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ABSTRACT 
The effect of fractionating flax, peas and canola on the digestibility of these 

ingredients in Nile tilapia was determined. Dehulling of flax, and processing peas and 

canola to pea protein concentrate and canola protein concentrate, resulted in significant 

increases in the energy and dry matter digestibility's of these products (P < 0.05). The 

protein digestibility of flax was significantly improved by dehulling but there were no 

differences between the protein digestibilities of peas, canola and their protein 

concentrates. The ability of one of the most digestible ingredients from peas, flax and 

canola determined the digestibility trial, to replace fish meal in tilapia diets was 

examined in an eight week growth trial. The diet formulations were arranged in a 2 x 4 

factorial design with 2 types of plant protein mixtures used to replace fish meal (simple: 

soybean meal and corn gluten meal or complex: soybean meal, corn gluten meal, 

dehulled flax, pea protein concentrate and canola protein concentrate) and 4 levels of 

protein originating from fish meal (100%, 67%, 33% and 0%). Diets contained equal 

concentrations of digestible protein (380 g kg-1) and digestible energy (17.6 MJ kg-1).  

Fifty six tanks containing 10 male Nile tilapia each were used in this experiment.  Fish 

were fed to apparent satiation twice daily for a total of 56 days and growth and feed 

intake was measured for the entire experimental period. On day 56 of the experiment, 

one fish per tank was euthanized and a 1 cm segment of small intestine was prepared for 

measurement of villus length. The average daily gains (0.97 g d-1), specific growth rates 

(1.79 % d-1) and feed efficiencies (3.28 g d-1) of fish fed diets with 0% fish meal were 

significantly lower than fish fed diets with the 33.3, 66.6 or 100% fish meal levels. Fish 

fed the complex diets had significantly higher average daily gains (2.29 g d-1), specific 
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growth rates (3.40 % d-1), feed: gain ratios (1.46 g d-1) and protein efficiency ratios (1.59 

gain protein intake-1) than those fed the simple diets. Villus length decreased with 

decreasing levels of fish meal and increased with increased diet complexity but the 

effects were not significant. The results indicated that the use of a complex mixture of 

plant ingredients may allow for a greater replacement of fish meal in diets fed to Nile 

tilapia. 
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1.0 Introduction 

 As the global population continues to grow, so to does the world’s need for food, 

especially for sources of high quality protein (Chamberlain, 1993).  With the world 

population currently over 6 billion, and forecasts exceeding 8 billion by the year 2030, 

the consumption of seafood at that time is predicted to reach between 150-160 million 

tonnes (Food and Agriculture Organizations of the United Nations, 2005). However, 

because of the decline in wild fish catches in a large part due to the unsustainability of 

industrialized fishing, aquaculture will be called upon to fill this gap. 

 Between 1984 and 1990, the world aquaculture sector grew at an average annual 

rate of 16% for finfish and shellfish production (Tacon, 1993).  While the growth of the 

aquaculture industry has slowed down slightly since 1990, it continues to grow at a rate 

of 5% per year (Chamberlain, 1993).  According to Chamberlain (1993), an annual 

growth of 6.5% is needed to meet the demand for seafood by the year 2025. To continue 

this level of growth, research and development on farming techniques will be required in 

order to obtain the most efficient, safe and cost effective methods for producing seafood 

in the aquaculture industry.  A primary concern for rearing finfish in a culture setting is 

the high cost of feed, and more importantly the heavy reliance on fish meal and fish oil 

as the primary protein and energy sources in these feeds. 

 In 1990, approximately 30% of the total fish catch was converted into fish meal 

and fish oil for use in animal and fish feeds (Tacon, 1993).  While the total production of 

fish meal and fish oil has decreased slightly since 1990, exports have decreased in 

countries that typically produced large amounts, due to the rapid growth of their 
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aquaculture industries (Tacon, 1993), which is an indicator of the limited availability of 

these products. 

 Fish meal and fish oil have become staples in aquaculture diets due to their many 

nutritional benefits (Tacon, 1993).  Fish meal is very palatable and has exceptional 

nutritional value including an excellent balance of essential amino acids and essential 

fatty acids, which closely meet the requirements of most farmed fish, and also provides 

an excellent source of digestible energy and vitamins (Tacon, 1993). However, fish meal 

and fish oil are considered essential dietary requirements for virtually all finfish species.  

While it remains a challenge to replace fish meal and fish oil with suitable plant 

ingredients in diets fed to carnivorous species, herbivorous fish species seem well suited 

to the consumption of plant-based diets. 

 One of the most important herbivorous fish species reared in aquaculture systems 

is the tilapia (Fisheries of the United States, 2001). Production of tilapia reached over 

1.2 million metric tons in 2001 (Fisheries of the United States, 2001) and is produced in 

nearly every country world in the world.  There are three genera of tilapia; Oreochromis, 

Sarotherodon and Tilapia.  The primary genus reared for aquaculture is Oreochromis 

which includes Nile Tilapia (O. niloticus), Mozambique Tilapia (O. mossambicus), and 

Blue Tilapia (O. aureus and O. urolepis hornorum) (Fitzsimmons, 1997). With the 

continued growth of tilapia production, the need for suitable diets tailored using local 

ingredients that are produced within each country has become a necessity.  

 Tilapias are naturally accustomed to eating plant ingredients, and are typically 

considered strict herbivores once they reach maturity (Keenleyside, 1991).  A substantial 

amount of research is already underway, testing potential protein sources that can 

replace fish meal in tilapia diets.  These plant protein sources include soyabeans, 
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sunflower, rapeseed, wheat bran, corn gluten meal, cassava leaf meal, barley and alfalfa 

(Jackson et al., 1982; Ng et al., 1989; Davies et al., 1990; Olvera-Novoa et al. 1990; Wu 

et al., 1995; El Sayed, 1998; Belal, 1999; Maina et al., 2002; Abelghany, 2004). While 

many plant protein sources have the potential for use in tilapia diets, there are a number 

of problems associated with the inclusion of these ingredients. First and foremost is the 

quality of protein.  Generally plant ingredients that are to be used in animal or fish feeds 

are by products of ingredients that have undergone processing for entry into the human 

food chain, or are considered poor quality and are therefore used by the aquafeed 

industry (De Silva and Anderson, 1995).  Because of this, the quality of protein or more 

specifically, the balance of amino acids may be inferior.  For example, legumes tend to 

be high in lysine but limiting in methionine, whereas cereal grains are limiting in lysine 

(De Silva and Anderson, 1995).  A second potential problem is the presence of 

antinutritional factors in many plant protein sources (De Silva and Anderson, 1995).  

These naturally occurring compounds found in feedstuffs can have a negative effect on 

the performance of fish species (De Silva and Anderson, 1995).  For example, phytic 

acid, tannins, protein protease inhibitors, erucic acid, glucosinolates, mucilage and fibre 

are some of the antinutritional factors found in peas, canola and flax (Castell et al., 1996; 

Naczk et al., 1994; Grant, 1998). Processing methods such as dehulling, aqueous 

extraction, and extrusion can reduce the negative effects of these antinutritional factors 

as well as improving the availability of proteins and carbohydrates in the plant 

ingredients (De Silva and Anderson, 1995). 

 Based on these observations, the objectives of this project were to assess 

the effect of fractionation on the digestibility of experimental diets with single 

ingredients produced in Western Canada including flax, peas and canola in Nile tilapia 
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and to determine the effect of replacing fish meal with simple (soyabean and maize 

gluten meal) or complex (soyabean meal, maize gluten meal, dehulled flax, pea protein 

concentrate and canola protein concentrate) mixtures of plant proteins on the 

performance of Nile tilapia.  

2.0 Review of Literature   

2.1 World Fish Supplies 

2.1.1 State of World Fisheries  

 The advent of steam trawlers gave fishing a new identity known as industrialized 

fishing (Pauley et al., 2002).  Vessels were equipped with diesel engines and power 

winches following the First World War.  Shortly after the Second World War, fishing 

fleets became outfitted with freezer trawlers, radar and acoustic fish finders (Pauly et al., 

2002).  With overzealous fishing fleets, new technology and fishing strategies, it was 

clear that fish stocks would be significantly affected.  However, no one could predict 

how long it would take for the fish stock to become depleted. 

 The collapse of the Peruvian anchovy fishery in 1971-1972 was the first reported 

incident to shake the fishing community.  Originally explained as an El Nino event, it is 

now evident that overfishing played an important role in this demise (Pauley et al., 

2002).  In 1992, the Canadian Grand Banks, a lucrative fishing ground off the coast of 

Newfoundland were closed to fishermen by the Canadian Department of Fisheries and 

Oceans due to the collapse of the Atlantic cod stocks (Schiermeier, 2002).  The 

devastation caused by these two events has created a great deal of animosity among 

scientists, politicians and fisherman (Pauley et al., 2002).  
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 Within a 15 year period, it is estimated that predatory fish stocks of four 

continental shelves and nine oceanic systems had been depleted by 80% due to 

industrialized fishing (Myers and Worm, 2003).  Analysis of fishing data by Myers and 

Worm (2003) indicates that with dominant fish populations declining, harvesting of 

alternative predatory fish species increased.  The result of this type of cycle is fewer 

predatory fish and fishing fleets targeting species lower on the food web (Myers and 

Worm, 2003).  

 Models have been developed by fisheries scientists in an attempt to understand 

how to obtain maximum sustainable yields of fish stocks.  These models have led to 

advisory notices stating that a reduction in the size of fishing fleets and catch quotas 

must be implemented as well as rules and regulations regarding the use of specific 

fishing gear and acceptable fishing zones (Schiermeier, 2002; Pauley et al., 2002).  

 Recently, the validity of these models has been questioned.  A number of the 

scientific models lack a complete understanding of the dynamics of fish populations 

with respect to predators, prey and habitat.  Single population models have proven to be 

inaccurate because they rely on information pertaining to stock status and stock 

withdrawal, which will always be error prone (Pauley et al., 2002).  Single population 

models do not consider the effect of predator and prey populations on the complexity of 

the marine food web.  As fishing fleets continue to exhaust the ocean of fish stocks, they 

continuously fish at lower trophic levels leading to an ecosystem susceptible to 

extensive damage (Schiermeier, 2002). 

 In spite of the research that has been conducted thus far, it is evident that an ideal 

solution has yet to be found for the declining fish stocks.  Until scientists, fishers and 
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politicians agree on one strategy and join in the effort, world fish stocks will continue to 

be in jeopardy. 

 With an expected human population of 8.5 billion by the year 2025, world 

fisheries will be unable to fulfill the increasing demand for seafood.  Seafood 

consumption is estimated to reach 162 million tones based on a global per capita seafood 

consumption of 19 kg per year (Chamberlain, 1993). Currently one quarter of all fish 

consumed by humans is produced by the aquaculture sector (Naylor et al., 2000). 

Clearly only aquaculture has the potential to fill in the gap between supply and demand 

caused by the decline in world fisheries wild catches and human population growth. 

 

2.1.2 Aquaculture  

 Aquaculture production has continued to grow explosively in the last several 

decades. Aquaculture production, as a percentage of total fisheries landings by weight 

increased from 5.3% in 1970 to 32.3% in 2000 (Food and Agriculture Organizations of 

the United Nations, 2002).  Aquaculture has maintained an average annual growth rate 

of 8.9% since 1970 compared with growth rates of terrestrial farmed meat production 

systems of 2.8% and capture fisheries of 1.4% (Food and Agriculture Organizations of 

the United Nations, 2002).   

 Environments and communities can benefit from aquaculture in a number of 

ways (Frankin and Hershner, 2003) including an increase in the food supply, an increase 

in employment, an increase in food value, protection of aquatic biodiversity through 

restocking, a reduction in need for wild catches and an improvement of fish habitats. 
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 With all the benefits aquaculture has to offer, it also has the potential to be very 

destructive.  The production of carnivorous species and shrimp may result in habitat 

destruction, contamination of waters through waste disposal, introduction of exotic 

species, pathogens, and the removal of large amounts of fish meal and fish oil to meet 

their feed requirements (Naylor et al., 2000).  If aquaculture is to aid in the recovery of 

world fish stocks through intense production, it must exchange the “fishing down and 

farming up” strategy for a more sustainable approach (Watson and Pauly, 2001). 

 

2.1.2.1 Sustainable Aquaculture Practices 

 Naylor et al. (2000) compiled a list of goals for the aquaculture industry to strive 

towards in order to develop an industry that will survive and continue to grow for years 

to come.  Topping their list is farming down the food web and reducing the use of fish 

meal and fish oil.  The food web is made up of four trophic levels with the first level, 

producers, harvesting energy directly from the sun.  The second level is the primary 

consumers or herbivores followed by the third level, secondary consumers or omnivores, 

and finally the fourth level, tertiary consumers or carnivores.  With each increase in 

trophic level, the amount of energy transferred between organisms is decreased (Naylor 

et al., 2000).   

 Carnivorous fish, such as salmon and trout, require large amounts of fish meal in 

their diets in order to satisfy dietary protein requirements (Naylor et al., 2000).  

Typically, one kilogram of fish raised in an intensive aquaculture setting requires 1.9 

kilograms of wild fish byproducts (Naylor et al., 2000).  Farming low trophic level fish 

(primary consumers) with herbivorous diets will reduce the amount of fish meal being 

used because of the ability of these fish to utilize plant based proteins.  As well, plant 
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protein sources may be more affordable as the price of fish meal continues to rise with 

an increase in demand.  

 Integrated production systems, otherwise known as polyculture, house a number 

of fish species together in order to effectively utilize all aspects of food and water 

resources (Naylor et al., 2000).  China typically produces silver carp, grass carp, 

common carp and bighead carp together.  These fish are phytoplankton filter feeders, 

herbivorous macrophyte feeders, omnivorous detritus bottom feeders and zooplankton 

filter feeders respectively.   This system is very practical and its use can reduce costs, 

increase productivity and remove effluents from the water (Naylor et al., 2000).  

 The final goal to achieve sustainability in the aquaculture industry listed by 

Naylor et al. (2000) is to promote environmentally sound production and resource 

management.  Initiatives must be put in place to regulate development in mangrove 

swamps or coastal wetlands, implement biosafety procedures for moving stock, water 

quality assurance and proper waste disposal, and finally implementing fines to systems 

with high numbers of escapes from pens.    

 A joint effort from the public and private sector is necessary to reach 

sustainability in the aquaculture industry.  Government regulations put in place to 

control the destruction of coastal habitats and reckless management with private industry 

members whose goal is to eliminate pollution, reduce their dependence on fish meal and 

fish oil, and limit the number of non-native fish introductions will pave the way towards 

a prosperous and sustainable industry (Naylor et al., 2000). 

 In 2002, Canada contributed 0.4% of the total world aquaculture production of 

40 million tonnes (Food and Agriculture Organizations of the United Nations, 2004) and 

brought in a revenue of $640 million.  The aquaculture industry employs 14,000 
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Canadians year round with the majority of the production and processing occurring in 

rural and coastal communities (Department of Fisheries and Oceans, 2003).  Canada has 

recognized the impact that this industry can have both socially and economically and is 

moving forward with regulations and policy frameworks that will enable the Canadian 

industry to compete on a global scale (Department of Fisheries and Oceans, 2003).   The 

Department of Fisheries and Oceans has listed a number of elements that must be 

established in order to create a sustainable industry including assuring quality of life and 

a safe environment for generations to come, protecting the interest of all resource users 

when decisions are made, using environmentally responsible practices, complying with 

Aboriginal and treaty rights, promoting research and development and encouraging 

stakeholders, individuals and communities to participate in decision-making.   

 

2.1.2.2 Cultured Species 

 Today, there are more than 220 species of finfish and shellfish used in 

aquaculture (Naylor et al., 2000).  Asia tops the list of global aquaculture production, 

with China accounting for two thirds of Asia’s production, followed by Japan, South 

Korea, and the Philippines (Hanfman, 1989).  Table 2.1 shows the top nine aquaculture 

species consumed globally.  Silver carp, grass carp and common carp are among the top 

aquaculture species consumed.  However, giant tiger prawns bring in higher revenues 

with considerably lower production (Hanfman, 1989).  Global production (wild catch 

and farmed) of tilapia is ranked the fifth major species produced (Hanfman, 1989).  

Aquaculture finfish and shellfish production for Canada is shown in Table 2.2.  Salmon 

production is number one in both total production and production value (Food and 

Agriculture Organizations of the United Nations, 1999).   
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Table 2.1 Weight and economic value for the top aquaculture species consumed in 1997.  

 (000 tonnes) ($ million CAN) $ / tonne 

Silver Carp 3,146 3,623 1.15 

Pacific Cupped Oyster 2,968 3,930 1.32 

Grass Carp 2,662 3,036 1.14 

Common Carp 2,237 3,365 1.50 

Tilapia 742 1,099 1.48 

Atlantic Salmon 639 2,625 4.11 

Giant Tiger Prawn 490 4,349 8.86 

Milkfish 393 866 2.20 

Channel Catfish 238 462 1.94 

   Source: Food and Agriculture Organizations of the United Nations, 1998 
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Table 2.2 Canadian aquaculture production and value for finfish and shellfish in 2000.      

 Species tonnes ($ CAN / thousand) Ave. $ / kg 

Salmon 78,495 495,555 6.29 

Mussels 21,287 27,213 1.28 

Oysters 10,024 16,915 1.69 

Trout 6,407 31,460 4.91 

Steelhead 5,523 24,889 4.49 

Clams 1,000 5,900 5.90 

Other Finfish 694 6,770 9.72 

Other Shellfish 359 1,775 4.93 

Scallops 59 362 6.12 

Source: Statistics Canada, 2002 
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2.1.2.3 Tilapia 

 Tilapias are ranked as one of the most widely produced food fishes in the world 

with ten species being successfully cultured (Stickney, 1986).  Tilapia aurea, Tilapia 

mossambica and Tilapia nilotica are among the top culture species of tilapia with 

hybrids of these species being produced in a number of regions (Strickeny, 1986).  

Because of their rapid growth, tolerance to high stocking densities and poor water 

quality, high reproductive rates, and susceptible to few diseases, tilapia are an excellent 

candidate for aquaculture production (Chamberlain, 1993; Stickney, 1986).   

2.2 Tilapia 

2.2.1 Phylogeny  

 Tilapia, found in the family Cichlidae, is a common name given to three species 

(Oreochromis, Sarotherodon and Tilapia) of the genus Tilapia sensu lato.  The three 

species are grouped primarily by reproductive behaviour.  Substrate spawners such as 

the genus Tilapia differ from Sarotherodon, a paternal or biparental mouthbrooder, and 

Oreochromis a maternal mouthbrooder (Pouyaud and Agnese, 1995).  During mating, 

there is virtually no sexual dimorphism in Tilapia and Sarotherodon (Pouyaud and 

Agnese, 1995).  However Oreochromis males tend to be larger in size than the female 

and display very distinct mating colours (Pouyaud and Agnese, 1995).  Tilapia and 

Sarotherodon practice monogamy while Oreochromis are polygamous and polyandrous 

(Pouyaud and Agnese, 1995).  Further differences are seen when the eggs hatch into 

larvae. Prior to hatching, Tilapia place larvae into pits dug by both parents (Trewavas, 

1983).  This differs from the larvae of Sarotherodon and Oreochromis which hatch in 

the maternal or paternal mouth (Trewavas, 1983). 
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 Tilapiine species have different distinct forms of parental behaviour.  However, 

they do have a number of characteristics in common.  For instance, tilapiine species are 

generally classified as herbivorous in nature (Trewavas, 1982).  Because of this type of 

diet, their intestines are coiled within the abdomen and may be as long as fourteen times 

the length of their body as compared with carnivores whose intestinal length is only 0.2 - 

2.5 times their body length (Food and Agriculture Organizations of the United Nations, 

1980).  Their mouths are lined with bicuspid, tricuspid and pharyngeal teeth which are 

necessary for shredding plant material (Trewavas, 1982). 

2.2.2 Origin 

 Africa, with the exception of Madagascar, including the Jordan Valley and the 

surrounding coastal rivers, is the birthplace of over eighty tilapiine species (Philippart 

and Ruwet, 1980; Trewavas, 1983).  Within Africa, colonization of extremely different 

habitats by tilapia, such as rivers with and without rapids, permanent and temporary, 

tropical and subtropical waterways have been observed.  Furthermore, the tilapiine have 

been found to inhabit  lakes that vary in depth, alkalinity or salinity, hot springs, 

volcanic craters, open and closed estuaries, lagoons, and marine habitats (Philippart and 

Ruwet, 1980).  

 

2.2.3 Environmental Factors 

2.2.3.1 Temperature 

 Temperature is the main factor that dictates whether or not any species of tilapia 

will survive in any given body of water (Phililppart and Ruwet, 1980).  Lethal limits, 

upper and lower temperatures that are fatal for all individuals, vary for each species 
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(Phililppart and Ruwet, 1980).  Three categories of temperature tolerance have been 

discussed by Philippart and Ruwet (1980).  Oreochromis niloticus is described as having 

a high tolerance for a range of temperatures, with a lower lethal limit of 8ºC and an 

upper limit of 42ºC.  Tilapia rendalli have a lower tolerance to high or low temperatures 

(11ºC to 41ºC) whereas Sarotherodon melonotheron has a smaller window of acceptable 

temperatures ranges (18ºC - 33ºC). Temperature tolerance not only depends on each 

species, but it also depends on the size of the individual.  Young fish, which are smaller 

in size than adults, are typically more tolerant of high and low temperatures (Philippart 

and Ruwet, 1980). 

 Even though tilapias have the ability to withstand extreme temperatures, both 

high and low, growth and reproduction will become impaired.  Below 20ºC, tilapias will 

show a marked reduction in feed intake and normal growth will stop completely below 

16ºC.  Temperatures below 16ºC will render tilapia inactive.  Similarly, reproduction 

will cease to occur at temperatures below 22ºC (Chervinksi, 1980). 

 

2.2.3.2 Salinity 

 Most tilapiine species are considered euryhaline, in other words, they are capable 

of withstanding a wide range in salinity (Phililppart and Ruwet, 1980).  Oreochromis 

niloticus is considered less euryhaline than most species, but it can survive in bodies of 

water with salt concentrations equal to 30% of ocean water (Philippart and Ruwet, 

1980).   

 While tilapias that are euryhaline may be beneficial for producers, underlying 

problems related to salinity and growth can occur.  All tilapias are both osmotic and 

ionic regulators due to their external medium (Jobling, 1994).  When tilapia that are 
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adapted to freshwater, are exposed to higher saline concentrations, the metabolic cost of 

regulating the flow of ions and water into and out of the body can be extreme.  With 

more energy required for osmotic and ionic regulation, feed intake and growth become 

impaired (Jobling, 1994).  Energy demand for osmoregulation may exceed energy 

availability resulting in negative growth, with body reserves being mobilized (Payne et 

al., 1987).  Not only is there a decrease in feed intake and growth, Payne et al (1987) 

reported an increase in water consumption with Oreochromis spilurus spilurus due to  

increasing salt concentrations,  leading to hydration of tissues and ultimately a poor 

quality product. 

 

2.2.3.3 pH 

 Research concerning pH values for tilapiine species has resulted in a wide range 

of values being reported as acceptable.  The most favorable pH has been determined to 

be as close to neutral as possible in order to maintain optimum growth and health of the 

fish (Phillippart and Ruwet 1980; Chervinski, 1980).  Oreochromis mossambicus were 

capable of withstanding acidified water (pH of 4) for 37 days without any impairment of 

physiological conditions including glucose, cortisol, haemoglobin, sodium and chloride 

levels (van Ginneken et al., 1997).  In addition, there was no change in feed 

consumption or growth. 

 

2.2.3.4 Dissolved Oxygen 

 Tilapias are very tolerant of dissolved oxygen and can tolerate levels as low as 1 

part per million which is considerably lower most fish species which require 7 - 8 parts 
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per million (Chervinske, 1980).  When oxygen drops below this level, they may utilize 

atmospheric oxygen which is demonstrated through the survival of tilapias found in 

small mud puddles at harvest time (Chervinski, 1980).  Tilapias have developed a 

method to obtain oxygen by gulping at the water-air interface, which allows oxygenated 

water to pass over their gills (Stickney, 1986).  Although tilapias are very hardy and can 

survive extremely low levels of oxygen, growth and feed intake will decrease with 

limited oxygen supply (Jobling, 1994).  

 

2.2.4 Ecology of Oreochromis niloticus 

2.2.4.1 Feeding 

 Fry of the Oreochromis niloticus species, as well as other species of tilapia, need 

more protein than do the adults of the species (Trewavas, 1983).  Fry are considered to 

be omnivores, feeding on aquatic and terrestrial insects, and aquatic larvae (Trewavas, 

1983).  As they grow, they begin to eat more and more phytoplankton until it becomes 

their primary source of food.  By 5 cm, this species is almost strictly herbivorous 

(Trewavas, 1983). 

 

2.2.4.2 Breeding Stock 

 Tilapias are asynchronous spawners (Tave, 1987), with sexual maturity having a 

direct correlation with body length (Trewavas, 1987).  This can be a challenge under 

culture conditions when selecting for growth traits. Early maturing lines of tilapia (O. 

niloticus) demonstrated the relationship between growth, age and size at maturity as they 

grew faster and larger when compared with a late maturing line (Uraiwan, 1987). 
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 In most cases, the males are larger and more colorful in order to attract the 

female’s attention (El-Zarka, 1970 as cited in Trewavas, 1983 pp. 187).  However, this is 

not the case for Oreochromis niloticus.  The males and females are similar in size at 

spawning and both display a red hue on the belly and lower flanks.  The males red hue is 

usually brighter than the females (El-Zarka, 1970 as cited in Trewavas, 1983). 

2.2.4.3 Mating  
 Oreochromis niloticus species are maternal mouthbrooders with no pair bonding.  

The male selects an appropriate mating site to dig a nest, one meter in diameter and one 

half a meter deep (Boulenger, 1908 as cited by Trewavas, 1983). With a little luck, the 

male attracts a ripe female who lays eggs in the nest.  She then picks up the eggs while 

the male is fertilizing them. The female takes the fertilized eggs in her mouth and finds a 

safe zone.  This series of events lasts only minutes.  Oreochromis niloticus may also be 

polyandrous and polygamous, with females allotting eggs for more than one male, and 

males fertilizing eggs for more than one female (Keenleyside, 1991). 

2.2.4.4 Parental Care 
 Parental care is a rare feature in most fish, but is a successful reproductive 

strategy in fish of the Cichlidae family (Keenleyside, 1991).  The importance of parental 

care is to increase fitness by supporting growth and development of the young and 

providing protection from predators (Keenleyside, 1991). Parental care is provided 

predominantly by the maternal side in Oreochromis niloticus species (Keenleyside, 

1991).  The female will carry her brood until they develop into free swimming fry.  She 

may release the brood from time to time so that she can forage. 
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 Egg churning, moving the eggs around in the mouth in a circular motion, is seen 

in all mouthbrooders (Keenleyside, 1991).  It allows for metabolic waste from the eggs 

to be removed.  As the brood develops into wrigglers (non-free swimming young) and 

finally into fry, their oxygen needs rise and is also accounted for by churning 

(Keenleyside, 1991).   

 

2.2.4.5 Reproduction 

 Regardless of the species of tilapia, the most important factors in determining 

their breeding season are environmental changes including the change in temperature, 

the amount of rainfall, and the lunar cycle.  The breeding season for Oreochromis 

niloticus in its natural habitat is dependent on latitude (Trewavas, 1983).  For example, 

the increase in water temperature in April allows for the start of spawning in the Nile 

delta (Trewavas, 1983).  The spawning period can last until August with a peak in 

fertility in May (Trewavas, 1983).  In some cases, the breeding season can go all year 

round as seen in equatorial waters.   

 A study of the effect that photoperiod and temperature had on Oreochromis 

aureus, Oreochromis niloticus, and Oreochromis mossambicus showed that 

Oreochromis aureus were strongly influenced by long days (>12 hours of light) and 

inhibited by short days regardless of favorable temperatures (Baroiller, 1997).  

Oreochromis niloticus was inhibited by short days.  However, minor increases in 

temperature stimulated spawning activity (Baroiller, 1997). 

 Tilapia production occurs primarily in the tropics with year round breeding 

seasons.  However, problems arise with mixed sex populations (Keenleyside, 1991).  If 
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tilapias are placed in a confined space, with mixed sex populations that are allowed to 

breed freely, the result is an early maturing and highly prolific stock that will lead to 

overpopulation with undersized fish (Keenleyside, 1991).  This approach from a 

management perspective is inefficient, which is why most producers collect the fry or 

fingerlings.  In order to regulate population size, fry can be easily netted because they 

swim in schools for several days once they leave the mouthbrooder and then placed in 

alternative culture systems (Stickney, 1986).   

 In intensive culture systems some producers strip the females of their eggs by 

using shaker tables (Stickney, 1986).  The basic idea behind this method is that the eggs 

are removed from the mouthbrooder through a shaking motion.  The eggs are then 

incubated in conical shaped incubation chambers with updraft water flow (Stickney, 

1986).  This method is labor intensive and reports indicate that it may lead to poor 

survival (Stickney, 1986). 

 Once the fry or eggs have been collected, it is ideal to have an all male 

population for controlling reproduction (Keenleyside, 1991).  This can be achieved by 

one of three management strategies.  The easiest is manual sexing of the fry.  This 

method is very time consuming, results in half the stock being discarded and has a high 

source of error (Keenleyside, 1991).  The second method involves producing all male F1 

hybrid progeny through cross breeding tilapias of different species. Crossing 

Oreochromis niloticus with Oreochromis aureus, Oreochromis mossambicus, or 

Oreochromis urolepis hornorum will result in a high percentage of the progeny being 

male.  However, if the parental lines are not kept separate or backcrossing of progeny to 

parents occurs, the all male effect will be lost (Keenleyside, 1991).   
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 The final method for producing all male progeny is sex reversal of females 

through hormone treatment (Keenleyside, 1991).  This method has been difficult to 

implement in intensive culture systems but is currently being used in a number of 

Taiwanese hatcheries (Keenleyside, 1991). 

 

2.2.5 Production of Tilapia  

 Tilapia production has recently expanded to virtually every country (Courtenay, 

1997).  The Caribbean islands were among the first nations to have introduced tilapia.  

The introduction occurred around 1940 (Courtenay, 1997).  The primary objectives with 

the introduction of tilapias were to reduce mosquito populations, provide food for human 

consumption and be sold as ornamental fish (Courtenay, 1997).  In 1954, Auburn 

University in Alabama, received tilapia, marking the first introduction of tilapia in North 

America (Courtenay, 1997). 

  Due to the introduction of tilapia species for biological control and food 

resources, escapes from culture facilities as well as releases by hobbyists, feral 

populations can be found in every country that tilapias have been imported to 

(Courtenay, 1997).  Currently, there are few regulations governing the importation of 

non-indigenous fish species.  The Department of Fisheries and Oceans has submitted a 

draft form regarding the National Policy on Introductions and Transfers of Aquatic 

Organisms with the intention of reducing risk of diseases and parasites as well as 

altering existing populations and ecosystems (Courtenay, 1997). 
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2.2.5.1 Culture Systems 

 Tilapia can be raised under a number of different culture systems including 

cages, ponds, raceways, closed and semi-closed indoor recirculating systems.  While 

each culture system is unique and has many advantages and disadvantages, they all share 

the common goal of efficient production.  

 Cages are used in circumstances where fish can not be controlled without human 

interaction (Stickney, 1986).  Lakes, streams, and reservoirs often require fish to be 

enclosed with wire fabric or nylon netting which is attached to a rigid frame that may be 

suspended to a floating platform or flotation devices (Stickney, 1986).  Generally, good 

water quality is achieved in cage systems which allow for higher stocking rates.  The 

start up costs, maintenance, and replacement costs of cages can be quite high (Stickney, 

1986).  As well, it is difficult to control diseases, and production may be lost due to net 

damage. 

 Ponds are used by small culturists and researchers because they are easy to 

maintain and have low costs associated with them (Stickney, 1986).  Culture ponds are 

rectangular or square in shape, man made, do not receive runoff from near by water 

bodies and are filled with well water or water pumped from a stream (Stickney, 1986).  

Production levels are directly related to pond design including side slopes, drain 

structure and inflow lines, which are needed to ensure adequate water levels at all times, 

provide proper drainage and prevent vegetation growth within the pond (Stickney, 

1986).   

 The production of tilapia in raceways, an enclosed channel system, is very 

efficient.  Raceways can accommodate extremely high densities of fish which can be 
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maintained due to the high rates of water flow (from gravity) resulting in exceptional 

water quality (Stickney, 1986).   

 

2.2.5.1.1 Recirculating Systems 

 Closed systems, also known as recirculating systems, allow water to circulate 

within a number of culture tanks passed through a settling column to remove solids, and 

a biofilter to detoxify the ammonia produced by fish (Stickney, 1986). Recirculating 

systems can also be a semi-closed system where small amounts of water are removed 

and replaced with fresh water.  Closed or semi-closed systems are beneficial for 

production of tilapia species in countries that do not have warm year-round climates or 

have a shortage of fresh water or available land (Losordo, 1997).   

 Recirculating systems designs are based on cost-effective water treatment.  An 

effective recirculation aquaculture system must provide for the effective removal of 

waste solids, fine and dissolved solids, oxidization of ammonia and nitrite nitrogen, 

addition of oxygen as well as removal of carbon dioxide (Losordo, 1997). 

 Culturing tilapia in recirculating systems has a number of disadvantages.  

Complete diets must be formulated and a feeding system implemented using either hand 

or a mechanical feeder.  Depending on the type of system, pollution of surrounding 

water or land with nutrients and organic matter may arise from water and waste 

discharge (Rakocy, 1989).  Pumps, aerators, filters, CO2 and heaters can be costly and 

need constant upkeep (Rakocy, 1989).  Finally, with high stocking densities, fish are 

subjected to increased stress which may result in disease outbreaks (Rakocy, 1989). 
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2.2.5.2 Economic Importance of Tilapia 
 In 2000, according to the Food and Agriculture Organizations of the United 

Nations, the world aquaculture and commercial catch of tilapia was 1,943,389 tonnes.  

Commercial catch accounted for 677,609 tonnes while aquaculture produced 1,265,780 

tonnes (FAO, 2002). 

 China is currently the largest producer of tilapia with 157,233 tonnes/year 

followed by the Philippines, Indonesia, Thailand and Egypt (Food and Agriculture 

Organizations of the United Nations, 1994).  Canada produces approximately 100 tonnes 

of tilapia per year (Fitzsimmons, 2000) mainly in recirculation systems in Ontario and 

Alberta. Most tilapia in Canada are sold as live or unfrozen fish for the restaurant trade 

(Fitzsimmons, 2000). U.S. production of tilapia is a $65 million industry with tilapia 

consumption reaching over 10,000 tonnes in 1992 (Stutzman, 1995). 

 

2.2.5.3 Marketing Tilapia 

  When tilapia production was still in its early phases, the primary consumers were 

of oriental descent (Engle, 1997).  Tilapia production was met through small producers 

since the demand was for live fish only.  As the number of Asian consumers in Canada 

and the U.S. increased, frozen tilapia began to be imported from Taiwan (Fitzsimmons, 

2004).  Today, tilapia is sold in a number of forms including live, whole, fillets, fresh, 

frozen or smoked.  Boneless fillets, yielding between 142 - 227 g, attract the majority of 

buyers (Engle, 1997).   

 Live fish prices (US dollars) have dropped from $6.60/kg (1989) to $1.65/kg 

(1993) with the cost of production being lowered by efficient farms (Engle, 1997).  

Retail price for frozen whole tilapias ranged between $2.20 - 5.00/kg (1999), while fresh 
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fillets peaked at $12.00/kg in 1999 (Fitzsimmons, 2004).  Presently, prices for all tilapia 

products are much lower than in 1993 due to higher production rates (Fitzsimmons, 

2004).  

 It is clear that there is a market for tilapia within the U.S based on the growth of 

the industry, but the future of this product relies heavily on the consumer.  Engle (1997) 

summarized key elements needed for continued growth of the tilapia market, which was 

collected using a telephone survey of companies who sold, distributed, or imported 

tilapia.  The first element was quality.  Off-flavor fish, poor grading, and size have led to 

inconsistencies in tilapia quality.  Secondly, pricing needs to be competitive with other 

fish products and the marketing of tilapia needs to have one strong voice which can 

promote tilapia to consumers. Finally, supply must be consistent for retailers in order to 

develop product assurance.  

 

2.3 Nutrient Requirements for Tilapia 

2.3.1 Energetics 

 Energy partitioning (Figure 2.1) in fish is significantly different than in mammals 

and birds. This is due to 2 factors: 1) fish are poikilothermic and 2) energy expenditure 

to produce urea or uric acid is avoided because fish excrete ammonia directly through 

their gills (De Silva and Anderson, 1995). In terrestrial livestock, the energy losses due 

to the heat increment can be 20-30% of the intake energy (Farrell, 1974) while for 

rainbow trout this is only 5-15% of intake energy (Cho et al., 1982). Furthermore, the 

maintenance energy requirements of fish are only 5-10% of those for similar sized 

terrestrial livestock (Brett, 1973). These differences mean that fish are significantly more 
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efficient in converting feed into body tissues than terrestrial species if an optimal 

environment is provided. 

The amount of energy needed for the synthesis of uric acid or urea is equal to 3.1 

to 2.4 kcal g-1 of nitrogen in birds and mammals respectively whereas the amount of 

energy fish require to release nitrogen as ammonia, through the gills, is negligible 

(National Research Council, 1993).  With higher protein in terrestrial diets, there will be 

an increase in nitrogen excretion resulting in more energy needed to produce urea and  

uric acid, whereas fish do not have to expend more energy for nitrogen excretion when 

fed higher protein diets. These two factors account for the fact that feed efficiency in 

finfish is often less than 1 kg feed per kg body weight gain. 

 

2.3.2 Energy Value of Feed Ingredients  

2.3.2.1 Protein  

 Protein is relatively more important as an energy source in aquaculture diets than 

poultry or pig diets (National Research Council, 1993). The protein requirements of fish 

species are higher than for terrestrial livestock ranging from 30% for tilapia to as high as 

42% for rainbow trout (National Research Council, 1993). Net protein retention for fish 

is between 20 and 50%, similar to values for pigs and poultry (Bowen, 1987). The 

reason for the higher protein requirements for fish is that their energy requirements are 

lower (Smith, 1989). Lower energy requirements for heat increment and maintenance 

mean that a higher protein: energy ratio is required in aquaculture diets (National 

Research Council, 1993). The ratio of digestible protein to energy required for optimal 

fish growth ranges from 81-117 mg kcal-1 (National Research Council, 1993) which is  
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Figure 2.1.  Energy flow through fish (National Research Council, 1993). 
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significantly higher than for pigs and broiler chickens which range from 40-60 mg kcal-1 

(National Research Council, 1993). 

 Like terrestrial animals, fish eat to meet their energy requirements (National 

Research Council, 1993).  When energy is in excess, fish may reduce feed intake thereby 

limiting the intake of amino acids needed for growth, while deficient energy leads to the 

utilization of protein for maintenance instead of growth (National Research Council, 

1993).  A study by Cho and Jo (2002) examined the effect of feeding a high energy diet 

(4.27 kcal g-1) compared with a low energy diet (3.84 kcal g-1) with similar protein 

levels.  The results of this study showed that high energy diets did not improve the 

performance of Nile tilapia even under limited feed allowance.  Visceral fat content of 

fish was significantly higher for fish fed the higher energy diets (Cho and Jo, 2002).  

 In most fish species, protein is utilized for energy.  However, once this 

requirement has been fulfilled, the remaining protein can be utilized for growth and 

protein accretion (National Research Council, 1993).  In terrestrial animals, the amount 

of protein retained for growth is similar to that of fish and is estimated to be around 20 – 

50 % for birds and mammals and 30% for fish (National Research Council, 1993).  

Protein requirements vary with each species as well as individual weight (National 

Research Council, 1993).  As the weight of an individual increases with maturity, 

protein requirements decrease (National Research Council, 1993).  The most economical 

dietary protein levels for different stages of Oreochromis niloticus are shown in Table 

2.3.  Hafedh (1999) showed that tilapia fry, weighing 0.5 grams, had the best growth and 

matured earlier when fed protein levels around 40%.  As tilapia increased in age (100 – 

200 grams), optimal dietary protein level was shown to decrease to 30%, resulting in  
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Table 2.3 Inclusion rates of dietary protein for tilapia species at varying stages of      

 growth. 

Stage Dietary Protein Level (g kg-1) 

Tilapia Fry (0.51 g) 400 

Juvenile Tilapia (45 g) 400 

Adult Tilapia (96-264 g ) 300 

Source: Hafedh, 1999 

   
Table 2.4 Amino acid requirements for tilapia.  

 

a Cystine 1.5 g kg-1of feed DM. 
b Tyrosine 5.0 g kg-1of feed DM. 
Source: National Research Council, 1993 

 

Amino Acid  Protein In Diet (%) g kg-1of feed DM 

Arginine 28 11.8 

Histidine 28  4.8 

Isoleucine 28   8.7 

Leucine  28   9.5 

Lysine  28 14.3 

Methioninea 28   7.5 

Phenyalanineb 28 10.5 

Threonine 28 10.5 

Tryptophan 28  2.8 

Valine 28  7.8 
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higher relative fecundity for females compared with higher dietary protein levels 

(Hafedh et al., 1999).  

 While Table 2.3 lists the most economical dietary protein levels, Twibell and 

Brown (1998) argue that fish weighing approximately 21 grams, which is generally the 

size at which fish enter the grow out phase in production operations, require a minimum 

crude protein allowance of 28% for maximum growth and feed efficiency when fed 

100% plant based diets in tank culture systems.  Similarly, Hanley et al. (1997) reported 

that 28% protein for adult tilapia (weighing approximately 150 grams) provided optimal 

growth with no extra cost compared with lower protein levels. 

 Although protein is an important energy source for tilapia, it also provides amino 

acids required for protein metabolism (National Research Council, 1993). Tilapia 

require the same 10 essential amino acids as terrestrial vertebrates including arginine, 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan 

and valine (National Research Council, 1993). The amino acid requirements for tilapia 

can be found in Table 2.4. 

 Because tilapias are cultured around the world, a number of different protein 

sources have been used as a partial or total replacement for fishmeal.  El-Sayed (1998) 

compared shrimp meal (SM), blood meal (BM), meat and bone meal (MBM), blood 

meal and meat and bone meal mix and a poultry by-product meal (PBM) as protein 

sources for O. niloticus fingerlings. This study showed that SM, MBM, PBM can 

replace fishmeal without adversely affect growth but feed conversion and protein 

efficiency ratios were significantly lower than FM diets (El-Sayed, 1998).  When 

looking at the cost and benefit of these ingredients compared with FM, analysis 
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concluded that SM, MBM and PBM were better protein sources than FM (El-Sayed, 

1998). 

 Fagbenro (1998) studied the impact of replacing fish meal protein with legume 

seed meals, which have low market prices and improved accessibility, would have on 

the replacement of fish meal in tilapia diets.  The legumes winged bean, jack bean, 

African locust bean, velvet bean, pigeon pea and lima bean seeds were roasted in order 

to eliminate heat labile antinutritional factors present.  The author concluded that all the 

legume seed meals tested were suitable for tilapia diets, if properly processed. However, 

the winged bean had the highest energy and crude protein when compared with the rest 

of the ingredients.   

 Alfalfa leaf protein concentrate was able to replace up to 35% of the fishmeal 

without negatively affecting growth parameters (Olvera-Novoa et al., 1990).  Including 

alfalfa leaf protein concentrate at levels higher than 35% of fishmeal reduced growth 

likely caused by limiting sulfur amino acids. 

 Fontainhas-Fernandes et al. (1999) noted that extruded pea seed meal, defatted 

soyabean meal, full-fat toasted soyabean, and micronized wheat (wheat subjected to 

infrared micronization and then flaked in a roller mill) had high apparent digestibility 

coefficients for dry matter, crude protein and gross energy, whereas triticale, lupin seed 

meal, faba bean meal and pea seed meal had low apparent digestibility coefficient 

compared with fishmeal.  The results of this study suggest that there is a possibility of 

partial replacement of fishmeal with plant ingredients that have high apparent 

digestibility coefficients.  However, 100% replacement resulted in reduced performance. 

 Sklan et al. (2004) compared apparent digestibility coefficients for soyabean 

meal, rapeseed meal, sunflower meal, corn gluten meal, wheat, corn, sorghum, barley, 
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and wheat bran and concluded that crude protein digestibility for these ingredients 

ranged between 75 to 90%.  The lowest crude protein value was for corn and wheat. 

2.3.2.2 Lipid 
 Protein and lipids are well utilized sources of energy for fish (Cruz, 1975; Smith, 

1976; Popma, 1982).  However, protein is relatively expensive so lipids are used to spare 

protein and decrease the cost of tilapia diets. Chou et al. (1996) studied the effect of 

varying levels of lipid on growing hybrid tilapia (O. niloticus x O. aureus).  Fish fed 

diets containing 0% lipids had comparable growth for the first two weeks of the trial 

followed by a sudden reduction in growth likely caused by limiting essential fatty acids.  

Using polynomial regression analysis, the authors estimated the optimal level of lipids at 

12%, while 5% lipid did meet the dietary requirements. In another study, the addition of 

5, 9 or 12% lipid (oil: yellow grease) to tilapia diets, resulted in no differences in growth 

and feed conversion (Hanley, 1991).  Hanley (1991) concluded that improvement to 

tilapia diets may be better achieved through the quality and level of protein or lipid 

rather than the quantity of lipid added.  Furthermore, Hanley (1991) noted that the 

addition of lipid resulted in increased levels of visceral fat in the fish carcass.  Wu et al. 

(1999) studied the effect that two different levels of soy oil had on the growth of Nile 

tilapia.  The results indicated no differences in weight gain, feed conversion or protein 

efficiency ratios between the two levels (5.5 or 7.3 %). However, when considering 

weight gain, the most favorable diet contained the higher level of soy oil. A study by De 

Silva et al. (1991) examined three different levels of protein (15, 20 and 30%) combined 

with one of four levels of lipids (6, 12, 18 and 24%).  For all three levels of protein, the 

authors concluded that the best growth was obtained with the addition of 18% lipid. 
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2.3.2.3 Carbohydrate 
 Carbohydrate utilization among fish species is extremely variable. However, 

tilapia and catfish can digest over 70% of uncooked dietary starch (Popma, 1982; 

Wilson and Poe, 1985) while rainbow trout can digest less than 50% (DeSilva et al., 

1995).  The potential for incorporation of carbohydrates into the diets of fish depends on 

the species of fish, type and amount of carbohydrate and the environmental conditions 

available.  One study compared the effect of carbohydrate composition on absorption  

efficiency and reported that monosaccharides had greater absorption efficiency followed 

by disaccharides, cooked starch and finally raw starch (Bergot, 1979).  Starch 

digestibility decreased with increasing levels of starch in rainbow trout diets (Bergot and 

Breque, 1983).  As well, environmental factors such as water temperature also affected 

digestibility.  Warm-water fish can utilize higher levels of carbohydrates than cold-water 

and marine species (National Research Council, 1993).  

 The objective of a number of studies has been to include carbohydrates in fish 

diets with the idea that protein will be spared as an energy source and used for growth 

(Anderson et al., 1984).  Anderson et al. (1984) observed an increase in growth for Nile 

tilapia fed diets containing either starch or dextrin as compared with carbohydrate free 

diets.  Diets containing up to 40% starch or dextrin did not decrease growth. 

 Testing the effect of maltose, sucrose, lactose, glucose and starch for juvenile 

Oreochromis niloticus x O. aureus showed that weight gain was highest for fish fed 

starch followed by maltose, sucrose, lactose and finally glucose (Shiau and Liang, 

1995). Higher levels of body fat were found in fish fed the starch diet, intermediate body 

fat levels were observed in fish fed the disaccharide diets followed by the lowest levels 

of body fat in fish fed the glucose diets.  Shiau and Peng (1993) indicated that the 
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storage of body fat was a direct indication that carbohydrates are sparing protein from 

being used as an energy source so that it may be used for growth. 

  Shiau and Peng (1993) studied nine diets which were formulated based on three 

levels of protein (24, 28 and 32%), three levels of carbohydrate (33, 37 and 41%) and 

three types of carbohydrates (glucose, dextrin, starch).  The results of this study 

indicated that carbohydrates can have a protein sparing effect for tilapia if protein levels 

are decreased and starch or dextrin is added to the diet at levels no higher than 41%. 

 Tung and Shiau. (1991) reported that dextrin and starch provided better growth, 

feed efficiency, protein efficiency and energy retention compared with glucose.  This 

study also indicated that carbohydrates were better utilized when fish were fed six times 

a day rather than two times a day.  

 Feeding schedule was not a factor when Oreochromis niloticus x O. aureus were 

fed either a 30% starch or a 30% glucose diet (Lin et al., 1997).  Continuous feeding 

versus two meal feeding had no effect on growth parameters such as specific growth 

rate, feed efficiency, or protein efficiency ratio.  However, the carbohydrate source did.    

Similar to the findings of Shiau and Peng (1993), Tung and Shiau (1991), Shiau and 

Liang (1995) and Anderson et al. (1984), Lin et al. (1997) results indicated that starch 

was utilized better than glucose. 

 Shiau and Lin (1993) observed an increase in glucose utilization in tilapia when 

chromium chloride was added to the diet.  Higher weight gain was seen in tilapia fed 

0.5% chromium chloride compared with 2 % in a study by Shiau and Liang (1995).  It 

was determined in this study that glucose utilization was highest when fed chromic 

oxide as opposed to other forms of chromium (Shiau and Shy, 1998).  From this point, 

the dietary requirements of chromium needed to be determined in order to allow 



 34

maximum glucose utilization, Shiau and Shy (1998) studied the difference between 0, 2, 

10, 50, 100, 300, 1000 and 5000 mg kg-1 of chromic oxide.  The dietary requirement of 

chromium was decided by the broken-line model and was estimated to be 204 mg kg-1 of 

feed for maximum growth.  No significant effects on growth were seen when chromium 

picolinate, an organic form of chromium, was added to diets with either dextrin or 

glucose and fed to a hybrid tilapia (Pan et al., 2003).  

 Excessive carbohydrates in the diet can lead to liver cell degeneration, 

hyperglycaemia and poor growth (Roberts, 1978).  The occurrence of hyperglycaemia is 

determined by the level of glucose ingested.  However, it can be effectively regulated 

within 24 hours (Bergot, 1979). Severe hyperglycaemia and elevated liver glycogen was 

reduced when insulin injections were administered following an introduction of glucose 

into the stomach of rainbow trout (Palmer and Ryman, 1972 as cited by Steffens, 1989).  

Austreng et al. (1977) fed rainbow trout 17, 25 and 38% of metabolizable energy as 

carbohydrates for 24 weeks.  Their results showed heavier livers and a higher percentage 

of discolored livers in fish fed the highest level of carbohydrate.  

 Anderson et al. (1984) studied the effect of α-cellulose in Nile tilapia diets.  No 

reduction in growth was observed at low levels (10%).  However, as α-Cellulose 

(produced by Sigma Chemical Co.) was increased, growth, feed conversion efficiency, 

and net protein retention were considerable reduced.    

2.4 Peas, Canola and Flax as Ingredients in Tilapia Diets 
2.4.1 Peas 

 Field pea is a pulse crop grown in Western Canada with over 2 million acres 

seeded and 1.5 million tonnes produced in Saskatchewan in 2003 (SAFRR, 2004).  Peas 
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have low lipid content (< 10 g kg-1), and an average protein content of 22 g kg-1 

(Nwokolo, 1996).  Globulins, albumins and glutelins make up the protein structure of 

leguminous plants such as peas (Nwokolo, 1996).  The majority of the protein is in the 

form of globulins which makes up approximately 70% of the protein (Nwokolo, 1996).  

Legumes tend to be low in the sulfur containing amino acids cystine and methionine 

(Nwokolo, 1996).   

 Other dietary components of legumes include carbohydrates and fiber.  

Carbohydrates, mainly starch, account for roughly 70% of the seed weight (Nwokolo, 

1996).  Smaller carbohydrates include sucrose and some oligosaccharides (Nwokolo, 

1996).  A noticeable amount of fiber can be found in legumes, making them an excellent 

choice for human consumption (Nwokolo, 1996), but this may be a cause of concern for 

tilapia species.  

 

2.4.1.1 Antinutritional Factors 

 Peas contain some antinutritional factors that may hinder its ability to provide 

protein to fish.  They contain small amounts of tannins, protease inhibitors, and phytic 

acid in the testa and kernel (Castell et al., 1996). As well, large amounts of 

oligosaccharides and polysaccharides can be found in the cell wall (Castell et al., 1996). 

 

2.4.1.1.1 Protease Inhibitors 

 A number of digestive enzymes including trypsin, chymotrypsin, α-amylase and 

lipase may be inhibited by plant compounds that will ultimately reduce the digestion of 

nutrients, which can lead to an impairment of body metabolism, growth and overall 

health (Grant, 1998).  Referred to as protein protease inhibitors, they are classified into 
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two distinct categories; Kunitz as well as Bowman and Birk (Castell et al., 1996).  

Kunitz generally targets trypsin and has a molecular weight of 20 kilodaltons with two 

disulfide bridges and one reactive site whereas Bowman and Birk is capable of 

inhibiting chymotrypsin, and a few other enzymes (Liener, 1994).  Five Bowman and 

Birk type inhibitors have been identified with similar characteristics such as molecular 

weight between 6 and 10 kilodaltons, a high number of disulfide bonds and seven 

disulfide bridges, and two reactive sites (Liener, 1994).   

 Protein protease inhibitors are found in peas, with 10% of the primary activity 

found in the hulls (Owusu-Ansah, 1991).  The concentration and activity of the protease 

inhibitor depends on species, season, and physiological status of the plant (Grant, 1999).  

For example, winter varieties of white peas display 2-4 times more activity than spring 

varieties, and smooth peas have higher concentrations than wrinkled peas (Gatel, 1994).  

 Reduced food conversion efficiency and weight gain are seen when protease 

inhibitors are fed to young animals.  However, body weight is unaffected in older 

animals (Grant, 1999).  The reason for the reduction in food conversion and weight gain 

in young animals is due to a loss of amino acids in the form of pancreatic enzyme 

secretions by a hyperactive pancreas (Booth et al., 1960).  Enzymes originating from the 

pancreas are especially high in the sulfur containing amino acids methionine and 

cysteine.  Therefore, a hyperactive pancreas will divert these essential amino acids away 

from body tissue protein towards the synthesis of pancreatic enzymes (Liener, 1994).   

  

2.4.1.1.2 Tannins 

 Tannins have been found to produce adverse nutritional effects in animals fed 

tannin rich diets (Mueller-Harvey, 1999).  Some common nutritional effects include 
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reduced weight gain, poor feed conversion efficiency, reduced apparent digestibility of 

protein and reduced feed intake (Jansman, 1993).  These effects are not seen in all 

animals, and the extent is variable depending on the source of the tannins, concentration, 

duration of exposure, diet composition, species of animal, age of the animal and 

production level (Jansman, 1993). 

 Tannins play an important role in the biological activities of the plant (Jansman, 

1993).  Because of their bitter and astringent taste, herbivores and birds may refrain 

from eating the plant (Jansman, 1993).  As well, some plants may produce tannins in 

response to stressors such as defoliation, low soil fertility, water deficits or adverse 

temperatures (Mueller-Harvey, 1999).   

 Tannins are described as water-soluble polymeric phenolics with high molecular 

weight between 500 and 3000 daltons (Nackz et al., 1998).  Two types of tannins exist in 

nature, mainly condensed and hydrolysable.  Condensed tannins consists of linked 

flavanol units that are susceptible to a large number of permutations depending on the 

total number and positioning of  OH groups, stereochemistry and the total number and 

positioning of the flavanol units (Mueller-Harvey, 1999).  Hydrolysable tannins are 

formed from a number of gallic acids attached to a common sugar.  Like condensed 

tannins, hydrolysable tannins are variable depending on the type of sugar, and the 

number and linkage of gallic acid units (Mueller-Harvey, 1999).   

 Tannins have the ability to bind to amide groups of enzymes and other proteins 

using hydrogen bonds and create large blocks of amino acids that are resistant to 

digestive enzymes (Sosulski, 1979 as cited by Wang et al., 1998).  Because of this 

factor, it is important to consider the concentration of tannins in fish diets.  Commonly, 

tannins are reported in the Leguminosae family where they can be found in the 
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condensed form.  The testa layer generally contains the tannins and is related to the color 

of the pericarp (Jansman, 1993).   

 A study involving seventeen cultivars of field peas commonly grown in Western 

Canada concluded that there was a significant difference in the phenolic levels between 

cultivars (Wang et al., 1998).  The phenolic concentrations ranged from 162 to 325 

mg/kg (dry matter).  However, very little condensed tannins were reported.  It was 

apparent that genotype was the deciding factor determining phenolic concentrations 

whereas the environment played a relatively small role (Wang et al., 1998). 

 

2.4.1.2  Digestibility of Peas in Aquaculture 

 The digestibility of pea seed meal by Nile tilapia was examined by Fontainhas-

Fernandes et al. (1999) who reported that this ingredient had the lowest apparent 

digestibility coefficients for dry matter (46.1 %), protein (77.6 %) and energy (1.18%) 

observed in the study compared with lupin seed meal, triticale, faba bean meal, defatted 

soyabean meal, full-fat toasted soyabean and micronized wheat.  However, when the pea 

seed meal was extruded, the apparent digestibility coefficient was similar to the highest 

tested vegetable proteins including: micronized wheat, full-fat soyabean and defatted 

soyabean meal.   

 Booth et al. (2001) looked at the difference in digestibility between field pea, 

dehulled field pea and field pea concentrate for silver perch (Bidyanus bidyanus).  

Dehulling field peas significantly improved protein digestibility.  However, field pea 

concentrate was significantly higher than whole or dehulled field peas for protein, dry 

matter and energy digestibility (Booth et al., 2001). 
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 Peas are a viable option, to replace soyabean meal, in rainbow trout diets if they 

are dehulled, or subjected to air classification with pea protein concentrate as the end 

product (Thiessen et al., 2003).  The optimum level of inclusion for dehulled peas or pea 

protein concentrate was found to be 25% or 20% respectively without negatively 

affecting growth (Thiessen et al., 2003). 

 

2.4.2 Canola 

 Canola is an important oil seed for Western Canadian crop production.    In 2003, 

production rates reached well over 2.6 million tonnes (Saskatchewan Agriculture Food 

and Rural Revitalization, 2004).  The whole seed contains approximately 21% crude 

protein while canola meal contains approximately 36% crude protein (Naczk et al., 

1998; Uppström, 1995).  Similar to peas, globulins make up 70% of the protein, with 

albumins and oleosins representing the remaining protein (Uppström, 1995).  However, 

unlike peas, canola is rich in sulfur amino acids and lysine (Uppström, 1995).  The fiber 

content of canola is primarily found in the hull and ranges from 12 – 30% in canola meal 

(Uppström, 1995).   

 

2.4.2.1 Antinutritional Factors 

 Similar to the field pea, canola and canola meal have antinutritional elements that 

need to be considered before inclusion into fish diets.  Canola contains tannins, 

glucosinolates, phytic acid, and a high level of fiber (Bell, 1993). 
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2.4.2.1.1 Glucosinolates 

 With the development of low erucic acid rapeseed, commonly referred to as 

canola, a reduction in glucosinolates was obtained (Bell, 1993).  Canola contains almost 

ten times fewer glucosinolates with 10-12 μmoles of glucosinolates per gram of oil free 

dry matter, compared with the rapeseed varieties with 110-150 μmoles of glucosinolates 

per gram of oil free dry matter (Bell, 1993).  However, the level of glucosinolates in 

canola is still a concern in animal feeding regimes.   

 Glucosinolates are concentrated mainly in the seed embryo at full maturity which 

is shown by the increase in glucosinolate levels after dehulling, but they can be found 

virtually anywhere in the plant (Bell, 1993).  After ingestion, glucosinolates will 

decompose into toxic derivatives such as isothiocyanates, nitriles and thiocyanates 

through the help of plant enzymes and lower gastrointestinal microorganisms (Orginsky 

et al., 1965).  In order for this to occur, the plant enzyme myrosinase must be present; 

otherwise glucosinolates are more or less harmless (Orginsky et al., 1965).   

 

2.4.2.1.2 Phytic Acid 

 Phytic acid is a cyclic inositol ester containing six phosphate groups and occurs 

in cereals, grain-byproducts and oilseed meals (Castell, 1996).  Phytate can be located in 

the seed embryo where it is the main storage site of phosphorus (Likuski and Forbes, 

1965).  Canola meal may contain approximately 1.22% total phosphorus with 0.53% 

bound to phytic acid (Bell, 1993).  

 Phytic acid negatively affects the utilization of minerals which can be seen by its 

ability to bind up to 75% of all phosphorus (National Research Council, 1998).  It can 

chelate di and trivalent metals including calcium, magnesium, zinc and iron into 
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compounds that are less easily absorbed in the intestine. (Liener, 1994).  Phytic acid also 

has the ability to nonselectively bind to protein and inhibit activities of a number of 

digestive enzymes such as pepsin, trypsin, and alpha-amylase (Liener, 1994). 

 Negative effects were seen when rainbow trout were fed purified diets containing 

phytic acid.  Phytic acid was included in the diets at levels typical of salmon diets 

(0.5%), leading to a reduction in growth and feed conversion between 8-10% over 150 

day period (Spinellie et al., 1983).  Spinelli et al. (1983) hypothesized that a protein 

phytate complex was formed that was only partially digestible by pepsin.  

 

2.4.2.1.3 Tannins 

 Tannins have also been detected in the hulls of a number of canola cultivars.  A 

study by Naczk et al. (1994) observed the total content and activity of tannins in hulls of 

canola varieties.  Tannin concentrations between 144 to 797 mg 100 g-1 of canola hulls 

were observed, which is 8 times higher than previously sited (Mitaru et al., 1982; Leung 

et al., 1979).  This leads to the conclusion that both genotype and environmental 

growing conditions have a significant impact on tannin levels in canola hulls.  Biological 

activity is determined by the ability of tannins to bind/precipitate proteins (Naczk et al., 

1994).  Low-tannin cultivars (Delta) displayed greater binding to proteins with a 

precipitation index of 17.7 to 40.7 mg of blue BSA solution/mg of tannins, compared 

with the high-tannin cultivars (Westar) which did not exceed 5.0 mg of blue solution/mg 

of tannins (Naczk et al., 1994). 
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2.4.2.2 Digestibility of Canola in Aquaculture 

 Rapeseed meal with 7.49 mg g-1 of total glucosinolates was fed to tilapia for nine 

weeks (Jackson et al., 1982).  Despite the good amino acid profile, inclusion levels of 

greater than 50% decreased growth rate by 22.7% in tilapia (Jackson et al., 1982). 

Similarly, juvenile tilapia (Oreochromis mossambicus Peters) fed a double low variety 

of rapeseed meal displayed poor growth parameters when included at levels higher than 

15% replacement for soyabean meal (Davies et al., 1990).  However, Soares et al. (2001) 

showed that the replacement of 48.17% soyabean meal with 35.40% canola meal did not 

affect feed: gain ratio or protein efficiency ratio of growing tilapia (O. niloticus). 

 Higgs et al. (1982) was able to replace 13 to 16% of the dietary protein in 

Chinook salmon diets with feedstuffs derived from canola.  However, the best 

performance was found with Bronowski rapeseed protein concentrate, which was able to 

be included in the Chinook salmon diet at 25% (Higgs et al., 1982).  In the same study, 

they observed higher inclusion levels of canola meal (30 to 32%) with the addition of 

3,5,3’-triiodo-L-threonine (T3) to reduce impairment of the thyroid gland caused by 

glucosinolates found in the canola (Higgs et al., 1982). 

 A study conducted by Higgs et al. (1983) concentrated on the inclusion levels of 

canola meal in the diets of Chinook salmon.  Provided that the dietary glucosinolate 

content of the canola meal was less than 2.65 μmoles/g of dry diet, canola meal could 

provide 25% of the required dietary protein. 

 Canola meal fines, with lower levels of fiber, glucosinolates and phytate 

produced by sieving conventional canola meal through a mesh screen and then washing 

with a solvent, were found to be a good substitution for soyabean meal in juvenile 

rainbow trout diets (Thiessen et al., 2003).  Results indicate that canola meal fines can 
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be included in rainbow trout diets up to 20% without negatively affecting growth and 

feed intake (Thiessen et al. 2003). 

 When thin distiller’s solubles, a byproduct of ethanol production that is high in 

glutamic acid and proline, was added to rainbow trout diets containing 15% canola meal 

at a level of 3.3 or 3.9%, feed intake was increased in a short term study (Thiessen et al., 

2003). 

 

2.4.3 Flax 

 Flaxseed is a good source of omega 3 and omega 6 fatty acids with 

concentrations of linolenic acid (18 : 3n-3) greater than 50 g 100g-1 of the total fatty acid 

concentration (Cunnane et al., 1993).   Omega 6 fatty acids can be found in the linseed at 

concentrations of 12.7% which would be adequate to fulfill tilapia fatty acid 

requirements.  As well, linseed contains approximately 23% crude protein with a good 

amino acid balance (Lee et al., 1991).  

  

2.4.3.1 Antinutritional Factors 

 While whole flaxseed has desirable nutrient characteristics for aquaculture diets, 

it contains antinutritional factors, the main ones being pyridoxine antagonist (linatine), 

cyanogenic glycosides and mucilage (Bhatty, 1993). Extruding linseed or any other 

processing which involves heat will destroy linatine and cyanogenic glycosides.  Flax 

contains 5-8% mucilage (DeMiller, 1986 as cited by Fedeniuk, 1994) and is a 

heterogenic polysaccharide that can be divided into acidic and neutral components 

(Cunnane et al., 1993; Fedeniuk et al., 1994).  Mucilage also has a large capacity to bind 
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to water and increases intestinal viscosity thus, reducing nutrient digestibility (Fedeniuk 

et al., 1994). However, mucilage is heat stable and must be removed from the seed by 

other processing to eliminate its negative nutritional effects. 

 Mucilage has been used for thickening and stabilizing a number of commercial 

products (Wanasundra and Shahidi, 1997).  However, it has caused problems with 

nutrient digestibility (Wanasundara and Shahidi, 1997).  Increasing the level, up to 240 g 

kg-1 of ground flaxseed caused a severe reduction in metabolizable energy and fat 

digestion when fed to growing broiler chickens (Ortiz et al., 2001).  In a study conducted 

by Alzueta et al. (2002), demucilaged flaxseed was exchanged for flaxseed and an 

improvement in metabolizable energy, digestibility of fat and major fatty acids were 

seen. Furthermore, protein yield was increased when flaxseed was dehulled by 

enzymatic treatments (Wanasundara and Shahidi, 1997). 

 

2.5 Processing Aquatic Feeds 

 Feed formulation must take into account the differences between terrestrial 

animals and aquatic species in order to maximize growth and feed efficiency.  Not only 

do fish have different sensory systems, they also have different feeding behaviours, 

which require different feed densities (floating versus sinking) and pellet sizes.  Water 

stability of pelleted feeds should also be considered when manufacturing diets for 

aquatic species.   

 Extrusion has proven to be a valuable technology in the aquaculture industry 

because it can increase nutrient availability of plant ingredients, and destroy micro-

organisms and antinutritional compounds found in plant sources (Woodroofe, 2003). 
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Buoyancy, size, pellet quality, and ingredient variability can also be manipulated during 

the extrusion process.  

 

2.5.1 Chemoreception 

 Fish sensory systems are different than terrestrial animals.  Fish have four main 

types of sensory systems including visual, chemical, mechanical and electrical (Hara, 

1992).  All of these senses play a role in feeding.  However chemoreception is likely the 

most important because it is the sensory system related to olfaction and gustation (Hara, 

1992).  The differences between terrestrial animals and fish in terms of gustation and 

olfaction lies with the media of transport namely air versus water and distant contact 

versus close contact (Kanwal and Finger, 1992).    

 

2.5.1.1 Olfaction  

 With olfaction, fish can detect odours through the nares, located in front of the 

eyes, which are connected to sensory cells found on the bottom of a pit (Reebs, 2001).  

As water is moved over the pit by water currents, swimming or respiratory movements, 

it passes over the sensory cells which can then notify the brain through olfactory nerves 

of a chemical stimulant, such as food (Reebs, 2001). 

 

2.5.1.2 Gustation  

 Gustation in fish is mediated by taste buds located in or around the mouth of fish.  

However, they can be located all over the body including fins, gills and barbells (Finger, 

1992).  Taste buds in fish have two distinct roles.  One is a long range detection of food, 
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while the other is short range which is used for acceptance or rejection of food (Kanwal 

and Finger, 1992). 

 A number of compounds such as aliphatic acids, bile salts, nucleotides, and 

amino acids are known to be excitatory stimuli in fish (Lamb, 2001).  Fish tend to be the 

most sensitive to amino acids, and more specifically L-amino acids (Marui and Caprio 

1992).  The taste receptors for amino acids can also have one of two distinct roles 

namely a wide range, which responds to several amino acids, or a small range, which 

responds to only specific amino acids (Hara, 1992).   

 

2.5.2 Fish Feeding Characteristics 

 The species of fish being cultured will determine what type of pellet is needed.  

Each fish species has a unique feeding method such as biters (Cichlidae), suction feeders 

(Cyprinidae), scoopers (Cichlidae), filterers (Mugilidae), luring (Centrophrynidae), 

stalkers (Lepisosteidae), chasers(Scombridae) and ambushing (Esocidae) (Gerking, 

1994).  Tilapia generally feed on slow sinking pellets, but they will also consume feed 

that has fallen to the bottom of the culture tank (Gerking, 1994).  Rainbow trout, on the 

other hand, like to chase their food and will not eat any pellets that have settled on the 

bottom of the culture tank (Gerking, 1994).   

 

2.5.3 Pellet Characteristics 

2.5.3.1 Dry vs. Moist Feed 

 Aquaculture diets generally fall into one of two categories, dry and moist feeds.  

Dry feeds contain 6-10% moisture and can be further divided into meals or pellets. 
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Moist feeds contain anywhere between 45 - 70% moisture and can also be further 

divided into moist or wet feeds (De Silva and Anderson, 1995).    

 The moisture difference between moist and wet feeds can be explained by the 

amount of wet ingredients present in the diet.  Wet feeds contain fish byproducts, 

slaughterhouse waste and undried forages whereas moist feeds contain these ingredients 

mixed with a blend of dry ingredients (DeSilva and Anderson, 1995).   In some coastal 

regions, fish byproducts are readily available and economical and as a result they have 

high inclusion rates in diets. They also contribute to increased diet palatability (Bureau 

and Cho 2003).  Moist and wet diets can present a problem with pathogens however, 

because they are usually only subjected to mild heat treatment (Bureau and Cho 2003).   

 Dry feeds and more specifically pellets, are the most commonly used feed types 

in aquaculture diets because they can be manipulated to produce target specification 

such as particle size, density, surface area and size distribution (Jobling, 2001). These 

factors will ultimately produce a pellet that can either float or sink.   

  

2.5.3.2 Physical Characteristics of Dry Feed 

 Pellet characteristics can influence whether or not fish will be interested in eating 

a particular diet (Jobling, 2001).  Physical characteristics such as size, shape, colour and 

texture are important factors to consider when developing fish feeds (Jobling, 2001).  

Desirable pellet size tends to range for each species of fish depending on the mouth 

width and gape.  Linner & Brannas (1994) reported that 20-25% of the mouth width is 

the optimal pellet size.  
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 The effect of particle size was tested on Atlantic salmon by feeding either coarse 

(3-5 mm), standard (>1mm) or micronized (0.3-0.1 mm) feeds (Sveier et al., 1999).  

Feed intake was highest with the standard ground feed followed by micronized and 

coarse ground respectively.  As well, growth rate was higher with the standard diet 

compared with the coarse diet.  By studying the dry matter and chromic oxide contents 

of the gastrointestinal tract, course ground fish meal proved to have a higher evacuation 

time compared with the other two diets.  Sveier et al. (1999) concluded that fish feed 

particle size has an important influence on growth and feed utilization. 

   

2.5.4 Extrusion 

 Extrusion utilizes several operations including heat applied externally or by 

friction, mixing and shearing that are all executed simultaneously (Camire, 1998).  

Camire (1998) has summarized the major changes that occur in feed ingredients as it 

passes through the extruder as: 1) Chemical: thermal degradation, depolymerization and 

recombination of fragments and 2) Physico-chemical: binding, volatilization and change 

in native structure.    

 

2.5.4.1 Types of Extruders 

 There are a number of different types of extruders available for use including 

single or twin screws.  The major difference between the two is the level of 

sophistication and the energy requirements (Strong, 2001).  Single screw extruders are 

limited by the rate at which the feed is entering the extruder, the speed of the screw, 

melting characteristics of the ingredients and viscosity (Harper, 1989).  Twin screw 
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extruders are more flexible in processing conditions such as increased capacity, superior 

energy efficiency and a larger range of operating conditions than single screw extruders, 

which leads to a higher quality end product (Strong, 2001). 

 

2.5.4.2 Flavors 

 Along with chemical changes is the production of various flavors which will give 

the product its finishing touch (Riha and Ho, 1989).  Flavor compounds are formed 

through a number of reactions including lipid oxidation, Maillard reactions, and the 

breakdown of carotenoids, glutamine, and asparagines all derived from the starting 

material (Riha and Ho, 1989).  However, some of the volatile flavor components may be 

lost during extrusion.  Volatile flavor compounds can be degraded by the high 

temperatures associated with extrusion, become bound to proteins or starch or, they may 

be stripped away by steam (Riha and Ho, 1989).   

 
2.5.4.3 Nutrients 

2.5.4.3.1 Proteins  

 When proteins are extruded, the primary effect is from heat.  A more texturized 

product is the result of increasing temperature during extrusion causing structural 

changes such as hydrolysis of peptide bonds, the formation of new covalent isopeptide 

cross-links, amino acid chain modification, enzymes that have become inactivated and 

denatured proteins (Stanley, 1989).  Overall functioning of the protein is altered because 

protein solubility is reduced (Camire, 1998). 

 Extrusion can also create the formation of new isopeptide cross-links between 

amino acids such as lysine, methionine, asparagine, aspartic acid, cysteine, glutamic acid 
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and histidine (Stanley, 1989).  If these amino acids enter into this reaction, the result 

may be decreased digestibility.  For example, the level of methionine in soyabean meal 

was reduced from 1.54% to 1.45% after extrusion processing (Jeunink and Cheftel, 

1979)  

 Three types of canola meal, commercial canola meal, low temperature extruded 

canola meal and high temperature extruded canola meal were used to replace herring 

meal in juvenile chinook salmon diets (Satoh et al., 1998).  Low and high temperature 

canola meal had an improvement in nutritive value when compared with the commercial 

canola meal.  Burel et al. (2000) reported that rainbow trout were able to digest pea 

protein, lupin and heat-treated rapeseed meal after extrusion more efficiently than a 

solvent-extracted meal.  However, Cheng and Hardy (2003) found that the apparent 

digestibility coefficient for crude protein was reduced when barley, corn gluten meal and 

whole wheat were extruded when compared with the nonextruded ingredients fed to 

rainbow trout but no explanation was given as to why this occurred.   

 

2.5.4.3.2 Starch 

 Starch (found in feed ingredients such as peas, canola or flax) is transformed into 

smaller molecules upon extrusion (Colonna et al., 1989), because amylose and the 

branched structure of amylopectin are susceptible to shearing (Camire, 1998).  During 

extrusion, shearing activity is increased and starch molecules are degraded to produce 

dextrins and free glucose (Camire, 1998).  The degradation of starch is directly related to 

the final texture or expansion of the product.  Optimal expansion for starch that contains 

50% amylose is obtained when the barrel temperature is 150 º C with low moisture 

(Camire, 1998).  
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 Beside the shearing activity in the extruder, starch is also subjected to heat and 

water.  Starch absorbs water, swells from the heat and pressure and eventually breaks 

(Woodroofe, 2003).  This process is known as gelatinization and leads to smaller 

molecules such as glucose to form a gel (Woodroofe, 2003).  Once the starch has been 

gelatinized, the surface area is increased allowing for greater enzymatic activity to occur 

and as a result, increased starch digestibility occurs (Allan and Booth., 2004). 

 Conflicting results have been reported regarding the digestibility of starch after 

extrusion.  Burel et al. (2000) found the digestibility of starch from extruded peas was 

lower than gelatinized wheat starch which was not extruded.  While Cruz-Suarez et al. 

(2001) reported positive improvements on digestibility of gelatinized starch from 

extruded whole and dehulled peas compared with non-extruded whole and dehulled peas 

fed to blue shrimp.   

 When the digestibility of extruded and nonextruded peas and lupins were 

compared, the results showed that extrusion had a positive effect on the digestibility of 

starch for peas in silver perch diets (Allan and Booth, 2004).  There was a marked 

difference between the peas and lupins with the primary difference between the two 

being that lupins do not contain starch or heat-labile anti-nutrients. 

 Gouveia and Davies (2000) saw an increase in carbohydrate digestibility for pea 

seed meal when fed to European sea bass, which was thought to be a direct result of the 

extrusion process.  As well, Carter and Hauler (2000) also reported high energy 

digestibility from peas likely caused by gelatinization of starch upon extrusion, allowing 

for increased surface area allowing for enzymatic reactions to occur.  

 The digestibility coefficient of gelatinized starch from SP35, soyabean meal with 

35% protein (Ridley Aquafeeds, Narangba, Queensland, Australia) that was subjected to 
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extrusion had a significant improvement for dry matter and energy when fed to silver 

perch as compared to soyabean meal diets that were steam conditioned, ground or 

variations of the two (Booth et al., 2000). 

 The extent of digestibility of starch was found to be important in the excretion of 

ammonia.  Robaina et al. (1999) measured the levels of ammonia excreted every 2 hours 

by European sea bass fed four diets composed of extruded or pelleted basal fish meal 

diet with and without wheat gluten.  Results indicated that diets without wheat gluten 

had lower ammonia excretion.  However, processing methods showed a significant 

difference between diets, with extruded diets producing much lower levels of ammonia.  

The authors suggested that the extrusion improved the availability of starch by 

increasing the gelatinization ratio of the starch which ultimately improved nitrogen 

utilization (Robaina et al., 1999).   

 

2.5.4.4 Antinutritional Factors 

 A number of antinutritional factors can be reduced through extrusion.  Trypsin 

inhibitors found in soyabean can be inactivated through heat processing in the same way 

myrosinase, an enzyme that activates glucosinolates, is deactivated through heat 

treatment (National Research Council, 1993).  Studies looking at processing methods 

such as boiling, steaming or autoclaving, methods that are similar to extrusion, have 

shown that 80% of the trypsin inhibitor found in full fat soyabeans was inactivated (Wee 

and Shu, 1989). 

 Satoh et al (1998) looked at the effect that extrusion had on canola meal and the 

level of phytic acid in the canola products.  By subjecting commercial canola meal to 

two different levels of heat treatment through extrusion (90ºC or 150ºC), protein and 



 53

lipid concentrations were increased with rising temperatures whereas the level of phytic 

acid was reduced by 30% with increasing temperatures leaving an estimated 7 g kg-1 of 

phytic acid which is enough to reduce growth (Satoh et al., 1998).   

2.5.4.5 Buoyancy 

 Extruded products that need to float or sink have specific conditions that must be 

met in the extruder in order for accurate buoyancy to be achieved (Woodroofe, 2003).  

Buoyancy is determined by the final bulk density of a pellet.  The bulk density can be 

controlled by changing the level of expansion of the pellet which is directly related to 

the level of starch, lipids, and moisture content (Woodroofe, 2003).  A pellet will not 

expand if starch is not present.  Fat can help regulate whether or not a pellet will float 

due to lubricating characteristics and starch interactions (Woodroofe, 2003).   

 Expanded pellets, with moisture levels at approximately 22%, are extruded at 

125-150 º C for 20 seconds in a pressurized chamber (De Silva and Anderson, 1995).  

After emerging from the die, pressure is released and the water in the feed flash 

evaporates due to the decreased pressure and the gelatinized starch expands, forming air 

pockets (De Silva and Anderson, 1995).  

 Floating pellets generally require 20% starch, a bulk density of approximately 

550 gm L-1 for a 4-6 mm pellet and less than 6% lipids (Woodroofe, 2003).  In some 

cases, expansion can be increased with different sources of starch.  For example, potato 

and rice starch will expand easier than corn or wheat starch (Woodroofe, 2003).   

 The bulk density for a sinking pellet is above 650 gm L-1 (Woodroofe, 2003).  A 

number of other factors can be adjusted to create a sinking pellet such as higher lipid 

levels and moisture content (too high will create tough skinned pellets) and thick dies 
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(Woodroofe, 2003).  A thick die will reduce the degree of expansion by allowing the 

material to expand longitudinally (Woodroofe, 2003).   

2.5.4.6 Stability of Feed in Water 

 A very important aspect to consider when developing aquaculture feeds is there 

effects on water quality.  Extruded feeds need to be fairly stable in water so as to 

minimize leaching of nutrients due to the disintegration of the pellet and ultimately the 

loss of nutrients (De Silva and Anderson, 1995).  This loss of nutrients pollutes the water 

and causes stress to fish due to high nitrogen and organic matter as well as low oxygen 

levels (Bureau and Cho, 2003).  High temperatures during extrusion coupled with low 

moisture, will result in a final product that will readily dissolve in water due to high 

levels of dextrinization (Woodroofe, 2003).   

 A study by Rout and Bandyopadhyay (1999) analyzed pellets for water stability 

by placing a number of pellets on a wire mesh basket that was then immersed in saline 

water with mild agitation for periods between 30 and 240 minutes.  The pellets were 

then dried and expansion ratios (dry diameter: die hole diameter) were determined.  

Settling velocity was also determined by measuring terminal velocity as pellets were 

dropped into a water column.  Results showed that density and settling rate were the 

highest for the extruded diets compared with the commercial diet (pellet mill) and a 

meat mincer.  Pellet stability was also measured and it was determined that the 

commercial diet had the highest water stability.  However, the authors speculated that 

this was due to the inclusion of a special quality binder.  In spite of this, extruded diets 

had a lower loss of nutrients compared with the commercial diet (Rout and 

Bandyopadhyay, 1999). 



 55

 Hilton et al. (1981) also found extruded diets to be of higher quality.  They 

studied the difference between extrusion and steam pelleting for diets fed to rainbow 

trout.  Extruded diets were reported as being more durable, higher water stability and 

absorbed more water than steamed pellets. 

 The following considerations should be kept in mind when producing 

aquaculture feeds.  Grinding can increase hardness and overall pellet quality by 

increasing surface area that allows more steam conditioning (Hasting and Higgs, 1990).  

Diet composition can be manipulated to increase water stability by including ingredients 

that are easy to grind and have good binding properties such as starch (De Silva and 

Anderson, 1995; Woodroofe, 2003).  Because salt, sugar and molasses tend to absorb 

moisture, they can prevent the pellet from drying, making it more susceptible to 

crumbling (De Silva and Anderson, 1995).  Binders, ingredients that can reduce the void 

space in the pellet and eventually improve pellet quality, should be added into the mix 

(De Silva and Anderson, 1995).  Because of its protein functionality, wheat gluten has 

been proven to be an excellent binder (Woodroofe, 2003). 

 

3.0 Effect of replacing fish meal with simple or complex 

mixtures of vegetable ingredients in diets fed to Nile tilapia 

(Oreochromis niloticus) 

3.1 Introduction 
 Nile tilapia are excellent candidates for intensive aquaculture production because 

of their rapid growth, tolerance to high stocking densities and poor water quality, high 
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reproductive rates, and low susceptibility to diseases (Chamberlain, 1993; Stickney, 

1986).  Furthermore, tilapia feed low on the trophic level in nature, and are therefore 

accustomed to gaining much of their nutritional needs from plant sources (Fitzsimmons, 

1997).   

 Despite the ability of wild tilapia to utilize plant proteins efficiently, commercial 

tilapia diets have primarily focused on using fish meal as the primary source of protein.  

Fishmeal is a desirable ingredient in aquaculture diets due to its essential amino acid 

profile, and its high content of essential fatty acids, digestible energy, vitamins and 

minerals (Tacon, 1993).  However, fish meal usage in aquaculture, world wide, was over 

two million tonnes in 1999 and is estimated that it will reach well over four million 

tonnes by 2015 (New and Wijkström, 2002). Given that total production of fish meal is 

approximately 6 million tonnes per year and that this level of production is expected to 

remain constant or decrease slightly in the future, there are concerns regarding the long 

term sustainability of this resource (Tacon, 1993).   

A number of studies have examined the effects of replacing fish meal with plant 

proteins in diets fed to tilapia including soyabean meal (Wee and Shu, 1989, Shiau et al., 

1989, Webster et al., 1992), maize gluten meal (Wu et al., 1995), lupins, (Fontainhas-

Fernandes et al., 1999) rapeseed (Davies et al., 1990), cottonseed meal (Rinchard et al., 

2002) and distillers dried grains with solubles (Coyle et al., 2004). However, complete 

replacement of fish meal with individual plant proteins has generally resulted in a 

decrease in fish growth performance (Sklan et al., 2004; Mbahinzirek et al., 2001). This 

decrease has been attributed to the presence of antinutritional factors in plant protein, 

particularly soyabean meal (Bureau et al., 1998).   
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Strategies to overcome this limitation include the fractionation of feed 

ingredients to reduce the level of antinutritional factors and replacing fish meal with a 

complex mixture of plant protein sources rather than one or two ingredients to reduce 

the exposure to individual antinutritional factors. Studies with fish have demonstrated 

that fractionation of soyabean, pea or canola to produce protein concentrates improves 

the protein and energy digestibility of these ingredients in salmonid fish compared with 

unprocessed soyabean, pea or canola meal (Rumsey et al., 1994; Thiessen et al., 2003; 

Mwachireya et al., 1999). Increasing diet complexity also appears to be a feasible 

method for replacing fish meal in aquaculture diets. El-Sayed et al., (2003) reported that 

when fish meal was completely replaced with a mixture containing 25% soyabean meal, 

25% cottonseed meal, 25% sunflower meal and 25% linseed meal in diets fed to Nile 

tilapia, performance was not significantly impaired.  

The following studies were done to assess the effect of fractionation on the 

digestibility of experimental diets with single ingredients produced in Western Canada 

including flax, peas and canola in Nile tilapia and to determine the effect of replacing 

fish meal with simple (soyabean and maize gluten meal) or complex (soyabean meal, 

maize gluten meal, dehulled flax, pea protein concentrate and canola protein 

concentrate) mixtures of plant proteins on the performance of Nile tilapia.  

3.2 Materials and Methods 

3.2.1 Digestibility Trial 
The digestibility of the feed ingredients was assessed using the method of Bureau and 

Cho (1994).  This method uses a reference diet (Table 3.1) that is mixed with the test  
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Table 3.1  Composition of reference diet used in digestibility trial. 

Ingredient                Inclusion (g kg-1) 

Fish meala                        300 

Soyabean meal                        170 

Maize gluten meal                        130 

Wheat flour                        280 

Vitamin mineral premixb                          10 

Fish oild                        100 

Celitec                          10 

(Total)                      1000 
 

aSouth American aquagrade; EWOS Canada Ltd. 

b Vitamin Mineral premix (mg kg-1 dry diet unless otherwise stated):  vitamin A (as 

acetate), 7500 IU kg-1 dry diet; vitamin D3 (as cholecalcipherol), 6000 IU kg-1 dry diet; 

vitamin E (as dl-a-tocopheryl-acetate), 150 IU kg-1 dry diet; Vitamin K (as menadione 

Na-bisulfate) 3; vitamin B12 (as cyanocobalamin), 0.06; Ascorbic acid (as ascorbyl 

polyphosphate), 150; d-biotin, 42; choline (as chloride), 3000; folic acid, 3; niacin (as 

nicotinic acid), 30; pantothenic acid, 60; pyridoxine, 15; riboflavin, 18; thiamin, 3; 

NaCl, 6.15; ferrous sulfate, 0.13; copper sulfate, 0.06; manganese sulfate, 0.18; 

potassium iodide, 0.02; zinc sulfate, 0.3; carrier (wheat middling or starch) 

cCelite 545, <125μm; Celite Corporation, World Minerals Co., Lompoc, CA, USA 

dMixed variety fish oil; EWOS Canada Ltd. 
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ingredients in a 70% reference: 30% test ingredient ratio. Celite (Celite Corporation, 

Lompoc, CA) was added to the basal diet at 10 g kg-1 as an nonabsorbable marker. All of 

the diets were produced by cold extrusion using the Hobart mixer at the University of 

Saskatchewan with a 4.0 mm die. The diets were dried in a forced air oven (55ºC) for a 

minimum of 2 hours, and chopped to an acceptable size (3mm). Digestibility of ten feed 

ingredients grown in Western Canada including canola meal, canola protein concentrate 

(MCN Bioproducts Ltd., Saskatoon SK), whole flax seed and dehulled flax seed (Prairie 

Agriculture Machinery Institute, Humboldt SK) whole pea, pea protein concentrate 

(Parrheim Foods, Portage La Prairie MB), coextruded flax: pea and coextruded canola: 

pea (Oleet Processing, Regina SK), fishmeal and soyabean meal were evaluated.  

3.2.2 Environmental Conditions and Fish Management  
 The fish used in all experiments were maintained in accordance with the 

guidelines of the Canadian Council on Animal Care (Canadian Council on Animal Care, 

1993). Male and female Nile tilapia were acquired from Greenview Aquafarms Ltd. 

(Calgary AB). The fish were housed in 350 L tanks in a recirculating system using 

biological filtration. Water temperature was maintained at 28 ± 1° C and water quality 

(oxygen, nitrate, nitrite ammonia and pH) were monitored daily. The photoperiod used 

was a 14 h light/10 h dark cycle.  

 The digestibility of the ingredients was assessed in two separate trials with five 

tanks per ingredient (complete randomized design), consisting of 40 fish per tank 

weighing 12  ± 1.2 grams per fish for the first trial and 57 ± 2.4 grams per fish for the 

second trial.  The fish were fed to apparent satiation with two daily feedings (800 and  
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1600 hours) throughout the length of the trials and were acclimated to the diets for seven 

days before fecal collections commenced. Feces were collected over a seven day period 

using a settling column and were centrifuged (5000 x g; 15 min), frozen (0ºC) and freeze 

dried prior to analysis. 

3.2.3 Laboratory Analyses 
 Feces, ingredients (Table 3.2) and experimental diets (Table 3.3) were ground 

using a Retsch mill (Model SR 200; Retsch Inc, Newtown PA; 1.0 mm screen).  

Analysis of these samples included moisture (AOAC 1990, method no. 934.01), ash 

(AOAC 1990, method no. 924.05), acid ether hydrolysis (AOAC 1995, method no. 

954.02).  Gross energy was obtained by oxygen bomb calorimetry (Parr Adiabatic 

Calorimeter, Model 1281; Parr Instrument Company, Moline IL).  The nitrogen content 

of samples was obtained using a combustion nitrogen analyzer (Leco FP-528, Leco 

Corporation, St. Joseph MI; AOAC 1995, method no. 990.03).  Crude protein was 

estimated by multiplying nitrogen content by 6.25. Acid insoluble ash was analyzed 

using the method of Vogtmann et al. (1975). 

3.2.4 Statistical Analysis 
  Statistical analysis was preformed using the General Linear Models procedure of 

SPSS (v.12.0, SPSS Inc, Chicago IL, USA) using the following least squares model.  

 Yi = μ + Fi + ei 

Where Yi = the dependent variable (Apparent Digestibility Coefficient of Crude Protein, 

 Gross Energy, Dry Matter) 

 μ = the overall mean 

 Fi = the effect of the ith feed ingredient 
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Table 3.2 Nutrient analysis of test ingredients incorporated into the experimental diets 

 used in digestibility trial (n=2).  

Ingredient  
Dry 

Matter 
(g kg-1) 

Crude 
Protein  
(g kg-1) 

Gross 
Energy  

(MJ kg-1) 

Acid Ether 
Extract  
(g kg-1) 

 
Ash  

(g kg-1) 
 

Fish meal 929.3 719.6 20.70 132.6 180.7 

Soyabean meal 886.3 521.3 19.50 41.9 72.4 

Whole pea 857.6 230.5 18.61 36.3 29.3 

Pea protein concentrate 954.7 825.3 23.32 103.9 63.0 

Canola meal 885.8 439.4 19.93 53.7 77.5 

Canola protein concentrate 975.0 700.4 20.74 46.1 108.9 

Whole flax 946.8 221.8 27.84 406.4 33.9 

Dehulled flax 957.5 235.3 29.99 435.3 33.7 

Canola: pea coextrudate 913.8 251.7 22.78 251.7 40.2 

Flax: pea coextrudate 905.8 240.8 23.26 240.8 41.0 
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Table 3.3  Nutrient analysis of reference diet and experimental diets with 30% of the test ingredient used for the digestibility trial  

     (n=2).  

 

Experimental Diets 
 

Crude Protein 
(g kg-1 DM) 

 

Ether Extract 
(g kg-1DM) 

 

Gross Energy 
(kcal kg-1 DM) 

 

Ash 
(g kg-1DM) 

 

Acid Insoluble 
Ash 

(g kg-1DM) 
 

30% Fish meal  518 153 5205 113 10 
30% Soyabean meal  460 123 5109 80 11 
30% Whole peas  372 886 4948 68 10 
30% Pea protein concentrate 551 145 5363 75 9 
30% Canola meal  444 146 5237 82 11 
30% Canola protein concentrate  519 130 5194 92 10 
30% Whole flax  367 155 5639 69 13 
30% Dehulled flax  368 273 5806 67 10 
30% Canola: pea coextrudate  380 170 5331 70 11 
30% Flax: pea coextrudate  378 192 5340 69 15 
Reference diet 433 178 5278 82 13 
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 ei = the residual error 

 Treatment means were separated using the Student-Newman-Keuls test and 

differences were considered significant when P < 0.05.  

3.2.5 Growth Trial 
 The eight diet formulations used in the growth trial (Table 3.4) were arranged in 

a 2 x 4 factorial design with two types of plant protein mixtures used to replace fish meal 

(simple: soyabean meal and maize gluten meal or complex: soyabean meal, maize gluten 

meal, dehulled flax, pea protein concentrate and canola protein concentrate) and four 

substitution levels of protein originating from fish meal (100%, 66.6%, 33.3% and 0%).  

Diets were formulated to contain equal amounts of digestible protein (380 g kg-1) and 

digestible energy (17.63 MJ kg-1).  Furthermore, the diets were formulated based on the 

digestible protein and energy of canola protein concentrate, pea protein concentrate, 

dehulled peas, fish meal and soyabean meal reported in the digestibility trial.  

Digestibility coefficients for wheat, corn gluten and fish oil in tilapia were taken from 

Pezzato et al., (2002). 

 The diets were first mixed at the University of Saskatchewan using a Hobart 

mixer and then processed using a co-rotating twin screw extruder (Werner & Pfeiderer, 

Model ZSK 57-M 50/2, Stuttgart, Germany) with a 6-hole strand die. The screw speed 

was held between 200 and 225 rpm and diets were subjected to temperatures between 

70ºC to 116ºC (die plate), depending on which part of the barrel the feed is passing 

through, with barrel pressure averaging 2400 kPa and cooled using a continuous fluid 

bed dryer (Niro Atomizer, Model VB-0,3, Soeborg, Denmark) for approximately 15 

minutes at 40º C resulting in a moisture content of 8%.  Fish oil was added to the diets, 
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following the drying process, using a vacuum tumbler (Daniels Food Equipment, Model 

R2-50, Parkers Prairie MN) with a mixing time of 15 minutes at 11 rpm.   

3.2.6 Environmental Conditions and Fish Management  
 Tilapia (same strain and source as digestibility trial) were housed in twenty-eight 

360 L and twenty-eight 150 L tanks in the same recirculation system and experimental 

conditions described above. The fish were sexed and only male fish were used in this 

experiment. Each tank was stocked with 10 fish, resulting in four 360 L tanks and four 

150 L tanks per experimental diet.  Fish were fed to apparent satiation twice daily for a 

total of 56 days.  The total tank weight of the fish was recorded on days 0,14, 28, 42 and 

56 and feed intake was recorded daily.  Growth was assessed by calculating average 

daily gain, specific growth rate ([ln final weight – ln initial weight]/days x 100), average 

daily feed intake, feed conversion ratio (average daily feed intake/average daily gain) 

and protein efficiency ratio (average daily gain/average daily protein intake) on a per 

fish basis.  Because some of the tanks lost weight throughout the trial, feed conversion 

ratio resulted in better performance than was actually seen.  Therefore, overall feed 

conversion ratio for the level of protein originating from fish meal and the complexity of 

the diet was calculated by using only the positive feed: gain values.   

 On day 56 of the experiment, one fish per tank was euthanized and a one cm 

segment of small intestine obtained from the mid point of the intestinal tract was 

submerged in 10% neutral buffered formalin for 24 h.  Thereafter, the tissue was 

immersed in 70% ethanol until embedded in paraffin, sectioned and stained with 

hematoxylin and eosin. Images of the intestinal cross-sections were captured with a 

DVC digital camera (Digital Video Camera Company, Austin, TX) mounted on a BH-2 
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Table 3.4. Growth trial experimental diet formulation for simple and complex diets with varying levels of protein originating from  

       fishmeal (g kg-1). 

 

aSame formulation as shown in Table 3.1. 

 

 

 

      Simple      Complex   
  100% FM 66.6% FM 33.3% FM 0% FM 66.6% FM 33.3% FM 0% FM

Fish meal 584.4 389.6 194.8 0 389.6 194.8 0
Wheat 277.6 248.8 220.4 191.6 237.2 216.8 186.0
Maize gluten meal 0 113.6 226.8 340.4 66.8 100.0 120.0
Soyabean meal 0 120.0 240.0 360.0 40.0 100.0 172.4
Canola protein concentrate 0 0 0 0 40.0 120.0 247.2
Dehulled flax 0 0 0 0 60.0 60.0 60.0
Pea protein concentrate 0 0 0 0 60.0 112.4 120.0
Choline 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Vitamin / minerala 10.0 10.0 10.0 10.0 10.0 10.0 10.0
Fish oil 123.0 113.0 103.0 93.0 91.4 80.6 79.4
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Olympus light microscope (Olympus America Inc., Melville, NY) and analyzed using 

Northern Eclipse Software (Empix Imaging, Inc., Mississauga, ON). Ten well- oriented 

villus height measurements per intestinal cross-section were measured and the mean of 

these measurements were calculated. A single person, blinded to treatment assignment, 

conducted all measurements. 

3.2.7 Experimental Diet Analysis 
Experimental diets were analyzed (Table 3.5) for moisture, crude protein, gross energy, 

acid ether extract, and ash as described previously on page 67. Amino acid analysis 

(AOAC Official Method 982.30; AOAC 1995), was conducted by the Animal Nutrition 

Analytical Lab of Degussa Corporation (Allendale NJ). 

3.2.8 Statistical Analysis  
 The experiment was initially analyzed using the General Linear Models 

procedure of SPSS (v.10.0.5, SPSS Inc, Chicago IL, USA). An initial analysis 

determined that the effect of tank size was not significant, thus, the experiment was 

analyzed using the following least squares model.  

Yij = μ + Fi + Cj + FiCj + eij 

Where Yij = the dependent variable (Average Daily Gain, Average Daily Feed Intake, 

 Specific Growth Rate, Feed:Gain, Protein Efficiency) 

 μ = the overall mean 

 Fi = the effect of the ith level of fish meal protein inclusion 

 Cj = the effect of the jth level of diet complexity 

FiCj = the interaction between the ith level of fish meal inclusion and the jth level 

of diet complexity 
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Table 3.5  Nutrient analysis of experimental diets used for the growth trial (n=2). 
 

Differences between least square means were separated using Student-Newman-Keuls 

test and means were considered significantly different when P < 0.05.  

 
  

 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental Diets 
 

Crude Protein  
(g kg-1DM) 

 

Ether Extract 
(g kg-1DM) 

 

Gross Energy 
(kcal kg-1DM) 

 

Ash 
(g kg-1DM) 

 

0% Simple 469 140 5370 45
33.3% Simple 476 171 5416 74
66.6% Simple 487 185 5391 87
0% Complex 474 152 5409 60
33.3% Complex 468 172 5442 64
66.6% Complex 485 197 5483 88
100% Complex 496 137 5364 109
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eij = the residual error term 
 

3.3 Results 

3.3.1 Digestibility Trial 
 Fractionation of flax, pea and canola resulted in increases in crude protein and 

gross energy values (Table 3.2).  Pea protein concentrate (825 g kg-1 crude protein) and 

canola protein concentrate (705 g kg-1 crude protein) obtained through aqueous 

extraction, had higher crude protein levels than the starting ingredients.  Removal of the 

flax seed hull resulted in a very small increase in crude protein (222 g kg-1 to 235 g kg-1).   

 Apparent digestibility coefficients for crude protein, energy and dry matter of 

both control diets were not significantly different between the two trials so results from 

the two digestibility trials were analyzed as one experiment (Table 3.6).  The apparent 

digestibility coefficients of crude protein for whole flax, dehulled flax and coextruded 

flax: pea were significantly lower than for the other feed ingredients tested and whole 

flax had a significantly lower (P < 0.05) apparent digestibility coefficient for crude 

protein (-0.38) compared with dehulled flax (0.46). The coextruded flax: pea product 

had an apparent digestibility coefficient for crude protein of 0.61 which was 

significantly higher than that of dehulled flax. All other products tested had apparent 

digestibility coefficients for crude protein that were not significantly different from each 

other ranging from 0.76 for coextruded canola: pea to 0.95 for pea protein concentrate. 

 Processing improved digestibility for energy and dry matter for pea, canola and 

flax products.  Pea protein concentrate had an apparent digestibility coefficient of 0.95 

for energy and 0.93 for dry matter which was significantly higher than the unprocessed 

whole peas with 0.58 and 0.59 for energy and dry matter respectively.  Similarly, canola  
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Table 3.6 Apparent digestibility coefficients of experimental diets with test ingredients 

     (%) determined in digestibility trial. 

Ingredient Crude Protein Gross Energy Dry Matter 

Fish meal .93a .92a .85ab 

Soyabean meal .91a .82ab .74abcd 

Whole pea .86a .58cd .59cde 

Pea protein concentrate .95a .95a .93a 

Canola meal .82a .68bc .54de 

Canola protein concentrate .86a .84ab .78abc 

Whole flax -.38d -.27e -.45f 

Dehulled flax .46c .48d .41e 

Canola: pea coextrudate .84a .76de .69de 

Flax: pea coextrudate .61b .53cd .41e 

Reference diet (trial 1) .92a .90a .87ab 

Reference diet (trial 2) .89a .89a .85ab 

SEM .05 .05 .05 
a-fMeans within columns with different superscripts are significantly different (P < 0.05).  
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protein concentrate had significantly higher apparent digestibility coefficients for energy 

and dry matter than canola meal. Whole flax had negative apparent digestibility 

coefficients for gross energy and dry matter (-0.27 and -0.45 respectively) and these 

values were significantly lower than those for dehulled flax with apparent digestibility 

coefficients for energy and dry matter of 0.48 and 0.41. 

3.3.2 Growth Trial 
 The amino acid contents of the diets are shown in Table 3.7. The level of lysine 

and threonine were lowest in the 0% fish meal level simple diet but still exceeded the 

requirements for these amino acids (National Research Council, 1993).  

The effect of fish meal level on average daily gain, specific growth rate, average 

daily feed intake, feed: gain ratio and protein efficiency ratio was significant (P < 0.05) 

(Table 3.8). The average daily gains, specific growth rates and feed efficiencies of fish 

fed diets with 0% fish meal were significantly lower than fish fed diets with the 33.3, 

66.7 or 100% fish meal levels. Average daily feed intakes were significantly decreased 

in fish fed the 0% fish meal diets compared with the 66.7 or 100% fish meal diets. The 

fish fed the 33.3% fish meal diets had feed intakes that were not significantly different 

than fish fed 0 or 66.6 and 100% fishmeal.  Protein efficiency ratios of the fish fed at the 

0 and 33.3% fish meal levels were significantly lower than fish fed the 66.6 or 100% 

fish meal levels.  

 The effect of diet complexity was significant for average daily gain, specific 

growth rate, feed: gain ratio and protein efficiency ratio but not for average daily feed 

intake. The fish fed the complex diets had significantly higher average daily gains, 

specific growth rates and protein efficiency ratios as well as decreased feed: gain ratios 

compared with those fed the simple diets. 
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Table 3.7 Amino acid content of the diets fed in the growth trial (g kg-1 as-fed basis) (n=1)a.  
 

a Amino acid analysis by AOAC Official Method 982.30 (AOAC, 1995) 

bRequirement for tilapia from National Research Council (1993). 

cRequirement for phenylalanine + tyrosine.  
 

   Simple                           Complex     
 100% 66.6 %  33.3%  0 %     66.6%  33.3%  0%  Requirementsb 
Protein 
Amino Acid  448  444 441  404 

 
 457  445  425 

 

Essential          
  Arginine 17.0 16.5 15.0 14.7  17.4 16.5 16.1 11.8 
  Histidine 10.7 10.8   9.7   9.5  11.0 11.1 10.5   4.8 
  Isoleucine 16.6 17.4 17.1 17.5  17.0 17.9 18.5   8.7 
  Leucine 28.8 35.7 40.9 46.5  34.0 36.9 37.8   9.5 
  Lysine 27.3 23.8 18.6 15.7  25.0 23.2 20.1 14.3  
  Methionine 10.9   9.9   8.3   7.4    9.9   8.7   7.4  
  Cystine   4.3   5.2   5.7   6.2    5.4   6.3   7.3  
  Methionine + Cystine 15.2 15.1 14.0 13.6  15.3 15.0 14.7   9.0 
  Phenylalanine 16.3 18.7 19.9 21.6  18.6 19.6 20.6 15.5c 
  Threonine 27.1 25.7 22.2 21.0  27.9 28.7 27.3 10.5 
  Valine 20.3 20.7 19.7 19.8  20.4 21.3 21.8   7.8 
Non Essential  
  Alanine 27.3 27.5 26.1 26.7 

 
26.8 24.6 22.0 

 

  Aspartic Acid 36.1 36.4 34.0 34.3  37.6 37.5 36.7  
  Glutamic Acid 63.5 71.6 76.1 82.6  72.7 78.4 82.2  
  Glycine 37.3 30.1 21.3 16.1  31.3 25.5 19.2  
  Serine 18.6 19.5 19.2 20.4  20.5 20.0 19.8  



 72

 
 
 
Table 3.8  Performance of tilapia based on simple and complex diets with varying levels of fishmeal for days 0-56 of the growth trial. 
 

 
 Average Daily 

Gain 
(g d-1) 

Specific 
Growth Rate 

(%) 

Average Daily 
Feed Intake 

(g d-1) 

Feed Conversion 
(g d-1) 

Protein 
Efficiency Ratio 

(gain protein 
intake-1) 

Villus Length 
(mm) 

 
Fishmeal Level 

      

0 0.97a 1.79 a 2.35 a 3.28 b 0.96 a 302.1 
33 2.00 b 3.06 b 2.96ab  1.79 a 1.30 a 341.9 
67 2.50 b 3.66 b 3.09 b 1.30 a 1.69 b 352.7 
100 2.68 b 3.66 b 3.16 b 1.23 a 1.82 b  354.1 
SEM         0.82      1.15         0.28            1.98           0.24 24.7 
 
Diet Complexity 

      

Simple 1.79 2.68  2.72 2.50  1.27 320.9 
Complex 2.29  3.40 3.00 1.46 1.59 354.5 
SEM         0.35        0.72         0.09           1.50           0.14 11.35 
 
P-value 

      

Fishmeal < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.19 
Complexity 0.04 0.02 0.20 < 0.01 0.01 0.08 
Interaction 0.23 0.03 0.07 < 0.01 0.14 0.31 
abMeans within columns with different superscripts are significantly different.  
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 There were significant interactions between fish meal level and diet complexity 

for specific growth rate and feed: gain ratios so the individual treatment means and 

differences between the individual means are shown for these parameters in Figure 3.1. 

The fish fed the 0% fish meal complex diet had significantly higher specific growth 

rates and lower feed: gain compared with the fish fed the 0% fish meal simple diet. 

 Decreasing villus length was observed as the levels of protein originating from 

fish meal was decreased while villus length increased with increasing diet complexity 

(Table 3.8). However, the main effects of fish meal level (P = 0.19) and diet complexity 

(P = 0.08) were not significant. 

 

3.4 Discussion 
 Energy and dry matter digestibility was significantly increased when pea, canola 

and flax was processed.  However, there was less effect on the protein digestibility of 

these ingredients when fed to Nile tilapia. Processing to remove antinutritional factors 

such as fiber and improve starch digestibility found in peas has been shown to increase 

the apparent digestibility coefficients for crude protein, gross energy and dry matter for 

pea products.  Fontainhas-Fernandes et al., (1999) observed an increase in the apparent 

digestibility coefficients for gross energy and dry matter for extruded pea seed meal 

compared with pea seed meal when fed to Nile tilapia.  However, no increase was seen 

in the digestibility of crude protein. The authors hypothesized that the increase in 

digestibility for energy and dry matter is a result of the reduction in antinutritional 

factors from processing. Theissen et al., (2003) observed higher digestibility 

coefficients  
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Figure 3.1 Interaction between diet complexity and the level of protein originating from 

 fish meal for specific growth rate (A) and feed: gain ratio (B) of tilapia for days 
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 0-56 in the growth trial. Means with different superscripts are significantly 

 different (P < 0.05). 

for gross energy and dry matter when rainbow trout were fed pea protein concentrate 

prepared by air classification compared with extruded/dehulled peas, raw/dehulled peas  

or raw/whole peas. In contrast to the present study, they also noted an increase in 

protein digestibility of the pea protein concentrate compared with the other three pea 

products. Booth et al. (2001) also indicated that pea protein concentrate had a greater 

potential to be incorporated into the diets of silver perch, compared with whole peas, 

due to the removal of indigestible carbohydrates found in the hull. 

 Canola protein concentrate has reduced levels indigestible fiber and lower phytic 

acid which is an antinutritional factor. In a previous study, canola protein concentrate 

was shown to have an apparent digestibility coefficient for crude protein of 0.896 and 

0.861 for gross energy when fed to rainbow trout (Thiessen et al., 2004).  These results 

are similar to those found in the present study which showed canola protein concentrate 

to have an apparent digestibility coefficient of 0.86 for crude protein and 0.84 for gross 

energy.  Mwachireya et al., (1999) also reported that canola protein isolate had 

significantly higher apparent digestibility coefficients for crude protein, gross energy 

and dry matter compared with canola meal and various canola meal fractions. The 

authors indicated that the removal of phytic acid, and glucosinolates had less effect on 

improving the digestibility of canola meal than the removal of indigestible fibre 

fractions. 

 Whole flax had negative apparent digestibility coefficients for crude protein, 

gross energy and dry matter which may have been caused by high levels of mucilage 
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resulting in increased intestinal content. Low consumption of this diet coupled with 

high gut viscosity may have increased endogenous nutrient losses in the gut of the fish 

resulting in the negative apparent digestibility coefficients observed. Sklan et al., (2004) 

reported lower digestibility with plant ingredients high in fiber such as rapeseed meal 

and barley.  They speculated that high fiber content in feedstuffs may reduce enzymatic 

activity in the gut resulting in poor digestion.   

 The canola: pea and flax: pea co-extrudates had low protein levels and high 

levels of oil producing a high energy ingredient. The digestibility was lower for canola: 

pea co-extrudate than the individual ingredients. However the canola: pea co-extrudate 

is comprised of whole canola not canola meal.  The flax: pea co-extrudate had higher 

digestibility than the individual ingredients.  In contrast, Gomes et al., (1995) studied a 

co-extruded rapeseed and pea product and found that the digestibility of this ingredient 

was improved compared with the individual ingredients. This suggests that the 

coextruded canola: pea product may have been subjected to excessive heat during 

extrusion processing, thus reducing nutrient digestibility. The coextruded ingredients 

were not used in the growth trial because their digestibility's and nutrient densities were 

not as high as for the fractionated ingredients. 

 Recent efforts to incorporate plant ingredients into tilapia diets have 

concentrated on replacing fishmeal with single ingredients. The general trend of these 

trials has shown replacement of fishmeal with a single plant source higher than 25-35% 

of diet dry matter resulted in poor growth which was mainly attributed to antinutritional 

factors (Davies et al., 1990; Olvera-Novoa et al., 1988; 1990; Jackson et al., 1982).  

Replacement of fish meal with a complex mixture of plant proteins might reduce the 
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exposure of fish to individual antinutritional factors and improve performance. 

Furthermore, utilization of processed ingredients like pea protein concentrate, canola 

protein concentrate and dehulled flax further reduces the level of individual 

antinutritional factors.  

 In the present study, feeding complex diets significantly improved all growth 

parameters with the exception of average daily feed intake indicating that tilapia will eat 

both simple and complex diets.  However, suboptimal growth was achieved with simple 

diets especially at the 0% fish meal level. Fontainhas-Fernades et al. (1999), 

incorporated a number of plant ingredients including extruded pea meal and defatted 

soybean meal into tilapia diets replacing 0%, 33%, 67% and 100% of fish meal. They 

reported significant increases in all growth parameters with increasing levels of 

fishmeal. Gomes et al. (1995) also studied the effect of replacing fish meal with a 

mixture of plant proteins including coextruded rapeseed: peas, full-fat toasted 

soyabeans and maize gluten in rainbow trout. They reported a significant decrease in 

weight gain and specific growth rate in diets containing 0% fish meal compared with 

those containing 100, 66 or 33% fish meal.  These ingredients were not as highly 

processed as the ingredients used in the present trial and contained more antinutritional 

factors, particularly fibre.  

 Although intestinal villus length was not significantly affected by diet in 

experiment two, there was a trend to shorter villi in the simple diets compared with the 

complex diets. Soyabean meal has been reported to result in intestinal hypersensitivity 

reactions in salmon (Rumsey et al., 1994; Bureau et al., 1998; Burrells et al., 1999). 

Burrells et al., (1999) observed that feeding diets containing 600-700 g kg-1 of soybean 
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meal to rainbow trout resulted in the loss of integrity of the villus tips and increased 

inflammatory cell infiltration into the lamina propria. In the present study, the simple 

diets contained more than twice as much soyabean meal as the complex diets and this 

may have contributed to the shorter villi seen in fish fed the simple diets.  

 The experimental diets used in this study were formulated to have identical 

levels of digestible energy and protein. However, amino acid analysis showed that 

lysine and threonine levels in the simple diets were lower than in the complex diets.  

However, it should be noted that the levels of lysine and threonine as well as all the 

other essential amino acids were above National Research Council requirements for 

tilapia (National Research Council, 1993) for every diet. Since amino acids in excess of 

requirement are deaminated and used for energy, the amino acid levels in the diets 

should not have contributed to the treatment differences seen in this trial.  

 The present study used an all male population to reduce variability.  Male tilapia 

grow faster than females (Toguyeni et al., 2002; Beardmore et al., 2001) but a study 

conducted by Fauconneau et al. (1997) showed that a mixed group (male and female) of 

nile tilapia had a higher feed intake and lower growth compared to an all male or all 

female population.  However, the all male population had a higher protein efficiency 

ratio and lower feed conversion ratio compared with the all female population 

(Fauconneau et al. 1997).  Even though most small scale production systems do not sort 

their fish, it was beneficial to this experiment in order to reduce variability (Beardmore 

et al., 2001).   

 The results of this study indicate that replacement of fish meal with a complex 

mixture of processed plant ingredients results in superior performance compared with 
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replacement with soyabean meal and corn gluten meal. This strategy may reduce the 

requirement of the aquaculture feed industry for fish meal and enhance the 

sustainability of the industry.  It will also provide another market for Saskatchewan 

grown products such as canola, peas and flax as well as increasing the need for further 

processing of these ingredients. 

4.0 Conclusions  

 In order for aquaculture to continue growing, it needs to reduce its reliance on 

fish meal.  The rapid decline of the world fish stocks which continues to decline through 

overfishing and poor management is resulting in a reduced amount of fish for human 

consumption, and fish meal and fish oil for aquaculture feed production.  The use of 

plant protein sources is the obvious solution to this problem to reducing the amount of 

fishmeal used in fish diets but optimal fish growth and efficiency must be maintained at 

the same time. 

 One way in which this can be accomplished is through selection of fish species 

to be reared.  Tilapia are excellent choice for production in intensive aquaculture 

systems because they feed low on the trophic level, have high stocking densities and are 

susceptible to a limited number of diseases.  A second way to accomplish this goal is 

the development of improved plant-based feed ingredients for aquaculture through 

fractionation and processing.  Such a strategy can improve the nutritive value of plant 

protein sources.  The ingredients chosen for our digestibility which were then 

incorporated into our growth trial all had received one form of processing prior to the 

trials.  Abrasion was applied to flax to remove fiber found in the hull, pea and canola 

protein concentrate was subjected to aqueous extraction in order to deactivate 
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antinutrional compounds and the canola: pea and flax: pea coextrudates were subjected 

to extrusion in hopes of improving starch digestibility through heat treatment.  Lastly, 

formulating aquaculture diets to contain a large number of plant protein sources lowers 

the inclusion rate of each single ingredient and reduces the exposure of fish to 

individual antinutritional factors present in each ingredient. 

 The present studies demonstrate: 

1) Fractionation of flax, pea and canola significantly improved the apparent digestibility 

coefficient of energy and dry matter in tilapia 

2) Performance was significantly improved by feeding fish complex mixtures of 

fractionated ingredients compared with diets containing only soybean and corn 

gluten meals  

3) It is feasible to totally replace fish meal in tilapia diets using complex mixtures of 

fractionated plant ingredients.  

 Direct implications of this research may not be seen immediately by tilapia 

producers. However, this research should serve as a good starting point to develop 

future studies in this area.  Future studies should concentrate on improving methods for 

fractionating and processing Saskatchewan feed ingredients and in turn developing 

more products that are suitable for tilapia diets.  Future research might take into account 

new plant protein sources produced in Saskatchewan such as faba beans as well as 

alternative processing methods of these new products and of existing products such as 

flax.  Dehulling flax resulted in a product with a large portion of the hull still present.  

Aqueous extraction followed by air classification of flax may be a better choice to 

produce flax protein concentrate.  Another area of research may be determining the 



 81

optimal level of fish meal replacement to maximize the growth and health of Nile tilapia 

to produce a high quality product with nutritional benefits for consumers.  The current 

research shows that lower fish meal levels are possible, but an optimum level has yet to 

be identified.  This level may lie between 0% and 30% of protein originating from fish 

meal. 

  Suggestions for future research of tilapia in a recirculating facility would be to 

ensure that all tanks are secured with black netting in order to avoid any escapes or 

mortality.  As well, behavioural observations should be accounted for, due to the 

aggressive behavior of dominant fish.  In order to try and eliminate aggressive 

behaviour, using smaller fish with a higher stocking density may be warranted.  And 

finally in order to eliminate large differences in growth, with no statistical significance 

detected, an increase in the number of tanks used or increasing the stocking density may 

be necessary.   
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6.0 APPENDICES  

Appendix A: Extrusion process used to manufacture the feed used in 

the tilapia growth trial. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure A1.  Mixed feed is placed into a hopper bin where it drops onto a conveyor belt 

at a pre-determined rate. 
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Figure A2. The mixed diet travels along the conveyor belt to the pre-conditioner and 

then into the barrel of the extruder. 
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Figure A3.  The barrel consists of 8 different sections with 6 different temperature 

probes, water injection sites, a twin co-rotating screw and a 6-hole strand die 

plate.  The screw speed was held constant between 200 and 225 rpm and the  

 temperature ranged between 70 - 116º C between the 8 sections of the barrel. 
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Figure A4. A single screw consists of 38 elements making a total length of 1.5 meters. 
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Figure A5. The elements of the screw consist of left hand and right hand kneading 

blocks, concave and non-concave elements. 
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Figure A6.  Feed is moved through the barrel being exposed to shearing, high 

temperatures and pressure averaging 2400 kPa and is then released though the 6 

hole strand die. 
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Figure A7.  Drying the extruded product in a continuous fluid bed dryer for 

approximately 15 minutes at a temperature of 40ºC. 
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Figure A8. Feed dropping out of the continuous fluid bed dryer with a moisture content 

of approximately 8%.  
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Figure A9.  Adding fish oil following the drying procedure.  The diet is placed into a 

rotating vacuum tumbler along with the fish oil and is mixed for 15 minutes at 

11 rmp.  Because the feed expanded as it exited the die, it becomes porous 

allowing for the fish oil to be absorbed during the vacuum process. 
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Figure A10. Pelleting the diets using a quadro mill. 
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APPENDIX B: Methods used to process ingredients used in this study. 
 

Table B1. Processing methods used to prepare the pea, canola and flax products used in 
 this study. 
 

 
Ingredients Products Processing 
Peas Whole Peas no processing 
 Pea Protein Concentrate aqueous extraction 
Canola Canola Meal  
 Canola Protein Concentrate aqueous extraction 
Flax Whole Flax no processing 
 Dehulled Flax abrasion 
Miscellaneous Canola: Pea Coextrudate extrusion 
 Flax: Pea Coextrudate extrusion 
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APPENDIX C: Fish Management for digestibility and growth trial. 
 
Digestibility Trial 
Fish Handling 

• Fish were placed into a holding tank for approximately 1 week upon arrival at 
the Prairie Aquaculture Research Center 

• The fish weighed around 10 grams 
• Fish were collected from the holding tank and placed into Rubbermaid tubs with 

aeration  
• Hand sorted to collect the largest fish  
• 40 fish were weighed in a bucket and then placed into a tank 

Fish Tanks 
• All tanks had a mesh coving held down with clips in order to prevent fish from 

jumping out 
• An additional mesh covering was placed over the tanks to prevent escapes 
• Some fish still managed to jump out, however they generally survived the night 

and were then placed back into the tank that they were found closest to and had 
a missing fish 

• A quick count of fish in each of the tanks every morning ensured that there was 
the right number of fish per tank 

 
Table C1. Fish mortality in the tilapia digestibility trials. 
 
Digestibility Trial 1 
Diet 
 

Nov 24 -Dec 8/03 
Pre-Trial Period 

Dec 8 - Jan 1 /04 
Trial Period 

Whole peas 4  
Pea protein concentrate 2 4 
Canola: pea coextrudate 2  
Flax: pea coextrudate 2 1 
Control 2  
Fish meal 3  
Total 15 5 

 
Digestibility Trial 2 
Diet 
 

Jan 1 - Jan 12 /04 
Pre-Trial Period 

Jan 12 - Jan 27 /04 
Trial Period 

Canola meal   
Canola protein concentrate  1 
Whole flax   
Dehulled flax   
Soya bean meal   
Control   
Total 0 1 
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Fish Feeding 
• Fish were fed twice a day once at 800 hours and again at 1600 hours 

o A small amount of feed is thrown into the tank.  Once this feed is gone, 
another small amount of feed is thrown in.  This continues until the fish 
slow down and do not show interest in eating.   

• Feed intake was measured by weighing the container for each tank at the end of 
each day 

 
Fecal Collections 

• Each night during the collection period, all tanks on trial were cleaned carefully 
to remove any food that may have not been eaten and any fecal material present 

• Collection tubes were placed under the tanks and the valves opened 
• The next morning the valves were closed and the collection tubes taken off 
• The fecal material settles on the bottom of the collections tubes and the excess 

water is poured out 
• Fecal material is then poured into viles and frozen in a freezer 
• Once these vials are full they are defrosted and centrifuged and placed into 

containers 
 

Growth Trial 
Fish Handling 

• Following the digestibility trial, fish were placed into the holding tank for a 
couple of days 

• Fish were then collected and placed into Rubbermaid tubs, with aeration, and 
were anesthetized using ?? 

• Fish were then hand sorted in order to obtain an all male population 
o Male - two opening in front of the anal fin 
o Female - three openings in front of the anal fin 

• Applying ink or a dark dye to this area was suppose to increase the accuracy but 
we felt that it made a big mess and was not helping us to determine the sex 



 118

 

 
 
Figure C1. Anatomical differences between male and female tilapia (Auburn 
University, 2005). 
 
Fish Feeding 

• The same procedure for feeding was used as in the digestibility trial 
 
Weighing Tanks 

• Every two weeks each tank was weighed 
• Fish are collected from the tanks and placed into Rubbermaid tubs with aeration 
• They are anesthetized in these tubs order to take an accurate reading (they jump 

around a lot if they are not anesthetized making it hard to get an accurate 
weight) 

• Once the fish are asleep, they are netted and placed into a bucket that has been 
tarred off already 

• Fish are weighed on the scale and then put back into their original tank 
• Within a few minutes of being back into their tanks 

 
Table C2. Fish mortality in the tilapia growth trial. 
 
Diet 
 

March 9 - 
March 23 /04 

March 23 - 
April 6 /04 

April 6 -  
April 20 /04 

April 20 - 
May 4 

100% 4   1 
66.6% Simple    2 
33.3% Simple 7 1 1 1 
0% Simple   1 2 
66.6% Complex 3 1  1 
33.3% Complex 3    
0% Complex   1  
Total 17 2 3 7 

 

Female 

Male 
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Stocking Density 
• Stocking density is determined by a number of factors 

o feeding rate 
o size of tank 
o size of fish 

• The stocking density for the digestibility trial was not an issue according to the 
following table (Rakocy, 1989). 

 
Table C3.  Stocking density of tilapia with different weights and feeding rates 
 (Rakocy, 1989). 

 
Stocking Rate 

(number of fish 1000 L-1) 
Weight Fish-1 

(grams) 
Feeding Rate 

(%) 
8,000 0.02 20 -15 
3,200 0.5 - 1.0 15 -10 
1,600 5 10 - 7 
1,000 20 7 - 4 
500 50 4 - 3.5 
200 100 3.5 - 1.5 
100 250 1.5 - 1.0 
 

• In the digestibility trials, we placed 40 fish weighing between 10 - 50 grams in 
350 L tanks 

• In the growth trial we placed 10 fish weighing between 50 - 150 grams with 
final weights around 200 - 300 grams 

• Feeding rate was determined to be 2 - 3% at the beginning of the digestibility 
trial 
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APPENDIX D: Growth trial data arranged in 2 week periods. 
 
Table D1. Performance of tilapia based on simple and complex diets with varying levels of fishmeal for days 0-14 of the growth trial. 

 
 Average Daily 

Gain 
(g d-1) 

Specific 
Growth Rate 

(%) 

Average Daily 
Feed Intake 

(g d-1) 

Feed Conversion1 

(g d-1) 
Protein 

Efficiency Ratio 
(gain protein 

intake-1) 
 
Fishmeal Level 

     

0 0.80a 1.92 1.89a -0.21 0.77 
33 1.77ab 3.23 2.49ab 1.33 1.17 
67 2.10ab 3.73 2.36ab 0.46 1.99 
100 3.03b 5.10 2.59b 0.88 2.92 
SEM 0.42 0.98 0.19 0.72 0.78 
 
Diet Complexity 

     

Simple 1.78 3.27 1.92 0.28 1.52 
Complex 2.08 3.70 2.04 0.95 2.01 
SEM          0.33         0.63          0.13  0.57 0.59 
 
P-value 

     

Fishmeal 0.04 0.13 0.02 0.50 0.19 
Complexity 0.72 0.74 0.50 0.41 0.52 
Interaction 0.07 0.04       < 0.01 0.32 0.14 
 
1The feed conversion ratios were calculated using all the observations including tanks where there were negative average daily gains. 
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Table D2. Performance of tilapia based on simple and complex diets with varying levels of fishmeal for days 14-28 of the growth trial. 
 
 Average Daily 

Gain 
(g d-1) 

Specific 
Growth Rate 

(%) 

Average Daily 
Feed Intake 

(g d-1) 

Feed Conversion1 
(g d-1) 

Protein 
Efficiency Ratio 

(gain protein 
intake-1) 

 
Fishmeal Level 

     

0 1.12a 2.05a 2.19a -0.37 1.31 
33 2.43b 3.57ab 3.15b 1.92 1.38 
67 3.44b 5.44b 3.37b 0.06 2.06 
100 2.77b 3.81ab 3.20b 1.78 1.64 
SEM         0.34 0.62 0.15 0.91 0.33 
 
Diet Complexity 

     

Simple 2.09 3.16 2.81 1.09 1.42 
Complex 2.67 4.29 3.23 0.60 1.77 
SEM          0.27           0.41          0.15 0.72 0.25 
 
P-value 

     

Fishmeal      < 0.01 < 0.01 < 0.01 0.24 0.051 
Complexity 0.24 0.11 0.04 0.63 0.28 
Interaction 0.07 0.02 < 0.01 0.30 0.57 
 
 
1The feed conversion ratios were calculated using all the observations including tanks where there were negative average daily gains. 
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Table D3. Performance of tilapia based on simple and complex diets with varying levels of fishmeal for days 28-42 of the growth trial. 
 
 Average Daily 

Gain 
(g d-1) 

Specific 
Growth Rate 

(%) 

Average Daily 
Feed Intake 

(g d-1) 

Feed Conversion1 

(g d-1) 
Protein 

Efficiency Ratio 
(gain protein 

intake-1) 
 
Fishmeal Level 

     

0 0.90a 1.48a 2.67 2.87 0.72a 
33 1.89b 2.46b 3.09 0.03 1.25ab 
67 2.23b 2.82b 3.14 -0.19 1.31b 
100 2.52b 2.99b 3.20 1.98 1.31b 
SEM         0.28 0.31 0.27 1.47 0.18 
 
Diet Complexity 

     

Simple 1.56 2.04 2.90 2.50 0.84 
Complex 2.16 2.83 3.32 -0.15 1.25 
SEM          0.22         0.25          0.21 1.16 0.14 
 
P-value 

     

Fishmeal      < 0.01 < 0.01 0.14 0.41 < 0.01 
Complexity 0.15 0.06 0.13 0.11 0.28 
Interaction 0.37 0.18 0.04 0.84 0.29 
 
1The feed conversion ratios were calculated using all the observations including tanks where there were negative average daily gains. 
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Table D4. Performance of tilapia based on simple and complex diets with varying levels of fishmeal for days 42-56 of the growth trial. 
 
 Average Daily 

Gain 
(g d-1) 

Specific 
Growth Rate 

(%) 

Average Daily 
Feed Intake 

(g d-1) 

Feed Conversion1 

(g d-1) 
Protein 

Efficiency Ratio 
(gain protein 

intake-1) 
 
Fishmeal Level 

     

0 1.05a 1.71a 2.65a 3.22b 1.04 
33 2.21b 2.97b 3.11ab 1.36ab 1.40 
67 2.23b 2.65b 3.49ab 1.80ab 1.40 
100 2.41b 2.74b 3.66b 0.13a 1.42 
SEM 0.18 0.18 0.31 0.92 0.18 
 
Diet Complexity 

     

Simple 1.72 2.25 3.25 2.39 1.30 
Complex 2.24 2.77 3.41 0.87 1.34 
SEM          0.15         0.14          0.24 0.47 0.16 
 
P-value 

     

Fishmeal < 0.01 < 0.01 0.03 0.02 0.06 
Complexity  0.054 0.05 0.58 0.03 0.76 
Interaction 0.34 0.42 0.09 0.43 0.51 
 
1The feed conversion ratios were calculated using all the observations including tanks where there were negative average daily gains. 
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APPENDIX E: Tilapia villi micrographs (50X). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure E1.  Tilapia intestinal section from fish fed the 0% Simple diet. 
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Figure E2. Tilapia intestinal section from fish fed the 0% Complex diet. 
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Figure E3. Tilapia intestinal section from fish fed the 100% Fishmeal diet. 
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