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Abstract 

In recent years, deep learning (DL) and especially Convolutional Neural Networks 

(CNNs) have become a key component of many computer vision systems and applications 

due to their demonstrated capability to accurately process visual information. Object detection 

is one of the most important and challenging problems capable of being solved by DL; in 

general, higher object detection accuracy can be achieved by DL compared to other 

techniques. However, DL tends to require expensive GPUs or cloud-based services (the latter 

requiring a high internet bandwidth, latency, and other associated costs), making DL 

applications traditionally very expensive to implement in practice. This thesis emphasizes the 

optimization of DL computation for object detection and proposes designs of real-time 

Intelligent Transportation Systems (ITS) applications at the edge using hardware accelerators.  

To optimize DL computation, a novel stride 2 Winograd method is proposed for deep 

neural network (DNN) inference optimization. The proposed method provides new algorithms 

that trade expensive multiplications for cheap additions, thereby increasing efficiency by 

vastly decreasing computational complexity. The proposed algorithms support 1D, 2D, 

and 3D input for CNNs. Additionally, a novel Processing Element (PE) is proposed to 

process stride one and two convolution in the same FPGA module. These algorithms, 

implemented using a GPU and an FPGA, are demonstrated to provide better efficiency 

compared to regular convolution implementations for a variety of kernels.  

Additionally, three ITS applications are proposed. The first application is a License 

Plate Localization (LPL) system constructed using an architecture comprised of 

bottleneck depth-separable convolutions with inverted residuals. The second proposed 

application is a novel two stage real-time deep CNN recognition system for decals issued 

by the Commercial Vehicle Safety Alliance (CVSA). The third proposed application is a 

novel three stage real-time deep learning-based edge system for hazardous materials 

(HAZMATs) recognition. The designed custom object detection architectures for ITS 

applications are capable of highly accurate real-time prediction on edge computing 
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devices (Intel, Google, and/or NVIDIA), thus providing enormous cost and performance 

advantages compared to current implementations. 
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Chapter 1 

Introduction 

This chapter presents intelligent transportation systems (ITS), artificial intelligence in 

the context of ITS, and the importance of optimizing network architectures and hardware.  

Developing optimized real-time ITS on low-cost devices may increase the utilization of 

these systems around the world; this has motivated the research works proposed in this 

thesis. Section 1.1 presents ITS. The motivations of the research works are presented in 

Section 1.2. Section 1.3 presents the overview of the research works. The contributions 

of these research works are summarized in Section 1.4.  

1.1 Intelligent Transportation Systems  

Intelligent Transportation Systems (ITS), officially defined at the 1994 World 

Congress in Paris, encompass all technology-driven applications within the broad field of 

transportation designed to improve the general driving experience. ITS incorporates a 

wide variety of technologies (e.g. within the fields of telecommunication, ICT, networks, 

automation, and sensors), methods (e.g. data-driven, measurement and statistics, 

algorithms, computer vision, and artificial intelligence (AI)), and management techniques 

[1]. ITS objectives include protecting the health and safety of traffic actors and 

pedestrians, safeguarding the natural environment and its resources, and increasing the 

effectiveness and streamlining the efficiency of transportation in generals, supply chains, 

cities and highways, and the broader field of ITS itself [2].  

Innovative ITS services produce useful gains within transportation, traffic 

management, and traffic control. A well-designed system will communicate with 

applicable users or other systems to encourage safer and more coordinated utilization of 

transport channels [1]. ITS aims to improve traffic planners and road users' safety, 

mobility, productivity, and environmental performance [2].  
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Traditional ITS approaches use dedicated hardware such as inductive loop detectors, 

radar detectors, and laser detectors to locate vehicles and determine their speeds and 

characteristics, but such equipment may incur high maintenance and installation costs. 

Compared to these traditional sensor-based approaches, video cameras are more 

advantageous in terms of cost and flexibility [3].  

Video cameras have long since been deployed for traffic surveillance because they 

provide important contextual information for human consumption and understanding  [4]. 

Due to decreasing costs (Moore’s Law), the number and coverage of road cameras has 

dramatically increased in recent years, resulting in broad accessibility of image/video 

data; this has led to the feasibility of camera image-based object detection—an incredibly 

promising new technique for large-scale traffic data analysis. Video analysis within the 

scope of smart transportation public safety has led to research and advancements in both 

academia and industry [4].  

Compared with the “traditional” transportation system, the most significant 

characteristic of ITS is the integration of data-driven approaches including AI [5]. 

Leveraging AI for transportation may help the sector increase passenger safety, reduce 

traffic congestion and accidents, lessen carbon emissions, and minimize overall financial 

expenses for industries, governments, companies, and consumers. 

AI can be defined as a technology that allows machines to learn from experience, 

oftentimes guided by human knowledge. Machines with AI capabilities can learn to 

mimic humans, automate manual tasks, create aesthetically-pleasing works, and practice 

continual learning—just like humans [6]. Computer/AI-driven automation frees human 

operators from repetitive and time-consuming tasks in a way that may also lessen (human) 

operator fatigue and stimulate higher and more deterministic accuracy. Moreover, specific 

AI-powered systems may exhibit human-level accuracy and/or continuous learning with 

new experiences, which may indicate the potential for AI-powered machines to self-

improve and perform tasks that require critical-thinking or higher-level functions—

possibly without human intervention, depending on task complexity [6]. Governments, 

the transportation sector, and academic institutions are making significant investments in 
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this relatively new and near limitless AI field [5]. Novel general or custom-tailored AI-

based applications are designed with an emphasis on improving speed and accuracy, but 

also reliability, efficiency, robustness, quality, and—where applicable—safety.  

1.2 Motivation of Research Works 

Recent and rapid AI developments have provided unprecedented opportunities to 

revolutionize different fields, industries, and businesses, including within the transport 

sector. Intelligent Transportation Systems (ITS) have seen a rise in application 

development through the implementation of AI methods [5]. One of the most promising 

areas of research within AI is computer vision.  

Computer vision enables computers to process visual data and extract information 

from that data at a baseline level [7]. Visual input/output tends to be highly interpretable 

by humans, which can be useful for the design and implementation of certain systems. 

The general goal of computer vision is to teach computers how to identify, classify, and 

categorize the visual world as humans do. Although the field of computer vision has 

existed for some time, the advent of deep learning to computer vision pipelines has led to 

a revolution in vision technologies and systems [6].  

Deep learning (DL) has made computer vision algorithms highly effective for real-

world applications [6]. One famous DL architecture originally designed for image data is 

the convolutional neural network (CNN) [8]. CNNs have made computer vision feasible 

and relatively inexpensive for industrial applications, leading to high industry investment 

and adoption, especially for task automation.  

In general, DL models consist of many of layers and parameters. For example, Deep 

Neural Networks (DNN) and Convolutional Neural Networks (CNN) require upwards of 

millions (sometimes into the billions) of interconnected units and parameters [8]. As a 

result, running most current DL applications requires high-performance computers with 

expensive GPUs, or centralized servers and/or cloud-based systems [9]. This can be a 
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huge limitation in terms of system implementation cost, e.g. on highways or remote 

locations where the Internet/remote access is limited.  

Rather than sending real-time video to the cloud—which can be very expensive in 

terms of time and data consumption—the main goal of this thesis is the implementation 

of ITS systems on edge devices. This minimizes both data transmission time and system 

latency, as well as reduces the cost of data transmission, computation, and storage. 

Additionally, processing data at the edge can preserve the privacy of users and the 

integrity of the raw data itself, because uploading the video/images is unnecessary [9]. 

Due to the limited memory and computational resources of edge devices, power-

efficient computation can be designed by reducing the number of hardware-expensive 

computations (i.e. multiplications) for convolutions making the development of custom 

and more specialized DL architectures becomes necessary. 

1.3 Research Objectives 

The main objective of this present study is to unify recent advancements in deep 

learning architectures with the design of optimized computing hardware, with an 

emphasis on the development of new and novel applications with the scope of ITS on 

edge devices. 

The specific objectives of this thesis are as follows:  

1. Formulate algorithms to enhance the calculation of convolution stride 2—

particularly important for deep learning object detection systems—using fewer 

hardware resources.  

2. Design a processing element capable of supporting both stride 1 and 2 convolution, 

to enhance FPGA efficiency.  

3. Benchmark the DSP efficiency of the processing elements implemented on an 

FPGA.  
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4. Develop ITS applications based on deep learning architectures that use 

convolution strides 1 and 2.  

5. Design custom optimized deep learning models for specific detection/recognition 

tasks in each system.  

6. Implement and evaluate the ITS applications on available edge devices and 

hardware accelerators. 

1.4 Overview of Research Works 

In this thesis, based on the motivation discussed in Section 1.2, optimized CNN 

algorithms and architectures capable of achieving a high convolution speed are proposed. 

The algorithms for 1-D, 2-D, and 3-D convolution reduce the number of multiplications 

when a convolution of stride 2 is performed. A Processing Element (PE) for a 3×3 kernel, 

compatible with both stride 1 and 2 convolutions is introduced. Therefore, three ITS 

applications are presented: a License plate localization (LPL) system, a CVSA decal 

recognition system, and a HAZMAT recognition system. The applications are capable of 

deployment in real-time in complex outdoor environments. The whole thesis is composed 

of four parts with seven chapter shown as follows: 

 Part I Preface includes: 

- Chapter 1 Introduction: presents the importance of deep learning and the 

motivations, the overview, and the contributions of the research works. 

- Chapter 2 Background: introduces the background information required to 

present the proposed research works. 

 Part II Hardware Optimization for Convolutional Neural Networks 

includes: 

- Chapter 3 Stride 2 Winograd for Convolutional Neural Networks: present a 

novel method to apply the Winograd algorithm to a stride (shift-displacement 

of a kernel over an input) of two. This method is valid for one, two, or three 

dimensions. In this chapter, new Winograd versions compatible with a kernel 

of size three, five, and seven were introduced. The algorithms were 
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successfully implemented on an NVIDIA K20c GPU and an Intel Arria-10 

FPGA. The proposed implementation uses a novel Processing Element (PE) 

able to perform two Winograd stride one, or one Winograd stride two, 

operations per clock cycle.  Compared to regular convolutions and other 

designs, the proposed implementations provide fast convolution for stride one 

and two and high DSP efficiencies. 

 Part III Intelligent Transportation Systems Applications include: 

- Chapter 4 Deep Learning-based Embedded License Plate Localization System: 

presents a novel neural network architecture for license plate localization 

(LPL) based on an inverted residual structure where the shortcut connections 

are between the linear bottleneck layers. The proposed deep learning (DL) 

solution was tested against three popular international research databases and 

achieves state-of-the-art results, proving that the proposed model is accurate 

and robust. Across those databases, the proposed model surpasses other recent 

LPL work, including DL-based methods, in terms of accuracy and speed. The 

proposed architecture is shown to have significant speedup and computational 

efficiency gains over other DL models, and to have fast per-image localization 

processing times sufficient for applications deployed on expensive and 

commodity hardware alike. Using a novel multi-threading video capture with 

motion detection then inference algorithm, computational efficiency is 

increased, thus dropping less frames overall and allowing for increased 

performance. Repeated tests show the proposed method is well-suited to real-

time and highly accurate LPL, regardless of hardware. 

- Chapter 5 Real-time CVSA Decals Recognition System Using Deep 

Convolutional Neural Network Architectures: presents a 2-step automatic 

Commercial Vehicle Safety Alliance (CVSA) decal recognition system using 

deep convolutional neural network architectures. The MobileDet architecture 

was used as a baseline for the proposed system and customized to better suit 

the system’s tasks. The first step localizes a vehicle’s windshield and the 

CVSA decal within, and classifies the decal colour. The CVSA decal is 
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cropped and used as input to the second stage, which localizes and classifies a 

digit and the corner-cut of a CVSA decal. The custom architectures reduce 

processing time and exceed accuracies relative to pre-trained architectures. The 

proposed model was implemented on different edge hardware accelerators, and 

the performance on each – in terms of high inference speed, real-time video 

processing, and high mean average precision – was contrasted.  

- Chapter 6 Real-Time Deep Learning-based Edge System for HAZMAT 

Recognition: presents a 3-stages cascading system using deep learning 

networks. The first network localizes and classifies the HAZMAT placard. If 

the placard contains a United Nations (UN) / North American (NA) number, 

the second network localizes that number and identifies the nature of the 

substance. The third network recognizes the UN/NA number. For both the first 

and second stage, an SSDlite object detection network was developed using 

custom backbones based on MobileDet. For the third stage, a segmentation-

free UN/NA number recognition network was developed using a lightweight 

sequence classification model. The system was deployed on a variety of AI 

edge hardware accelerators from vendors like NVIDIA, Google, and Intel, and 

performance differences among the accelerators were subsequently compared. 

For each stage, a detailed comparison with other networks was provided.  

 Part IV Conclusions includes: 

- Chapter 7 Conclusions and Future Work: includes the conclusions of all 

presented research works and the plan for futures works. 

1.5 Summary of Contribution 

In this thesis, a novel set of algorithms are introduced to calculate the convolution 

when using a kernel sliding by two units about the input; this convolution is called 

“convolution stride 2”. The presented algorithms of convolution stride 2 are based on the 

conventional Winograd Minimal Filtering Algorithm, which is only formulated for 

convolutions of stride 1. The proposed novel algorithms calculate the convolution stride 
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2 results using less multiplications than conventional convolution. They work in one, two 

and three dimensions using respective kernels of size 3, 5, 7, 3×3, 5×5, 7×7, and 3×3×3. 

The convolution stride 2 downsamples the feature maps while preserving spatial 

information via feature learning. As further explained in Part II, this characteristic is 

particularly important for object detection systems. A novel Processing Element (PE) is 

presented that is able to perform two Winograd stride one, or one Winograd stride two, 

operations per clock cycle. The convolution stride 2 was implemented on an NVIDIA 

K20c GPU and an Intel Arria-10 FPGA. 

Furthermore, three deep learning-based systems for ITS are presented. The first is an 

embedded license plate localization system, the second is a real-time CVSA decal 

recognition system, and the third is a real-time edge system for HAZMAT recognition. 

For each system, custom object detection architectures that use a mix of stride 1 and 2 

convolution are designed. The proposed architectures are optimized to achieve high 

accuracies and low processing times. This feature makes the systems suitable to the 

implementation on varying edge devices. To evaluate the speed of the proposed systems, 

various hardware accelerators were used, including the Nvidia Jetsons (Nano and Xavier), 

Intel's Neural Compute Sticks (versions 1 and 2), and Google's Coral USB accelerator. 

Each ITS application’s deep learning architectures and corresponding accuracies and 

prediction speeds are analyzed in detail in their respective chapters. To highlight the 

advantages and improvements of the proposed systems over existing methods, the systems 

are compared against related works (where applicable).  

In this thesis, the computational efficiency for CNNs is improved—especially those 

architectures designed for object detection—by providing new algorithms to accelerate 

layers with a convolutional stride of 2; these novel algorithms are introduced in Chapter 

3. Using this research, custom object detection architectures capable of real-time 

prediction on edge computing devices were designed  for ITS applications, , thus 

providing enormous cost and performance advantages compared to current 

implementations: Chapter 4 presents a license plate localization system, Chapter 5 a real-

time recognition system for Commercial Vehicle Safety Alliance (CVSA) decals, and 
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Chapter 6 a real-time edge system for recognizing hazardous material (HAZMAT) 

placards. 

Below is the list of publications, arranged according to the order of appearance in this 

thesis: 

 Chapter 3 Stride 2 Winograd for Convolutional Neural Networks: 

- J. Yepez and S. Ko, “Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional 

Neural Networks”, in IEEE Transactions on Very Large Scale Integration 

(VLSI) Systems, vol. 28, n0. 4, pp. 853-863, April 2020. 

 

 Chapter 4 Deep Learning-based Embedded License Plate Localization System: 

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Deep learning-based embedded 

license plate localisation system”, in IET Intelligent Transport Systems, vol. 

13, no.10, pp. 1569-1578, 10 2019. 

 

 Chapter 5 Real-time CVSA Decals Recognition System Using Deep Convolutional 

Neural Network Architectures: 

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Real-time CVSA Decals Recognition 

System Using Deep Convolutional Neural Network Architectures”, in IET 

Intelligent Transport Systems 1–13 (2021), https://doi.org/10.1049/itr2.12103. 

 

 Chapter 6 Real-Time Deep Learning-based Edge System for HAZMAT 

Recognition: 

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Real-Time Deep Learning-based 

Edge System for HAZMAT Recognition”, under review Springer Machine 

Vision and Applications, submitted July 2021. 

 

 Other publications that are not included in this thesis: 
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- J. Yepez and S. Ko, "IoT-Based Intelligent Residential Kitchen Fire 

Prevention System", in J. Electr. Eng. Technol. 15, pp. 2823-2832, August 

2020.  

- R.D. Castro-Zunti, J. Yepez and S. Ko, "License plate segmentation and 

recognition system using deep learning and OpenVINO", in IET Intelligent 

Transport Systems, vol. 14, no. 2, pp. 119-126, 2 2020. 

- J. Yepez, X. Shi, and S. Ko, "An FPGA-based Closed-loop Approach of 

Angular Displacement for a Resolver-to-Digital- Converter", 2018 IEEE 

International Symposium on Circuits and Systems (ISCAS). Florence, 2018, 

pp. 1-4 

- A. Dinh, M. Bayati, M. Bhatti, J. Yepez, and J. Zhexin, "Design and 

Implementation of a Wireless Wearable Band for Gait Analysis," in 6th 

International Conference on the Development of Biomedical Engineering in 

Vietnam (BME6), 2018, pp. 693-698.  

- Z. Jiang, J. Yepez, S. An, and S. Ko, "Fast, accurate and robust retinal vessel 

segmentation system," Biocybern. Biomed. Eng., pp. 1-10, 2017. 

- X. Shi, J. Dai, X. Luo, J. Yepez, and S. Ko, "Foreground-Background 

Separation Guided by Statistical Features of Surveillance Video," IEEE/IEIE 

ICCE-Asia, pp. 3-6, 2016. 
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  Chapter 2 

Background 

This chapter present the background information of the proposed works in this thesis. 

Machine and deep learning concepts are presented in Section 2.1 Section 2.2 presents the 

convolutional neural networks. Section 2.3 presents optimized layers for convolution. Section 

2.4 presents object detection works in the literature. 

2.1 Machine Learning and Deep Learning 

Machine learning (ML) can be described as an application of artificial intelligence (AI) 

that allows a system to enhance the accuracy of its algorithm without explicit changes to the 

algorithm by a (human) programmer [10]. A ML apparatus makes predictions based on sets 

of data, and thus a wealth of data is usually required for a ML algorithm to be effective. The 

predictions can include images where the content is divided into different categories, one of 

the most important applications of deep learning, currently common in machine learning 

systems. 

Deep Learning (DL) and deep neural networks extend the idea of ML by offering a 

method of multiple layers of predictions [6], with input to successive layers being the output 

of one or more preceding layers. DL plays an active role in research pertaining to neural 

networks, computer vision, and pattern recognition, with its success attributable to improved 

hardware and graphical processing unit (GPU) capabilities, and the advent of accessible big 

data for training. 
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The concept of distributed representation of data forms the basis of DL. Distributed 

representation assumes that many factors, and the complex spatial relationships between their 

properties, constitute data. These relationships form distinct and perceivable patterns on many 

levels of abstraction. The depth of a neural network refers to the number of layers through 

which data passes, with more layers representing increasing. 

2.2 Convolutional Neural Networks 

A frequently used application of DL is the convolution neural network (CNN). CNN 

apparatus take inspiration from and are modelled after the ways in which the human mind 

learns [11], and they have proved incredibly successful at solving problems in computer 

vision, such as object recognition [12]. 

The first work on neural networks began in the late 1940s. The Canadian 

neuropsychologist O.D. Hebb was the pioneer in the computer simulation of neurons. One of 

the first training algorithms in the field was Hebbian learning. 

One important precursor to the convolution neural network topologies is the 

neocognitron by Kunihiko Fukushima used for handwritten characters in 1980. The proposed 

topology has many similarities with the modern layout; every layer in the network increases 

the complexity of the recognized feature. 

CNNs are invariant to small amounts of shift, scale, and distortion, and can extract 

complex features in high-dimensional space; layers that perform feature extractions are called 

convolutional layers [11]. 

A notable precursor to modern convolutional neural network topologies is the 

neocognitron architecture for classifying handwritten characters, designed by Fukushima  
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[13]. Figure 2.1 the general structure of neocognitron; as can be seen, it has many similarities 

to modern CNNs, and each network layer increases in complexity to learn a feature desirable 

to the recognition task.  

 

Figure 2.1: Neocognition  [13] where U0 is the input layer, UG is the layer comprised of contrast-extracting 

cells, US layers are feature-extracting cells, and UC layers are recognition cells. 

Like the neocognitron architecture, convolutional layers extract corners, edges, 

endpoints, and other visual and hyperdimensional features, organizing them into output feature 

maps. A hierarchy of convolutional layers may be arranged, and feature maps are extracted 

from image data via repeated convolutions of the data with either varying filters/kernels or 

results obtained from earlier layers. 

Input to the first layer in a CNN is the data the network is to analyze. Input to the next 

layer, and for all other layers, is the output feature map generated by the previous layer. The 

number of layers, the quantity of which is referred to as the depth of the CNN, can potentially 

reach hundreds—creating a need for massive and efficient computation. 
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With the conventional convolutional algorithm, each element in the output is computed 

individually by multiplying and accumulating the corresponding kernel and the input data. 

2.2.1  Stride in Convolutional Neural Networks 

The stride controls how the kernel convolves around the input. When the stride is one, 

the kernel is shifted over the input one element at a time. The stride is normally set in such a 

way that the output volume is an integer.  

 

     (a)       (b)   

Figure 2.2: Convolution with stride equal to 1 and 2 

Figure 2.2 (a) shows a 5×5 input with a 3×3 kernel. With stride one, the output matrix 

generated is size 3×3. A stride of one is normally used to extract the maximum number of 

features, as it provides the maximum overlapping between the kernel and input—but at 

maximum computational complexity. Figure 2.2 (b) shows the kernel shifting by two units 

over the input, generating an output 2×2 matrix. Generally, when the stride is bigger than one, 

the receptive fields overlap less. A smaller output is produced. If the stride were three, there 

would be issues with spacing, as the receptive field would not fit around the input as an integer. 
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2.2.2  Padding in Convolutional Neural Networks 

Padding defines how an image’s border is processed, and has a direct effect on the 

spatial dimensions of the output shape [14]. For example, to achieve a shape with dimensions 

equal to the input image, padding (e.g. with the average pixel value, with mirroring the image’s 

borders, or typically with 0s) about the input boundaries is necessary. Conversely, unpadded 

convolution performs the convolution operation only on the pixels of the input image, i.e. 

without the addition of a border, causing the output dimension size to be smaller than that of 

the input (by mathematics surrounding convolution). 

Figure 2.3 shows a 2D convolution using a kernel size of 3, stride 1, and padding of 1. 

 

Figure 2.3: Convolution with padding of 1 

For an input image with size i, kernel size k, padding p, and stride s, the corresponding 

size of the output shape o resulting from the convolution is: 
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𝑜 = 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (
𝑖+2𝑝−𝑘

𝑠
) + 1     (2.1) 

2.3 Optimized Layers for Convolutional Neural Networks 

In addition to using Winograd method to optimize convolutions, in the literature some 

layers can be found that have been shown to improve model precision and reduce inference 

time. The layers used in this thesis are presented below. 

2.3.1  Deep Residual Learning 

DL using residual blocks—first defined in ResNet [7] by researchers at Microsoft—is 

based on the idea that an approximate complex function is tantamount to an exact residual 

function (a function plus an error), and thus nonlinear layers in DL that approximate complex 

functions closer approximate residual functions [7].  

Thus, a residual block may be modelled as: 

𝐲 = 𝐹(𝐱, {𝑊𝑖}) + 𝐱     (2.2) 

Where x is the input vector and y the output vector; F is the function trying to be 

learned; and x also represents the error to the residual function represented by y. Thus, between 

stages, element-wise addition occurs between the learned F and the input x; this addition is 

referred to as a shortcut [7].  

These blocks may be combined to effectively create and train very deep neural 

networks with fewer FLOPS than previous deep learning models [7], and [15].  
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The original ResNet used a residual block whose channels progressively narrow 

between input and output via successive convolutions before expansion at the next block layer 

stage, with a shortcut used to connect successive (wide) layer inputs [7]. 

2.3.2  Depthwise Separable Convolution 

A normal convolution layer may be separated into two or more steps such that applying 

each step individually lessens overall computation time without tangibly compromising 

accuracy: this is called a separable convolution [16]. 

Generally, computation time and expense is reduced in a separable convolution by 

conducting the same or a similar convolutional operation while using less parameters than a 

non-separated convolution. Using less parameters has the additional benefit of making the 

model less prone to overfitting [16]. 

A depthwise separable convolution is a two-step process involving a depthwise 

convolution followed by a pointwise convolution. A depthwise convolution performs filtering 

over multiple channels while allowing the channels to remain separate. This is done by 

convolving each separate channel with a filter to produce separate outputs before 

combining/stacking those outputs [15].  

A pointwise convolution applies a 1×1 spatial filter across the input channels which 

identifies features using linear combinations of the inputs.  

Depthwise separable convolution reduces computation compared to standard layers by 

a factor of k2dj/(k2 + dj), where k is the kernel size and dj is the dimension of the output channel 

layers. In the proposed DL apparatus, the convolutions use a kernel of 3×3. Thus, the 

computational cost is almost 9 times smaller than that of standard convolutions 
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2.3.3  Inverted Bottleneck Networks 

Bottlenecks are introduced in ResNet [12] to reduce the processing time of large 

convolutions over high-dimensional feature maps. A bottleneck layer does compression, as 

the feature maps are first projected to have less channels and then projected back during the 

block’s final convolutional layer; both projections are implemented as 1 × 1 convolutions. It 

is generally useful to allow fine-grained control over the channel sizes in each layer because 

of their strong influence on the inference latency.  

2.3.4  Fused Inverted Bottleneck Layers (Expansion) 

The depthwise-separable convolution is a critical element of an inverted bottleneck 

[16]. The idea behind the depthwise-separable convolution is to replace an expensive full 

convolution with a combination of a depthwise convolution (spatial dimension) and a 1 x 1 

pointwise convolution (channel dimension). In this layer, a regular convolution replaces the 

IBN depthwise-separable by fusing its first 1 x 1 (which usually comes with an expansion 

ratio) and its subsequent K x K depthwise convolution into a single K x K regular convolution. 

The full convolution allows expansion of the channel size, with the expansion ratio determined 

by the algorithm.  

2.3.5  Tucker Decomposition 

The Tucker layer is a compression block that involves a sequence of three operations: 

a 1 x 1 convolution; a K x K regular convolution; and a 1 x 1 convolution. Figure 2.4 (c). 

Combining the first 1 x 1 pointwise convolution and the second K x K regular convolution as 
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one K x K regular convolution gives the fused inverted bottleneck layer in Figure 2.4 (b). The 

IBN structure shown in Figure 2.4 (a) is equivalent to the sequential structure of approximate 

evaluation of a regular convolution by using CP decomposition [17]. Thus, all the layers can 

be linked to Tucker/CP decomposition. 

Regular, pointwise, and depthwise convolutions can be perform using these functions. 

In this thesis, these blocks were used to customize the backbones of each stage according to 

the type of objects to identify. 

Figure 2.4: (a) IBN layer, (b) Fused layer, and (c) Tucker layer 

2.3.6  Linear Bottlenecks 

A bottleneck layer refers to a low-dimensional representation of relevant information 

to a convolutional layer, and may be used to predict features and for classification [18]. 

(a) IBN (b)   Fused (c)   Tucker 
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Non-linear activation functions are used in neural networks because many successive 

matrix multiplications often cannot be simplified to one numerical operation. These activation 

functions collapse channel information between successive convolutional layers and thus 

allow the construction of networks of depth [15].   

A frequently used non-linear activation function is the rectified linear unit (ReLU), 

defined as follows: 

𝑅𝑒𝐿𝑈(𝑥) = {
 𝑥, 𝑖𝑓 𝑥 > 0
 0, 𝑖𝑓 𝑥 ≤ 0

                          (2.3) 

Applying (1) to data passing through successive convolutional layers within a neural 

network creates inherent information loss between those layers, which can be combatted by 

increasing the network’s channels and thus its capacity.  

For any n-dimensional CNN layer Li there forms a set of activation tensors T 

corresponding to an abstraction of relevant information; it has been believed that for any Li 

there exists some low-dimensional manifold M ∈ Rn which entirely embeds T.  

It can be shown that if M exists in a higher-dimensional activation space, a ReLU 

operation which produces non-zero M is congruous with a linear transformation about the 

ReLU’s inputs, and thus the ReLU operation may preserve information relating to the inputs 

or M. 

Thus, with the assumption that M is low-dimensional and exists in a higher-

dimensional activation space, the bottleneck may be treated as a linear operation by simply 

not applying a non-linear activation function to it  [15]. 
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2.3.7  FFT Based Convolution 

By the convolution theorem, convolution can be performed using Fourier transforms: 

𝑓 ∗ 𝑔 =  ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔))      (2.4) 

 ℱ and ℱ−1 are Fourier and inverse Fourier transforms [19]. In the discrete case, f and 

g must have the same number of elements, which can be accomplished by padding zeros to 

the shorter signal. The discrete Fourier transform (DFT) results in a circular convolution, from 

which the correct result of the convolution can be extracted by taking the last |𝑓| − |𝑔| + 1 =

𝑚 elements.  

 FFT-based convolution is more efficient in practice when there are long numbers of 

convolutions [20], e.g. N>100, where the savings become enormous compared to “direct” 

convolution; this is because direct convolution requires on the order of N2 operations 

(multiplications and additions), whereas FFT-based convolution requires on the order of 𝑁 ×

𝑙𝑔(𝑁) operations, where 𝑙𝑔(𝑁) denotes the logarithm-base-2 of 𝑁. 

2.3.8  Winograd Algorithm 

The conventional convolution algorithm is simple to implement, but it is not efficient. 

An efficient alternative convolution method can be realized via the Winograd minimal filtering 

algorithm [21].  

In the case of a size four input data vector and size three kernel vector, conventional 

convolution requires six multiplications to generate the final result, whereas the Winograd 

algorithm requires only four multiplications.  
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The one-dimensional convolution using the Winograd algorithm can be formulated 

using the transformation matrices A, B, and G, input data d, and kernel g as follows: 

𝑌 = 𝐴𝑇[[(𝐺𝑔) ∙ (𝐵𝑇𝑑)]]      (2.5) 

[21] introduces the matrices for F(2,3) as follows: 

     𝑔 = [𝑔0 𝑔1 𝑔2]𝑇 

𝑑 = [𝑑0 𝑑1 𝑑2 𝑑3]
𝑇       𝐴𝑇 = [

1 1 1 0
0 1 −1 −1

]                       

(2.6) 

𝐺 =

[
 
 
 
 
 
1 0 0
1

2

1

2

1

2
1

2
−

1

2

1

2
0 0 1]

 
 
 
 
 

                 𝐵𝑇 = [

1 0 −1 0
0 1 1 0
0 −1   1 0
0 1 0 −1

]   

These matrices are also compatible for 2D. In the two-dimensional Winograd 

algorithm, F(m×m, r×r), the output size is m×m, the kernel size is r×r, and the input size is 

n×n, where n = m + r – 1. The Winograd algorithm for 2D can be written in matrix form as 

follows: 

𝑌 = 𝐴𝑇[(𝐺𝑔𝐺𝑇) ∙ (𝐵𝑇𝑑𝐵)]𝐴      (2.7) 
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Figure 2.5: Process of the 3D Winograd algorithm 

In [22], Shen et al. propose a method for the 3D Winograd algorithm F(m×m×m, 

r×r×r), which can be represented with equation (4): 

𝑌 = [𝐴𝑇[(𝐺𝑔𝐺𝑇)𝑅𝐺𝑇 ∙ (𝐵𝑇𝑑𝐵)𝑅𝐵]𝐴]𝑅𝐴     (2.8) 

where R represents rotating the transformed image or filter tiles 90 degrees clockwise.  

Figure 2.5 illustrates the process to obtain the convolution for F(2×2×2, 3×3×3) using 

the 3D Winograd algorithm. First, the 3D matrix should be split into channels. For each 

channel, a 2D Winograd transformation is applied to the kernel and the feature map. The new 

3D matrices containing the results should be rotated 90 degrees clockwise. After this, an 

additional transformation using the transpose is required. At this point, the dot multiplications 

are performed. The results can be separated into channels. Utilizing these separate channels, 

the 2D transformation is applied using A and rotated 90 degrees clockwise. Then, the matrix 
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is multiplied using AT. Following these steps, the convolution result is achieved in a 2×2×2 

matrix. 

2.3.9  Winograd Works 

Researchers have developed many approaches to reducing the computational cost for 

CNNs. In [11], an algorithm improvement is proposed through the analysis of the algebraic 

properties of CNNs. The algorithm achieves 47% reduction in computation without affecting 

the accuracy. In [21], the authors use Winograd’s minimal filtering algorithms (WMFA) to 

develop new algorithms for stride one convolution. This algorithm is implemented for 2D on 

a GPU and lessens multiplications by a factor of 2.25, thus achieving better performance than 

the cuDNN library. In [23] and [24] the authors implement 2D WMFA on an FPGA. WMFA 

uses fewer multiplications and little extra memory. In [25], an FPGA implementation using 

OpenCL is presented. This implementation uses DSP in parallel to process 1D Winograd F(4, 

3) while using the entire FPGA’s processing capacity for a more efficient implementation. In 

[22], an architecture for accelerating 3D CNNs is presented, which is 13× faster than regular 

convolution. In [26], an instruction-driven CNN accelerator is proposed which supports the 

Winograd algorithm and cross-layer scheduling; their accelerator achieves 7× speedup 

compared to another cross-layer accelerator [27] on the same platform. In [23], a Winograd 

algorithm implementation is presented; their design uses a line buffer structure to reuse feature 

map data, and achieves 2940 GOPS for VGG16 on a Xilinx ZCU102 platform. The authors in 

[28] proposes an instruction-driven accelerator. However, the performance is limited for the 

large data transfer between on-chip and off-chip memory. In [29], a WMFA implementation 
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is proposed using an optimal algorithm to determine the fusion and algorithm strategy for each 

layer. The implementation achieves 660 GOPs of VGG-16. 

2.4 Object Detection 

Object detection, a topic within computer vision, encompasses aspects of image 

classification and localization [30]. Image classification determines what object classes are 

present within an image, and localization refers to finding those objects within the image 

(typically via the coordinates of its enclosing “bounding” box); this can be seen in Figure 2.6.  

 

Figure 2.6: (a) Image Classification, (b) Object detection 

Within the context of CNNs, convolution acts as a filter. The output of a CNN layer 

(the “activation map”) represents the response of the filter (the “kernel”)—indicating the 

location and strength of the feature, if detected—about the input. A CNN layer will utilize 

upwards hundreds of filters, thereby producing a large output activation map, where each filter 

represents an appropriate learned feature (e.g. a line, blob, or something hyperdimensional, 

e.g. for the purpose of discriminating different classes). During the learning process 

(“training”), a model is repeatedly exposed to a wealth of varied and representative data, and 

the internal model filter parameters are iteratively updated via small adjustments governed by 

a calculus-based algorithm called “backpropagation”. 
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Modern object detectors are comprised of two parts, a “backbone” feature extractor 

that gives a feature map representation of the input, and a “head” used to predict classes and 

bounding boxes of found objects. Recent object detectors additionally insert layers between 

the backbone and the head to collect feature maps from different stages; such layers are called 

“necks”. Table 2.1 shows a summary of which models could be classified as which object 

detection network components. 

Backbones are models, oftentimes pre-trained on ImageNet [31], designed for image 

classification and repurposed for object detection. Backbones like EfficientNet [32], VGG [7], 

ResNet [33], and DenseNet [34] are powerful feature extractors that usually require a GPU for 

reasonable processing time. For CPU platforms, SqueezeNet [35], MobileNet [15], [16], [36], 

or ShuffleNet [37] are more suitable. Neural architecture search (NAS) [38] has been used to 

build efficient backbones for object detection with high average precision (AP), e.g. for 

MobileDet [39]. 

The head can generally be categorized as either one- or two-stage. Two-stage object 

detectors have a ROI proposal step which finds possible places within an image where objects 

  Table 2.1: Summary of object detection components 

Heads Backbones Necks 

R-CNN [40] EfficientNet [32]  FPN [50] 

Fast R-CNN [41] VGG [7] BiFPN [46] 

Faster R-CNN [42] ResNet [33] NAS-FPN [51] 

R-FCN [43] DenseNet [34]  

Libra R-CNN [44] SqueezeNet† [35]  

RepPoints [45] MobileNet† [15], [16], [36]  

EfficientDet* [46] ShuffleNet† [37]  

YOLO* [47] MobileDet† [39]  

SSD* [79]   

RetinaNet* [49]   

* Refers to one-stage object detectors. 

† Refers to backbones designed for implementation on CPU platforms and/or edge devices. 
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are located. Popular two-stage object detectors include R-CNN [40], fast R-CNN [41], faster 

R-CNN [42], R-FCN [43], Libra R-CNN [44], and RepPoints [45]. One-stage object detectors 

require only a single pass through the network and do not use a separate ROI proposal step. 

Popular one-stage detectors include EfficientDet [46],  YOLO [47], SSD [48], and RetinaNet 

[49].  

Neck networks include the Feature Pyramid Network (FPN) [50],  BiFPN [46], and 

NAS-FPN [51].   

2.4.1  Multistage Object Detection Systems 

In a multistage object detection pipeline system, an object’s bounding box is localized, 

and its class identified, using different networks. König et al. [52] present a multi-stage 

reinforcement learning approach for detecting objects within an image. The authors’ approach 

is comprised of a zoom stage and a refinement stage, uses aspect-ratio modifying actions, and 

is trained via a combination of three different reward metrics.  Wang et al. [53] present a multi-

stage 3D object detection network architecture that takes LIDAR points and images as inputs. 

They utilize a cascade-enhanced detector for small classes, a 3D region proposal subnet, and 

a second stage detector subnet to achieve high-precision oriented 3D bounding box prediction.  

Yonetsu et al. [54] design a two-stage system for license plate detection in complex 

scenes using YOLOv2. The first stage detects cars and the second detects license plates within 

the cars’ regions. Zhang et al. [55] use two-stage deep neural networks for license plate 

localization in unconstrained scenes. In the first stage, a CNN is used to extract local character 

features. In the second stage, a recurrent neural network (RNN) connects the fine-scale 

proposals to obtain the whole license plate. An improved faster R-CNN with a two-stage 

detection system for small object detection is presented by Cao et al. [56]. In the proposal 

stage, they achieve bounding box regression via an improved loss function based on 

Intersection over Union (IoU), and RoI pooling is enhanced via bilinear interpolation. They 

also use multi-scale convolution feature fusion so feature maps contain more information to 

detect small objects.  
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2.4.2  Video Object Detection Systems 

Video object detection (VOD) detects objects within a video data stream rather than 

from a static image. Wang et al. [57] introduced an object detection system for compressed 

videos using a motion aided memory network (MMNet). Their system takes advantage of both 

motion vectors and residual errors in video streams, needing only to run a complete 

recognition network for I-frames. Their faster speed measured on a NVIDIA Titan X Pascal 

GPU is 55 FPS which is 3x times faster than single image R-FCN and 10x times faster than 

the high-performance detector MANet, with a minor accuracy loss. Deng et al. [57] introduced 

single shot video object detector (SSVD). The authors proposed enhancing per-frame features 

through aggregation of neighbouring frames using an FPN as a backbone network. SSVD 

estimates the motion and aggregates the nearby features along the motion path. SSVD achieves 

79.2% mAP on ImageNet VID, and processes one frame in 85 ms on an Nvidia Titan X Pascal 

GPU. Given their success in natural language processing tasks, long short-term memory 

(LSTM) networks have been used in VOD systems by incorporating frame sequence 

information. Both [57] and [58] achieve high accuracy on ImageNet VID using an expensive 

GPU. However, their proposed layers are based on FPNs which are unsuitable for most edge 

devices in terms of computational complexity and processing time.  For edge devices, 

Flow&LSTM [59] achieved the highest accuracy of 75.5%. Looking Fast and Slow [60] 

achieved relatively high speed (23.5 FPS) on a Pixel 3 phone, but had lower accuracy (58.9%).  
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Part II of this thesis consists of hardware optimization for Convolutional Neural 

Networks (CNNs). Although a model can achieve the same accuracy result regardless of 

whether its underlying system is optimized, an optimized hardware system will generally 

use less resources which improves processing time, efficiency, and energy consumption. 

Processing an input through a CNN requires billions of multiplications; therefore, 

reducing the number of multiplications (ideally without affecting the CNN’s accuracy) is 

important to improving the total efficiency/speed of the system.  

Winograd minimal filtering algorithms (WMFAs) take advantage of overlapping 

computations between adjacent windows to reduce the number of multiplications required 

for convolution; WMFAs do so by trading multiplications for addition. Given that the 

hardware required for multiplication is complex and large compared to that of a simple 

adder, the multiplication–addition tradeoff proposed by Winograd is desirable. However, 

the original Winograd algorithm only applies when using a stride of 1, where stride is 

defined as the element-wise shift displacement of a kernel over an input along a particular 

axis. In object detection, a convolutional layer of stride 2 is particularly important because 

it allows the layer to downsample the input (for more efficient processing of latter model 

layers) while preserving learned spatial information (which is by definition important for 

object detection).  

Part II of this thesis is comprised of Chapter 3, which proposes a novel Winograd 

algorithm for stride 2 convolutional. The formulated Winograd algorithms are compatible 

with stride 2 for 1-D(imension), 2-D, and 3-D convolutional layers. Furthermore, Chapter 

3 presents the design of a novel processing element (PE) for an FPGA implementation. 

Compared to other Winograd implementations available in academic literature, the 

proposed PE unit supports both stride 1 and 2 convolutions. The proposed PE is 

implemented on an FPGA and benchmarked for DSP efficiency using the popular VGG-

16 network architecture.  

The PE and concomitant WMFA algorithms proposed in Part II may support the 

efficient implementation of models proposed in Part III of this thesis.  
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Chapter 3 

Stride 2 Winograd for Convolutional 

Neural Networks1 

This chapter present the motivations to design a Winograd stride 2 in Section 3.1. 

Section 3.2 presents novel Winograd stride 2 algorithms for 1-D, 2-D, and 3-D using 3×3, 

5×5, and 7×7 kernels. Section 3.3 presents the CNN architectures that uses layer stride 

>1. The GPU implementation is shown in Section 3.4. Section 3.5 shows the design, 

implementation, and results of the CNN accelerator and compares the proposed method 

to prior works. Section 3.6 concludes the chapter. 

3.1 Introduction 

Convolutional Neural Networks (CNNs) are widely used in many deep learning 

systems. CNNs have shown state-of-the-art accuracy in a variety of interdisciplinary 

research, including image classification [61]–[63], object detection [64]–[66], and speech 

recognition [67], [68], leading to their widespread adoption.  

To reduce memory bandwidth requirements, recent research into CNN hardware 

acceleration has focused on increasing parallelism, reducing bits via quantization, or using 

fixed points rather than floating points [69], [70].  

The Winograd minimal filtering algorithms, capable of being used for any stride [71], 

take advantage of overlapping computations between adjacent windows [21] to reduce 

______________________________ 

   1The content of this chapter is originally published in IEEE Transactions on Very Large Scale Integration 

(VLSI) Systems [113]. The manuscript has been reformatted for inclusion in this thesis.  

   Juan Yépez (JY), and Seok-Bum Ko (SK) designed the study. JY designed the algorithms, developed and 

optimized the processing elements, implemented the algorithms on a GPU and a FPGA, and performed logic 

synthesis and results analysis.  JY prepared the manuscript with contributions from SK to the manuscript 

structure, readability and analysis and discussion of the results. 
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the number of multiplications required for convolution, trading multiplication for 

addition. Given that the hardware required for multiplication is complex and large 

compared to that of a simple adder, the multiplication-addition tradeoff proposed by 

Winograd is desirable.  

Modern CNN architectures replace pooling layers with strided convolutions for 

downsampling [72], where stride is defined as the element-wise shift-displacement of a 

kernel over an input along a particular axis [73]. Convolutional layers learn feature 

properties during training; conversely, pooling is a fixed downsampling operation and 

pooling layers have no trainable weights. A convolutional layer with stride >1 is 

advantageous in that it has trainable parameters and downsamples. 

Recent architectures (e.g. the MobileNet family) use increasingly more layers with 

stride >1. Therefore, it is important to develop methods to process these layers efficiently. 

In this chapter, a novel way to use Winograd stride one algorithms to produce the effect 

of stride two is introduced. Algorithms for 3×3 and 5×5 kernels for 1D and 2D cases are 

proposed. These algorithms require special cases of the Winograd algorithm that are 

described in this chapter. Therefore, the main contributions of this chapter are as follows: 

• Novel Winograd algorithms with stride two for 1D, 2D, and 3D convolutions. These 

algorithms reduce the multiplication complexity of convolution. A quantitative analysis 

of the number of multiplications and additions required by this algorithm was provided.  

• The matrices for 1D Winograd F(2,2) and F(2,4), for 2D Winograd F(2×2,2×3), 

F(2×2,3×2), F(2×2,3×4), and F(2×2,4×3) were determined. These versions are required 

to solve the proposed Winograd with stride two. To obtain the values of these respective 

matrices, the popular Winograd F(2,3) is referenced and the Chinese Remainder Theorem 

[74] is used. A quantitative analysis of these matrices is performed, comparing them with 

regular convolutions.  

• The proposed algorithm was implemented on an NVIDIA K20c GPU. It shows 1.44x 

improvement for a 3×3 kernel, 2.04x improvement for a 5×5 kernel, 2.42x improvement 

for a 7×7 kernel, and 1.73x improvement for a 3×3×3 kernel. 
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• A CNN accelerator was implemented on an Intel Arria-10 FPGA for both an original 

and modified VGG-16 architecture, which achieved Digital Signal Processor (DSP) 

efficiencies of 1.22 GOPS/DSPs and 1.33 GOPS/DSPs, respectively. For the accelerator, 

a Winograd Processing Element (PE) for a 3×3 kernel was proposed, compatible for both 

stride one and two convolutions. The combined one- and two-stride Winograd PE uses 

only 146 and 100 more LUTs and registers, respectively, and the same number of DSPs 

(32), as a PE for two Winograd stride one calculations. It also uses 25 less DSPs than 

would be required by independent PEs for calculating two Winograd stride one, and one 

Winograd stride two, operations. 

3.2 Proposed Winograd with Stride 2 

3.2.1  One-dimension 

In one-dimensional convolution with stride two, odd positions of the input are 

multiplied with odd positions of the kernel, and even-position input elements are 

multiplied with even-position kernel elements; no multiplication between odd-position 

and even-position elements occurs. Thus, the input and kernel elements can be separated 

into two groups: odd and even. Using these groupings, it is possible to convert a 

convolution of stride two into two convolutions of stride one. Figure 3.1 shows the 

procedure for a size five input vector and a size three kernel vector.  
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Figure 3.1: Proposed convolution with stride=2 for kernel=3 

The even group contains two elements for the input and one element for the kernel. 

This cannot be further simplified. However, the odd group contains three elements for the 

input and two elements for the kernel, which can be calculated using the F(2,2) Winograd.  

There is no available F(2,2) Winograd based on matrices. However, F(2,2) can be 

determined using the popular F(2,3) Winograd. In these matrices, the values of the 

variables g2 and d3 are zero when using F(2,2) because the fourth row for both G and BT 

are zero and can be deleted. Similarly, the fourth column of BT and AT and the third 

column of G can also be eliminated. Therefore, the matrices for F(2,2) are as follows: 

𝑔 = [𝑔0 𝑔1]𝑇              𝑑 = [𝑑0 𝑑1 𝑑2]
𝑇      (3.1) 

𝐵𝑇 = [
1 0 −1
0 1 1
0 −1 1

]  𝐺 = [
1 0

1/2 1/2
1/2 −1/2

] 𝐴𝑇 = [
1 1 1
0 1 −1

] 

The minimal filtering algorithm for computing m outputs with an r-tap kernel, which 

is called F(m, r), requires a number of multiplications defined by: 

μ(F(m, r)) = m + r – 1      (3.2) 
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The F(2,2) algorithm uses just three multiplications and is therefore minimal by the 

formula μ(F(2, 2)) = 2 + 2 – 1 = 3. The algorithm also uses three additions involving the 

data, two additions and two multiplications by a constant involving the kernel, and three 

additions to reduce the products in the final result, whereas six is required for regular 

convolution. 

To use a size five kernel with stride two, the procedure is similar to using a size three 

kernel: there is no multiplication between odd-position and even-position elements, and 

elements are separated into respective odd- and even-position groups. For a size five 

kernel, the input vector contains seven elements. The odd group contains four input 

elements and three kernel elements, allowing the Winograd F(2,3) to be applied. The even 

group contains three input and two kernel elements, and Winograd F(2,2) is used. Figure 

3.2 shows the procedure for a size seven input vector and a size five kernel vector. 

 

Figure 3.2: Proposed convolution with stride=2 for kernel=5 

The odd-position group uses four multiplications (μ(F(2,3))=4), and the even-position 

group uses three multiplications (μ(F(2,2))=3). Therefore, the total number of 

multiplications is seven, whereas ten would be required for regular convolution. 
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Figure 3.3: Proposed convolution with stride=2 for kernel=7 

For a size seven kernel, the even group contains four input and three kernel elements, 

and the popular Winograd F(2,3) will be used. The odd group contains five input elements 

and four kernel elements, allowing the Winograd F(2,4) to be applied. Figure 3.3 shows 

the procedure for a size nine input vector and a size seven kernel vector. 

Because there is no available F(2,4) Winograd based on matrices, F(2,4) was derived 

using the same technique provide by Winograd.  

The four-element kernel g and five-element data d are represented as polynomials in 

the following: 

    𝑔(𝑥) = 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0                  (3.3) 

    𝑑(𝑥) = 𝑑4𝑥
4 + 𝑑3𝑥

3 + 𝑑2𝑥
2 + 𝑑1𝑥 + 𝑑0       

The lineal convolution g ⁕ d is: 

𝑦(𝑥) = 𝑔(𝑥)𝑑(𝑥)    (3.4) 

The polynomial m(x) can be written in terms of 
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𝑦(𝑥) = 𝑔(𝑥)𝑑(𝑥) mod m(x)    (3.5) 

Applying the Winograd analysis, the equations can be represented as matrices, as 

shown equation 6: 

𝑔 = [𝑔0 𝑔1 𝑔2 𝑔3]𝑇 

    𝑑 = [𝑑0 𝑑1 𝑑2 𝑑3 𝑑4]
𝑇                                       (3.6) 

𝐴𝑇 = [
1 1 1 1 0
0 1 −1 2 1

] 

𝐵𝑇 =

[
 
 
 
 
2 −1 −2 1 0
0 −2 −1 1 0
0 2 −3 1 0
0 −1 0 1 0
0 2 −1 −2 1]

 
 
 
 

 

𝐺 =

[
 
 
 
 

1/2 0 0 0
−1/2 −1/2 −1/2 −1/2
−1/6 1/6 −1/6 1/6
1/6 1/3 2/3 4/3
0 0 0 1 ]

 
 
 
 

 

The odd-position group uses five multiplications (μ(F(2,4))=5), and the even-position 

group uses four multiplications (μ(F(2,3))=4). Therefore, the total number of 

multiplications is nine, whereas 14 would be required for regular convolution. 

The practical implementation for the one-dimensional stride two Winograd is shown 

in Algorithm 1. 
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  Algorithm 1 Winograd-Stride2(input, kernel) 

W=input.width() 

for i=0 to W do 

    if (i % 2 == 1) then 

        G1=input(i/2)                    Odds Group. 

         if (j≤ kernel.width()) then 

               K1=kernel(i/2) 

    else 

        G2=input((i-1)/2)              Evens Group. 

         if (j≤ kernel.width()) then 

               K2=kernel((i-1)/2) 

output=Winograd(G1,K1)+ Winograd(G2,K2) 

3.2.2  Two-dimensions 

3.2.2.1  Using Kernel 3×3 

To apply the Winograd with stride two in two dimensions, the elements of the input 

and the kernel should be separated into four groups. The first group comprises the 

elements at row-odd, column-odd indices of the input and kernel; the second group 

comprises the elements at row-odd, column-even indices of the input and kernel; the third 

group comprises the elements at row-even, column-odd indices of the input and kernel; 

the last group comprises the remaining four elements of the input and one element of the 

kernel. Figure 3.4 shows the groups with a 3×3 kernel. 



40 

 

 

Figure 3.4: Proposed convolution with stride=2 for kernel=3×3 

The first group contains 3×3 elements for input and 2×2 elements for the kernel. In 

this case, the Winograd F(2×2,2×2) can be used; the matrices for 2D are the same as those 

for one-dimensional F(2,2).  

Two consecutive Winograd F(2,2) operations can be used for the second and the third 

groups.  

The fourth group cannot be further simplified, so regular multiplications are used. 

Each group’s convolution produces a 2×2 matrix, and the final value of this process is 

simply the sum of these intermediate matrices.  

The number of multiplications per-group are as follows: nine multiplications for the 

first group; six multiplications for the second; six multiplications for the third; and four 

multiplications for the last. The total multiplications used is 25, whereas 36 is used with 

regular convolution. 
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3.2.2.2  Using Kernel 5×5 

For two dimensions with a 5×5 kernel, like the 3×3 kernel case, the elements of the 

(presumably 7×7) input and the kernel can be separated into four groups: the elements of 

the row-odd, column-odd indices of the input and kernel; the elements of the row-odd, 

column-even indices; the elements of the row-even, column-odd indices; and the 

remainder. Figure 3.5 shows the groups with a 5×5 kernel. 

The first group contains 4×4 elements for input and 3×3 elements for the kernel, which 

can be implemented using the popular Winograd F(2×2, 3×3). 

The second group has 4×3 input elements and 3×2 kernel elements. This special case 

can be implemented using a combination of the matrices of the different methods of 

Winograd. The matrices of F(2,3) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and the matrices of F(2,2) 

are used for 𝐺𝑇, 𝐵, and 𝐴.  

The third group has 3×4 input elements and 2×3 kernel elements. This is a swapped 

version of the second group’s case, and matrices of F(2,2) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and 

the matrices of F(2,3) are used for 𝐺𝑇, 𝐵, and 𝐴. 

The fourth group contains 3×3 input elements with a 2×2 kernel, and uses Winograd 

F(2×2,2×2).  

The result of the convolution of the input 7×7 with kernel 5×5 will be the sum of the 

intermediate 2×2 matrices produced via the respective convolutions of each group. 

The numbers of multiplications per group using this algorithm are as follows: 16 for 

the first group; 12 in each of the second and third; and nine multiplications for the last. 

The total is 49 multiplications, whereas 100 would be used by regular convolution. 
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Figure 3.5:  Proposed convolution with stride=2 for kernel=5×5 



43 

 

3.2.2.3  Using Kernel 7×7 

There are popular architectures where the size 7×7 kernel with stride two is use at the 

first layer. Commonly a kernel size seven could be operate with FFT. However, the stride 

two make the invalid the FFT operation. Due the procedure of separated the elements into 

odd- and even-position reduce the size of kernel for the operation. It makes possible the 

use of Winograd in an efficient matter.  

For two dimensions with a 7×7 kernel, like the case of previous kernels, the input and 

the kernel can be separated into four groups: the elements of the row-odd, column-odd 

indices of the input and kernel; the elements of the row-odd, column-even indices; the 

elements of the row-even, column-odd indices; and the remainder. Figure 3.6 shows the 

groups with a 7×7 kernel. 

The first group contains 5×5 elements for input and 4×4 elements for the kernel, which 

can be implemented using the proposed method F(2,4) which was described in the last 

part of section 3.2. 

The second group has 5×4 input elements and 4×3 kernel elements. This special case 

can be implemented using a combination of the matrices of the different methods of 

Winograd. The matrices of F(2,4) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and the matrices of F(2,3) 

are used for 𝐺𝑇, 𝐵, and 𝐴. 

The third group has 4×5 input elements and 3×4 kernel elements. This is a swapped 

version of the second group’s case. The matrices of F(2,3) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and 

the matrices of F(2,4) are used for 𝐺𝑇, 𝐵, and 𝐴.  
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Figure 3.6:  Proposed convolution with stride=2 for kernel=7×7 



45 

 

 The fourth group contains 4×4 elements for input and 3×3 elements for the kernel, 

which can be implemented using the popular Winograd F(2×2, 3×3). 

The result of the convolution of the input 9×9 with kernel 7×7 is the sum of the 

intermediate 2×2 matrices produced via the respective convolutions of each group. The 

number of multiplications per group using this algorithm are as follows: 25 for the first 

group; 20 in each of the second and third; and 16 multiplications for the last. The total is 

81 multiplications, whereas 196 would be used by regular convolution. 

The practical implementation for two-dimensional stride two Winograd is shown in 

Algorithm 2. 

 Algorithm 2 Winograd2D-Stride2(input, kernel) 

W=input.width() 

H=input.height() 

for i=0 to W do 

    for j=0 to H do 

       if (i % 2 == 1) then 

          if (j % 2 == 1) then     

              G1=input(i/2, j/2)                  Group 1 

              if (j≤ kernel.width()) then 

                  K1=kernel(i/2, j/2) 

          else 

              G2=input(i/2, (j-1)/2)            Group 2 

              if (j≤ kernel.width()) then 

                  K2=kernel(i/2, (j-1)/2) 

       else 

          if (j % 2 == 1) then       

              G3=input((i-1)/2, j/2)             Group 3 

              if (j≤ kernel.width()) then 

                  K3=kernel((i-1)/2, j/2) 

          else 

              G4=input((i-1)/2, (j-1)/2)       Group 4 
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              if (j≤ kernel.width()) then 

                  K4=kernel((i-1)/2, (j-1)/2) 

 output=Winograd(G1,K1)+Winograd(G2,K2)+  

             Winograd(G3,K3)+Winograd(G4,K4) 

3.2.3  Three-dimensions 

To apply Winograd with stride two in three dimensions using a 3×3×3 kernel, the 

elements of the input and the kernel should be in eight groups. The first group comprises 

the elements at row-odd, column-odd, channel-odd of the input and kernel; the second 

group comprises the elements at row-odd, column-even, channel-odd indices of the input 

and kernel; the third group comprises the elements at row-even, column-odd, channel-odd 

indices of the input and kernel; the fourth group comprises the elements at row-odd, 

column-odd, channel-even indices of the input and kernel; the fifth group comprises the 

elements at row-even, column-even, channel-odd indices of the input and kernel; the sixth 

group comprises the elements at row-odd, column-even, channel-even indices of the input 

and kernel; the seventh group comprises the elements at row-even, column-odd, channel-

even indices of the input and kernel form the seventh group; the last group comprises the 

remaining four elements of the input and one element of the kernel. Figure 3.7 shows the 

groups with a 3×3×3 kernel. 

The first group contains 3×3×3 elements for input and 2×2×2 elements for the kernel. 

In this case, the Winograd F(2×2×2,2×2×2) can be used; the matrices for 3D will be the 

same as those for one-dimensional F(2,2).  

Two consecutive 2D Winograd F(2×2,2×2) operations can be used for the second, 

third, and fourth groups.  

Four consecutive 1D Winograd F(2,2) operations can be used for the fifth, the sixth, 

and the seventh groups.  
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The eighth group cannot be further simplified, so regular multiplications are used. 

Each group’s convolution produces a 2×2×2 matrix, and the final value of this process is 

simply the sum of these intermediate matrices.  

 

Figure 3.7:  Proposed convolution with stride=2 for kernel=3×3×3 
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The number of multiplications per-group are as follows: 27 multiplications for the first 

group; 18 multiplications in each of the second, third, and fourth; 12 multiplications in 

each of the fifth, sixth, and seventh; and 8 multiplications for the last. The total 

multiplications are 125, whereas 216 would be used with the regular convolution.  

The practical implementation for three-dimensional stride two Winograd is shown in 

Algorithm 3. 

Because 5×5 and 7×7 kernels are commonly used only for the input layer (assuming 

an RGB color image), it is impractical to extend the stride two methodology to 3D kernels 

other than 3×3×3; therefore a 5×5×3 or 7×7×3 kernel was not implemented. 

 

 Algorithm 3 Winograd3D-Stride2(input, kernel) 

W=input.width() 

H=input.height() 

D=input.depth() 

for i=0 to W do 

    for j=0 to H do 

        for k=0 to D do 

           if (i % 2 == 1) then 

              if (j % 2 == 1) then     

                  if (k % 2 == 1) then     

                      G1=input(i/2, j/2, k/2)                  Group 1 

                      if (k≤ kernel.width()) then 

                          K1=kernel(i/2, j/2, k/2) 

                  else 

                      G2=input(i/2, j/2, (j-1)/2)             Group 2 

                      if (k≤ kernel.width()) then 

                          K2=kernel(i/2, (j-1)/2) 

              else 

                  if (k % 2 == 1) then       

                      G3=input(i/2, (j-1)/2, k/2)             Group 3 
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                      if (k≤ kernel.width()) then 

                          K3=kernel(i/2, (j-1)/2, k/2) 

                  else 

                      G4=input(i/2, (j-1)/2, (k-1)/2)       Group 4 

                      if (k≤ kernel.width()) then 

                          K4=kernel(i/2, (j-1)/2, (k-1)/2) 

           else 

               if (j % 2 == 1) then     

                  if (k % 2 == 1) then     

                      G5=input((i-1)/2, j/2, k/2)             Group 5 

                      if (k≤ kernel.width()) then 

                          K5=kernel((i-1)/2, j/2, k/2) 

                  else 

                      G6=input((i-1)/2, j/2, (j-1)/2)        Group 6 

                      if (k≤ kernel.width()) then 

                          K6=kernel(i/2, (j-1)/2) 

              else 

                  if (k % 2 == 1) then       

                      G7=input((i-1)/2, (j-1)/2, k/2)       Group 7 

                      if (k≤ kernel.width()) then 

                          K7=kernel((i-1)/2, (j-1)/2, k/2) 

                  else 

                      G8=input((i-1)/2, (j-1)/2, (k-1)/2) Group 8 

                      if (k≤ kernel.width()) then 

                          K8=kernel((i-1)/2, (j-1)/2, (k-1)/2) 

 output=Winograd(G1,K1)+Winograd(G2,K2)+  

Winograd(G3,K3)+Winograd(G4,K4)+ Winograd(G5,K5)+ 

Winograd(G6,K6)+Winograd(G7,K7)+ Winograd(G8,K8) 
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3.3 CNN Architectures with Layer Stride > 1 

Modern CNN architectures use convolutional layers for feature learning followed by 

max-pooling layers to downsample feature maps. However, max-pooling is a fixed 

operation that trades spatial structure knowledge for improved computational efficiency 

in future layers. Spatial knowledge of where regions of interest are in an image is not 

important for classification tasks because the goal of classification is recognizing whether 

a certain region of interest (or features thereof) merely exists in an image. Conversely, 

spatial knowledge is foundational to the task of object detection, where the positional 

information of regions of interest is paramount. For such tasks where spatial information 

is important, the use of strided convolution has found success because it improves the 

computational efficiency of future layers while preserving spatial information. In [72], 

the pooling layers are replaced by an additional convolutional layer with stride two; 

results show performance stabilization and even accuracy improvement compared to the 

base model. This concept has led to the adoption of >1 stride convolutional layers in 

modern CNN architectures, and the use of stride two is a popular choice. Table 3.1 

highlights the stride >1 layers in recent architectures and their utilized kernel sizes. 

AlexNet [75], the first CNN to use ReLU non-linearity and whose win in the ILSVRC 

2012 image recognition challenge, sparked the current DL revolution. It uses an 11×11 

kernel with stride four. However, with large kernels like 11×11, the Winograd algorithm 

is outperformed by other methods (e.g., FB-FFT) [21]. 

ZFNet [12], GoogLeNet [76], ResNet [12], SqueezeNet [77], and YOLO [47] use a 

7×7 kernel with stride two in the first layer, allowing 1D and 2D Winograd to be used. 

3D Winograd for a 7×7×7 kernel is unavailable for the first layer due this have only three 

input channels. However, the 3D Winograd can be used for later layers when the input 

depth is larger than 7. 

ResNet [78], YOLO [47], SSD [79], MobileNet [16], and MobileNetV2  [80] use a 

3×3 kernel. MobileNetV3 [81] uses three and two layers with 3×3 and 5×5 kernel, 
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respectively. The convolutions with stride two can be applied using the proposed 

Winograd algorithms. 

Table 3.1: Architecture layers using stride >1 

Architecture 
Convolutional Layer with stride >1 

Kernels Stride Number of layers 

AlexNet [75] 
11×11 4 1 

ZFNet [78] 
7×7 2 1 

GoogLeNet [76] 
7×7 2 1 

ResNet [12] 
7×7, 3×3 2 1, 3 

SqueezeNet [77] 
7×7 2 1 

YOLO [47] 
7×7, 3×3 2 1, 1 

SSD [79] 
3×3 2 2 

MobileNets [16] 
3×3 2 6 

MobileNetV2 [80] 
3×3 2 5 

MobileNetV3 [81] 
5×5, 3×3 2 2, 3 

 

3.4 GPU Implementation 

The proposed method for 1D and 2D stride two Winograd were tested on a NVIDIA 

K20c GPU, and tested it using several convolutions with 3×3, 5×5, and 7x7 kernel sizes. 

For 3D, a 3×3×3 kernel was used. The proposed implementation was compared against 

regular stride two convolutions. A comparison of the numbers of multiplications and 

additions for all applicable dimensions is shown in Table 3.2. 
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Table 3.2: Comparisons of the Regular convolution and Winograd Stride Two 

 

Algorithms 

 

Regular 

Convolution 

Proposed 

Winograd stride 2 

muls adds muls adds 

F(2,3)  6 6 5 11 

F(2,5) 10 10 7 21 

F(2,7) 14 14 9 27 

F(2×2, 3×3) 36 36 25 77 

F(2×2, 5×5) 100 100 49 137 

F(2×2, 7×7) 196 196 81 243 

F(2×2×2, 3×3×3) 216 216 125 419 

 

The implemented program uses the same settings from the stride two layers of 

MobileNet (an input size of 224×224). The program recorded the GPU processing times 

and generated the average processing times for regular convolution and for the proposed 

algorithms. The results are shown in Table 3.3. 

Table 3.3: Performance Comparison using stride two in GPU 

Kernel 

Processing time 

Regular convolution 
Proposed Winograd 

Stride 2 
Speedup 

3×3 8.09ms 5.61ms 1.44x 

5×5 11.21ms 5.49ms 2.04x 

7×7 13.21ms 5.46ms 2.42x 

3×3×3 15.45ms 8.93ms 1.73x 

 

Compared to regular convolution, the proposed method is 1.44x, 2.04x, 2.42x, and 

1.73x faster for the respective 3×3, 5×5, 7×7, and 3×3×3 kernels. Furthermore, the results 
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of the proposed algorithms were tested with single precision (fp32) data. The results show 

the same values as direct convolution, indicating that the mathematical transformations 

do not lose precision and therefore will affect neither multiplication accuracy nor neural 

network performance.  

3.5 FPGA Implementation 

3.5.1  CNN Architecture 

In this chapter, a CNN accelerator design was proposed based on stride one and two 

Winograd for FPGAs. The accelerator implements the VGG-16 architecture [7]. Because 

VGG-16 does not contain any layers of stride two, a modified VGG-16 architecture was 

proposed using a similar methodology to that implemented by [72] for a custom network, 

in which one convolution and one max pooling layer are replaced by one convolutional 

layer of stride two. The modified architecture can be seen in Table 3.4. 

 

  Table 3.4: Modified VGG-16 Architecture with convolution stride two 

Layer Type/Stride Filter Shape Input size 

Conv1-1 Conv/S1 3×3×64 224×224×3 

Conv1-2 Conv/S2 3×3×64 224×224×64 

Conv2-1 Conv/S1 3×3×128 112×112×64 

Conv2-2 Conv/S2 3×3×128 112×112×128 

Conv3-1 Conv/S1 3×3×256 56×56×128 

Conv3-2 Conv/S1 3×3×256 56×56×256 

Conv3-3 Conv/S2 3×3×512 56×56×256 

Conv4-1 Conv/S1 3×3×512 28×28×512 

Conv4-2 Conv/S1 3×3×512 28×28×512 

Conv4-3 Conv/S2 3×3×512 28×28×512 

Conv5-1 Conv/S1 3×3×512 14×14×512 

Conv5-2 Conv/S1 3×3×512 14×14×512 

Conv5-3 Conv/S2 3×3×512 14×14×512 

Flatten Flatten - 7×7×512 

FC2 Dense 4096 1×25088 

FC2 Dense 4096 1×4096 

Predictions Dense 1000 1×4096 

 

 

 



54 

 

The original VGG-16 model was trained on the ImageNet database [31], which 

contains 1M images over 1000 classes; this allows the network to learn varied and 

representative features for many types of images. Moreover, building and training a model 

without pre-initialized weights is not always feasible due to the inherent time or 

computational restraints of training.  

Therefore, the weights for the ImageNet pre-trained VGG-16 model were used, which 

are available online [82], for transfer learning—where the trained model weights are 

reused to initialize training a model for a different task. The weights were reused of the 

original VGG-16 to train the modified architecture using stride two, which has the same 

number of parameters as the original VGG-16.  

Non-modified layers preserve the (frozen) weights from the original model. Only the 

added convolution stride two layers were trained, or 5,494,208 of 138,357,544 total 

parameters; thus, the model’s training time is reduced. After only two hundred epochs, 

the proposed modified VGG-16 architecture has less computational cost than the original 

VGG-16; this is because stride 2 convolution requires less multiplications than stride 1, 

and a stride 1 convolution requires an additional pooling layer for downsampling. For 

example, the output of layer Conv5-3 from the modified VGG-16 has a size of 7 × 7 × 

512, while that from the original VGG-16 is 14 × 14 × 512; a max-pooling layer of stride 

2 is required for the layer shape to become 7 × 7 × 512 in the stride 1 case. Thus, when 

compared to the original architecture, four times fewer multiplications are required for 

the convolutional layers in the proposed stride 2-modified VGG-16 architecture, which 

improves the throughput significantly whilst maintaining high accuracy. 

3.5.2  FPGA Implementation 

Both the original and the modified VGG-16 architectures were accelerated on an Intel 

Arria-10 FPGA with 1150K logic elements, 1518 DSP blocks, and 2131 M20K RAMs, 

at a clock speed of 250 MHz. A 16-bit fixed point precision to evaluate the proposed 
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design was used. Figure 3.8 shows the architecture which contains a host interface, DDR 

memory, on-chip buffer, sequencer, and processing elements (PE). 

The host interface receives instructions and input data from and sends results to a host. 

The sequencer decodes instructions from which the appropriate components receive 

operating commands. Host data and PE processing results are saved in DDR memory. An 

on-chip buffer stores the data to be processed in the current operation. All computations 

are performed within PEs.  

 
Figure 3.8:  Deep learning architecture 

3.5.3  Memory Access 

Due to the limited on-chip buffer and the large amount of data required by CNNs, the 

accelerator is not able to transfer all the data from external memory into on-chip buffer. 

That is why the input and the kernel data are divided into several groups, allowing for 

data reuse in both the input and kernel. Multiple kernel groups are stored in the buffer and 

processed in parallel with the same input group. The partial results from the PEs are 

accumulated into the output buffer until the convolutional result is generated. Then, the 
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results are moved to external memory. After this process, a new input group is loaded and 

the same kernels can be reused. In the proposed design, double buffers are used to overlap 

data communication and reduce memory access delay in reading and writing data to 

memory. 

3.5.4  Proposed PE Architecture 

A PE was designed to accommodate two Winograd F(2×2, 3×3) stride one operations. 

As each Winograd uses 16 multiplications, 32 multipliers are required for each PE. Some 

logic elements are added to the PE to make it compatible with the proposed Winograd 

stride two, without using additional DSPs. Because VGG-16 uses the same filter size 

(3×3) for all convolutional layers, the PEs can be reused.  

For headings 1 through 8 below, please refer to Section 3.2.2 and Figure 3.9 for 

information on Winograd stride 2 groups. 

 

Figure 3.9:  Proposed PE architecture 
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3.5.4.1  Input Tile From Registers 

The input tile size of the proposed design is 5×6, where the PE may process two 

Winograd stride one or one Winograd stride two in one clock cycle.  

For Winograd stride one, the PE allows two Winograd stride one in parallel, 32 

multiplications are performed, and 32 multipliers are needed. 

The proposed PE allows one Winograd stride two, a process requiring 25 

multiplications. If the PE used regular convolution stride two instead of the proposed 

Winograd, it would require 36 multipliers. 

3.5.4.2  Splitter Block 

The control signal “stride” splits the input data based on the type of stride to process 

(one or two), i.e., how the input is used depends on the stride (as shown in Figure 3.9).  

For stride one, the block splits a 4×6 array from the input tile into two 4×4 arrays 

which are sent to the Transform block; this is possible because two columns have the 

same input for both Winograd modules.  

For stride two, a 5×5 input array is used, and the splitters split the input into four 

groups. Group 1 is sent to the input transform block and Groups 2-4 are rearranged to 

generate another input for the input transform block. 

Figure 3.10 shows how the splitter block works. The 5×6 array (black) represents the 

input tile. If stride one is selected, the elements within the red and green squares will be 

the two 4×4 outputs of the splitter. The elements within the 5×5 yellow square will be the 

output of the splitter if stride two is chosen. 
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Figure 3.10:  Splitter the input in based on the stride selected 

3.5.4.3  Input Transform Block 

The input transform block contains two parts. The first part uses the 2D transform of 

Winograd stride one, which can also process the Group 1 of Winograd stride two. The 

second part transforms the 2D Winograd stride one when the control signal “stride” is 

low; when the control signal is high, this part performs four 1D Winograd transforms for 

Groups 2 and 3 of Winograd stride two, and also four multiplications for Group 4. This is 

shown in Figure 3.11.  
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Figure 3.11:  Input transform block 
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3.5.4.4  Filter Transform Block 

Our PE has one filter transform module controlled by the control signal “stride.” If the 

signal level is low, a 2D Winograd transform is processed into the kernel and the same 

output is sent to the DSP module for multiplications; if the signal is high, the outputs are 

arranged according to the kernel described in Section 3.2.2.  

3.5.4.5  Multiplication Block 

To perform the convolution operations, multiplications between the input transforms 

and their corresponding kernel transforms are necessary. This block requires 32 

multiplications for the whole process. Similar to [23], an array of DSPs was used to 

perform the multiplications. The outputs of this block are two 4×4 arrays. 

3.5.4.6  Inverse Transform 

After the multiplications an inverse transform is applied to the results. The first part 

uses the inverse 2D transform of Winograd stride one. The second part transforms an 

inverse 2D Winograd stride one when the control signal “stride” is low; when the control 

signal is high, this part performs four inverse 1D Winograd transformations for Groups 2 

and 3 of Winograd stride two. 

3.5.4.7  Accumulator Block 

For stride two, the results of the inverse transform for each Group (1-4) are summed 

and sent to the register. For the case of stride one, the results skip this block and they are 

sent to the register directly. 

Table 3.5 compares the FPGA’s resource utilization for the proposed Winograd PE 

compatible with stride one and two against both a PE capable of two Winograd stride one 

operations, and a PE calculating one stride two Winograd operation. Although the 
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proposed PE uses more LUTs and registers than the other Winograd modules, the 

proposed PE can perform Winograd operations with both strides—unlike the other PEs. 

Compared to the two Winograd stride one PE, the PE requires only 146 and 100 more 

LUTs and registers, respectively. Moreover, the proposed PE, with the same DSP usage 

as that of the two Winograd stride one, allows the additional processing of Winograd 

stride two. DSPs are a critical resource for FPGAs, and the proposed design uses only 32 

DSPs; compare this to the combined 57 required by the independent two Winograd stride 

one PE and the Winograd stride two PE. 

Table 3.5: Resource Utilization of different PEs for kernel=3×3 on INTEL ARRIA-10 

 

 

3.5.5  Parallelization 

CNN architectures (including VGG-16, ResNet, MobileNet and others) use an input 

image size of 224×224. Each network block, comprised of convolutional layers and 

oftentimes ending with a pooling layer, downsamples the feature map by half before 

outputting a new volume to be used as input to the next block. Thus, the last feature map 

of these networks prior to the fully connected or prediction layers has a width and height 

of 7×7. 

To process the feature maps efficiently, seven PEs were arranged in a single block to 

parallelize convolution. This allows for a 28×5 input tile for each block. Inside the block 

the PEs can read and share the input tile, thereby avoiding multiple memory reads for the 

same data. The proposed CNN accelerator uses six of these blocks. Although the blocks 

need to share an input tile and kernel data from the same buffer, connecting multiple 

blocks directly to the buffer may cause the system to experience issues in timing closure, 

Resource LUTs Registers DSPs 

Winograd stride two 584 304 25 

Two Winograd stride one 930 487 32 

Proposed method 1076 587 32 
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especially with a high clock rate. To avoid this issue, the blocks were organized in a 

systolic array architecture [83]. The proposed design array consists of three rows and two 

columns, and the rows read input data while the columns read kernel data. Local buffers 

are used to cache the input and kernel data from each block. Thus, every time a block 

receives a new data tile, the previous data is also delivered. Using a double buffer in each 

block also allows computation and data delivery to occur simultaneously. Preliminary 

results from each block are accumulated in a local buffer until the entire convolution is 

complete, after which the results can be written to external memory. 

3.5.6  Results 

In the proposed implementation, the Winograd algorithm was evaluated for both stride 

one and two using the original and the proposed modified version of VGG-16. 

Figure 3.12 shows the results of all convolutional layers in the FPGA using the original 

and the modified VGG-16 networks. The average performance in the modified VGG-16 

network is 8.9% higher than the original VGG-16, owing to higher GOPS (and a higher 

peak of 2463 GOPS) during stride two operations.  

 

Figure 3.12: Evaluation results of the original VGG-16 architecture compared to the proposed 

modified VGG-16 architecture 
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The performance of the first layer (conv1-1) is the worst. This is because the first layer 

has only three input channels and a large input size which is divided into many groups, 

taking more time to initialize the elements. The proposed parallelization scheme is 

efficient when the size of the input feature map and the output layer depth (like in the case 

of conv2) are well-balanced. However, when the input feature maps are very small, e.g. 

the lattermost layer (conv5), inefficient memory access patterns cause throughput 

reduction.  

Table 3.6 shows the resource utilization of the proposed CNN accelerator on an Intel 

Arria-10 FPGA clocked at 250 MHz. The Winograd algorithms reduce the required 

number of DSPs per convolution; having fewer DSPs per PE allows for more PEs, which 

enables the possibility of greater parallelism, and multiple blocks can perform multiple 

convolutions in parallel. 

Table 3.6: Resource Utilization of CNN accelerator on INTEL ARRIA-10 

 

 

 

 

The proposed implementation uses 88.5% of the DSPs available on the FPGA to 

achieve high throughput. The Winograd algorithm uses more LUTs than regular 

convolution to compensate for the reduced number of multiplications. However, even 

with that increase, the proposed design only used 15.7% of the FPGA’s available LUT. 

Because the proposed design stores groups of input and kernel data in on-chip memory, 

61.5% of the available RAM is used. In summary, by using Winograd, the available DSPs 

can be used efficiently to improve the performance of the accelerator.  

Table 3.7 compares the proposed method’s overall performance and DSP efficiency 

against previous FPGA CNN acceleration works. Because one multiplication operation 

consumes only one DSP and the additional operation does not use a DSP, these 

Resource LUTs M20K RAMs DSPs 

Available 1150K 2131 1518 

Used 181K 1310 1344 

Utilization % 15.7% 61.5% 88.5% 
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implementations used 16-bit fixed point data. Using 16-bit fixed-point data is more 

practical for an FPGA, and the results show that this numeric conversion contributes to 

only 0.4% accuracy loss [28]. 

Overall performance throughput depends on the number of resources used by the 

FPGA. DSP efficiency (GOPS/DSPs) is a fair comparison metric for overall performance 

because these works were implemented using different FPGA platforms with different 

numbers of available DSPs. 

Our modified VGG-16 implementation achieves 1.33 GOPS/DSPs of DSP efficiency, 

which outperforms other implementations. The modified VGG-16 network uses 

convolutional layers of stride two, where one stride two convolution is used instead of 

one stride one convolution and one max-pooling layer. The PEs in the proposed 

implementation can be used for stride one or two. Thus, the proposed design has a better 

efficiency when it is used in architectures that contain stride one and two layers.  

For standard VGG-16 implementations which contains only stride one convolutional 

layers, the proposed work has the second highest DSP efficiency at 1.22 GOPS/DSPs, 

Table 3.7: Performance comparison with state-of-the-art FPGA accelerators 

 
[28] 

2016 

[26] 

2017 

[23] 

2017 

[29]  

2017 

[24] 

2018 

[22] 

2018 
Proposed method 

Platform Zynq 

XC7Z045 

VirtexV

X690T 

MPSOC 

ZCU102 

Zynq 

ZC706 

VCU440 VCU440 Arria-10 Arria-10 

CNN VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 Modified 

VGG-16 

Freq(MHz) 150 200 200 100 200 200 250 250 

Precision 16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

16-bit 

fixed 

Used DSPs  780 2048 2304 725 756 1376 1344 1344 

Performance 

(GOPS) 

137 1467 3044 660 943 821 1642 1788 

Efficiency 

(GOPS/DSPs) 

0.18 0.716 1.32 0.91 1.2 0.6 1.22 1.33 
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behind only [23]. However, the Winograd algorithm in [23] is F(4×4,3×3) which uses an 

input tile of 6×6 elements; although a larger Winograd input tile leads to a higher 

throughput, the precision is reduced due to a truncation of intermediate values because 

the transformation matrices cannot be simply converted to shift operations [26]. To 

perform strides 1 and 2 Winograd, multiple Winograd F(2×2,3×3) is used which requires 

division by 2. This division is performed using shift operations with an additional bit; this 

avoids accuracy reduction when using Winograd when compared to conventional 

convolution.  

3.6 Summary 

In this chapter, new algorithms for convolutional neural networks with stride two 

based on 1D, 2D, and 3D Winograd minimal filtering algorithms were introduced. These 

algorithms separate the input and the kernel into odd-position and even-position groups, 

and stride two output is equivalent to the summation of many stride one convolutions. 

This idea allows for greater efficiency and advantages for CNN architectures that use 

stride two. 

These groups have different array sizes and can be computed using the popular 

Winograd F(2×3) and the proposed Winograd F(2,2), F(2,4), F(2×2,2×3), F(2×2,3×2), 

F(2×2,4×4), F(2×2,4×3), or F(2×2,3×4). These new Winograd versions, derived from the 

popular Winograd F(2,3), decrease computational complexity and increase efficiency by 

trading expensive multiplications for cheap additions. The GPU implementations of 1D, 

2D, and 3D stride two Winograd are tested on several stride two layers and show the 

proposed method is 1.44x, 2.04x, 2.42x, and 1.73x faster for the respective 3×3, 5×5, 7×7, 

and 3×3×3 kernels.  

A Winograd PE was designed which can process stride one and two in the same 

module. The combined PE uses the same number of DSPs (32) as a PE for two Winograd 

stride one calculations, and 25 less DSPs than that required by having independent PEs to 

calculate two Winograd stride one, and one Winograd stride two, operations. This 
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optimization allows an increase in the number of total PEs. Using a systolic array with a 

double buffer, greater parallelism was enabled in the design.  

Stride two convolutional layers produce smaller output volumes while still extracting 

feature maps. This was demonstrated with the implementation of the proposed modified 

VGG-16 architecture where one stride two convolutional layer is used instead of one 

stride one convolutional layer followed by one max-pooling layer. The proposed 

implementation achieves DSP efficiencies of 1.22 GOPS/DSPs and 1.33 GOPS/DSPs for 

the original and modified VGG-16 architectures, respectively. Because the proposed 

design can effectively handle both stride one and two layers within the same architecture, 

the proposed method is a new technique for emerging architectures which contain layers 

using stride one and/or two, and those increasing the numbers of stride two layers used.  
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Part III of this thesis present three Intelligent Transportation Systems (ITS). The first 

system, presented in Chapter 4, is a deep learning-based embedded license plate 

localization (LPL) system. In Chapter 5, a real-time Commercial Vehicle Safety Alliance 

(CVSA) decal recognition system (CDRS) using deep convolutional neural network 

architectures is proposed. The final system, presented in Chapter 6, is a real-time deep 

learning-based edge system for HAZMAT recognition. 

The systems use custom deep learning architectures designed for the specific 

detection/recognition task. The convolutional layers within the architectures use a mix of 

stride 1 and 2—the importance of the latter stride to object detection convolutional layers 

being explained in Part II.  

The LPL system is a one stage (single shot) system. The CDRS system uses two stages 

(detection/classification then fine-grained classification), and the HAZMAT recognition 

system is a three-stage system (detection/classification and two fine-grained classification 

models). A detailed comparison with other networks is provided for each designed model 

stage. Each designed system is compared against similar models using the same dataset, 

or directly against related work within academic literature (where such work exists). 

When this research was conceived, there were no commercially available hardware 

edge accelerators. Therefore, the FPGA design presented in Part II was planned to provide 

the underlying hardware framework for the ITS applications proposed in this part. 

However, the FPGA has considerable costs to rewrite code for varying custom deep 

learning architectures. Because companies like Google, Intel, and NVIDIA released their 

own hardware accelerators during the research period, the research pivoted to incorporate 

such commercial edge systems and hardware accelerators instead of FPGA designs; the 

applications presented in Part III are evaluated using these commercially available 

devices. The edge devices are low-cost and enable the integrated model architectures to 

achieve high speed and accuracy. Models are evaluated on the edge devices that existed 

and/or were in widespread use at the time the models were created. Edge devices 

evaluated in Part III include the Raspberry Pi, the Intel Neural Compute Stick, the Google 

Coral USB accelerator, the NVIDIA Jetsons, and/or combinations thereof.  
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 Chapter 4 

Deep Learning-based Embedded License 

Plate Localization System1 

This chapter presents a novel neural network architecture for license plate localization 

(LPL) based on an inverted residual structure where the shortcut connections are between 

the linear bottleneck layers. The proposed deep learning (DL) solution was tested against 

three popular international research databases and achieves state-of-the-art results, 

proving that the model is accurate and robust. Across those databases, the proposed model 

surpasses other recent LPL work, including DL-based methods, in terms of accuracy and 

speed. Using a novel multi-threading video capture with motion detection then inference 

algorithm, the computational efficiency was increased and drop less frames overall, 

allowing for increased performance. Repeated tests show the proposed method is well-

suited to real-time and highly accurate LPL, regardless of hardware. Section 4.1 presents 

the motivation to design an embedded LPL system; Section 4.2 describes the proposed 

DL LPL solution; Section 4.3 provides comparisons and the outcomes of the tests; and 

Section 4.4 concludes this chapter. 

4.1 Introduction 

Automatic License Plate Recognition (ALPR; also ANPR for “name” or “number” 

plates) refers to the capturing and processing of license plate information via 

______________________________ 

   1The content of this chapter is originally published in IET Intelligent Transport Systems [107]. The manuscript 

has been reformatted for inclusion in this thesis.  

   Juan Yépez (JY), Riel Castro-Zunti (RC), and Seok-Bum Ko (SK) designed the study. JY designed the network 

architecture, trained and tested the models, designed the motion detection system, implemented the system on the 

edge devices, and provided results analysis. RC helped annotated the images from dataset and proofreading the 

manuscript. JY prepared the manuscript with contributions from SK to the manuscript structure, readability and 

analysis and discussion of the results 
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computational or algorithmic means. ALPR is a subfield of Intelligent Transportation 

Systems (ITS) [84], which includes services aimed at improving the driver experience.  

Applications of ALPR are many and varied, and include the following: law 

enforcement tools, including for stolen or unlicensed vehicles; toll booths and issuing 

fares or tickets; and driver-to-driver communication. ALPR may also play a key role if or 

when driverless vehicles become conventional and ubiquitous, as information linked to 

license plates may become incorporated into algorithms that calculate the most ethical or 

advantageous action in an emergency or life-or-death situation. 

An ALPR solution should minimize processing time and maximize accuracy, 

especially where the captured image may be blurry, rotated, obscured, or otherwise 

distorted. Minimizing processing time is especially important in “real-time” applications, 

such as red light or police traffic cameras. 

There are generally five sequential steps in an ALPR solution: image capture; vehicle 

detection; license plate localization (LPL); plate character segmentation; and optical 

character recognition (OCR) of the segmented characters [85]. However, some systems 

use pre-processed images from elsewhere, and thus are designed only to achieve LPL, 

character segmentation, and OCR [86]. 

This chapter focuses on the research, results, and conclusions for LPL using a 

bottleneck depth-separable convolution with inverted residuals deep learning architecture. 

Although the proposed solution is designed for GPU usage, it is demonstrated that the 

system runs reasonably well on low-power, low-cost devices such as CPUs, embedded 

systems, smartphones, tablets, and other personal mobile devices [15]. 

The contributions of this chapter are, in order of appearance: 

1) An accurate and robust deep learning (DL) architecture for LPL based off 

depthwise separable convolutions and residual linear bottlenecks. 
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2) A multi-threading video capture with motion detection then inference algorithm to 

increase computational efficiency by only allowing the DL architecture to run when 

(vehicle) motion is detected; this method drops less frames overall. 

3) Overall systems testing in a real-world high-speed highway environment showing 

99.77% plate region localization over 898 vehicles that passed beneath the video capture 

setup. 

4.2 Proposed Solution 

In this thesis a neural network architecture for license plate localization using 

bottleneck depth-separable convolution with inverted residuals was proposed. This 

architecture uses a single step for localization, in contrast to [87]–[89] and [90], where 

two or more steps are required. 

4.2.1  Neural Network Description 

The neural network used for LPL is based on SSD architecture [48]. The original 

feature extractor used in SSD is VGG-16 [48]. VGG-16 consists of 13 convolutional 

layers followed by three fully connected layers and is very appealing because of its 

uniform architecture [91]. However, VGG consists of about 140 million parameters [91], 

making a system using it computationally complex and thus requiring a powerful GPU to 

run effectively and within an acceptable timeframe. In this work, a different feature 

extractor involving blocks based on linear bottleneck depth-separable convolution with 

residuals was proposed.  

Combining the versatility of depthwise separable convolutions [15] with the 

underlying ideas of relevant information extraction, abstraction, and accumulation 

inherent in linear bottlenecks could provide an accurate and fast LPL solution.  

Depthwise separable convolutions decrease computation and processing time with 

little to no reduction in overall accuracy, and any accuracy reduction is compensated with 
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the use of linear bottlenecks due to their demonstrated in-practice performance gains, 

especially for classification tasks. 

See Figure 4.1 for a visual comparison between standard and depthwise separable 

convolution operations. In Figure 4.1 (a), 128 filters with value of 3×3 pass over 3 input 

channels to generate 128 output channels, in the process the filters move 5×5 times. There 

are 128×3×3 (filters) × 3 (input channels) ×5×5 (movement) = 86,400 multiplications. 

Depthwise separable convolution consists of two parts, depthwise convolution and 

pointwise convolution. Depthwise convolution is shown in Figure 4.1 (b); during this 

convolution one 3×3 filter passes over 1 input channel 3 times, in the process utilizing 

3×3 (filter) × 3 (input channels) ×5×5 (movement) = 675 multiplications. Subsequently 

during pointwise convolution, shown in Figure 4.2 (c), 128 filters with value of 1×1 

(filter) × 3 (input channels) passes over the result of the depthwise convolution to produce 

128 output channels, in the process utilizing 128×1×1 (filters) × 3 (input channels) ×5×5 

(movement) = 9,600 multiplications. Thus, the entire depthwise separable convolution 

operation in Figures 4.1 (b) and 4.1 (c) approximates the traditional convolution in Figure 

4.1 (a) but uses only 10,275 multiplications; this is 88.1% less parameters than the 

standard convolution in Figure 4.1 (a). One can easily note the computational efficiency 

of depthwise separable over standard convolution operations as o gets large.  

Residual blocks with shortcut connections were utilized between successive layers, as 

in ResNet [12], to increase accuracy and further decrease required parameters. However, 

rather than use shortcut connections to connect (wide) layer inputs to blocks, shortcuts 

between the (narrow) bottleneck sub-blocks were applied—using the idea that the most 

  Table 4.1: Bottleneck Residual Block Structure 

Input Operator Output 

h×w×k 1×1 conv2d, ReLU6 h×w×(tk) 

h×w×tk 3×3 dwise s=s, ReLU6 ℎ

𝑠
×

𝑤

𝑠
×(tk) 

ℎ

𝑠
×

𝑤

𝑠
×tk Linear 1×1 conv2d ℎ

𝑠
×

𝑤

𝑠
×k’ 

h = height, w = width, k = channels, s = stride. 
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relevant information is contained in the bottlenecks—and it is those bottlenecks that 

should be given as input to a block. This forms the basis of the inverted residual block. 

The structure of this block is shown in Table 4.1.  

 

Figure 4.1:  Standard vs. Depthwise separable convolution operations to demonstrate the effectiveness 

of depthwise separable convolution over standard. The 7×7 input with 3 channels and 128 filters are 

for illustrative purposes, and arbitrary. (a) Standard convolution. Depthwise separable convolution uses 

less parameters than standard convolution because separates the process in 2 parts: (b) Depthwise 

convolution. (b) Pointwise convolution.  

(a) 

(c) 

(b) 
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Instead of using convolutions to successively narrow layers within a block as in 

ResNet, the bottleneck input layer (by a 1×1 convolution) was first expanded and then 

narrowed using a depthwise separable convolution, which lowers the number of 

parameters compared to the regular residual block.  

Note that the ReLU6 non-linear activation function is defined as follows: 

𝑅𝑒𝐿𝑈6(𝑥) = {

6, 𝑖𝑓 𝑥 > 6
 𝑥, 𝑖𝑓 0 < 𝑥 ≤ 6

 0, 𝑖𝑓 𝑥 ≤ 0
     (4.1) 

ReLU6 has been shown to perform well in low-precision applications [4]. 

The inverted residual improves the ability of a gradient to backpropagate across 

multiple layers, similar to a classical residual connection but using a linear bottleneck. 

The bottleneck residual block can be treated as a single operation, and the amount of 

memory used depends on the size of the bottleneck rather than the size of tensors, making 

this method more memory efficient. 

The feature extractor architecture contains the initial fully convolutional layer with 32 

filters, followed by 19 bottleneck residual blocks. The kernel size is 3×3, for non-linearity 

ReLU6 is used, and dropout and batch normalization are utilized during training. A 

detailed architecture for the feature extractor can be found in Table 4.2. 

The neural network allows scale-invariant license plate prediction because layers 

decrease in size progressively and the convolutional model for localization is different for 

each feature layer. 

One difference in the proposed model compared to original SSD is the input image 

size; in original SSD, this could be either 300×300 or 512×512, but in the proposed system 

the size is reduced to 224×224, which increases speed but can decrease accuracy. 

However, using residual bottlenecks allows high accuracy with less parameters and 

multiplication operations in the inference process—inference is the stage in which a 

trained model is used to make predictions on input data and samples (see section 4.2.3). 
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The first layer of the modified SSD is attached to the expansion of layer 15 with output 

stride of 16. The second and the rest of the layers are attached to the top of the last layer, 

which has an output stride of 32. Finally, all layers are attached to the feature map of the 

output. A modified SSD was used in which all standard convolutions in the prediction 

layers are replaced with depthwise separable convolutions. The modified SSD is faster 

than other object detection variants while offering comparable accuracy [30], [48], 

making it a useful architecture for all devices and especially those with low computational 

complexity. The proposed architecture is shown in Figure 4.2. 

4.2.2  Training Process 

Training is the phase in which a network learns patterns from given data. In training, 

each layer of data is assigned some random weights and a classifier runs a “forward pass” 

(propagating weights and calculating outputs) through the data, predicting the class labels 

Table 4.2: License plate localization neural network used as feature extractor, * Layers that are used as input 

for the detection block. 

Input Size Operator Repetition Kernel 

300×300×3 Conv2d 1 3×3 

150×150×32 Bottleneck 1 3×3 

150×150×16 Bottleneck 2 3×3 

75×75×24 Bottleneck 3 3×3 

38×38×32 Bottleneck 4 3×3 

19×19×64 Bottleneck 3 3×3 

*19×19×576 Bottleneck 3 3×3 

*10×10×1280 Bottleneck 1 3×3 

*5×5×512 Conv2d 2 3×3 

*3×3×256 Conv2d 2 3×3 

*2×2×256 Conv2d 2 3×3 

*1×1×128 Conv2d 1 3×3 
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and scores using those weights. The class scores are then compared against the actual 

labels and an error is computed via a L1 loss function for prior box learning and a log 

Softmax of cross-entropy for class learning. This error is then backpropagated through 

the network and weights are updated accordingly via some algorithm such as gradient 

descent. One complete pass through all training samples is called an epoch.   

Training is computationally very expensive. To make training faster, data is divided 

into batches, and weights are updated after each batch; this method takes less time to 

converge, and fewer epochs are needed to construct an adequate DL model from the data. 

Training was performed using a single class: the license plate. A supervised learning 

apparatus was utilized with all license plate regions labelled/annotated using labelImg 

[92]. Rectangular bounding boxes were drawn about a plate region to minimize irrelevant 

background area around the plate. From a labelled image, labelImg creates an XML file 

that describes the location of a plate within the image and indicates its class. This process 

was used for each image of the training dataset.  

See Figure 4.3 for examples of labelled images.  

2242×3 

Figure 4.2:  Architecture of the proposed license plate localization method. This network is based on Single Shot 

MultiBox Detector, but differs in that the proposed architecture uses depthwise separable convolution, as 

opposed to standard convolutions, and layers of linear bottlenecks with inverted residuals. Note that the 

bottleneck layers contain the depthwise separable convolutions, which are comprised of a depthwise convolution 

followed by a pointwise convolution. For more information on depthwise separable convolution. Car images 

from the Caltech dataset . 

 

http://machinelearningmastery.com/gradient-descent-for-machine-learning/
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Figure 4.3:  Images of plate regions on vehicles labelled using labelImg  (with emphasis added by 

manually drawing yellow boxes around the labelled plate region). From each of these, a respective XML file 

will be generated for record creation and training/testing. The first row contains images from the Caltech 

dataset , the second row from the University of Zagreb dataset , and the third from the NTUA 

Medialab dataset . 
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Labelled data is then split into train and test sets: 80% of images are randomly taken 

for training, and 20% for testing. These images are joined in respective training and testing 

record files. 

Setup and configuration of the hyperparameters are made. The most important 

hyperparameters to tune are learning rate, optimizer, batch size, and epochs.  

During an iterative process called training, a model adjusts its weights to attempt to 

achieve the minimum loss in feature space as determined by some loss function [93]; the 

magnitude of the weight adjustments is governed by the learning rate hyperparameter [94]. 

A higher learning rate enables the model to learn faster, but it may miss the global 

minimum loss and only (unstably) reach some local minimum surrounding the global. A 

lower learning rate gives a better chance to find the minimum loss, but the model may get 

“stuck” at a local minimum. As lower learning rate typically requires more epochs for 

convergence, meaning exhausting more time and memory capacity resources. The 

optimizer is responsible for changing the learning rate and weights of neurons in the 

neural network to reach the minimum loss, typically via a process called backpropagation. 

The optimizer is important to achieve the highest possible accuracy or minimum loss.  A 

common solution is to start with a higher learning rate that progressively decays throughout 

the training cycle [94]. 

Batch size refers to the number of training examples utilized in one iteration and 

subsequent weight adjustment [95]. When the batch size is too low, the network weights 

are too frequently adjusted on too little information, meaning the model cannot effectively 

learn from the data or (within a reasonable period if at all) converge to a final state. This 

negatively impacts total training time and accuracy. 

An epoch refers to one whole processing (and subsequent backpropagation) of the 

entire training dataset by the model [17]. Multiple epochs of training are typically 

required. Training with too few epochs may result in under fitting because the neural 

network has not seen the data enough times to learn relevant patterns [95]. Conversely, 

training with too many epochs may lead to overfitting, where the model begins to 
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associate “feature noise” within the training set as relevant to the task; this means the 

model can predict the training data very well but cannot sufficiently generalize to unseen 

data. A validation set independent from the training set can help overcome this problem; 

the validation set is iteratively used to evaluate the model after a certain number of training 

epochs, and where validation set performance starts to decrease indicates the point at 

which the model is likely starting to become overfit.  

The hyperparameters are as follows: a batch size of 24, an initial learning rate of 0.004, 

the Adam optimizer, and a momentum optimizer value of 0.9. 

Our model was trained using a Tesla K40c GPU on a computer whose operating 

system is Ubuntu 18.04 LTS. The framework was Tensorflow v. 1.8 running on Python 

3.6.5. The model was trained across 200,000 iterations. Finally, a graph file is exported 

from the new trained model containing weights used in inference. 

4.2.3  Inference Process 

Training demands high computational throughput; thus, it is most often performed by 

GPUs, given their massive parallelism, simple control flow, and energy efficiency. For 

inference, however, the paramount performance goal is latency. To minimize the 

network’s end-to-end response time, inference typically batches a much smaller number 

of inputs than training, as automated services relying on inference are required to respond 

in near real-time. 

Inference can be sped up by using a GPU as opposed to a CPU as GPUs perform 

vector and matrix manipulation much faster. A DL solution requires many multiplication 

operations to produce inference; thus, DL typically requires a GPU with many TFLOPS 

to increase parallel processing and reduce processing time to a duration adequate and 

sufficient for normal application operation. 
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Our trained model is compared with other works using a Tesla K40c GPU (see section 

4.3.2). However, the proposed LPL model obtains high performance at a lower price, 

designed to be fast and accurate even when running on commodity hardware. 

4.2.4  Proposed DL LPL Algorithm 

An algorithm that can run sufficiently fast and efficient on computers using only a 

CPU was defined, as well as low-cost devices such as embedded systems, smartphones, 

tablets, and other personal mobile devices. This algorithm consists of three stages: 

- Video input multithreading 

- Motion detection 

- DL inference 

The diagram for the proposed algorithm is shown in Figure 4.4.  

Normally, accessing a network/USB camera is a blocking operation; the main code is 

blocked until the frame is read from the camera device and returned to the main script. 

This can cause an input/output bottleneck, and thus reducing the time to capture each 

frame is especially important when a real-time application is required. An LPL system 

Grayscale 

Multi-threading 

Inference 

Motion detection 

Input Video 

Video Threading 
Resize Image 

Deep Learning Inference 

Gaussian Filters 

Background Difference 

License Plate Located 

Figure 4.4:  Program flow of proposed multi-threading 

video capture with motion detection then inference 

algorithm.  



80 

 

cannot waste any time between captures because a fast-travelling vehicle, such as on a 

highway, could cross in that moment. 

Recognizing this importance, an I/O thread separate from the main script was defined 

that allows frames to be read continuously from the camera; frames are read and buffered 

from the I/O thread while the main thread processes the current frame. Once the main 

thread has finished processing its frame, it simply grabs the current frame from the I/O 

thread. Thus, LPL is achieved without having to wait for blocking I/O operations; this 

makes the system more efficient when used on CPUs, and the overall frames per second 

(FPS) is increased. 

Since LPL must occur in the presence of a vehicle, a motion detection process was 

developed which detects when a car is in the frame; only after the vehicle completely 

leaves the bottom of the frame will the LPL object detection DL apparatus run, to capture 

the vehicle’s rear license plate. This makes the overall algorithm more efficient and 

increases the system’s maximum FPS, as LPL inference is performed only when required. 

An example of when to start detection is shown in Figure 4.5.  

The motion detection process utilizes the underlying assumption that the background 

of consecutive captured video frames is largely static and immutable. Therefore, the 

background can be modelled and supervised for substantial changes. When such a change 

occurs, it is detected and corresponds to movement in the video capture. Because 

movement is invariant to color, the image is converted to grayscale and softened via 

Gaussian blur.  

Finally, Gaussian smoothing is applied to the average pixel intensities, which softens 

high frequency noise. 

The algorithm takes the first frame of the video as the static background, though 

theoretically any image could be imported for use as the background. The difference 

between the background frame and the new subsequent frames of the video transmission 

is calculated; this difference is a simple subtraction, taking the absolute value of 

corresponding pixel intensity differences:  
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∆𝑓𝑟𝑎𝑚𝑒 = | 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 |   (4.2) 

This subtraction causes the background in a subsequent frame to appear black while 

regions that contain non-background, such as moving vehicles, are white. This implies 

that larger frame deltas indicate that movement is occurring in the image. The ∆frame was 

adjust to reveal the regions of the image that have significant changes in pixel intensity 

values.  

The final step of this algorithm is inference, which is performed with the deep neural 

network model using a feed-forward algorithm that operates on each applicable video 

frame separately. The algorithm begins at the input layer and progressively moves 

forward layer by layer. At each layer the feed-forward algorithm updates the state of each 

unit; this process terminates once all units in the output layer are updated. The inferred 

class corresponds to the output layer unit with the largest state, the data within the 

Figure 4.5: (a-d) Frames of a vehicle travelling at highway speed passing under a camera setup. Vehicle 

presence would be detected in (a) via background subtraction against the (otherwise vehicle-clear) road. Deep 

learning license plate localization inference would occur in (c), when the vehicle is detected to have left the 

bottom of the frame and while the rear license plate is still visible; this minimizes the total number of frames 

over which inference occurs, thereby increasing the possible maximal frames per second. 

(a) (b) 

(c) (d) 
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localization bounding box region, and the confidence value of the output layer in its 

prediction of whether the region contains a valid license plate. 

4.3 Results 

4.3.1  Dataset Information 

Our solution involves a DL model with supervised learning trained using the datasets 

in Table 4.3. One such publicly available dataset may also be referred to as a public 

library. 

 In total there are 1207 sample images from different scenes and different countries. 

Many plates exhibit small amounts of rotation and skew. Others exhibit over or 

underexposure. Several plates are blurry, partially obscured by shadows, dirty, or 

otherwise distorted. These unideal conditions rarely occur in isolation; see Figure 4.6. 

 
(a) 

  
(b) 

 
(c) 

         
(d) 

Figure 4.6:  Different obstructions on license plates in images from the NTUA Medialab dataset [41]. (a) 

Rotated, Underexposed Plate. (b) Blurry, Overexposed Plate. (c) Skewed Plate. (d) Partially Shadow-covered 

Plate. 

 Table 4.3: Public datasets used to train the deep learning models 

Public Dataset 
# of Images in 

Set 
Image Size (px) 

Caltech Cars 1999 (Rear) 2 [96] 126 896×592 

University of Zagreb License Plate Detection, Recognition, 

and Automated Storage [100] 

510 640×480 

University of Athens (NTUA) Medialab LPR Database [102] 571 1792×1312, 800×600, 

640×480 
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4.3.2  Comparisons to Public Libraries 

Our tests were conducted using a Tesla K40c GPU on a computer whose operating 

system was Ubuntu 18.04 LTS. Experiments were implemented in Python 3.6.5 using the 

libraries Tensorflow v. 1.8 and OpenCV v. 3.4.0. 

Tests were conducted using an intersection over union (IoU) threshold of 0.5. 

Localized plate regions from all the public libraries described in section 4.3.1 are 

shown in Figure 4.7. 

4.3.2.1  The Caltech Dataset 

The Caltech Cars 1999 (Rear) 2 [96] public library is comprised of images of vehicles 

in Caltech parking lots. The plates are American and 120 are Californian; few other U.S. 

states are represented. All vehicles were photographed in daylight. Most plates are clearly 

visible, exhibit little rotation or skew, and are generally human-readable; though many 

Figure 4.7:  Images of vehicles and their corresponding respective localized license plates generated by the 

proposed method. The first row contains images from the Caltech dataset , the second row from the 

University of Zagreb dataset , and the third from the NTUA Medialab dataset .  
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plates are somewhat unfocused, and may have unideal exposure. Most license plates have 

a width-height ratio of approximately 2-2.5. A typical plate region occupies ≤ 1% of the 

total image, and is located on a vehicle that occupies approximately 20-40% of the image; 

the remainder of the image is (meaningless) background. Most plates contain darker 

alphanumeric characters on a lighter background. See Table 4.4 for comparisons. 

Our method has an accuracy of 98.4% and is 0.01% more accurate than the next closest 

[87]. Although [87] does not give a processing time, it is likely near the time given by 

[97] due to the similarities between their respective neural network processes—and the 

system localizes almost 14x faster than [97], which also uses a GPU (though their listed 

time was for a different dataset as no time was given for Caltech [96]). Reference [97] is 

also 0.36% less accurate than the proposed method. Moreover, [87] and [97] use Faster 

R-CNN as an object detector whereas the proposed solution uses a modified SSD. There 

are numerous advantages of SSD over Faster R-CNN, including hard negative mining to 

reduce negative bounding boxes during inference, and a concatenation of low- and high-

level discriminative features. 

Compared to [98], which uses a CPU, the proposed system localizes about 2x faster—

and it is 7.13% more accurate, meaning the proposed system correctly localizes about 9 

more plates than [98]. 

Table 4.4: Comparison of license plate localization algorithms on the Caltech Cars 1999 (rear) 2 dataset [96] 

Description of System/Algorithm 
Correct 

Detection % 

Processing Time Per 

Image (s) 

Proposed system 98.4 0.02 

Faster R-CNN for vehicle detection + CNN Classifier [87] 98.39 None given 

Faster R-CNN + RPN [97] 98.04 0.279 (estimated) 

Line Density Filter + SVM-based Classifier [98] 91.27 < 0.042 (estimated) 

Feature Extraction + Principal Visual Word [99] 84.4 7.19 
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Compared to [99], which uses a CPU, the proposed system localizes about 360x faster 

and it is 14% more accurate, meaning the proposed system recognizes about 18 more 

plates than [99]. 

4.3.2.2  The University of Zagreb Database 

The University of Zagreb Plate Detection, Recognition, and Automated Storage [100] 

public library is comprised of images of cars with Croatian license plates, though a small 

minority of other European plates are represented. Many are clearly visible and are 

generally human-readable; but some exhibit rotation, skew, blurs, shadows, and other 

unideal conditions. Some images have been captured in low-light conditions. Most license 

plates have a width-height ratio of approximately 5, and several have a ratio of 

approximately 1.46. A typical plate region occupies approximately 1-2% of the total 

image, and is located on a vehicle that, with few exceptions, occupies the majority, and 

in some cases the entirety, of the image; any remaining image space contains 

(meaningless) background. Most plates contain darker alphanumeric characters on a 

lighter background. See Table 4.5 for comparisons. 

Compared to [101], which uses a CPU, the system localizes 6x faster. The proposed 

system has an accuracy of 97.83%; this is 5.03% more accurate than [101], meaning the 

proposed system correctly localizes about 26 more plates. 

Table 4.5: Comparison of license plate localization algorithms on the University of Zagreb plate detection, 

recognition, and automated storage dataset [100] 

Description of System/Algorithm Correct Detection % Processing Time Per Image (s) 

Proposed system 97.83 0.02 

Corner-point Detection + Linear 

Discriminant Analysis-based 

Classifier [101] 

92.8 0.12 (estimated) 
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4.3.2.3  The NTUA MediaLab Dataset 

The NTUA Medialab LPR Database [102] is comprised of images of cars with Greek 

license plates. Most license plates have a width-height ratio of approximately 3.5-4.8. A 

typical focused plate region occupies < 1% to approximately 3% of the total image, 

though some plate regions occupy as large as 5-9%; a plate region is located on a vehicle 

that occupies anywhere from approximately 10% to the entirety of the total image; 

remaining image space may contain other vehicles with visible (but not necessarily 

readable) plates. Most plates contain darker alphanumeric characters on a lighter 

background. At the time of training and testing, the NTUA Medialab LPR database was 

split across 8 sample sets; for detailed set information see Table 4.6. See Table 4.7 for 

comparisons.  

The proposed system has an accuracy of 99.8% and is 1.35% more accurate than [103]. 

The system correctly localizes 2 more plates than [103] from Set 4, and 6 more plates than 

[103] from Set 8 (which contains complex images). Reference [103] utilizes a CPU and 

processes an image in 0.2 s, the same amount of time it took the system during the tests.  

Table 4.6: Set specifics of the NTUA Medialab LPR Database [102] 

Set # # of Images in Set Description 

1 136 Color images captured in daylight, with an easily visible plate region 

2 122 Zoomed view, with large and easily visible clear plate regions on a non-

complex background 

3 49 Images with plate regions obscured by shadows, and some with unideal 

illumination 

4 67 Similar to Set 1 

5 7 Blurred images 

6 3 Color images captured at night using an external flash 

7 26 Complex images with plate regions obscured by shadow 

8 161 Complex images with plate regions obscured by shadow and dirt 
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Compared to [88], which uses a CPU, the proposed system is 1.75x faster and is 

10.35% more accurate—and the accuracy gain over [88] would likely be even more had 

the results of [88] included Sets 7 and 8, which featured more complex images than the 

other sets against which [88] was tested. 

The proposed system misses localizing only one plate from the NTUA Medialab LPR 

Database [102], from Set 8. 

4.3.3  Comparisons to Popular DL Object Detection 

Frameworks 

The proposed LPL model was also tested for speed and efficiency using only a CPU, 

giving us a rough metric for compatibility with low computational complexity devices 

like smartphones and embedded systems. 

The DL solution was against two well-known DL architectures, SSD and YOLOv2. 

YOLOv2, particularly over its predecessor, is aimed at real-time object detection tasks 

[104].  

The tests were conducted using an Intel Core i7-2620M CPU (2.7 GHz) with 8 GiB 

of RAM on a computer whose operating system was Ubuntu 16.04 LTS. Experiments 

 Table 4.7: Comparison of License Plate Localization Algorithms on the NTUA Medialab LPR Database [102] 

Description of 

System/Algorithm 

Correct Detection Percentage By Set # (%) Correct 

Detection 

% 

Processing 

Time Per 

Image (s) 
1 2 3 4 5 6 7 8 

Proposed system 100 100 100 100 100 100 100 99.37 99.8 0.02 

Morphological 

Operations [3] 

100 100 100 97 100 100 100 95.65 98.45 0.02 

Connected 

Component 

Analysis [25] 

92.02 82.48 88.73 87.24 74 90.84 N/A N/A 89.45 (sets 

1 through 

6 only) 

0.035 
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were implemented in Python 3.6.5 using the libraries Tensorflow v. 1.8 and OpenCV v. 

3.4.0. 

Results are summarized in Table 4.8. The proposed architecture is 24x faster than, 

uses 6.1% of the parameters of, and uses 21.9x fewer multiply-add (MAdd) operations 

compared to YOLOv2. Against standard SSD [48], the proposed system is 7.5x faster, 

uses 8.6% of the parameters, and 44x fewer MAdds.  

4.3.4  Comparisons to other DL LPL Frameworks 

Because some DL LPL systems test using private databases, comparisons of accuracy 

and processing time (as in section 4.3.2) cannot be directly made.  

One such example is [90]. As of August 2018, one database used to test the accuracy 

of [90] is no longer available, and the other [98] is semi-private and for use on a case-by-

case basis only. Thus, the model was compared against [90] in terms of its neural network 

computational complexity. The tests were conducted using the same computer setup in 

section 4.3.3. Results are summarized in Table 4.9.  

Table 4.9: The proposed license plate localization deep learning architecture compared to other deep learning 

license plate localization architectures 

 

Network Parameters MAdd CPU Time Per Image (s) 

Proposed system 3.1M 0.8B 0.2 

ALMD-YOLO [34] 59.57M 1.81B 0.67 

  Table 4.8: The proposed license plate localization deep learning architecture compared to popular DL 

architectures 

Network Parameters MAdd CPU Time Per Image (s) 

Proposed system 3.1M 0.8B 0.2 

SSD [48] 36.1M 35.2B 1.5 

YOLOv2 [104] 50.7M 17.5B 4.8 
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The proposed architecture is 3.35x faster than, uses 5.2% of the parameters of, and 

uses 2.26x fewer multiply-add (MAdd) operations compared to the ALMD-YOLO 

architecture described in [90]. Theoretically, the proposed model should perform more 

efficiently than [90], especially on devices with lower computational complexity. 

4.3.5  Real-life Real-time Testing 

License plate recognition systems often require connection to a server to localize 

license plates from a video feed. When the server is stationed at a remote location, high 

bandwidth per-camera is required, increasing the cost of the system. To mitigate this, a 

real-time processing system at the edge was proposed using the low-cost embedded 

system Raspberry Pi 3 and an Intel Neural Compute Stick 2 (NCS2).  

The Raspberry Pi 3 device with a quad core 1.2GHz processing power chip and 1 GB 

of RAM. The NCS2 enables a CNN to be deployed on a low-power chip, thereby enabling 

real-time inference for license plate detection without requiring a connection to the cloud 

or a large processing server. The NCS2 allows 1 trillion operations per seconds (TOPS), 

and the embedded system was used for testing. The camera utilized was a Samsung 

S5K2L1 with a 12 MP resolution and a sensor of 1.4 µm; 1/2.6" and 10x optical zoom 

was used. The camera streams a 60 FPS video to the Raspberry Pi 3. 

Using the algorithm proposed in section 4.2.4, 99.77% localization accuracy was 

achieved when testing with 898 vehicles. The system can run at an average of 13 FPS. 

Testing was conducted during summer, winter and snowy conditions, and some license 

plates are covered with mud and dust; this is itself a testament to the robustness of the 

proposed architecture, given that the training images used were captured in non-winter 

conditions. The test occurred on a highway with average vehicle speeds in excess of 80 

km/h, or about 50 mph. 

The proposed DL design is based on multibox detection and it can thus detect multiple 

license plates simultaneously with the same processing time as with a single plate; see 

Figure 4.8. 



90 

 

 

Figure 4.8: Real-time can detect one or multiple license plates at the same time. 

Some ALPR systems are susceptible to the angle of the license plate within an image. 

However, using DL methods greatly mitigates this via the rotationally-invariant nature of 

feature-map outputs from CNNs, and therefore an angled plate or camera will not 

generally be a problem. 

A hyperlink to the videos showing the proposed system operating in a real-life real-

time high-speed highway environment can be found at https://youtu.be/7eyfGCW_UwQ 

4.4 Summary 

In this chapter, a deep learning apparatus for LPL was proposed. The LPL system uses 

inverted residual blocks, linear bottlenecks, and depthwise separable convolutions. It 

requires only 3.1M parameters and 0.8B MAdds. Using a GPU, per-image plate 

localization takes only 20 ms of processing time.  

The proposed system was trained using the Caltech Cars 1999 (Rear) 2 library, the 

University of Zagreb License Plate Detection, Recognition, and Automated Storage 

library, and the NTUA Medialab LPR Database. Testing achieved 98.4%, 97.83%, and 

99.8% correct detection accuracy over those same respective datasets.  

https://youtu.be/7eyfGCW_UwQ
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Plates regions were correctly identified despite rotations, skew, under or 

overexposure, blur, obstruction by shadows or dirt, and/or other distortions. This shows 

that the proposed model is robust against non-ideal plate captures and environmental 

conditions, and reliable even in images with complex backgrounds. 

Using the proposed multi-threading video capture with motion detection then 

inference algorithm, frames are read and buffered through a multithreading process when 

the system detects motion, and sent to the DL model for LPL inference. The proposed DL 

model and algorithm allows DL-based LPL to be efficient, accurate, and well-suited for 

real-time applications on low-computational devices; LPL is achieved within an 

acceptable time frame (77 ms) when an embedded system and neural compute stick is 

used. The algorithm was tested on highway conditions with vehicles traveling in excess 

of 80 km/h and achieved 99.77% localization over 898 test vehicles. 

As both the localization processing time and neural network parameter count are 

relatively low in the current system, especially compared to other deep learning solutions, 

the framework may be easily implemented on portable devices and devices with low 

computational power. This should make ITS applications using ALPR less expensive 

from both a hardware and consumer standpoint, facilitate and expedite the advancement 

and creation of ITS technology, and make ITS applications more accessible for a greater 

percentage of society. 
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Chapter 5 

Real-time CVSA Decals Recognition System 

Using Deep Convolutional Neural Network 

Architectures1 

The Commercial Vehicle Safety Alliance (CVSA) aims to achieve uniformity, 

compatibility and reciprocity of commercial motor vehicle inspections and enforcement 

by certified inspectors dedicated to driver and vehicle safety. Commercial vehicles that 

pass a CVSA inspection are eligible for a decal representing a commitment to safety. In 

this chapter, a 2-step automatic CVSA decal recognition system using deep convolutional 

neural network architectures was proposed. The first step localizes a vehicle’s windshield 

and the CVSA decal within, and classifies the decal colour. The CVSA decal is cropped 

and used as input to the second stage, which localizes and classifies a digit and the corner-

cut of a CVSA decal. With the corner-cut, colour, and digit, the system can determine the 

decal’s date of issue. This chapter is structured as follow Section 5.1 contains 

introduction; Section 5.2 describes the proposed architecture; Section 5.3 describes the 

labelling and training process for the proposed solution; Section 5.4 describes real-time 

processing using different platforms; results are in Section 5.5; and Section 5.6 concludes 

this chapter.  

______________________________ 

   1The content of this chapter is originally published in IET Intelligent Transport Systems. The manuscript has 

been reformatted for inclusion in this thesis.  

   Juan Yépez (JY), Riel Castro-Zunti (RC), Younhee Choi (YC), and Seok-Bum Ko (SK) designed the study. JY 

designed the network architecture, trained and tested the models, implemented the system on the edge devices, 

and provided results analysis. RC helped annotated the images from dataset and proofreading the manuscript. JY 

prepared the manuscript with contributions from YC and SK to the manuscript structure, readability and analysis 

and discussion of the results 
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5.1 Introduction 

4 million commercial vehicle inspections are conducted every year throughout North 

America to ensure the safe operations of vehicles on the road [105]. Specially trained 

safety inspectors in each state, province, and territory inspect commercial vehicles based 

on procedures, policy, and criteria developed by the Commercial Vehicle Safety Alliance 

(CVSA), a non-profit association that operates throughout the U.S., Canada, and Mexico 

and regulates and improves commercial vehicle safety standards [105]. 

The CVSA was established to encourage the collaboration of law enforcement, 

government, and industry to promote an environment free of commercial vehicle crashes, 

deaths, and injuries. This would be achieved by establishing effective transportation 

safety standards for motor carriers, drivers, vehicles, and inspectors through compliance, 

education, awareness, training, and enforcement programs.  

A vehicle that passes inspection is issued a decal that is typically affixed to the 

windshield of a commercial vehicle. This decal contains information that reveals the date 

of issue. 

The decal’s color, as seen in Figure 5.1, indicates the calendar quarter in which the 

commercial vehicle was last inspected [105]: 

 
Figure 5.1: CVSA decal color types. 
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- Green represents January through March. 

- Yellow represents April through June. 

- Orange represents July through September. 

- White represents October through December. 

The decal may have one or two corners cut, indicating the month of issuance [105]. 

The year of issuance is represented on the decal by a single digit (e.g., 2018 is indicated 

by the number “8”). The CVSA trademark is below the year.  

Despite the CVSA’s reach throughout North America, there are no commercial 

automatic CVSA decal recognition systems. In recent years, convolutional neural 

networks (CNNs) have brought impressive improvements to object detection projects 

[30], [106], [107]. Object detection locates and classifies regions of interest (ROIs) within 

images. However, detecting small objects remains challenging: for a neural network to 

have fast prediction time, it must have a relatively low input resolution (e.g. 300 × 300 

px). Images input to the network must be downscaled to fit the network, meaning the loss 

of details important for object recognition further down the system’s pipeline; this makes 

a one stage system impractical. A larger neural network input size may improve detection 

of small objects, but the subsequent processing time increase generally renders such 

systems too slow for real-time processing on commodity hardware. Though multiple 

networks can be chained, with one specifically focusing on small objects of interest, each 

stage increases network latency, thereby decreasing efficiency [108]. MobileDet [39] is 

the current state-of-the-art feature extractor for object detection models on mobile 

devices; thus, we chose it as the baseline/backbone and customized it to the tasks. 

In this thesis, the following are proposed and presented: 

A novel two-stage automatic real-time edge CVSA Decal Recognition System 

(CDRS). A two object detection architectures customized for detection and recognition 

tasks was designed: the first architecture focuses on small RoIs, specifically decals in the 

context of a vehicle’s windshield; the second architecture provides fast prediction for digit 
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and corner-cut recognition. The two-stage system effectively reduces the number of false 

positives whilst achieving high accuracy. 

A novel “7-spots” method for video stream prediction operating at the CDRS’s second 

stage. When a truck enters the field of view of a camera setup, it is relatively far away, 

making its CVSA decal in the first few frames appear small and blurry. The 7-spots 

method provides better performance by evaluating the last 7 detected decal images per-

truck—when the decal is closer to the camera and thus larger and sharper—and doing 

majority voting. Moreover, this method reduces false positives by assuming <2 

consecutive detections to be noise. It is also more efficient because the CDRS predicts 

only up to 7 decals (as one composite image) rather than all detected decals.  

A performance comparison of the CDRS implemented using several popular edge 

hardware accelerators—with vendors including Nvidia, Intel, and Google—and 

demonstrated real-time performance therein. With high frames per second (FPS), the 

proposed CDRS detects trucks, decals, and provides decal information.  

5.2 Proposed Architecture 

The resolution of an input to an object detection network is oftentimes much smaller 

than the original image. Several object detection architectures, e.g. SSD [48], use an input 

size of 300 x 300 pixels despite the original image being 1280 x 720 pixels (high definition 

(HD)) or higher. Although an input with small resolution reduces the parameters and thus 

the processing time, details specifically from small objects are lost. 

According to the MS COCO benchmark [109], objects with a resolution less than 32 

x 32 pixels are defined as small, between 32 x 32 and 96 x 96 as medium, and greater than 

96 x 96 pixels as large. Object detection networks struggle to detect small objects [110] 

because small objects have less pixels and cover a smaller area of the input. Fast and 

accurate CVSA decal detection is a difficult task because decals are small, and any input 

reduction would cause severe degradation in decal image quality. 
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This issue may be potentially mitigated by dividing detection into multiple stages that 

are processed sequentially [108]. E.g. detection pipelines that treat object proposals 

independently and predict bounding box locations and their classification scores 

separately [111]. Although such architectures have achieved good detection performance, 

this methodology is generally limited in that it causes delays and difficulties that are 

unacceptable and irreconcilable for real-time applications (>30 FPS) [112].  

If a conventional multi-stage methodology is applied for the proposed CDRS, the 

system would require 5 stages: in the first stage, trucks or windshields are detected; in the 

second stage, the CVSA decal is detected; the third would classify the colour; the fourth 

would classify the corner cut; finally, digit detection and classification. The output of the 

first stage would be a bounding box that would be cropped and sent to the second stage, 

whose output would be the decal which would be cropped and used as input to stages 

three through five. After all stages are processed, the system can identify the month and 

year of the CVSA decal. 

Though a CDRS system can be created using a conventional multi-stage methodology, 

the resultant five-stage design—with separate networks for localization (truck and decal) 

and each CVSA attribute (colour, digit, and corner cut)—is marred with inefficiencies. 

Having a new network at each stage increases both the total system software size and the 

system latency; such issues are compounded when using a hardware accelerator.  

  The proposed two-stage system uses custom task-tailored architectures based on a 

MobileDet backbone. The number and types of layers are selected after training and 

evaluating several backbone configurations using NAS [39]. NAS has demonstrated a 

superior ability to learn models that are both accurate and efficient on a specific hardware 

platform. The proposed models are hardware accelerator compatible and can run in 

parallel to reduce processing time compared to a five-stage system. MobileDet collects 

the feature maps at six different endpoints; two are consumed by the head, being processed 

and concatenated in parallel to generate location and classification values. The stages are 

as follows: 
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- Windshield detection, CVSA decal detection, and colour classification. 

- Digit and edge detection and classification. 

5.2.1  Windshield Detection, CVSA Decal Detection, 

and Colour Classification 

The objective of the first stage is to mitigate the problem of the small input size. Thus, 

the standard SSD resolution was increased from 300 x 300 to 320 x 320 px. Although this 

cannot overcome the problem, it allows for better decal details.  

The first layer of the customized backbone contains a CNN with stride 2; this 

downsamples the input without a max pooling layer and requires less computation than 

stride one [113].  

Next, several Fused layers was used with stride one or two, and kernels 3×3 or 5×5. 

Tucker and Fused layers use regular convolutions better suited to feature extraction, 

especially important in the backbone’s early stages; depthwise convolutions are less 

efficient at this task [39]. Finally, several IBN layers was used before the endpoints to 

improve sensitivity to small objects. Table 5.1 shows the first stage backbone. Each line 

describes a layer with kernel k, expansion e, repeated n times, with residual r, and stride 

s. C4 and C5 are endpoints into the head. 

Because the truck is large and can occupy many consecutive video frames, the CDRS 

does not detect the truck itself; instead, the first network stage detects both the vehicle 

windshield and the CVSA decal. Thus, the approach differs from Yonetsu et al. [54] that 

detects the vehicle in their first stage; by detecting the windshield, the proposed CDRS 

implicitly determines the presence of a truck. This helps the system reduce latency 

compared to [54]. Additionally, the CDRS’s first stage determines the colour of the CVSA 

decal, streamlining the design and improving its functionality. The proposed backbone 

has five classes: the windshield; and four for decals of varying colours that indicate the 

calendar quarter. Though small object colour classification is generally difficult, high 
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mAP results for this task are achievable because decals only have four colours that are 

relatively easily differentiated. 

5.2.2  Digit and Corner-cut Detection and Classification 

The output of the first stage is the localized decal as cropped from the originally 

inputted frame. This decal crop is the input to the first stage, which detects and classifies 

the decal’s digit and corner-cut. The locations and sizes of the digit and corner-cut are 

generally standardized and are large relative to the whole decal. Thus, the backbone can 

be simpler and focus on larger objects.  

  Table 5.1: First stage backbone 

Input Layer k E N R s 

3202 x 3 Conv 3×3 N/A 1 No 2 

1602 x 32 Tucker 3×3 0.25-0.75 1 No 1 

1602 x 16 Fused 3×3 8 1 No 2 

802 x 16 Fused 3×3 4 1 Yes 1 

802 x 16 Fused 3×3 8 1 Yes 1 

802 x 16 Fused 3×3 4 1 Yes 1 

802 x 16 Fused 5×5 8 1 No 2 

402 x 40 Fused 3×3 4 3 Yes 1 

402 x 40 IBN 3×3 8 1 No 2 

202 x 72 IBN 3×3 8 1 Yes 1 

202 x 72 Fused 3×3 4 2 Yes 1 

202 x 72 IBN 5×5 8 1 No 1 

202 x 96 IBN 5×5 8 1 Yes 1 

202 x 96 (C4) IBN 3×3 8 2 Yes 1 

202 x 96 IBN 5×5 8 1 No 2 

102 x 120 IBN 3×3 8 1 Yes 1 

102 x 120 IBN 5×5 4 1 Yes 1 

102 x 120 IBN 3×3 8 1 Yes 1 

102 × 120 (C5) IBN 5×5 8 1 Yes 1 
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Table 5.2 shows the second stage backbone. The first 3 layers of the customized 

backbone are similar to the first stage, to extract the most important features from the 

input image. Repeated layers were removed, and no layers have a residual function; this 

discards details for small objects, which is not necessary in this stage. The proposed 

architecture is thus much faster than its baseline with no precision loss; this illustrates the 

parameter-wise superiority of slimmer custom architectures compared to deep general 

ones. This backbone has 7 layers, compared to 23 in that of first stage. The proposed 

network localizes the top part of the decal and identifies the corner-cut, which could be 

one of three classes: no corner cuts; one corner is cut; and both corners are cut. The 

remaining classes correspond to digit recognition (0 through 9).  

5.3 Labelling and Training 

The dataset used in this work was provided by International Road Dynamics Inc. 

(IRD) [114]. The dataset contains 5869 still images and one 30-minute video with 151 

trucks (17 with the absence of a CVSA decal) recorded at a North American commercial 

vehicle check stop. Figure 5.2 shows the two main types of images collected. Both Figure 

5.2 (a) and Figure 5.2 (b) show the front part of the truck and were captured in daylight 

conditions. The CVSA decals have few rotations or skews. Several CVSA decals are 

blurry, making it difficult to read their digits.   

 

  Table 5.2: Second stage backbone 

Input Layer  k E S 

3202 x 3 Conv  3×3 N/A 2 

1602 x 32 Tucker  3×3 0.25-0.75 1 

1602 x 16 Fused  3×3 8 2 

802 x 16 Fused  5×5 8 2 

402 x 40 IBN  3×3 8 2 

202 x 72 (C4) IBN  5×5 8 1 

202 x 96 (C5) IBN  5×5 8 2 
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Figure 5.2: Trucks with CVSA decals on different highways. 

 

(a) 

(b) 
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Because the dataset contained a relatively small number of images, it was explicitly 

inflated using data augmentation techniques. Histogram equalization of the Y channel in 

YUV colour space was performed, different zoom levels were (e.g. 2x, 4x, etc.) applied to 

the decals, and decals were translated to other areas within the image. Dataset 

augmentation brought the dataset to 6083 images for training and testing. This 

augmentation increases representation and may contribute to less overfitting. A random 

80% of the images for training and 20% for testing were used. Images were resized to 

320×320 px for training and testing.  

The graphical image annotation program “LabelImg” [92] was used to draw a 

bounding boxes around each ROI and assign each box a class label; a sample annotation 

can be observed in Figure 5.3. Annotations are saved as PASCAL VOC-conforming XML 

files and are used to generate TFRecords, which store a sequence of binary records in a 

way that allows for the efficient import (from TensorFlow’s perspective) of annotated 

image data. 

The networks were trained from scratch to 50,000 steps using TensorFlow 1.15 on a 

Tesla K40c GPU in an Ubuntu 18.04 LTS computer. First and second stage networks 

were trained with the same hyperparameters: a batch size of 16; categorical cross-entropy 

loss; and a stochastic gradient descent optimizer with an initial learning rate of 0.8, 

lowered to 0.013 after 15,000 steps, with 0.9 momentum, 0.97 decay, and 0.001 epsilon. 

Finally, because CVSA decals are typically much smaller than objects in the COCO 

dataset [109], the scale of the smallest anchor boxes was reduced to 2 in the first network.  

5.3.1  First Stage 

In the first stage, the truck’s windshields and the CVSA decals from the augmented 

dataset were labelled. The colour of the decals that represent the calendar quarter is also 

annotated. The annotated dataset was used to train the network shown in Table 5.1. Once 

the proposed network is trained, the resulting model can predict windshields and decals 

at the same time. 
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Figure 5.3: Windshield and CVSA decal labelled using the LabelImg program. 

If bounding boxes for a vehicle’s windshield and a CVSA decal are predicted via the 

inference process, their locations are used to determine if the decal is located within the 

windshield. If they are, the predicted CVSA decal is assumed to be valid. Else—as is the 

case for objects located elsewhere on the truck/road that are visually similar to decals—

the prediction is discarded. The decal’s predicted bounding box is cropped from the 

original image and inputted to the second stage.  

Because a decal occupies less than 1% of the input image area, lane markings or other 

vehicle decorations can be confused as CVSA decals. Confirming that a predicted CVSA 

decal is within a vehicle’s windshield is an effective measure to reduce the number of 

potential false positives. 

Detecting a windshield is a practical way to determine the presence of a vehicle from 

streaming video: if a windshield is detected, a vehicle must also be there. The CDRS saves 

each frame that contains a detected windshield in an image array. If a CVSA decal is also 

detected, a “Found” status is set therein; else, it is set to “Not_found”. After the truck 

passes (i.e. the end of consecutive frames containing a windshield), the CDRS saves (as 
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an image file) the “Found” frame located closest to the middle of the array; empirically, 

this middle image was determined to contain the windshield centred in the frame, which 

provides the best view of the truck (for validation purposes and/or future work). 

5.3.2  Second stage 

For the second stage, the year-identifying digit and corner cut were annotated from 

cropped decals provided by the first stage. These annotated images were used to train the 

network shown in Table 5.2. Figure 5.4 shows a sample second stage annotation. 

 

Figure 5.4: Digit and corner-cut labelled in a CVSA decal. 

Integrating custom digit detection into the second stage has two main benefits over 

utilizing a third network specifically for optical character recognition (OCR, e.g. tesseract 

[115]). First, as aforementioned, additional networks produce a greater software model 

file size and additional latency. Second, as can be noted in Figs. 4 and 5, the digit appears 

almost blurred due to its small resolution; a network custom-trained on such 



104 

 

representations could handle blurred images more effectively than a generic OCR network 

trained without such considerations.  

From the detected information, the date of decal issuance can be found. Using Figure 

5.4 as an example, the system can use the information of the 0 digit, the 2 top corners cut, 

and the yellow decal colour to determine that the decal was issued in April 2020.   

The trained model can successfully and practically predict still images. However, 

when a video stream is processed, the same decal is detected multiple times in consecutive 

frames, leading to potentially redundant prediction computation. This leads to wasted 

resources and long processing times, especially when a CPU is used or when the model 

is deployed unoptimized on commodity hardware. A naive solution is to choose only one 

decal to be processed, but this could be a problem if the selected decal is blurry or 

otherwise unideal; this tends to happen during the first frames that a decal appears in the 

video, when the truck is far and the decal is very small. 

To mitigate the video stream processing time and turn the redundancy into an asset, a 

model was proposed that receives an input image comprised of up to 7 consecutive decal 

detections. Each decal in the input image has a size of 60×95 px. Once a decal is detected 

in the first stage, one of the 7 “spots” in the composite decal image are filled. If another 

decal is detected within the next 15 frames, this decal occupies the second spot; the 

procedure continues in this way, potentially overwriting earlier spots, until no decal is 

detected after 15 frames. If at least 2 spots are filled, the 7-spots image is inputted to the 

second stage model; else, the detection is assumed a false positive and is not predicted, 

which further reduces the potential for false positives. Note that 7 spots and 15 frames 

were chosen as thresholds by measuring the average frames a decal was present and the 

average frames between decals in the 30-minute video in the dataset. Figure 5.5 shows 

some example 7-spots input images. 

 Figure 5.5 (a) shows a CVSA decal issued in April 2020 which was detected at least 

seven times; its detections occupy all available spots. Figure 5.5 (b) shows a CVSA decal 
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issue in January 2020 where only five detections are found. Figure 5.5 (c) shows a CVSA 

decal issue in October 2019 with only three detections.  

To train the model used for video stream prediction, 51 7-spots images was used, like 

those shown in Figure 5.5, collected from the 30-minute video. Additionally, 5869 7-spots 

images were synthesized using decals from still images by randomly duplicating the decal 

to fill 3 to 7 spots. These images are used to train the network shown in Table 5.2. 

Detection and classification are performed over the filled spots, and the inference time is 

the same regardless of the number of spots filled. A majority vote over detections is used 

to determine a decal’s final qualities. If there is a tie, the value from the last decal is 

selected. 

 

Figure 5.5: (a) 7 spots filled, (b) 5 spots filled, and (c) 3 spots filled. 

(a) 

(c) 

(b) 
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5.4 Real-time Prediction 

The trained custom models was exported as frozen inference graph files (.pb). 

However, frozen graphs are optimized for GPU deployment, rather than for all platforms. 

Thus, to improve prediction speed, the models were converted to the appropriate native 

framework for each hardware accelerator.  

The Google Coral platform uses TensorFlow Lite (TFLite), the lightweight version of 

TensorFlow specifically designed for mobile platforms and embedded devices. It provides 

lower latency and a smaller binary size but tends to degrade accuracy—ideally, this 

degradation is negligible or offers a competitive speed-accuracy trade-off. TFLite 

supports a set of core operators tuned for mobile platforms, the desired medium for 

inference. First, models must be pruned [116] and quantized from FP32 to INT8 Then, 

models are converted to TFLite file format. Next, the Edge TPU compiler was used to 

rearrange layer weights from the TFLite file to a new compatible format. The compiler 

shows the layers that can perform inference on the Coral vs. the CPU.  

The Edge TPU has 8 MB of SRAM. A small amount of the RAM is reserved for the 

model's inference executable, and the remaining space is used to cache the model's 

parameter data. This enables faster prediction speed compared to fetching the parameter 

data from external memory. 

For Intel’s Movidius-based hardware, their Open-VINO toolkit was used which 

facilitates both the optimization of a deep learning model from a framework and the 

deployment of the model onto Intel hardware using an inference engine. It enables deep 

learning inference at the edge and supports heterogeneous execution across a variety of 

computer vision accelerators: CPUs, GPUs, Intel Movidius NCSs, and FPGAs. It supports 

more deep learning models out of the box than Google Coral. 

The Intel Inference Engine (IE) enables the deployment of the Tensorflow-trained 

models. Rather than using the original model for inference, the IE uses its Intermediate 

Representation (IR), which is optimized for execution on endpoint target devices. The 
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Intel Model Optimization Tool was used to generate the IR, comprised of two files (.xml 

and .bin) for each trained model. The USB stick-based Intel NCS and NCS2 supports Half 

Precision Floating Point (FP16) [117].  

NVIDIA’s Jetson Nano and Jetson Xavier, small AI computers for developers, were 

benchmarked. The models were deployed in two ways: using regular TensorFlow (with 

GPU support); and first optimizing them using NVIDIA’s TensorRT framework. 

TensorRT includes a deep learning inference optimizer and runtime engine for production 

deployment. TensorRT optimizes the original model by combining layers, optimizing 

kernels, pruning, and quantization. The models can be quantized using FP16 or INT8. 

Depending on the available resources of the Jetson, the framework runtime engine 

generates a file which improves latency, throughput, power, efficiency, and memory 

consumption. 

The Jetson Nano is a standalone computer and does not require additional hardware. 

The Coral USB accelerator and Intel’s Movidius hardware requires a computer for proper 

operation; they were paired with a Raspberry Pi 4 (RPi4) single-board computer. The 

RPi4 has 4GB of LPDDR4 RAM, a 1.5 GHz Broadcom quad-core processor, two USB 

3.0 and two USB 2.0 ports, two micro-HDMI video outputs, a gigabit Ethernet jack, and 

radios for 802.11ac Wi-Fi and Bluetooth 5.0. The USB 3.0 port was used to achieve 

maximum speed with the accelerators.  

The high-level programming language Python is very popular for data science, deep 

learning training, and model deployment. Python can be run interactively—a big 

advantage for vision or image processing applications. However, compared to C/C++, 

Python programs typically run slower, especially when a single board computer like the 

RPi4 or Jetson is used. Furthermore, library bindings for Python are usually less mature 

than C/C++. For those reasons, in this thesis C/C++ was used for model prediction.  

To further increase the inference speed, the open-source pipeline-based multimedia 

framework “GStreamer” was used, able to link a variety of media processing systems in 

complex workflows. Using GStreamer, a system can be built that reads frames in different 



108 

 

formats and even from different sources in parallel, process them, and export them to a 

file or stream them over a network. For the Jetsons, NVIDIA developed plugins for 

GStreamer including inferencing using TensorRT and encoding/decoding video streams 

using the hardware accelerator (NVDEC/NVENC). DeepStream is an NVIDIA plugin for 

GStreamer, and part of their GStreamer analytics SDK. DeepStream allows the entire 

pipeline to be processed on the GPU, with zero memory copy between the CPU and GPU; 

this makes the entire pipeline faster and more efficient.  

Figure 5.6 shows a screenshot of the proposed two-stage with 7-spots system as 

implemented on a Google Coral USB Accelerator attached to a RPi4. As can be noted in 

the top left corner, the video stream is being processed in real time.  

 

Figure 5.6: Real-time CVSA Decals Recognition Systems (CDRS) 
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5.5 Results 

5.5.1  Model Comparison 

The proposed CDRS method consists of two stages. The upper half of Table 5.3 

compares the complete proposed custom edge solution against those formed by state-of-

the-art detection architectures at the edge. Whereas the solution uses a different 

architecture at each stage, state-of-the-art comparison work is trained using the same 

model architecture at each stage. I.e., at each stage, the solution uses a different model 

with a different number of parameters, MAdds, file size, and prediction time; but, for 

other architectures, these values are the same at each stage. Thus, for reference, the 

bottommost 2 rows of Table 5.3 shows the values of each of the custom stages 

independently. Also shown in Table 5.3 are Stage Two results from both single (still 

image prediction) and 7-spots (VOD prediction) models. 

The model was evaluated using Mean Average Precision (mAP) with a prediction 

Intersection Over Union (IoU) ≥ 0.5 (@0.5), a commonly used benchmark in object 

detection e.g. for the PASCAL VOC challenge [118]. Figure 5.7 shows mAP@0.5 

comparison results. The proposed Stage One model achieves the highest mAP@0.5—

98.5%—due to added layers for greater representational power for small objects. 

Although this means the Stage One model has more parameters and a larger size compared 

to other SSDLite-based models (though less than MobileNetV1 that uses SSD), it requires 

only 0.3 ms more time prediction time than MobileDet EdgeTPU, which has an inference 

time of 7.3 ms (half of 14.6 at each stage). This speed-mAP trade-off is very fair and 

ensures the model’s competitiveness for mobile and edge device implementations.  
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Figure 5.7: Comparison of accuracy (mAP) vs. processing time by stage 

 

Table 5.3 also shows that the proposed Stage Two models achieve 97.5% mAP@0.5 

for single image and 98.1% mAP@0.5 for VOD (7-spots) prediction. The propose model 

has the same single image accuracy as MobileDet Edge TPU but uses 17.4% less 

parameters for that stage. Moreover, the proposed model is 0.6% more accurate than 

SSDLite+MobileNetV2 for Stage Two 7-spots. The proposed model has 130,000 to 

5.33M less parameters, corresponding to a 31.6-41.6% lower MB file size than other 

models. Though SSD+MobileNetV1 and SSDLite+MobileNet V2 have slightly lower 

overall prediction times, the proposed model is 5.4-7.7% more accurate in Stage One and 

0.4-3% more accurate for Stage Two single image prediction.  

The file size of a regular MobileDet model is 5.04 MB. Using this architecture at each 

stage, the file size would be 10.08 MB, as seen in Table 5.3. Similarly, a two-stage 

SSD+MobileNetV1 occupies 11.04 MB and SSDLite+MobileNetV2 would occupy 9.42 

MB. Even worse, a hypothetical conventional multi-stage 5-stage system based on 
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MobileDet would have a file size of 25.20 MB. All these exceed the ~8 MB of SRAM in 

the Coral USB Accelerator; unlike the PCI accelerator variant that shares the host 

computer’s memory, the USB accelerator slowdown would be particularly impactful 

because loading from external memory would be required. Conversely, the custom 

models together occupy only 6.64 MB, which fits within the SRAM and thus makes the 

processing time faster than other networks. This shows the custom model’s superiority to 

other work when deployed on the Coral USB Accelerator, and potentially similar SRAM-

limited edge hardware. 

 

  Table 5.3: Summary of model training and results  

Model 

Input 

Image 

(W×H×3) 

MAdds 

(B) 

Params 

(M) 

File Size 

(MB) 

mAP

@0.5 

Stage 

One 

(%) 

mAP@0.5 

Stage Two (%) 
Per-Image 

Inference 

Time 

(ms)* 
Single 7-spots 

SSDLite + 

MobileDet 

EdgeTPU [39] 

320×320 3.06 8.40 10.08 96.6 97.5 96.3 14.6 

SSD + 

MobileNetV1 

[16] 

300×300 2.40 13.60 11.04 89.8 94.3 93.7 12.4 

SSDLite + 

MobileNetV2 

[80] 

300×300 1.60 8.60 9.42 92.1 96.9 96.5 12.4 

Proposed 

Model (Stage 

One + Two) 

320×320 2.15 8.27 6.44 98.5 97.5 98.1 13.5 

Stage One 

Only 
320×320 1.77 4.80 5.20 98.5 — —  7.6 

Stage Two 

Only 
320×320 0.38 3.47 1.44 — 97.5 98.1 5.9 

* Refers to time on the Google Coral. Note that where the File Size is >8MB, the Per-Image Inference Time is << 

total Processing Time due to SRAM fetching. 
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5.5.2  Hardware Accelerators Result Testing 

Table 5.4 shows the average prediction times of the system measured using different 

hardware implementations. Each system was tested using a 30-minute video with frame 

resolution 1280 x 720 pixels, h.264 compression, a bit rate of 1385 kbps, and streamed at 

60 FPS. The proposed CDRS was implemented on the Jetson Nano and Jetson AGX 

Xavier using both standard TensorFlow model files and TensorRT (TRT) files. A RPi4 

was also paired with the hardware accelerators Google Coral, NCS, and NCS2. Finally, 

results were provided of the RPi4 alone using both the standard TensorFlow model files 

and the optimized TFLite files, the latter built using C++ and OpenCV with VideoCore 

6, NEON register, and FP16 support. 

Implemented on an Nvidia Jetson AGX Xavier with DeepStream, the proposed system 

achieved 173.31 FPS—higher than other platforms. The Tensor cores and the GStreamer 

APIs allow the entire pipeline to run on the AGX Xavier’s Volta GPU, lessening 

prediction time. TensorRT was used for quantization. Also, the system deployed was 

tested on the AGX Xavier’s FP16 deep learning accelerator (DLA); this achieved 77.10 

FPS. Although the performance is less than using the AGX Xavier’s GPU, it is higher 

than other hardware accelerators. Finally, the model was tested with FP32 using 

TensorFlow directly (i.e. no TensorRT optimization); the performance was comparatively 

poor at 17.54 FPS.  

Using the two DLAs and GPU in parallel, the Jetson Xavier can achieve 327.51 FPS. 

This was tested by adding the stream mux plugin to the DeepStream pipeline, allowing 

the processing of multiple inputs sources simultaneously—four 60 FPS video streams 

were used as input. An object tracker plugin was used to run the primary and secondary 

detectors in parallel. Also, two probe plugins was added: one to control the detection using 

metadata, and the other to save images of the detected trucks and decals using OpenCV. 

Finally, a tiler plugin was added to show multiple inputs on the same screen. Figure 5.8 

shows the pipeline used for the CDRS on the Jetson Xavier. 
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The Jetson AGX Xavier has the best performance for the proposed system, and can 

run four simultaneous inputs real-time and without lag. However, the AGX Xavier’s 

commercial price is US $699, making it the most expensive solution.  

The RPi4 with the Google Coral USB accelerator achieves 60.83 FPS. The Coral USB 

accelerator and the RPi4 cost US $59.99 and US $55, respectively—a very competitive 

price to inference speed compared to the other options. 

  Table 5.4: Hardware accelerator benchmark 

Device Bits 

Stage One Stage Two (7-spots) FPS* 

Pre-

process 

(ms) 

Inference 

(ms) 

Post-

process 

(ms) 

Pre-

process 

(ms) 

Inference 

(ms) 

Post-

process 

(ms) 

 

NVIDIA 

Jetson Xavier 

(GPU) 

INT8 
2.30 1.24 2.23 2.11 1.16 2.15 173.31 

NVIDIA 

Jetson Xavier 

(DLA) 

FP16 2.30 7.94 2.23 2.11 6.16 2.15 77.10 

Coral USB 

Accelerator 
INT8 4.35 7.64 4.45 4.88 5.91 3.89 60.83 

NVIDIA 

Jetson Nano 

(TRT) 

FP16 3.50 29.6 3.10 3.38 23.9 2.96 27.62 

Intel NCS2 FP16 5.85 29.19 5.45 5.34 28.98 4.72 24.70 

NVIDIA 

Jetson Xavier 
FP32 4.75 48.75 3.51 4.31 39.91 3.18 17.54 

Intel NCS FP16 6.19 107.06 5.73 5.56 88.48 4.86 8.43 

NVIDIA 

Jetson Nano 
FP32 6.87 105.21 6.54 6.25 84.85 5.78 8.37 

Raspberry Pi 4 

(TF Lite) 
FP16 6.51 144.57 5.91 5.87 120.48 5.10 6.37 

Raspberry Pi 4 FP32 9.07 260.26 8.45 8.34 218.70 7.19 3.60 

* Because Stage Two runs only once per truck, the average speed is limited by Stage One which acts as the 

pipeline’s bottleneck. 
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The Nvidia Nano has a price (US $99) lower than using the RPi4 with any USB 

hardware accelerator. On this system the models achieve 27.62 FPS. Thus, it is better and 

less expensive than the NCS2 on the RPi4 with a cost of US $69 and US $55, respectively. 

However, the Intel NCS has a slightly higher prediction speed (8.37 FPS) than the 

unoptimized Jetson Nano system. This is an example of the importance of optimizing the 

platform to the available resources of the accelerator. 

As presumed, the RPi4 alone has the worst prediction speed (3.60 FPS). However, 

optimizing the TFLite model file with the NEON register and FP16 support increases the 

inference speed by 77%—close to the same inference speed as the unoptimized Jetson 

Nano. 

Deep learning prediction is the most time-consuming process through the proposed 

system pipeline. The second stage 7-spots method for video stream prediction enhances 

the efficiency of a video-input system because only one image (the 7-spots composite 

decal image) per truck is predicted. The alternative would be predicting each detected 

decal image individually, which can be upwards 12 decals per truck. Thus, the 7-spots 

Figure 5.8: DeepStream pipeline for the real-time CDRS on the Jetson Xavier 
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method reduces the overall time to generate results after a truck passes beneath the 

camera. Because Stage Two is less computationally complex, faster, and occurs only once 

per truck, it can be run entirely on the CPU, thus allowing the GPU’s compute capacity 

to be focused on predicting the high FPS video input (and thus high required throughput) 

of Stage One. Running each stage on separate hardware creates effective parallelism; 

nevertheless, Stage One predicts every frame and becomes the system’s bottleneck, 

limiting overall FPS. 

The proposed CVSA decal recognition system was successfully deployed in Cordelia, 

California, using a Jetson Xavier. The system was equipped with a camera with shutter 

speed 1/5000s; a high shutter speed reduces the decal’s blur in the video stream, especially 

important for vehicles travelling highway speeds. For the system to work in low light and 

at night, an illuminator was installed; special consideration to the lighting angle was given 

to avoid blinding drivers. The proposed system, deployable on a variety of edge devices, 

is a lower cost solution compared to systems that require high bandwidth internet 

connectivity for cloud/server processing. Additionally—free of the risks associated with 

uploading sensitive information to third party cloud platforms—the solution is safer and 

more privacy-protecting. Finally, the proposed system can easily be integrated to other 

systems through IoT messaging protocols like MQTT or AMQP.   

5.6 Summary 

In this chapter, the first real-time two-stage CVSA decal recognition system using 

deep convolutional neural networks was presented. The first stage—custom-tailored to 

locate small objects, such as decals—localizes a vehicle’s windshield and the decal 

therein, and determines the decal’s colour; this method lowers the system’s false positive 

rate by removing decal candidates not within a windshield. Because a truck can be present 

in multiple frames, the method is also more robust than systems that first simply detect 

the truck. The next stage—customized with far fewer parameters because the task is 

easier—localizes the decal’s digit and corner-cut. This, along with the colour, can 

determine the decal’s date of issue, thereby recognizing the CVSA decal. The proposed 
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system can predict from still images and/or a video stream. The custom architectures 

demonstrated high average precision: 98.5% mAP for Stage One and 97.5% mAP for 

Stage Two single image. A second stage 7-spots model was presented to predict multiple 

frames of the same CVSA decal from a video stream, using majority voting to provide a 

more accurate result. This model achieved 98.1% mAP; though this is 0.6% more than 

SSDLite+MobileNetV2 (the best model), the proposed model has an inference time of 5.9 

ms, 0.3 ms faster than SSDLite+MobileNetV2 at that stage. The CDRS was evaluated 

using hardware accelerators from different vendors like Intel, Google, and Nvidia. 

Finally, it is showed that the proposed model’s stages can run in parallel and achieve an 

inference speed of 173.31 FPS on the Jetson AGX Xavier and 60.83 FPS on the 

inexpensive RPi4 + Google Coral system. The Jetson AGX Xavier is recommended for 

ultra-high-speed time-critical applications, and the RPi4 + Google Coral system for “fast 

enough” consumer-grade tasks.  
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Chapter 6 

Real-Time Deep Learning-based Edge System 

for HAZMAT Recognition1 

Hazardous materials (HAZMATs) are commonly transported by commercial vehicles. 

The nature of a HAZMAT is indicated on a vehicle by a specific placard, usually on the 

vehicle’s front or sides. To the best of the author’s knowledge, the proposed system is the 

first real-time deep learning-based edge HAZMAT placard recognition system for 

complex outdoor environments. A three-stage cascading system using deep learning 

networks was designed. The first network localizes and classifies the HAZMAT placard. 

If the placard contains a United Nations (UN) / North American (NA) number, the second 

network localizes that number and identifies the nature of the substance. The third 

network recognizes the UN/NA number. This chapter is structured as follows: Section 6.1 

contains the introduction; Section 6.2 describes the models and proposed solutions; 

Section 6.3 covers the dataset and utilized training augmentations; Section 6.4 details the 

methodology, including training environment, models and model selection/development, 

and training parameters; Section 6.5 elaborates on the methodology for real-time 

deployment on edge hardware; results are given in Section 6.6, including accuracy, 

processing time, model deployment on edge systems, and performance comparisons 

against other models and related work; Section 6.7 discusses the implications and 

limitations of the results and possible real-world ramifications of the research; and Section 

6.8 concludes this chapter.  

______________________________ 

   1The content of this chapter is originally published in Springer Machine Vision and Applications. The 

manuscript has been reformatted for inclusion in this thesis.  

   Juan Yépez (JY), Riel Castro-Zunti (RC), Younhee Choi (YC), and Seok-Bum Ko (SK) designed the study. JY 

designed the network architectures, trained and tested the models for stage two and three, implemented the system 

on the edge devices, and provided results analysis. RC designed the network architecture and trained stage one, 

annotated the images from dataset, and proofreading the manuscript. JY prepared the manuscript with 

contributions from YC and SK to the manuscript structure, readability and analysis and discussion of the results. 
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6.1 Introduction 

Hazardous materials (HAZMATs), defined by the United States Department of 

Transportation (USDOT), are “capable of posing an unreasonable risk to health, safety, 

and property when transported in commerce” [119]. The U.S. Department of Labor 

Occupational Safety and Health Administration (OSHA) further categorizes HAZMATs, 

which includes physical hazards (e.g. explosives and flammables) and health hazards (e.g. 

acute toxicity and skin corrosion) [119]. The HAZMAT standards set by the OSHA follow 

the United Nations Globally Harmonized System of Classification and Labelling of 

Chemicals (GHS), the universal standard describing the appearance and purpose of 

HAZMAT symbols, and for what chemicals a certain symbol is valid [120].  

Although regulations that govern where and how a symbol should be placed on a 

vehicle differ by country (e.g. [119] for the U.S. and [121] for Canada), typical placarding 

includes a vehicle’s sides and ends. This consistency allows for the automation of 

HAZMAT recognition in (semi-)controlled (e.g. check stop) and on-road environments 

using well-placed sensors, like cameras. Such a system in this context falls within 

Intelligent Transportation Systems (ITS), services that improve the driver experience and 

the safety of everyone on the road [107].  

There are many applications of HAZMAT recognition: streamlining commercial 

vehicle check stops; dangerous goods tracking; emergency management, e.g. when a 

vehicle carrying hazardous materials crashes and the public must be notified; and, in 

future end-to-end smart cities and highways, i.e. where trucks themselves are (near) 

driverless. The task has also found niche development via the World RoboCup Rescue 

League; robots enrolled in the competition must be able to detect hazards, including 

HAZMAT placards [122].  

This chapter details the research, results, discussions, and conclusions during the 

development of a fast and accurate real-time end-to-end deep learning (DL) HAZMAT 

recognition edge solution. It is an emerging system capable of deployment in real-world, 

complex, outdoor environments. The following contributions were proposed: 
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(1) A speed-accuracy assessment of popular single-pass DL object detection 

architectures over a dataset of HAZMAT placards on commercial vehicles acquired at a 

check stop. 

(2) A custom placard detection and classification model adapted from that which had 

the best speed-accuracy trade-off (the “baseline”); the proposed model better suits the 

problem and dataset by customizing the baseline’s latter layers. The models demonstrate 

to be robust in a variety of circumstances. 

(3) An end-to-end HAZMAT placard recognition system that uses a pipeline of three 

stages: localization via the model achieved in contribution 2; localization and recognition 

of the HAZMAT class digit and localization of the United Nations (UN) / North American 

(NA) number via a similar custom network; and segmentation-free UN/NA number 

recognition. 

(4) Quantize-aware training results. 

(5) Processing time results, of the proposed models deployed on varying edge 

hardware, including from Nvidia, Intel, and Google. The end-to-end system’s real-time 

(> 30 FPS) performance is demonstrated. 

The research bridges a knowledge gap in specifically DL-based and complex-

environment HAZMAT recognition, as well as provides a reasonable and realistic 

framework for fast, low-power edge DL deployment at check stops and elsewhere. 
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6.2 Proposed Solution 

A three-stage HAZMAT recognition system was proposed, as shown in Figure 6.1. 

The pipeline involves detecting and classifying the placards in the frame using an object 

detection deep learning model; using a second deep learning object detection model to 

localize and recognize the placard’s class digit, and localize the UN/NA number, if 

present; finally, recognizing the UN/NA number via a lightweight sequence classification 

model. 

6.2.1  HAZMAT Placard Localization and Classification 

An object detection architecture is used in the first stage to detect and classify 

HAZMAT placards. Although there are a variety of object detection architectures that can 

provide high accuracy, most require an expensive GPU or cloud services to process the 

input images or video. ITS applications (such as HAZMAT recognition) tend to be 

deployed on the road, and may be deployed in rural areas or where internet access is 

limited; this complicates systems that may otherwise rely on local servers or cloud 

services for data processing. Therefore—especially to reduce costs whilst preserving real-

time functionality—the implementation of ITS applications via edge computing is critical. 

Processing image/video inputs at the edge enables the transmission of only HAZMAT 

         

Object detection model 1:         

Detection and HAZMAT 

classification. 

Crop 

& 

resize. 

Object detection 

model 2:      

Detection and class 

identification. 
  

Sequence 

classification 

recognition model. 

(d) 

Figure 6.1:  HAZMAT recognition system. 
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class/substance information, rather than a whole (expensive) video stream, to the 

destination server or cloud center. For this system stage, an edge-capable custom object 

detection architecture able to run in real time (> 30 FPS) on various edge hardware is 

proposed. 

After evaluating a variety of object detection architectures, the edge deployment-ready 

SSDlite + MobileDet EdgeTPU model was chosen to have the best trade-off between 

speed and full precision validation set mAP@0.5. The architecture was subsequently 

adapted to produce a higher-performing model over the validation set. Moreover, 

validation mAP@0.5 results for the quantization-aware-trained SSDlite + MobileDet 

EdgeTPU model lacked in comparison to its full precision counterpart; because 

quantization is essential for some edge hardware, developing a custom feature extractor 

with better quantization performance over the dataset was paramount.  

Like MobileDet [39], the design uses inverted bottleneck (IBN), fused, and tucker 

blocks. Many blocks employ residual (“skip”) connections in which a block’s final output 

is the sum of its input and its last layer’s output. Stride 2 convolution is used for 

downsampling. Though information on network blocks can be found in [39], and the 

reader is referred to [39] for visual representations, a short summary is presented below. 

IBN. A pointwise and depthwise convolution, each with RELU6 activation, followed 

by a “linear bottleneck” (a pointwise with identity activation) for depth changes. 

Fused. A regular convolution with RELU6 activation followed by a linear bottleneck. 

IBN and Fused blocks have an “expansion” coefficient (𝐸) which scales the within-block 

feature map depth to be 𝐸× the input channels (i.e. the depth of the output of the previous 

block). The block’s linear bottleneck tapers this expansion to the desired output depth. 

Tucker. A pointwise convolution with RELU6 activation, whose depth is the number 

of input channels scaled by a coefficient denoted the “input rank” (𝑆IR), followed by a 

regular convolution with RELU6 activation, whose depth is the final output depth scaled 

by an “output rank” coefficient (𝑆OR), followed by a linear bottleneck. 𝑆IR and 𝑆OR are 
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< 1. The resultant depths from scaling by 𝑆IR or 𝑆OR (collectively denoted 𝑆) is found in 

(1), where 𝐶in and 𝐶out are the numbers of pre- and post-scaled filters, respectively. 

𝐶out(𝐶in, 𝑆) = max(8 × ⌊⌊
𝐶in × 𝑆

8
⌋ + 0.5⌋ , 8) (6.1) 

 

Using NAS [123] with the HAZMAT dataset, the final custom architecture was 

achieved. It is paired with the SSDlite object detection network. 

6.2.2   UN/NA Number Localization and Class Recognition 

The input to the second object detection model is the HAZMAT placard(s) cropped 

from the localization information generated by the first model. It detects the presence of 

a UN/NA number and/or the bottom class digit. In Fig. 2, the vehicle has three HAZMAT 

placards, two “Inhalation Hazard” placards and one “Corrosive” placard.  

Because the Corrosive placard contains no class digit or UN/NA number, no further 

processing is required. One Inhalation Hazard placard has only the bottom class digit, so 

only further prediction/classification is required in the second stage. The final placard has 

both the bottom class digit and a UN/NA number; these would be localized and the class 

digit recognized by the second-stage model, and the UN/NA number would be recognized 

by the third-stage model. 

The localization and recognition task for the second-stage model is less complicated 

than that for which the first-stage model is designed. This is because a placard’s bottom 

digit and potential UN/NA number are large relative to the input image (the placard), and 

the locations within the placard are relatively uniform. Moreover, there are less classes to 

recognize (9 for the digits + 1 for the UN/NA number), meaning there is a potentially 

greater distance between classes in feature-space. Thus, the feature extractor 

(“backbone”) for this stage can be simpler, which decreases prediction time. 

After evaluating several backbone configurations via NAS, the types and organization 

of layers were selected. The first 3 layers of the customized backbone, similar to the first 
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stage, extract the most important features from the input image. Repeated layers were 

removed, and no layers have a residual function. This backbone has only 8 layers, 

compared to 22 in that of first stage. Table 6.1 shows the backbone architecture. 

6.2.3  UN/NA Number Recognition 

Recognizing a placard’s UN/NA number can be performed via several approaches, 

such as the popular text-from-image technique of Optical Character Recognition (OCR) 

[115]. However, because each character should be individually recognized lest false 

positive detections be generated from noise between characters, OCR approaches require 

high computation.  

For UN/NA number recognition, a sequence classification network iwith a fine-tuned 

ResNet-18 backbone is utilized. The network takes as input the UN/NA number image 

cropped from the previous stage, extracts the image features using the backbone, and 

produces a sequence output with the sequence classifier. The UN/NA number is then 

decoded via a variable-length sequence decoder driven by connectionist temporal 

classification (CTC). The proposed architecture is based on the segmentation-free license 

ResNet-18 

Backbone 1809 Sequence 

Classifier 

 

CTC  

Decoder 

Figure 6.2: UN/NA number recognition 

architecture. 

Table 6.1: Neural Network Architecture for UN/NA Number Detection and Class Identification Feature Extractor  

Operator Scaling Factor Output Channels Kernel Stride 

Conv2d+RELU6 N/A 32 3×3 2 

Tucker 𝑆IR=0.25, 𝑆OR=0.75 16 3×3 1 

Fused E=8 16 3×3 2 

Fused E=8 40 5×5 2 

IBN E=8 72 3×3 2 

IBN E=8 96 5×5 1 

IBN* E=8 120 5×5 1 

IBN* E=8 384 5×5 1 

* denotes the block’s output is an endpoint into the SSDlite architecture 
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plate recognition model LPRNet [124], which uses a SqueezeNet [77] and Inception [125] 

with an input size of 96×48×3; the proposed architecture uses a different backbone and 

input size. The third-stage architecture block diagram is shown in Figure 6.2. 

The input of the proposed network is an RGB image of size 96×48×3 (width, height, 

channel). Because the input’s spatial size is small, the ResNet-18 backbone was modified 

to have only one max pooling layer instead of 5; otherwise, the features would be too 

small to be extracted. The modified ResNet-18 architecture is presented in Table 6.2. 

CTC is “alignment-free”; it uses probabilities so the input image and output characters 

need not be perfectly aligned. The CTC decoder generates the UN/NA number sequence 

based on a greedy decoding method [126], a straightforward approach where the digit 

selected is that which has the highest probability. 

6.3 Dataset Description 

6.3.1  Dataset 

The dataset consists of 2093 1440×1080 square px images captured at a commercial 

vehicle check stop in the United States and represent a statistically random sample of 

commercial vehicle HAZMAT placards at the check stop over the capture period. The 

remaining two images were photographed elsewhere, in daytime settings with relatively 

ideal conditions, to ensure each class had enough members to be distributed across train, 

test, and validate sets. To the best of the author’s knowledge, the proposed HAZMAT 

Table 6.2: Modified ResNet-18 Backbone for UN/NA Number Recognition  

Operator Repetition Output Channels Kernel Stride 

Conv2 1 64 7×7 2 

Conv2 2 64 3×3 1 

Conv2 2 128 3×3 1 

Max pool 1 128 3×3 2 

Conv2 2 256 3×3 1 

Conv2 2 512 3×3 1 
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dataset is the first of its kind. It is comprised primarily of images taken at vehicle check 

stops, is the first whose images are taken outside against complex backgrounds, and 

contains a sufficient supply of night time and low-light images—about 19% of the dataset 

was captured at night.  

Thus, available and/or public datasets could not suffice to achieve the objective. 

Example dataset images can be found in Figure 6.3.  

Each image contains a HAZMAT placard located on a vehicle. Taken in a real-world 

setting, images and thus placards are subject to varying illumination and other 

environmental effects, as well as having a reasonably complex background. Using 

labelImg [92], 2229 HAZMAT placards were labelled over 15 classes; a placards-per-

image histogram is found in Table 6.3. On average a placard was (169±28)×(165±27) 

square px and comprised only 1.84±0.60% of the entire image.  

The images were divided into a 60%-20%-20% train-validate-test subset split based 

on the HAZMAT class; where the number of class samples was <5 (rendering a 60%-

20%-20% split ineffectual), an equal split was used. To ensure members of each class 

were sufficiently represented within each subset, images containing HAZMAT classes 

with the lowest numbers of samples were sorted first; images were then removed from 

those awaiting subset demarcation, to prevent duplicating the same image across multiple 

sets where >1 HAZMAT classes were present. Subset demarcation was otherwise 

random. Nevertheless, for these reasons, classes may not conform exactly to the 60%-

20%-20% ratio ideal. The final training, validate, and test sets contained 1117, 373, and 

374 images, respectively. Table 6.4 contains final subset counts per class. Images were 

resized to 500×500 square px for training. 

 

Table 6.3: Histogram of Number of Placards Per Image 

1 2 3 4 5+ Total 

1611 177 49 19 8 1864 
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Figure 6.3:  Example images from the dataset. (a) A prime specimen. (b) A specimen captured at night; 

note the absence of red color in the placard. (c) A specimen with the potential for many false positive 

detections. (d) A specimen with unideal lighting, and some placard rotations, skews, and occlusion. (e) A 

specimen whose bounding box annotations would overlap; note the identical bottom number (“2”) in each 

placard despite different hazard class natures. (f) A prime specimen located on the front (rather than side) of 

a commercial vehicle; the license plate has been obfuscated in this figure for privacy concerns.  
 

(a) (b) 

(c) (d) 

(e) (f) 
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6.3.2  Dataset Augmentations 

The models were trained with the following per-epoch dataset augmentations: 

1) Horizontal flips (with 0.5 probability). 

2) Scaling (between 0.8 and 1.25×). 

3) Conversion to greyscale (with 0.5 probability), due to the presence of greyscale (night-

time) images in the dataset. 

4) Contrast adjustment (gain between 0.8 and 1.25×). 

5) Brightness adjustment (bias up to ±20% of bit representation maximum). 

6) Bounding box jitter (up to ±5% of box area). 

Table 6.4: Dataset Class-Subset Breakdown 

Hazard Class 

Number of Samples in Subset 

Train Validate Test 

Corrosive 375 127 129 

Dangerous 26 9 8 

Environmental 11 4 4 

Explosives 7 2 2 

Flammable 411 142 141 

Flammable Solid 1 1 1 

Hot 127 37 47 

Inhalation 40 14 15 

Miscellaneous 23 8 10 

Non-Flammable 199 68 69 

Organic 1 1 1 

Oxidizer 51 14 18 

Poison 7 2 3 

Radioactive 4 1 2 

Toxic 40 12 14 

Total 1323 442 464 
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This was found to contribute to better results than not using augmentations, likely 

because this expanded the diversity of images seen by the proposed model and thus the 

model’s representational power. Once the mAP@0.5 over the validation set saturated, 

training continued without per-epoch augmentations 1, 4, and 5; this method can be seen 

as a narrowing (“fine-tuning”) of the learned features to actual instances, and contributed 

to a higher final validation mAP@0.5 for some models [95].  

Preliminary tests misclassified or failed to localize relatively small and large placards. 

To mitigate this, the training set was explicitly inflated by scaling down each image (0.5× 

and 0.75×), and scaling up (1.5×, 2×, 2.5× and 3×) on each placard from the placard’s 

geometric center. The number of additional training images generated via this method for 

each image is 4𝑛 + 2, n being the number of placards in the image. Though each placard 

was focused on when performing >1× zooming, bounding boxes of other placards if 

present were included in the annotation of the final scaled image if the box overlapped 

the resultant image by ≥45%. A downscaled image kept the original size by replicating 

the right and bottom border pixels.  

6.4 Training Methodology  

6.4.1  Model and Training Environment. 

To train the proposed Stage 1 models, Tensorflow (TF) 1.15.0 with GPU support in 

Python 3.7.7 was used within Anaconda 4.8.4. The host computer, running Windows 10, 

had an AMD Ryzen Threadripper 3.8 GHz 8-core processor with 32 GB of DDR4 RAM, 

and an Nvidia GTX 1080 ti GPU with 11 GB of DDR5 memory. A model’s batch size 

was the largest multiple of 8 that could be achieved using the GPU. SSD- (including 

SSDlite-) based models were trained using TF’s Object Detection API (ODAPI) [127]. 

YOLOv3 and its Tiny variant were trained using Keras [128] 2.3.0 running over the TF 

GPU environment. 
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With this configuration, each training epoch took approximately 30 seconds (though 

this was ultimately subject to the nature and size of the model being trained). 

6.4.2  Models Training 

First, current “off-the-shelf” models were assessed in terms of their accuracy and 

processing times. Because a fast and accurate model for Coral edge prediction was 

desired, the selected architecture had to have quantize-capable, and could not contain 

Coral-incompatible, layers. Though this excludes FPNs and YOLOv3, they were trained 

as a benchmark.  

SSD models were trained with in-place batch normalization, 0.9 momentum, and a 

momentum optimizer that included cosine decay LR scheduling [129], as seen in (2): 

𝐿𝑅init is the initial LR; 𝑥 is the (integer) current step; and 𝑥max is the number of steps 

until the LR is 0. Each optimizer had a warmup period [130], described in (3), in which 

the LR increased linearly from a lower LR (𝐿𝑅warm) to the 𝐿𝑅init specified in the cosine 

decay scheduler; in (3), 𝑥max is the number of steps until the LR is the 𝐿𝑅init of the cosine 

decay scheduler. For brevity later in this chapter, (2) and (3) are shown with 𝑥 omitted, 

and 𝐿𝑅𝑖𝑛𝑖𝑡 is not shown in (3) because it is the same as that in (2). 

 

 

 

 

A cosine decay [129] for SSD was used because it was found to outperform other LR 

schedulers, especially exponential decay. 

When training SSDlite + MobileDet EdgeTPU from scratch, 𝑥max was chosen to be 

between 2-2.5E5 as a rough middle between the respective short- and long-schedule of 

5E4 and 4E5 steps described in [39]; other models trained from scratch followed this 

approach. The SSD-based models transfer learned using preinitialized weights were 

𝐶𝑜𝑠𝐷𝑒𝑐𝑎𝑦(𝐿𝑅init, 𝑥, 𝑥max) = 𝐿𝑅init ×
1+cos(

𝑥𝜋

𝑥max
) 

2
  (6.2) 

𝑊𝑎𝑟𝑚𝑈𝑝(𝐿𝑅warm, 𝑥, 𝑥max, 𝐿𝑅init) = 𝐿𝑅warm + 𝑥
𝐿𝑅init−𝐿𝑅warm

𝑥max
  (6.3) 
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empirically determined to converge around 4E4 steps, and hence the decision to train to 

a maximum of 5E4 steps. Despite differing hyperparameters, model training was fair 

because, generally, a model’s default 𝐿𝑅init was used 𝐿𝑅init 𝑥𝑚𝑎𝑥; the only exception was 

SSDlite + MobileNet EdgeTPU 𝐿𝑅init  led to unstable training, so it was reduced to 0.5.  

YOLOv3 and its tiny variant were trained for a maximum of 100 epochs with 3 

warmup epochs (with an 𝐿𝑅warm of 0 and 𝐿𝑅init of 1E-4). A Keras ReduceLROnPlateau 

callback was used, monitoring training loss, with a reduction factor of 0.1, patience of 2 

epochs, and no minimum LR. Additionally, a Keras EarlyStopping callback was used, 

monitoring training loss, with a patience of 5 epochs and minimum improvement of 0.01. 

YOLO anchors were generated specifically for the training set (9 for full and 6 for tiny). 

This configuration was the default for the model. Moreover, it is noteworthy that better 

results were obtained monitoring training than validation loss.  

A homogenous 8-bit quantization-aware training for quantization-capable models was 

employed. Models were trained with full precision for 10,000 steps, and quantized 

training thereafter. 

6.5 Real-time Prediction Methodology 

As detailed in Section 6.2, each stage’s architectural backbone was customized 

according to the task complexity and the number of classes; for example, it is much easier 

to detect one of 15 classes than one of 80, as are present in the COCO dataset [131]. The 

proposed streamlined backbones reduce unnecessary complexity in the internal and output 

layers. For greater efficiency gains, and to achieve real-time (> 30 FPS) prediction on 

(typically) computationally-constrained edge hardware, the models were implemented 

using the GStreamer framework [132].  

GStreamer uses plugins, data flow, and media type handling/negotiation. Plugins are 

shared libraries that are dynamically loaded at runtime and can be independently extended 

and upgraded. When arranged and linked together, plugins form the processing pipeline 

that defines the data flow for a streaming media application. GStreamer eliminates 
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performance bottlenecks by more efficiently utilizing the limited hardware resources of 

an edge system. For example, GStreamer can encode/decode streaming input video in 

hardware, which is considerably faster than using software.  

GStreamer can be used on the Raspberry Pi or on the Jetsons. In the latter case, 

GStreamer has plugins that leverage Nvidia GPU capabilities allowing the entire pipeline 

(including DL prediction) to be processed on the GPU, with zero memory copy between 

the CPU and GPU; this makes the entire pipeline faster and more efficient. Nvidia refers 

to this GStreamer integration plugin as “DeepStream”. 

Figure 6.4 shows how modular plugins were connected to form the processing pipeline 

of the proposed HAZMAT recognition system when deployed on the Jetsons. Each plugin 

represents a functional block. Hardware-accelerated plugins interact with underlying 

hardware (where applicable) to deliver maximum performance.  

The Nvidia Jetsons utilize accelerators designed to augment the functionality of the 

GPU and CPU, thereby providing greater flexibility and a more efficient implementation 

of common algorithms according to the hardware characteristics. 

NVDEC is graphics card feature that performs video decoding, a compute-intensive 

task traditionally done by the CPU. It is part of Nvidia’s Video Codec SDK [133]. 

The Programmable Vision Accelerator (PVA) [134] is capable of real-time 

decoding/encoding streams from multiple cameras (side, front, inside) in a high dynamic 

range (up to 1.8 GPIX/s). 

Figure 6.4: Processing pipeline as deployed on the Jetsons, possible using Nvidia libraries. 
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The Nvidia Video Image Compositor (VIC) [135] implements 2D image and video 

operations, e.g. scaling, blending, rotation, video post-processing, and advanced capture-

time denoising. 

The Nvidia Image Signal Processor (ISP) [136] processes data from the Video Input 

Subsystem, or raw data directly, to remove artifacts from sensors, the camera lens, and 

color-space conversion. 

The open source Nvidia Deep Learning Accelerator (NVDLA) [137] allows for the 

design of deep learning inference accelerators. It has a modular, scalable, and 

configurable architecture for better integration and portability, with many low-power and 

IoT devices supported. 

For Jetson deployment, neural network models are converted to UFF (Universal 

Framework Format) and used to generate a TensorRT execution engine according to the 

system’s available resources. 

Also, the system on an NCS2 and a Google Coral accelerator was deployed. For the 

NCS2 and the Google Coral accelerators, the USB-interface dongles were used; because 

a host computer is required in these cases, a low-cost Raspberry Pi 4 (RPi4) was used. 

The RPi4 is single-board edge computer with a Broadcom quad-core 1.5 GHz 

processor and 4 GB of LPDDR4 RAM. The (open source) 64-bit Raspberry Pi operating 

system based on Debian was used. OpenCV 4.4 was built from source with GStreamer 

compatibility. Also, the TFLite’s C++ API libraries were built. For testing the 

performance, the frozen models (.pb) with FP32 were run, and the converted TFLite 

models (.tflite) with INT8. 

To run the model on the NCS2, the model optimizer migrates the neural network 

model into a half-precision (16-bit floating point, FP16) intermediate representation (IR) 

(BIN/XML files). This IR is an abstraction of the model that can subsequently be 

deployed on OpenVINO-capable CPUs, GPUs, FPGAs, or (as in the proposed case) NCSs 

using the library’s Inference Engine. 
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To run a quantized model on the Google Coral, it must be converted from TF frozen 

format to TFLite. Next, Coral’s Edge TPU compiler rearranges layer weights from the 

TFLite file into a new Coral-compatible format. The compiler shows which layers can be 

ran on the Coral, and which default to the CPU.   

6.6 Results  

6.6.1  Testing Environments 

In Table 6.5, processing times for non-quantized models were measured on the 

training setup using Python’s time.clock(). They are shown as GPU / CPU pairs. “Gross” 

refers to the network’s prediction time; net refers to the time with expenses, i.e. import, 

resizing, and marking. 

In Table 6.5, processing times for quantized models are the theoretical Coral 

prediction time and measured using OpenCV-Python’s [138] getTickCount(). 

Processing times for specific edge hardware deployments can be found in Section 

6.6.8. On each platform, the time was measured using Python’s time library and the 

highest resolution clock available. Further information can be found in that section. 

Models were tested using no dataset augmentations and with a batch size of 1. 
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6.6.2  Performance Metric 

To assess the trained models, the mAP@0.5—popular for object detection and 

classification was used. It can be defined as the class-wise mean of the average precision, 

which itself is the area under an interpolated precision-recall curve, at an intersection over 

union of 50%. mAP@0.5 was calculated using the TF ODAPI [127]. Although COCO 

mAP was used, the mAP@0.5 challenge metric for COCO is the same as for 

PASCALVOC [131]; thus, for more information, the reader was referred to the 

PASCALVOC challenge paper [118]. 

Table 6.5: Summary of Model Training and Results for Stage 1  

Model 

Input 

Image 

(W×H×3) 

Params 

× 106 

Batch 

Size 

Train 

Steps 

× 103 

mAP@

0.5 

(Test) 

Per-Image Proc. Time 

(ms) 

Gross Net 

SSD + MobileNetV1 

FPN 
640×640 11.0 8 38.1 0.9964 49 / 479 70 / 500 

SSD + MobileNetV2 

MNAS FPN 
320×320 2.36 24 34.6† 0.8140 30 / 66 51 / 87 

YOLOv3 416×416 61.7 8 173 0.7980 87 / 1175 119 / 1242 

SSDlite + Custom 320×320 3.48 24 231† 0.8930 17 / 57 36 / 76 

SSDlite + MobileDet 

EdgeTPU 
320×320 3.38 24 210† 0.8861 19 / 58 39 / 79 

SSDlite + MobileDet 

EdgeTPU 
320×320 3.38 24 170 0.8704 19 / 58 39 / 79 

SSD + MobileNetV1 300×300 5.70 24 34.8 0.8184 18 / 46 39 / 67 

SSDlite + MobileNet 

V2 
300×300 3.22 24 38.1 0.8375 19 / 48 40 / 69 

SSDlite + MobileNet 

V3 Small 
320×320 1.05 24 196 0.8513 20 / 26 41 / 47 

YOLOv3 Tiny 416×416 8.71 24 180 0.5658 44 / 202 73 / 244 

SSDlite + Custom* 320×320 3.48 16 231† 0.8404 6.6 — 

SSDlite + MobileDet 

EdgeTPU* 
320×320 3.38 16 214† 0.8285 7.1 — 

SSDlite + MobileDet 

EdgeTPU* 
320×320 3.38 16 160 0.7728 7.1 — 

SSD + MobileNetV1* 300×300 5.70 16 31.7† 0.7801 6.2 — 

SSDlite+MobileNetV2* 300×300 4.80 16 39.1† 0.8357 6.2 — 

SSDlite + MobileNet 

EdgeTPU* 
320×320 3.12 16 196 0.7814 7.3 — 

* denotes the model is quantized, and its Proc. Time refers to processing time on the Coral rather than a GPU / CPU 

† denotes the weight model at that step was achieved by discontinuing dataset augmentations as described in Section 

6.3.2. 
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The F1-scores for some classes are listed, e.g. in a comparison in Table 6.9. F1-score 

can be defined in terms of precision and recall, which themselves can be defined in terms 

of true positive (TP), false positive (FP), and false negative (FN).  

6.6.3  Stage 1 Training Results Summary 

Stage 1 training results are found in Table 6.5, divided into 3 categories by dashed 

lines. The first category (from the top of Table 6.5) contains “benchmark” models trained 

for results purposes but impractical for edge usage due to large processing times or INT8-

quantize-incapable layers. The second category has models whose quantized versions 

could theoretically be run on edge hardware, trained to gauge speed-accuracy trade-offs. 

The third category contains INT8-quantized models. The final selected weights for SSD-

based models were those that had the highest COCO mAP@0.5 over the validation set, 

which often occurred just before or slightly after the mAP generally plateaued. The 

selected weights for the YOLO models were those achieved after the EarlyStopping 

callback was triggered.  

6.6.4  Stage 1 General Model Comparison 

Categories are described in the previous subsection and are in reference to Table 6.5.  

From Category 1—and overall—SSD + MobileNetV1 FPN attained the highest test 

set mAP@0.5 of 0.9964. However, the (net) processing time is comparatively slow at 68 

ms on a GPU or an unusably slow 505 ms on a CPU. The model illustrates a speed-

accuracy trade-off where the processing time required is inhibitive to any real-time 

system. Although prediction at different scales is advantageous, the comparatively more 

modest test set mAP@0.5 of 0.8140 for SSD + MobileNetV2 MNAS FPN hints that its 

accuracy may be from having many more weights and a larger image input size (640 vs. 

320 px)—specifically, higher resolution images on which the initial weight model was 

trained. Nevertheless, because FPNs contain INT8-quantize-incapable layers, further 

discussion for the purposes is moot. YOLOv3, with almost 62M parameters and high GPU 
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and CPU processing times—coupled with its test set mAP@0.5 of 0.7980—make it ill-

suited to the objective. 

From Category 2, the proposed model beat SSD-based MobileNet implementations 

by between 0.042 and 0.075. The model had the best GPU speed, surpassing other SSD-

based object detectors by 1-3 ms and YOLOv3 Tiny by 27 ms. Though MobileNet-based 

models had lower CPU processing time, the proposed model has the best speed-accuracy 

trade-off for high-compute hardware (e.g. GPUs and presumably TPUs). Given YOLOv3 

Tiny was slower than the SSD-based models and had relatively poor mAP@0.5, it was 

deemed unsuitable for the task and was not tested further.  

Category 3 contains information on edge models and is thus most pertinent to the 

objective. Validation set performance for quantized SSDlite + MobileDet EdgeTPU 

lacked compared to its non-quantized version. The validation mAP@0.5 was less than 

that of some other models; this motivated to adapt the architecture to find a higher-

performing model with a similar processing time. The custom quantized network achieved 

a test set mAP@0.5 of 0.8404. The model beat the test set mAP@0.5 for quantized SSD-

based MobileNet models by between 0.005 and 0.060. Models in Category 3 had near 

equivalent Coral gross processing times— an impressive 6-7 ms. Though the custom 

model could achieve a theoretical 151 FPS on the Coral with a powerful computer, there 

are hardware limitations using the RPi4 and an IP camera; see Section 6.6.7 for a 

discussion in a real-time context.  

YOLOv3, and especially its tiny variant, were marred by false positives, and hence 

their comparatively lower mAP@0.5. Examples of potential false positives can be found 

in Figure 6.5 (c). 
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Figure 6.5:  Example test set inferences of the quantized SSDlite + Custom model with detection boxes in 

green, ground truth boxes in mauve, predicted classes in red, and ground truth classes in blue. (a) Correctly 

identified prime specimens. (b) Correctly identified specimens whose bounding boxes would overlap, beside 

correctly unidentified potential false positives. (c) A correctly identified specimen within a highly irregular 

background. (d) A correctly identified overexposed night capture specimen. (e) An underexposed late day 

captured specimen; though correctly identified as Corrosive, there is a duplicate detection mistaking it for 

Flammable. (f) Specimens that are correctly recognized, but there is a duplicate detection on the Toxic 

placard mistaking it for Inhalation.  

(d) 

(e) (f) 

(a) (b) 

(c) 
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Output test set results images from the quantized SSDlite + Custom model can be 

found in Figure 6.5.  

6.6.5  Stage 2 and 3 Model Results 

Table 6.6 shows a summary of the model results for Stage 2, wherein the UN/NA 

number and/or the bottom class digit are localized. The proposed Stage 2 model achieved 

0.982 mAP@0.5 prediction accuracy—the same as SSDlite+ MobileDet Edge TPU, but 

the proposed model uses 36.7% less parameters. Moreover, the proposed model has 0.007 

greater mAP@0.5 than SSDlite+ MobileNetV2. The Stage 2 model file size is 3.5× 

smaller than that of SSDlite+MobileDet EdgeTPU. The results show that customizing 

backbones for a specific task creates accurate models with smaller sizes, meaning faster 

loading and processing times; this makes such models better suited to edge devices with 

small memory capacities.  

Table 6.7 shows a summary of the model results for Stage 3, where the UN/NA 

number is extracted as a character string. The proposed model is compared with LPRNet 

[124], originally designed to recognize license plate numbers. Because license plates and 

cropped UN/NA numbers are visually similar, LPRNet achieved a high mAP@0.5 of 

0.950. However, the proposed changes to the model’s backbone and input size improve 

Table 6.6: Summary of Model Results for Stage 2 

Model 
Input Image 

(W×H×3) 
Params × 106 File Size (MB) mAP@0.5 

SSDlite+MobileDet EdgeTPU 320×320 3.38 5.04 0.982 

SSD+MobileNetV1 300×300 5.70 5.52 0.971 

SSDlite+MobileNetV2 300×300 3.22 4.71 0.975 

Proposed Model 320×320 2.14 1.44 0.982 

 

Table 6.7: Summary of Model Results for Stage 3 

Model Input Image (W×H×3) Backbone mAP@0.5 

LPRNet 94×24 SqueezeNet 0.950 

Proposed Model 96×48 Customized ResNet-18 0.991 
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the mAP@0.5 to 0.991. This highlights the versatility of segmentation-free models with 

CTC decoding algorithms for different applications. 

6.6.6  Edge Hardware Deployment and Real-Time 

Results 

To assess the real-time suitability of the proposed system, the following 

implementations were tested of each custom model: 

 On the RPi4 alone, using TFLite. 

 On the RPi4 + NCS2 using OpenVINO’s IR files. 

 On the RPi4 + Coral USB Accelerator using TFLite. 

 On the Jetsons (Nano and Xavier) using the converted TensorRT files. 

 

As explained in Section 6.5, all implementations used GStreamer where appropriate. 

On the RPi4, the TFLite runtime library was installed which provides the minimum code 

required for prediction with Python; this saves disk space, important for an edge device. 

Additionally, the USB accelerators were connected to the RPi4’s USB 3.0 ports for 

maximum data transfer speed.  

Deployment processing time results for all stages are shown in Table 6.8. However, 

Stage 1 (initial placard localization) is focused upon because it is the most compute-

intensive task for a video stream, requiring continuous processing of each frame; 

conversely, Stage 2 need only run if a placard is identified in Stage 1, and Stage 3 would 

only run if a UN/NA number is identified in Stage 2. Moreover, for cases where the 

pipeline can be deployed on different hardware components—for example, deploying the 

Stage 1 model on the Xavier’s GPU and stages 2 and 3 on its DLA—Stage 1, being the 

largest and thus slowest model, will be the system’s bottleneck.  

For testing, an IP camera was connected to the edge device via the local network. The 

test camera offered a stream video with resolution 640 × 360 px at 60 FPS with a bitrate 
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of 385 kbps using h.265 compression. However, for the FP16 and INT8 models, the high-

performance Xavier could process the video so fast that the camera FPS was the 

bottleneck; thus, to test these models on the Xavier, a video was streamed with resolution 

1920 × 1080 px at 120 FPS with a bit rate of 9845 kbps using h.264 compression. The 

model’s prediction execution time was measured from input to output. Processes that 

could be easily parallelized, e.g. image capturing and scaling, were not taken into account. 

Overclocking was not used.  

When running on the RPi4 alone, The quantize-aware-trained INT8 custom model 

achieved an average of 17.20 FPS—a substantial increase compared to the conventional 

full precision model with an average of just 2.07 FPS. 

As expected, using the RPi4 + the USB accelerators further increase the achievable 

FPS of the custom model. The NCS2 (using FP16) and the Coral USB accelerator (using 

INT8) achieved, respectively, 2.2× and 2.7× faster prediction than the INT8-quantized 

model running on the RPi4 alone. For the NCS2, a FP16 model was generated from the 

full precision model using OpenVINO’s post-training FP16 quantization/optimization. 

Via TensorRT, three models were deployed on the Jetsons: the trained FP32 custom 

model; a post-training FP16 quantization of the FP32 custom model, generated using 

TensorRT; and the quantize-aware-trained INT8 model. 

 

   Table 6.8: Results: Real-time Prediction Speed (FPS)  

Platform 
Platform 

Cost (USD) 

Stage 1 Stage 2 Stage 3 
FP32 FP16 INT8 FP32 FP16 INT8 FP32 FP16 INT8 

Raspberry Pi 4 (RPi4) $55 2.07 N/A 17.20 2.53 N/A 21.02 3.26 N/A 27.10 

RPi 4 + NCS2 $124 N/A 37.12 N/A N/A 39.85 N/A N/A 43.13 N/A 

RPi 4 + Coral USB $115 N/A N/A 46.42 N/A N/A 59.28 N/A N/A 76.42 

Jetson Nano $99 25.12 28.89 N/A 29.12 33.49 N/A 32.12 37.04 N/A 

Jetson Xavier (DLA) ~$700 N/A 46.74 N/A N/A 77.74 N/A N/A 94.14 N/A 

Jetson Xavier (GPU) ~$700 58.13 89.75 104.49 71.14 121.20 172.51 95.80 152.11 250.49 
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On the Jetson Xavier, the FP32 model achieves a prediction speed of 58.13 FPS—

2.3× faster than the model running on the Nano, and an impressive 28.1× faster than the 

full precision model running on the RPi4 alone. When reduced to FP16 or INT8, the 

system’s bottleneck becomes the input stream (60 FPS). The theoretical processing speed 

(from processing a video, as aforementioned) of the FP16 model is 89.75 FPS, 2.4× faster 

than the RPi4 + NCS2 and 3.1× faster than the Jetson Nano. The Xavier supports INT8 

prediction using a Volta GPU; the INT8 model achieves a superior 104.49 FPS, 2.3× 

faster than the RPi4 + Coral USB accelerator and 6.1× faster than RPi4 alone.  

A further deployment discussion, especially in terms of unit cost, can be found in 

Section 6.7.3. 

6.6.7  Comparison to Others’ Works  

Reference [139] uses a system and dataset designed to integrate depth information into 

the final placard detection and recognition. Thus, the intricacies of their system are out of 

scope of this work. However, they used a YOLOv3 Tiny object detector as their object 

detection model. As seen in Table 6.5, the mAP@0.5 of the YOLOv3 Tiny model trained 

on the HAZMAT dataset proposed in this thesis is 0.5658, 0.2746 less than the quantized 

SSDlite + Custom model. The proposed model also has 60% less parameters.  

In [140] an attention + SIFT method was proposed with a dataset of 600 images: 1 

placard per image × 25 images per class and background type × 8 classes × 3 types of 

backgrounds—OSB, woodchip, and brick, with brick the most difficult for [140] due to 

shadows and illumination effects. Each set of 25 images per-class per-background 

contains 5 images captured at each of the azimuths -45°, -30°, 0°, 30°, and 45°. The 

training set consisted of the 400 images in their dataset with OSB and woodchip 

backgrounds; the 80 negative azimuth brick images were used as the validation set; and 

the remaining 120 brick images comprised the test set. Training weights were initialized 

with the weight model that achieved the highest test set mAP@0.5 over the dataset. 

Though every test set placard was recognized (i.e. no FNs), there were 1 misclassified 

mailto:mAP@0.5
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duplicate and 1 FP (class Explosive). In Table 6.9 shows per-class F1-scores vs. the 

accuracies of [140]. Like [140], CPU processing time is listed. The proposed model is 21-

91% faster and generally more accurate than [140]. The proposed model has also been 

shown to handle more complex backgrounds and can detect ≥1 placards in an image. 

Overall, it shows the model’s superiority to keypoint detection. 

The performance of the model transfer learned using the dataset in [140] indicates potential 

improvements with more per-class data, e.g. Organic, and an overall better balanced dataset. 

This would seem to be a better avenue to higher accuracy than, for example, resampling the 

dataset. The results on [140] also show the proposed model’s capabilities to correctly predict 

non-0° signs. 

The system cannot be compared against other related works because, at this time, they 

neither supply public dataset results nor do they make the intricacies of their algorithms 

known. 

  Table 6.9: Per-Class comparisons against [140] over dataset in [140]. 

Class 
Proposed system [140] 

F1-Score (%) Proc. Time (ms) Accuracy (%) Proc. Time (ms) 

Combustible 100 79 ~85 ~650 

Dangerous When Wet 96.7 79 ~90 ~250 

Explosive 96.7 79 100 ~100 

Flammable 100 79 ~75 ~450 

Non-Flammable 96.7 79 ~65 ~900 

Organic 100 79 ~90 ~550 

Oxidizer 100 79 ~75 ~700 

Radioactive 100 79 ~80 ~600 
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6.7 Discussion  

6.7.1  General 

In this chapter the first automatic HAZMAT detection system for commercial vehicles 

at check stops was designed, with a modest per-unit cost. The research may streamline 

and revolutionize the ground shipping of hazardous materials, which has implications for 

governments, institutions, and corporations across the fields of supply chain management, 

emergency management, intelligent transportation systems, shipping, smart cities, and 

Industry 4.0. 

6.7.2  Placard Localization (Stage 1) Deployment 

Results 

Deployment on the Jetson Xavier had the fastest Stage 1 processing speed of 58.13 

FPS for the full precision model, and 104.49 FPS for the INT8 quantize-aware-trained 

model. However, this performance comes at a steep cost, with approximately only 0.08 

FPS per $ (USD) for FP32 and 0.149 FPS per $ (USD) for INT8. Nevertheless, the Jetson 

Xavier is the platform of choice for extremely critical high-accuracy and time-sensitive 

applications. 

The Jetson Nano achieves a relatively good Stage 1 full precision performance at 

25.12 FPS, or 0.25 FPS per $ (USD). This would be the platform of choice for low-cost 

consumer-grade applications that require higher accuracy than that afforded by 

quantization, but are not highly time-sensitive and not necessarily real-time. 

The RPi4 + Google Coral system achieves good INT8-quantized performance at 46.42 

FPS, or 0.40 FPS per $ (USD). However, the INT8 model achieved 0.0526 less 

mAP@0.5, making this system the platform of choice for low-cost consumer-grade 

applications that require higher time-sensitivity but can tolerate a slight drop in accuracy. 
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Even the INT8-quantized performance of the RPi4 alone at 17.20 FPS, or 0.31 FPS 

per $ (USD), is reasonable. It could still be competitive in ultra-low-cost consumer-grade 

applications that require neither high time sensitivity nor the highest achievable accuracy. 

6.8 Summary  

A fast and accurate 3-stage HAZMAT recognition edge system was developed by 

creating a DL-based solution and demonstrating its real-time implementations on edge 

inference accelerator hardware. The proposed emerging intelligent system is envisaged to 

be deployed at vehicle check stops or integrated into a larger edge system capable of 

recognizing many commercial vehicle features. 

In Stage 1, a placard is localized from an input image or video stream. SSDlite + 

MobileDet EdgeTPU presents the best speed-accuracy trade-off. The model's test was set 

mAP@0.5 to 0.8861 using custom parameters. From SSDlite + MobileDet EdgeTPU, a 

custom model was developed. The custom model achieved a test set mAP@0.5 of 0.8930. 

The custom model was retrained in an 8-bit integer quantize-aware fashion. This model 

achieved a test set mAP@0.5 of 0.8404, 0.0676 higher than vanilla quantized SSDlite + 

MobileDet EdgeTPU. The proposed model can detect ≥1 placards per image with the 

same processing time, and is robust to placard irregularities, illumination, and complex 

backgrounds.  

From detected HAZMAT placards in Stage 1, Stage 2 recognizes the bottom 

HAZMAT class digit and determines the presence of a UN/NA number for more specific 

substance information. The model—comprised of a highly simplified custom SSDlite + 

MobileDet EdgeTPU architecture trained achieved a mAP@0.5 of 0.982. Although the 

custom model achieved the same accuracy as the architecture from which it was derived, 

it does so with 36.7% less parameters and a 3.5× smaller file size. 

If a UN/NA number is found in Stage 2, it is inputted into the Stage 3 model. Stage 3 

uses a ResNet-18 backbone, Sequence Classifier, and CTC decoder to recognize text 
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strings in a way that does not need aligned inputs and outputs during training. It achieves 

a digit recognition mAP@0.5 of 0.991, 0.041 more than LPRNet. 

The Stage 1 FP32/INT8 models can achieve 58.13/104.49 FPS on a Jetson Xavier. 

The proposed INT8-quantized model achieves 46.42 FPS on the Coral USB accelerator 

paired with a RPi4 and a 60 FPS IP camera. Meanwhile, the FP32/INT8 Stage 2 model 

can achieve 71.14/172.51 FPS on the Xavier, and the INT8 model achieves 59.28 FPS on 

the Coral setup. Finally, the proposed Stage 3 model can achieve 95.80/250.49 FPS on 

the Xavier, and the INT8 model achieves 76.42 FPS on the Coral setup. Though 

performance is ultimately limited by Stage 1, the results nonetheless demonstrate the 

power of developing and pairing custom and/or quantized networks with edge 

accelerators for accurate and real-time deep learning inference. 
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Part IV 

Conclusion 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In recent years, Intelligent Transportation Systems (ITS) have led to substantial 

advancements in road safety and traffic efficiency. Paired with Artificial Intelligence 

(AI)—and specifically its state-of-the-art subfield Deep Learning (DL)—ITS applications 

can model complex systems with high accuracy; however, such applications still require 

significant computational power. Therefore, much processing of data takes place in on-

premises data centers or cloud-based infrastructure. However, with the arrival of 

powerful, low-energy consumption DL accelerators, computations can now be executed 

on devices at the edge. These devices can facilitate the implementation of ITS applications 

on highways or remote areas.  

The main challenge associated with implementing and running deep learning 

algorithms on edge devices is its limited memory and computational resources. This 

forces the systems designer to consider trade-offs between speed and accuracy; it is 

difficult to achieve both simultaneously using a low-complexity device, such as most 

inexpensive and commercially available edge devices. This thesis addresses the challenge 

by providing new algorithms to accelerate convolution stride two, especially important 

for object detection applications. Additionally, three accurate ITS applications are 

designed and deployed on edge devices and are shown to achieve real-time prediction. 

Chapter I introduces ITS in greater depth, and provides the objectives and motivations 

behind the proposed thesis and a summary of contributions. Chapter II describes machine 

learning (ML) and DL, Convolutional Neural Networks (CNNs), optimization techniques 

for CNNs, and object detection fundamentals. Each proposed work has been divided into 

one of two categories: (1) hardware optimization for convolutional neural networks; and 

(2) ITS applications. 
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Most modern DL-based object detection networks utilize CNN architectures. 

Hardware optimization of DL architectures—detailed in Part II Chapter III—begins with 

the formulation of new Winograd minimal filtering algorithms for accelerating CNN 

architectures containing layers with stride 2. The algorithms—able to decrease 

computational complexity and increase efficiency by trading expensive multiplications 

for cheap additions—optimize 1D, 2D, and 3D convolutions. All proposed Winograd 

stride 2 algorithms were implemented on an NVIDIA K20c GPU. Results show that the 

algorithms contribute to a speedup of 1.44x, 2.04x, 2.42x, and 1.73x for respective 3×3, 

5×5, 7×7, and 3×3×3 kernels. Additionally, a novel Processing Element (PE) for FPGAs 

is designed that can process stride one and stride one convolutions. The novel PE uses the 

same number of DSPs (32) as a PE able to perform two Winograd stride one calculations, 

and 25 less DSPs than what would be required by having independent PEs that perform 

two Winograd stride one and one Winograd stride two operations. Using a systolic array, 

a larger number of PEs can be used, improving the system’s efficiency via greater 

parallelism. Finally, an implementation of the proposed PE was tested via integration into 

a modified VGG-16 architecture where one stride two convolutional layer was used 

instead of one stride one convolutional layers followed by one max-pooling layer, as in 

the original model architecture. The novel implementation achieves DSP efficiencies of 

1.22 GOPS/DSPs and 1.33 GOPS/DSPs for the original and modified VGG-16 

architectures, respectively.  

Three ITS applications are proposed in Part III of this thesis. Chapter IV presents a 

license plate localization (LPL) system, Chapter V a real-time Commercial Vehicle Safety 

Alliance (CVSA) decal recognition edge computing system, and Chapter VI a real-time 

edge system for recognizing cropped hazardous material (HAZMAT) placards. 

The LPL system was designed using inverted residual blocks, linear bottlenecks, and 

depthwise separable convolutions. The system was trained using three popular publicly 

available datasets: Caltech Cars 1999 (Rear) 2; the University of Zagreb License Plate 

Detection, Recognition, and Automated Storage library; and the NTUA Medialab LPR 

Database. Tested on those datasets, the proposed system achieved 98.4%, 97.83%, and 
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99.8% accuracy, respectively. Using an NVIDIA K20c GPU, the processing time was 

only 20 ms per image, regardless of the number of license plates in the image. 

Additionally, an algorithm for multi-threaded video capture with motion detection was 

proposed; this allowed the DL prediction stage—the most computationally-complex part 

of the system—to only be running when a vehicle is detected, thus contributing to greater 

efficiency and real-time suitability for computationally non-complex devices such as 

smartphones. This has the potential to make ALPR less expensive from a hardware and 

thus consumer standpoint, facilitating and expediting the advancement and creation of 

ITS technology, thereby making LPL more accessible for a greater percentage of society. 

The second application presented in this thesis is the first two-stage real-time edge-

based DL system for the detection and recognition of decals issued by the Commercial 

Vehicle Safety Alliance (CVSA). The first stage was designed to locate small objects; it 

localizes a vehicle’s windshield and the decal therein, and determines the decal’s color. 

The second stage localizes and recognizes the decal’s digit and determines its corner cut. 

The decal’s date of issue can be determined using its digit, corner cut, and color. The 

proposed architectures demonstrated high average precision: 98.5% mean average 

precision (mAP)@0.5(IoU) for Stage One and 97.5% mAP@0.5 for Stage Two when the 

input is a single frame. A Stage Two model was proposed for enhancing accuracy via 

redundancy when using a video stream input; in this model, up to 7 images of the same 

decal over multiple frames are collated and simultaneously predicted, and majority voting 

is used to determine the final decal characteristics. This “7-spots” model achieved 98.1% 

mAP@0.5; the model’s mAP@0.5 is 0.6% better than SSDLite+MobileNetV2 (the best 

off-the-shelf model), and the proposed model has an inference time of 5.9 ms, 0.3 ms 

faster than SSDLite+MobileNetV2. The results were evaluated using hardware 

accelerators from different vendors like Intel, Google, and NVIDIA. Finally, the model’s 

stages can run in parallel (though limited by Stage 1), and the proposed system achieved 

an inference speed of 173.31 FPS when deployed on an NVIDIA Jetson AGX Xavier and 

60.83 FPS on an inexpensive RPi4 + Google Coral system.  
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The third proposed application is a novel real-time deep learning-based edge System 

for Hazardous materials (HAZMATs) recognition. The HAZMAT standards set by the 

OSHA comply with the United Nations Globally Harmonized System of Classification 

and Labelling of Chemicals (GHS), the universal standard describing the appearance and 

purpose of HAZMAT symbols, and for what chemicals a certain symbol is valid. 

HAZMAT symbols are diamond-shape decals. The system will be able to localize, 

classify 15 HAZMAT symbols in real-time, and extract the text present in the placard for 

further elaboration of the material or danger. 

A fast and accurate 3-stage HAZMAT recognition edge system was presented. 

Custom models were designed for each stage. Stage 1 localizes a placard from an input 

image or video stream. The proposed custom model for stage 1 achieved a test set 

mAP@0.5 of 0.8930. The model can detect ≥1 placards per image with the same 

processing time, and is robust to placard irregularities, illumination, and complex 

backgrounds. Stage 2 utilizes the cropped HAZMAT placard and recognizes the bottom 

HAZMAT class digit and determines the presence of a UN/NA number. The model for 

the second stage achieved a mAP@0.5 of 0.982. Stage 1 and stage 2 achieved the same 

accuracy as the MobileDet architecture, but it does so with 36.7% less parameters and a 

3.5× smaller file size. The third stage recognize the UN/NA number if it is found in Stage 

2. This stage uses a ResNet-18 backbone, Sequence Classifier, and CTC decoder to 

recognize text strings in a way that does not need aligned inputs and outputs during 

training. It achieves a digit recognition mAP@0.5 of 0.991, 0.041 more than LPRNet. On 

a Jetson AGX Xavier, the Stage 1 models can achieve 104.49 FPS, the Stage 2 model can 

achieve 172.51 FPS, and the Stage 3 model can achieve 250.49 FPS. 
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7.2 Future Work 

In the future, the research works presented in this thesis may be expanded.  

In this research work, a processing element (PE) capable of handling both stride one 

and stride two Winograd operations was implemented on an FPGA. This implementation 

and the proposed PE could serve as a baseline for accelerating other neural network 

architectures, particularly those which natively use stride two convolutional layers, e.g. 

the MobileNet family. In addition, the proposed Winograd algorithms could be extended 

to efficiently compute convolutions for greater strides, e.g. stride 3 or 4, when and if 

architectures containing such strides become commonplace.  

Future work might include implementing and benchmarking Winograd algorithms on 

modern CPUs and comparing their performance against FFT-based convolution. FFT-

based convolutions show satisfactory performance on modern CPUs (which have larger 

caches but smaller memory bandwidths than modern GPUs). 

The proposed LPL system could be deployed and evaluated on multiple types of low-

complexity computers and devices, example smartphones, tablets, embedded system, etc. 

Corresponding accuracies, hardware utilization, and processing speeds could be 

compared.  

For the real-time recognition system proposed in Chapters V and VI, further decrease 

the system’s processing time is planned by interleaving predictions with tracking 

algorithms like IOU, KLT, and NVDCF. Thus, once an object is detected via the CNN 

model, the system could simply follow the object with a tracking algorithm, with a new 

DL prediction occurring in regular but less-frequent intervals. This would lessen the 

number of frames requiring compute-expensive DL prediction, thereby freeing resources 

that could be, for example, used to simultaneously process video streams from multiple 

cameras (multi-streaming inputs). 
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