








adjusting the TCP Vegas threshold parameters based on measured characteristics

of the network. This technique implements fair sharing of network resources with

other types of competing flows, including widely deployed versions of TCP such as

TCP Reno, which is not possible with the previously defined static Vegas threshold

parameters. This technique might be fruitfully incorporated in TCP Vegas itself to

aid in its incremental deployment.

Chapter 4 also presented a detailed performance evaluation study of VMRC.

The performance of VMRC is compared with that of an analogous protocol that

is based on a TCP Reno throughput model to highlight the benefits of Vegas-like

rate control. Furthermore, the design of VMRC is evaluated along the key dimen­

sions of synchronization policy, round-trip time and propagation delay measurement

techniques, data transmission policy, and protocol reactivity.

Chapter 5 discussed quality adaptation techniques for maximizing playback qual­

ity given a certain available client reception bandwidth. Note that the RPB protocol

was designed assuming a single homogeneous client reception rate. The Optimized

Heterogeneous Periodic Broadcast (HPB) protocols developed in this chapter effi­

ciently support clients within a specified range of data rates. Using this protocol,

static quality adaptation in the form of tradeoff's between start-up delay and me­

dia quality are possible. Chapter 5 also developed and evaluated a mechanism for

dynamic quality adaptation using work-ahead during playback that can provide

more uniform playback quality given time-varying available bandwidth due to rate

adaptation (using a protocol like VMRC).

6.2 Contributions

The following are the main contributions of this work:

• Development of the Reliable Periodic Broadcast (RPB) protocol family that

provides scalable on-demand streaming with packet loss recovery. Recall that

previous periodic broadcast protocols do not provide scalable loss recovery.
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• The RPB protocols also improve upon the previous periodic broadcast proto­

cols by allowing the aggregate reception rate of each client to be only a small

fraction greater than the media playback rate. Previous periodic broadcast

protocols required transmission rate to the clients to be at least twice the

media playback rate. Therefore, the new protocols allow delivery of higher

quality media than would be possible with these prior protocols.

• New Reliable Bandwidth Skimming (RBS) protocols are developed that ex­

tend previous bandwidth skimming protocols to efficiently provide packet loss

recovery.

• Scalability bounds are developed, assuming alternative packet loss recovery

techniques, for both bandwidth skimming and periodic broadcast protocols.

Results from these bounds suggest that the RPB and RBS protocols achieve

nearly the best possible server bandwidth scalability for an assumed set of

client characteristics.

• The RBS protocol has been implemented in the SWORD prototype. This im­

plementation is a "proof of concept" of the protocols presented in this work.

Preliminary experiments with the prototype have demonstrated the correct­

ness of the implementation.

• A new equation-based multirate congestion control protocol called Vegas Mul­

ticast Rate Control (VMRC) has been developed and extensively evaluated.

The VMRC protocol utilizes a recently proposed TCP Vegas throughput model

to determine the appropriate reception rate at each client. The VMRC proto­

col has the advantage of providing a throughput share that is less oscillatory

than that possible with protocols that are based on TCP Reno. Furthermore,

the protocol operates without inducing packet losses when the bottleneck link

is lightly loaded.

• The VMRC protocol incorporates a new technique for dynamically adjusting

the TCP Vegas threshold parameters based on measured characteristics of the
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network. This technique implements fair sharing of network resources with

other types of competing flows, including widely deployed versions of TCP

such as TCP Reno, which is not possible with the previously defined static

Vegas threshold parameters.

• New Heterogeneous Periodic Broadcast (HPB) protocols are developed that

extend the RPB protocols to efficiently support heterogeneous clients. Efficient

static quality adaptation mechanisms are proposed, in the context of the HPB

protocols, that allow tradeoffs between start-up delay and media quality.

• Efficient dynamic quality adaptation techniques are also developed for HPB

and RPB systems that effectively provide more uniform playback quality given

time varying available bandwidth to clients (as would be obtained using a rate

control policy).

6.3 Future Work

This thesis has addressed several important issues pertaining to current and fu­

ture video-on-demand systems. In this section, related open areas of research are

discussed that present fruitful avenues for future work:

• Supporting interactive client requests such as fast forward, rewind, and pause

appear to pose challenges in the context of RPB systems. If the client does not

discard segments it has already played back, the rewind operation is easy to

implement. The pause operation may be implemented by continuing to receive

segments and buffering this data while waiting for the client to resume play­

back. However, there might be client side storage limitations, in which case

special techniques are required to implement these two interactive functions.

Supporting fast forward operation presents further challenges. Note that a

limited form of fast forward may be possible owing to the "work-ahead" na­

ture of the protocol. That is, if some segments are already available in the

client's buffer, fast forward operation requires playing selective frames from
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the available segments. When segments are not available in the client's buffer,

fast forward may entail the server sending an unicast stream with the required

data.

• Considerable insight can be gained by virtue of prototype implementation and

experimentation. Ongoing efforts include conducting local area and wide area

experiments with the prototype. These experiments are expected to provide a

better understanding of the impact of multicast join/leave latencies, quantify

the overhead of merging algorithms, identify characteristics of packet loss, and

evaluate packet loss recovery performance.

• An ongoing problem has been the lack of a dependable multicast service.

This has motivated development of application-level multicast support within

SWORD. An interesting future work direction will be to evaluate performance

of the on-demand streaming protocol in an application-level multicast setting.

• The VMRC performance study assumed a layered media encoding. The VMRC

protocol should also be applicable in the context of non-layered media encod­

ings, where different clients dynamically select among different monolithically

encoded object versions.

• The performance study of VMRC suggests that dynamically setting the TCP

Vegas threshold can substantially improve fairness of a TCP Vegas flow when

it competes with more aggressive flows such as TCP Reno. As part of future

work, this dynamic threshold estimation technique will be implemented in the

TCP Vegas module of the ns-2 simulator, and a detailed performance study

will be conducted to determine the benefits of this approach.

• The dynamic quality adaptation mechanism developed in this work considered

the rate adaptation module to be independent from the quality adaptation

module. However, the rate and quality adaptation components could cooper­

ate to allow for more efficient use of available bandwidth. An integrated study
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of rate and quality adaptation using RPB/HPB will be undertaken as future

work.

• A layered media file may be delivered using the bandwidth skimming protocol,

with each layer of the media file being delivered using a separate instance of

the protocol. Each client can determine the number of layers it can receive

based on its available bandwidth. Dynamic quality adaptation would require

mechanisms that define how work-ahead should be allocated given the current

available bandwidth. Dynamic quality adaptation is complicated by the fact

that all clients in a group share the same multicast stream, and therefore, must

progress at the same rate. Hence, work-ahead policies must consider both the

needs of the individual clients as well as the requirements of the group.

• The evaluation of the dynamic quality adaptation policy relied on a single

metric, namely the subscription level of the client. However, this metric may

not adequately reflect the perceived quality of playback at the client. Ascer­

taining the perceived quality will involve human subjects, thus indicating that

collaboration with researchers in the area of human computer interaction may

be necessary.
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Appendix A

TCP Reno Throughput Models

Models have been proposed that predict the steady state throughput of a long

duration TCP Reno flow as a function of the average RTT (R) and the loss event

rate (p) [87, 93, 57]. This section revisits a simple formulation of the throughput

function that can be derived under the assumption that all loss indications are

via triple duplicate acknowledgments, loss events have a fixed probability and are

mutually independent, and RTT and loss event rate are independent of the sending

rate [87]. Figure A.l illustrates the evolution of the congestion window through

several increase/decrease cycles when all loss indications are via triple duplicate

acknowledgments. The period between two packet loss events is called an "epoch",

and the throughput of an epoch can be calculated as the ratio of the expected

number of packets sent in an epoch (Pe ) to the expected duration of an epoch (De).

The number of packets transmitted in an epoch is 3~2 , and the duration of an epoch

is ~R, assuming the window size W increases by one every RTT in the congestion

avoidance phase. Using the fact that a loss event rate of p implies l/p packets are

transmitted in an epoch, a relationship between p and W can be obtained as follows:

W = fli. The estimated throughput, in packets per second, is given by [87]:

Areno Pe 3W (3 1
loss model = De = 4R = Y2P R' (A.l)

The model described above will be referred to as the "loss model" in the rest

of this section. An alternative expression for TCP Reno throughput can be derived

by considering the the time between congestion window reductions (or equivalently,

the duration of an epoch), instead of the probability of first packet loss. That is,
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Figure A.l: TCP Reno Window Evolution Assuming all Loss Indications are by
Triple Duplicate Acknowledgments

noting that De = ~R, the equivalent expression for throughput is:

ArenD 3De
time model = 2R2' (A.2)

This model will be referred to as the "time model" in the remainder of this discus­

sion. It is interesting to note that the "loss model" indicates that throughput varies

linearly with the inverse of RTT, while the "time model" indicates that throughput

varies as the inverse of the square of the RTT. The next section explores this issue.

A.I Impact of Different RTT on Throughput

The impact of RTT on the throughput observed by a TCP Reno flow has been

much debated. For example, under assumption of synchronized flows and droptail

queue management, the ratio of the TCP throughputs for two flows is proportional

to the inverse of the square of their RTTs [72, 14]. Others have reported that the

ratio of the TCP throughputs is proportional to the inverse of their RTTs [52].

Experiments reported in this section confirm both observations. That is, depending

on the topology and characteristics of background traffic, it is shown that either

observation can be obtained.

The first experiment uses a dumbbell topology with a single bottleneck link

174



Table A.l: Impact of RTT on Throughput

RTT for RTT for Throughput Throughput
Group 1 (RI ) Group 2 (R2) for Group 1 (Xl) for Group 2 (Xl) R2/RI X I /X2

0.066 0.124 136.81 48.48 1.87 2.82
0.068 0.166 132.15 50.00 2.42 2.64
0.067 0.218 152.87 37.21 3.23 4.11
0.068 0.336 163.88 19.72 4.95 8.31

of capacity 2 Mbps with a droptail queue of 25 packets. Two FTP (using TCP

Newreno) flows, each having a different RTT, share the bottleneck link. To perturb

the bottleneck link, an exponential ON/OFF traffic at rate 500 Kbps is used. Results

from this simulation showed that the ratio of throughputs is proportional to the

square of the inverse of the ratio of RTTs.

The next experiment extends the above simulation scenario to consider a slightly

richer mix of traffic. The setup considers 20 FTP flows sharing a bottleneck link

with bandwidth 10 Mbps and a droptail queue of 50 packets. These 20 flows can

be divided into two groups, each with equal numbers of flows, such that one group

(Group 1) has a shorter propagation delay than the other (Group 2). To remove the

possibility of synchronization of the window evolutions, the following precautions

are taken: 1) 4 FTP flows are employed in the reverse path; 2) an exponential

ON/OFF UDP traffic at rate 500 Kb traverses the bottleneck link; and 3) all flows

start at slightly different times. The results shown in Table A.l indicate that the

ratio of the average throughput of each group is between the inverse of the ratio of

average RTT and the inverse of the ratio of square of average RTT of the groups.

The third experiment considers a dumbbell topology with a bottleneck link of

capacity 15 Mbps with a 100 packet droptail queue. Background traffic consists of

10 FTP Newreno flows and 10 HTTP ON/OFF flows. The round-trip propagation

delays of the background flows is uniformly distributed in [50,410] milliseconds. Two

foreground FTP Newreno flows are considered. The round trip propagation delay

of one flow is fixed at 50 milliseconds, while the round-trip propagation delay of the

other flow is varied. Results from 5 simulation runs are shown in Figure A.2. The
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Figure A.2: Illustrating the RTT Bias of TCP Reno

results confirm the observations made from the previous experiment.

A.2 Understanding the Control Equations

Ideally, a "TCP-friendly" UDP flow and a competing FTP flow (using TCP Reno)

should share the bottleneck resources equally. This section attempts to understand

how the throughput equations discussed above can guide a UDP flow towards its

"TCP-friendly" bandwidth share. The two main issues considered here are:

• Under what circumstances are the loss rates experienced by the UDP flow and

the FTP flow roughly similar? There is evidence in the literature that points

out that the loss rates seen by the two flows often differ, when droptail queuing

is employed [13] .

• Given a UDP flow at a certain rate, do the throughput equations considered

in the preceding section generate a signal that can be used to steer the UDP

flow to reach an equilibrium condition with a foreground FTP flow (i.e., both

the UDP and FTP flow have approximately similar throughput shares)?

The above questions are answered by conducting ns simulations. The simulations

consider a dumbbell topology with a bottleneck link of capacity 15 Mbps and a
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Figure A.3: Relative Aggressiveness of the TCP Reno Throughput Models

buffer of 100 packets. The queues employ the droptail queuing discipline. The

foreground traffic consists of a UDP flow and a FTP flow, both having the same

round trip delays. Background traffic consists of a fix of 15 FTP flows and 15

HTTP sessions. The background flows have round-trip propagation delays uniformly

distributed between [20,460] milliseconds.

A number of simulation runs are carried out using the above described setup.

Each run considers a UDP flow at a certain constant bit rate. For any simulation run,

the (ideal) "TCP-friendly" bandwidth share is deemed to be equal to the throughput

achieved by the competing foreground FTP traffic. Also, for each run, the number

of loss events witnessed by the UDP flow is recorded and used to determine its loss

event rate. Similarly, the average time between loss events can also be determined

for the UDP flow.! The fair share throughput estimate, as obtained by application

of the TCP throughput models, can then be determined.

Figure A.3 presents results from a simulation where the foreground flows have

a round-trip propagation delay of 150 milliseconds. In the figure, the x-axis cor­

responds to the current UDP flow rate, while the y-axis represents the estimate

1All losses within two round trip times are considered part of the same loss episode. The average
round trip time experienced by the foreground FTP flow is used as the round trip time value for
the UDP flow.
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obtained by application of the throughput formula (both, normalized with respect

to the current "TCP-friendly" bandwidth share). In general, both models provide

increase/decrease signals that can be used to guide a UDP flow towards the equi­

librium point (at which the UDP flow and the FTP flow have similar throughputs).

For example, when the UDP flow's rate is less than the rate of the FTP flow, the

models indicate that the rate of the UDP flow should be increased. In the figure,

this corresponds to all points that fall below the straight line. Also note that the

"time model" provides much more aggressive increase/decrease signals than the "loss

model", when the UDP flow rate is higher/lower than the "fair share" bandwidth.

This also indicates that the loss event rate (and also the time between loss events)

seen by the UDP flow can differ from that witnessed by the FTP flow.

A detailed study of these alternative models is beyond the scope of this research,

and is a fruitful direction for future work.
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