
Integrating Game Engines into the Mobile Cloud as

Micro-services

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Qi Liu

c©Qi Liu, March 2018. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should be

addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5C9

Canada

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

Game engines have been widely adopted in fields other than games, such as data visualization and

game-based education. As the number of mobile devices owned by each person increases, extra resources

are available in personal device clouds, expanding typical learning space to outside of the classroom and

increasing possibilities for teacher-student interactions.

Owning multiple devices poses the problem of how to make use of idle resources on devices that are

slightly dated or lack portability compared to newer models. Such resources include CPU power, display,

and data storage.

In order to solve this problem, an architecture is proposed for mobile applications to access these resources

on various mobile devices. The main approach used here is to divide an application into several modules

and distribute them over a personal device cloud (formed by same-user-owned devices) as micro-services. In

this architecture, game engines will be incorporated as a render module to tap in its rendering capability.

Additionally, modules will communicate using CoAP which has minimal overhead.

To evaluate the feasibility of such architecture, a prototype is implemented and deployed over a mobile

device, and tested in a modest context that is similar to real life settings.

ii

Acknowledgements

I would like to express my gratitude to my two supervisors Dr. Ralph Deters and Dr. Li Chen, for all

their guidance, patience, and support throughout the duration of this research.

I would also like to thank the members of my defence committee, Dr. Julita Vassileva, Dr. Gordon

McCalla, and Dr. Chris Zhang, for sharing their insight and feedback. Their guidance is greatly appreciated.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

1 Introduction 1

2 Problem Statement 4

3 Related Work 7
3.1 Game Engines . 7

3.1.1 Introduction . 7
3.1.2 Unity 3d . 8
3.1.3 Serious Games . 9

3.2 Design Patterns . 9
3.2.1 MVC . 10
3.2.2 MVVM and MVP . 10
3.2.3 Micro-Service Architecture . 11

3.3 RESTful Web Services . 13
3.4 HTTP and CoAP . 14
3.5 Network Technology . 15

3.5.1 Bluetooth Low Energy . 15
3.5.2 Wi-Fi Direct . 15

3.6 Summary . 16

4 Architecture 17
4.1 Implementation . 20
4.2 Controller . 21
4.3 Model . 23
4.4 View . 26
4.5 Optional Services . 30

4.5.1 Save Game Progress . 30
4.5.2 Game Data Storage . 30

5 Evaluation 32
5.1 Evaluation Setup . 33
5.2 Data Collection . 34
5.3 Result Analysis . 34
5.4 Summary . 46

6 Conclusion 47

iv

7 Future Work 48

References 49

v

List of Tables

5.1 Evaluation Goal . 32

vi

List of Figures

1.1 Average Number of Devices Owned Per Person . 1
1.2 Mobile Cloud Computing . 2
1.3 Cloud of User Devices . 2
1.4 Combing Device Cloud with Cloud Services . 3
1.5 Example of a Solid Geometry Education App in a Personal Device Cloud 3

2.1 Screen of Controller App . 4
2.2 Communication Between Distributed Components on Different Mobile Devices 5
2.3 Components as Micro-Services . 6

3.1 The Model-View-Controller pattern . 10
3.2 MVVM pattern . 11
3.3 Supervising Control Pattern . 11
3.4 Passive View Pattern . 12
3.5 Monolithic Architecture and Micro-Service Architecture . 12
3.6 Abstract Layering of CoAP . 14

4.1 Overview of Proposed Architecture . 17
4.2 Overview of Distributed Components in the Architecture . 19
4.3 Level #7-2 From “Monster Sokoban” . 20
4.4 Implementation Setup . 20
4.5 Screen of Controller Apps . 21
4.6 Screen of the Model App . 24
4.7 Screen of the View App in 3d View . 27
4.8 Screen of the View App in 2d View . 28
4.9 Architecture of the View Module . 29
4.10 Life Cycle of the View Module . 29
4.11 Asset Bundle Workflow . 31

5.1 Hardware Setup of Evaluation . 33
5.2 Average Response Time for GET Request under Various Frequencies 35
5.3 Response Time Variance for GET Request under Various Frequencies 35
5.4 Average Throughput for GET Request under Various Frequencies 36
5.5 Average Response Time for PUT Requests under Various Frequencies 37
5.6 Average Response Time for PUT Requests under Various Frequencies 37
5.7 Average Throughput for PUT Requests under Various Frequencies 38
5.8 Average GET Response Time for Various Payload Size . 38
5.9 Response Time Variance for GET Requests for Various Payload Size 39
5.10 Average GET Throughput for Various Payload Size . 39
5.11 Average PUT Response Time for Various Payload Size . 40
5.12 Response Time Variance for PUT Requests for Various Payload Size 41
5.13 Average PUT Throughput for Various Payload Size . 41
5.14 Average Response Time for Subscription Requests . 42
5.15 Response Time Variance for Subscription Requests . 42
5.16 Average Throughput for Subscription Requests . 43
5.17 Average Round Trip Time for Notification . 43
5.18 Round Trip Time Variance for Notification . 44
5.19 GET Response Time Comparison between Single and Two Controllers 45
5.20 PUT Response Time Comparison between Single and Two Controllers 45

vii

List of Abbreviations

AI Artificial Intelligence
API Application Programming Interface
BLE Bluetooth Low Energy
CoAP Constrained Application Protocol
CoRE Constrained RESTful Environments
CRUD Create, Read, Update, and Delete
DTLS Datagram Transport Layer Security
FPS Frame Rate Per Second
GIS Geographic Information System
GUI Graphical User Interface
HLAPI High-Level API
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IP Internet Protocol
LLAPI Low-Level API
mGBL mobile Game-Based Learning
MCC Mobile Cloud Computing
MMORPG Massively Multiplayer Online Role-playing Game
MSA Micro service Architecture
MVC Model-View-Controller
MVP Model-View-Presenter
MVVP Model-View-ViewModel
NPC Non-player Character
OS Operating System
PC Personal Computer
REST Representational State Transfer
RPG Role-playing Game
SIG Bluetooth Special Interest Group
SOA Service-orientation Architecture
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator
VR Virtual Reality
WAP Wireless Access Point
WPAN Wireless Personal Area Network
XML Extensible Markup Language

viii

Chapter 1

Introduction

Implementing mobile applications face problems such as constrained resources, limited energy, and incon-

sistent network connections [9]. With the constant improvements in high-bandwidth wireless networking and

processing power in mobile devices, and the development of 3d graphics APIs such as OpenGL ES for these

devices [18], the field of mobile visualization was created and is considered to have great potential [48].

In recent years, the application of game engines in scientific visualization and Geographical Information

Systems (GIS) has been explored [23] and is gaining popularity, because of the drastic cost reduction com-

pared to traditional scientific visualization softwares, and the significantly lower requirement for hardware [14].

Modern commercial game engines not only provide users with intuitive tools for developing 3d interactive ex-

periences, but also offer seamless multi-platform shipment. Moreover, mobile Game-Based Learning (mGBL)

has gained much momentum. Mobile applications tend to offer simpler interaction and interface compared to

PCs, which benefits users of all age groups. Additionally, various built-in sensors (e.g., Accelerometer, GPS)

provide more ways to interact with app contents to bring users better immersive experiences [21].

It is currently common for an individual to own more than one mobile device, whether they are smart

phones or tablets. as shown in Figure 1.1, the average numbers of devices owned per user until February 2016

was over 3 [4], suggesting there are idle computational resources and storage in a mobile-device-formed device

cloud. If an application can be divided into modules and deployed over the device cloud, extra hardware and

software resources could be used.

Figure 1.1: Average Number of Devices Owned Per Person [4]

The remainder of this paper is structured as follows: Chapter 2 further explains the research problem,

followed by related works in Chapter 3; Chapter 4 discusses the architecture of the proposed solution; and

1

Chapter 5 focuses on the evaluation plan. Finally, a conclusion is given in Chapter 6.

Figure 1.2: Mobile Cloud Computing

Figure 1.3: Cloud of User Devices

2

Figure 1.4: Combing Device Cloud with Cloud Services

Figure 1.5: Example of a Solid Geometry Education App in a Personal Device Cloud

3

Chapter 2

Problem Statement

It is common for a person to own multiple mobile devices which form a personal device cloud [20]. Among

them, older devices are often not used. Some of them may have big screens or powerful CPUs that could be

turned into controllers for other applications, as shown in Figure 2.1. In order to access these idle resource,

the question of how to divide applications into components, and deploy them over a device cloud, and work

coordinately arises.

Figure 2.1: Screen of Controller App

Commercial game engines are gaining momentum as tools for building serious applications, especially in

4

visualization, because of their ability to achieve reasonable frame rates and to require less hardware.

Figure 2.2: Communication Between Distributed Components on Different Mobile Devices

In summary, the main research problems are:

1. How can components of an application be spread over multiple mobile devices?

2. How can distributed components coordinate with each other?

3. How effective are the distributed components working as one application?

To solve such problems, the main research goals are:

1. To propose an architecture that integrates game engines into a collection of distributed applications

inside a personal mobile device cloud as micro-services;

2. To implement network technologies that facilitate communication between micro services; and

3. To evaluate the efficiency of such architecture by implementing a prototype and conduct evaluations

on the performance under different scenarios.

5

Figure 2.3: Components as Micro-Services

6

Chapter 3

Related Work

In order to find a solution to the proposed problem, related studies are reviewed in this chapter. Game

engines and their application in scientific and collaborative environments is introduced in section 3.1, followed

by a comparison of popular software design patterns in section 3.2. In section 3.3, the architecture style,

Representational State Transfer (REST) is reviewed, followed by a review of Constrained Application Protocol

(CoAP) and a comparison with Hypertext Transfer Protocol (HTTP) in section 3.4. Lastly, applicable

network technologies for communication inside device clouds are reviewed in section 3.5.

3.1 Game Engines

Due to the popularity of computer games, a considerable amount of research has been devoted towards

the development of game engines. Modern game engines now come with whole sets of tools for developing

interactive experiences. As a result, the use of game engines in the building of non-gaming applications has

become increasingly popular [49] [45]. The following sections provide a overview of game engines, and the

their applications in serious gaming.

3.1.1 Introduction

A game engine is a software framework designed for the creation and development of video games for consoles,

mobile devices and personal computers.

Since game systems are complicated, developing a game from the ground up can be expensive and slow.

Given training with the latest technologies, the rapidly changing market, and the development of high-end

technologies, a game engine is often needed for the development of a modern game. Game engines can cater

to building games of different genres, in the same way different models of cars can be built using the same

model of engines [44].

Game engines contain core components including rendering engine, physics engine, GUI, and network

so that game developers do not have to develop these features every time they implement a game idea.

From handling low-level graphical optimizations to guaranteeing reasonable Frame Rate Per Second (FPS),

to importing common asset formats, game engines essentially do the difficult work of game development so

developers can focus on the visual atmosphere, story, and other factors that are important to creating a

7

successful game.

One of the most important features of a game engine is platform abstraction, which guarantees that games

are able to ship to multiple platforms with a minimal change of source code.

3.1.2 Unity 3d

Unity [42] is an engine and framework for both game and application development. It has been gaining

momentum because of the easily understood interface, detailed documentation, and compatibility with major

platforms. It is one of the most extensively used game engines for mobile game development and has an active

development community [43].

The game engine supports importing assets from major 3d applications such as 3ds Max [2], Maya [3],

Cinema 4D [15], the open source tool Blender [11], and others. Its wide usage is a result of the broad range

of asset formats that it supports [30].

The Unity engine is C++ based, and scripting in Unity uses either C# or JavaScript. The user-generated

code runs on Mono version 3.5 or the Microsoft .NET Framework 3.5. Unity allows testing of a game in

development without the need to export or build. Debugging is done with MonoDevelop [47] which can be

launched within Unity.

Workflow within Unity adopted the classic Object-oriented design, where every entity in game is an

object; but it also enforces a component-based architecture [41], where properties are defined by components

and a game object is merely a container of different combinations of components. Each component is a

self-contained function that performs a specific task. Components can be built-in components or generated

from user-created scripts. Component-based architecture allows functions in different domains (e.g., physics,

rendering, sound, and AI), and to achieve decoupling of code while increasing reusability of code. Some

components work the best in combination with others; for example, rigid body and collider components

enable collision detection against other game objects. In addition, components can be easily swapped in and

out of game objects during live edits which makes testing considerably easier. The main drawback is that

components add another level of indirection that turn a game object into a cluster of components, each of

which needs to be instantiated, initialized, and wired.

Multi-thread is supported in Unity script, while Unity APIs, because they are not thread-safe, can only

be called from the main thread. When expensive or long-term operations are being computed in Unity,

threads can still be useful (for example, AI, pathfinding, network communication, and file operations). One

factor to be noted is that synchronization between threads might be more expensive than computing data

in the main thread, and it is necessary to do performance tests. It has also been reported in the developer

community that behaviour of multi-thread games can be unpredictable or can run inconsistently running on

different platforms. Unity also supports the use of coroutines [40] in its main thread. Coroutine methods

can be executed piece by piece over time, but all processes are still done in the single main thread, with the

result that if a coroutine attempts to execute a time consuming operation, the application may still freeze.

8

3.1.3 Serious Games

Game engines have been long applied in the development of non-games or “serious games”. The concept of

serious gaming was first introduced in 1970 in the book Serious Games [1] by Clark Abt. In the book, his

references were primarily to the use of board and card games. Mike Zyda gave an update explaination to

the term in 2005 [49]: “Serious game: a mental contest, played with a computer in accordance with specific

rules, that uses entertainment to further government or corporate training, education, health, public policy,

and strategic communication objectives.”

Since then, game engines have become popular tools in architecture visualization, Geographic Information

System (GIS), military training, and scientific simulation. According to [14], game engines favour real-time

rendering over physical correctness and data accuracy compared to professional scientific simulations or

visualization softwares. The price for the final product is very low compared to professional softwares. As a

result, game engines are a popular choice when data accuracy is not crucial .

Moloney and Harvey [26] proposed a collaborative virtual environment developed based on a game engine

for architectural design education. It allows asynchronous collaboration, utilizing real time communication

which is not possible when using typical architectural visualization software. They also stated that architec-

tural visualization has benefited from the improvement in Virtual Reality (VR) technologies and how game

engines are explored as feature-rich but low-cost alternatives to high-end virtual reality software.

Craighead [8] proposed a Distributed Tutoring Framework that uses Match Server provided by a game

engine. The framework is composed of three elements: an immersive game, a master server to store player

information and handle multi-player collaboration, and an intelligent tutoring agent.

In conclusion, game engines have been applied extensively in scientific visualization. Many studies have

been conducted on the application in distributed systems, relying on networking solutions that game engines

provide. A few distributed game engine architectures are proposed, but are not designed to work in a

mobile environment, and do not rely on existing game engines to take advantage of their advanced rendering

capability.

3.2 Design Patterns

In order to divide functionalities of a distributed application and assign them to different modules, several

design patterns, including the Model-View-Controller (MVC) and its related patterns, are reviewed in this

section. In addition, to facilitate coordination between modules, the Micro-Service Architecture (MSA) is

explored.

9

3.2.1 MVC

Syromiatnikov and Weyns [38] discussed the difference between existing MV* patterns classified in three

main families. They stated that all MV* patterns are based on the idea of separation of concerns, and came

to the conclusion that MVC patterns are the leading patterns for synchronizing user interfaces with domain

data.

Below is a brief introduction of the Model-View-Controller (MVC) architecture which is based on the idea

of separation of presentation. It focuses on clear division of domain objects and presentation, as well as the

Model-View-View Model (MVVM) pattern and Model-View Presenter pattern (MVP), developed with the

intention of eliminating the disadvantages of MVC.

The MVC pattern is one of the first attempts at serious UI work. The idea of separated presentation is

the foundation of MVC, and is the most influential on later frameworks [12]. It depicts a clear separation

of domain objects that are modelled after the real world, and a presentation that is the GUI elements on

the screen [33]. Thus the Model in MVC, is responsible for maintaining domain data and logic is completely

ignorant of the UI. For each element on the screen, one View-Controller pair is assigned, the Controller

handles user input, updates domain data, and triggers domain logic inside the Model, and the View updates

its data display by observing the Model.

An issue that MVC fails to address is the fact that the view logic does not fit into the domain logic on

domain objects, where the Model should be responsible only for managing domain data and logic. This can

be addressed by the adoption of a Presentation Model in the MVVM pattern.

Figure 3.1: The Model-View-Controller pattern

3.2.2 MVVM and MVP

The MVVM pattern solves the problem that MVC has by using a Presentation Model (or View Model) that

wraps around the domain model and handles the view state by providing extra properties and logic. The

View-Controller pair in MVC are combined into a single View component which observes and operates on

the Presentation Model and updates the View accordingly, without direct reference to the domain model. In

10

this pattern, domain data is handled by the Model; view state and user interaction is handled by the View

Model; and rendering of user interface and display of data is handled by the View. The MVP architecture is

inspired by both Forms and Controls and MVC, where the Forms and Controls blend reusable widgets with

an application specific code, and MVC has a separated presentation and domain model [38].

There are two main types of MVPs: the Supervising Controller pattern and the Passive view pattern.

MVP is similar to traditional MVC in the sense that the Presenter is similar to a looser form of the Controller.

But the Presenter, unlike the Controller, is responsible for changing the view as well.

Figure 3.2: MVVM pattern

Figure 3.3: Supervising Control Pattern

3.2.3 Micro-Service Architecture

Micro-Service Architecture (MSA) is a software architecture style in which complex applications are composed

of small, independent processes communicating with each other using language-agnostic APIs [13]. These

services are small, highly decoupled, and focus on doing a small task [28], facilitating a modular approach to

11

Figure 3.4: Passive View Pattern

system-building. MSA is distinct from a Service-Orientated Architecture (SOA) in that the latter aims at

integrating various applications whereas several micro-services belong to one application only.

Figure 3.5: Monolithic Architecture and Micro-Service Architecture

Software built as micro-services is broken down into multiple component services, so that each can be

independently maintained or updated without affecting the entire application. [22] compared MSA to the

Monolithic Architectural style: A modification made to a section of an application following the Monolithic

Architectural style may require building and deploying of the entire application, whereas in micro-services,

developers might only need to change one component instead the entire application.

The code below is an example of a rudimentary micro-service by [32] to respond to a query written in

Go [17]. The function of the code is to start a server on port 8080 on all interfaces. When a user connects

to a corresponding URL in the format “http://localhost:8080/user_name,” he or she will receive a welcome

12

1
2 package main
3
4 import (
5 " encoding / j son "
6 "fmt"
7 "net /http "
8)
9

10 // Resturns a s t r i n g o f t ex t "Welcome , user_name ! "
11 // to a connect ion through "http :// l o c a l h o s t :8080/ user_name " .
12 func handler (w http . ResponseWriter , r ∗http . Request) {
13 fmt . Fpr in t f (w, "Welcome , \%!" , r .URL. Path [1 :])
14 }
15
16 // Returns a lengthy in t r oduc t i on o f the s e r v i c e , and re tu rn s e r r o r code during a f a u l t
17 // connect ion .
18 func about (w http . ResponseWriter , r ∗http . Request) {
19 m := "Lengthy in t r oduc t i on o f t h i s s e r v i c e . "
20
21 // Returns an e r r o r code with l ogg ing when a f a u l t connect ion or r eque s t i s made .
22 b , e r r := j son . Marshal (m)
23
24 i f e r r != n i l {
25 panic (e r r)
26 }
27
28 w. Write (b)
29
30 // Di rec t a l l t r a f f i c coming in to port 8080 to accord ing hand le r s .
31 func main () {
32 http . HandleFunc ("/" , handler)
33 http . HandleFunc ("/about/" , about)
34 http . ListenAndServe (" :8080 " , n i l)
35 }

message as a response.

In conclusion, separating an application into MVC modules, and building each module to expose a suite of

independent services following MSA pattern, can help build a distributed application that is loosely coupled,

providing highly usable services.

3.3 RESTful Web Services

RESTful Web Services have been used extensively in mobile device environment. In this section, the REST

Architecture and its use in mobile applications is reviewed.

REST (Representational State Transfer) is a lightweight architecture style for designing networked ap-

plication proposed by Fielding [10]. RESTful Web Services are web applications built upon the REST

architecture. According to the architecture, each available resource on the server is identified by a Uniform

Resource Identifier (URI). A client of RESTful Web Services can request different operations (Create, Read,

Update, and Delete) on resources through standard HTTP verbs(POST, GET, PUT, and DELETE). HTTP

GET, for instance, is defined as a data-producing method that is intended to be used by a client application

to retrieve a resource, to fetch data from a Web server, or to execute a query with the expectation that

13

the Web server will look for and respond with a set of matching resources [31]. Christensen [7] states that

RESTful Web Services are suitable for mobile device environments because them are easy to invoke, produce

a discretely formatted response, can usually be easily parsed, and are less memory intensive.

Pautasso et al. [29] describes the advantages of the REST Architecture style for its lightweightness, and,

because of the adoption of URIs and hyperlinks, resource discovery does not require registration to a central

repository. REST is also easily scalable and the support for lightweight message formats can further optimize

the performance of Web Services.

To conclude, the combination of RESTful Web Services with micro-services to expose specific resources of

distributed modules would meet the requirements of this research, by having little overhead while providing

flexibility and scalability.

3.4 HTTP and CoAP

HTTP and CoAP are both based on the REST model and can be used as communication protocols to

expose RESTful Web Services in a mobile device cloud. In the following section, CoAP will be reviewed and

compared with HTTP.

CoAP [35] is a RESTful web transfer protocol optimized for communication between resource-constrained

networks and nodes. CoAP uses the User Datagram Protocol (UDP) as its transport protocol unlike HTTP

which operates on top of the reliable Transmission Control Protocol (TCP) and can be too complex for

constrained environments. CoAP is not a blind compressed version of HTTP, but a subset of REST common,

with support of URI and HTTP verbs, that gear towards machine-to-machine applications, hence it is an

effective protocol for micro-services hosted on mobile devices.

Figure 3.6: Abstract Layering of CoAP [19]

According to [35], CoAP has the following main features:

• A web protocol fulfilling M2M requirements in constrained environments.

• UDP binding with optional reliability supporting unicast and multicast requests.

• Asynchronous message exchanges.

14

• Low header overhead and parsing complexity.

• URI and Content-type support which is similar to HTTP.

• Simple proxy and caching capabilities.

• A stateless HTTP mapping, allowing proxies to be built providing access to CoAP resources via HTTP

in a uniform way, or for HTTP simple interfaces to be realized as an alternative to CoAP.

• Security binding to Datagram Transport Layer Security (DTLS).

Since the network environment in a mobile device cloud is not absolute, devices can be connected to the

internet throughWi-Fi or connected to each other through an ad hoc network via low-range radio technologies.

Ideally HTTP can be used with an unconstrained network and CoAP with a constrained network. However,

some technologies, for example Bluetooth, does not rely on IP for addressing, and IP is essential in the

existing implementations, except for [6]. A communication protocol should always be decided according to

the underlying network environment, which is briefly introduced in the next section.

3.5 Network Technology

3.5.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is an emerging wireless technology developed by the Bluetooth Special Inter-

est Group (SIG) for short-range communication. BLE has distinctive features not found in Bluetooth 4.0

[16]. BLE is ideal for applications requiring episodic or periodic transfer of small amounts of data. There-

fore, Bluetooth Low Energy is especially well suited for sensors, actuators, and other small devices that

require extremely low power consumption [36], for example, wearable health devices, home automation, and

advertising. BLE has the following key features:

• Works well with high numbers of communication nodes with limited latency requirements.

• Very low power consumption.

• Robustness equal to Classic Bluetooth.

• Short wake-up and connection times.

• Good smartphone and tablet support.

3.5.2 Wi-Fi Direct

The IEEE 802.11 standard [37] has become one of the most common ways to access the Internet for over

adecade. Wi-Fi Direct is a technology defined by the Wi-Fi Alliance, aimed at enhancing direct device-to-

device communications in Wi-Fi. Traditional Wi-Fi requires a Wireless Access Point (WAP) in order for a

15

device to connect to a wired network. Devices in the same Wi-Fi network can only communicate through

the WAP. Since many of the smaller devices today support Wi-Fi, it has become increasingly necessary for

peripheral devices to form networks without the presence of a WAP.

A major novelty of Wi-Fi Direct, according to [5], is that these roles are specified as dynamic, and hence,

a Wi-Fi Direct device has to implement both the role of a client and the role of an AP (sometimes referred to

as Soft-AP). One device that supports Wi-Fi Direct can take the role of an access point and connects to other

devices that supports a Wi-Fi connection, forminf an ad hoc network. The possible downfall of the present

implementations is that different platforms have their own implementations and may not be interconnectable.

To sum up, the network technologies, Wi-Fi, and BLE, and Wi-Fi Direct are all feasible choices for the

connection of mobile devices inside a device cloud.

3.6 Summary

In summary, in the Related Work section, game engines and their applications in scientific and collaborative

environments are reviewed, showing that game engines are applicable tools for working with other modules in

a visualization role. After a brief review of MV* patterns and Mirco-service Architecture, the MVP pattern

will be adopted to used as a guide for module partition. However, for convenience of expression, the module

responsible for control logic will still be called the Controller. The RESTful Web Services is chosen because

of its lightweightness. As for the communication protocol, both CoAP and HTTP are viable choices, but

the messaging mechanism has to be implemented differently according to the network settings (for example,

Wi-Fi or low range radio technologies, such as BLE and Wi-Fi Direct).

16

Chapter 4

Architecture

As modern mobile devices have been growing in screen resolution, CPU, battery life, and memory space,

many constraints on application development no longer exist, especially for games and visualization appli-

cations that are computationally demanding because of constant frame updates. Since a stable frame rate

and high resolution are guaranteed, a considerable number of mobile versions of AAA game titles have been

developed. As a result, mobile platforms have become a standard for both casual and more “hardcore” games,

and for visualization tools in general.

Moreover, the number of mobile devices an average person owns is growing rapidly, with the inevitable

overlap of functionality, many devices are not put into frequent use, providing abundant idle resources.

Figure 4.1: Overview of Proposed Architecture

17

The main objective of this research is to propose an architecture for distributing mobile games or visual-

ization apps onto different mobile devices as modules, and working coordinately to make use of idle resources,

such as computation, display, and data storage.

As is shown in the Related Work section, most of the previous research relies on the built-in multi-player

networking solutions of chosen game engines to facilitate the communication of distributed game instances

between different game players. This approach does not address the need for distribution and communication

of modules for single-player games, which is the most common genre on mobile platforms. In addition, these

solutions are well encapsulated and offer no freedom in the modularization of game instances, such that there

is no way to facilitate the coordination of more finely grained game modules.

The proposed architecture encapsulates different business logics of a game or visualization application as

modules, distributes them over several mobile devices, and exposes their functions as micro-services for each

other to consume. The design also allows the devices to communicate, using low-overhead protocols over a

wireless network, which is a common setting for both homes and offices. This architecture is flexible so that

the number of participating mobile devices and players can vary, and by modifying the number and function

of distributed services, it can cater to a different number of devices and both single- or multi-player scenarios.

The pattern of distributed MVC is adopted for implementing the distributed modules. Note that in this

implementation each module does not strictly contain the code for only one role. As mobile applications,

they each have their own UI and control logic to bind the UI to their domain data. This holds especially

for the View module which is implemented using a game engine, that encapsulates complex controls, for the

included render, sound, AI engines, and other features.

There are three main modules inside the architecture: the View, Controller and Model, as shown in

Figure 4.1. The View is responsible for rendering the game screen, Controller gathers user input and feeds

requests to the Model, and finally, the Model stores and synchronizes game data between the Controller and

the View. Following the MVC design pattern, the Controller sends update requests to the Model, the Model

updates data accordingly, and then the View updates its rendering of data by observing the Model.

When a user starts a Controller application, the Controller first checks if the other services are alive and

accessible in the same network. If they are (their instances have been started on other devices), the user

can start to manipulate game data as the Controller UI prompts. To hold the game state and data for one

session of the game, one Model has to exit, but multiple instances of the View can be present.

The modules communicate with each other through a network that can be either Wi-Fi or WPAN (Wireless

Personal Area Network). In the context of Wi-Fi communication, either CoAP or HTTP can be applied as

the transfer protocol, with CoAP being a lightweight alternative to HTTP for use in constrained networks

and for working on top of UDP. Both provide the HTTP methods PUT, GET, POST, and DELETE to map

to the REST CRUD services. If the modules are connected in a WPAN via low-power radio technologies,

such as BLE or Wi-Fi Direct, modules of a distributed application may not be able to communicate if they

are deployed onto different platforms since there appears to be no multi-platform solution.

18

Figure 4.2: Overview of Distributed Components in the Architecture

For the purpose of demonstration of the proposed architecture, a primitive level of the game Sokoban is

implemented as an example of the application. Sokoban is a type of transport puzzle that was first created

in Japan. In the original game the player pushes boxes or crates around in a warehouse, trying to get them

to storage locations. When implemented as a video game, it is played on a board of squares, where each

square is a floor or a wall. Some floor squares contain boxes and others are marked as storage locations (i.e.,

“targets”). The player is confined to the board, and may move horizontally or vertically onto empty squares,

but never through walls or boxes. The player can also move into a box, which pushes it into the square

beyond. Boxes may not be pushed into other boxes or walls, and they cannot be pulled. The number of

boxes is equal to the number of storage locations. The puzzle is solved when all boxes are at storage locations

and the player is at the wining spot. The targets are colour coded and should be easy to identify from the

regular board.

19

Figure 4.3: Level #7-2 From “Monster Sokoban” [27]

In the following section, the implementation of each moduleas well as communication setups are explained.

4.1 Implementation

Figure 4.4: Implementation Setup

To demonstrate the proposed architecture, three mobile applications are created as three mobile applica-

tions with their functions exposed as services. The CoAP protocol is used as the communication protocol,

and the whole system runs in a Wi-Fi environment. Figure 4.4 shows the basic setup.

20

(a) Screen of Controller App (b) Alert for Model Status

Figure 4.5: Screen of Controller Apps

4.2 Controller

The Controller is written in C# and compiled into native iOS app, using the cross-platform tool Xamarin

[46]. Xamarin chosen because of the following reasons:

1. Xamarin uses C# complemented with .Net framework to create apps for mobile platforms. Thus, source

code can be reused over several platforms to speed up the development.

2. Xamarin does not require switching between the development environments; since it was acquired by

Microsoft, all apps can be built inside Visual Studio which completely replaced Xamarin Studio. The

cross-platform development tools are provided as a built-in part of the IDE.

3. Xamarin apps are built with standard, native user interface controls.

For the implementation of the CoAP library, as discussed in the Related Work section, the CoAP.NET

library [34] is used in the development of all MVC modules. CoAP.NET is based on Californium [25], a

CoAP framework in Java developed in ETH Zurich. The implementation was originally based on a previous

C# CoAP implementation. However, it provided only basic functions and seemed to be out of maintenance.

The implementation has migrated to the current active CoAP.NET.

The Controller module is responsible for sending user input requests to the Model module, that is,

gathering user input for the game, encapsulating them into CRUD CoAP requests, and sending them to

21

the Model module. For the convenience of gathering user input, a UI is provided. In this Controller app

implementation, the UI interface demonstrates three attributes:

1. The camera angle of the view of the game View (default setting is “3d”), an entry for the configuration

of the game.

2. A picker of colour for the player cube, can be a part of both game configuration and game play.

3. The player movement control, controls the movement of the player cube using the direction buttons,

and is the main game control.

When the screen of the Controller app finishes loading, a new CoAP client is created, with methods

including Pinging the Model server to find out its status (if started in the same network), and sending out

updated resource representation as CoAP PUT requests to the Model module. After a user toggles a switch

and selects a colour from the colour picker or touches any direction button, one of these methods gets called

and performed by a Task object asynchronously on a thread pool thread from the main UI thread. A code

snippet of the CoAP client is included below.

1

2 pub l i c c l a s s ControllerComponent

3 {

4

5 p r i va t e CoapClient coapCl i ent ;

6

7 pub l i c bool modelStatus = f a l s e ;

8

9 // Constructor

10 pub l i c ControllerComponent ()

11 {

12 c l i e n t = new CoapClient (SERVER_URI) ;

13

14 }

15

16 // Ping the Model s e r v e r to see i f a l i v e

17 pub l i c bool PingModel () {

18

19 bool s t a tu s = c l i e n t . Ping () ;

20

21 re turn s t a tu s ;

22

23 }

24

25 // Sends async PUT reques t to u r i path /camera_view to modify the camera view

26 // r e sou r c e with content format o f JSON

27 pub l i c void ChangeCameraView (s t r i n g view) {

22

28

29 coapCl ient . UriPath = "camera_view" ;

30

31 coapCl ient . PutAsync (view , MediaType . Appl icat ionJson , ResponseHandler ,

Fa i lHandler) ;

32 }

33

34 // Sends async PUT reques t to u r i path / player_co lour to modify the play co l ou r r e s ou r c e

35 // r e sou r c e with content format o f JSON

36 pub l i c void ChangePlayercolour (s t r i n g co l ou r) {

37

38 coapCl ient . UriPath = " player_co lour " ;

39

40 coapCl ient . PutAsync (co lour , MediaType . Appl icat ionJson , ResponseHandler ,

Fa i lHandler) ;

41

42 }

43

44 // Sends async PUT reques t to u r i path /player_move to modify the play move r e sou r c e

45 // r e sou r c e with content format o f JSON

46 pub l i c void MovePlayer (s t r i n g d i r e c t i o n) {

47

48 c l i e n t . UriPath = "player_move" ;

49

50 var re sponse = coapCl i ent . PutAsync (d i r e c t i on , MediaType . Appl i cat ionJson) ;

51 }

52

53

54 }

4.3 Model

Same as the Controller module, the Model is implemented using Xamarin. The app includes a CoAP server

that holds resources that are game play data. A resource is a conceptual mapping of a set of entities, which

varies according to the genre of a game. For a turn-based board game, resources can be the board, game

pieces, players, and moves. For an adventure RPG (Role-playing Game), where a player controls a main

character to explore given maps, and advances the game story by interacting with items and NPCs (Non-

player Character), resources can be the main character, character position, inventory, or game level, entities

that exist at a given time over the course of a game. In this case, API is exposed, modifying the camera

angle of view, the colour of the player cube, and player movement.

When the screen finishes loading, the user can choose to tap on the button “Start Server” to start a

CoAP server. The server first registers resources and then adds endpoints for chosen IP addresses and ports

23

Figure 4.6: Screen of the Model App

(or binds to all available network interfaces if none is specified). A code snippet for both the server and

player_move resource class is listed below.

1

2 pub l i c c l a s s ModelServer

3 {

4 p r i va t e CoapServer s e r v e r ;

5

6 // Defau l t CoAP port

7 const i n t COAP_PORT = 5683 ;

8

9 pub l i c ModelServer ()

10 {

11 s e r v e r = new CoapServer () ;

12 }

13

14 pub l i c void S ta r tSe rve r () {

15

16 // Adds s e r v e r r e s ou r c e s

17 s e r v e r .Add(new CameraViewResource ("camera_view")) ;

18 s e r v e r .Add(new Playerco lourResource (" p layer_co lour ")) ;

19 s e r v e r .Add(new PlayerMoveResource ("player_move")) ;

20 t ry

21 {

22 // Get endpoint f o r s u i t a b l e IP4 address

23 var host = Dns . GetHostEntry ("") ;

24

25 IPEndPoint ip4Ep = new IPEndPoint (host . AddressL i s t [0] , COAP_PORT) ;

26

27 CoAPEndPoint un i ca s t = new CoAPEndPoint (ip4Ep) ;

28

24

29 s e r v e r . AddEndPoint (un i ca s t) ;

30

31 s e r v e r . S ta r t () ;

32 }

33 catch (Exception ex)

34 {

35 Console . WriteLine (ex . Message) ;

36 }

37 }

38 }

CoAP supports resource discovery, a mechanism whose the main function of such a discovery mechanism

is to provide URIs for the resources hosted by the server, complemented by attributes about those resources

and possible further link relations. The CoRE Link Format is carried as a payload and is assigned an Internet

media type. A well-known relative URI “/.well-known/core” is defined as a default entry point for requesting

the list of links about resources hosted by a server, and thus for performing CoRE Resource Discovery. As is

shown in the code snippet for the player move resource, the resource description is set inside its constructor.

When a server receives a request, it passes the request to according resources. Then, the request handler

inside each resource routes the request to corresponding handlers. If an observation request is received (a

request with Observer Option set to 0), an observe manager that is bind to the server keeps track of the observe

relationships which represents a relationship between a client and a resource on this server. The components

called “observers” register at a specific, known provider called the “subject” that they are interested in being

notified whenever the subject undergoes a change in state. The subject is responsible for administering its

list of registered observers. If multiple subjects are of interest to an observer, the observer must register

each separately. When a resource being observed is changed, the executor of this resource notifies a set of

CoAP clients which have established an observe relation with this resource, that the state has changed by

reprocessing the original request that established the relation.

In this implementation, all three resources, camera_view, player_colour, and player_move, are defined

as observable resources. The observer pattern is a core mechanism of the proposed architecture, because the

update of the View using resources in the Model is solely based on observation. So the View has to send an

observe request to the Model once, and waits for responses for an update of resources.

25

1

2 c l a s s PlayerMoveResource : Resource

3 {

4 p r i va t e s t r i n g _move ;

5

6

7 pub l i c PlayerMoveResource (S t r ing name)

8 : base (name)

9 {

10 // Constructor f o r s e t t i n g r e s ou r c e d e s c r i p t i o n f o r r e s ou r c e d i s cove ry

11 // r eque s t s t o / . wel l−known/ core

12 Att r ibut e s . T i t l e = "Player Moves" ;

13 Att r ibut e s . AddResourceType ("PlayerMove") ;

14

15 // Sets the r e s ou r c e to be obse rvab l e

16 Observable = true ;

17 // Set i n i t i a l va lue f o r the value o f player_move

18 _move = " l e f t " ;

19 }

20

21 // Handler f o r GET reques t

22 protec ted ove r r i d e void DoGet(CoapExchange exchange)

23 {

24

25 exchange . Respond (StatusCode . Content , _move , MediaType . Appl i cat ionJson) ;

26 }

27

28 // Handler f o r PUT reques t

29 protec ted ove r r i d e void DoPut(CoapExchange exchange)

30 {

31 _move = exchange . Request . PayloadStr ing ;

32 exchange . Respond (StatusCode . Changed) ;

33 // For obse rvab l e re source , n o t i f y r e g i s t e r e d Observing c l i e n t s f o r t h i s r e s ou r c e

34 Changed () ;

35 }

36 }

4.4 View

The View module is implemented as a mobile game instance, using the Unity game engine. The main function

of the View module is to render the game screen in the proposed architecture. To acquire input of the game

control (e.g., player movement) and change of game configuration (e.g., camera view, player colour), the View

registers to observe resources in the Model. There is no need to constantly poll for an update of resources,

26

Figure 4.7: Screen of the View App in 3d View

since the Model server will send updates to the View.

In a number of game engines, game objects are tagged as separate entities. Each entity is a container

of components, which implements actual functionality that capture properties of the object, define object

movement and its interactions with the world. For instance, every game object in a game world would have a

transform component that captures its world position, rotation, and scale. Movement of a game object can be

achieved by modifying data in the transform component; in addition, with a rigid body component attached,

a game object is subject to the control of the physics engine. The rigidbody component can receive forces

and torque, making game object movement more realistic looking than through the transform component.

Resources shall be mapped to user configurable properties of a game object or GUI and performable

behaviors and identified by URIs. For example: /player/physics/gravityScale and player/behaviors/jump.

The View will monitor incoming updates, and perform function calls into the controller logic inside the View,

which will then modify attributes of according game objects to complete the update of visual representation

of resources.

Below is the code snippet for starting a CoAP client, sending a request for observing the player movement

resource, and updating a player in the game scene using received data. Note that any UI update can only

happen in the UI thread:

1 // Use t h i s f o r i n i t i a l i z a t i o n

2 void Sta r t ()

3 {

4 // Bind endpoints to CoAP c l i e n t

5 IPEndPoint loca lEp = new IPEndPoint (IPAddress .Any , 0) ;

6 CoAPEndPoint ep = new CoAPEndPoint (loca lEp) ;

7

8 c l i e n t = new CoapClient (SERVER_URI) {EndPoint = ep } ;

27

Figure 4.8: Screen of the View App in 2d View

9 ep . S ta r t () ;

10

11 // Set r eque s t s to be Confirmable , so s e r v e r w i l l send

12 // Acknowledgement r e sponse s

13 c l i e n t .UseCONs() ;

14

15 // Get r e f e r e n c e to Con t r o l l e r component to the p laye r

16 p l ay e rCon t r o l l e r = playerCube . GetComponent<Contro l l e r >() ;

17

18 // Creates a TaskScheduler a s s o c i a t ed with the cur rent UI thread

19 UIschedular = TaskScheduler . FromCurrentSynchronizationContext () ;

20 }

21

22 pub l i c void ObserveResources () {

23 // Set path to p laye r movement r e s ou r c e

24 c l i e n t . UriPath = "/player_move" ;

25

26 // Set a GET reques t with an obse rve r opt ion

27 // Reg i s t e r Not i fy () as ac t i on to take f o r each n o t i f i c a t i o n

28 c l i e n t . ObserveAsync (MediaType . Appl icat ionJson , Not i fy) ;

29 }

30

31 void Not i fy (Response re sponse) {

32 // Same as other mobile a pp l i c a t i o n s

33 // any mod i f i c a t i on f o r UI must happen in main thread

34 // queues an ac t i on to be invoked on the main game thread

35 Task task = new Task (() => {

28

p l ay e rCon t r o l l e r . MoveByController (re sponse . PayloadStr ing) ; }) ;

36

37 // S ta r t s the Task , s chedu l ing i t f o r execut ion to the s p e c i f i e d UIScheduler .

38 task . S ta r t (UIschedular) ;

39

40 // Turn o f f auto−r e connec t i on with s e r v e r

41 observeMove . Request . ObserveReconnect = f a l s e ;

42 }

43

44

45 pub l i c void CancelObservat ion () {

46

47 // Send a reque s t to a c t i v e l y cance l obse rvat i on

48 Request r eque s t = new Request (Method .GET, t rue) ;

49 r eque s t . MarkObserveCancel () ;

50 c l i e n t . Send (r eque s t) ;

51 }

52 }

Figure 4.9: Architecture of the View Module

Since the View module is a game instance, its life cycle is essentially the same as a game, as shown in

Figure 4.10.

Figure 4.10: Life Cycle of the View Module

29

In this scenario of single-player games, only one View exists, but multiple Views can be present simulta-

neously. They can be set to all render the same set of game objects and game states, while using different

representations according to the user configuration (e.g., one in 3d, and another in 2d), or can be sets to

observe different set of resources, and thus render totally different contents.

4.5 Optional Services

4.5.1 Save Game Progress

An optional service for the View is to keep track of game state data locally. Data usually consists of values,

including player health, wealth, and items in inventory. There are two common methods to store state data

locally. One is to write variables to a file in binary or XML(eXtensible Markup Language) form. Note that

binary data uses disk space. Most commercial game engines provide tools to help implement such features, for

example, the PlayerPrefs API in Unity Engine. However, the main disadvantage of saving data as PlayerPrefs

is that it does not come with support encryption, so manual encryption is needed in order to prevent players

from modifying saved game state data. The other method is to store variables in a database, which provides

the ability to query data structures dynamically. This differs from the previous method, where when a

save file is loaded, all the game state data is loaded into the memory. Since the database method is more

suitable for games require dynamic query with larger set of data with more complex data structure, and

many databases support encryption.

In the context of the proposed architecture, both uploading the game state data file and posting the

serialized object would be applicable.

4.5.2 Game Data Storage

Additional modules can be added to the architecture to act as game backends. A module can work as a

game server and provide two services inside the device cloud. The first is hosting the game content for game

instances to request and load into a running game; the other is to preserve posted game status data from the

aforementioned Save Game Progress function and wait for further requests.

The contents to be loaded include numerous game assets, including models, textures, audio clips, entire

game levels, and new items to be unlocked. It is a common strategy to load assets from a separate local file or

server during game play to reduce initial installation time and space or to allow interchangeable game content.

In the case where characters or objects can appear in uncertain scenes of the game but only infrequently (for

example, an error message), it is also beneficial to make an asset available to a project without loading it as

part of a game scene.

When new game models need to be added to the current game scene, the game instance running as the

View will either load the model from included assets (which is pre-built), or download from the Storage

30

Server.

The Unity engine, it supports two ways of packaging contents to be loaded at runtime. The first one is

to place the contents in a set directory in a game project, which allows content to be supplied in the main

game file yet not be loaded until requested. The second is to create Asset Bundles out of the contents as

an external collection of assets. These are files completely separate from the main game file. They will be

saved into the file server on Storage Server for the game instances to request during runtime. The workflow

of using Asset Bundle is shown below in Figure 4.11.

Figure 4.11: Asset Bundle Workflow

Using Asset Bundles calls for extra steps of uploading them to external storage and downloading them

at run time from a current application from a script within a game scene as either non-caching or caching

download. The latter will cache the downloaded Asset Bundles to a Cache folder in the local storage device

running the View.

Game state data is posted from the View to the File Server when a play session ends, in order to preserve

data between sessions, which can also be used to synchronize multiple Views to a same game state. Game

state data will only be accessed by modules inside the mobile cloud at this stage. Thus no connection to an

external data server will be considered in this research. Should an external server be needed, adding such

support should be straightforward.

In the presence of an uncomplicated single-player game, game status will only be captured at certain

locations with a small set of status. A simple file server will be sufficient to store data files, whereas for

games that generate of a large amount of data dynamically, a database is needed to handle dynamic data

query.

31

Chapter 5

Evaluation

In this chapter, the main goal is to evaluate the performance of the proposed architecture by testing the

implemented prototype for the performance attributes shown in Table 5.1. The evaluation was conducted

in a realistic network setting to decide its feasibility.

Evaluation Goal Experimentation

1. Response Time and Throughput (a) Measure Response Time and Throughput under different request sending

for Main Methods frequency settings.

(b) Measure Response Time and Throughput of GET and PUT requests under

different payload sizes.

2. Resource Observation Evaluate Response Time and Throughput for Subscription request and Round

Trip Time for Notifications messages.

3. Scalability Compare Response Time by adding an extra Controller and have the two

Controllers sending GET and PUT requests to the Model on the same resources.

Table 5.1: Evaluation Goal

1. (a) Measure response time and throughput for key methods PUT and GET requests. The two main

methods supported in the prototype for sending user control for READ and UPDATE data are

under different package sending frequencies, with a fixed size payload. Evaluations for a set

frequency is repeated 2000 times.

(b) Measure response time and throughput of GET and PUT requests under different payload settings,

to show the correlation between performance and payload size. Evaluations for a set payload is

repeated 2000 times.

2. Measure server response time and throughput for a resource subscription request and round trip time

for a server sending notification to the client. Evaluations for subscription is repeated 1000 times and

500 times for notification.

3. Compare the performance when adding an extra Controller component to the previous single Controller

setting.

32

5.1 Evaluation Setup

The prototype to be evaluated has the same configuration as stated in the implementation, which consists

of two CoAP Clients, one CoAP Server and the network infrastructure. The functions of the components

are subjected to the aforementioned role of the Controller, the Model and the View, where the Controller

captures user inputs, encapsulates and sends them as CoAP requests. The Model listens to these requests,

updates corresponding resources which are representations of manipulatable objects in its game View. The

View receives the updates by subscribing to its interested resources, and updates the game View. There were

no other applications running on any devices, but there may be contain certain system services running in

the background. The prototype runs in a dedicated wireless network to simulate an at-home environment.

The hardware setup is shown in Figure 5.1

Figure 5.1: Hardware Setup of Evaluation

The implementation aforementioned is deployed over three iOS devices:

• iPhone 6s Plus (iOS 11.2.2) as the Model component;

• iPad Air (iOS 11.2.2) as the Controller component;

• iPad Air (iOS 11.2.2) as the View component;

33

• hitron CGNM_2250 wireless router; and

• iPhone 6s (iOS 11.2.2) as an additional Controller component.

All device are located within 5 meters of the range of the router, and the Wi-Fi signal appears to be strong

on all devices.

5.2 Data Collection

The data collected is,

• The response time for GET and PUT requests in milliseconds;

• The response time for Subscription Request in milliseconds;

• The round Trip Time for Observation Notification messages in milliseconds; and

• The payload size in bytes.

In each experiment, data is captured using APIs that are included in CoAP.NET library, except for Notifi-

cation Round Trip Time, which is calculated using packet time stamps captured by WireShark [39], an open

source packet analyzer.

5.3 Result Analysis

The result is collected and plotted according to the three groups in the experiment. In the following figures,

the horizontal axis represents either a request sending frequency that is derived from various fixed request

sending intervals, or a payload size from 16 bytes to 1024 bytes.

In the first set of evaluations, the Controller component sent 2000 GET requests after every request sending

intervals from 2 ms, 4 ms, 6 ms, 8 ms, 10 ms, 20 ms, ... to 100 ms, from which were derived frequencies of

10, 11, ... 250, 500 requests per second. The same pattern applies to the PUT evaluation below. Requests

are all sent to the Model component at URI /player_move to READ current player movement, in order

to receive a response with a string payload of a direction. Tn this case it is 16 bytes throughout the first

set of evaluations. At an increasing frequency from 10 requests per second till 500 requests per second, the

Model receives requests and sends current resource representation to the Controller. Since CoAP protocol is

based on UDP and has no requirement for maintaining connections, a higher sending frequency can simulate

scenarios where multiple Controllers are sending in requests in a multi-player setting. The average response

time for each sending frequency is calculated, and the result is shown in Figure 5.2 and 5.4. Figure 5.4

depicts all 2000 response times for all frequencies to show the variance of data.

34

Figure 5.2: Average Response Time for GET Request under Various Frequencies

Figure 5.3: Response Time Variance for GET Request under Various Frequencies

35

Figure 5.4: Average Throughput for GET Request under Various Frequencies

Figure 5.2 shows the response time for the GET Requests remains steady at 10 - 20 requests/s. When

the sending frequency reaches 25 requests/s, a fluctuation starts, possibly because of the increasing requests

the Model Server has to deal with concurrently. The average response time peaks at 500 requests/s.

Figure 5.3 shows the overall variance of the response time. The horizontal axis shows the sequence

number of requests in 2000 evaluations. It is difficult to tell but most dots are located near the bottom hence

the average value us 10 - 20. The raised blue part represents the frequencies 500 and 33, respectively. The

initial time-out for this prototype is set to default, which is a random value between 2 to 3 s, and some of the

rises might be a result of retransmission. In this implementation, the GET method is available. But hardly

ever used, so the possible time out does not affect much of the overall performance.

For the throughput shown in Figure 5.4, it stays rather stable when a request sending frequency is low,

and is less stable towards the higher frequency range.

In Figure 5.5 and 5.7, the result for PUT requests is shown. The evaluation setting is the same as GET

requests. Similar to the results shown in GET evaluations, the average PUT response time was relatively

steady when the sending frequency is low. Response time distinctly rises when the frequency is 167 - 500

requests/s, the same as GET. This could be due to increasing concurrent handling of requests on its Server.

The peak happens at 100 - 125 requests/s. For higher performance, the PUT sending frequencies should be

set lower than 100 request/s. Figure 5.6 shows the overall variance is better than the GET request, which

is favourable because PUT is the mainly responsible in this prototype for updating game data.

Figure 5.7 shows the throughput is most stable at 14 - 50 requests/s, and decreases at 167 - 500 requests/s.

The following figures show the result from measuring response time and throughput when the payload size

36

Figure 5.5: Average Response Time for PUT Requests under Various Frequencies

Figure 5.6: Average Response Time for PUT Requests under Various Frequencies

37

Figure 5.7: Average Throughput for PUT Requests under Various Frequencies

Figure 5.8: Average GET Response Time for Various Payload Size

38

Figure 5.9: Response Time Variance for GET Requests for Various Payload Size

Figure 5.10: Average GET Throughput for Various Payload Size

39

changed from 16, 32, 64, 128, 512, to 1024 bytes (the upper limit for the payload size for CoAP messages).

Evaluation for each payload size setting is repeated 2000 times.

The response time for GET requests in Figure 5.8 remains in the range of 5.91 ms to 8.4 ms with a rise

at 512 bytes. Because the variance is not evident, the rise could be caused by network delay or OS activities.

In a scenario where GET is used frequently, according to this result, it is better to avoid 16 and 512 bytes.

In Figure 5.9, the obvious rise in response time happens at 16 and 32 bytes, which could be because of the

Server warming up. In Figure 5.10, the slope from 16 to 256 bytes is roughly 1 whereas from 512 to 1204,

the slope nearly triples.

Figure 5.11: Average PUT Response Time for Various Payload Size

For the PUT request, in Figure 5.11, the response times peaks at 1024 bytes, and although the response

time dips at 256 bytes, there is a general trend of response time increases as the payload sizes doubles. So, for

better performance, payload sizes should be set to smaller values. Figure 5.12 the fluctuation was minimal

and the payload size change does not affect response time in a obvious manner. Figure 5.13 shows the

throughput nearly doubles as the payload size does.

In Figure 5.14, 5.15, and 5.16 show the result from the first part of the second evaluation, which is

measuring response time and throughput resource subscription. Evaluation for each payload is repeated 1000

times. It is clear the response time peaks at 128 and 512 bytes. For this specific application, subscription

requests are only sent a few times in the beginning, but in the scenario where there are multiple observers

or subscription requests, these two payload sizes should be avoided. The variance graph 5.15 is rather

uneventful, but there is an increase at 1000 ms, which may be a characteristic caused by a combination of

network transfer and server configuration.

For evaluation of the round trip time of Notification, the minimal sending interval for notification is set to

50 ms. Because the CoAP.NET library implemented the basic congestion control mechanic defined in RFC

40

Figure 5.12: Response Time Variance for PUT Requests for Various Payload Size

Figure 5.13: Average PUT Throughput for Various Payload Size

41

Figure 5.14: Average Response Time for Subscription Requests

Figure 5.15: Response Time Variance for Subscription Requests

42

Figure 5.16: Average Throughput for Subscription Requests

Figure 5.17: Average Round Trip Time for Notification

43

Figure 5.18: Round Trip Time Variance for Notification

7252 [35], where in order not to cause any congestion, a clients must strictly limit the number of simultaneous

outstanding interactions. An outstanding interaction is either a CON for which an ACK has not yet been

received, but is still expected or a request for which neither a response nor an Acknowledgment message has

yet to be received. The default number set in the CoAP.NET library for outstanding interactions is 1. In this

evaluation setting, in order for the Model component to receive Acknowledgements from the View component

steadily, the sending frequency cannot go any higher, that is the minimal sending interval for notification is

50 ms. As is shown in Figure 5.17, the round trip time is in the range of 0.32 ms to 6.60 ms, and peaked

around 110 ms sending intervals. However the overall value is quite small. For this application which depends

heavily on observation in order to function, it is better to avoid of this resource updating interval.

As shown in Figure 5.18, sending notifications does not require handling on the Server side, but the

round trip time of 1000 ms still stands out. It could indicate that network transfer has ignificant impact on

this characteristic.

In order to evaluate scalability, an additional Controller is added to the current network. This Controller

is set to send a GET and then PUT request to /player_move resource on the Model component, so the

respective Controller behaviour is the same as in the first evaluation with the same request sending frequency.

In the Figure 5.19, the yellow line is from the GET response time in figure 5.2. In general, it shows the

lowest response time for every tested request sending frequency except 13 requests/s. The blue line is drawn

from the data gathered through an iPhone 6s, and the red line from an iPad Air. It appears at certain points

that the two devices were in a race condition (at frequency 20 - 50 requests/s), whereas at other times they

44

Figure 5.19: GET Response Time Comparison between Single and Two Controllers

Figure 5.20: PUT Response Time Comparison between Single and Two Controllers

45

have similar trends (100 - 500 requests/s). Overall the maximum response time for the double-Controller

case is significantly more than the single Controller scenario, and the minimum cases are also much lower.

The differences are quite obvious, but again, this if for GET, so it has minimal impact on performance when

running this prototype.

In the Figure 5.20, the response times have similar trend lines with the double-Controller case but they

fluctuates more and their maximum response time can be 10 times as much as the Single Controller case.

The 80.57 ms response time at 500 requests/s might be caused by a request timed out.

An additional point to note is that the Frame Per Second (FPS) rate is measured during notification

evaluation, andit does not drop from 30 under any frequency settings, which is the default rendering loop for

iOS applications by Unity.

5.4 Summary

In this chapter, the effectiveness of the implemented prototype is evaluated mainly under two settings:

various request sending frequencies and different payload sizes. The aspects evaluated are response time and

throughput for two main request methods: GET and PUT, as well as for a subscription request, and the

round trip time for notification. In the final stage, an extra Controller was added to find out more about the

scalability of the architecture.

For different request sending frequencies, lower frequencies generated a stabler response time for both

GET and PUT, although the worst case scenario is better for PUT. As for payloads, subscriptions and

notifications both have certain settings that need to be avoided, other results fall in a rather small range.

As for the double-Controller case, PUT is better than GET, and lower frequencies are better than higher

frequencies. In generala 100 ms is the limit for a user to feel that the system is reacting instantaneously, and

1 second is the limit for the user to notice the delay, but the flow of thought of a user is kept uninterrupted.

Most of the performance falls is instantaneous with a few exceptions.

46

Chapter 6

Conclusion

Nowadays, individuals on average own enough devices to form a personal device cloud. In order to utilize

fully the idle resources, several questions can be asked:

• How can components of an application be spread over multiple mobile devices?

• How can distributed components coordinate with each other?

• How effective are the distributed components working as one application?

To answer these questions, an architecture was proposed. The main concept of the architecture is to

encapsulate different business logics of a game or visualization application as modules, distribute them over

several mobile devices, and expose their functions as micro-services for each other to consume, while they

communicate using the low-overhead protocol. This architecture is flexible, in that the number of participat-

ing mobile devices and players can vary, and by modifying the number and function of distributed services,

the proposed architecture can cater to a different number of devices and both single- or multi-player scenarios.

Furthermore, the pattern of a distributed MVC is adopted for implementing the distributed modules, the

View, Controller and Model. The View is responsible for rendering the game screen, the Controller is for

gathering user input and feed requests to the Model, and finally, the Model, is for storing and syncing game

data between the Controller and the View.

In order to demonstrate such architecture, a prototype with one level that adopted the game mechanics

of a simple Sokoban game was implemented. The components communicate with each other using CoAP

protocol over a wireless network. To evaluate the effectiveness of the proposed architecture, evaluations of

three categories were conducted. The main factors evaluated include a response time and throughput for

key request methods and subscription requests under various request sending frequencies and payload sizes,

round trip time for notification messages, and finally, scaling up with extra Controller components.

To conclude, the main contribution of the research is a proposed design to break up game applications

and distribute them over a device cloud, and an evaluation of the usability of the design in a small, modest

context with little overhead.

47

Chapter 7

Future Work

For future work, the following are some features that could be added to the prototype implemented in

this research in order to advance it as a standalone application.

1. Additional Levels: The current prototype only contains one level. Adding more levels will add to its

completeness as a game.

2. Save and Load: Functions same as optional services mentioned in the Architecture Chapter. Can then

store game data locally or upload to a separate server.

3. Loading Resources at Runtime: In some situations, it is useful to make an asset available to a project

without loading it in as part of a scene. For example, there may be a character or other object that can

appear in any scene of the game but which will be used infrequently, for example, a high score alert.

These assets may be stored in a separate local file or URL to reduce initial download time or to allow

for interchangeable game content.

4. Network Infrastructure: For now the prototype is running on a wireless network. To branch out and

incorporate wireless personal area network technologies, like BLE and Wi-Fi Direct, would add to its

flexibility when Wi-Fi is not available.

As for the architecture proposed, more types of applications can be built to explore its possibilities.

• Education Application: An application showcasing the combination of the proposed architecture and

education (e.g., as shown in Figure 1.5) preferably with collaborative features could be developed.

48

References

[1] Clark C Abt. Serious games. University Press of America, 1987.

[2] Autodesk. 3ds max. https://www.autodesk.ca/en/products/3ds-max/overview.

[3] Autodesk. Maya. https://www.autodesk.ca/en/products/maya.

[4] Chase Buckle. Digital consumers own 3.64 connected devices. https://blog.globalwebindex.net/chart-
of-the-day/digital-consumers-own-3-64-connected-devices/.

[5] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano. Device-to-device communications with wi-fi direct:
overview and experimentation. IEEE Wireless Communications, 20(3):96–104, June 2013.

[6] N. Chen, X. Li, and R. Deters. Collaboration amp; mobile cloud-computing: Using coap to enable
resource-sharing between clouds of mobile devices. In 2015 IEEE Conference on Collaboration and
Internet Computing (CIC), pages 119–124, Oct 2015.

[7] Jason H. Christensen. Using restful web-services and cloud computing to create next generation mobile
applications. In Proceedings of the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 627–634, New York, NY, USA,
2009. ACM.

[8] J. Craighead. Distributed, game-based, intelligent tutoring systems - the next step in computer based
training? In 2008 International Symposium on Collaborative Technologies and Systems, pages 247–256,
May 2008.

[9] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud computing: archi-
tecture, applications, and approaches. Wireless Communications and Mobile Computing, 13(18):1587–
1611, 2013.

[10] Roy Thomas Fielding. Architectural styles and the design of network-based software architectures. PhD
thesis, University of California, Irvine, 2000.

[11] Blender Foundation. Blender. https://www.blender.org/.

[12] Martin Fowler. GUI architectures. MVP.[Online] http://martinfowler. com/eaaDev/uiArchs. html, 2006.

[13] Martin Fowler and James Lewis. Microservices. Viittattu, 28:2015, 2014.

[14] Karl-Ingo Friese, Marc Herrlich, and Franz-ErichWolter. Using game engines for visualization in scientific
applications. In New Frontiers for Entertainment Computing, pages 11–22. Springer, 2008.

[15] MAXON Computer GmbH. Cinema 4d. https://www.maxon.net/en/products/cinema-4d/overview/.

[16] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of bluetooth low energy:
An emerging low-power wireless technology. Sensors, 12(9):11734–11753, 2012.

[17] Google. The go programming language. https://golang.org/.

[18] Khronos Group. OpenGL ES - The Standard for Embedded Accelerated 3D Graphics.
https://www.khronos.org/opengles/.

49

[19] K. Hartke. Rfc 7641 observing resources in the constrained application protocol (coap).
https://tools.ietf.org/html/rfc7641, September 2015.

[20] Sang Ho. Na, jun-young park, eui–nam huh, personal cloud computing security framework. In Proc.
Service Computing Conference (APSSC) IEEE publication, pages 671–675, 2010.

[21] Jantina Huizenga, Wilfried Admiraal, Sanne Akkerman, and Geert Ten Dam. Learning History by
Playing a Mobile City Game. In Young researchers furthering development of TEL research in Central
and Eastern Europe, Sofia, Bulgaria, 2007.

[22] Tom Huston. What is microservices architecture? https://smartbear.com/learn/api-design/what-are-
microservices/.

[23] Aswin Indraprastha and Michihiko Shinozaki. The investigation on using unity3d game engine in urban
design study. Journal of ICT Research and Applications, 3(1):1–18, 2009.

[24] D. Maggiorini, L. A. Ripamonti, E. Zanon, A. Bujari, and C. E. Palazzi. Smash: A distributed game
engine architecture. In 2016 IEEE Symposium on Computers and Communication (ISCC), pages 196–
201, June 2016.

[25] Matthias Kovatsch, Dominique Im Obersteg, and Daniel Pauli, ETH Zurich. Californium.
https://www.eclipse.org/californium/.

[26] J. Moloney and L. Harvey. Visualization and ’auralization’ of architectural design in a game engine
based collaborative virtual environment. In Proceedings. Eighth International Conference on Information
Visualisation, 2004. IV 2004., pages 827–832, July 2004.

[27] Hirohiko Nakamiya. Monster sokoban. http://miya.s16.xrea.com/selection/bannin/.

[28] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.

[29] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. "big"’ web services:
Making the right architectural decision. In Proceedings of the 17th International Conference on World
Wide Web, WWW ’08, pages 805–814, New York, NY, USA, 2008. ACM.

[30] Pluralsight. Unity, source 2, unreal engine 4, or cryengine - which game engine should i choose?
http://blog.digitaltutors.com/unity-udk-cryengine-game-engine-choose/, March 2015.

[31] Alex Rodriguez. Restful web services: The basics. IBM developerWorks, 2008.

[32] Kristopher Sandoval. Writing microservices in go. http://nordicapis.com/writing-microservices-in-go/.

[33] Tidalwave s.a.s. Beyond mvc: better ui design with pac, presentation model and dci.
http://tidalwave.it/fabrizio/blog/beyond-mvc-pac-presentation-model-dci/, 2012.

[34] Jim Schaad. CoAP.NET - A CoAP framework in C#. https://github.com/Com-AugustCellars/CoAP-
CSharp.

[35] Zach Shelby, Klaus Hartke, and Carsten Bormann. Rfc 7252 - the constrained application protocol
(coap). https://tools.ietf.org/html/rfc7252, 2014.

[36] Bluetooth Special Interest Group (SIG). Bluetooth smart technology: Powering the internet of things.
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy.

[37] IEEE 802.11-2007 Standard. Wireless lan medium access control (mac) and physical layer (phy) speci-
fications, 2007.

[38] A. Syromiatnikov and D. Weyns. A journey through the land of model-view-* design patterns. In
Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages 21–30, April 2014.

[39] CACE Technologies. Wireshark. https://www.wireshark.org/.

50

[40] Unity Technologies. Coroutines in unity. https://docs.unity3d.com/Manual/Coroutines.html.

[41] Unity Technologies. Introduction to components. https://docs.unity3d.com/Manual/Components.html.

[42] Unity Technologies. Unity. http://unity3d.com.

[43] Unity Technologies. Unity as the leading global game industry software. https://unity3d.com/public-
relations/.

[44] Jeff Ward. What is a game engine? http://www.gamecareerguide.com/features/529/what-is-a-
game.php.

[45] Burkhard CWünsche, Blazej Kot, Andrew Gits, Robert Amor, and John Hosking. A framework for game
engine based visualisations. In in Proceedings of Image and Vision Computing New Zealand 2005, Nov.
2005.[Online]. Available: http://www. cs. auckland. ac. nz/ burkhard/Publications/IVCNZ05 Wuen-
scheKotEtAl. pdf. Citeseer, 2005.

[46] Xamarin. Xamarin. https://www.xamarin.com/.

[47] Xamarin and the Mono community. Monodevelop. http://www.monodevelop.com/.

[48] Hong Zhou, Huamin Qu, Yingcai Wu, and Ming-Yuen Chan. Volume visualization on mobile devices.
In 14th Pacific conference on computer graphics and applications, pages 76–84. Citeseer, 2006.

[49] Michael Zyda. From visual simulation to virtual reality to games. Computer, 38(9):25–32, 2005.

51

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement
	Related Work
	Game Engines
	Introduction
	Unity 3d
	Serious Games

	Design Patterns
	MVC
	MVVM and MVP
	Micro-Service Architecture

	RESTful Web Services
	HTTP and CoAP
	Network Technology
	Bluetooth Low Energy
	Wi-Fi Direct

	Summary

	Architecture
	Implementation
	Controller
	Model
	View
	Optional Services
	Save Game Progress
	Game Data Storage

	Evaluation
	Evaluation Setup
	Data Collection
	Result Analysis
	Summary

	Conclusion
	Future Work
	References

