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Abstract

Elementary particles form hadrons through the strong inteaction; one interpre-
tation of a possible hadron bound-state is a hybrid meson wdii is composed of a
guark-antiquark pair and gluonic content. Non-exotic hybid mesons share spid,
parity P and charge conjugationC quantum numbers with quark-antiquark states
while exotic hybrids do not. Aspects of particle physics, Bbing interactions, and
guantum eld theory necessary for calculating the correlabn function for a hybrid
meson will be reviewed. In particular, the perturbative patrof the correlation func-
tion for a hybrid meson with J°€ =1 will be formulated in terms of Feynman
rules and diagrams and calculated to next-to-leading orden the light (massless)
quark case. Assuming the hybrid current renormalizes mufiiicative, the next-to-
leading order e ects are found to be large, and are potentlglimportant for future

determinations of the light-quark non-exotic hybrid meson
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Chapter 1

Introduction to Quantum Field Theory

1.1 Particle Physics Overview

From the particle physics perspective, a particle is a veryngll object (. fm) that
behaves in a way dictated by fundamental (strong and electn@ak) interactions. Par-
ticles can be classi ed by intrinsic properties, conserveguantities and/or quantum
numbers including spind, mass, parity P, charge conjugationC, avour, isospin,
electric charge and colour. A particle's behaviour can be sleribed by a theoretical
model of the interactions that represents an approximatioof the actual phenomena.
Quantum eld theory allows us to describe the properties andnteractions of
fundamental and composite particles. Quantum eld theorig are constrained by
spacetime symmetries and, as such, must be Lorentz invartathat is, they describe
relativistic systems. Four-momentum conservation and spiare consequences of this
symmetry [1]. Quantum mechanics does not allow us to X a paidle to a point,
so instead we consider a local quantized eld. The eld opetars represent all
possible particle states including multiple particles. Qusequently, the elds have
statistical properties that are re ected in their mathemaical description. From
the spin-statistics theorem, particles can be classi ed btheir statistical properties.
Bosons have integer spin and obey equal time commutator rétans (Bose-Einstein
statistics) and fermions have half integer spin and obey egutime anticommutator
relations (Fermi-Dirac statistics) [2]. In order to gain iformation about a particle's
properties we need to develop a mathematical framework to st=ibe its eld and
how it interacts. In a gauge eld theory interactions are costrained by a symmetry

and interactions may be described by the mutual in uence ofnte elds, where the
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interaction between two elementary particles would be meakied by the exchange
of a gauge boson. These mediators are represented in eld dng by a gauge eld.
Some of the other properties that are used to distinguish b&een the di erent types
of particle can be determined from symmetries of the Lagraran. Other information

can be gained directly from the equations of motion.

We know that elementary particles obey relativistic energynomentum relations
from which we can formulate the equations of motion of our els. In relativis-
tic quantum mechanics (which can be formulated as a classlicald theory), spin
% particles are described by the Dirac equation. Dirac's forabation required an-
tiparticles; for instance, the corresponding antiparti@ to the electron would have
the same mass, but opposite charge. Antiparticles were camed when a positive

particle with mass of the electron (positron) was discovetieby Anderson in 1932 [3].

Initially the proton and the electron were both considered d be fundamental
particles, and hence their magnetic moments could be calatéd from the Dirac
equation. In classical eld theory, Dirac's magnetic momednis exact. In quantum
eld theory interactions modify the magnetic moments for ths classical prediction
and the magnetic moments are parametrized by theg factors. The Dirac magnetic
moment is then the lowest order perturbative approximation For the electron the
experimental value is in good agreement with this predictig but when the mag-
netic moment of the proton was rst measured by Stern in 1932 was 2:5 times
larger than expected (seee.g. Ref. [4]): the rst indicator of proton substructure
and an indicator of more fundamental particles as the protds constituents. The
discovery of the neutron and its non-vanishing magnetic moent, and the prediction
and later detection of the pion, were also stepping stonesrfexplaining the strong
nuclear force. In 1934 Yukawa proposed a particle as the fercarrier between the
neutrons and the protons in the nucleus as an explanation fdrow the nucleus is
held together. Since the range of the force is about the sizEtbe nucleus, Yukawa
calculated the patrticle's approximate mass which correspded to the observed mass
of the pions. As this mass was 300 times that of the electron it was called a meson

meaning \middle-weight" whereas electrons were leptonslight-weight") and neu-
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trons and protons were baryons (\heavy-weight") [2]. Howear the detection of more
mesons and baryons, not to mention the muon which behaveddila heavy electron,
showed the pion-exchange model of strong interactions waawed and added more
complexity to the problem of describing fundamental parties and their interactions.

Eventually this led to a theoretical model (the quark modelYhat could predict some

of the properties of mesons and baryons given certain assuiops about the nature

of these particles as bound states resulting from the strorfgrce.

As more particles, of all types, were discovered they wereeh classied by
mass, lifetime and various quantum numbers. The particlefétimes separated weak
(10 *°s) from strong ( 10 ?2s) decays. Some particles were created readily in

10 s and decayed slowly in 10 1°s indicating that di erent processes were oc-
curring for a particle's creation versus its decay [2]. Lephs did not interact strongly
which separated them into their own category, whereas mesoand baryons do in-
teract strongly so they were jointly classi ed as hadrons. nl collisions and decays,
lepton number and baryon number are conservedput there is no conservation of
meson number [2]. With the discovery of these new patrticlethe idea of strangeness
was introduced and later re ned. \Strange" particles wouldbe created in pairs by
the strong force, but some would then decay weakly. The strga quantum number
was introduced, and is only conserved for strong processé$ [Gell-Mann's orga-
nization of the hadron spectrum into the eightfold way pattens further re ned the
idea of strangeness. He organized mesons and baryons intougis by spin and then
in patterns by mass, strangeness, and charge (see Figure Mesons (and baryons)
are classi ed by the combination of quantum numbers), P and C as J°¢ where
J = 0 would represent the pseudo-scalar mesons (meson octetidal = 1 would be
vector mesons [2].

Later the idea was introduced that hadrons were comprised obnstituents that
were fundamental particles; Gell-Mann called these partes quarks. These con-

stituents combined to form mesons (which have integer spi@s a quark/antiquark

INote that some theoretical models permit proton decay and natrino oscillations represent a
lepton number violating process



Baryon Octet ( spin ) n Meson Octet (spin0)

Figure 1.1: The eightfold way represents patterns of the Iigest hadrons organized
by chargeQ in units of proton charge and strangenesS

pair and baryons (which have half-integer spin) as three ques and antibaryons as
three antiquarks. These quarks had di erent avours up (1), down (d), and strange
(s) which, when arranged according to certain rules resulted ithe eightfold way
patterns. In order to predict the proper charges and spins diie hadrons, the quarks
needed to be spin} and the di erent avours needed to have fractional charges ith
the d and s having charge %jej and u has charge +§jej where jg is the charge of
a proton. Since the mass of thel and d quarks are approximately equal, there is
no strong interaction distinction between them; hence theris an internal symmetry
(with mathematical analogies to spin) that can help classifhow these quarks form
hadrons. This quantum number is called isospin and is consed in strong processes.
The patterns in the meson and baryon spectra can also be deténed directly from
avour symmetries in the Lagrangian, that is, they can be commed theoretically
through calculation if we assume thatmyg' my ' ms. The discovery of even heavier
particles required the addition of more avours: charm ¢), bottom (b) and top (t);
however the avour symmetry is usually not extended to thesparticles due to large

increases in the quark masses.

The quark model successfully describes the patterns of thadronic spectrum.
However, we still need some particle to act as the force carifor the strong force,
since the discovery of heavier mesons complicated Yukawawdel (which was also
non-renormalizable). We want to have a model where at the miosindamental level
the interactions are between quarks. We call the mediator fahe strong force the
gluon, the strong charge is called colour and the resultindi¢ory is called quantum

chromodynamics (QCD). However, individually free quarksrad colour have not been
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observed, so we assume there is some mechanism that con n@swr and/or quarks
to the bound states of hadrons.

Some scattering processes result in short-lived stronghtéracting particles. From
experimental results there are meson-like particles thatra not readily classied
within established quark-antiquark patterns, so we need toonsider other possible
combinations of states to describe these particles. Withithe standard model, there
are particles predicted by QCD, other than the conventionaduark-antiquark mesons
that could describe these particles. Hybrid mesons compe of a quark-antiquark
pair and gluonic content are possible candidates. Hybrid reens come in two types:
exotic and non-exotic. Exotic hybrids do not share combinequantum numbers
JPC with the standard mesons, while non-exotics have the sand€€ as conven-
tional mesons and are therefore hard to isolate from the sgaan. A mathematical
description of the hybrid meson is required in order to studyhese states.

In the following sections some patrticle physics and eld thlery background is
presented, which leads to a discussion of the basic mathemsat procedure and
techniques needed to describe elementary particles. In Gier 2, | will discuss some
of the standard methods used to calculate quantities from ld theory and reproduce
a calculation [5] for a speci ¢ non-strange non-exotic hyllt meson candidate with
JP€ =1 . Chapter 3 contains the original work of this thesis, where Will extend
this calculation to higher-order in perturbation theory to improve the description
of this speci c non-exotic hybrid. In Chapter 4, | analyze myresults and conclude
that the higher-order corrections are substantive and codltherefore be important
in predictions of the hybrid mass. The Appendices contain agentions, and details

of my calculations.



1.2 Lagrangian Field Theory

There are mathematical constraints we can use to describevhquark and gluon elds
interact via colour and what a bound quark state would look ke mathematically;
in order to describe this we need Lagrangian mechanics andms® group theory
concepts. The Lagrangian formulation provides a mathematal way to describe the
di erent types of particles and their interactions (seee.g, Ref. [6]). Information on
conserved quantities can be obtained from the actio8 or from symmetries of the
LagrangianL. The action is given by an integral of the Lagrangian densitpver all

spacetime (normally this density is just referred to as the dgrangian)
Z
S= dxL(;@ ): (1.1)

From the principle of least action (S = 0), if the action is varied such that the eld

is xed on the boundary of the integration region (thatis = 0), then
z
0=S= d¥% @ + @ (@)
. @ Q@ )
(1.2)
= d4x @ @ & + @ &
@ @ ) @ )

The four-divergence piece in the last term in the second linean be written as a
surface integral via Gauss's theorem. The surface integral zero which leaves the

Euler-Lagrange equation (see.g., Ref. [6])

Q Q _..

The principle of least action gives the Euler-Lagrange eqtian (1.3), so this equation
is valid for any  that vanishes on the boundary. Symmetry transformations &ve
the Lagrangian invariant up to a four-divergence and leadsotconserved (Noether)
currents when the eld satis es the equations of motion. If aparticle's equation
of motion is known, it is possible to work backwards and detarine a Lagrangian
that gives the equation. However this approach is not uniquand constraints are
necessary to specify the Lagrangian that suitably repressna quantum eld. From

symmetries of the Lagrangian, the conserved quantities di¢ theory can be found,
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and so the Lagrangian should re ect the actual conservatiolaws. The Lagrangian
is also invariant for gauge transformations, so these gauggmmetries should emerge
from a conserved quantity. There are also other constraints the Lagrangian; space-
time symmetries need to be preserved, so the Lagrangian alseeds to be Lorentz
invariant. The Lagrangian is also required to be renormalable; speci cally, any
quantum eld theoretical divergences should be able to be stematically absorbed

into the Lagrangian without introducing extra terms.

1.3 Symmetries

Group theory is a valuable mathematical language to descetand compare the sym-
metries of a theory. Conserved properties of the particle®icespond to symmetries
of the theory; transformations of the elds that leave the Lgrangian invariant result
in conserved quantities. If we want our elds to obey certairtonservation laws, the
Lagrangian should be invariant under the appropriate trarffermation. Quantities
like electric charge, total angular momentumJ, and for strong interactions colour,
parity, avour and charge conjugation are physically impotant conserved quantities.
Properties associated with conservation of colour and aww can be determined by
considering speci cSU(N) symmetries in the Lagrangian. These globaSU(N)
transformations leave the Lagrangian invariant. If we regue the Lagrangian to also
be invariant locally, we need to add terms to our Lagrangianniorder for the in-
variance to be maintained. A unitary transformation operadr U, where the eld is

represented by , has the form

U =d 0o, (1.4)
which has the in nitesimal expression

U =@Q+i *Xx)t?) ; (1.5)

where 2(x) are free local parameters antf are Hermitian generators of the transfor-

mations. The generators satisfy a commutator algebra inwahg a linear combination
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of the rest of the generators, so
ta;tb = if abctc; (1.6)

wheref 2 are the structure constants of the group and are totally ansiymmetric in
their indices [1]. Whenf 3¢ & 0 we have a non-Abelian theory. However, when we go
from a global symmetry transformation to a local one we requg the Lagrangian to
be invariant under the transformation with 2(x) as an arbitrary function of x [6].
As will be shown below, this requires replacement of terms the Lagrangian that
have partial derivatives with covariant derivatives in orcer to maintain the invariance
locally.

Group theory allows us, once we have ascertained that our traformation can
be placed in a particular group, to then use the algebraic pperties of the group to
stream-line our calculations. The strong force has three s of charge or degrees
of freedom. This colour degree of freedom allows us to maiimtaan anti-symmetric
quark wave function [1] in otherwise symmetric states likehe ** particle which
has a symmetric eld in terms of avour, spin and space, becae it is a spin%
particle composed of threas quarks,

5 symﬂetric { antiirﬂnit{ic |

o= spin  SU(3)fjavour space colour . (1-7)

We postulate’ that quarks transform under colour symmetries aSU(3) and that
the anti-symmetric colour state is a colour singlet. We refeto a colour singlet as
\colourless”. That is, we need the composite particles (bgons and mesons) to
transform trivially under SU(3)co0ur Since we do not observe particles with colour
charge. Colour is a useful analogy because referring to thkacges as red, blue
and green allows us to use the colour theory analogy red + bluggreen = white
(colourless) for baryons. We also need to consider the pdmisy anti-red + anti-blue
+anti-green = white for anti-baryons and then also anti-red+ red = white, and so
forth, for mesons. This analogy captures the underlying mhaematical properties of
SU(3).

2This postulate is supported by empirical evidencee.g. € e annihilation into hadrons.
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Isospin can be represented bysU(2) avour symmetry for u and d quarks,
whereas avour symmetry for light quarks (; d; s) and can be represented b U(3).
These avour symmetries are not exact as the masses of the gksare not equal, but
otherwise the strong interaction is apparently avour blird. The observed experi-
mental light (ground state whereCC = 0) baryon and meson spectra have the eightfold
way patterns described in Section 1.1; if we consider onlglit quark avours we can
use SU(3) avour symmetry to predict this pattern. The patterns were predicted
assuming that the strong force \sees" the light quarks equslexcept for small di er-
ences in masses (compared to hadron scales). Then a quarkiquiark combination
hasSU(3) avour symmetry of 3 3 =1 8 and forms the observed meson patterns.
For baryons the three quarks result in the symmetry 33 3=1 8 8 10. Thus
if SU(3) avour symmetry was perfect, there would be an 8-fold dezneracy in the
masses of the mesons, but the symmetry is broken by the masee in a systematic
way which allows us to describe it using group theory. By inatling spin to get an
SU(6) symmetry the Gell-Mann Okubo mass relations can predidhe masses of the
lightest states to  20%, if we consider the quarks as fundamental particles with
appropriately chosen masses [4].

The QCD Lagrangian for strong interactions preserves the \@ur and the colour
symmetries of our quark eldsq®(x) where A is a avour index. Writing the free

Dirac Lagrangian for our quark eld, we have
X -
I-quark = qA (i my) qA; (1.8)
A

where@= @, are matrices that satisfyf ; g=2g andm, is the quark
mass (for details on units and conventions see Appendix A).dWever, as was noted
earlier, in order for our Lagrangian to be invariant locallywe need to write it in

terms of the covariant derivativeD de ned by
D =@ igsA?t?; (1.9)

where g is the strong coupling constant and the? are the generators oBU(3) ap-

propriate to the eld on which they are acting and we have a gage eld A2 for every
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generator (the colour indexa can be considered as a column vector with eight entries
a2fl1 8gfor gluons). This means that if we want our Lagrangian to be wariant
under local gauge eld transformations, we must replace oynartial derivatives with

covariant derivatives. Thatis,@! D in our quark eld Lagrangian, so that

I—quark = qA (I@ mA) qA: (1-10)

Following Peskin and Schroeder [6], we note that this invance is contingent upon
the following in nitesimal gauge transformation of the glon eld A2, which can be
written as

1
A%l A%+ —@ 2+ fauAP C (1.11)

S
where 2 are the transformation parameters introduced in (1.4). Thecovariant

derivative has the algebraic relation [6]

[D ;D ]= igsG? t% (1.12)
where the strong eld strengthG? can be written as

G? = @A? @A? + gf apcAPAS: (1.13)

The last term in (1.13) re ects the non-Abelian nature ofSU(3) and should be
contrasted with the analogue in electromagnetic theory. Wevant our Lagrangian

for the strong force to be gauge invariant so

1
I—gauge: ZGa G* ; (1.14)

and we can then write down our QCD Lagrangian as

L = %Ga G* +q"(IB ma)d: (1.15)

However, like in QED, the gauge elds have states that corrpsnd to non-physical
polarizations and so we need to include some form of gaugedition. Unlike in QED,
the gauge xing in itself is not enough to remove the unphysat gluon polarizations.
We also require the addition of another (ghost) eld to our Lgrangian for which we

may use the path integral to formulate.
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1.4 Path Integral in Quantum Field Theory

We want to describe mathematically how elds propagate andnieract. Processes
in quantum eld theory can be calculated from the generatindunctional Z[J]. This
functional describes the time evolution of the eld from annitial state to a nal
state [7]. For example, a free real scalar eld would have the vacuum-to-vacuum

amplitude Zs.ee [J] in the presence of a sourcé

Ztree [1] =<, Oje "Tjo>
= D)
Z
_ D-eiRd4xL(@';' )+ 3 (1.16)

Z R
e @[ 1 (@ m?) v Jeiy g,

where the integral is over all possible eld con gurations ad depends on the action.
The source/sink term J(x)' (x) in the Lagrangian allows us to describe our free
eld as propagating in spacetime and being created and anniiited. The '5 ' 2 term

involves an implicit limit ! 0", and is introduced to ensure the path integral is
convergent. This integral can be solved by completing the sgre which gives us a

known Gaussian integral, resulting in
- RR
Ziee 9] = e [ 4520000 I0], (1.17)

where we have applied the normalization conditiorZee[J = 0] = 1 and where

D(x y)is a Green function which satis es
@+m?>+i DX y)= i%x vy): (1.18)

Equation (1.18) has the solution
Z

D(x y)=

d*k i ik (x y).

B YK (1.19)

which is the scalar free eld propagator where thé term corresponds to the Feyn-

man prescription for the integration around the poles [6]. flwe include a' 4 term
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in the Lagrangian, then it corresponds to an interaction. Haever, we no longer
know the solution of the integral, so we use a perturbative @ansion and consider
the solution term by term. Following [7], the expansion in tems of the number of

sources] is

zp0]= Dl exfil@r mt ey 4ig

X js? z
= sl d4Xl d4X5 [J(x1) J(Xs)]
A (1.20)
Dle i d4Xf %[(@‘)2 m?2' 2] ﬁ' 4gl (Xl) ' (Xs)
X js? z
= Z[0] 5 d*x, d*%s[J(X1)  J(Xs)] Gs (X1,  :Xs);
s=0
where the last line is written in terms of the s-point Green faction Gg(X4; ' Xs)-

These Green functions can be written in terms of functionaletivatives with respect
to J

1 z R
Gs(X1; ' Xs) = m D'ei dxf 3[(@)? m* 2] &' *gr (X1) " (Xs)
= o ian‘*w[m]4 — 50 Ztree [I]
!:L] . . I (Xl) | (Xs) J=0 (1'21)
=~ olm W[l
Z[J]

R
| | [5 d*xd*ya (D (x v)I(y)] :
i J (Xq) iJ (Xs) J=0

An event that could be thought of as having two sources and twsinks would be

described in terms as a four-point Green functions(= 4) corresponding to

Ga(X1; X2:X3; Xa) = AT (" (X1)' (X2)' (X3)" (X4))i
1 (1.22)

TZ0R] I () 0id (k) i1d (xs) id (xa) Z[J]Fo;

where omitted initial and nal states correspond to vacuum gpectation values. We

can expand the interaction term in terms of the eld couplingstrength . The lowest

order in term for a four-point Green function would be

1 i 4
Ga(X1;X2i X3 Xa) = 5= —  d'w -
Z[J] 4 1J (w) (1.23)
T T 190 T30 el
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i z 4
d*w

Ga(X1; X2; X3; Xg) =

? iJ (W) iJ(Xp) iJ(Xs) iJd (Xa)
1. d4 D(X )J ( )Zfree [J]
> ZYl ’ 1 Yu)d W Z01 o
= |4—| d'w DXy w)D(X2 w)D(x3 wW)D(Xs W)
+ D(Xx; x2)D(x3 w)D(xs w)D(0) "
+ D(X1 X2)D(Xz x4)D(0)D(0) Ziee D], more terms :
AR

(1.24)

In the rst line only one of the functional derivatives has ben taken and in the last
line all the derivatives have been taken. However, there ameany possible combina-
tions that will eventually result in the same contribution 2 | have only shown several
of the possible terms. The rst term shown will result in a \cownected"diagram.
This term corresponds to an interaction, and there are othesimilar terms that will
also contribute. The second and third terms will result in \dsconnected" diagrams.
These terms do not correspond to an interaction and will notantribute to the pro-
cess of physical relevance. We can represent these termgdhanmatically in Figure
1.2 where the straight lines represent the propagatoi3(x; w) and so on, and the
dot represents the interaction (i ) d*w in position-space. Diagram (a) is \con-
nected" and corresponds to the rst term in the last line of (124). Diagrams (b)
and (c) are \disconnected" and correspond to terms two and tee where theD (0) is
represented as a loop alv. These terms are vacuum-bubbles which are cancelled by
contributions from the ﬁ factor. Each of the terms that is not shown has similar
diagrams involving permutations ofxy; X,; X3, and X4. Only the connected diagram
(a) needs to be calculated; in fact, the connected Green fuimns can be isolated by

the generating functionalW[J] = log Z[J]. There are 4! possible combinations, so

the nal result would be

vd
Ga(X1;X2; X3 Xa) = (1) d'WD(x: w)D(x2 w)D(xs W)D(xs W); (1.25)
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which is in terms of the free eld propagators and the couplip constant . Also it

is more convenient to Fourier transform and work in momentunspace.

X
3 X4 XB X4 XB X4

(a) (h) (c)

Figure 1.2: Diagrammatic representations for the four-pot Green function of scalar
elds with a ' 4 interaction.

For higher-order in  terms the four-point function would have more complicated
diagrams that would be evaluated following the same procesBhese diagrams could
then be compared to the mathematical results and would havéé same basic com-
ponents, that is, they would be expressed only in terms of pews of the coupling
constant and the free eld propagators. Note that some of the® processes would
have loops in the connected diagrams. The loop propagatoraye momentumk that
is arbitrary, so in order to include all possible combinatios we include an integral
over the loop momentum: Rd“k. We can then formulate Feynman rules for how
to calculate any desired term since the interactions are dethed by vertices (i )
in momentum-space and propagating particles are describéy the propagator in
momentum-space. However, these integrals may introduceveigent quantities into
the theory, because very small and large momenta are inclut®ithin the integra-
tion.

This systematic expansion will allow us to set up the calcul@n for whatever or-
der in the coupling constant we desire and is most useful whéme coupling constant
is small. In QCD we would like to work in the energy region wherthe coupling
constant is small enough for perturbation theory to be valigthis occurs when there
are large momentum transfers because QCD is an asymptotiyafree theory [8].
However, sometimes the constraints of the problem correspbto energies where

perturbation theory is not particularly accurate, and somegorm of non-perturbative
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physics needs to be included to supplement the perturbativealculations. One ap-
proach, is to consider condensates within the operator pradt expansion [9]. We
now have a process for describing the correlation functiors a perturbative series
plus condensates, and now we need to adapt this procedure tesdribe QCD elds.
The path-integral formalism for QCD requires that we rst incorporate the spin
statistics of our fermion elds into the path-integral. Then we need to nd the free
eld propagator and expand the generating functionalZ perturbatively for QCD.

For free fermionsZ[0] is given by
Z Z R
Ziee[0]= D De' @ (@mi), (1.26)

where if we consider the Dirac spinors and to be Grassmann quantities, we can
maintain the proper statistical properties of and . We can then integrate over our
fermion elds from the known properties of Grassmann quarties. Then following a

similar procedure to the real free scalar eld we can nd therke eld propagator

d4k ie ik (x y)

S(x y)= 2 )k mei (1.27)
corresponding to the momentum-space result
_ . ptm

Quark elds have an extra index (colour), but quarks can onlyexchange colour
via interactions, and so have the same propagator (1.28) Wwitan implicit identity
matrix in colour space. For quark/gluon and gluon/gluon ineractions we can use
the path integral to determine the Feynman rules in a way anabous to (1.24). We
could also describe more complicated objects such as our hglusing this approach.

For the gluon eld we want to quantize the gauge eld. Followng Section 16.2
of Peskin and Schroeder [6], we have the functional integrfdr pure gauge theory

Z R h i
7= DA ™ i) (1.29)
This integral will contain eld con gurations that do not co rrespond to physical

quantities. These contributions are related to unphysicagluon polarizations. Also
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since we integrate over all possible eld con gurations, wanclude an in nite number
of gauge elds that are related to each other by a gauge tramsfnation. These
con gurations lead to the same action, and are not independeof each other. We
introduce a gauge xing parameter to remove these con gurains from our solution.
Following Faddeev and Popov's [10] method as outlined in [&)e constrain our gauge

xing term ( G(A) = 0) by inserting the following identity into our functiona

v
1= D (x) (G(A )det —CA) . (1.30)

where represents a gauge transformation [6]. This constraint allvs us to iso-
late the eld con gurations that correspond to gauge-tranformed terms; we can
then represent unphysical eld con gurations by a new eld aad nally cancel these
states out by adding the appropriate terms to the Lagrangian The eld A has
the transformation properties de ned in Section 1.3. The factional integral then

becomes

Z Z Z
DAeSA = D DAeS! (G(A ))det (A ; (1.31)

where we choose the generalized Lorentz gauge conditionhw@aussian weightwv?(x)
G(A) = @A?(x) wW3(x); (1.32)

resulting in the gauge eld propagator

Z d4k i ab

@)K+

k k

B (x y)= [1 ]7 e k&) (1.33)

where is a freely adjustable gauge parameter. However, we oftereus= 1 which

corresponds to the Feynman-'t Hooft gauge. Again usinG(A) as in (1.32) and the
in nitesimal form of the gauge transform (1.11), we know

G(A)_1

g

The determinant in (1.31) was rewritten by Faddeev and Popowas a functional

@D : (1.34)

integral over a new set of anticommuting elds with
1 z R
det ~@D = DcDed *xet @D ). (1.35)
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The elds ¢ and c are anticommuting but transform as Lorentz scalars, that isthey
do not correspond to the usual spin-statistical propertiesf physical elds. However,
their inclusion allows us to remove the non-physical eld aogurations. These elds

are called Faddeev-Popov ghosts, and they have the Lagraagi
L ghost = @ @™ g@fabcAb c: (1.36)

From (1.36) we can formulate Feynman rules for propagatorsnd the vertices of

ghost elds by following the usual procedure.

1.5 Basic Feynman Rules in QCD

The Feynman rules that are needed for further calculation il€hapters 2 and 3 are
included in Appendix A in Section A.3 in Table A.1. For exampt the Feynman
rule for quarks would be the fermion propagator on the right &ind side of (1.28)
represented by a line as shown in Table A.1 with the implied émur and avour
structure. In Section 2.3 the left hand side of (1.28) is usddr quark elds but with
S (p) where and are added colour indices. The gluon propagatdd?® (k) in
the Feynman-'t Hooft gauge = 1 has Feynman rule given by

Ig ab.

ab —
D)= 17

(1.37)

This is also seen from (1.33) and the diagrammatic expressics given in Table A.1.
The gluon self-energy (see Figure 3.4) which is calculatedChapter 3 contains a
gluon loop and a ghost loop (see Figure 1.3) to maintain the phicality of the process.
As a simple example of how the Feynman rules are implementdtie amplitude for
the ghost loop is given by
ER U
2 (2)* K2+

i ce
|

(arer o9

(1.38)

(d) = .f K

The rst and third terms in (1.38) are ghost propagators chosn such that four-

momentum is conserved at each vertex and the second and fdudre ghost-gluon
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vertices. There is also an integral over loop momentut included. This integral is
divergent as can be seen by comparing powerskoin the numerator to those in the
denominator. However, if the divergence is treated in a cain way calculation is
still possible. In general, the rst step is to regulate thentegral to parametrize the
divergence; dimensional regularization is used in this thes for this purpose. The
second step is to renormalize the results by systematicalfdjusting the physical

parameters of the theory to absorb the divergent terms.

k-q
q bTTINY
a’s e b
mm $OOO0G6T00000
d Q'//
N v

Figure 1.3: Ghost loop contribution to the gluon self-enexg
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Chapter 2

Leading-Order Calculation

2.1 Hybrid Mesons

Hybrid mesons with some combination of quark-antiquark andluonic content are
predicted by the standard model since there is a hybri®&U(3) colour singlet in
group theory for this combination. Gluons carry one unit of alour and one of
anticolour corresponding to a colour octet 8 irsU(3) [2]. The combinations 8 8 =
1 and3 3 8=1 are product representations decomposed into a direct
sum of irreducible representations which include colourrgllet 1 states. Thus it is
theoretically possible to have glueballs which are parties made entirely of gluons
(8 8) or hybrids that are composed of a quark, an antiquark and dupn (3 3 8).
For the ground state € = 0), hybrid mesons would have total angular momentum
J=1 3 1=0;12

In the charmonium meson spectrum there are patrticles, with°¢ =1 [like the
Y (4260)], that are in excess of the predictedq meson states. The most attractive
explanation for theY (4260) is that it is a hybrid meson [11] since Ref. [12] calaiéd
using the ux tube model that the lightest hybrid charmonium state would have a
mass of 4200 MeV. TheY (2175) has been proposed as a strangeonium version
of the Y (4260), because theY (2175) has similar production characteristics and
decays [13]. TheY (2175) hasJP¢ =1 [14, 15, 16] and is below thec threshold,
so it is a possible light or strangeonium hybrid dqg where the quarks are some
combination ofu;d and s. Ref. [5] calculated the rst-order perturbative correcton
and the non-perturbative terms and obtained a possible mag®m QCD sum-rules of

2:3 2:6 GeV with the range depending on their chosen quark contertn@ssless case
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for lowest mass andss for highest). However theY (2175) decays to (1020¥ ¢(980)
[16], so it is likely to haves quark content because the is ass meson.

Other possible theoretical interpretations for theY (2175) have been suggested,;
Ref. [17] suggests that the tetraquark scenario is unlikelgince the experimental
width is narrower than would be expected for a tetraquark sta. Other possible
explanations for theY (2175) include a resonance d K meson bound state [18].
Refs. [13, 17] calculated the mass and allowed decay produdor various hybrid
models and concluded that their mass and width predictions eve consistent with
the Y (2175) and that a more precise experimental determinatiorf the decays would
better identify the best theoretical candidate.

The mass calculated from sum-rules by [5] is higher than thé(2175) mass. How-
ever the next-to-leading order perturbative correction mabe sizeable; calculating
this correction will produce a more accurate sum-rule that iV then provide a more
precise determination of the mass facilitating better comgrison with experiment. In
Section 2.5, | will reproduce the leading-order perturbate correction in the chiral
limit (massless or light quark case) calculated by [5] for aucrent that represents a
vector particle with JP¢ =1 . In Chapter 3, | will calculate the second-order per-
turbative corrections in the chiral limit for this same curent. Including the strange
quark mass requires an expansion to orden?> wherem is the strange quark mass.
The chiral limit is the rst step in calculating the second-ader m? corrections, since
the three-loop integrals that are produced in the chiral lint form the basis for the
entire calculation. Including the m? correction at next-to-leading orders requires a
drastic increase in the number of integrals computed and thghiral limit has a large
number of integrals as it is. However, the integrals requidefor the O (m?) terms are
a basic generalization of those calculated in the chiral litp so the massless case is
the rst stage of this calculation and it also provides the neessaryO (m°) term in

the m? expansion.
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2.2 Current for Hybrid Mesons

Quark con nement necessitates that a particle with quark catent is mathemati-
cally represented by a current which is constructed as a comgite operator with
the appropriate eld content. Thus, particles with a specic J°¢ can be described
mathematically via a current where properties of the partie are manifested through
the current. The current is constrained to have certain quéles: a Lorentz structure
that corresponds to the desired parity and spin, is a colourirg)let, and a valance
quark/gluon content appropriate to a hybrid state. We can ci&ulate the current's
correlation function (both the perturbative terms and Wilson coe cients of conden-
sates) via Feynman diagrams. A correlation function is sinip the Green function of
the currents (composite operators). In order do this calcation, the Feynman rules
for the vertex function for this current need to be determind. The hybrid current

of interest given by [5] is

J (X) = gOu(X) st* G gg(X); (2.1)

wheret® = % with 2 Dbeing the Gell-Mann matrices with properties de ned in
Appendix A.2 , g, (x) and g (x) are the quark and antiquark eld operators, and
5 are Dirac gamma matrices with relations de ned in (A.2), (A3), A and B are

avour indices, and the dual eld strength G° is

Gt = Gt ; (2.2)

NI =

where is the totally antisymmetric tensor in four dimensions. Thecurrent (2.1)
would permit the study of a hybrid meson withJ°¢ =1  or0 . Parity and charge
conjugation are quantum numbers that are conserved in thersing interaction. The
parity P operator describes re ection symmetry; it transforms spal systems from
right-handed to left-handed and vice versa [4]. The chargewjugation operatorC is
the formal expression of particle/anti-particle exchange The parity of this current

is
(D(H[ (HI=C 1) (2.3)
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following the conventions used by [6] where ( 1) ( 1) is from the dual tensor
and ( 1) pieceis from .. The ( 1) indicates that a particle represented by
this current has the same parity as a vector meson which B = in JP¢. The

charge conjugation of the current has +1 from the , partand 1 from G as [19]

CIA;A]JC = AT; AT (2.4)
[AA]= A* HAP P = f 3¢ 2APAC (2.5)
nobo= (e oTDT= i (2.6)

and thereforeC = in JP¢. The combination of the Lorentz transformations

properties ofJ and its P C values implies that the current can probe 1 states.

2.3 Feynman Rules for the Current

The interactions of the current (2.1) with quarks and gluonsvould be represented
at the ordergs by Figure 2.1 wherel ,; 3 3andl1l a; 8 are colourindices.

Tzhe Green function

d*x1d*xad*xadlye (Pr2arPeXetPaxatPY) 0 T g (x3)q, (X2) A% (x1)J (y) O

=&[iS° ( )] st° IS *(p) iD %% (p1) [ip4] ;

(2.7)
represents this process. There is also an implicit delta fation that enforces four-
momentum conservation at the vertex. The avour indices haw been suppressed as
avour will be conserved at the vertex and avours will enterinto the calculation
via the quark propagator masses in the Feynman diagrams, senthe masan in the
propagator could bemgy, m, or mg for light quarks. If the propagators [S 2 ( ps)],
IS 2(p) and iD®: (p;) are removed from the last line we get the Feynman rule
for the vertex as shown in Figure 2.2. The diagram for the rsbrder calculation
of the hybrid correlator (see Figure 2.5), will only contairthis vertex. In the next
section, | will evaluate the correlation function needed toepresent a hybrid with u,

d quark content in the massless quark case (also referred tothas chiral limit) where

mg' my' O.
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Figure 2.1: Single-gluon vertex for the hybrid current.

v = ig e"7q y vt

Figure 2.2: Vertex Feynman rule for the hybrid current with aquark, an antiquark
and a gluon.

At next-to-leading order, there is another possible vertewhich is shown in Fig-
ure 2.%, it has the expression

d4X1d4X2d4X3d4X4d4ye i(p1 X1+ P2 X2+ P3 X3+ Pa Xa+py)

=gliS (B s* IS °(m) — D, (p)

(D, (p)] fo2 foeb

(2.8)

where again removing the propagators and simplifying@»® = f a8 results in the

Feynman rule shown in Figure 2.4.

2.4 Correlation Functions and Feynman Integrals

The correlation function (p) of hybrid currents
Z
(=i d*e®*h jTfI (x)J (0)gj i (2.9)

is a Green function of composite operators. The current is heonserved, and so

the correlation function has a longitudinal part o (p?) (representing a spin zero
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Figure 2.3: Vertex for interaction of hybrid current with a quark, an antiquark and
two gluons.

= QZS yvystaapvpaﬁbc

Figure 2.4: Vertex Feynman rule for interaction of hybrid carent with a quark, an
antiqguark and two gluons.

particle) in addition to a transverse part ;(p?) (representing a spin one particle).

This decomposition is given by

p° = Fp g 1p2+%0p21 (2.10)

The ;(p?) corresponds to the vector part which is the desired state iféhis calcu-

lation. 1 (p?) can be extracted from  (p) through

pzz[ng ppl
' (1 D)p?

Feynman diagrams allow us to diagrammatically represent ehcorrelation function

(p) : (2.11)

as a perturbative expansion in the coupling constant wheres = g2=4 , and (2.11)

is used to isolate the desired state. The spectral functiorak the dispersion relation

(sz)n : (t + Qz)n+1 J

0

d" (Q%) _ }Zl gm o (2.12)
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so polynomials inQ? = p? will be removed by the derivatives of the correlation
function.

The correlation function calculated from Feynman rules wlilbe written in terms
of divergent integrals, so we need to isolate the divergerscinat will a ect our results
by regularizing the integral, and then we can renormalize #hcorrelation function.
Dimensional regularization allows us to do this systematidly [22]. To regularize the
integral we work in D dimensions, sad*k=(2 )*! d°k=(2 )P, whereD = 4+ 2
(the parameter for dimensional regularization should not be confused witthe
rst introduced in (1.19) for propagators) and we take the Imit ! 0 after we
have calculated physical quantities [20, 22]. This allowssuo do the integral and
isolate the divergences in terms proportional td*; 3;::: which then cancel other
divergent terms we acquire from renormalizing the bare pam@eters and currents.
The divergent terms that are polynomial inQ? will be removed by the derivatives
of the dispersion relation (2.12), so these divergences dot enter into the physical
guantities. Once the divergences have been eliminatedgan be set to zero. We also
include a factor-+- where is a renormalization scale with dimensions of mass.

The integrals can be calculated in terms of several comporentegrals. The

most basic dimensional regularization integral is [20]

vA D 2
FEED I SEL.S A (2.13)
2)" (k* a+i)
The ko integral has simple poles ak3 = jKj> i . The discontinuity can be dealt

with by Wick-rotating the integral where ko ! ikge. Then, the momentumk? =
R

k3 j Rj?2= k2 becomes Euclidian momentunkg anddk = id®ke. Since d p =

2 2= % , the integral can be written as aD dimensional volume integral where

R

R R
dP kE = d D dkEkED 1 and
0

£ Pre ()
(2 )° (kg + a?)
2 D 1,2
(1) i d@EE;—@Qa
z (kg + a?)

(4)

(s )=( 1)
(2.14)

|0
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Setting y = kg =athe integral can be rewritten as

i 2 1 y*z 1!
I(; )=( 1 TR dy 5 : (2.15)
@) 3, a =2+l
This integral can be compared with the Beta function [21] wich is given by
y/
W = vt _ (2 (w),

B(z;w)= dt(t+1)z+w = (zrw) (2.16)
Thus, (2.15) results in a Beta function as de ned in (2.16) vih w = % and
z= + %. SinceD =4+ 2 the integral becomes

| (: )_Z d®k (k?)

T D (k2 A2+ i
2 )" (k .a + |3 (2.17)
- 2 2 ! a  (+2+ )( 2
4) 4 ()( +2

The result (2.17) can be generalized to solve the integralshigh result from the
Feynman rules through an analytic continuation of the Gammdunctions. In the

massless case the component integrals (witha constant) are

2 Pk (k)

o kT (2.18)

This integral is called a massless tadpole and evaluates tera [22]. The simplest

non-zero one loop integral is

1Z d® k 1
2 2P Ke+i]lk p2Z+i]
1% ok (2) Z 1
=% Sz 7 . 2
@)y @° k p+i x+(k2+i)@ x)
=_Zl 2P oYy
2 (2 )D‘2 a2+i’

(2.19)

where, in the last line, the change of variables= k xpand a?= p?’x(1 x) have

been made. The integral is now in the form of the basic dimewsial regularization
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result (2.17) with =2and =0:

1 Z

> (y)°

—2de (2)°7° a+i
_Zld ) . ,0 i p? ( +2) ()
_0 Xx@ x (1 p @)Y 42 @ ( +2
_ i p? @+ )@+ yc ).
@) 4 2 @r2)

(2.20)

In the last line, the integral overdx has been calculated in terms of a Beta function.

The generalized one loop integrals have the form and solutio

14 ok kf1z uo

2 2Y+iTIk pP+il
_ i PPtz v (u+2 r+ )@ s+ )(r+s 2 )
S (4) 4 2 pAts D (N(s)(u+d r s+2)

(2.21)

where the termkf : 2 u9 js a traceless symmetric tensor (for example in the two
index casek’ * 29 = k 1k 2 kD—zg 1 2), The cases where the number of indicasare
zero, one and two are shown in [20] and are useful for calcutaf the leading order

perturbative result for the hybrid correlator.

2.5 First Order Calculation of the Hybrid Corre-
lation Function

Using Feynman rules to construct a mathematical expressidor the leading-order

diagram depicted in Figure 2.5 gives us the following expigen for the rst-order

27



perturbative contribution to the hybrid correlation function
Z Z

()= (g4§4 (34(;"‘Tlr % a (pi(i)2k::n£nii
a) (qi(i)zk:nznii quiri ;
(2.22)

where in the last line (A.3) and (A.4) have been used to simfi the expression.

Figure 2.5: Leading order diagram for the correlation funain.

We can choose to work in the Feynman-'t Hooft gauge (= 1) as the current
is gauge invariant. The numerator in Eg. (2.22) can be expaed and simpli ed
using the computer program REDUCE which results in a numberfdwo-loop inte-
grals. The antisymmetric tensor is de ned in four dimensions and dimensional
regularization requires us to work inD dimensions. Therefore should
be replaced by the D-dimensional continuation of the contrion identities for the

antisymmetric tensor. These identities are [23]

= (D 39g 99 9g9g +9 99 gg
(2.23)
+g 99 99)

= (O 30 22949 9gg : (2.24)

REDUCE calculates the D-dimensional trace, so the identiis (2.23) and (2.24)

used in REDUCE represent the antisymmetric tensor. Using #ncomputer program
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REDUCE to simplify the Dirac trace in (2.22) and calculatingthe resulting Feynman

integrals produces

. PP 2 243%+122+11 +3)[ 3B+ )P ( 4 2)
S @+ ) 6+v3) &%

1 77 P2 °
2 = S = 4 _E ——  +0 6
1 P 3 2480 © 240 o900 T O0) P 7
2
= =3P T log —P

I
N

O480 240 9600

_ %_. I U S T
- o 0g —; 240°9 7 480~ 240 9600
}H Z }

phyS|ca| part removed by derivatives of the dispersion relation

(2.26)

where ¢ is Euler's constant. In theMS renomalization scheme 2 is rescaled such
that terms with g and log 4i are removed. Although this rescaling is not impor-
tant at this order, it is at next-to-leading order. The part of the perturbative rst

order correction that contributes to further analysis is

. 1 2
o= i log —'2 (2.27)

which agrees with the result calculated in [5]. This is alsche only piece that will
contribute to the sum-rules, since thet divergent terms are polynomials inp?, and

can be removed by derivatives of % (p?).
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Chapter 3
Next-to-Leading Order Calculation of

the Hybrid Correlation Function

3.1 Overview of Diagrams

At next-to-leading order 2, there are 14 diagrams as shown in Figure 3.1 where all
the gluon self-energy contributions are summed in diagram(dee Section 3.4). These
diagrams have distinct topologies although some of them (@lse that are very similar

topologically) will have similar if not exact expressionseasulting from Feynman rules.

3.2 Most Complicated Topology Diagram

| calculated the diagram of Figure 3.2 rst as it has the most amplicated topology
(the diagrams in Section 3.6 have similar topology), and thefore the integrals cal-
culated for this diagram should constitute most of the intels needed to calculate
the remaining diagrams. In general | will use Latin indicesof colour (a;b;a; ay)
and Greek for space-time indices;(; 1; 2; 1; 2; 3, 1, 2, 3). The variablesk, -
and g are internal momenta, andp is the external momenta and | have used these
assignments for internal and external momenta through-ouhe calculation. Feyn-
man rules for this diagram give m(p) corresponding to the amplitude for Figure

3.2, where the subscript (1) represents diagram number adklled in Figure 3.1.
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Figure 3.1: Second order diagrams for the two-current cotation function of hybrid
currents.
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The expres;ion for the diagram is

T dv d*qg — d*k i(k+m) . a
oP= 1 55 5y 23" @ meer % T
i (g+ m)

. . i(gg =+ m)
—_— 12 3 ta
q2 mZ+ | I9s [ (p )] 2 35 (q \)2 m2 + i

i(k =+m) A (3.1)
97 meei TP

i aza H ab
9., 25 1

(k @*+i (p )+i

igs 1t611

Figure 3.2: Diagram with the most complicated topology, lablled as (1) in Figure
3.1.

There are some simpli cations that can be made with the ind&s and by using
the anti-commutation relations between and s (A.3) as well as (A.4). Also
in dimensional regularization the integrals go from 4 td dimensions. For the
remaining diagrams, | will write down the expression in D diransions and drop the

i terms for simplicity. Then

TR N L R TP, L)
@) @) @) k2 m2 P m?2
e oy, , HES M Ik Srm
el gy w! oy ow
|[p ‘]2 3 I 5 |\2 123 123 ’
k @° ® )

(3.2)

where the constantC; = Tr t2tPt2t? s the colour factor for this diagram. As
in the rst-order calculation it is the vector part of (1)(p) that is relevant for the

calculation so we want to calculate (11) (p?).
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The Dirac trace in the 4 (p?) projection of (3.2) was calculated using the pro-
gram REDUCE in the chiral limit (m = 0). The result from REDUCE is in terms
of four-momentum dot products, and there are some useful aiges of variables that
convert these dot products into a form that allows for a systeatic classi cation of

the resulting integrals. Since

pa=Zp*+¢ (q p°; (3.3)

NI =

all of the dot products can be rede ned this way in REDUCE. Theadvantage of this
change of variables is that the result is in terms of integralthat are easier to classify.
The integrals can be classi ed into those that result in ma$sss tadpoles which are
zero and nonzero integrals which were given numeric desigpa nl through n66
in my REDUCE code (see Appendix C for sample code). It also mek it easier to
identify when two integrals are the same under a change of vable likek $ g. Once
the above procedure was applied to my results, | had three bagypes of integrals,
two of which could be calculated from iterated one-loop inggals and a third which
could be calculated from recursion relationssee Appendix B.3. Type one, which |

called nq; looks like

ny(bicd = 1@ m f@q 1 fek 1
1 g ] 6 (2 )D [‘ p]2 (2 )D [q]ZC [q \]2 (2 )D [k]Zb [k q]2’

wherea and c are integers, andbis a positive integer. Di erent combinations ofb, ¢

(3.4)

and a correspond to individual numeric designations as descridb@bove; for example
nl = n,(1;1;0). The solution for (3.4) is obtained in Eq. (B.1) of Appendkt B. The

second type of integral has the form

iz @ = g 1k 1
S @)1 pf @)l P @Kk ]

where the solution for (3.5) is obtained in Eq. (B.2) of Appedix B. The third type

n,(b;c;g = 5; (3.5)

of integral is
Z Z Z
dD‘ ~2a dD de
nS(a) = i@; D 2 qD D 2 <12 = 2 2 < 2; (3-6)
@) pf 2)° @)IMElg Tk dk Kk ]

where the solution is again outlined in Appendix B and is giveby Eq. (B.5).
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Some of the classi ed integrals have numerator factors sues @@ p)°(k )2
These integrals can be expanded and the result written in ters of ny, n, and ns
integrals. However integrals that contain a factor likek require the vector form of
the integral and integrals with terms likek k the appropriate tensor form ofng, n,
or n3. These integrals are discussed in more detail in Appendix Bhe numerically
classi ed integrals from the trace calculated in REDUCE carthen be replaced by
their scalar, vector and tensor components. The trace ovehe colour algebra isC,

where thea; = a index has been relabelled

C,=Tr t3tPt3tP

1 4
— T ab ab aa bb, ab ba +2 dabcdabc daacdbbc+ dabcdbac +

2 N
(3.7)
+2i dabCf abc daaCf bbc + dabCf bac
1 4 8 2
= o AN @ — @ — =
24 N N 3

Note that d®¢ = 0, d®© is real and totally symmetric, N = 3 in SU(3), 2 = 8,
and the identity (A.9) has been used to simplify (3.7). The ral expression for the

vector part is

W3R &P 3p6(1+ ) [P a+2 ) 2
' 243 4T 42 T (7+4) ;3
( 42+) (2+§+)( §+3) P 4 §+ %+
3 3 2 !
32 81% 166° 1032 18432 4 2124 187 +2I0§
1. 2 1
2 2
27 1226°+16352+23314+2588°3+372°%+56 '+540 +72
@ )

(3.8)

This expression still contains , so it needs to be expanded in a Laurent series (see

Table 4.1).

34



Figure 3.3: The Ravenous Bugbladder Beast of Traal diagram.

3.3 The Ravenous Bugbladder Beast of Traal

Despite its intimidating appearance, the result for the digram in Figure 3.3 turns
out to be very simple. Note there is a trace for each fermiondp in the diagram

and a factor of 1 for each fermion loop, so the Feynman rules for this diagragive
Z Z Z

i d®" dq d®k i(e =+m) . »ed
(5)(p)— 6 2)P @) @ )DTr (k \)2 m2 Igs “°t
i(k+m) . . a i(g =+ m)
@ e 19 [ (o ], 50 T @ )2 m
. b (3.9)
i 1tc|(q:+m)- 123 N tb 'glla
I9s F m2 I9s P 1, - 'W
|g 1 2 cd
2
P )
The traces in (3.9) are straightforward; settingn = 0, and doing some simpli cation
we get
_ gg‘z d®" z d®q z d®k 1
(5)(p) - 6

@) @)P @)k Hk@ Ve )
n (0]
TrfttegTr fttegTr (R 2) (k) L 2°[ (p )], 5. 10

T (¢ =) ,@ 2P 1, ;5

Each trace contains ., and from [24] we have an identity (3.11) which will allow the

trace to be calculated in D-dimensions

Tr f Sg=4i ; (3.11)
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so the traces reduce to momenta times antisymmetric tensorSome terms, such as
qq , are zero due to symmetric contraction on an antisymmetricensor, and
nally
z z z
(D) = g44—2 db" d®q d®k 1
O @) @) @)k k@ et )
2
Trftt®s [ (p N, 1, .2k 2, t2fq
(3.12)

The identities (2.23) and (2.24) can be used to expand the engssion and calculate
©) (p?) in terms of our integrals where neither the colour traces dhe algebra is

trivially zero. The colour factor Cs is equal to
Cs = [Tr ftotogf = - [4 % 4= - [4 %] =2: (3.13)
5 = [Tr 9]—?[ ]—g[ 1=2: .

However (15) (p?) = 0 when the resulting integrals are added together and sintiged.

3.4 Gluon Self-Energy Diagram

Figure 3.4: Gluon self-energy diagrams.

Diagram (4) as shown in Figure 3.5 contains the gluon self-emgy (see Figure 3.4)
which | will calculate in terms of integrals over loop momentm k in the massless
case. | will then insert this expression as the Feynman rulerfthe gluon self-energy
in diagram (4) as this will allow me to classify the results inerms of loop integrals

in the same way as in previous diagrams. The gluon self-emgrg () is the total
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of the diagrams (), (ii), (iii ), and (iv). Diagram (i) is proportional to

Z
d°k 1 _
2y 0; (3.14)
so this diagram is zero. Diagramiii ) has
1Z d®k i (k+ m) i(k g+m)
b — ; H b
a (m)(q) = — 2 )P Tr K2 2 s @ (I<q)—2rr12 igs t
(3.15)
However we want (?) in the massless case so | will calculdte
=t g (@ (3.16)
T o »° | |
Then, for the fermion loop, the expression we want is
2 VA D 2
, 3 A4y asb d°k (D 2)k*+(D 2k q
@ 9 = 5 om i Ut D 2 !
(D 1) 2) k2(k Q)
(3.17)

where the factor 3 appears because there are three light gkaavours that can

occur. For the ghost loop (), the Feynman rules give

Z

1 d®°k i 9 i ce
T w@= 7 g e Sk « 2 ¢ GO
(3.18)
02 1 z d®k k2+ k q
ab (iv) CI2 - _25f daef ebd . (319)

?D 1) 2)°K] (k g’

The gluon self-energy is transverse hence the projection ¢°) used in this section of the
calculation.
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and for the gluon loop (i) the Feynman rules give

Z (
1 de I 11 a9 i 2 2 & 2
* i (@ = 22 (2 )DTr gkz (E 0> af* g *(q+ k)
#II
+gt2( 2k+q +g?(k 29" gf*Pgri(q 2K) +
#)
+gt (k+g*+g ?(k 29°
(3.20)
yd
ab q2 - ing agcef cgb 1 d°k (2k2+ K q+5q2)D+
R I L gl
+(4D 6)k? (2D 3)(2k g+(D 6)¢
(k 9)?
(3.21)

Figure 3.5: Next-to-leading order diagram containing thelgon self-energy.
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Figure 3.5 contains the gluon self-energy and is equal to

iZ d®" z d®q Tr i(p =+ m)

= 1 112 ai
(4)(p) 4 (2 )D (2 )D (\ p)2 m2 IgS [ ql] 2 5t
i (GF =+ m) . a g 1 aa ab
| 11 2 t2 |
@ ) m Os [a.] .- 7 ()
|g 1 ba2
k2
2 2 (3.22)
_ i, d> T dPq arh i(p =+m) .
= -0 2P @)p Tr tt° Tr ——= p)2 2 I,
g = m 0 i
@ ) m ¢ K
t2 g, *2q, 9qq qg *

In the last line, the term proportional to g q is zero due to symmetry arguments.
The colour identities used aref 29°f °* = N @ and Tr t3° = %2 . Including
the colour factors, the nal expression for the vector parts

3

(4) 2 _ 64 52 p2 6 3 3
1 pP(l+ )" C(A+2)(@2+ )

s 4r 42
[()N* @+3 ) ( 1 3),
(3+3 ) (6+4 ) '

(3.23)

3.5 Diagrams with Complicated Topology and Three-

Gluon Vertex

Figure 3.6: Diagrams with complicated topology and threekgon vertex.
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These diagrams shown in Figure 3.6 have the same topology agufe 3.2, how-
ever there are complications that do not occur in that diagna, so | have not used
the same momentum routing in Figure 3.6. Both the diagrams irigure 3.6 have

the same expression in the massless case, so we can add theyather

'z . Z yi «c
() = 2i d° d°q d°k Tr M igs  t*

@ 5 2)» @) )P (@ ) m >
i(k =+m) . G ptm)
S SR A 123 k 2~ 7/
k ) m > LR Ty e
. ilabbz ilzazal illabl
|gS 123[ ( q)]2 3 Sb ? q)2 (gq k)2 ng
h )

gf "2 (g2 2[k d°*+g2°[2q9 kI'+g®*[ k d°?)

(3.24)

The vector part (12) (p?) for this diagram is

| I
e Rl s U
i i(g =+m) . (e =+m) .
Bo@ o m g oy w1
E Wy, g PO PRl L
® Y m ¢ @ Dp )
A i

(9*2[& d°+g?°[2g kKl'+g*'[ k d°)

(3.25)

There are two terms in (12) (p?) that will not have any contractions between indices
in the antisymmetric tensors; consequently, the identitie (2.23) and (2.24) can not
be used to simplify these terms with the expression in its ctent form. The other
terms can be simpli ed directly with REDUCE. The remaining two terms require
several steps of simpli cation to get them into this form. Fo these two terms,
instead of replacing the product of the antisymmetric tengs by its D-dimensional
extension in REDUCE, | used REDUCE to calculate the trace wh a constant in

place of the one of the antisymmetric tensors. This producedresult with momenta
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times antisymmetric tensors which could then be simpli ed ¥ using the properties
qgq =0 and = 0. The results were then in a form where the identities
(2.23) and (2.24) could be used to convert the result to integls in my classi cation
scheme with the exception of one term which is given by (B.32)he colour factor

C, where | am relabellinga; = a, by = band b, = cindices to simplify, is

Co=Tr tothtefbac = 2—13fbacz dabe + jf bc = 2—23Ni 2= 6i (3.26)

Finally assembling these three calculations gives

@ p . s BT 40@+)? (6+3)( 4 IO
! ( 41" 4 2 27 (71+4) 3+ 2+ 2+
|
_ 2+ 1+ 1 '
4 P 3 " i ( ) 51848 + 467793 %+
2 2

+187776°% + 2654193 + +37908 ' + 8712 +424989° + 75231 2 + 108

+27 "3 %+ 72 +227600° + 241248* + 3252 +127140°
) #
+98848 6+ 17152 " + 2048 & + 32250 2 384 p* ;
(3.27)
wherel (p?) is given by (B.32) in Appendix B.
3.6 Quark Self-Energy Diagrams
Both diagrams in Figure 3.7 have the same expression which is
(0 = 2iZdD‘ ZquZde_I_r i (k+ m) i 1t i (g+ m)
@\P) = 5 2)Y (@2)0 (2)P k2 m2 s @ m?2
. b 1(R+m) . Lo i(e =+ m)
igs 2t ez 9s [ oo, ,st° &k )Y me
_ . ig , ) ba ig dc
igs 20 C pl, .t ‘
) Yook oa® (P2
(3.28)
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Figure 3.7: Quark self-energy diagrams.

Calculating (13) (p?) is then straightforward as it can be calculated from integls

directly as there are no new integrals introduced by this dgram. The colour factor

Cs is
Cs=Tr t3t3PtP
— i i aa bb ab ab ab ba 2 daabcdbbc dabcdbac+ dabcdabc +
2* N
(3.29)
+2i daect bbc dabCf bac dabCf abc
- 1 4 ( aa)2 — 1_6
TN B

and the nal unexpanded amplitude is

, 128 2 p2 B

©) 5 ;4 T pP(11 +12)(1+2 )
3.30
s[NP @+3 ) (1 3) 350
(3+3 ) (6+4 ) '

P

(1+)
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Figure 3.8: Diagram with vertices with a quark, an antiquarkand two gluons.

3.7 Diagram with the Two-Gluon Vertex

Figure 3.8 has vertices with the two-gluon Feynman rule givein Figure 2.4, so the
amplitude for this diagram is

Z Z Z

i D~ D D (ke +
OB T G @R @E" G ome €8 T
i(ﬁ g+ m) 92 0 21 2facic ig L brc1 ig . bz cz
e ) me >t k@ @ )
= @Tr taf ac1C2¢bf acicz d> dq Pk Tr {ke+ m)
6 Gy @p ey Kk om
i(ﬁ B m) [ i 1 212

P ) m k@ @)
(3.31)

Note there are contractions between two sets of indices ingrantisymmetric tensor
here, so the term in (16) (p?) that is proportional to g will have three sets of

contracted indices. Calculatingg times (2.24) gives
g ! 2t2= (D 3D 2)(b 1)g:*z (3.32)

which will replace the antisymmetric tensors in the trace fothis term. The colour

factor Cg for (3.31) is

Co=Tr titPfaacefbarce —Tr (3PN & = %2 a=12: (3.33)
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The result (16) (p?) for this diagram is

_ 5 p° [+ )N (3+3 ) ( 2 3)
p’ =384 7 ]4 T pP(1l+2) @4+3 ) 5+4 )

3
(6)
1

(3.34)

3.8 Four Diagrams with the Same Result

Figure 3.9: Diagrams with one quark, an antiquark and two-gbn vertex.

The four diagrams in Figure 3.9 should have the samem(p) in the massless

case, since topologically they mirror each other. Diagranfs) and (d) in Figure 3.9
have the expression
3 iZdD‘ZquZde i(k+ m) . c
(P = & 2) @2) (2 )DTr k2 m2 Igs t
i(k g+ m)

112 n i(k £+ m)
(k q)2 m2 s 1 5ta fabbz (k \)2 m2 (335)
ge (p ), L0 re 9.2 19, %

P ) P
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and diagrams p) and (c) have the expression

() = _iZ ® % ®q? Pk o ik g+ m) o
(7b) 6 (2) () ()P (k q)2 m2 =°
i( k+m) . . i k+m
H I9s (p ) 1 2 stb 21z (k(\)—zrn)z (336)
g2 ta 11 2f aby by Ig 2 2 b2b Ig 1 brc
S 1 5 (p \)2 q2

Egs. (3.35) and (3.36) are very similar and their colour faots have the relation
Cs;a = Cy. Then using REDUCE to calculate the amplitudes divided by te
respective colour factors (l7a) (p?) =C» and (17b) (p?) =Cy, in the chiral limit, these

expressions have the relation

R (<0 I (e (-9 (3.37)
C?a C?b

and hence (17) (p?) = 4 (17a) (p?). The colour factor is the same as in diagram (2)

(see Figure 3.6) s&C;,; = C, = 6i. The nal expression is

3
PP+ )’ +9)(2 +1)

(7 p2 =32 52 p2
' ar 42

[()N*@+3 ) ( 1 3),
(3+3 ) (6+4 ) '

(3.38)

3.9 Diagrams with One Quark, Antiquark and Two-

Gluon Vertex and a Three-Gluon Vertex

Both diagrams in Figure 3.10 have the same expression dengifrom the Feynman
rules, doubling the amplitude. Also there is a symmetry facor of 1, since the gluon

lines connecting the current and the three gluon vertex arenterchangeable. For
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Figure 3.10: Diagrams With one quark, antiquark and two-glan vertex and a three-
gluon vertex.

diagram 8, (8)(p) is

25i1% @ % dPq £ Pk i k+m)
M= =55 Tr o
©® ©2 (2) @) @)P (k )> mz2 = °

i prm) ig , , b
taf abite (p( ‘)pz m)2 Igs ( k) 1 2 5tb 21z g q2
Ig 2 2 bZaZ Ig 2 3 b% aiaza 3 1
K Q7 (K> gf** (g 2[29 k]*+g2°[2k q "+
+g*t[ k d?)
. Z . Z Z
— %Trntaf aa1a2ta3f a1a2a30 dD qu de
° (2)> 2)> (2)°
S L) e po+m i
k ) m o Y ome
[ [
k g e (0.0
(3.39)

In the last line some of the indices hal\q/e been relabelleéj inder to simplify the
expression. The colour factor i€<g = Tr t2f a&tasf uxa = Co = 12, Then

the nal expression is

® = 100 = e 3|06(1+ )° % 4%2+8 +3

1 P [4]4 4 2 (3.40)

[( " 2+3 ) ( 1 3). '
(3+3 ) (6+4 ) '
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Chapter 4

Results and Conclusion

In order to isolate the divergent quantities, i (p?) is series expanded in. Table
4.1 has the expressions for each diagram as a series.inEach diagram has an

expansion in the form

206 a; 1 2 i
; (4.1)
+b3|092 — ;

wheren is diagram number anda;, a,, as, by, b, and b; are constants. Table 4.1
contains the numeric values of the speci ¢ values aof, a; etc. appearing in (4.1) for

the individual diagrams.

The total correlation function for our 1 hybrid meson is the total for all of the

diagrams
N xe
o= P (4.2)
n=1
The dimensionally regularized series expansion of™") (p?) about = 0 for the

second order correction is

. 2 83 6959 1 83 3708623
() 2 _ s 2 + + 24 6
1P + 26080 38400 T 2880 " 2860 * 10368000 P
(5] (5]
6950 =83 pf 83 p° .
115200 3840 11520 2

(4.3)

whereL = log 2 . This result (as well as those above) has been converted tceth

modi ed minimal subtraction (MS) scheme whereby substituting 2! 2e&=4 |,
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n| a a by ag o) bs
1] -4 553 4 1 2 113647 16 (3) 553 2
135 2025 45 135 60750 45 675 15
2 23 | 18541 23 23 2 1126153 4 4 (3) 18541 _69
15 1350 5 60 13500 15 450 10
3| 32 3704 32 8 2, 310948 3704 16
135 2025 45 135 30375 675 15
4| 8| 9 8 2 2 84212 976 4
45 675 15 45 10125 225 5
5/ 0 0 0 0 0 0
8 188 8
6| O 8 0 188 8 0
71 2 697 | 6 1 2, 117253 697 | 9
5 225 5 10 6750 75 5
8 4 | 418 12 1 2 40811 478 18
5 75 15 5 1125 25 5

Table 4.1: Numeric values for constants as de ned in (4.1).

e and log (4 ) are eliminated. The polynomial divergences (appearing thi 1 and
<) will be eliminated via derivatives in the dispersion reldabn (2.12), but the di-
vergent 1L term remains and can only be removed by renormalization. Thefore
the renormalization properties of the current need to be detmined. Once these
terms are dealt with the remaining terms are the 2 perturbative correction. In the
limit ! O theO(), term in (4.3) goes to zero, however it cannot be ignored in
(2.25) because ! !

bare coupling ¢ =

1. The rst step in renormalization is the replacement of the

p appearing in (4.3) and (2.25), with the renormalized coupig
constant | related to ,, by [20]

1
L L (4.4)

Ml ©

Since | am working to second-order in, this simply replaces ,! | in (4.3), but

generates second order terms through a modi cation of the st-order result (2.25).
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Renormalizing the coupling constant to order 2 modi es the rst order term as

1 9 .1 1 4oL 77) 1
2= L 1+ >0 ——p° o e (14997+
P 2 2 480 ° 9600 576000

(l:o2)
1

924Q. 200 2+ 2400L2
(4.5)

Although this renormalization does alter thellL term, it is not enough to remove the
divergent 1L term from (4.3), the correlation function also needs to be r@rmalized.
Although the current's renormalization properties have nbbeen determined in this
work we can still explore how they might a ect the results. Tk exotic hybrid
current renormalizes multiplicatively [26], so if we assuenthe renormalization of the
non-exotic current is also multiplicative J® = ZJP® it would also renormalize the

correlation function by

R=1Z% = 14281 bi (4.6)

whereE is some renormalization constant that could be determinedylassessing the
renormalization properties of the current. The expected Vae ofE can be determined
by assuming that the divergent termiL is removed by this renormalization. The

necessary value for the constant iE = g and

1 77 1 7527 1 738649
2 = _— " ST L I (At =
1P a0z P L 2t3 30t 1 ® 138
#

83 , 8663 83
—Lt —t+ —
32 1920 9672
4.7)
The polynomial terms inp? are removed by derivatives of the dispersion relation and

the resulting expression for the correlation function of Hyrid meson with 1 in the

chiral limit is "
1
2 — _r
1 P 240 2

#
] (o 7527 83,

PL+—p" 330t

(4.8)

The coe cient of L at next-to-leading order 2?is 2:3 times that of the leading order
coe cient, so on the scale where-  0:1 the next-to-leading order perturbative

correction should be an important contribution.
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The result (4.8) would describe a hybrid meson with light qu& content and an
improved mass for this state could be calculated from sum4as using this correlation
function. Because the second-order? term is substantial compared with the rst-
order term, the 1  non-strange hybrid mass prediction of Ref. [5] could be ated
signi cantly. However a de nitive study of the renormalization of the hybrid current
would be a necessary step, and is beyond the scope of this thes

The techniques developed in this thesis will provide the fowation to study
hybrids with strange quarks, which requires ordem? e ects to the perturbative
expansion. An improved determination of the strangeoniumyibrid mass could then

be obtained and compared with theYy (2175) patrticle.
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Appendix A

Conventions

The conventions used in this thesis follow those de ned in]6

A.1 Units

Convenient units are~ = c¢= 1. Then energy and momentum are in mass units eV
or more usually MeV.

A.2 Dirac and Colour Algebra

The relevant metric of Minkowski spacetime is

0 1

1 0 0 0
_ _Bo 1 0 ((_:)g
g =9 = 0 1 ; (A.1)
0 0 0 1

The Dirac matrices have the anti-commutation relations

f ; g= + =29 (A.2)
;5 =0 (A.3)
5221, (A.4)

g =D: (A.5)
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The SU(N) colour algebra is de ned in [20] where th&? = 7 are de ned in terms
of the Gell-Mann matrices with the following properties

[ as b]:2ifabc c

4
foa bd = W abl + 2dapc ¢
fabcf dbe = N ag

N
Oabcdabc = N Z ad

Trf 4 b0=2 4
Tr f abcd= 2(dabc+ if abc)
4
Tr f abcdgzﬁ(abcd ac bd t adbc)
+2 (dabrdcdr da(:rddbr + dadr dbcr)

+2 | (dabrf cdr

A.3 Feynman Rules for QCD

dac:rf dor T dadrf bcr) :

(A.6)
(A7)
(A.8)

(A.9)

(A.10)
(A.11)

(A.12)

The QCD Feynman rules as de ned in [6] are shown in Table A.1.dar-Momentum
is implicitly conserved at every vertex €.g. p+ k+ gq= 0 in the three-gluon vertex).

Fermion Propagator Fermion Vertex

Gluon Propagator

i H a
M ig t

ig ab
pr+i

Three Gluon Vertex Ghost Propagator

Ghost Vertex

i ab

of®[g (k p) + p|2+i

+g (p 9 +9g (@ k)]

gf abcp

Table A.1: Relevant Feynman rules for QCD. The gluon propagder is given in the

Feynman gauge =1
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Appendix B

Feynman Integrals

B.1 Relevant Integrals

vector tensor more complicated
vi | kg |t [kpgp| Ti [(@pkop
v, | ap |tz | @p®| T2| @p°’
vs | kp |tz | (kp| Tz |(@pk’
va | kot | (k) T | C PPk
Vs q ts |k k p| Ts [ p’k "
Ve T p te C P> T C p°
tz g p

tg | q pk °

te | g pqg -

tio |k pg°

tiy |k g
t, |k p

tis | K pp

Table B.1: Vector and tensor structure of classi ed integri.

The three types of integrals have basic scalar, vector, anérisor forms. These
integrals are listed in Table B.1. | am using an exponeny, for vector integrals, t,
for rank two tensor integrals andT, for more complicated tensor integrals, to label
and di erentiate between the di erent integral forms in my notation. For example,
t, indicates a tensor integral containingk pqg p, or in other words, an integral
containing a tensork q . However, the solution of this integralt; is di erent from
tg with kK "q p which also contains an integral ovek q . Note that many of the
integrals share components and that fon, integrals n3* (b;c;d = n32(c;b; 9 and
for n3 type integrals n3! (a) = nz? (a). Also some of the integrals falsely appear to
be tensors at rst glance. For examplen(?, is really a vector integral due to the
integration order.

B.2 Basic Integrals

B.2.1 Scalar Results

Type n; integrals can be calculated using the basic one loop resuitsratively. |
rst calculated the dPk integral followed by thed® g and d® " integrals. In (B.1), the
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scalar case, each loop integral has the scalar form of (2.2&j)th the nal result

Z Z Z

n(bicg= — e 1 d®k 1
S * @)°r pF @)I[E*l P @) KPK
_ i 18 1 [@+ )P @ b+ )(b 1 )

4) 4 2 pAbtcass3) (ph @3 b+2) (c+b 1 )
B3 b c+2)(b+c 2 2)@4 b c+a+3)
4 b c+3)(c+b a 2 2)
(b+c a 3 3)
(5 b c+a+4)

(B.1)

The n, type integrals can also be done iteratively liken,, however thed®k integral
does not depend org so the order of integration doesn't matter and of course the
d®" integral is done last, with the scalar result

eas Lo® m Feq 1 Tek
o S @)r pP @I[E*Ma P Q@I KPK P
o 1° 1 [(1+ )P (@ b+ )(b 1 )
T (@) 4 2 pbcass) (b 3 b+2) (9

2 ¢ )(c 1 )@ b c+ta+3)
3 c¢c+2)(c+b a 2 2)

(b+c a 3 3).

(5 b c+a+4)

(B.2)

The d°k and dP g integrals in nz cannot be done iteratively; however they can be
calculated via a recursion relation, and then the integralver d°* can be calculated

to get the nal result. Following [25] we can determine the reursion relation by
using

Z Z 1
0= d°q d°k

@
ek “ Vg ok Y@ Y

(B.3)

In order to simplify further calculations let (k  @)* = z2,(k )*= x2and(q )*=
y2. Then the dot products between the loop momenta can be writteask q =
s(k2+ o Z%),k “=Z(kK2+"2 x?)andq "= 1(f+ %2 y? andthen used to
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simplify (B.3):

2oL K k q)
0= d°q d%k k2Rz2x2y2 2k q) k4Rz2x2y?2 * k2eRz4x2y?2
Lk
k2 222X4 2
Z q Z y D 2 k2 L2+ 22
0= d°q d°k ——— 2 (B.4)
k2q222x2y2 k4q222x2y2 )# .
.\ k2 % (k2 + CI2 22) % (k2 + N2 X2) + % (q2 + N2 y2) .
k2Rz2x4y2 ’
_ z 4P z Pk D 4 1 |
0= 9 k2cRz2x2y?2 k4ePx2y2  k2cRz2y*

In the rst line, the derivative has been computed. In the seand, the dot products
have been expanded using the above relations, and, in thetlasas been simpli ed.
So | now write n3's solution

Z Z Z
b "2 dP d®k 1
n3(a) = — d

6 (2 )D [‘ p]2 (2 )D (2 )D k2q222x2y2

Z o d®q ~ d°k 2 1 |

(2 )D [ p]2 (2 )D . (2 )D D 4 k4q2x2y2 k2q222y4
i 1° 1 [@+ NP () ( )@+ a+3)
@) 4 2 pAas) 2+2 ) (1 a 2)

( a 3) L )@+ ) @+2)@ 2)
2+ a+4) a+2 ) a1+3 ) (1 )

=

c)‘l—‘

(B.5)

B.2.2 Tensor and Vector Integrals

The tensor and vector forms oh; and n, can be calculated by using the tensor and
vector forms of (2.21), in some cases repeatedly. For type a di erent approach is
required. Fornz tensor type integrals which are

nt (@)= PP e m L pg L ok k g .
’ ° @)rr @) @PHa Tk dkk 17
(B.6)

and
o (a) = PP o m L g Lk k K |
’ ° @)rr @)X @PMEa Tk dkk T
(B.7)
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R R
the result of d°qand d°k integrals can only be a combination of momenta and
has the form

z z
d°q © d°k k k \ .

@)Y @rdu Tk Wk T %

(B.8)

As the integration must be relativistically covariant so the right hand side of (B.8)
must transform as a rank-two tensor of this form, withA and B are scalar functions
of *. These functions will be de ned in terms of scalar integralsver d®°k and d®q
and sincep * = 3 2+ p? ( p)? the tensor integral above (B.7) can be written
in terms of the scalar results fronrms (a) (B.5).

B.3 Complicated Tensor Examples

In the case of more complicated tensor structure | will shownaoutline of a typical
calculation. For example, consider

N7 (bic;d = p|0|oiz o _n g _gag “ ok
o C_@PT o @V P @PKTK o
1 dD‘ N 2a qu qqq

SPPP T GPT o @R g T

(B.9)
The integral d°k can be done straightforwardly like thed®k integral in (B.1) and

the result is ¢ to some power times a constant (for simplicity denoted bg,) in this
calculation. The d® g integral 14 is

Z
- L dq 999
TP @rPwt T e T (B.10)
:A\\\+Bg\\2+g\\2+g\\2

where we can determine the coe cientsA and B by solving the following set of
simultaneous equations

l,="" " 1g=A%+B 3°; (B.11)
l,=g “lg= A%+ B(D+2) % (B.12)

In terms of the integralsl, and |, the constantsA and B are

1

— N2
— 1 N2 .
B = m |2 |1 , (814)
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where the integralsl; and I, can be written as

| _fPq @) _f Pqagesgzesgie e (B.15)
T _@)Pgeei )2 _(2)P8 gl ) |
. z .
_ d%qg (@) " dq  (@+?)
l2= D y2(brc 1 YA D q2(brc 2 2" (B.16)
(2 )P qre t )(q ) (2 )P qre 2 )(q )
The integral (B.10) with the above values forA and B with 1; and I, is
niz(b;c;d= A izﬁi A )}+B 3pp 2
PR @ P .
_ i 13 1 1 [@a+ )P @ b+)
T @) 47 pPeasiig (h B br2)B+2)
(b1 )
B3 b c+2)(btc 2 2)® b c+t+a+3)
1

(c+b a 4 3)(7 b c+3) (b+tc 1 )
124 b c+a+2)@B+2)(1+ )
(7 b c+a+4) (c+b a 3 2)
45 b c+a+2)(2a® 4dac+12a +20a 4ba+45+2°)
B8 b ct+ta+4)
12c 120 +57 +18 2+2c%+4cb 20c 8°3+402 8b?
8c?+4ch +2F 26c +66 260 +2¢® +36 21b 2Ic
(+3¢% + 6¢b+ 317)
(b+c a 2 2)

(B.17)

The expression in the rst line for then;* (b; c; d integral would only di er from this

integral by A, which would be the coe cient emerging from a vector rather tlan
scalar one loop integral. Calculating the corresponding, and ns integrals follows
the same procedure.

B.4 Integral Without Contractions Between the
Antisymmetric Tensors

The integral | (p?) from Figure 3.6, which has no contractions between the incks
on the antisymmetric tensors as discussed in the correspamgl section, is

. 15 @ o f g C Pk aakk oo
PP=pp 6 2 )D [\ p]2 (2 )D (2 )D kzqzzzxzyz' :
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Note that many of the indices have been relabelled, so therevery little correspon-
dence between the labelling here and in (3.25). In order to Icalate the d°k and
d® g integrals | used the same method as for the last section with

Z Z
|‘2:1 d®q d®°k gqkk

4 (2)P (2 )D k2qRz2x2y2
=A S #Bg U PHCgtPeg P aFog
tg TP 4+Gg " P+Hg g +Jgg tgg

\2+

4 :
(B.19)

To simplify notation | have ignored indices onl (*?) in (B.19). There are seven
coe cients so | need at most seven equations to solve this dsgm1. However, if
the tensor structure of the integral (B.18) is considered & only terms that will

ultimately be nonzero are the those wittH and J coe cients; the rest of the terms
are zero following from the contraction of a symmetric with a antisymmetric tensor.
The integral above (B.19) | will refer to asl in the following equations

l;=""""1="8A+B+2C+2F + G+ H +2]] (B.20)
l,=9g > "1 ="%[A+DB +2C+2F + G+ DH +2J] (B.21)
ls=g ~ "1 =%A+B+(1+ D)C+2F+G+H+(1+ D)J] (B.22)
ls,=g > "1 ="°A+B+2C+(1+ D)F+ G+ H+(1+ D)J] (B.23)
ls=g > | =%A+B+2C+2F + DG + DH +21J] (B.24)
le=g g | =% A+ DB +2C+2F + DG + D?H +2DJ (B.25)
l,=g g | = 4“[A+B+(1+ D)C+(1+ D)F+G+DH + D (1+ D)J]:

(B.26)

Before solving the system of equations it is useful to look #te forms of the integrals
I, through I; with the following simpli cations 1, =I5, I3=I4andlg=0. If | in
(B.18) is replaced by the right hand side of (B.19) then

) 1ZdD‘ T ZquZde qgk k
I p° =pp o
6 (2 )D [‘ p]2II (2 )D (2 )D k2q222x2y2 "
Z
B 1 > a4 " 4
=pp — WW Hg g +J g g tg g
Z b~ 2 #
op C m . .
2(2) [ ol
pp d "
= H J]:
= @Pr W o
(B.27)

In the last line the contractions between the antisymmetri¢ensors allow us to replace
that tensor product. Also solving for the constants with thesimpli cations above
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results in

20,+ 1,2 2,

H J= :
6(D3 2D2 D +2)

(B.28)

wherel ; cancels which simpli es the results, so | only neel, I3, and 1 ;:

£ g % Pk @k )

1
T4 (2 )P _ (2 )P k20pz2x2y?
17 dPq 2 Pk 102 x?f
T T4 (2 )0 _(2 )Dz‘rkzzzx?y?
1
4
1

d°q — d°k (k g(k )(g ")
d®°q = d°k 1 2'2%x? 2x2

(B.29)

~4
2 (B.30)

2‘2 4
k222 2 k2 2Xzy2
| _i¥ quqZ d®®k (k o)
7T s . (2 )P _ (2 )P k2cfz2x2y2
_ i qu d® k 1. 2x2 N z2
T 4 2 )D 2 )D4 kzqzzzyz kzqzxzyz

Therefore (B.27) can be further simplify and then solved

Z

Cpplap e
| p* = CYr o (D 3D 249 g

12 @ % ®q? Pk 1

5 @2)P @)Y (@)r pP
(D +1) 4 z? ~2

(D 3O

4 (2 )D (2 )D é k2q222y2 k222y2 + k2q222y2

(B.31)

g g H J]
2) P (p )?
4x2 2

10+1(Q DG 2 K2Ex2y2 © K2Px?y?
Nz 7

1 P d°qg = d°k 1 2o 4

= = 22 p
5 (2)P (@) @)P [ pP

+
‘2k222y2 k222y2

4

(D 3 2% 6 4422 22

16 (D 1) quZXzyZ + k2q2lx2y2 + k222y2 k2ﬁ2y2

| 1% 1 1 [@+ )"
(4) 4 2 pl43r64 (5+4) (4+4 )

#

L+ )¢ ) L [4+12 +87

2+2 ) 1+2 ) ( 1 2) (4+3 )
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Appendix C

REDUCE Code

This appendix is the REDUCE code for Figure 3.7. The operateffp (p), mfp (p)
and sgp(p), below are the propagators and identities for the contragins of the
antisymmetric tensors are the operatorpl(p; mu; nu; u; r; v; s) and pt(p; u; r; v; s).

off allfac;

vecdim d;

vector p,k,q,0,u,r,v,s,mu,nu,vv;

operator fp,pl,pt,sgp,mfp,pvertex;

for all p let fp(p)=i*(g(l,p)+m)/(p.p-m*m);

for all p let mfp(p)=i*(g(l,p)-m)/(p.p-m*m);

for all p,u,r,v,s,mu,nu let pl(p,mu,nu,u,r,v,s)=
-(d-3)*p.mu*p.nu*(mu.nu*(u.r*v.s-v.rs.u)+mu.r*(u.s
+mu.s*(u.nu*v.r-v.nu*r.u));

for all p,u,ryv,s let pt(p,u,r,v,s)=-(d-3)*(d-2)*(u.r*v
for all p let sgp(p)=-i/(p.p);

index u,r,v,s,mu,nu,vv;
let m=0;

amp:=(p.p*pt(p,u,r,v,s)-pl(p,mu,nu,u,r,v,s))
“fp(k)*rg(l,vv)*fp(a)*i*g(l,v)*fp(k)*i*((p-0).u)*
**(-(p-0)).r*g(l,s)*sgp(p-0)*sgp(k-q);

let k.k=k2, p.p=p2, 9.0=g2, 0.0=02;
amp;

let k.p=1/2*(k2+p2-X);
let p.q=1/2*(q2+p2-y);
let q.k=1/2*(q2+k2-z);
let 0.k=1/2*(02+k2-t);
let 0.0g=1/2*(02+g2-h);
let 0.p=1/2*(02+p2-w);

amp;

den p :X**8*k2**8*y**8*q2**8*2**8*h**8*t**8*w**8*02*

amps:=amp*denp;
for all n1,n2,n3,n4,n5,n6,n7,n8,n9
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match k2**n1*g2**n2*02**n3*x*nd*y**nS5*w**n6*z**n7*t  **n8*h**n9
=fi(8-n1,8-n2,8-n3,8-n4,8-n5,8-n6,8-n7,8-n8,8-n9);

let p2°2=p4;

let d"2=d2;

amp:=amps;

Thefi (8 n1;8 n28 n3;8 n4;8 n58 n6;8 n7;8 n8;8 n9)is REDUCE's
classi cations for the integrals the nonzero integrals intis diagram are classi ed in
REDUCE as

let fi(1,0,0,0,0,1,1,-1,1)=n4;
let fi(0,1,0,0,0,1,1,1,-1)=n4;
let fi(1,0,0,0,-1,1,1,0,1)=n5;
let fi(0,1,0,-1,0,1,1,1,0)=n5;
let fi(1,0,0,-1,0,1,1,0,1)=n6

let fi(0,1,0,0,-1,1,1,1,0)=n6;
let fi(1,1,0,0,0,1,1,1,-1)=n10;
let fi(1,1,0,0,0,1,1,-1,1)=n10;
let fi(1,1,0,0,-2,1,1,0,1)=n132;
let fi(1,1,0,-2,0,1,1,1,0)=n132;
let fi(1,0,-1,0,0,1,1,-1,1)=n109;
let fi(0,1,-1,0,0,1,1,1,-1)=n19;
let fi(1,0,-1,0,-1,1,1,0,1)=n20;
let fi(0,1,-1,-1,0,1,1,1,0)=n20;
let fi(1,0,-1,-1,0,1,1,0,1)=n22;
let fi(0,1,-1,0,-1,1,1,1,0)=n22;
let fi(1,1,0,0,-1,1,1,-1,1)=n24;
let fi(1,1,0,-1,0,1,1,1,-1)=n24;
let fi(1,1,0,-1,-1,1,1,1,0)=n25;
let fi(1,1,0,-1,-1,1,1,0,1)=n25;
let fi(1,1,-1,0,0,1,1,-1,1)=n27,
let fi(1,1,-1,0,0,1,1,1,-1)=n27,
let fi(1,1,-2,0,0,1,1,-1,1)=n272,;
let fi(1,1,-2,0,0,1,1,1,-1)=n272;
let fi(1,1,-1,0,-1,1,1,1,0)=n29;
let fi(1,1,-1,-1,0,1,1,0,1)=n29;
let fi(1,1,-2,0,-1,1,1,1,0)=n292,;
let fi(1,1,-2,-1,0,1,1,0,1)=n292,;
let fi(1,1,-1,-1,0,1,1,1,0)=n30;
let fi(1,1,-1,0,-1,1,1,0,1)=n30;
let fi(1,1,-2,-1,0,1,1,1,0)=n302,;
let fi(1,1,-2,0,-1,1,1,0,1)=n302,;
let fi(1,1,-1,-2,0,1,1,1,0)=n32;
let fi(1,1,-1,0,-2,1,1,0,1)=n32;
let fi(1,1,-1,-1,0,1,1,1,-1)=n40;
let fi(1,1,-1,0,-1,1,1,-1,1)=n40;
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let fi(1,1,-1,-1,-1,1,1,1,0)=n43;
let fi(1,1,-1,-1,-1,1,1,0,1)=n43;

and the nal out put is

(d*d2*n10*p4 - 4*d*d2*nl132*p2 - 4*d*d2*n24*p2 + 4*d*d2*n2 5*p2

- 2*d*d2*n27*p+ d*d2*n272 + 26*d*nl10*p4 - 64*d*n132*p2

+ 10*d*n19+ 20*d*n20 - 10*d*n22- 74*d*n24*p2 + 64*d*n25*p2

- 42*d*n27*p2 + 16*d*n272 - 10*d*n29*p2+ 10*d*n292 + 10*d*n 30*p2
- 10*d*n302 - 20*d*n32 - 10*d*n4*p2 - 10*d*n40+ 20*d*n43

- 20*d*n5*p2 + 10*d*n6*p2 - 9*d2*nl0*p4 + 28*d2*nl32*p2 - 2* d2*nl9
- 4*d2*n20 + 2*d2*n22 + 30*d2*n24*p2 - 28*d2*n25*p2 + 16*d2* n27*p2
- 7*d2*n272+ 2*d2*n29*p2- 2*d2*n292 - 2*d2*n30*p2 + 2*d2*n 302

+ 4*d2*n32 + 2*d2*n4*p2+ 2*d2*n40 - 4*d2*n43 + 4*d2*n5*p2

- 2*d2*n6*p2 - 24*nl10*p4 + 48*nl132*p- 12*nl19 - 24*n20 + 12*n2 2

+ 60*n24*p2 - 48*n25*p2 + 36*n27*p2- 12*n27+ 12*n29*p2 - 12*n292
-12*n30*p2 + 12*n302 + 24*n32+ 12*n4*p2 + 12*n40 - 24*n43

+ 24*n5*p2- 12*n6*p2)/8

wherep2 = p?, d2 = d?. Note that for examplen10 would be the integral

14 @ 1 ¢ d°q 1 2 Pk k )3

S @2)°T pP @)P[Pl@ P @) KPK g (C.1)
=0 2n*(1;L4,0)+ n1(1;1;1):
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