

Object Detection Networks at the Edge:

Hardware Optimization and Intelligent

Transportation Systems Applications

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

 Canada

By

Juan Fernando Yépez Rodríguez

 Juan Fernando Yépez Rodríguez, October 2021. All rights reserved. Unless

otherwise noted, copyright of the material in this thesis belongs to the author.

i

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any copying

or publication or use of this thesis or parts thereof for financial gain shall not be allowed

without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part

should be addressed to:

Head of the Department of Electrical and Computer Engineering

3B48 Engineering Building

University of Saskatchewan

57 Campus Drive

Saskatoon, Saskatchewan S7N 5A9

Canada

Or

Dean of College of Graduate and Postdoctoral Studies

116 Thorvaldson Building

University of Saskatchewan

110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

ii

Abstract

In recent years, deep learning (DL) and especially Convolutional Neural Networks

(CNNs) have become a key component of many computer vision systems and applications

due to their demonstrated capability to accurately process visual information. Object detection

is one of the most important and challenging problems capable of being solved by DL; in

general, higher object detection accuracy can be achieved by DL compared to other

techniques. However, DL tends to require expensive GPUs or cloud-based services (the latter

requiring a high internet bandwidth, latency, and other associated costs), making DL

applications traditionally very expensive to implement in practice. This thesis emphasizes the

optimization of DL computation for object detection and proposes designs of real-time

Intelligent Transportation Systems (ITS) applications at the edge using hardware accelerators.

To optimize DL computation, a novel stride 2 Winograd method is proposed for deep

neural network (DNN) inference optimization. The proposed method provides new algorithms

that trade expensive multiplications for cheap additions, thereby increasing efficiency by

vastly decreasing computational complexity. The proposed algorithms support 1D, 2D,

and 3D input for CNNs. Additionally, a novel Processing Element (PE) is proposed to

process stride one and two convolution in the same FPGA module. These algorithms,

implemented using a GPU and an FPGA, are demonstrated to provide better efficiency

compared to regular convolution implementations for a variety of kernels.

Additionally, three ITS applications are proposed. The first application is a License

Plate Localization (LPL) system constructed using an architecture comprised of

bottleneck depth-separable convolutions with inverted residuals. The second proposed

application is a novel two stage real-time deep CNN recognition system for decals issued

by the Commercial Vehicle Safety Alliance (CVSA). The third proposed application is a

novel three stage real-time deep learning-based edge system for hazardous materials

(HAZMATs) recognition. The designed custom object detection architectures for ITS

applications are capable of highly accurate real-time prediction on edge computing

iii

devices (Intel, Google, and/or NVIDIA), thus providing enormous cost and performance

advantages compared to current implementations.

iv

Acknowledgements

The research works presented in this thesis are sponsored by the Natural Sciences and

Engineering Research Council (NSERC) of Canada, Mitacs of Canada, International Road

Dynamics (IRD) Inc., and the Department of Electrical and Computer Engineering at the

University of Saskatchewan.

The compilation of this thesis would have been impossible without the love and support I

received from my lovely wife, Lucia. She stayed by my side during the many arduous and

sleepless nights. She was always my source of encouragement in difficult situations.

Thanks to God for the gift of life and special thanks for the lovely gift of my children,

Anthony and Juan Andrés. They have been my source of motivation and joy each day.

I would also like to acknowledge and appreciate the guidance and constructive role played

by my supervisor, Dr. Seok-Bum Ko. Without his thoughtful insights, comments and patience

with me, this task would have been difficult to accomplish. He assisted me in seeing many

new perspectives in every draft that I presented to him. This has translated my view and

broadened my scope regarding this area. Thank you.

Sincere thanks to all my colleagues for assisting me throughout my PhD program. I also

extend my gratitude to all the ECE faculties for the important lessons regarding this particular

discipline.

I am also indebted to my family and friends who were so helpful. All they did may be too

much to mention on this piece. Special thanks to my mother Cecilia, my sister Andrea, and

my brother Christian for their unwavering support. Last but not least, thanks to my father,

Juan, who is not with me physically but spiritually.

Thank you all so much.

v

Contents

Permission to Use ... i

Abstract ... ii

Acknowledgements .. iv

Contents ... v

List of Tables .. ix

List of Figures .. xi

List of Abbreviations .. xiii

Part I Preface .. 1

Chapter 1: Introduction ... 2

1.1 Intelligent Transportation Systems .. 2

1.2 Motivation of Research Works .. 4

1.3 Research Objectives ... 5

1.4 Overview of Research Works .. 6

1.5 Summary of Contribution .. 8

Chapter 2: Background .. 12

2.1 Machine Learning and Deep Learning .. 12

2.2 Convolutional Neural Networks .. 13

2.2.1 Stride in Convolutional Neural Networks .. 15

2.2.2 Padding in Convolutional Neural Networks ... 16

2.3 Optimized Layers for Convolutional Neural Networks ... 17

2.3.1 Deep Residual Learning ... 17

2.3.2 Depthwise Separable Convolution ... 18

2.3.3 Inverted Bottleneck Networks .. 19

2.3.4 Fused Inverted Bottleneck Layers (Expansion) .. 19

2.3.5 Tucker Decomposition ... 19

2.3.6 Linear Bottlenecks .. 20

2.3.7 FFT Based Convolution ... 22

2.3.8 Winograd Algorithm .. 22

2.3.9 Winograd Works .. 25

2.4 Object Detection .. 26

vi

2.4.1 Multistage Object Detection Systems .. 28

2.4.2 Video Object Detection Systems .. 29

Part II Hardware Optimization for Convolutional Neural Networks ... 30

Chapter 3: Stride 2 Winograd for Convolutional Neural Networks ... 32

3.1 Introduction .. 32

3.2 Proposed Winograd with Stride 2 .. 34

3.2.1 One-dimension ... 34

3.2.2 Two-dimensions ... 39

 3.2.2.1 Using Kernel 3×3 .. 39

 3.2.2.2 Using Kernel 5×5 .. 41

 3.2.2.3 Using Kernel 7×7 .. 43

3.2.3 Three-dimensions ... 46

3.3 CNN Architectures with Layer Stride > 1 ... 50

3.4 GPU Implementation ... 51

3.5 FPGA Implementation ... 53

3.5.1 CNN Architecture ... 53

3.5.2 FPGA Implementation.. 54

3.5.3 Memory Access .. 55

3.5.4 Proposed PE Architecture... 56

 3.5.4.1 Input Tile From Registers .. 57

 3.5.4.2 Splitter Block ... 57

 3.5.4.3 Input Transform Block ... 58

 3.5.4.4 Filter Transform Block ... 59

 3.5.4.5 Multiplication Block ... 59

 3.5.4.6 Inverse Transform ... 59

 3.5.4.7 Accumulator Block... 59

3.5.5 Parallelization ... 60

3.5.6 Results .. 61

3.6 Summary .. 64

Part III Applications for Intelligent Transportation Systems ... 66

Chapter 4: Deep Learning-based Embedded License Plate Localization System......................... 68

vii

4.1 Introduction .. 68

4.2 Proposed Solution .. 70

4.2.1 Neural Network Description... 70

4.2.2 Training Process ... 74

4.2.3 Inference Process .. 78

4.2.4 Proposed DL LPL Algorithm ... 79

4.3 Results .. 82

4.3.1 Dataset Information .. 82

4.3.2 Comparisons to Public Libraries .. 83

 4.3.2.1 The Caltech Dataset ... 83

 4.3.2.2 The University of Zagreb Database ... 85

 4.3.2.3 The NTUA MediaLab Dataset .. 86

4.3.3 Comparisons to Popular DL Object Detection Frameworks 87

4.3.4 Comparisons to other DL LPL Frameworks .. 88

4.3.5 Real-life Real-time Testing .. 89

4.4 Summary .. 90

Chapter 5: Real-time CVSA Decals Recognition System Using Deep Convolutional Neural Network

Architectures ... 92

5.1 Introduction .. 93

5.2 Proposed Architecture .. 95

5.2.1 Windshield Detection, CVSA Decal Detection, and Colour Classification 97

5.2.2 Digit and Corner-cut Detection and Classification .. 98

5.3 Labelling and Training ... 99

5.3.1 First Stage ... 101

5.3.2 Second stage ... 103

5.4 Real-time Prediction .. 106

5.5 Results .. 109

5.5.1 Model Comparison ... 109

5.5.2 Hardware Accelerators Result Testing ... 112

5.6 Summary .. 115

Chapter 6: Real-Time Deep Learning-based Edge System for HAZMAT Recognition 117

6.1 Introduction .. 118

viii

6.2 Proposed Solution .. 120

6.2.1 HAZMAT Placard Localization and Classification ... 120

6.2.2 UN/NA Number Localization and Class Recognition ... 122

6.2.3 UN/NA Number Recognition ... 123

6.3 Dataset Description .. 124

6.3.1 Dataset .. 124

6.3.2 Dataset Augmentations... 127

6.4 Training Methodology ... 128

6.4.1 Model and Training Environment. ... 128

6.4.2 Models Training ... 129

6.5 Real-time Prediction Methodology .. 130

6.6 Results .. 133

6.6.1 Testing Environments... 133

6.6.2 Performance Metric ... 134

6.6.3 Stage 1 Training Results Summary .. 135

6.6.4 Stage 1 General Model Comparison .. 135

6.6.5 Stage 2 and 3 Model Results .. 138

6.6.6 Edge Hardware Deployment and Real-Time Results ... 139

6.6.7 Comparison to Others’ Works .. 141

6.7 Discussion .. 143

6.7.1 General ... 143

6.7.2 Placard Localization (Stage 1) Deployment Results .. 143

6.8 Summary .. 144

Part IV Conclusion .. 146

Chapter 7: Conclusions and Future Work ... 147

7.1 Conclusions .. 147

7.2 Future Work ... 151

References ... 152

ix

List of Tables

2.1 Summary of object detection components ... 27

3.1 Architecture layers using stride >1 ... 51

3.2 Comparisons of the Regular convolution and Winograd Stride Two .. 52

3.3 Performance Comparison using stride two in GPU ... 52

3.4 Modified VGG-16 Architecture with convolution stride two .. 53

3.5 Resource Utilization of different PEs for kernel=3×3 on INTEL ARRIA-10 60

3.6 Resource Utilization of CNN accelerator on INTEL ARRIA-10 ... 62

3.7 Performance comparison with state-of-the-art FPGA accelerators .. 63

4.1 Bottleneck Residual Block Structure ... 71

4.2 License plate localization neural network used as feature extractor .. 74

4.3 Public datasets used to train the deep learning model .. 82

4.4 Comparison of LPL algorithms on the Caltech Cars 1999 (rear) 2 dataset 84

4.5 Comparison of license plate localization algorithms on the University of Zagreb plate detection,

recognition, and automated storage dataset .. 85

4.6 Set specifics of the NTUA Medialab LPR Database .. 86

4.7 Comparison of License Plate Localization Algorithms on the NTUA Medialab LPR Database

 ... 87

4.8 The proposed license plate localization deep learning architecture compared to popular DL

architectures ... 88

4.9 The proposed license plate localization deep learning architecture compared to other deep

learning license plate localization architectures ... 88

5.1 First stage backbone ... 98

5.2 Second stage backbone ... 99

5.3 Summary of model training and results ... 111

5.4 Hardware accelerator benchmark ... 113

6.1 Neural Network Architecture for UN/NA Number Detection and Class Identification Feature

Extractor .. 123

6.2 Modified ResNet-18 Backbone for UN/NA Number Recognition .. 124

6.3 Histogram of Number of Placards Per Image .. 125

6.4 Dataset Class-Subset Breakdown ... 127

6.5 Summary of Model Training and Results for Stage 1 .. 134

x

6.6 Summary of Model Results for Stage 2 ... 138

6.7 Summary of Model Results for Stage 3 ... 138

6.8 Results: Real-time Prediction Speed (FPS) .. 140

6.9 Per-Class comparisons ... 142

xi

List of Figures

2.1 Neocognition .. 14

2.2 Convolution with stride equal to 1 and 2 ... 15

2.3 Convolution with padding to 1 ... 16

2.4 (a) IBN layer, (b) Fused layer, and (c) Tucker layer .. 20

2.5 Process of the 3D Winograd algorithm .. 24

2.6 (a) Image classification , (b) object detection .. 26

3.1 Proposed convolution with stride=2 for kernel=3 ... 35

3.2 Proposed convolution with stride=2 for kernel=5 ... 36

3.3 Proposed convolution with stride=2 for kernel=7 ... 37

3.4 Proposed convolution with stride=2 for kernel=3×3 ... 40

3.5 Proposed convolution with stride=2 for kernel=5×5 ... 42

3.6 Proposed convolution with stride=2 for kernel=7×7 ... 44

3.7 Proposed convolution with stride=2 for kernel=3×3×3 .. 47

3.8 Deep learning architecture .. 55

3.9 Proposed PE architecture ... 56

3.10 Splitter the input in based on the stride selected ... 58

3.11 Input transform block .. 58

3.12 Evaluation results of the original VGG-16 architecture compared to the proposed modified

VGG-16 architecture .. 61

4.1 Standard vs. depthwise separable convolution operations to demonstrate the effectiveness of

depthwise separable convolution over standard ... 72

4.2 Architecture of the proposed license plate localization method. .. 75

4.3 Images of plate regions on vehicles labelled using labelImg ... 76

4.4 Program flow of proposed multi-threading video capture with motion detection then inference

 ... 79

4.5 Frames of a vehicle travelling at highway speed passing under a camera setup 81

4.6 Different obstructions on license plates in images from the NTUA Medialab dataset 82

4.7 Images of vehicles and their corresponding respective localized license plates generated by the

proposed method .. 83

4.8 Real-time can detect one or multiple license plates at the same time .. 90

5.1 CVSA decal color types ... 93

xii

5.2 Trucks with CVSA decals on different highways .. 100

5.3 Windshield and CVSA decal labelled using the LabelImg program 102

5.4 Digit and corner-cut labelled in a CVSA decal .. 103

5.5 (a) 7 spots filled, (b) 5 spots filled, and (c) 3 spots filled ... 105

5.6 Real-time CVSA Decals Recognition Systems (CDRS) ... 108

5.7 Comparison of accuracy (mAP) vs. processing time by stage .. 110

5.8 DeepStream pipeline for the real-time CDRS on the Jetson Xavier ... 114

6.1 HAZMAT recognition system .. 120

6.2 UN/NA number recognition ... 123

6.3 Example images from the dataset .. 126

6.4 Processing pipeline as deployed on the Jetsons, possible using Nvidia libraries 131

6.5 Example test set inferences of the quantized SSDlite + Custom model 137

xiii

List of Abbreviations

AI Artificial Intelligence

ALPR Automatic License Plate Recognition

AMQP Advanced Message Queuing Protocol

ANN Artificial Neural Network

AP Average Precision

ASCII American Standard Code for Information Interchange

CDRS CVSA Decals Recognition Systems

CNN Convolutional Neural Network

CPU Central Processing Unit

CuDNN NVIDIA CUDA Deep Neural Network Library

CV Computer Vision

CVSA Commercial Vehicle Safety Alliance

DL Deep Learning

DNN Deep Neural Network

DSP Digital Signal Processing

FLOPS Floating Point Operations Per Second

FPGA Field-Programmable Gate Array

FPN Feature Pyramid Network

FPS Frames per Second

GHz Gigahertz

GOPS Giga Operations Per Second

GPU Graphics Processing Unit

HAZMAT Hazardous materials

IBN Inverted Bottleneck Network

IoT Internet of things

xiv

IoU Intersection over Union

ITS Intelligent Transportation System

LiDAR Light Detection and Ranging

LPL License Plate Localization

LSTM Long Short-Term Memory

mAP Mean Average Precision

ML Machine Learning

MQTT Message Queuing Telemetry Transport

NA North American

NAS Neural Architecture Search

NTUA National Technical University of Athens

OCR Optical Character Recognition

OpenCL Open Computing Language

PASCAL Pattern Analysis, Statistical Modelling and Computational Learning

PE Processing Element

RAM Random Access Memory

R-CNN Region-based Convolutional Neural Network

ReLU Rectified Linear Unit

R-FCN Region-based Fully Convolutional Network

RNN Recurrent Neural Network

ROI Region of Interest

RPN Region Proposal Network

SSD Single Shot Detector

SSVD Single Shot Video Object Detector

UN United Nations

USDOT United States Department of Transportation

VGG Visual Geometry Group

VOD Video Object Detection

xv

WMFAs Winograd Minimal Filtering Algorithms

YOLO You Only Look Once

1

Part I

Preface

2

Chapter 1

Introduction

This chapter presents intelligent transportation systems (ITS), artificial intelligence in

the context of ITS, and the importance of optimizing network architectures and hardware.

Developing optimized real-time ITS on low-cost devices may increase the utilization of

these systems around the world; this has motivated the research works proposed in this

thesis. Section 1.1 presents ITS. The motivations of the research works are presented in

Section 1.2. Section 1.3 presents the overview of the research works. The contributions

of these research works are summarized in Section 1.4.

1.1 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS), officially defined at the 1994 World

Congress in Paris, encompass all technology-driven applications within the broad field of

transportation designed to improve the general driving experience. ITS incorporates a

wide variety of technologies (e.g. within the fields of telecommunication, ICT, networks,

automation, and sensors), methods (e.g. data-driven, measurement and statistics,

algorithms, computer vision, and artificial intelligence (AI)), and management techniques

[1]. ITS objectives include protecting the health and safety of traffic actors and

pedestrians, safeguarding the natural environment and its resources, and increasing the

effectiveness and streamlining the efficiency of transportation in generals, supply chains,

cities and highways, and the broader field of ITS itself [2].

Innovative ITS services produce useful gains within transportation, traffic

management, and traffic control. A well-designed system will communicate with

applicable users or other systems to encourage safer and more coordinated utilization of

transport channels [1]. ITS aims to improve traffic planners and road users' safety,

mobility, productivity, and environmental performance [2].

3

Traditional ITS approaches use dedicated hardware such as inductive loop detectors,

radar detectors, and laser detectors to locate vehicles and determine their speeds and

characteristics, but such equipment may incur high maintenance and installation costs.

Compared to these traditional sensor-based approaches, video cameras are more

advantageous in terms of cost and flexibility [3].

Video cameras have long since been deployed for traffic surveillance because they

provide important contextual information for human consumption and understanding [4].

Due to decreasing costs (Moore’s Law), the number and coverage of road cameras has

dramatically increased in recent years, resulting in broad accessibility of image/video

data; this has led to the feasibility of camera image-based object detection—an incredibly

promising new technique for large-scale traffic data analysis. Video analysis within the

scope of smart transportation public safety has led to research and advancements in both

academia and industry [4].

Compared with the “traditional” transportation system, the most significant

characteristic of ITS is the integration of data-driven approaches including AI [5].

Leveraging AI for transportation may help the sector increase passenger safety, reduce

traffic congestion and accidents, lessen carbon emissions, and minimize overall financial

expenses for industries, governments, companies, and consumers.

AI can be defined as a technology that allows machines to learn from experience,

oftentimes guided by human knowledge. Machines with AI capabilities can learn to

mimic humans, automate manual tasks, create aesthetically-pleasing works, and practice

continual learning—just like humans [6]. Computer/AI-driven automation frees human

operators from repetitive and time-consuming tasks in a way that may also lessen (human)

operator fatigue and stimulate higher and more deterministic accuracy. Moreover, specific

AI-powered systems may exhibit human-level accuracy and/or continuous learning with

new experiences, which may indicate the potential for AI-powered machines to self-

improve and perform tasks that require critical-thinking or higher-level functions—

possibly without human intervention, depending on task complexity [6]. Governments,

the transportation sector, and academic institutions are making significant investments in

4

this relatively new and near limitless AI field [5]. Novel general or custom-tailored AI-

based applications are designed with an emphasis on improving speed and accuracy, but

also reliability, efficiency, robustness, quality, and—where applicable—safety.

1.2 Motivation of Research Works

Recent and rapid AI developments have provided unprecedented opportunities to

revolutionize different fields, industries, and businesses, including within the transport

sector. Intelligent Transportation Systems (ITS) have seen a rise in application

development through the implementation of AI methods [5]. One of the most promising

areas of research within AI is computer vision.

Computer vision enables computers to process visual data and extract information

from that data at a baseline level [7]. Visual input/output tends to be highly interpretable

by humans, which can be useful for the design and implementation of certain systems.

The general goal of computer vision is to teach computers how to identify, classify, and

categorize the visual world as humans do. Although the field of computer vision has

existed for some time, the advent of deep learning to computer vision pipelines has led to

a revolution in vision technologies and systems [6].

Deep learning (DL) has made computer vision algorithms highly effective for real-

world applications [6]. One famous DL architecture originally designed for image data is

the convolutional neural network (CNN) [8]. CNNs have made computer vision feasible

and relatively inexpensive for industrial applications, leading to high industry investment

and adoption, especially for task automation.

In general, DL models consist of many of layers and parameters. For example, Deep

Neural Networks (DNN) and Convolutional Neural Networks (CNN) require upwards of

millions (sometimes into the billions) of interconnected units and parameters [8]. As a

result, running most current DL applications requires high-performance computers with

expensive GPUs, or centralized servers and/or cloud-based systems [9]. This can be a

5

huge limitation in terms of system implementation cost, e.g. on highways or remote

locations where the Internet/remote access is limited.

Rather than sending real-time video to the cloud—which can be very expensive in

terms of time and data consumption—the main goal of this thesis is the implementation

of ITS systems on edge devices. This minimizes both data transmission time and system

latency, as well as reduces the cost of data transmission, computation, and storage.

Additionally, processing data at the edge can preserve the privacy of users and the

integrity of the raw data itself, because uploading the video/images is unnecessary [9].

Due to the limited memory and computational resources of edge devices, power-

efficient computation can be designed by reducing the number of hardware-expensive

computations (i.e. multiplications) for convolutions making the development of custom

and more specialized DL architectures becomes necessary.

1.3 Research Objectives

The main objective of this present study is to unify recent advancements in deep

learning architectures with the design of optimized computing hardware, with an

emphasis on the development of new and novel applications with the scope of ITS on

edge devices.

The specific objectives of this thesis are as follows:

1. Formulate algorithms to enhance the calculation of convolution stride 2—

particularly important for deep learning object detection systems—using fewer

hardware resources.

2. Design a processing element capable of supporting both stride 1 and 2 convolution,

to enhance FPGA efficiency.

3. Benchmark the DSP efficiency of the processing elements implemented on an

FPGA.

6

4. Develop ITS applications based on deep learning architectures that use

convolution strides 1 and 2.

5. Design custom optimized deep learning models for specific detection/recognition

tasks in each system.

6. Implement and evaluate the ITS applications on available edge devices and

hardware accelerators.

1.4 Overview of Research Works

In this thesis, based on the motivation discussed in Section 1.2, optimized CNN

algorithms and architectures capable of achieving a high convolution speed are proposed.

The algorithms for 1-D, 2-D, and 3-D convolution reduce the number of multiplications

when a convolution of stride 2 is performed. A Processing Element (PE) for a 3×3 kernel,

compatible with both stride 1 and 2 convolutions is introduced. Therefore, three ITS

applications are presented: a License plate localization (LPL) system, a CVSA decal

recognition system, and a HAZMAT recognition system. The applications are capable of

deployment in real-time in complex outdoor environments. The whole thesis is composed

of four parts with seven chapter shown as follows:

 Part I Preface includes:

- Chapter 1 Introduction: presents the importance of deep learning and the

motivations, the overview, and the contributions of the research works.

- Chapter 2 Background: introduces the background information required to

present the proposed research works.

 Part II Hardware Optimization for Convolutional Neural Networks

includes:

- Chapter 3 Stride 2 Winograd for Convolutional Neural Networks: present a

novel method to apply the Winograd algorithm to a stride (shift-displacement

of a kernel over an input) of two. This method is valid for one, two, or three

dimensions. In this chapter, new Winograd versions compatible with a kernel

of size three, five, and seven were introduced. The algorithms were

7

successfully implemented on an NVIDIA K20c GPU and an Intel Arria-10

FPGA. The proposed implementation uses a novel Processing Element (PE)

able to perform two Winograd stride one, or one Winograd stride two,

operations per clock cycle. Compared to regular convolutions and other

designs, the proposed implementations provide fast convolution for stride one

and two and high DSP efficiencies.

 Part III Intelligent Transportation Systems Applications include:

- Chapter 4 Deep Learning-based Embedded License Plate Localization System:

presents a novel neural network architecture for license plate localization

(LPL) based on an inverted residual structure where the shortcut connections

are between the linear bottleneck layers. The proposed deep learning (DL)

solution was tested against three popular international research databases and

achieves state-of-the-art results, proving that the proposed model is accurate

and robust. Across those databases, the proposed model surpasses other recent

LPL work, including DL-based methods, in terms of accuracy and speed. The

proposed architecture is shown to have significant speedup and computational

efficiency gains over other DL models, and to have fast per-image localization

processing times sufficient for applications deployed on expensive and

commodity hardware alike. Using a novel multi-threading video capture with

motion detection then inference algorithm, computational efficiency is

increased, thus dropping less frames overall and allowing for increased

performance. Repeated tests show the proposed method is well-suited to real-

time and highly accurate LPL, regardless of hardware.

- Chapter 5 Real-time CVSA Decals Recognition System Using Deep

Convolutional Neural Network Architectures: presents a 2-step automatic

Commercial Vehicle Safety Alliance (CVSA) decal recognition system using

deep convolutional neural network architectures. The MobileDet architecture

was used as a baseline for the proposed system and customized to better suit

the system’s tasks. The first step localizes a vehicle’s windshield and the

CVSA decal within, and classifies the decal colour. The CVSA decal is

8

cropped and used as input to the second stage, which localizes and classifies a

digit and the corner-cut of a CVSA decal. The custom architectures reduce

processing time and exceed accuracies relative to pre-trained architectures. The

proposed model was implemented on different edge hardware accelerators, and

the performance on each – in terms of high inference speed, real-time video

processing, and high mean average precision – was contrasted.

- Chapter 6 Real-Time Deep Learning-based Edge System for HAZMAT

Recognition: presents a 3-stages cascading system using deep learning

networks. The first network localizes and classifies the HAZMAT placard. If

the placard contains a United Nations (UN) / North American (NA) number,

the second network localizes that number and identifies the nature of the

substance. The third network recognizes the UN/NA number. For both the first

and second stage, an SSDlite object detection network was developed using

custom backbones based on MobileDet. For the third stage, a segmentation-

free UN/NA number recognition network was developed using a lightweight

sequence classification model. The system was deployed on a variety of AI

edge hardware accelerators from vendors like NVIDIA, Google, and Intel, and

performance differences among the accelerators were subsequently compared.

For each stage, a detailed comparison with other networks was provided.

 Part IV Conclusions includes:

- Chapter 7 Conclusions and Future Work: includes the conclusions of all

presented research works and the plan for futures works.

1.5 Summary of Contribution

In this thesis, a novel set of algorithms are introduced to calculate the convolution

when using a kernel sliding by two units about the input; this convolution is called

“convolution stride 2”. The presented algorithms of convolution stride 2 are based on the

conventional Winograd Minimal Filtering Algorithm, which is only formulated for

convolutions of stride 1. The proposed novel algorithms calculate the convolution stride

9

2 results using less multiplications than conventional convolution. They work in one, two

and three dimensions using respective kernels of size 3, 5, 7, 3×3, 5×5, 7×7, and 3×3×3.

The convolution stride 2 downsamples the feature maps while preserving spatial

information via feature learning. As further explained in Part II, this characteristic is

particularly important for object detection systems. A novel Processing Element (PE) is

presented that is able to perform two Winograd stride one, or one Winograd stride two,

operations per clock cycle. The convolution stride 2 was implemented on an NVIDIA

K20c GPU and an Intel Arria-10 FPGA.

Furthermore, three deep learning-based systems for ITS are presented. The first is an

embedded license plate localization system, the second is a real-time CVSA decal

recognition system, and the third is a real-time edge system for HAZMAT recognition.

For each system, custom object detection architectures that use a mix of stride 1 and 2

convolution are designed. The proposed architectures are optimized to achieve high

accuracies and low processing times. This feature makes the systems suitable to the

implementation on varying edge devices. To evaluate the speed of the proposed systems,

various hardware accelerators were used, including the Nvidia Jetsons (Nano and Xavier),

Intel's Neural Compute Sticks (versions 1 and 2), and Google's Coral USB accelerator.

Each ITS application’s deep learning architectures and corresponding accuracies and

prediction speeds are analyzed in detail in their respective chapters. To highlight the

advantages and improvements of the proposed systems over existing methods, the systems

are compared against related works (where applicable).

In this thesis, the computational efficiency for CNNs is improved—especially those

architectures designed for object detection—by providing new algorithms to accelerate

layers with a convolutional stride of 2; these novel algorithms are introduced in Chapter

3. Using this research, custom object detection architectures capable of real-time

prediction on edge computing devices were designed for ITS applications, , thus

providing enormous cost and performance advantages compared to current

implementations: Chapter 4 presents a license plate localization system, Chapter 5 a real-

time recognition system for Commercial Vehicle Safety Alliance (CVSA) decals, and

10

Chapter 6 a real-time edge system for recognizing hazardous material (HAZMAT)

placards.

Below is the list of publications, arranged according to the order of appearance in this

thesis:

 Chapter 3 Stride 2 Winograd for Convolutional Neural Networks:

- J. Yepez and S. Ko, “Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional

Neural Networks”, in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 28, n0. 4, pp. 853-863, April 2020.

 Chapter 4 Deep Learning-based Embedded License Plate Localization System:

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Deep learning-based embedded

license plate localisation system”, in IET Intelligent Transport Systems, vol.

13, no.10, pp. 1569-1578, 10 2019.

 Chapter 5 Real-time CVSA Decals Recognition System Using Deep Convolutional

Neural Network Architectures:

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Real-time CVSA Decals Recognition

System Using Deep Convolutional Neural Network Architectures”, in IET

Intelligent Transport Systems 1–13 (2021), https://doi.org/10.1049/itr2.12103.

 Chapter 6 Real-Time Deep Learning-based Edge System for HAZMAT

Recognition:

- J. Yepez, R. D. Castro-Zunti and S. Ko, “Real-Time Deep Learning-based

Edge System for HAZMAT Recognition”, under review Springer Machine

Vision and Applications, submitted July 2021.

 Other publications that are not included in this thesis:

11

- J. Yepez and S. Ko, "IoT-Based Intelligent Residential Kitchen Fire

Prevention System", in J. Electr. Eng. Technol. 15, pp. 2823-2832, August

2020.

- R.D. Castro-Zunti, J. Yepez and S. Ko, "License plate segmentation and

recognition system using deep learning and OpenVINO", in IET Intelligent

Transport Systems, vol. 14, no. 2, pp. 119-126, 2 2020.

- J. Yepez, X. Shi, and S. Ko, "An FPGA-based Closed-loop Approach of

Angular Displacement for a Resolver-to-Digital- Converter", 2018 IEEE

International Symposium on Circuits and Systems (ISCAS). Florence, 2018,

pp. 1-4

- A. Dinh, M. Bayati, M. Bhatti, J. Yepez, and J. Zhexin, "Design and

Implementation of a Wireless Wearable Band for Gait Analysis," in 6th

International Conference on the Development of Biomedical Engineering in

Vietnam (BME6), 2018, pp. 693-698.

- Z. Jiang, J. Yepez, S. An, and S. Ko, "Fast, accurate and robust retinal vessel

segmentation system," Biocybern. Biomed. Eng., pp. 1-10, 2017.

- X. Shi, J. Dai, X. Luo, J. Yepez, and S. Ko, "Foreground-Background

Separation Guided by Statistical Features of Surveillance Video," IEEE/IEIE

ICCE-Asia, pp. 3-6, 2016.

12

 Chapter 2

Background

This chapter present the background information of the proposed works in this thesis.

Machine and deep learning concepts are presented in Section 2.1 Section 2.2 presents the

convolutional neural networks. Section 2.3 presents optimized layers for convolution. Section

2.4 presents object detection works in the literature.

2.1 Machine Learning and Deep Learning

Machine learning (ML) can be described as an application of artificial intelligence (AI)

that allows a system to enhance the accuracy of its algorithm without explicit changes to the

algorithm by a (human) programmer [10]. A ML apparatus makes predictions based on sets

of data, and thus a wealth of data is usually required for a ML algorithm to be effective. The

predictions can include images where the content is divided into different categories, one of

the most important applications of deep learning, currently common in machine learning

systems.

Deep Learning (DL) and deep neural networks extend the idea of ML by offering a

method of multiple layers of predictions [6], with input to successive layers being the output

of one or more preceding layers. DL plays an active role in research pertaining to neural

networks, computer vision, and pattern recognition, with its success attributable to improved

hardware and graphical processing unit (GPU) capabilities, and the advent of accessible big

data for training.

13

The concept of distributed representation of data forms the basis of DL. Distributed

representation assumes that many factors, and the complex spatial relationships between their

properties, constitute data. These relationships form distinct and perceivable patterns on many

levels of abstraction. The depth of a neural network refers to the number of layers through

which data passes, with more layers representing increasing.

2.2 Convolutional Neural Networks

A frequently used application of DL is the convolution neural network (CNN). CNN

apparatus take inspiration from and are modelled after the ways in which the human mind

learns [11], and they have proved incredibly successful at solving problems in computer

vision, such as object recognition [12].

The first work on neural networks began in the late 1940s. The Canadian

neuropsychologist O.D. Hebb was the pioneer in the computer simulation of neurons. One of

the first training algorithms in the field was Hebbian learning.

One important precursor to the convolution neural network topologies is the

neocognitron by Kunihiko Fukushima used for handwritten characters in 1980. The proposed

topology has many similarities with the modern layout; every layer in the network increases

the complexity of the recognized feature.

CNNs are invariant to small amounts of shift, scale, and distortion, and can extract

complex features in high-dimensional space; layers that perform feature extractions are called

convolutional layers [11].

A notable precursor to modern convolutional neural network topologies is the

neocognitron architecture for classifying handwritten characters, designed by Fukushima

14

[13]. Figure 2.1 the general structure of neocognitron; as can be seen, it has many similarities

to modern CNNs, and each network layer increases in complexity to learn a feature desirable

to the recognition task.

Figure 2.1: Neocognition [13] where U0 is the input layer, UG is the layer comprised of contrast-extracting

cells, US layers are feature-extracting cells, and UC layers are recognition cells.

Like the neocognitron architecture, convolutional layers extract corners, edges,

endpoints, and other visual and hyperdimensional features, organizing them into output feature

maps. A hierarchy of convolutional layers may be arranged, and feature maps are extracted

from image data via repeated convolutions of the data with either varying filters/kernels or

results obtained from earlier layers.

Input to the first layer in a CNN is the data the network is to analyze. Input to the next

layer, and for all other layers, is the output feature map generated by the previous layer. The

number of layers, the quantity of which is referred to as the depth of the CNN, can potentially

reach hundreds—creating a need for massive and efficient computation.

15

With the conventional convolutional algorithm, each element in the output is computed

individually by multiplying and accumulating the corresponding kernel and the input data.

2.2.1 Stride in Convolutional Neural Networks

The stride controls how the kernel convolves around the input. When the stride is one,

the kernel is shifted over the input one element at a time. The stride is normally set in such a

way that the output volume is an integer.

 (a) (b)

Figure 2.2: Convolution with stride equal to 1 and 2

Figure 2.2 (a) shows a 5×5 input with a 3×3 kernel. With stride one, the output matrix

generated is size 3×3. A stride of one is normally used to extract the maximum number of

features, as it provides the maximum overlapping between the kernel and input—but at

maximum computational complexity. Figure 2.2 (b) shows the kernel shifting by two units

over the input, generating an output 2×2 matrix. Generally, when the stride is bigger than one,

the receptive fields overlap less. A smaller output is produced. If the stride were three, there

would be issues with spacing, as the receptive field would not fit around the input as an integer.

16

2.2.2 Padding in Convolutional Neural Networks

Padding defines how an image’s border is processed, and has a direct effect on the

spatial dimensions of the output shape [14]. For example, to achieve a shape with dimensions

equal to the input image, padding (e.g. with the average pixel value, with mirroring the image’s

borders, or typically with 0s) about the input boundaries is necessary. Conversely, unpadded

convolution performs the convolution operation only on the pixels of the input image, i.e.

without the addition of a border, causing the output dimension size to be smaller than that of

the input (by mathematics surrounding convolution).

Figure 2.3 shows a 2D convolution using a kernel size of 3, stride 1, and padding of 1.

Figure 2.3: Convolution with padding of 1

For an input image with size i, kernel size k, padding p, and stride s, the corresponding

size of the output shape o resulting from the convolution is:

17

𝑜 = 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 (
𝑖+2𝑝−𝑘

𝑠
) + 1 (2.1)

2.3 Optimized Layers for Convolutional Neural Networks

In addition to using Winograd method to optimize convolutions, in the literature some

layers can be found that have been shown to improve model precision and reduce inference

time. The layers used in this thesis are presented below.

2.3.1 Deep Residual Learning

DL using residual blocks—first defined in ResNet [7] by researchers at Microsoft—is

based on the idea that an approximate complex function is tantamount to an exact residual

function (a function plus an error), and thus nonlinear layers in DL that approximate complex

functions closer approximate residual functions [7].

Thus, a residual block may be modelled as:

𝐲 = 𝐹(𝐱, {𝑊𝑖}) + 𝐱 (2.2)

Where x is the input vector and y the output vector; F is the function trying to be

learned; and x also represents the error to the residual function represented by y. Thus, between

stages, element-wise addition occurs between the learned F and the input x; this addition is

referred to as a shortcut [7].

These blocks may be combined to effectively create and train very deep neural

networks with fewer FLOPS than previous deep learning models [7], and [15].

18

The original ResNet used a residual block whose channels progressively narrow

between input and output via successive convolutions before expansion at the next block layer

stage, with a shortcut used to connect successive (wide) layer inputs [7].

2.3.2 Depthwise Separable Convolution

A normal convolution layer may be separated into two or more steps such that applying

each step individually lessens overall computation time without tangibly compromising

accuracy: this is called a separable convolution [16].

Generally, computation time and expense is reduced in a separable convolution by

conducting the same or a similar convolutional operation while using less parameters than a

non-separated convolution. Using less parameters has the additional benefit of making the

model less prone to overfitting [16].

A depthwise separable convolution is a two-step process involving a depthwise

convolution followed by a pointwise convolution. A depthwise convolution performs filtering

over multiple channels while allowing the channels to remain separate. This is done by

convolving each separate channel with a filter to produce separate outputs before

combining/stacking those outputs [15].

A pointwise convolution applies a 1×1 spatial filter across the input channels which

identifies features using linear combinations of the inputs.

Depthwise separable convolution reduces computation compared to standard layers by

a factor of k2dj/(k2 + dj), where k is the kernel size and dj is the dimension of the output channel

layers. In the proposed DL apparatus, the convolutions use a kernel of 3×3. Thus, the

computational cost is almost 9 times smaller than that of standard convolutions

19

2.3.3 Inverted Bottleneck Networks

Bottlenecks are introduced in ResNet [12] to reduce the processing time of large

convolutions over high-dimensional feature maps. A bottleneck layer does compression, as

the feature maps are first projected to have less channels and then projected back during the

block’s final convolutional layer; both projections are implemented as 1 × 1 convolutions. It

is generally useful to allow fine-grained control over the channel sizes in each layer because

of their strong influence on the inference latency.

2.3.4 Fused Inverted Bottleneck Layers (Expansion)

The depthwise-separable convolution is a critical element of an inverted bottleneck

[16]. The idea behind the depthwise-separable convolution is to replace an expensive full

convolution with a combination of a depthwise convolution (spatial dimension) and a 1 x 1

pointwise convolution (channel dimension). In this layer, a regular convolution replaces the

IBN depthwise-separable by fusing its first 1 x 1 (which usually comes with an expansion

ratio) and its subsequent K x K depthwise convolution into a single K x K regular convolution.

The full convolution allows expansion of the channel size, with the expansion ratio determined

by the algorithm.

2.3.5 Tucker Decomposition

The Tucker layer is a compression block that involves a sequence of three operations:

a 1 x 1 convolution; a K x K regular convolution; and a 1 x 1 convolution. Figure 2.4 (c).

Combining the first 1 x 1 pointwise convolution and the second K x K regular convolution as

20

one K x K regular convolution gives the fused inverted bottleneck layer in Figure 2.4 (b). The

IBN structure shown in Figure 2.4 (a) is equivalent to the sequential structure of approximate

evaluation of a regular convolution by using CP decomposition [17]. Thus, all the layers can

be linked to Tucker/CP decomposition.

Regular, pointwise, and depthwise convolutions can be perform using these functions.

In this thesis, these blocks were used to customize the backbones of each stage according to

the type of objects to identify.

Figure 2.4: (a) IBN layer, (b) Fused layer, and (c) Tucker layer

2.3.6 Linear Bottlenecks

A bottleneck layer refers to a low-dimensional representation of relevant information

to a convolutional layer, and may be used to predict features and for classification [18].

(a) IBN (b) Fused (c) Tucker

21

Non-linear activation functions are used in neural networks because many successive

matrix multiplications often cannot be simplified to one numerical operation. These activation

functions collapse channel information between successive convolutional layers and thus

allow the construction of networks of depth [15].

A frequently used non-linear activation function is the rectified linear unit (ReLU),

defined as follows:

𝑅𝑒𝐿𝑈(𝑥) = {
 𝑥, 𝑖𝑓 𝑥 > 0
 0, 𝑖𝑓 𝑥 ≤ 0

 (2.3)

Applying (1) to data passing through successive convolutional layers within a neural

network creates inherent information loss between those layers, which can be combatted by

increasing the network’s channels and thus its capacity.

For any n-dimensional CNN layer Li there forms a set of activation tensors T

corresponding to an abstraction of relevant information; it has been believed that for any Li

there exists some low-dimensional manifold M ∈ Rn which entirely embeds T.

It can be shown that if M exists in a higher-dimensional activation space, a ReLU

operation which produces non-zero M is congruous with a linear transformation about the

ReLU’s inputs, and thus the ReLU operation may preserve information relating to the inputs

or M.

Thus, with the assumption that M is low-dimensional and exists in a higher-

dimensional activation space, the bottleneck may be treated as a linear operation by simply

not applying a non-linear activation function to it [15].

22

2.3.7 FFT Based Convolution

By the convolution theorem, convolution can be performed using Fourier transforms:

𝑓 ∗ 𝑔 = ℱ−1(ℱ(𝑓) ∙ ℱ(𝑔)) (2.4)

 ℱ and ℱ−1 are Fourier and inverse Fourier transforms [19]. In the discrete case, f and

g must have the same number of elements, which can be accomplished by padding zeros to

the shorter signal. The discrete Fourier transform (DFT) results in a circular convolution, from

which the correct result of the convolution can be extracted by taking the last |𝑓| − |𝑔| + 1 =

𝑚 elements.

 FFT-based convolution is more efficient in practice when there are long numbers of

convolutions [20], e.g. N>100, where the savings become enormous compared to “direct”

convolution; this is because direct convolution requires on the order of N2 operations

(multiplications and additions), whereas FFT-based convolution requires on the order of 𝑁 ×

𝑙𝑔(𝑁) operations, where 𝑙𝑔(𝑁) denotes the logarithm-base-2 of 𝑁.

2.3.8 Winograd Algorithm

The conventional convolution algorithm is simple to implement, but it is not efficient.

An efficient alternative convolution method can be realized via the Winograd minimal filtering

algorithm [21].

In the case of a size four input data vector and size three kernel vector, conventional

convolution requires six multiplications to generate the final result, whereas the Winograd

algorithm requires only four multiplications.

23

The one-dimensional convolution using the Winograd algorithm can be formulated

using the transformation matrices A, B, and G, input data d, and kernel g as follows:

𝑌 = 𝐴𝑇[[(𝐺𝑔) ∙ (𝐵𝑇𝑑)]] (2.5)

[21] introduces the matrices for F(2,3) as follows:

 𝑔 = [𝑔0 𝑔1 𝑔2]𝑇

𝑑 = [𝑑0 𝑑1 𝑑2 𝑑3]
𝑇 𝐴𝑇 = [

1 1 1 0
0 1 −1 −1

]

(2.6)

𝐺 =

[

1 0 0
1

2

1

2

1

2
1

2
−

1

2

1

2
0 0 1]

 𝐵𝑇 = [

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

]

These matrices are also compatible for 2D. In the two-dimensional Winograd

algorithm, F(m×m, r×r), the output size is m×m, the kernel size is r×r, and the input size is

n×n, where n = m + r – 1. The Winograd algorithm for 2D can be written in matrix form as

follows:

𝑌 = 𝐴𝑇[(𝐺𝑔𝐺𝑇) ∙ (𝐵𝑇𝑑𝐵)]𝐴 (2.7)

24

Figure 2.5: Process of the 3D Winograd algorithm

In [22], Shen et al. propose a method for the 3D Winograd algorithm F(m×m×m,

r×r×r), which can be represented with equation (4):

𝑌 = [𝐴𝑇[(𝐺𝑔𝐺𝑇)𝑅𝐺𝑇 ∙ (𝐵𝑇𝑑𝐵)𝑅𝐵]𝐴]𝑅𝐴 (2.8)

where R represents rotating the transformed image or filter tiles 90 degrees clockwise.

Figure 2.5 illustrates the process to obtain the convolution for F(2×2×2, 3×3×3) using

the 3D Winograd algorithm. First, the 3D matrix should be split into channels. For each

channel, a 2D Winograd transformation is applied to the kernel and the feature map. The new

3D matrices containing the results should be rotated 90 degrees clockwise. After this, an

additional transformation using the transpose is required. At this point, the dot multiplications

are performed. The results can be separated into channels. Utilizing these separate channels,

the 2D transformation is applied using A and rotated 90 degrees clockwise. Then, the matrix

25

is multiplied using AT. Following these steps, the convolution result is achieved in a 2×2×2

matrix.

2.3.9 Winograd Works

Researchers have developed many approaches to reducing the computational cost for

CNNs. In [11], an algorithm improvement is proposed through the analysis of the algebraic

properties of CNNs. The algorithm achieves 47% reduction in computation without affecting

the accuracy. In [21], the authors use Winograd’s minimal filtering algorithms (WMFA) to

develop new algorithms for stride one convolution. This algorithm is implemented for 2D on

a GPU and lessens multiplications by a factor of 2.25, thus achieving better performance than

the cuDNN library. In [23] and [24] the authors implement 2D WMFA on an FPGA. WMFA

uses fewer multiplications and little extra memory. In [25], an FPGA implementation using

OpenCL is presented. This implementation uses DSP in parallel to process 1D Winograd F(4,

3) while using the entire FPGA’s processing capacity for a more efficient implementation. In

[22], an architecture for accelerating 3D CNNs is presented, which is 13× faster than regular

convolution. In [26], an instruction-driven CNN accelerator is proposed which supports the

Winograd algorithm and cross-layer scheduling; their accelerator achieves 7× speedup

compared to another cross-layer accelerator [27] on the same platform. In [23], a Winograd

algorithm implementation is presented; their design uses a line buffer structure to reuse feature

map data, and achieves 2940 GOPS for VGG16 on a Xilinx ZCU102 platform. The authors in

[28] proposes an instruction-driven accelerator. However, the performance is limited for the

large data transfer between on-chip and off-chip memory. In [29], a WMFA implementation

26

is proposed using an optimal algorithm to determine the fusion and algorithm strategy for each

layer. The implementation achieves 660 GOPs of VGG-16.

2.4 Object Detection

Object detection, a topic within computer vision, encompasses aspects of image

classification and localization [30]. Image classification determines what object classes are

present within an image, and localization refers to finding those objects within the image

(typically via the coordinates of its enclosing “bounding” box); this can be seen in Figure 2.6.

Figure 2.6: (a) Image Classification, (b) Object detection

Within the context of CNNs, convolution acts as a filter. The output of a CNN layer

(the “activation map”) represents the response of the filter (the “kernel”)—indicating the

location and strength of the feature, if detected—about the input. A CNN layer will utilize

upwards hundreds of filters, thereby producing a large output activation map, where each filter

represents an appropriate learned feature (e.g. a line, blob, or something hyperdimensional,

e.g. for the purpose of discriminating different classes). During the learning process

(“training”), a model is repeatedly exposed to a wealth of varied and representative data, and

the internal model filter parameters are iteratively updated via small adjustments governed by

a calculus-based algorithm called “backpropagation”.

27

Modern object detectors are comprised of two parts, a “backbone” feature extractor

that gives a feature map representation of the input, and a “head” used to predict classes and

bounding boxes of found objects. Recent object detectors additionally insert layers between

the backbone and the head to collect feature maps from different stages; such layers are called

“necks”. Table 2.1 shows a summary of which models could be classified as which object

detection network components.

Backbones are models, oftentimes pre-trained on ImageNet [31], designed for image

classification and repurposed for object detection. Backbones like EfficientNet [32], VGG [7],

ResNet [33], and DenseNet [34] are powerful feature extractors that usually require a GPU for

reasonable processing time. For CPU platforms, SqueezeNet [35], MobileNet [15], [16], [36],

or ShuffleNet [37] are more suitable. Neural architecture search (NAS) [38] has been used to

build efficient backbones for object detection with high average precision (AP), e.g. for

MobileDet [39].

The head can generally be categorized as either one- or two-stage. Two-stage object

detectors have a ROI proposal step which finds possible places within an image where objects

 Table 2.1: Summary of object detection components

Heads Backbones Necks

R-CNN [40] EfficientNet [32] FPN [50]

Fast R-CNN [41] VGG [7] BiFPN [46]

Faster R-CNN [42] ResNet [33] NAS-FPN [51]

R-FCN [43] DenseNet [34]

Libra R-CNN [44] SqueezeNet† [35]

RepPoints [45] MobileNet† [15], [16], [36]

EfficientDet* [46] ShuffleNet† [37]

YOLO* [47] MobileDet† [39]

SSD* [79]

RetinaNet* [49]

* Refers to one-stage object detectors.

† Refers to backbones designed for implementation on CPU platforms and/or edge devices.

28

are located. Popular two-stage object detectors include R-CNN [40], fast R-CNN [41], faster

R-CNN [42], R-FCN [43], Libra R-CNN [44], and RepPoints [45]. One-stage object detectors

require only a single pass through the network and do not use a separate ROI proposal step.

Popular one-stage detectors include EfficientDet [46], YOLO [47], SSD [48], and RetinaNet

[49].

Neck networks include the Feature Pyramid Network (FPN) [50], BiFPN [46], and

NAS-FPN [51].

2.4.1 Multistage Object Detection Systems

In a multistage object detection pipeline system, an object’s bounding box is localized,

and its class identified, using different networks. König et al. [52] present a multi-stage

reinforcement learning approach for detecting objects within an image. The authors’ approach

is comprised of a zoom stage and a refinement stage, uses aspect-ratio modifying actions, and

is trained via a combination of three different reward metrics. Wang et al. [53] present a multi-

stage 3D object detection network architecture that takes LIDAR points and images as inputs.

They utilize a cascade-enhanced detector for small classes, a 3D region proposal subnet, and

a second stage detector subnet to achieve high-precision oriented 3D bounding box prediction.

Yonetsu et al. [54] design a two-stage system for license plate detection in complex

scenes using YOLOv2. The first stage detects cars and the second detects license plates within

the cars’ regions. Zhang et al. [55] use two-stage deep neural networks for license plate

localization in unconstrained scenes. In the first stage, a CNN is used to extract local character

features. In the second stage, a recurrent neural network (RNN) connects the fine-scale

proposals to obtain the whole license plate. An improved faster R-CNN with a two-stage

detection system for small object detection is presented by Cao et al. [56]. In the proposal

stage, they achieve bounding box regression via an improved loss function based on

Intersection over Union (IoU), and RoI pooling is enhanced via bilinear interpolation. They

also use multi-scale convolution feature fusion so feature maps contain more information to

detect small objects.

29

2.4.2 Video Object Detection Systems

Video object detection (VOD) detects objects within a video data stream rather than

from a static image. Wang et al. [57] introduced an object detection system for compressed

videos using a motion aided memory network (MMNet). Their system takes advantage of both

motion vectors and residual errors in video streams, needing only to run a complete

recognition network for I-frames. Their faster speed measured on a NVIDIA Titan X Pascal

GPU is 55 FPS which is 3x times faster than single image R-FCN and 10x times faster than

the high-performance detector MANet, with a minor accuracy loss. Deng et al. [57] introduced

single shot video object detector (SSVD). The authors proposed enhancing per-frame features

through aggregation of neighbouring frames using an FPN as a backbone network. SSVD

estimates the motion and aggregates the nearby features along the motion path. SSVD achieves

79.2% mAP on ImageNet VID, and processes one frame in 85 ms on an Nvidia Titan X Pascal

GPU. Given their success in natural language processing tasks, long short-term memory

(LSTM) networks have been used in VOD systems by incorporating frame sequence

information. Both [57] and [58] achieve high accuracy on ImageNet VID using an expensive

GPU. However, their proposed layers are based on FPNs which are unsuitable for most edge

devices in terms of computational complexity and processing time. For edge devices,

Flow&LSTM [59] achieved the highest accuracy of 75.5%. Looking Fast and Slow [60]

achieved relatively high speed (23.5 FPS) on a Pixel 3 phone, but had lower accuracy (58.9%).

30

Part II

Hardware Optimization for Convolutional

Neural Networks

31

Part II of this thesis consists of hardware optimization for Convolutional Neural

Networks (CNNs). Although a model can achieve the same accuracy result regardless of

whether its underlying system is optimized, an optimized hardware system will generally

use less resources which improves processing time, efficiency, and energy consumption.

Processing an input through a CNN requires billions of multiplications; therefore,

reducing the number of multiplications (ideally without affecting the CNN’s accuracy) is

important to improving the total efficiency/speed of the system.

Winograd minimal filtering algorithms (WMFAs) take advantage of overlapping

computations between adjacent windows to reduce the number of multiplications required

for convolution; WMFAs do so by trading multiplications for addition. Given that the

hardware required for multiplication is complex and large compared to that of a simple

adder, the multiplication–addition tradeoff proposed by Winograd is desirable. However,

the original Winograd algorithm only applies when using a stride of 1, where stride is

defined as the element-wise shift displacement of a kernel over an input along a particular

axis. In object detection, a convolutional layer of stride 2 is particularly important because

it allows the layer to downsample the input (for more efficient processing of latter model

layers) while preserving learned spatial information (which is by definition important for

object detection).

Part II of this thesis is comprised of Chapter 3, which proposes a novel Winograd

algorithm for stride 2 convolutional. The formulated Winograd algorithms are compatible

with stride 2 for 1-D(imension), 2-D, and 3-D convolutional layers. Furthermore, Chapter

3 presents the design of a novel processing element (PE) for an FPGA implementation.

Compared to other Winograd implementations available in academic literature, the

proposed PE unit supports both stride 1 and 2 convolutions. The proposed PE is

implemented on an FPGA and benchmarked for DSP efficiency using the popular VGG-

16 network architecture.

The PE and concomitant WMFA algorithms proposed in Part II may support the

efficient implementation of models proposed in Part III of this thesis.

32

Chapter 3

Stride 2 Winograd for Convolutional

Neural Networks1

This chapter present the motivations to design a Winograd stride 2 in Section 3.1.

Section 3.2 presents novel Winograd stride 2 algorithms for 1-D, 2-D, and 3-D using 3×3,

5×5, and 7×7 kernels. Section 3.3 presents the CNN architectures that uses layer stride

>1. The GPU implementation is shown in Section 3.4. Section 3.5 shows the design,

implementation, and results of the CNN accelerator and compares the proposed method

to prior works. Section 3.6 concludes the chapter.

3.1 Introduction

Convolutional Neural Networks (CNNs) are widely used in many deep learning

systems. CNNs have shown state-of-the-art accuracy in a variety of interdisciplinary

research, including image classification [61]–[63], object detection [64]–[66], and speech

recognition [67], [68], leading to their widespread adoption.

To reduce memory bandwidth requirements, recent research into CNN hardware

acceleration has focused on increasing parallelism, reducing bits via quantization, or using

fixed points rather than floating points [69], [70].

The Winograd minimal filtering algorithms, capable of being used for any stride [71],

take advantage of overlapping computations between adjacent windows [21] to reduce

 1The content of this chapter is originally published in IEEE Transactions on Very Large Scale Integration

(VLSI) Systems [113]. The manuscript has been reformatted for inclusion in this thesis.

 Juan Yépez (JY), and Seok-Bum Ko (SK) designed the study. JY designed the algorithms, developed and

optimized the processing elements, implemented the algorithms on a GPU and a FPGA, and performed logic

synthesis and results analysis. JY prepared the manuscript with contributions from SK to the manuscript

structure, readability and analysis and discussion of the results.

33

the number of multiplications required for convolution, trading multiplication for

addition. Given that the hardware required for multiplication is complex and large

compared to that of a simple adder, the multiplication-addition tradeoff proposed by

Winograd is desirable.

Modern CNN architectures replace pooling layers with strided convolutions for

downsampling [72], where stride is defined as the element-wise shift-displacement of a

kernel over an input along a particular axis [73]. Convolutional layers learn feature

properties during training; conversely, pooling is a fixed downsampling operation and

pooling layers have no trainable weights. A convolutional layer with stride >1 is

advantageous in that it has trainable parameters and downsamples.

Recent architectures (e.g. the MobileNet family) use increasingly more layers with

stride >1. Therefore, it is important to develop methods to process these layers efficiently.

In this chapter, a novel way to use Winograd stride one algorithms to produce the effect

of stride two is introduced. Algorithms for 3×3 and 5×5 kernels for 1D and 2D cases are

proposed. These algorithms require special cases of the Winograd algorithm that are

described in this chapter. Therefore, the main contributions of this chapter are as follows:

• Novel Winograd algorithms with stride two for 1D, 2D, and 3D convolutions. These

algorithms reduce the multiplication complexity of convolution. A quantitative analysis

of the number of multiplications and additions required by this algorithm was provided.

• The matrices for 1D Winograd F(2,2) and F(2,4), for 2D Winograd F(2×2,2×3),

F(2×2,3×2), F(2×2,3×4), and F(2×2,4×3) were determined. These versions are required

to solve the proposed Winograd with stride two. To obtain the values of these respective

matrices, the popular Winograd F(2,3) is referenced and the Chinese Remainder Theorem

[74] is used. A quantitative analysis of these matrices is performed, comparing them with

regular convolutions.

• The proposed algorithm was implemented on an NVIDIA K20c GPU. It shows 1.44x

improvement for a 3×3 kernel, 2.04x improvement for a 5×5 kernel, 2.42x improvement

for a 7×7 kernel, and 1.73x improvement for a 3×3×3 kernel.

34

• A CNN accelerator was implemented on an Intel Arria-10 FPGA for both an original

and modified VGG-16 architecture, which achieved Digital Signal Processor (DSP)

efficiencies of 1.22 GOPS/DSPs and 1.33 GOPS/DSPs, respectively. For the accelerator,

a Winograd Processing Element (PE) for a 3×3 kernel was proposed, compatible for both

stride one and two convolutions. The combined one- and two-stride Winograd PE uses

only 146 and 100 more LUTs and registers, respectively, and the same number of DSPs

(32), as a PE for two Winograd stride one calculations. It also uses 25 less DSPs than

would be required by independent PEs for calculating two Winograd stride one, and one

Winograd stride two, operations.

3.2 Proposed Winograd with Stride 2

3.2.1 One-dimension

In one-dimensional convolution with stride two, odd positions of the input are

multiplied with odd positions of the kernel, and even-position input elements are

multiplied with even-position kernel elements; no multiplication between odd-position

and even-position elements occurs. Thus, the input and kernel elements can be separated

into two groups: odd and even. Using these groupings, it is possible to convert a

convolution of stride two into two convolutions of stride one. Figure 3.1 shows the

procedure for a size five input vector and a size three kernel vector.

35

Figure 3.1: Proposed convolution with stride=2 for kernel=3

The even group contains two elements for the input and one element for the kernel.

This cannot be further simplified. However, the odd group contains three elements for the

input and two elements for the kernel, which can be calculated using the F(2,2) Winograd.

There is no available F(2,2) Winograd based on matrices. However, F(2,2) can be

determined using the popular F(2,3) Winograd. In these matrices, the values of the

variables g2 and d3 are zero when using F(2,2) because the fourth row for both G and BT

are zero and can be deleted. Similarly, the fourth column of BT and AT and the third

column of G can also be eliminated. Therefore, the matrices for F(2,2) are as follows:

𝑔 = [𝑔0 𝑔1]𝑇 𝑑 = [𝑑0 𝑑1 𝑑2]
𝑇 (3.1)

𝐵𝑇 = [
1 0 −1
0 1 1
0 −1 1

] 𝐺 = [
1 0

1/2 1/2
1/2 −1/2

] 𝐴𝑇 = [
1 1 1
0 1 −1

]

The minimal filtering algorithm for computing m outputs with an r-tap kernel, which

is called F(m, r), requires a number of multiplications defined by:

μ(F(m, r)) = m + r – 1 (3.2)

36

The F(2,2) algorithm uses just three multiplications and is therefore minimal by the

formula μ(F(2, 2)) = 2 + 2 – 1 = 3. The algorithm also uses three additions involving the

data, two additions and two multiplications by a constant involving the kernel, and three

additions to reduce the products in the final result, whereas six is required for regular

convolution.

To use a size five kernel with stride two, the procedure is similar to using a size three

kernel: there is no multiplication between odd-position and even-position elements, and

elements are separated into respective odd- and even-position groups. For a size five

kernel, the input vector contains seven elements. The odd group contains four input

elements and three kernel elements, allowing the Winograd F(2,3) to be applied. The even

group contains three input and two kernel elements, and Winograd F(2,2) is used. Figure

3.2 shows the procedure for a size seven input vector and a size five kernel vector.

Figure 3.2: Proposed convolution with stride=2 for kernel=5

The odd-position group uses four multiplications (μ(F(2,3))=4), and the even-position

group uses three multiplications (μ(F(2,2))=3). Therefore, the total number of

multiplications is seven, whereas ten would be required for regular convolution.

37

Figure 3.3: Proposed convolution with stride=2 for kernel=7

For a size seven kernel, the even group contains four input and three kernel elements,

and the popular Winograd F(2,3) will be used. The odd group contains five input elements

and four kernel elements, allowing the Winograd F(2,4) to be applied. Figure 3.3 shows

the procedure for a size nine input vector and a size seven kernel vector.

Because there is no available F(2,4) Winograd based on matrices, F(2,4) was derived

using the same technique provide by Winograd.

The four-element kernel g and five-element data d are represented as polynomials in

the following:

 𝑔(𝑥) = 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0 (3.3)

 𝑑(𝑥) = 𝑑4𝑥
4 + 𝑑3𝑥

3 + 𝑑2𝑥
2 + 𝑑1𝑥 + 𝑑0

The lineal convolution g ⁕ d is:

𝑦(𝑥) = 𝑔(𝑥)𝑑(𝑥) (3.4)

The polynomial m(x) can be written in terms of

38

𝑦(𝑥) = 𝑔(𝑥)𝑑(𝑥) mod m(x) (3.5)

Applying the Winograd analysis, the equations can be represented as matrices, as

shown equation 6:

𝑔 = [𝑔0 𝑔1 𝑔2 𝑔3]𝑇

 𝑑 = [𝑑0 𝑑1 𝑑2 𝑑3 𝑑4]
𝑇 (3.6)

𝐴𝑇 = [
1 1 1 1 0
0 1 −1 2 1

]

𝐵𝑇 =

[

2 −1 −2 1 0
0 −2 −1 1 0
0 2 −3 1 0
0 −1 0 1 0
0 2 −1 −2 1]

𝐺 =

[

1/2 0 0 0
−1/2 −1/2 −1/2 −1/2
−1/6 1/6 −1/6 1/6
1/6 1/3 2/3 4/3
0 0 0 1]

The odd-position group uses five multiplications (μ(F(2,4))=5), and the even-position

group uses four multiplications (μ(F(2,3))=4). Therefore, the total number of

multiplications is nine, whereas 14 would be required for regular convolution.

The practical implementation for the one-dimensional stride two Winograd is shown

in Algorithm 1.

39

 Algorithm 1 Winograd-Stride2(input, kernel)

W=input.width()

for i=0 to W do

 if (i % 2 == 1) then

 G1=input(i/2) Odds Group.

 if (j≤ kernel.width()) then

 K1=kernel(i/2)

 else

 G2=input((i-1)/2) Evens Group.

 if (j≤ kernel.width()) then

 K2=kernel((i-1)/2)

output=Winograd(G1,K1)+ Winograd(G2,K2)

3.2.2 Two-dimensions

3.2.2.1 Using Kernel 3×3

To apply the Winograd with stride two in two dimensions, the elements of the input

and the kernel should be separated into four groups. The first group comprises the

elements at row-odd, column-odd indices of the input and kernel; the second group

comprises the elements at row-odd, column-even indices of the input and kernel; the third

group comprises the elements at row-even, column-odd indices of the input and kernel;

the last group comprises the remaining four elements of the input and one element of the

kernel. Figure 3.4 shows the groups with a 3×3 kernel.

40

Figure 3.4: Proposed convolution with stride=2 for kernel=3×3

The first group contains 3×3 elements for input and 2×2 elements for the kernel. In

this case, the Winograd F(2×2,2×2) can be used; the matrices for 2D are the same as those

for one-dimensional F(2,2).

Two consecutive Winograd F(2,2) operations can be used for the second and the third

groups.

The fourth group cannot be further simplified, so regular multiplications are used.

Each group’s convolution produces a 2×2 matrix, and the final value of this process is

simply the sum of these intermediate matrices.

The number of multiplications per-group are as follows: nine multiplications for the

first group; six multiplications for the second; six multiplications for the third; and four

multiplications for the last. The total multiplications used is 25, whereas 36 is used with

regular convolution.

41

3.2.2.2 Using Kernel 5×5

For two dimensions with a 5×5 kernel, like the 3×3 kernel case, the elements of the

(presumably 7×7) input and the kernel can be separated into four groups: the elements of

the row-odd, column-odd indices of the input and kernel; the elements of the row-odd,

column-even indices; the elements of the row-even, column-odd indices; and the

remainder. Figure 3.5 shows the groups with a 5×5 kernel.

The first group contains 4×4 elements for input and 3×3 elements for the kernel, which

can be implemented using the popular Winograd F(2×2, 3×3).

The second group has 4×3 input elements and 3×2 kernel elements. This special case

can be implemented using a combination of the matrices of the different methods of

Winograd. The matrices of F(2,3) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and the matrices of F(2,2)

are used for 𝐺𝑇, 𝐵, and 𝐴.

The third group has 3×4 input elements and 2×3 kernel elements. This is a swapped

version of the second group’s case, and matrices of F(2,2) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and

the matrices of F(2,3) are used for 𝐺𝑇, 𝐵, and 𝐴.

The fourth group contains 3×3 input elements with a 2×2 kernel, and uses Winograd

F(2×2,2×2).

The result of the convolution of the input 7×7 with kernel 5×5 will be the sum of the

intermediate 2×2 matrices produced via the respective convolutions of each group.

The numbers of multiplications per group using this algorithm are as follows: 16 for

the first group; 12 in each of the second and third; and nine multiplications for the last.

The total is 49 multiplications, whereas 100 would be used by regular convolution.

42

Figure 3.5: Proposed convolution with stride=2 for kernel=5×5

43

3.2.2.3 Using Kernel 7×7

There are popular architectures where the size 7×7 kernel with stride two is use at the

first layer. Commonly a kernel size seven could be operate with FFT. However, the stride

two make the invalid the FFT operation. Due the procedure of separated the elements into

odd- and even-position reduce the size of kernel for the operation. It makes possible the

use of Winograd in an efficient matter.

For two dimensions with a 7×7 kernel, like the case of previous kernels, the input and

the kernel can be separated into four groups: the elements of the row-odd, column-odd

indices of the input and kernel; the elements of the row-odd, column-even indices; the

elements of the row-even, column-odd indices; and the remainder. Figure 3.6 shows the

groups with a 7×7 kernel.

The first group contains 5×5 elements for input and 4×4 elements for the kernel, which

can be implemented using the proposed method F(2,4) which was described in the last

part of section 3.2.

The second group has 5×4 input elements and 4×3 kernel elements. This special case

can be implemented using a combination of the matrices of the different methods of

Winograd. The matrices of F(2,4) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and the matrices of F(2,3)

are used for 𝐺𝑇, 𝐵, and 𝐴.

The third group has 4×5 input elements and 3×4 kernel elements. This is a swapped

version of the second group’s case. The matrices of F(2,3) are used for 𝐴𝑇, 𝐺, and 𝐵𝑇, and

the matrices of F(2,4) are used for 𝐺𝑇, 𝐵, and 𝐴.

44

Figure 3.6: Proposed convolution with stride=2 for kernel=7×7

45

 The fourth group contains 4×4 elements for input and 3×3 elements for the kernel,

which can be implemented using the popular Winograd F(2×2, 3×3).

The result of the convolution of the input 9×9 with kernel 7×7 is the sum of the

intermediate 2×2 matrices produced via the respective convolutions of each group. The

number of multiplications per group using this algorithm are as follows: 25 for the first

group; 20 in each of the second and third; and 16 multiplications for the last. The total is

81 multiplications, whereas 196 would be used by regular convolution.

The practical implementation for two-dimensional stride two Winograd is shown in

Algorithm 2.

 Algorithm 2 Winograd2D-Stride2(input, kernel)

W=input.width()

H=input.height()

for i=0 to W do

 for j=0 to H do

 if (i % 2 == 1) then

 if (j % 2 == 1) then

 G1=input(i/2, j/2) Group 1

 if (j≤ kernel.width()) then

 K1=kernel(i/2, j/2)

 else

 G2=input(i/2, (j-1)/2) Group 2

 if (j≤ kernel.width()) then

 K2=kernel(i/2, (j-1)/2)

 else

 if (j % 2 == 1) then

 G3=input((i-1)/2, j/2) Group 3

 if (j≤ kernel.width()) then

 K3=kernel((i-1)/2, j/2)

 else

 G4=input((i-1)/2, (j-1)/2) Group 4

46

 if (j≤ kernel.width()) then

 K4=kernel((i-1)/2, (j-1)/2)

 output=Winograd(G1,K1)+Winograd(G2,K2)+

 Winograd(G3,K3)+Winograd(G4,K4)

3.2.3 Three-dimensions

To apply Winograd with stride two in three dimensions using a 3×3×3 kernel, the

elements of the input and the kernel should be in eight groups. The first group comprises

the elements at row-odd, column-odd, channel-odd of the input and kernel; the second

group comprises the elements at row-odd, column-even, channel-odd indices of the input

and kernel; the third group comprises the elements at row-even, column-odd, channel-odd

indices of the input and kernel; the fourth group comprises the elements at row-odd,

column-odd, channel-even indices of the input and kernel; the fifth group comprises the

elements at row-even, column-even, channel-odd indices of the input and kernel; the sixth

group comprises the elements at row-odd, column-even, channel-even indices of the input

and kernel; the seventh group comprises the elements at row-even, column-odd, channel-

even indices of the input and kernel form the seventh group; the last group comprises the

remaining four elements of the input and one element of the kernel. Figure 3.7 shows the

groups with a 3×3×3 kernel.

The first group contains 3×3×3 elements for input and 2×2×2 elements for the kernel.

In this case, the Winograd F(2×2×2,2×2×2) can be used; the matrices for 3D will be the

same as those for one-dimensional F(2,2).

Two consecutive 2D Winograd F(2×2,2×2) operations can be used for the second,

third, and fourth groups.

Four consecutive 1D Winograd F(2,2) operations can be used for the fifth, the sixth,

and the seventh groups.

47

The eighth group cannot be further simplified, so regular multiplications are used.

Each group’s convolution produces a 2×2×2 matrix, and the final value of this process is

simply the sum of these intermediate matrices.

Figure 3.7: Proposed convolution with stride=2 for kernel=3×3×3

48

The number of multiplications per-group are as follows: 27 multiplications for the first

group; 18 multiplications in each of the second, third, and fourth; 12 multiplications in

each of the fifth, sixth, and seventh; and 8 multiplications for the last. The total

multiplications are 125, whereas 216 would be used with the regular convolution.

The practical implementation for three-dimensional stride two Winograd is shown in

Algorithm 3.

Because 5×5 and 7×7 kernels are commonly used only for the input layer (assuming

an RGB color image), it is impractical to extend the stride two methodology to 3D kernels

other than 3×3×3; therefore a 5×5×3 or 7×7×3 kernel was not implemented.

 Algorithm 3 Winograd3D-Stride2(input, kernel)

W=input.width()

H=input.height()

D=input.depth()

for i=0 to W do

 for j=0 to H do

 for k=0 to D do

 if (i % 2 == 1) then

 if (j % 2 == 1) then

 if (k % 2 == 1) then

 G1=input(i/2, j/2, k/2) Group 1

 if (k≤ kernel.width()) then

 K1=kernel(i/2, j/2, k/2)

 else

 G2=input(i/2, j/2, (j-1)/2) Group 2

 if (k≤ kernel.width()) then

 K2=kernel(i/2, (j-1)/2)

 else

 if (k % 2 == 1) then

 G3=input(i/2, (j-1)/2, k/2) Group 3

49

 if (k≤ kernel.width()) then

 K3=kernel(i/2, (j-1)/2, k/2)

 else

 G4=input(i/2, (j-1)/2, (k-1)/2) Group 4

 if (k≤ kernel.width()) then

 K4=kernel(i/2, (j-1)/2, (k-1)/2)

 else

 if (j % 2 == 1) then

 if (k % 2 == 1) then

 G5=input((i-1)/2, j/2, k/2) Group 5

 if (k≤ kernel.width()) then

 K5=kernel((i-1)/2, j/2, k/2)

 else

 G6=input((i-1)/2, j/2, (j-1)/2) Group 6

 if (k≤ kernel.width()) then

 K6=kernel(i/2, (j-1)/2)

 else

 if (k % 2 == 1) then

 G7=input((i-1)/2, (j-1)/2, k/2) Group 7

 if (k≤ kernel.width()) then

 K7=kernel((i-1)/2, (j-1)/2, k/2)

 else

 G8=input((i-1)/2, (j-1)/2, (k-1)/2) Group 8

 if (k≤ kernel.width()) then

 K8=kernel((i-1)/2, (j-1)/2, (k-1)/2)

 output=Winograd(G1,K1)+Winograd(G2,K2)+

Winograd(G3,K3)+Winograd(G4,K4)+ Winograd(G5,K5)+

Winograd(G6,K6)+Winograd(G7,K7)+ Winograd(G8,K8)

50

3.3 CNN Architectures with Layer Stride > 1

Modern CNN architectures use convolutional layers for feature learning followed by

max-pooling layers to downsample feature maps. However, max-pooling is a fixed

operation that trades spatial structure knowledge for improved computational efficiency

in future layers. Spatial knowledge of where regions of interest are in an image is not

important for classification tasks because the goal of classification is recognizing whether

a certain region of interest (or features thereof) merely exists in an image. Conversely,

spatial knowledge is foundational to the task of object detection, where the positional

information of regions of interest is paramount. For such tasks where spatial information

is important, the use of strided convolution has found success because it improves the

computational efficiency of future layers while preserving spatial information. In [72],

the pooling layers are replaced by an additional convolutional layer with stride two;

results show performance stabilization and even accuracy improvement compared to the

base model. This concept has led to the adoption of >1 stride convolutional layers in

modern CNN architectures, and the use of stride two is a popular choice. Table 3.1

highlights the stride >1 layers in recent architectures and their utilized kernel sizes.

AlexNet [75], the first CNN to use ReLU non-linearity and whose win in the ILSVRC

2012 image recognition challenge, sparked the current DL revolution. It uses an 11×11

kernel with stride four. However, with large kernels like 11×11, the Winograd algorithm

is outperformed by other methods (e.g., FB-FFT) [21].

ZFNet [12], GoogLeNet [76], ResNet [12], SqueezeNet [77], and YOLO [47] use a

7×7 kernel with stride two in the first layer, allowing 1D and 2D Winograd to be used.

3D Winograd for a 7×7×7 kernel is unavailable for the first layer due this have only three

input channels. However, the 3D Winograd can be used for later layers when the input

depth is larger than 7.

ResNet [78], YOLO [47], SSD [79], MobileNet [16], and MobileNetV2 [80] use a

3×3 kernel. MobileNetV3 [81] uses three and two layers with 3×3 and 5×5 kernel,

51

respectively. The convolutions with stride two can be applied using the proposed

Winograd algorithms.

Table 3.1: Architecture layers using stride >1

Architecture
Convolutional Layer with stride >1

Kernels Stride Number of layers

AlexNet [75]
11×11 4 1

ZFNet [78]
7×7 2 1

GoogLeNet [76]
7×7 2 1

ResNet [12]
7×7, 3×3 2 1, 3

SqueezeNet [77]
7×7 2 1

YOLO [47]
7×7, 3×3 2 1, 1

SSD [79]
3×3 2 2

MobileNets [16]
3×3 2 6

MobileNetV2 [80]
3×3 2 5

MobileNetV3 [81]
5×5, 3×3 2 2, 3

3.4 GPU Implementation

The proposed method for 1D and 2D stride two Winograd were tested on a NVIDIA

K20c GPU, and tested it using several convolutions with 3×3, 5×5, and 7x7 kernel sizes.

For 3D, a 3×3×3 kernel was used. The proposed implementation was compared against

regular stride two convolutions. A comparison of the numbers of multiplications and

additions for all applicable dimensions is shown in Table 3.2.

52

Table 3.2: Comparisons of the Regular convolution and Winograd Stride Two

Algorithms

Regular

Convolution

Proposed

Winograd stride 2

muls adds muls adds

F(2,3) 6 6 5 11

F(2,5) 10 10 7 21

F(2,7) 14 14 9 27

F(2×2, 3×3) 36 36 25 77

F(2×2, 5×5) 100 100 49 137

F(2×2, 7×7) 196 196 81 243

F(2×2×2, 3×3×3) 216 216 125 419

The implemented program uses the same settings from the stride two layers of

MobileNet (an input size of 224×224). The program recorded the GPU processing times

and generated the average processing times for regular convolution and for the proposed

algorithms. The results are shown in Table 3.3.

Table 3.3: Performance Comparison using stride two in GPU

Kernel

Processing time

Regular convolution
Proposed Winograd

Stride 2
Speedup

3×3 8.09ms 5.61ms 1.44x

5×5 11.21ms 5.49ms 2.04x

7×7 13.21ms 5.46ms 2.42x

3×3×3 15.45ms 8.93ms 1.73x

Compared to regular convolution, the proposed method is 1.44x, 2.04x, 2.42x, and

1.73x faster for the respective 3×3, 5×5, 7×7, and 3×3×3 kernels. Furthermore, the results

53

of the proposed algorithms were tested with single precision (fp32) data. The results show

the same values as direct convolution, indicating that the mathematical transformations

do not lose precision and therefore will affect neither multiplication accuracy nor neural

network performance.

3.5 FPGA Implementation

3.5.1 CNN Architecture

In this chapter, a CNN accelerator design was proposed based on stride one and two

Winograd for FPGAs. The accelerator implements the VGG-16 architecture [7]. Because

VGG-16 does not contain any layers of stride two, a modified VGG-16 architecture was

proposed using a similar methodology to that implemented by [72] for a custom network,

in which one convolution and one max pooling layer are replaced by one convolutional

layer of stride two. The modified architecture can be seen in Table 3.4.

 Table 3.4: Modified VGG-16 Architecture with convolution stride two

Layer Type/Stride Filter Shape Input size

Conv1-1 Conv/S1 3×3×64 224×224×3

Conv1-2 Conv/S2 3×3×64 224×224×64

Conv2-1 Conv/S1 3×3×128 112×112×64

Conv2-2 Conv/S2 3×3×128 112×112×128

Conv3-1 Conv/S1 3×3×256 56×56×128

Conv3-2 Conv/S1 3×3×256 56×56×256

Conv3-3 Conv/S2 3×3×512 56×56×256

Conv4-1 Conv/S1 3×3×512 28×28×512

Conv4-2 Conv/S1 3×3×512 28×28×512

Conv4-3 Conv/S2 3×3×512 28×28×512

Conv5-1 Conv/S1 3×3×512 14×14×512

Conv5-2 Conv/S1 3×3×512 14×14×512

Conv5-3 Conv/S2 3×3×512 14×14×512

Flatten Flatten - 7×7×512

FC2 Dense 4096 1×25088

FC2 Dense 4096 1×4096

Predictions Dense 1000 1×4096

54

The original VGG-16 model was trained on the ImageNet database [31], which

contains 1M images over 1000 classes; this allows the network to learn varied and

representative features for many types of images. Moreover, building and training a model

without pre-initialized weights is not always feasible due to the inherent time or

computational restraints of training.

Therefore, the weights for the ImageNet pre-trained VGG-16 model were used, which

are available online [82], for transfer learning—where the trained model weights are

reused to initialize training a model for a different task. The weights were reused of the

original VGG-16 to train the modified architecture using stride two, which has the same

number of parameters as the original VGG-16.

Non-modified layers preserve the (frozen) weights from the original model. Only the

added convolution stride two layers were trained, or 5,494,208 of 138,357,544 total

parameters; thus, the model’s training time is reduced. After only two hundred epochs,

the proposed modified VGG-16 architecture has less computational cost than the original

VGG-16; this is because stride 2 convolution requires less multiplications than stride 1,

and a stride 1 convolution requires an additional pooling layer for downsampling. For

example, the output of layer Conv5-3 from the modified VGG-16 has a size of 7 × 7 ×

512, while that from the original VGG-16 is 14 × 14 × 512; a max-pooling layer of stride

2 is required for the layer shape to become 7 × 7 × 512 in the stride 1 case. Thus, when

compared to the original architecture, four times fewer multiplications are required for

the convolutional layers in the proposed stride 2-modified VGG-16 architecture, which

improves the throughput significantly whilst maintaining high accuracy.

3.5.2 FPGA Implementation

Both the original and the modified VGG-16 architectures were accelerated on an Intel

Arria-10 FPGA with 1150K logic elements, 1518 DSP blocks, and 2131 M20K RAMs,

at a clock speed of 250 MHz. A 16-bit fixed point precision to evaluate the proposed

55

design was used. Figure 3.8 shows the architecture which contains a host interface, DDR

memory, on-chip buffer, sequencer, and processing elements (PE).

The host interface receives instructions and input data from and sends results to a host.

The sequencer decodes instructions from which the appropriate components receive

operating commands. Host data and PE processing results are saved in DDR memory. An

on-chip buffer stores the data to be processed in the current operation. All computations

are performed within PEs.

Figure 3.8: Deep learning architecture

3.5.3 Memory Access

Due to the limited on-chip buffer and the large amount of data required by CNNs, the

accelerator is not able to transfer all the data from external memory into on-chip buffer.

That is why the input and the kernel data are divided into several groups, allowing for

data reuse in both the input and kernel. Multiple kernel groups are stored in the buffer and

processed in parallel with the same input group. The partial results from the PEs are

accumulated into the output buffer until the convolutional result is generated. Then, the

56

results are moved to external memory. After this process, a new input group is loaded and

the same kernels can be reused. In the proposed design, double buffers are used to overlap

data communication and reduce memory access delay in reading and writing data to

memory.

3.5.4 Proposed PE Architecture

A PE was designed to accommodate two Winograd F(2×2, 3×3) stride one operations.

As each Winograd uses 16 multiplications, 32 multipliers are required for each PE. Some

logic elements are added to the PE to make it compatible with the proposed Winograd

stride two, without using additional DSPs. Because VGG-16 uses the same filter size

(3×3) for all convolutional layers, the PEs can be reused.

For headings 1 through 8 below, please refer to Section 3.2.2 and Figure 3.9 for

information on Winograd stride 2 groups.

Figure 3.9: Proposed PE architecture

57

3.5.4.1 Input Tile From Registers

The input tile size of the proposed design is 5×6, where the PE may process two

Winograd stride one or one Winograd stride two in one clock cycle.

For Winograd stride one, the PE allows two Winograd stride one in parallel, 32

multiplications are performed, and 32 multipliers are needed.

The proposed PE allows one Winograd stride two, a process requiring 25

multiplications. If the PE used regular convolution stride two instead of the proposed

Winograd, it would require 36 multipliers.

3.5.4.2 Splitter Block

The control signal “stride” splits the input data based on the type of stride to process

(one or two), i.e., how the input is used depends on the stride (as shown in Figure 3.9).

For stride one, the block splits a 4×6 array from the input tile into two 4×4 arrays

which are sent to the Transform block; this is possible because two columns have the

same input for both Winograd modules.

For stride two, a 5×5 input array is used, and the splitters split the input into four

groups. Group 1 is sent to the input transform block and Groups 2-4 are rearranged to

generate another input for the input transform block.

Figure 3.10 shows how the splitter block works. The 5×6 array (black) represents the

input tile. If stride one is selected, the elements within the red and green squares will be

the two 4×4 outputs of the splitter. The elements within the 5×5 yellow square will be the

output of the splitter if stride two is chosen.

58

Figure 3.10: Splitter the input in based on the stride selected

3.5.4.3 Input Transform Block

The input transform block contains two parts. The first part uses the 2D transform of

Winograd stride one, which can also process the Group 1 of Winograd stride two. The

second part transforms the 2D Winograd stride one when the control signal “stride” is

low; when the control signal is high, this part performs four 1D Winograd transforms for

Groups 2 and 3 of Winograd stride two, and also four multiplications for Group 4. This is

shown in Figure 3.11.

BTdB

+

<< 1

+

16 16

16

16
16

1

4×BTd
16×16

16×16

16×16

BTd

stride

16×16
0

1

BTdB
16×16 16×16

Figure 3.11: Input transform block

59

3.5.4.4 Filter Transform Block

Our PE has one filter transform module controlled by the control signal “stride.” If the

signal level is low, a 2D Winograd transform is processed into the kernel and the same

output is sent to the DSP module for multiplications; if the signal is high, the outputs are

arranged according to the kernel described in Section 3.2.2.

3.5.4.5 Multiplication Block

To perform the convolution operations, multiplications between the input transforms

and their corresponding kernel transforms are necessary. This block requires 32

multiplications for the whole process. Similar to [23], an array of DSPs was used to

perform the multiplications. The outputs of this block are two 4×4 arrays.

3.5.4.6 Inverse Transform

After the multiplications an inverse transform is applied to the results. The first part

uses the inverse 2D transform of Winograd stride one. The second part transforms an

inverse 2D Winograd stride one when the control signal “stride” is low; when the control

signal is high, this part performs four inverse 1D Winograd transformations for Groups 2

and 3 of Winograd stride two.

3.5.4.7 Accumulator Block

For stride two, the results of the inverse transform for each Group (1-4) are summed

and sent to the register. For the case of stride one, the results skip this block and they are

sent to the register directly.

Table 3.5 compares the FPGA’s resource utilization for the proposed Winograd PE

compatible with stride one and two against both a PE capable of two Winograd stride one

operations, and a PE calculating one stride two Winograd operation. Although the

60

proposed PE uses more LUTs and registers than the other Winograd modules, the

proposed PE can perform Winograd operations with both strides—unlike the other PEs.

Compared to the two Winograd stride one PE, the PE requires only 146 and 100 more

LUTs and registers, respectively. Moreover, the proposed PE, with the same DSP usage

as that of the two Winograd stride one, allows the additional processing of Winograd

stride two. DSPs are a critical resource for FPGAs, and the proposed design uses only 32

DSPs; compare this to the combined 57 required by the independent two Winograd stride

one PE and the Winograd stride two PE.

Table 3.5: Resource Utilization of different PEs for kernel=3×3 on INTEL ARRIA-10

3.5.5 Parallelization

CNN architectures (including VGG-16, ResNet, MobileNet and others) use an input

image size of 224×224. Each network block, comprised of convolutional layers and

oftentimes ending with a pooling layer, downsamples the feature map by half before

outputting a new volume to be used as input to the next block. Thus, the last feature map

of these networks prior to the fully connected or prediction layers has a width and height

of 7×7.

To process the feature maps efficiently, seven PEs were arranged in a single block to

parallelize convolution. This allows for a 28×5 input tile for each block. Inside the block

the PEs can read and share the input tile, thereby avoiding multiple memory reads for the

same data. The proposed CNN accelerator uses six of these blocks. Although the blocks

need to share an input tile and kernel data from the same buffer, connecting multiple

blocks directly to the buffer may cause the system to experience issues in timing closure,

Resource LUTs Registers DSPs

Winograd stride two 584 304 25

Two Winograd stride one 930 487 32

Proposed method 1076 587 32

61

especially with a high clock rate. To avoid this issue, the blocks were organized in a

systolic array architecture [83]. The proposed design array consists of three rows and two

columns, and the rows read input data while the columns read kernel data. Local buffers

are used to cache the input and kernel data from each block. Thus, every time a block

receives a new data tile, the previous data is also delivered. Using a double buffer in each

block also allows computation and data delivery to occur simultaneously. Preliminary

results from each block are accumulated in a local buffer until the entire convolution is

complete, after which the results can be written to external memory.

3.5.6 Results

In the proposed implementation, the Winograd algorithm was evaluated for both stride

one and two using the original and the proposed modified version of VGG-16.

Figure 3.12 shows the results of all convolutional layers in the FPGA using the original

and the modified VGG-16 networks. The average performance in the modified VGG-16

network is 8.9% higher than the original VGG-16, owing to higher GOPS (and a higher

peak of 2463 GOPS) during stride two operations.

Figure 3.12: Evaluation results of the original VGG-16 architecture compared to the proposed

modified VGG-16 architecture

0

500

1000

1500

2000

2500

3000

G
O

P
S

Peak:1994 GOPS Peak: 2463 GOPS
Avg:1642 GOPS Avg: 1788 GOPS

VGG-16 Modified VGG-16

62

The performance of the first layer (conv1-1) is the worst. This is because the first layer

has only three input channels and a large input size which is divided into many groups,

taking more time to initialize the elements. The proposed parallelization scheme is

efficient when the size of the input feature map and the output layer depth (like in the case

of conv2) are well-balanced. However, when the input feature maps are very small, e.g.

the lattermost layer (conv5), inefficient memory access patterns cause throughput

reduction.

Table 3.6 shows the resource utilization of the proposed CNN accelerator on an Intel

Arria-10 FPGA clocked at 250 MHz. The Winograd algorithms reduce the required

number of DSPs per convolution; having fewer DSPs per PE allows for more PEs, which

enables the possibility of greater parallelism, and multiple blocks can perform multiple

convolutions in parallel.

Table 3.6: Resource Utilization of CNN accelerator on INTEL ARRIA-10

The proposed implementation uses 88.5% of the DSPs available on the FPGA to

achieve high throughput. The Winograd algorithm uses more LUTs than regular

convolution to compensate for the reduced number of multiplications. However, even

with that increase, the proposed design only used 15.7% of the FPGA’s available LUT.

Because the proposed design stores groups of input and kernel data in on-chip memory,

61.5% of the available RAM is used. In summary, by using Winograd, the available DSPs

can be used efficiently to improve the performance of the accelerator.

Table 3.7 compares the proposed method’s overall performance and DSP efficiency

against previous FPGA CNN acceleration works. Because one multiplication operation

consumes only one DSP and the additional operation does not use a DSP, these

Resource LUTs M20K RAMs DSPs

Available 1150K 2131 1518

Used 181K 1310 1344

Utilization % 15.7% 61.5% 88.5%

63

implementations used 16-bit fixed point data. Using 16-bit fixed-point data is more

practical for an FPGA, and the results show that this numeric conversion contributes to

only 0.4% accuracy loss [28].

Overall performance throughput depends on the number of resources used by the

FPGA. DSP efficiency (GOPS/DSPs) is a fair comparison metric for overall performance

because these works were implemented using different FPGA platforms with different

numbers of available DSPs.

Our modified VGG-16 implementation achieves 1.33 GOPS/DSPs of DSP efficiency,

which outperforms other implementations. The modified VGG-16 network uses

convolutional layers of stride two, where one stride two convolution is used instead of

one stride one convolution and one max-pooling layer. The PEs in the proposed

implementation can be used for stride one or two. Thus, the proposed design has a better

efficiency when it is used in architectures that contain stride one and two layers.

For standard VGG-16 implementations which contains only stride one convolutional

layers, the proposed work has the second highest DSP efficiency at 1.22 GOPS/DSPs,

Table 3.7: Performance comparison with state-of-the-art FPGA accelerators

[28]

2016

[26]

2017

[23]

2017

[29]

2017

[24]

2018

[22]

2018
Proposed method

Platform Zynq

XC7Z045

VirtexV

X690T

MPSOC

ZCU102

Zynq

ZC706

VCU440 VCU440 Arria-10 Arria-10

CNN VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 VGG-16 Modified

VGG-16

Freq(MHz) 150 200 200 100 200 200 250 250

Precision 16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

16-bit

fixed

Used DSPs 780 2048 2304 725 756 1376 1344 1344

Performance

(GOPS)

137 1467 3044 660 943 821 1642 1788

Efficiency

(GOPS/DSPs)

0.18 0.716 1.32 0.91 1.2 0.6 1.22 1.33

64

behind only [23]. However, the Winograd algorithm in [23] is F(4×4,3×3) which uses an

input tile of 6×6 elements; although a larger Winograd input tile leads to a higher

throughput, the precision is reduced due to a truncation of intermediate values because

the transformation matrices cannot be simply converted to shift operations [26]. To

perform strides 1 and 2 Winograd, multiple Winograd F(2×2,3×3) is used which requires

division by 2. This division is performed using shift operations with an additional bit; this

avoids accuracy reduction when using Winograd when compared to conventional

convolution.

3.6 Summary

In this chapter, new algorithms for convolutional neural networks with stride two

based on 1D, 2D, and 3D Winograd minimal filtering algorithms were introduced. These

algorithms separate the input and the kernel into odd-position and even-position groups,

and stride two output is equivalent to the summation of many stride one convolutions.

This idea allows for greater efficiency and advantages for CNN architectures that use

stride two.

These groups have different array sizes and can be computed using the popular

Winograd F(2×3) and the proposed Winograd F(2,2), F(2,4), F(2×2,2×3), F(2×2,3×2),

F(2×2,4×4), F(2×2,4×3), or F(2×2,3×4). These new Winograd versions, derived from the

popular Winograd F(2,3), decrease computational complexity and increase efficiency by

trading expensive multiplications for cheap additions. The GPU implementations of 1D,

2D, and 3D stride two Winograd are tested on several stride two layers and show the

proposed method is 1.44x, 2.04x, 2.42x, and 1.73x faster for the respective 3×3, 5×5, 7×7,

and 3×3×3 kernels.

A Winograd PE was designed which can process stride one and two in the same

module. The combined PE uses the same number of DSPs (32) as a PE for two Winograd

stride one calculations, and 25 less DSPs than that required by having independent PEs to

calculate two Winograd stride one, and one Winograd stride two, operations. This

65

optimization allows an increase in the number of total PEs. Using a systolic array with a

double buffer, greater parallelism was enabled in the design.

Stride two convolutional layers produce smaller output volumes while still extracting

feature maps. This was demonstrated with the implementation of the proposed modified

VGG-16 architecture where one stride two convolutional layer is used instead of one

stride one convolutional layer followed by one max-pooling layer. The proposed

implementation achieves DSP efficiencies of 1.22 GOPS/DSPs and 1.33 GOPS/DSPs for

the original and modified VGG-16 architectures, respectively. Because the proposed

design can effectively handle both stride one and two layers within the same architecture,

the proposed method is a new technique for emerging architectures which contain layers

using stride one and/or two, and those increasing the numbers of stride two layers used.

66

Part III

Applications for Intelligent

Transportation Systems

67

Part III of this thesis present three Intelligent Transportation Systems (ITS). The first

system, presented in Chapter 4, is a deep learning-based embedded license plate

localization (LPL) system. In Chapter 5, a real-time Commercial Vehicle Safety Alliance

(CVSA) decal recognition system (CDRS) using deep convolutional neural network

architectures is proposed. The final system, presented in Chapter 6, is a real-time deep

learning-based edge system for HAZMAT recognition.

The systems use custom deep learning architectures designed for the specific

detection/recognition task. The convolutional layers within the architectures use a mix of

stride 1 and 2—the importance of the latter stride to object detection convolutional layers

being explained in Part II.

The LPL system is a one stage (single shot) system. The CDRS system uses two stages

(detection/classification then fine-grained classification), and the HAZMAT recognition

system is a three-stage system (detection/classification and two fine-grained classification

models). A detailed comparison with other networks is provided for each designed model

stage. Each designed system is compared against similar models using the same dataset,

or directly against related work within academic literature (where such work exists).

When this research was conceived, there were no commercially available hardware

edge accelerators. Therefore, the FPGA design presented in Part II was planned to provide

the underlying hardware framework for the ITS applications proposed in this part.

However, the FPGA has considerable costs to rewrite code for varying custom deep

learning architectures. Because companies like Google, Intel, and NVIDIA released their

own hardware accelerators during the research period, the research pivoted to incorporate

such commercial edge systems and hardware accelerators instead of FPGA designs; the

applications presented in Part III are evaluated using these commercially available

devices. The edge devices are low-cost and enable the integrated model architectures to

achieve high speed and accuracy. Models are evaluated on the edge devices that existed

and/or were in widespread use at the time the models were created. Edge devices

evaluated in Part III include the Raspberry Pi, the Intel Neural Compute Stick, the Google

Coral USB accelerator, the NVIDIA Jetsons, and/or combinations thereof.

68

 Chapter 4

Deep Learning-based Embedded License

Plate Localization System1

This chapter presents a novel neural network architecture for license plate localization

(LPL) based on an inverted residual structure where the shortcut connections are between

the linear bottleneck layers. The proposed deep learning (DL) solution was tested against

three popular international research databases and achieves state-of-the-art results,

proving that the model is accurate and robust. Across those databases, the proposed model

surpasses other recent LPL work, including DL-based methods, in terms of accuracy and

speed. Using a novel multi-threading video capture with motion detection then inference

algorithm, the computational efficiency was increased and drop less frames overall,

allowing for increased performance. Repeated tests show the proposed method is well-

suited to real-time and highly accurate LPL, regardless of hardware. Section 4.1 presents

the motivation to design an embedded LPL system; Section 4.2 describes the proposed

DL LPL solution; Section 4.3 provides comparisons and the outcomes of the tests; and

Section 4.4 concludes this chapter.

4.1 Introduction

Automatic License Plate Recognition (ALPR; also ANPR for “name” or “number”

plates) refers to the capturing and processing of license plate information via

 1The content of this chapter is originally published in IET Intelligent Transport Systems [107]. The manuscript

has been reformatted for inclusion in this thesis.

 Juan Yépez (JY), Riel Castro-Zunti (RC), and Seok-Bum Ko (SK) designed the study. JY designed the network

architecture, trained and tested the models, designed the motion detection system, implemented the system on the

edge devices, and provided results analysis. RC helped annotated the images from dataset and proofreading the

manuscript. JY prepared the manuscript with contributions from SK to the manuscript structure, readability and

analysis and discussion of the results

69

computational or algorithmic means. ALPR is a subfield of Intelligent Transportation

Systems (ITS) [84], which includes services aimed at improving the driver experience.

Applications of ALPR are many and varied, and include the following: law

enforcement tools, including for stolen or unlicensed vehicles; toll booths and issuing

fares or tickets; and driver-to-driver communication. ALPR may also play a key role if or

when driverless vehicles become conventional and ubiquitous, as information linked to

license plates may become incorporated into algorithms that calculate the most ethical or

advantageous action in an emergency or life-or-death situation.

An ALPR solution should minimize processing time and maximize accuracy,

especially where the captured image may be blurry, rotated, obscured, or otherwise

distorted. Minimizing processing time is especially important in “real-time” applications,

such as red light or police traffic cameras.

There are generally five sequential steps in an ALPR solution: image capture; vehicle

detection; license plate localization (LPL); plate character segmentation; and optical

character recognition (OCR) of the segmented characters [85]. However, some systems

use pre-processed images from elsewhere, and thus are designed only to achieve LPL,

character segmentation, and OCR [86].

This chapter focuses on the research, results, and conclusions for LPL using a

bottleneck depth-separable convolution with inverted residuals deep learning architecture.

Although the proposed solution is designed for GPU usage, it is demonstrated that the

system runs reasonably well on low-power, low-cost devices such as CPUs, embedded

systems, smartphones, tablets, and other personal mobile devices [15].

The contributions of this chapter are, in order of appearance:

1) An accurate and robust deep learning (DL) architecture for LPL based off

depthwise separable convolutions and residual linear bottlenecks.

70

2) A multi-threading video capture with motion detection then inference algorithm to

increase computational efficiency by only allowing the DL architecture to run when

(vehicle) motion is detected; this method drops less frames overall.

3) Overall systems testing in a real-world high-speed highway environment showing

99.77% plate region localization over 898 vehicles that passed beneath the video capture

setup.

4.2 Proposed Solution

In this thesis a neural network architecture for license plate localization using

bottleneck depth-separable convolution with inverted residuals was proposed. This

architecture uses a single step for localization, in contrast to [87]–[89] and [90], where

two or more steps are required.

4.2.1 Neural Network Description

The neural network used for LPL is based on SSD architecture [48]. The original

feature extractor used in SSD is VGG-16 [48]. VGG-16 consists of 13 convolutional

layers followed by three fully connected layers and is very appealing because of its

uniform architecture [91]. However, VGG consists of about 140 million parameters [91],

making a system using it computationally complex and thus requiring a powerful GPU to

run effectively and within an acceptable timeframe. In this work, a different feature

extractor involving blocks based on linear bottleneck depth-separable convolution with

residuals was proposed.

Combining the versatility of depthwise separable convolutions [15] with the

underlying ideas of relevant information extraction, abstraction, and accumulation

inherent in linear bottlenecks could provide an accurate and fast LPL solution.

Depthwise separable convolutions decrease computation and processing time with

little to no reduction in overall accuracy, and any accuracy reduction is compensated with

71

the use of linear bottlenecks due to their demonstrated in-practice performance gains,

especially for classification tasks.

See Figure 4.1 for a visual comparison between standard and depthwise separable

convolution operations. In Figure 4.1 (a), 128 filters with value of 3×3 pass over 3 input

channels to generate 128 output channels, in the process the filters move 5×5 times. There

are 128×3×3 (filters) × 3 (input channels) ×5×5 (movement) = 86,400 multiplications.

Depthwise separable convolution consists of two parts, depthwise convolution and

pointwise convolution. Depthwise convolution is shown in Figure 4.1 (b); during this

convolution one 3×3 filter passes over 1 input channel 3 times, in the process utilizing

3×3 (filter) × 3 (input channels) ×5×5 (movement) = 675 multiplications. Subsequently

during pointwise convolution, shown in Figure 4.2 (c), 128 filters with value of 1×1

(filter) × 3 (input channels) passes over the result of the depthwise convolution to produce

128 output channels, in the process utilizing 128×1×1 (filters) × 3 (input channels) ×5×5

(movement) = 9,600 multiplications. Thus, the entire depthwise separable convolution

operation in Figures 4.1 (b) and 4.1 (c) approximates the traditional convolution in Figure

4.1 (a) but uses only 10,275 multiplications; this is 88.1% less parameters than the

standard convolution in Figure 4.1 (a). One can easily note the computational efficiency

of depthwise separable over standard convolution operations as o gets large.

Residual blocks with shortcut connections were utilized between successive layers, as

in ResNet [12], to increase accuracy and further decrease required parameters. However,

rather than use shortcut connections to connect (wide) layer inputs to blocks, shortcuts

between the (narrow) bottleneck sub-blocks were applied—using the idea that the most

 Table 4.1: Bottleneck Residual Block Structure

Input Operator Output

h×w×k 1×1 conv2d, ReLU6 h×w×(tk)

h×w×tk 3×3 dwise s=s, ReLU6 ℎ

𝑠
×

𝑤

𝑠
×(tk)

ℎ

𝑠
×

𝑤

𝑠
×tk Linear 1×1 conv2d ℎ

𝑠
×

𝑤

𝑠
×k’

h = height, w = width, k = channels, s = stride.

72

relevant information is contained in the bottlenecks—and it is those bottlenecks that

should be given as input to a block. This forms the basis of the inverted residual block.

The structure of this block is shown in Table 4.1.

Figure 4.1: Standard vs. Depthwise separable convolution operations to demonstrate the effectiveness

of depthwise separable convolution over standard. The 7×7 input with 3 channels and 128 filters are

for illustrative purposes, and arbitrary. (a) Standard convolution. Depthwise separable convolution uses

less parameters than standard convolution because separates the process in 2 parts: (b) Depthwise

convolution. (b) Pointwise convolution.

(a)

(c)

(b)

73

Instead of using convolutions to successively narrow layers within a block as in

ResNet, the bottleneck input layer (by a 1×1 convolution) was first expanded and then

narrowed using a depthwise separable convolution, which lowers the number of

parameters compared to the regular residual block.

Note that the ReLU6 non-linear activation function is defined as follows:

𝑅𝑒𝐿𝑈6(𝑥) = {

6, 𝑖𝑓 𝑥 > 6
 𝑥, 𝑖𝑓 0 < 𝑥 ≤ 6

 0, 𝑖𝑓 𝑥 ≤ 0
 (4.1)

ReLU6 has been shown to perform well in low-precision applications [4].

The inverted residual improves the ability of a gradient to backpropagate across

multiple layers, similar to a classical residual connection but using a linear bottleneck.

The bottleneck residual block can be treated as a single operation, and the amount of

memory used depends on the size of the bottleneck rather than the size of tensors, making

this method more memory efficient.

The feature extractor architecture contains the initial fully convolutional layer with 32

filters, followed by 19 bottleneck residual blocks. The kernel size is 3×3, for non-linearity

ReLU6 is used, and dropout and batch normalization are utilized during training. A

detailed architecture for the feature extractor can be found in Table 4.2.

The neural network allows scale-invariant license plate prediction because layers

decrease in size progressively and the convolutional model for localization is different for

each feature layer.

One difference in the proposed model compared to original SSD is the input image

size; in original SSD, this could be either 300×300 or 512×512, but in the proposed system

the size is reduced to 224×224, which increases speed but can decrease accuracy.

However, using residual bottlenecks allows high accuracy with less parameters and

multiplication operations in the inference process—inference is the stage in which a

trained model is used to make predictions on input data and samples (see section 4.2.3).

74

The first layer of the modified SSD is attached to the expansion of layer 15 with output

stride of 16. The second and the rest of the layers are attached to the top of the last layer,

which has an output stride of 32. Finally, all layers are attached to the feature map of the

output. A modified SSD was used in which all standard convolutions in the prediction

layers are replaced with depthwise separable convolutions. The modified SSD is faster

than other object detection variants while offering comparable accuracy [30], [48],

making it a useful architecture for all devices and especially those with low computational

complexity. The proposed architecture is shown in Figure 4.2.

4.2.2 Training Process

Training is the phase in which a network learns patterns from given data. In training,

each layer of data is assigned some random weights and a classifier runs a “forward pass”

(propagating weights and calculating outputs) through the data, predicting the class labels

Table 4.2: License plate localization neural network used as feature extractor, * Layers that are used as input

for the detection block.

Input Size Operator Repetition Kernel

300×300×3 Conv2d 1 3×3

150×150×32 Bottleneck 1 3×3

150×150×16 Bottleneck 2 3×3

75×75×24 Bottleneck 3 3×3

38×38×32 Bottleneck 4 3×3

19×19×64 Bottleneck 3 3×3

*19×19×576 Bottleneck 3 3×3

*10×10×1280 Bottleneck 1 3×3

*5×5×512 Conv2d 2 3×3

*3×3×256 Conv2d 2 3×3

*2×2×256 Conv2d 2 3×3

*1×1×128 Conv2d 1 3×3

75

and scores using those weights. The class scores are then compared against the actual

labels and an error is computed via a L1 loss function for prior box learning and a log

Softmax of cross-entropy for class learning. This error is then backpropagated through

the network and weights are updated accordingly via some algorithm such as gradient

descent. One complete pass through all training samples is called an epoch.

Training is computationally very expensive. To make training faster, data is divided

into batches, and weights are updated after each batch; this method takes less time to

converge, and fewer epochs are needed to construct an adequate DL model from the data.

Training was performed using a single class: the license plate. A supervised learning

apparatus was utilized with all license plate regions labelled/annotated using labelImg

[92]. Rectangular bounding boxes were drawn about a plate region to minimize irrelevant

background area around the plate. From a labelled image, labelImg creates an XML file

that describes the location of a plate within the image and indicates its class. This process

was used for each image of the training dataset.

See Figure 4.3 for examples of labelled images.

2242×3

Figure 4.2: Architecture of the proposed license plate localization method. This network is based on Single Shot

MultiBox Detector, but differs in that the proposed architecture uses depthwise separable convolution, as

opposed to standard convolutions, and layers of linear bottlenecks with inverted residuals. Note that the

bottleneck layers contain the depthwise separable convolutions, which are comprised of a depthwise convolution

followed by a pointwise convolution. For more information on depthwise separable convolution. Car images

from the Caltech dataset .

http://machinelearningmastery.com/gradient-descent-for-machine-learning/

76

Figure 4.3: Images of plate regions on vehicles labelled using labelImg (with emphasis added by

manually drawing yellow boxes around the labelled plate region). From each of these, a respective XML file

will be generated for record creation and training/testing. The first row contains images from the Caltech

dataset , the second row from the University of Zagreb dataset , and the third from the NTUA

Medialab dataset .

77

Labelled data is then split into train and test sets: 80% of images are randomly taken

for training, and 20% for testing. These images are joined in respective training and testing

record files.

Setup and configuration of the hyperparameters are made. The most important

hyperparameters to tune are learning rate, optimizer, batch size, and epochs.

During an iterative process called training, a model adjusts its weights to attempt to

achieve the minimum loss in feature space as determined by some loss function [93]; the

magnitude of the weight adjustments is governed by the learning rate hyperparameter [94].

A higher learning rate enables the model to learn faster, but it may miss the global

minimum loss and only (unstably) reach some local minimum surrounding the global. A

lower learning rate gives a better chance to find the minimum loss, but the model may get

“stuck” at a local minimum. As lower learning rate typically requires more epochs for

convergence, meaning exhausting more time and memory capacity resources. The

optimizer is responsible for changing the learning rate and weights of neurons in the

neural network to reach the minimum loss, typically via a process called backpropagation.

The optimizer is important to achieve the highest possible accuracy or minimum loss. A

common solution is to start with a higher learning rate that progressively decays throughout

the training cycle [94].

Batch size refers to the number of training examples utilized in one iteration and

subsequent weight adjustment [95]. When the batch size is too low, the network weights

are too frequently adjusted on too little information, meaning the model cannot effectively

learn from the data or (within a reasonable period if at all) converge to a final state. This

negatively impacts total training time and accuracy.

An epoch refers to one whole processing (and subsequent backpropagation) of the

entire training dataset by the model [17]. Multiple epochs of training are typically

required. Training with too few epochs may result in under fitting because the neural

network has not seen the data enough times to learn relevant patterns [95]. Conversely,

training with too many epochs may lead to overfitting, where the model begins to

78

associate “feature noise” within the training set as relevant to the task; this means the

model can predict the training data very well but cannot sufficiently generalize to unseen

data. A validation set independent from the training set can help overcome this problem;

the validation set is iteratively used to evaluate the model after a certain number of training

epochs, and where validation set performance starts to decrease indicates the point at

which the model is likely starting to become overfit.

The hyperparameters are as follows: a batch size of 24, an initial learning rate of 0.004,

the Adam optimizer, and a momentum optimizer value of 0.9.

Our model was trained using a Tesla K40c GPU on a computer whose operating

system is Ubuntu 18.04 LTS. The framework was Tensorflow v. 1.8 running on Python

3.6.5. The model was trained across 200,000 iterations. Finally, a graph file is exported

from the new trained model containing weights used in inference.

4.2.3 Inference Process

Training demands high computational throughput; thus, it is most often performed by

GPUs, given their massive parallelism, simple control flow, and energy efficiency. For

inference, however, the paramount performance goal is latency. To minimize the

network’s end-to-end response time, inference typically batches a much smaller number

of inputs than training, as automated services relying on inference are required to respond

in near real-time.

Inference can be sped up by using a GPU as opposed to a CPU as GPUs perform

vector and matrix manipulation much faster. A DL solution requires many multiplication

operations to produce inference; thus, DL typically requires a GPU with many TFLOPS

to increase parallel processing and reduce processing time to a duration adequate and

sufficient for normal application operation.

79

Our trained model is compared with other works using a Tesla K40c GPU (see section

4.3.2). However, the proposed LPL model obtains high performance at a lower price,

designed to be fast and accurate even when running on commodity hardware.

4.2.4 Proposed DL LPL Algorithm

An algorithm that can run sufficiently fast and efficient on computers using only a

CPU was defined, as well as low-cost devices such as embedded systems, smartphones,

tablets, and other personal mobile devices. This algorithm consists of three stages:

- Video input multithreading

- Motion detection

- DL inference

The diagram for the proposed algorithm is shown in Figure 4.4.

Normally, accessing a network/USB camera is a blocking operation; the main code is

blocked until the frame is read from the camera device and returned to the main script.

This can cause an input/output bottleneck, and thus reducing the time to capture each

frame is especially important when a real-time application is required. An LPL system

Grayscale

Multi-threading

Inference

Motion detection

Input Video

Video Threading
Resize Image

Deep Learning Inference

Gaussian Filters

Background Difference

License Plate Located

Figure 4.4: Program flow of proposed multi-threading

video capture with motion detection then inference

algorithm.

80

cannot waste any time between captures because a fast-travelling vehicle, such as on a

highway, could cross in that moment.

Recognizing this importance, an I/O thread separate from the main script was defined

that allows frames to be read continuously from the camera; frames are read and buffered

from the I/O thread while the main thread processes the current frame. Once the main

thread has finished processing its frame, it simply grabs the current frame from the I/O

thread. Thus, LPL is achieved without having to wait for blocking I/O operations; this

makes the system more efficient when used on CPUs, and the overall frames per second

(FPS) is increased.

Since LPL must occur in the presence of a vehicle, a motion detection process was

developed which detects when a car is in the frame; only after the vehicle completely

leaves the bottom of the frame will the LPL object detection DL apparatus run, to capture

the vehicle’s rear license plate. This makes the overall algorithm more efficient and

increases the system’s maximum FPS, as LPL inference is performed only when required.

An example of when to start detection is shown in Figure 4.5.

The motion detection process utilizes the underlying assumption that the background

of consecutive captured video frames is largely static and immutable. Therefore, the

background can be modelled and supervised for substantial changes. When such a change

occurs, it is detected and corresponds to movement in the video capture. Because

movement is invariant to color, the image is converted to grayscale and softened via

Gaussian blur.

Finally, Gaussian smoothing is applied to the average pixel intensities, which softens

high frequency noise.

The algorithm takes the first frame of the video as the static background, though

theoretically any image could be imported for use as the background. The difference

between the background frame and the new subsequent frames of the video transmission

is calculated; this difference is a simple subtraction, taking the absolute value of

corresponding pixel intensity differences:

81

∆𝑓𝑟𝑎𝑚𝑒 = | 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒 | (4.2)

This subtraction causes the background in a subsequent frame to appear black while

regions that contain non-background, such as moving vehicles, are white. This implies

that larger frame deltas indicate that movement is occurring in the image. The ∆frame was

adjust to reveal the regions of the image that have significant changes in pixel intensity

values.

The final step of this algorithm is inference, which is performed with the deep neural

network model using a feed-forward algorithm that operates on each applicable video

frame separately. The algorithm begins at the input layer and progressively moves

forward layer by layer. At each layer the feed-forward algorithm updates the state of each

unit; this process terminates once all units in the output layer are updated. The inferred

class corresponds to the output layer unit with the largest state, the data within the

Figure 4.5: (a-d) Frames of a vehicle travelling at highway speed passing under a camera setup. Vehicle

presence would be detected in (a) via background subtraction against the (otherwise vehicle-clear) road. Deep

learning license plate localization inference would occur in (c), when the vehicle is detected to have left the

bottom of the frame and while the rear license plate is still visible; this minimizes the total number of frames

over which inference occurs, thereby increasing the possible maximal frames per second.

(a) (b)

(c) (d)

82

localization bounding box region, and the confidence value of the output layer in its

prediction of whether the region contains a valid license plate.

4.3 Results

4.3.1 Dataset Information

Our solution involves a DL model with supervised learning trained using the datasets

in Table 4.3. One such publicly available dataset may also be referred to as a public

library.

 In total there are 1207 sample images from different scenes and different countries.

Many plates exhibit small amounts of rotation and skew. Others exhibit over or

underexposure. Several plates are blurry, partially obscured by shadows, dirty, or

otherwise distorted. These unideal conditions rarely occur in isolation; see Figure 4.6.

(a)

(b)

(c)

(d)

Figure 4.6: Different obstructions on license plates in images from the NTUA Medialab dataset [41]. (a)

Rotated, Underexposed Plate. (b) Blurry, Overexposed Plate. (c) Skewed Plate. (d) Partially Shadow-covered

Plate.

 Table 4.3: Public datasets used to train the deep learning models

Public Dataset
of Images in

Set
Image Size (px)

Caltech Cars 1999 (Rear) 2 [96] 126 896×592

University of Zagreb License Plate Detection, Recognition,

and Automated Storage [100]

510 640×480

University of Athens (NTUA) Medialab LPR Database [102] 571 1792×1312, 800×600,

640×480

83

4.3.2 Comparisons to Public Libraries

Our tests were conducted using a Tesla K40c GPU on a computer whose operating

system was Ubuntu 18.04 LTS. Experiments were implemented in Python 3.6.5 using the

libraries Tensorflow v. 1.8 and OpenCV v. 3.4.0.

Tests were conducted using an intersection over union (IoU) threshold of 0.5.

Localized plate regions from all the public libraries described in section 4.3.1 are

shown in Figure 4.7.

4.3.2.1 The Caltech Dataset

The Caltech Cars 1999 (Rear) 2 [96] public library is comprised of images of vehicles

in Caltech parking lots. The plates are American and 120 are Californian; few other U.S.

states are represented. All vehicles were photographed in daylight. Most plates are clearly

visible, exhibit little rotation or skew, and are generally human-readable; though many

Figure 4.7: Images of vehicles and their corresponding respective localized license plates generated by the

proposed method. The first row contains images from the Caltech dataset , the second row from the

University of Zagreb dataset , and the third from the NTUA Medialab dataset .

84

plates are somewhat unfocused, and may have unideal exposure. Most license plates have

a width-height ratio of approximately 2-2.5. A typical plate region occupies ≤ 1% of the

total image, and is located on a vehicle that occupies approximately 20-40% of the image;

the remainder of the image is (meaningless) background. Most plates contain darker

alphanumeric characters on a lighter background. See Table 4.4 for comparisons.

Our method has an accuracy of 98.4% and is 0.01% more accurate than the next closest

[87]. Although [87] does not give a processing time, it is likely near the time given by

[97] due to the similarities between their respective neural network processes—and the

system localizes almost 14x faster than [97], which also uses a GPU (though their listed

time was for a different dataset as no time was given for Caltech [96]). Reference [97] is

also 0.36% less accurate than the proposed method. Moreover, [87] and [97] use Faster

R-CNN as an object detector whereas the proposed solution uses a modified SSD. There

are numerous advantages of SSD over Faster R-CNN, including hard negative mining to

reduce negative bounding boxes during inference, and a concatenation of low- and high-

level discriminative features.

Compared to [98], which uses a CPU, the proposed system localizes about 2x faster—

and it is 7.13% more accurate, meaning the proposed system correctly localizes about 9

more plates than [98].

Table 4.4: Comparison of license plate localization algorithms on the Caltech Cars 1999 (rear) 2 dataset [96]

Description of System/Algorithm
Correct

Detection %

Processing Time Per

Image (s)

Proposed system 98.4 0.02

Faster R-CNN for vehicle detection + CNN Classifier [87] 98.39 None given

Faster R-CNN + RPN [97] 98.04 0.279 (estimated)

Line Density Filter + SVM-based Classifier [98] 91.27 < 0.042 (estimated)

Feature Extraction + Principal Visual Word [99] 84.4 7.19

85

Compared to [99], which uses a CPU, the proposed system localizes about 360x faster

and it is 14% more accurate, meaning the proposed system recognizes about 18 more

plates than [99].

4.3.2.2 The University of Zagreb Database

The University of Zagreb Plate Detection, Recognition, and Automated Storage [100]

public library is comprised of images of cars with Croatian license plates, though a small

minority of other European plates are represented. Many are clearly visible and are

generally human-readable; but some exhibit rotation, skew, blurs, shadows, and other

unideal conditions. Some images have been captured in low-light conditions. Most license

plates have a width-height ratio of approximately 5, and several have a ratio of

approximately 1.46. A typical plate region occupies approximately 1-2% of the total

image, and is located on a vehicle that, with few exceptions, occupies the majority, and

in some cases the entirety, of the image; any remaining image space contains

(meaningless) background. Most plates contain darker alphanumeric characters on a

lighter background. See Table 4.5 for comparisons.

Compared to [101], which uses a CPU, the system localizes 6x faster. The proposed

system has an accuracy of 97.83%; this is 5.03% more accurate than [101], meaning the

proposed system correctly localizes about 26 more plates.

Table 4.5: Comparison of license plate localization algorithms on the University of Zagreb plate detection,

recognition, and automated storage dataset [100]

Description of System/Algorithm Correct Detection % Processing Time Per Image (s)

Proposed system 97.83 0.02

Corner-point Detection + Linear

Discriminant Analysis-based

Classifier [101]

92.8 0.12 (estimated)

86

4.3.2.3 The NTUA MediaLab Dataset

The NTUA Medialab LPR Database [102] is comprised of images of cars with Greek

license plates. Most license plates have a width-height ratio of approximately 3.5-4.8. A

typical focused plate region occupies < 1% to approximately 3% of the total image,

though some plate regions occupy as large as 5-9%; a plate region is located on a vehicle

that occupies anywhere from approximately 10% to the entirety of the total image;

remaining image space may contain other vehicles with visible (but not necessarily

readable) plates. Most plates contain darker alphanumeric characters on a lighter

background. At the time of training and testing, the NTUA Medialab LPR database was

split across 8 sample sets; for detailed set information see Table 4.6. See Table 4.7 for

comparisons.

The proposed system has an accuracy of 99.8% and is 1.35% more accurate than [103].

The system correctly localizes 2 more plates than [103] from Set 4, and 6 more plates than

[103] from Set 8 (which contains complex images). Reference [103] utilizes a CPU and

processes an image in 0.2 s, the same amount of time it took the system during the tests.

Table 4.6: Set specifics of the NTUA Medialab LPR Database [102]

Set # # of Images in Set Description

1 136 Color images captured in daylight, with an easily visible plate region

2 122 Zoomed view, with large and easily visible clear plate regions on a non-

complex background

3 49 Images with plate regions obscured by shadows, and some with unideal

illumination

4 67 Similar to Set 1

5 7 Blurred images

6 3 Color images captured at night using an external flash

7 26 Complex images with plate regions obscured by shadow

8 161 Complex images with plate regions obscured by shadow and dirt

87

Compared to [88], which uses a CPU, the proposed system is 1.75x faster and is

10.35% more accurate—and the accuracy gain over [88] would likely be even more had

the results of [88] included Sets 7 and 8, which featured more complex images than the

other sets against which [88] was tested.

The proposed system misses localizing only one plate from the NTUA Medialab LPR

Database [102], from Set 8.

4.3.3 Comparisons to Popular DL Object Detection

Frameworks

The proposed LPL model was also tested for speed and efficiency using only a CPU,

giving us a rough metric for compatibility with low computational complexity devices

like smartphones and embedded systems.

The DL solution was against two well-known DL architectures, SSD and YOLOv2.

YOLOv2, particularly over its predecessor, is aimed at real-time object detection tasks

[104].

The tests were conducted using an Intel Core i7-2620M CPU (2.7 GHz) with 8 GiB

of RAM on a computer whose operating system was Ubuntu 16.04 LTS. Experiments

 Table 4.7: Comparison of License Plate Localization Algorithms on the NTUA Medialab LPR Database [102]

Description of

System/Algorithm

Correct Detection Percentage By Set # (%) Correct

Detection

%

Processing

Time Per

Image (s)
1 2 3 4 5 6 7 8

Proposed system 100 100 100 100 100 100 100 99.37 99.8 0.02

Morphological

Operations [3]

100 100 100 97 100 100 100 95.65 98.45 0.02

Connected

Component

Analysis [25]

92.02 82.48 88.73 87.24 74 90.84 N/A N/A 89.45 (sets

1 through

6 only)

0.035

88

were implemented in Python 3.6.5 using the libraries Tensorflow v. 1.8 and OpenCV v.

3.4.0.

Results are summarized in Table 4.8. The proposed architecture is 24x faster than,

uses 6.1% of the parameters of, and uses 21.9x fewer multiply-add (MAdd) operations

compared to YOLOv2. Against standard SSD [48], the proposed system is 7.5x faster,

uses 8.6% of the parameters, and 44x fewer MAdds.

4.3.4 Comparisons to other DL LPL Frameworks

Because some DL LPL systems test using private databases, comparisons of accuracy

and processing time (as in section 4.3.2) cannot be directly made.

One such example is [90]. As of August 2018, one database used to test the accuracy

of [90] is no longer available, and the other [98] is semi-private and for use on a case-by-

case basis only. Thus, the model was compared against [90] in terms of its neural network

computational complexity. The tests were conducted using the same computer setup in

section 4.3.3. Results are summarized in Table 4.9.

Table 4.9: The proposed license plate localization deep learning architecture compared to other deep learning

license plate localization architectures

Network Parameters MAdd CPU Time Per Image (s)

Proposed system 3.1M 0.8B 0.2

ALMD-YOLO [34] 59.57M 1.81B 0.67

 Table 4.8: The proposed license plate localization deep learning architecture compared to popular DL

architectures

Network Parameters MAdd CPU Time Per Image (s)

Proposed system 3.1M 0.8B 0.2

SSD [48] 36.1M 35.2B 1.5

YOLOv2 [104] 50.7M 17.5B 4.8

89

The proposed architecture is 3.35x faster than, uses 5.2% of the parameters of, and

uses 2.26x fewer multiply-add (MAdd) operations compared to the ALMD-YOLO

architecture described in [90]. Theoretically, the proposed model should perform more

efficiently than [90], especially on devices with lower computational complexity.

4.3.5 Real-life Real-time Testing

License plate recognition systems often require connection to a server to localize

license plates from a video feed. When the server is stationed at a remote location, high

bandwidth per-camera is required, increasing the cost of the system. To mitigate this, a

real-time processing system at the edge was proposed using the low-cost embedded

system Raspberry Pi 3 and an Intel Neural Compute Stick 2 (NCS2).

The Raspberry Pi 3 device with a quad core 1.2GHz processing power chip and 1 GB

of RAM. The NCS2 enables a CNN to be deployed on a low-power chip, thereby enabling

real-time inference for license plate detection without requiring a connection to the cloud

or a large processing server. The NCS2 allows 1 trillion operations per seconds (TOPS),

and the embedded system was used for testing. The camera utilized was a Samsung

S5K2L1 with a 12 MP resolution and a sensor of 1.4 µm; 1/2.6" and 10x optical zoom

was used. The camera streams a 60 FPS video to the Raspberry Pi 3.

Using the algorithm proposed in section 4.2.4, 99.77% localization accuracy was

achieved when testing with 898 vehicles. The system can run at an average of 13 FPS.

Testing was conducted during summer, winter and snowy conditions, and some license

plates are covered with mud and dust; this is itself a testament to the robustness of the

proposed architecture, given that the training images used were captured in non-winter

conditions. The test occurred on a highway with average vehicle speeds in excess of 80

km/h, or about 50 mph.

The proposed DL design is based on multibox detection and it can thus detect multiple

license plates simultaneously with the same processing time as with a single plate; see

Figure 4.8.

90

Figure 4.8: Real-time can detect one or multiple license plates at the same time.

Some ALPR systems are susceptible to the angle of the license plate within an image.

However, using DL methods greatly mitigates this via the rotationally-invariant nature of

feature-map outputs from CNNs, and therefore an angled plate or camera will not

generally be a problem.

A hyperlink to the videos showing the proposed system operating in a real-life real-

time high-speed highway environment can be found at https://youtu.be/7eyfGCW_UwQ

4.4 Summary

In this chapter, a deep learning apparatus for LPL was proposed. The LPL system uses

inverted residual blocks, linear bottlenecks, and depthwise separable convolutions. It

requires only 3.1M parameters and 0.8B MAdds. Using a GPU, per-image plate

localization takes only 20 ms of processing time.

The proposed system was trained using the Caltech Cars 1999 (Rear) 2 library, the

University of Zagreb License Plate Detection, Recognition, and Automated Storage

library, and the NTUA Medialab LPR Database. Testing achieved 98.4%, 97.83%, and

99.8% correct detection accuracy over those same respective datasets.

https://youtu.be/7eyfGCW_UwQ

91

Plates regions were correctly identified despite rotations, skew, under or

overexposure, blur, obstruction by shadows or dirt, and/or other distortions. This shows

that the proposed model is robust against non-ideal plate captures and environmental

conditions, and reliable even in images with complex backgrounds.

Using the proposed multi-threading video capture with motion detection then

inference algorithm, frames are read and buffered through a multithreading process when

the system detects motion, and sent to the DL model for LPL inference. The proposed DL

model and algorithm allows DL-based LPL to be efficient, accurate, and well-suited for

real-time applications on low-computational devices; LPL is achieved within an

acceptable time frame (77 ms) when an embedded system and neural compute stick is

used. The algorithm was tested on highway conditions with vehicles traveling in excess

of 80 km/h and achieved 99.77% localization over 898 test vehicles.

As both the localization processing time and neural network parameter count are

relatively low in the current system, especially compared to other deep learning solutions,

the framework may be easily implemented on portable devices and devices with low

computational power. This should make ITS applications using ALPR less expensive

from both a hardware and consumer standpoint, facilitate and expedite the advancement

and creation of ITS technology, and make ITS applications more accessible for a greater

percentage of society.

92

Chapter 5

Real-time CVSA Decals Recognition System

Using Deep Convolutional Neural Network

Architectures1

The Commercial Vehicle Safety Alliance (CVSA) aims to achieve uniformity,

compatibility and reciprocity of commercial motor vehicle inspections and enforcement

by certified inspectors dedicated to driver and vehicle safety. Commercial vehicles that

pass a CVSA inspection are eligible for a decal representing a commitment to safety. In

this chapter, a 2-step automatic CVSA decal recognition system using deep convolutional

neural network architectures was proposed. The first step localizes a vehicle’s windshield

and the CVSA decal within, and classifies the decal colour. The CVSA decal is cropped

and used as input to the second stage, which localizes and classifies a digit and the corner-

cut of a CVSA decal. With the corner-cut, colour, and digit, the system can determine the

decal’s date of issue. This chapter is structured as follow Section 5.1 contains

introduction; Section 5.2 describes the proposed architecture; Section 5.3 describes the

labelling and training process for the proposed solution; Section 5.4 describes real-time

processing using different platforms; results are in Section 5.5; and Section 5.6 concludes

this chapter.

 1The content of this chapter is originally published in IET Intelligent Transport Systems. The manuscript has

been reformatted for inclusion in this thesis.

 Juan Yépez (JY), Riel Castro-Zunti (RC), Younhee Choi (YC), and Seok-Bum Ko (SK) designed the study. JY

designed the network architecture, trained and tested the models, implemented the system on the edge devices,

and provided results analysis. RC helped annotated the images from dataset and proofreading the manuscript. JY

prepared the manuscript with contributions from YC and SK to the manuscript structure, readability and analysis

and discussion of the results

93

5.1 Introduction

4 million commercial vehicle inspections are conducted every year throughout North

America to ensure the safe operations of vehicles on the road [105]. Specially trained

safety inspectors in each state, province, and territory inspect commercial vehicles based

on procedures, policy, and criteria developed by the Commercial Vehicle Safety Alliance

(CVSA), a non-profit association that operates throughout the U.S., Canada, and Mexico

and regulates and improves commercial vehicle safety standards [105].

The CVSA was established to encourage the collaboration of law enforcement,

government, and industry to promote an environment free of commercial vehicle crashes,

deaths, and injuries. This would be achieved by establishing effective transportation

safety standards for motor carriers, drivers, vehicles, and inspectors through compliance,

education, awareness, training, and enforcement programs.

A vehicle that passes inspection is issued a decal that is typically affixed to the

windshield of a commercial vehicle. This decal contains information that reveals the date

of issue.

The decal’s color, as seen in Figure 5.1, indicates the calendar quarter in which the

commercial vehicle was last inspected [105]:

Figure 5.1: CVSA decal color types.

94

- Green represents January through March.

- Yellow represents April through June.

- Orange represents July through September.

- White represents October through December.

The decal may have one or two corners cut, indicating the month of issuance [105].

The year of issuance is represented on the decal by a single digit (e.g., 2018 is indicated

by the number “8”). The CVSA trademark is below the year.

Despite the CVSA’s reach throughout North America, there are no commercial

automatic CVSA decal recognition systems. In recent years, convolutional neural

networks (CNNs) have brought impressive improvements to object detection projects

[30], [106], [107]. Object detection locates and classifies regions of interest (ROIs) within

images. However, detecting small objects remains challenging: for a neural network to

have fast prediction time, it must have a relatively low input resolution (e.g. 300 × 300

px). Images input to the network must be downscaled to fit the network, meaning the loss

of details important for object recognition further down the system’s pipeline; this makes

a one stage system impractical. A larger neural network input size may improve detection

of small objects, but the subsequent processing time increase generally renders such

systems too slow for real-time processing on commodity hardware. Though multiple

networks can be chained, with one specifically focusing on small objects of interest, each

stage increases network latency, thereby decreasing efficiency [108]. MobileDet [39] is

the current state-of-the-art feature extractor for object detection models on mobile

devices; thus, we chose it as the baseline/backbone and customized it to the tasks.

In this thesis, the following are proposed and presented:

A novel two-stage automatic real-time edge CVSA Decal Recognition System

(CDRS). A two object detection architectures customized for detection and recognition

tasks was designed: the first architecture focuses on small RoIs, specifically decals in the

context of a vehicle’s windshield; the second architecture provides fast prediction for digit

95

and corner-cut recognition. The two-stage system effectively reduces the number of false

positives whilst achieving high accuracy.

A novel “7-spots” method for video stream prediction operating at the CDRS’s second

stage. When a truck enters the field of view of a camera setup, it is relatively far away,

making its CVSA decal in the first few frames appear small and blurry. The 7-spots

method provides better performance by evaluating the last 7 detected decal images per-

truck—when the decal is closer to the camera and thus larger and sharper—and doing

majority voting. Moreover, this method reduces false positives by assuming <2

consecutive detections to be noise. It is also more efficient because the CDRS predicts

only up to 7 decals (as one composite image) rather than all detected decals.

A performance comparison of the CDRS implemented using several popular edge

hardware accelerators—with vendors including Nvidia, Intel, and Google—and

demonstrated real-time performance therein. With high frames per second (FPS), the

proposed CDRS detects trucks, decals, and provides decal information.

5.2 Proposed Architecture

The resolution of an input to an object detection network is oftentimes much smaller

than the original image. Several object detection architectures, e.g. SSD [48], use an input

size of 300 x 300 pixels despite the original image being 1280 x 720 pixels (high definition

(HD)) or higher. Although an input with small resolution reduces the parameters and thus

the processing time, details specifically from small objects are lost.

According to the MS COCO benchmark [109], objects with a resolution less than 32

x 32 pixels are defined as small, between 32 x 32 and 96 x 96 as medium, and greater than

96 x 96 pixels as large. Object detection networks struggle to detect small objects [110]

because small objects have less pixels and cover a smaller area of the input. Fast and

accurate CVSA decal detection is a difficult task because decals are small, and any input

reduction would cause severe degradation in decal image quality.

96

This issue may be potentially mitigated by dividing detection into multiple stages that

are processed sequentially [108]. E.g. detection pipelines that treat object proposals

independently and predict bounding box locations and their classification scores

separately [111]. Although such architectures have achieved good detection performance,

this methodology is generally limited in that it causes delays and difficulties that are

unacceptable and irreconcilable for real-time applications (>30 FPS) [112].

If a conventional multi-stage methodology is applied for the proposed CDRS, the

system would require 5 stages: in the first stage, trucks or windshields are detected; in the

second stage, the CVSA decal is detected; the third would classify the colour; the fourth

would classify the corner cut; finally, digit detection and classification. The output of the

first stage would be a bounding box that would be cropped and sent to the second stage,

whose output would be the decal which would be cropped and used as input to stages

three through five. After all stages are processed, the system can identify the month and

year of the CVSA decal.

Though a CDRS system can be created using a conventional multi-stage methodology,

the resultant five-stage design—with separate networks for localization (truck and decal)

and each CVSA attribute (colour, digit, and corner cut)—is marred with inefficiencies.

Having a new network at each stage increases both the total system software size and the

system latency; such issues are compounded when using a hardware accelerator.

 The proposed two-stage system uses custom task-tailored architectures based on a

MobileDet backbone. The number and types of layers are selected after training and

evaluating several backbone configurations using NAS [39]. NAS has demonstrated a

superior ability to learn models that are both accurate and efficient on a specific hardware

platform. The proposed models are hardware accelerator compatible and can run in

parallel to reduce processing time compared to a five-stage system. MobileDet collects

the feature maps at six different endpoints; two are consumed by the head, being processed

and concatenated in parallel to generate location and classification values. The stages are

as follows:

97

- Windshield detection, CVSA decal detection, and colour classification.

- Digit and edge detection and classification.

5.2.1 Windshield Detection, CVSA Decal Detection,

and Colour Classification

The objective of the first stage is to mitigate the problem of the small input size. Thus,

the standard SSD resolution was increased from 300 x 300 to 320 x 320 px. Although this

cannot overcome the problem, it allows for better decal details.

The first layer of the customized backbone contains a CNN with stride 2; this

downsamples the input without a max pooling layer and requires less computation than

stride one [113].

Next, several Fused layers was used with stride one or two, and kernels 3×3 or 5×5.

Tucker and Fused layers use regular convolutions better suited to feature extraction,

especially important in the backbone’s early stages; depthwise convolutions are less

efficient at this task [39]. Finally, several IBN layers was used before the endpoints to

improve sensitivity to small objects. Table 5.1 shows the first stage backbone. Each line

describes a layer with kernel k, expansion e, repeated n times, with residual r, and stride

s. C4 and C5 are endpoints into the head.

Because the truck is large and can occupy many consecutive video frames, the CDRS

does not detect the truck itself; instead, the first network stage detects both the vehicle

windshield and the CVSA decal. Thus, the approach differs from Yonetsu et al. [54] that

detects the vehicle in their first stage; by detecting the windshield, the proposed CDRS

implicitly determines the presence of a truck. This helps the system reduce latency

compared to [54]. Additionally, the CDRS’s first stage determines the colour of the CVSA

decal, streamlining the design and improving its functionality. The proposed backbone

has five classes: the windshield; and four for decals of varying colours that indicate the

calendar quarter. Though small object colour classification is generally difficult, high

98

mAP results for this task are achievable because decals only have four colours that are

relatively easily differentiated.

5.2.2 Digit and Corner-cut Detection and Classification

The output of the first stage is the localized decal as cropped from the originally

inputted frame. This decal crop is the input to the first stage, which detects and classifies

the decal’s digit and corner-cut. The locations and sizes of the digit and corner-cut are

generally standardized and are large relative to the whole decal. Thus, the backbone can

be simpler and focus on larger objects.

 Table 5.1: First stage backbone

Input Layer k E N R s

3202 x 3 Conv 3×3 N/A 1 No 2

1602 x 32 Tucker 3×3 0.25-0.75 1 No 1

1602 x 16 Fused 3×3 8 1 No 2

802 x 16 Fused 3×3 4 1 Yes 1

802 x 16 Fused 3×3 8 1 Yes 1

802 x 16 Fused 3×3 4 1 Yes 1

802 x 16 Fused 5×5 8 1 No 2

402 x 40 Fused 3×3 4 3 Yes 1

402 x 40 IBN 3×3 8 1 No 2

202 x 72 IBN 3×3 8 1 Yes 1

202 x 72 Fused 3×3 4 2 Yes 1

202 x 72 IBN 5×5 8 1 No 1

202 x 96 IBN 5×5 8 1 Yes 1

202 x 96 (C4) IBN 3×3 8 2 Yes 1

202 x 96 IBN 5×5 8 1 No 2

102 x 120 IBN 3×3 8 1 Yes 1

102 x 120 IBN 5×5 4 1 Yes 1

102 x 120 IBN 3×3 8 1 Yes 1

102 × 120 (C5) IBN 5×5 8 1 Yes 1

99

Table 5.2 shows the second stage backbone. The first 3 layers of the customized

backbone are similar to the first stage, to extract the most important features from the

input image. Repeated layers were removed, and no layers have a residual function; this

discards details for small objects, which is not necessary in this stage. The proposed

architecture is thus much faster than its baseline with no precision loss; this illustrates the

parameter-wise superiority of slimmer custom architectures compared to deep general

ones. This backbone has 7 layers, compared to 23 in that of first stage. The proposed

network localizes the top part of the decal and identifies the corner-cut, which could be

one of three classes: no corner cuts; one corner is cut; and both corners are cut. The

remaining classes correspond to digit recognition (0 through 9).

5.3 Labelling and Training

The dataset used in this work was provided by International Road Dynamics Inc.

(IRD) [114]. The dataset contains 5869 still images and one 30-minute video with 151

trucks (17 with the absence of a CVSA decal) recorded at a North American commercial

vehicle check stop. Figure 5.2 shows the two main types of images collected. Both Figure

5.2 (a) and Figure 5.2 (b) show the front part of the truck and were captured in daylight

conditions. The CVSA decals have few rotations or skews. Several CVSA decals are

blurry, making it difficult to read their digits.

 Table 5.2: Second stage backbone

Input Layer k E S

3202 x 3 Conv 3×3 N/A 2

1602 x 32 Tucker 3×3 0.25-0.75 1

1602 x 16 Fused 3×3 8 2

802 x 16 Fused 5×5 8 2

402 x 40 IBN 3×3 8 2

202 x 72 (C4) IBN 5×5 8 1

202 x 96 (C5) IBN 5×5 8 2

100

Figure 5.2: Trucks with CVSA decals on different highways.

(a)

(b)

101

Because the dataset contained a relatively small number of images, it was explicitly

inflated using data augmentation techniques. Histogram equalization of the Y channel in

YUV colour space was performed, different zoom levels were (e.g. 2x, 4x, etc.) applied to

the decals, and decals were translated to other areas within the image. Dataset

augmentation brought the dataset to 6083 images for training and testing. This

augmentation increases representation and may contribute to less overfitting. A random

80% of the images for training and 20% for testing were used. Images were resized to

320×320 px for training and testing.

The graphical image annotation program “LabelImg” [92] was used to draw a

bounding boxes around each ROI and assign each box a class label; a sample annotation

can be observed in Figure 5.3. Annotations are saved as PASCAL VOC-conforming XML

files and are used to generate TFRecords, which store a sequence of binary records in a

way that allows for the efficient import (from TensorFlow’s perspective) of annotated

image data.

The networks were trained from scratch to 50,000 steps using TensorFlow 1.15 on a

Tesla K40c GPU in an Ubuntu 18.04 LTS computer. First and second stage networks

were trained with the same hyperparameters: a batch size of 16; categorical cross-entropy

loss; and a stochastic gradient descent optimizer with an initial learning rate of 0.8,

lowered to 0.013 after 15,000 steps, with 0.9 momentum, 0.97 decay, and 0.001 epsilon.

Finally, because CVSA decals are typically much smaller than objects in the COCO

dataset [109], the scale of the smallest anchor boxes was reduced to 2 in the first network.

5.3.1 First Stage

In the first stage, the truck’s windshields and the CVSA decals from the augmented

dataset were labelled. The colour of the decals that represent the calendar quarter is also

annotated. The annotated dataset was used to train the network shown in Table 5.1. Once

the proposed network is trained, the resulting model can predict windshields and decals

at the same time.

102

Figure 5.3: Windshield and CVSA decal labelled using the LabelImg program.

If bounding boxes for a vehicle’s windshield and a CVSA decal are predicted via the

inference process, their locations are used to determine if the decal is located within the

windshield. If they are, the predicted CVSA decal is assumed to be valid. Else—as is the

case for objects located elsewhere on the truck/road that are visually similar to decals—

the prediction is discarded. The decal’s predicted bounding box is cropped from the

original image and inputted to the second stage.

Because a decal occupies less than 1% of the input image area, lane markings or other

vehicle decorations can be confused as CVSA decals. Confirming that a predicted CVSA

decal is within a vehicle’s windshield is an effective measure to reduce the number of

potential false positives.

Detecting a windshield is a practical way to determine the presence of a vehicle from

streaming video: if a windshield is detected, a vehicle must also be there. The CDRS saves

each frame that contains a detected windshield in an image array. If a CVSA decal is also

detected, a “Found” status is set therein; else, it is set to “Not_found”. After the truck

passes (i.e. the end of consecutive frames containing a windshield), the CDRS saves (as

103

an image file) the “Found” frame located closest to the middle of the array; empirically,

this middle image was determined to contain the windshield centred in the frame, which

provides the best view of the truck (for validation purposes and/or future work).

5.3.2 Second stage

For the second stage, the year-identifying digit and corner cut were annotated from

cropped decals provided by the first stage. These annotated images were used to train the

network shown in Table 5.2. Figure 5.4 shows a sample second stage annotation.

Figure 5.4: Digit and corner-cut labelled in a CVSA decal.

Integrating custom digit detection into the second stage has two main benefits over

utilizing a third network specifically for optical character recognition (OCR, e.g. tesseract

[115]). First, as aforementioned, additional networks produce a greater software model

file size and additional latency. Second, as can be noted in Figs. 4 and 5, the digit appears

almost blurred due to its small resolution; a network custom-trained on such

104

representations could handle blurred images more effectively than a generic OCR network

trained without such considerations.

From the detected information, the date of decal issuance can be found. Using Figure

5.4 as an example, the system can use the information of the 0 digit, the 2 top corners cut,

and the yellow decal colour to determine that the decal was issued in April 2020.

The trained model can successfully and practically predict still images. However,

when a video stream is processed, the same decal is detected multiple times in consecutive

frames, leading to potentially redundant prediction computation. This leads to wasted

resources and long processing times, especially when a CPU is used or when the model

is deployed unoptimized on commodity hardware. A naive solution is to choose only one

decal to be processed, but this could be a problem if the selected decal is blurry or

otherwise unideal; this tends to happen during the first frames that a decal appears in the

video, when the truck is far and the decal is very small.

To mitigate the video stream processing time and turn the redundancy into an asset, a

model was proposed that receives an input image comprised of up to 7 consecutive decal

detections. Each decal in the input image has a size of 60×95 px. Once a decal is detected

in the first stage, one of the 7 “spots” in the composite decal image are filled. If another

decal is detected within the next 15 frames, this decal occupies the second spot; the

procedure continues in this way, potentially overwriting earlier spots, until no decal is

detected after 15 frames. If at least 2 spots are filled, the 7-spots image is inputted to the

second stage model; else, the detection is assumed a false positive and is not predicted,

which further reduces the potential for false positives. Note that 7 spots and 15 frames

were chosen as thresholds by measuring the average frames a decal was present and the

average frames between decals in the 30-minute video in the dataset. Figure 5.5 shows

some example 7-spots input images.

 Figure 5.5 (a) shows a CVSA decal issued in April 2020 which was detected at least

seven times; its detections occupy all available spots. Figure 5.5 (b) shows a CVSA decal

105

issue in January 2020 where only five detections are found. Figure 5.5 (c) shows a CVSA

decal issue in October 2019 with only three detections.

To train the model used for video stream prediction, 51 7-spots images was used, like

those shown in Figure 5.5, collected from the 30-minute video. Additionally, 5869 7-spots

images were synthesized using decals from still images by randomly duplicating the decal

to fill 3 to 7 spots. These images are used to train the network shown in Table 5.2.

Detection and classification are performed over the filled spots, and the inference time is

the same regardless of the number of spots filled. A majority vote over detections is used

to determine a decal’s final qualities. If there is a tie, the value from the last decal is

selected.

Figure 5.5: (a) 7 spots filled, (b) 5 spots filled, and (c) 3 spots filled.

(a)

(c)

(b)

106

5.4 Real-time Prediction

The trained custom models was exported as frozen inference graph files (.pb).

However, frozen graphs are optimized for GPU deployment, rather than for all platforms.

Thus, to improve prediction speed, the models were converted to the appropriate native

framework for each hardware accelerator.

The Google Coral platform uses TensorFlow Lite (TFLite), the lightweight version of

TensorFlow specifically designed for mobile platforms and embedded devices. It provides

lower latency and a smaller binary size but tends to degrade accuracy—ideally, this

degradation is negligible or offers a competitive speed-accuracy trade-off. TFLite

supports a set of core operators tuned for mobile platforms, the desired medium for

inference. First, models must be pruned [116] and quantized from FP32 to INT8 Then,

models are converted to TFLite file format. Next, the Edge TPU compiler was used to

rearrange layer weights from the TFLite file to a new compatible format. The compiler

shows the layers that can perform inference on the Coral vs. the CPU.

The Edge TPU has 8 MB of SRAM. A small amount of the RAM is reserved for the

model's inference executable, and the remaining space is used to cache the model's

parameter data. This enables faster prediction speed compared to fetching the parameter

data from external memory.

For Intel’s Movidius-based hardware, their Open-VINO toolkit was used which

facilitates both the optimization of a deep learning model from a framework and the

deployment of the model onto Intel hardware using an inference engine. It enables deep

learning inference at the edge and supports heterogeneous execution across a variety of

computer vision accelerators: CPUs, GPUs, Intel Movidius NCSs, and FPGAs. It supports

more deep learning models out of the box than Google Coral.

The Intel Inference Engine (IE) enables the deployment of the Tensorflow-trained

models. Rather than using the original model for inference, the IE uses its Intermediate

Representation (IR), which is optimized for execution on endpoint target devices. The

107

Intel Model Optimization Tool was used to generate the IR, comprised of two files (.xml

and .bin) for each trained model. The USB stick-based Intel NCS and NCS2 supports Half

Precision Floating Point (FP16) [117].

NVIDIA’s Jetson Nano and Jetson Xavier, small AI computers for developers, were

benchmarked. The models were deployed in two ways: using regular TensorFlow (with

GPU support); and first optimizing them using NVIDIA’s TensorRT framework.

TensorRT includes a deep learning inference optimizer and runtime engine for production

deployment. TensorRT optimizes the original model by combining layers, optimizing

kernels, pruning, and quantization. The models can be quantized using FP16 or INT8.

Depending on the available resources of the Jetson, the framework runtime engine

generates a file which improves latency, throughput, power, efficiency, and memory

consumption.

The Jetson Nano is a standalone computer and does not require additional hardware.

The Coral USB accelerator and Intel’s Movidius hardware requires a computer for proper

operation; they were paired with a Raspberry Pi 4 (RPi4) single-board computer. The

RPi4 has 4GB of LPDDR4 RAM, a 1.5 GHz Broadcom quad-core processor, two USB

3.0 and two USB 2.0 ports, two micro-HDMI video outputs, a gigabit Ethernet jack, and

radios for 802.11ac Wi-Fi and Bluetooth 5.0. The USB 3.0 port was used to achieve

maximum speed with the accelerators.

The high-level programming language Python is very popular for data science, deep

learning training, and model deployment. Python can be run interactively—a big

advantage for vision or image processing applications. However, compared to C/C++,

Python programs typically run slower, especially when a single board computer like the

RPi4 or Jetson is used. Furthermore, library bindings for Python are usually less mature

than C/C++. For those reasons, in this thesis C/C++ was used for model prediction.

To further increase the inference speed, the open-source pipeline-based multimedia

framework “GStreamer” was used, able to link a variety of media processing systems in

complex workflows. Using GStreamer, a system can be built that reads frames in different

108

formats and even from different sources in parallel, process them, and export them to a

file or stream them over a network. For the Jetsons, NVIDIA developed plugins for

GStreamer including inferencing using TensorRT and encoding/decoding video streams

using the hardware accelerator (NVDEC/NVENC). DeepStream is an NVIDIA plugin for

GStreamer, and part of their GStreamer analytics SDK. DeepStream allows the entire

pipeline to be processed on the GPU, with zero memory copy between the CPU and GPU;

this makes the entire pipeline faster and more efficient.

Figure 5.6 shows a screenshot of the proposed two-stage with 7-spots system as

implemented on a Google Coral USB Accelerator attached to a RPi4. As can be noted in

the top left corner, the video stream is being processed in real time.

Figure 5.6: Real-time CVSA Decals Recognition Systems (CDRS)

109

5.5 Results

5.5.1 Model Comparison

The proposed CDRS method consists of two stages. The upper half of Table 5.3

compares the complete proposed custom edge solution against those formed by state-of-

the-art detection architectures at the edge. Whereas the solution uses a different

architecture at each stage, state-of-the-art comparison work is trained using the same

model architecture at each stage. I.e., at each stage, the solution uses a different model

with a different number of parameters, MAdds, file size, and prediction time; but, for

other architectures, these values are the same at each stage. Thus, for reference, the

bottommost 2 rows of Table 5.3 shows the values of each of the custom stages

independently. Also shown in Table 5.3 are Stage Two results from both single (still

image prediction) and 7-spots (VOD prediction) models.

The model was evaluated using Mean Average Precision (mAP) with a prediction

Intersection Over Union (IoU) ≥ 0.5 (@0.5), a commonly used benchmark in object

detection e.g. for the PASCAL VOC challenge [118]. Figure 5.7 shows mAP@0.5

comparison results. The proposed Stage One model achieves the highest mAP@0.5—

98.5%—due to added layers for greater representational power for small objects.

Although this means the Stage One model has more parameters and a larger size compared

to other SSDLite-based models (though less than MobileNetV1 that uses SSD), it requires

only 0.3 ms more time prediction time than MobileDet EdgeTPU, which has an inference

time of 7.3 ms (half of 14.6 at each stage). This speed-mAP trade-off is very fair and

ensures the model’s competitiveness for mobile and edge device implementations.

110

Figure 5.7: Comparison of accuracy (mAP) vs. processing time by stage

Table 5.3 also shows that the proposed Stage Two models achieve 97.5% mAP@0.5

for single image and 98.1% mAP@0.5 for VOD (7-spots) prediction. The propose model

has the same single image accuracy as MobileDet Edge TPU but uses 17.4% less

parameters for that stage. Moreover, the proposed model is 0.6% more accurate than

SSDLite+MobileNetV2 for Stage Two 7-spots. The proposed model has 130,000 to

5.33M less parameters, corresponding to a 31.6-41.6% lower MB file size than other

models. Though SSD+MobileNetV1 and SSDLite+MobileNet V2 have slightly lower

overall prediction times, the proposed model is 5.4-7.7% more accurate in Stage One and

0.4-3% more accurate for Stage Two single image prediction.

The file size of a regular MobileDet model is 5.04 MB. Using this architecture at each

stage, the file size would be 10.08 MB, as seen in Table 5.3. Similarly, a two-stage

SSD+MobileNetV1 occupies 11.04 MB and SSDLite+MobileNetV2 would occupy 9.42

MB. Even worse, a hypothetical conventional multi-stage 5-stage system based on

111

MobileDet would have a file size of 25.20 MB. All these exceed the ~8 MB of SRAM in

the Coral USB Accelerator; unlike the PCI accelerator variant that shares the host

computer’s memory, the USB accelerator slowdown would be particularly impactful

because loading from external memory would be required. Conversely, the custom

models together occupy only 6.64 MB, which fits within the SRAM and thus makes the

processing time faster than other networks. This shows the custom model’s superiority to

other work when deployed on the Coral USB Accelerator, and potentially similar SRAM-

limited edge hardware.

 Table 5.3: Summary of model training and results

Model

Input

Image

(W×H×3)

MAdds

(B)

Params

(M)

File Size

(MB)

mAP

@0.5

Stage

One

(%)

mAP@0.5

Stage Two (%)
Per-Image

Inference

Time

(ms)*
Single 7-spots

SSDLite +

MobileDet

EdgeTPU [39]

320×320 3.06 8.40 10.08 96.6 97.5 96.3 14.6

SSD +

MobileNetV1

[16]

300×300 2.40 13.60 11.04 89.8 94.3 93.7 12.4

SSDLite +

MobileNetV2

[80]

300×300 1.60 8.60 9.42 92.1 96.9 96.5 12.4

Proposed

Model (Stage

One + Two)

320×320 2.15 8.27 6.44 98.5 97.5 98.1 13.5

Stage One

Only
320×320 1.77 4.80 5.20 98.5 — — 7.6

Stage Two

Only
320×320 0.38 3.47 1.44 — 97.5 98.1 5.9

* Refers to time on the Google Coral. Note that where the File Size is >8MB, the Per-Image Inference Time is <<

total Processing Time due to SRAM fetching.

112

5.5.2 Hardware Accelerators Result Testing

Table 5.4 shows the average prediction times of the system measured using different

hardware implementations. Each system was tested using a 30-minute video with frame

resolution 1280 x 720 pixels, h.264 compression, a bit rate of 1385 kbps, and streamed at

60 FPS. The proposed CDRS was implemented on the Jetson Nano and Jetson AGX

Xavier using both standard TensorFlow model files and TensorRT (TRT) files. A RPi4

was also paired with the hardware accelerators Google Coral, NCS, and NCS2. Finally,

results were provided of the RPi4 alone using both the standard TensorFlow model files

and the optimized TFLite files, the latter built using C++ and OpenCV with VideoCore

6, NEON register, and FP16 support.

Implemented on an Nvidia Jetson AGX Xavier with DeepStream, the proposed system

achieved 173.31 FPS—higher than other platforms. The Tensor cores and the GStreamer

APIs allow the entire pipeline to run on the AGX Xavier’s Volta GPU, lessening

prediction time. TensorRT was used for quantization. Also, the system deployed was

tested on the AGX Xavier’s FP16 deep learning accelerator (DLA); this achieved 77.10

FPS. Although the performance is less than using the AGX Xavier’s GPU, it is higher

than other hardware accelerators. Finally, the model was tested with FP32 using

TensorFlow directly (i.e. no TensorRT optimization); the performance was comparatively

poor at 17.54 FPS.

Using the two DLAs and GPU in parallel, the Jetson Xavier can achieve 327.51 FPS.

This was tested by adding the stream mux plugin to the DeepStream pipeline, allowing

the processing of multiple inputs sources simultaneously—four 60 FPS video streams

were used as input. An object tracker plugin was used to run the primary and secondary

detectors in parallel. Also, two probe plugins was added: one to control the detection using

metadata, and the other to save images of the detected trucks and decals using OpenCV.

Finally, a tiler plugin was added to show multiple inputs on the same screen. Figure 5.8

shows the pipeline used for the CDRS on the Jetson Xavier.

113

The Jetson AGX Xavier has the best performance for the proposed system, and can

run four simultaneous inputs real-time and without lag. However, the AGX Xavier’s

commercial price is US $699, making it the most expensive solution.

The RPi4 with the Google Coral USB accelerator achieves 60.83 FPS. The Coral USB

accelerator and the RPi4 cost US $59.99 and US $55, respectively—a very competitive

price to inference speed compared to the other options.

 Table 5.4: Hardware accelerator benchmark

Device Bits

Stage One Stage Two (7-spots) FPS*

Pre-

process

(ms)

Inference

(ms)

Post-

process

(ms)

Pre-

process

(ms)

Inference

(ms)

Post-

process

(ms)

NVIDIA

Jetson Xavier

(GPU)

INT8
2.30 1.24 2.23 2.11 1.16 2.15 173.31

NVIDIA

Jetson Xavier

(DLA)

FP16 2.30 7.94 2.23 2.11 6.16 2.15 77.10

Coral USB

Accelerator
INT8 4.35 7.64 4.45 4.88 5.91 3.89 60.83

NVIDIA

Jetson Nano

(TRT)

FP16 3.50 29.6 3.10 3.38 23.9 2.96 27.62

Intel NCS2 FP16 5.85 29.19 5.45 5.34 28.98 4.72 24.70

NVIDIA

Jetson Xavier
FP32 4.75 48.75 3.51 4.31 39.91 3.18 17.54

Intel NCS FP16 6.19 107.06 5.73 5.56 88.48 4.86 8.43

NVIDIA

Jetson Nano
FP32 6.87 105.21 6.54 6.25 84.85 5.78 8.37

Raspberry Pi 4

(TF Lite)
FP16 6.51 144.57 5.91 5.87 120.48 5.10 6.37

Raspberry Pi 4 FP32 9.07 260.26 8.45 8.34 218.70 7.19 3.60

* Because Stage Two runs only once per truck, the average speed is limited by Stage One which acts as the

pipeline’s bottleneck.

114

The Nvidia Nano has a price (US $99) lower than using the RPi4 with any USB

hardware accelerator. On this system the models achieve 27.62 FPS. Thus, it is better and

less expensive than the NCS2 on the RPi4 with a cost of US $69 and US $55, respectively.

However, the Intel NCS has a slightly higher prediction speed (8.37 FPS) than the

unoptimized Jetson Nano system. This is an example of the importance of optimizing the

platform to the available resources of the accelerator.

As presumed, the RPi4 alone has the worst prediction speed (3.60 FPS). However,

optimizing the TFLite model file with the NEON register and FP16 support increases the

inference speed by 77%—close to the same inference speed as the unoptimized Jetson

Nano.

Deep learning prediction is the most time-consuming process through the proposed

system pipeline. The second stage 7-spots method for video stream prediction enhances

the efficiency of a video-input system because only one image (the 7-spots composite

decal image) per truck is predicted. The alternative would be predicting each detected

decal image individually, which can be upwards 12 decals per truck. Thus, the 7-spots

Figure 5.8: DeepStream pipeline for the real-time CDRS on the Jetson Xavier

115

method reduces the overall time to generate results after a truck passes beneath the

camera. Because Stage Two is less computationally complex, faster, and occurs only once

per truck, it can be run entirely on the CPU, thus allowing the GPU’s compute capacity

to be focused on predicting the high FPS video input (and thus high required throughput)

of Stage One. Running each stage on separate hardware creates effective parallelism;

nevertheless, Stage One predicts every frame and becomes the system’s bottleneck,

limiting overall FPS.

The proposed CVSA decal recognition system was successfully deployed in Cordelia,

California, using a Jetson Xavier. The system was equipped with a camera with shutter

speed 1/5000s; a high shutter speed reduces the decal’s blur in the video stream, especially

important for vehicles travelling highway speeds. For the system to work in low light and

at night, an illuminator was installed; special consideration to the lighting angle was given

to avoid blinding drivers. The proposed system, deployable on a variety of edge devices,

is a lower cost solution compared to systems that require high bandwidth internet

connectivity for cloud/server processing. Additionally—free of the risks associated with

uploading sensitive information to third party cloud platforms—the solution is safer and

more privacy-protecting. Finally, the proposed system can easily be integrated to other

systems through IoT messaging protocols like MQTT or AMQP.

5.6 Summary

In this chapter, the first real-time two-stage CVSA decal recognition system using

deep convolutional neural networks was presented. The first stage—custom-tailored to

locate small objects, such as decals—localizes a vehicle’s windshield and the decal

therein, and determines the decal’s colour; this method lowers the system’s false positive

rate by removing decal candidates not within a windshield. Because a truck can be present

in multiple frames, the method is also more robust than systems that first simply detect

the truck. The next stage—customized with far fewer parameters because the task is

easier—localizes the decal’s digit and corner-cut. This, along with the colour, can

determine the decal’s date of issue, thereby recognizing the CVSA decal. The proposed

116

system can predict from still images and/or a video stream. The custom architectures

demonstrated high average precision: 98.5% mAP for Stage One and 97.5% mAP for

Stage Two single image. A second stage 7-spots model was presented to predict multiple

frames of the same CVSA decal from a video stream, using majority voting to provide a

more accurate result. This model achieved 98.1% mAP; though this is 0.6% more than

SSDLite+MobileNetV2 (the best model), the proposed model has an inference time of 5.9

ms, 0.3 ms faster than SSDLite+MobileNetV2 at that stage. The CDRS was evaluated

using hardware accelerators from different vendors like Intel, Google, and Nvidia.

Finally, it is showed that the proposed model’s stages can run in parallel and achieve an

inference speed of 173.31 FPS on the Jetson AGX Xavier and 60.83 FPS on the

inexpensive RPi4 + Google Coral system. The Jetson AGX Xavier is recommended for

ultra-high-speed time-critical applications, and the RPi4 + Google Coral system for “fast

enough” consumer-grade tasks.

117

Chapter 6

Real-Time Deep Learning-based Edge System

for HAZMAT Recognition1

Hazardous materials (HAZMATs) are commonly transported by commercial vehicles.

The nature of a HAZMAT is indicated on a vehicle by a specific placard, usually on the

vehicle’s front or sides. To the best of the author’s knowledge, the proposed system is the

first real-time deep learning-based edge HAZMAT placard recognition system for

complex outdoor environments. A three-stage cascading system using deep learning

networks was designed. The first network localizes and classifies the HAZMAT placard.

If the placard contains a United Nations (UN) / North American (NA) number, the second

network localizes that number and identifies the nature of the substance. The third

network recognizes the UN/NA number. This chapter is structured as follows: Section 6.1

contains the introduction; Section 6.2 describes the models and proposed solutions;

Section 6.3 covers the dataset and utilized training augmentations; Section 6.4 details the

methodology, including training environment, models and model selection/development,

and training parameters; Section 6.5 elaborates on the methodology for real-time

deployment on edge hardware; results are given in Section 6.6, including accuracy,

processing time, model deployment on edge systems, and performance comparisons

against other models and related work; Section 6.7 discusses the implications and

limitations of the results and possible real-world ramifications of the research; and Section

6.8 concludes this chapter.

 1The content of this chapter is originally published in Springer Machine Vision and Applications. The

manuscript has been reformatted for inclusion in this thesis.

 Juan Yépez (JY), Riel Castro-Zunti (RC), Younhee Choi (YC), and Seok-Bum Ko (SK) designed the study. JY

designed the network architectures, trained and tested the models for stage two and three, implemented the system

on the edge devices, and provided results analysis. RC designed the network architecture and trained stage one,

annotated the images from dataset, and proofreading the manuscript. JY prepared the manuscript with

contributions from YC and SK to the manuscript structure, readability and analysis and discussion of the results.

118

6.1 Introduction

Hazardous materials (HAZMATs), defined by the United States Department of

Transportation (USDOT), are “capable of posing an unreasonable risk to health, safety,

and property when transported in commerce” [119]. The U.S. Department of Labor

Occupational Safety and Health Administration (OSHA) further categorizes HAZMATs,

which includes physical hazards (e.g. explosives and flammables) and health hazards (e.g.

acute toxicity and skin corrosion) [119]. The HAZMAT standards set by the OSHA follow

the United Nations Globally Harmonized System of Classification and Labelling of

Chemicals (GHS), the universal standard describing the appearance and purpose of

HAZMAT symbols, and for what chemicals a certain symbol is valid [120].

Although regulations that govern where and how a symbol should be placed on a

vehicle differ by country (e.g. [119] for the U.S. and [121] for Canada), typical placarding

includes a vehicle’s sides and ends. This consistency allows for the automation of

HAZMAT recognition in (semi-)controlled (e.g. check stop) and on-road environments

using well-placed sensors, like cameras. Such a system in this context falls within

Intelligent Transportation Systems (ITS), services that improve the driver experience and

the safety of everyone on the road [107].

There are many applications of HAZMAT recognition: streamlining commercial

vehicle check stops; dangerous goods tracking; emergency management, e.g. when a

vehicle carrying hazardous materials crashes and the public must be notified; and, in

future end-to-end smart cities and highways, i.e. where trucks themselves are (near)

driverless. The task has also found niche development via the World RoboCup Rescue

League; robots enrolled in the competition must be able to detect hazards, including

HAZMAT placards [122].

This chapter details the research, results, discussions, and conclusions during the

development of a fast and accurate real-time end-to-end deep learning (DL) HAZMAT

recognition edge solution. It is an emerging system capable of deployment in real-world,

complex, outdoor environments. The following contributions were proposed:

119

(1) A speed-accuracy assessment of popular single-pass DL object detection

architectures over a dataset of HAZMAT placards on commercial vehicles acquired at a

check stop.

(2) A custom placard detection and classification model adapted from that which had

the best speed-accuracy trade-off (the “baseline”); the proposed model better suits the

problem and dataset by customizing the baseline’s latter layers. The models demonstrate

to be robust in a variety of circumstances.

(3) An end-to-end HAZMAT placard recognition system that uses a pipeline of three

stages: localization via the model achieved in contribution 2; localization and recognition

of the HAZMAT class digit and localization of the United Nations (UN) / North American

(NA) number via a similar custom network; and segmentation-free UN/NA number

recognition.

(4) Quantize-aware training results.

(5) Processing time results, of the proposed models deployed on varying edge

hardware, including from Nvidia, Intel, and Google. The end-to-end system’s real-time

(> 30 FPS) performance is demonstrated.

The research bridges a knowledge gap in specifically DL-based and complex-

environment HAZMAT recognition, as well as provides a reasonable and realistic

framework for fast, low-power edge DL deployment at check stops and elsewhere.

120

6.2 Proposed Solution

A three-stage HAZMAT recognition system was proposed, as shown in Figure 6.1.

The pipeline involves detecting and classifying the placards in the frame using an object

detection deep learning model; using a second deep learning object detection model to

localize and recognize the placard’s class digit, and localize the UN/NA number, if

present; finally, recognizing the UN/NA number via a lightweight sequence classification

model.

6.2.1 HAZMAT Placard Localization and Classification

An object detection architecture is used in the first stage to detect and classify

HAZMAT placards. Although there are a variety of object detection architectures that can

provide high accuracy, most require an expensive GPU or cloud services to process the

input images or video. ITS applications (such as HAZMAT recognition) tend to be

deployed on the road, and may be deployed in rural areas or where internet access is

limited; this complicates systems that may otherwise rely on local servers or cloud

services for data processing. Therefore—especially to reduce costs whilst preserving real-

time functionality—the implementation of ITS applications via edge computing is critical.

Processing image/video inputs at the edge enables the transmission of only HAZMAT

Object detection model 1:

Detection and HAZMAT

classification.

Crop

&

resize.

Object detection

model 2:

Detection and class

identification.

Sequence

classification

recognition model.

(d)

Figure 6.1: HAZMAT recognition system.

121

class/substance information, rather than a whole (expensive) video stream, to the

destination server or cloud center. For this system stage, an edge-capable custom object

detection architecture able to run in real time (> 30 FPS) on various edge hardware is

proposed.

After evaluating a variety of object detection architectures, the edge deployment-ready

SSDlite + MobileDet EdgeTPU model was chosen to have the best trade-off between

speed and full precision validation set mAP@0.5. The architecture was subsequently

adapted to produce a higher-performing model over the validation set. Moreover,

validation mAP@0.5 results for the quantization-aware-trained SSDlite + MobileDet

EdgeTPU model lacked in comparison to its full precision counterpart; because

quantization is essential for some edge hardware, developing a custom feature extractor

with better quantization performance over the dataset was paramount.

Like MobileDet [39], the design uses inverted bottleneck (IBN), fused, and tucker

blocks. Many blocks employ residual (“skip”) connections in which a block’s final output

is the sum of its input and its last layer’s output. Stride 2 convolution is used for

downsampling. Though information on network blocks can be found in [39], and the

reader is referred to [39] for visual representations, a short summary is presented below.

IBN. A pointwise and depthwise convolution, each with RELU6 activation, followed

by a “linear bottleneck” (a pointwise with identity activation) for depth changes.

Fused. A regular convolution with RELU6 activation followed by a linear bottleneck.

IBN and Fused blocks have an “expansion” coefficient (𝐸) which scales the within-block

feature map depth to be 𝐸× the input channels (i.e. the depth of the output of the previous

block). The block’s linear bottleneck tapers this expansion to the desired output depth.

Tucker. A pointwise convolution with RELU6 activation, whose depth is the number

of input channels scaled by a coefficient denoted the “input rank” (𝑆IR), followed by a

regular convolution with RELU6 activation, whose depth is the final output depth scaled

by an “output rank” coefficient (𝑆OR), followed by a linear bottleneck. 𝑆IR and 𝑆OR are

122

< 1. The resultant depths from scaling by 𝑆IR or 𝑆OR (collectively denoted 𝑆) is found in

(1), where 𝐶in and 𝐶out are the numbers of pre- and post-scaled filters, respectively.

𝐶out(𝐶in, 𝑆) = max(8 × ⌊⌊
𝐶in × 𝑆

8
⌋ + 0.5⌋ , 8) (6.1)

Using NAS [123] with the HAZMAT dataset, the final custom architecture was

achieved. It is paired with the SSDlite object detection network.

6.2.2 UN/NA Number Localization and Class Recognition

The input to the second object detection model is the HAZMAT placard(s) cropped

from the localization information generated by the first model. It detects the presence of

a UN/NA number and/or the bottom class digit. In Fig. 2, the vehicle has three HAZMAT

placards, two “Inhalation Hazard” placards and one “Corrosive” placard.

Because the Corrosive placard contains no class digit or UN/NA number, no further

processing is required. One Inhalation Hazard placard has only the bottom class digit, so

only further prediction/classification is required in the second stage. The final placard has

both the bottom class digit and a UN/NA number; these would be localized and the class

digit recognized by the second-stage model, and the UN/NA number would be recognized

by the third-stage model.

The localization and recognition task for the second-stage model is less complicated

than that for which the first-stage model is designed. This is because a placard’s bottom

digit and potential UN/NA number are large relative to the input image (the placard), and

the locations within the placard are relatively uniform. Moreover, there are less classes to

recognize (9 for the digits + 1 for the UN/NA number), meaning there is a potentially

greater distance between classes in feature-space. Thus, the feature extractor

(“backbone”) for this stage can be simpler, which decreases prediction time.

After evaluating several backbone configurations via NAS, the types and organization

of layers were selected. The first 3 layers of the customized backbone, similar to the first

123

stage, extract the most important features from the input image. Repeated layers were

removed, and no layers have a residual function. This backbone has only 8 layers,

compared to 22 in that of first stage. Table 6.1 shows the backbone architecture.

6.2.3 UN/NA Number Recognition

Recognizing a placard’s UN/NA number can be performed via several approaches,

such as the popular text-from-image technique of Optical Character Recognition (OCR)

[115]. However, because each character should be individually recognized lest false

positive detections be generated from noise between characters, OCR approaches require

high computation.

For UN/NA number recognition, a sequence classification network iwith a fine-tuned

ResNet-18 backbone is utilized. The network takes as input the UN/NA number image

cropped from the previous stage, extracts the image features using the backbone, and

produces a sequence output with the sequence classifier. The UN/NA number is then

decoded via a variable-length sequence decoder driven by connectionist temporal

classification (CTC). The proposed architecture is based on the segmentation-free license

ResNet-18

Backbone 1809 Sequence

Classifier

CTC

Decoder

Figure 6.2: UN/NA number recognition

architecture.

Table 6.1: Neural Network Architecture for UN/NA Number Detection and Class Identification Feature Extractor

Operator Scaling Factor Output Channels Kernel Stride

Conv2d+RELU6 N/A 32 3×3 2

Tucker 𝑆IR=0.25, 𝑆OR=0.75 16 3×3 1

Fused E=8 16 3×3 2

Fused E=8 40 5×5 2

IBN E=8 72 3×3 2

IBN E=8 96 5×5 1

IBN* E=8 120 5×5 1

IBN* E=8 384 5×5 1

* denotes the block’s output is an endpoint into the SSDlite architecture

124

plate recognition model LPRNet [124], which uses a SqueezeNet [77] and Inception [125]

with an input size of 96×48×3; the proposed architecture uses a different backbone and

input size. The third-stage architecture block diagram is shown in Figure 6.2.

The input of the proposed network is an RGB image of size 96×48×3 (width, height,

channel). Because the input’s spatial size is small, the ResNet-18 backbone was modified

to have only one max pooling layer instead of 5; otherwise, the features would be too

small to be extracted. The modified ResNet-18 architecture is presented in Table 6.2.

CTC is “alignment-free”; it uses probabilities so the input image and output characters

need not be perfectly aligned. The CTC decoder generates the UN/NA number sequence

based on a greedy decoding method [126], a straightforward approach where the digit

selected is that which has the highest probability.

6.3 Dataset Description

6.3.1 Dataset

The dataset consists of 2093 1440×1080 square px images captured at a commercial

vehicle check stop in the United States and represent a statistically random sample of

commercial vehicle HAZMAT placards at the check stop over the capture period. The

remaining two images were photographed elsewhere, in daytime settings with relatively

ideal conditions, to ensure each class had enough members to be distributed across train,

test, and validate sets. To the best of the author’s knowledge, the proposed HAZMAT

Table 6.2: Modified ResNet-18 Backbone for UN/NA Number Recognition

Operator Repetition Output Channels Kernel Stride

Conv2 1 64 7×7 2

Conv2 2 64 3×3 1

Conv2 2 128 3×3 1

Max pool 1 128 3×3 2

Conv2 2 256 3×3 1

Conv2 2 512 3×3 1

125

dataset is the first of its kind. It is comprised primarily of images taken at vehicle check

stops, is the first whose images are taken outside against complex backgrounds, and

contains a sufficient supply of night time and low-light images—about 19% of the dataset

was captured at night.

Thus, available and/or public datasets could not suffice to achieve the objective.

Example dataset images can be found in Figure 6.3.

Each image contains a HAZMAT placard located on a vehicle. Taken in a real-world

setting, images and thus placards are subject to varying illumination and other

environmental effects, as well as having a reasonably complex background. Using

labelImg [92], 2229 HAZMAT placards were labelled over 15 classes; a placards-per-

image histogram is found in Table 6.3. On average a placard was (169±28)×(165±27)

square px and comprised only 1.84±0.60% of the entire image.

The images were divided into a 60%-20%-20% train-validate-test subset split based

on the HAZMAT class; where the number of class samples was <5 (rendering a 60%-

20%-20% split ineffectual), an equal split was used. To ensure members of each class

were sufficiently represented within each subset, images containing HAZMAT classes

with the lowest numbers of samples were sorted first; images were then removed from

those awaiting subset demarcation, to prevent duplicating the same image across multiple

sets where >1 HAZMAT classes were present. Subset demarcation was otherwise

random. Nevertheless, for these reasons, classes may not conform exactly to the 60%-

20%-20% ratio ideal. The final training, validate, and test sets contained 1117, 373, and

374 images, respectively. Table 6.4 contains final subset counts per class. Images were

resized to 500×500 square px for training.

Table 6.3: Histogram of Number of Placards Per Image

1 2 3 4 5+ Total

1611 177 49 19 8 1864

126

Figure 6.3: Example images from the dataset. (a) A prime specimen. (b) A specimen captured at night;

note the absence of red color in the placard. (c) A specimen with the potential for many false positive

detections. (d) A specimen with unideal lighting, and some placard rotations, skews, and occlusion. (e) A

specimen whose bounding box annotations would overlap; note the identical bottom number (“2”) in each

placard despite different hazard class natures. (f) A prime specimen located on the front (rather than side) of

a commercial vehicle; the license plate has been obfuscated in this figure for privacy concerns.

(a) (b)

(c) (d)

(e) (f)

127

6.3.2 Dataset Augmentations

The models were trained with the following per-epoch dataset augmentations:

1) Horizontal flips (with 0.5 probability).

2) Scaling (between 0.8 and 1.25×).

3) Conversion to greyscale (with 0.5 probability), due to the presence of greyscale (night-

time) images in the dataset.

4) Contrast adjustment (gain between 0.8 and 1.25×).

5) Brightness adjustment (bias up to ±20% of bit representation maximum).

6) Bounding box jitter (up to ±5% of box area).

Table 6.4: Dataset Class-Subset Breakdown

Hazard Class

Number of Samples in Subset

Train Validate Test

Corrosive 375 127 129

Dangerous 26 9 8

Environmental 11 4 4

Explosives 7 2 2

Flammable 411 142 141

Flammable Solid 1 1 1

Hot 127 37 47

Inhalation 40 14 15

Miscellaneous 23 8 10

Non-Flammable 199 68 69

Organic 1 1 1

Oxidizer 51 14 18

Poison 7 2 3

Radioactive 4 1 2

Toxic 40 12 14

Total 1323 442 464

128

This was found to contribute to better results than not using augmentations, likely

because this expanded the diversity of images seen by the proposed model and thus the

model’s representational power. Once the mAP@0.5 over the validation set saturated,

training continued without per-epoch augmentations 1, 4, and 5; this method can be seen

as a narrowing (“fine-tuning”) of the learned features to actual instances, and contributed

to a higher final validation mAP@0.5 for some models [95].

Preliminary tests misclassified or failed to localize relatively small and large placards.

To mitigate this, the training set was explicitly inflated by scaling down each image (0.5×

and 0.75×), and scaling up (1.5×, 2×, 2.5× and 3×) on each placard from the placard’s

geometric center. The number of additional training images generated via this method for

each image is 4𝑛 + 2, n being the number of placards in the image. Though each placard

was focused on when performing >1× zooming, bounding boxes of other placards if

present were included in the annotation of the final scaled image if the box overlapped

the resultant image by ≥45%. A downscaled image kept the original size by replicating

the right and bottom border pixels.

6.4 Training Methodology

6.4.1 Model and Training Environment.

To train the proposed Stage 1 models, Tensorflow (TF) 1.15.0 with GPU support in

Python 3.7.7 was used within Anaconda 4.8.4. The host computer, running Windows 10,

had an AMD Ryzen Threadripper 3.8 GHz 8-core processor with 32 GB of DDR4 RAM,

and an Nvidia GTX 1080 ti GPU with 11 GB of DDR5 memory. A model’s batch size

was the largest multiple of 8 that could be achieved using the GPU. SSD- (including

SSDlite-) based models were trained using TF’s Object Detection API (ODAPI) [127].

YOLOv3 and its Tiny variant were trained using Keras [128] 2.3.0 running over the TF

GPU environment.

129

With this configuration, each training epoch took approximately 30 seconds (though

this was ultimately subject to the nature and size of the model being trained).

6.4.2 Models Training

First, current “off-the-shelf” models were assessed in terms of their accuracy and

processing times. Because a fast and accurate model for Coral edge prediction was

desired, the selected architecture had to have quantize-capable, and could not contain

Coral-incompatible, layers. Though this excludes FPNs and YOLOv3, they were trained

as a benchmark.

SSD models were trained with in-place batch normalization, 0.9 momentum, and a

momentum optimizer that included cosine decay LR scheduling [129], as seen in (2):

𝐿𝑅init is the initial LR; 𝑥 is the (integer) current step; and 𝑥max is the number of steps

until the LR is 0. Each optimizer had a warmup period [130], described in (3), in which

the LR increased linearly from a lower LR (𝐿𝑅warm) to the 𝐿𝑅init specified in the cosine

decay scheduler; in (3), 𝑥max is the number of steps until the LR is the 𝐿𝑅init of the cosine

decay scheduler. For brevity later in this chapter, (2) and (3) are shown with 𝑥 omitted,

and 𝐿𝑅𝑖𝑛𝑖𝑡 is not shown in (3) because it is the same as that in (2).

A cosine decay [129] for SSD was used because it was found to outperform other LR

schedulers, especially exponential decay.

When training SSDlite + MobileDet EdgeTPU from scratch, 𝑥max was chosen to be

between 2-2.5E5 as a rough middle between the respective short- and long-schedule of

5E4 and 4E5 steps described in [39]; other models trained from scratch followed this

approach. The SSD-based models transfer learned using preinitialized weights were

𝐶𝑜𝑠𝐷𝑒𝑐𝑎𝑦(𝐿𝑅init, 𝑥, 𝑥max) = 𝐿𝑅init ×
1+cos(

𝑥𝜋

𝑥max
)

2
 (6.2)

𝑊𝑎𝑟𝑚𝑈𝑝(𝐿𝑅warm, 𝑥, 𝑥max, 𝐿𝑅init) = 𝐿𝑅warm + 𝑥
𝐿𝑅init−𝐿𝑅warm

𝑥max
 (6.3)

130

empirically determined to converge around 4E4 steps, and hence the decision to train to

a maximum of 5E4 steps. Despite differing hyperparameters, model training was fair

because, generally, a model’s default 𝐿𝑅init was used 𝐿𝑅init 𝑥𝑚𝑎𝑥; the only exception was

SSDlite + MobileNet EdgeTPU 𝐿𝑅init led to unstable training, so it was reduced to 0.5.

YOLOv3 and its tiny variant were trained for a maximum of 100 epochs with 3

warmup epochs (with an 𝐿𝑅warm of 0 and 𝐿𝑅init of 1E-4). A Keras ReduceLROnPlateau

callback was used, monitoring training loss, with a reduction factor of 0.1, patience of 2

epochs, and no minimum LR. Additionally, a Keras EarlyStopping callback was used,

monitoring training loss, with a patience of 5 epochs and minimum improvement of 0.01.

YOLO anchors were generated specifically for the training set (9 for full and 6 for tiny).

This configuration was the default for the model. Moreover, it is noteworthy that better

results were obtained monitoring training than validation loss.

A homogenous 8-bit quantization-aware training for quantization-capable models was

employed. Models were trained with full precision for 10,000 steps, and quantized

training thereafter.

6.5 Real-time Prediction Methodology

As detailed in Section 6.2, each stage’s architectural backbone was customized

according to the task complexity and the number of classes; for example, it is much easier

to detect one of 15 classes than one of 80, as are present in the COCO dataset [131]. The

proposed streamlined backbones reduce unnecessary complexity in the internal and output

layers. For greater efficiency gains, and to achieve real-time (> 30 FPS) prediction on

(typically) computationally-constrained edge hardware, the models were implemented

using the GStreamer framework [132].

GStreamer uses plugins, data flow, and media type handling/negotiation. Plugins are

shared libraries that are dynamically loaded at runtime and can be independently extended

and upgraded. When arranged and linked together, plugins form the processing pipeline

that defines the data flow for a streaming media application. GStreamer eliminates

131

performance bottlenecks by more efficiently utilizing the limited hardware resources of

an edge system. For example, GStreamer can encode/decode streaming input video in

hardware, which is considerably faster than using software.

GStreamer can be used on the Raspberry Pi or on the Jetsons. In the latter case,

GStreamer has plugins that leverage Nvidia GPU capabilities allowing the entire pipeline

(including DL prediction) to be processed on the GPU, with zero memory copy between

the CPU and GPU; this makes the entire pipeline faster and more efficient. Nvidia refers

to this GStreamer integration plugin as “DeepStream”.

Figure 6.4 shows how modular plugins were connected to form the processing pipeline

of the proposed HAZMAT recognition system when deployed on the Jetsons. Each plugin

represents a functional block. Hardware-accelerated plugins interact with underlying

hardware (where applicable) to deliver maximum performance.

The Nvidia Jetsons utilize accelerators designed to augment the functionality of the

GPU and CPU, thereby providing greater flexibility and a more efficient implementation

of common algorithms according to the hardware characteristics.

NVDEC is graphics card feature that performs video decoding, a compute-intensive

task traditionally done by the CPU. It is part of Nvidia’s Video Codec SDK [133].

The Programmable Vision Accelerator (PVA) [134] is capable of real-time

decoding/encoding streams from multiple cameras (side, front, inside) in a high dynamic

range (up to 1.8 GPIX/s).

Figure 6.4: Processing pipeline as deployed on the Jetsons, possible using Nvidia libraries.

132

The Nvidia Video Image Compositor (VIC) [135] implements 2D image and video

operations, e.g. scaling, blending, rotation, video post-processing, and advanced capture-

time denoising.

The Nvidia Image Signal Processor (ISP) [136] processes data from the Video Input

Subsystem, or raw data directly, to remove artifacts from sensors, the camera lens, and

color-space conversion.

The open source Nvidia Deep Learning Accelerator (NVDLA) [137] allows for the

design of deep learning inference accelerators. It has a modular, scalable, and

configurable architecture for better integration and portability, with many low-power and

IoT devices supported.

For Jetson deployment, neural network models are converted to UFF (Universal

Framework Format) and used to generate a TensorRT execution engine according to the

system’s available resources.

Also, the system on an NCS2 and a Google Coral accelerator was deployed. For the

NCS2 and the Google Coral accelerators, the USB-interface dongles were used; because

a host computer is required in these cases, a low-cost Raspberry Pi 4 (RPi4) was used.

The RPi4 is single-board edge computer with a Broadcom quad-core 1.5 GHz

processor and 4 GB of LPDDR4 RAM. The (open source) 64-bit Raspberry Pi operating

system based on Debian was used. OpenCV 4.4 was built from source with GStreamer

compatibility. Also, the TFLite’s C++ API libraries were built. For testing the

performance, the frozen models (.pb) with FP32 were run, and the converted TFLite

models (.tflite) with INT8.

To run the model on the NCS2, the model optimizer migrates the neural network

model into a half-precision (16-bit floating point, FP16) intermediate representation (IR)

(BIN/XML files). This IR is an abstraction of the model that can subsequently be

deployed on OpenVINO-capable CPUs, GPUs, FPGAs, or (as in the proposed case) NCSs

using the library’s Inference Engine.

133

To run a quantized model on the Google Coral, it must be converted from TF frozen

format to TFLite. Next, Coral’s Edge TPU compiler rearranges layer weights from the

TFLite file into a new Coral-compatible format. The compiler shows which layers can be

ran on the Coral, and which default to the CPU.

6.6 Results

6.6.1 Testing Environments

In Table 6.5, processing times for non-quantized models were measured on the

training setup using Python’s time.clock(). They are shown as GPU / CPU pairs. “Gross”

refers to the network’s prediction time; net refers to the time with expenses, i.e. import,

resizing, and marking.

In Table 6.5, processing times for quantized models are the theoretical Coral

prediction time and measured using OpenCV-Python’s [138] getTickCount().

Processing times for specific edge hardware deployments can be found in Section

6.6.8. On each platform, the time was measured using Python’s time library and the

highest resolution clock available. Further information can be found in that section.

Models were tested using no dataset augmentations and with a batch size of 1.

134

6.6.2 Performance Metric

To assess the trained models, the mAP@0.5—popular for object detection and

classification was used. It can be defined as the class-wise mean of the average precision,

which itself is the area under an interpolated precision-recall curve, at an intersection over

union of 50%. mAP@0.5 was calculated using the TF ODAPI [127]. Although COCO

mAP was used, the mAP@0.5 challenge metric for COCO is the same as for

PASCALVOC [131]; thus, for more information, the reader was referred to the

PASCALVOC challenge paper [118].

Table 6.5: Summary of Model Training and Results for Stage 1

Model

Input

Image

(W×H×3)

Params

× 106

Batch

Size

Train

Steps

× 103

mAP@

0.5

(Test)

Per-Image Proc. Time

(ms)

Gross Net

SSD + MobileNetV1

FPN
640×640 11.0 8 38.1 0.9964 49 / 479 70 / 500

SSD + MobileNetV2

MNAS FPN
320×320 2.36 24 34.6† 0.8140 30 / 66 51 / 87

YOLOv3 416×416 61.7 8 173 0.7980 87 / 1175 119 / 1242

SSDlite + Custom 320×320 3.48 24 231† 0.8930 17 / 57 36 / 76

SSDlite + MobileDet

EdgeTPU
320×320 3.38 24 210† 0.8861 19 / 58 39 / 79

SSDlite + MobileDet

EdgeTPU
320×320 3.38 24 170 0.8704 19 / 58 39 / 79

SSD + MobileNetV1 300×300 5.70 24 34.8 0.8184 18 / 46 39 / 67

SSDlite + MobileNet

V2
300×300 3.22 24 38.1 0.8375 19 / 48 40 / 69

SSDlite + MobileNet

V3 Small
320×320 1.05 24 196 0.8513 20 / 26 41 / 47

YOLOv3 Tiny 416×416 8.71 24 180 0.5658 44 / 202 73 / 244

SSDlite + Custom* 320×320 3.48 16 231† 0.8404 6.6 —

SSDlite + MobileDet

EdgeTPU*
320×320 3.38 16 214† 0.8285 7.1 —

SSDlite + MobileDet

EdgeTPU*
320×320 3.38 16 160 0.7728 7.1 —

SSD + MobileNetV1* 300×300 5.70 16 31.7† 0.7801 6.2 —

SSDlite+MobileNetV2* 300×300 4.80 16 39.1† 0.8357 6.2 —

SSDlite + MobileNet

EdgeTPU*
320×320 3.12 16 196 0.7814 7.3 —

* denotes the model is quantized, and its Proc. Time refers to processing time on the Coral rather than a GPU / CPU

† denotes the weight model at that step was achieved by discontinuing dataset augmentations as described in Section

6.3.2.

135

The F1-scores for some classes are listed, e.g. in a comparison in Table 6.9. F1-score

can be defined in terms of precision and recall, which themselves can be defined in terms

of true positive (TP), false positive (FP), and false negative (FN).

6.6.3 Stage 1 Training Results Summary

Stage 1 training results are found in Table 6.5, divided into 3 categories by dashed

lines. The first category (from the top of Table 6.5) contains “benchmark” models trained

for results purposes but impractical for edge usage due to large processing times or INT8-

quantize-incapable layers. The second category has models whose quantized versions

could theoretically be run on edge hardware, trained to gauge speed-accuracy trade-offs.

The third category contains INT8-quantized models. The final selected weights for SSD-

based models were those that had the highest COCO mAP@0.5 over the validation set,

which often occurred just before or slightly after the mAP generally plateaued. The

selected weights for the YOLO models were those achieved after the EarlyStopping

callback was triggered.

6.6.4 Stage 1 General Model Comparison

Categories are described in the previous subsection and are in reference to Table 6.5.

From Category 1—and overall—SSD + MobileNetV1 FPN attained the highest test

set mAP@0.5 of 0.9964. However, the (net) processing time is comparatively slow at 68

ms on a GPU or an unusably slow 505 ms on a CPU. The model illustrates a speed-

accuracy trade-off where the processing time required is inhibitive to any real-time

system. Although prediction at different scales is advantageous, the comparatively more

modest test set mAP@0.5 of 0.8140 for SSD + MobileNetV2 MNAS FPN hints that its

accuracy may be from having many more weights and a larger image input size (640 vs.

320 px)—specifically, higher resolution images on which the initial weight model was

trained. Nevertheless, because FPNs contain INT8-quantize-incapable layers, further

discussion for the purposes is moot. YOLOv3, with almost 62M parameters and high GPU

136

and CPU processing times—coupled with its test set mAP@0.5 of 0.7980—make it ill-

suited to the objective.

From Category 2, the proposed model beat SSD-based MobileNet implementations

by between 0.042 and 0.075. The model had the best GPU speed, surpassing other SSD-

based object detectors by 1-3 ms and YOLOv3 Tiny by 27 ms. Though MobileNet-based

models had lower CPU processing time, the proposed model has the best speed-accuracy

trade-off for high-compute hardware (e.g. GPUs and presumably TPUs). Given YOLOv3

Tiny was slower than the SSD-based models and had relatively poor mAP@0.5, it was

deemed unsuitable for the task and was not tested further.

Category 3 contains information on edge models and is thus most pertinent to the

objective. Validation set performance for quantized SSDlite + MobileDet EdgeTPU

lacked compared to its non-quantized version. The validation mAP@0.5 was less than

that of some other models; this motivated to adapt the architecture to find a higher-

performing model with a similar processing time. The custom quantized network achieved

a test set mAP@0.5 of 0.8404. The model beat the test set mAP@0.5 for quantized SSD-

based MobileNet models by between 0.005 and 0.060. Models in Category 3 had near

equivalent Coral gross processing times— an impressive 6-7 ms. Though the custom

model could achieve a theoretical 151 FPS on the Coral with a powerful computer, there

are hardware limitations using the RPi4 and an IP camera; see Section 6.6.7 for a

discussion in a real-time context.

YOLOv3, and especially its tiny variant, were marred by false positives, and hence

their comparatively lower mAP@0.5. Examples of potential false positives can be found

in Figure 6.5 (c).

137

Figure 6.5: Example test set inferences of the quantized SSDlite + Custom model with detection boxes in

green, ground truth boxes in mauve, predicted classes in red, and ground truth classes in blue. (a) Correctly

identified prime specimens. (b) Correctly identified specimens whose bounding boxes would overlap, beside

correctly unidentified potential false positives. (c) A correctly identified specimen within a highly irregular

background. (d) A correctly identified overexposed night capture specimen. (e) An underexposed late day

captured specimen; though correctly identified as Corrosive, there is a duplicate detection mistaking it for

Flammable. (f) Specimens that are correctly recognized, but there is a duplicate detection on the Toxic

placard mistaking it for Inhalation.

(d)

(e) (f)

(a) (b)

(c)

138

Output test set results images from the quantized SSDlite + Custom model can be

found in Figure 6.5.

6.6.5 Stage 2 and 3 Model Results

Table 6.6 shows a summary of the model results for Stage 2, wherein the UN/NA

number and/or the bottom class digit are localized. The proposed Stage 2 model achieved

0.982 mAP@0.5 prediction accuracy—the same as SSDlite+ MobileDet Edge TPU, but

the proposed model uses 36.7% less parameters. Moreover, the proposed model has 0.007

greater mAP@0.5 than SSDlite+ MobileNetV2. The Stage 2 model file size is 3.5×

smaller than that of SSDlite+MobileDet EdgeTPU. The results show that customizing

backbones for a specific task creates accurate models with smaller sizes, meaning faster

loading and processing times; this makes such models better suited to edge devices with

small memory capacities.

Table 6.7 shows a summary of the model results for Stage 3, where the UN/NA

number is extracted as a character string. The proposed model is compared with LPRNet

[124], originally designed to recognize license plate numbers. Because license plates and

cropped UN/NA numbers are visually similar, LPRNet achieved a high mAP@0.5 of

0.950. However, the proposed changes to the model’s backbone and input size improve

Table 6.6: Summary of Model Results for Stage 2

Model
Input Image

(W×H×3)
Params × 106 File Size (MB) mAP@0.5

SSDlite+MobileDet EdgeTPU 320×320 3.38 5.04 0.982

SSD+MobileNetV1 300×300 5.70 5.52 0.971

SSDlite+MobileNetV2 300×300 3.22 4.71 0.975

Proposed Model 320×320 2.14 1.44 0.982

Table 6.7: Summary of Model Results for Stage 3

Model Input Image (W×H×3) Backbone mAP@0.5

LPRNet 94×24 SqueezeNet 0.950

Proposed Model 96×48 Customized ResNet-18 0.991

139

the mAP@0.5 to 0.991. This highlights the versatility of segmentation-free models with

CTC decoding algorithms for different applications.

6.6.6 Edge Hardware Deployment and Real-Time

Results

To assess the real-time suitability of the proposed system, the following

implementations were tested of each custom model:

 On the RPi4 alone, using TFLite.

 On the RPi4 + NCS2 using OpenVINO’s IR files.

 On the RPi4 + Coral USB Accelerator using TFLite.

 On the Jetsons (Nano and Xavier) using the converted TensorRT files.

As explained in Section 6.5, all implementations used GStreamer where appropriate.

On the RPi4, the TFLite runtime library was installed which provides the minimum code

required for prediction with Python; this saves disk space, important for an edge device.

Additionally, the USB accelerators were connected to the RPi4’s USB 3.0 ports for

maximum data transfer speed.

Deployment processing time results for all stages are shown in Table 6.8. However,

Stage 1 (initial placard localization) is focused upon because it is the most compute-

intensive task for a video stream, requiring continuous processing of each frame;

conversely, Stage 2 need only run if a placard is identified in Stage 1, and Stage 3 would

only run if a UN/NA number is identified in Stage 2. Moreover, for cases where the

pipeline can be deployed on different hardware components—for example, deploying the

Stage 1 model on the Xavier’s GPU and stages 2 and 3 on its DLA—Stage 1, being the

largest and thus slowest model, will be the system’s bottleneck.

For testing, an IP camera was connected to the edge device via the local network. The

test camera offered a stream video with resolution 640 × 360 px at 60 FPS with a bitrate

140

of 385 kbps using h.265 compression. However, for the FP16 and INT8 models, the high-

performance Xavier could process the video so fast that the camera FPS was the

bottleneck; thus, to test these models on the Xavier, a video was streamed with resolution

1920 × 1080 px at 120 FPS with a bit rate of 9845 kbps using h.264 compression. The

model’s prediction execution time was measured from input to output. Processes that

could be easily parallelized, e.g. image capturing and scaling, were not taken into account.

Overclocking was not used.

When running on the RPi4 alone, The quantize-aware-trained INT8 custom model

achieved an average of 17.20 FPS—a substantial increase compared to the conventional

full precision model with an average of just 2.07 FPS.

As expected, using the RPi4 + the USB accelerators further increase the achievable

FPS of the custom model. The NCS2 (using FP16) and the Coral USB accelerator (using

INT8) achieved, respectively, 2.2× and 2.7× faster prediction than the INT8-quantized

model running on the RPi4 alone. For the NCS2, a FP16 model was generated from the

full precision model using OpenVINO’s post-training FP16 quantization/optimization.

Via TensorRT, three models were deployed on the Jetsons: the trained FP32 custom

model; a post-training FP16 quantization of the FP32 custom model, generated using

TensorRT; and the quantize-aware-trained INT8 model.

 Table 6.8: Results: Real-time Prediction Speed (FPS)

Platform
Platform

Cost (USD)

Stage 1 Stage 2 Stage 3
FP32 FP16 INT8 FP32 FP16 INT8 FP32 FP16 INT8

Raspberry Pi 4 (RPi4) $55 2.07 N/A 17.20 2.53 N/A 21.02 3.26 N/A 27.10

RPi 4 + NCS2 $124 N/A 37.12 N/A N/A 39.85 N/A N/A 43.13 N/A

RPi 4 + Coral USB $115 N/A N/A 46.42 N/A N/A 59.28 N/A N/A 76.42

Jetson Nano $99 25.12 28.89 N/A 29.12 33.49 N/A 32.12 37.04 N/A

Jetson Xavier (DLA) ~$700 N/A 46.74 N/A N/A 77.74 N/A N/A 94.14 N/A

Jetson Xavier (GPU) ~$700 58.13 89.75 104.49 71.14 121.20 172.51 95.80 152.11 250.49

141

On the Jetson Xavier, the FP32 model achieves a prediction speed of 58.13 FPS—

2.3× faster than the model running on the Nano, and an impressive 28.1× faster than the

full precision model running on the RPi4 alone. When reduced to FP16 or INT8, the

system’s bottleneck becomes the input stream (60 FPS). The theoretical processing speed

(from processing a video, as aforementioned) of the FP16 model is 89.75 FPS, 2.4× faster

than the RPi4 + NCS2 and 3.1× faster than the Jetson Nano. The Xavier supports INT8

prediction using a Volta GPU; the INT8 model achieves a superior 104.49 FPS, 2.3×

faster than the RPi4 + Coral USB accelerator and 6.1× faster than RPi4 alone.

A further deployment discussion, especially in terms of unit cost, can be found in

Section 6.7.3.

6.6.7 Comparison to Others’ Works

Reference [139] uses a system and dataset designed to integrate depth information into

the final placard detection and recognition. Thus, the intricacies of their system are out of

scope of this work. However, they used a YOLOv3 Tiny object detector as their object

detection model. As seen in Table 6.5, the mAP@0.5 of the YOLOv3 Tiny model trained

on the HAZMAT dataset proposed in this thesis is 0.5658, 0.2746 less than the quantized

SSDlite + Custom model. The proposed model also has 60% less parameters.

In [140] an attention + SIFT method was proposed with a dataset of 600 images: 1

placard per image × 25 images per class and background type × 8 classes × 3 types of

backgrounds—OSB, woodchip, and brick, with brick the most difficult for [140] due to

shadows and illumination effects. Each set of 25 images per-class per-background

contains 5 images captured at each of the azimuths -45°, -30°, 0°, 30°, and 45°. The

training set consisted of the 400 images in their dataset with OSB and woodchip

backgrounds; the 80 negative azimuth brick images were used as the validation set; and

the remaining 120 brick images comprised the test set. Training weights were initialized

with the weight model that achieved the highest test set mAP@0.5 over the dataset.

Though every test set placard was recognized (i.e. no FNs), there were 1 misclassified

mailto:mAP@0.5

142

duplicate and 1 FP (class Explosive). In Table 6.9 shows per-class F1-scores vs. the

accuracies of [140]. Like [140], CPU processing time is listed. The proposed model is 21-

91% faster and generally more accurate than [140]. The proposed model has also been

shown to handle more complex backgrounds and can detect ≥1 placards in an image.

Overall, it shows the model’s superiority to keypoint detection.

The performance of the model transfer learned using the dataset in [140] indicates potential

improvements with more per-class data, e.g. Organic, and an overall better balanced dataset.

This would seem to be a better avenue to higher accuracy than, for example, resampling the

dataset. The results on [140] also show the proposed model’s capabilities to correctly predict

non-0° signs.

The system cannot be compared against other related works because, at this time, they

neither supply public dataset results nor do they make the intricacies of their algorithms

known.

 Table 6.9: Per-Class comparisons against [140] over dataset in [140].

Class
Proposed system [140]

F1-Score (%) Proc. Time (ms) Accuracy (%) Proc. Time (ms)

Combustible 100 79 ~85 ~650

Dangerous When Wet 96.7 79 ~90 ~250

Explosive 96.7 79 100 ~100

Flammable 100 79 ~75 ~450

Non-Flammable 96.7 79 ~65 ~900

Organic 100 79 ~90 ~550

Oxidizer 100 79 ~75 ~700

Radioactive 100 79 ~80 ~600

143

6.7 Discussion

6.7.1 General

In this chapter the first automatic HAZMAT detection system for commercial vehicles

at check stops was designed, with a modest per-unit cost. The research may streamline

and revolutionize the ground shipping of hazardous materials, which has implications for

governments, institutions, and corporations across the fields of supply chain management,

emergency management, intelligent transportation systems, shipping, smart cities, and

Industry 4.0.

6.7.2 Placard Localization (Stage 1) Deployment

Results

Deployment on the Jetson Xavier had the fastest Stage 1 processing speed of 58.13

FPS for the full precision model, and 104.49 FPS for the INT8 quantize-aware-trained

model. However, this performance comes at a steep cost, with approximately only 0.08

FPS per $ (USD) for FP32 and 0.149 FPS per $ (USD) for INT8. Nevertheless, the Jetson

Xavier is the platform of choice for extremely critical high-accuracy and time-sensitive

applications.

The Jetson Nano achieves a relatively good Stage 1 full precision performance at

25.12 FPS, or 0.25 FPS per $ (USD). This would be the platform of choice for low-cost

consumer-grade applications that require higher accuracy than that afforded by

quantization, but are not highly time-sensitive and not necessarily real-time.

The RPi4 + Google Coral system achieves good INT8-quantized performance at 46.42

FPS, or 0.40 FPS per $ (USD). However, the INT8 model achieved 0.0526 less

mAP@0.5, making this system the platform of choice for low-cost consumer-grade

applications that require higher time-sensitivity but can tolerate a slight drop in accuracy.

144

Even the INT8-quantized performance of the RPi4 alone at 17.20 FPS, or 0.31 FPS

per $ (USD), is reasonable. It could still be competitive in ultra-low-cost consumer-grade

applications that require neither high time sensitivity nor the highest achievable accuracy.

6.8 Summary

A fast and accurate 3-stage HAZMAT recognition edge system was developed by

creating a DL-based solution and demonstrating its real-time implementations on edge

inference accelerator hardware. The proposed emerging intelligent system is envisaged to

be deployed at vehicle check stops or integrated into a larger edge system capable of

recognizing many commercial vehicle features.

In Stage 1, a placard is localized from an input image or video stream. SSDlite +

MobileDet EdgeTPU presents the best speed-accuracy trade-off. The model's test was set

mAP@0.5 to 0.8861 using custom parameters. From SSDlite + MobileDet EdgeTPU, a

custom model was developed. The custom model achieved a test set mAP@0.5 of 0.8930.

The custom model was retrained in an 8-bit integer quantize-aware fashion. This model

achieved a test set mAP@0.5 of 0.8404, 0.0676 higher than vanilla quantized SSDlite +

MobileDet EdgeTPU. The proposed model can detect ≥1 placards per image with the

same processing time, and is robust to placard irregularities, illumination, and complex

backgrounds.

From detected HAZMAT placards in Stage 1, Stage 2 recognizes the bottom

HAZMAT class digit and determines the presence of a UN/NA number for more specific

substance information. The model—comprised of a highly simplified custom SSDlite +

MobileDet EdgeTPU architecture trained achieved a mAP@0.5 of 0.982. Although the

custom model achieved the same accuracy as the architecture from which it was derived,

it does so with 36.7% less parameters and a 3.5× smaller file size.

If a UN/NA number is found in Stage 2, it is inputted into the Stage 3 model. Stage 3

uses a ResNet-18 backbone, Sequence Classifier, and CTC decoder to recognize text

145

strings in a way that does not need aligned inputs and outputs during training. It achieves

a digit recognition mAP@0.5 of 0.991, 0.041 more than LPRNet.

The Stage 1 FP32/INT8 models can achieve 58.13/104.49 FPS on a Jetson Xavier.

The proposed INT8-quantized model achieves 46.42 FPS on the Coral USB accelerator

paired with a RPi4 and a 60 FPS IP camera. Meanwhile, the FP32/INT8 Stage 2 model

can achieve 71.14/172.51 FPS on the Xavier, and the INT8 model achieves 59.28 FPS on

the Coral setup. Finally, the proposed Stage 3 model can achieve 95.80/250.49 FPS on

the Xavier, and the INT8 model achieves 76.42 FPS on the Coral setup. Though

performance is ultimately limited by Stage 1, the results nonetheless demonstrate the

power of developing and pairing custom and/or quantized networks with edge

accelerators for accurate and real-time deep learning inference.

146

Part IV

Conclusion

147

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In recent years, Intelligent Transportation Systems (ITS) have led to substantial

advancements in road safety and traffic efficiency. Paired with Artificial Intelligence

(AI)—and specifically its state-of-the-art subfield Deep Learning (DL)—ITS applications

can model complex systems with high accuracy; however, such applications still require

significant computational power. Therefore, much processing of data takes place in on-

premises data centers or cloud-based infrastructure. However, with the arrival of

powerful, low-energy consumption DL accelerators, computations can now be executed

on devices at the edge. These devices can facilitate the implementation of ITS applications

on highways or remote areas.

The main challenge associated with implementing and running deep learning

algorithms on edge devices is its limited memory and computational resources. This

forces the systems designer to consider trade-offs between speed and accuracy; it is

difficult to achieve both simultaneously using a low-complexity device, such as most

inexpensive and commercially available edge devices. This thesis addresses the challenge

by providing new algorithms to accelerate convolution stride two, especially important

for object detection applications. Additionally, three accurate ITS applications are

designed and deployed on edge devices and are shown to achieve real-time prediction.

Chapter I introduces ITS in greater depth, and provides the objectives and motivations

behind the proposed thesis and a summary of contributions. Chapter II describes machine

learning (ML) and DL, Convolutional Neural Networks (CNNs), optimization techniques

for CNNs, and object detection fundamentals. Each proposed work has been divided into

one of two categories: (1) hardware optimization for convolutional neural networks; and

(2) ITS applications.

148

Most modern DL-based object detection networks utilize CNN architectures.

Hardware optimization of DL architectures—detailed in Part II Chapter III—begins with

the formulation of new Winograd minimal filtering algorithms for accelerating CNN

architectures containing layers with stride 2. The algorithms—able to decrease

computational complexity and increase efficiency by trading expensive multiplications

for cheap additions—optimize 1D, 2D, and 3D convolutions. All proposed Winograd

stride 2 algorithms were implemented on an NVIDIA K20c GPU. Results show that the

algorithms contribute to a speedup of 1.44x, 2.04x, 2.42x, and 1.73x for respective 3×3,

5×5, 7×7, and 3×3×3 kernels. Additionally, a novel Processing Element (PE) for FPGAs

is designed that can process stride one and stride one convolutions. The novel PE uses the

same number of DSPs (32) as a PE able to perform two Winograd stride one calculations,

and 25 less DSPs than what would be required by having independent PEs that perform

two Winograd stride one and one Winograd stride two operations. Using a systolic array,

a larger number of PEs can be used, improving the system’s efficiency via greater

parallelism. Finally, an implementation of the proposed PE was tested via integration into

a modified VGG-16 architecture where one stride two convolutional layer was used

instead of one stride one convolutional layers followed by one max-pooling layer, as in

the original model architecture. The novel implementation achieves DSP efficiencies of

1.22 GOPS/DSPs and 1.33 GOPS/DSPs for the original and modified VGG-16

architectures, respectively.

Three ITS applications are proposed in Part III of this thesis. Chapter IV presents a

license plate localization (LPL) system, Chapter V a real-time Commercial Vehicle Safety

Alliance (CVSA) decal recognition edge computing system, and Chapter VI a real-time

edge system for recognizing cropped hazardous material (HAZMAT) placards.

The LPL system was designed using inverted residual blocks, linear bottlenecks, and

depthwise separable convolutions. The system was trained using three popular publicly

available datasets: Caltech Cars 1999 (Rear) 2; the University of Zagreb License Plate

Detection, Recognition, and Automated Storage library; and the NTUA Medialab LPR

Database. Tested on those datasets, the proposed system achieved 98.4%, 97.83%, and

149

99.8% accuracy, respectively. Using an NVIDIA K20c GPU, the processing time was

only 20 ms per image, regardless of the number of license plates in the image.

Additionally, an algorithm for multi-threaded video capture with motion detection was

proposed; this allowed the DL prediction stage—the most computationally-complex part

of the system—to only be running when a vehicle is detected, thus contributing to greater

efficiency and real-time suitability for computationally non-complex devices such as

smartphones. This has the potential to make ALPR less expensive from a hardware and

thus consumer standpoint, facilitating and expediting the advancement and creation of

ITS technology, thereby making LPL more accessible for a greater percentage of society.

The second application presented in this thesis is the first two-stage real-time edge-

based DL system for the detection and recognition of decals issued by the Commercial

Vehicle Safety Alliance (CVSA). The first stage was designed to locate small objects; it

localizes a vehicle’s windshield and the decal therein, and determines the decal’s color.

The second stage localizes and recognizes the decal’s digit and determines its corner cut.

The decal’s date of issue can be determined using its digit, corner cut, and color. The

proposed architectures demonstrated high average precision: 98.5% mean average

precision (mAP)@0.5(IoU) for Stage One and 97.5% mAP@0.5 for Stage Two when the

input is a single frame. A Stage Two model was proposed for enhancing accuracy via

redundancy when using a video stream input; in this model, up to 7 images of the same

decal over multiple frames are collated and simultaneously predicted, and majority voting

is used to determine the final decal characteristics. This “7-spots” model achieved 98.1%

mAP@0.5; the model’s mAP@0.5 is 0.6% better than SSDLite+MobileNetV2 (the best

off-the-shelf model), and the proposed model has an inference time of 5.9 ms, 0.3 ms

faster than SSDLite+MobileNetV2. The results were evaluated using hardware

accelerators from different vendors like Intel, Google, and NVIDIA. Finally, the model’s

stages can run in parallel (though limited by Stage 1), and the proposed system achieved

an inference speed of 173.31 FPS when deployed on an NVIDIA Jetson AGX Xavier and

60.83 FPS on an inexpensive RPi4 + Google Coral system.

150

The third proposed application is a novel real-time deep learning-based edge System

for Hazardous materials (HAZMATs) recognition. The HAZMAT standards set by the

OSHA comply with the United Nations Globally Harmonized System of Classification

and Labelling of Chemicals (GHS), the universal standard describing the appearance and

purpose of HAZMAT symbols, and for what chemicals a certain symbol is valid.

HAZMAT symbols are diamond-shape decals. The system will be able to localize,

classify 15 HAZMAT symbols in real-time, and extract the text present in the placard for

further elaboration of the material or danger.

A fast and accurate 3-stage HAZMAT recognition edge system was presented.

Custom models were designed for each stage. Stage 1 localizes a placard from an input

image or video stream. The proposed custom model for stage 1 achieved a test set

mAP@0.5 of 0.8930. The model can detect ≥1 placards per image with the same

processing time, and is robust to placard irregularities, illumination, and complex

backgrounds. Stage 2 utilizes the cropped HAZMAT placard and recognizes the bottom

HAZMAT class digit and determines the presence of a UN/NA number. The model for

the second stage achieved a mAP@0.5 of 0.982. Stage 1 and stage 2 achieved the same

accuracy as the MobileDet architecture, but it does so with 36.7% less parameters and a

3.5× smaller file size. The third stage recognize the UN/NA number if it is found in Stage

2. This stage uses a ResNet-18 backbone, Sequence Classifier, and CTC decoder to

recognize text strings in a way that does not need aligned inputs and outputs during

training. It achieves a digit recognition mAP@0.5 of 0.991, 0.041 more than LPRNet. On

a Jetson AGX Xavier, the Stage 1 models can achieve 104.49 FPS, the Stage 2 model can

achieve 172.51 FPS, and the Stage 3 model can achieve 250.49 FPS.

151

7.2 Future Work

In the future, the research works presented in this thesis may be expanded.

In this research work, a processing element (PE) capable of handling both stride one

and stride two Winograd operations was implemented on an FPGA. This implementation

and the proposed PE could serve as a baseline for accelerating other neural network

architectures, particularly those which natively use stride two convolutional layers, e.g.

the MobileNet family. In addition, the proposed Winograd algorithms could be extended

to efficiently compute convolutions for greater strides, e.g. stride 3 or 4, when and if

architectures containing such strides become commonplace.

Future work might include implementing and benchmarking Winograd algorithms on

modern CPUs and comparing their performance against FFT-based convolution. FFT-

based convolutions show satisfactory performance on modern CPUs (which have larger

caches but smaller memory bandwidths than modern GPUs).

The proposed LPL system could be deployed and evaluated on multiple types of low-

complexity computers and devices, example smartphones, tablets, embedded system, etc.

Corresponding accuracies, hardware utilization, and processing speeds could be

compared.

For the real-time recognition system proposed in Chapters V and VI, further decrease

the system’s processing time is planned by interleaving predictions with tracking

algorithms like IOU, KLT, and NVDCF. Thus, once an object is detected via the CNN

model, the system could simply follow the object with a tracking algorithm, with a new

DL prediction occurring in regular but less-frequent intervals. This would lessen the

number of frames requiring compute-expensive DL prediction, thereby freeing resources

that could be, for example, used to simultaneously process video streams from multiple

cameras (multi-streaming inputs).

152

References

[1] E. Stawiarska and P. Sobczak, “The Impact of Intelligent Transportation System

Implementations on the Sustainable Growth of Passenger Transport in EU Regions,”

Sustainability, vol. 10, no. 5, 2018, doi: 10.3390/su10051318.

[2] X. Xu et al., “ITS-frame: A framework for multi-aspect analysis in the field of

intelligent transportation systems,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 8, pp.

2893–2902, 2019, doi: 10.1109/TITS.2018.2868840.

[3] S. Sunkari, R. Parker, H. Charara, T. Palekar, and D. Middleston, “Evaluation of Cost-

Effective Technologies for Advance Detection,” in Security, 2005, vol. 7, no. 2.

[4] D. Kim and S. Park, “An intelligent collaboration framework between edge camera and

video analysis system,” in 2018 International Conference on Electronics, Information,

and Communication (ICEIC), 2018, pp. 1–3, doi:

10.23919/ELINFOCOM.2018.8330653.

[5] R. Abduljabbar, H. Dia, S. Liyanage, and S. A. Bagloee, “Applications of Artificial

Intelligence in Transport : An Overview,” 2019, doi: 10.3390/su11010189.

[6] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., vol. 2,

no. 1, pp. 1–27, 2009, doi: 10.1561/2200000006.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2016, vol. 2016-Decem, pp. 770–778, doi:

10.1109/CVPR.2016.90.

[8] H.-C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided

Detection: CNN Architectures, Dataset Characteristics and Transfer Learning,” IEEE

Trans. Med. Imaging, vol. 35, no. 5, pp. 1285–1298, 2016, doi:

10.1109/TMI.2016.2528162.

[9] L. Baresi, D. Filgueira Mendonça, and M. Garriga, “Empowering Low-Latency

Applications Through a Serverless Edge Computing Architecture,” in Service-Oriented

and Cloud Computing, 2017, pp. 196–210.

[10] X.-D. Zhang, “Machine Learning,” in A Matrix Algebra Approach to Artificial

Intelligence, Singapore: Springer Singapore, 2020, pp. 223–440.

[11] J. Cong and B. Xiao, “Minimizing Computation in Convolutional Neural Networks,”

in Artificial Neural Networks and Machine Learning -- ICANN 2014, 2014, pp. 281–

290.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

153

Pattern Recognition, 2016, vol. 2016-Decem, pp. 770–778, doi:

10.1109/CVPR.2016.90.

[13] K. Fukushima, “Neocognitron for handwritten digit recognition,” Neurocomputing, vol.

51, pp. 161–180, 2003, doi: 10.1016/S0925-2312(02)00614-8.

[14] A. D. Nguyen, S. Choi, W. Kim, S. Ahn, J. Kim, and S. Lee, “Distribution Padding in

Convolutional Neural Networks,” Proc. - Int. Conf. Image Process. ICIP, vol. 2019-

September, pp. 4275–4279, 2019, doi: 10.1109/ICIP.2019.8803537.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–

4520, doi: 10.1109/CVPR.2018.00474.

[16] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications,” arXiv Prepr. arXiv1704.04861, 2017, doi: arXiv:1704.04861.

[17] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky, “Speeding-up

convolutional neural networks using fine-tuned CP-decomposition,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track

Proceedings, 2015, pp. 1–11.

[18] D. Yu and M. L. Seltzer, “Improved bottleneck features using pretrained deep neural

networks,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, no.

August, pp. 237–240, 2011.

[19] M. S. Mohammed, S. L. Matilia, and L. Nozal, “Fast 2D convolution filter based on

look up table FFT,” in [1992] Proceedings of the IEEE International Symposium on

Industrial Electronics, 1992, pp. 446–449 vol.1, doi: 10.1109/ISIE.1992.279637.

[20] T. Abtahi, C. Shea, A. Kulkarni, and T. Mohsenin, “Accelerating Convolutional Neural

Network with FFT on Embedded Hardware,” IEEE Trans. Very Large Scale Integr.

Syst., vol. 26, no. 9, pp. 1737–1749, 2018, doi: 10.1109/TVLSI.2018.2825145.

[21] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural Networks,” 2016

IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4013–4021, 2016, doi:

10.1109/CVPR.2016.435.

[22] J. Shen, Y. Huang, Z. Wang, Y. Qiao, M. Wen, and C. Zhang, “Towards a Uniform

Template-based Architecture for Accelerating 2D and 3D CNNs on FPGA,” Proc. 2018

ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays - FPGA ’18, pp. 97–106,

2018, doi: 10.1145/3174243.3174257.

[23] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms for convolutional

neural networks on FPGAs,” Proc. - IEEE 25th Annu. Int. Symp. Field-Programmable

Cust. Comput. Mach. FCCM 2017, pp. 101–108, 2017, doi: 10.1109/FCCM.2017.64.

154

[24] Y. Huang, J. Shen, Z. Wang, M. Wen, and C. Zhang, “A High-efficiency FPGA-based

Accelerator for Convolutional Neural Networks using Winograd Algorithm,” J. Phys.

Conf. Ser., vol. 1026, no. 1, 2018, doi: 10.1088/1742-6596/1026/1/012019.

[25] U. Aydonat, S. O. Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An OpenCL Deep

Learning Accelerator on Arria 10,” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2017, pp. 55–64.

[26] J. Yu et al., “Instruction Driven Cross-Layer CNN Accelerator with Winograd

Transformation on FPGA,” in 2017 International Conference on Field Programmable

Technology (ICFPT), 2017, pp. 227–230.

[27] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN accelerators,”

Proc. Annu. Int. Symp. Microarchitecture, MICRO, vol. 2016-Decem, 2016, doi:

10.1109/MICRO.2016.7783725.

[28] J. Qiu et al., “Going deeper with embedded FPGA platform for convolutional neural

network,” FPGA 2016 - Proc. 2016 ACM/SIGDA Int. Symp. Field-Programmable Gate

Arrays, pp. 26–35, 2016, doi: 10.1145/2847263.2847265.

[29] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. W. Tai, “Exploring Heterogeneous Algorithms

for Accelerating Deep Convolutional Neural Networks on FPGAs,” Proc. - Des. Autom.

Conf., vol. Part 12828, pp. 1–6, 2017, doi: 10.1145/3061639.3062244.

[30] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A

Review,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 11, pp. 3212–3232,

2019, doi: 10.1109/TNNLS.2018.2876865.

[31] L. Fei-Fei, J. Deng, and K. Li, “ImageNet: Constructing a large-scale image database,”

J. Vis., vol. 9, no. 8, pp. 1037–1037, 2010, doi: 10.1167/9.8.1037.

[32] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural

networks,” in 36th International Conference on Machine Learning, ICML 2019, 2019,

vol. 2019-June, pp. 10691–10700.

[33] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image steganalysis,” in

Multimedia Tools and Applications, 2017, pp. 1–17, doi: 10.1007/s11042-017-4440-4.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition,

CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.

[35] A. Gholami et al., “SqueezeNext: Hardware-aware neural network design,” 2018, doi:

10.1109/CVPRW.2018.00215.

[36] A. Howard et al., “Searching for mobileNetV3,” in Proceedings of the IEEE

International Conference on Computer Vision, 2019, vol. 2019-Octob, pp. 1314–1324,

doi: 10.1109/ICCV.2019.00140.

155

[37] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2018, pp.

6848–6856, doi: 10.1109/CVPR.2018.00716.

[38] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in 5th

International Conference on Learning Representations, ICLR 2017 - Conference Track

Proceedings, 2019, pp. 1–16.

[39] Y. Xiong et al., “MobileDets: Searching for Object Detection Architectures for Mobile

Accelerators,” 2020, [Online]. Available: http://arxiv.org/abs/2004.14525.

[40] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587,

doi: 10.1109/CVPR.2014.81.

[41] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International Conference on

Computer Vision, 2015, vol. 2015 Inter, pp. 1440–1448, doi: 10.1109/ICCV.2015.169.

[42] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031.

[43] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based fully

convolutional networks,” in Advances in Neural Information Processing Systems, 2016,

pp. 379–387.

[44] J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra R-CNN: Towards

balanced learning for object detection,” in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2019, vol. 2019-June, pp.

821–830, doi: 10.1109/CVPR.2019.00091.

[45] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representation for

object detection,” in Proceedings of the IEEE International Conference on Computer

Vision, 2019, vol. 2019-Octob, pp. 9656–9665, doi: 10.1109/ICCV.2019.00975.

[46] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection,”

in Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2020, pp. 10778–10787, doi: 10.1109/CVPR42600.2020.01079.

[47] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 779–788, doi: 10.1109/CVPR.2016.91.

[48] W. Liu et al., “SSD: Single shot multibox detector,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2016, vol. 9905 LN, pp. 21–37, doi:10.1007/978-3-319-46448-0_2.

156

[49] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal Loss for Dense Object

Detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 318–327, 2020,

doi: 10.1109/TPAMI.2018.2858826.

[50] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2017, 2017, vol. 2017-Janua, pp.

936–944, doi: 10.1109/CVPR.2017.106.

[51] G. Ghiasi, T. Y. Lin, and Q. V. Le, “NAS-FPN: Learning scalable feature pyramid

architecture for object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 2019-June, pp. 7029–7038, 2019, doi: 10.1109/CVPR.2019.00720.

[52] J. König, S. Malberg, M. Martens, S. Niehaus, A. Krohn-Grimberghe, and A.

Ramaswamy, “Multi-stage Reinforcement Learning for Object Detection,” in Advances

in Intelligent Systems and Computing, 2020, vol. 943, pp. 178–191, doi: 10.1007/978-

3-030-17795-9_13.

[53] J. Wang, M. Zhu, D. Sun, B. Wang, W. Gao, and H. Wei, “MCF3D: Multi-Stage

Complementary Fusion for Multi-Sensor 3D Object Detection,” IEEE Access, vol. 7,

pp. 90801–90814, 2019, doi: 10.1109/ACCESS.2019.2927012.

[54] S. Yonetsu, Y. Iwamoto, and Y. W. Chen, “Two-Stage YOLOv2 for Accurate License-

Plate Detection in Complex Scenes,” in 2019 IEEE International Conference on

Consumer Electronics, ICCE 2019, 2019, pp. 1–4, doi: 10.1109/ICCE.2019.8661944.

[55] J. Zhang, Y. Li, T. Li, L. Xun, and C. Shan, “License Plate Localization in

Unconstrained Scenes Using a Two-Stage CNN-RNN,” IEEE Sens. J., vol. 19, no. 13,

pp. 5256–5265, 2019, doi: 10.1109/JSEN.2019.2900257.

[56] C. Cao et al., “An Improved Faster R-CNN for Small Object Detection,” IEEE Access,

vol. 7, pp. 106838–106846, 2019, doi: 10.1109/ACCESS.2019.2932731.

[57] S. Wang, H. Lu, and Z. Deng, “Fast object detection in compressed video,” in

Proceedings of the IEEE International Conference on Computer Vision, 2019, vol.

2019-Octob, pp. 7103–7112, doi: 10.1109/ICCV.2019.00720.

[58] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, and T. Mei, “Single Shot Video Object

Detector,” IEEE Trans. Multimed., vol. 1, no. c, pp. 1–1, 2020, doi:

10.1109/tmm.2020.2990070.

[59] C. Zhang and J. Kim, “Modeling Long- and Short-Term Temporal Context for Video

Object Detection,” Proc. - Int. Conf. Image Process. ICIP, vol. 2019-Septe, pp. 71–75,

2019, doi: 10.1109/ICIP.2019.8802920.

[60] M. Liu, M. Zhu, M. White, Y. Li, and D. Kalenichenko, “Looking Fast and Slow:

Memory-Guided Mobile Video Object Detection,” arXiv, 2019, [Online]. Available:

http://arxiv.org/abs/1903.10172.

157

[61] A. Romero, C. Gatta, G. Camps-valls, and S. Member, “Unsupervised Deep Feature

Extraction for Remote Sensing Image Classification,” IEEE Trans. Geosci. Remote

Sens., vol. 54, no. 3, pp. 1349–1362, 2016.

[62] S. Chen and C. Tao, “PolSAR Image Classification Using Polarimetric-Feature-Driven

Deep Convolutional Neural Network,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 4,

pp. 627–631, 2018.

[63] L. Jiao, S. Member, and F. Liu, “Wishart Deep Stacking Network for Fast POLSAR

Image Classification,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3273–3286,

2016.

[64] S. D. H. Forests, Y. Yu, H. Guan, and Z. Ji, “Rotation-Invariant Object Detection in

High-Resolution Satellite Imagery Using Superpixel-Based Deep Hough Forests,”

IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2183–2187, 2015.

[65] T. Le, “Video Salient Object Detection Using Spatiotemporal Deep Features,” IEEE

Trans. Image Process., vol. 27, no. 10, pp. 5002–5015, 2018, doi:

10.1109/TIP.2018.2849860.

[66] J. Han, D. Zhang, X. Hu, L. Guo, J. Ren, and F. Wu, “Background Prior-Based Salient

Object Detection via Deep Reconstruction Residual,” IEEE Trans. Circuits Syst. Video

Technol., vol. 25, no. 8, pp. 1309–1321, 2015.

[67] B. Wu et al., “An End-to-End Deep Learning Approach to Simultaneous Speech

Dereverberation and Acoustic Modeling for Robust Speech Recognition,” IEEE J. Sel.

Top. Signal Process., vol. 11, no. 8, pp. 1289–1300, 2017.

[68] P. Zhou, H. Jiang, S. Member, L. Dai, Y. Hu, and Q. Liu, “State-Clustering Based

Multiple Deep Neural Networks Modeling Approach for Speech Recognition,”

IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23, no. 4, pp. 631–642, 2015.

[69] S. Park, J. Park, S. Member, and K. Bong, “An Energy-Efficient and Scalable Deep

Learning / Inference Processor With Tetra-Parallel MIMD Architecture for Big Data

Applications,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 6, pp. 838–848, 2015.

[70] M. Alam, L. S. Vidyaratne, and K. M. Iftekharuddin, “Robust Facial Expression

Recognition,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 10, pp. 4905–

4916, 2018, doi: 10.1109/TNNLS.2017.2776248.

[71] S. Winograd, Arithmetic Complexity of Computations. Society for Industrial and

Applied Mathematics, 1980.

[72] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller, “Striving for

Simplicity: The All Convolutional Net,” 2015, [Online]. Available:

http://arxiv.org/abs/1412.6806.

[73] J. Hannink, T. Kautz, C. F. Pasluosta, J. Barth, and S. Sch, “Mobile Stride Length

158

Estimation With Deep Convolutional Neural Networks,” IEEE J. Biomed. Heal.

Informatics, vol. 22, no. 2, pp. 354–362, 2018.

[74] C. Ding, D. Pei, and A. Salomaa, Chinese remainder theorem: applications in

computing, coding, cryptography. USA: World Scientific Publishing Co., Inc., 1996.

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing systems,

2012, pp. 1097–1105.

[76] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[77] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

size,” in International Conference on Learning Representations ICLR 2017, 2017, pp.

1–13, doi: 10.1007/978-3-319-24553-9.

[78] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks

BT - Computer Vision – ECCV 2014,” 2014, pp. 818–833.

[79] W. Liu et al., “SSD: Single Shot MultiBox Detector BT - Computer Vision – ECCV,”

2016, pp. 21–37.

[80] M. Sandler, M. Zhu, A. Zhmoginov, and C. V Apr, “MobileNetV2: Inverted Residuals

and Linear Bottlenecks,” arXiv:1801.04381v3, 2018.

[81] A. Howard et al., “Searching for MobileNetV3,” 2019, [Online]. Available:

http://arxiv.org/abs/1905.02244.

[82] “Pre-trained models.” https://github.com/tensorflow/models/tree/master/research/.

[83] X. Wei et al., “Automated Systolic Array Architecture Synthesis for High Throughput

CNN Inference on FPGAs,” Proc. - Des. Autom. Conf., vol. Part 12828, 2017, doi:

10.1145/3061639.3062207.

[84] Y. R. Wang, W. H. Lin, and S. J. Horng, “A sliding window technique for efficient

license plate localization based on discrete wavelet transform,” Expert Syst. Appl., vol.

38, no. 4, pp. 3142–3146, 2011, doi: 10.1016/j.eswa.2010.08.106.

[85] S. Zhu, S. Dianat, and L. K. Mestha, “End-to-end system of license plate localization

and recognition,” J. Electron. Imaging, vol. 24, no. 2, p. 023020, 2015, doi:

10.1117/1.JEI.24.2.023020.

[86] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate recognition

(ALPR): A state-of-the-art review,” IEEE Trans. Circuits Syst. Video Technol., vol. 23,

no. 2, pp. 311–325, 2013, doi: 10.1109/TCSVT.2012.2203741.

[87] S. G. Kim, H. G. Jeon, and H. I. Koo, “Deep-learning-based license plate detection

159

method using vehicle region extraction,” Electron. Lett., vol. 53, no. 15, pp. 1034–1036,

2017, doi: 10.1049/el.2017.1373.

[88] Q. Fu, Y. Shen, and Z. Guo, “License Plate Detection Using Deep Cascaded

Convolutional Neural Networks in Complex Scenes,” in Neural Information

Processing, 2017, pp. 696–706.

[89] A. Naimi, Y. Kessentini, and M. Hammami, “Multi-nation and Multi-norm License

Plates Detection in Real Traffic Surveillance Environment Using Deep Learning,” in

Neural Information Processing, 2016, pp. 462–469.

[90] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, “A New CNN-Based Method for Multi-

Directional Car License Plate Detection,” IEEE Trans. Intell. Transp. Syst., vol. 19, no.

2, pp. 507–517, 2018, doi: 10.1109/TITS.2017.2784093.

[91] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” pp. 1–14, 2014, [Online]. Available:

http://arxiv.org/abs/1409.1556.

[92] Tzutalin, “LabelImg,” 2015. https://github.com/tzutalin/labelImg.

[93] W. Wu, Y. Liu, W. Zeng, M. Guo, C. Wang, and X. Liu, “Effective constructing

training sets for object detection,” in 2013 IEEE International Conference on Image

Processing, 2013, pp. 3377–3380, doi: 10.1109/ICIP.2013.6738696.

[94] J. Konar, P. Khandelwal, and R. Tripathi, “Comparison of Various Learning Rate

Scheduling Techniques on Convolutional Neural Network,” in 2020 IEEE

International Students’ Conference on Electrical,Electronics and Computer Science

(SCEECS), 2020, pp. 1–5, doi: 10.1109/SCEECS48394.2020.94.

[95] A. Chamarty, “Fine-Tuning of Learning Rate for Improvement of Object Detection

Accuracy,” in 2020 IEEE India Council International Subsections Conference

(INDISCON), 2020, pp. 135–141, doi: 10.1109/INDISCON50162.2020.00038.

[96] “Caltech: ‘Computational vision: archive.’” http://www.vision.caltech.edu/html-

files/archive.html.

[97] H. Li, P. Wang, and C. Shen, “Toward End-to-End Car License Plate Detection and

Recognition With Deep Neural Networks,” IEEE Trans. Intell. Transp. Syst., vol. 20,

no. 3, pp. 1126–1136, 2019, doi: 10.1109/TITS.2018.2847291.

[98] Y. Yuan, W. Zou, Y. Zhao, X. Wang, X. Hu, and N. Komodakis, “A Robust and

Efficient Approach to License Plate Detection,” vol. 26, no. 3, pp. 1102–1114, 2017,

doi: 10.1109/TIP.2016.2631901.

[99] W. Zhou, H. Li, Y. Lu, and Q. Tian, “Principal Visual Word Discovery for Automatic

License Plate Detection,” IEEE Trans. Image Process., vol. 21, no. 9, pp. 4269–4279,

2012, doi: 10.1109/TIP.2012.2199506.

160

[100] “Kalafatić, Z.: ‘License plate detection, recognition.’”

http://www.zemris.fer.hr/projects/LicensePlates/english/.

[101] M. R. Asif et al., “Efficient method for vehicle license plate identification based on

learning a morphological feature,” IET Intell. Transp. Syst., vol. 10, no. 6, pp. 389–395,

2016, doi: 10.1049/iet-its.2015.0064.

[102] MediaLab of National Technical University of Athens, “Medialab Lpr Database.”

http://www.medialab.ntua.gr/research/LPRdatabase.html.

[103] S. Mao, X. Huang, and M. Wang, “An adaptive method for Chinese license plate

location,” Proc. World Congr. Intell. Control Autom., pp. 6173–6177, 2010, doi:

10.1109/WCICA.2010.5554434.

[104] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” CoRR, vol.

abs/1612.0, 2016.

[105] A. Slavich and J. E. Daust, “Commercial Vehicle Safety Alliance (CVSA)/Department

of Energy (DOE) cooperative agreement final report,” doi: 10.2172/758961.

[106] R. D. Castro-Zunti, J. Yépez, and S. B. Ko, “License plate segmentation and recognition

system using deep learning and OpenVINO,” IET Intell. Transp. Syst., vol. 14, no. 2,

pp. 119–126, 2020, doi: 10.1049/iet-its.2019.0481.

[107] J. Yépez, R. D. Castro-Zunti, and S.-B. Ko, “Deep learning-based embedded license

plate localisation system,” IET Intell. Transp. Syst., vol. 13, no. 10, pp. 1569–1578,

2019, doi: 10.1049/iet-its.2019.0082.

[108] Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and

Instance Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2019, doi:

10.1109/tpami.2019.2956516.

[109] T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2014, vol. 8693 LNCS, no. PART 5, pp. 740–755,

doi: 10.1007/978-3-319-10602-1_48.

[110] P. Fang and Y. Shi, “Small object detection using context information fusion in faster

R-CNN,” in 2018 IEEE 4th International Conference on Computer and

Communications, ICCC 2018, 2018, pp. 1537–1540, doi:

10.1109/CompComm.2018.8780579.

[111] J. Li et al., “Multistage Object Detection with Group Recursive Learning,” IEEE Trans.

Multimed., vol. 20, no. 7, pp. 1645–1655, 2018, doi: 10.1109/TMM.2017.2772796.

[112] L. Puglia, M. Vigliar, and G. Raiconi, “Real-Time Low-Power FPGA Architecture for

Stereo Vision,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 11, pp. 1307–

1311, 2017, doi: 10.1109/TCSII.2017.2691675.

161

[113] J. Yepez and S. B. Ko, “Stride 2 1-D, 2-D, and 3-D Winograd for Convolutional Neural

Networks,” IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 4, pp. 853–863,

2020, doi: 10.1109/TVLSI.2019.2961602.

[114] “International Road Dynamics Inc.,” 2020. https://www.irdinc.com.

[115] R. Mittal and A. Garg, “Text extraction using OCR: A Systematic Review,” in 2020

Second International Conference on Inventive Research in Computing Applications

(ICIRCA), 2020, pp. 357–362, doi: 10.1109/ICIRCA48905.2020.9183326.

[116] M. Asadikouhanjani, H. Zhang, L. Gopalakrishnan, H. J. Lee, and S. B. Ko, “A Real-

Time Architecture for Pruning the Effectual Computations in Deep Neural Networks,”

IEEE Trans. Circuits Syst. I Regul. Pap., pp. 1–12, 2021, doi:

10.1109/TCSI.2021.3060945.

[117] H. Halawa, H. A. Abdelhafez, A. Boktor, and M. Ripeanu, “NVIDIA jetson platform

characterization,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10417

LNCS, pp. 92–105, doi: 10.1007/978-3-319-64203-1_7.

[118] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The

pascal visual object classes (VOC) challenge,” Int. J. Comput. Vis., vol. 88, no. 2, pp.

303–338, 2010, doi: 10.1007/s11263-009-0275-4.

[119] I. U. Ahmed, S. M. Gaweesh, and M. M. Ahmed, “Exploration of Hazardous Material

Truck Crashes on Wyoming’s Interstate Roads using a Novel Hamiltonian Monte Carlo

Markov Chain Bayesian Inference,” Transp. Res. Rec., vol. 2674, no. 9, pp. 661–675,

2020, doi: 10.1177/0361198120931103.

[120] Globally harmonized system of classification and labelling of chemicals (GHS). New

York and Geneva, 2019.

[121] E. Goforth, M. Ezzeldin, W. El-Dakhakhni, L. Wiebe, and M. Mohamed, “Network-of-

Networks Framework for Multimodal Hazmat Transportation Risk Mitigation:

Application to Used Nuclear Fuel Transportation,” J. Hazardous, Toxic, Radioact.

Waste, vol. 24, p. 4020016, 2020, doi: 10.1061/(ASCE)HZ.2153-5515.0000493.

[122] “RoboCup Rescue Rulebook,” RoboCup Rescue, 2019. https://rrl.robocup.org/wp-

content/uploads/2019/06/rrl_rulebook_2019_v2.4.pdf.

[123] B. Chen et al., “MnasFPN: Learning latency-aware pyramid architecture for object

detection on mobile devices,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., pp. 13604–13613, 2020, doi: 10.1109/CVPR42600.2020.01362.

[124] S. Zherzdev and A. Gruzdev, “LPRNet: License Plate Recognition via Deep Neural

Networks,” pp. 1–6, 2018, [Online]. Available: http://arxiv.org/abs/1806.10447.

[125] X. Zhang, S. Huang, X. Zhang, W. Wang, Q. Wang, and D. Yang, “Residual Inception:

162

A New Module Combining Modified Residual with Inception to Improve Network

Performance,” in 2018 25th IEEE International Conference on Image Processing

(ICIP), 2018, pp. 3039–3043, doi: 10.1109/ICIP.2018.8451515.

[126] M.-J. Chae et al., “Convolutional Sequence to Sequence Model with Non-Sequential

Greedy Decoding for Grapheme to Phoneme Conversion,” in 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2486–

2490, doi: 10.1109/ICASSP.2018.8462678.

[127] S. Xie et al., “Speed/accuracy trade-offs for modern convolutional object detectors,”

arXiv Prepr. arXiv1512.03385, 2015.

[128] J. Moolayil, “An Introduction to Deep Learning and Keras,” in Learn Keras for Deep

Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python,

Berkeley, CA: Apress, 2019, pp. 1–16.

[129] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,”

5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–16, 2017.

[130] P. Goyal et al., “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour,” 2017,

[Online]. Available: http://arxiv.org/abs/1706.02677.

[131] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., 2015, doi: 10.1109/CVPR.2014.471.

[132] W. Taymans, S. Baker, A. Wingo, R. S. Bultje, and S. Kost, “GStreamer application

development manual,” 2013.

[133] A. Patait and E. Young, “High performance video encoding with NVIDIA GPUs,”

2016.

[134] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and M. Bertogna, “Contending

memory in heterogeneous SoCs: Evolution in NVIDIA Tegra embedded platforms,” in

2020 IEEE 26th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2020, pp. 1–10, doi:

10.1109/RTCSA50079.2020.9203722.

[135] M. Ditty, A. Karandikar, and D. Reed, “NVIDIA ’ S XAVIER SOC Xavier — Designed

for the next wave of Autonomous Machines,” in Proc. IEEE Hot Chips Symp. (HCS),

2018, pp. 1–17.

[136] M. Toksvig, P. Sriram, J. Matheson, B. Cabral, and B. Smith, “NVIDIA Tegra,” in 2008

IEEE Hot Chips 20 Symposium (HCS), 2008, pp. 1–28, doi:

10.1109/HOTCHIPS.2008.7476540.

[137] F. Farshchi, Q. Huang, and H. Yun, “Integrating NVIDIA Deep Learning Accelerator

(NVDLA) with RISC-V SoC on FireSim,” in 2019 2nd Workshop on Energy Efficient

Machine Learning and Cognitive Computing for Embedded Applications (EMC2),

163

2019, pp. 21–25, doi: 10.1109/EMC249363.2019.00012.

[138] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-Time Computer Vision

with OpenCV,” Commun. ACM, vol. 55, no. 6, pp. 61–69, Jun. 2012, doi:

10.1145/2184319.2184337.

[139] J. Cai, J. Hou, Y. Lu, H. Chen, L. Kneip, and S. Schwertfeger, “Improving CNN-based

Planar Object Detection with Geometric Prior Knowledge,” in 2020 IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp. 387–393, doi:

10.1109/SSRR50563.2020.9292601.

[140] M. A. Mohamed, J. Tünnermann, and B. Mertsching, “Seeing Signs of Danger:

Attention-Accelerated Hazmat Label Detection,” in 2018 IEEE International

Symposium on Safety, Security, and Rescue Robotics (SSRR), 2018, pp. 1–6, doi:

10.1109/SSRR.2018.8468639.

