
Dynamic Selection Of Redundant Web Services

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Svetlana Slavova

c©Svetlana Slavova, August 2007. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from

the University of Saskatchewan, I agree that the Libraries of this University may make it freely

available for inspection. I further agree that permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professor or professors who

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of

the College in which my thesis work was done. It is understood that any copying or publication

or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the University

of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

In the domain of Web Services, it is not uncommon to find redundant services that provide func-

tionalities to the clients. Services with the same functionality can be clustered into a group of

redundant services. Respectively, if a service offers different functionalities, it belongs to more than

one group. Having various Web Services that are able to handle the client’s request suggests the

necessity of a mechanism that selects the most appropriate Web Service at a given moment of time.

This thesis presents an approach, Virtual Web Services Layer, for dynamic service selection

based on virtualization on the server side. It helps managing redundant services in a transparent

manner as well as allows adding services to the system at run-time. In addition, the layer assures

a level of security since the consumers do not have direct access to the Web Services.

Several selection techniques are applied to increase the performance of the system in terms

of load-balancing, dependability, or execution time. The results of the experiments show which

selection techniques are appropriate when different QoS criteria of the services are known and how

the correctness of this information influences on the decision-making process.

ii

Acknowledgements

I would like to thank my supervisors, Dr. Ralph Deters and Dr. Julita Vassileva, for their

supervision and support during my M. Sc. program. Their help is greatly appreciated.

In addition, I would like to thank the other members of my thesis committee: Dr. Gord McCalla,

Dr. Derek Eager, Dr. Mark Keil, and Dr. Denard Lynch.

Finally, I would like to thank my parents for their support and love all the time.

iii

To my family.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables vii

List of Figures ix

List of Abbreviations xi

1 Introduction and Problem definition 1
1.1 Web Services selection . 2
1.2 Problem definition . 3

2 Related Work 7
2.1 Selection criteria . 8
2.2 Reasoning mechanism . 11
2.3 Selection techniques . 16
2.4 Enterprise Service Bus . 18
2.5 Virtualization . 20
2.6 Summary . 22

3 Virtual Web Services Layer 23
3.1 Main concepts . 24
3.2 Architecture overview . 24
3.3 Example . 29
3.4 Design implications . 29

3.4.1 Multiple reasoning mechanisms . 30
3.4.2 Augmented reasoning mechanism . 30
3.4.3 Data consistency . 31

4 Evaluation 32
4.1 Phase 1: VWSL prototype . 33

4.1.1 Description . 33
4.1.2 Results . 33

4.2 Phase 2: Clients’ Load Generator and Simulator . 34
4.2.1 Description . 34
4.2.2 Experiment setups . 35
4.2.3 Results . 36
4.2.4 Phase 1 and phase 2: Conclusions . 37

4.3 Phase 3: VWSL simulation . 38
4.3.1 Description . 38
4.3.2 Phase 3: Main focus . 43
4.3.3 Experiment setups . 43

5 Simulation 63

v

5.1 AnyLogic Enterprise Library . 64
5.2 Simulation design of the proposed architecture . 64

5.2.1 Load Generator . 64
5.2.2 Virtual Web Services Layer . 67
5.2.3 Web Services . 71
5.2.4 Requests disposer - object Load Sink . 71

5.3 Summary . 72

6 Virtual Web Services Layer Simulation Results 73
6.1 Experiments results . 73
6.2 Conclusions . 84

7 Conclusions and Future work 92
7.1 Conclusions . 92
7.2 Future work . 94

A VWSL prototype 100
A.1 Manager of the VWSL prototype . 100
A.2 Automatically generated Virtual Web Service in Java 100

B Clients Load Generator and Simulator 103

vi

List of Tables

2.1 QoS Classifications . 9
2.2 Selection criteria for dynamic service selection . 10
2.3 Architectures Comparison . 15

4.1 Clients’ Load Generator and Simulator: experiment results based on RPC commu-
nication style (Axis 1) . 36

4.2 Clients’ Load Generator and Simulator: experiment results based on document com-
munication style (Axis 2) . 37

4.3 Experiments workload . 40
4.4 Inverting the boolean value of a QoS criterion, depending on the accuracy of the model 42
4.5 Web Services of the simulation . 47
4.6 Simulation runs . 47
4.7 Experiment setup: Scenario A, Experiment 1 . 48
4.8 Experiment setup: Scenario A, Experiment 2 . 49
4.9 Experiment setup: Scenario A, Experiment 3 . 50
4.10 Experiment setup: Scenario B1, Experiment 1 . 52
4.11 Experiment setup: Scenario B1, Experiment 2 . 52
4.12 Experiment setup: Scenario B1, Experiment 3 . 53
4.13 Experiment setup: Scenario B1, Experiment 4 . 53
4.14 Experiment setup: Scenario B1, Experiment 5 . 54
4.15 Experiment setup: Scenario B1, Experiment 6 . 54
4.16 Experiment setup: Scenario B1, Experiment 7 . 55
4.17 Experiment setup: Scenario B1, Experiment 8 . 55
4.18 Experiment setup: Scenario B1, Experiment 9 . 56
4.19 Experiment setup: Scenario B1, Experiment 10 . 56
4.20 Experiment setup: Scenario B2, Experiment 1 . 58
4.21 Experiment setup: Scenario B2, Experiment 2 . 58
4.22 Experiment setup: Scenario B2, Experiment 3 . 59
4.23 Experiment setup: Scenario B2, Experiment 4 . 59
4.24 Experiment setup: Scenario B2, Experiment 5 . 60
4.25 Experiment setup: Scenario B2, Experiment 6 . 60
4.26 Experiment setup: Scenario B2, Experiment 7 . 61
4.27 Experiment setup: Scenario B2, Experiment 8 . 61
4.28 Experiment setup: Scenario B2, Experiment 9 . 62
4.29 Experiment setup: Scenario B2, Experiment 10 . 62

5.1 Enterprise Library objects [1] used in the simulation 65
5.2 Enterprise Library - other components used for the VWSL simulation 66

6.1 Simulation results: Ideal setting (Scenario A, Experiment 1) 73
6.2 Simulation results: Availability 75% (Scenario A, Experiment 2) 75
6.3 Simulation results: Availability 50% (Scenario A, Experiment 3) 75
6.4 Simulation results: Availability 100%, random selection for half of the Web Services

(Scenario B1, Experiment 1) . 76
6.5 Simulation results: Availability 75%, random selection for half of the Web Services

(Scenario B1, Experiment 2) . 76
6.6 Simulation results: Availability 50%, random selection for half of the Web Services

(Scenario B1, Experiment 3) . 77
6.7 Simulation results: Availability 75%, Accuracy 100%, the fastest service selection

for half of the Web Services (Scenario B1, Experiment 4) 77

vii

6.8 Simulation results: Availability 50%, Accuracy 75%, the fastest service selection for
half of the Web Services (Scenario B1, Experiment 5) 78

6.9 Simulation results: Availability 75%, Accuracy 100%, load balancing technique for
half of the Web Services (Scenario B1, Experiment 6) 78

6.10 Simulation results: Availability 50%, Accuracy 75%, load balancing technique for
half of the Web Services (Scenario B1, Experiment 7) 78

6.11 Simulation results: Availability 75%, Accuracy 100%, more accurate selection for
half of the Web Services (Scenario B1, Experiment 8) 79

6.12 Simulation results: Availability 50%, Accuracy 75%, more accurate selection for half
of the Web Services (Scenario B1, Experiment 9) . 79

6.13 Simulation results: Availability 50%, Accuracy 50%, more accurate selection for half
of the Web Services (Scenario B1, Experiment 10) 80

6.14 Simulation results: Availability 100%, random selection for all Web Services (Sce-
nario B2, Experiment 1) . 80

6.15 Simulation results: Availability 75%, random selection for all Web Services (Scenario
B2, Experiment 2) . 81

6.16 Simulation results: Availability 50%, random selection for all Web Services (Scenario
B2, Experiment 3); * - extended queue . 81

6.17 Simulation results: Availability 75%, Accuracy 100%, the fastest service selection
for all Web Services (Scenario B2, Experiment 4) . 82

6.18 Simulation results: Availability 50%, Accuracy 75%, the fastest service selection for
all Web Services (Scenario B2, Experiment 5) . 82

6.19 Simulation results: Availability 75%, Accuracy 100%, load balancing technique for
all Web Services (Scenario B2, Experiment 6) . 83

6.20 Simulation results: Availability 50%, Accuracy 75%, load balancing technique for all
Web Services (Scenario B2, Experiment 7); * - extended queue 83

6.21 Simulation results: Availability 75%, Accuracy 100%, more accurate selection tech-
nique for all Web Services (Scenario B2, Experiment 8) 84

6.22 Simulation results: Availability 50%, Accuracy 75%, more accurate selection tech-
nique for all Web Services (Scenario B2, Experiment 9); * - extended queue 85

6.23 Simulation results: Availability 50%, Accuracy 50%, more accurate selection tech-
nique for all Web Services (Scenario B2, Experiment 10) 85

6.24 Simulation results: Selection Techniques Analysis . 85

viii

List of Figures

1.1 RPC Style vs. Document Style . 2
1.2 Web Services Conceptual Model . 2
1.3 Clustering Web Services into groups by their functionality 4
1.4 Group of redundant Web Services . 4
1.5 Web Service as a ”black box” . 4
1.6 Reasoning Mechanism . 6

2.1 Overview of the architecture proposed by Liu, Ngu, and Zeng in [2] 13
2.2 Overview of the architecture proposed by Day and Deters in [3] 14
2.3 Overview of the architecture proposed by Padovitz, Krishnaswamy, and Loke in [4] . 14
2.4 Overview of the architecture proposed by Maximilien and Singh in [5] 15
2.5 Evaluation function proposed by Day and Deters in [3] 17
2.6 QoS Ontology proposed by Day and Deters in [3] . 19
2.7 SOA Architecture . 19
2.8 SOA and ESB . 19
2.9 ESB infrastructure given in [6] . 19

3.1 Client — Group of redundant Web Services . 23
3.2 Client — VWSL — Group of redundant Web Services 25
3.3 Interaction steps: Client — VWSL — Group of redundant Web Services 25
3.4 Virtual Web Services Layer . 26
3.5 Reasoning Mechanism . 27
3.6 Reasoning Mechanism - selection criteria, model, and selection technique 27
3.7 Virtual Web Services Layer - Main Elements . 28
3.8 Example: Virtual Web Servicesl Layer . 29

4.1 Clients’ Load Generator and Simulator for Web Services 35
4.2 Evaluation scenarios A and B . 38
4.3 Model, represented as a black box with a level of accuracy 40
4.4 Example: Execution time intervals, depending on the model accuracy 41
4.5 Inverting the boolean value of a QoS criterion, depending on the accuracy of the model 41
4.6 Workload levels of the simulation . 47

5.1 AnyLogic: Hierarchy of active objects presented in [7] 63
5.2 Simulation: Clients — VWSL — Web Services . 66
5.3 Simulation: Load Generator . 67
5.4 Simulation: Virtual Web Services Layer . 67
5.5 Simulation: Virtual Web Service . 68
5.6 Simulation: Object Policy of the Virtual Web Services Layer 70
5.7 Simulation: Object Redirect of the Virtual Web Services Layer 70
5.8 Simulation: Web Service . 72
5.9 Simulation: Requests disposer . 72

6.1 Simulation results: Arrival rate distributions . 74
6.2 Simulation results: Request size distributions . 74
6.3 System’s Throughput, Low level of Web Services’ availability and models accuracy . 88
6.4 System’s Throughput, High level of Web Services’ availability and models accuracy . 88

7.1 Future work: Composite Web Services and Virtual Web Services Layers 95

A.1 Virtual Web Services Manager GUI . 101

ix

A.2 Example of a generated Virtual Web Service in Java 102

B.1 Clients Load Generator and Simulator: Main window 104
B.2 Clients Load Generator and Simulator: Create single client’s behavior 104
B.3 Clients Load Generator and Simulator: Simulate multiple clients’ behavior 105
B.4 Clients Load Generator and Simulator: Log file, created during the clients’ simulation105

x

List of Abbreviations

ACID Atomicity, Consistency, Isolation, and Durability
API Application Program Interface
DB Database
DBMS Database Management System
ESB Enterprise Service Bus
HTTP HyperText Transfer Protocol
LRT Long Running Transactions
MAS Multi-Agent System
OGSA Open Grid Services Architecture
QoS Quality of Service
RPC Remote Procedure Call
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
UDDI Universal Description Discovery and Integration
URL Uniform Resource Locator
VS Virtualized Service
VWS Virtual Web Service
VWSL Virtual Web Services Layer
VWSM Virtual Web Services Manager
WS Web Service
WSDL Web Services Description Language
XML Extensible Markup Language

xi

Chapter 1

Introduction and Problem definition

The Service-Oriented Architecture (SOA) allows the development of modular components that

can be dynamically discovered and incorporated into platform and language independent applica-

tions, using just-in-time integration [8], [9], [10]. The Web Services is the most popular technology

which evolves from the SOA paradigm. These services encapsulate different behavior, hide the

implementation details, and furthermore, can be “described, published, located, and invoked” over

the network [8]. They enable interoperability and inter-process communication, based on standards

such as HTTP, XML, Simple Object Access Protocol (SOAP), Web Service Definition Language

(WSDL), and Universal Description Discovery and Integration (UDDI) [11].

Web Services are described by Web Service Definition Language in XML format [11]. The Web

Service description hides the implementation details, but at the same time, gives enough information

that is necessary for the service interaction (such as endpoint, location, methods, their input and

output parameters, and data types). The XML messaging is realized via SOAP. The standard allows

exchanging data among applications in a decentralized, distributed, and heterogeneous environment

using HTTP [12]. Each SOAP message is presented as an envelope with two sections - a header and

a body. The header contains information about the message itself, and the body consists of data

that has to be transferred to the recipient. These standards make the Web Services independent

of any programming language, hardware and software platform.

There are two forms of client-server communication - remote procedure call (RPC) and document

style [13]. The first one represents a request-response interaction that allows synchronous data

exchange. The consumer sends a SOAP message in XML format which contains the call to a specific

service and waits for the response. When the request is received by the server, it can be mapped

directly to an object that handles the call. Once the result is obtained, it is passed back to the

requester. In contrast, the document style messages are “self-contained business documents” that

cannot be mapped directly to an object [13]. Usually some pre-processing of the document must

be done first when the message is received. This model represents asynchronous data exchange.

It is even possible that another client receives the result. The architectural difference between the

two messaging styles is presented in figure 1.1.

Web Services can encapsulate a specific task or can be designed as a composition of other

1

Figure 1.1: RPC Style vs. Document Style

Figure 1.2: Web Services Conceptual Model

services, representing a complex aggregation. The Web Services conceptual model describes the

process of publishing, finding, and binding as well as introduces three participants - service provider,

service registry, and service requester [12]. The provider advertises the Web Service and sends its

WSDL description to the UDDI directory. The registry offers APIs for publishing and searching of

Web Services as well as contains information about all advertised ones. A potential consumer, that

could be even another Web Service, queries the registry in order to find a provider that meets its

needs and preferences. As a result, the directory returns a list of services to the client that selects

a server and starts the interaction. The whole process is shown in figure 1.2.

1.1 Web Services selection

According to the Web Services conceptual model (figure 1.2), the appropriate component is chosen

among all Web Services that provide a particular functionality. The number of these interchangeable

units varies from several to hundreds. In order to deal with distinguishable providers, a set of metrics

for service evaluation and comparison should be used [2]. These metrics form an aggregated concept

2

- Quality of Service (QoS), and are used during the selection process of the Web Services. The

QoS criteria can be divided into two groups - generic and domain specific. The first group includes

criteria that are applicable to all Web Services such as price, execution duration, dependability,

failure rate, trust and reputation. The second group refers to characteristics, related to services of

a particular field, that can be seen as business criteria. These measures vary from one domain to

another. For example, when dealing with online booking, there could be different penalty charges for

booking cancellations, according to the selected airline company. When referring to bank accounts,

the monthly fees and the interest rates are important metrics and should be taken into consideration

at the moment of choosing the most beneficial banking plan.

Once the list of services, offering the same functionality, is available and the criteria are specified,

a set of steps (instructions, rules) for Web Service selection should be followed during the decision-

making process, in order to determine the component to handle the client’s request. Various sets

of instructions represent different selection techniques. According to their location, the selection

techniques could be on the client or on the server side. In the first case, each consumer should

have an additional unit - a reasoning mechanism that decides which component will process the

request. The standard Web Services conceptual model (figure 1.2) is based on this type of service

selection. An alternative approach has an essential advantage - the appropriate Web Service is

chosen in a manner that is transparent to the clients. This method does not require an additional

decision-making mechanism for each consumer; just one - on the server side, and thus, does not

augment the complexity of the client’s logic and does not consume more of the client’s resources.

On the other hand, the centralized decision-making mechanism can be seen as a single point of

failure, which is a potential disadvantage of the approach.

1.2 Problem definition

The domain of Web Services assumes redundant components that can perform one or more specific

tasks. Usually, the components are provided by different parties and implement different business

logic. These redundant services can be clustered into groups, according to the functionality they

provide. Furthermore, if a service offers more than one operation, it will belong to more than one

group respectively. Figure 1.3 shows how the redundant Web Services can be organized regarding

their purpose. Within a cluster, the components are considered interchangeable. For example,

given a group G that contains two Web Services: WSx and WSy, and each of them offers the same

functionality F (figure 1.4). Then either of the services of the group is able to handle the client’s

request.

Having a group of interchangeable services gives the opportunity to operate with components

that are written in different programming languages, run on various platforms, implement diverse

3

Figure 1.3: Clustering Web Services into groups by their functionality

Figure 1.4: Group of redundant Web Services

Figure 1.5: Web Service as a ”black box”

4

algorithms, and at the same time provide the same functionality and public interfaces described

by the WSDL. From a client’s point of view, the services look like ”black boxes” that have input,

perform a particular behavior, and as a result give some output (figure 1.5).

In order to make a distinction between the services which provide the same functionality, selec-

tion criteria should be used. They help evaluate the Web Services within a group and choose the

component that matches the needs and the preferences of the consumers, while taking into account

the abilities of the providers. Web Services can be ranked by the Quality of Service (QoS) they offer.

QoS can be seen as an aggregated measure of generic criteria such as availability, reliability, failure

rate, trust and reputation, response time, price, and network load and domain specific features [2].

The QoS criteria help in choosing a component to handle the client’s request. The selection

of the provider is a key point. The choice is crucial for both the server and the requester. For

example, if the provider’s capacity is reached, an additional request will cause overloading which

will influence the performance of the Web Service. The service’s overhead reflects on the response

times of all requests that are being processed. It is even possible that the augmentation of the

execution duration is of significant importance for the client too. An essential question arises: How

to manage redundant Web Services? (1)

In order to choose a Web Service from a list of redundant services using specific criteria, a

reasoning mechanism is needed. It is a decision-making unit that is responsible for the selection of

the appropriate component at a given moment of time. It could be located on the client side or

on the server side. A reasoning mechanism on the client side increases the consumer’s complexity.

Moreover, such a unit is required for each client and consumes additional resources. On the other

hand, it is possible that different clients have different knowledge about the redundant services,

which can reflect on the correct estimation of the consumers regarding the appropriate service.

However, if the reasoning mechanism is located on the server side, the consumers will represent

thin clients. The key advantage of this scenario is that just one decision-making mechanism is

required and the service selection is hidden to the clients. The question (1) above can be extended

to: How to manage redundant Web Services on the server side?

The reasoning mechanism is responsible for the selection of a Web Service at a particular moment

of time. In order to distinguish one service from another using the specified criteria, this unit

requires a set of instructions that help evaluate each component and choose the most appropriate

one respectively. A set of instructions can be seen as a selection technique. Figure 1.6 shows

the main parts of a reasoning mechanism - criteria, model, and selection technique. The model

collects information about the participants of the client-server interaction as well as represents it as

aggregated measures. Different selection techniques can implement various business logics in order

to make a decision. Another key question appears: What selection techniques should be used? (2)

The reasoning mechanism takes a decision regarding which Web Service to handle the client’s

5

Figure 1.6: Reasoning Mechanism

request. This decision could be static or dynamic [14]. The static approach for publishing, finding,

and binding of Web Services requires all end points to be known at design time of the system. The

dynamic service invocation is a more flexible technique, since it enables the Web Service selection

to be done during the execution time of the application. The main advantage of this method is

that it offers more flexibility and adaptability to processes that change continuously in the dynamic

environment.

The goal of this work is to develop an approach for dynamic and transparent service selection

and to evaluate the proposed architecture in terms of what selection techniques should be applied

depending on the QoS of the services as well as the correctness of this information, in order to

assure dependability, better response time, load-balancing, or a high level of overall performance.

The main focus is on the following questions:

1. How to manage redundant Web Services on the server side?

2. What selection techniques should be used in order to assure transparent and dynamic selection

of redundant Web Services?

The remainder of the thesis is organized as follows: Chapter 2 is an overview of the related

work; Chapter 3 discusses the proposed approach - Virtual Web Services Layer. The evaluation

of the VWSL architecture is discussed in chapter 4. A simulation environment and a design of a

simulation model are presented in chapter 5 and the results of the experiments are discussed in

chapter 6. Chapter 7 presents the conclusions of the thesis and some potential future directions.

6

Chapter 2

Related Work

Web Services are running in a distributed, dynamic, and unreliable environment, which makes

them vulnerable to faults and failures. It is difficult for these components alone to provide a high

level of dependability. Dependability is an essential feature of every software system that includes

availability, reliability, safety, and security [15]:

• Availability. Guarantees that the system is up and running but does not assure the correctness

of the result;

• Reliability. Offers available and properly working components that can get an accurate out-

come for a specified amount of time;

• Safety. Guarantees that there are no crucial consequences on the environment and the clients

of the system;

• Security. Assures that only authorized consumers have access to the system and guarantees

the system integrity.

There are different techniques for achieving dependability and assuring fault-tolerance respec-

tively. A fault-tolerant application can continue working even in the presence of failure in one or

more of its components [15]. Duplication is a common method that protects against deviation of the

expected work of engineering systems. It provides a variety of identical or similar components with

the same functionality that could be used in parallel or as a backup. This widely used technique for

protecting against faults can be realized via object replication, object redundancy, and/or object

diversity :

• Replication. The replicated system operates with all copies in parallel and the final result

depends on the outcome of the majority replicas;

• Redundancy. The redundant system consists of several equal units and only one of them is

used at a given moment, i.e. only one replica of a replicate group is active;

• Diversity. The third type of duplication provides multiple components with different imple-

mentation that are executed simultaneously.

7

The classical research focuses on improving fault-tolerance by adding replicas to the system

artificially. These replicas are tightly-coupled and have a point of control. However, the redundancy

of web services arises naturally in the domain since it consists of redundant services that are

dynamic, distributed, loosely-coupled, and provided by different parties. This does not allow these

services to have a single point of control. Therefore, other techniques for managing redundant

services should be considered.

This chapter focuses on different approaches that are used by researches in order to deal with

autonomous and loosely-coupled components. It is organized as follows:

• Section 2.1 (Selection criteria) discusses the key QoS metrics that are taken into account in

the literature;

• Section 2.2 (Reasoning mechanism) presents various approaches for dynamic selection of

loosely-coupled components, as well as their strengths and weaknesses;

• Section 2.3 (Selection techniques) focuses on selection techniques that can be applied in the

reasoning mechanism;

• Section 2.4 (Enterprise Service Bus) presents an infrastructure for dynamic service invocation;

• Section 2.5 (Virtualization) discusses a virtualized service-oriented architecture for dynamic

service selection;

• Section 2.6 (Summary) presents a summary of the discussed literature.

2.1 Selection criteria

Quality of Service is an aggregated metric for describing characteristics of systems in areas, such

as networks and distributed systems [16]. Ran [16] discusses that although international quality

standards are available for some domains (such as Software Engineering), for others, including Web

Services, there is no consensus about the QoS measures that should be taken into account. Re-

searchers propose various ways for grouping the QoS metrics into different categories. Liu, Ngu,

and Zeng [2] present the QoS measures as generic or domain specific. The first group includes

features, common for every service, such as price, execution time, dependability, and failure rate,

whereas the second group refers to criteria, specific to a particular domain. In addition, the paper

provides another grouping of the QoS metrics - deterministic and non-deterministic. The determin-

istic group includes features that are known at the time when the service is invoked (such as price),

whereas the non-deterministic group consists of criteria that are uncertain when the Web Service

is called (such as response time). Maximilien and Singh [17] divide the QoS attributes into objec-

tive and subjective. The former include QoS features such as availability, reliability, and response

8

Table 2.1: QoS Classifications

time, and the latter refers to the clients’ experience. Ran [16] proposes another classification of

the QoS parameters - run-time related, transaction support related, management and price related,

and security related. The run-time category contains features that can be evaluated dynamically,

such as scalability, capacity, performance (execution time, latency, and throughput), availability,

reliability, error rate, degree of correctness, and error handling. Transaction-related QoS include

the characteristics of the ACID transactions (atomicity, consistency, isolation, and durability) as

well as long running transactions (LRT). The third category, management and cost related QoS,

consists of criteria related to standards, regulations, expected features/available features, cost as

well as updates in the services. The last group represents security related QoS, such as access

related features, privacy, and data encryption. Table 2.1 summarizes the QoS classification.

There are different approaches described in the literature for dynamic selection of Web Ser-

vices that take into account the QoS criteria discussed above. Maximilien and Singh [5] propose a

multi-agent based architecture and the use of the Semantic Web in order to select the best service

according to the consumers’ preferences. In the paper, trust and reputation are taken into account

during the decision process. Liu, Ngu, and Zeng [2] consider these features in their proposed ap-

proach as well. In addition, other criteria are discussed too - execution price, duration, transactions

support, compensation and penalty rate. The authors of [2] suggest an open, fair, and dynamic

framework that evaluates the QoS of the available Web Services by using clients’ feedback and

monitoring.

9

Table 2.2: Selection criteria for dynamic service selection

The solution, suggested by Day and Deters in [3] offers another technique that deals with

Web Services selection - a Semantic Web approach that takes into consideration generic criteria -

availability, reliability, and execution time of the services, and as in [2], relies on the past experience

of different consumers. Padovitz, Krishnaswamy, and Loke [4] talk about availability, reliability,

execution time, and service load as criteria that should be taken into consideration when selecting

Web Services at run-time.

Ran [16] extends the standard Web Services conceptual model (figure 1.2), by adding a new

component to the current architecture - a QoS component. This unit contains QoS metrics of

the published services, such as scalability, performance (response time, latency, and throughput),

reliability, and availability.

Ludwig and Reyhani [18] apply QoS metrics in Grid computing in order to assure dynamic

service selection. They take into consideration execution duration, execution price, reputation,

reliability, and availability. The services are ranked according to the QoS criteria and the service

is chosen by a matchmaking or a heuristic algorithm.

When dealing with dynamic components like Web Services, it is hard to observe all of their

possible features. The researchers focus mostly on some generic criteria, since they can be applied

to any service. Availability, reliability, and response time are the most popular ones, as they provide

an overview of the services and at the same time they can be evaluated relatively easily. A summary

of the reviewed literature that uses criteria for dynamic service selection, is shown in table 2.2. The

papers are compared according to some important criteria of the distributed applications, which

have been taken into account in the discussed works.

10

2.2 Reasoning mechanism

The selection criteria are one aspect of the decision-making process. Another aspect is the mecha-

nism for Web Service selection. Liu, Ngu, and Zeng [2] propose a framework that evaluates services

according to some generic (price, response time, and reputation) and domain specific criteria (busi-

ness related - transactions support, compensation and penalty rates). The architecture is flexible

and allows extension of the QoS parameters according to the characteristics of the system. The

service related attributes are given by the providers, evaluated by the consumers via monitoring,

or gathered through clients’ feedbacks, and are stored in a database. The reasoning mechanism in

this approach computes the QoS of the Web Services, ranks them, and selects the most appropriate

one. The bottleneck of the approach is the dependency on the consumers to give regular feedback

about their past experience with the Web Services. An overview of the architecture is shown in

figure 2.1.

In [3], it is the client’s responsibility to detect the most appropriate service, depending on its

configuration and requirements. An overview of the architecture is shown in figure 2.2. It is based

on the Semantic Web and uses a service evaluation function and an expert system during the Web

Services selection process. However, it does not provide service transparency, since the consumers

decide which Web Service should be invoked. In addition, it relies on the clients participation

to report experience with the providers. Furthermore, each client requires a reasoning mechanism

which augments its complexity. In some cases, the approach can be valuable, because the consumers

would be able to choose the best Web Service themselves, according to their needs and preferences,

but in other cases the clients cannot be involved in this process.

Another approach for Web Services selection is presented by Padovitz, Krishnaswamy, and Loke

in [4]. An overview of the architecture is shown in figure 2.3. The client chooses at run-time which

service to handle the request. In order to make a decision, service related information must be

available to the consumer. The authors present three techniques for gathering this data:

• Remote procedure calls (RPC) method. It consists of the following steps:

1. The client sends a call (a remote procedure call) to all hosts asking for different in-

formation about the services. The requested data depends on particular criteria and

preferences of the consumers;

2. Each host sends back a response that contains knowledge about its services;

3. The client evaluates the received data.

The disadvantage of this method for gathering information about the services is the large num-

ber of request-response messages that are exchanged between the clients and the providers.

It leads to an augmentation of the system’s overhead when the amount of hosts increases.

11

Furthermore, if the Web Services are compositions of services, the client will not be able to

collect any information in depth about the internal services.

• Mobile agents. The mobile agents method is a more flexible approach that allows the client

to control the behavior of the agent in depth when dealing with composite Web Services.

The mobile agent, sent to the host by the consumer, queries the server about the services

it provides, and if necessary, goes to another host on a deeper level to get some additional

information. This method for collecting data is appropriate in less reliable environments

because the remote communication is significantly reduced. However, it is more complex,

since the mobile agents need to react to the changing environment and need to be able to

reach back to the client using even another route.

• Circulating mobile agents. This approach is beneficial when up-to-date information about

the services is needed regularly. The idea is the following: There are several agents in the

system circulating from host to host. They gather information about the Web Services and

report it periodically to the client. In this case, some data could be collected without being

evaluated if a fresher update comes to the requester.

The reasoning approach in [4] as well as the mechanisms provided in [2] and [3] require the

clients’ participation - to gather run-time information related to the services, to share information

about the interactions with the services, to evaluate the QoS of the Web Services, and even to

take a decision which service matches their needs and preferences. These techniques require each

consumer to contain an intelligent mechanism which makes it more complex. On another hand,

if the clients are responsible for the decision process, it might lead to a situation where multiple

consumers have chosen the same provider and service overload has occurred. Furthermore, if the

requesters have a local knowledge about the services, it is even possible that the chosen components

are not the most appropriate ones. This can happen if the clients collect information only about

their interactions with the services and does not have access to all interactions in the system.

A multi-agent approach for dynamic service selection that does not increase the consumers’

complexity is presented in [5] by Maximilien and Singh. An overview of the architecture is shown

in figure 2.4. The authors propose an architecture that consists of interacting agents. Every Web

Service has an autonomous agent attached to it, which offers the same interface as the service. This

interface allows the consumer and the service agent to communicate. In addition, the agents interact

and share information through agencies. The agencies contain data about the interactions between

the clients and the services which is used during the Web Services selection process. Furthermore,

the reasoning mechanism of the approach is based on ontology and matching algorithm and is used

to match semantically clients to services, in a manner transparent to the consumer.

The discussed approaches are presented in table 2.3. A review of different selection techniques

12

Figure 2.1: Overview of the architecture proposed by Liu, Ngu, and Zeng in [2]

is provided in the next section.

13

Figure 2.2: Overview of the architecture proposed by Day and Deters in [3]

Figure 2.3: Overview of the architecture proposed by Padovitz, Krishnaswamy,
and Loke in [4]

14

Figure 2.4: Overview of the architecture proposed by Maximilien and Singh in [5]

Table 2.3: Architectures Comparison

15

2.3 Selection techniques

A selection technique consists of a set of instructions (steps, rules) that should be followed in order

to select a Web Service at run-time, depending on the information that is available to the system.

Selection techniques can be divided into several groups, according to their nature as well as to

the information that they use about the services. Usually, the approaches are combined together

to achieve a more powerful reasoning mechanism. However, in this work the groups of selection

techniques are reviewed separately in order to distinguish the principles of the techniques from one

another:

• Selection technique that is not based on any information about the services. If there is no

knowledge about the behavior of the Web Services, random service selection or round-robin

techniques can be applied. This is the simplest technique since it does not depend on any

QoS metrics of the services. In [19], Fedoruk and Deters apply this technique for improving

fault-tolerance in multi-agent systems (MAS) - the first found agent of a group of redundant

agents is selected.

• Selection technique that assures system dependability. This approach takes into consideration

the availability of redundant Web Services. If a service is not available at a given moment of

time, it cannot be selected. This technique relies on one QoS metric - services availability. If

this criterion is known for all Web Services of the system, a high level of dependability can

be achieved.

• Selection technique that assures better response time. This approach relies on the speed of

the Web Services. It assures that the fastest component is chosen every time.

• Selection technique that assures a high level of dependability and better response time. This

selection technique is a combination of the previous two techniques. It selects the fastest

available service at the moment.

• Selection technique that assures load balancing. “Load balancing uses multiple hardware

devices to spread work around and thereby speed performance” [20]. When dealing with

groups of redundant Web Services, this approach refers to the concept of balancing the clients’

requests between the interchangeable services. The load of the components must be known

in order to select the appropriate provider. There are various ways for keeping track of

the servers’ load - by monitoring the number of the calls that have been handled by each

component, or as discussed in [21], the load can be detected according to the execution time

that each service provides when processing a particular request. However, if the load of the

services is not available, a simple round-robin technique can be used, i.e. no criteria are taken

into account.

16

Figure 2.5: Evaluation function proposed by Day and Deters in [3]

• Selection techniques that take into account past and current information about the services

([22], [4], [3]):

– Parallel invocation. All Web Services of a particular group are invoked simultaneously.

The result, received from the service which answers first, is considered. The responses,

received from the other services, are ignored;

– Probe. A “probe” request is sent simultaneously to all Web Services of a particular

group. The service that answers first is selected for the next interaction;

– Best last. The service with the lowest response time of the last interaction is selected.

This technique requires history information about the client-service interactions to be

collected;

– Best median. This technique takes into account the last k client-service interactions

for each Web Service of the group. The selected service has the median response time

among the considered services;

– Best state information. At run-time, each component is questioned for its state informa-

tion, such as response time, availability, and QoS. Depending on the obtained responses

and the requirements of the client, the most appropriate Web Service is selected.

– Evaluation function. Day and Deters [3] use an evaluation function in order to determine

the most appropriate service at run-time. The function takes as input the data about

the redundant components, estimates the information, and returns “the best service” as

a result (figure 2.5). The authors present two functions:

∗ Evaluation function that is based on weights in order to distinguish the services

according to availability, reliability, and the execution time. The function could be

extended to take into account trust and reputation as well as the geographic location

of the components.

∗ Evaluation function that is based on more data - QoS about the services (availability,

reliability, and execution time) and information about the client (such as CPU in

use, memory in use, and running processes).

17

• Semantic selection technique. This is a complex approach, based on the Semantic Web,

that takes into consideration several QoS metrics. Semantic Web is a way for describing the

meaning of the data in a machine-understandable manner [23]. Different semantic markup

languages, schemas, and ontologies have been developed (such as OWL-S, DAML+OIL, and

RDF), in order to make the computers able to understand the data in a way that is close to

human perception. The schemas describe how the information should be presented, whereas

the ontologies show the relationships between the terms.

QoS ontology is used in [5], [24], and [3]. Maximilien and Singh ([5], [24]) present a QoS

specification in XML format that is able to match Web Services to clients, using a matching

algorithm. The QoS of the services and the requirements of the consumers are described with

an ontology, containing the following key characteristics:

– Qualities of the services, such as response time, availability, reliability, failure rate, etc;

– Relationships between the QoS parameters. The relationships show the direction and

the strength of the qualities. The direction could be opposite, parallel, independent, or

unknown; whereas the strength could be defined as weak, mild, strong, or none. For

example, the relationship between the execution time and the throughput can be seen

as negative and strong;

– Aggregate quality represents a combination of qualities that can be grouped as a separate

quality.

Day and Deters [3] use expert systems and a much simpler ontology during the Web Services

selection process. Their ontology represents a hierarchy of QoS parameters, shown in figure

2.6. The authors divide the QoS into two groups - criteria specific to the service, and criteria

specific to the request. The former refers to generic (availability and reliability) and domain-

oriented attributes, whereas the latter relates to time needed by the service to handle the

request.

2.4 Enterprise Service Bus

According to the Service-Oriented Architecture (figure 2.7 [6]), heterogeneous systems are able to

communicate in a transparent manner using middleware. Enterprise Service Bus (ESB) [6] is an

infrastructure that allows such communication (figure 2.8, figure 2.9). It consists of a central point

of control and a distributed infrastructure (run-time engines). The run-time engines are responsible

for data transformation, routing, security, etc.

The Enterprise Service Bus is a framework that is able to connect services, regardless of their

operating system, programming language, and message formats [10], [25]. It is a “centralized, scal-

18

Figure 2.6: QoS Ontology proposed by Day and Deters in [3]

Figure 2.7: SOA Architecture

Figure 2.8: SOA and ESB

Figure 2.9: ESB infrastructure given in [6]

19

able, fault-tolerant, service-messaging” ([25]) infrastructure that allows the following characteristics

([6]):

• Communication. The message exchange is secure and can be realized synchronously and

asynchronously; routes clients’ requests to the appropriate service providers;

• Integration. Supports DB, service mapping, different application server environments (such as

.NET and J2EE), programming languages; heterogeneous services based on various protocols

could communicate in a transparent manner;

• Security. Supports security standards as well as authentication, authorization, and confiden-

tiality; deals with failures;

• Message processing. Responsible for data transformation, validation, mapping;

• Interaction. Responsible for the interactions between the services; Supports interchangeable

services;

• Transactions. Supports transactions such as ACID and compensation;

• QoS. Takes into account QoS parameters such as availability, reliability, failure rate, through-

put, etc;

• Management. Responsible for monitoring, logging, measuring data;

• Reasoning. Rules for service selection.

The Enterprise Service Bus provides the possibility of dynamic service selection and invocation

that is transparent to the clients. The consumers do not have to deal with monitoring, QoS

evaluation, and the whole decision process is hidden by the ESB. This is a possible solution to the

problem of managing redundant services.

2.5 Virtualization

Grid is a technology that operates with a virtual architecture, called virtual organization, which is

able to solve large-scale computational problems, using geographically distributed resources (such as

computers, disk storages, and software programs), connected by a network [26]. “The vision behind

the Grid is to supply computing and data resources over the Internet seamlessly, transparently and

dynamically when needed.” [18]. The Grid technology and the Service-Oriented Architecture lead to

the appearance of Open Grid Services Architecture (OGSA), which allows communication between

heterogeneous resources (referred as services) through message exchange. The virtual organization

of the services allows dynamic service invocation, which is transparent to the client.

20

A virtualized service-oriented architecture, based on Grid technology and SOA, is presented

in [27], in order to facilitate selection of redundant services. The services that provide the same

functionality form a virtualized service (VS), which is accessible by the client. The advantages of

the approach are as follows:

• The service selection is done at run-time, according to the applied selection technique;

• A service of a VS can be replaced, without affecting the proper working of the system;

• Transparent service invocation;

• New services can be deployed on demand, in order to achieve load-balancing and to improve

dependability.

This architecture is an applicable technique for managing redundant Web Services, but allows

only limited system extensibility. The services are associated with one or more virtualized services

at run-time, but all VSs have to be specified at design-time of the system. This does not allow

adding virtualized services dynamically.

21

2.6 Summary

Redundancy of services can occur naturally or artificially. Duplication techniques add redundant

components to the system artificially and allow control of the replicas. However, when the re-

dundancy has occurred naturally in the domain (for example the domain of Web Services), the

redundant components are different by their nature, behavior, and do not have any points of con-

trol.

Web Services can be ranked by the quality of service (QoS) they provide. QoS can be seen as

an aggregated measure of different features such as availability, reliability, failure rate, trust and

reputation, response time, price, and network load. A key issue is which QoS criteria should be

taken into account during the decision-making process. According to [2], availability, reliability,

and response time of the services are the most typical QoS parameters. They can be applied to

every service, can be monitored and evaluated relatively easy, and at the same time they provide

an overall overview of the services.

Different reasoning mechanisms for service selection are discussed in the literature. They could

be located on the client or on the server side. If the reasoning mechanism is on the client side, it is

very likely that one Web Service is used more frequently than others. This may affect the perfor-

mance of the service and does not allow load balancing techniques to be applied easily. Furthermore,

if the client has only local knowledge about the services, the most appropriate components may

not be selected every time.

A reasoning mechanism on the server side is a much more powerful technique. It enables dynamic

and transparent selection of services. The consumers represent thin clients and the whole business

logic is hidden to the requesters.

The approach, provided in this thesis, shows how to manage redundant Web Services on the

server side. Its architecture is described in the next chapter.

22

Chapter 3

Virtual Web Services Layer

In the domain of Web Services, it is not uncommon to find redundant services that provide

functionalities to the clients. According to the Web Services conceptual model (discussed in chapter

1), the client receives a list of services from the UDDI, selects one, and starts an interaction with

the service to process the request (figure 3.1).

As seen in chapter 2, service selection is an important process and various techniques have

been proposed. In this chapter, another approach for dynamic service selection and invocation is

introduced, which has the following advantages in comparison with previous approaches:

• It provides location and replication transparency of the Web Services;

• It hides the system’s complexity from the clients;

• It provides a transparent service selection from the client’s point of view;

• It assures a level of security, since the clients do not have direct access to the Web Services;

• As in [27], it is based on the virtualization of Web Services, but in addition, it allows adding

virtual services to the system at run-time;

• The architecture is flexible, since various reasoning mechanisms can be applied, without

modifying the virtual services;

• Load-balancing and a high level of dependability can be achieved.

Figure 3.1: Client — Group of redundant Web Services

23

3.1 Main concepts

• Definition 1. Web Service. A component, written in a particular programming language

and connected in a network, providing one or more functionalities through message exchange

that follows the SOAP standard. The Web Service is identified by its service description

(WSDL), which represents the name (URL) of the service as well as the service’s interface -

methods, input and output parameters.

• Definition 2. Group of redundant Web Services. Web Services, which provide the same

functionality and are accessible via the same interface, but may implement different business

logic, form a group of redundant services. If a Web Service offers more than one functionality,

then it belongs to more than one group.

• Definition 3. Virtual Web Service (VWS). A Web Service, which represents a group of

redundant services and provides the same interface as the Web Services, is considered a

Virtual Web Service. When a client’s request is received, it selects a Web Service from the

group, according to the applied reasoning mechanism.

• Definition 4. Virtual Web Services Layer (VWSL). Architecture, located on the server side,

which is responsible for the dynamic selection and invocation of Web Services. It consists

of decentralized Virtual Web Services, a reasoning mechanism, and a Virtual Web Services

Manager.

• Definition 5. Virtual Web Services Manager (VWSM). An application that manages the

Virtual Web Services Layer at run-time. It creates Virtual Web Services, updates the groups

of redundant services, and specifies the reasoning mechanism in use.

3.2 Architecture overview

The approach, presented in this thesis, offers a transparent way for managing redundant Web

Services on the server side, by using dynamic service invocation. A Virtual Web Services Layer

(figure 3.2) is introduced between the client that requires a particular functionality and the Web

Services that provide that functionality. It is based on a reasoning mechanism that decides at

run-time which component to invoke as a result of the consumer’s call. The layer provides location

and replication transparency of the services and hides the system’s complexity from the clients. At

the same time it assures a level of fault-tolerance which increases the availability and the reliability

of the system.

Transparency is achieved by Virtual Web Services (VWSs) that are used as an entry point to

the groups of redundant services. Each VWS is generated automatically when a new group is added

24

Figure 3.2: Client — VWSL — Group of redundant Web Services

Figure 3.3: Interaction steps: Client — VWSL — Group of redundant Web
Services

to the system. It provides the same interface (methods, input and output parameters, data types)

as the real Web Services but does not implement the same business logic. Instead, the VWS uses

a reasoning mechanism that determines which Web Service of the group is the most appropriate

one, depending on the selection criteria and the applied selection technique.

Figure 3.3 shows the interaction between a client, the VWSL, and a group of redundant Web

Services. The initiator sends a request to the Virtual Web Services Layer, more precisely, to

a Virtual Web Service. From the client’s perspective, the VWS is the service that handles the

request. However, the VWS behaves as a smart proxy that selects at run-time the real Web Service

and redirects the call to it. The proxy uses the reasoning mechanism of the layer in order to choose

the most appropriate component of the redundant group. Once the service is selected, the VWS

routes the consumer’s request. When the operation is processed, the result is sent back to the

Virtual Web Service. Then, the VWS transfers the response to the client.

The consumer and the Web Service never interact directly. From the client’s point of view, the

VWS is the component that handles the call, whereas from Web Service’s perspective, the VWS

behaves as a client.

25

Figure 3.4: Virtual Web Services Layer

The Virtual Web Services Layer consists of logically independent units with a particular meaning

and purpose. It contains two main elements (figure 3.4):

• Virtual Web Services. Their goal is to redirect the clients’ requests, using a dynamic service

invocation. The number of groups containing redundant Web Services is equal to the number

of Virtual Web Services. A VWS is designed as a Web Service. It uses a reasoning mechanism

in order to find the service to handle the client’s call at a particular moment of time;

• Reasoning mechanism. This component, based on selection criteria, model, and selection

technique (figure 3.5), is responsible for the dynamic service selection. The criteria specify

which QoS parameters are taken into account during the decision-making process. The pro-

posed architecture allows various generic and domain specific selection criteria to be used.

The model is in charge of the collection of the QoS attributes and the interactions between the

clients and the services. The model might represent data about past, present, and/or future

behavior of the consumers and the providers. Knowing or calculating precisely the behavior

of the clients and the services would allow a more accurate selection. The third element of

the mechanism - the selection technique, specifies a set of instructions (steps, rules) that are

used to rank the Web Services according to the criteria and to select the most appropriate

service. The elements of the reasoning mechanism are shown in figure 3.6.

In order to design the VWSL as a flexible unit that can be managed easily, one more element is

added to the layer - a Manager. It represents a user-friendly client-server application that consists

of a Virtual Web Services Manager (VWSM) and a VWSM-Client. The former generates Virtual

Web Services and manages the settings of the reasoning mechanism (such as selection criteria,

models, and selection techniques). The latter is a client that specifies the behavior of the VWSM.

The general architecture of the Virtual Web Services Layer and the relations between the elements

are presented in figure 3.7.

The described architecture is loosely-coupled. It allows the exchange of one element with another

26

Figure 3.5: Reasoning Mechanism

Figure 3.6: Reasoning Mechanism - selection criteria, model, and selection tech-
nique

27

Figure 3.7: Virtual Web Services Layer - Main Elements

28

Figure 3.8: Example: Virtual Web Servicesl Layer

without modifying the other units of the layer. For example, the reasoning mechanism can be

replaced with a different reasoning mechanism that provides the same interface. This change would

not affect the Virtual Web Services and the Manager. Depending on the data given to the system

about past or future behavior of the Web Services and their clients, various data models and

selection techniques can be applied.

3.3 Example

Figure 3.8 represents a specific example of the proposed architecture. It consists of three clients

and several Web Services. The services are clustered into groups depending on their functionality.

For example, Web Services 1, 3, 5, and 9 are in group X, since they offer functionality X. There is

a Virtual Web Service that corresponds to each group of redundant services.

When client 1 needs to send a request, it sets the functionality of the request and sends it to

the Virtual Web Service that is responsible for the specific functionality. The VWS interacts with

the reasoning mechanism in order to find the most appropriate Web Service of the group. Once the

service is selected, the request is forwarded to it. Finally, when the result is generated, it is passed

to the virtual layer which sends it back to the client.

3.4 Design implications

The presented Virtual Web Services Layer contains centralized and decentralized elements. The

Virtual Web Services are decentralized and do not influence the proper work of the whole architec-

ture. On the other hand, the reasoning mechanism, a key part of the architecture, is represented

as a centralized unit. It means that a failure in the reasoning mechanism will lead to a failure of

the whole system.

29

3.4.1 Multiple reasoning mechanisms

The design might be modified in a way that makes the architecture more scalable and without

a single point of failure, by specifying a reasoning mechanism to each Virtual Web Service. The

trade-offs of this approach are the following:

• Advantages:

– The Virtual Web Services Layer is decentralized, which assures that there is not a single

point of failure;

– This is a more flexible architecture, since different reasoning mechanisms can be used

along with the different Virtual Web Services;

– The total scalability of the reasoning mechanisms is higher than the scalability of one

reasoning mechanism.

• Disadvantages:

– The complexity of the Virtual Web Services Layer is increased;

– The Virtual Web Services Manager should be able to configure all reasoning mechanisms.

3.4.2 Augmented reasoning mechanism

Currently, the Virtual Web Service is responsible for the service invocation. It refers to the rea-

soning mechanism to obtain the most appropriate service of the group at a given moment of time.

This approach separates logically the capability of the Virtual Web Services and the reasoning

mechanism, but augments the communication within the Virtual Web Services Layer. In order

to reduce that communication, the reasoning mechanism might invoke the selected service. This

suggests the following trade-offs:

• Advantages:

– There is reduced communication between the elements of the Virtual Web Services Layer.

• Disadvantages:

– There is augmented complexity of the reasoning mechanism. The reasoning mechanism

should be aware of how to select the most appropriate service, as well as how to invoke

it, and how to return the result back to the client.

30

3.4.3 Data consistency

When dealing with redundant components, a mechanism for achieving data consistency must be

used. The presented Virtual Web Services Layer architecture allows different techniques for data

consistency to be applied. For example:

• State synchronization. In order to synchronize the state of the redundant services, the clients’

requests should be kept and used for Web Services synchronization, when it is needed (for

example, after every request; after a specific period of time; after state transformation). In

this case, the developer of the system must implement a state synchronization mechanism;

• Transactions. The requests of a client can be considered as a transaction that represents the

ACID properties (atomicity - the transaction is seen as a single atomic operation; consistency

- changes the state from one to another; isolation - the transactions are performed separately

from one another; durability - when the transaction is committed, all changes are perma-

nently updated). In addition, recovery mechanism and/or compensation actions should be

considered. This case suggests that the developer of the application must implement it as a

transactional system;

• WS Transaction Management. Web Services Transaction Management [28] is a standard that

represents a set of protocols to manage the execution of the Web Services.

31

Chapter 4

Evaluation

This chapter describes the evaluation of the proposed Virtual Web Services Layer (VWSL) ap-

proach. Firstly, a feasibility check is done to determine whether it is possible to build such an

architecture. Secondly, the behavior of the Web Services is observed and analyzed in different en-

vironments. Finally, to observe the behavior of the VWSL with different selection techniques, the

simulation method is used, since the study of the optimal strategies is difficult in a real environ-

ment where there are many uncontrollable parameters. The evaluation process is divided into the

following three phases:

1. Phase 1: VWSL prototype. Development of a VWSL prototype system in order to test

whether or not the architecture is a feasible technique for managing redundant Web Services

on the server side in a dynamic and transparent manner;

2. Phase 2: Clients’ Load Generator and Simulator. Development of a system that generates

clients’ load and simulates clients’ behavior, in order to observe the response time of the Web

Services in different environments. Through building such a system, an overview is obtained

regarding the size and the complexity of both the implementation of a real system that deals

with Web Services and the analysis of the obtained results;

3. Phase 3: VWSL simulation. Development of a simulation model that represents the VWSL

architecture, using an existing simulation tool, which provides higher control of the system

without dealing with the complexity of a real and resource-consuming environment. In ad-

dition, simulation and evaluation of the VWSL architecture is completed in order to observe

the behavior of the system with different selection techniques. The question in this phase is:

Which selection technique(s) should be applied, depending on the information available to

the system, regarding the QoS of the services? The selection techniques that are taken into

account are with respect to the system’s dependability, response time, load-balancing, and

overall performance.

32

4.1 Phase 1: VWSL prototype

4.1.1 Description

A simplified prototype of the proposed architecture is developed, in order to observe if the VWSL is

an applicable approach for dynamic selection of redundant Web Services. It is implemented in the

programming language Java [29], version 1.5. The dynamic service selection is realized by reflection

that allows us to obtain information at run-time about methods, constructors, and instance fields

of classes, as well as to invoke them dynamically [30], [31]. The system runs on the Apache Tomcat

server [32], version 5.5 and on the Axis framework for Web Services, based on Java and XML [33],

version 1.3.

The reasoning mechanism is based on a random selection technique that does not require any

information about the services. Since the decision is done in a random manner, there is no need

for selection criteria, nor data about the services must be collected and aggregated by the model.

The model of the reasoning mechanism contains only the WSDL descriptions of the redundant Web

Services.

The Manager of the layer is implemented as a client-server application in Java using JSP [34]

and Servlets [35]. It generates Virtual Web Services and manages the settings of the reasoning

mechanism (such as available Web Services).

4.1.2 Results

The results of the developed architecture are as follows:

• The Virtual Web Services Layer is a feasible technique for dynamic service selection on the

server side. The layer is able to manage the redundant services in a transparent manner. All

the necessary information, which should be available to the client, is the service description

(WSDL) of the Virtual Web Services. The VWSs hide the reasoning details during the

decision-making process. From the consumer’s point of view, the VWS is the real Web

Service that handles the request.

• The scalability of the system that implements the described layer is expected to be the

same as the scalability of a system that does not consist of redundant components. The

decentralization of the Virtual Web Services assures that there is no single point of control

and respectively of failure. There is a separate VWS component that represents and manages

each group of services and does not influence the proper work of the whole system.

• The architecture can be used as a layer that assures a level of security. The Web Services are

called by the virtual layer and are never invoked directly by the clients. This technique can

33

prevent unauthorized users from having access to the real services.

• It is possible for the response time of the proposed architecture to increase due to the reasoning

mechanism. This is an expected result since the decision is taken at run-time. Furthermore,

it implies a trade-off between the appropriate service selection and the execution time of the

system.

4.2 Phase 2: Clients’ Load Generator and Simulator

4.2.1 Description

In order to examine and observe the behavior of real Web Services, a tool, called the Clients’ Load

Generator and Simulator, is developed and evaluated, using various scenarios. The implementation

is done in Java ([29]). The system creates consumers’ load and simulates consumers’ behavior. The

clients’ requests are generated in XML format and are sent to the desired services by the system.

The target components are Web Services, accessible via their service descriptions (WSDL). The

main goals of the tool, presented in figure 4.1, are the following:

• To generate requests for one client. The calls represent the behavior of one client (1 client

— multiple Web Services). The user of the application specifies the URL, the method name,

and the arguments of the target Web Service for each call and gets as a result the client’s

requests in XML format;

• To generate requests for multiple clients. The application generates behavior of multiple

clients (multiple clients — multiple Web Services). The consumers’ requests are described in

XML format, which is used as an input file for the simulation of the clients;

• To simulate the clients’ behavior. The application loads the generated XML file, parses it

in order to get the necessary information (such as target Web Services, method names, and

arguments), and starts the execution of each client in a separate thread. The threads invoke

the target services, get the results, and store them into text files (logs). The application keeps

logs of all results obtained during the simulation period, such as request start time, request

end time, result of the execution, services response times.

The tool is designed in a way that represents real clients’ behavior - the calls within a client

are synchronized, whereas the requests of different clients are processed in parallel. The behavior

of one client consists of one or more requests. When the result of the first request is obtained, the

second call is sent to the next service. The behavior of different clients is independent from one to

another. The clients are able to send requests simultaneously to the same Web Services.

34

Figure 4.1: Clients’ Load Generator and Simulator for Web Services

4.2.2 Experiment setups

The application and the target services are tested in a single machine as well as in a distributed

environment, using RPC communication style (Apache Axis Framework, version 1.x, [33]) and

document communication style (Apache Axis Framework, version 2.0, [36]) [13]. Eight experiment

setups have been designed for each communication style:

• Type 1: Clients and Web Services located in one machine:

– Scenario 1: 1 client - 1 request per client

– Scenario 2: 1 client - many requests per client

– Scenario 3: many clients - 1 request per client

– Scenario 4: many clients - many requests per client

• Type 2: Clients and Web Services distributed in different machines with the same

characteristics:

– Scenario 5: 1 client - 1 request per client

– Scenario 6: 1 client - many requests per client

– Scenario 7: many clients - 1 request per client

– Scenario 8: many clients - many requests per client

35

Table 4.1: Clients’ Load Generator and Simulator: experiment results based on
RPC communication style (Axis 1)

These experiment setups represent the full number of situations that could happen when the

tool is used. The two communication styles (RPC and document style) are tested with exactly the

same Web Services and clients load. The evaluation of the Clients’ Load Generator and Simulator

gives an overview of the response times of the Web Services in the different cases. The real-world

situation is scenario 8 that represents many clients calling many distributed Web Services. However,

it is interesting to observe the other cases as well, since differences in the response times of the

services might occur.

4.2.3 Results

The obtained results of the experiments (tables 4.1 and 4.2) show that the response times of the Web

Services depend on both the communication style as well as the location of the services. For RPC

communication style (Axis 1), when the clients and the services are located in the same machine,

the response time is higher (average from 990 to 1800 milliseconds) than the response time of the

services when they are distributed (average from 20 to 650 milliseconds). The reason for this result

is the increased overhead of the machine, since the same machine has to send the clients’ calls, to

parse the SOAP requests, to handle the requests, to create the SOAP responses, and to send the

results back to the clients. In contrast, when the framework is document communication style (Axis

2), there are no significant differences in the response times (average from 30 to 1500 milliseconds),

obtained with distributed and not distributed load, due to the newer version of the framework. For

scenario 8: many clients - many requests, the maximum execution times vary significantly for both

36

Table 4.2: Clients’ Load Generator and Simulator: experiment results based on
document communication style (Axis 2)

communication styles - from 15 milliseconds to 10-13 seconds. The reason for this result could be

the creation of the sockets, garbage collection, and even the configuration of the Tomcat server and

the axis settings.

4.2.4 Phase 1 and phase 2: Conclusions

The proposed architecture - Virtual Web Services Layer - is an appropriate approach for dynamic

and transparent Web Service selection on the server side, which should be evaluated further. The

model and the selection technique are crucial parts of the reasoning mechanism and are directly

related to the response time of the system. Various models and selection techniques should be taken

into consideration in order to observe the behavior of the layer and at the same time to evaluate

the reasoning mechanisms in different scenarios.

The development of the Virtual Web Services Layer in a real-world application and the evalua-

tion of such a system is a complex procedure. It requires resources in terms of machines that run

a set of experiments and time that should be devoted to each experiment setup, run, and analysis.

In addition, it is very likely that the results of the experiments depend on the particular machine

specifications and environment settings, such as web server, communication style (for example,

Tomcat and Axis framework, if the system is implemented in Java). Fluctuations, due to network,

memory, CPU, caching, and garbage collection, might appear as well. All this could reflect on the

correct analysis of the obtained data and the validity of the conclusions. Furthermore, such an

implementation is based on particular standards, protocols, and programming languages.

37

Figure 4.2: Evaluation scenarios A and B

Instead, the method of simulation is used. It provides the possibility to simplify the represen-

tation of the world and at the same time, the developer has better control. In order to design a

simulation that is close to the real behavior of the Web Services, the obtained response times from

the evaluation of the Clients’ Load Generator and Simulator are used.

4.3 Phase 3: VWSL simulation

4.3.1 Description

Simulation is a technique that represents real-world behavior in a simplified manner. It allows

observing and analyzing key characteristics of a selected system or a process [37].

In order to evaluate and analyze the Virtual Web Services Layer architecture, a simulation model

is built, which runs on one machine. Parallel executions are not necessary since the simulation run

is not time-consuming. Time-consuming are the experiment setups, the results gathering, and the

analysis of the obtained data.

To observe the main range of possible situations, two scenarios, shown in figure 4.2, are taken

38

into consideration:

• Scenario A. The observed system consists of two participants - clients and groups of redundant

Web Services. In this case, the clients know the target services of all calls. Service selection

is not needed, since the Web Services are specified in the requests. Although this scenario is

the simplest case, it should be evaluated and analyzed as a baseline for comparison to see if

the proposed VWSL brings any advantages;

• Scenario B. The observed system consists of three participants - clients, Virtual Web Services

Layer, and groups of redundant Web Services. This scenario is divided into the following

real-world situations:

– Scenario B1. Some of the target services are known by the clients. This case suggests

that service selection is not needed all the time. Those requests that contain the target

Web Services as part of their parameters, represent scenario A. In contrast, service

selection is required for the calls that do not have the target services, but know only the

functionalities that the services provide;

– Scenario B2. None of the target services are known by the clients. This case requires

service selection to be made for all requests of the clients.

Four Web Services are observed, which are clustered into three groups of redundant services,

depending on the functionalities they provide. The response times of the Web Services are preset

values, which correspond to some response times, obtained as results during the evaluation of the

Clients’ Load Generator and Simulator tool, described in the previous section. The capacity of the

Web Services, showing the maximum requests that can be processed simultaneously, is the same

for all services. In addition, the processing time of a request in each Web Service depends on the

current load of the Web Service as well. This allows dealing with services behavior that is close to

the real-world.

Two different workload levels are taken into account - low level and high level. When the load

level is low, the system is able to handle the incoming requests without getting overloaded. When

the load level is high, the system is able to handle the requests, but it is overloaded. The system

is considered as overloaded when there is at least one request in a service’s queue, waiting to be

processed. Since the availability of the Web Services changes in the different experiments, a low

load level in one case could be a high load level in another cases. On the other hand, in some cases

the selection techniques might make the high load level as low load level.

The workload levels, the arrival rate distribution as well as the size distribution of the requests,

is presented in table 4.3.

As discussed in chapter 3, both the applied selection technique and the models that collect and

aggregate QoS information are important parts of the reasoning mechanism. However, the imple-

39

Table 4.3: Experiments workload

Figure 4.3: Model, represented as a black box with a level of accuracy

mentation of models that gather information about the services and represent it in an appropriate

manner, is a resource- and time-consuming process. In general, every model has a level of accuracy

(from 0% to 100% accuracy) that shows how correct is the information about the providers. There-

fore, instead of developing a model, the following representation is made - the model is described as

a black box with an accuracy about the QoS of the services (figure 4.3). This simplification allows

the focus to be on different selection techniques, depending on the correctness of the models.

According to this representation, the predicted value of a QoS criterion belongs to an interval,

defined by the value of the criterion in the simulation and the accuracy of the model:

(1) XM = [XR∗MA

100 , 2∗XR− XR∗MA

100], where XM is the predicted value of the QoS criterion;

XR is the value of the QoS criterion, specified in the simulation; MA is the accuracy of the model.

For example, if the preset response time of a Web Service is 13 ms and the accuracy of the

model is 100%, then 13 ms will be used in the system as predicted response time. However, if the

accuracy of the model is 75%, the value of the predicted response time is in the interval [9.75 ms,

16.25 ms]. If the accuracy of the model is 50%, then the deviation from the predefined response

time increases linearly and the predicted value belongs to the interval [6.5 ms, 19.5 ms]. The higher

the accuracy of the model, the lower the interval of possible values; the lower the accuracy, the

higher the possibility of deviation from the correct value. This is illustrated in figure 4.4.

In case of a boolean value of the QoS criterion, another approach is considered. For example,

the availability of a Web Service can be true or false. If the model’s accuracy is 100%, then the

predicted value of the QoS criterion is the same as the real value. If the model’s accuracy is 75%,

the boolean value of the criterion is inverted for every seventh (7th) Web Serivce of the input batch

of requests. If the model’s accuracy is 50%, the value of the criterion is inverted for every fifth

40

Figure 4.4: Example: Execution time intervals, depending on the model accuracy

Figure 4.5: Inverting the boolean value of a QoS criterion, depending on the
accuracy of the model

(5th) Web Service of the input. This is shown in figure 4.5. Table 4.4 presents an example of the

predicted availability of the Web Services depending on the model’s accuracy.

The behavior of the simulation depends on the applied selection technique. Four selection

techniques are taken into consideration, as follows:

Random selection

The random selection technique chooses a Web Service from a group of redundant services in a

random manner. No information about the services is needed. This approach is appropriate when

the services’ behavior is not known.

The fastest service selection

The fastest service technique selects a Web Service of a group of redundant services, according to

its speed. It considers two QoS parameters - availability of the services and response time of the

services.

41

Table 4.4: Inverting the boolean value of a QoS criterion, depending on the accu-
racy of the model

42

Load balancing

The load balancing technique takes into account two features - availability of the services and

services workload. The technique selects a Web Service with less load from a group of redundant

Web Services, in order to avoid overloading of the services.

More accurate selection

An attempt for a more accurate service selection is made, based on three QoS criteria - response

time of the services, workload of the services, as well as the services’ availability. It represents

a combination of two selection techniques - the fastest service selection and the load balancing

technique. The available service with the lowest response time, which is not overloaded, will be

selected. However, if all available services are overloaded, the one with minimum load is chosen.

4.3.2 Phase 3: Main focus

The goal of the Virtual Web Services Layer simulation is to answer the following questions:

1. How important is the availability of the Web Services for the system with and without the

Virtual Web Services Layer?

2. How important is the models accuracy regarding the QoS of the Web Services in the system

with Virtual Web Services Layer?

3. Does the applied selection technique affect the behavior of the system with the Virtual Web

Services Layer?

4. Which selection technique(s) should be used in the different scenarios?

5. Does the size, the arrival rate distribution of the requests, as well as the load level (low and

high) influence the behavior of the system with and without the Virtual Web Services Layer?

4.3.3 Experiment setups

The scenarios are evaluated with a set of different experiments. Two types of variables are consid-

ered - independent variables and dependent variables.

The independent variables are the following:

• Workload levels. Two workload levels are considered - low and high. The values of these

levels are defined in the case without the Virtual Web Services Layer, when all Web Services

are available, and when the arrival rate and the request size distribution are constant as well

as uniformly distributed;

43

• Arrival rate distribution. The distribution of the requests entering the system can be two

types - constant or uniform-distributed. The former shows that the amount of incoming

requests per time unit is the same during the simulation run, whereas the latter specifies that

the number of generated requests per time unit changes;

• Request size distribution. The size of the request specifies how complex the request is. The

size distribution can be constant or uniform-distributed. When the size is constant it means

that all requests require the same amount of processing time, whereas in the second case, the

size changes;

• Known target services by the clients. It specifies how many target services are predefined.

Service selection is not needed for those requests that are predefined;

• Web Services models accuracy. The Web Service model represents QoS information about the

service, which has a level of correctness showing how accurate the data is. The QoS criteria

that are represented by the model depend on the applied selection technique. For example,

in the case of a random selection, the model is not needed. However, in the case of the fastest

service selection, the model represents two QoS criteria - the service’s availability and the

service’s response time, and specifies the level of accuracy - for example 75%;

• Web Services availability. It shows how many services are available in the system. There

must be at least one service available in each group;

• Selection techniques. Four selection techniques (random selection, the fastest service selection,

load-balancing, and a more accurate selection) are implemented and applied.

The other type of parameters, the dependent variables, gives a general overview of the behavior

of the system in the different scenarios. This allows analyzing the proposed VWSL architecture

and studying which selection technique should be applied under certain conditions. The dependent

parameters are the following:

• Execution time of the simulation runs. This parameter shows how much time it takes to

complete the whole simulation run - from sending the first request to receiving the last

response;

• Throughput of the Web Services. Throughput refers to the number of processed requests per

time unit;

• Dependability of the system. The dependability is measured in terms of number of repetitions

of the requests. If a large number of the requests needs to be re-processed due to inaccurate

selection of target services, this will show that the level of dependability of the system is low.

Formula 2 presents how the dependability is calculated for every simulation run. In the ideal

44

case, each request should be processed once and the dependability will be 1. Measuring the

number of requests repetitions gives a better overview of the system than simply measuring

the dependability as processed requests vs. all requests.

(2) D =
N∑

i=1

(
1
Ri

∗ 1
N

) ∈ [0, 1], where D is the dependability of the system; Ri is the number

of repetitions of request i; N is the number of all generated requests in the system.

If a request is not processed at all, (1
Ri

) is considered as 0. As a result, the dependability of the

system is lower.

The different scenarios are evaluated from the system’s point of view with the same sets of

workload, groups of redundant Web Services, and QoS parameters of the services, which assures

the same start conditions for each situation. The parameters of the simulation are predefined in

input files for every run and contain the following request-specific and system-specific information:

• Request type. Every request has a type. There are 10 types of requests. The difference

between them is in the values of the predicted response times and workload of the Web

Services. For example, if the models accuracy is 75% and the ’real’ response of Web Service

X is 0.66 seconds, then the predicted response time of the service, calculated using formula 1,

is different for the different request types - the value belongs to the interval [0.495, 0.825] s;

• Arrival rate of the requests. The arrival rate shows how many requests of a particular type

are entering the system per time unit, i.e. how many simultaneous requests of the same type

are sent to the system at a particular moment of time. The arrival rate can be constant or

uniformly-distributed with mean the same constant value as in the linear case. The interarrival

time is constant;

• Size of the request. The size of the request shows the complexity of the request. The simplest

request has size 1, whereas the haviest (more complex) request has size 6. If the time needed

to process a request of size 1 is X time units, then the service time required to process a

request of size N, where N is a value in the interval [1, 6], is X*N time units;

• Functionality. The functionality shows the functionality which must be provided by the

invoked Web Service;

• Target Web Service. The target shows the name of the target Web Service, if it is known;

• Predicted response times of the Web Services. These values are calculated using formula 1

for every request type by taking into account the real response time of the services and the

models accuracy. The predicted as well as the real response time corresponds to time units

necessary for a Web Service to process a request with size 1;

45

• Predicted workload of the Web Services. The workload of the Web Services within a simulation

run is dynamic. Therefore, the predicted workload of the Web Services depends on the current

number of requests in progress in a given Web Service as well as the models accuracy. In order

to specify the predicted values, the following approach is considered: an interval of predicted

workload values is calculated using formula 1 for every request type. The low boundary of

the interval is 0, when there are no requests in the Web Service, whereas the high boundary

is 50, which indicates that at a given moment of time up to 50 requests could be in processing

by one service;

• Predicted availability of the Web Services. The predicted availability of the Web Services

takes into consideration the model’s accuracy. If the accuracy is 100%, the real value is taken

into account. Otherwise, the value is inverted for every 7th Web Service in case of 75%

accuracy, and for every 5th Web Service in case of 50% accuracy;

Note: The predicted response times, workload, and availability of the services are or are not

used depending on the applied selection technique. For example, if the selection technique is

random selection, this QoS information is not taken into account, whereas these values are

considered in the case of more accurate selection technique.

• Real response times of the Web Services. These values are the same for all scenarios;

• Real availability of the Web Services. These values change within a scenario, but are the

same between scenarios (100%, 75%, and 50% availability is considered);

• Others. Other parameters, used internally in the simulation, such as experiment names, input

file names, etc.

Two workload levels are considered - low level, which contains 60 requests during a simulation

run and high level, which contains 120 requests during a simulation run. The average number of

requests entering the system is 3 for low workload level and 6 for high workload level. The high

load level is represented as two low load levels, as shown in figure 4.6. The size of the requests

for both workload levels is in the interval [1, 6] with mean 3 when the distribution is uniform or 3

when the request size distribution is constant; The interarrival time is 2 time units.

The response times of the Web Services as well as the groups of redundant Web Services are

shown in table 4.5. The maximum capacity of every Web Service, defined as capacity of the server

and the capacity of the queue, is 50 requests - 15 (server capacity) and 35 (queue capacity).

The simulation is designed in a manner that when running different experiments, changes are

required only in the input files, not in the simulation. The number of simulation runs is presented

in table 4.6. 23 different experiments are conducted, which have 4 different cases and are repeated

3 times (average values are taken into account) for the random selection technique and once for the

other cases, which gives 132 simulation runs in total.

46

Figure 4.6: Workload levels of the simulation

Table 4.5: Web Services of the simulation

Table 4.6: Simulation runs

47

Scenario A

The goal of scenario A is to evaluate the simulation model without the usage of the VWSL layer.

In this case all target Web Services are known by the clients. The experiments for this scenario are

shown in tables 4.7, 4.8, 4.9.

The independent variables are the following:

• Known services - all target services are known;

• Web Services availability - 100%, 75%, 50%;

• Request size distribution - constant, uniform-distributed;

• Arrival rate distribution - constant, uniform-distributed;

• Workload levels - low, high.

The dependent variables - execution times of the simulation runs, throughput of the Web Ser-

vices, and dependability of the system, show how crucial is the high level of availability of the Web

Services with respect to the overall performance of the system, when there is not reasoning about

the service selection.

Table 4.7: Experiment setup: Scenario A, Experiment 1

48

Table 4.8: Experiment setup: Scenario A, Experiment 2

49

Table 4.9: Experiment setup: Scenario A, Experiment 3

50

Scenario B1

The goal of scenario B1 is to evaluate the simulation model with the usage of the VWSL layer.

In this case, half of the target Web Services are known by the clients. For those services, service

selection is not needed. The reasoning mechanism is used for the other requests. The experiments

for this scenario are shown in tables 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19.

The independent variables are the following:

• Known services - half of the target services are known;

• Web Services models accuracy - 100%, 75%, 50%;

• Web Services availability - 100%, 75%, 50%;

• Request size distribution - constant, uniform-distributed;

• Arrival rate distribution - constant, uniform-distributed;

• Workload levels - low, high.

• Selection techniques:

– Random selection;

– The fastest service selection;

– Load balancing technique;

– More accurate selection.

The dependent variables - execution times of the simulation runs, throughput of the Web Ser-

vices, and dependability of the system, show how the reasoning mechanism influences the behavior

of the system. In addition, they indicate which selection techniques are appropriate for this case.

Scenario B2

The goal of this scenario is to evaluate the simulation model with the usage of the VWSL layer. In

this case, none of the target Web Services are known by the clients. Service selection is needed for

all requests. The experiments for the scenario are shown in tables 4.20, 4.21, 4.22, 4.23, 4.24, 4.25,

4.26, 4.27, 4.28, 4.29.

The independent variables are the following:

• Known services - none of the target services is known;

• Web Services models accuracy - 100%, 75%, 50%;

• Web Services availability - 100%, 75%, 50%;

51

Table 4.10: Experiment setup: Scenario B1, Experiment 1

Table 4.11: Experiment setup: Scenario B1, Experiment 2

52

Table 4.12: Experiment setup: Scenario B1, Experiment 3

Table 4.13: Experiment setup: Scenario B1, Experiment 4

53

Table 4.14: Experiment setup: Scenario B1, Experiment 5

Table 4.15: Experiment setup: Scenario B1, Experiment 6

54

Table 4.16: Experiment setup: Scenario B1, Experiment 7

Table 4.17: Experiment setup: Scenario B1, Experiment 8

55

Table 4.18: Experiment setup: Scenario B1, Experiment 9

Table 4.19: Experiment setup: Scenario B1, Experiment 10

56

• Request size distribution - constant, uniform-distributed;

• Arrival rate distribution - constant, uniform-distributed;

• Workload levels - low, high.

• Selection techniques:

– Random selection;

– The fastest service selection;

– Load balancing technique;

– More accurate selection.

The dependent variables - execution times of the simulation runs, throughput of the Web Ser-

vices, and dependability of the system, show how the reasoning mechanism influences the behavior

of the system, when a decision-making process needs to be done for all requests.

57

Table 4.20: Experiment setup: Scenario B2, Experiment 1

Table 4.21: Experiment setup: Scenario B2, Experiment 2

58

Table 4.22: Experiment setup: Scenario B2, Experiment 3

Table 4.23: Experiment setup: Scenario B2, Experiment 4

59

Table 4.24: Experiment setup: Scenario B2, Experiment 5

Table 4.25: Experiment setup: Scenario B2, Experiment 6

60

Table 4.26: Experiment setup: Scenario B2, Experiment 7

Table 4.27: Experiment setup: Scenario B2, Experiment 8

61

Table 4.28: Experiment setup: Scenario B2, Experiment 9

Table 4.29: Experiment setup: Scenario B2, Experiment 10

62

Chapter 5

Simulation

Simulation is a method that represents real-world behavior in a simplified manner. It allows

observing key characteristics of a selected system or a process [37]. AnyLogic is a flexible and

powerful tool that is used to model, simulate, visualize, and analyze diverse real-world problems.

It is a simulation software for continuous, discrete, and hybrid systems, which can be applied in

many areas, such as control systems, traffic, system dynamics, manufacturing, networks, computer

systems, and others [38], [7]. The real objects are represented by classes of active objects. These

objects can be atomic or compound. The compound ones encapsulate other active objects to any

depth. This allows building a hierarchy of objects and constructing simulations in a modular way

(figure 5.1).

Figure 5.1: AnyLogic: Hierarchy of active objects presented in [7]

63

5.1 AnyLogic Enterprise Library

AnyLogic provides libraries for simulating systems in various domains. The Enterprise Library can

be applied in discrete systems, such as manufacturing, services, business processes, etc. [39]. It is

able to “create flexible models, collect basic and advanced statistics, and effectively visualize the

process”, in order to represent the system. At the same time, it “provides a higher-level interface

for fast creation of discrete event models in the style of flowcharts”, using objects like source, sink,

queue, delay, server, and others, in a drag-and-drop manner [1].

Entity is a basic concept in the Enterprise Library. The entities represent individual units that

are evaluated in the simulation. They can enter and leave objects through one directional ports.

The connections between the ports are established by connectors.

In order to observe the behavior of the Virtual Web Services Layer architecture, described in

chapter 3, the AnyLogic Enterprise Library is used. The components used in the simulation of the

proposed architecture are described in tables 5.1 and 5.2.

5.2 Simulation design of the proposed architecture

This section provides an overview of the design of the simulation model that is used to evaluate

the VWSL approach.

The architecture, proposed in chapter 3, consists of three main components - Clients, Virtual

Web Services Layer, and Web Services, forming the key compound objects of the high-level view

of the simulation design, presented in figure 5.2. Object LG (load generator) generates clients’

requests (entities), object VWSL represents the behavior of the virtual layer, and each object WS

corresponds to a Web Service. Object LS (load sink) is used as the end point of the entity flow. It

accepts the incoming from the VWSL entities and disposes of them.

5.2.1 Load Generator

Object Load Generator, presented in figure 5.3, is responsible for entities’ generation and specifies

the way that requests enter the system, which allows evaluation of the proposed architecture from

a system point of view. The object consists of one source element which creates requests based

on uniform distribution, where the interarrival time of the requests is constant, but the number

of incoming entities varies. Every request has a set of parameters - request type, request size,

functionality which must be provided by the invoked Web Service, target Web Service (if known),

and other parameters used in the business logic of the simulation (whether the request is processed

or not, number of attempts for processing the request, etc.). The input parameters of the simulation

are read from external files for every experiment in order to assure that the results can be repeated

64

Table 5.1: Enterprise Library objects [1] used in the simulation

65

Table 5.2: Enterprise Library - other components used for the VWSL simulation

Figure 5.2: Simulation: Clients — VWSL — Web Services

66

Figure 5.3: Simulation: Load Generator

if needed.

5.2.2 Virtual Web Services Layer

Figure 5.4: Simulation: Virtual Web Services Layer

As discussed in chapter 3, the Virtual Web Services Layer consists of a reasoning mechanism,

Virtual Web Services, and a Manager. The reasoning mechanism is an important component of the

VWSL architecture, which takes into account selection criteria, models, and selection techniques:

• Selection criteria. Selection criteria are used by the selection technique when a service selection

is needed;

• Models. The models collect data about the Web Services and the interactions between the

67

Figure 5.5: Simulation: Virtual Web Service

clients and the services. They interpret the gathered data sets and represent them in an

aggregated way. However, instead of building such models, collecting and evaluating data, the

aggregated measures (such as service response time, service workload, and service availability)

can be considered as given. Each model has a level of accuracy that shows how precise its

information about the services is. This information is used by the applied selection technique.

• Selection techniques. Four selection techniques are considered in the simulation - random

service selection, the fastest service selection, load balancing technique, and an attempt to

achieve a more accurate service selection by combining the fastest service selection and load-

balancing technique.

The simulation design of the VWSL is presented in figure 5.4. Component Manager is not

included, since the settings of the reasoning mechanism are defined before the simulation runs.

There is a Virtual Web Service corresponding to each group of redundant services with particular

functionality. The reasoning mechanism is presented by a queue, a server, and a policy object.

The Policy is a compound object which represents the applied selection technique. In addition, the

Virtual Web Services Layer of the simulation is designed in a way that allows testing the system

with and without using the Virtual Web Services and the reasoning mechanism, i.e. the simulation

is able to switch between a system without the operation of the Virtual Web Services Layer and

a system with the operation of the Virtual Web Services Layer. The system-switching mechanism

consists of a queue and a select object. The selectOrRedirect object checks if the target Web Service

is specified. If yes, then there is no need of service selection, and the request is sent to the Redirect

object. However, if the endpoint is not known, then the entity is sent to the VWSs.

There are three Virtual Web Services in the simulation design. Each of them corresponds to a

group of redundant Web Services with a particular functionality. The design of a VWS is shown in

figure 5.5. It consists of a queue that keeps the incoming requests and a server that simulates the

behavior of a real server.

In order to simplify the simulation design, there is a slightly difference between the proposed

architecture and the object interaction, presented here. Instead of returning the name of the selected

68

Web Service, the reasoning mechanism calls the service itself. When the request is processed, it is

disposed of by the object load sink. This approach simplifies the simulation and at the same time

does not reflect on the behavior of the proposed VWSL architecture.

Object Copy copies the incoming request and sends it to all Virtual Web Services. However,

only one Virtual Web Service processes the entity - the VWS that is responsible for the functionality,

specified as part of the call. The other virtual services simply ignore and remove the entity.

Object Redirect is used when the simulation is observed without the operation of the VWSL.

In this case, the target Web Services are specified in the generated requests and service selection is

not needed.

Object Policy

The object Policy, presented in figure 5.6, is used during the service selection process. The incoming

request enters the queue of the element via port in. Object selectWSOrRejectRequest chooses a

Web Service according to the applied selection technique by taking into account the selection criteria

and the predicted information about the services. As a result, the block forwards the request to

the selected target Web Service, if the service is available, or rejects the request in case the service

is not available. If the target Web Service is available, object selectWSOrRejectRequest returns

true and the request is sent to it via port policyOut1, policyOut2, policyOut3, or policyOut4,

depending on which port is connected to the target Web Service. Otherwise, the entity is sent

to object tryToSelectWSAgain, which checks whether the maximum attempts for processing the

request has been reached or not. If the maximum is exceeded, the request leaves object Policy via

port exceededMaximumRepetitions and leaves object VWSL via port VWSLprocessingImpossible

and is disposed by object Load Sink without being processed. However, if the maximum request

repetitions is not reached, the entity leaves the policy block via port policyOutError and leaves the

VWSL via port VWSLoutError and enters block VWSL again.

Object Redirect

Object Redirect, presented in figure 5.7, is used when there is no need of service selection, since the

target Web Service is specified in the client’s request. The incoming request enters the queue of

the element via port redirectIn. Object redirectOrRejectRequest forwards the entity to the target

Web Service if it is available via port redirectOut1, redirectOut2, redirectOut3, or redirectOut4,

depending on which port is connected to the specified Web Service. However, if the service is not

available, object redirectOrRejectRequest returns false and the entity leaves the element via port

redirectOutError as well as leaves block VWSL via port VWSLprocessingImpossible and is disposed

by object Load Sink, without being processed (since the target Web Service is not available).

69

Figure 5.6: Simulation: Object Policy of the Virtual Web Services Layer

Figure 5.7: Simulation: Object Redirect of the Virtual Web Services Layer

70

Entity flow of the Virtual Web Services Layer

When a request comes to the VWSLin port of the VWSL (figure 5.4), it enters the queue block of

the switch mechanism. Then, the entity is analyzed by object selectOrRedirect, as follows:

• If the target Web Service is specified, object selectOrRedirect returns false. This indicates

that the request goes to object Redirect. If the specified service is available in the system, the

entity is sent to it through one of the outgoing ports - VWSLout1, VWSLout2, VWSLout3, or

VWSLout4, depending on which port is connected to the particular Web Service. However, if

the service is not available, the request leaves the VWSL through port VWSLprocessingIm-

possible. The request goes directly to the load disposer object, since it cannot be handled

due to unavailability of the target Web Service.

• If the target Web Service is not specified in the request, the switch mechanism returns true.

The entity is accepted by object Copy which makes two copies of the entity. The replicas and

the original request enter the Virtual Web Services objects. The VWS whose functionality is

specified in the request parameters, sends the entity to the reasoning mechanism. The other

VWSs ignore and remove the received entity. The reasoning mechanism selects a Web Service

according to the specified selection criteria, model, and selection technique. If the selected

service is available, the entity is sent to it for processing. Otherwise, if the maximum number

of possible attempts for processing is not reached, the request leaves the VWSL block through

port VWSLoutError and enters again the queue of the switch mechanism via port VWSLin.

This repeats until the selected Web Service is available and can process the request or until

reaching the maximum number of possible attempts for processing. If the maximum number is

reached, then the request leaves the VWSL block via port VWSLprocessingImpossible, which

indicates that it is not processed due to unavailability of the selected target Web Service.

This prevents infinite loops in the entity flow.

5.2.3 Web Services

Each Web Service consists of a queue and a server that simulates requests processing (figure 5.8).

The Web Services provide one or more functionalities. Each service has a unique name, a predefined

response time, and a capacity level.

5.2.4 Requests disposer - object Load Sink

Object Load Sink, presented in figure 5.9, accepts incoming requests via port in and disposes them

via object sinkProcessedRequests or sinkNotProcessedRequests. It represents the end of the entity

flow of the simulation. Object selectOutput checks whether the request is processed by a Web

71

Figure 5.8: Simulation: Web Service

Figure 5.9: Simulation: Requests disposer

Service or not. If yes, then it is disposed by object sinkProcessedRequests, otherwise - by object

sinkNotProcessedRequests. Two different sink elements are used in order to obtain the results of

the simulation run in an easy manner.

5.3 Summary

This chapter describes the simulation environment AnyLogic and presents the design of the simu-

lation that corresponds to the proposed Virtual Web Services Layer architecture. The clients are

represented by object Load Generator; the behavior of the virtual layer is simulated by object

VWSL; and the Web Services are represented by objects WS.

72

Chapter 6

Virtual Web Services Layer Simulation Results

This chapter presents the results of the conducted experiments based on the described simulation

design.

The ideal setting (scenario A, experiment 1; without Virtual Web Services Layer) when all

target Web Services are known and available is presented in table 6.1 taking into account different

load levels as well as request size and arrival rate distributions (figures 6.1 and 6.2). The values of

the workload as well as the arrival rate and request size distribution are predefined and applied to

all experiments.

In the ideal case, the dependability of the system reaches its maximum value - 1, since all

requests are processed successfully due to the availability of all Web Services.

6.1 Experiments results

As is expected, when the availability of the Web Services drops down to 75% (Web Service 2 is

not available) and 50% (Web Services 1 and 2 are not available), the dependability of the system

decreases linearly to 0.75 and 0.5 respectively, as shown in tables 6.2 and 6.3. In order to deal with

this situation in a graceful manner, the Virtual Web Services Layer is used in the next experiments.

When random selection is applied for half of the Web Services (Scenario B1: Experiments 1, 2,

and 3), the behaviour of the system varies between the simulation runs with the same configuration

Table 6.1: Simulation results: Ideal setting (Scenario A, Experiment 1)

73

Figure 6.1: Simulation results: Arrival rate distributions

Figure 6.2: Simulation results: Request size distributions

74

Table 6.2: Simulation results: Availability 75% (Scenario A, Experiment 2)

Table 6.3: Simulation results: Availability 50% (Scenario A, Experiment 3)

75

Table 6.4: Simulation results: Availability 100%, random selection for half of the
Web Services (Scenario B1, Experiment 1)

Table 6.5: Simulation results: Availability 75%, random selection for half of the
Web Services (Scenario B1, Experiment 2)

due to the nature of the selection technique. In most of the cases the execution time is increased

as well as the system is overloaded even when low workload levels are observed (tables 6.4, 6.5,

and 6.6). When the availability of the Web Services drops down to 75% and 50%, the random

selection technique cannot assign immediately an available Web Service from a group of redundant

services to process the request since the technique does not take into consideration any QoS criteria

of the Web Services. This increases the number of attempts for request processing and in some

cases the maximum attempts (5) is exceeded. As a result, the entity is considered as not processed,

which descreases the system’s dependability. Therefore, the role of the reasoning mechanism of the

Virtual Web Services Layer is crucial and it is important to apply selection techniques which take

into account QoS of the Web Services.

When the fastest service selection technique is used for half of the Web Services and the avail-

ability of the services is 75% and 50% (Scenario B1: Experiments 4 and 5), the behavior of the

system is improved compared to the same settings but with random technique. The total number

of processed requests is increased, the system execution time and the Web Services overloading

is lower as well as the system’s dependability is higher (tables 6.7, 6.8). These results show that

76

Table 6.6: Simulation results: Availability 50%, random selection for half of the
Web Services (Scenario B1, Experiment 3)

Table 6.7: Simulation results: Availability 75%, Accuracy 100%, the fastest service
selection for half of the Web Services (Scenario B1, Experiment 4)

the fastest selection technique, which takes into account Web Services availability and response

time as QoS criteria, improves the performance of the target system in terms of execution time,

dependability, and overloading.

The obtained data of scenario B1, experiments 6 and 7 (tables 6.9 and 6.10) show that the

execution times of the simulation runs are higher for the load balancing technique compared to the

fastest service selection but lower compared to the random selection technique. In terms of Web

Services overloading, both the fastest and the load balancing techniques present similar results.

When the more accurate selection technique is applied (Scenario B1, Experiments 8, 9, and 10),

the results show that the accuracy of the predicted QoS information about the Web Services impacts

the system behavior (tables 6.11, 6.12, and 6.13). When an unavailable Web Service is selected

due to incorrect information about a particular service, the request cannot be handled and another

selection is made. However, the same service is chosen due to the predicted information about the

QoS criteria, but actually this service is not available, and another attempt is made again. This

continues until the maximum number of attempts for request processing is reached, then the request

77

Table 6.8: Simulation results: Availability 50%, Accuracy 75%, the fastest service
selection for half of the Web Services (Scenario B1, Experiment 5)

Table 6.9: Simulation results: Availability 75%, Accuracy 100%, load balancing
technique for half of the Web Services (Scenario B1, Experiment 6)

Table 6.10: Simulation results: Availability 50%, Accuracy 75%, load balancing
technique for half of the Web Services (Scenario B1, Experiment 7)

78

Table 6.11: Simulation results: Availability 75%, Accuracy 100%, more accurate
selection for half of the Web Services (Scenario B1, Experiment 8)

Table 6.12: Simulation results: Availability 50%, Accuracy 75%, more accurate
selection for half of the Web Services (Scenario B1, Experiment 9)

is considered as not handled, which decreases the dependability even below the level obtained when

random selection is applied (6.13). Therefore, the accuracy of the QoS information plays a key role

in the reasoning mechanism.

The level of dependability is not high in scenario B1 since it is based on using a reasoning

mechanism only for half of the target Web Services. For the other half, if the target Web Service

is not available, the request cannot be processed which decreases the system’s dependability. This

indicates that conclusions about which selection technique should be applied under different condi-

tions cannot be made only from the obtained results of scenario B1. Therefore, in order to be able

to analyse the advantages and the disadvantages of the selection techniques of the Virtual Web

Services Layer, service selection for all requests must be observed as well (scenario B2).

In scenario B2, when the selection technique is random selection (tables 6.14, 6.15, and 6.16)

the Web Services are overloaded even more compared to the same settings in scenario B1 due to the

nature of the scenario – selection for all requests. In addition, the execution times of the simulation

runs are higher than those in scenarios A and B1. On the other hand, the dependability is increased

79

Table 6.13: Simulation results: Availability 50%, Accuracy 50%, more accurate
selection for half of the Web Services (Scenario B1, Experiment 10)

Table 6.14: Simulation results: Availability 100%, random selection for all Web
Services (Scenario B2, Experiment 1)

since selection is made for all Web Services. However, when the availability drops down to 50%,

there are still unprocessed requests, since random selection assigns unavailable Web Services and

the maximum attempts for request proceesing can be reached. Furthermore, when high workload

level is observed (Scenario B2, Experiment 3), in order to run the simulation, extension of the Web

Services queues is required due to Web Services overloading.

The random selection technique should be applied when there is incomplete information about

the QoS of the Web Services. However, using this selection technique, it is not possible to predict

the behavior of the system and it varies between different runs of the same situation. In order to

avoid uncertainties in the system’s performance, selection techniques which take into consideration

QoS of the Web Services should be considered and applied.

When the availability and the response times of the Web Services are taken into account by

the fastest service selection (tables 6.17 and 6.18), the system’s overall performance is much better

compared to the random selection technique. However, some available services are not used at all

(i.e. Web Service 3), since their response time is high. This leads to overloading of the fast Web

80

Table 6.15: Simulation results: Availability 75%, random selection for all Web
Services (Scenario B2, Experiment 2)

Table 6.16: Simulation results: Availability 50%, random selection for all Web
Services (Scenario B2, Experiment 3); * - extended queue

81

Table 6.17: Simulation results: Availability 75%, Accuracy 100%, the fastest
service selection for all Web Services (Scenario B2, Experiment 4)

Table 6.18: Simulation results: Availability 50%, Accuracy 75%, the fastest service
selection for all Web Services (Scenario B2, Experiment 5)

Services and not usage of the other services. However, when the accuracy of the QoS informa-

tion decreases, the reasoning mechanism selects services which are not available and/or with high

response time.

When the load balancing technique is applied and the accuracy of the QoS information is 100%

(table 6.19) the execution times of the simulation runs are lower compared to the fastest selection

technique. This result is observed since the load balancing technique tries to prevent the system

from overloading as much as possible which leads to fewer requests waiting in the queues of the

Web Services. However, when the models’ accuracy drops down to 75% (table 6.20), the system

experiences a high level of overloading which requires the size of the queues of the Web Services

to be extended in order to run the experiments. This shows the importance of the accuracy of the

QoS information.

When a more accurate selection technique is applied and the accuracy of the QoS criteria

is 100% (table 6.21), the system has good overall performance. It deals better with Web Services

overloading which suggests slightly increased execution time since not only the fastest Web Services

82

Table 6.19: Simulation results: Availability 75%, Accuracy 100%, load balancing
technique for all Web Services (Scenario B2, Experiment 6)

Table 6.20: Simulation results: Availability 50%, Accuracy 75%, load balancing
technique for all Web Services (Scenario B2, Experiment 7); * - extended queue

83

Table 6.21: Simulation results: Availability 75%, Accuracy 100%, more accurate
selection technique for all Web Services (Scenario B2, Experiment 8)

are in use. This effect is observed when dealing with constant arrival rate or uniform-distributed

low level arrival rate. However, when the arrival rate is uniform high level, the execution time of the

simulation run is minimized – the load balancing leads to effective utilization of the resources and

lower execution time of the simulation run. This means that the more accurate selection technique

is appropriate when both Web Services response time and their load levels are important.

However, when the accuracy of the QoS information decreases to 75% and 50% (tables 6.22

and 6.23), the total number of processed requests and the system’s dependability decrease as well

as load balancing cannot be achieved. This result is due to the nature of the selection technique

– it is based on three QoS criteria of the Web Services: availability, response time, and load.

Therefore, when the correctness of the information regarding these three criteria is not guaranteed,

the system’s behavior is not predictable and the overall performance is low. Even more, the size of

the queues of some of the Web Services has to be increased in order to deal with the high level of

overloading. This result shows that the accuracy of the QoS information is crucial.

More accurate selection technique should be applied in the cases when the accuracy of the QoS

criteria which are taken into consideration is guaranteed and the goal is to have a high level of

overall performance in terms of execution time, overloading, and dependability.

6.2 Conclusions

This section provides conclusions regarding the conducted experiments which cover the extreme

cases (scenarios A and B2), as well as the situation which is a combination of the boundary cases

(scenario B1). The results of the conducted experiments provide an overview of the behavior of the

system under the different conditions and known information about the services.

A summary of the applied selection techniques is presented in table 6.24, as follows:

• When nothing is known about the system, the Virtual Web Services Layer should not be

84

Table 6.22: Simulation results: Availability 50%, Accuracy 75%, more accurate
selection technique for all Web Services (Scenario B2, Experiment 9); * - extended
queue

Table 6.23: Simulation results: Availability 50%, Accuracy 50%, more accurate
selection technique for all Web Services (Scenario B2, Experiment 10)

Table 6.24: Simulation results: Selection Techniques Analysis

85

applied. Although, selection techniques which do not take any QoS parameters into consid-

eration can be used (such as random selection or round-robin) they do not provide a specific

behavioral pattern and the performance of the system depends on undefined characteristics.

• The system’s dependability is not directly related to any selection technique which takes into

account QoS criteria. Therefore, conclusions regarding the best selection technique which

should be applied in order to assure a high level of dependability when the Web Services

availability and models accuracy are low cannot be made. The conducted experiments show

that the fastest selection, the load-balancing, and the more accurate selection technique pro-

vide similar results. However, the random selection technique presents an unstable level of

dependability due to the fact that it does not take into consideration any QoS criteria, and

is considered as the worst technique in this situation.

• In terms of the system’s overloading, the fastest service selection is the best choice when

the availability and the models accuracy are low. This is due to the fact that both the load

balancing technique and the more accurate selection technique are based on the current load of

the Web Services. Since the accuracy of that information is decreased, the selection techniques

are not able to take an appropriate decision and both selection techniques give similar results

in terms of Web Services overloading. On the other hand, the fastest service selection takes

into account the availability of the services and their response time and does not depend on

the services’ load. Therefore, this selection technique provides better load balancing than the

load balancing technique. However, a conclusion regarding the worst selection technique in

this situation cannot be made since the random selection, the load balancing, and the more

accurate selection techniques present similar results in terms of Web Services overloading, i.e.

they require extension of some of the queues of the services.

• When the goal is to minimize the execution time of the system, the fastest service selection

shows the best results in the case when low level of availability and accuracy are observed.

When the workload level is low, the more accurate selection technique provides the same

results as the fastest service selection but cannot deal with high workload level in a graceful

manner due to the overloading of the Web Services. On the other hand, a conclusion regarding

the worst selection technique cannot be made since all other techniques provide similar bad

results in terms of execution time when the services’ availability and models accuracy are low.

• When the availability and the models accuracy are high, the dependability of the system is

high and even reaches its maximum value - 1, for all selection techniques which take into

account QoS criteria. This is an expected result, since a correct service selection can be

done. However, when the availability drops down to 75%, the random selection technique

provides lower dependability compared to the other techniques. Therefore, random selection

86

is considered as the worst choice in this situation. The other techniques - the fastest selection

technique, the load balancing technique, and the more accurate technique show similar results

in terms of system dependability, and therefore a conclusion regarding the best selection

technique cannot be made.

• In order to assure minimum overloading of the Web Services when the availability and the

models accuracy have high values, the more accurate selection technique should be applied.

Since this technique takes into account availability, response time, and load of the services, it

is able to select the fastest available service which is not overloaded. If all available services

from a group are overloaded, the one with minimum overloading is chosen. Therefore, the

more accurate selection technique shows better results than the load balancing technique

in terms of Web Services overloading and the load balancing technique is the second best

technique in this situation. The worst technique is random selection due to its nature, i.e. it

is not based on any QoS criteria.

• When the Web Services availability and the models accuracy have a high level and the goal

is to minimize the execution time of the system, the load balancing technique shows the best

results. The worst choice is the random selection technique.

• In terms of overall perfomance (dependability, overloading, and execution time), when the

availability of the Web Services as well as the accuracy of the models are low, the fastest

service selection should be applied. In contrast, when the availability and the correctness of

predicted information about the Web Services are high, the load balancing technique as well

as the more accurate selection technique should be used.

A comparison of the average system’s throughput in the different experiments is presented in

figure 6.3 for low level Web Services availability and models accuracy as well as in figure 6.4 for

high level Web Services availability and models accuracy. Scenario B1 provides service selection

for half of the Web Services, and therefore conclusions regarding the observed throughput cannot

be made from the results of this scenario, since the number of processed requests is reduced due to

unavailability of the given target Web Services. However, the results of both scenarios are presented

for completeness.

When low level Web Services availability and accuracy is observed (figure 6.3), the overall system

thoughput in scenario B1 and B2 has lower values compared to the ideal case (without the Virtual

Web Services Layer, scenario A). The reason for this result is the increased overall execution time

due to the incorrect information about the Web Services. However, although the thoughput of

scenario A is higher, the performance is low since when the Web Services’ availability descreases,

the system’s dependability decreases linearly, and therefore, the number of processed requests is

reduced. On the other hand, in scenario B2 when the accuracy is 50%, the throughput is higher

87

Figure 6.3: System’s Throughput, Low level of Web Services’ availability and
models accuracy

Figure 6.4: System’s Throughput, High level of Web Services’ availability and
models accuracy

88

than the throughput when the accuracy is 75%. This result shows the importance of the accuracy

of the QoS information: When the accuracy of the models’ of the Web Services drops down, the

selection technique is not able to select an appropriate service and as a result, the total number

of processed requests decreases. In addition, the Web Services are less overloaded which helps

reduce the execution time. Therefore, the observed thoughput has a higher value, but the system’s

performance is lower.

When the Virtual Web Services Layer is used with high level Web Services availability and

accuracy (figure 6.4), the overall system throughput and performance (in terms of dependability,

overloading, and execution time) are better than scenario A. The figure shows that the random

selection technique provides the worst thoughput since it does not take into account any QoS

criteria, and therefore the execution time to process the requests is increased. The throughput of

scenario B1 with the fastest selection technique and the more accurate selection technique is higher

than the other techniques of the same scenario, because the execution time of the simulation runs are

lower and the same number of requests is processed, which increases the system’s throughput. This

result is observed since both selection techniques take into account the response time of the Web

Services. However, in scenario B2, the load balancing technique and the more accurate selection

technique give the highest thoughput due to the fact that service selection is done for all requests

and these techniques assure better execution time and/or less overloading of the system.

The conclusions below are broken into sub-sections, according to the independent variables of

the conducted experiments, as follows:

• Known target Web Services;

• Web Services models accuracy;

• Web Services availability;

• Arrival rate and request size distribution;

• Workload levels;

• Selection techniques.

Known target Web Services

The conducted experiemnts show that it is possible to combine two different systems into one – a

system which does not require a service selection and a system which is based on dynamic selection

of Web Services.

When half of the target Web Services are known (scenario B1), the Virtual Web Services Layer

is not used for the requests which have predefined their target service. As a result, it is hard to

89

analyse the behavior of the system since both selection and redirecting are mixed together and

conclusions regarding the most appropriate selection technique cannot be made.

However, when service selection is applied for all requests (scenario B2), behavioral patterns of

the system are found and analyzed.

Web Services models accuracy

The accuracy of the Web Services models has a significant impact on the behavior of the Virtual

Web Services Layer. In particular, the predicted availability of the Web Services is crucial during

the decision-making process. In case of the fastest service selection technique, if the fastest service

from a particular group of redundant Web Services is not available, but the predicted information

defines the Web Service as available, every time the service is selected as target Web Service,

since it provides the lowest response time, but actually the request is never handled. As a result,

the depenedability of the system drops down. In contrast, if the fastest service from a group of

redundant Web Services is available, but the predicted information considers it as not available,

then the fastest service is never selected. As a result, the dependability of the system is not affected,

but the execution time is increased.

The same conclusions can be applied to the load-balancing technique in terms of Web Services

workload as well as to the more accurate selection technique in terms of Web Services response

times and workload.

Therefore, assuring the correctness of the QoS criteria of the Web Services should have the

highest priority when QoS techniques are taken into account during the decision-making process.

If the accuracy of the predicted information cannot be guaranteed, selection techniques which take

into consideration fewer criteria should be applied.

In addition, the results show that the accuracy is more important than the availability. That

is, even when the availability is 50%, the system can continue working properly and assure a high

level of dependability if the models accuracy of the Web Services is high.

Web Services availability

The availability of the Web Services is crucial when the target service is predefined. As seen,

when the availability drops down, the system’s dependabiltiy decreases linearly. However, when

the Virtual Web Services Layer is applied, the availability of the services does not play such an

important role. As long as there is at least one available Web Service from a particular group of

redundant Web Services, the system can continue working properly, only if selection techniques

which consider availabiility are applied as well as the accuracy of this information is guaranteed.

90

Arrival rate and request size distribution

The distribution of the size of the requests influences the behavior of the system in terms of execution

time, services’ overloading, and dependability. However, a more significant role is played by the

accuracy of the QoS criteria and the applied selection technique. If the correctness of the Web

Services’ models is guaranteed, the dependability of the system is not changed when the arrival

rate and the request size vary. In this situation, the execution time and the services’ overloading is

influenced, which is an expected result, since a different number of requests enters the system at a

given moment of time requiring different processing time.

Workload levels

The results show that it is important to observe the behavior of the system with low and high

workload levels. They give an insight regarding the importance of the accuracy of the Web Services’

models as well as the applied selection technique in terms of overloading and in which cases the

overloading can be handled gracefully.

Selection techniques

When the Virtual Web Services layer is applied, the choice of selection technique is important.

Depending on the desired system’s characteristics as well as the information which is available to

the system and its correctness, different selection techniques should be used during the decision-

making process. The results show that the random selection technique gives the worst overall

system performance. The other techniques should be applied as follows:

• To achieve a high level of dependability. All selection techniques which take into consideration

QoS criteria can be applied.

• To achieve minimum overloading of the system. If the Web Services’ availability and accu-

racy is low, the fastest service selection gives minimum overloading of the system since this

technique does not take into account the current load of the services. If the Web Services’

availability and accuracy is high, the more accurate selection and the load balancing tech-

niques should be applied since they take into account the load of the services and are able to

select the service according to its overloading.

• To achieve minimum execution time. If the Web Services’ availability and accuracy are low,

the fastest service selection should be used since it assures minimum overloading of the system,

which leads to better execution time. In contrast, when the Web Services’ availability and

accuracy are high, the load balancing technique gives the best system execution time since it

avoids overloading as much as possible.

91

Chapter 7

Conclusions and Future work

7.1 Conclusions

The domain of Web Services consists of redundant services provided by different parties. The

services with the same functionality can be clustered into a group of redundant services. If a

service offers more than one functionality, it belongs to more than one group. The variety of Web

Services suggests the necessity of a mechanism that selects the most appropriate Web Service at a

given moment of time. However, in most of the cases the consumers do not have information about

the QoS of the services in order to do the service evaluation and selection. Even if such information

is available to the clients, this increases their complexity and consumes additional resources. On

the other hand, it is possible that some clients have different knowledge about the service than

others, which can reflect on the correctness of the service selection.

In order to deal with redundant Web Services on the server side, virtualization of services is

applied. A Virtual Web Services Layer is presented between the clients and the services, which is

based on dynamic and transparent service selection and invocation. The layer hides the system’s

complexity from the clients and assures a level of security, since the consumers do not have direct

access to the Web Services. Furthermore, the layer allows adding services with new functionality

to the system at run-time, as well as various reasoning mechanisms can be applied in order to

achieve load-balancing, a high level of dependability, minimum response time, and high overall

performance, without modifying the other components of the system.

The evaluation of the Virtual Web Services Layer shows that such an architecture can be

built using a set of standard programming languages and protocols. However, in order to avoid

fluctuations of the experimental results due to particular machine specifications, programming

languages, and protocols, as well as to observe a large range of system parameters, the layer can

be evaluated using an existing simulation tool. The results of the experiments show that:

• The accuracy of the predicted QoS criteria has a big impact on the selected Web Service;

• The Virtual Web Services Layer helps improve the dependability of the system when a low

level of Web Services availability is observed;

92

• The arrival rate and request size distribution impact the behavior of the system, but a more

crucial role is played by the accuracy of the predicted QoS criteria and the applied selection

technique;

• The low and high workload levels give insight regarding the importance of the accuracy of

the predicted QoS criteria as well as the applied selection technique in terms of overloading;

• The choice of selection technique is important and depends on the desired system’s charac-

teristics as well as the information available to the system and its correctness:

– To achieve a high level of system dependability, all selection techniques which take into

account availability of the services can be applied;

– To achieve minimum overloading of the system, the fastest service selection should be

used when the Web Services’ availability and accuracy is low, whereas the more accurate

selection and the load balancing technique should be applied in case of high level of Web

Services’ availability and accuracy;

– To achieve minimum execution time, the fastest service selection should be used when

low level of Web Services’ availability and accuracy is observed, whereas the load bal-

ancing technique should be applied in case of high level of Web Services’ availability and

accuracy of the predicted QoS criteria.

The suggested Virtual Web Services Layer can be applied according to the standard design

pattern - Enterprise Service Bus (ESB). ESB is a complex and flexible conceptual solution for

large-scale heterogeneous applications which require characteristics such as transactions, security,

robustness, scalability, extensibility, messaging, routing, synchronization, integration, and others

[6], [10]. This design pattern can be viewed as a set of several simpler design patterns embedded

together, which can be implemented in various ways.

The Virtual Web Services Layer focuses on routing and can be seen as a subcomponent of

ESB, which deals with the dynamic selection of the redundant services and can be embedded in

a particular ESB implementation. In addition, the flexibility of the layer allows different selection

strategies to be deployed at run-time according to the requirements of the system.

On the other hand, the Virtual Web Services Layer can be applied in the area of Multi-Agent

systems. As discussed in [19], a MAS is a composition of autonomous agents which do not have a

single point of control and agent replication is needed in order to assure a fault-tolerant application.

The VWSL architecture can help managing redundant agents in a transparent manner taking into

account different QoS criteria of the agents.

Finally, the proposed architecture can be used in Grid computing as well, whose focus is on

virtualization for dynamic allocation of distributed resources. The problem with dynamic and

93

transparent selection of services exists in Grid computing and the Virtual Web Services Layer is

an applicable solution which takes into account QoS criteria of the services. The layer can help

improve dependability, response time, load balancing, and system overall performance, which is

crucial for the Grid applications.

7.2 Future work

At this point, the Virtual Web Services Layer is evaluated for atomic Web Services, without taking

into consideration composition of Web Services. However, the proposed architecture can be applied

in composite services which consist of two or more atomic ones. Such a scenario should include

transactions in order to assure consistency of the states of the system. Figure 7.1 shows the data

flow in case of composite services which incorporate a Virtual Web Services Layer at every level of

service composition. The client sends a request to the Virtual Web Services Layer at level 1 (step

1). The layer selects a composite service from one of the groups of redundant services, depending

on the functionality of the request (step 2). The chosen service is invoked and when a request must

be sent to another service, the request is sent to the Virtual Web Services Layer at level 2 (step 3),

which selects the target Web Service (step 4). Again, when another service must be invoked during

the execution of the selected service at level 2, the layer at the next level receives the request (step

5), which selects a Web Service atn level 3 (step 6). In this example, the Web Services at level 3 are

atomic, whereas the ones at levels 1 and 2 are composite. When the last request is processed by the

atomic Web Service, the obtained result is returned back to the VWSL at level 3 (step 7), which

forwards the result back to the selected service at the previous level (step 8). Once the service

at level 2 completes its execution, it returns the calculated result to the layer at level 2 (step 9).

Similarly, the layer at level 2 returns the result back to the selected service at level 1 (step 10).

When the execution of the Web Service at level 1 is completed, it sends the final result to the layer

at level 1 (step 11). Finally, the VWSL at level 1 returns the result back to the client (step 12).

Currently, the Virtual Web Services Layer has a potential single point of failure - the reasoning

mechanism. In order to design the layer as a completely distributed architecture, a reasoning

mechanim can be associated with every Virtual Web Service. As a result, a failure in one of the

reasoning mechanisms would lead to a failure in one specific part of the system, but it would not

lead to a failure in the entire application.

In future, other technologies that can be applied in the Virtual Web Services Layer are Semantic

Web technologies, in particular ontologies. By describing the data in a machine-understandable

manner and creating ontologies of QoS criteria, the decision-making process would be based on

more features as well as their relationships would be represented in a better and more flexible way.

This would allow applying more complex selection techniques in order to choose the appropriate

94

Figure 7.1: Future work: Composite Web Services and Virtual Web Services
Layers

95

Web Service at a given moment of time. They can be based on a large range of QoS criteria

such as availability, reliability, response time, trust and reputation, load, execution price as well as

domain-specific criteria. Furthermore, the reasoning mechanism can be augmented in a way that

it considers not only the QoS of the providers, but also the client side in terms of its importance,

needs, and preferences.

96

References

[1] XJ Technologies Company Ltd. Anylogic Enterprise Library Reference Guide.
http://www.xjtek.com/files/docs/en/EnterpriseLibraryReferenceGuide.pdf Last access: 2007-
06-18, (121 pages).

[2] Y. Liu, S. Ngu, and L. Zeng. QoS Computation and Policing in Dynamic Web Service Selection.
WWW2004, (8 pages), May 2004.

[3] J. Day and R. Deters. Selecting the Best Web Service. CASCON, pages 293–307, October
2004.

[4] A. Padovitz, S. Krishnaswamy, and S. Loke. Towards Efficient Selection of Web Services. 2nd
International Joint Conference on Autonomous Agents and Multi-Agent Systems, (9 pages),
July 2003.

[5] E. Maximilien and M. Singh. Toward Autonomic Web Services Trust and Selection. ICSOC’04,
pages 212–221, November 2004.

[6] R. Robinson. Understand Enterprise Service Bus scenarios and solutions in Service-Oriented
Architecture, Part 1. http://www-128.ibm.com/developerworks/webservices/library/ws-
esbscen/ Last access: 2007-06-18, June 2004.

[7] Alexei Filippov. AnyLogic Technical Overview. http://www.anylogic.jp/download/any5presentation.pdf
Last access: 2006-11-14, November 2003.

[8] IBM Web Services Architecture team. Web Services architecture overview. http://www-
128.ibm.com/developerworks/web/library/w-ovr/?dwzone=web Last access: 2007-06-18, (7
pages), 2000.

[9] M. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Communications of the
ACM, 46(10):25–28, October 2003.

[10] M. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and
B. Kramer. Service-Oriented Computing Research Roadmap.
http://drops.dagstuhl.de/opus/volltexte/2006/524/pdf/05462.SWM.Paper.524.pdf Last access:
2007-06-18, (29 pages), April 2006.

[11] H. Kreger. Web Services Conceptual Architecture, WSCA 1.0.
http://www.cs.uoi.gr/ zarras/mdw-ws/WebServicesConceptualArchitectu2.pdf Last access:
2007-06-18, (41 pages), May 2001.

[12] W3C. SOAP Version 1.2 Part 0: Primer. http://www.w3.org/TR/2003/REC-soap12-part0-
20030624 Last access: 2007-06-18.

[13] Chris Peltz. Applying Design Issues and Patterns in Web Services.
http://www.devx.com/enterprise/Article/10397/1954?pf=true Last access: 2007-06-18,
(7 pages), 2005.

[14] A. Tanenbaum and M. Steen. Distributed Systems Principles and Paradigms. Prentice Hall,
2002.

[15] A. Avizienis, J. Laprie, and B. Randell. Fundamental Concepts of Dependability. 3rd Infor-
mation Survivability Workshop, ISW2000, pages 7–12, October 2000.

97

[16] S. Ran. A Model for Web Services Discovery With QoS. ACM 2003, Volume 4(Issue 1):1–10,
March 2003.

[17] E. Maximilien and M. Singh. A Framework and Ontology for Dynamic Web Services Selection.
IEEE Internet Computing, pages 84–93, September-October 2004.

[18] S. Ludwig and S. Reyhani. Selection Algorithm for Grid Services based on a Quality of
Service Metric. 21st International Symposium on High Performance Computing Systems and
Applications (HPCS’07), (7 pages), 2007.

[19] A. Fedoruk and R. Deters. Improving Fault-Tolerance by Replicating Agents. AAMAS’02,
pages 737–744, July 2002.

[20] A. Vidmar. BalanceNG: A simple approach to load balancing.
http://www.linux.com/articles/60871 Last access: 2007-08-09, March 2007.

[21] H. Bryhni, E. Klovning, and O. Kure. A Comparison of Load Balancing Techniques for Scalable
Web Servers. IEEE Network, pages 58–64, July-August 2000.

[22] J. Silva and N. Mendonca. Dynamic Invocation of Replicated Web Services. 10th Brazilian
Symposium on Multimedia and the Web 2nd Latin American Web Congress, (8 pages), 2004.

[23] S. Palmer. The Semantic Web: An Introduction. http://infomesh.net/2001/swintro/ Last
access: 2007-06-18, 2001.

[24] E. Maximilien and M. Singh. A Framework and Ontology for Dynamic Web Services Selection.
IEEE Internet Computing, pages 84–93, September-October 2004.

[25] J. Hanson. Implementing an Enterprise Service Bus in Java.
http://www.devx.com/Java/Article/28127/1954?pf=true Last access: 2007-06-18, 2005.

[26] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Services for Distributed System Integra-
tion. Computer, pages 37–46, June 2002.

[27] H. Vhecn, D. Guo, X. Qun-Wei, X. Luo, and W. Zhang. Service Virtualization in Large Scale,
Heterogeneous and Distributed Environment. (7 pages).

[28] D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer,
J. Webber, and K. Swenson. Web Services Transaction Management (WS-TXM).
http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf Last access: 2006-11-14,
(111 pages), July 2003.

[29] Sun Microsystems. Java Sun. http://java.sun.com/ Last access: 2007-06-18.

[30] Sun Microsystems. Trail: The Reflection API. http://java.sun.com/docs/books/tutorial/reflect/
Last access: 2007-08-09.

[31] Dale Green. Trail: The Reflection API. http://java.sun.com/docs/books/tutorial/reflect/index.html
Last access: 2007-06-18, 1995-2005.

[32] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/ Last access:
2007-06-18.

[33] The Apache Software Foundation. Web Services - Axis. http://ws.apache.org/axis/ Last
access: 2007-06-18.

[34] Sun Microsystems. JavaServer Pages Technology. http://java.sun.com/products/jsp/ Last
access: 2007-06-18.

[35] Sun Microsystems. Java Servlet Technology. http://java.sun.com/products/servlet/ Last ac-
cess: 2007-06-18.

98

[36] The Apache Software Foundation. Welcome to Apache Axis2. http://ws.apache.org/axis2/
Last access: 2007-06-18.

[37] R. Smith. Simulation Article. http://www.modelbenders.com/encyclopedia/encyclopedia.html
Last access: 2007-08-09, 1998.

[38] XJ Technologies Company. Anylogic. http://www.xjtek.com/ Last access: 2007-06-18.

[39] XJ Technologies Company Ltd. Anylogic Enterprise Library Tutorial.
http://www.xjtek.com/files/docs/en/EnterpriseLibraryTutorial.pdf Last access: 2007-06-
18, (121 pages).

99

Appendix A

VWSL prototype

A.1 Manager of the VWSL prototype

Figure A.1 shows the user interface of the Manager component of the Virtual Web Services Layer
prototype. It is a client-server application that consists of two parts - VWSM-Client and VWSM.
The figure represents a page that creates a Virtual Web Service. The meaning of the elements of
the page is as follows:

• Field ”Create a jws” means create a Virtual Web Service;

• Field ”Policy” refers to a selection technique;

• Field ”ID” refers to the unique name of the VWS;

• Field ”Destination folder” specifies the folder where the created VWSL is stored;

• Link ”Add a wsdl” adds a Web Service to a specified group of redundant Web Services;

• Link ”Set VWS policy” specifies the selection technique that will be used in a particular
Virtual Web Service;

• Link ”Delete a wsdl” removes a Web Service from a particular group of redundant services;

• Link ”List all wsdls” lists all Web Services in the system.

A.2 Automatically generated Virtual Web Service in Java

Figure A.2 shows the source code of a generated Virtual Web Service by the Manager of the VWSL
prototype system.

100

Figure A.1: Virtual Web Services Manager GUI

101

Figure A.2: Example of a generated Virtual Web Service in Java

102

Appendix B

Clients Load Generator and Simulator

Figures B.1, B.2, and B.3 show some GUI components of the Clients Load Generator and
Simulator. Figure B.4 represents a log file that is generated during the clients’ simulation.

103

Figure B.1: Clients Load Generator and Simulator: Main window

Figure B.2: Clients Load Generator and Simulator: Create single client’s behavior

104

Figure B.3: Clients Load Generator and Simulator: Simulate multiple clients’
behavior

Figure B.4: Clients Load Generator and Simulator: Log file, created during the
clients’ simulation

105

