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Abstract

Elementary particles form hadrons through the strong interaction; one interpre-

tation of a possible hadron bound-state is a hybrid meson which is composed of a

quark-antiquark pair and gluonic content. Non-exotic hybrid mesons share spinJ ,

parity P and charge conjugationC quantum numbers with quark-antiquark states

while exotic hybrids do not. Aspects of particle physics, strong interactions, and

quantum �eld theory necessary for calculating the correlation function for a hybrid

meson will be reviewed. In particular, the perturbative part of the correlation func-

tion for a hybrid meson with J P C = 1 �� will be formulated in terms of Feynman

rules and diagrams and calculated to next-to-leading orderin the light (massless)

quark case. Assuming the hybrid current renormalizes multiplicative, the next-to-

leading order e�ects are found to be large, and are potentially important for future

determinations of the light-quark non-exotic hybrid meson.

ii



Acknowledgements

I would like to thank my supervisors Tom Steele and Derek Harnett for all their

helpful suggestions, patience and wisdom.

iii



iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures viii

1 Introduction to Quantum Field Theory 1
1.1 Particle Physics Overview . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lagrangian Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Path Integral in Quantum Field Theory . . . . . . . . . . . . . . . . . 11
1.5 Basic Feynman Rules in QCD . . . . . . . . . . . . . . . . . . . . . . 17

2 Leading-Order Calculation 19
2.1 Hybrid Mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Current for Hybrid Mesons . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Feynman Rules for the Current . . . . . . . . . . . . . . . . . . . . . 22
2.4 Correlation Functions and Feynman Integrals . . . . . . . . .. . . . 23
2.5 First Order Calculation of the Hybrid Correlation Function . . . . . . 27

3 Next-to-Leading Order Calculation of the Hybrid Correlat ion Func-
tion 30
3.1 Overview of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Most Complicated Topology Diagram . . . . . . . . . . . . . . . . . . 30
3.3 The Ravenous Bugbladder Beast of Traal . . . . . . . . . . . . . . .. 35
3.4 Gluon Self-Energy Diagram . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Diagrams with Complicated Topology and Three-Gluon Vertex . . . . 39
3.6 Quark Self-Energy Diagrams . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Diagram with the Two-Gluon Vertex . . . . . . . . . . . . . . . . . . 43
3.8 Four Diagrams with the Same Result . . . . . . . . . . . . . . . . . . 44
3.9 Diagrams with One Quark, Antiquark and Two-Gluon Vertexand a

Three-Gluon Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Results and Conclusion 47

References 51

v



A Conventions 53
A.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Dirac and Colour Algebra . . . . . . . . . . . . . . . . . . . . . . . . 53
A.3 Feynman Rules for QCD . . . . . . . . . . . . . . . . . . . . . . . . . 54

B Feynman Integrals 55
B.1 Relevant Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2 Basic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.2.1 Scalar Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
B.2.2 Tensor and Vector Integrals . . . . . . . . . . . . . . . . . . . 57

B.3 Complicated Tensor Examples . . . . . . . . . . . . . . . . . . . . . . 58
B.4 Integral Without Contractions Between the Antisymmetric Tensors . 59

C REDUCE Code 62

vi



List of Tables

4.1 Numeric values for constants as de�ned in (4.1). . . . . . . .. . . . . 48

A.1 Relevant Feynman rules for QCD. The gluon propagator is given in
the Feynman gauge� = 1 . . . . . . . . . . . . . . . . . . . . . . . . 54

B.1 Vector and tensor structure of classi�ed integrals. . . .. . . . . . . . 55

vii



List of Figures

1.1 The eightfold way represents patterns of the lightest hadrons orga-
nized by chargeQ in units of proton charge and strangenessS . . . . 4

1.2 Diagrammatic representations for the four-point Greenfunction of
scalar �elds with a �' 4 interaction. . . . . . . . . . . . . . . . . . . . 14

1.3 Ghost loop contribution to the gluon self-energy. . . . . .. . . . . . . 18

2.1 Single-gluon vertex for the hybrid current. . . . . . . . . . .. . . . . 23
2.2 Vertex Feynman rule for the hybrid current with a quark, an antiquark

and a gluon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Vertex for interaction of hybrid current with a quark, an antiquark

and two gluons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Vertex Feynman rule for interaction of hybrid current with a quark,

an antiquark and two gluons. . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Leading order diagram for the correlation function. . . .. . . . . . . 28

3.1 Second order diagrams for the two-current correlation function of hy-
brid currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Diagram with the most complicated topology, labelled as(1) in Figure
3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The Ravenous Bugbladder Beast of Traal diagram. . . . . . . .. . . 35
3.4 Gluon self-energy diagrams. . . . . . . . . . . . . . . . . . . . . . . .36
3.5 Next-to-leading order diagram containing the gluon self-energy. . . . . 38
3.6 Diagrams with complicated topology and three-gluon vertex. . . . . . 39
3.7 Quark self-energy diagrams. . . . . . . . . . . . . . . . . . . . . . . .42
3.8 Diagram with vertices with a quark, an antiquark and two gluons. . . 43
3.9 Diagrams with one quark, an antiquark and two-gluon vertex. . . . . 44
3.10 Diagrams With one quark, antiquark and two-gluon vertex and a

three-gluon vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



Chapter 1

Introduction to Quantum Field Theory

1.1 Particle Physics Overview

From the particle physics perspective, a particle is a very small object (. fm) that

behaves in a way dictated by fundamental (strong and electroweak) interactions. Par-

ticles can be classi�ed by intrinsic properties, conservedquantities and/or quantum

numbers including spinJ , mass, parity P, charge conjugationC, 
avour, isospin,

electric charge and colour. A particle's behaviour can be described by a theoretical

model of the interactions that represents an approximationof the actual phenomena.

Quantum �eld theory allows us to describe the properties andinteractions of

fundamental and composite particles. Quantum �eld theories are constrained by

spacetime symmetries and, as such, must be Lorentz invariant; that is, they describe

relativistic systems. Four-momentum conservation and spin are consequences of this

symmetry [1]. Quantum mechanics does not allow us to �x a particle to a point,

so instead we consider a local quantized �eld. The �eld operators represent all

possible particle states including multiple particles. Consequently, the �elds have

statistical properties that are re
ected in their mathematical description. From

the spin-statistics theorem, particles can be classi�ed bytheir statistical properties.

Bosons have integer spin and obey equal time commutator relations (Bose-Einstein

statistics) and fermions have half integer spin and obey equal time anticommutator

relations (Fermi-Dirac statistics) [2]. In order to gain information about a particle's

properties we need to develop a mathematical framework to describe its �eld and

how it interacts. In a gauge �eld theory interactions are constrained by a symmetry

and interactions may be described by the mutual in
uence of the �elds, where the
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interaction between two elementary particles would be mediated by the exchange

of a gauge boson. These mediators are represented in �eld theory by a gauge �eld.

Some of the other properties that are used to distinguish between the di�erent types

of particle can be determined from symmetries of the Lagrangian. Other information

can be gained directly from the equations of motion.

We know that elementary particles obey relativistic energy-momentum relations

from which we can formulate the equations of motion of our �elds. In relativis-

tic quantum mechanics (which can be formulated as a classical �eld theory), spin
1
2 particles are described by the Dirac equation. Dirac's formulation required an-

tiparticles; for instance, the corresponding antiparticle to the electron would have

the same mass, but opposite charge. Antiparticles were con�rmed when a positive

particle with mass of the electron (positron) was discovered by Anderson in 1932 [3].

Initially the proton and the electron were both considered to be fundamental

particles, and hence their magnetic moments could be calculated from the Dirac

equation. In classical �eld theory, Dirac's magnetic moment is exact. In quantum

�eld theory interactions modify the magnetic moments for this classical prediction

and the magnetic moments are parametrized by theirg factors. The Dirac magnetic

moment is then the lowest order perturbative approximation. For the electron the

experimental value is in good agreement with this prediction, but when the mag-

netic moment of the proton was �rst measured by Stern in 1932 it was � 2:5 times

larger than expected (see,e.g. Ref. [4]): the �rst indicator of proton substructure

and an indicator of more fundamental particles as the proton's constituents. The

discovery of the neutron and its non-vanishing magnetic moment, and the prediction

and later detection of the pion, were also stepping stones for explaining the strong

nuclear force. In 1934 Yukawa proposed a particle as the force carrier between the

neutrons and the protons in the nucleus as an explanation forhow the nucleus is

held together. Since the range of the force is about the size of the nucleus, Yukawa

calculated the particle's approximate mass which corresponded to the observed mass

of the pions. As this mass was� 300 times that of the electron it was called a meson

meaning \middle-weight" whereas electrons were leptons (\light-weight") and neu-
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trons and protons were baryons (\heavy-weight") [2]. However the detection of more

mesons and baryons, not to mention the muon which behaved like a heavy electron,

showed the pion-exchange model of strong interactions was 
awed and added more

complexity to the problem of describing fundamental particles and their interactions.

Eventually this led to a theoretical model (the quark model)that could predict some

of the properties of mesons and baryons given certain assumptions about the nature

of these particles as bound states resulting from the strongforce.

As more particles, of all types, were discovered they were then classi�ed by

mass, lifetime and various quantum numbers. The particle lifetimes separated weak

(� 10� 10 s) from strong (� 10� 23 s) decays. Some particles were created readily in

� 10� 23 s and decayed slowly in� 10� 10 s indicating that di�erent processes were oc-

curring for a particle's creation versus its decay [2]. Leptons did not interact strongly

which separated them into their own category, whereas mesons and baryons do in-

teract strongly so they were jointly classi�ed as hadrons. In collisions and decays,

lepton number and baryon number are conserved,1 but there is no conservation of

meson number [2]. With the discovery of these new particles,the idea of strangeness

was introduced and later re�ned. \Strange" particles wouldbe created in pairs by

the strong force, but some would then decay weakly. The strange quantum number

was introduced, and is only conserved for strong processes [2]. Gell-Mann's orga-

nization of the hadron spectrum into the eightfold way patterns further re�ned the

idea of strangeness. He organized mesons and baryons into groups by spin and then

in patterns by mass, strangeness, and charge (see Figure 1).Mesons (and baryons)

are classi�ed by the combination of quantum numbersJ , P and C as J P C where

J = 0 would represent the pseudo-scalar mesons (meson octet) and J = 1 would be

vector mesons [2].

Later the idea was introduced that hadrons were comprised ofconstituents that

were fundamental particles; Gell-Mann called these particles quarks. These con-

stituents combined to form mesons (which have integer spin)as a quark/antiquark

1Note that some theoretical models permit proton decay and neutrino oscillations represent a
lepton number violating process
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Figure 1.1: The eightfold way represents patterns of the lightest hadrons organized
by chargeQ in units of proton charge and strangenessS

pair and baryons (which have half-integer spin) as three quarks and antibaryons as

three antiquarks. These quarks had di�erent 
avours up (u), down (d), and strange

(s) which, when arranged according to certain rules resulted in the eightfold way

patterns. In order to predict the proper charges and spins ofthe hadrons, the quarks

needed to be spin1
2 and the di�erent 
avours needed to have fractional charges with

the d and s having charge� 1
3 jej and u has charge +2

3 jej where jej is the charge of

a proton. Since the mass of theu and d quarks are approximately equal, there is

no strong interaction distinction between them; hence there is an internal symmetry

(with mathematical analogies to spin) that can help classify how these quarks form

hadrons. This quantum number is called isospin and is conserved in strong processes.

The patterns in the meson and baryon spectra can also be determined directly from


avour symmetries in the Lagrangian, that is, they can be con�rmed theoretically

through calculation if we assume thatmd ' mu ' ms. The discovery of even heavier

particles required the addition of more 
avours: charm (c), bottom (b) and top (t);

however the 
avour symmetry is usually not extended to theseparticles due to large

increases in the quark masses.

The quark model successfully describes the patterns of the hadronic spectrum.

However, we still need some particle to act as the force carrier for the strong force,

since the discovery of heavier mesons complicated Yukawa'smodel (which was also

non-renormalizable). We want to have a model where at the most fundamental level

the interactions are between quarks. We call the mediator for the strong force the

gluon, the strong charge is called colour and the resulting theory is called quantum

chromodynamics (QCD). However, individually free quarks and colour have not been
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observed, so we assume there is some mechanism that con�nes colour and/or quarks

to the bound states of hadrons.

Some scattering processes result in short-lived strongly interacting particles. From

experimental results there are meson-like particles that are not readily classi�ed

within established quark-antiquark patterns, so we need toconsider other possible

combinations of states to describe these particles. Withinthe standard model, there

are particles predicted by QCD, other than the conventionalquark-antiquark mesons

that could describe these particles. Hybrid mesons comprised of a quark-antiquark

pair and gluonic content are possible candidates. Hybrid mesons come in two types:

exotic and non-exotic. Exotic hybrids do not share combinedquantum numbers

J P C with the standard mesons, while non-exotics have the sameJ P C as conven-

tional mesons and are therefore hard to isolate from the spectrum. A mathematical

description of the hybrid meson is required in order to studythese states.

In the following sections some particle physics and �eld theory background is

presented, which leads to a discussion of the basic mathematical procedure and

techniques needed to describe elementary particles. In Chapter 2, I will discuss some

of the standard methods used to calculate quantities from �eld theory and reproduce

a calculation [5] for a speci�c non-strange non-exotic hybrid meson candidate with

J P C = 1 �� . Chapter 3 contains the original work of this thesis, where Iwill extend

this calculation to higher-order in perturbation theory to improve the description

of this speci�c non-exotic hybrid. In Chapter 4, I analyze myresults and conclude

that the higher-order corrections are substantive and could therefore be important

in predictions of the hybrid mass. The Appendices contain conventions, and details

of my calculations.
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1.2 Lagrangian Field Theory

There are mathematical constraints we can use to describe how quark and gluon �elds

interact via colour and what a bound quark state would look like mathematically;

in order to describe this we need Lagrangian mechanics and some group theory

concepts. The Lagrangian formulation provides a mathematical way to describe the

di�erent types of particles and their interactions (seee.g., Ref. [6]). Information on

conserved quantities can be obtained from the actionS or from symmetries of the

LagrangianL . The action is given by an integral of the Lagrangian densityover all

spacetime (normally this density is just referred to as the Lagrangian)

S =
Z

d4x L (�; @� � ) : (1.1)

From the principle of least action (�S = 0), if the action is varied such that the �eld

� is �xed on the boundary of the integration region (that is�� = 0), then

0 = �S =
Z

d4x
�

@L
@�

�� +
@L

@(@� � )
� (@� � )

�

=
Z

d4x
�

@L
@�

�� � @�

�
@L

@(@� � )

�
�� + @�

�
@L

@(@� � )
��

��
:

(1.2)

The four-divergence piece in the last term in the second linecan be written as a

surface integral via Gauss's theorem. The surface integralis zero which leaves the

Euler-Lagrange equation (seee.g., Ref. [6])

@�

�
@L

@(@� � )

�
�

@L
@�

= 0: (1.3)

The principle of least action gives the Euler-Lagrange equation (1.3), so this equation

is valid for any �� that vanishes on the boundary. Symmetry transformations leave

the Lagrangian invariant up to a four-divergence and leads to conserved (Noether)

currents when the �eld satis�es the equations of motion. If aparticle's equation

of motion is known, it is possible to work backwards and determine a Lagrangian

that gives the equation. However this approach is not uniqueand constraints are

necessary to specify the Lagrangian that suitably represents a quantum �eld. From

symmetries of the Lagrangian, the conserved quantities of the theory can be found,
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and so the Lagrangian should re
ect the actual conservationlaws. The Lagrangian

is also invariant for gauge transformations, so these gaugesymmetries should emerge

from a conserved quantity. There are also other constraintson the Lagrangian; space-

time symmetries need to be preserved, so the Lagrangian alsoneeds to be Lorentz

invariant. The Lagrangian is also required to be renormalizable; speci�cally, any

quantum �eld theoretical divergences should be able to be systematically absorbed

into the Lagrangian without introducing extra terms.

1.3 Symmetries

Group theory is a valuable mathematical language to describe and compare the sym-

metries of a theory. Conserved properties of the particles correspond to symmetries

of the theory; transformations of the �elds that leave the Lagrangian invariant result

in conserved quantities. If we want our �elds to obey certainconservation laws, the

Lagrangian should be invariant under the appropriate transformation. Quantities

like electric charge, total angular momentumJ , and for strong interactions colour,

parity, 
avour and charge conjugation are physically important conserved quantities.

Properties associated with conservation of colour and 
avour can be determined by

considering speci�cSU(N ) symmetries in the Lagrangian. These globalSU(N )

transformations leave the Lagrangian invariant. If we require the Lagrangian to also

be invariant locally, we need to add terms to our Lagrangian in order for the in-

variance to be maintained. A unitary transformation operator U, where the �eld is

represented by , has the form

U = ei� a (x)ta
 ; (1.4)

which has the in�nitesimal expression

U = (1 + i� a (x) ta)  ; (1.5)

where� a (x) are free local parameters andta are Hermitian generators of the transfor-

mations. The generators satisfy a commutator algebra involving a linear combination

7



of the rest of the generators, so

�
ta; tb

�
= if abctc; (1.6)

wheref abc are the structure constants of the group and are totally antisymmetric in

their indices [1]. Whenf abc 6= 0 we have a non-Abelian theory. However, when we go

from a global symmetry transformation to a local one we require the Lagrangian to

be invariant under the transformation with � a (x) as an arbitrary function of x [6].

As will be shown below, this requires replacement of terms inthe Lagrangian that

have partial derivatives with covariant derivatives in order to maintain the invariance

locally.

Group theory allows us, once we have ascertained that our transformation can

be placed in a particular group, to then use the algebraic properties of the group to

stream-line our calculations. The strong force has three types of charge or degrees

of freedom. This colour degree of freedom allows us to maintain an anti-symmetric

quark wave function [1] in otherwise symmetric states like the � ++ particle which

has a symmetric �eld in terms of 
avour, spin and space, because it is a spin 3
2

particle composed of threeu quarks,

	 � ++ =

symmetric
z }| {
	 spin 	 SU(3) f lavour 	 space

antisymmetric
z }| {
	 colour : (1.7)

We postulate2 that quarks transform under colour symmetries asSU(3) and that

the anti-symmetric colour state is a colour singlet. We refer to a colour singlet as

\colourless". That is, we need the composite particles (baryons and mesons) to

transform trivially under SU(3)colour since we do not observe particles with colour

charge. Colour is a useful analogy because referring to the charges as red, blue

and green allows us to use the colour theory analogy red + blue+green = white

(colourless) for baryons. We also need to consider the possibility anti-red + anti-blue

+anti-green = white for anti-baryons and then also anti-red+ red = white, and so

forth, for mesons. This analogy captures the underlying mathematical properties of

SU(3).

2This postulate is supported by empirical evidencee.g., e+ e� annihilation into hadrons.
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Isospin can be represented bySU(2) 
avour symmetry for u and d quarks,

whereas 
avour symmetry for light quarks (u; d; s) and can be represented bySU(3).

These 
avour symmetries are not exact as the masses of the quarks are not equal, but

otherwise the strong interaction is apparently 
avour blind. The observed experi-

mental light (ground state where~L = 0) baryon and meson spectra have the eightfold

way patterns described in Section 1.1; if we consider only light quark 
avours we can

use SU(3) 
avour symmetry to predict this pattern. The patterns were predicted

assuming that the strong force \sees" the light quarks equally except for small di�er-

ences in masses (compared to hadron scales). Then a quark/antiquark combination

hasSU(3) 
avour symmetry of 3� 
 3 = 1 � 8 and forms the observed meson patterns.

For baryons the three quarks result in the symmetry 3
 3
 3 = 1 � 8� 8� 10. Thus

if SU(3) 
avour symmetry was perfect, there would be an 8-fold degeneracy in the

masses of the mesons, but the symmetry is broken by the mass terms in a systematic

way which allows us to describe it using group theory. By including spin to get an

SU(6) symmetry the Gell-Mann Okubo mass relations can predictthe masses of the

lightest states to � 20%, if we consider the quarks as fundamental particles with

appropriately chosen masses [4].

The QCD Lagrangian for strong interactions preserves the 
avour and the colour

symmetries of our quark �eldsqA (x) where A is a 
avour index. Writing the free

Dirac Lagrangian for our quark �eld, we have

L quark =
X

A

�qA (i@=� mA ) qA ; (1.8)

where @== 
 � @� , 
 � are matrices that satisfyf 
 � ; 
 � g = 2g�� and mA is the quark

mass (for details on units and conventions see Appendix A). However, as was noted

earlier, in order for our Lagrangian to be invariant locallywe need to write it in

terms of the covariant derivativeD � de�ned by

D � = @� � igsAa
� ta; (1.9)

wheregs is the strong coupling constant and theta are the generators ofSU(3) ap-

propriate to the �eld on which they are acting and we have a gauge �eld Aa
� for every
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generator (the colour indexa can be considered as a column vector with eight entries

a 2 f 1� � � 8g for gluons). This means that if we want our Lagrangian to be invariant

under local gauge �eld transformations, we must replace ourpartial derivatives with

covariant derivatives. That is, @� ! D � in our quark �eld Lagrangian, so that

L quark = �qA (iD= � mA ) qA : (1.10)

Following Peskin and Schroeder [6], we note that this invariance is contingent upon

the following in�nitesimal gauge transformation of the gluon �eld Aa
� , which can be

written as

Aa
� ! Aa

� +
1
gs

@� � a + f abcAb
� � c; (1.11)

where � a are the transformation parameters introduced in (1.4). Thecovariant

derivative has the algebraic relation [6]

[D � ; D � ] = � igsGa
�� ta; (1.12)

where the strong �eld strengthGa
�� can be written as

Ga
�� = @� Aa

� � @� Aa
� + gsf abcAb

� Ac
� : (1.13)

The last term in (1.13) re
ects the non-Abelian nature ofSU(3) and should be

contrasted with the analogue in electromagnetic theory. Wewant our Lagrangian

for the strong force to be gauge invariant so

L gauge = �
1
4

Ga
�� Ga�� ; (1.14)

and we can then write down our QCD Lagrangian as

L = �
1
4

Ga
�� Ga�� + �qA (iD= � mA ) qA : (1.15)

However, like in QED, the gauge �elds have states that correspond to non-physical

polarizations and so we need to include some form of gauge condition. Unlike in QED,

the gauge �xing in itself is not enough to remove the unphysical gluon polarizations.

We also require the addition of another (ghost) �eld to our Lagrangian for which we

may use the path integral to formulate.
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1.4 Path Integral in Quantum Field Theory

We want to describe mathematically how �elds propagate and interact. Processes

in quantum �eld theory can be calculated from the generatingfunctional Z [J ]. This

functional describes the time evolution of the �eld from an initial state to a �nal

state [7]. For example, a free real scalar �eld' would have the vacuum-to-vacuum

amplitude Z f ree [J ] in the presence of a sourceJ

Z f ree [J ] = < 0je� iHT j0 >

=
Z

D'e iS (' )

=
Z

D'e i
R

d4xL (@� ';' )+ J'

=
Z

D'e i
R

d4xf [� 1
2 ' (@2+ m2) ' + J ' ]+ i �

2 ' 2g;

(1.16)

where the integral is over all possible �eld con�gurations and depends on the action.

The source/sink term J(x)' (x) in the Lagrangian allows us to describe our free

�eld as propagating in spacetime and being created and annihilated. The i
2 �' 2 term

involves an implicit limit � ! 0+ , and is introduced to ensure the path integral is

convergent. This integral can be solved by completing the square which gives us a

known Gaussian integral, resulting in

Z f ree [J ] = e� [ i
2

R R
d4xd4yJ (x)D (x� y)J (y)]; (1.17)

where we have applied the normalization conditionZ f ree [J = 0] = 1 and where

D(x � y) is a Green function which satis�es

�
@2 + m2 + i�

�
D(x � y) = � i� 4(x � y): (1.18)

Equation (1.18) has the solution

D(x � y) =
Z

d4k
(2� )4

i
k2 � m2 + i�

e� ik �(x � y) ; (1.19)

which is the scalar free �eld propagator where thei� term corresponds to the Feyn-

man prescription for the integration around the poles [6]. If we include a' 4 term
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in the Lagrangian, then it corresponds to an interaction. However, we no longer

know the solution of the integral, so we use a perturbative expansion and consider

the solution term by term. Following [7], the expansion in terms of the number of

sourcesJ is

Z [J ] =
Z

D'e i
R

d4xf 1
2 [(@')2 � m2 ' 2]+ J' � �

4! ' 4g

=
1X

s=0

i s

s!

Z
d4x1 � � �

Z
d4xs [J (x1) � � � J (xs)]

�
Z

D'e i
R

d4xf 1
2 [(@')2 � m2 ' 2]� �

4! ' 4g' (x1) � � � ' (xs)

= Z [0]
1X

s=0

i s

s!

Z
d4x1 � � �

Z
d4xs [J (x1) � � � J (xs)] Gs (x1; � � � ; xs) ;

(1.20)

where the last line is written in terms of the s-point Green function Gs(x1; � � � ; xs).

These Green functions can be written in terms of functional derivatives with respect

to J

Gs(x1; � � � ; xs) =
1

Z [0]

Z
D'e i

R
d4xf 1

2 [(@')2 � m2 ' 2]� �
4! ' 4g' (x1) � � � ' (xs)

=
1

Z [J ]
e� i �

4!

R
d4w[ �

i�J ( w ) ]
4

�
�

i�J (x1)

�
� � �

�
�

i�J (xs)

�
Z f ree [J ]

�
�
�
�
J =0

=
1

Z [J ]
e� i �

4!

R
d4w[ �

i�J ( w ) ]
4

�
�

�
i�J (x1)

�
� � �

�
�

i�J (xs)

�
e� [ i

2

R
d4xd4yJ (x)D (x� y)J (y)]

�
�
�
�
J =0

:

(1.21)

An event that could be thought of as having two sources and twosinks would be

described in terms as a four-point Green function (s = 4) corresponding to

G4(x1; x2;x3; x4) = hT (' (x1)' (x2)' (x3)' (x4)) i

=
1

Z [J ]

�
�

i�J (x1)

� �
�

i�J (x2)

� �
�

i�J (x3)

� �
�

i�J (x4)

�
Z [J ]

�
�
�
�
J =0

;
(1.22)

where omitted initial and �nal states correspond to vacuum expectation values. We

can expand the interaction term in terms of the �eld couplingstrength � . The lowest

order in � term for a four-point Green function would be

G4(x1; x2; x3; x4) =
1

Z [J ]

�
�

i�
4!

� Z
d4w

�
�

i�J (w)

� 4

�
�

i�J (x1)

� �
�

i�J (x2)

� �
�

i�J (x3)

� �
�

i�J (x4)

�
Z f ree [J ]

�
�
�
�
J =0

(1.23)
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G4(x1; x2; x3; x4) = �
i�
4!

Z
d4w

�
�

i�J (w)

� 4 �
�

i�J (x2)

� �
�

i�J (x3)

� �
�

i�J (x4)

�

�
1
2

Z
d4y1D(x1 � y1)J (y1)

Z f ree [J ]
Z [J ]

�
�
�
�
J =0

= �
i�
4!

Z
d4w

" �
D(x1 � w)D(x2 � w)D(x3 � w)D(x4 � w)

+ D(x1 � x2)D(x3 � w)D(x4 � w)D(0)

+ D(x1 � x2)D(x3 � x4)D(0)D(0)
�

Z f ree [J ]
Z [J ]

�
�
�
�
J =0

+ more terms

#

:

(1.24)

In the �rst line only one of the functional derivatives has been taken and in the last

line all the derivatives have been taken. However, there aremany possible combina-

tions that will eventually result in the same contribution so I have only shown several

of the possible terms. The �rst term shown will result in a \connected"diagram.

This term corresponds to an interaction, and there are othersimilar terms that will

also contribute. The second and third terms will result in \disconnected" diagrams.

These terms do not correspond to an interaction and will not contribute to the pro-

cess of physical relevance. We can represent these terms diagrammatically in Figure

1.2 where the straight lines represent the propagatorsD(x1 � w) and so on, and the

dot represents the interaction (� i� )
R

d4w in position-space. Diagram (a) is \con-

nected" and corresponds to the �rst term in the last line of (1.24). Diagrams (b)

and (c) are \disconnected" and correspond to terms two and three where theD(0) is

represented as a loop atw. These terms are vacuum-bubbles which are cancelled by

contributions from the 1
Z [0] factor. Each of the terms that is not shown has similar

diagrams involving permutations ofx1; x2; x3, and x4. Only the connected diagram

(a) needs to be calculated; in fact, the connected Green functions can be isolated by

the generating functionalW[J ] = log Z [J ]. There are 4! possible combinations, so

the �nal result would be

G4(x1; x2; x3; x4) = ( � i� )
Z

d4wD(x1 � w)D(x2 � w)D(x3 � w)D(x4 � w); (1.25)
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which is in terms of the free �eld propagators and the coupling constant � . Also it

is more convenient to Fourier transform and work in momentumspace.

Figure 1.2: Diagrammatic representations for the four-point Green function of scalar
�elds with a �' 4 interaction.

For higher-order in� terms the four-point function would have more complicated

diagrams that would be evaluated following the same process. These diagrams could

then be compared to the mathematical results and would have the same basic com-

ponents, that is, they would be expressed only in terms of powers of the coupling

constant and the free �eld propagators. Note that some of these processes would

have loops in the connected diagrams. The loop propagators have momentumk that

is arbitrary, so in order to include all possible combinations we include an integral

over the loop momentum:
R

d4k. We can then formulate Feynman rules for how

to calculate any desired term since the interactions are described by vertices (� i� )

in momentum-space and propagating particles are describedby the propagator in

momentum-space. However, these integrals may introduce divergent quantities into

the theory, because very small and large momenta are included within the integra-

tion.

This systematic expansion will allow us to set up the calculation for whatever or-

der in the coupling constant we desire and is most useful whenthe coupling constant

is small. In QCD we would like to work in the energy region where the coupling

constant is small enough for perturbation theory to be valid; this occurs when there

are large momentum transfers because QCD is an asymptotically free theory [8].

However, sometimes the constraints of the problem correspond to energies where

perturbation theory is not particularly accurate, and someform of non-perturbative
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physics needs to be included to supplement the perturbativecalculations. One ap-

proach, is to consider condensates within the operator product expansion [9]. We

now have a process for describing the correlation function as a perturbative series

plus condensates, and now we need to adapt this procedure to describe QCD �elds.

The path-integral formalism for QCD requires that we �rst incorporate the spin

statistics of our fermion �elds into the path-integral. Then we need to �nd the free

�eld propagator and expand the generating functionalZ perturbatively for QCD.

For free fermionsZ [0] is given by

Z f ree [0] =
Z

D 
Z

D � e i
R

d4x � (i@=� m+ i� ) ; (1.26)

where if we consider the Dirac spinors and � to be Grassmann quantities, we can

maintain the proper statistical properties of and � . We can then integrate over our

fermion �elds from the known properties of Grassmann quantities. Then following a

similar procedure to the real free scalar �eld we can �nd the free �eld propagator

S (x � y) =
Z

d4k
(2� )4

ie� ik �(x � y)

k= � m + i�
; (1.27)

corresponding to the momentum-space result

S (p=) = i
p=+ m

p2 � m2 + i�
: (1.28)

Quark �elds have an extra index (colour), but quarks can onlyexchange colour

via interactions, and so have the same propagator (1.28) with an implicit identity

matrix in colour space. For quark/gluon and gluon/gluon interactions we can use

the path integral to determine the Feynman rules in a way analogous to (1.24). We

could also describe more complicated objects such as our hybrid using this approach.

For the gluon �eld we want to quantize the gauge �eld. Following Section 16.2

of Peskin and Schroeder [6], we have the functional integralfor pure gauge theory

Z =
Z

DAei
R

d4x
h
� 1

4 (Ga
�� )2 i

: (1.29)

This integral will contain �eld con�gurations that do not co rrespond to physical

quantities. These contributions are related to unphysicalgluon polarizations. Also
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since we integrate over all possible �eld con�gurations, weinclude an in�nite number

of gauge �elds that are related to each other by a gauge transformation. These

con�gurations lead to the same action, and are not independent of each other. We

introduce a gauge �xing parameter to remove these con�gurations from our solution.

Following Faddeev and Popov's [10] method as outlined in [6], we constrain our gauge

�xing term ( G(A) = 0) by inserting the following identity into our functiona l

1 =
Z

D� (x)� (G(A � )) det
�

� (G(A � ))
��

�
; (1.30)

where � represents a gauge transformation [6]. This constraint allows us to iso-

late the �eld con�gurations that correspond to gauge-transformed terms; we can

then represent unphysical �eld con�gurations by a new �eld and �nally cancel these

states out by adding the appropriate terms to the Lagrangian. The �eld A �
� has

the transformation properties de�ned in Section 1.3. The functional integral then

becomes
Z

DAeiS [A ] =
� Z

D�
� Z

DAeiS [A ]� (G(A � )) det
�

� (G(A � ))
��

�
; (1.31)

where we choose the generalized Lorentz gauge condition with Gaussian weightwa(x)

G(A) = @� Aa
� (x) � wa(x); (1.32)

resulting in the gauge �eld propagator

� abD �� (x � y) =
Z

d4k
(2� )4

� i� ab

k2 + i�

�
g�� � [1 � � ]

k� k�

k2

�
e� ik �(x � y) (1.33)

where � is a freely adjustable gauge parameter. However, we often use � = 1 which

corresponds to the Feynman-'t Hooft gauge. Again usingG(A) as in (1.32) and the

in�nitesimal form of the gauge transform (1.11), we know

�G (A � )
��

=
1
g

@� D � : (1.34)

The determinant in (1.31) was rewritten by Faddeev and Popovas a functional

integral over a new set of anticommuting �elds with

det
�

1
g

@� D �

�
=

Z
DcD�ce[i

R
d4x �c(� @� D � )c]: (1.35)
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The �elds c and �c are anticommuting but transform as Lorentz scalars, that is, they

do not correspond to the usual spin-statistical propertiesof physical �elds. However,

their inclusion allows us to remove the non-physical �eld con�gurations. These �elds

are called Faddeev-Popov ghosts, and they have the Lagrangian

L ghost = �ca
�
� @2� ac � g@� fabcAb

�

�
cc: (1.36)

From (1.36) we can formulate Feynman rules for propagators and the vertices of

ghost �elds by following the usual procedure.

1.5 Basic Feynman Rules in QCD

The Feynman rules that are needed for further calculation inChapters 2 and 3 are

included in Appendix A in Section A.3 in Table A.1. For example the Feynman

rule for quarks would be the fermion propagator on the right hand side of (1.28)

represented by a line as shown in Table A.1 with the implied colour and 
avour

structure. In Section 2.3 the left hand side of (1.28) is usedfor quark �elds but with

S�� (p=) where � and � are added colour indices. The gluon propagatorD ab
�� (k) in

the Feynman-'t Hooft gauge� = 1 has Feynman rule given by

D ab
�� (k) =

� ig�� � ab

k2 + i�
: (1.37)

This is also seen from (1.33) and the diagrammatic expression is given in Table A.1.

The gluon self-energy (see Figure 3.4) which is calculated in Chapter 3 contains a

gluon loop and a ghost loop (see Figure 1.3) to maintain the physicality of the process.

As a simple example of how the Feynman rules are implemented,the amplitude for

the ghost loop is given by

� �� (q) =
1

� 2�

Z
d4k

(2� )4

�
i� gd

k2 + i�

� �
� gsf dack�

� �
i� ce

(k � q)2 + i�

� �
� gsf ebg(k � q)�

�
:

(1.38)

The �rst and third terms in (1.38) are ghost propagators chosen such that four-

momentum is conserved at each vertex and the second and fourth are ghost-gluon

17



vertices. There is also an integral over loop momentumk included. This integral is

divergent as can be seen by comparing powers ofk in the numerator to those in the

denominator. However, if the divergence is treated in a certain way calculation is

still possible. In general, the �rst step is to regulate the integral to parametrize the

divergence; dimensional regularization is used in this thesis for this purpose. The

second step is to renormalize the results by systematicallyadjusting the physical

parameters of the theory to absorb the divergent terms.

Figure 1.3: Ghost loop contribution to the gluon self-energy.
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Chapter 2

Leading-Order Calculation

2.1 Hybrid Mesons

Hybrid mesons with some combination of quark-antiquark andgluonic content are

predicted by the standard model since there is a hybridSU(3) colour singlet in

group theory for this combination. Gluons carry one unit of colour and one of

anticolour corresponding to a colour octet 8 inSU(3) [2]. The combinations 8
 8 =

1� � � � and 3� 
 3
 8 = 1 � � � � are product representations decomposed into a direct

sum of irreducible representations which include colour singlet 1 states. Thus it is

theoretically possible to have glueballs which are particles made entirely of gluons

(8
 8) or hybrids that are composed of a quark, an antiquark and a gluon (3� 
 3
 8).

For the ground state (~L = 0), hybrid mesons would have total angular momentum

J = 1 
 1
2 
 1

2 = 0; 1; 2.

In the charmonium meson spectrum there are particles, withJ P C = 1 �� [like the

Y (4260)], that are in excess of the predictedq�q meson states. The most attractive

explanation for theY (4260) is that it is a hybrid meson [11] since Ref. [12] calculated

using the 
ux tube model that the lightest hybrid charmonium state would have a

mass of� 4200 MeV. TheY (2175) has been proposed as a strangeonium version

of the Y (4260), because theY (2175) has similar production characteristics and

decays [13]. TheY (2175) hasJ P C = 1 �� [14, 15, 16] and is below thec�c threshold,

so it is a possible light or strangeonium hybrid (q�qg) where the quarks are some

combination of u; d and s. Ref. [5] calculated the �rst-order perturbative correction

and the non-perturbative terms and obtained a possible massfrom QCD sum-rules of

2:3� 2:6 GeV with the range depending on their chosen quark content (massless case

19



for lowest mass ands�s for highest). However theY(2175) decays to� (1020)f 0(980)

[16], so it is likely to haves quark content because the� is a s�s meson.

Other possible theoretical interpretations for theY(2175) have been suggested;

Ref. [17] suggests that the tetraquark scenario is unlikely, since the experimental

width is narrower than would be expected for a tetraquark state. Other possible

explanations for theY(2175) include a resonance ofK �K meson bound state [18].

Refs. [13, 17] calculated the mass and allowed decay products for various hybrid

models and concluded that their mass and width predictions were consistent with

the Y (2175) and that a more precise experimental determination of the decays would

better identify the best theoretical candidate.

The mass calculated from sum-rules by [5] is higher than theY(2175) mass. How-

ever the next-to-leading order perturbative correction may be sizeable; calculating

this correction will produce a more accurate sum-rule that will then provide a more

precise determination of the mass facilitating better comparison with experiment. In

Section 2.5, I will reproduce the leading-order perturbative correction in the chiral

limit (massless or light quark case) calculated by [5] for a current that represents a

vector particle with J P C = 1 �� . In Chapter 3, I will calculate the second-order per-

turbative corrections in the chiral limit for this same current. Including the strange

quark mass requires an expansion to orderm2 where m is the strange quark mass.

The chiral limit is the �rst step in calculating the second-order m2 corrections, since

the three-loop integrals that are produced in the chiral limit form the basis for the

entire calculation. Including the m2 correction at next-to-leading orders requires a

drastic increase in the number of integrals computed and thechiral limit has a large

number of integrals as it is. However, the integrals required for the O (m2) terms are

a basic generalization of those calculated in the chiral limit, so the massless case is

the �rst stage of this calculation and it also provides the necessaryO (m0) term in

the m2 expansion.
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2.2 Current for Hybrid Mesons

Quark con�nement necessitates that a particle with quark content is mathemati-

cally represented by a current which is constructed as a composite operator with

the appropriate �eld content. Thus, particles with a speci�c J P C can be described

mathematically via a current where properties of the particle are manifested through

the current. The current is constrained to have certain qualities: a Lorentz structure

that corresponds to the desired parity and spin, is a colour singlet, and a valance

quark/gluon content appropriate to a hybrid state. We can calculate the current's

correlation function (both the perturbative terms and Wilson coe�cients of conden-

sates) via Feynman diagrams. A correlation function is simply the Green function of

the currents (composite operators). In order do this calculation, the Feynman rules

for the vertex function for this current need to be determined. The hybrid current

of interest given by [5] is

J� (x) = gs �q�
A (x)
 � 
 5ta

��
~Ga

�� q�
B (x); (2.1)

where ta
�� =

� a
��

2 with � a
�� being the Gell-Mann matrices with properties de�ned in

Appendix A.2 , q�
A (x) and q�

B (x) are the quark and antiquark �eld operators,
 � and


 5 are Dirac gamma matrices with relations de�ned in (A.2), (A.3), A and B are


avour indices, and the dual �eld strength ~Gc
�� is

~Gc
�� =

1
2

� ���� Gc �� ; (2.2)

where� ���� is the totally antisymmetric tensor in four dimensions. Thecurrent (2.1)

would permit the study of a hybrid meson withJ P C = 1 �� or 0�� . Parity and charge

conjugation are quantum numbers that are conserved in the strong interaction. The

parity P operator describes re
ection symmetry; it transforms spatial systems from

right-handed to left-handed and vice versa [4]. The charge conjugation operatorC is

the formal expression of particle/anti-particle exchange. The parity of this current

is

� (� 1)� (� 1)� [� (� 1)� ] = ( � 1)� (2.3)
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following the conventions used by [6] where� (� 1)� (� 1)� is from the dual tensor

and � (� 1)� piece is from
 � 
 5 . The (� 1)� indicates that a particle represented by

this current has the same parity as a vector meson which isP = � in J P C . The

charge conjugation of the current has +1 from the
 � 
 5 part and � 1 from ~G as [19]

C [A � ; A � ] C � 1 =
�
� AT

� ; � AT
�

�
(2.4)

[A � ; A � ] =
�
Aa

� � a; Ab
� � b

�
= if abc� aAb

� Ac
� (2.5)

�
� T

a ; � T
b

�
= � ([� a; � bT])T = � if abc� T

c ; (2.6)

and therefore C = � in J P C . The combination of the Lorentz transformations

properties ofJ� and its P C values implies that the current can probe 1�� states.

2.3 Feynman Rules for the Current

The interactions of the current (2.1) with quarks and gluonswould be represented

at the order gs by Figure 2.1 where 1� � 2; � 3 � 3 and 1� a1 � 8 are colour indices.

The Green function
Z

d4x1d4x2d4x3d4ye� i (p1 �x1+ p2 �x2+ p3 �x3+ p�y)


0

�
�T

�
q� 3 (x3) �q� 2 (x2) Aa1

� 1
(x1) J � (y)

	 �
� 0

�

= gs [iS � 3 � (� p=3)] 
 � 
 5ta
��

�
iS �� 2 (p=2)

�
� ����

�
iD aa1

�� 1
(p1)

�
[ip1]� ;

(2.7)

represents this process. There is also an implicit delta function that enforces four-

momentum conservation at the vertex. The 
avour indices have been suppressed as


avour will be conserved at the vertex and 
avours will enter into the calculation

via the quark propagator masses in the Feynman diagrams, since the massm in the

propagator could bemd, mu or ms for light quarks. If the propagators [iS � 3 � (� p=3)],
�
iS �� 2 (p=2)

�
and

�
iD aa1

�� 1
(p1)

�
are removed from the last line we get the Feynman rule

for the vertex as shown in Figure 2.2. The diagram for the �rst-order calculation

of the hybrid correlator (see Figure 2.5), will only containthis vertex. In the next

section, I will evaluate the correlation function needed torepresent a hybrid with u,

d quark content in the massless quark case (also referred to asthe chiral limit) where

md ' mu ' 0.
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Figure 2.1: Single-gluon vertex for the hybrid current.

Figure 2.2: Vertex Feynman rule for the hybrid current with aquark, an antiquark
and a gluon.

At next-to-leading order, there is another possible vertexwhich is shown in Fig-

ure 2.3, it has the expression
Z

d4x1d4x2d4x3d4x4d4ye� i (p1 �x1+ p2 �x2+ p3 �x3+ p4 �x4+ p�y)

�


0

�
�T

�
q� 4 (x4) �q� 3 (x3) Ab1

� 1
(x1) Ab2

� 2
(x2) J � (y)

	 �
� 0

�

= gs [iS � 4 � (� p=4)] 
 � 
 5ta
��

�
iS �� 3 (p=3)

� � ����

2
[iD � 1 � (p1)]

� [iD � 2 � (p2)]
�
f ab1b2 � f ab2b1

�
;

(2.8)

where again removing the propagators and simplifyingf ab2b1 = � f ab1b2 results in the

Feynman rule shown in Figure 2.4.

2.4 Correlation Functions and Feynman Integrals

The correlation function � �� (p) of hybrid currents

� �� (p) = i
Z

d4xeip �x h
 jT f J � (x)J � (0)gj 
 i (2.9)

is a Green function of composite operators. The current is not conserved, and so

the correlation function has a longitudinal part � 0 (p2) (representing a spin zero
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Figure 2.3: Vertex for interaction of hybrid current with a quark, an antiquark and
two gluons.

Figure 2.4: Vertex Feynman rule for interaction of hybrid current with a quark, an
antiquark and two gluons.

particle) in addition to a transverse part � 1 (p2) (representing a spin one particle).

This decomposition is given by

� ��
�
p2

�
=

�
p� p�

p2
� g��

�
� 1

�
p2

�
+

p� p�

p2
� 0

�
p2

�
: (2.10)

The � 1 (p2) corresponds to the vector part which is the desired state for this calcu-

lation. � 1 (p2) can be extracted from � �� (p) through

� 1

�
p2

�
=

[p2g�� � p� p� ]
(1 � D) p2

� �� (p) : (2.11)

Feynman diagrams allow us to diagrammatically represent the correlation function

as a perturbative expansion in the coupling constant where� s = g2
s=4� , and (2.11)

is used to isolate the desired state. The spectral function has the dispersion relation

dn � ( Q2)
(dQ2)n =

1
�

1Z

t0

dt
Im� ( t)

(t + Q2)n+1 ; (2.12)
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so polynomials inQ2 = � p2 will be removed by the derivatives of the correlation

function.

The correlation function calculated from Feynman rules will be written in terms

of divergent integrals, so we need to isolate the divergences that will a�ect our results

by regularizing the integral, and then we can renormalize the correlation function.

Dimensional regularization allows us to do this systematically [22]. To regularize the

integral we work in D dimensions, sod4k=(2� )4 ! dD k=(2� )D , where D = 4 + 2 �

(the parameter � for dimensional regularization should not be confused withthe �

�rst introduced in (1.19) for propagators) and we take the limit � ! 0 after we

have calculated physical quantities [20, 22]. This allows us to do the integral and

isolate the divergences in terms proportional to1
� ; 1

� 2 ; : : : which then cancel other

divergent terms we acquire from renormalizing the bare parameters and currents.

The divergent terms that are polynomial inQ2 will be removed by the derivatives

of the dispersion relation (2.12), so these divergences do not enter into the physical

quantities. Once the divergences have been eliminated,� can be set to zero. We also

include a factor 1
� 2� where � is a renormalization scale with dimensions of mass.

The integrals can be calculated in terms of several component integrals. The

most basic dimensional regularization integral is [20]

I (�; � ) =
Z

dD k

(2� )D

(k2)�

(k2 � a2 + i� ) � : (2.13)

The k0 integral has simple poles atk2
0 = j~kj2 � i� . The discontinuity can be dealt

with by Wick-rotating the integral where k0 ! ik 0E . Then, the momentum k2 =

k2
0 � j ~kj2 = � k2

E becomes Euclidian momentumkE and dD k = idD kE . Since
R

d
 D =

2�
D
2 =�

�
D
2

�
, the integral can be written as aD dimensional volume integral where

R
dD kE =

R
d
 D

1R

0
dkE kE

D � 1 and

I (�; � ) = ( � 1)� � � i
Z

dD kE

(2� )D

(k2
E )�

(k2
E + a2)�

= ( � 1)� � � i
2

(4� )
D
2 �

�
D
2

�

1Z

0

dkE
kE

D � 1 (k2
E )�

(k2
E + a2)� :

(2.14)
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Setting y = kE =a the integral can be rewritten as

I (�; � ) = ( � 1)� � � i

(4� )
D
2 �

�
D
2

�

1Z

0

dy
1

a� � � � D
2

y� + D
2 � 1

(y + 1) � : (2.15)

This integral can be compared with the Beta function [21] which is given by

B (z; w) =

1Z

0

dt
tz� 1

(t + 1) z+ w =
� ( z) � ( w)
� ( z + w)

: (2.16)

Thus, (2.15) results in a Beta function as de�ned in (2.16) with w = � � � � D
2 and

z = � + D
2 . SinceD = 4 + 2 � the integral becomes

I (�; � ) =
Z

dD k

(2� )D

(k2)�

(k2 � a2 + i� )�

=
�
� a2

� � � � +2 i

(4� )2

�
a2

4�

� � � ( � + 2 + � ) � ( � � � � 2 � � )
� ( � ) � ( � + 2)

:
(2.17)

The result (2.17) can be generalized to solve the integrals which result from the

Feynman rules through an analytic continuation of the Gammafunctions. In the

massless case the component integrals (with
 a constant) are

Z
dD k

(2� )D

(k2)


k2 + i�
= 0: (2.18)

This integral is called a massless tadpole and evaluates to zero [22]. The simplest

non-zero one loop integral is

1
� 2�

Z
dD k

(2� )D

1
[k2 + i� ] [(k � p)2 + i� ]

=
1

� 2�

Z
dD k

(2� )D

� (2)

� (1) 2

1Z

0

dx
1

��
(k � p)2 + i�

�
x + ( k2 + i� ) (1 � x)

� 2

=
1

� 2�

1Z

0

dx
Z

dD `

(2� )D

(`2)0

`2 � a2 + i�
;

(2.19)

where, in the last line, the change of variables̀= k � xp and � a2 = p2x (1 � x) have

been made. The integral is now in the form of the basic dimensional regularization
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result (2.17) with � = 2 and � = 0:

1
� 2�

1Z

0

dx
Z

dD `

(2� )D

(`2)0

`2 � a2 + i�

=

1Z

0

dx [x (1 � x)]� (� 1)� �
� p2

� 0 i

(4� )2

�
p2

4�� 2

� � � ( � + 2) � ( � � )
� (2) � ( � + 2)

=
i

(4� )2

�
� p2

4�� 2

� � � (1 + � ) � (1 + � ) � ( � � )
� (2 + 2 � )

:

(2.20)

In the last line, the integral overdx has been calculated in terms of a Beta function.

The generalized one loop integrals have the form and solution

1
� 2�

Z
dD k

(2� )D

kf � 1 � 2 ��� � u g

[k2 + i� ]r [(k � p)2 + i� ]s
=

=
i

(4� )2

�
�

p2

4�� 2

� � pf � 1 � 2 ��� � u g

p2(r + s� 2)

�( u + 2 � r + � )�(2 � s + � )�( r + s � 2 � � )
�( r )�( s)�( u + 4 � r � s + 2� )

;

(2.21)

where the term kf � 1 � 2 ��� � u g is a traceless symmetric tensor (for example in the two

index casekf � 1 � 2g = k� 1 k� 2 � k2

D g� 1 � 2 ). The cases where the number of indicesu are

zero, one and two are shown in [20] and are useful for calculating the leading order

perturbative result for the hybrid correlator.

2.5 First Order Calculation of the Hybrid Corre-

lation Function

Using Feynman rules to construct a mathematical expressionfor the leading-order

diagram depicted in Figure 2.5 gives us the following expression for the �rst-order
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perturbative contribution to the hybrid correlation funct ion

� �� (p) = � i
Z

d4k
(2� )4

Z
d4q

(2� )4
Tr

�
igs� ���� q� 
 � 
 5 t

a

�
i (p=� k=+ m)

(p � k)2 � m2 + i�

�

� igs� �� �� (� q� ) 
 � 
 5 tb

�
i (q=� k=+ m)

(q � k)2 � m2 + i�

� �
� i

g�� � ab

q2 + i�

��

= � ig2
s

1
� 4�

Z
dD k

(2� )D

Z
dD q

(2� )D
Tr

�
tbtb

	
Tr

�
� �

��� � ���� iq� 
 �

�
i (k= � p=� m)

(p � k)2 � m2 + i�

�

� i (� q� ) 
 �

�
i (q=� k=+ m)

(q � k)2 � m2 + i�

� �
�

i
q2 + i�

��
;

(2.22)

where in the last line (A.3) and (A.4) have been used to simplify the expression.

Figure 2.5: Leading order diagram for the correlation function.

We can choose to work in the Feynman-'t Hooft gauge (� = 1) as the current

is gauge invariant. The numerator in Eq. (2.22) can be expanded and simpli�ed

using the computer program REDUCE which results in a number of two-loop inte-

grals. The antisymmetric tensor� �� �� is de�ned in four dimensions and dimensional

regularization requires us to work inD dimensions. Therefore� �
��� � �� �� should

be replaced by the D-dimensional continuation of the contraction identities for the

antisymmetric tensor. These identities are [23]

� ���� � �
��� = � (D � 3)

�
g��

�
g�� g�� � g�� g��

�
+ g��

�
g�� g�� � g�� g��

�

+ g�� (g�� g�� � g�� g�� )
� (2.23)

� ���� � ��
�� = � (D � 3) (D � 2)

�
g�� g�� � g�� g��

�
: (2.24)

REDUCE calculates the D-dimensional trace, so the identities (2.23) and (2.24)

used in REDUCE represent the antisymmetric tensor. Using the computer program
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REDUCE to simplify the Dirac trace in (2.22) and calculatingthe resulting Feynman

integrals produces

� 1

�
p2

�
=

� s

� 3
p6

�
� p2

4�� 2

� 2� 2 (4� 3 + 12� 2 + 11� + 3)

(2 + � )2

[� (3 + � )]3 � ( � 4 � 2� )
� (6 + 3 � )

; (2.25)

which has the� expansion

� 1
�
p2

�
= �

� s

� 3

�
1

480�
+

�

 E

240
�

77
9600

�
+ O(� )

�
p6

�
� p2

4�� 2

� 2�

= �
� s

� 3
p6

�
1

480�
+

�

 E

240
�

77
9600

�� �
1 + 2� log

�
� p2

4�� 2

��

= �
� s

� 3
p6

0

B
B
B
@

1
240

log
�

� p2

� 2

�

| {z }
physical part

�
1

240
log

�
1

4�

�
+

1
480�

+
�


 E

240
�

77
9600

�

| {z }
removed by derivatives of the dispersion relation

1

C
C
C
A

;

(2.26)

where 
 E is Euler's constant. In theMS renomalization scheme� 2 is rescaled such

that terms with 
 E and log
�

1
4�

�
are removed. Although this rescaling is not impor-

tant at this order, it is at next-to-leading order. The part of the perturbative �rst

order correction that contributes to further analysis is

� l:o:
1

�
p2

�
= �

� s

� 3
p6 1

240
log

�
� p2

� 2

�
(2.27)

which agrees with the result calculated in [5]. This is also the only piece that will

contribute to the sum-rules, since the1
� divergent terms are polynomials inp2, and

can be removed by derivatives of �l:o:
1 (p2).
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Chapter 3

Next-to-Leading Order Calculation of

the Hybrid Correlation Function

3.1 Overview of Diagrams

At next-to-leading order � 2
s, there are 14 diagrams as shown in Figure 3.1 where all

the gluon self-energy contributions are summed in diagram 4(see Section 3.4). These

diagrams have distinct topologies although some of them (those that are very similar

topologically) will have similar if not exact expressions resulting from Feynman rules.

3.2 Most Complicated Topology Diagram

I calculated the diagram of Figure 3.2 �rst as it has the most complicated topology

(the diagrams in Section 3.6 have similar topology), and therefore the integrals cal-

culated for this diagram should constitute most of the integrals needed to calculate

the remaining diagrams. In general I will use Latin indices for colour (a; b; a1; a2)

and Greek for space-time indices (�; �; � 1; � 2; � 1; � 2; � 3; � 1; � 2; � 3). The variablesk, `

and q are internal momenta, andp is the external momenta and I have used these

assignments for internal and external momenta through-outthe calculation. Feyn-

man rules for this diagram give ���(1) (p) corresponding to the amplitude for Figure

3.2, where the subscript (1) represents diagram number as labelled in Figure 3.1.
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Figure 3.1: Second order diagrams for the two-current correlation function of hybrid
currents.
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The expression for the diagram is

� ��
(1) (p) = � i

Z
d4`

(2� )4

Z
d4q

(2� )4

Z
d4k

(2� )4
Tr

��
i (k=+ m)

k2 � m2 + i�

�
igs
 � 2 ta2

�
�

i (q=+ m)
q2 � m2 + i�

�
igs� �� 1 � 2 � 3 [� (p � `)]� 2


 � 3 
 5 t
a

�
i (q=� =̀ + m)

(q � `)2 � m2 + i�

�

� igs
 � 1 ta1

�
i (k= � =̀ + m)

(k � `)2 � m2 + i�

�
igs� �� 1 � 2 � 3 [p � `]� 2


 � 3 
 5 t
b

�
�

� ig� 2 � 1 � a2a1

(k � q)2 + i�

� �
� ig� 1 � 1 � ab

(p � `)2 + i�

��
:

(3.1)

Figure 3.2: Diagram with the most complicated topology, labelled as (1) in Figure
3.1.

There are some simpli�cations that can be made with the indices and by using

the anti-commutation relations between
 � and 
 5 (A.3) as well as (A.4). Also

in dimensional regularization the integrals go from 4 toD dimensions. For the

remaining diagrams, I will write down the expression in D dimensions and drop the

i� terms for simplicity. Then

� ��
(1) (p) = � igs

4 C1

� 6�

Z
dD `

(2� )D

Z
dD q

(2� )D

Z
dD k

(2� )D
Tr

��
i (k=+ m)
k2 � m2

�
i
 � 1

�
i (q=+ m)
q2 � m2

�

� i [� (p � `)]� 2

 � 3

�
i (q=� =̀ � m)

(q � `)2 � m2

�
i
 � 1

�
i (k= � =̀ + m)

(k � `)2 � m2

�

� i [p � `]� 2

 � 3

�
� i

(k � q)2

� �
� i

(p � `)2

�
� �

� 1
� 2 � 3 � �� 1 � 2 � 3

�
;

(3.2)

where the constantC1 = Tr
�

ta1 tbta1 tb
	

is the colour factor for this diagram. As

in the �rst-order calculation it is the vector part of � ��
(1) (p) that is relevant for the

calculation so we want to calculate �(1)
1 (p2).
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The Dirac trace in the � 1 (p2) projection of (3.2) was calculated using the pro-

gram REDUCE in the chiral limit ( m = 0). The result from REDUCE is in terms

of four-momentum dot products, and there are some useful changes of variables that

convert these dot products into a form that allows for a systematic classi�cation of

the resulting integrals. Since

p � q =
1
2

�
p2 + q2 � (q � p)2� ; (3.3)

all of the dot products can be rede�ned this way in REDUCE. Theadvantage of this

change of variables is that the result is in terms of integrals that are easier to classify.

The integrals can be classi�ed into those that result in massless tadpoles which are

zero and nonzero integrals which were given numeric designation n1 through n66

in my REDUCE code (see Appendix C for sample code). It also makes it easier to

identify when two integrals are the same under a change of variable like k $ q. Once

the above procedure was applied to my results, I had three basic types of integrals,

two of which could be calculated from iterated one-loop integrals and a third which

could be calculated from recursion relations
�
see Appendix B.3

�
. Type one, which I

called n1; looks like

n1 (b; c; a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

1

[q]2c [q � `]2

Z
dD k

(2� )D

1

[k]2b [k � q]2
; (3.4)

wherea and c are integers, andb is a positive integer. Di�erent combinations ofb, c

and a correspond to individual numeric designations as described above; for example

n1 = n1 (1; 1; 0). The solution for (3.4) is obtained in Eq. (B.1) of Appendix B. The

second type of integral has the form

n2 (b; c; a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

1

[q]2c [q � `]2

Z
dD k

(2� )D

1

[k]2b [k � `]2
; (3.5)

where the solution for (3.5) is obtained in Eq. (B.2) of Appendix B. The third type

of integral is

n3 (a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

1

[q]2 [q � `]2 [k � q]2 [k]2 [k � `]2
; (3.6)

where the solution is again outlined in Appendix B and is given by Eq. (B.5).
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Some of the classi�ed integrals have numerator factors suchas (q � p)2 (k � `)2.

These integrals can be expanded and the result written in terms of n1, n2 and n3

integrals. However integrals that contain a factor likek� require the vector form of

the integral and integrals with terms likek� k� the appropriate tensor form ofn1, n2

or n3. These integrals are discussed in more detail in Appendix B.The numerically

classi�ed integrals from the trace calculated in REDUCE canthen be replaced by

their scalar, vector and tensor components. The trace over the colour algebra isC1

where thea1 = a index has been relabelled

C1 = Tr
�

tatbtatb
	

=
1
24

�
4
N

�
� ab� ab � � aa� bb + � ab� ba

�
+ 2

�
dabcdabc � daacdbbc+ dabcdbac

�
+

+2 i
�
dabcf abc � daacf bbc+ dabcf bac

��

=
1
24

�
� aa

�
4N �

4
N

� aa �
8
N

��
= �

2
3

:

(3.7)

Note that daac = 0, dabc is real and totally symmetric, N = 3 in SU(3), � aa = 8,

and the identity (A.9) has been used to simplify (3.7). The �nal expression for the

vector part is

� (1)
1 ( p2
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32
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2
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�
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1
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� 32� � 81� 6 � 166� 5 � 103� 2 � 184� 3 � 4 � 212� 4 � 18� 7

�
�

�
1
2 + �

�� 2
�

�
1
2 � �

�

!

+ 2
p

3�

� 27� �

�
1226� 5 + 1635� 2 + 2331� 4 + 2588� 3 + 372� 6 + 56� 7 + 540� + 72

� (1 � � )

� )

:

(3.8)

This expression still contains� , so it needs to be expanded in a Laurent series (see

Table 4.1).
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Figure 3.3: The Ravenous Bugbladder Beast of Traal diagram.

3.3 The Ravenous Bugbladder Beast of Traal

Despite its intimidating appearance, the result for the diagram in Figure 3.3 turns

out to be very simple. Note there is a trace for each fermion loop in the diagram

and a factor of� 1 for each fermion loop, so the Feynman rules for this diagramgive

� ��
(5) (p) =

i
� 6�

Z
dD `

(2� )D

Z
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(2� )D

Z
dD k

(2� )D
Tr

��
i (k= � =̀ + m)

(k � `)2 � m2

�
igs
 � 2 td

�
�

i (k=+ m)
k2 � m2

�
igs� �� 1 � 2 � 3 [� (p � `)] � 2


 � 3 
 5 t
a

�
Tr

� �
i (q=� =̀ + m)

(q � `)2 � m2

�

� igs
 � 1 tc

�
i (q=+ m)
q2 � m2

�
igs� �� 1 � 2 � 3 [p � `]� 2


 � 3 
 5 tb

� �
� i

g� 1 � 1 � ab

(� `)2

�

�
�
� i

g� 1 � 2 � cd

(p � `)2

�
:

(3.9)

The traces in (3.9) are straightforward; settingm = 0, and doing some simpli�cation

we get

� ��
(5) (p) =

� g4
s

� 6�

Z
dD `

(2� )D

Z
dD q

(2� )D

Z
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� Tr f tctagTr f tctagTr
n

(k= � =̀) 
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(q=� =̀) 
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:

(3.10)

Each trace contains
 5 , and from [24] we have an identity (3.11) which will allow the

trace to be calculated in D-dimensions

Tr f 
 � 
 � 
 � 
 � 
 5 g = 4i� ���� ; (3.11)
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so the traces reduce to momenta times antisymmetric tensors. Some terms, such as

q� q� � ���� , are zero due to symmetric contraction on an antisymmetric tensor, and

�nally

� ��
(5) (p) = g4

s
42

� 6�

Z
dD `

(2� )D

Z
dD q

(2� )D

Z
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� 2

�
� 3

�
:

(3.12)

The identities (2.23) and (2.24) can be used to expand the expression and calculate

� (5)
1 (p2) in terms of our integrals where neither the colour traces orthe algebra is

trivially zero. The colour factor C5 is equal to

C5 = [Tr f t ctag]2 =
1
24

[4� ca� ca] =
1
24

[4� aa] = 2: (3.13)

However � (5)
1 (p2) = 0 when the resulting integrals are added together and simpli�ed.

3.4 Gluon Self-Energy Diagram

Figure 3.4: Gluon self-energy diagrams.

Diagram (4) as shown in Figure 3.5 contains the gluon self-energy (see Figure 3.4)

which I will calculate in terms of integrals over loop momentum k in the massless

case. I will then insert this expression as the Feynman rule for the gluon self-energy

in diagram (4) as this will allow me to classify the results interms of loop integrals

in the same way as in previous diagrams. The gluon self-energy � �� (q) is the total
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of the diagrams (i ), ( ii ), ( iii ), and (iv ). Diagram (i ) is proportional to

Z
dD k

(2� )D

1
k2

= 0; (3.14)

so this diagram is zero. Diagram (iii ) has

� ab� ��
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�
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(3.15)

However we want �( q2) in the massless case so I will calculate1

�
�
q2

�
=

1
q2 (D � 1)

g�� � �� (q) : (3.16)

Then, for the fermion loop, the expression we want is

� ab� (iii )

�
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�
=

� 3
� 6�

4g2
s

q2 (D � 1)
Tr

�
tatb

	 Z
dD k

(2� )D

�
� (D � 2) k2 + ( D � 2) k � q

k2 (k � q)2

�
;

(3.17)

where the factor 3 appears because there are three light quark 
avours that can

occur. For the ghost loop (iv ), the Feynman rules give

� ab� ��
(iv )(q) =

1
� 2�

Z
dD k

(2� )D

�
i� gd

k2

� �
� gsf dack�

� �
i� ce

(k � q)2

� �
� gsf ebg(k � q)�

�

(3.18)

� ab� (iv )

�
q2

�
=

g2
s

� 2�
f daef ebd 1

q2 (D � 1)

Z
dD k

(2� )D

� k2 + k � q

[k2]
�
(k � q)2� ; (3.19)

1The gluon self-energy is transverse hence the projection �(q2) used in this section of the
calculation.
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and for the gluon loop (ii ) the Feynman rules give

� ab� ��
(ii )(q) =

1
2� 2�
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dD k

(2� )D
Tr

( �
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(3.20)
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1
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+ (4 D � 6) k2 � (2D � 3) (2k � q) + ( D � 6) q2

�
(k � q)2�

#

:

(3.21)

Figure 3.5: Next-to-leading order diagram containing the gluon self-energy.
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Figure 3.5 contains the gluon self-energy and is equal to
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Z
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� �
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� q� 1

�
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�
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�
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:

(3.22)

In the last line, the term proportional to q� q� is zero due to symmetry arguments.

The colour identities used aref agcf cgb = � N� ab and Tr
�

tatb
	

= 1
22 2� ab. Including

the colour factors, the �nal expression for the vector part is

� (4)
1

�
p2

�
= � 64

�
� � s

2

[4� ]4

� �
� p2

4�� 2

� 3�

p6 (1 + � )3 � 3 (1 + 2� ) (2 + � )

�
[� ( � )]4 � (2 + 3 � ) � ( � 1 � 3� )

� (3 + 3 � ) � (6 + 4 � )
:

(3.23)

3.5 Diagrams with Complicated Topology and Three-

Gluon Vertex

Figure 3.6: Diagrams with complicated topology and three-gluon vertex.
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These diagrams shown in Figure 3.6 have the same topology as Figure 3.2, how-

ever there are complications that do not occur in that diagram, so I have not used

the same momentum routing in Figure 3.6. Both the diagrams inFigure 3.6 have

the same expression in the massless case, so we can add them together

� ��
(2) (p) =

� 2i
� 6�

Z
dD `
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Z
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( �
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�
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�
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�
h
gsf b1a1b2 (g� 1 � 2 [2k � q]� 3 + g� 2 � 3 [2q � k]� 1 + g� 3 � 1 [� k � q]� 2 )

i
)

:

(3.24)

The vector part � (2)
1 (p2) for this diagram is

� (2)
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�
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� 2i
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(3.25)

There are two terms in � (2)
1 (p2) that will not have any contractions between indices

in the antisymmetric tensors; consequently, the identities (2.23) and (2.24) can not

be used to simplify these terms with the expression in its current form. The other

terms can be simpli�ed directly with REDUCE. The remaining two terms require

several steps of simpli�cation to get them into this form. For these two terms,

instead of replacing the product of the antisymmetric tensors by its D-dimensional

extension in REDUCE, I used REDUCE to calculate the trace with a constant in

place of the one of the antisymmetric tensors. This produceda result with momenta
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times antisymmetric tensors which could then be simpli�ed by using the properties

q� q� � ���� = 0 and � ���
� = 0. The results were then in a form where the identities

(2.23) and (2.24) could be used to convert the result to integrals in my classi�cation

scheme with the exception of one term which is given by (B.32). The colour factor

C2 where I am relabellinga1 = a, b1 = b and b2 = c indices to simplify, is

C2 = Tr
�

tatbt cfbac
	

=
1
23

fbac2
�
dabc + if abc

�
= �

2
23

Ni� aa = � 6i: (3.26)

Finally assembling these three calculations gives
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(3.27)

where I (p2) is given by (B.32) in Appendix B.

3.6 Quark Self-Energy Diagrams

Both diagrams in Figure 3.7 have the same expression which is
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(3) (p) =

� 2i
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Z
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Z
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(3.28)
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Figure 3.7: Quark self-energy diagrams.

Calculating � (3)
1 (p2) is then straightforward as it can be calculated from integrals

directly as there are no new integrals introduced by this diagram. The colour factor

C3 is

C3 = Tr
�

tatatbtb
	

=
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�
4
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�
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(3.29)

and the �nal unexpanded amplitude is
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:

(3.30)
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Figure 3.8: Diagram with vertices with a quark, an antiquarkand two gluons.

3.7 Diagram with the Two-Gluon Vertex

Figure 3.8 has vertices with the two-gluon Feynman rule given in Figure 2.4, so the

amplitude for this diagram is
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(3.31)

Note there are contractions between two sets of indices in the antisymmetric tensor

here, so the term in � (6)
1 (p2) that is proportional to g�� will have three sets of

contracted indices. Calculatingg�� times (2.24) gives

g�� � �� 1
� 1 � 2

� �� 2 � 1 � 2 = � (D � 3) (D � 2) (D � 1) g� 1 � 2 ; (3.32)

which will replace the antisymmetric tensors in the trace for this term. The colour

factor C6 for (3.31) is

C6 = Tr
�

tatbfac1c2 fbc1c2
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�
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=
N
22

2� aa = 12: (3.33)
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The result � (6)
1 (p2) for this diagram is
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(3.34)

3.8 Four Diagrams with the Same Result

Figure 3.9: Diagrams with one quark, an antiquark and two-gluon vertex.

The four diagrams in Figure 3.9 should have the same ���
(7) (p) in the massless

case, since topologically they mirror each other. Diagrams(a) and (d) in Figure 3.9

have the expression
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(3.35)
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and diagrams (b) and (c) have the expression
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(3.36)

Eqs. (3.35) and (3.36) are very similar and their colour factors have the relation

C7a = � C7b. Then using REDUCE to calculate the amplitudes divided by the

respective colour factors �(7a)
1 (p2) =C7a and � (7b)

1 (p2) =C7b, in the chiral limit, these

expressions have the relation

� (7a)
1 (p2)
C7a

= �
� (7b)

1 (p2)
C7b

(3.37)

and hence �(7)
1 (p2) = 4� (7a)

1 (p2). The colour factor is the same as in diagram (2)

(see Figure 3.6) soC7a = C2 = � 6i . The �nal expression is
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(3.38)

3.9 Diagrams with One Quark, Antiquark and Two-

Gluon Vertex and a Three-Gluon Vertex

Both diagrams in Figure 3.10 have the same expression deriving from the Feynman

rules, doubling the amplitude. Also there is a symmetry factor of 1
2 , since the gluon

lines connecting the current and the three gluon vertex are interchangeable. For
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Figure 3.10: Diagrams With one quark, antiquark and two-gluon vertex and a three-
gluon vertex.

diagram 8, � ��
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(3.39)

In the last line some of the indices have been relabelled in order to simplify the

expression. The colour factor isC8 = Tr
n

taf aa1 a2 ta3 f a1a2a3

o
= � C6 = � 12. Then

the �nal expression is
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(3.40)
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Chapter 4

Results and Conclusion

In order to isolate the divergent quantities, �1 (p2) is series expanded in� . Table

4.1 has the expressions for each diagram as a series in� . Each diagram has an

expansion in the form

� (n)
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� 2
sp6

(4� )4

�
a1

� 2
+

1
�

�
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� 2

�

+ b3 log2

�
� p2

� 2

��
;

(4.1)

where n is diagram number anda1, a2, a3, b1, b2, and b3 are constants. Table 4.1

contains the numeric values of the speci�c values ofn, a1 etc. appearing in (4.1) for

the individual diagrams.

The total correlation function for our 1�� hybrid meson is the total for all of the

diagrams
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n=1

� (n)
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The dimensionally regularized series expansion of �(n:l: )
1 (p2) about � = 0 for the

second order correction is
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(4.3)

whereL = log
�

� p2

� 2

�
. This result (as well as those above) has been converted to the

modi�ed minimal subtraction ( MS) scheme whereby substituting� 2 ! � 2e
 E =4� ,
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n a1 a2 b1 a3 b2 b3

1 4
135 � 553

2025
4
45 � 1

135� 2 � 113647
60750 � 16

45� (3) � 553
675

2
15

2 � 23
15

18541
1350 � 23

5
23
60� 2 � 1126153

13500 + 4
15� (3) 18541

450 -69
10

3 32
135 � 3704

2025
32
45 � 8

135� 2 + 310948
30375 � 3704

675
16
15

4 � 8
45

976
675 � 8

15
2
45� 2 � 84212

10125
976
225 � 4

5

5 0 0 0 0 0 0

6 0 � 8
9 0 188

27 � 8
3 0

7 2
5 � 697

225
6
5 � 1

10� 2 + 117253
6750 � 697

75
9
5

8 � 4
5

478
75 � 12

15
1
5 � 2 � 40811

1125
478
25 � 18

5

Table 4.1: Numeric values for constants as de�ned in (4.1).


 E and log (4� ) are eliminated. The polynomial divergences (appearing with 1
� and

1
� 2 ) will be eliminated via derivatives in the dispersion relation (2.12), but the di-

vergent 1
� L term remains and can only be removed by renormalization. Therefore

the renormalization properties of the current need to be determined. Once these

terms are dealt with the remaining terms are the� 2
s perturbative correction. In the

limit � ! 0 the O (� ), term in (4.3) goes to zero, however it cannot be ignored in

(2.25) because� 1
� ! 1. The �rst step in renormalization is the replacement of the

bare coupling� s = � b appearing in (4.3) and (2.25), with the renormalized coupling

constant � r related to � b by [20]

� b

�
=

� r

�

�
1 +

9
4

� r

�
1
�

+ � � �
�

: (4.4)

Since I am working to second-order in� r this simply replaces� b ! � r in (4.3), but

generates second order terms through a modi�cation of the �rst-order result (2.25).
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Renormalizing the coupling constant to order� 2
r modi�es the �rst order term as

� (l:o:)
1

�
p2

�
=

1
� 2

� r

�

�
1 +

9
4

� r

�
1
�

� �
�

1
480�

p6 �
(40L � 77)

9600
p6 �

1
576000

p6 (14997+

� 9240L � 200� 2 + 2400L2
�

�
�
:

(4.5)

Although this renormalization does alter the1
� L term, it is not enough to remove the

divergent 1
� L term from (4.3), the correlation function also needs to be renormalized.

Although the current's renormalization properties have not been determined in this

work we can still explore how they might a�ect the results. The exotic hybrid

current renormalizes multiplicatively [26], so if we assume the renormalization of the

non-exotic current is also multiplicative J R
� = ZJ b

� it would also renormalize the

correlation function by

� R = Z 2� b =
�

1 + 2E
� r

�
1
�

�
� b; (4.6)

whereE is some renormalization constant that could be determined by assessing the

renormalization properties of the current. The expected value ofE can be determined

by assuming that the divergent term 1
� L is removed by this renormalization. The

necessary value for the constant isE = 47
32 and

� 1

�
p2

�
= �

1
240� 2

� r

�

"

p6

�
L �

77
40

+
1
2�

�
+

� r

�
p6

�
7527
320

L �
1
12

� (3) �
738649
13824

�
83
32

L2 +
8663
1920�

+
83

96� 2

� #

:

(4.7)

The polynomial terms inp2 are removed by derivatives of the dispersion relation and

the resulting expression for the correlation function of hybrid meson with 1�� in the

chiral limit is

� 1

�
p2

�
= �

1
240� 2

� r

�

"

p6L +
� r

�
p6

�
7527
320

L �
83
32

L2

� #

: (4.8)

The coe�cient of L at next-to-leading order� 2 is � 2:3 times that of the leading order

� coe�cient, so on the scale where�
� � 0:1 the next-to-leading order perturbative

correction should be an important contribution.
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The result (4.8) would describe a hybrid meson with light quark content and an

improved mass for this state could be calculated from sum-rules using this correlation

function. Because the second-order� 2 term is substantial compared with the �rst-

order term, the 1�� non-strange hybrid mass prediction of Ref. [5] could be altered

signi�cantly. However a de�nitive study of the renormalization of the hybrid current

would be a necessary step, and is beyond the scope of this thesis.

The techniques developed in this thesis will provide the foundation to study

hybrids with strange quarks, which requires orderm2 e�ects to the perturbative

expansion. An improved determination of the strangeonium hybrid mass could then

be obtained and compared with theY (2175) particle.
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Appendix A

Conventions

The conventions used in this thesis follow those de�ned in [6].

A.1 Units

Convenient units are~ = c = 1. Then energy and momentum are in mass units eV
or more usually MeV.

A.2 Dirac and Colour Algebra

The relevant metric of Minkowski spacetime is

g�� = g�� =

0

B
B
@

1 0 0 0
0 � 1 0 0
0 0 � 1 0
0 0 0 � 1

1

C
C
A : (A.1)

The Dirac matrices
 � have the anti-commutation relations

f 
 � ; 
 � g = 
 � 
 � + 
 � 
 � = 2g�� (A.2)
�

 � ; 
 5

�
= 0 (A.3)

�

 5

� 2
= 1; (A.4)

and in D dimensions

g�
� = D: (A.5)
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The SU(N ) colour algebra is de�ned in [20] where theta = � a

2 are de�ned in terms
of the Gell-Mann matrices with the following properties

[� a; � b] = 2 if abc� c (A.6)

f � a; � bg =
4
N

� ab1 + 2dabc� c (A.7)

f abcf dbc = N� ad (A.8)

dabcddbc =
�

N �
N
4

�
� ad (A.9)

Tr f � a� bg = 2� ad (A.10)

Tr f � a� b� cg = 2 ( dabc + if abc) (A.11)

Tr f � a� b� c� dg =
4
N

(� ab� cd � � ac� bd + � ad� bc)

+ 2 ( dabrdcdr � dacr ddbr + dadr dbcr)

+ 2 i (dabr f cdr � dacr f dbr + dadr f bcr) :

(A.12)

A.3 Feynman Rules for QCD

The QCD Feynman rules as de�ned in [6] are shown in Table A.1. Four-Momentum
is implicitly conserved at every vertex (e.g. p+ k + q = 0 in the three-gluon vertex).

Fermion Propagator Fermion Vertex Gluon Propagator

i
p2 � m2+ i� ig
 � ta � ig �� � ab

p2+ i�

Three Gluon Vertex Ghost Propagator Ghost Vertex

gsf abc [g�� (k � p)� + i� ab

p2+ i� � gf abcp�

+ g�� (p � q)� + g�� (q � k)� ]

Table A.1: Relevant Feynman rules for QCD. The gluon propagator is given in the
Feynman gauge� = 1
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Appendix B

Feynman Integrals

B.1 Relevant Integrals

vector tensor more complicated
v1 k � q t1 k � pq� p T1 (q � p)2 k � p
v2 q � p t2 (q � p)2 T2 (q � p)3

v3 k � p t3 (k � p)2 T3 (q � p)2 k � `
v4 k � ` t4 (k � `)2 T4 (` � p)2 k � `
v5 q � ` t5 k � `k � p T5 (` � p)3 k � `
v6 ` � p t6 (` � p)2 T6 (` � p)3

t7 q � `p � `
t8 q � pk � `
t9 q � pq� `
t10 k � pq� `
t11 k � `q � `

t12 k � `p � `
t13 k � pp� `

Table B.1: Vector and tensor structure of classi�ed integrals.

The three types of integrals have basic scalar, vector, and tensor forms. These
integrals are listed in Table B.1. I am using an exponent,vn for vector integrals, tn

for rank two tensor integrals andTn for more complicated tensor integrals, to label
and di�erentiate between the di�erent integral forms in my notation. For example,
t1 indicates a tensor integral containingk � pq � p, or in other words, an integral
containing a tensork� q� . However, the solution of this integralt1 is di�erent from
t8 with k � `q � p which also contains an integral overk� q� . Note that many of the
integrals share components and that forn2 integrals nv1

2 (b; c; a) = nv2
2 (c; b; a) and

for n3 type integrals nv1
3 (a) = nv2

3 (a). Also some of the integrals falsely appear to
be tensors at �rst glance. For example,nt12

1 , is really a vector integral due to the
integration order.

B.2 Basic Integrals

B.2.1 Scalar Results

Type n1 integrals can be calculated using the basic one loop resultsiteratively. I
�rst calculated the dD k integral followed by thedD q and dD ` integrals. In (B.1), the
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scalar case, each loop integral has the scalar form of (2.21), with the �nal result

n1 (b; c; a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

1

[q]2c [q � `]2

Z
dD k

(2� )D

1

[k]2b [k � q]2

=
�

� i

(4� )4

��
� 1

4�� 2

� 3� 1
p2(b+ c� a� 3� 3� )

[� (1 + � )]3 � (2 � b+ � ) � ( b� 1 � � )
� ( b) � (3 � b+ 2� ) � ( c + b� 1 � � )

�
� (3 � b� c + 2� ) � ( b+ c � 2 � 2� ) � (4 � b� c + a + 3� )

� (4 � b� c + 3� ) � ( c + b� a � 2 � 2� )

�
� ( b+ c � a � 3 � 3� )
� (5 � b� c + a + 4� )

:

(B.1)

The n2 type integrals can also be done iteratively liken1, however thedD k integral
does not depend onq so the order of integration doesn't matter and of course the
dD ` integral is done last, with the scalar result

n2 (b; c; a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

1

[q]2c [q � `]2

Z
dD k

(2� )D

1

[k]2b [k � `]2

=
�

� i

(4� )6

��
� 1

4�� 2

� 3� 1
p2(b+ c� a� 3� 3� )

[� (1 + � )]3 � (2 � b+ � ) � ( b� 1 � � )
� ( b) � (3 � b+ 2� ) � ( c)

�
� (2 � c � � ) � ( c � 1 � � ) � (4 � b� c + a + 3� )

� (3 � c + 2� ) � ( c + b� a � 2 � 2� )

�
� ( b+ c � a � 3 � 3� )
� (5 � b� c + a + 4� )

:

(B.2)

The dD k and dD q integrals in n3 cannot be done iteratively; however they can be
calculated via a recursion relation, and then the integral over dD ` can be calculated
to get the �nal result. Following [25] we can determine the recursion relation by
using

0 =
Z

dD q
Z

dD k
�

@
@k�

� �
(k� � q� )

1

k2q2 (k � q)2 (k � `)2 (q � `)2

�
: (B.3)

In order to simplify further calculations let (k � q)2 = z2, (k � `)2 = x2 and (q � `)2 =
y2. Then the dot products between the loop momenta can be written as k � q =
1
2 (k2 + q2 � z2), k � ` = 1

2 (k2 + `2 � x2) and q� ` = 1
2 (q2 + `2 � y2) and then used to
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simplify (B.3):

0 =
Z

dD q
Z

dD k
�

D
k2q2z2x2y2

� 2 (k� � q� )
�

k�

k4q2z2x2y2
+

(k� � q� )
k2q2z4x2y2

+
(k� � ` � )

k2q2z2x4y2

��

0 =
Z

dD q
Z

dD k
�

D � 2
k2q2z2x2y2

� 2
�

k2 � 1
2 (k2 + q2 � z2)
k4q2z2x2y2

+

�
k2 � 1

2 (k2 + q2 � z2) � 1
2 (k2 + `2 � x2) + 1

2 (q2 + `2 � y2)
�

k2q2z2x4y2

)#

;

0 =
Z

dD q
Z

dD k
�

D � 4
k2q2z2x2y2

� 2
�

1
k4q2x2y2

�
l

k2q2z2y4

��
:

(B.4)

In the �rst line, the derivative has been computed. In the second, the dot products
have been expanded using the above relations, and, in the last, has been simpli�ed.
So I now write n3's solution

n3 (a) =
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

1
k2q2z2x2y2

=
1

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

2
D � 4

�
1

k4q2x2y2
�

l
k2q2z2y4

�

=
�

� i

(4� )6

� �
� 1

4�� 2

� 3� 1
�p2(� a� 3� )

"
[� (1 + � )]3 � ( � ) � ( � � ) � (1 + a + 3� )

� (2 + 2 � ) � (1 � a � 2� )

�
� ( � a � 3� )

� (2 + a + 4� )

� �
� (1 � � ) � (1 + � )

� (1 + 2 � )
�

� (1 + 2 � ) � (1 � 2� )
� (1 + 3 � ) � (1 � � )

�
:

(B.5)

B.2.2 Tensor and Vector Integrals

The tensor and vector forms ofn1 and n2 can be calculated by using the tensor and
vector forms of (2.21), in some cases repeatedly. For typen3 a di�erent approach is
required. For n3 tensor type integrals which are

nt1
3 (a) =

p� p�

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

k� q�

[q]2 [q � `]2 [k � q]2 [k]2 [k � `]2
;

(B.6)

and

nt3
3 (a) =

p� p�

� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

k� k�

[q]2 [q � `]2 [k � q]2 [k]2 [k � `]2
;

(B.7)
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the result of
R
dD q and

R
dD k integrals can only be a combination of momentà and

has the form
Z

dD q
(2� )D

Z
dD k

(2� )D

k� k�

[q]2 [q � `]2 [k � q]2 [k]2 [k � `]2
= A` � ` � + Bg�� `2: (B.8)

As the integration must be relativistically covariant so the right hand side of (B.8)
must transform as a rank-two tensor of this form, withA and B are scalar functions
of `. These functions will be de�ned in terms of scalar integralsover dD k and dD q
and sincep� ` = 1

2

�
`2 + p2 � (` � p)2�

the tensor integral above (B.7) can be written
in terms of the scalar results fromn3 (a) (B.5).

B.3 Complicated Tensor Examples

In the case of more complicated tensor structure I will show an outline of a typical
calculation. For example, consider

nT2
1 (b; c; a) = p� p� p�

1
� 6�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

q� q� q�

[q]2c [q � `]2

Z
dD k

(2� )D

1

[k]2b [k � q]2

= p� p� p�
1

� 4�

Z
dD `

(2� )D

`2a

[` � p]2

Z
dD q

(2� )D

q� q� q�

[q]2(b+ c� 1� � ) [q � `]2
Ao:

(B.9)

The integral dD k can be done straightforwardly like thedD k integral in (B.1) and
the result is q2 to some power times a constant (for simplicity denoted byAo) in this
calculation. The dD q integral I 0 is

I 0 =
1

� 2�

Z
dD q

(2� )D

q� q� q�

[q]2(b+ c� 1� � ) [q � `]2

= A` � ` � ` � + B
�
g�� ` � `2 + g�� ` � `2 + g�� ` � `2

�
(B.10)

where we can determine the coe�cientsA and B by solving the following set of
simultaneous equations

I 1 = ` � ` � ` � I 0 = A` 6 + B
�
3`6

�
; (B.11)

I 2 = g�� ` � I 0 = A` 4 + B (D + 2) `4: (B.12)

In terms of the integralsI 1 and I 2 the constantsA and B are

A = �
1

`6 (D + 1)

�
`2I 2 � (D + 2) I 1

�
(B.13)

B =
1

`6 (D + 1)

�
`2I 2 � I 1

�
; (B.14)
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where the integralsI 1 and I 2 can be written as

I 1 =
Z

dD q
(2� )D

(q � `)3

q2(b+ c� 1� � ) (q � `)2 =
Z

dD q
(2� )D

1
8

q6 + 3q4`2 + 3q2`4 + `6

q2(b+ c� 1� � ) (q � `)2 ; (B.15)

I 2 =
Z

dD q
(2� )D

(q � `) q2

q2(b+ c� 1� � ) (q � `)2 =
Z

dD q
(2� )D

�
1
2 (q2 + `2)

�

q2(b+ c� 2� � ) (q � `)2 : (B.16)

The integral (B.10) with the above values forA and B with I 1 and I 2 is

nT2
1 (b; c; a) = Ao

1
� 2�

Z
dD `

(2� )D

`2a

[` � p]2
�
A (p � `)3 + B

�
3p2p � `` 2

��

=
�

� i

(4� )6

� �
� 1

4�� 2

� 3� 1
p2(b+ c� a� 6� 3� )

1
8

"
[� (1 + � )]3 � (2 � b+ � )

� ( b) � (3 � b+ 2� ) (3 + 2 � )

�
� ( b� 1 � � )

� (3 � b� c + 2� ) � ( b+ c � 2 � 2� ) � (6 � b� c + a + 3� )

�
1

� ( c + b� a � 4 � 3� ) � (7 � b� c + 3� ) � ( b+ c � 1 � � )

�
�

� 12 (4� b� c + a + 2� ) (3 + 2 � ) (1 + � )
� (7 � b� c + a + 4� ) � ( c + b� a � 3 � 2� )

�
4 (5 � b� c + a + 2� ) (2a2 � 4ac+ 12a� + 20a � 4ba+ 45 + 2 b2)

� (8 � b� c + a + 4� )
�

�
� 12c� � 12b� + 57� + 18� 2 + 2c2 + 4cb� 20c

� �
8� 3 + 40� 2 � 8b�2

�

�
�
� 8c�2 + 4cb� + 2b2� � 26c� + 66� � 26b� + 2c2� + 36 � 21b� 21c

�

�
(+3 c2 + 6cb+ 3b2)

� ( b+ c � a � 2 � 2� )

��
:

(B.17)

The expression in the �rst line for thenT1
1 (b; c; a) integral would only di�er from this

integral by Ao which would be the coe�cient emerging from a vector rather than
scalar one loop integral. Calculating the correspondingn2 and n3 integrals follows
the same procedure.

B.4 Integral Without Contractions Between the
Antisymmetric Tensors

The integral I (p2) from Figure 3.6, which has no contractions between the indices
on the antisymmetric tensors as discussed in the corresponding section, is

I
�
p2

�
= p� p� � ���� � ���� 1

� 6�

Z
dD `

(2� )D

` � ` �

[` � p]2

Z
dD q

(2� )D

Z
dD k

(2� )D

q� q� k� k�

k2q2z2x2y2
: (B.18)
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Note that many of the indices have been relabelled, so there is very little correspon-
dence between the labelling here and in (3.25). In order to calculate the dD k and
dD q integrals I used the same method as for the last section with

I
�
`2

�
=

1
� 4�

Z
dD q

(2� )D

Z
dD k

(2� )D

q� q� k� k�

k2q2z2x2y2

= A` � ` � ` � ` � + Bg�� ` � ` � `2 + C
�
g�� ` � ` � `2 + g�� ` � ` � `2

�
+ F

�
g�� ` � ` � `2+

+ g�� ` � ` � `2
�

+ + Gg�� ` � ` � `2 + Hg�� g�� `4 + J
�
g�� g�� `4 + g�� g�� `4

�
:

(B.19)

To simplify notation I have ignored indices onI (`2) in (B.19). There are seven
coe�cients so I need at most seven equations to solve this system. However, if
the tensor structure of the integral (B.18) is considered the only terms that will
ultimately be nonzero are the those withH and J coe�cients; the rest of the terms
are zero following from the contraction of a symmetric with an antisymmetric tensor.
The integral above (B.19) I will refer to asI in the following equations

I 1 = ` � ` � ` � ` � I = `8 [A + B + 2C + 2F + G + H + 2J ] (B.20)

I 2 = g�� ` � ` � I = `6 [A + DB + 2C + 2F + G + DH + 2J ] (B.21)

I 3 = g�� ` � ` � I = `6 [A + B + (1 + D) C + 2F + G + H + (1 + D) J ] (B.22)

I 4 = g�� ` � ` � I = `6 [A + B + 2C + (1 + D) F + G + H + (1 + D) J ] (B.23)

I 5 = g�� ` � ` � I = `6 [A + B + 2C + 2F + DG + DH + 2J ] (B.24)

I 6 = g�� g�� I = `4
�
A + DB + 2C + 2F + DG + D 2H + 2DJ

�
(B.25)

I 7 = g�� g�� I = `4 [A + B + (1 + D) C + (1 + D) F + G + DH + D (1 + D) J ]:
(B.26)

Before solving the system of equations it is useful to look atthe forms of the integrals
I 1 through I 7 with the following simpli�cations I 2 = I 5, I 3 = I 4 and I 6 = 0. If I in
(B.18) is replaced by the right hand side of (B.19) then
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(B.27)

In the last line the contractions between the antisymmetrictensors allow us to replace
that tensor product. Also solving for the constants with thesimpli�cations above
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results in

H � J = �
2I 2 + I 7`2 � 2I 3

`6 (D 3 � 2D 2 � D + 2)
; (B.28)

where I 1 cancels which simpli�es the results, so I only needI 2, I 3, and I 7:
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(B.31)

Therefore (B.27) can be further simplify and then solved
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(B.32)
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Appendix C

REDUCE Code

This appendix is the REDUCE code for Figure 3.7. The operators fp (p), mfp (p)
and sgp(p), below are the propagators and identities for the contractions of the
antisymmetric tensors are the operatorspl(p; mu; nu; u; r; v; s) and pt(p; u; r; v; s).

off allfac;
vecdim d;
vector p,k,q,o,u,r,v,s,mu,nu,vv;
operator fp,pl,pt,sgp,mfp,pvertex;
for all p let fp(p)=i*(g(l,p)+m)/(p.p-m*m);
for all p let mfp(p)=i*(g(l,p)-m)/(p.p-m*m);
for all p,u,r,v,s,mu,nu let pl(p,mu,nu,u,r,v,s)=
-(d-3)*p.mu*p.nu*(mu.nu*(u.r*v.s-v.r*s.u)+mu.r*(u.s *v.nu-v.s*nu.u)
+mu.s*(u.nu*v.r-v.nu*r.u));
for all p,u,r,v,s let pt(p,u,r,v,s)=-(d-3)*(d-2)*(u.r*v .s-v.r*s.u);
for all p let sgp(p)=-i/(p.p);

index u,r,v,s,mu,nu,vv;
let m=0;

amp:=(p.p*pt(p,u,r,v,s)-pl(p,mu,nu,u,r,v,s))
*fp(k)*i*g(l,vv)*fp(q)*i*g(l,vv)*fp(k)*i*((p-o).u)* g(l,v)*mfp(k-o)
*i*(-(p-o)).r*g(l,s)*sgp(p-o)*sgp(k-q);

let k.k=k2, p.p=p2, q.q=q2, o.o=o2;
amp;

let k.p=1/2*(k2+p2-x);
let p.q=1/2*(q2+p2-y);
let q.k=1/2*(q2+k2-z);
let o.k=1/2*(o2+k2-t);
let o.q=1/2*(o2+q2-h);
let o.p=1/2*(o2+p2-w);

amp;

denp:=x**8*k2**8*y**8*q2**8*z**8*h**8*t**8*w**8*o2* *8;
amps:=amp*denp;

for all n1,n2,n3,n4,n5,n6,n7,n8,n9
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match k2**n1*q2**n2*o2**n3*x**n4*y**n5*w**n6*z**n7*t **n8*h**n9
=fi(8-n1,8-n2,8-n3,8-n4,8-n5,8-n6,8-n7,8-n8,8-n9);
let p2^2=p4;
let d^2=d2;
amp:=amps;

The f i (8� n1; 8� n2; 8� n3; 8� n4; 8� n5; 8� n6; 8� n7; 8� n8; 8� n9) is REDUCE's
classi�cations for the integrals the nonzero integrals in this diagram are classi�ed in
REDUCE as

let fi(1,0,0,0,0,1,1,-1,1)=n4;
let fi(0,1,0,0,0,1,1,1,-1)=n4;
let fi(1,0,0,0,-1,1,1,0,1)=n5;
let fi(0,1,0,-1,0,1,1,1,0)=n5;
let fi(1,0,0,-1,0,1,1,0,1)=n6
let fi(0,1,0,0,-1,1,1,1,0)=n6;
let fi(1,1,0,0,0,1,1,1,-1)=n10;
let fi(1,1,0,0,0,1,1,-1,1)=n10;
let fi(1,1,0,0,-2,1,1,0,1)=n132;
let fi(1,1,0,-2,0,1,1,1,0)=n132;
let fi(1,0,-1,0,0,1,1,-1,1)=n19;
let fi(0,1,-1,0,0,1,1,1,-1)=n19;
let fi(1,0,-1,0,-1,1,1,0,1)=n20;
let fi(0,1,-1,-1,0,1,1,1,0)=n20;
let fi(1,0,-1,-1,0,1,1,0,1)=n22;
let fi(0,1,-1,0,-1,1,1,1,0)=n22;
let fi(1,1,0,0,-1,1,1,-1,1)=n24;
let fi(1,1,0,-1,0,1,1,1,-1)=n24;
let fi(1,1,0,-1,-1,1,1,1,0)=n25;
let fi(1,1,0,-1,-1,1,1,0,1)=n25;
let fi(1,1,-1,0,0,1,1,-1,1)=n27;
let fi(1,1,-1,0,0,1,1,1,-1)=n27;
let fi(1,1,-2,0,0,1,1,-1,1)=n272;
let fi(1,1,-2,0,0,1,1,1,-1)=n272;
let fi(1,1,-1,0,-1,1,1,1,0)=n29;
let fi(1,1,-1,-1,0,1,1,0,1)=n29;
let fi(1,1,-2,0,-1,1,1,1,0)=n292;
let fi(1,1,-2,-1,0,1,1,0,1)=n292;
let fi(1,1,-1,-1,0,1,1,1,0)=n30;
let fi(1,1,-1,0,-1,1,1,0,1)=n30;
let fi(1,1,-2,-1,0,1,1,1,0)=n302;
let fi(1,1,-2,0,-1,1,1,0,1)=n302;
let fi(1,1,-1,-2,0,1,1,1,0)=n32;
let fi(1,1,-1,0,-2,1,1,0,1)=n32;
let fi(1,1,-1,-1,0,1,1,1,-1)=n40;
let fi(1,1,-1,0,-1,1,1,-1,1)=n40;
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let fi(1,1,-1,-1,-1,1,1,1,0)=n43;
let fi(1,1,-1,-1,-1,1,1,0,1)=n43;

and the �nal out put is

(d*d2*n10*p4 - 4*d*d2*n132*p2 - 4*d*d2*n24*p2 + 4*d*d2*n2 5*p2
- 2*d*d2*n27*p+ d*d2*n272 + 26*d*n10*p4 - 64*d*n132*p2
+ 10*d*n19+ 20*d*n20 - 10*d*n22- 74*d*n24*p2 + 64*d*n25*p2
- 42*d*n27*p2 + 16*d*n272 - 10*d*n29*p2+ 10*d*n292 + 10*d*n 30*p2
- 10*d*n302 - 20*d*n32 - 10*d*n4*p2 - 10*d*n40+ 20*d*n43

- 20*d*n5*p2 + 10*d*n6*p2 - 9*d2*n10*p4 + 28*d2*n132*p2 - 2* d2*n19
- 4*d2*n20 + 2*d2*n22 + 30*d2*n24*p2 - 28*d2*n25*p2 + 16*d2* n27*p2
- 7*d2*n272+ 2*d2*n29*p2- 2*d2*n292 - 2*d2*n30*p2 + 2*d2*n 302
+ 4*d2*n32 + 2*d2*n4*p2+ 2*d2*n40 - 4*d2*n43 + 4*d2*n5*p2

- 2*d2*n6*p2 - 24*n10*p4 + 48*n132*p- 12*n19 - 24*n20 + 12*n2 2
+ 60*n24*p2 - 48*n25*p2 + 36*n27*p2- 12*n27+ 12*n29*p2 - 12* n292
-12*n30*p2 + 12*n302 + 24*n32+ 12*n4*p2 + 12*n40 - 24*n43

+ 24*n5*p2- 12*n6*p2)/8

wherep2 = p2, d2 = d2. Note that for examplen10 would be the integral
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(C.1)
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