣∣2∑
i∈Ωn

a2i

(
R{hi}

R{ĥn}
|ĥn| + I {hi}

I{ĥn}
|ĥn|

)2 . (4.19)

The value of β depends on the instantaneous channel realization, and it is a random variable.

The pdf of β was obtained by simulation and is plotted in Figure 4.5 for various values of

K
N
. The corresponding mean values of β are shown in Table 4.1.

Table 4.1 Values of Esemi {β} with N = 4.

K 4 8 16 32 64 128

Esemi {β} 4 5.3 6.4 7.1 7.5 7.8

Figure 4.5 clearly shows that, as long as K
N

> 1, there is a high probability that the value

of β is larger than N = 4. Furthermore, the larger the ratio K
N

is, the more likely β takes on

a larger value. In fact, it can be shown that when K → ∞, β follows a gamma distribution

with parameters a = N and b = 2. The proof is as follows.

Recall that

βn =

∣∣∣∑i∈Ωn

√
N
K
hi

∣∣∣2
N
K

∑
i∈Ωn

(
R{hi}

R{ĥn}
|ĥn| + I {hi}

I{ĥn}
|ĥn|

)2 , (4.20)
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and βn’s are independent to each other.

Let h̃n =
∑

i∈Ωn

√
N
K
hi = mne

jϕn . Then h̃n is a circularly symmetric complex Gaus-

sian random variables with zero mean and variance 1. The numerator of βn,
∣∣∣h̃n

∣∣∣2, is of

exponential distribution with parameter λ = 1, whose pdf is

f|h̃n|2
(∣∣∣h̃n

∣∣∣2) = exp

(
−
∣∣∣h̃n

∣∣∣2) . (4.21)

Since ĥn has the same phase as h̃n, so the denominator of βn turns to

N

K

∑
i∈Ωn

(R{hi} cosϕn + I {hi} sinϕn)
2 (4.22)

=

(
N

K

∑
i∈Ωn

R2 {hi}
)
cos2 ϕn +

(
N

K

∑
i∈Ωn

I2 {hi}
)
sin2 ϕn

+2

(
N

K

∑
i∈Ωn

R{hi} I {hi}
)
cosϕn sinϕn.

41



When K → ∞, according to the strong law of large numbers, (4.22) turns to

E
{
R2 {hi}

}
cos2 ϕn + E

{
I2 {hi}

}
sin2 ϕn + 2E {R{hi} I {hi}} cosϕn sinϕn

=
1

2
cos2 ϕn +

1

2
sin2 ϕn =

1

2
. (4.23)

Therefore, when K → ∞, βn = 2
∣∣∣h̃n

∣∣∣2 is exponentially distributed with parameter λ = 2,

whose pdf is

fβn (βn) =
1

2
exp

(
βn

2

)
, βn ≥ 0. (4.24)

Finally, it is well known that the sum of N independent and identically distributed

(i.i.d.) exponential random variables with parameter λ = 2 is a gamma random variable

with parameters a = N and b = 2. For completeness, the pdf of the gamma distribution is

as follows:

fβ (β) =
βa−1

Γ (a) ba
exp

(
−β

b

)
, β ≥ 0, a > 0, b > 0, (4.25)

where Γ (a) =
∫∞
0

xa−1e−xdx is the gamma function. If a is an integer, then Γ (a) = (a− 1)!.

As a result, the upper bound of Esemi {β} is 2N . Thus, compared to the orthogonal

MAC, the semi-orthogonal MAC has a better observation noise suppression capability, but

it is bounded by two times the observation noise suppression capability of the orthogonal

MAC.

In summary, when the number of orthogonal channels is fixed, the semi-orthogonal MAC

has the same channel noise suppression capability and greater observation noise suppression

capability when compared to the orthogonal MAC. This clearly explains why the semi-

orthogonal MAC outperforms the orthogonal MAC, especially at high γc where observation

noise is dominant.

4.4 Semi-Orthogonal MAC with Adaptive Sensor Grouping

Recall that the expressions of α and β in the semi-orthogonal MAC with disjoint sensor

grouping and equal power allocation are as follows:

α =
N∑

n=1

αn =
N∑

n=1

∣∣∣∣∑i∈Ωn

hi√
K

∣∣∣∣2 , (4.26)
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β =
N∑

n=1

βn =
N∑

n=1

∣∣∣∑i∈Ωn

hi√
K

∣∣∣2∑
i∈Ωn

1
K

(
R{hi}

R{ĥn}
|ĥn| + I {hi}

I{ĥn}
|ĥn|

)2 . (4.27)

It can be seen that α is a sum of αn’s, where each αn is affected only by the channel responses

of sensors transmitting on the nth orthogonal channel. Therefore αn can be interpreted as an

indicator of the channel noise suppression capability of the nth orthogonal channel. Similarly,

βn, which is also affected only by the channel responses of sensors transmitting on the nth

orthogonal channel, can be interpreted as the indicator of the observation noise suppression

capability of the nth orthogonal channel. This simple observation suggests that if all sensors

can be properly grouped according to their channel responses, larger αn and βn can be

obtained for each orthogonal channel and thus the overall channel noise suppression and

observation noise suppression capabilities of the semi-orthogonal MAC will be improved.

4.4.1 Grouping Sensors Based on the Instantaneous Channel Re-

sponses

Intuitively, sensors with channel responses of similar phases should be grouped together

to get better channel noise suppression and observation noise suppression. Will this “similar

phase” grouping strategy work and how to define “similar phase”? To answer this question,

examine a scenario that one sensor with channel response of magnitude 1 and phase 0

transmits on an orthogonal channel. Both the indicators of the channel noise suppression

and observation noise suppression of this orthogonal channel are 1. Next, add another sensor

with channel response of magnitude r (r < 1) and phase ϑ (0 ≤ ϑ ≤ π) to form a group3.

Then the two indicators of this orthogonal channel change to:

αn = (r cosϑ+ 1)2 + (r sinϑ)2 = r2 + 2r cosϑ+ 1, (4.28)

βn =
r2 + 2r cosϑ+ 1

(cosϕ)2 + (r cosϑ cosϕ+ r sinϑ sinϕ)2
, (4.29)

where ϕ is the phase of the equivalent channel response and tanϕ = r sinϑ
r cosϑ+1

.

If αn > 1, the added sensor is said to be constructive for channel noise suppression and

if βn > 1, the added sensor is constructive for observation noise suppression. Note that if

3If the channel response of the added sensor is of magnitude larger than 1, then it can be taken as the

first sensor and the other sensor is taken as the added sensor.
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Figure 4.6 The channel responses of the original and added sensors.

the added sensor transmits on an orthogonal channel alone, then αn = r2 and βn = 1. This

means that if the added sensor is constructive, sensor grouping improves performance of

individual sensors (i.e., without being grouped).

In order to see if the added sensor is constructive for channel noise suppression and/or

observation noise suppression, it is straightforward to show from (4.28) and (4.29) that
αn > 1, if 0 ≤ ϑ < arccos

(
− r

2

)
αn ≤ 1, if arccos

(
− r

2

)
≤ ϑ ≤ π

(4.30)

and 
βn > 1, if 0 ≤ ϑ < arccos (−r)

βn ≤ 1, if arccos (−r) ≤ ϑ ≤ π
(4.31)

The above analysis leads to the following three regions of ϑ (see Figure 4.7):

• If ϑ is in region A, i.e., 0 ≤ ϑ < arccos
(
− r

2

)
, the added sensor is constructive for

both channel noise suppression and observation noise suppression. Note that region A

includes
[
0, π

2

]
, regardless of the value of r.

• If ϑ is in region B, i.e., arccos
(
− r

2

)
≤ ϑ < arccos (−r), the added sensor is destructive

for channel noise suppression, but constructive for observation noise suppression.

• If ϑ is in region C, i.e., arccos (−r) ≤ ϑ < π, the added sensor is destructive for both

channel noise suppression and observation noise suppression.
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At this point, the question raised at the beginning of this subsection has been answered

for grouping two sensors. In summary, if the phase difference between the channel responses

of the two sensors is in the region of
[
0, π

2

]
, sensor grouping is beneficial. However if the

phase difference is larger than π
2
, grouping sensors on the same orthogonal channel may be

destructive for either channel noise suppression or observation noise suppression, or for both

of them, and sensor grouping may give worse performance.

Now consider a WSN using the proposed semi-orthogonal MAC with N = 2. If the

whole phase region of 2π is partitioned into 2 equal sub-regions (each of length π), then

grouping the sensors with channel phases in the same sub-region to transmit on the same

orthogonal channel might not always be beneficial. However, for the WSN using the proposed

semi-orthogonal MAC with N ≥ 4, if the whole phase region is partitioned into N equal sub-

regions (each of length 2π
N
), then grouping the sensors with channel phases in the same sub-

region always picks constructive sensors in one group and therefore performance improvement

is guaranteed. This is analyzed in more detail for N = 4 and N > 4 in the following

subsections.

4.4.2 Performance Analysis for N = 4

With N = 4, the simplest partition of the 2π phase into 4 sub-regions is
[
0, π

2

)
,
[
π
2
, π
)
,[

π, 3π
2

)
and

[
3π
2
, 2π
)
. Focusing on the sub-region

[
0, π

2

)
, define

h̃1 =
∑

i∈Ω1

hi√
K

. (4.32)
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Let hi = x+ jy, then x and y are real positive (one-sided) Gaussian random variables with

the same pdf of 2√
π
exp (−x2) , x > 0. It is simple to show that the mean and variance of

both x and y are µx = µy = 1√
π
and σ2

x = σ2
y = 1

2
− 1

π
, respectively. As K → ∞, according

to the central limit theorem, h̃1 is a complex Gaussian random variable with i.i.d. real and

imaginary parts. Let h̃1 = x̃ + jỹ. Then it is simple to show that x̃ and ỹ are i.i.d. real

Gaussian random variables with mean µ =
√
K

4
√
π
and variance σ2 = 1

8
− 1

4π
. It then follows

that

E {α1} = E
{
x̃2 + ỹ2

}
= 2(µ2 + σ2). (4.33)

To compute E {β1}, let m =
√
x̃2 + ỹ2 and ϕ = arctan

(
ỹ
x̃

)
. Then m and ϕ are indepen-

dent. One has

E {β1} = E

{
m2∑

i∈Ω1

1
K
[R{hi} cosϕ+ I {hi} sinϕ]2

}
(4.34)

= E
{

4m2

E {R2 {hi}} cos2 ϕ+ E {I2 {hi}} sin2 ϕ+ 2E {R{hi}} E {I {hi}} cosϕ sinϕ

}
=

4E {m2}
σ2
x + µ2

x + 2µ2
x cosϕ sinϕ

=
8(σ2 + µ2)

σ2
x + µ2

x + 2µ2
x cosϕ sinϕ

As K → ∞, ϕ can be substituted by π
4
(see Appendix 7.2). Then one has E {β1} =

8σ2+8µ2

σ2
x+2µ2

x
.

Obviously, the same results apply for the other 3 sub-regions. Thus, for the semi-

orthogonal MAC with adaptive sensor grouping and N = 4, one obtains

E {α} =
4∑

n=1

E {αn} = 8µ2 + 8σ2 =
K

2π
+ 1− 2

π
≈ 0.16K, (4.35)

E {β} =
4∑

n=1

E {βn} =
32σ2 + 32µ2

σ2
x + 2µ2

x

=
2K
π

+ 4− 8
π

1
2
+ 1

π

≈ 0.78K. (4.36)

Table 4.2 compares E {α} and E {β} among different MACs under a fixed number of

sensors, K. To put these numbers in perspective, the number of orthogonal channels, N ,

required by each type of MAC is also indicated. The theoretical and simulation results of

E {α} and E {β} are shown in Figures. 4.8 and 4.9, respectively. Observe that whenK is large

enough, the theoretical results agree with the simulation results. For small K, the simulation

result is better than the theoretical result for E {α} of the semi-orthogonal MAC with fixed
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sensor grouping. As for E {β}, there are differences between the theoretical and simulation

results of the hybrid MAC, and the semi-orthogonal MAC (with either fixed or adaptive

sensor grouping). This observation suggests that for these three MACs, a sufficiently large

number of sensors is required to achieve the asymptotic performance.

Table 4.2 Asymptotic performance in terms of E {α} and E {β}.

Type of MAC E {α} E {β}

Number of

orthogonal

channels, N

Coherent 0.78K 0.78K 1

Orthogonal 1 K K

Hybrid (N = 4) 0.20K 0.78K 4

semi-orthogonal, fixed grouping

(N = 4)
1 8 4

semi-orthogonal, adaptive

grouping (N = 4)
0.16K 0.78K 4

For the semi-orthogonal MAC with adaptive sensor grouping and N = 4, as K → ∞,

E {α} and E {β} increases in the order of K, and thus the average MSE distortion finally

goes to zero. This phenomenon is the same as those of both the coherent and hybrid MACs.

However, for the orthogonal MAC and the semi-orthogonal MAC with fixed sensor grouping,

the average MSE distortion converges to a fixed value as K increases. This is because at

least one of E {α} and E {β} cannot be increased when K increases.

The semi-orthogonal MAC with adaptive sensor grouping can achieve the same perfor-

mance at low γc and even better performance at high γc as compared to the coherent MAC.

However, the semi-orthogonal MAC requires 4 times the number of orthogonal channels and

about 5 times the number of sensors. Nevertheless, it does not require channel phase in-

formation feedback. Furthermore, the semi-orthogonal MAC with adaptive sensor grouping

can performs very close to the hybrid MAC. According to the simulation results in Figure

4.8, for E {α}, the semi-orthogonal MAC is better for small K but worse for large K. With
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Figure 4.8 Simulation and theoretical results of E {α}.
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Figure 4.9 Simulation and theoretical results of E {β}.
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about K = 16, the two MACs have the same E {α}. For E {β}, the semi-orthogonal MAC

performs nearly the same as the hybrid MAC for all values of K. Again, it is important to

point out that channel phase information feedback is needed in the hybrid MAC.

Regarding the bandwidth requirement (in terms of the number of orthogonal channels),

the hybrid and semi-orthogonal MACs are much more efficient than the orthogonal MAC.

The coherent MAC is the most bandwidth efficient since only one channel is used. For the

orthogonal MAC and the semi-orthogonal MAC with fixed sensor grouping, no feedback of

channel phases from the FC to the sensors is required. For the coherent MAC, due to the

requirement of coherent combination among sensors, channel phases need to be transmitted

from the FC to the sensors. The exact number of bits used for such information feedback

depends on the capability of the feedback channel and the required accuracy, but this is cer-

tainly a large amount of overhead. For the hybrid MAC, although only coherent combination

among sensors in each group is required, the amount of channel information feedback from

the FC to the sensors is still the same as that of the coherent MAC. For the semi-orthogonal

MAC with adaptive sensor grouping, the FC needs to inform sensors the orthogonal channels

to transmit on. For each sensor, only log2N bits are needed. This is a much smaller amount

of feedback, especially when the semi-orthogonal MAC is most suitable to be deployed, in

application scenarios with limited bandwidth resources.

Finally, the simulation results of average MSE achieved by the 5 MACs under comparison

are plotted in Figure 4.10. When K = N = 4, the coherent MAC obviously outperforms

the other 4 MACs at low γc, which is due to its outstanding capability on channel noise

suppression. In this case, the hybrid MAC and the semi-orthogonal MAC with fixed sensor

grouping are equivalent to the orthogonal MAC. The semi-orthogonal MAC with adaptive

sensor grouping performs a little better than the orthogonal MAC.

With K increasing from K = 4 to K = 16, the performance improvements are signif-

icant, except for the semi-orthogonal MAC with fixed sensor grouping. In particular, the

performance of the semi-orthogonal MAC with adaptive sensor grouping is the same as that

of the hybrid MAC, which is consistent with the theoretical derivation, and it is between

those of the orthogonal MAC and the coherent MAC.

When K is further increased to K = 80, the performance of the semi-orthogonal MAC
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Figure 4.10 Comparison of the average MSE distortions among five different MACs.

Note that in the figure’s legend, “Semi-F” and “Semi-A” mean the pro-

posed semi-orthogonal MAC with fixed and adaptive sensor grouping

strategies, respectively.

with fixed sensor grouping stays nearly the same as the performance with K = 16. On

the other hand, the performance of the semi-orthogonal MAC with adaptive sensor grouping

improves significantly. The semi-orthogonal MAC with adaptive sensor grouping andK = 80

achieves the same (at low γc) or even better (at high γc) performance compared to the

coherent MAC with K = 16. In addition, with K = 80, the hybrid MAC only slightly

outperforms the semi-orthogonal MAC at low γc. All the simulation results match with the

theoretical analysis presented before.

4.4.3 Performance Analysis for N > 4

In this case, the nth sub-region of the phase partition is [ϑ1, ϑ2), where ϑ1 =
2π(n−1)

N
and

ϑ2 =
2πn
N

. Given that the probability that the phase of a channel response falls into a specific

sub-region is 1/N , the joint pdf of x and y is simply

fx,y (x, y) =
N

π
exp

[
−
(
x2 + y2

)]
, (4.37)
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where x > 0 and x tanϑ1 < y < x tanϑ2. Based on this joint pdf, it is simple to show that

when K → ∞, the means and variances of x and y are

µx =
N

2
√
π
cos

(
ϑ1 + ϑ2

2

)
sin
( π

N

)
, µy =

N

2
√
π
sin

(
ϑ1 + ϑ2

2

)
sin
( π

N

)
,

σ2
x =

N

4π
cos (ϑ1 + ϑ2) sin

(
2π

N

)
+

1

2
− µ2

x, σ2
y = −N

4π
cos (ϑ1 + ϑ2) sin

(
2π

N

)
+

1

2
− µ2

y,

and

E {xy} =
N

4π
sin (ϑ1 + ϑ2) sin

(
2π

N

)
.

Let h̃n =
∑

i∈Ωn

hi√
K

= x̃n + jỹn = mne
jϕn . Then according to the central limit theorem

when K → ∞, x̃n and ỹn are i.i.d Gaussian random variables with means and variances

µx̃ = µỹ =

√
K

N
µx, σ2

x̃ = σ2
ỹ =

σ2
x

N
.

It then follows that

E {αn} = E
{
x̃2
n + ỹ2n

}
= 2(µ2

x̃ + σ2
x̃) =

2Kµ2
x

N2
+

1− 2µ2
x

N
=

1

N
+

(K −N)

4π
sin2

( π

N

)
. (4.38)

Therefore,

E {α} =
N∑

n=1

E {αn} = 1 +
N (K −N)

4π
sin2

( π

N

)
≈
[
N

4π
sin2

( π

N

)]
K. (4.39)

On the other hand,

E {βn} =
NE {αn}

(µ2
x + σ2

x) cos
2 ϕn +

(
µ2
y + σ2

y

)
sin2 ϕn + 2E {xy} cosϕn sinϕn

=
NE {αn}

κ
. (4.40)

Similar to the case with N = 4, as K → ∞, ϕn can be substituted by ϑ1+ϑ2

2
. Then κ can be
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shown to take on the following value:

κ =

[
N

4π
cos (ϑ1 + ϑ2) sin

(
2π

N

)
+

1

2

]
cos2

(
ϑ1 + ϑ2

2

)
+

[
−N

4π
cos (ϑ1 + ϑ2) sin

(
2π

N

)
+

1

2

]
sin2

(
ϑ1 + ϑ2

2

)
(4.41)

+2
N

4π
sin (ϑ1 + ϑ2) sin

(
2π

N

)
cos

(
ϑ1 + ϑ2

2

)
sin

(
ϑ1 + ϑ2

2

)
=

1

2
+

N

4π
cos (ϑ1 + ϑ2) sin

(
2π

N

)[
cos2

(
ϑ1 + ϑ2

2

)
− sin2

(
ϑ1 + ϑ2

2

)]
+
N

4π
sin2 (ϑ1 + ϑ2) sin

(
2π

N

)
=

1

2
+

N

4π
cos2 (ϑ1 + ϑ2) sin

(
2π

N

)
+

N

4π
sin2 (ϑ1 + ϑ2) sin

(
2π

N

)
=

1

2
+

N

4π
sin

(
2π

N

)
.

Therefore

E {β} =
N∑

n=1

E {βn} =
N + N2(K−N)

4π
sin2

(
π
N

)
1
2
+ N

4π
sin
(
2π
N

) ≈

[
N2 sin2

(
π
N

)
2π +N sin

(
2π
N

)]K. (4.42)

The theoretical quantities E{α}
K

and E{β}
K

are plotted versus N for the semi-orthogonal

MAC with adaptive sensor grouping and a sufficient large K (K = 128N) in Figure 4.11,

where the simulation results are also provided to verify the theoretical derivations. As can be

seen, as N increases from 4, E{α}
K

decreases while E{β}
K

stays nearly the same. Therefore with

a fixed K, if N increase, which means more orthogonal channels and each with fewer sensors

transmitting on, the channel noise suppression capability degrades, while the observation

noise suppression capability is practically unchanged. The degradation of the channel noise

suppression capability due to having more orthogonal channels is reasonable, because with

more orthogonal channels, more channel noise components are introduced at the FC. On the

other hand, the observation noise suppression capability is determined only by the number

of sensors, independent of the number of orthogonal channels.

Figure 4.11 also provides the results for N = 2. Compared to N = 4, although there are

fewer orthogonal channels and thus fewer channel noise components for N = 2, using N = 2

has almost the same channel noise suppression capability as using N = 4. In addition, the

observation noise suppression capability for N = 2 is much weaker than that for N = 4.
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These phenomenons are consistent with the analysis in Section 4.4.1. In general, N = 4

is the optimum choice for the semi-orthogonal MAC with adaptive sensor grouping, which

achieves the best MSE performance while requiring the least transmission bandwidth.

The qualities E{α}
K

and E{β}
K

are also plotted in Figure 4.11 for the hybrid MAC. The

advantage of the hybrid MAC over the semi-orthogonal MAC with adaptive sensor grouping

is most obvious for N = 2. Again, this is because with N = 2, destructive superposition

of signals from two sensors exists in the semi-orthogonal MAC, while it is never the case in

the hybrid MAC. As N increases, the sub-regions of channel phases become narrow, and the

direct superposition behaves more and more like the coherent combination. For N = 8, the

two MACs have nearly the same performance.
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Figure 4.11 Plots of E{α}
K

and E{β}
K

, by simulation and theoretical analysis.

Finally, the average MSE performances of the semi-orthogonal MAC with adaptive sensor

grouping are compared for N = 4 and N = 8. As shown in Figure 4.12, at low γc, for the

network with K = 80, using N = 8 can’t achieve the same performance as using N = 4. If

K increases to 140 for N = 8, then the performance is the same as that of having N = 4

and K = 80. This is consistent with the previous theoretical and simulation results, which
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are E{α}
K

≈ 0.16 for N = 4 and E{α}
K

≈ 0.094 for N = 8.
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Figure 4.12 Performance comparison in terms of the average MSE for N > 4.

4.5 Summary

For WSNs consisting of a sufficient large number of sensors but operating under limited

bandwidth resource, a novel semi-orthogonal MAC has been proposed to provide multiple

access for K sensors via N orthogonal channels, where K ≥ N . Based on a combination

of channel noise suppression capability and observation noise suppression capability, this

chapter thoroughly analyzed the average MSE performance of the semi-orthogonal MAC with

either fixed or adaptive sensor grouping. Compared to the orthogonal MAC operating under

the same bandwidth, the semi-orthogonal MAC with fixed sensor grouping has the same

channel noise suppression capability, but twice the observation noise suppression capability

as K approaches infinity. This is achieved with no requirement of information feedback from

the FC to sensors. For the semi-orthogonal MAC with adaptive sensor grouping, the average

MSE performance improvement over the orthogonal MAC is even more significant. For a

fixed total transmission power, the average MSE of the semi-orthogonal MAC with adaptive

sensor grouping decreases to zero asK approaches infinity, breaking through the lower bound
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in the orthogonal MAC. The semi-orthogonal MAC with adaptive sensor grouping performs

very close to the hybrid MAC under the same bandwidth and number of sensors. However,

the amount of information feedback required by the semi-orthogonal MAC is significantly

smaller than that of the hybrid MAC. For the semi-orthogonal MAC with adaptive sensor

grouping, setting N = 4 gives the optimum tradeoff between bandwidth consumption and

estimation performance.
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5. Scaling Law and the Improved Power

Allocation of the Semi-orthogonal MAC

5.1 Introduction

In the previous two chapters, the average MSE performance of the semi-orthogonal MAC

was studied based on a combination of two performance indicators: the channel noise sup-

pression capability, E {α}, and the observation noise suppression, E {β}. Although the final

average MSE is strongly related to E {α} and E {β}, unfortunately, there is no direct and

simple relationship between {E {α} , E {β}} and the average MSE. As a result, many obser-

vations and conclusions regarding the average MSE performance of interested MACs were

mainly obtained based on simulation results.

Although it seems very complicated, if not impossible, to derive the exact expression

of the average MSE of the proposed semi-orthogonal MAC, some of its properties can still

be studied and analyzed. In the first part of this chapter, one important property of the

average MSE, namely the achieved scaling law, is investigated. In particular, the scaling laws

of different cases of the semi-orthogonal MAC, including the orthogonal MAC as a special

case, are established. It is shown that only the semi-orthogonal MAC with adaptive sensor

grouping can achieve the optimal scaling law of 1/K of the estimation system using wireless

sensor networks as defined in this thesis. As a reference, the coherent MAC can also achieve

the optimal scaling law, but it requires a large amount of feedback.

In all previous chapters, the estimation is conducted under equal power allocation. In

fact, the total transmitted power can be divided and allocated to the sensors according to

their channel responses as well as the levels of observation noise and channel noise, to achieve

smaller instantaneous MSE. In the second part of this chapter, the issues of power allocation

in each sensor group and among sensor groups will be studied. In each sensor group, since
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the optimal power allocation is too difficult to obtain, two improved strategies are provided

for scenarios with different γc and γo ranges. Among the sensor groups, an optimal power

allocation solution is obtained based on the convex optimization theory. It is pointed out

that to implement the improved power allocation, extra feedback from the FC to the sensors

is required. Since one advantage of the semi-orthogonal MAC is requiring a small amount

of feedback, it is important to assess whether the performance improvement brought by the

improved power allocation is worth the extra feedback overhead. This issue is also discussed

at the end of this chapter.

Recall the expression of MSE in the semi-orthogonal MAC:

ϵ =

[
σ−2
s +

N∑
n=1

∣∣∑
i∈Ωn

aihi

∣∣2(∑
i∈Ωn

a2i t
2
ni

)
σ2
v +

σ2
ω

2

]−1

, (5.1)

where tni = xi cosϕn + yi sinϕn. xi and yi are the real and imaginary parts of hi, and ϕn is

the phase of the equivalent channel response on the nth orthogonal channel ĥn =
∑

i∈Ωn
aihi.

In this chapter, for simplicity, assume σ2
s = 1.

5.2 Scaling Law of the Average MSE

As defined in [19], the scaling law, denoted by the symbol ∼, means “asymptotic equiv-

alence”. More precisely, the scaling law is written as

f1 (K) ∼ f2 (K) (5.2)

which simply means that limK→∞ f1 (K) /f2 (K) = c, for some constant c > 0. In the

specific case of estimation in WSNs, the scaling law can be used to describe the decaying

trend achieved by the average MSE as the scale of the WSNs, i.e., the number of sensors K,

increases.

According to Theorem 1 in [19], the lower bound of MSE distortion that can be achieved

in a sensor network with Gaussian statistical assumptions is consisted of two parts. For

sensor networks with one scalar source signal, such as the one that is studied in this thesis,

the first part of the distortion scales like 1/K. As a result, no matter how the second part of

the distortion behaves, the optimal scaling law achieved by a sensor network with Gaussian

statistical assumptions and one scalar source signal is 1/K. This conclusion applies to both
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analog and digital transmissions. It has been proved that the coherent MAC is an example

of analog transmission which can achieve such an optimal scaling law. In the following, the

scaling laws achieved by different cases of the semi-orthogonal MAC are investigated.

With equal power allocation, i.e., ai = ā =
√
Ptot/ [K (σ2

s + σ2
v)], equation (5.1) turns to

ϵ =

1 + N∑
n=1

∣∣∣∑i∈Ωn

hi√
K

∣∣∣2(∑
i∈Ωn

t2ni

K

)
1
γo

+ 1
2γc

(
1 + 1

γo

)


−1

. (5.3)

In the following, for simplicity, define γ′
c = γc/

(
1 + 1

γo

)
.

5.2.1 Orthogonal MAC

The orthogonal MAC is a special case of the semi-orthogonal MAC. In this case, N = K

and

ϵ =

1 +
K∑
i=1

|hi|2
|hi|2
γo

+ K
2γ′

c

−1

. (5.4)

A lower bound of the average MSE of the orthogonal MAC is

E {ϵ} ≥

1 +
K∑
i=1

E

 |hi|2
|hi|2
γo

+ K
2γ′

c


−1

=

1 +KE

γo −
Kγo
2γ′

c

|h1|2
γo

+ K
2γ′

c


−1

(5.5)

≥

1 +Kγo −
K2γo
2γ′

c

E{|h1|2}
γo

+ K
2γ′

c

−1

=

(
1 +

1
1

Kγo
+ 1

2γ′
c

)−1

.

The above lower bound decreases as K increases. However, it converges to a constant

value of (1 + 2γ′
c)

−1 when K → ∞. Thus, the optimal scaling law of analog Gaussian sensor

networks studied in this thesis, which states that the average MSE behaves as 1/K, is not

achieved by the orthogonal MAC. This result is explained as follows. As analyzed in the

previous two chapters, there are two kinds of distortion contributing to the average MSE: one

is caused by observation noise and the other by channel noise. Usually, the distortion due to

observation noise is independent of the communication resources (e.g., power, bandwidth)

and typically deceases like 1/K. The distortion due to channel noise may be decreased by

using more sensors, power and/or bandwidth. Only when both distortions decease as 1/K,

the optimal scaling law can be achieved by the overall average MSE. For the orthogonal

MAC, as K → ∞, the distortion caused by observation noise, indicated by γo in E {ϵ}, can
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be reduced to zero, while the distortion caused by channel noise, indicated by γc, is bounded

away from zero. In fact, in this case, only increasing power can drive the average MSE to

zero.

5.2.2 Semi-Orthogonal MAC with Fixed Sensor Grouping

With sensor grouping, N is fixed to a small value to save bandwidth. For fixed sensor

grouping (FSG),K sensors are divided intoN disjoint groups such that Ωn = {(n− 1) (K/N)+

1, . . . , n (K/N)} and the sensors in each group transmit on one orthogonal channel. In this

case, K is an integer multiple of N . The strategy of FSG means that the orthogonal channel

used by each sensor, once assigned, does not change during the communication phase. As a

result, no feedback of channel information is required in this scheme.

Based on equation (5.3), a lower bound on the average MSE of the semi-orthogonal MAC

with FSG can be found as

E {ϵ} ≥ E


1 +

N∑
n=1

∣∣∣∑i∈Ωn

hi√
K

∣∣∣2
1

2γ′
c


−1 =

1 +
N∑

n=1

E
{∣∣∣∑i∈Ωn

hi√
K

∣∣∣2}
1

2γ′
c


−1

. (5.6)

Since
∑

i∈Ωn
hi/

√
K is a complex Gaussian random variable with zero mean and variance

1/N , the lower bound turns to

E {ϵ} ≥

(
1 +

N∑
n=1

1
N
1

2γ′
c

)−1

= (1 + 2γ′
c)

−1
. (5.7)

The above lower bound is a constant independent of K. Thus, similar to the orthogonal

MAC, the optimal scaling law of 1/K cannot be achieved by the semi-orthogonal MAC with

FSG.

5.2.3 Semi-Orthogonal MAC with Adaptive Sensor Grouping

For the adaptive sensor grouping (ASG), the sensors are grouped based on the phases of

their channel responses. To this end, the whole phase region of 2π are partitioned into N

equal sub-regions (each of length 2π/N), and the sensors with channel phases in the same

sub-region are assigned to transmit on the same orthogonal channel. In this case, feedback

of orthogonal channel allocation from the FC to the sensors is required. For each sensor,
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log2 N bits are needed, which is a much smaller amount of feedback compared to the channel

phase information required in the coherent MAC, especially when N is small.

The scaling law achieved by the semi-orthogonal MAC with ASG is stated in the following

theorem.

Theorem 1. The average MSE achieved by the semi-orthogonal MAC with ASG scales like

1/K when K → ∞, i.e.,

lim
K→∞

KE {ϵ} = c, (5.8)

for some constant c > 0.

Proof. The strong law of large numbers [34] is used to obtain E {ϵ} as K → ∞. First,

equation (5.3) is rewritten in the following form:

ϵ =

1 +
N∑

n=1

K2
n

K

[(∑
i∈Ωn

xi

Kn

)2
+
(∑

i∈Ωn

yi
Kn

)2]
Kn

K

(∑
i∈Ωn

t2ni

Kn

)
1
γo

+ 1
2γ′

c


−1

, (5.9)

where xi and yi are, respectively, the real and imaginary parts of hi, and Kn is the size of Ωn.

When K → ∞, Kn → K/N (which is also infinity). Then it follows from the strong law of

large numbers that whenKn → ∞ one has
∑

i∈Ωn
xi/Kn

a.e.−→ E {xi},
∑

i∈Ωn
yi/Kn

a.e.−→ E {yi}

and
∑

i∈Ωn
t2ni/Kn

a.e.−→ E {t2ni}. It then follows that

ϵ
a.e.−→

[
1 +

N∑
n=1

K
N2 (E2 {xi}+ E2 {yi})

1
N
E {t2ni} 1

γo
+ 1

2γ′
c

]−1

. (5.10)

AsK → ∞, all sensor groups have identical distributions of channel responses. Therefore,

(5.10) turns to

ϵ
a.e.−→

[
1 +

N K
N2 (E2 {xi}+ E2 {yi})
1
N
E {t2ni} 1

γo
+ 1

2γ′
c

]−1

=

[
1 +K

(E2 {xi}+ E2 {yi})
E {t2ni} 1

γo
+ N

2γ′
c

]−1

. (5.11)

For the ASG scheme, the channel responses in sensor group n have i.i.d. distribution of

N

π
exp

[
−
(
x2
i + y2i

)]
,

2 (n− 1)π

N
≤ φi <

2nπ

N
, (5.12)

where φi is the phase of hi. Based on this distribution function, one has

E {xi} = N
2
√
π
cosα sin β, E {yi} = N

2
√
π
sinα sin β,

E {x2
i } = N

4π
cos 2α sin 2β + 1

2
, E {y2i } = − N

4π
cos 2α sin 2β + 1

2
,

E {xiyi} = N
4π

sin 2α sin 2β,
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where α = (2n− 1) π/N and β = π/N .

In addition,

E
{
t2ni
}

= E
{
(xi cosϕn + yi sinϕn)

2} , (5.13)

= E
{
x2
i

}
cos2 ϕn + E

{
y2i
}
sin2 ϕn + 2 E {xiyi} cosϕn sinϕn,

where ϕn is the phase of ĥn. It is easy to prove that when K → ∞, ϕn approaches E {φi} =

(2n− 1) π/N with probability 1. Thus,

E
{
t2ni
} a.e.−→ 1

2
+

N

4π
sin

(
2π

N

)
. (5.14)

Therefore, when K → ∞,

ϵ
a.e.−→

{
1 +K

N2

4π
sin2

(
π
N

)[
1
2
+ N

4π
sin
(
2π
N

)]
1
γo

+ N
2γ′

c

}−1

. (5.15)

Finally,

lim
K→∞

KE {ϵ} =

[
1
2
+ N

4π
sin
(
2π
N

)]
1
γo

+ N
2γ′

c

N2

4π
sin2

(
π
N

) , (5.16)

which is a constant.

5.2.4 Simulation Results

This subsection compares simulation results of the average MSE with the lower bounds

and asymptotic approximation analytically derived in the previous subsections. Let γo = 20

dB and γc = 25 dB.

Figure 5.1 plots the average MSEs of the orthogonal MAC and the semi-orthogonal MAC

with FSG versus the number of sensors, K. As K increases, the average MSEs of both MACs

asymptotically converge to positive constants. For the semi-orthogonal MAC with FSG, the

lower bound of (1 + 2γ′
c)

−1 obtained in subsection 5.2.2 is quite loose for small values of K

and N , but it becomes tighter when K and N get larger.

The scaling law achieved by the semi-orthogonal MAC with ASG is illustrated in Figure

5.2. In this figure, the average MSEs of the orthogonal and coherent MACs are also provided

for comparison. Similar to the coherent MAC, the average MSE of the semi-orthogonal MAC

with ASG appears as a straight line when K is large. Since the plots are in log-log fashion, a
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Figure 5.1 Average MSE and its lower bound for the orthogonal MAC and the

semi-orthogonal MAC with FSG.

straight line means that the average MSE decays in an order of 1/K as K increases, showing

that the optimal scaling law of the studied analog Gaussian sensor networks is achieved. In

addition, it can be shown that the constant c of the ASG scheme (equation (5.16)) is larger

than that of the coherent MAC. This means that the ASG scheme has a higher distortion

compared to the coherent MAC with the same number of sensors. Therefore, while the

semi-orthogonal MAC with ASG is as optimal as the coherent MAC in the scaling-law sense,

it requires more sensors than the coherent MAC to achieve the same distortion. This fact is

consistent with the simulation results in Chapter 4.

5.3 Improved Power Allocation

In all the previous chapters, the estimation is conducted under equal power allocation.

In fact, the total transmit power can be divided and allocated to the sensors according

to their channel responses and levels of observation noise and channel noise, as well as

other factors, to obtain smaller instantaneous MSE. In this subsection, the improved power
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Figure 5.2 Average MSE and its approximation for the semi-orthogonal MAC with

ASG.

allocation strategies will be investigated. The problem is addressed in two steps: First,

power allocation in each sensor group will be studied. Then power allocation among sensor

groups is examined. For the convenience of discussion, define the total transmitted power

in the nth group as Pn =
∑

i∈Ωn
a2i (σ

2
s + σ2

v) and the channel SNR on the nth orthogonal

channel as γcn = Pn/σ
2
ω.
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5.3.1 Power Allocation in Each Sensor Group

Assuming for the nth sensor group that ai = ãi
√

Pn/ (σ2
s + σ2

v). Then
∑

i∈Ωn
ã2i = 1.

Define

Mn =

(∑
i∈Ωn

a2i t
2
ni

)
σ2
v +

σ2
ω

2∣∣∑
i∈Ωn

aihi

∣∣2 (5.17)

=
1

γo

∑
i∈Ωn

[
ãixi

(∑
i∈Ωn

ãixi

)
+ ãiyi

(∑
i∈Ωn

ãiyi
)]2[(∑

i∈Ωn
ãixi

)2
+
(∑

i∈Ωn
ãiyi
)2]2

+
1

2γcn

(
1 +

1

γo

)
1(∑

i∈Ωn
ãixi

)2
+
(∑

i∈Ωn
ãiyi
)2

=
1

γo
An +

1

2γcn

(
1 +

1

γo

)
Bn.

The objective of the optimal power allocation in each sensor group is to minimize Mn with

the constraint
∑

i∈Ωn
ã2i = 1. In the following, An and Bn will be minimized separately first.

After that, their effects on Mn in different scenarios will be analyzed.

Analysis on An

An =

∑
i∈Ωn

[
ãixi

(∑
i∈Ωn

ãixi

)
+ ãiyi

(∑
i∈Ωn

ãiyi
)]2[(∑

i∈Ωn
ãixi

)2
+
(∑

i∈Ωn
ãiyi
)2]2 (5.18)

≥
1

Kn

[∑
i∈Ωn

ãixi

(∑
i∈Ωn

ãixi

)
+ ãiyi

(∑
i∈Ωn

ãiyi
)]2[(∑

i∈Ωn
ãixi

)2
+
(∑

i∈Ωn
ãiyi
)2]2 =

1

Kn

If, and only if, ãixi

(∑
i∈Ωn

ãixi

)
+ ãiyi

(∑
i∈Ωn

ãiyi
)
is of the same value for every i in Ωn,

An can achieve its minimum value 1/Kn. Unfortunately, it appears to be very complicated

to solve the following problem1,

ãixi

(∑
i∈Ωn

ãixi

)
+ ãiyi

(∑
i∈Ωn

ãiyi

)
= c, for any i ∈ Ωn. (5.19)

In fact, a set of {ãi} which makes ãixi = c1 and ãiyi = c2 at the same time will guarantee

that equation (5.19) holds. However it is impossible to obtain such a set of {ãi} for any sets

1c, c1 and c2 indicate constants with any value.
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of {xi} and {yi}. Instead, a set of {ãi} which tries to decrease deviations in sets {ãixi} and

{ãiyi} at the same time is analyzed2, which is

ãi = min

{
1

xi

,
1

yi

}
. (5.20)

Comparison between this set of {ãi}, which shall be called as the improved power allocation

in the following, and that for equal power allocation in each group, which is
{
ãi = 1/

√
Kn

}
,

is provided by simulation.
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Figure 5.3 Probability distributions of An with equal power allocation and the

improved power allocation (Kn = 8).

As shown in Figure 5.3, the distribution of An with the improved power allocation concen-

trates in a small range close to 1/Kn, which is the minimum value of An. On the contrary,

the distribution of An with equal power allocation spreads in a large range starting from

1/Kn. This improved power allocation may be not the optimal power allocation that can

be achieved, but it efficiently deceases distortion caused by observation noise in each sensor

2The vector with {ãi} as elements will be normalized if it is not of Euclidean norm 1.
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proved power allocation for An (N = 4, K = 32, γc = ∞).

group. Let γcn = ∞. Then the final average MSE is only caused by observation noise. In this

case, as shown in Figure 5.4, there is a gap of about 1 dB between equal power allocation and

the improved power allocation. In addition, the average MSE performance of the improved

power allocation is nearly the same as that of the optimal power allocation3.

Analysis on Bn

Bn =
1(∑

i∈Ωn
ãixi

)2
+
(∑

i∈Ωn
ãiyi
)2 (5.21)

Define ã = [ã1, ã2, . . . , ãKn ], x = [x1, x2, . . . , xKn ] and y = [y1, y2, . . . , yKn ]. Then

B−1
n = ã (xᵀx+ yᵀy) ãᵀ =

ã (xᵀx+ yᵀy) ãᵀ

ããᵀ . (5.22)

B−1
n is a Rayleigh quotient with maximum value λmax, where λmax is the maximum eigenvalue

of matrix xᵀx+ yᵀy and B−1
n reaches that maximum at the corresponding eigenvector vmax

3The average MSE performance of the optimal power allocation is obtained by letting An = 1/Kn.
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of matrix xᵀx+ yᵀy. That is

ã = vmax. (5.23)
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Figure 5.5 Average MSE comparison between equal power allocation and the op-

timal power allocation for Bn (N = 4, K = 32, γo = ∞).

Let γo = ∞. Then the final average MSE is only caused by channel noise. In this case,

as shown in Fig. 5.5, there is a gap of about 1 dB between equal power allocation and the

optimal power allocation.

Minimization of Mn

From (5.17), it is easy to know that:

• If γo ≪ γcn , then the distortion caused by channel noise can be ignored. In this case,

(5.20) is recommended to provide improved power allocation for Mn instead of equal

power allocation.

• If γo ≫ γcn , then the distortion caused by observation noise can be ignored. In this

case, (5.23) is recommended to provide improved power allocation for Mn instead of

equal power allocation.
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• When γo is comparable to γcn , a compromise between (5.20) and (5.23) maybe optimal

forMn. However, it is very complicated to obtain this optimal power allocation because

An and Bn should be optimized simultaneously. In this case, for simplicity, equal power

allocation is recommended.
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Figure 5.6 Average MSE comparison between equal power allocation and the im-

proved power allocation for An and Bn (N = 4, K = 32, γo = 20 dB).

Take γo = 20 dB as an example. As shown in Figure 5.6, when γc < 20 dB, the

recommended power allocation for Bn can provide better average MSE performance, while

when γc > 36 dB, the recommended power allocation for An can provide better average MSE

performance.

Note that, in all of the above three cases, the recommended power allocation does not

depend on the value of Pn. As a result, power allocation among sensor groups can be done

after {ãi} has been fixed.

5.3.2 Power Allocation among Sensor Groups

Once {ãi} is fixed, the MSE distortion can be expressed as

ϵ =

[
σ−2
s +

N∑
n=1

1

αn + βn/Pn

]−1

, (5.24)
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where αn = An/γo and βn = σ2
ω (1 + 1/γo)Bn/2 are fixed. Then power allocation among

sensor groups becomes a convex optimization problem as follows:

min
Pn

−
N∑

n=1

1

αn + βn/Pn

, (5.25)

s.t.
N∑

n=1

Pn ≤ Ptot, Pn ≥ 0.

The optimal power allocation for each sensor group can be obtained as follows (the detailed

derivations can be found in Appendix 7.3):

Rank the sensor groups such that β1 ≤ β2 ≤ · · · ≤ βN and find the smallest M ′ ≤ N

such that f (M ′) ≥ 1, where

f (M) =
√

βM

( ∑M
n=1

√
βn

αn

Ptot +
∑M

n=1
βn

αn

)
. (5.26)

Take N1 = M ′ − 1. Then the first N1 sensor groups are active and

P opt
n =


1
αn

(√
βn

µ
− βn

)
, n ≤ N1

0, n > N1

(5.27)

where

µ =

( ∑N1

n=1

√
βn

αn

Ptot +
∑N1

n=1
βn

αn

)2

. (5.28)

Comparison of the average MSE performance between equal power allocation and the

optimal power allocation among sensor groups is provided in Figure 5.7. For simplicity, Pn

is equally allocated among sensors in each sensor group. Among sensor groups, the figure’s

legend “Equal power allocation” means Ptot is allocated in proportion to the number of

sensors in each group, while “Optimal power allocation” means solution (5.27) is used. It

can be seen that in low γc range (smaller than 25 dB), the optimal power allocation provides

better average MSE performance. When γc becomes higher, the two power allocations have

nearly the same performance.

At low γc, the intra sensor group power allocation solution (5.23) and the inter sensor

groups power allocation solution (5.27) can be combined to further improve the average

MSE performance. The simulation results are provided in Figure 5.8. Note that the figure’s
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Figure 5.7 Average MSE comparison between equal power allocation and the op-

timal power allocation among sensor groups (N = 4, K = 8, γo = 20

dB).

legend “Equal power allocation” means Ptot is equally allocated to each sensor, “Optimal PA:

intra for Bn” means only solution (5.23) is used in each sensor group, “Optimal PA: inter”

means only solution (5.27) is used among sensor groups and “Optimal PA: intra+inter”

means solution (5.23) and (5.27) are used together. It can be seen from the figure that when

γc < 15 dB, the combined solution provides the best average MSE performance.

5.3.3 Overhead Required by the Improved Power Allocation

To calculate the improved power gain ai for the ith sensor, not only the channel response

of the ith sensor but also the channel responses of all other sensors are required. Therefore,

ai’s should be calculated at the FC and then transmitted to the sensors. This brings extra

feedback overhead to the estimation system. Note that one advantage of the semi-orthogonal

MAC is that only a small amount of feedback is required. When adopting the improved power

allocation in the semi-orthogonal MAC, the improvement in estimation performance and the

increase in feedback overhead should be carefully balanced. For example, the power gains

ai’s can be chosen from a set with finite discrete elements and the indices of the elements
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timal power allocation: intra sensor group and/or inter sensor groups

(N = 4, K = 8, γo = 20 dB).

are transmitted to the sensors instead of the actual values of ai’s. Then the performance

improvement and the extra feedback overhead can be balanced by changing the number of

elements in the set. With more elements, more accurate ai’s can be provided to the sensors,

which leads to larger performance improvement. However, in this case, more bits are required

to transmit the indices of those elements.

5.4 Summary

In this chapter, the scaling laws achieved by different cases of the semi-orthogonal MAC

are studied first. Similar to the orthogonal MAC, as the number of sensors K increases to

infinity, the average MSE distortion of the semi-orthogonal MAC with FSG converges to a

positive constant. On the contrary, the average MSE achieved by the semi-orthogonal MAC

with ASG scales like 1/K when K is large enough. In other words, the ASG scheme achieves

the optimal scaling law of the analog sensor network studied in this thesis. As a result, the

average MSE of the semi-orthogonal MAC with ASG can be decreased to any level by using

71



more sensors.

In the second part of this chapter, the improved power allocations in each sensor group

and among sensor groups are investigated. In each sensor group, the improved power allo-

cations for the two extreme cases of “γo ≪ γcn” and “γo ≫ γcn” are provided, while equal

power allocation is recommended when γo is comparable to γcn for the simplicity of the

estimation system. Among sensor groups, an optimal solution of assigning Pn’s is obtained

by the convex optimization theory, which provides better average MSE performance than

equal power allocation, especially at low γc. In addition, since the improved power allocation

requires extra feedback in the estimation system, the performance improvement and extra

feedback brought by the improved power allocation should be carefully balanced when it is

adopted together with the semi-orthogonal MAC.
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6. Conclusions and Suggestions for Future

Research

6.1 Conclusions

This thesis is concerned with distributed estimation in a Gaussian WSN with analog

transmission. For a scenario in which a large number of sensors are deployed under limited

bandwidth constraint, a novel semi-orthogonal MAC has been proposed to provide multiple

access for K sensors via N orthogonal channels, where K ≥ N . The K sensors are divided

into N groups, and signals from sensors in each group are directly combined (opposed to be

coherently combined) and transmitted on one orthogonal channel.

First, the performance of the semi-orthogonal MAC is studied under equal power al-

location among sensors. Based on a combination of channel noise suppression capability

and observation noise suppression capability, the average MSE performance of the proposed

semi-orthogonal MAC with either fixed or adaptive sensor grouping is thoroughly analyzed.

In fixed sensor grouping, each sensor is assigned to transmit on the same orthogonal channel

during the entire process of communication. Compared to the orthogonal MAC operating

under the same bandwidth, the semi-orthogonal MAC with fixed sensor grouping has the

same channel noise suppression capability, but twice the observation noise suppression ca-

pability as K approaches infinity. This is achieved with no requirement of channel phase

information feedback from the FC to sensors. In adaptive sensor grouping, the sensors are

grouped based on the phases of their channel responses. In this case, the average MSE per-

formance improvement of the semi-orthogonal MAC over the orthogonal MAC is even more

significant. For a fixed total transmission power, the average MSE of the semi-orthogonal

MAC with adaptive sensor grouping decreases to zero as K increases, breaking through

the lower bound in the orthogonal MAC. The semi-orthogonal MAC with adaptive sensor
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grouping performs very close to the hybrid MAC under the same bandwidth and number

of sensors. However, in the semi-orthogonal MAC, only several bits of feedback per sen-

sor are required to transmit the assignment of orthogonal channels, which is a significantly

smaller amount than that of the hybrid MAC. In addition, for the semi-orthogonal MAC

with adaptive sensor grouping, setting N = 4 practically gives the optimum tradeoff between

bandwidth consumption and estimation performance.

In addition, one important property of the average MSE achieved by the semi-orthogonal

MAC, the scaling law, is also analyzed in this thesis. The scaling law describes the decaying

trend achieved by the average MSE as the scale of the WSNs, i.e., the number of sensors

K, increases. Similar to the orthogonal MAC, the semi-orthogonal MAC with fixed sensor

grouping requires no feedback from the FC to the sensors but fails to achieve the optimal

scaling law of the analog Gaussian sensor network studied in this thesis. In contrast, for the

semi-orthogonal MAC with adaptive sensor grouping, the optimal scaling law of 1/K can

be achieved. This means that the estimation distortion can be decreased to an arbitrary

low level by employing more sensors. The result on the optimal scaling law achieved by the

semi-orthogonal MAC with adaptive sensor grouping is the same as that of the coherent

MAC, but the former requires a much smaller amount of feedback than the latter.

In the last part of the thesis, improved power allocations for the semi-orthogonal MAC

are investigated. The task is divided into two steps: first the power allocation in each sensor

group is studied and then the power allocation among sensor groups is examined. In each

sensor group, the improved power allocations for scenarios with different observation SNR

and channel SNR ranges are provided. Among sensor groups, an optimal solution is obtained

by the convex optimization theory, which provides better average MSE performance than

equal power allocation, especially at low channel SNR. Since the improved power allocation

requires extra feedback, the performance improvement and extra feedback required by the

improved power allocation should be carefully balanced when it is adopted together with the

semi-orthogonal MAC.
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6.2 Suggestions for Future Research

In this thesis, a rather simple system model for distributed estimation in WSNs with

analog transmission is considered. Specifically, the source signal is modelled as a scalar

Gaussian random variable affected by an additive Gaussian observation noise. To facilitate

performance analysis, a homogeneous assumption of identical observation noise variance

for all sensors is made. Practical WSNs may vary from case to case. More complicated

system models, such as the one with vector source signal, multiplicative noise and different

observation and channel noise variances, are worthwhile to be considered in the future to

better fit the reality.

In addition, the design of feedback transmission is also worth consideration. On one

hand, the feedback information should be compressed to the least amount to save feedback

transmission bandwidth. On the other hand, compression of feedback information may cause

inaccuracy, which will degrade the estimation performance. How to balance between the

feedback bandwidth requirement and the estimation performance is an important question

to answer for practical application of WSNs. With different MACs, the feedback information

is different and the sensitivity of the estimation performance to the accuracy of feedback is

also different. This is an interesting topic for future study.

Another aspect of the estimation performance, the reliability, is briefly touched on in

this thesis. The performance criterion using the diversity order of the outage probability

has been shown to be quite inefficient to evaluate the reliability of the estimation system.

Therefore, more efficient and accuracy performance criteria need to be established in the

future for reliability evaluation and optimization.
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A. Derivations of E {α} and E {β} as Functions of ρ

Let m1e
jϕ1 = r1 + jt1 and m2e

jϕ2 = r2 + jt2. Then m1 =
√
r21 + t21, m2 =

√
r22 + t22, ϕ1 =

arctan
(

t1
r1

)
, ϕ2 = arctan

(
t2
r2

)
. According to the central limit theorem, m1e

jϕ1 and m2e
jϕ2

are two complex Gaussian random variables with zero mean and unit variance. Furthermore,

the correlation coefficient between m1e
jϕ1 and m2e

jϕ2 is ρ. Thus the joint pdf of r1, r2, t1

and t2 is

f (r1, t1, r2, t2) = c2exp

{
−r21 + t21 − 2ρ (r1r2 + t1t2) + r22 + t22

1− ρ2

}
, c =

1

π
√

1− ρ2
. (A.1)

Also,

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂m1

∂r1

∂m1

∂t1

∂m1

∂r2

∂m1

∂t2

∂m2

∂r1

∂m2

∂t1

∂m2

∂r2

∂m2

∂t2

∂ϕ1

∂r1

∂ϕ1

∂t1

∂ϕ1

∂r2

∂ϕ1

∂t2

∂ϕ2

∂r1

∂ϕ2

∂t1

∂ϕ2

∂r2

∂ϕ2

∂t2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1
m1

t1
m1

0 0

0 0 r2
m2

t2
m2

− t1
m2

1

r1
m2

1
0 0

0 0 − t2
m2

2

r2
m2

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

m1m2

. (A.2)

It then follows that

f (m1,m2, ϕ1, ϕ2) =
f (r1, t1, r2, t2)

|J |
(A.3)

= c2m1m2exp

{
−m2

1 − 2ρm1m2 cos (ϕ1 − ϕ2) +m2
2

1− ρ2

}
.

Let x = cos (ϕ1 − ϕ2) and y = ϕ2. Then

J =

∣∣∣∣∣∣∣
∂x
∂ϕ1

∂x
∂ϕ2

∂y
∂ϕ1

∂y
∂ϕ2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
− sin (ϕ1 − ϕ2) sin (ϕ1 − ϕ2)

0 1

∣∣∣∣∣∣∣ = − sin (ϕ1 − ϕ2) ,

f (m1,m2, x, y) (A.4)

=
2f (m1,m2, ϕ1, ϕ2)

|J |
=

2c2m1m2√
1− x2

exp

{
−m2

1 − 2ρm1m2x+m2
2

1− ρ2

}
,
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and

f (m1,m2, x) = 2πf (m1,m2, x, y) (A.5)

=
4m1m2

π (1− ρ2)
√
1− x2

exp

{
−m2

1 − 2ρm1m2x+m2
2

1− ρ2

}
.

Next,

E {α} = E
{
m2

1 +m2
2

}
(A.6)

=
4

π (1− ρ2)

∫ ∞

0

∫ ∞

0

∫ −1

1

(m2
1 +m2

2)m1m2√
1− x2

exp

{
−m2

1 − 2ρm1m2x+m2
2

1− ρ2

}
dxdm1dm2

=
4

π (1− ρ2)

∫ −1

1

1√
1− x2

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
Λ (x,m2) dm2dx,

where

Λ (x,m2) =

∫ ∞

0

(
m2

1 +m2
2

)
m1exp

{
−(m1 − ρm2x)

2

1− ρ2

}
dm1 (A.7)

=

∫ ∞

−ρm2x

 y3 + 3ρxm2y
2 + (1 + 3ρ2x2)

m2
2y + ρx (1 + ρ2x2)m3

2

 exp

{
− y2

1− ρ2

}
dy.

If −1 < x < 0, then

Λ (x,m2) (A.8)

=

∫ ∞

−ρm2x

 y3 + 3ρxm2y
2 + (1 + 3ρ2x2)

m2
2y + ρx (1 + ρ2x2)m3
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 exp
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− y2
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=
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2
Γ
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ρ2x2m2
2
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)
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3
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2
,
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.
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If 0 < x < 1, then

Λ (x,m2) (A.9)

=

∫ ∞

−ρm2x

 y3 + 3ρxm2y
2 + (1 + 3ρ2x2)

m2
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) 3
2 γ

(
3

2
,
ρ2x2m2

2

1− ρ2

)
+ρx

(
1 + ρ2x2

)
m3

2

(
1− ρ2

) 1
2 γ

(
1

2
,
ρ2x2m2

2

1− ρ2

)
.

The functions γ (a, x) and Γ (a, x) are incomplete gamma functions [33]. Since

(1−ρ2)
2

2
Γ
(
2,

ρ2x2m2
2

1−ρ2

)
and

ρx(1+ρ2x2)m3
2(1−ρ2)

1
2

2
Γ
(

1
2
,
ρ2x2m2

2

1−ρ2

)
are odd functions of x and the

integral with respect to x is from −1 to 1, the two terms integrate to zero. Then one has

E {α} (A.10)

=
4

π (1− ρ2)

∫ 0

−1

1√
1− x2

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
Λ− (x,m2) dm2dx

+
4

π (1− ρ2)

∫ 1

0

1√
1− x2

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
Λ+ (x,m2) dm2dx,

where

Λ− (x,m2) (A.11)

=
(1− ρ2)

2

2
Γ

(
2,

ρ2x2m2
2

1− ρ2

)
+

(1 + 3ρ2x2)m2
2 (1− ρ2)

2
Γ

(
1,

ρ2x2m2
2

1− ρ2

)
,

Λ+ (x,m2) (A.12)

=
(1− ρ2)

2

2
Γ

(
2,

ρ2x2m2
2

1− ρ2

)
+

(1 + 3ρ2x2)m2
2 (1− ρ2)

2
Γ

(
1,

ρ2x2m2
2

1− ρ2

)
+3ρxm2

(
1− ρ2

) 3
2 γ

(
3

2
,
ρ2x2m2

2

1− ρ2

)
+ρx

(
1 + ρ2x2

)
m3

2

(
1− ρ2

) 1
2 γ

(
1

2
,
ρ2x2m2

2

1− ρ2

)
.
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One also can compute∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
Γ

(
2,

ρ2x2m2
2

1− ρ2

)
dm2 (A.13)

=

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}∫ ∞

ρ2x2m2
2

1−ρ2

e−ttdtdm2

=

∫ ∞

0

e−tt

∫ √
(1−ρ2)t
ρ|x|

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
dm2dt

=
1− ρ2

2 (1− ρ2x2)

∫ ∞

0

e−ttγ

(
1,

(1− ρ2x2) t

ρ2x2

)
dt

=
1− ρ2

2 (1− ρ2x2)

1− ρ2x2

ρ2x2
Γ (3)

(
1 +

1− ρ2x2

ρ2x2

)−3

F
(
1, 3, 2, 1− ρ2x2

)
=

(
1− ρ2

) (
ρ2x2

)2
F
(
1, 3, 2, 1− ρ2x2

)
,

and similarly,∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
m2

2 Γ

(
1,

ρ2x2m2
2

1− ρ2

)
dm2 (A.14)

=
(1− ρ2)

2
(ρ2x2)

2
F
(
1, 3, 3, 1− ρ2x2

)
,

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
m2 γ

(
3

2
,
ρ2x2m2

2

1− ρ2

)
dm2 (A.15)

=
2 (1− ρ2)

3
2 (ρ2x2)

3
2

3
F

(
1, 3,

5

2
, ρ2x2

)
,

∫ ∞

0

m2exp

{
−(1− ρ2x2)m2

2

1− ρ2

}
m3

2 γ

(
1

2
,
ρ2x2m2

2

1− ρ2

)
dm2 (A.16)

= 2
(
1− ρ2

) 5
2
(
ρ2x2

) 1
2 F

(
1, 3,

3

2
, ρ2x2

)
,

where F (α, β, γ, z) is the Gauss hypergeometric function [33]. Thus

E {α} (A.17)

=
4 (1− ρ2)

2

π

∫ 1

0

(ρ2x2)
2

√
1− x2

[
F
(
1, 3, 2, 1− ρ2x2

)
+ 2F

(
1, 3,

5

2
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)]
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+
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π

∫ 1

0
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√
1− x2
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2
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)
 dx.
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Similarly,

E {β} = E
{
2 [m2

1 − 2ρ cos (ϕ1 − ϕ2)m1m2 +m2
2]

1− ρ2 cos2 (ϕ1 − ϕ2)

}
(A.18)

=
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π
×
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B. Proof of ϕ = π
4 when K → ∞

Let τ be the deviation of ϕ from π
4
. Referring to Figure B.1, for any small τ0, one has

P (|τ | ≤ τ0) = P {(x̃, ỹ) in the shaded area} ≥ P {(x̃, ỹ) in the circle} (B.1)
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Figure B.1 Integral area of τ .

Because of the circular symmetry property of zero-mean complex Gaussian random vari-

ables and that the magnitude of a zero-mean complex Gaussian random variable is Rayleigh

distributed, one has

P {(x̃, ỹ) in the circle} =

∫ d

0

r

2σ2
exp

(
− r2

4σ2

)
dr = 1− exp

(
− d2

4σ2

)
(B.2)

where d = µ sin τ0 =
√
K

4
√
π
sin τ0. AsK → ∞, exp

(
− d2

4σ2

)
goes to zero, thus P {(x̃, ỹ) in the circle}

goes to 1 and P (|τ | ≤ τ0) also goes to 1. It follows that ϕ can be substituted by π
4
.
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C. Derivation of P opt
n

The convex optimization problem is

min
Pn

−
N∑

n=1

1

αn + βn/Pn

, (C.1)

s.t.
N∑

n=1

Pn ≤ Ptot, Pn ≥ 0.

This problem can be solved using the same techniques as in [22] and [35]. First, the La-

grangian L associated with this optimization problem is:

L = −
N∑

n=1

1

αn + βn/Pn

+ µ

(
N∑

n=1

Pn − Ptot

)
−

N∑
n=1

λnPn, (C.2)

which leads to the following Karush-Kuhn-Tucker (KKT) conditions:

Pn ≥ 0, ∀n,

Ptot −
N∑

n=1

Pn ≥ 0,

λn ≥ 0, ∀n,

µ ≥ 0,

λnPn = 0, ∀n,

µ

(
Ptot −

N∑
n=1

Pn

)
= 0,

− 1

αnPn + βn

+
αnPn

(αnPn + βn)
2 + µ− λn = 0, ∀n. (C.3)

If µ = 0, then according to equation (C.3), one has

λn = − βn

(αnPn + βn)
2 < 0. (C.4)
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Therefore µ ̸= 0 and

Ptot =
N∑

n=1

Pn. (C.5)

For those sensors with Pn > 0, λn = 0 holds, then according to equation (C.3), βn

(αnPn+βn)
2 =

µ. Thus

Pn =
1

αn

(√
βn

µ
− βn

)+

, (C.6)

where (x)+ equals 0 where x is less than zero, and otherwise equals x. Once µ is fixed, as

long as µβn < 1, the corresponding sensor is active.

Next, the indices of active sensors are determined. Rank the sensors such that β1 ≤ β2 ≤

· · · ≤ βN , and assume the first N1 sensors are active, then

N1∑
n=1

1

αn

(√
βn

µ
− βn

)
= Ptot, (C.7)

which leads to

µ =

( ∑N1

n=1

√
βn

αn

Ptot +
∑N1

n=1
βn

αn

)2

. (C.8)

To solve the cut-off index N1, which is obviously determined by the relative magnitudes

between µβn and 1, introduce the function

f (M) =
√
µβM =

√
βM

( ∑M
n=1

√
βn

αn

Ptot +
∑M

n=1
βn

αn

)
. (C.9)

Solving the threshold N1 is equivalent to finding N1 such that f (N1) < 1 and f (N1 + 1) ≥ 1.

It can be proved that such a N1 is unique and always exists unless f (M) < 1 for all

1 ≤ M ≤ N in which case N1 = N and all sensors are active.

Proof. It is easy to show that

f (1) =

β1

α1

Ptot +
β1

α1

< 1. (C.10)

Then find the smallest M ′ ≤ N such that f (M ′) ≥ 1. It is claimed that f (M) ≥ 1 for any

M ≥ M ′. This can be proved by showing that if f (M) ≥ 1, then f (M + 1) ≥ 1. Suppose
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f (M) ≥ 1 for some M ′ ≤ M ≤ N , then one has

f (M + 1) =
√

βM+1

( ∑M+1
n=1

√
βn

αn

Ptot +
∑M+1

n=1
βn

αn

)
(C.11)

=

√
βM+1

(∑M
n=1

√
βn

αn

)
+ βM+1

αM+1

Ptot +
(∑M

n=1
βn

αn

)
+ βM+1

αM+1

≥

√
βM

(∑M
n=1

√
βn

αn

)
+ βM+1

αM+1

Ptot +
(∑M

n=1
βn

αn

)
+ βM+1

αM+1

≥ 1,

where the last inequality is due to the fact that

a+ b

c+ b
> 1, if {a > c, a > 0, b > 0, c > 0} .

Next make the following identifications

a =
√
βM

(
M∑
n=1

√
βn

αn

)
, b =

βM+1

αM+1

, c = Ptot +

(
M∑
n=1

βn

αn

)

and use the fact that f (M) = a
c
> 1. Since f (M) > 1 for any M ≥ M ′, it follows that

there is a unique N1 satisfying f (N1) < 1 and f (N1 + 1) ≥ 1, and N1 = M ′ − 1. The proof

is complete.
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