
 

 

REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF ELEVATED MATERNAL 

DIETARY SELENIUM IN THE MODEL AMPHIBIAN XENOPUS LAEVIS 

 

  

 

 

A Thesis Submitted to the College of  

Graduate Studies and Research  

In Partial Fulfillment of the Requirements 

 For the Degree of Master of Science 

 In the Toxicology Graduate Program, 

 University of Saskatchewan 

Saskatoon, Saskatchewan, Canada 

By  

Anita J. Massé 

 

 

© Copyright, Anita Joan Massé, April 2016. All Rights Reserved.



 

i 
 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection. I further agree that permission for copying of this thesis 

in any manner, in whole or in part, for scholarly purposes may be granted by the professor or 

professors who supervised my thesis work or, in their absence, by the Head of the Department or 

the Dean of the College in which my thesis work was done. It is understood that any copying or 

publication or use of this thesis or parts thereof for financial gain shall not be allowed without 

my written permission. It is also understood that due recognition shall be given to me and to the 

University of Saskatchewan in any scholarly use which may be made of any material in my 

thesis. Requests for permission to copy or to make other use of material in this thesis, in whole or 

part, should be addressed to:  

Chair of the Toxicology Graduate Program 

Toxicology Centre 

University of Saskatchewan 

Saskatoon, Saskatchewan  

Canada, S7N 5B3 

 

 

 

 

 



 

ii 
 

ABSTRACT 

 Selenium (Se) is a contaminant of potential concern in aquatic systems due to its efficient 

incorporation into food webs, potential for bioaccumulation at higher trophic levels, and role as a 

developmental toxicant in oviparous vertebrates. While the presence of embryonic/larval 

deformities due to in ovo Se exposure is considered the most sensitive toxicological endpoint, 

elevated levels of dietary Se have also been associated with alterations to bioenergetic and 

hormonal status of adult female fishes, which consequently could lead to diminished fitness and 

impaired reproduction. Adverse reproductive effects in fishes have been the primary focus of Se 

research thus far, while studies focusing on Se toxicity in amphibians in any regard are severely 

lacking. The US EPA has recently proposed a new set of criteria for the protection of freshwater 

aquatic life with regards to acceptable Se tissue threshold levels; however, these values were 

generated based on effects observed in fishes with negligible existent data on amphibians to 

assist in this process. Thus, the overall goal of this thesis research was to characterize the 

reproductive and developmental effects of elevated dietary Se exposure in Xenopus laevis, in 

order to provide a foundation for amphibian related Se research that may assist in establishing 

effective regulatory guidelines that protect this highly vulnerable and ecologically valuable 

taxon. 

The research presented in this thesis was performed as one large generational bioassay 

with the analysis of experimental variables divided into three sections in order to evaluate the 

effects of elevated in ovo Se exposure via maternal transfer on early and late stages of larval 

development in addition to the overall fitness of adult X. laevis females after a dietary exposure. 

Adult X. laevis females were fed a diet augmented with L-selenomethionine (SeMet) for 68 days 

after which they were bred with untreated males. The resultant embryos were incubated up to 5 
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days post fertilization (dpf) to determine fertilization success, hatchability, mortality and 

frequency/severity of malformations. Subsamples of 5 dpf tadpoles were selected and raised to 

completion of metamorphosis for evaluation of mortality, growth and maturation rate. In 

addition, tissue and blood samples as well as morphometric indices were collected from X. laevis 

females, upon completion of the exposure period and subsequent breeding, to ascertain Se tissue 

distribution, triglyceride and glycogen levels, cortisol concentrations and the overall health status 

of SeMet-treated females.  

Within the data gathered throughout this research, a foundation of knowledge 

characterizing Se toxicity in amphibians was established along with the development of an early 

life stage toxicity threshold for the frequency of teratogenic abnormalities in X. laevis. The 

bioenergetic and stress status in addition to the overall body condition of adult females after a 68 

day dietary exposure showed no significant differences among treatment groups. The 

concentrations of Se measured in the ovary, egg, liver and muscle samples increased with female 

dietary Se levels with strong positive relationships between egg Se concentrations and the other 

three tissues being illustrated. Elevated in ovo Se exposure had no biologically significant effect 

on fertilization success, hatchability or mortality within the first 5 dpf; however, the frequency 

and severity of morphological abnormalities was significantly greater in tadpoles from the 

highest dose group, with eye lens abnormalities most prominently observed. Late stage larval 

survival and growth was unaffected by in ovo Se exposure; however, the distribution of 

developmental stages observed at the set time point when 50% of tadpoles completed 

metamorphosis showed a larger portion of tadpoles at earlier stages of development in the 

highest dose group despite no overall change in time to metamorphosis. The results of this thesis 

research in its entirety suggest that amphibians, as represented by X. laevis, are potentially more 
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tolerant to elevated in ovo and dietary Se exposures than other oviparous vertebrates studied to 

date; however, without sufficient data for comparison it is unknown whether X. laevis is a 

tolerant, average or sensitive species among amphibians. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1  Properties and sources of selenium 

 Selenium (atomic number 34, atomic mass 78.96) is an element belonging to group VIA 

of the periodic table along with oxygen, sulphur, tellurium, and polonium (Reilly, 2006; Young 

et al., 2010b). The electrochemical properties shared by selenium (Se) and sulphur (S) are the 

key to their recurrent interaction and substitution in biological, chemical and geological 

processes (Reilly, 2006). Selenium is also a non-metal, or metalloid, that exists in four oxidation 

states; thus, the potential for a multitude of inorganic and organic Se compounds to be generated 

based on the site-specific biogeochemical properties of the receiving environment is substantial 

(Young et al., 2010b; Janz, 2012).  

Selenium is globally distributed with enriched sources naturally found among cretaceous 

sedimentary deposits of black shale, coal, and phosphate rocks (Maher et al., 2010). The 

mobilization of Se can transpire through natural biogeochemical processes (e.g. weathering, 

volcanic activity, wildfires); although, this contribution is minor when compared to the amount 

released through anthropogenic activities (Maher et al., 2010). The predominant sources 

responsible for the introduction of Se into the aquatic environment are typically waste by-

products from several economically significant industrial processes such as mining, smelting of 

pyritic ores, oil and gas refining, and irrigation along with the combustion of coal and fossil fuels 

(Lemly, 2004; Muscatello et al., 2008; Janz, 2012). The extent to which Se contamination could 
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negatively impact an aquatic ecosystem was initially demonstrated at Belews Lake, North 

Carolina. In the 1970s, a coal-burning power plant discharged highly concentrated Se-laden 

wastewater (100-200 µg Se/L) into Belews Lake that resulted in the elimination of over 20 

resident fish species with elevated rates of larval deformities in fish for ten years after 

termination of the source input (Lemly, 1985, 1997b, 2002; Young et al., 2010a). 

1.2 Selenium in aquatic environments 

1.2.1 Chemical speciation, uptake and bioaccumulation 

The biogeochemical cycling of selenium is unique and complex within aquatic 

environments. Selenides (-II), elemental Se (0), selenites (+IV) and selenates (+VI) are the four 

oxidative states of Se that provide the foundation for the generation of both inorganic and 

organic Se species (Young et al., 2010b). Under oxidizing conditions, Se(+VI) and Se(+IV) are 

hydrolyzed to form the oxyanions, selenate (SeO4
2-) and selenite (SeO3

2-), which comprise the 

majority of dissolved Se present in the water column from anthropogenic sources (Presser and 

Ohlendorf, 1987; Fan et al., 2002; Maher et al., 2010). The oxyanions of Se typically 

demonstrate increased solubility and mobility with increasing pH (Young et al., 2010b). Primary 

producers and microorganisms absorb and biotransform these inorganic forms of Se into a 

variety of organoselenium species that include the selenoaminoacids selenocysteine (SeCys) and 

selenomethionine (SeMet) (Fan et al., 2002; Orr et al., 2006). Most notably, SeMet represents 

60-80% of the total Se present in contaminated aquatic food webs (Fan et al., 2002; Orr et al., 

2006; Maher et al., 2010; Phibbs et al., 2011; Janz et al., 2014); thus, classifying it as the 

prominent form with the greatest aptitude for inducing dietary toxicity. A substantial enrichment 

of Se occurs at the base of food webs with the uptake of Se from its aqueous phase by algae. The 
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potential for a greater than a 100 fold increase in Se concentrations between these two has 

reported to occur (Luoma and Presser, 2009; Stewart et al., 2010). In this regard, lentic water 

bodies particularly allow for greater production of SeMet by primary producers due to the longer 

residence time of excess Se (Orr et al., 2006). Aquatic consumers occupying various trophic 

levels ingest and incorporate these selenoaminoacids into proteins resulting in the transfer and 

accumulation of Se through the food web with top predatory species like birds and fish having a 

greater likelihood of accumulating high concentrations over time (Lemly, 1993a; Hamilton, 

2004; Stewart et al., 2010). Ultimately, the degree to which selenium can exert toxicity in an 

ecosystem is dependent on site-specific characteristics, which pertain to hydrology, water 

chemistry and food web structure (Simmons and Wallschläger, 2005; Orr et al., 2006).  

1.2.2 Guidelines for selenium in the aquatic environment 

 The regulatory guidelines concerning the extent to which Se may be present in aquatic 

systems for the protection of organisms is continually evolving with emerging knowledge. The 

federal water quality guideline for the protection of freshwater aquatic life put forth by the 

Canadian Council of Ministers of the Environment is 1µg Se/L (CCME, 2007); however, 

provincial guidelines may vary with British Columbia setting the threshold at 2 µg Se/L (BC 

MoE, 2014) and Ontario at 100 µg Se/L (MoEE, 1994). The US EPA set a similar guideline at 5 

µg Se/L for chronically elevated water concentrations (US EPA, 2004). In 2004, the US EPA 

drafted a criterion that acknowledged the primary route of Se exposure was through dietary 

sources by establishing a whole body Se threshold of 7.91 µg Se/g d.m. for the protection of fish 

populations (US EPA, 2004). With increasing knowledge of Se’s biogeochemical behavior and 

its teratogenic capabilities in aquatic oviparous vertebrates, the US EPA drafted a new set of 
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criterion for the protection of freshwater organisms in 2014 that is currently undergoing review. 

With regards to water quality, it proposes the 30 day average of water concentrations in lentic 

and lotic systems not exceed 1.2 and 3.1 µg Se/L more than once in a three year period (US 

EPA, 2015). Moreover, the criterion states that fish tissue concentrations should never exceed 

15.8, 8.0 and 11.3 µg Se/g d.m. for egg-ovary, whole body, and muscle samples, respectively 

(US EPA, 2015). 

1.3 The essentiality and toxicity of selenium 

1.3.1 The essential role of selenium in vertebrate health 

Selenium is essential for optimal vertebrate health, and its physiological roles are 

attributed to its presence in an assortment of selenoproteins in the form of selenocysteine, the 21st 

amino acid. The size of a selenoproteome varies with species (Papp et al., 2007; Lobanov et al., 

2009; Mariotti et al., 2012). Bony fishes have one of the largest selenoproteomes, consisting of 

41 selenoprotein subfamilies, while frogs, birds and mammals have 24, 25 and 28, respectively 

(Lobanov et al., 2009; Janz, 2012; Mariotti et al., 2012). The majority of selenoproteins 

identified in vertebrates have unknown physiological functions (e.g. selenoprotein V [SelV] or 

selenoprotein N [SelN]); however, oxidoreductase seleno-enzymes such as glutathione 

peroxidases, thioredoxin reductases, and iodothyronine deiodinases are among the few that have 

been characterized (Papp et al., 2007; Janz et al., 2010; Gladyshev, 2012). Glutathione 

peroxidases and thioredoxin reductases are enzymes that catalyze oxidation-reduction reactions 

to effectively minimize oxidative damage and maintain intracellular redox homeostasis. 

Additionally, thioredoxin reductases are involved in DNA synthesis and protein repair (Papp et 

al., 2007; Janz et al., 2010; Gladyshev, 2012). Iodothyronine deiodinases are vital to metabolic 
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processes like thermogenesis, growth, and development by assisting in the conversion of 

thyroxine (T4) to active triiodothyronine (T3) through the removal of iodine moieties (Papp et 

al., 2007; Janz et al., 2010; Gladyshev, 2012). Ultimately, the efficiency of these enzymes to 

perform their catalytic roles relies on sufficient dietary intake of selenium. The nutritional 

requirements for Se in order to maintain proper physiological functioning of these selenoproteins 

have been experimentally determined to range between 0.1 and 0.5 µg Se/g d.m. for fishes and 

between 0.3 to 1.1 µg Se/g d.m. in aquatic birds (NRC, 1993; Puls, 1994; Watanabe et al., 1997; 

Lin et al., 2005; Janz et al., 2010; Stewart et al., 2010). The optimal dietary Se requirements for 

amphibians in general, or specifically for X. laevis, have not been established although 

preliminary recommendations suggest 0.3 g Se/g d.m. for adult amphibians (Ferrie et al., 2014). 

 Dietary SeCys or SeMet are readily absorbed and metabolized in order to ensure 

sufficient quantities of Se are available for the synthesis of selenoproteins. Both SeCys and 

SeMet undergo biotransformation into a common intermediate, selenide (Se 2-) (Suzuki and 

Ogra, 2002; Janz, 2012). Selenide is phosphorylated by selenophosphate synthetase to create 

SeCys, the vital component of selenoproteins (Janz, 2012). The incorporation of SeCys into a 

polypeptide chain is guided by selenocysteinyl-tRNA and highly regulated by a UGA codon 

within a SeCys insertion sequence in order to create the desired selenoprotein (Stadtman, 1996; 

Janz et al., 2010). Unlike selenocysteine, SeMet may undergo the biotransformation process 

described above, or avoid it entirely through direct incorporation into any methionine-containing 

protein structure due to the inability of methionyl-tRNA acylase to discriminate between 

methionine and SeMet (Young et al., 2010b). Therefore, tissues with high rates of protein 

synthesis such as those found in skeletal muscle, liver, kidney, pancreas, and erythrocytes will 

have, in a concentration dependent manner, an increasing proportion of SeMet in their structures 
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(Schrauzer, 2000). Under normal dietary conditions, this process has the potential to be 

beneficial by providing a selenium reserve to draw upon when SeCys synthesis is necessary; 

however, excessive levels of SeMet may compromise cellular redox homeostasis (Suzuki and 

Ogra, 2002; Janz, 2012).  

1.3.2 The toxicological effects of selenium in oviparous vertebrates 

 Knowledge of the toxicological impact Se could inflict on aquatic biota has been 

continually expanding over recent decades. The majority of this research has primarily focused 

on oviparous vertebrates, particularly birds and fish, since they appear to have a greater 

sensitivity to the negative effects associated with Se-laden environments than other biota with a 

narrow range between essentiality and toxicity being observed (Janz et al., 2010). Thus far, the 

most predominant and perhaps most important toxicological effect of Se exhibited in oviparious 

species are developmental abnormalities. In fish, the maternal transfer of excess dietary Se to the 

developing oocyte during vitellogenesis results in a substantial source of Se exposure to the 

larvae during yolk resorption (Janz et al., 2010; Janz, 2012). This route of exposure is considered 

the cause for the production of a suite of characteristic deformities in fish such as craniofacial 

deformities, spinal curvatures, missing or deformed fins, and edema (Holm et al., 2005; 

Muscatello et al., 2006; Janz, 2012). While in ovo Se exposure via maternal transfer also occurs 

in birds, the Se-containing proteins involved as well as the effects produced are quite different 

when compared to fish. In birds the albumin, not the yolk sac, is where Se is primarily found 

(Janz et al., 2010). This contrast in Se allocation results in its utilization by the developing chick 

prior to hatching and yolk sac resorption rather than after. Some characteristic embryonic 
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deformities produced by Se in birds are malformed bills, reduction/absence of eyes, and limb 

deformities (Hoffman and Heinz, 1988; Ohlendorf et al., 1988; Janz et al., 2010).  

 Aside from reproductive and developmental endpoints, recent research has investigated 

the potential consequences of sublethal Se exposure on stress-induced energy utilization in adult 

fishes. The link between altered bioenergetic status and physiological stress response to elevated 

Se exposure has been established, but is still poorly understood. Several field studies have 

reported alterations in triglyceride, glycogen and cortisol concentrations of fishes and anurans 

collected from Se-contaminated sites, but a defined physiological pattern or mechanism by 

which this occurs remains unclear (Hopkins et al., 1999; Bennett and Janz, 2007; Kelly and Janz, 

2008; Driedger et al., 2010; Ward et al., 2006). Increases in basal cortisol levels have been 

observed in both elevated aqueous and dietary Se exposures in fishes (Miller et al., 2007; 

Thomas and Janz, 2012); however, the ability to mount a response to a secondary stressor is 

diminished. Female rainbow trout (Oncorhynchus mykiss) chronically exposed to an 8.47 g 

Se/g d.m. diet for 126 days showed a marked increase in basal plasma cortisol levels when 

compared to control fish (Wiseman et al., 2011). However, Se-exposed trout plasma cortisol 

levels remained similar to their basal levels following a 3 minute handling stressor whereas the 

control trout initiated a greater response (Wiseman et al., 2011). In addition, dietary Se affected 

both the accumulation and partitioning of energy stores in liver and muscle of these trout 

(Wiseman et al., 2011). In an evaluation of triglyceride and glycogen levels prior to and 

following swimming trials in adult zebrafish (Danio rerio), storage and utilization of triglyceride 

and glycogen levels were altered in the Se-treated fish when compared to fish in the control 

group (Thomas and Janz, 2011; Thomas et al., 2013). These altered energetic dynamics have 

been associated with changes to the expression of proteins involved in either the synthesis or 
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metabolism of these macronutrients such as citrate synthase, HOAD (-hydroxyacyl coenzyme 

A dehydrogenase) and SREBP 1 (sterol regulatory element binding protein 1) (Goertzen et al., 

2011; Thomas et al., 2013). Further research investigating the connection between energy 

reserves, stress and sublethal Se toxicity is necessary to understand the potential impact on both 

the individual and a population within an ecosystem. 

1.3.3 The toxicological effects of selenium in amphibians 

There is marginal knowledge pertaining to the toxic effects of selenium on amphibians. 

The majority of existent data related to this research topic has been gathered from coal 

combustion waste deposition sites with high Se content that have reported a number of 

associated adverse effects on the inhabiting anuran populations (Rowe et al., 1996; Raimondo 

and Rowe, 1998; Hopkins et al., 2000; Hopkins et al., 2006; Ward et al., 2006; Metts et al., 

2013). However, Se is merely one contaminant existing at these sites among many. Other 

contaminants (e.g. arsenic, mercury, cadmium) present have the capability to produce 

detrimental reproductive effects in aquatic vertebrates independently in addition to influencing 

the bioavailability and toxicokinetics of Se within the organism resulting in either an increase or 

decrease of toxicological effects (Thompson and Bannigan, 2008; Bergeron et al., 2010; Singha 

et al., 2014). This makes it very difficult to establish a causal relationship between the presence 

of Se and its effects in amphibians. Nonetheless there appears to be similarities between the 

effects observed in amphibians at these sites and those seen in fish exposed to elevated levels of 

Se.  

 Amphibians efficiently accumulate and retain Se in their tissues during all stages of their 

life cycle (Hopkins et al., 2006; Unrine et al., 2007; Rowe et al., 2011; Metts et al., 2012; 
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Lockard et al., 2013). At contaminated sites, selenium has been found at elevated concentrations 

in larval and adult tissues as well as eggs. Hopkins et al. (2006) determined female eastern 

narrow mouth toads (Gastrophyryne carolinensis) collected from a site near a coal-burning 

power plant transferred significant quantities (up to 100 µg/g dry mass) of selenium to their eggs 

when compared to toads at a reference site. Amphibian larvae exposed to coal fly ash were 

shown to efficiently accumulate Se in their tissues (Unrine et al., 2007) and retain it through 

metamorphosis (Snodgrass et al., 2003, 2004, 2005; Rowe et al., 2011). The presence of high Se 

concentrations in tissues during highly sensitive and critical transitional stages of development 

(i.e. embryo-tadpole and tadpole-frog) could result in severe consequences to the overall health 

of an anuran and its ability to successfully shift from an aquatic to a terrestrial life stage.  

Elevated Se concentrations in larval amphibian tissues are associated with increased 

incidences of deformities and mortalities. The larvae of eastern narrow mouth toads collected 

from coal ash contaminated sites enriched with Se had an 11% reduction in hatching success, 

19% reduction in viability, and a 55-58% increase in the frequency of developmental deformities 

and abnormal swimming when compared to reference larvae (Hopkins et al., 2006). Elevated 

incidences of mortality among amphibian larvae at contaminated sites containing Se may be 

related to an inability to efficiently swim or feed due to vertebral and craniofacial malformations 

(Rowe et al., 1996, 1998a; Burger and Snodgrass, 2000; Janz et al., 2010). This relationship 

between Se and amphibian malformations is supported through synchrotron X-ray fluorescence 

analysis detecting high concentrations of Se localized within the malformed areas of bullfrog 

(Rana catesbeiana) tadpoles presenting with oral deformities (Punshon et al., 2005; Janz et al., 

2010). Tadpoles with elevated Se levels have also displayed reduced growth (Rowe et al., 1996; 

Snodgrass et al., 2004, 2005; Metts et al., 2012), elevated maintenance costs (Rowe et al., 
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1998b), altered predator avoidance capabilities (Raimondo et al., 1998; Hopkins et al., 2006), 

reduced survival (Rowe et al., 2001; Snodgrass et al., 2004, 2005; Roe et al., 2006; Lockard et 

al., 2013), and altered time to metamorphosis (Snodgrass et al., 2004; Janz et al., 2010; Metts et 

al., 2012). 

1.3.3.1 Mechanisms of selenium toxicity 

The mechanism by which selenium exerts its toxic effects remains uncertain. Initial 

investigations of this topic focused on the substitution of Se for S in amino acids. It was argued 

that the amino acids containing Se in the place of S disrupted the formation of S-S linkages 

consequently producing a protein that is improperly folded and dysfunctional (Janz et al., 2010). 

However, this hypothesis has diminishing support for a number of reasons. As discussed 

previously, the incorporation of SeCys into a protein is highly regulated, so the synthesis of any 

protein requiring Se for its structure or function will have a specific mRNA sequence and will 

require a UGA codon for selenocysteinyl-tRNA (Stadtman, 1996; Janz et al., 2010). Moreover, 

the presence of a terminal methyl group in both the structure of methionine and SeMet prevents 

the formation of covalent bridges indicating that both structures have very little to no influence 

on the tertiary structure of a protein. It is therefore unlikely that improper protein structure and 

function due to the substitution of Se for S in either methionine or cysteine is the mechanism by 

which toxicity occurs (Janz et al., 2010).  

 Oxidative stress has been proposed as an alternative mechanism of Se toxicity with 

glutathione homeostasis playing a key role in its propagation (Palace et al., 2004; Janz et al., 

2010; Janz, 2012). Under normal conditions, glutathione peroxidase (GPx) and reduced 

glutathione (GSH) act together as an intracellular antioxidant (Reddy and Massaro, 1983). At 
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sufficiently high levels of Se, the antioxidant capacity of this GPx-GSH collaboration become 

overwhelmed and a depletion of GSH occurs leading to the proliferation of reactive oxygen 

species (ROS) that damage DNA, protein, and lipids (Spallholz, 1994; Spallholz et al., 2001; 

Misra and Niyogi, 2009). Selenium assumes many different forms, which can directly or 

indirectly influence glutathione homeostasis. For example, SeMet has very little interaction with 

the glutathione antioxidant system, but upon its biotransformation to methylselenol or 

dimethylselenide, these metabolites react with glutathione to produce ROS such as superoxide 

anions, hydrogen peroxide, and hydroxyl radicals (Spallholz, 1994; Spallholz et al., 2001). The 

maternal transfer of SeMet to the yolk sac of eggs, and its subsequent breakdown by developing 

larvae during yolk sac resorption leads to the production of ROS that damage cellular 

components, and is hypothesized to be the cause of larval fish deformities in Se rich aquatic 

environments (Palace et al., 2004; Janz et al., 2010).  

1.4 Amphibians 

1.4.1 Amphibians as indicator species 

 Amphibians are ectothermic vertebrates that are categorized into three orders: Anura 

(toads and frogs), Caudata (salamanders and newts) and Gymnophiona (caecilians, worm-like) 

(Shi, 2000). They are morphologically and physiological distinct as a vertebrate class. Their 

renowned attributes include highly permeable skin, lack of cleidoic (shelled) eggs, and a 

metamorphic stage in development (Vitt and Caldwell, 2009). The largest group of amphibians 

that also have the broadest geographical distribution are the anurans (Shi, 2000). Over twenty 

years ago the label of “canaries in a coal mine” was given to amphibians upon realization of their 

global population declines (Kerby et al., 2010). This analogy proposed that amphibians were 



 

12 
 
 

exceptionally sensitive to environmental changes and thus were an excellent indicator species 

able to alert scientists to ecological distress. There are several factors implicated in the rapid 

decline of amphibians, one of which is environmental contamination. The reasoning behind their 

suspected high susceptibility to contaminants over other organisms is generally owing to their 

permeable eggs, skin and gills, aquatic-terrestrial life cycle and a relatively rudimentary immune 

system (Bridges et al., 2002; Wake and Vredenburg, 2008; Kerby et al., 2010). Although these 

deductions are logical to presume, there is insufficient evidence to entirely support the claim that 

amphibians are the most sensitive species to chemical contamination within an ecosystem.  

Research into amphibian sensitivity to environmental contaminants has shown that it may 

not be as simple as once thought. This leaves their role as an ideal indicator species in question. 

A review by Birge et al. (2000) compared several amphibian species (e.g., Rana pipiens 

[northern leopard frog], eastern narrowmouth toad) with commonly tested fish (eg. rainbow 

trout, Pimephales promelas [fathead minnow]) to a number of aqueous contaminants. The 

relative sensitivity of amphibians to fish for the embryo-larval stage was determined by 

performing 694 comparisons using 50 metals and organic compounds. The conclusion was that 

64% of the time amphibians were more sensitive than fish. A subsequent study by Bridges et al. 

(2002) exposed southern leopard frog (Rana sphenocephala) tadpoles to five chemicals (4-

nonylphenol, carbaryl, copper, pentochlorophenol, permethrin) each having a different mode of 

action. The LC50s at 24 and 96 h were then compared to published data on commonly tested fish 

species (i.e., fathead minnow, bluegill sunfish [Lepomis macrochirus], rainbow trout). Overall, 

the southern leopard frog tadpoles were more tolerant in 48 % of comparisons, while in 22.5% of 

comparisons there were no significant differences. In addition, the results found that the southern 

leopard frog tadpoles were very tolerant to chemicals like carbaryl and permethrin while more 
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sensitive to metals like copper. These two studies demonstrate the inadequacy of using an entire 

class of vertebrates with very diverse natural histories and physiology as an overall indicator of 

ecological health. It is a misguided assumption that amphibians will have a greater sensitivity to 

all contaminants when compared to other species within a community. Furthermore, it is 

imperative to note then that in both studies the dermal route of contaminant exposure was solely 

explored, providing a very limited view of a much larger picture.  

Nonetheless, amphibian populations play important roles in a community and should not 

be overlooked or given diminished importance when investigating contaminant effects on an 

ecosystem. In some habitats, amphibian numbers and biomass exceed that of all other vertebrates 

(Stebbins and Cohen, 1995), so any drastic changes to their population could have serious 

repercussions for the entire community. The biphasic nature of their lifecycle allows amphibians 

to act as vectors for contaminants, transferred from aqueous to terrestrial environments (Unrine 

et al., 2007). Moreover, many amphibians have an aquatic herbivorous tadpole stage and a 

terrestrial carnivorous adult stage thus designating them as both an important predator and prey 

species in the food web (Burger and Snodgrass, 2000; Murphy et al., 2000).  

1.4.2 Energetic status and the stress response as gauge of anuran fitness  

  Physiological stress is a multifaceted response to both anticipated and unexpected 

environmental stressors that challenge an organism’s established homeostatic parameters 

(Cockrem, 2013; Dantzer et al., 2014). These stressors include contaminant exposure, habitat 

destruction, reduced food availability, temperature fluctuations as well as preparations for 

reproduction and migration (Hopkins et al., 1999; Cockrem, 2013; Dantzer et al., 2014). The 

physiological stress response is facilitated through a series of biochemical events initiated by the 
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hypothalamic-pituitary-interrenal (HPI) axis in amphibians. Neuroendocrine stimulation initiates 

the release of corticotropin-releasing hormone from the hypothalamus, which subsequently 

stimulates the pituitary gland to release adrenocorticotropic hormone (ACTH) into the 

bloodstream for transportation to the adrenocortical tissue within the interrenal glands, where 

stimulation of corticosteroid synthesis and release generates a negative feedback cycle within the 

HPI axis (Denver, 2009b). The most prevalent corticosteroid for terrestrial amphibians in 

response to stress is corticosterone; however, cortisol has been reported to be the major 

corticosteroid in metamorphosing ranid tapdoles and in permanently aquatic anurans (i.e. 

Xenopus laevis) and urodeles indicating a similar role in osmoregulation as in fishes (Herman, 

1992; Norris, 2007; Denver, 2009b; Dantzer et al., 2014). The release of cortisol/corticosterone 

prompts a number of metabolic processes related to the mobilization and utilization of energy 

stores including glycogenolysis, gluconeogenesis, and lipolysis (Herman, 1992; Denver, 2009b). 

While the metabolic expense associated with an acute stressor is beneficial to the survival of an 

individual, prolonged stress could have implications for the bioenergetic status (i.e. triglyceride 

and glycogen levels) of an amphibian resulting in the inability to effectively reproduce, grow and 

resist disease (Moore and Miller, 1984; Herman, 1992; Denver, 2009a; Falso et al., 2015). 

 Triglycerides are the principal lipids contained in amphibian energy reserves. Anuran 

amphibians primarily store lipids in abdominal fat bodies, but they may also be found in the 

liver, subcutaneous tissue, muscle, gonads, and tail (Sheridan and Kao, 1998). Lipids provide an 

excellent source of energy because they have twice the energetic yield of carbohydrates upon 

oxidation, and can be stored in high concentrations within the body due to their low water 

solubility (Fitzpatrick, 1976). Triglycerides also play a vital role in anuran physiological 

processes such as metamorphosis, gonadal maintenance, production of gametes, and metabolic 
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maintenance during dormancy (Fitzpatrick, 1976). Contaminant exposure may reduce 

triglyceride storage or utilization in anurans resulting in reduced fitness. For example, larval 

leopard frogs fed a rationed diet containing a high concentration of vanadium had significantly 

lower growth rates, delayed metamorphosis, and reduced lipid content at metamorphosis when 

compared to controls (Rowe et al., 2009). 

 Glycogen functions as a secondary long-term energy store (Pinder et al., 1992). It is 

primarily located in the liver, but low concentrations can also be found within muscle tissue. It is 

an essential form of energy that can be rapidly metabolized to supply energy in response to 

activities such as predator avoidance/escape, foraging/prey capture, territorial defense, and 

courtship (i.e., mating calls) (Pough et al., 1992). In addition, freeze-tolerant anurans can rapidly 

access and convert glycogen to glucose, which acts as a cryoprotectant essential to winter 

survival (Pinder et al., 1992; Dinsmore and Swanson, 2008). Lowered freeze survival is 

associated with low hepatic glycogen stores. Ultimately, the depletion of triglyceride or glycogen 

energy stores can lead to reduced survivorship and impaired reproduction of amphibian species 

(Dinsmore and Swanson, 2008). 

1.4.3 Xenopus laevis as a laboratory model  

1.4.3.1 Advantages and disadvantages  

Xenopus laevis, commonly known as the African clawed frog, belongs to the order Anura 

and family Pipidae. Their native range includes large parts of sub-Saharan Africa from Uganda 

and Zaire to South Africa and west to Cameroon (Cannatella and de Sa, 1993). They generally 

prefer slow moving to stagnant waters (i.e., swamps, irrigation ditches, reservoirs, lakes) in 

cooler upland areas (Tinsley et al., 1996; Green, 2002). The name, Xenopus laevis, describes its 
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characteristic smooth skin and three clawed toes on each hind foot; Xenopus means “strange 

foot” and laevis means “smooth”. They are among the most aquatic anurans, which may 

correspond with their very strange appearance. X. laevis have flattened, pear-shaped bodies, 

small heads, dorsally positioned eyes without eyelids, and lateral line organs that resemble 

“stitches” on their dorsum. They have fore limbs that are short and small while their hind limbs 

are long and muscular with toes that are fully webbed with the three inner toes on each foot 

having black claws (Cannatella and de Sa, 1993). Other unique features include the absence of a 

tongue, a well-developed but concealed middle ear, and the absence of vocal chords or sacs. The 

tadpoles are filter feeders that have a pair of sensory tentacles, and orient their heads downward 

while rapidly moving their tail to maintain position (Cannetella and de Sa, 1993).  

 The use of Xenopus laevis as a model organism has a number of advantages in laboratory 

research. Probably the most significant reason for the use of X. laevis is its ability to reproduce 

year-round through the use of commercial hormone preparations such as human chorionic 

gonadotropin (Gurdon, 1996). This is a huge advantage when most other amphibians have a 

limited breeding season of just a few weeks per year. X. laevis also produce an abundance of 

large sized eggs per spawn and have a relatively short time period between embryo and sexually 

mature adult (Green, 2002). Compared to other anuran species the husbandry of X. laevis is easy. 

They can be readily obtained through distributors, housed in aquaria, fed pelleted food and have 

a relatively excellent resistance to disease (Gurdon, 1996; Green, 2002). Moreover, the 

embryonic development of X. laevis has been studied for decades giving a substantial knowledge 

base with established methods for studying oocyte, egg, and embryo development (Green, 2002). 



 

17 
 
 

 There are a few disadvantages to using X. laevis as a model organism in laboratory 

studies. Despite the relative ease of husbandry and the extensive laboratory use of X. laevis for 

decades, there is marginal evidence based knowledge on how to maintain a healthy and 

productive colony and therefore no established standardized husbandry protocol concerning 

information on the necessary water quality parameters, environmental conditions or nutritional 

requirements (Green, 2002). In addition, X. laevis is an allotetraploid, which potentially makes 

genetic analysis problematic. With a chromosome set twice that of a diploid organism, 

researchers have greater difficulty in manipulating its genome to identify the functions of 

particular genes and their subsequent inheritance through multiple generations (Amaya et al., 

1998). X. laevis have significant differences in their genetics, life history, physical 

characteristics, and relative tolerance to environmental contaminants when compared to 

temperate native species (McDiarmid and Mitchell, 2000; Elinson and del Pino, 2012). For these 

reasons, researchers utilizing X. laevis must be cautious with the extrapolation of their results to 

other anuran species. 

1.4.3.2 Xenopus laevis oogenesis 

The ovaries are the largest organs in the adult X. laevis female. Each ovary has multiple 

lobes (approx. 24 lobes per ovary) containing hundreds of oocytes at various stages of 

development, which comprise the majority of the ovarian volume (Rasar and Hammes, 2006). 

The oocytes contained within an ovary are surrounded by granulosal, thecal and epithelial layers. 

The germinal epithelial layer forms a continuous layer with the visceral peritoneum and 

surrounds the underlying granulosal, theca layers as well as follicular cells (Rasar and Hammes, 

2006; Linder et al., 2010). The theca layer contains extracellular matrix, blood vessels, 
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fibroblasts and the developing oocytes (Rasar and Hammes, 2006). Follicular development is 

initiated by increases in gonadotropins (Linder et al., 2010). With the onset of vitellogenesis, the 

theca begins by surrounding the granulosal layer then slowly becomes separated from it by the 

membrane propria to form the glandular theca externa and the fibrous theca interna (Linder et 

al., 2010). Each oocyte develops a layer of follicular cells and vitelline membrane that surrounds 

and separates it from the theca layer (Rasar and Hammes, 2006). With further maturation, the 

follicle cells create gap junctions that cross the vitelline membrane and connect them to the 

oocyte surface to facilitate yolk accumulation (i.e. vitellogenesis) and regulation of meiosis 

(Rasar and Hammes,, 2006; Mónaco et al., 2007). A fully developed oocyte primed for ovulation 

and fertilization is comprised of a well-defined animal pole containing the nucleus, a vegetal 

pole containing protein rich yolk platelets and an equatorial band that separates the two. 

Oocyte yolk formation, also known as vitellogenesis, is a fundamental process that 

ensures the embryo has adequate nutrition for development. Vitellogenin, a 400-500 kDa 

phospholipoglycoprotein, is the precursor yolk protein necessary for the development of the 

oocyte’s yolk sac (Linder et al., 2010). Under the regulation of the hypothalmic-pituitary-

gonadal-liver endocrine axis, vitellogenin is synthesized in the liver, transported to the ovary 

through the bloodstream and enters the oocyte. The method of vitellogenin uptake by the 

maturing oocyte is not completely understood; however, it is hypothesized to occur through 

pinocytotic and endocytotic processes in addition to facilitated communication between follicular 

cells and oocytes through gap junctions (Brachet, 1979; Gilbert, 2000; Mónaco et al., 2007). In a 

mature oocyte, vitellogenin is enzymatically cleaved into two yolk proteins, phosvitin and 

lipovitellin, and subsequently packaged into yolk platelets with glycogen granules and 

lipochondrial inclusions storing their respective yolk components (Gilbert, 2000). The process of 
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vitellogenesis is frequently altered due to contaminant exposure making it a vital biomarker of 

reproductive fitness in oviparous species (Kime et al., 1999). Moreover, it is hypothesized to be 

the primary method of in ovo Se exposure for embryonic and larval aquatic oviparous vertebrates 

that is responsible for the production of teratogenic abnormalities (Janz et al., 2010). 

Oogenesis in an adult X. laevis female is a persistent and asynchronous process with a 

cycle considered complete when a large proportion of oocytes have become post-vitellogenic 

(Rasar and Hammes, 2006). Even though oogenesis is continuous and progressive in X. laevis 

with no defined boundaries, there are six stages of oocyte development that have been outlined 

below by James Dumont (1972). The diameter size of Stage I oocytes range from 50 to 300 µm 

and Stage VI oocytes from 1200 to 1300 µm demonstrating that oocyte size gradually increases 

with developmental stage. Stage I and II oocytes are considered pre-vitellogenic while Stage VI 

oocytes are post-vitellogenic. Stage II oocytes account for the greatest proportion (45%) of the 

total oocyte population in stages II to VI while the other five stages each contribute only 10 to 

15% of the total. Pigmentation and vitellogenesis commences in Stage III oocytes giving them a 

uniformly light brown (early) to dark brown (late) appearance with no definition between the two 

poles. Stage IV oocytes experience increased growth due to the rapid vitellogenesis which 

coincides with the polarization of pigments. Vitellogenesis decreases in Stage V oocytes and two 

distinct hemispheres outlining animal and vegetal poles are created. Stage VI oocytes have two 

distinct hemispheres separated by an unpigmented equatorial band and have ceased 

vitellogenesis.  

Oogenesis in X. laevis is greatly affected by three factors: temperature, age of the female 

and nutrition. X. laevis naturally prefer warm, calm waters year round, and under agreeable 
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laboratory conditions (i.e. 12h light:12h dark photoperiod; 19 to 23oC water temperature) X. 

laevis are capable of efficient oogenesis and adequate egg production year round (Green, 2002). 

However, a marked reduction in the quality and quantity of eggs produced by laboratory housed 

X. laevis does occur seasonally indicating an innate period of torpor that could be induced under 

lower water temperatures. However, estrogen production and metabolic processes related to 

oogenesis may improve with a period of cold exposure in X. laevis with some laboratories 

reporting an improvement in egg quality of cold adapted frogs housed at 16C who are gradually 

reintroduced to warmer water prior to egg collection (Green, 2002). Additionally, the age of the 

female can greatly influence the quality and number eggs produced in each clutch with the 

poorest fecundity observed in older commercially reared females. In general, X. laevis females 

reach their reproductive peak by 2 to 3 years of age with the capability to produce up to 4 

clutches per year each containing approximately 10 to 20 thousand eggs (Green, 2002). 

Furthermore, oogenesis in X. laevis is highly dependent on food supply, but the nutritional 

qualities inherently required to attain optimal performance in any amphibian is unknown. The 

best diet for these opportunistic carnivorous feeding anurans is highly debatable due to 

inconsistencies between laboratories with no critical evaluation of efficacy. For example, 

laboratories report feeding their X. laevis colonies diets consisting of chopped meats, 

commercially packaged frozen invertebrates, worms, crickets or pelleted foods (Green, 2002). 

Although X. laevis has been the standard laboratory model amphibian for decades, there is a lack 

of knowledge and remains no universally accepted housing protocols to optimize the health and 

oogenesis of this species in captivity. 
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1.4.3.3 Xenopus laevis development 

A comprehensive system for the classification of stages in Xenopus laevis embryonic and 

larval development was outlined in the Normal Table of Xenopus laevis (Nieuwkoop and Faber, 

1994). This invaluable document describes in detail the complex changes an embryo undergoes 

to complete metamorphosis in 66 distinct steps. The first 15 stages of embryo development 

include blastulation, gastrulation, and formation of the neural plate. The majority of the early 

structural and systemic development of the larvae occurs from stages 15 - 38 with intricate later 

stage larval development continuing through to stage 53. Approximately 2 days after fertilization 

(dpf), the embryos begin hatching (stages 35-38). The mouth breaks through (stage 40) and the 

tentacle rudiments begin to appear (stage 44) one day later. At stage 45 (~4 dpf) larvae begin 

feeding and by stage 48 (~7 dpf) the yolk has completely disappeared. The hind limb bud 

develops in stages of 46 - 53. The formation of individual toes of the hind legs occurs at stages 

54 - 57 followed by rapid hind limb growth in stages 57 - 60. The forelimb bud appears at stage 

48, and continues to grow and form articulations until stage 62. Resorption of the tail begins at 

stage 62 and metamorphosis is complete at stage 66.  

The 66 stages of embryo and larval development outlined in The Normal Table of 

Xenopus can be conveniently divided into three metamorphic stages: premetamorphosis, 

prometamorphosis and metamorphic climax (Shi, 2000; Brown and Cai, 2007). 

Premetamorphosis (stages 1-53) is the period of early embryo and larval development that occurs 

in the absence of thyroid hormone. Prometamorphosis (stages 55 - 57) is characterized by hind 

limb growth and toe differentiation in the presence of a rising concentration of thyroid hormone. 

However, initial formation of hind limbs occurs towards the end of the prometamorphosis stage 
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(Shi, 2000; Brown and Cai, 2007). Metamorphic climax (stages 58 - 66) involves rapid 

morphological changes that are stimulated by peak thyroid hormone levels (Shi, 2000; Brown 

and Cai, 2007). These changes include complete resorption of the tadpole’s tail, development of 

the fore limbs, and the restructuring of internal organs. 

Metamorphosis, like embryonic development, is an extremely vulnerable time for anuran 

amphibians due to the major biochemical, morphological and physiological changes that occur. 

Larval amphibians need to transform from an aquatic herbivore to a terrestrial carnivore; this 

requires complete restructuring of the respiratory system, digestive tract, cranium, jaw, and 

pelvic girdle (Murphy et al., 2000). The dramatic alterations in gene expression and endocrine 

actions needed to coordinate these changes creates a multitude of opportunities for toxic 

chemical interactions, resulting in decreased survivorship and reduced overall fitness of the 

transformed population. During metamorphic climax, the suppression of the immune system to 

prevent an autoimmune response to adult cells present in the larval body leaves them susceptible 

to infections as well as contaminant exposures (Murphy et al., 2000). Moreover, resorption of the 

larval tail may redistribute stored chemicals thereby increasing their availability for metabolism 

and the potential production of toxic metabolites (Murphy et al., 2000). The restructuring of 

epithelial tissues may alter the rate of uptake and transport of chemicals (Henry, 2000), and the 

mobilization of energy reserves (i.e., triglycerides) along with any lipophilic chemicals contained 

within will be released into the system (Murphy et al., 2000). 

1.5 Research objectives and hypothesis 

There is growing concern about the presence of selenium in aquatic systems due to its 

efficient incorporation into food webs and its role as a developmental toxicant in aquatic 
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oviparous species like fish and birds. Presently, there is insufficient data on the effects of 

selenium on amphibians. A number of field studies speculate that selenium is causing a higher 

incidence of larval amphibian mortality and deformities at industrially contaminated sites. To 

date, no extensive laboratory research has been performed to isolate and confirm selenium's role 

without the influence of other commonly found toxicants at these sites. The overall goal of this 

thesis is to investigate the possible exposure routes, reproductive and developmental effects, and 

the overall sensitivity of amphibians exposed to Se in order to gauge the effectiveness of 

regulatory guidelines in protecting declining amphibian populations. 

1.5.1 Objectives 

Utilizing the model amphibian species Xenopus laevis, the three main objectives of this thesis 

were: 

1) To determine the consequences of in ovo selenium exposure on early and late stage larval 

anuran development  

2) To determine the consequences of elevated dietary selenium on the fitness of female 

anurans 

3) To determine the sensitivity of anurans to elevated in ovo or dietary Se in relation to other 

aquatic oviparous species 

1.5.2 Hypotheses 

The overall null hypothesis of this research was: 

H0: Chronically elevated dietary Se exposure in adult female Xenopus laevis will produce 

no adverse effects on their fitness or the development of their progeny. 
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The specific null hypotheses are: 

1) H0: There will be no adverse effects on egg fertilization success, biometric indices, 

energetic status or physiological stress response in female X. laevis fed elevated levels of 

dietary Se. 

2) H0: There will be no difference in measured concentrations of Se among female X. laevis 

tissues after chronic dietary exposure to elevated Se. 

3) H0: In ovo Se exposure via maternal transfer will have no effect on apical endpoints 

relating to morphometrics, malformation, maturation, metamorphosis or mortality of 

developing X. laevis larvae.  
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CHAPTER 2 

DOSE-DEPENDENT EARLY LIFE STAGE TOXICITIES IN XENOPUS LAEVIS  EXPOSED IN OVO TO 

SELENIUM 

2.1 Preface 

The most prominent and valued portion of this generational bioassay is presented within 

this chapter. The purpose of this research was to characterize the effects of early life stage Se 

toxicities that arise through elevated in ovo exposure via maternal transfer in amphibians in order 

to determine their relative sensitivity in comparison to other aquatic oviparous vertebrates. An 

evaluation of endpoints that included mortality, hatching success, and fertilization success were 

performed within the first five days of development along with an extensive deformity analysis 

of 5 day post fertilization tadpoles. This data allowed for the generation of EC10 values related to 

the incidence of teratogenic abnormalities induced by in ovo Se exposure in Xenopus laevis, a 

representative amphibian model species, which will potentially assist in establishing more 

comprehensive regulatory guidelines.  

 This chapter was published in Environmental Science & Technology (2015), 49: 13658-

13666, under the joint authorship with Jorgelina R. Muscatello (Stantec Consulting Ltd.) and 

David M. Janz (University of Saskatchewan). The tables, figures and references cited in this 

article have been re-formatted to adhere to thesis presentation guidelines. References cited and 

the supporting information referred to in this chapter are included in the reference section and 

appendix of this thesis, respectively. 
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2.2 Abstract 

 Selenium (Se) is a developmental toxicant in oviparous vertebrates. The adverse 

reproductive effects of Se toxicity have been predominantly investigated in fishes and birds with 

only a few studies focusing on amphibians. The objective of this study was to determine tissue-

based Se toxicity thresholds for early life stage Se toxicities in Xenopus laevis as a consequence 

of in ovo exposure through maternal transfer of dietary Se. Following a 68-day dietary exposure 

to food augmented with L-selenomethionine (SeMet) at measured concentrations of 0.7 

(control), 10.9, 30.4, or 94.2 μg Se/g dry mass (d.m.), adult female X. laevis were bred with 

untreated males, and resulting embryos were incubated until 5 days post-fertilization (dpf). The 

measured Se concentrations in eggs were 1.6, 10.8, 28.1 and 81.7 μg Se/g d.m., respectively. No 

biologically significant effects were observed on fertilization success, hatchability or mortality in 

offspring. Frequency and severity of morphological abnormalities were significantly greater in 5 

dpf tadpoles from the highest exposure group when compared to the control, with eye lens 

abnormalities being the most prominent of all abnormalities. The estimated EC10 value for 

frequency of total early life stage abnormalities was 44.9 µg Se/g egg d.m., which suggests that 

this amphibian species is less sensitive to in ovo Se exposure than most of the fish species 

studied to date. 
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2.3 Introduction 

 Selenium (Se) is a naturally occurring, globally distributed metalloid that 

becomes mobilized and released into aquatic environments predominantly through 

anthropogenic activities related to mining, coal-fired power plants, oil refining and irrigation of 

seleniferous soils for agricultural purposes (Lemly, 2002; Maher et al., 2010). Inorganic selenate 

and selenite are typically the forms of Se introduced into receiving aquatic ecosystems by these 

industrial practices. Both of these Se forms are subsequently absorbed and biotransformed by 

primary producers and microbes into a variety of organic Se species. Selenomethionine (SeMet) 

is the most prominent organoselenium species found in Se-contaminated aquatic food webs, 

representing 60-80% of total Se (Fan et al., 2002; Orr et al., 2006; Maher et al., 2010; Phibbs et 

al., 2011; Janz et al., 2014). Selenium concentrations increase more than 100 fold between the 

aqueous phase and algal uptake (Luoma and Presser, 2009; Stewart et al., 2010). This Se 

enrichment at the base of the food web, in addition to its accumulation and transfer to higher 

trophic levels via dietary pathways, can result in adverse reproductive and consequently 

developmental effects in oviparous vertebrates such as birds, fishes and possibly amphibians 

(Luoma and Presser, 2009; Janz et al., 2010). Although Se is an essential trace element in all 

animals, it presents a significant toxicological hazard due to the narrow range between 

essentiality and toxicity, particularly in early life stages of fishes and birds (Luoma and Presser, 

2009; Janz et al., 2010).  

Selenium exerts its most toxic effects through transfer from the diet of high trophic level 

oviparous adult females to their oocytes; thus, the primary exposure route of developing embryos 

occurs through maternal transfer rather through direct aqueous exposure (Stewart et al., 2010). 
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Vitellogenin, the yolk precursor protein, is synthesized and exported from the liver, incorporated 

into developing ovarian follicles, and subsequently enzymatically cleaved into the primary yolk 

proteins lipovitellin and phosvitin (Janz et al., 2010). These yolk proteins typically contain sulfur 

due to methionine (Met) residues, however unregulated, dose-dependent substitution of SeMet 

for Met occurs with elevated maternal dietary intake (Janz et al., 2010; Janz, 2012). Greater 

quantities of SeMet present in the yolk sac/albumin of eggs is hypothesized to initiate a series of 

biochemical events that lead to early life stage deformities or mortalities that appear in larval 

fishes and/or embryonic birds inhabiting Se-contaminated aquatic ecosystems. During yolk 

sac/albumin resorption by developing embryos, SeMet is catabolized into a variety of 

metabolites (e.g., methylselenol and dimethylselenide) that have been reported to cause 

generation of reactive oxygen species that damage cellular components such as DNA, proteins 

and lipids during this extremely sensitive stage of development (Palace et al., 2004; Janz et al., 

2010). 

The teratogenic effects of Se in oviparous vertebrates have been mainly studied in fish 

and bird species, with excess dietary Se in adult females causing a greater incidence of 

morphological abnormalities and embryonic mortality in their progeny, respectively (Janz et al., 

2010). The allocation of Se to either the yolk sac for fishes or to the albumin for birds influences 

the most sensitive toxicity endpoints observed in these two vertebrate taxa (Janz et al., 2010). 

Craniofacial, vertebral, and fin abnormalities, in addition to other toxicities such as edema, are 

characteristic abnormalities that are observed in larval fishes collected from Se-contaminated 

sites upon yolk sac absorption following hatching (Holm et al., 2005; Muscatello et al., 2006; 

Janz et al., 2010). Comparatively, characteristic embryonic deformities produced by Se in birds 

that may contribute to mortality before hatching are malformed bills, reduction/absence of eyes, 
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and limb malformations (Janz et al., 2010). Importantly, data pertaining to the effects of Se in 

developing amphibians are currently lacking. The majority of studies to date have focused on 

effects of contaminant mixtures (i.e. coal combustion residues) on amphibian reproduction and 

development, of which Se was only one component (Hopkins et al., 2006; Janz et al., 2010; 

Metts et al., 2013). Other toxic contaminants (e.g., arsenic, cadmium, mercury) found within 

these mixtures may have also influenced larval morphological abnormalities in addition to Se. 

Thus, there exists uncertainty on whether Se is the major contributor to an assortment of 

toxicological effects observed in larval stage amphibians exposed to coal combustion residues in 

field and laboratory studies. These effects include reduced hatching and viability, increased 

frequency of deformities, reduced growth and survival, elevated energetic maintenance costs, 

altered predator avoidance capabilities, and altered time to metamorphosis (Rowe et al., 1996; 

Raimondo et al., 1998; Hopkins et al., 2000; Snodgrass et al., 2003, 2004; Hopkins et al., 2006; 

Metts et al., 2013). With this valuable knowledge base, it becomes imperative to characterize 

developmental Se toxicity in amphibians exclusively, without the influence of other toxicants, to 

establish a reference point for comparison. The purpose of this study was to investigate the 

potential adverse effects of chronic exposure to elevated concentrations of dietary SeMet by 

means of in ovo maternal transfer on the early development of Xenopus laevis progeny in order 

to gain a greater understanding of the sensitivity of amphibians to Se toxicity.  

Recently, the United States Environmental Protection Agency (US EPA) proposed a 

tissue-based protective criterion for Se in aquatic organisms, assuming that fishes are the most 

sensitive taxa (US EPA, 2015). However no amphibian data were included in the draft US EPA 

criterion, and it is unknown whether the criterion will be protective to amphibians in Se-

contaminated environments. To assist in filling this knowledge gap, reproductively mature X. 
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laevis females were fed diets augmented with SeMet at concentrations based on environmental 

relevance as well as published literature from field and laboratory research (Hopkins et al., 2006; 

Muscatello et al., 2006; Thomas and Janz, 2011; Thomas and Janz, 2014). Upon completion of 

the 68-day chronic exposure period, the females were then bred with untreated males to 

determine fertilization success, hatching success, embryo mortality, and the frequency and 

severity of morphological abnormalities within the first five days of embryo/larval development. 

The results were analyzed in relation to the concentrations of Se present in subsamples of eggs 

taken from each female to aid in the characterization of early life stage toxicities and to obtain 

egg Se-based toxicity thresholds for amphibians that can be potentially utilized in establishing a 

regulatory criterion for their protection at Se-contaminated sites.  

2.4 Materials and methods 

2.4.1 Test species and laboratory conditions 

Sexually mature adult Xenopus laevis breeding pairs were purchased from Xenopus 1 

(Dexter, MI, USA) and housed at 17±1°C water temperature and a 12h light:12h dark 

photoperiod in the Aquatic Toxicology Research Facility (ATRF) located at the Toxicology 

Centre, University of Saskatchewan, Saskatoon, SK. Adult frogs were fed Nasco™ frog brittle 

(Newmarket, ON, Canada) ad libitum daily. Males and females were housed separately in large 

Min-O-Cool™ aquaria (84" L X 24" W X 22" D) with a 12" water depth and flow-through 

conditions (0.75-0.9 L/min). Frogs were acclimated for two months under these laboratory 

conditions prior to commencing the experiment.  
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2.4.2 Diet preparation  

Seleno-L-methionine (≥ 98% purity; Sigma Aldrich, Oakville, ON, Canada) was 

dissolved in a fixed volume of deionized water and thoroughly mixed with a predetermined 

quantity of finely ground Nasco™ frog brittle to create the nominal dietary concentrations of 10, 

30, and 90 µg Se/g dry mass (d.m.). The control diet was comprised of equivalent quantities of 

deionized water and ground brittle without the addition of SeMet. The resultant paste for each 

diet was processed in a meat grinder to form long cylindrical strands, which after freezing at -

20oC were broken into small pieces. Diets were stored in airtight containers at -20oC and n=6 

representative samples of each diet were taken prior to and during the feeding trial for total Se 

analysis. 

2.4.3 Experimental design 

Prior to commencing dietary SeMet exposures, each adult female (n=40) was bred with 

an individual male in order to release mature (post-vitellogenic and preovulatory) ovarian 

follicles from the ovary. This initial breeding was performed to ensure that subsequent dietary 

SeMet exposures maximized maternal transfer of Se to ovarian follicles at early (pre-

vitellogenic) stages of oogenesis. In preparation for breeding, the water temperature was slowly 

increased over one week until it reached 20°C and was subsequently maintained throughout the 

breeding trial. Human chorionic gonadotropin (hCG; Sigma Aldrich, Oakville, ON, Canada) 

dissolved in phosphate buffered saline was administered to both males and females to stimulate 

amplexus and induce spermiation and ovulation. An initial priming dose of 25 IU hCG was 

injected sub-dermally into the dorsal lymph sacs of all X. laevis prior to a second dose (500 IU 

hCG for females, 250 IU hCG for males) 24 hours later (Sive et al., 2000). Each randomly 



 

32 
 
 

selected breeding pair was placed in separate 20 L covered aquaria within a darkened area 

immediately after the second injection and left to breed overnight. The following day breeding 

pairs were removed from their aquaria and embryos were collected and discarded.  

Eight recently bred X. laevis females were subsequently divided evenly into four 

partitioned sections of a large Min-O-Cool™ tank and maintained under the same laboratory 

conditions stated previously. Each pair of females was designated a section of the tank according 

to their treatment group with the control group being situated nearest to the in-flow and the 

highest dietary exposure group furthest. In total, 5 tanks were organized and managed utilizing 

the same design and methods, which equated to n=10 female X. laevis per treatment group. 

Adult females were fed daily with 2 g of either control or SeMet augmented diets for 68 days. 

Animals were allowed to feed for 4 hours and any excess food was then siphoned from the tank. 

Adult males were held under similar conditions and fed the control diet. Water quality was 

monitored daily for the duration of the exposure period (pH 7-8, total ammonia < 0.25 mg/L, 

dissolved O2 > 80%).  

Following dietary exposures, X. laevis females were immediately bred with untreated 

males using the same procedure described above, and embryos were collected. These 

experimental procedures were approved by the University of Saskatchewan’s Animal Research 

Ethics Board (protocol no. 20120070), and adhered to the Canadian Council on Animal Care 

guidelines for humane animal use. 

2.4.4 Embryo collection and incubation 

On the morning following breeding, the gelatinous matrix surrounding fertilized egg 

masses was removed using a 2% L-cysteine solution (Sigma Aldrich, Oakville, ON, Canada). 
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Embryos were subsequently rinsed using a Modified Barth’s Saline solution and placed into petri 

dishes containing this same solution for sorting (Sive et al., 2000). A random subsample of 

embryos (n=100) was collected from each female and stored at -80°C for determination of total 

Se concentrations. A second random subsample of embryos (n=100) was preserved in 10% 

phosphate buffered formalin for 48 h and subsequently stored in 70% ethanol to assess 

fertilization success. The third subsample involved selecting embryos (n=500) from individual 

females, placing them in 150 mL embryo cups (50 embryos/cup) immersed in facility water 

contained within a large Min-O-Cool™ tank and incubating them for 5 days at 22±1oC. The 

number of mortalities and hatchings were recorded daily over the 5-day incubation period. 

2.4.5 Quantification of selenium in maternal diet and eggs 

Samples of experimental diets (n=6 per diet) were lyophilized using a freeze dryer (Dura-

DryTM MP, FTS systems, Stone Ridge, NY, USA) and 100 mg samples were cold digested in 

Teflon vials using 5 mL of ultrapure nitric acid and 1.5 mL hydrogen peroxide. Once digested, 

samples were concentrated on a hot plate (<75°C), reconstituted in 5 mL of 2% ultrapure nitric 

acid, and stored at 4°C until inductively coupled plasma-mass spectrometry (ICP-MS) analysis 

was performed to determine total Se concentrations. Pooled embryo samples from individual 

females underwent the same process except the mass was equivalent to the subsample of 100 

embryos collected and freeze dried. A certified reference material (TORT-2, lobster 

hepatopancreas, NRC, Ottawa, ON, Canada) was used to determine Se recovery. The ICP-MS 

limit of quantification was ≤ 0.87 ng Se/g for all samples. 
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2.4.6 Assessment of fertilization, embryo mortality and hatchability 

A random subsample of embryos (n=100) collected from each female was used to 

determine fertilization success. These vials were non-sequentially labeled and examined in a 

blind fashion using an Olympus model S261 dissecting microscope. The number of eggs 

fertilized were counted and divided by the total to obtain a percentage. Percent embryo hatching 

success and mortality was determined by dividing the number of successfully hatched or dead 

embryos, respectively, from each female (total n=500 embryos per female). 

2.4.7 Evaluation of morphological abnormalities in tadpoles 

At 5 dpf, a random subsample (n=200) of incubating tadpoles from each female were 

euthanized with buffered MS-222 (ethyl 3-aminobenzoate methanesulfonate; 700 mg/L), 

preserved in 10% phosphate buffered formalin for 48 h and stored in 25 mL glass vials (100 

tapdoles/vial) containing 70% ethanol. These vials were non-sequentially labeled and examined 

in a blind fashion using an Olympus model S261 dissecting microscope with Image-Pro 

Discovery Software. The Xenopus laevis Atlas of Abnormalities (Bantle et al., 1991) was used as 

a reference during the process of characterizing abnormalities and defining the parameters 

associated with the degree of severity. Representative images of these characteristic 

abnormalities are included in the appendix of this thesis (Figures C2.S1-C2.S3). 

 The frequency and severity of early life stage abnormalities were evaluated pertaining to 

edema as well as craniofacial, vertebral, ocular lens, gut, and tail fin. The frequency was 

calculated as either the number presenting as malformed, or the number presenting as normal 

depending on the statistical analysis required, divided by the total observed from that particular 

female (n=200) to gain a percentage. The severity for each type of abnormality (excluding those 
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related to the eye lens) observed in an individual tadpole was assigned a numerical value or 

ranking based on its degree of severity (i.e., 0 = normal, 1 = mild, 2 = moderate, 3 = severe) 

which then provided the basis for calculating the Graduated Severity Index (GSI) (Formation 

Environmental, 2012). The number of tadpoles for each severity ranking (excluding those given 

a score of “0”) for a particular abnormality were counted, multiplied by their specific ranking 

score and summed to obtain a total score. The total scores for each abnormality were summed to 

create a final score that was divided by the number of categories of abnormalities (of which there 

were five) then further divided by the total number of tadpoles observed (including those ranked 

normal or “0”) to provide a mean GSI score for the progeny related to individual females 

(Formation Environmental, 2012).  

2.4.8 Statistical analyses 

All data were tested for normality and homogeneity of variance using Kolmogorov-

Smirnov and Levene Median tests, respectively. If necessary, data were log10 transformed before 

performing parametric statistical analysis (SigmaPlot 11.0, Systat Software, San Jose, CA, 

USA). One Way Analysis of Variance (ANOVA) followed by a Holm-Sidak test compared 

treatment groups to the control group for significant differences. If data did not meet parametric 

assumptions after transformation, Kruskal-Wallis ANOVA on Ranks followed by Dunn’s test 

was used for statistical comparisons. Data that passed parametric assumptions were presented as 

mean  S.E.M., and those that did not were presented as a box indicating the median, 25th and 

75th percentiles, whiskers as 10th and 90th percentiles, and black dots as outliers. An alpha value 

of 0.05 was designated for both parametric and non-parametric ANOVA tests.  



 

36 
 
 

The untransformed raw data pertaining to the frequency of both individual and total 

abnormalities in relation to egg Se concentrations were evaluated using triangular distribution of 

the maximum likelihood tolerance distribution analysis model to estimate EC10 values using the 

USEPA’s Toxicity Relationship Analysis Program (TRAP; version 1.3). If EC10 values could not 

be estimated using TRAP due to inadequate partial effects in the dataset, ToxStat (version 3.5; 

Western Ecosystems Technology, Cheyenne, WY, USA) was used. 

2.5 Results 

2.5.1 Selenium concentrations in maternal diet and embryos 

The Se concentrations measured in embryos collected from each female increased in 

proportion to concentrations of Se in the maternal diet. The measured concentrations of Se in 

diets administered to the adult female X. laevis over the exposure period were analogous to the 

nominal concentrations (control, 10, 30 and 90 µg Se/g d.m.), at 0.7 ± 0.01, 10.9 ± 0.20, 30.4 ± 

0.43 and 94.2 ± 3.10 µg Se/g d.m. (Table 2.1). Concentrations of total Se in embryos collected 

from adult females fed the 0.7, 10.9, 30.4 and 94.2 µg Se/g d.m. diets were 1.6 ± 0.07, 10.8 ± 

0.68, 28.1 ± 2.91 and 81.7 ± 3.40 µg Se/g d.m., respectively (Table 2.1). A significantly greater 

accumulation of Se was observed in embryos collected from females exposed to diets augmented 

with SeMet when compared to those fed the control diet (p < 0.001; Table 2.1). The mean 

concentration of Se quantified in the embryos collected from females assigned the control diet 

had a 2:1 embryo to diet ratio, while the concentrations in embryos collected from females 

administered the SeMet augmented diets were observed to have approximately a 1:1 embryo to 

diet ratio. 
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2.5.2 Fertilization success, embryo mortality and hatchability 

Selenium exposure had minimal to no significant effect on fertilization success, hatching 

success or embryo/larval mortality within the first 5 dpf. There were no significant differences 

among treatment groups for fertilization success, with median values of 96.0%, 98.0%, 89.0% 

and 94.0%, respectively (Table 2.1). The median embryo/larval mortality within the first 5 dpf 

ranged from 1.0 to 3.9%, and was significantly greater in the 28.1 µg Se/g egg d.m. group when 

compared to the control (p < 0.05; Table 2.1). Hatching of embryos was completed by 3 dpf, and 

hatching success ranged from 96.9 to 99.0% among treatment groups, which was significantly 

lesser in the 28.1 µg Se/g egg d.m. group when compared to the control group (p < 0.05; Table 

2.1). 

2.5.3 Frequency and severity of morphological abnormalities 

In ovo Se exposure had a significant impact on the frequency of abnormalities. The 

frequency of total abnormalities (tadpoles exhibiting at least one abnormality) associated with 

1.6 (control), 10.8, 28.1 and 81.7 µg Se /g egg d.m. were 18.4 ± 1.7%, 13.1 ± 1.9%, 19.5 ± 2.5% 

and 80.7 ± 7.6%, respectively (Fig. 2.1A). A significant increase in the percentage of total 

abnormalities was observed in the highest dose group containing 81.7 µg Se/g egg d.m. when 

compared to control (p < 0.001; Fig. 2.1A).  

The presence of specific abnormalities typically reflected the results observed for total 

abnormalities. With the exception of tail fin abnormalities, the highest dose group of 81.7 µg 

Se/g egg d.m. had significant increases in the incidence of characteristic Se-induced deformities 

(abnormal craniofacial, spinal, gut, eye lens structure, and edema) when compared to the control 

(p < 0.001; Figs. C2.S4-C2.S8). Eye lens abnormalities were discovered to be the most sensitive 
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indicator of in ovo Se exposure in 5 dpf tadpoles when compared to the other morphological 

categories evaluated. The median frequencies of eye lens abnormalities were 1.5%, 1.5%, 2.5% 

and 74.3% for the 1.6 (control), 10.8, 28.1 and 81.7 µg Se/g egg d.m. treatment groups, 

respectively, which was significant at the highest dose (p < 0.001; Fig. 2.2).  

The Graduated Severity Index (GSI), representing the cumulative degree of severity for 

all abnormalities, demonstrated that there was a significant increase in the combined severity of 

edema as well as vertebral, craniofacial, gut, and tail fin malformations only in the highest dose 

group of 81.7 µg Se/g egg d.m. when compared to the control (p < 0.001, Fig. 2.1B). The mean 

GSI scores were 0.12 ± 0.03, 0.06 ± 0.01, 0.10 ± 0.02 and 0.74 ± 0.2 for the 1.6, 10.8, 28.1 and 

81.7 µg Se/g egg d.m. treatment groups, respectively. The proportions of tadpoles without any 

abnormalities, or specifically without eye lens abnormalities, are presented in Figs. 2.3A and 

2.3B, respectively, in relation to egg Se concentrations for individual females. At the lowest 

range of Se concentrations (1.2 to 1.9 µg Se/g egg d.m.), the proportion of tadpoles without any 

abnormalities ranged from 74.5 to 89.1%, while at the same egg Se concentrations 97.5 to 100% 

were free of lens abnormalities. The y-intercepts (with 95% confidence limits) for these modeled 

curves were calculated to be 0.81 (0.82, 0.84) and 0.95 (0.98, 0.99) for Figs. 2.3A and 2.3B, 

respectively. The egg Se concentrations associated with females from the highest dose group 

ranged from 65.6 to 97.5 µg Se/g egg d.m. and exhibited a broad effects range of 0 to 80.5% for 

total abnormalities and 2.0 to 92.5% for eye lens abnormalities (Figs. 2.3A and 2.3B). The 

estimated EC10 values (including 95% confidence limits) based on these data were 44.9 (41.5, 

48.2) and 43.4 (41.4, 45.4) µg Se/g egg d.m. for total abnormalities and eye lens abnormalities, 

respectively. A comparison of estimated EC10 values for each specific type of abnormality 
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revealed that those related to the eye lens were the most sensitive teratogenic indication of in ovo 

Se toxicity (Table C2.S1).  
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Figure 2.1: Frequency (A) and severity (B) of total morphological abnormalities (sum of 

abnormal craniofacial, vertebral, gut, fin, and lens structures, and edema) in 5 days post-

fertilization (dpf) Xenopus laevis tadpoles exposed to increasing concentrations of selenium (g 

Se/g egg dry mass [d.m.]) via in ovo maternal transfer. *, Significant difference from control 

group using one way ANOVA followed by Holm-Sidak test (p < 0.001; n=9-10 females).  
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Figure 2.2: Frequency of lens abnormalities detected in 5 days post-fertilization (dpf) Xenopus 

laevis tadpoles exposed to increasing concentrations of selenium (g Se/g egg dry mass [d.m.]) 

via in ovo maternal transfer. *, Significant difference from control group using Kruskal-Wallis 

one way ANOVA on Ranks followed by Dunn’s test (p < 0.001; n=9-10 females).  
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Figure 2.3: Relationships between the proportion of morphologically normal 5 days post-

fertilization (dpf) Xenopus laevis tadpoles and selenium concentration (g Se/g egg dry mass 

[d.m.]) in embryos collected after a 68-day maternal dietary exposure to 0.7, 10.9, 30.4, or 94.2 

g Se/g food d.m.. X. laevis tadpoles without: (A) any abnormalities and (B) exclusively lens 

abnormalities from each female. EC10 values were estimated using USEPA’s Toxicity 

Relationship Analysis Program. 
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2.6 Discussion 

2.6.1 Dietary Se requirements, rate of maternal transfer and environmental exposure 

Optimal dietary Se requirements for physiological homeostasis have not been established 

for amphibians in general, or specifically for X. laevis, although preliminary recommendations 

for the dietary requirements for adult amphibians have been suggested to be 0.3 g Se/g d.m 

(Ferrie et al., 2014). The nutritional requirements for Se have been experimentally determined to 

range between 0.1 and 0.5 µg Se/g d.m. for fish and between 0.3 to 1.1 µg Se/g d.m. in aquatic 

birds (NRC, 1993; Watanabe et al., 1997; Lin et al., 2005; Janz et al., 2010; Stewart et al., 2010). 

In the current study, the control diet of 0.7 µg Se/g d.m. administered to adult X. laevis females 

produced no observable negative effects on their progeny for any of the early life stage 

developmental endpoints assessed including fertilization success, mortality, hatching success, 

and malformations. This indicates dietary Se requirements essential for optimal health outlined 

previously for other oviparous species are sufficient for amphibians as well in this regard.  

The concentrations of Se quantified in eggs produced by X. laevis females increased 

proportionally with the levels present in their diet. A greater transfer of Se from the maternal diet 

to eggs occurred in the control group (0.7 µg Se/g food d.m.), which suggests that under 

conditions of adequate dietary Se female X. laevis transfer a greater proportion of ingested 

selenium to their developing oocytes. However, at dietary concentrations equal to or greater than 

10.9 µg Se/g d.m. the transfer from maternal diet to oocytes appeared to reach a steady state. 

Similar trends for the rate of Se transfer between chronic maternal dietary exposure and 

measured egg Se concentrations have been observed in laboratory studies in fish. For example, 

adult female zebrafish (Danio rerio) fed diets containing 1.3, 3.7, 9.6 or 26.6 g Se/g d.m. 
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exhibited a greater rate of Se transfer to their eggs when dietary concentrations were below 9.6 

g Se/g d.m.; comparably, the concentrations of Se in the eggs reached a steady state equivalent 

to maternal dietary concentrations equal to or above 9.6 g Se/g d.m. (Thomas and Janz, 2014).  

Dietary exposure is the most important pathway for Se accumulation in aquatic 

vertebrates, with more than 90% of Se body burden derived from diet (Stewart et al., 2010). 

Hence it becomes critical to generate dose-response data relating dietary and tissue Se 

concentrations to effects magnitude in order to accurately predict degree of exposure and the 

associated risk to populations inhabiting Se impacted sites. Presser and Luoma (2010) 

established that accurate predictions of body burdens in both freshwater and marine fishes could 

be made based on dietary intake alone, with a 1:1 relationship occurring between the two; these 

data appear to coincide with the results of the current study as well as those discussed previously 

(Presser and Luoma, 2010; Stewart et al., 2010). Thus, knowledge of the proportional 

concentrations of Se in the maternal diet and corresponding eggs quantified in the current 

laboratory study for amphibians may potentially be utilized to not only assess the risk of adverse 

reproductive and population effects, but also to determine the actual Se exposures of females at 

contaminated sites when foraging behaviours and movement patterns are unclear. For example, 

Hopkins et al. (2006) determined that female eastern narrow-mouth toads (Gastrophryne 

carolinensis) collected at Savannah River, South Carolina, USA near the site of a coal-burning 

power plant transferred up to 100 µg Se/g d.m. to their eggs when compared to toads at a 

reference site, thus indicating a high degree of Se contamination leading to excess dietary 

consumption in predators and increased likelihood of detrimental reproductive effects even 

though measured concentrations of Se in the exposure site water were only 3.93 µg Se/L.  
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2.6.2 Fertilization success, embryo mortality and hatchability 

In ovo Se exposure via maternal transfer in X. laevis had no biologically significant 

effects on fertilization success, embryo mortality or hatchability. Although a statistically 

significant difference was detected for endpoints related to embryo mortality and hatchability in 

the 28.1 µg Se/g egg d.m. group when compared to the control group, the difference of less than 

4% would likely have minimal impact in the context of large clutch sizes. Thus, the resultant 

absence of substantial effects for these three reproductive endpoints is not uncommon when 

compared to studies involving fishes (Kennedy et al., 2000; Holm et al., 2005; Muscatello et al., 

2006; Hardy et al., 2010). The previously mentioned study by Hopkins et al. (2006) reported that 

eastern narrow-mouth toads collected near a coal-burning power plant had an 11% reduction in 

hatching success when compared to toads at the reference site. In the current study, adult females 

accumulated up to 97.5 µg Se/g egg d.m. with no effect on fertilization success, embryo 

mortality or hatchability indicating that species variability amongst fishes and amphibians, as 

well as contaminant mixture effects, may be confounding factors that contribute to negative 

effects for these endpoints in other studies. Comparatively, X. laevis appears to have a similar 

tolerance to Se toxicity as fishes with respect to fertilization success, embryo mortality, and 

hatchability.  

2.6.3 Selenium-induced anatomical abnormalities in X. laevis 

An extensive examination of the anatomical features of 5 dpf X. laevis tadpoles revealed 

differences in the frequency of particular types of abnormalities when compared to those 

reported in fishes. The ocular lens, craniofacial, and gut abnormalities were the most prevalent in 

the highest dose group, with far fewer incidences of tail fin and spinal abnormalities, and edema, 
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overall. In contrast to these findings, greater incidences of edema and skeletal curvatures are 

commonly reported in studies focusing on fishes (Lemly, 1993b; Holm et al., 2005; Muscatello 

et al., 2006; Janz et al., 2010). In addition, analysis of anatomical alterations pertaining to the 

ocular lens and gut during early developmental stages has not been performed previously in 

either fishes or amphibians, offering novel information in relation to Se toxicity.  

A special consideration should be made in relation to the malformations detected in both 

the ocular lens and craniofacial regions, and the unique set of characteristics they displayed in 

the current study. Craniofacial abnormalities appeared predominantly as microphthalmia of one 

or both eyes, extension of retinal tissue into the optic stalk, microcephaly, asymmetrical 

head/mouth structures, and excessively sloped/rounded heads. These abnormal craniofacial 

features, in combination with those observed in the eye lens, suggest that the toxic effects of 

embryonic Se exposure may interfere with function of transcription factors and related gene 

expression critical to proper development prior to absorption of the yolk. A description of the 

distribution of essential metals (i.e., iron, copper, zinc, and selenium) in the X. laevis oocyte 

revealed that Se is distributed moderately throughout the animal pole, vegetal pole, equatorial 

cytosol and nucleus (Popescu et al., 2007). With greater levels of Se transferred via the maternal 

diet to the oocyte, it can be inferred that increased amounts of SeMet could potentially 

accumulate throughout the cell, including the nucleus, causing damage through oxidative stress. 

One example of a vulnerable and vital transcription factor/gene region is paired box protein-6 

(Pax6). It becomes activated in the late gastrula stage in the presumptive anterior neural plate 

and plays a crucial role in the development of the eye, brain, spinal cord, pancreas and intestinal 

enteroendocrine cells (Wride, 1996; Altmann et al., 1997; Yan et al., 2006; Nakayama et al., 

2015). In addition, studies have demonstrated that alterations in the expression of Pax6 results in 
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similar ocular and craniofacial malformations in humans, mice and Xenopus sp. (Wride, 1996; 

Altmann et al., 1997; Yan et al., 2006; Nakayama et al., 2015) as those detected in the 5 dpf X. 

laevis tadpoles of the current study. Further research is clearly required to investigate 

mechanisms of ocular and craniofacial deformities in oviparous vertebrates exposed to elevated 

Se. 

The eye lens was a distinct anatomical feature that was observed to be the most sensitive 

teratogenic effect following in ovo Se exposure in X. laevis tadpoles at 5 dpf when compared to 

the suite of anatomical features investigated. Aquatic vertebrates, such as fishes and larval 

amphibians, rely principally on the lens rather than the cornea to refract light onto the retina 

(Schwab, 2007). The ocular lens of amphibians is a large, virtually spherical, transparent 

structure with an exceptionally high refractive index when compared to other vertebrates. In 

order for the lens to both effectively refract light and accurately focus in its entirety, it is 

positioned far forward in the ocular globe, and bulges through the pupil to dwell close to the 

cornea (Robinson and Lovicu, 2004). In the current study, alterations to the eye lens 

predominantly appeared as a severe reduction of its spherical form to the extent that it was 

extensively recessed behind the opening of the pupil. Other malformations, although less 

common in comparison, were cataract-like milky opaqueness of the lens, or excessive bulging 

(ectopy) of the lens from the ocular globe. A recent study using confocal x-ray fluorescence 

imaging reported that zebrafish larvae exposed in ovo to SeMet via maternal transfer 

preferentially accumulated high concentrations of Se in the lens core and moderate levels in the 

epithelium (Choudbury et al., 2015). While no structural changes to the ocular lens were reported 

(Choudbury et al., 2015), it is possible that the exposure concentration (i.e., 34.1 g Se/g egg 

d.m.) utilized was insufficient to produce the types of lens abnormalities observed in the current 
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study. Comparatively, a deformity analysis performed on fishes collected from Belews Lake, 

North Carolina, USA reported the manifestation of cataracts at tissue concentrations in the range 

of 80 to 132 g Se/g d.m., although ocular abnormalities were not the most prevalent teratogenic 

response in these fish populations (Lemly, 1993b). While the connection between Se exposure 

and cataractogenesis has been identified previously in fishes (Woock et al., 1987; Lemly, 1993b, 

2002; Choudbury et al., 2015), the prominent structural changes to the eye lens observed in 5 dpf 

X. laevis tadpoles in the current study have not previously been reported.  

In early stages of development, the eye lens is molded into its unique structure through 

the processes of cell proliferation, cell migration, cell differentiation and apoptosis (Yan et al., 

2006). Through the generation of oxidative stress, SeMet has the capability to interfere with all 

of these stages of lens development, thus dramatically affecting its final structure and functional 

competency. For example, the presence of elevated levels of Se in 12-14 day old Sprague-

Dawley rats reduced DNA synthesis, prolonged cell migration time, and diminished cell 

differentiation in germinative lens epithelial cells during S or pre-S phase (Cenedella, 1989). 

With the greatest concentrations of Se present in the lens core (Choudbury et al., 2015), it is also 

possible that lens proteins located within fiber cells, known as crystallins, are altered or 

damaged. Lens crystallins constitute 90% of the soluble protein in lens fiber cells, and are vital to 

maintaining transparency while achieving a high refractive index for normal optical functions 

(Mostafapour and Reddy, 1978). In addition, crystallin proteins are known to contain high 

amounts of S-containing methionine, making it probable that substitution with SeMet would 

occur under conditions of elevated Se exposure. The potential to accumulate high levels of 

SeMet makes fiber cells vulnerable to damage through metabolic processes that could alter the 

organization and structure of crystallin proteins, or diminish the functioning of other vital 
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cellular components. Structural differences and necrosis of a large number of fiber cells could 

potentially lead to abnormal shape and inflexibility of the ocular lens following elevated Se 

exposure. Moreover, the scarcity of cataracts detected in the current study may be due to factors 

related to amphibian biology, Se concentration or insufficient time for their development. 

Nonetheless, if the amphibian eye lens is a sensitive target of elevated Se exposure during 

development, as observed in the current study, this could have significant ecological 

consequences in native amphibians inhabiting Se-contaminated aquatic ecosystems. 

2.6.4 Implications of environmental Se for amphibian populations 

Embryonic Se exposure via chronic maternal dietary exposure has been established as a 

distinctive exposure route that elicits the formation of morphological abnormalities in fishes, 

which have resulted in population collapse at Se-contaminated sites in the past. The data 

presented in the current study offers the foundation for characterizing Se toxicity in amphibians 

through this key route of exposure. Both frequency and severity of developmental malformations 

increased in 5 dpf X. laevis tadpoles with rising Se concentrations in eggs, allowing for an EC10 

value of 44.9 µg Se/g egg d.m. to be calculated. Teratogenic effects in X. laevis occurred at 

greater egg Se concentrations than those observed in most fishes. Toxicity threshold values are 

predominantly between 15 to 25 µg Se/g egg/ovary d.m. in fishes, with the highest EC10 value of 

54 µg Se/g egg d.m. estimated in Dolly Varden trout (Salvelinus malma) (Janz et al., 2010; 

DeForest et al., 2012). Therefore, X. laevis are as sensitive to in ovo Se exposure via maternal 

transfer as the most tolerant fish species studied to date. This suggests that the US EPA’s 

proposed egg-based tissue threshold for fish of 15.8 µg Se/g egg d.m. may be protective for 

amphibians as well (US EPA, 2015). However, a cautionary approach is necessary with the 
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utilization of these results in that X. laevis is a unique anuran model that may not adequately 

represent the most sensitive of amphibian species, particularly native North American 

amphibians, nor the wide array of reproductive strategies employed by this taxon.  
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CHAPTER 3 

EFFECTS OF ELEVATED IN OVO SELENIUM EXPOSURE ON LATE STAGE DEVELOPMENT OF 

XENOPUS LAEVIS TADPOLES 

3.1 Preface 

 This investigation was performed as one aspect of a large generational bioassay that 

comprises this thesis. It was undertaken with the purpose to determine the prolonged effects of 

elevated in ovo selenium exposure on amphibian late stage larval development. Adult Xenopus 

laevis females were administered elevated concentrations of dietary selenium in the form of 

SeMet for 68 days after which they were bred with untreated males. The resultant embryos 

collected from this process were incubated in eggcups until 5 days post fertilization (dpf) then 

transferred to aquaria to be raised to metamorphosis under uncontaminated laboratory conditions. 

Mortality, morphometrics, time to metamorphosis as well as the distribution of developmental 

stages were recorded during the experimental process. The results from this study indicate 

elevated in ovo selenium exposure exclusively has minimal adverse effects on late stage 

development of X. laevis tadpoles in the absence of teratogenic abnormalities induced prior to 5 

dpf; however, indications of its potential to prolong time to metamorphosis of individuals at high 

concentrations were observed. 

This chapter has been submitted to Bulletin of Environmental Contamination and 

Toxicology under joint authorship with Jorgelina R. Muscatello (Stantec Consulting Ltd.) and 

David M. Janz (University of Saskatchewan). 
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3.2 Abstract 

 Selenium (Se) is known to produce teratogenicity in aquatic oviparous vertebrates; 

however, the subtle residual effects associated with elevated in ovo Se exposure on later stages of 

development have not been sufficiently investigated, especially with respect to amphibians. The 

objective of this study was to determine the consequences of elevated in ovo Se exposure on the 

survival, growth and maturation rate of late stage larval anuran, as represented by Xenopus 

laevis. Adult X. laevis females (n=9-10) were fed diets augmented with L-selenomethionine for 

68 days and successively bred with untreated males for the purpose of obtaining embryos. At 5 

days post fertilization (dpf), a subsample of tadpoles were reared under uncontaminated 

conditions until 50% of individuals within a tank had completed metamorphosis, at which point 

euthanization of the entire tank occurred.  Subsequently, froglet morphometrics along with 

developmental stage were recorded for each tadpole/froglet collected. The measured Se 

concentrations in embryos were 1.6 (control), 10.8, 28.1 and 81.7 μg Se/g d.m. which 

corresponded with the maternal dietary concentrations of 0.7, 10.9, 30.4, or 94.2 μg Se/g dry 

mass (d.m.), respectively.  There were no significant differences detected among the treatment 

groups in relation to mortality or time to metamorphosis during the rearing period. A significant 

increase in froglet body weight and snout to vent length upon completion of metamorphosis were 

observed in the 81.7 μg Se/g d.m. in ovo exposed group when compared to the 10.8 and 28.1 μg 

Se/g d.m. groups, but not in relation to the control group. Additionally, a significant increase in 

the proportion of tadpoles at earlier stages of larval development occurred in the 81.7 μg Se/g 

d.m. in ovo exposed group when compared to the other three treatment groups. Overall, this 

research suggests that in ovo Se exposure has the potential to effect growth, resilience and late 

stage larval development in the model amphibian, X. laevis. 
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3.3 Introduction 

 Selenium (Se) is a fundamental micronutrient necessary for optimal growth and 

development in vertebrates. A suite of 45 Se-containing proteins have been identified in 

vertebrates to date with functions ranging from redox homeostasis, thyroid hormone activation or 

deactivation, selenocysteine synthesis, and Se transport; however, the physiological roles of a 

substantial number of selenoproteins remains largely unknown (Lobanov et al., 2009; Janz, 

2012; Mariotti et al., 2012). While adequate dietary intake of Se is required to maintain peak 

performance of all selenoproteins including antioxidant defense mechanisms (Janz et al., 2010; 

Stewart et al., 2010), elevated levels of Se have resulted in the generation of reactive oxygen 

species and subsequently oxidative stress (Palace et al., 2004; Spallholz et al., 2004). The 

cellular damage associated with this process is considered to be the predominant mechanism by 

which Se produces adverse effects in vertebrates, although uncertainties do remain and further 

investigation is vital to elucidate the biochemical behavior of Se under toxic conditions (Janz et 

al., 2010). Dietary Se levels only 7-30 times greater than nutritional requirements have been 

reported to produce toxic effects in fish (Janz et al., 2010; Stewart et al., 2010) yet there 

continues to be insufficient data pertaining to either the nutritional requirements of amphibians 

or their sensitivity to elevated levels of Se (Janz et al., 2010; Ferrie et al., 2014). Nonetheless, the 

narrow range of dietary Se concentrations that have shown to either promote or suppress 

vertebrate fitness particularly in aquatic oviparous species is one of the reasons that establishing 

environmental threshold levels that can be utilized to protect populations is of utmost 

importance.  



 

55 
 
 

 Although Se is a naturally occurring element in the environment, anthropogenic activities 

including mining and power generation can mobilize and release large quantities into 

surrounding aquatic systems (Maher et al., 2010). This influx of inorganic Se, in the forms of 

either selenate or selenite, is readily absorbed from the water by organisms at the base of the 

food web (i.e. algae, microbes) and subsequently biotransformed into a variety of 

organoselenium species of which selenomethionine (SeMet) is of keen interest (Fan et al., 2002; 

Luoma and Presser, 2009). Unlike other forms of Se, the resemblance of SeMet to the amino 

acid methionine allows it to be incorporated into proteins in a dose-dependent manner that is 

physiologically unregulated (Janz et al., 2010; Stewart et al., 2010). Thus, SeMet has the 

potential for bioaccumulation within tissues and transference within the food web to higher 

trophic level organisms such as birds, fish and amphibians (Orr et al., 2006; Janz et al., 2014). 

Moreover, adult females belonging to aquatic oviparous vertebrate populations have 

demonstrated the capacity to integrate excess dietary SeMet into the yolk protein vitellogenin 

during its synthesis within the liver resulting in its subsequent transport to and accumulation 

within their developing oocytes (Janz et al., 2010). 

 Elevated in ovo Se concentrations are associated with the production of morphological 

abnormalities in larval fish and amphibians that coincide with the utilization of yolk proteins 

during early stages of development (Thomas and Janz, 2014; Massé et al., 2015). Craniofacial, 

vertebral and fin malformations along with the presence of edema have been predominantly 

reported; however, abnormalities related to the eyes and their lens structures have been observed 

as well (Lemly, 1993b; Massé et al., 2015). The egg and ovary based EC10 values related to 

teratogenic abnormalities for most fishes studied to date ranges from 15 to 25 g Se/g dry mass 

(d.m.), while this same value for amphibians is based solely on one non-native laboratory 
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species, Xenopus laevis, at 44.9 µg Se/g d.m. (Janz et al., 2010; Massé et al., 2015; Thomas and 

Janz, 2015). With marginal knowledge related to Se toxicity in amphibians, existing data on 

native anuran species has been gathered predominantly from field research at deposition sites for 

coal combustion wastes where elevated levels of Se coincide with a greater incidence of larval 

morphological abnormalities as well as diminished swim performance, predator avoidance, food 

acquisition, growth, survival, developmental rates, and metamorphic success (Raimondo et al., 

1998; Hopkins et al., 2000; Snodgrass et al., 2004; Metts et al., 2012; Metts et al., 2013). 

However, Se is merely one contaminant at these sites among many that have been recognized to 

either interfere with the bioavailability of Se or with the normal physiological functioning and 

development of aquatic vertebrates (i.e. arsenic, cadmium, mercury) (Rowe, 2014). Considering 

the impact that Se could have on the survival and recruitment of individual larval anuran into a 

population, it is critical to expand Se’s toxicological profile with regards to amphibians with the 

goal of establishing a protective regulatory guideline for aquatic organisms that is comprehensive 

and species inclusive. Thus, the objective of this study was to gain a better understanding of the 

potential impact of elevated in ovo Se exposure on late stage larval anuran development 

exclusively under uncontaminated rearing conditions by assessing mortality, morphometry and 

developmental rates of Xenopus laevis tadpoles/froglets from 5 days post fertilization (dpf) until 

completion of metamorphosis. 

3.4 Materials and methods 

3.4.1 Test species  

Adult Xenopus laevis females and males were purchased from Xenopus 1 (Dexter, MI, 

USA) and were maintained at 17±1°C water temperature and 12h light:12h dark photoperiod in 
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the Aquatic Toxicology Research Facility (ATRF) located at the Toxicology Centre, University 

of Saskatchewan prior to and during the experimental process. Adult X. laevis females (n=9-10) 

were administered food augmented with L-selenomethionine (≥ 98% purity; Sigma Aldrich, 

Oakville, ON, Canada) at measured concentrations of 0.7  0.01 (control), 10.9  0.20, 30.4  

0.43, and 94.2  3.10 g Se/g d.m. for 68 days. Upon completion of the dietary exposure period, 

females were bred with untreated males with the assistance of human chorionic gonadotropin 

(hCG; Sigma Aldrich, Oakville, ON, Canada) injections to the dorsal lymph sac to stimulate 

amplexus. A subsample of the resultant embryos (n=100) from individual females were collected 

and stored at -80°C for determination of total Se concentrations. A second subsample of embryos 

selected from each female (n=500) were placed in 150 mL embryo cups (50 embryos per cup) 

contained within a large Min-O-Cool tank (84" L X 24" W X 22" D) and immersed in 22 ± 

1oC facility water for up to 5 days post fertilization (dpf), at which point yolk absorption was 

complete. The 5 dpf tadpoles generated from this process were a part of one large experimental 

bioassay and a subample were utilized to assess the effects of in ovo selenium exposure on late 

stage larval development for this particular experiment. A detailed description of this entire 

experimental process is outlined in Massé et al. (2015) or Chapter 2 of this thesis. 

3.4.2 Experimental design 

X. laevis 5 dpf tadpoles, exposed to elevated in ovo concentrations of Se via maternal 

transfer with swimming capability, were transferred from the previously described embryo cups 

to continuously aerated 9 L aquaria contained within a diluter system to maintain a controlled 

temperature (22 ± 1oC) and photoperiod (12 h light and 12 h dark). Each aquarium housed 30 

tadpoles from an individual female (n=9-10) with 3-5 replicate tanks for every female assigned a 
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random position within the diluter system. Daily static renewal of aquaria water was completed 

by allowing the water to flow through at a rate of 0.15-0.2 L/min for one hour twice a day prior 

to feeding in the morning and during waste removal in the afternoon. Mortalities and water 

quality parameters were monitored and recorded daily for the duration of the rearing period 

(pH=7-8, total ammonia < 0.5 mg/L). 

X. laevis tadpoles were allowed to develop under uncontaminated conditions with no 

supplementation of Se to facility water or diet. Sera Micron (Sera North America, Inc., 

Montgomeryville, PA, USA) was administered daily at varying amounts during the rearing 

period to compensate for growth, mortality and sampling. A 1/8th teaspoon (398.4 ± 24.5 mg; 

n=10) of Sera Micron was mixed vigorously with 40 mL of facility water in a 50 mL falcon 

tube and divided among tanks. The 5 dpf tadpoles were given 10 mL of the Sera Micron 

mixture for the first 15 days of the rearing period, 20 mL of the mixture for days 16 to 30, and 40 

mL of the mixture after day 30. Beginning on day 30, the amount of Sera Micron mixture 

administered was decreased to 20 mL if there were 20 or less tadpoles present and 10 mL if there 

were 10 or less tadpoles present. The duration and termination of this rearing period was 

dependent on the time for 50% of the tadpoles to complete metamorphosis in an individual tank; 

however, this time period never exceeded 60 days or 65 dpf.  

3.4.3 Assessment of maturation rate 

The period of time for 50% of X. laevis tadpoles to complete metamorphosis was 

recorded as days post fertilization (dpf) which included the 5 days of development prior to the 

transfer of tadpoles into aquaria and the initiation of the rearing period. Beginning on day 30 (35 

dpf), daily monitoring and recording of froglet number as well as the corresponding post 
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fertilization day was performed. This day was selected as the baseline for both monitoring and 

calculation since the tadpole number within individual aquaria had typically stabilized. As 

tadpoles completed metamorphosis, they were removed from the tank and euthanized with a 

lethal dose of buffered MS-222 (ethyl 3-aminobenzoate methanesulfonate; 700 mg/L) since 

changes to dietary preference of froglets were unable to be accommodated. The percentage of 

tadpoles to complete metamorphosis was calculated by dividing the number froglets present by 

the total number of tadpoles present in the aquarium on day 30 (35 dpf). When 50% was 

attained, the post fertilization day was noted and the remaining tadpole/froglets were euthanized. 

All calculations included froglets that were collected prior to termination of the rearing period. 

3.4.4 Assessment of froglet morphometrics and distribution of developmental stages 

 The completion of metamorphosis by 50% of tadpoles within an individual aquarium 

resulted in the euthanization of all remaining tadpoles/froglets with a lethal dose of buffered MS-

222. Body mass, snout to vent length and developmental stage were determined and recorded for 

each tadpole or froglet collected. Larval developmental stages (i.e. NF stage) were determined in 

accordance with the classifications outlined in the Normal Table of Xenopus laevis (Nieuwkoop 

and Faber, 1994). The stages of X. laevis larval development have been divided into four 

metamorphic stage ranges for the present study: premetamorphosis (NF stages 45-55), 

prometamorphosis (NF stages 56-59), metamorphic climax (NF stages 60-65) and metamorphic 

completion (NF stage 66; i.e. froglet). The number of tadpoles belonging to each of the three 

developmental ranges at the completion of metamorphosis by 50% of tadpoles in a tank were 

converted into percentages. Each percentage was attained by dividing the number of 
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tadpoles/froglets belonging to a range of NF developmental stages by the total number of 

tadpoles/froglets present at day 30 (35 dpf).  

3.4.5 Quantification of selenium in embryos and tadpole diet 

 The total Se concentration of the Sera Micron tadpole diet (n=3) and the subsample of 

embryos (n=100) collected from X. laevis females (n=9-10) exposed to elevated dietary 

concentrations of SeMet were determined using inductively coupled plasma-mass spectrometry 

(ICP-MS). Samples were processed in a manner consistent with the methods outlined in Chapter 

2 of this thesis (Massé et al., 2015). TORT-2 (lobster hepatopancreas, NRC, Ottawa, ON, 

Canada) was used as the certified reference material for determination of Se recovery. The ICP-

MS limit of quantification was ≤ 0.39 ng Se/g for all samples. 

3.4.6 Statistical analyses 

All data were tested for normality and homogeneity of variance using Kolmogorov-

Smirnov and Levene Median tests, respectively. If necessary, data were log10 transformed before 

performing parametric statistical analysis (SigmaPlot 11.0, Systat Software, San Jose, CA, 

USA). One-way analysis of variance (ANOVA) followed by a Holm-Sidak’s method of multiple 

pairwise comparisons was used to detect significant differences between treatment groups. If 

data did not meet parametric assumptions after log10 tranformation, Kruskal-Wallis One Way 

Analysis of Variance on Ranks followed by Dunn’s method was employed for statistical 

comparisons. Data that passed parametric assumptions were presented as mean  S.E.M., and 

those that did not were presented as the median (25th percentile, 75th percentile). An alpha value 

of 0.05 was designated for both parametric and non-parametric ANOVA tests.  
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3.5 Results 

3.5.1 Selenium concentrations in embryos and tadpole diet  

The concentration of Se naturally present in n=3 samples of the Sera Micron tadpole 

diet was 0.96 ± 0.03 µg Se/g d.m.. Previously reported in Massé et al. (2015), the mean 

concentrations of total Se measured in pooled samples of 100 embryos collected from adult X. 

laevis females exposed to dietary levels of 0.7, 10.9, 30.4, and 94.2 g Se/g d.m. for 68 days 

were 1.6 ± 0.07, 10.8 ± 0.68, 28.1 ± 2.91 and 81.7 ± 3.40 µg Se/g d.m., respectively (Table 3.1).  

3.5.2 Mortality 

 The percent mortality of tadpoles for the duration of rearing period showed no significant 

difference among the treatment groups (p = 0.191; Table 3.1). Interestingly, the highest 

mortalities were observed in tadpoles belonging to both the 1.6 (control) and 81.7 g Se/g d.m. 

groups (Table 3.1). The mean percent mortality of offspring from each adult female ranged from 

2.2 to 59.0%, 1.0 to 54.5%, 0 to 62.2% and 7.2 to 70.5% for the 1.6, 10.8, 28.1 and 81.7 µg Se/g 

d.m. treatment groups, respectively. 

3.5.3 Time to metamorphosis 

 The time for 50% of tadpoles to complete metamorphosis was not significantly different 

among treatment groups (p = 0.868; Table 3.1). The mean time for metamorphosis to occur 

among different in ovo exposure groups ranged from 44 to 54 dpf in the control group, 44 to 56 

dpf in the 10.8 g Se/g d.m. group, 46 to 57 dpf in the 28.1 g Se/g d.m. group, and 43 to 64 dpf 

in the 81.7 g Se/g d.m. group.  
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3.5.4 Froglet morphometrics 

 The greatest body mass and snout to vent length upon completion of metamorphosis (NF 

stage 66) was observed in X. laevis exposed to the highest in ovo Se concentration of 81.7 g 

Se/g d.m. (Table 3.1). The median froglet body mass from the highest in ovo exposed group was 

0.130 g greater than froglets belonging to the 10.8 and 28.1 g Se/g d.m. groups (p < 0.05; Table 

3.1) with no significant difference in body mass was detected between the control group and the 

other three treatment groups. The mean body mass ranged from 0.251 to 0.463 g, 0.247 to 0.452 

g, 0.244 to 0.397 g and 0.234 to 0.574 g for the 1.6, 10.8, 28.1 and 81.7 µg Se/g d.m. treatment 

groups, respectively. A significantly greater increase of 1.8 to 2.0 mm was observed in the 

median snout to vent lengths of froglets belonging to the 81.7 µg Se/g d.m. in ovo exposed group 

when compared to the 10.8 and 28.1 g Se/g d.m. groups (p < 0.05; Table 3.1) in addition to no 

significant difference in snout to vent length detected between froglets from the control group 

and the other three exposure groups. The mean snout to vent lengths ranged from 13.5 to 17.0 

mm, 13.5 to 16.8 mm, 13.3 to 16.3 mm and 13.3 to 17.9 mm for the 1.6, 10.8, 28.1 and 81.7 µg 

Se/g d.m. treatment groups, respectively.  
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Table 3.1: Mortality, time to metamorphosis, and froglet morphometrics in developing Xenopus 

laevis exposed to elevated levels of selenium in ovo via maternal transfer.  

Embryonic 

Selenium 

Concentration 

(g Se/g d.m.) 

Time to 

Metamorphosis 

(dpf) 

Mortality 

(%) 

Froglet 

Body Mass 

(g) 

Froglet 

Snout to Vent 

Length 

(mm) 

1.6  0.07 49  1 
18.1 

(3.9, 51.3) 

0.285ab 

(0.260, 0.322) 

14.4ab 

(14.0, 15.3) 

10.8  0.68 51  1 
8.9 

(3.1, 43.4) 

0.273a 

(0.250, 0.310) 

14.1a 

(13.7, 15.1) 

28.1  2.91 50  1 
7.4 

(2.8, 36.0) 

0.273a 

(0.270, 0.305) 

13.9a 

(13.6, 15.0) 

81.7  3.40 51  2 
24.3 

(21.0, 56.7) 

0.405b* 

(0.342, 0.475) 

15.9b* 

(15.1, 17.3) 

Data are presented as mean ± S.E.M, or median (25th percentile, 75th percentile), of n=9-10 

females. 
a,b Different lower case letters denote a significant difference between treatment groups using 

Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test (*, p < 0.05) 

 

3.5.5 Distribution of developmental stages 

 The distribution of developmental stages present at the time 50% of tadpoles completed 

metamorphosis exhibit a significant increase in the number of tadpoles at earlier stages of 

development within the group exposed to the highest in ovo levels of Se when compared to the 

other three groups. An increase of 2.3 to 3.3 % in premetamorphic tadpoles (NF stages 45-55) 

was detected in the 81.7 g Se/g d.m. in ovo exposed tadpoles when compared to the other 

treatment groups (p < 0.005; Table 3.2). Although there was < 5% of tadpoles at NF stages 45-55 

across all treatment groups, a pattern illustrating an increase in premetamorphic tapdoles with 
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increasing in ovo exposure was observed. An 11 to 14.4% increase in tadpoles at 

prometamorphic stages (NF stages 55-59) in the 81.7 g Se/g d.m. in ovo exposed group (p < 

0.001; Table 3.2) was detected in comparison to the other treatment groups. A significantly 

greater percentage of tadpoles (7.9 to 12.8%) at metamorphic climax stages (NF stages 60-65) 

were detected in the 1.6, 10.8 and 28.1 g Se/g d.m. in ovo exposed groups when compared to 

the highest in ovo exposed group of 81.7 g Se/g d.m.. Although not surprising, no difference 

was observed in the number of tadpoles that completed metamorphosis (NF stage 66) since 50% 

was the predetermined time point related to this particular stage of development. However, it 

does illustrate the 1.6, 10.8 and 28.1 g Se/g d.m. in ovo exposed tadpoles synchronously 

completed metamorphosis to a greater extent than those belonging to the 81.7 g Se/g d.m. 

exposed group. This is demonstrated by the three lowest in ovo exposed treatment groups 

exceeding the 50% endpoint by 10.3 to 12.2% while the highest in ovo exposed group exceeded 

it by only 5.7%. Overall, tadpoles exposed in ovo to 81.7 g Se/g d.m. displayed greater 

dispersion of developmental stages when compared to the other three treatment groups. 
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Table 3.2: The distribution of developmental stages of in ovo selenium-exposed Xenopus laevis 

upon completion of metamorphosis by 50% of tadpoles.  

Embryonic Selenium 

Concentration 

(g Se/g d.m.) 

NF Stages  

45-55 

(%) 

NF Stages  

56-59 

(%) 

NF Stages  

60-65 

(%) 

NF Stage 

66 

(%) 

1.6  0.07 0.2  0.2a 9.3  1.8a 28.3  1.7a 62.2  3.1 

10.8  0.68 0.5  0.2a 5.9  1.8a 33.2  1.7a 60.3  1.4 

28.1  2.91 1.2  0.7a 8.8  1.3a 28.5  1.0a 61.6  1.3 

81.7  3.40 3.5  0.7b** 20.3  1.3b*** 20.4  1.7b*** 55.7  1.8 

Data are mean  S.E.M. of offspring from n=9-10 females. 
a,b Different lowercase letters denote a significant difference between treatment groups using one-

way ANOVA and Holm-Sidak post hoc test (**, p < 0.005; ***, p < 0.001) 

 

3.6 Discussion 

To our knowledge, this is the first study investigating the prolonged effects of elevated in 

ovo Se exposure on the survival, growth and maturation of a larval anuran exclusively within an 

uncontaminated rearing environment. The most pronounced outcome that emerged was the 

significantly greater percentage of X. laevis tadpoles remaining at earlier stages of development 

in the 81.7 µg Se/g egg d.m. treatment group thus suggesting that high in ovo Se concentrations 

may hinder the progression to metamorphic climax. The observed higher proportion of tadpoles 

at premetamorphic and prometamorphic stages of development along with a lower proportion at 

metamorphic climax in the highest in ovo Se-exposed group could be attributed to variations in 

individual embryo concentrations and the corresponding frequency of morphological 

abnormalities. The quantity of Se deposited from the diet of female birds and reptiles to their 

developing eggs is associated with differing reproductive strategies specifically pertaining to the 
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method of egg production. Stinkpot turtles (Sternotherus odoratus; synchronous egg producers) 

exhibited significant lower variability and higher repeatability of embryo Se concentrations when 

compared to tree swallows (Tachycineta bicolor; sequential egg producers) from the same site 

impacted by a coal ash spill (Van Dyke et al., 2013). Thus, the concentration of Se present 

through maternal transfer in individual X. laevis embryos will likely vary considerably in this 

rapid asynchronous egg producer, even though the overall mean concentration was equivalent to 

81.7 µg Se/g egg d.m. for a subsample of 100 embryos belonging to the highest in ovo dosed 

group in the present study. Therefore, the portion of tadpoles at premetamorphic and 

prometamorphic stages might have had higher in ovo Se concentrations that contributed to their 

inability to progress to metamorphic climax within the same time period. These results coincide 

with the prolonged time to metamorphosis observed in a field study performed on larval southern 

toads (Bufo terrestris) collected at a Se-contaminated coal combustion waste site (Metts et al., 

2012). A significantly increased incidence of craniofacial, vertebral, ocular and gut abnormalities 

previously reported in 5 dpf X. laevis tadpoles exposed in ovo to 81.7 µg Se/g egg d.m. (Massé et 

al., 2015) could be the cause for reduced growth and development by diminishing the capacity to 

acquire and utilize food efficiently (Rowe et al., 1996). In contrast, the 81.7 µg Se/g d.m. in ovo 

exposed tadpoles that completed metamorphosis within the normal time frame may have had 

lower in ovo Se concentration and therefore fewer morphological abnormalities impeding their 

growth. In addition, further research is required to determine if elevated in ovo Se exposure 

could interfere with the production, activation or utilization of sufficient thyroid hormone 

concentrations necessary to initate metamorphic climax. 

The survival of tadpoles throughout the rearing period exhibited no treatment related 

differences. However, the 10.8 and 28.1 µg Se/g d.m. in ovo exposed tadpoles appeared to have 
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improved survival when compared to the 1.6 and 81.7 µg Se/g d.m. groups despite the absence 

of statistical significance. Growth and development is a highly metabolically active period in an 

organism’s life, and perhaps a moderate Se reserve may prove beneficial for the optimal 

functioning of selenoproteins that are particularly involved in thyroid activation/deactivation or 

maintaining redox homeostasis in larval anurans. In addition, Se has been linked to enhanced 

immunocompetence in adult common eiders (Somateria mollissima) fed a Se-enriched diet (20 

mg/kg d.m.); in contrast, eiders fed a 60 mg Se/kg displayed signs of impaired 

immunocompetence (Franson et al., 2007; Janz et al., 2010). Thus, our data tenuously suggests 

that moderately elevated in ovo Se concentrations may provide increased larval anuran resilience 

without producing teratogenic malformations.  

 The significantly greater froglet body mass and snout to vent length in the highest in ovo 

Se group when compared to the other three treatment groups was potentially attributed to the 

tadpole selection process and differing tank densities rather than effects due to elevated Se. A 

comparable study involving zebrafish (Danio rerio) exposed in ovo to Se through maternal 

transfer, reported no Se-related effect on the total length, body mass or cumulative mortality after 

140 dpf (Thomas and Janz, 2014), thus demonstrating the atypical nature of the data in the 

present study. The selection of 5 dpf tadpoles with swimming capability was performed with the 

intention of observing the prolonged effects of in ovo Se exposure on the survivors during late 

larval development. However, this process increased the probability for the selection of 

individual embryo/larvae that were either exposed to lower in ovo Se concentrations through 

deposition variability or those with higher tolerance to the Se exposure. In Chapter 2, the mean 

frequency of abnormalities in 5 dpf tadpoles from the highest in ovo exposed group was reported 

to be 80.7%, thus demonstrating the limitations when selecting tadpoles for this portion of the 
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experiment. The higher mortality observed in both the 1.6 and 81.7 µg Se/g egg d.m. groups 

consequently resulted in a lower tank density. Although the quantity of food dispensed per tank 

was reduced according to tadpole number, the adequate food rations combined with the 

alleviation of competition for resources may have resulted in greater growth (Dash and Hota, 

1980). Interestingly, the decrease in tadpole density and greater growth of larval X. laevis did not 

reduce the time to metamorphosis in either the 1.6 or 81.7 µg Se/g egg d.m. groups when 

compared to the other groups. Overall, the mean time for 50% of tadpoles to complete 

metamorphosis in the present study ranged between 49 to 51 dpf which is comparable to the 

typical rate of development (58 dpf) stated in the literature when taking into consideration 

differing husbandry conditions (Nieuwkoop and Faber, 1994; Hilken et al., 1995). While density 

influences the threshold size at which tadpoles undergo metamorphosis, it can also prevent 

tadpoles from initiating metamorphic climax if limited resources minimize growth (Dash and 

Hota, 1980; Semlitsch and Caldwell, 1982). In general, a decrease in density should result in 

enhanced growth and developmental rate (Hilken et al., 1995). However, an adequate food 

supply along with the promoting influence of kinship provides an explanation as to how the 10.8 

and 28.1 µg Se/g d.m. in ovo exposed tadpoles achieved threshold size and completed 

metamorphosis within a similar time frame despite greater tank density (Blaustein and Waldman, 

1992; Girish and Saidapur, 2003). 

 In conclusion, the present study indicates in ovo selenium exposure through maternal 

transfer has minimal prolonged effects on the later stages of larval X. laevis development when 

reared under uncontaminated conditions. The presence of morphological abnormalities induced 

within the first 5 dpf through elevated egg concentrations appear to be the defining factor to the 

survival, growth and maturation of late stage X. laevis tadpoles exposed solely through this route 
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of exposure (Massé et al., 2015). However, further investigation is necessary with regards to the 

combined effects of in ovo and dietary exposure in larval anuran development under controlled 

laboratory conditions. Gray tree frog (Hyla chrysoscelis) tadpoles administered a diet containing 

50 g Se/g d.m. exhibited decreased growth and survival as well as a greater incidence of hind 

limb deformities (Lockard et al., 2013). Moreover, larval southern toads (Bufo terrestris) 

exposed to elevated levels of Se through in ovo maternal transfer and diet at a coal combustion 

waste site experienced a reduction in survival to metamorphosis by 85% when compared to a 

reference site (Metts et al., 2012). The combination of adverse effects of Se toxicity 

corresponding to these two exposure routes could have a significant negative impact on larval 

anuran development and the fitness of native populations. 
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CHAPTER 4 

TISSUE-SPECIFIC SELENIUM ACCUMULATION AND TOXICITY IN ADULT FEMALE XENOPUS 

LAEVIS CHRONICALLY EXPOSED TO ELEVATED DIETARY SELENOMETHIONINE 

4.1 Preface  

 An evaluation of the potential non-reproductive effects of chronically elevated dietary Se 

exposure on adult amphibian females is explored and described by the research presented within 

this chapter.  The extent of tissue accumulation upon conclusion of the 68 day exposure period 

and the generation of embryo-to-tissue concentration relationships are depicted to establish 

organismal Se distribution in an amphibian model which may aid in the realm of risk assessment.  

In addition, biometric indices, energetic status and stress response were assessed in order to gain 

knowledge of the potential sublethal effects of Se exposure on the health of adult Xenopus laevis 

females that could have implications for successful reproduction.  The results of this research 

indicate that adult anuran females, as represented by Xenopus laevis, are relatively tolerant to 

elevated dietary Se consumption despite the teratogenic effects observed in their offspring. 

This chapter has been submitted to Environmental Toxicology and Chemistry under joint 

authorship with Jorgelina R. Muscatello (Stantec Consulting Ltd.), David M. Janz (University of 

Saskatchewan) and Natacha S. Hogan (University of Saskatchewan).  
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4.2  Abstract 

Selenium (Se) is a developmental toxicant that is also capable of altering the bioenergetic 

and endocrine status of adult fishes. To date, aquatic ecotoxicological research has 

predominantly focused on the toxic effects of Se in fishes with minimal information related to 

amphibians. The objective of this study was to investigate the potential for ecological risk 

associated with chronically elevated dietary Se consumption in adult female amphibians utilizing 

the model species Xenopus laevis. Adult X. laevis females were fed a diet augmented with L-

selenomethionine at measured concentrations of 0.7 (control), 10.9, 30.4, or 94.2 μg Se/g dry 

mass for 68 days, after which they were bred with untreated males. Ovary, egg, liver, muscle and 

blood samples were collected from female frogs upon completion of the exposure period and 

subsequent breeding to ascertain Se tissue distribution, muscle and liver triglyceride and 

glycogen levels, and plasma cortisol concentrations. The concentrations of Se measured in 

female tissues excluding the liver significantly increased in proportion with dietary intake. No 

significant differences were observed among treatment groups with respect to biometric indices, 

energy stores, or stress response of adult female X. laevis after Se exposure, which suggests that 

this amphibian species is capable of accumulating substantial quantities of this element in their 

tissues with no adverse effects on fitness. 
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4.3 Introduction 

Selenium (Se) is a micronutrient essential for optimal vertebrate health. Selenocysteine, 

the 21st amino acid, is a major component of selenoproteins, which play a key role in disease 

prevention (Lobanov et al., 2009). Selenoproteins primarily function as oxidoreductases, which 

prevent the occurrence of cellular damage, repair damage that does transpire, and maintain redox 

homeostasis of proteins (Lobanov et al., 2009). The suite of selenoproteins that contribute to the 

selenoproteome of any given species can vary greatly, but generally follows an evolutionary 

trend between aquatic and terrestrial organisms and the availability of Se in their corresponding 

environments (Lobanov et al., 2009; Mariotti et al., 2012). Of the 45 selenoprotein subfamilies 

detected thus far, representative bony fishes possess 41 while frogs, birds and mammals have 

only 24, 25 and 28, respectively (Mariotti et al., 2012). A dietary Se requirement for the 

maintenance of normal physiological selenoprotein activities has been experimentally 

determined for fish and aquatic birds to range between 0.1 and 0.5 µg Se/g dry mass (d.m.) and 

0.3 and 1.1 µg Se/g d.m., respectively (Stewart et al., 2010). For amphibians, data concerning 

nutritional requirements is unavailable; nonetheless a preliminary recommendation of 0.3 µg 

Se/g d.m. has been generated based on published data of comparable vertebrate species (Ferrie et 

al., 2014). Although it is necessary to ensure minimum Se requirements are attained, the range 

between essentiality and toxicity is exceptionally narrow, particularly in aquatic oviparous 

species where dietary concentrations greater than 3 or 5 µg Se/g d.m. have been reported to 

cause adverse effects in fishes and birds, respectively (Janz et al., 2010). 

Selenium is a globally distributed metalloid that is naturally present in soils and 

sediments as well as shale, coal and phosphate deposits within the earth’s crust (Maher et al., 
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2010). It becomes mobilized and introduced into the aquatic environment primarily through 

anthropogenic activities such as mining, oil refining, fossil fuel combustion, fertilizer production, 

and agricultural irrigation practices (Maher et al., 2010). The influxes of soluble anionic forms of 

Se (i.e., selenate and selenite) released by these industrial practices into surrounding waterbodies 

are readily absorbed and biotransformed by primary producers and microorganisms into 

organoselenide variants, of which selenomethionine (SeMet) is the most prevalent (Fan et al., 

2002; Orr et al., 2006; Luoma and Presser, 2009; Janz et al., 2014). The structural similarity 

between the amino acid methionine and SeMet allows for the indiscriminate and dose-dependent 

substitution of the latter during protein synthesis, which in turn facilitates its bioaccumulation 

and trophic transfer within aquatic food webs (Fan et al., 2002; Orr et al., 2006; Luoma and 

Presser, 2009; Stewart et al., 2010; Janz et al., 2010; Janz et al., 2014]. Consequently, elevated 

dietary Se consumption in species occupying higher trophic levels can result in excessive tissue 

accumulation (up to 100 µg Se/g d.m.) and adverse reproductive effects while aqueous Se 

concentrations remain relatively low (< 10 µg Se/L) (Ohlendorf et al., 1990; Lemly, 1997a; 

Hopkins et al., 2006; Janz et al., 2010).  

Selenium exhibits an interestingly dynamic relationship between adult oviparous females 

and their developing progeny. The major route of Se exposure in adult oviparous vertebrates is 

through dietary sources, while embryonic exposure occurs most notably through in ovo exposure 

via maternal transfer (Janz et al., 2010). Consequently, the greatest adverse impact of elevated 

maternal dietary consumption of Se on aquatic oviparous vertebrates is the production of 

teratogenic abnormalities in their progeny (Janz et al., 2010). Adult females transfer excess Se 

from their diet to their oocytes during vitellogenesis. The synthesis of the yolk precursor protein, 

vitellogenin, takes place in the liver after which it is transported and incorporated into 
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developing ovarian follicles. Vitellogenin, and its derivatives lipovitellin and phosvitin, are 

ordinarily comprised of varying numbers of methionine residues; however, a greater proportion 

of SeMet is substituted for methionine with increased maternal dietary intake (Janz et al., 2010). 

The catabolism of these SeMet rich yolk proteins for energy utilization by the developing 

embryo initiates a series of biochemical reactions in which an excessive generation of reactive 

oxygen species causes damage to DNA, proteins and lipids during early stages of development 

(Palace et al., 2004; Janz et al., 2010). Embryonic mortalities and teratogenic larval 

abnormalities are hypothesized to be the result of this process in fishes, birds and amphibians, 

and ultimately the primary cause for failed recruitment of individuals into populations 

(Ohlendorf et al., 1990; Lemly, 1997a; Palace et al., 2004; Hopkins et al., 2006; Muscatello et 

al., 2006; Janz et al., 2010; Massé et al., 2015). The majority of Se research has been focused on 

characterizing toxic effects on fishes and birds, with few studies conducted in amphibians. Field 

studies involving amphibians inhabiting areas surrounding coal burning power plants have 

shown that adult females are capable of accumulating excessive levels of Se in their tissues in a 

manner that coincides with the magnitude of teratogenic abnormalities present in their progeny 

(Hopkins et al., 2006). However, the presence of other highly toxic contaminants (e.g., arsenic, 

cadmium, mercury) may be greater contributors to the toxic effects observed at these sites than 

those generated by Se. Thus, an investigation to exclusively characterize the toxicological profile 

of Se in amphibians will provide a baseline for reference and assist in determining if Se is the 

primary contaminant responsible for the adverse effects observed at these sites.  

 While adult oviparous species are relatively tolerant of the toxic effects of Se in 

comparison to early developmental stages of their progeny, there is minimal information relating 

how chronic sublethal exposure could negatively impact their capacity to engage in energetically 
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expensive activities associated with reproduction, food acquisition, predator avoidance, 

hibernation/estivation and migration, particularly for amphibians. The accumulation of SeMet in 

metabolically active proteineous tissues such as the liver, muscle, and ovaries could potentially 

create an oxidative intracellular environment that results in damage to vital components and 

ultimately a decline in fitness. Previous studies with adult and juvenile fishes have indicated that 

elevated dietary SeMet exposure causes alterations in the utilization of energy stores (i.e., 

triglycerides and glycogen) and the production of a physiological stress response (i.e., cortisol 

production) (Thomas and Janz, 2011; Wiseman et al., 2011; Thomas et al., 2013; McPhee and 

Janz, 2014). In addition, these biochemical responses corresponded to increased oxygen 

consumption and diminished swimming efficiency of SeMet exposed fishes (Thomas and Janz, 

2011; Thomas et al., 2013; McPhee and Janz, 2014). Therefore, a comprehensive approach is 

imperative when identifying reasons for oviparous vertebrate population declines in Se-impacted 

aquatic ecosystems, especially since sublethal effects often provide a more sensitive indicator of 

toxicity that could ultimately produce a similar adverse outcome over a prolonged period. 

A tissue-based criterion for Se has been proposed by the United States Environmental 

Protection Agency (US EPA) for the protection of aquatic organisms based on toxicological data 

related to fishes, the presumed most sensitive taxa (US EPA, 2015). Recently, a laboratory study 

assessing the frequency of teratogenic abnormalities in Xenopus laevis tapdoles exposed in ovo 

to Se via maternal transfer presented evidence that early life stages of this amphibian species are 

more tolerant to Se toxicity than most fishes (Massé et al., 2015). However, it remains largely 

unknown if the draft US EPA criterion will be effective in the protection of amphibians 

inhabiting sites contaminated by Se with the absence of sufficient data describing the toxic 

effects of Se across distinct life stages within this highly diverse and unique taxon. Therefore, the 
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objective of this study was to investigate patterns of tissue accumulation, energetic status, and 

physiological stress response in adult female X. laevis exposed chronically to elevated levels of 

dietary Se. The goal was to assist in predicting associated teratogenic risk during early stages of 

development from female tissue Se concentrations, as well as evaluating potential effects on the 

fitness of adult females that could impact their survival and reproductive success.  

4.4 Materials and methods 

4.4.1 Test species and laboratory conditions 

Sexually mature adult Xenopus laevis breeding pairs were purchased from Xenopus 1 

(Dexter, MI, USA) and housed in the Aquatic Toxicology Research Facility (ATRF) located at 

the Toxicology Centre, University of Saskatchewan, Saskatoon, SK. Laboratory conditions 

consisted of 17 ± 1°C water temperature and 12 h light:12 h dark photoperiod. Nasco™ juvenile 

frog brittle (Newmarket, ON, Canada) was fed ad libitum daily to frogs. Males and females were 

housed separately in large Min-O-Cool™ aquaria (84" L X 24" W X 22" D) with a 12" water 

depth and flow-through conditions (0.75–0.9 L/min). A two month acclimation time to these 

laboratory conditions preceded the commencement of the experiment.  

4.4.2 Diet preparation and experimental design 

The dietary concentrations of Se administered to female X. laevis in this study were 

selected based on environmental relevance and were comparable to those reported in 

invertebrates, fishes, amphibians and birds collected at Se contaminated field sites (Ohlendorf et 

al., 1990; Lemly, 1997a; Hopkins et al., 2006; Orr et al., 2006). Seleno-L-methionine (≥ 98% 

purity; Sigma Aldrich, Oakville, ON, Canada) was dissolved in deionized water and added to 

ground Nasco™ juvenile frog brittle at nominal concentrations of 10, 30, and 90 µg Se/g d.m. as 
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described previously in Chapter 2 of this thesis (Massé et al., 2015). The control diet was 

comprised of equivalent quantities of deionized water and ground brittle without the addition of 

seleno-L-methionine. Food was pelleted and stored at -20oC in airtight containers. 

Representative samples (n=6) of each diet were taken prior to and during the feeding trial for 

total Se analysis.  

Each X. laevis female (n=40) was bred immediately prior to the onset of the dietary 

exposure in order to stimulate the release of stage VI oocytes (post-vitellogenic and 

preovulatory) from the ovary (Rasar and Hammes, 2006). This initial breeding was performed to 

minimize differences among female oogenesis cycles as well as maximize the transference of 

SeMet from the maternal diet to stage III, IV and V (actively vitellogenic) oocytes upon 

initiation of the exposure period (Rasar and Hammes, 2006). Breeding procedures performed pre 

and post exposure were described previously in Chapter 2 (Massé et al., 2015). Briefly, an initial 

priming dose of human chorionic gonadotropin (25 IU hCG; Sigma Aldrich, Oakville, ON, 

Canada) and a second higher dose (500 IU hCG for females, 250 IU hCG for males) 24 hours 

later were injected sub-dermally into the dorsal lymph sacs of X. laevis to stimulate amplexus 

(Sive et al., 2000). Immediately after the second hCG injection, each female was placed in a 20 L 

covered aquarium with a randomly selected untreated male to spawn overnight in a darkened 

area of the exposure room. 

Following pre-exposure breeding, eight X. laevis females were weighed, divided evenly 

into four partitioned sections of a Min-O-Cool™ aquaria and maintained under the laboratory 

conditions stated previously. Pairs of females were assigned a section of the tank with those 

receiving the control diet occupying the section nearest to the in-flow and those receiving the 
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highest SeMet augmented diet occupying the furthest section. This same design was employed 

for a total of five tanks, which provided n=10 females per treatment group. X. laevis females 

were fed 2 g daily of either the control or seleno-L-methionine augmented diets for 68 days and 

excess food was siphoned from the tank 4 hours after administration. Water quality was 

monitored on a daily basis throughout the exposure period (pH=7-8, total ammonia < 0.25 mg/L, 

dissolved O2 > 80%).  

Upon completion of the dietary exposure, females underwent the breeding procedures 

described above and eggs were collected the morning after spawning. The jelly coating 

surrounding the eggs was removed by gently swirling for 3 min with a 2% L-cysteine solution 

(Sigma Aldrich, Oakville, ON, Canada), and promptly rinsed afterwards with Modified Barth’s 

Saline solution (Sive et al., 2000). A random subsample of eggs (n=100) was collected from 

each female and stored at -80°C for determination of Se concentration. Females were euthanized 

for collection of tissue samples 24 h after oviposition by immersion in a buffered MS-222 (ethyl 

3-aminobenzoate methanesulfonate; 5 g/L) solution to induce deep sedation prior to decapitation 

(Green, 2010). Snout-to-vent length and body weight was measured for each female prior to 

euthanasia. Liver, ovaries, adductor muscles, abdominal fat bodies and spleen were collected, 

weighed and stored at -80°C. Blood samples were collected from anesthetized females via 

cardiocentesis with a 22 gauge needle attached to a 5 mL heparinized syringe (Green, 2010). 

These experimental procedures presented in this chapter were a portion of a large bioassay that 

was performed and approved by the University of Saskatchewan’s Animal Research Ethics 

Board (protocol no. 20120070), and adhered to the Canadian Council on Animal Care guidelines 

for humane animal use. 
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4.4.3 Assessment of female biometric indices 

The change in body weight over the exposure period and thus changes to overall body 

condition due to treatment was obtained by subtracting the initial weight at the onset of the 

dietary exposure from the final weight measured upon completion of the exposure period. Liver, 

ovaries, abdominal fat bodies and spleen were weighed at the time of collection for 

determination of organo-somatic indices [i.e., Liver Somatic Index (LSI), Ovarian Somatic Index 

(OSI), Fat Body Somatic Index (FBSI) and Splenic Somatic Index (SSI)] which were calculated 

by dividing the organ mass (liver, ovaries, abdominal fat bodies or spleen) by the final body 

mass (e.g., LSI = (liver mass / body mass)*100). 

4.4.4 Quantification of selenium in female diet and tissues 

Liver, muscle, and ovary tissues from each female in addition to experimental diets (n=6 

per diet) were lyophilized using a freeze dryer (Dura-DryTM MP, FTS systems, Stone Ridge, NY, 

USA) and subsequently homogenized using a mortar and pestle. The wet and dry tissue and egg 

masses were recorded prior to and after freeze-drying to determine percentage moisture content. 

A portion of the homogenized dried tissue and diet samples measuring 100 mg were cold 

digested in Teflon vials using 5 mL of ultrapure nitric acid and 1.5 mL hydrogen peroxide. Fully 

digested samples were then concentrated on a hot plate (< 75 °C), reconstituted in 5 mL of 2% 

ultrapure nitric acid, and stored at 4°C until total Se concentrations could be determined using 

inductively coupled plasma mass spectrometry (ICP-MS). Randomly selected eggs from the 

clutch of each female underwent the same process except the mass was equivalent to the 100 

eggs collected and freeze dried. A certified reference material (TORT-2, lobster hepatopancreas, 
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NRC, Ottawa, ON, Canada) was used to determine the recovery of Se. The ICP-MS level of 

detection limit was ≤ 0.87 ng Se/g for all samples. 

4.4.5 Quantification of triglyceride and glycogen concentrations 

Female X. laevis liver and muscle samples were thawed on ice, weighed out into 200 mg 

random subsamples, homogenized in 0.2 M sodium citrate buffer (pH = 5; Fisher Chemical, Fair 

Lawn, NJ, USA) using a Tissue Tearor™ (Biospec Products, Inc., Bartlesville, OK, USA), and 

the final tissue homogenate was stored at -80oC until analysis.  

Both triglyceride and glycogen concentrations for liver and muscle samples were 

determined through commercially available standard solutions and reagents purchased from 

Sigma-Aldrich (Oakville, ON, Canada). The procedural methods for the triglyceride and 

glycogen assays (McGowan et al., 1983; Gómez-Lechón et al, 1996) underwent further 

validation in our lab for tissue and whole body samples (Thomas and Janz, 2011;Wiseman et al., 

2011; Thomas et al., 2013; McPhee and Janz, 2014). Standard curves were created for the 

triglyceride and glycogen assays using glycerol and purified Type IX bovine liver glycogen, 

respectively. Liver and muscle homogenate samples were run in triplicate and mean results with 

less than 10% coefficient of variation (%CV; standard deviation/mean) were used for data 

analysis. 

4.4.6 Quantification of blood plasma cortisol concentrations 

In preparation for the cortisol assay, X. laevis female whole blood samples were 

centrifuged at 3000g for 20 minutes at 4oC to obtain plasma, and stored at -20oC. A 100 µL 

volume of plasma was diluted in 900 µL of phosphate-buffered saline (PBS) provided by the kit 

manufacturer described below. Cortisol was extracted using diethyl ether and subsequently 
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placed under a constant stream of nitrogen gas at 50oC to evaporate the ether (MultiVap™118 

Nitrogen Evaporator/OA-Sys™ heating system; Organomation Associates, Inc., Berlin, MA, 

USA). Samples were then reconstituted in PBS for storage at -20oC until cortisol analysis was 

performed. An enzyme-linked immunosorbent assay (ELISA) kit (Oxford Biomedical Research, 

Oxford, MI, USA) in addition to a SpectaMAX 190 spectrophotometer (Molecular Devices 

Corp., Sunnyvale, CA, USA) were employed to quantify plasma cortisol concentrations. Each 

sample was run in triplicate with mean results below 15%CV used for data analysis. 

4.4.7 Statistical analyses 

All data were tested for normality and homogeneity of variance using Kolmogorov-

Smirnov and Levene Median tests. If necessary, data were log10 transformed before performing 

parametric statistical analysis. One-way analysis of variance (ANOVA) followed by a Holm-

Sidak test was used to detect significant differences among treatment groups. Data that passed 

parametric assumptions were presented as mean  standard error of the mean (S.E.M.). Raw data 

values were reported for all variables including those that required log10 transformation for 

statistical analysis. Best fit relationships between egg and female tissue (ovary, muscle or liver) 

Se concentrations were evaluated using regression analysis. All statistical tests were performed 

using SigmaPlot version 11.0 (Systat Software, San Jose, CA, USA) with a 95% ( = 0.05) level 

of confidence. 

4.5 Results 

4.5.1 Biometric indices of X. laevis females 

 The mean body weights of females prior to and upon completion of the exposure period 

showed no significant differences among the four treatment groups; however, the change in body 
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weight over the exposure period demonstrated a trend in weight loss with increasing dietary Se 

exposure. The mean initial and final female body weights for the four dietary treatment groups 

(0.7, 10.9, 30.4 and 94.2 µg Se/g d.m.) were 83.9 ± 2.5, 80.8 ± 1.7, 82.7 ± 3.6 and 82.2 ± 3.1 g 

wet mass (w.m.), and 82.0 ± 2.9, 76.7 ± 1.7, 77.2 ± 3.4 and 75.7 ± 3.0 g w.m., respectively. The 

range of initial and final body weights for individual frogs across all treatment groups were 61.0 

to 95.0 g w.m. and 57.0 to 94.7 g w.m., respectively. The mean change in body weight (final-

initial) were -1.9 ± 1.1, -4.0 ± 1.1, -5.5 ± 1.4, and -6.5 ± 1.4 g for the 0.7, 10.9, 30.4 and 94.2 µg 

Se/g d.m. groups, respectively (p = 0.088; data not shown). 

The LSI, OSI, FBSI and SSI in X. laevis females exhibited no significant differences in 

relation to elevated levels of dietary Se over a 68 day dietary exposure (Table 4.1). The organo-

somatic indices ranged across all treatment groups from 2.85 to 9.86 for LSI, 4.11 to 17.71 for 

OSI, 0.62 to 8.82 for FBSI and 0.042 to 0.145 for SSI. Although no statistically significant 

changes were detected for these four organo-somatic indices, the OSI in particular indicated a 

pattern in which the females from the SeMet-augmented treatment groups had lower mean 

values than those observed in the females from the control group (p = 0.161; Table 4.1). 
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Table 4.1: Organo-somatic indices of adult female Xenopus laevis upon completion of a 68 day 

dietary exposure to elevated levels of selenium (Se). 

Dietary 

Selenium 

Concentrationa 

Liver 

Somatic 

Indexb 

Ovarian 

Somatic 

Indexb 

Fat Body 

Somatic 

Indexb 

Splenic 

 Somatic 

Indexb 

0.7 ± 0.01 4.39 ± 0.29 10.43 ± 1.13 2.34 ± 0.36 0.09 ± 0.01 

10.9 ± 0.20 3.91 ± 0.20 8.56 ± 0.87 3.35 ± 0.85 0.10 ± 0.01 

30.4 ± 0.43 4.14 ± 0.21 9.13 ± 0.54 2.14 ± 0.42 0.09 ± 0.01 

94.2 ± 3.10 4.93 ± 0.60 7.82 ± 0.65 2.40 ± 0.36 0.08 ± 0.01 

a g Se/g dry mass, n=6 food samples. 
b (organ weight/body weight)*100, n=9-10 females. 

Data are presented as mean ± S.E.M. 

 

4.5.2 Selenium concentration in female diet and tissues 

The measured Se concentrations in diets administered to females over the exposure 

period (0.7 ± 0.01, 10.9 ± 0.20, 30.4 ± 0.43 and 94.2 ± 3.10 µg Se/g d.m.) corresponded with the 

nominal concentrations (control, 10, 30, 90 g Se/g d.m.) set out in the experimental design 

(Table 4.2). The concentrations of Se measured in individual female tissues ranged across 

treatment groups from 0.59 to 226.49 g Se/g d.m. in liver, 1.55 to 114.27 g Se/g d.m. in ovary, 

0.95 to 29.94 g Se/g d.m. in muscle and 1.21 to 97.55 g Se/g d.m. in eggs (Fig. 4.1). The mean 

moisture content of X. laevis tissues across all treatment groups ranged from 69.3 to 70.3% for 

liver, 68.4 to 69.9 % for ovary, 76.4 to 76.8% for muscle and 91.6 to 92.6% for eggs. 

The quantity of Se present in the ovary, muscle and eggs were significantly different 

among treatment groups (p < 0.001) with increasing tissue concentrations rising in proportion 
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with dietary concentrations (Table 4.2). The tissue bioconcentration factors (i.e., [tissue Se] / 

[diet Se]; TBFs) for females assigned the 0.7, 10.9, 30.4 and 94.2 g Se/g d.m. dietary treatment 

groups were 2.3, 1.0, 0.9, and 0.9 for eggs, and 2.7, 1.1, 1.0, and 1.0 for ovaries, respectively. 

The accumulation of Se in the eggs and ovaries of females were comparable, with females from 

the control group exhibiting TBFs approximately twice as high as females assigned the SeMet 

augmented diets (Table 4.2). The TBFs for female muscle were 1.2, 0.3, 0.2, and 0.2 for the 0.7, 

10.9, 30.4 and 94.2 g Se/g d.m. treatment groups, which demonstrates a very low rate of Se 

incorporation into this particular tissue (Table 4.2). Both ovary and muscle Se concentrations 

present in each X. laevis female exhibited a strong positive linear relationship with the 

concentrations measured in eggs (ovary: r2 = 0.97, p < 0.001; muscle: r2 = 0.91, p < 0.001; Figs. 

4.1A, B).  

The concentration of Se in the liver of X. laevis females did not adhere to the direct and 

consistent accumulation related to dietary levels that was observed in the other three tissues 

analyzed. A significant increase in the concentration of Se from the livers of females fed SeMet 

augmented diets was observed when compared to females fed the control diet (p < 0.001); 

moreover, a statistical difference was detected among all treatment groups (p < 0.001) except 

between the 10.9 and 30.4 g Se/g d.m. groups (Table 4.2). A greater proportion of Se appeared 

to be naturally retained within the liver of X. laevis females fed the control (Se normal) diet, with 

a TBF equal to 5.7; however, a decline in this proportion occurred with increasing dietary 

concentrations of Se up to 30.4 g Se/g d.m. (TBFs of 1.9 and 0.6 for the 10.4 g Se/g d.m. and 

30.4 g Se/g d.m. groups, respectively), after which a TBF of 1.1 was observed in the highest 
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dietary Se dose group (Table 4.2). A strong positive quadratic relationship was observed between 

Se concentrations present in the liver of females and their eggs (r2 = 0.81, p < 0.001; Fig. 4.1C). 

Table 4.2: Selenium (Se) concentrations measured in adult female Xenopus laevis tissues after a 

68 day exposure to elevated levels of dietary Se. 

Dietary Selenium 

Concentrationa 
Tissue Selenium Concentrationb 

Nominal Measured Liver Muscle Ovary Eggc 

Control 0.7 ± 0.01 3.96 ± 0.54A 0.85 ± 0.06A 1.88 ± 0.10A 1.6 ± 0.07A 

10 10.9 ± 0.20 21.11 ± 3.02B 3.02 ± 0.17B 12.09 ± 0.65B 10.8 ± 0.68B 

30 30.4 ± 0.43 17.51 ± 3.00B 7.20 ± 0.55C 30.51 ± 2.37C 28.1 ± 2.91C 

90 94.2 ± 3.10 105.88 ±16.53C 19.66 ± 1.89D 90.93 ± 4.80D 81.7 ± 3.40D 

a g Se/g dry mass, n=6 food samples.  
b g Se/g dry mass, n=9-10 females.  
c subsample of 100 eggs collected from each female, n=9-10. 

Different capital letters designate significant differences (p < 0.001) among treatment groups for 

a single variable. 

Data are presented as mean ± S.E.M. 
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Figure 4.1: Relationships between selenium (Se) concentrations (g/g dry mass) in (A) ovary, 

(B) muscle or (C) liver of adult Xenopus laevis females (n=9-10) exposed to one of four dietary 

concentrations of Se (0.7, 10.9, 30.4 or 94.2 g Se/g dry mass) for 68 days, and the 

corresponding Se concentrations measured in subsamples of 100 eggs collected from each 

female. Each point represents the concentrations measured in the tissue and eggs for an 

individual female. 
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4.5.3 Triglyceride, glycogen and cortisol concentrations 

The triglyceride and glycogen concentrations of liver and muscle samples collected from 

X. laevis females upon completion of the 68 day exposure period and subsequent breeding 

demonstrated no significant differences among the groups in relation to dietary Se treatment 

(Table 4.3). The concentrations of triglycerides for individual females across all treatment groups 

ranged from 0.74 to 2.63 mg/g w.m. in liver and 0.55 to 1.57 mg/g w.m. in muscle. The 

concentrations of glycogen for individual females across all treatment groups ranged from 29.97 

to 136.73 mg/g w.m. in liver and 2.97 to 23.07 mg/g w.m. in muscle. Although no statistically 

significant differences were detected among the dietary treatment groups in relation to liver 

glycogen concentrations, the data indicated the mean levels measured in females belonging to the 

SeMet augmented groups were lower than those observed in females from the control group (p = 

0.139; Table 4.3). The mean glycogen concentrations measured in female muscle samples ranged 

from 10.36 to 14.60 mg/g w.m., which were not significantly different among treatment groups 

(p = 0.297; Table 4.3).  

 The plasma cortisol concentrations revealed no significant alterations to the physiological 

stress response of recently bred X. laevis females due to a 68 day exposure to elevated levels of 

dietary Se (Table 4.3). The range of plasma cortisol concentrations for individual females across 

all treatment groups ranged from 0.63 to 2.26 ng/mL. 
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Table 4.3: Concentrations of triglyceride and glycogen in liver and muscle in addition to plasma 

cortisol levels from adult female Xenopus laevis fed elevated levels of dietary selenium (Se) for 

68 days. 

Dietary Se 

Concentrationa 

Liver 

Triglycerideb 

Muscle 

Triglycerideb 

Liver 

Glycogenb 

Muscle 

Glycogenb 

Plasma  

Cortisolc 

0.7 ± 0.01 1.41 ± 0.08 0.95 ± 0.11 86.14 ± 9.39 13.73 ± 2.00 1.30 ± 0.12 

10.9 ± 0.20 1.32 ± 0.17 0.96 ± 0.11 63.77 ± 3.73 10.86 ± 1.97 1.14 ± 0.09 

30.4 ± 0.43 1.61 ± 0.20 0.95 ± 0.08 67.24 ± 9.76 10.36 ± 1.13 1.06 ± 0.08 

94.2 ± 3.10 1.47 ± 0.07 1.16 ± 0.09 61.27 ± 7.81 14.60 ± 2.09 1.19 ± 0.15 

a µg Se/g dry mass, n=6 food samples.  
b mg/g wet mass, n=9-10 females.  
c ng/mL, n=9-10 females 

Data are presented as mean ± S.E.M. 

 

4.6 Discussion 

To our knowledge, this is the first study investigating patterns of Se accumulation and 

distribution within the tissues of an amphibian chronically exposed to elevated levels of dietary 

SeMet, and associated effects on physiological processes related to female fitness. Muscle, liver, 

ovary or egg samples are typically the best indicators of toxic effects at Se-impacted field sites 

rather than traditional media such as water or sediment (Janz et al., 2010). In ovo exposure via 

maternal transfer and subsequent embryonic development are the most critical exposure route 

and toxicological endpoint for Se in aquatic oviparous vertebrates (Janz et al., 2010). Therefore, 

the ability to accurately predict adverse developmental effects from Se concentrations measured 

in eggs, or indirectly through concentrations in female tissues, allows for alternate sampling 
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methods for monitoring studies. In the present study, strong relationships between Se 

concentrations in female X. laevis tissues (i.e., ovary, muscle or liver) and their egg clutches 

were ascertained and are comparable to observations reported for fishes collected from Se-

contaminated sites. Egg-ovary Se relationships have previously been reported to be strong (r2 > 

0.75) and consistent across multiple fish species (deBruyn et al., 2008) with diverse reproductive 

strategies, and for X. laevis in the present study, which indicates that early life stage Se exposure 

can be accurately predicted from ovarian tissues of adult female amphibians despite having an 

asynchronous pattern of oogenesis or having multiple spawning periods per year as is the case 

for X. laevis. Although the egg-muscle Se relationship in fishes has been reported to be strong 

(r2 > 0.7) as observed in the present study, it is also variable among fish species (deBruyn et al., 

2008), a pattern which may hold true for amphibians with further investigation into Se 

accumulation by native North American amphibian species. Eastern narrow-mouth toads 

(Gastrophyrne carolinensis) and southern toads (Bufo terrestris) collected from the same Se-

contaminated site surrounding a coal-fired power plant showed r2 values of 0.94 and 0.64, 

respectively, between female carcasses and egg concentrations, indicating interspecies variation 

even within a particular site (Hopkins et al., 2006; Metts et al., 2013). Female liver Se 

concentrations provided the least reliable estimation of egg concentrations of the three tissues 

examined in the present study, similar to multiple fish studies in which such relationships were 

highly variable (deBruyn et al., 2008), which is attributed to the active role of liver in the 

biotransformation, regulation, and elimination of Se. Thus, X. laevis was observed to have 

similar Se tissue accumulation and distribution patterns as those reported in fishes, which 

establishes a foundation for amphibian research in this regard.  
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The extent of anuran Se tissue accumulation and the resultant effects on the survival and 

development of their progeny appears to be highly dependent on species ecology and physiology. 

The mean whole body Se concentrations of adult female eastern narrow-mouth toads and 

southern toads were 42 and 17 g Se/g d.m., respectively, when collected near the same coal-

fired power plant, indicating that differences in foraging strategies were the most probable 

explanation for disparities in Se accumulation (Hopkins et al., 1998, 2006). Furthermore, similar 

Se concentrations in female tissues and eggs do not necessarily result in comparable toxic effects 

for early life stages among different species. A concurrent study to the present one (Massé et al., 

2015) examined early life stage toxicities of X. laevis tadpoles exposed to elevated levels of Se in 

ovo via maternal transfer, and reported no significant increases in the frequency of teratogenic 

abnormalities at egg Se concentrations of 10.8 and 28.1 g/g d.m. when compared to the control 

group (1.6 g/g d.m.). However, the highest (81.7 g Se /g egg d.m.) exposure group had a 

62.3 % greater occurrence of teratogenic abnormalities (Massé et al., 2015). In comparison, a 

previous field study investigating maternal transfer of Se in G. carolinensis reported egg 

concentrations of 43.96  37.62 g/g d.m. that coincided with an overall 55-58% greater 

incidence of tadpole abnormalities at the Se-contaminated site in comparison to the reference site 

(Hopkins et al., 2006). Moreover, the mean Se concentration of 5.28 g/g d.m for B. terrestris 

eggs collected from a coal fly ash contaminated area corresponded to reduced hatching success, 

offspring viability and female reproductive success, but no change in the frequency of 

abnormalities when compared to embryos/larvae from the reference site, suggesting that 

contaminants other than Se were impacting amphibians to a greater extent (Metts et al., 2013). 

Within this limited data, it appears that early life stage toxicities occur at higher egg Se 

concentrations in amphibians than what is reported for most fishes to date (i.e. 15-25 g Se/g egg 
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d.m.), which may be due to factors such as an evolutionarily smaller amphibian selenoproteome 

in comparison to fishes as well as increased resilience related to the polyploidy genome of X. 

laevis (Comai, 2005; Janz et al., 2010; Mariotti et al., 2012). In addition, a high degree of 

variability in female tissue Se accumulation and frequency of teratogenic abnormalities was 

demonstrated by these studies in amphibians, indicating the vital importance of gathering both 

species-specific and site-specific data when determining toxicity thresholds for Se with respect to 

amphibians. 

The accumulation of Se within female tissues increased with dietary levels at a rate that 

reflected the metabolic activity for each tissue. The TBFs for each X. laevis tissue illustrated that 

a smaller proportion of the total Se dietary dose was retained in tissues of SeMet treatment 

groups when compared to the control group, suggesting greater retention at low dietary Se levels 

together with either efficient elimination or limited incorporation of Se at elevated dietary intake 

(Hodson and Hilton, 1983). The concentrations of Se in female ovarian tissue and eggs 

approximated their dietary level and appeared to reach a steady state within the 68 day exposure 

period; however, a similar pattern did not appear in either liver or muscle tissue. The 

concentration of Se in female muscle increased with dietary dose yet remained at approximately 

a quarter the concentration consistently throughout the SeMet treatment groups, thus indicating a 

slower incorporation of Se into muscle possibly due to longer tissue turnover rates. Muscle tissue 

half-lives have been determined to range from 116-173 days in adult bluegill (Lepomis 

macrochirus), largemouth bass (Micropterus salmoides), and yellow perch (Perca flavescens), 

with fish mass being an effective predictor of carbon turnover rates (Weidel et al., 2011). For 

example, juvenile fathead minnows (Pimephales promelas) have been reported to achieve a 

steady state equilibration between Se body burden and diet after exposure for one week, while 
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juvenile bluegill tissue Se levels reflected dietary intake though a steady state was not attained 

until approximately 100 days (Stewart et al., 2010). Thus, muscle may provide a more accurate 

estimate of long term exposure (months to years) while egg/ovary tissue would indicate short 

term exposure patterns such as during seasonal spawning (weeks to months) in adults. The liver 

TBFs showed a diminishing proportion of dietary Se levels being retained for females from the 

10.9 and 30.4 µg Se/g d.m. groups, followed by an increase in the 94.2 g Se/g d.m. group. This 

pattern suggests a progressively efficient elimination of Se from liver in females fed the 0.7, 10.9 

and 30.4 µg Se/g d.m.; however, the highest dietary dose group possibly exhibits a reduced 

ability in the elimination of Se when compared to the other three groups and appeared to achieve 

a steady state with the corresponding dietary dose. Nonetheless, no definite conclusions as to 

accumulation or elimination rates can be determined since our results only reflect one time point 

(Tahjian et al., 2006). Juvenile rainbow trout (Oncorhynchus mykiss) exposed to dietary 

concentrations of either 3.74 µg Se/g d.m. for 12 weeks or 13.1 µg Se/g d.m. for 24 weeks 

displayed similar liver accumulation (44.2 and 47.84 µg Se/g d.m., respectively) as the present 

study, illustrating that a threshold for liver accumulation exists much like we observed in the 

10.9 and 30.4 µg Se/g d.m. treatment groups (Hilton et al., 1982). Although not specific to liver 

accumulation, fathead minnows fed a daily dose of 53.94 µg Se/g d.m. displayed whole body 

burdens that plateaued between days 30 to 60 of the exposure period, after which a sharp rise 

occurred (Bertram and Brooks, 1986). Thus, it is possible that this apparent steady state 

represents a threshold for liver in which excessive Se accumulation surpasses the capacity to 

regulate Se due to cellular damage and tissue necrosis. Histological examination of redear 

sunfish (Lepomis microlophus) exposed to 20 µg Se/g d.m. in their diet showed central necrosis 

of the liver along with reduced rough endoplasmic reticulum and glycogen within hepatocytes 
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(Sorenson et al., 1983). Therefore, oxidative damage, depleted energy and diminished protein 

synthesis within hepatocytes could be interfering with an active metabolic process required for 

Se biotransformation or elimination, and subsequently the reason for a greater accumulation in 

the liver tissue of females fed the 94.2 g Se/g d.m. diet in the present study. 

Elevated dietary and tissue Se concentrations from adult and juvenile fishes collected 

from both Se-contaminated sites and laboratory studies have been associated with alterations in 

energy homeostasis and the physiological stress response (Bennett and Janz, 2007; Thomas and 

Janz, 2011; Wiseman et al., 2011; Goertzen et al., 2012; Thomas et al., 2013; McPhee and Janz, 

2014). In the present study, triglyceride, glycogen and cortisol levels displayed no substantial 

changes that corresponded with SeMet treatment. Overall, these three variables exhibited similar 

concentrations to literature values reported for amphibians, taking into consideration post 

breeding conditions, diverse life history behaviors and alternate analytical methods (Bryne and 

White, 1975; Woof and Janssens, 1978; Merkle and Hanke, 1988; Merkle, 1989; Wright et al., 

2003; Gurushankara et al., 2007). The marginal decrease observed in liver glycogen 

concentrations of the SeMet treated females could be due to slightly higher metabolic costs 

related to exposure despite still being within normal range of literature values. Typically under 

nonbreeding conditions, X. laevis females have markedly high levels of glycogen content in the 

liver (15% of liver w.m.) (Spornitz, 1975; Atar-Zwillenberg and Spornitz, 2002). However, rapid 

depletion of liver glycogen concentrations does occur under breeding conditions where X. laevis 

liver glycogen content dramatically decreases to approximately 5% of the liver w.m. (Atar-

Zwillenberg and Spornitz, 2002). The average percentage of glycogen present in the whole liver 

of X. laevis females in the present study ranged from 6.1-8.4%, which is similar to values 

reported previously in X. laevis after administration of hCG or after vitellogenesis has transpired 
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(Spornitz, 1975; Atar-Zwillenberg and Spornitz, 2002). Although excess dietary Se is linked to 

greater concentrations of both triglyceride and glycogen in several fish species (Bennett and 

Janz, 2007; Thomas and Janz, 2011; Wiseman et al., 2011; Goertzen et al., 2012), decreases in 

glycogen in combination with no change to triglyceride or cortisol concentrations of resting 

juvenile fathead minnows fed 9.9 and 26.5 g Se/g d.m. have been reported (McPhee and Janz, 

2014), thus demonstrating that age, dietary Se concentration and species sensitivity play vital 

roles in how energy stores are regulated in relation to exposure. The absence of adverse 

physiological effects on energy storage and physiological stress in the present study may be due 

to these same factors in addition to a relatively small sample size and favourable experimental 

conditions. Increased metabolic demands and depleted energy reserves as a result of elevated 

dietary Se exposure could be easily counterbalanced due to minimal exertion required to obtain 

food and refuge by X. laevis in the present study. Consequently, potential differences for these 

three variables in response to elevated Se exposure may only become apparent under conditions 

akin to stressors encountered in their natural environment. 

X. laevis females administered the SeMet augmented diet showed no major signs of ill 

health related to the exposure. All organo-somatic indices displayed no significant differences 

across treatment groups and corresponded to literature values of control X. laevis females 

(Merkle, 1989). A trend in weight loss cannot be adequately explained when no significant 

changes were observed in either the rudimentary (organo-somatic indices) and more precise 

(triglyceride, glycogen, cortisol) measurements of organismal health and fitness; however, it 

could be due to an additive effect of slightly reduced OSI and liver glycogen content in SeMet 

treated females compared to the control females. Although not statistically significant, there 

appeared to be a dose-dependent decrease in OSI. With slight decreases in liver glycogen levels, 
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females exposed to elevated SeMet may have had diminished capacity for synthesis and 

transport of vitellogenin to the developing oocytes, resulting in decreased vitellogenic loading of 

stage III, IV and V oocytes leading to an overall reduction in ovarian tissue weight. While not 

actively monitored, no remarkable changes were observed in food intake among the treatment 

groups. If SeMet treated females developed an aversion to the food, a reduction in tissue Se 

concentrations, energy stores and organo-somatic indices would likely be pronounced. Both the 

tissue moisture content and energy reserves (LSI, FBSI, triglyceride, glycogen) indicated no 

dose-dependent changes associated with malnourishment (Merkle and Hanke, 1988).  

The results of the present study in combination with prior related research suggests the 

tissue thresholds for Se in fish put forth by the US EPA in their draft criterion will be protective 

for amphibians. The EC10 for egg based tissue thresholds related to teratogenic abnormalities in 

X. laevis was estimated at 44.9 g Se/g d.m. (Massé et al., 2015). Using the regression equations 

generated in the present study, the corresponding EC10 for female ovarian and muscle tissue 

thresholds would be 50.1 and 11.5 g Se/g d.m., respectively. The US EPA proposes egg-ovary 

and muscle tissue thresholds for Se to be 15.8 and 11.3 g Se/g d.m., respectively, for freshwater 

fishes (US EPA, 2015); hence, this criterion should be protective for early life stage amphibians 

as well. In addition, X. laevis adult females exposed to elevated dietary Se levels exhibited 

minimal to no toxic effects related to body condition indices, energetic status, and physiological 

stress response even at concentrations well above (94.2 g Se/g d.m.) those producing 

comparable sublethal toxic effects in fishes (< 30 g Se/g d.m.) (Janz et al., 2010; Thomas and 

Janz, 2011; Wiseman et al., 2011; Thomas et al., 2013; McPhee and Janz, 2014). To date, 

investigations into the toxic effects of Se on amphibians indicate that adult female amphibians 
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and their progeny are relatively more tolerant to elevated dietary and in ovo Se levels when 

compared to most fishes. However, further research is required to elucidate if similar results are 

generated in native North American species with very diverse reproductive and foraging 

strategies, as well as differing ecological niches and physiology, considering X. laevis is known 

to be a relatively resilient anuran within this taxon.  
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CHAPTER 5 

GENERAL DISCUSSION 

5.1 Introduction 

The Canadian mining industry contributed $54 billion to the Gross Domestic Product in 

2013 making it a major economic driver in this country (Marshall, 2015); however, being one of 

the largest mining nations in the world does have consequences. The Elk River Valley of 

southeastern British Columbia is a noteworthy site of continuous Se contamination due to mining 

operations. Teck Coal Limited has five open-pit coal mines situated in the valley that produce 70% 

of Canada’s total annual coal exports (BC MEM, 2015). In 2013, these mines produced 25.3 

million tonnes of coal (BC MEM, 2015). The high volume of waste rock produced from these 

mines is deposited in valley fills, which leach and drain into the Elk River watershed. Effluent 

discharges have been reported to exceed 300 µg Se/L with surrounding ponds and marshes ranging 

from 50 to 80 µg Se/L and the main Elk River ranging from 5.8 to 9.6 µg Se/L (Young et al., 

2010a). The high degree of Se loading in lotic, lentic and marsh ecosystems of this watershed has 

resulted in bioaccumulation throughout the food web with early life stage toxicities reported in 

fishes, birds and frogs. Columbia spotted frog (Rana luteiventris) embryos collected from an 

impacted site in the Elk River Valley had Se concentrations ranging from 10 to 38 g Se/g d.m 

with a greater incidence of spinal deformities observed in the area (Young et al., 2010a). To date, 

the risk attributable solely to Se contamination particularly in regards to amphibians within the Elk 

River Valley has remained indiscernible due to numerous confounding factors (e.g., water 

chemistry, hydrology) and difficulties with sample collection (Young et al., 2010a). Within a 
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broader scope of environmental Se contamination, amphibian populations may play a key role in 

the transfer of elevated levels of dietary Se to more sensitive species in addition to being subjected 

to adverse effects themselves. 

5.2 Amphibians as victims and vectors of Se toxicity 

Amphibians play a fundamental role in both aquatic and terrestrial ecosystems. A year long 

survey of an isolated 10 ha freshwater wetland on the Savannah River Site reported the presence 

of 24 amphibian species (i.e. 17 anuran, 7 salamanders) that produced a high number of 

metamorphic amphibians (> 360,000 individuals) equating to > 1400 kg of biomass; thus, 

demonstrating the tremendous capacity of this class of vertebrate to guide the energy and nutrient 

flow within a food web (Whitfield Gibbons et al., 2006). A number of field studies have 

demonstrated the contributions of tadpoles, frogs and salamanders to food web regulation and 

ecosystem stability by their ability to profoundly influence invertebrate populations, primary 

production, nutrient cycling and leaf litter decomposition in addition to providing an influx of 

energy and nutrients to nearby aquatic and terrestrial habitats with their seasonal migrations and 

emergences (Beard et al., 2002; Davic and Welsh, 2004; Ranvestel et al., 2004; Regester et al., 

2006). Within the contents of Chapters 2 and 4 of this thesis, my results demonstrate that female 

X. laevis tissues and eggs can accumulate high concentrations of Se (i.e. up to 226 µg Se/g d.m.) 

from dietary sources, which coincide with an increase (i.e. up to 92.5%) in the occurrence of 

morphological abnormalities in their progeny. Although dietary exposure of late stage larval X. 

laevis to elevated levels of Se was not within the scope of this thesis, previous research has 

documented that bullfrog larvae (Rana catesbeiana) collected from a swamp containing coal 

combustion wastes accumulated higher levels of Se than snails (Helisoma trivolvis), clams 



 

99 
 
 

(Corbicula fluminea), odonate larvae (Tramea sp. and Erythemis sp.), eastern mosquitofish 

(Gambusia holbrooki), juvenile spotted sunfish (Lepomis punctatus) and juvenile largemouth bass 

(Micropterus salmoides) from the same site (Unrine et al., 2007). Consequently, this data indicates 

that amphibians could be significant vectors of Se transfer between aquatic and terrestrial habitats, 

and a major Se exposure pathway for birds, fish and mammals (Unrine et al., 2007). Moreover, 

the adverse effects of elevated Se on the development of larval amphibians could contribute to 

population declines and ultimately ecosystem instability surrounding contaminated sites.  

5.3 Effects of elevated in ovo Se exposure on the early stages of larval development in X. 

laevis 

Within chapter 2 of this thesis, my data indicates that amphibians, as represented by the 

model amphibian X. laevis, are a more tolerant taxon to elevated in ovo selenium concentrations 

than most fishes and birds studied to date. EC10 values relating to larval mortality and 

deformities in fish have predominantly ranged from 17 to 24 g Se/g egg d.m. in fishes, while 

EC10 values for impaired hatchability and teratogenic effects in birds has typically ranged from 

5-37 g Se/g egg d.m. (Janz et al., 2010). However, sensitivity within vertebrate classes can vary 

considerably with tolerant species such as the Dolly Varden trout (Salvelinus malma) and the 

American avocet (Recurvirostra americana) having calculated EC10 values of 54 and 74 g Se/g 

egg d.m., respectively, related to teratogenic effects (Janz et al., 2010). The analogous EC10 

value for X. laevis was estimated at 44.9 g Se/g egg d.m. in my research, indeed making it more 

tolerant to Se toxicity than most fish and bird species studied to date with regards to this 

particular sensitive toxicological endpoint, but without further comparable studies involving 
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other anuran species it is difficult to determine if X. laevis is a tolerant, average or sensitive 

species within this taxon. 

Alterations to the structure of the ocular lens of 5 dpf X. laevis tadpoles exposed to 

elevated in ovo Se concentrations was a distinct teratogenic abnormality detected in my 

extensive deformity analysis of early life stage larval anuran development in Chapter 2. 

Although the relationship between Se toxicity and the eye lens has been documented as 

cataractogenesis in fishes and mammals previously (Woock et al., 1987; Lemly, 1993b, 2002; 

Manikandan et al., 2009; Choudbury et al., 2015) it was novel to observe alterations to the 

contour of the eye lens as early as yolk resorption in larval X. laevis. As mentioned in Chapter 2, 

oxidative damage to essential components of lens epithelial cells or fiber cells through the 

excessive accumulation and subsequent metabolism of SeMet could generate the malformations 

observed in my research by interfering with numerous biochemical and molecular processes 

required for proper development. However, it is important to remark upon the role abnormal 

musculoskeletal structure and neurotoxicity could contribute to lens shape and position within 

the ocular cavity. Abnormal lens and craniofacial structure were the two most sensitive 

indicators of in ovo selenium toxicity in 5 dpf tadpoles with estimated EC10 values of 43.4 and 

48.6 g Se/g egg d.m., respectively, thus demonstrating that these particular abnormalities were 

often observed simultaneously within individual tadpoles. Consequently, alterations to the 

proportions and angles of craniofacial bone structure and the origins of associated ocular 

musculature could interfere with the biomechanical dynamics required for proper anatomical 

positioning and functional visual accommodation of the lens. Additionally, the association 

between Se toxicity and motor neuron degeneration offers an alternative explanation to the 

atypical lens structure observed in this thesis research (Vinceti et al., 2010; Maraldi et al., 2011; 
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Estevez et al., 2012). The contraction of the protractor lentis muscle moves the lens forward and 

away from the retina along the optic axis during visual accommodation (Douglas et al., 1986); 

however, paralysis of this muscle through neuromuscular toxicity would result in the lens being 

pulled toward the retina giving the appearance of being flattened and recessed. Nonetheless, 

further investigation is required to elucidate the mechanisms involved between elevated in ovo 

Se concentrations and abnormal eye lens development in oviparous vertebrates. 

5.4 Effects of elevated in ovo Se exposure on the late stages of larval development in X. 

laevis 

In Chapter 3, elevated in ovo Se concentration had minimal adverse effect on the survival 

or maturation of late stage larval X. laevis aside from the disadvantages connected to the 

generation of deformities within the first five days after fertilization. As mentioned previously, 

the results obtained  related to frequency of mortality, time to metamorphosis and growth could 

be attributed to differing tadpole density among treatment groups, the promoting influence of 

kinship and varying embryo Se concentrations within a clutch. In a previous laboratory study, 

larval Cope’s gray tree frogs (Hyla chrysolscelis) fed a diet of 50.1 g Se/ g d.m. exhibited 

decreased growth and survival through metamorphic climax in addition to the induction of hind 

limb deformities (Lockard et al., 2013). While the dietary Se concentrations utilized in this study 

were extremely high, it does highlight the possibility that combined in ovo and dietary exposure 

of larval anuran could exacerbate Se’s influence on growth and development during these early 

life stages. Moreover, the amphibian is a unique model organism for investigating the impact 

excessive Se exposure could have on thyroid hormonal status in embryonic development and 

metamorphosis as well as immunocompetence. Data concerning the influence of Se toxicity on 
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thyroid physiology is negligible in the literature even though the thyroid gland typically has the 

highest selenium content per gram of tissue among organs and its efficient protection and 

functioning is extremely dependent on adequate Se consumption (Köhrle, 1999). Thus, the 

thyroid gland could be a particularly vulnerable organ to oxidative damage produced through 

excessive SeMet consumption, tissue accumulation and ultimately biotransformation into 

reactive oxygen species. While thyroid hormone status is vital to proper development and 

successful metamorphosis in larval anurans, increased disease susceptibility due to innate 

immune system suppression and feeding cessation during metamorphic climax could impact 

survival as well (Murphy et al., 2000). Consequently, it is unknown the ranges of in ovo and 

dietary Se concentrations that could potentially hinder or promote the health and successful 

completion of metamorphosis among larval anuran. 

5.5 Effects of chronically elevated dietary Se exposure on adult X. laevis females 

The focus of research regarding Se toxicity in birds and fishes is predominantly focused 

on either the effects of maternal transfer on developing offspring or the effects of dietary Se 

exposure on juvenile fitness leaving minimal data associated with the impact elevated dietary Se 

levels could have on non-reproductive endpoints of adult fitness for comparison (Janz et al., 

2010). Adult zebrafish fed a 27.5 g/g d.m. Se diet exhibited both increased mortality as well as 

enhanced growth and energy status when compared to the control group (Thomas et al., 2013) 

none of which were observed in my research. Instead, the results presented in Chapter 4 of this 

thesis showed that female X. laevis administered food augmented with L-selenomethione at 

concentrations up to 94.2 g Se/g d.m. displayed no signs of mortality or reduced fitness due to 

chronic exposure other than a marginal reduction in weight and liver glycogen levels. 
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Comparably, a one year study investigating the metabolic performance of male southern toads 

(Bufo terrestris) collected from a Se-rich coal ash basin site and continually exposed to ash-

contaminated sediment and food within microcosms reported similar results to the ones observed 

in this thesis (Ward et al., 2006). The male toads exhibited less weight gain and had a 

significantly reduced respiratory quotient after exercise with no adverse effects related to 

standard or exercise metabolic rate, plasma glucose levels, and hepatic or muscle percentage 

indices overall (Ward et al., 2006). A reduced respiratory quotient with prolonged exercise 

suggests a greater reliance on protein metabolism for energy instead of carbohydrates (i.e. 

glycogen) in the ash-exposed toads, which is possibly related to diminished energy reserves from 

weight loss (Ward et al., 2006). Although female X. laevis health remained relatively unchanged 

over the 68 day dietary Se exposure period, my data indicates that diminishing biotic 

performance and negative physiological consequences in adult anurans are likely over time, 

particularly in relation to energy expensive behaviours such as breeding, hibernation/estivation 

and migration.  

5.6 The contribution of Se toxicity to declining amphibian populations 

The results of my thesis research in its entirety suggest that amphibians are more robust 

within Se-contaminated environments than other oviparous vertebrate species; however, as a 

group this taxon is experiencing unprecedented population declines demonstrating their extreme 

vulnerability to stressors such as habitat destruction, climate change (i.e. increased UV radiation) 

and pathogens in addition to chemical contamination (Buck et al., 2012; Li et al., 2013; Yu et al., 

2015). As demonstrated in my thesis, anurans have the capacity for effective physiological and 

behavioural compensation when confronted with elevated dietary and in ovo Se exposure 
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exclusively, but understandably the substantial strain produced by multiple environmental 

stressors could exceed their capability to manage and thrive. In fact, one of the distinctive 

features of amphibians, their permeable skin, could potentially be the location where Se toxicity, 

UV radiation, and Batrachochytrium dendrobatidis unite to produce a fatal outcome. For 

decades, excessive dietary Se consumption in human case studies has demonstrated its 

connection with highly keratinized areas of the body with chronic exposure resulting in skin 

lesions, alopecia and brittle nails possibly due to regional Se-induced oxidative damage (Nuttall, 

2006). The aquatic fungal pathogen Batrachochytrium dendrobatidis attacks keratin contained 

within the outer layers of post-metamorphic amphibian skin or mouthparts of tadpoles causing 

chytridiomycosis, a disease devastating global amphibian populations (Buck et al., 2012; Li et 

al., 2013). Moreover, the increase in UV radiation reaching the troposphere results in irradiation 

of the skin that impairs natural antioxidant defenses (e.g., gluthathione peroxidase) resulting in 

the generation of high levels of reactive oxygen species in vulnerable cell types like 

melanocytes, keratinocytes and fibroblasts (McKenzie, 2000; Burke et al., 2003; Farmer et al., 

2003; Denat et al., 2014). Thus, the oxidative damage produced through elevated UV and Se 

exposure to key cell types may compromise the skin’s ability to act as a protective barrier against 

pathogens as well as perform other functions such as osmoregulation, thermoregulation, 

hydration and cutaneous gas exchange (Clarke, 1997). Although dietary and in ovo Se toxicity is 

a potential contributor to declining amphibian populations at contaminated sites, there remains 

vast uncertainties as to Se’s behaviour within an amphibian biological model and the definitive 

impact it has on this distinct and diverse taxon. 
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5.7 Recommendations for future research 

While the sum of my thesis research provides a foundation for a largely under-studied 

area of Se-related toxicology, further research is necessary to gain a comprehensive 

understanding of the threat amphibian populations are confronted with at Se contaminated sites. 

A few areas that require further investigation are listed below. 

 In the present study, I provided a baseline for dietary and in ovo Se toxicity in adult and 

larval anurans, respectively, using the model species, Xenopus laevis. Additional 

laboratory-based studies exploring these two routes of Se exposure and the impact on 

both maternal fitness and larval development in native North American species with 

differing reproductive strategies and life histories are essential. 

 In Chapter 2, an EC10 value pertaining to early life stage teratogenic abnormalities in X. 

laevis was estimated. To adequately protect anuran species from in ovo Se toxicity, 

further research to develop similar EC10 values for both anuran and urodele native North 

American species is required. 

 In Chapter 2, evidence that in ovo Se toxicity induced ocular lens abnormalities in 5 dpf 

X. laevis tadpoles was presented. Future research investigating the biochemical and 

molecular mechanisms of Se toxicity within the eye is necessary. 

 In Chapter 3, elevated in ovo Se exposure had minimal effect on late stage larval survival, 

growth, and development. A comprehensive understanding of different exposure routes 

and their separate or combined effects (i.e. in ovo, dietary, in ovo and dietary) on late 

larval development should be investigated in multiple species of this taxon. 

 In Chapter 3, the potential for elevated in ovo Se exposure to promote survival and 

growth in late stage larval X. laevis was speculated. An understanding of the possible 
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influence of elevated in ovo and/or dietary Se exposure on thyroid and energetic status in 

larval anurans and its relationship with metamorphosis could provide a unique 

perspective in Se toxicology research. 

 In Chapter 4, adult females presented with no alterations to biometric indices, energetic 

status, or stress response despite extensive accumulation of Se in their tissues from 

elevated dietary consumption. However, a trend in weight loss and reduced liver 

glycogen stores in SeMet exposed females indicate a potential for the reduced ability of 

adults to cope effectively with natural stressors. Thus, further laboratory studies 

investigating the effect of Se toxicity on the capacity of both adult female and male 

anurans to perform energy expensive behaviours (i.e. hopping, mating calls, 

estivation/hibernation) should be undertaken. 

 Within my thesis research, I administered elevated dietary concentrations of Se to adult 

female X. laevis by supplementing a commercially produced pelleted food source with 

SeMet. A comparison of Se’s toxicological potency in relation to the varying nutritional 

composition of food sources (i.e. protein, carbohydrate, and lipid ratios) utilized in 

combination with either SeMet supplementation or inherently high Se concentrations 

could provide an explanation for differing results between similar dietary studies. 
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a The supplementary data included in this appendix was published in the Supporting Information 

of Environmental Science & Technology 49:13658-13666, under the joint authorship with 

Jorgelina R. Muscatello (Stantec Consulting Ltd.) and David M. Janz (University of 

Saskatchewan). The figure or table number is presented as Cx.Sy format, where ‘Cx’ indicates 

chapter number; ‘Sy’ indicates figure or table number. 
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Figure C2.S1: Representative left and right side view images of morphologically normal (A and 

D) or abnormal (B, C, E, and F) Xenopus laevis tadpoles raised to 5 day post-fertilization after in 

ovo exposure to adequate or elevated levels of selenium. Abnormal craniofacial structures in the 

form of sloping or rounding of the forehead and extended lower mouth are presented in B and E.  

Abnormal coiling or uncoiling of the gut is shown in B, C, E, and F.  The eye of the tadpole in B 

presents with an incomplete closure of the choroid fissure. Multiple severe abnormalities are 

observed in C.  Image F presents with severe ocular, pericardial, and abdominal edema as well as 

mild dorsoventral curvature of the spine (lordosis) and microcephaly. Images were taken under 

15x magnification using an Olympus model S261 dissecting microscope and Q capture software. 
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Figure C2.S2: Dorsal view images of morphologically normal (A) or abnormal (B, C, and D) 

Xenopus laevis tadpoles raised to 5 day post-fertilization after in ovo exposure to adequate or 

elevated levels of selenium. A disproportionate head to gut size is observed in B, C, and D when 

compared to image A (normal). Abnormal craniofacial structures are presented in B, C, and D, 

with B displaying asymmetrical head and eye structures, and C and D displaying microcephaly. 

Abnormal coiling or uncoiling of the gut is shown in B and D. Ocular, pericardial, and 

abdominal edema is presented in B and D. Images were taken under 15x magnification using an 

Olympus model S261 dissecting microscope and Q capture software. 
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Figure C2.S3: Characteristic ocular lens abnormality prominently observed in Xenopus laevis 

tadpoles raised to 5 day post-fertilization after in ovo exposure to elevated levels of selenium.  

Normal lens structure presented in A, B, and C displays a translucent convex shape protruding 

from the center of the pigmented region of the eye. Abnormal lens structure in D, E, and F are 

depicting the loss of curvature of the lens, and its failure to protrude outward. Arrows identify 

the ocular lens region of the eye. Images A, B, D, and E were taken under 20x magnification 

while images C and F were taken under 40x magnification using an Olympus model S261 

dissecting microscope and Q capture software.  
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Figure C2.S4: Frequency of abnormal craniofacial structures detected in Xenopus laevis 

tadpoles (subsamples of 200 per female) exposed to increasing concentrations of selenium (g 

Se/g egg dry mass [d.m.]) via in ovo maternal transfer and subsequently raised to five days post-

fertilization. *, Significant difference from control group using one way ANOVA followed by 

Holm-Sidak test (p<0.001; n=9-10 females). 
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Figure C2.S5: Frequency of edema detected in Xenopus laevis tadpoles (subsamples of 200 per 

female) exposed to increasing concentrations of selenium (g Se/g egg dry mass [d.m.]) via in 

ovo maternal transfer and subsequently raised to five days post-fertilization. *, Significant 

difference from control group using Kruskal-Wallis one way ANOVA on Ranks followed by 

Dunn’s test (p<0.001; n=9-10 females). 
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Figure C2.S6: Frequency of abnormal gut structure detected in Xenopus laevis tadpoles 

(subsamples of 200 per female) exposed to increasing concentrations of selenium (g Se/g egg 

dry mass [d.m.]) via in ovo maternal transfer and subsequently raised to five days post-

fertilization. *, Significant difference from control group using one way ANOVA followed by 

Holm-Sidak test (p<0.001; n=9-10 females). 
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Figure C2.S7: Frequency of abnormal spinal curvatures detected in Xenopus laevis tadpoles (subsamples 

of 200 per female) exposed to increasing concentrations of selenium (g Se/g egg dry mass [d.m.]) via in 

ovo maternal transfer and subsequently raised to five days post-fertilization. *, Significant difference from 

control group using Kruskal-Wallis one way ANOVA on Ranks followed by Dunn’s test (p<0.001; n=9-

10 females). 
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Figure C2.S8: Frequency of abnormal tail fin structure detected in Xenopus laevis tadpoles 

(subsamples of 200 per female; n=9-10 females) exposed to increasing concentrations of 

selenium (g Se/g egg dry mass [d.m.]) via in ovo maternal transfer and subsequently raised to 

five days post-fertilization. 
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Table C2.S1: Estimated EC10 values based on the presence of any of the listed abnormalities or 

only specific individual abnormalities in 5 days post-fertilization Xenopus laevis tadpoles (200 

per female; n=9-10 females) exposed in ovo to increasing concentrations of selenium after a 68-

day maternal dietary exposure to 0.7, 10.9, 30.4, or 94.2 g Se/g food dry mass (d.m.).   

Morphological Classification 
EC10 Values 

(µg Se/g egg d.m.) 

95% Confidence Interval 

(µg Se/g egg d.m.) 

Total Abnormalities a 44.9 41.5 – 48.2 

Abnormal Lens Structure a 43.4 41.4 – 45.4 

Abnormal Craniofacial Structure a 48.6 44.8 – 52.5 

Edema b 58.8 56.7 – 60.8 

Abnormal Gut Formation a 62.8 60.0 – 65.7 

Abnormal Spinal Curvature b 64.6 62.4 – 66.8 

Abnormal Tail Fin Structure b 208.1 130.3 – 285.9 

a, EC10 value estimated using USEPA’s Toxicity Relationship Analysis Program 
b, EC10 value estimated using ToxStat™ software 
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Figure C2.S9: Fertilization success observed in subsamples of Xenopus laevis embryos (100 per 

female; n=9-10 females) exposed to increasing concentrations of selenium (g Se/g egg dry mass 

[d.m.]) through in ovo maternal transfer (Table 2.1).  
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Figure C2.S10: Hatching success observed in subsamples of Xenopus laevis embryos (500 per 

female) exposed to increasing concentrations of selenium (g Se/g egg dry mass [d.m.]) via in 

ovo maternal transfer (Table 2.1). *, Significant difference from control group using Kruskal-

Wallis one way ANOVA on Ranks followed by Dunn’s test (p<0.05; n=9-10 females). 
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Figure C2.S11: Cumulative mortality observed in the first five days post-fertilization in 

subsamples of Xenopus laevis embryos/tadpoles (500 per female) exposed to increasing 

concentrations of selenium (g Se/g egg dry mass[d.m.]) via in ovo maternal transfer (Table 2.1). 

*, Significant difference from control group using Kruskal-Wallis one way ANOVA on Ranks 

followed by Dunn’s test (p<0.05; n=9-10 females). 

 

 


