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Abstract 
Metabolic networks are the collections of all cellular activities taking place in a living 

cell and all the relationships among biological elements of the cell including genes, 
proteins, enzymes, metabolites, and reactions. They provide a better understanding of 
cellular mechanisms and phenotypic characteristics of the studied organism. In order to 
reconstruct a metabolic network, interactions among genes and their molecular attributes 
along with their functions must be known. Using this information, proteins are distributed 
among pathways as sub-networks of a greater metabolic network. Proteins which carry 
out various steps of a biological process operate in same pathway. 

The metabolic network of Caenorhabditis elegans was reconstructed based on current 
genomic information obtained from the KEGG database, and commonly found in 
SWISS-PROT and WormBase. Assuming proteins operating in a pathway are interacting 
proteins, currently available protein-protein interaction map of the studied organism was 
assembled. This map contains all known protein-protein interactions collected from 
various sources up to the time. Topology of the reconstructed network was briefly studied 
and the role of key enzymes in the interconnectivity of the network was analysed. The 
analysis showed that the shortest metabolic paths represent the most probable routes 
taken by the organism where endogenous sources of nutrient are available to the 
organism. Nonetheless, there are alternate paths to allow the organism to survive under 
extraneous variations.  

Signature content information of proteins was utilized to reveal protein interactions 
upon a notion that when two proteins share signature(s) in their primary structures, the 
two proteins are more likely to interact. The signature content of proteins was used to 
measure the extent of similarity between pairs of proteins based on binary similarity 
score. Pairs of proteins with a binary similarity score greater than a threshold 
corresponding to confidence level 95% were predicted as interacting proteins. The 
reliability of predicted pairs was statistically analyzed. The sensitivity and specificity 
analysis showed that the proposed approach outperformed maximum likelihood 
estimation (MLE) approach with a 22% increase in area under curve of receiving 
operator characteristic (ROC) when they were applied to the same datasets. When 
proteins containing one and two known signatures were removed from the protein 
dataset, the area under curve (AUC) increased from 0.549 to 0.584 and 0.655, 
respectively.  Increase in the AUC indicates that proteins with one or two known 
signatures do not provide sufficient information to predict robust protein-protein 
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interactions. Moreover, it demonstrates that when proteins with more known signatures 
are used in signature profiling methods the overlap with experimental findings will 
increase resulting in higher true positive rate and eventually greater AUC.  

Despite the accuracy of protein-protein interaction methods proposed here and 
elsewhere, they often predict true positive interactions along with numerous false positive 
interactions. A global algorithm was also proposed to reduce the number of false positive 
predicted protein interacting pairs. This algorithm relies on gene ontology (GO) 
annotations of proteins involved in predicted interactions. A dataset of experimentally 
confirmed protein pair interactions and their GO annotations was used as a training set to 
train keywords which were able to recover both their source interactions (training set) 
and predicted interactions in other datasets (test sets). These keywords along with the 
cellular component annotation of proteins were employed to set a pair of rules that were 
to be satisfied by any predicted pair of interacting proteins. When this algorithm was 
applied to four predicted datasets obtained using phylogenetic profiles, gene expression 
patterns, chance co-occurrence distribution coefficient, and maximum likelihood 
estimation for S. cerevisiae and C. elegans, the improvement in true positive fractions of 
the datasets was observed in a magnitude of 2-fold to 10-fold depending on the 
computational method used to create the dataset and the available information on the 
organism of interest.  

The predicted protein-protein interactions were incorporated into the prior 
reconstructed metabolic network of C. elegans, resulting in 1024 new interactions among 
94 metabolic pathways. In each of 1024 new interactions one unknown protein was 
interacting with a known partner found in the reconstructed metabolic network. Unknown 
proteins were characterized based on the involvement of their known partners. Based on 
the binary similarity scores, the function of an uncharacterized protein in an interacting 
pair was defined according to its known counterpart whose function was already 
specified. With the incorporation of new predicted interactions to the metabolic network, 
an expanded version of that network was resulted with 27% increase in the number of 
known proteins involved in metabolism. Connectivity of proteins in protein-protein 
interaction map changed from 42 to 34 due to the increase in the number of characterized 
proteins in the network.        
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1  

LITERATURE REVIEW AND BACKGROUND 
 

Traditionally, it was believed that proteins were isolated entities, floating in the 

cytosol and, for the most part, acting independently of surrounding proteins. Proteins 

were thought to move freely, and reactions occurred as a result of proteins A and B 

randomly colliding with one another. Today we know this picture is far too simplistic to 

describe the complex processes that all happen in living cells. Instead, the majority of 

cellular phenomena are carried out by protein complexes, or aggregates of ten or more 

proteins. These protein-protein interactions are critical to all cellular processes, and 

understanding them is key to understanding any biological system.  

The growing number of fully sequenced genomes and high-throughput experimental 

data sets has increased our knowledge on cellular components on a genome scale and the 

capability of far more meaningful interpretation of metabolic responses (Fell, 2001). 

Information about the functions of cellular components (Gerlt and Babbitt, 2000), 

conserved interactions among proteins in different species (Sharan et al., 2005), their 

genetic localizations, and mutations over evolution can be represented in the different 

levels of genome annotation (Reed et al., 2006). One-dimensional genome annotation 

involves identification of genes in genomes and the assignment of predicted or known 

functions to the products of those genes. Advances in experimental and computational 

techniques have resulted in complete sequencing of hundreds of organisms (Janssen et 

al., 2003) and identifying many new genes and proteins. Bioinformatics tools that are 

used to derive one-dimensional annotations including protein functions are now publicly 

available (Pellegrini, 2001). We will review these methods in sections 1.1 and 1.2.  

Two-dimensional annotation specifies the interaction among cellular components. 

Physical and functional interactions between cellular components lead to a network 

reconstruction that effectively represents two-dimensional annotation information. 

Metabolic network reconstruction is one aspect of two-dimensional annotation, which is 

basically a structured database in which one-dimensional annotation is placed into a 

biological context. Thus, two-dimensional annotation builds on one-dimensional 
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annotation by considering cellular components and their interactions. It should be noted 

that, in some cases two-dimensional annotation can lead to a one-dimensional genome re-

annotation. Metabolic network reconstruction will be discussed in section 1.3.  

Protein-protein interaction maps (interactomes) and consequently protein function 

assignments are two basic sets of information that can be incorporated into network 

reconstruction process (Hatzimanikatis et al., 2004). Protein-protein interaction is the 

main target of proteomics (Archakov et al., 2003). There are bioinformatics tools by 

which proteins are identified through their interactions as well (Huang et al., 2005). Even 

computational techniques are available to design interactions between proteins 

(Kortemme and Baker, 2004). Organisms’ interactomes can now be characterized by 

computational approaches (Colizza et al., 2005; Needham et al., 2006). These 

interactomes contain conserved and essential protein complexes in which proteins 

interact permanently or transiently to perform a biological process (Butland et al., 2005). 

This information results from integrating genomic data under certain circumstances (Lu 

et al., 2005) or comparison of protein interaction maps (Liang et al., 2006). However, 

overlap among interactomes is not satisfactory. As an example, in a comparison among 

the interactomes of four model organisms including yeast, worm, fly, and human, of over 

70000 binary interactions only 42 were found common to all four organisms (Gandhi et 

al., 2006). 

Proteins are assigned function based on their interactions. When an interaction 

between two proteins is predicted computationally or confirmed experimentally this is 

evidence that the two proteins may have a functional relationship. Similarly, when two 

proteins have functional links this is a strong indication that the two proteins may interact 

with each other (Vazquez et al., 2003). Organisms’ functional maps are assembled based 

upon their interactomes (Grant and Wilkinson, 2003). Recently, a faster and more 

accurate algorithm has been proposed for protein function assignment using protein 

interaction information (Sun et al., 2006). Many computational approaches have been 

proposed to predict protein-protein interactions at the one-dimensional annotation level. 

Additionally, experimental high-throughput technologies have also been discovered to 

produce tremendous amount of protein-protein interaction data. Even with all these 

methods a large fraction of the genes in the genomes are still uncharacterized. In the 
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following sections we will review currently available experimental and computational 

methods for prediction of protein-protein interactions.  

1.1 Experimental protein-protein interaction techniques 
Currently, there are many experimental techniques available to generate protein-

protein interaction information. Among all these techniques, yeast two-hybrid is one of 

the most common high-throughput methods able to generate a large amount of data in 

one set of experiment. Other techniques such as co-immunoprecipitation, and affinity 

chromatography detect protein-protein interactions one-at-a-time. Yeast two-hybrid 

technique has also been used to study cell death mechanism in which a few proteins are 

involved (Wallach et al., 1998).   

The principle behind yeast two-hybrid is the activation of a downstream reporter gene 

by the binding of a transcription factor to an upstream activating sequence (Fields and 

Song, 1989). As seen in Figure 1.1 it uses two protein domains that have specific 

functions: a DNA-binding domain (BD) that is capable of binding to DNA, and an 

activation domain (AD), that is capable of activating transcription of the DNA. Both of 

these domains are required for transcription, whereby DNA is copied in the form of 

mRNA and then translated into protein. For the transcription of DNA, it requires a 

protein called transcriptional activator (TA) that possesses both domains. This protein 

binds to the promoter, a region located upstream from the gene (coding region), that 

serves as the binding site for the transcriptional protein. Once the TA has bound to the 

promoter, it is able to activate transcription via its activation domain and the transcription 

of reporter gene occurs. If either of these domains is absent, the transcription will fail.  

 

 

 

 

 

Figure 1.1. Transcription proteins in yeast two hybrid technique (Taken from the science creative 

quarterly at www.scq.ubc.ca) 
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The key principle in yeast two-hybrid is that the BD and the AD do not necessarily 

have to be on the same proteins. Basically, the two proteins whose interaction is going to 

be investigated are genetically engineered and their plasmids are incorporated into a 

strain of yeast in which the biosynthesis of certain nutrients is lacking. One plasmid 

contains the binding domain fragment (bait protein) and activating domain is contained in 

the other plasmid (prey protein). The bait protein is typically a known protein that is used 

to identify its new partners.   

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1.2. Interaction of bait and prey proteins. If bait and prey proteins interact, transcription of 

receptor happens and the yeast strain grows on a media that is lacking an essential nutrient. 

(Taken from the science creative quarterly at www.scq.ubc.ca)  

If the bait and prey interact (i.e. bind) then the AD and BD of the transcription factor 

are indirectly connected and the transcription of the reporter gene takes place. As a result, 

the plasmids allow the mutant yeast to grow on the medium lacking nutrients because the 

transcription of reporter gene is followed by encoding enzymes that allow the synthesis 

of the nutrients that mutant strain is unable to produce. A common transcription factor for 

yeast two-hybrid screening is GAL4.  

Currently, more than 95% of experimental data on protein interactions are obtained 

by the yeast two-hybrid technique. In C. elegans, 7081 experimental protein-protein 

interactions were reported by Li et al. (2004), approximately 6800 of them obtained 

through yeast two-hybrid assays. Schwikowski et al. (2000) identified 2358 protein-

protein interactions in Saccharomyces cerevisiae using yeast two-hybrid technique. This 

technique has also been used to detect 10021 interactions in Drosophilo melanogaster 
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(Uetz and Pankratz, 2004). The human interactome is a developing resource that yeast 

two-hybrid plays an important role in its completion (Ramani et al., 2005). In a recent 

study, bait and prey proteins in E. coli K12 were purified by electrophoresis and 2667 

interactions were identified by data explorer and/or proteomics solution (Arifuzzaman et 

al., 2006). In silico two-hybrid has been also used to detect physically interacting proteins 

(Pazos and Valencia, 2002).   

1.2 Computational protein-protein interaction approaches 
Many computational approaches have been proposed to predict protein-protein 

interactions (Franzot and Carugo, 2003). These methods utilize different information to 

predict interactions ranging from genomic and sequence information related to primary 

structures, to domains, motifs, and other functional units related to secondary structures 

of proteins. Computational approaches to predict protein-protein interactions have been 

reviewed from different prospective (Yu and Fotouhi, 2006; for example). Here we 

categorize these methods into six groups based on the type of the information upon which 

interactions are predicted.  

1.2.1 Genomic information in protein-protein interaction prediction 
With the availability of complete genome sequences, genomic information became 

the basis for genomics-based prediction techniques. Early methodologies rely on 

homology among primary structure of proteins that was believed was able to reveal 

general function of some proteins in different organisms (Bork et al., 1998). For example, 

from sequence homology, 30% of yeast genes had known human homologs, and 40% 

were similar enough to other genes in other organisms (Brent and Finely, 1997). 

Homology is defined as similarity in DNA or protein sequences between individuals of 

the same species or among different species. If the similarity occurs among those proteins 

in different organisms, they are orthologs and if it occurs among proteins from the same 

organism they are paralogs (Sonnhammer and Koonin, 2002). Homology has been used 

to classify protein structures (Dietmann and Holm, 2001) and some proteins have been 

identified based on their homologous partners (Bolten et al., 2001). Orthologous genes 

have been clustered and maintained in databases such as COG (Clustering Orthologous 

Groups) and these databases have been used to annotate hypothetical proteins across 
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more than 200 prokaryotes (Doerks et al., 2004). Also some programs are available to 

predict protein-protein interactions based on orthologous proteins (Huang et al., 2004). 

Species-specific proteins have been identified through detecting homology in different 

organisms (Huynen et al., 1998). Those proteins which have no ortholog among a set of 

genomes may represent specific features of an organism. Comparative genomics is 

another way to detect specific proteins across organisms. This type homology-based 

genomics analysis has been used to identify eukaryotic genes responsible for specific 

protein interactions (Rubin et al., 2000).  

Homology-based computational techniques are based merely on primary structure 

similarity which creates some random relationships among proteins. On the other hand, 

part of proteins encoded by an organism can not be functionally assigned by pure 

homology searching methods. Hence, it is believed that combination of homology with 

evolution may improve prediction of relationships among proteins (Eisen, 1998). 

Phylogenetic trees which show the ancestral history of genes and their products are 

appropriate indicators of interactions among proteins (Pazos and Valencia, 2001). Thus 

phylogenetic analysis was introduced to genomics studies to improve gene function and 

protein interaction predictions (Eisen and Wu, 2002). The relationship between evolution 

and gene function has recently been emphasized by incorporating this information into 

protein-protein networks and characterizing more unknown proteins (Koonin and Wolf, 

2006). Co-evolution of gene and proteins has also been a source of information to predict 

interacting proteins even though their phylogenetic relationship is excluded from the 

assessment (Sato et al., 2005).   

Non homology-based methods such as conventional phylogenetic profiles (Pellegrini 

et al., 1999), protein fusion (Marcotte et al., 1999), gene neighbourhood (Dandekar et al., 

1998), and transgenic distance (Strong et al., 2003) address that part of the proteomes 

which can not be detected by homology-based techniques. These methods link a pair of 

non-homologous proteins based on fusion or speciation events that happened over 

evolution and eventually assign proteins with function (Marcotte, 2000). Although these 

computational techniques use homology searching tools to detect the presence of a whole 

or partial sequence in other organisms, the final linkages are not based on similarity 

between a pair of sequences. As most of these methods use the BLAST program as a tool 
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to search homologous sequences, this program will be described briefly and then the 

underlying hypothesis of each method will be discussed. 

The BLAST program (Altschul et al., 1990) is used to compare a new sequence with 

those contained in nucleotide and protein databases by aligning the novel sequence with 

previously characterized genes. The emphasis of this tool is to find regions of sequence 

similarity which will provide functional and evolutionary clues about the structure and 

function of the novel sequence. Regions of similarity detected via alignment tool can be 

either local or global. Global alignment is based on the whole sequence of the query and 

is not a suitable way to find similarity. Then local alignment was proposed which is far 

more effective than global alignment. This type of alignment is based on Smith-

Waterman algorithm in which the program scores the best alignment of any substring of 

one string with any substring of the other string. Smith-Waterman algorithm implements 

a technique called dynamic programming which takes alignment of any length, at any 

location, in any sequence, and determines whether an optimal alignment can be found. 

Based on these calculations scores are assigned to each character-to-character comparison 

so that positive for exact matches and negative for insertions or deletions are given. At 

the end scores of all comparisons of a sequence are added together and the highest 

scoring alignment is reported. The running time of Smith-Waterman algorithm makes it 

impractical for use. Therefore, BLAST carries out a significant amount of pre-processing 

on the query and database. In the pre-processing phase most letters are eliminated from 

similarity searching. Then BLAST identifies high scoring pairs of three-letter substrings.     

In BLAST an expect value (E-value) is assigned to a match between two sequences as 

a measure of similarity as follows: 

                                             SenmKE λ−= ...                                                        (1.1) 

where, m and n are lengths of two sequences, K and λ are statistical parameters, and S is 

the similarity score. These parameters are related together as follows: 

                                                    
2ln

ln' KS
S

−
=
λ

                                                         (1.2) 

where S’ is a bit score, normalized similarity score. Then E-value corresponding to a 

given bit score is: 

                                                    
'

2.. SnmE −=                                                          (1.3) 
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E-value is a parameter that describes the number of hits one can expect to see by 

chance when searching a database of the same size. This means that the lower the E-

value, or the close it to “0”, the more “significant” the match is.   

In phylogenetic profiling using the whole genome sequence of an organism, patterns 

of presence or absence of all proteins of the genome in a set of reference genomes are 

constructed. When two proteins have similar patterns a link between the two proteins is 

established as shown in Figure 1.3. The presence or absence of a protein in a reference 

genome is jugged by the similarity of the query sequence with sequences within the 

reference genome. Similarity is measured based on E-value. When E-value is greater than 

a threshold two proteins are considered similar. The choice of threshold, and the number 

of reference genomes depend on the size of query database and the species and will be 

different from case to case. Nevertheless, some suggestions such as 145 genomes and the 

threshold of 10-4 as general guidelines are provided (Shi et al., 2005). Recently, the 

phylogenetic profiles method was used to identify genes involved in orphan metabolic 

activities (Chen and Vitkup, 2006). These genes could not be detected by homology-

based techniques.  

Protein fusion method is based on the idea that a pair of distinct proteins in one 

organism may be expressed as a fused protein in another organism as illustrated in Figure 

1.4. Identification of fused proteins is based on local alignment of a protein against 

another protein or a protein against a domain. When similarity between protein A and 

domain 1 of protein C and also between protein B and domain 2 of protein C is 

significant (E-value higher than a threshold), proteins A and B are fused into protein C. 

Thus, a relationship between the two proteins A and B is predicted. Searching fusion 

events across organisms result in huge number of protein-protein interactions in an 

organism. However, it is clear that not all fusion events are equally valuable for inferring 

interactions. For this matter, a statistical measure was developed to score all fusion events 

and specify the significance of a link (Verjovsky Marcotte and Marcotte, 2002). Briefly a 

benchmark was developed for testing interaction predictions, and comparison of the 

significance score of the link against the benchmark shows that the significance score 

correlates well with the degree of relatedness of the linked proteins. Another approach to 

detect protein fusion is applying mathematical relations to protein sequence databases to  
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Figure 1.3. The illustration of phylogenetic profiles method. The presence or absence of each 

protein in each genome is demonstrated by a profile comprising ‘0’ and ‘1’ representing absence 

and presence, respectively. 

 
 

Figure 1.4. The illustration of protein fusion method. Two separate proteins in organism 2 

indicated as a fused protein in organism 1. Protein A and protein B in organism 2 are found as 

two domains of a protein in organism 1.This fusion event is an indication that proteins A and B 

may have a link.  

Ai Bi

A

B

Fusion in organism 1 

Protein A in organism 2 

Protein B in organism 2 

P1   P2    P4     P5      P7 P1    P2    P3     P4     P5    P6     P7  

P1    P3    P5       P6 P2    P3     P5     P6       P7 

Genome 1 Genome 2

Genome 3 Genome 4 

Genome 2        Genome 1      Genome 4          Genome 3 
 
       P1                   1                      0                         1 
       P2                   1                      1                         0 
       P3                   0                      1                         1 
       P4                   1                      0                         0 
       P5                   1                      1                         1 
       P6                   0                      1                         1 
       P7                   1                      1                         0 

P2 & P7 are functionally linked 
P3 & P6 are functionally linked 



 10

 

find fusion events (Truong and Ikora, 2003). With the availability of many protein and 

domain sequence databases, this mathematical approach seems promising.    

The gene neighbour method infers a functional link between two proteins if they are 

neighbours on one chromosome in organism X and their orthologs in organism Y are also 

neighbours to each other. The assumption is that protein-protein interactions impose 

evolutionary constraints to keep the genes together. This functional association is 

independent of relative gene orientation. The main limitation of the method is that it is 

suitable only for bacterial genomes since the conservation of the gene neighbouring is 

kept well in the bacteria (Eisenberg et al., 2000). This analysis also results in a number of 

false predictions because the constraint of proximity is not strong and some distant 

interactions are not identifiable.  

The transgenic distance method is based on the notion that prokaryotic operon 

organization enables the highly controlled co-expression of multiple genes, by 

transcribing them together on a single transcript. Thus, the encoded proteins often have 

functional relationships. It is shown that the intergenic spacing between genes in a 

common operon is shorter than the intergenic spacing of genes encoded by separate 

transcription units. Therefore, imposing a transgenic distance threshold, when the 

distance between two genes is less than threshold the two genes are considered on the 

same operon. In contrast to previously mentioned methods, this method focuses on the 

analysis of a single genome. Examination of different prokaryotic operons detects that the 

genetic distance above 200 bp is less likely to result in a reliable interaction (Strong et al., 

2003). 

Combination of genomics-based methods to predict protein-protein interactions may 

strengthen the robustness of predictions. It has been shown that when two or more 

methods agree on a link the probability of being related is higher, however, the level of 

correlation between different methods may vary (Hoffman and Valencia, 2003).   

1.2.2 Statistical measures and protein-protein interaction prediction 
Genes with identical patterns of occurrence across organisms are more likely to 

interact; however, the requirement that the profiles be identical restricts the number of 

links that can be established by such phylogenetic profiling. Thus, there are a group of 
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methods that rely on scoring phylogenetic patterns and match them based on those scores 

rather than identical profiles. Various scoring functions such as mutual information (Date 

and Marcotte, 2003), Jaccard coefficient (Yamada et al., 2004), and chance co-

occurrence probability distribution (Wu et al., 2003) are used to match profiles together. 

These scoring functions provide more information than the simple presence or absence of 

genes. 

As a measure of phylogenetic profile similarity, the mutual information score is 

calculated between pairs of phylogenetic profiles. Profile for each protein i is a vector 

with elements pij corresponding to each organism j in the set of reference organisms, 

where pij = -1/logEij, and Eij represents the E-value of the top-scoring sequence alignment 

between protein i and all of the proteins in organism j. The mutual information is 

calculated as follows (Huynen et al., 2000): 

                              ),()()(),( BAHBHAHBAMI −+=                                          (1.4) 

where, ∑−= )(ln)()( apapAH  and represents the entropy of the probability 

distribution p(a) of gene A occurring among the organisms in the reference database, and 

∑∑−= ),(ln),(),( bapbapBAH  represents the relative entropy of the joint probability 

distribution p(a,b) of occurrence genes A and B across the set of reference genomes. 

Once the pairs of profiles are ranked based on mutual information scores, specifying a 

threshold, corresponding proteins are linked accordingly when their mutual information 

score is higher than the threshold.  

Another measure of similarity between phylogenetic profiles is Jaccard coefficient. 

This coefficient is calculated between two binary profiles. These profiles represent the 

presence or absence status of genes in a set of reference genomes. Jaccard coefficient is 

calculated as follows: 

                                         
||
||),(
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∪
∩

=                                                         (1.5) 

where BA∩ means the number of organism that have both genes A and B, and 

BA∪ means the number of organisms that have gene A or gene B. Jaccard coefficient of 

a pair of genes is usually used along with another property of the pair such as pathway 
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distance (Yamada et al., 2004) to conclude a relationship between genes. Nonetheless, it 

is a strong evident that two genes are suitable candidates for interaction.  

Chance co-occurrence probability distribution has been also used as a measure of 

similarity between two phylogenetic profiles. This measure is used to relax the restriction 

of identical profiles between two proteins, based on the probability that a given arbitrary 

degree of similarity between two profiles would occur by chance, with no biological 

pressure. The interaction predictions are drawn with the criterion used to reject the null 

hypothesis. The probability P(z|N,x,y) of observing by chance (i.e. no functional 

pressure) z co-occurrence of genes X and Y in a set of N genomes, given that X occurs in x 

genomes, and Y occurs in y genomes is calculated as follows: 

                                                               
W

ww
P zz=                                                         (1.6) 

where zw  is the number of ways to distribute z co-occurrence over the N genomes, zw  is 

the number of ways of distributing x-z and y-z genes over the remaining N-z genomes, 

and W is the number of ways of distributing X and Y over N genomes without restriction. 

The final equation is as follows: 
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−−
=                                    (1.7) 

Predictions are established upon lower probabilities of matching proteins by chance. A 

cut-off threshold should be specified to obtain interacting pairs.  

1.2.3 Structure-based Prediction of protein-protein interactions 
Early studies on protein interactions and functions showed that there was relationship 

between protein structure and interaction (Hegyi and Gerstein, 1999). These studies 

mostly relied on secondary structures such as domains to correlate protein interactions to 

structural properties (Elofsson and Sonnhammer, 1999). There were some models which 

considered protein structures as a network of amino acids and sub networks provide 

interfaces for protein-protein interactions (Del Sol et al., 2005). Moreover, conservation 

of some sequence patterns consolidated this hypothesis (Espadaler et al., 2005; Aytuna et 

al., 2005). Crystallography is a common technique to detect the structure of proteins; 

however, interactions between crystal packing may vary according to the effect of 
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complex formation (Zhu et al., 2006). Advances in this technique have provided the 

advantage of using protein tertiary and quaternary structures to inferring protein-protein 

interactions. These methods range from threading approach (Lu et al., 2002), docking 

methods (Smith and Sternberg, 2002), and CAPRI experiment (Janin et al., 2003) to 

protein interaction prediction based on surface patch comparison (Carugo and Franzot, 

2004) and oligomeric protein structure networks (Brinda and Vishveshwara, 2005). 

Structure-based methods are dependent to the number of known structures and existing 

structural complexes in each organism. In threading approach one attempt to align the 

sequence of the protein of interest to a library of known folds and find the closest 

matching structure (Lu et al., 2003). The goal of threading is to extend sequence-based 

approaches by recognizing the structures that can be analogous (i.e. the two proteins are 

not necessarily evolutionary related). Docking method is based on the identification of 

binding sites in a protein structure and subsequently determining of structure of protein 

complexes (Jackson and Sternberg, 1995). Although the study of protein-protein docking 

was boosted by the rapid increase in available protein structures, the main limitation of 

docking algorithms is that they can not always assess which proteins interact and which 

do not. Because it usually takes hours to predict the interacting sites for a pair of 

potentially interacting proteins. The current status of docking methods has been reviewed 

elsewhere (Mendez et al., 2003). 

The critical assessment of predicted interactions (CAPRI) experiment was designed to 

testing protein docking algorithm in blind predictions of the structure of protein-protein 

complexes. CAPRI is a protocol by which structural prediction of protein complexes that 

is offered by crystallographers can be assessed further and regions of interactions can be 

detected (Wodak and Mendez, 2004). Comparison of protein surface patches is based on 

three-dimensional structure of proteins. In this analysis the surface of each protein, 

represented by solvent accessible atoms, is divided into small patches. The geometry of 

each patch is described by the atom distributions along its principle axes. The geometry 

between two patches is estimated by comparing their atom distribution along axes. Only 

those patch combinations whose atom distribution values are higher than a threshold, 

may translate into interactions between proteins that correspond to the surface patches. 

Oligomeric protein structures and their comparison with monomeric protein structure 
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networks provide insight into new protein associations. Specifically, the interface hubs, 

hydrogen bonds, hydrophobic interactions and other interactions essential for protein 

associations are identified through this comparison. These hub interactions are the key 

information to identify protein complexes.  

1.2.4 Machine learning in prediction of protein-protein interactions 
There are computational methods to predict protein-protein interactions which 

employ machine learning techniques. These methods use different information to predict 

protein-protein interactions such as primary structures (Bock and Gough, 2001), and 

conserved network motifs (Albert and Albert, 2004). Interaction mining was also used to 

train learning systems to recognize correlated patterns within protein interaction pairs 

(Bock and Gough, 2003). Data mining can be applied to different data sources. Study set 

gene files and gene-association files associated with genes which contain description of 

gene function can be a source of mining (Castillo-Davis and Hartle, 2003). Published 

literature can be another source of mining novel interactions which are identified through 

independent studies (Marcotte et al., 2001). This type of data mining has also been used 

to search functions for interacting proteins (Chen and Xu, 2004).  Even protein-protein 

interaction maps can be explored to find hidden interactions which are evolved as a result 

of network behaviour (Hu, 2005). In all different data mining approaches mentioned 

above, a certain identifier is trained using machine learning techniques.  

Support vector machines (SVM) (Noble, 2006) have been used to construct 

supervised classifiers in order to identify interacting proteins (Huang et al., 2004). The 

effect of training dataset on the performance of SVM prediction has been studied (Lo et 

al., 2005) to enhance the efficiency of predictions. SVM is a useful tool to predict 

interactions among proteins which are involved in a specific biological process such as 

binding (Han et al., 2004). Nevertheless, it can be used on a genome scale to predict 

interactions with reasonable precision (Alashwal et al., 2006). Classifiers trained by SVM 

learning system can be constructed based on physiochemical properties of amino acids 

which are extracted from composition of amino acids in a protein (Nanni and Lumini, 

2006).  
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1.2.5 Gene expression analysis and protein-protein interactions 
With the availability of gene expression map of some model organisms, such as C. 

elegans (Kim et al., 2001), gene expression data has been widely used to predict protein-

protein interactions (van Noort et al., 2003). Also, gene expression profiling data was 

used to specify the function of some macro molecules such as oligo-nucleotides (Tolstrup 

et al., 2003). These methods predict interacting proteins through integration of micro 

array data in different biological conditions and construction of co-expression profiles for 

genes (Zhou et al., 2005). When two genes are co-expressed in a series of biological 

events in a correlated fashion, it indicates that the two genes and their translated proteins 

may have functional relationships. Identification of protein interactions via expression 

information may also assist finding more physical cooperation of proteins to accomplish 

a biological task. Most of this cooperation is evolutionary conserved and may be 

specified through other prediction techniques (Gunther and Gaasterland, 2001). In yeast, 

expression of genes is highly correlated among those conserved over the evolution (Mata 

and Bahler, 2003). In order to construct an expression profile for a particular gene, the 

employed clustering technique plays an important role. There exist numerous clustering 

techniques in the literature (D’haeseleer, 2005); however, the selection of the appropriate 

one depends on the objective of clustering and the accuracy of the analysis.  

1.2.6 Domain-based protein-protein interaction prediction 
Proteins interact through their functional subunits (Ponting and Russell, 2002). 

Protein domains, active sites, motifs (collectively called signatures) are sub-sequence 

functional and conserved patterns that are essential to the functioning of individual cells 

and are the interfaces in interactions at protein level (Littler and Hubbard, 2005). With 

the completion of full genome sequence of many organisms, genome-wide 

characterization of protein domains is now practical (Murvai et al., 2000). Although 

proteins are specified by unique amino acid sequences, the domain content of a protein 

sequence is crucial to specify interactions in which the particular protein is involved. 

Protein domain information has been used to predict protein-protein interactions. 

Naively, when two proteins were known to interact, their homologs in other organisms 

were assumed to interact based on comparative analysis (Bansal, 1999). Domain contents 

of interacting partners were utilized as input to predict more accurate predictions in 
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another organism (Wojcik and Schachter, 2001). Intermolecular or intramolecular 

interactions among protein families that share one or more domains were implemented to 

infer interactions among proteins (Park et al., 2001). Domain-domain relationships were 

used to predict interactions at protein level. In the association method (Sprinzak and 

Margalit, 2001) interacting domains were learned from a dataset of experimentally 

determined interacting proteins, where one protein contained one domain and its 

interacting partner contained the other domain. The probabilistic model of maximum 

likelihood estimation (MLE) (Deng et al., 2002) outperformed the association method 

through taking the experimental errors into account. Following a recursive calculation 

procedure, in MLE method, probabilities for domain-domain interactions were predicted 

based on the observation of interaction between their corresponding proteins. Then the 

prediction was extended to protein level assuming that two proteins interact if and only if 

at least one pair of domains from the two proteins interacting. Potentially Interacting 

Domain pairs (PID) were extracted from an experimentally confirmed pair dataset using 

PID matrix score (Kim et al., 2002) as a measure of domain interaction probability. In 

another study the strengths of protein pairs were incorporated into the association method 

to enrich probability estimations (Hayashida et al., 2004). As many domain structures are 

shared by different organisms, the integration of data from multiple sources may 

strengthen the reliability of domain associations and protein interactions (Liu et al., 

2005). Domain contents of S. cerevisiae proteins have been used to train an SVM 

classifier to distinguish interacting protein from non-interacting one. Protein interactions 

were measured based on the mean of similarity among domain contents of two query 

proteins (Zaki et al., 2006). In all these methods, if a probability score meets a certain 

threshold, domains and subsequently related proteins are considered ‘interacting’. 

However, these methods do not distinguish between single-unit proteins and multi-unit 

proteins.  

To overcome the limitation of conventional domain-based approaches to consider 

interactions of single domain pairs, domain combination based methods were proposed. 

Domain combination based approach predicted protein interactions based on the 

interactions of multi-domain pairs or the interactions of groups of domains (Han et al., 

2004). Recently, interactomes (Li et al., 2004; Rain et al., 2001; Uetz and Pankratz, 
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2004; Rhodes et al., 2005) and databases, such as DIP (Salwinski et al., 2004) were used 

as reliable sources for mining interacting domains and may contribute to inferring 

uncharacterized interacting proteins (Riley et al., 2005). Therefore, domain contents of 

proteins play a crucial role in predicting protein interactions. Domain-based PPI 

prediction techniques rely on statistically significant related domains. When the 

interaction probability score between two domains (in two different proteins) is greater 

than a threshold value, such a relationship is extended to the corresponding proteins and 

the potential interaction is inferred.  

1.3 Metabolic network reconstruction 
Metabolic network reconstruction allows for an in depth insight into molecular 

mechanism of cellular activities in a particular organism. A reconstruction breaks down 

metabolic pathways into respective genes, enzymes, and reactions and analyzes them in 

terms of their biological relationship. Briefly, a reconstruction involves collecting all the 

relevant metabolic information related to a specific organism from various sources and 

then compiling them in a way that is capable to performing various types of analyses. 

Metabolic reconstruction consists of a few steps that are crucial to proper relationships 

among different elements of the network (Francke et al., 2005). The beginning step is 

searching information that correlates between genome and metabolism. It can be found in 

different databases such as KEGG (Kanehisa and Goto, 2000) in which a search can be 

conducted based on a protein name or enzyme commission (EC) number in order to find 

the associated gene. Presently, KEGG is the most comprehensive database that contains 

metabolic information at different levels including genes, proteins, pathways, reactions, 

and metabolites for many organisms. Similar to KEGG resource, MetaCyc (Caspi et al., 

2006) provides metabolic information retrieved from scientific experimental literature. It 

is an encyclopaedia of metabolic pathways containing a wealth of information on 

metabolic reactions derived from over 600 different organisms. Also, BRENDA 

(Schomburg et al., 2002) is a comprehensive enzyme database that allows searching an 

enzyme by name or EC number. This database can be searched for an organism and all its 

relevant enzyme information. Moreover, when an enzyme search is carried out, 

BRENDA provides a list of all organisms containing the particular enzyme of interest. A 
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collection of different databases and their characteristic features can be found in 

(Baxevanis, 2003).   

The next step in metabolic reconstruction is the verification of the data to ensure 

consistency and accuracy of the data. This provides an added level of assurance for the 

reconstruction that the enzyme and the reaction it catalyzes do actually occur in the 

organism. Any new reaction not present in the database need to be added to the 

reconstruction. The presence or absence of certain reactions of metabolism will affect the 

whole picture because products in one reaction go on to become the reactants for the next 

reaction i.e. products of one reaction combine with other proteins or compounds to form 

new compounds in the presence of different enzymes.  

In order to simulate a metabolic network, information related to reactions and 

enzymes are incorporated into a stoichiometric matrix where rows and columns 

correspond to metabolites and reactions, while the elements are the stoichiometric 

coefficients (Vo et al., 2004). Information collected in this matrix is used to build or 

revise metabolic pathways. Combining the stoichiometric matrix and gene-protein-

reaction (GPR) structure the missing reactions and enzymes can be recognized. These 

reaction and enzymes can be found through mining in the literature or conducting 

experiments. The main advantage of metabolic reconstruction is that it reveals the 

knowledge gap in relationship among different biological elements of cellular system e.g. 

genes, proteins, and reactions. Moreover, it provides the opportunity to augment 

metabolic networks through the integration of relevant protein interacting information.     

1.4 Conclusion 
Protein-protein interaction information is the building block of metabolic network 

reconstruction. Proteins in a cell are not isolated entities; instead, they create associations 

to perform a biological task. Thus, identification of protein interactions is crucial to 

understand cellular activities and then incorporate them into metabolic networks which 

provide a large picture of all cellular activities in an organism. So far, in C. elegans, a 

small portion of proteins and their interactions have been identified due to the 

complicated multi-cellular structure of this organism. Thereby, the metabolic network of 

C. elegans is still incomplete and much work is yet to be done to achieve a greater picture 

of metabolic processes in this organism. More validated protein-protein interactions need 
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to be available and then incorporated into the network to expand the current metabolic 

network. On the other hand, experimental techniques to elucidate more protein-protein 

interactions are expensive and labour intensive. Consequently, computational interaction 

prediction approaches have been widely used to infer more protein-protein interactions in 

a shorter amount of time and supply adequate information to improve metabolic 

reconstruction studies. However, the growing numbers of computational approaches are 

not only insufficiently accurate but also they suffer from mass false positive predictions. 

These issues have been addressed in this research. The current metabolic network of C. 

elegans was reconstructed and known protein-protein interactions were specified. A new 

method of predicting protein interactions was introduced and a framework for reducing 

false positive predictions was proposed. Then newly predicted and validated interactions 

were incorporated into the current network and an expanded metabolic network was 

achieved. More details on the objectives of this research is presented in next chapter.       
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2  

OBJECTIVES 
 

According to the knowledge gap explained in previous chapter the following objectives 

were planned to achieve in this research: 

1. Reconstruction of metabolic network of C. elegens to evaluate the current number 

of known protein-protein interactions in the genome of this organism. Currently 

available interaction information in different databases was integrated to achieve 

the interaction map of all enzymes known to active in different metabolic 

pathways.  

2. Developing a new computational protein-protein interaction prediction method to 

predict novel interactions and to infer previously uncharacterized proteins. 

3. Evaluation of validation of predicted protein interacting pairs and quantification 

by means of statistical techniques. 

4. Augmentation of the reconstructed metabolic network of C. elegans by 

introducing a new two-dimensional genome annotation using predicted protein-

protein interaction information to achieve a larger map for C. elegans protein 

interactions. 

 

To achieve the above mentioned objectives, bioinformatics was used as a tool to 

explore numerous databases, parse suitable data, and integrate different pieces of 

information.  

As an overview, what was done in this research was generating reliable protein-protein 

interactions using a newly developed computational interaction prediction method. Then 

with the aid of a proposed algorithm the predicted interactions were filtered and the 

number of false positives was substantially decreased. Next, the predicted and filtered 

data was incorporated to the current metabolic network of C. elegans resulting in an 

expanded version of the network. Along with the expanded network, new functions were 

inferred for unknown proteins embedded to the expanded network.    

This dissertation has been organized according to the stated objectives. In Chapter 1 

previous work on protein-protein interaction prediction and reconstruction of metabolic 
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networks has been reviewed. Moreover, the widely used experimental high-throughput 

screening technique, yeast two-hybrid, has been described from molecular point of view. 

In Chapter 2 the general objectives of the research and the organization of the report has 

been briefly explained. In Chapter 3, the current metabolic network of C. elegans has 

been reconstructed and the resulting protein-protein interaction map of C. elegans has 

been inferred. A simple procedure has been employed to integrate different levels of 

information and place them in a network context. The current situation of C. elegans 

metabolic network has been evaluated at the end of this chapter. A new computational 

protein-protein interaction prediction approach has been introduced in Chapter 4. This 

method has been developed based on the concept that the similarity between profiles of 

signature content of proteins may play a role in functional or physical interactions. This 

method has been compared with equivalent approaches and it has been shown that this 

method outperforms the peer approaches. Statistical analysis of the results has also 

proved that inferred interactions are significant. Due to the overall high false positive 

results in computational approaches, a global framework has been proposed in Chapter 5 

in an attempt to reduce the number of false positives in every predicted dataset. The 

framework is a post-prediction processing procedure to remove predicted interacting 

protein pairs which do not comply with ontology and annotations. After applying the 

proposed algorithm to different datasets and comparing them with high-confidence 

experimental datasets, the mass reduction of false positives has been statistically 

evaluated. The new protein-protein interaction dataset with reduced number of false 

positives has been incorporated into the current metabolic network of C. elegans in 

Chapter 6 to achieve an expanded network of this organism. When new interactions are 

placed into a biological context some uncharacterized enzymes, missing relationships, 

and consistent interactions are revealed. General discussion, overall conclusions and 

recommendations are presented in chapter 7. All output files, datasets, and PERL 

computer programs along with adequate comments are presented in Supplementary Data. 

The organization of Supplementary Data is described in Appendix.       
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3  

RECONSTRUCTION OF METABOLIC NETWORK OF 
CAENORHABDITIS ELEGANS 
 

Contribution of this chapter to the overall study 

 In order to make any contribution to expand the metabolic network of the studied 

organism the current situation of the network should be assessed. In this chapter a new 

strategy to reconstruct metabolic networks emphasizing on the use of recent genomic 

information available in public databases was developed. The resulted network was 

studied quantitatively and qualitatively.  

3.1 Abstract 
With the completion of sequencing of C. elegans in 1998, the metabolic network 

reconstruction of this species became possible. As of yet several global metabolic 

network reconstruction algorithms have been proposed, many of which are more 

appropriate for bacterial and prokaryotic genomes. C. elegans, as a multi-cellular 

eukaryotic model organism, needs to be studied individually to specify some specific 

cellular organizations, such as metabolic pathways and their relationships. Further, most 

of network reconstruction algorithms focus on the strings of biochemical reactions to 

reconstruct the network, while the role of enzymes in the interconnecting behaviour of a 

network and revealing hidden mechanisms to perform biological tasks has not yet been 

well studied.  With the use of conventional reconstruction algorithms, and considering 

functional approach to interconnect metabolic enzymes at different pathways, the 

metabolic network of C. elegans was reconstructed. In this reconstruction, different levels 

of current biological information including genes, enzymes, and reactions were related 

together. Then a mechanism was proposed to identify biological relationships among 

pathways upon specifying key enzymes. These enzymes were revealed by examining the 

most-connected pathways, resulting in the identification of primary pathways. Key 

enzymes contributed to the interconnecting nature of the network, based on which 

different pathways were functionally linked together. Metabolic paths in the network 

represented linked pathways and the metabolic paths with the highest values represented 

the most probable routes taken by the organism where endogenous sources of nutrient are 
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available to the organism. A specific example, contribution of energy metabolism 

pathway to replicate DNA molecules, was demonstrated to perceive how functionally 

related pathways collaborate.  

3.2 Introduction 
Two-dimensional genome annotation refers to reconstruction of networks based upon 

one-dimensional genome annotation. In fact, metabolic reconstruction is assembling a 

puzzle with many different pieces (Marcotte, 2003). Metabolic networks are examples of 

protein networks that represent the entire network of biochemical reactions carried out by 

a living cell. The complete description of a metabolic network not only includes small 

molecules, large molecules, intermediates, and metabolic products of cellular reactions, 

but also the characteristics of relevant enzymes. In a metabolic network distinct 

sequences of reactions are grouped in pathways. Enzymes that catalyze different 

reactions in a pathway are encoded by protein-encoding genes.  

     Therefore, a metabolic network is a complete picture of the metabolisms of species 

based on the sequence of the genes that encode metabolic enzymes. For examples in 

prokaryotes, about 900 E. coli genes encode enzymes which are distributed into 130 

different pathways. These genes account for about 21% of the genes in the E. coli 

genome. In Penicillium chrysogenum new metabolic activities in two novel pathways 

were identified as a result of metabolic network analysis (Christensen and Nielson, 2000). 

Metabolic network of H. influenza contains 448 metabolic reactions operating on 443 

metabolites (Edwards and Palsson, 1999). In eukaryotes, S. cerevisiae has 5900 protein-

encoding genes; among them 1200 genes (~20%) encode enzymes involved in 

metabolism (energy reservoirs). In the fruit fly (Drosophila melanogaster) 2400 (~17%) 

out of 14100 genes are involved in metabolic pathways (Horton et al., 2002). The C. 

elegans, a small multi-cellular animal, is another extensively studied model organism 

which approximately 5400 (~25% of the proteome) of its proteins have been studied by 

experimental techniques (Mawuenyega et al., 2003). Its genome has already been 

sequenced (The C. elegans Sequencing Consortium, 1998) and is available in web access 

databases (Stein, 1999). This is a model organism because many of its specialized cells 

and tissues are also found in larger species such as human (Hekimi et al., 1998).   
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To reconstruct metabolic networks researchers have exploited different strategies. On 

early attempts a three-step procedure was implemented to reconstruct prokaryotic 

metabolic networks that included gathering a list of metabolic genes, assigning reactions 

to the genes, and adding physiological information about the organism to the record 

related to each gene (Covert et al., 2001). The same three-step procedure was also 

applied to analyze metabolic pathways of parasites (Fairlamb, 2002). Another study 

(Forster et al., 2003) focused on metabolic reconstruction of S. cerevisiae as the first 

comprehensive network for a eukaryotic organism. In this work the metabolic reactions 

were categorized between cytosol and mitochondria, and transport steps between these 

two compartments were included. Famili and Palsson (2003) proposed a systemic 

analysis of genome-scale biochemical conversion properties using singular value 

decomposition, aiming at comparing overall properties of genome-specific metabolic 

networks. This approach focused on the systemic aspect of metabolic reactions, but not 

the relationship among associate metabolites and other elements within a genome. 

With the ignorance of the currency metabolites such as ATP, NADH, etc., Ma and 

Zeng (2003) reconstructed a global metabolic network for 80 organisms of interest, 

resulting in the different average path length between any pair of metabolites in three 

domains of life: eukaryotes, archaea, and bacteria. They reconstructed the metabolic 

network using a revised bioreaction information database in which reversible reactions 

were represented by undirected connections and directed connections corresponded to 

irreversible reactions. It was then clear that the choice of connectivity exerted a 

significant influence on the estimation of path length of a network. In an another report, 

Sun and Zeng (2004) used the similar network reconstruction strategy along with a 

modified method to prepare their data set which consists of simultaneous gene finding 

from genome database and gene annotation. After these two parallel processes, the 

network reconstruction was performed. Miyake et al. (2004) proposed a graph analysis 

method to identify the metabolic sub-networks or building blocks of metabolic networks. 

They used compound-reaction relations as the dataset. This dataset was searched for 

highly conserved sequential reactions to identify sub-networks.  

The initial reconstruction of human mitochondrial metabolic network was already 

performed based on recently published proteomic data. The dataset in this work consisted 
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of 189 reactions and 230 metabolites mostly involved in energy metabolism (Vo et al., 

2004). These reactions were distributed among three cellular compartments including 

mitochondrial, cytosol, or extracellular and as a result main metabolic functions in these 

three locations were determined. In another study, a computational method was proposed 

to identify human metabolic pathways based on complete human genome (Romero et al., 

2004); however, the sophisticated human metabolic network is still far from complete. 

The metabolic network of a pathogenic strain of Staphylococcus aureus was also 

reconstructed to elucidate some properties of this resistant strain to many antibiotics 

(Becker and Palsson, 2005). Metabolic network reconstruction of bacteria has already 

been established (Francke et al., 2005). Recently, a semi-automated approach was 

introduced to accelerate the process of genome-scale metabolic network reconstruction 

(Notebaart et al., 2006). This approach took the advantage of availability of manually 

curated networks to predict gene-reaction relationships and expanded current networks. A 

few attempts were made to integrate different levels of information on C. elegans to 

perform biological hypothesis (Walhout et al., 2002); however, these efforts were not 

focused on the reconstruction of metabolic networks.     

As a general outline to reconstruct metabolic networks, different levels of information 

should be integrated as follows to obtain a detailed description of biochemical 

transformation. At the first level, the metabolite specificity of a gene product should be 

defined. Although primary metabolites are often the same for homologous enzymes 

across organisms, the use of coenzymes might vary. The second level of detail accounts 

for the stoichiometry and directionality of reactions considering thermodynamic 

properties of metabolites and cofactors. At the third level, the cellular compartment in 

which the reaction takes place has to be determined. Pathway association of some 

enzymes is in accordance to their cellular compartments. Although pathway boundaries 

are rather arbitrary, considering close pathways in same common cellular compartment is 

not far from the reality.  

In this chapter, metabolic data concerning C. elegans was retrieved from biological 

databases such as KEGG. This data included various levels of metabolism including 

genes, proteins (enzymes), metabolites, and reactions. This data was examined with other 

databases such as SWISS-PROT as a validation step. In this step the metabolite 
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specificity of reactions were specified and multi-function enzymes which appear in 

different pathways were identified. Directions of reactions were determined in terms of 

reversibility or irreversibility. Then, an algorithm was developed to integrate different 

levels of information and assign genes, enzymes, metabolites, and reactions to pathways. 

The boundaries of pathways were considered as it was in KEGG. Next, based on post-

genomic definition of protein interaction, protein-protein interaction map of the studied 

organism was assembled which represents a summary of all current interaction 

information on this organism.  

3.3 Methods 

3.3.1 Dataset preparation 
In order to reconstruct the metabolic map the Kyoto Encyclopaedia of Genes and 

Genomes (Kanehisa and Goto, 2000; Release 32) database was used as reference. The 

KEGG database contains genomes, reactions, pathways, and EC tables of many 

sequenced species. This database is one of the most comprehensive databases in which 

different levels of biological information such as genomics, proteomics, transcriptomics, 

and metabolomics are integrated and pathways are reconstructed based upon published 

data (Nakao et al., 1999). It is updated weekly and available for public access. The first 

step toward the network reconstruction is to retrieve information relating to C. elegans 

from KEGG and save to a local computer, including pathways, reactions, and genes. 

These three sets of information contain pathway numbers and the descriptions, all 

reactions carried out in the pathways, and gene entries (ORF names) along with their 

nucleotide sequences and the amino acids sequences of encoded proteins. Three perl 

scripts were developed and used to extract relevant biological information from 

downloaded files. The outputs from perl scripts were stored in the following three files 

(celPath, celReact, celGene) accordingly, and integrated to reconstruct 

metabolic network for C. elegans (see Supplementary Data, Chapter 3). celPath is a 

list of all 94 metabolic pathways within the C. elegans genome and their descriptions. 

celReact is a list of all reaction-enzyme relations, and  celGene  contains a list of  
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Figure 3.1. The flowchart for the reconstruction of metabolic network of C. elegans. In this 

flowchart three KEGG reference files: cel.html, reaction, and c.elegans.ent, were used as input 

data for three perl scripts. The outputs from these scripts were used as input data for another perl 

script to reconstruct the metabolic network.    
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22740 gene entries in which some have gene names, encoded enzymes and associated 

pathway(s) with the gene.  These entries were checked for whether genes were missing 

using SWISSPROT (Bairoch and Boeckman, 1992) and WormBase (Stein et al., 2001; 

wormpep152). The extraction process is illustrated in Figure 3.1.   

3.3.2 Data integration and network reconstruction 
We automatically integrated the information and categorized enzymes into each 

particular pathway and the resulting information was collected into ‘celNetwork’ file 

(see Supplementary Data, Chapter 3). In this integration process pathway numbers are the 

central information and all other data are directed toward pathways such that each record 

of results is introduced with a pathway number. Based on the fact that a pathway is a 

collection of biochemical reactions and each reaction is catalyzed by an enzyme and each 

enzyme (protein) is encoded by a gene, we have created a list of genes associated with a 

pathway and other sequential biological processes including encoding enzymes and 

catalyzing reactions. For each gene, other pathways that this particular gene is 

participating in are found, however, only the reaction which is catalyzed in the pathway 

of interest is reported and other reactions which may be catalyzed by this enzyme are 

excluded form this record of results. A partial listing of this file (only one record of 

results) is presented in Figure 3.2. Each record of information in this file is related to one 

pathway only. In total, there are 94 information records collected in ‘celNetwork’ 

involving 792 genes. 

3.3.3 Protein-protein interaction map 
The classical view of protein interaction focuses on the action of a single protein 

molecule. In metabolism, this action may be the catalysis of a given reaction or the 

binding of a small or large molecule. In the post genomic era, this local interaction may 

help to find molecular function of a protein; however, it does not represent the role of a 

protein as an element in the network of interactions. The idea is that each protein in living 

matter functions as part of an extended web of interacting molecules. In the expanded 

view of interaction, proteins that participate in a common structural complex or metabolic 

pathway are defined as interacting proteins (Eisenberg et al., 2000). Several prokaryotic 

and eukaryotic protein interaction maps have been reported successfully based on this  
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cel00040   Pentose and glucuronate interconversions - Caenorhabditis 
elegans  
1. Y105E8B.9  *****   cel00040 cel00500 cel00531 cel00860 
   [EC:3.2.1.31] 
2. F35H8.6  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 
     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
3. K08E3.5a  *****   cel00040 cel00052 cel00500 cel00520 
   [EC:2.7.7.9] 
     R00289  UTP + D-Glucose 1-phosphate <=> Pyrophosphate + UDPglucose 
4. C18C4.3  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 
     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
5. F29F11.1  *****   cel00040 cel00500 cel00520 
   [EC:1.1.1.22] 
     R00286  UDPglucose + H2O + 2 NAD+ <=> UDPglucuronate + 2 NADH + H+ 
6. T04H1.7  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 
     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
7. B0310.5  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 
     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
8. T07C5.1a  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 
     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
9. T07C5.1b  *****   cel00040 cel00150 cel00500 cel00860 
   [EC:2.4.1.17] 

     R01379  UDPglucuronate + H2O <=> UDP + D-Glucuronate 
 
 
 
 

Figure 3.2. Partial listing of ‘celNetwork.txt’. Each record of information in this file starts with a 

pathway number (cel00040 in this case) and the description of the pathway. In this typical 

pathway there are 9 associated genes. For each gene entry (for example T07C5.1b) the encoded 

enzyme (in the form of EC number) as well as the reaction catalyzed by this enzyme is shown. In 

addition, the other pathways that this gene (T07C5.1b) is participating in are indicated as 

cel00150, cel00500, and cel00860. In the cases that the gene name is unknown star signs are 

printed.  There are some cases in which although the enzyme translated by the gene is known 

(Y105E8B.9), the reaction catalyzed by this enzyme in this particular pathway (cel00040) is yet 

to be determined. 
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new definition of interaction (Enright et al., 1999). Furthermore, it is believed that 

proteins form permanent or transient complexes to provide a response to external stimuli 

(Szilagyi et al., 2005). Proteins aggregated in these complexes work together to 

accomplish part of an entire biological process. Sometimes one single protein ought to 

work with several other proteins to transmit a signal or regulate a biochemical reaction. 

Most of permanent complexes are in accordance to pathways or cellular components. 

Therefore, in order to infer protein-protein interactions upon constructed metabolic 

network of C. elegans, proteins participating in same metabolic pathways were 

considered interacting. 

3.4 Results and Discussion 
With the current reconstructed metabolic network of C. elegans (see Supplementary 

Data, Chapter 3), known proteins in this network are connected together in a pair-wise 

fashion, based on the notion that proteins in same metabolic pathways interact with each 

other. There are 32902 interactions involving 792 proteins in 94 metabolic pathways in 

the current protein-protein interaction map of C. elegans (see Supplementary Data, 

Chapter 3).  

3.4.1 Connectivity in the protein-protein interaction map 
The average connectivity of each protein in the current map is 42 interactions. This 

complies with the estimation that each protein generally interacts with about 5 to 50 

proteins (Huzbun and Fields, 2001). However, correlation between connectivity and other 

protein biochemical properties such as hydrophobicity has been suggested (Deeds et al., 

2006). In some protein-protein interaction maps distribution of edges among nodes 

follow a power law model (Hoffman and Valencia, 2003). There are proteins which 

catalyze the same reactions in different pathways. These proteins may contribute to the 

interconnectivity of the protein interaction network and serve as the hubs of the network. 

Hub proteins are conserved structures with the higher number of connectivity compared 

to other proteins. Thus, the possibility of finding new interactions for these proteins is 

higher than low connected proteins. In the current protein interaction map the proteins in 

energy metabolism pathways are the most connected ones as most metabolic reactions 

need energy to proceed.  
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The properties of protein interaction map depend on the accuracy and validity of 

genomic information utilized in the reconstruction of metabolic network. At the time 

being, numerous techniques are available enabling researchers to produce huge amount of 

biological information on different species; however, the reliability of this information is 

still in question. Currently the agreement among three major databases of genomic 

information including KEGG, MIPS, and GO is surprisingly poor (Bork et al., 2004), 

even though these databases are the main sources of metabolic and genomic information 

that metabolic networks are reconstructed upon. Therefore, the reconstructed metabolic 

network presented here is built based on most recent information publicly available to 

research community. 

3.4.2 Quantitative analysis of the reconstructed network  
All biological elements related to each pathway including genes, enzymes and 

reactions catalyzed by each enzyme are integrated in the reconstructed metabolic 

network. Each gene is accompanied with the encoded protein (enzyme) and the enzyme is 

followed by the reaction catalyzed by that enzyme. For example, there are 38 genes 

currently associated in the glycolysis pathway and 29 genes are currently found in the 

TCA cycle. There are 22,740 ORFs in the C. elegans genome, including 21,357 protein 

genes (coding sequences or CDS), and 753 RNA genes. Of 22,740 ORFs, 1,361 have 

known entries which count for 6% of the entire genome. Of the entire known entries, 792 

entries, involved in metabolism, have known pathways such as glycolysis, citric acid 

cycle and so on. The remaining 569 proteins are annotated proteins that their pathways 

are still unknown. The relationship between the unassigned 569 annotated proteins and 

the pathway association requires further investigation.  

3.4.3 Qualitative analysis of the reconstructed network     
The pathway-gene relation information can be represented by an undirected two-

mode network. A two-mode network consists of two set of units (vertices) and relations 

(edges). In this representation, there are 94 vertices corresponding to 94 pathways as the 

first set of units, and 792 vertices corresponding to genes as the second set of units. 

Pathway-gene relations, connecting two sets of units together, are linked by ‘undirected 
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lines’ known as edges. Each pathway is introduced by an index such as cel00100 and 

genes are shown by their ORF synonyms.  

Knowing the fact that each metabolic network comprises several pathways which 

include common (genes shared by different pathways) and uncommon (genes associated 

with only one particular pathway) groups of genes, these genes are classified according to 

their connection degrees, which is defined as the total number of edges coming in or 

going out of a vertex. As a result, there were 363 genes with connection degrees 1, each 

of which was associated with only one pathway, encoding an enzyme which catalyzes a 

distinct reaction in that pathway. Another group contains 429 genes which have the 

connection degrees greater than 1, involving in different pathways, catalyzing the same or 

distinct reactions, and contributing to the interconnecting nature of the network. 

Distribution of this group of genes among pathways is illustrated in Figure 3.3. As shown 

in the figure more than 44% of genes are shared by only two pathways, whereas, less than 

1% of them are shared by 15 pathways. The higher the number of associated pathways 

the lower the percentage of these genes will be. 

  

2 (44.5%)

3 (22.8%)

4 (15.6%)

5 (9.3%)

6 (0.2%)

7 (1.9%)9 (0.7%)10 (3%)11 (1.2%)
15 (0.7%)

 

Figure 3.3. Distribution of 429 key enzymes across pathways. The numeral in each sector shows 

the number of pathways that each member of this group participates in, and inside the parenthesis 

is percentage of each group out of 429 key enzymes. For example, those key enzymes that 

participate in 2 pathways are 44.5% of the whole key enzymes. This figure for enzymes found in 

15 pathways is 0.7%. 
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In the first set of units, nodes with the highest connection degrees represent pathways 

with the highest number of associated genes. These pathways involve energy metabolism 

(including phosphorylation reactions, synthesis of ATP, and breakdown or 

polymerization of fatty acids), regulation of purine and pyrimidine metabolism as 

building blocks of all nucleotides, metabolism of sucrose as major transport compound 

and starch as important storage for carbohydrate residues, degradation of benzoate using 

coenzymes, biosynthesis of different glycerolipids that are regulated in different stages of 

age in the nervous system, regulation of synthesis of different phosphate derivatives of 

myo-inositol functioning as the second messenger for different extra cellular signals and 

releasing Ca2+ from intracellular storage, and metabolism of  tryptophan which is an 

essential amino acid to the immune system.  

On the other hand, the second set of vertices contains 785 genes in the reconstructed 

network. Taking all genes with connection degrees greater than 1 (called key enzymes) 

into consideration, key enzymes can be used as indicators of functionally related 

pathways. In order to accomplish a specific biological task several pathways must 

function co-ordinately. These key enzymes play central roles in modulating such a 

coordinated work. For example, to replicate DNA molecules, the following six pathways 

act together as depicted in Figure 3.4. These pathways are: ATP synthesis (cel00193), 

oxidative phosphorylation (cel00190), TCA cycle (cel00020), pyruvate metabolism 

(cel00620), purine metabolism (cel00230), and DNA polymerase (cel03030). To 

anabolically synthesize DNA molecules, both DNA replication pathway (cel03030) and 

purine metabolism pathway (cel00230) share 11 DNA polymerization enzymes, and the 

required ATP is partially furnished by pyruvate metabolism pathway (cel00620) 

providing with 3 pyruvate kinases. To acquire more ATP, these pyruvate kinases convert 

phosphoenolpyruvate to pyruvate which is subsequently oxidized by dihydrolipoamide 

dehydrogenase, resulting in the accumulation of acetyl-CoA to fuel the TCA cycle 

(cel00020). In the cycle, the succinate dehydrogenase complex, consisting of 5 succinate 

dehydrogenases, utilizes succinate, a downstream product of acetyl-CoA, as a substrate 

and convert it to fumurate in which the oxidation phosphorylation (cel00190) is involved. 

Fumurate is further hydrated to malate. In the presence of malate dehydrogenase, malate 

is converted to oxaloacetate and ubiquinol (QH2), resulting in the production of NADH 
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to replenish the reservoir of reducing powers. In cases where ATP is over-supplied, 

pyruvate carboxylase and phosphoenolpyruvate carboxykinase (see Figure 3.4) shared by 

pyruvate metabolism pathway (cel00620) and TCA cycle (cel00020) convert pyruvate to 

phosphoenolpyruvate. Or, if there is a short fall of NADH, the lactate dehydrogenase is 

triggered (see Figure 3.4) to convert pyruvate to lactate along with the production of 

NADH. The phosphorylation pathway (cel00190) has 44 key enzymes (28 H+ 

transporting enzymes and 16 ATPases) that are in common with the ATPase pathway 

(cel00193), all NADHs produced in the TCA cycle are used to generate an 

electrochemical gradient of protons across the inner membrane of mitochondrion in the 

way that, when electrons pass through 28 electron carriers (H+ transporting enzymes), the 

electron flow toward final oxidizing agent, O2, causes a flow of protons from the inner to 

outer membrane of mitochondrion, creating a gradient of proton concentration. The 16 

ATPases catalyze the phosphorylation of ADP to ATP as the protons move back across 

the membrane. Therefore, additional amounts of ATP are generated to assist the DNA 

polymerization. 

  

 
 

Figure 3.4. Collaboration among 6 pathways in DNA molecule replication path. 
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Pathway collaboration can be elucidated by locating key enzymes and the pathway 

connectivity can be depicted by metabolic path length. Among 429 identified key 

enzymes (i.e. connection degrees greater that 1) and 94 pathways, the longest shortest 

metabolic path length is 5. As illustrated in Figure 3.5, there were 6 pathways involved in 

the DNA synthesis process. Depending on extraneous conditions or the availability of 

starting materials, more than one route can be taken by C. elegans to replicate its DNA 

molecules. Figure 3.5 illustrates all other possible shortest paths and the number of 

common enzymes between each pair of pathways. The straight path was described in the 

previous paragraph and it is believed that this path is taken up by the organism when 

endogenous sources of nutrient (starch and glycogen) are available. In cases where 

extracellular nutrient is available, the energy metabolism path passes through glycolysis 

pathway (cel00010) (see Figure 3.5), because macromolecules are broken down to 

glucose and it is converted to pyruvate through glycolysis pathway. In the starvation 

cases amino acids can be used as source of energy, alanine and aspartate are the best 

amino acids for this purpose. Thus, the energy metabolism path passes through alanine 

and aspartate metabolism pathway (cel00252). In cases where pyruvate is converted to 

phosphoenolpyruvate to store energy, CO2 released from conversion of pyruvate to 

acetylCoA can be used to synthesize oxaloacetate and then malate from 

phosphoenolpyruvate catalyzed by malate dehydrogenase through carbon fixation 

pathway (cel00710). Malate is then converted to pyruvate by pyruvate kinases. These 

alternate paths allow C. elegans to detour as one or some of key enzymes in one route 

being inactivated owing to extraneous variations. Such naturally built-in features greatly 

enhance the survival of a species. The line (edge) values shown in Figure 3.5 express the 

number of key enzymes required between two consecutive pathways. The whole number 

of key enzymes between initial and terminal pathways in a path is represented by path 

values, defined as the sum of line (edge) values. In the exemplified path (i.e. the straight 

route in Figure 3.5), there are 68 enzymes function in this path, while some of them may 

be turned off under normal condition and be activated only under stress. The higher the 

value of a metabolic path, the more chance for the organism will survive under harsh 

conditions. Figure 3.5 is also an indication that to proceed a biological process there is 

more than one combination of pathways that a regulatory system can be chosen from. 
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One possible approach to alter the enzyme activation or pathway coordination is through 

the manipulation of extraneous cultivation environment. 

Figure 3.5. All possible shortest paths among two typical pathways. The two pathways cel00193 

and cel03030 in the reconstructed C. elegans metabolic network are connected through 

intermediate pathways. 

 

3.5 Conclusion 
The reconstructed metabolic network of C. elegans provides an insight into the 

current situation of known proteins within the genome. A functionally more meaningful 

metabolic network was reconstructed in conjunction with those functionally-assigned 

genes and was represented by an undirected two-mode graph to investigate its topological 

property. In this network each protein was connected to 42 other proteins by average and 

some proteins had partners in 15 different pathways. Protein relationships outside 

pathway boundaries contributed to the interconnectivity of the network which elucidated 

some hidden routes to synthesize essential metabolites at different organism’s living 

condition. Analysis of the network showed that how reactions and enzymes at different 

pathways were working together to accomplish a biological task. Currently, this 

reconstructed network consists of approximately 6% of all genes in C. elegans genome 

while this network covers gene that are solely involved in metabolism.   
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4  

PREDICTION OF PROTEIN-PROTEIN INTERACTIONS USING 
SIGNATURE PROFILING 
 

A similar version of this chapter has been submitted to Genomics, Proteomics, and 

bioinformatics: 

Mahmood A. Mahdavi and Yen-Han Lin: Prediction of protein-protein interactions using 

protein signature profiling. 2007.  

 

Contribution of this chapter to the overall study 

As protein-protein interaction information is the building block of reconstructing 

metabolic networks, the protein-protein interaction prediction methods are emerging. In 

this chapter a new method was developed to predict more comprehensive protein 

interactions to be incorporated into the reconstructed metabolic network in Chapter 1.  

4.1 Abstract 
Protein domains are conserved and functionally independent structures that play an 

important role in interactions among related proteins. Domain-domain interactions were 

recently used to predict protein-protein interactions (PPI). In general, the interaction 

probability of a pair of domains was scored using a trained scoring function. Satisfying a 

threshold, the protein pairs carrying those domains were regarded as “interacting”. Based 

on the signature content of known proteins, a new approach to directly predict protein 

interactions without the requirement of training sets was developed. The signature 

contents of proteins were utilized to predict PPI pairs in Saccharomyces cerevisiae, 

Caenorhabditis elegans, and Homo sapiens. Similarity between protein signature patterns 

was scored and PPI predictions were drawn based on the binary similarity scoring 

function. Results showed that the true positive rate of prediction by means of the 

proposed approach was approximately 32% higher than that using the maximum 

likelihood estimation (MLE) method, resulting in a 22% increase in the area under the 

receiving operator characteristic curve. When proteins containing one and two signature 

contents were removed, the sensitivity of the predicted PPI pairs increased significantly. 
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The predicted PPI pairs were on average 11 times more likely to interact than the random 

selection at a confidence level of 0.95, and on average 4 times better than that in both 

phylogenetic profiling and gene expression profiling methods. The proposed approach 

enhances the knowledge of protein association and also aids in augmenting the 

reconstruction of metabolic networks. 

4.2 Introduction 
Domain-based interaction prediction techniques rely on statistically significant related 

domains. When the interaction probability score between two domains (in two different 

proteins) is greater than a threshold value, such a relationship is extended to the 

corresponding proteins and the potential interaction is inferred. Close assessment of the 

protein pairs whose domains possess high interaction probability scores shows that many 

of these protein pairs share at least one common domain. Sprinzak and Margalit (2001) 

reported 40 overrepresented domains pairs in protein interaction dataset of yeast. Nearly 

half of those domain pairs (22 of 40 pairs) contained similar domains and the rest of them 

were functionally close domains. Non-identical pairs could not pass the threshold, even 

though the threshold was considered very loose. Okada et al. (2005) studied the role of 

common domains in the extraction of accurate functional associations in interacting 

partners. It has been shown that, when two proteins share a similar domain structure their 

interaction confidence score is higher than that of two proteins with non-similar domains 

(Ng et al., 2003). Common domains are conserved structures and may relate to 

evolutionary traits of species (Littler, and Hubbard, 2005). When two proteins share 

common domains, the co-evolution of these domains would provide strong evidence that 

they are biologically related and the probability of interaction between associated 

proteins is higher (Ramani and Marcotte, 2003).  

Discovery of new patterns in the structure of proteins play a central role in detecting 

novel interactions. This discovery may happen either through mining literature and 

published studies (Hao et al., 2005) or comparative analysis of certain group of domains 

with known functions (Hesselberth et al., 2006). With the combination of protein 

interaction data form different species and gene ontology a set of high-confidence 

domain-domain interactions were constructed that was used to predict protein-protein 

interactions in other organisms (Lee et al., 2006). Another attempt to detect conserved 
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sub-structures in proteins relies on identifying potentially missing interactions in the 

dataset which are found in yeast two-hybrid datasets. These missing interactions are 

predicted based on the relationships of complementary binding domains which are built 

upon a mathematical model (Morrison et al., 2006).   

In this chapter we propose a new genome-wide approach to predict protein-protein 

interactions based on the observation that proteins with common signatures are more 

likely to interact. The signature content of a protein is represented by a binary profile, 

called signature profile, and then the similarity between two profiles is scored based on a 

binary similarity function. Imposing a threshold, the two proteins are considered 

‘interacting’ if they satisfy the threshold. Despite conventional signature-based methods 

which score the relationship between two signatures and extrapolate such a relationship 

to predict protein-protein interactions, our approach directly scores protein relationships 

based on the signature content of each individual protein and the extent of commonality 

in signature patterns. The more signatures in common, the higher the similarity score will 

be between two different profiles. This approach is applied to three organisms including 

Saccharomyces cerevisiae, Caenorhabditis elegans, and Homo sapiens. Predicted 

interactions are compared with signature-based MLE approach (Deng et al., 2002) over a 

test dataset and two other non signature-based prediction techniques including 

phylogenetic profiles (Pellegrini et al., 1999), and gene expression profiles (van Noort et 

al., 2003). Although at the time being a small portion of genes in each genome has been 

identified with their signatures, the approach is capable of covering the entire genome as 

more genes with known signature contents are discovered.  

4.3 Methods 

4.3.1 Signature content information  
  The signature content of each protein sequence is obtained from PROSITE database 

(Hulo et al., 2006). PROSITE is a database of protein families and domains, consisting of 

biologically significant sites, patterns, motifs, and domains. The entire PROSITE 

database was downloaded and three files were created for three organisms of interest. 

Each file contains the signatures found in one genome. Currently, PROSITE (release 
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19.27, May 2006) contained 884 signatures in S. cerevisiae, 738 signatures in C. elegans, 

and 1354 signatures in H. sapiens.  

4.3.2 Experimental protein-protein interaction datasets 
To evaluate and compare the predicted protein-protein interactions of our proposed 

approach, datasets containing experimentally obtained pairs were compiled to serve as a 

common reference. The dataset for yeast contains 3745 pairs that were obtained from 

three sources. von Mering et al. (2002) introduced yeast protein pairs with high 

confidence. Pairs confirmed by at least two experimental methods were picked from this 

source (1920 pairs). BIND database (Alfarano et al., 2005) contains yeast protein pairs 

that are experimentally confirmed and manually curated (10618 pairs); and CYGD 

(Guldener et al., 2005) contains yeast protein pairs, confirmed by experiment (10472 

pairs). Combination of these three sources resulted in 16507 pairs, which consists of 4391 

proteins. Those proteins that are not included in PROSITE were eliminated. As a result, 

3745 pairs remained in the final dataset including 1438 proteins.  

Worm dataset was constructed from BIND and Li et al. (2004). They reported 4960 

and 6629 protein pairs, respectively. These pairs were obtained by means of yeast two-

hybrid technique and manually curated. After removing repeated pairs the dataset 

consists of 7081 pairs, comprising 3390 proteins in C. elegans. Those proteins that are 

not included in PROSITE were dropped off resulting in 344 pairs remained in the worm 

dataset including 220 proteins. 

Human dataset is a combination of BIND and HPRD (Peri et al., 2003), containing 

2332 and 23187 interactions, respectively. These pairs were obtained using either mass 

spectrometry or yeast two-hybrid techniques and were manually curated. Merging these 

two sources of interaction data, a dataset of 25000 interactions, consisting of 5726 

proteins, was resulted. Only 13319 pairs contain 3975 proteins that are included in 

PROSITE. The experimental datasets are presented in Supplementary Data (Chapter 4).  

4.3.3 Computational datasets 
Phylogenetic profiles: The numbers of proteins studied in three organisms are: 

m=2242 in S. cerevisiae, m=1402 in C. elegans, m=8667 in H. sapiens. The proteins of 

each organism were considered as queries and aligned against a database comprising 90 
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genomes using BLAST program. The list of reference genomes is included in 

Supplementary Data (Chapter 4). Genomes were obtained from www.ncbi.nlm.nih.gov. 

Running BLAST program, using SEG filter over 75% similarity of the sequences, the 

output was a list of homolog proteins and their e-values within each genome that better 

match the query sequence. The best hit in each genome was taken as one bit in the profile 

and then profiles were created for each individual protein. These profiles should be 

converted into binary profiles in the form of 1 and 0 to represent the presence or absence 

of an individual protein in other genomes. To convert e-values to binary numbers we 

needed to know if the alignment score for each protein sequence Pi was statistically 

significant. Statistical significance of an alignment was described by the probability of 

finding a higher score when two sequences are compared based on a random selection. 

This probability depends on the number of comparisons that we are making. If the 

number of proteins encoded in query genome is m  and the number of encoded proteins 

in 90 reference genomes is p  the total number of comparisons is: pm× . Therefore, the 

probability of finding a match for an individual protein sequence is )/(1 pm× . In this 

study p=370461 and m for each organism is given above. We considered this probability 

as a threshold based on which e-values can be translated to present or absent status. Once 

the binary profiles were established, they were compared to find interacting proteins. 

Matching profiles were considered ‘interacting’. 

Gene expression profiles: Genes with similar co-expression patterns are likely to 

interact. To find out which genes are co-expressed, the expression levels of the studied 

genes were extracted from normalized DNA microarray data files obtained from Stanford 

Microarray Database (SMD) (Ball et al., 2005). Each file corresponds to an experiment. 

All expression values were collected in a gene expression matrix in which each row 

represents a different gene and each column corresponds to a different microarray 

experiment (100 experiments in S. cerevisiae, 575 experiments in C. elegans, and 400 

experiments in H. sapiens). The matrix is supplied into EXPANDER program (Shamir et 

al., 2005) for clustering. Choosing click algorithm to cluster genes the following results 

were obtained for each organism: 
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Table 4.1. The characteristics of EXPANDER output clusters 

organism Number of clusters Overall homogeneity 

S. cerevisiae 6 0.552 

C. elegans 10 0.631 

H. sapiens 93 0.562 

 

Genes in the same cluster are co-expressed genes in different biological conditions. These 

genes were paired and considered ‘interacting’.  

Maximum likelihood estimation: In order to implement maximum likelihood 

estimation (MLE) method the compiled experimental data was randomly split into two 

parts including training set and test set. The training set, serving as observed interactions, 

was used for recursive calculations. The underlying hypothesis in this method is two 

proteins interact if and only if at least one pair of domains from the two proteins interact. 

Let D1, D2,….,DM denote the M domains, and P1, P2,….PN denote N proteins. Pij denotes 

the protein pair of Pi and Pj, and Dij denotes the domain pair of Di and Dj. Treating 

protein-protein interactions, and domain-domain interactions as random variables, the 

probability of interacting two proteins under stated assumption is: 
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where λmn= Pr(Dmn=1) denotes the probability that domain Dm interacts with domain Dn. 

False positive rate (fp) and false negative rate (fn) are defined based on observed 

interactions. Let Oij be the variable for the observed interaction result for proteins Pi and 

Pj. Oij =1 if the interaction is observed and Oij=0 otherwise. Then, 
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Thus, the probability of observing a protein-protein interaction is: 

                                    fpPfnPO ijijij ))1Pr(1()1)(1Pr()1Pr( =−+−===                    (4.4) 

The probability of the observed whole genome interaction dataset is  

                                       ijij O
ij

O
ij OOL −=−==∏ 1))1Pr(1())1(Pr(                                (4.5) 

where Oij=1 if the interaction of Pi and Pj is observed and Oij=0 otherwise. L is the 

likelihood and is a function of λmn, fp, and fn. In this calculation fn and fp are determined 

based on Equations 4.3 and 4.4 as 0.84 and 7.5E-4 for yeast, respectively. The number of 

observed interactions (training set) is given as 1873 pairs. It is reported that in yeast 

proteome each protein interacts with approximately 5 proteins (Hazbun and Fields, 

2001). For 2242 yeast proteins in this study, it gives the number of real interactions of 

11210 pairs. The total number of potential pairs is m(m-1)/2 where in this study m is 2242 

proteins for yeast. Then, we compute λmn using a recursive formula. First, initial values 

for λmn are chosen. Then Pr(Pij=1) and Pr(Oij=1) are computed by equations (4.1) and 

(4.4), respectively. Parameter λmn is updated using the following equation: 
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and likelihood function is computed by Equation (4.5). Calculations continue until the 

value of likelihood function is unchanged within a certain error. 

4.3.4 Signature content representation  
A protein is characterized by the signatures existing in its sequence. Hence, each 

protein can be represented by a vector of n features, called a signature profile, where each 

feature corresponds to a signature and n is the number of signatures identified in the 

proteome of an organism (for example n = 885 in yeast). Let ],....,,[ 21 iniii SSSP =   

represent the feature vector of protein iP  with n signatures. 11 =iS  if signature 1S   exists 

in protein iP  and 01 =iS  otherwise. Therefore, each genome is represented by a m-

dimensional vector where m is the number of proteins with known signatures. In this 

study, m = 2242 in yeast, m = 1402 in worm, and m = 8667 in human. A similarity  
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Figure 4.1. Schematic of the proposed method to predict protein interactions. Briefly, signature 

content of each protein is represented by a feature vector and the whole proteins containing at 

least one signature are represented by a m-dimensional vector. Proteins are paired in order and the 

similarity of feature vectors is calculated. Setting a threshold, if the similarity score is equal to or 

greater than the threshold, the two proteins are considered interacting.  

 

 

 

 

 

 

      

      

      

      

      

      

      

S1        S2        S3        S4       S5       S6 

μ (P1, P2) = 0.5 
. 
. 
. 

μ (P2, P4) = 0 
. 
. 
. 
. 
. 
. 

μ (P7, P6) = 0.25 

P1 
 
P2 
 
P3 
 
P4 
 
P5 
 
P6 
 
P7 

 (P1, P2) 
interacting pair 

                Feature vectors (profiles)                               similarity scores     Threshold             prediction 
                                                                                                                                   



 58

measure was implemented to calculate the similarity between signature profiles (feature 

vectors). Binary Similarity Function (Rawat et al., 2006) is introduced to measure the 

similarity between a pair of signature profiles: 
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Where, μ is the similarity score between profiles Pi and Pj. This score is calculated over 

n signatures contained in proteins of a genome of interest. If protein Pi contains x 

signatures, protein Pj contains y signatures, and both proteins contain z signatures in 

common, the score can then be calculated as follows: 

                                               
zyx

zPP ji −+
=),(μ                                                       (4.8) 

Note that 10 ≤≤ μ . The value of μ  increases when there is more common signatures 

between the two proteins and the value of μ  decreases when the number of uncommon 

signatures is more than common ones in Pi and Pj. If the similarity score is higher than a 

threshold, the two proteins are considered as an “interacting pair”. The inferring 

procedure of protein-protein interactions is illustrated in Figure 4.1   

4.4 Results 
The signature profiling approach was applied to predict protein interactions for S. 

cerevisiae, C. elegans, and H. sapiens. Three different predicted PPI datasets for each 

organism were generated by removing proteins having none, one, and two known 

signatures in their sequences. The predicted protein pairs and their corresponding binary 

similarity values are presented in Supplementary Data (Chapter 4). To evaluate the 

performance of the approach, sensitivity and specificity analysis was conducted and the 

predicted results were compared with those obtained by MLE method in S. cerevisiae 

over a test dataset. Predicted dataset using MLE method is presented in Supplementary 

Data (Chapter 4). Furthermore, the fold value analysis was performed to compare the 

predicted results with those obtained from two non-signature-based methods including 

phylogenetic profiles, and gene expression profiles in S. cerevisiae and C. elegans (see 
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Supplementary Data, Chapter 4). In either case, the proposed approach has higher true 

positive rates. 

4.4.1 Sensitivity and specificity analysis 
The receiving operator characteristic (ROC) curve was implemented to evaluate the 

efficacy of the prediction of PPI pairs between our approach and the MLE method over 

the same dataset. The ROC curve portrays the trade-off between the true positive rate 

(sensitivity) and the false positive rate (1-specificity) for different threshold values. The 

true positive rate is defined as the proportion of experimentally confirmed PPI pairs (i.e., 

all positives) that is correctly predicted; whereas, the false positive rate is defined as the 

proportion of experimentally refuted PPI pairs (i.e., all negatives) that is erroneously 

predicted. Therefore, true positive rate and false positive rate can be formulated as 

follows, 

                              True positive rate = Sensitivity = 
FNTP

TP
+

                                    (4.9)                         

                             False positive rate = 1- Specificity = 
TNFP

FP
+

                              (4.10)                  

where, “TP” is the number of experimentally confirmed PPI pairs that are predicted by a 

method (matched), “FN” is the number of experimentally confirmed PPI pairs that are not 

predicted by a method, “FP” is the number of predicted PPI pairs that do not match 

experimentally confirmed pairs, and “TN” is the number of potential PPI pairs that are 

neither experimentally confirmed nor computationally predicted.  

The area under the ROC curve (AUC) is a quantitative indicator for comparing the 

performance of PPI prediction among various PPI predicting methods. At AUC of 1, a 

perfect PPI prediction is obtained. As shown in Figure 4.2, the AUC of protein signature 

profiling approach in case of no protein removal is 0.549 and that of MLE is 0.534, 

indicating that more experimentally confirmed PPI pairs can be predicted by the proposed 

approach than the MLE method. Such an improvement based on protein signature 

profiling comes from the fact that the association between two proteins requires at least 

one signature in common. The requirement for protein signature profiling is more 

stringent than the interaction of two domains as implemented in the MLE method. 
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Figure 4.2. Changes of ROC curves subjected to the removal of proteins containing one- and 

two-signature contents.  

Approximately 68% of predicted PPI pairs have the highest similarity score (i.e., 1), 

indicating a complete matching signature profile between two query proteins. Among this 

portion of predicted PPI pairs, many of these pairs contain only one or two known protein 

signatures. As a result, a high false positive rate was obtained as compared to that 

calculated by the MLE method. The cause of a high false positive rate is attributed to the 

low number of known signature contents in these proteins. To reduce false positive rates 

of predicted PPI pairs, and thus increase the accuracy of PPI prediction, proteins with one 

and two signature contents were removed consecutively, and the proposed approach was 

then applied to the remaining proteins in the dataset. As illustrated in Figure 4.2, the 

increase in the AUC of ROC curve was observed for both cases (see inset of Figure 4.2). 

The AUC increased to 0.584 when proteins with one known signature content were 

removed and eventually increased to 0.655 when proteins with two known signature 

contents were also deleted from the dataset.  

It is expected that with the availability of more information on signature content of 

proteins, the true positive rate of the proposed approach will drastically increase along 

with a low false positive rate. Nevertheless, the examination of the ROC curve indicates 
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that protein signature profiling approach presents a competitive, or even better, result 

compared to other currently available domain-based methods such as MLE when applied 

over the same dataset. 

4.4.2 Fold value analysis 
The PPI pairs predicted by means of the proposed protein signature profiling 

approach were also compared to two other non-signature-based methods: phylogenetic 

profiling and gene expression profiling. Based on genomics information, phylogenetic 

profiling method has been reported as one of the most promising computational methods 

to predict PPI pairs (Marcotte et al., 1999); whereas gene expression profiling method 

utilizes conserved co-expression patterns of genes to predict interacting protein pairs 

(Fraser et al., 2004). To examine the efficacy of the proposed protein signature profiling 

approach, methods of phylogenetic profiling and gene co-expression profiling along with 

the proposed approach were compared against the same reference datasets.  

To construct phylogenetic profiles among proteins, query proteins were blasted 

against reference genome database consisting of 90 species (see Methods). The co-

expression patterns were constructed based on normalized DNA microarray data 

confirmed from Stanford Microarray Database (see Methods).  

Results from above-mentioned methods applied to three model organisms were 

compiled in Table 4.2. As seen in the table, the signature profiling approach predicts less 

interacting pairs, with relatively more matched pairs with observed datasets. To quantify 

the statistical significance of the predicted PPI pairs among three profiling methods, a 

statistical parameter, called fold, was used to facilitate the comparison (Deng et al., 

2002). Fold is the ratio of the fraction of the predicted PPI pairs matched with 

experimentally confirmed dataset, to the fraction of predicted PPI pairs:  

                                                         
M

n
K

k
Fold

0

=                                                        (4.11)                               

Where 0k  is the number of matched predicted PPI pairs found in the experimentally 

confirmed dataset, K  is the size of the experimentally confirmed dataset, n  is the 

predicted PPI pairs satisfied a threshold value, and M  is the total number of possible PPI 

pairs; i.e., m(m-1)/2. The m value for S. cerevisiae, C. elegans, and H. sapiens is 2242, 
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1402, and 8667, respectively. Fold is the probability of true interaction in predicted PPI 

pairs compared to the random prediction. The greater the fold, the higher the probability 

of interaction will be compared to the random pairing.  

Figure 4.3 illustrates changes in fold values among protein signature profiling, 

phylogenetic profiling, and gene expression profiling methods applied to S. cerevisiae, C. 

elegans, and H. sapiens. Generally speaking, the proposed approach can predict more PPI 

pairs (at a confidence level of 0.95) than two other non-signature-based methods. As one 

or two protein signature contents were removed, the fold values of PPI pairs predicted by 

the protein signature profiling increased significantly as compared to phylogenetic 

profiling and gene expression profiling methods. This suggests that as proteins possessing 

more protein signature contents were deleted from the predicted PPI pairs, the probability 

of remaining predicted pairs being considered as false positive pairs would reduce 

noticeably. As a result, more PPI pairs with a high confidence level can be predicted.  

4.5 Discussion 
In this chapter, we propose that the similarity of protein signature patterns could be 

used to predict interaction between two proteins. Different from other domain-based 

approaches such as MLE method that utilizes a part of experimental PPI pairs as a 

learning dataset to train a scoring function in order to calculate the interaction probability, 

the proposed approach does not require any learning set. In fact, the entire data can be 

used as a query dataset. The protein signature profiling approach predicts interactions 

upon the extent of similarity between the signature contents of the two proteins; while 

domain-based methods predict interactions between protein domains and assume that two 

proteins will interact, if at least one pair of domains from the two proteins interact.  

The significant threshold values are associated with the confidence level and the size 

of predicted PPI pairs. The significant threshold value in each confidence level is 

calculated by (-0.1)log(P). P, an absolute probability, is defined as the ratio of confidence 

level (= 1 – significance level) over the size of predicted PPI pairs, and “0.1” is the 

scaling factor that scales the threshold value to its corresponding binary similarity score 

between 0 and 1. Figure 4.4 portrays a significant threshold value with respect to each 

respective confidence level for three investigated organisms. For instance, at a confidence 

level of 0.95 (i.e., a 1 in 20 chances of being false positive), the significant threshold 
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value of choosing a binary similarity score for S. cerevisiae, C. elegans, and H. sapiens, 

is 0.56, 0.53, and 0.72 respectively. At these threshold values, the predicted PPI pairs will 

possess a significance level of 0.05. In other words, there is a 95% probability that the 

predicted PPI pairs are not resulting from random events. 

At a confidence level of 0.975, the corresponding significant threshold value is 0.6 for 

S. cerevisiae. From Figure 4.2, the true positive rate for the case of two-signature proteins 

removed, one-signature proteins removed, and no proteins removed under signature 

profiling approach (see legend shown in the figure) is 28.33, 14.92, and 8.25 respectively; 

whereas, the true positive rate for the MLE method at the same confidence level is 3.03. 

This indicates that the proposed approach is more sensitive than the MLE method, and 

the sensitivity of the approach can be manipulated by means of deleting proteins 

containing less signature content. As a result, more experimentally confirmed PPI pairs 

are predicted. 

 

Table 4.2. Comparison of signature profiling results with/without protein removal with two other 

non signature-based methods against three common reference datasets. 

 

 

   a: signature profiling method with no protein removal from the dataset. 

   b: signature profiling method with removing proteins containing one known signature. 

   c: signature profiling method with removing proteins containing two or less known signatures. 

 

Method predicted observed matched predicted observed matched predicted observed matched 

 S. cerevisiae C. elegans H. sapiens 
Signature 

profiling a 

22176 3745 372 10147 344 27 720549 13319 3314 

Signature 

profilingb  
14968 1079 182 7594 79 6 602234 5441 1890 

Signature 

profilingc  
10916 360 112 3838 17 3 226484 2223 1069 

Phylogenetic 

profiling  

59435 3745 292 51666 344 35 3419797 13319 2921 

Gene 

expression 

575258 3745 1942 115047 344 81 606367 13319 964 
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 Figure 4.3. Comparison of changes of fold value among three different PPI prediction methods. 

Each method is applied to Saccharomyces cerevisiae (sce), Caenorhabditis elegans (cel), and 

Homo sapiens (hsa).  
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Figure 4.4. The relationship between a confidence level and the significant threshold value. 

Significant threshold values are correspondent to binary similarity scores.  

 

Other than depicting the absolute relationship of fold value variations among different 

PPI profiling methods, Figure 4.5 presents the effect of removing proteins with different 

signature contents on the relative changes of fold values. As seen in the figure, by 

removing proteins with two signature contents from the predicted PPI pairs, the relative 

fold change of protein signature profiling versus phylogenetic profiling is 22.03, 23.60 

and 32.41 for S. cerevisiae, C. elegans, and H. sapiens, respectively; whereas, the relative 

fold change of protein signature profiling versus gene expression profiling is 32.11, 22.66 

and 17.45 for S. cerevisiae, C. elegans, and H. sapiens, respectively. Nevertheless at the 

case of no protein removal, the PPI pairs (at a confidence level of 0.95) predicted by the 

proposed approach is still out-performing the two non-signature profiling methods. 
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Figure 4.5. The effect of removing proteins with low number of signatures on the relative fold 

change. SP, protein signature profiling; PP, phylogenetic profiling; GEP, gene expression 

profiling; “-2”, proteins containing two signature contents; “-1”, proteins containing one-

signature contents; “0”,  no removal. 

 

New putative protein-protein interactions can be emerged from our results. In case of 

yeast, the experimental dataset contains 1438 proteins, while our analysis is focused on 

2242 proteins whose signature contents are available. Interactions involved with other 

804 (= 2242 – 1438) proteins may point out a direction for further experimental 

validation. For example, YBR208C and YGL062W are found interacting using our 

approach and these two proteins are not reported in the experimental dataset. Note that 

YBR208C contains seven domains six of them are shared by YGL062W. Both proteins 

function as carboxylases. One may postulate that a potential interaction between 

YBR208C and YGL062W. Such a clue may be used to guide a follow-up experiment.  
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Protein signature-based methods including our approach embed more intuitive 

biological reflection than others such as phylogenetic profiling method. Upon the notion 

that proteins interact through their conserved interfaces, not the whole sequence, the 

phylogenetic profiling method may not be able to identify true interacting partners. It 

relies on identifying orthologs of a query sequence in a set of genomes based on whole 

sequence alignment. Instead, protein signature profiling identifies interacting partners 

based solely on the pattern of functional interfaces, which are involved in protein 

interactions. The gene expression profiling method provides information on co-

expression of genes in different biological events. Although this information is a strong 

indication that genes with similar expression profiles may have functional relationships, it 

provides a relatively lower degree of contribution to the prediction of physical 

interactions.  

4.6 Conclusion 
Proteins interact with each other through their functionally independent, structurally 

conserved, and biologically related signatures. These properties established new insight 

into the prediction of protein-protein interactions. Many existing domain-based prediction 

methods calculated the interaction probability score between two signatures. The scoring 

function was trained based on a learning dataset and subsequently applied to predict 

protein interactions. In contrast, the proposed approach did not require training 

information and proteins were directly paired based on their signature contents, providing 

that they had at least one signature in common. When proteins with a low number of 

known signature contents (one and two signatures) were removed from the dataset, it 

resulted in more predicted PPI pairs at a high confidence level. Thus, with the availability 

of more and more proteins with known signature contents across organisms, the coverage 

and accuracy of protein interacting pairs predicted by this approach is expected to 

increase. The predicted PPI pairs can, for instance, be incorporated into metabolic 

pathway reconstruction, or be used to reveal existing knowledge gaps in the association 

of proteins and pathways.     
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5  

FALSE POSITIVE REDUCTION IN PROTEIN-PROTEIN 
INTERACTION PREDICTIONS USING GENE ONTOLOGY AND 
ANNOTATION 
 

A similar version of this chapter has been submitted to BMC Bioinformatics: 

Mahmood A. Mahdavi and Yen-Han Lin: False positive reduction in protein-protein 

interaction predictions using gene ontology annotations. 2007.  

 

Contribution of this chapter to the overall study 

Protein-protein interaction prediction techniques predict true interactions along with 

numerous false positives. In this chapter a global framework was proposed to reduce the 

number of false positives in the protein interaction dataset produced in previous chapter. 

Genomic information incorporated into metabolic networks should be verified to ensure 

the accuracy, consistency, and reliability of the data.   

 

5.1 Abstract 
Gene Ontology (GO) annotations were used to reduce false positive protein-protein 

interactions (PPI) pairs resulting from computational predictions. Using experimentally 

obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from 

GO molecular function annotations. The sensitivity of these keywords was 64.21% in 

yeast experimental dataset and 80.83% in that of worm. The specificities, a measure of 

recovery power, of these keywords applied to four predicted PPI datasets were 48.32% 

and 46.49% (by average of four datasets) in yeast and worm, respectively. Based on eight 

top-ranking keywords and co-localization of interacting proteins a set of two knowledge 

rules were deduced and applied to reduce false positive predicted protein pairs. The 

‘strength’, a measure of improvement provided by the rules, defined based on the signal-

to-noise ratio, was implemented to measure the applicability of knowledge rules applying 

to predicted PPI dataset. Depending on the employed PPI-predicting methods, the 

strength varied between two and ten-folds with respect to the randomly removing protein 
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pairs from datasets. Hence, GO annotations along with the deduced knowledge rules 

could be implemented to partially remove false predicted PPI pairs, resulting in more 

accurate protein interaction prediction. 

5.2 Introduction 
In recent years, high throughput technologies, in one hand, have provided 

experimental tools to identify protein interactions in large scale, generating tremendous 

amount of protein interaction data (Zhu et al., 2003). On the other hand, computational 

approaches for protein interaction inference have presented inexpensive growing number 

of methods to predict vast number of protein pairs on genome scale (Yu and Fotouhi, 

2006). However, both experimental techniques and computational approaches are 

affected by high false positives and false negatives (Mrowka et al., 2001) that tend to 

poor agreement among bench mark datasets (Bork et al., 2004). In the experimental front, 

false positive mostly stems from the technology involved. In recent years new analytical 

techniques have been introduced targeting more accurate screening (Campoy and Freire, 

2005). Nonetheless, some techniques have been already proposed to enhance the 

reliability of current high-throughput screening datasets (Deane et al., 2002). Searching 

the relationship among orthologous proteins in other organisms is one way to validate a 

new identified interaction (Patil and Nakamura 2005). When orthology is combined with 

domain content information of related proteins, the detected interacting pair of proteins is 

more reliable (Valencia and Pazos, 2002). In a recent work, the quality of experimental 

interaction datasets were improved by predicting missed protein-protein interactions 

using the topology of the protein interaction map observed by large-scale experiment (Yu 

et al., 2006). In the computational front, most efforts have been focused on detecting 

more protein-protein interactions by means of various techniques which identify true 

positives along with numerous false positive and false negative predictions. Reduction of 

computational false positive predictions has not been adequately investigated. 

Verification of protein interactions based on co-expression of their orthologs is one 

proposal (Tirosh and Baraki, 2005).  

So far, several computational approaches have been proposed to predict protein 

interactions (Valencia and Pazos, 2002). These approaches can be grouped into six 

categories based upon the ideas that are originating from as stated in Chapter 1. False 



 73

positive prediction in all computational methods is a challenge. Currently overlap among 

computational approaches is not statistically significant (Bard and Rhee, 2004). 

Furthermore, because of the lack of solid information on protein-protein interaction, the 

accuracy of different computational approaches remains uncertain. Nevertheless, it is a 

common perception that if both experimental results and computational approaches agree 

on a link, the confidence level of that link would be high. Therefore, one measure to 

evaluate the false positive content of computational predictions is the level of agreement 

with experimental findings. Although high-throughput screening techniques are affected 

by false positives, validation of computational pairs by experimental results is widely 

acceptable.  

To enhance the overlap between computational predictions and experimental results, 

a common ground upon which the predicted results can be evaluated is required. Gene 

Ontology (GO) annotations may serve as the common ground, even though annotation is 

an ongoing process. Gene Ontology (GO) is the database that contains controlled 

vocabularies to annotate molecular attributes for different model organisms. Annotations 

are defined in three structured ontologies which allow the description of molecular 

function (F), biological process (P), and cellular component (C). Each ontology is 

structured in child-parent hierarchies in which a ‘child’ may have many ‘parents’ and 

child terms are components of parent terms. Thus, information provided by GO should be 

useful in further assessment of predicted PPIs and may be integrated with global filtering 

algorithms to reduce the number of false positives in PPI prediction techniques. 

Currently, several attempts have been reported to construct functional association 

predictors solely based on GO information. Most annotations are backed up with 

experimental evidence and are collected in certain databases (Reboul et al., 2003). 

Annotation transfer was utilized to relate multi-function proteins which may operate in 

different locations (Hegyi and Gerstein 2001). In some studies, associations between 

proteins in a pair are assessed in terms of the similar GO terms (Rhodes et al., 2005), 

while other studies evaluate functional associations based on either information content 

(Lord et al., 2003) or GO structural hierarchy (Wu et al., 2005). With the combination of 

GO annotations and global mRNA expression analyses a multi-stage frame-work was 

introduced to integrate this information, resulting in characterizing more proteins with 
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more detailed annotations (Jiang and Keating, 2005). In a recent study, GO annotations 

have been used to construct a PPI network for yeast by measuring similarity between two 

gene ontology terms with a relative specificity semantic relation (Wu et al., 2006).  

Therefore, GO can be utilized as a useful informatics resource to either predict or 

further analyze the predicted PPI datasets. However, ontology annotation is an 

incomplete process and suffers from inconsistency within and between genomes. In some 

cases, two confirmed interacting proteins are assigned with two different GO annotations 

which are not equivalent in terms of information content. One protein is assigned with a 

term that represents a broad type of activity, and its interacting partner is assigned with a 

more specific term that represents a subtype of that activity. In other cases, some proteins 

have not even been assigned with all three ontologies which make the interaction 

assessments more difficult without human intervention. Thus, molecular functions of GO 

annotations of related proteins should be harmonized in relation to information content 

and compared on a more general level. There is advantage and disadvantage associated 

with harmonization of GO terms. The advantage is that the relationships between proteins 

in a pair can be detected systematically using some keywords and it is not required to be 

verified manually. The disadvantage is that the integration of GO annotations and 

predicted PPIs might not be able to reveal the specific functions of interacting proteins. 

However, knowing the fact that PPI prediction techniques are merely capable to specify 

the general category of relationship between two proteins, this disadvantage is not a great 

source of concern.  

In this chapter, a global framework to refine computationally predicted datasets is 

developed. First, two experimental PPI datasets with high confidence were prepared for 

two model organisms, S. cerevisiae and C. elegans. Assuming the experimentally 

confirmed pairs are true, the GO annotations of these interacting proteins were utilized to 

extract keywords which represent general category functions of the proteins. Then, a set 

of heuristic rules was established to be satisfied by predicted interacting proteins using 

extracted keywords and the fact that interacting proteins often function in the same 

cellular locations which assumes that two proteins acting in the same cellular components 

are more likely to interact than those located in different components. Next, four 

computational methods representing four out of six categories of prediction techniques, 
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mentioned earlier in this section, were selected. Using these methods, four predicted 

datasets were created for each organism of interest. The heuristic rules were applied to 

these predicted datasets. When a predicted pair of interacting proteins satisfied the rules it 

was considered a true positive, otherwise the pair was assumed false positive and 

removed from the dataset. The results show that the filtered datasets have higher true 

positive fractions than non-filtered datasets and the improvement is statistically 

significant. 

5.3 Methods            

5.3.1 Experimental datasets 
The dataset containing experimentally obtained protein pairs was used to extract the 

functional keywords from GO annotations. The dataset was compiled from the following 

three sources: (1) von Mering et al. (2002) reported high confident yeast protein pairs 

that were confirmed by at least two experimental methods, resulting in 1920 protein 

pairs; (2) BIND database (Alfarano et al., 2005) contains 10618 yeast protein pairs that 

were experimentally confirmed and manually curated; and (3) CYGD (Guldener et al., 

2005) contains 10472 experimentally verified yeast protein pairs. Combining three 

sources resulted in 16507 non-duplicated yeast protein pairs, consisting of 4391 proteins.  

Worm dataset was constructed from BIND and Li et al. (2004). They reported 4960 

and 6629 protein pairs, respectively. These pairs were obtained by means of yeast two-

hybrid technique and manually curated. After removing repeated pairs the dataset 

consists of 7081 pairs, comprising 3390 proteins in C. elegans.  

The two experimental datasets are presented in Supplementary Data (Chapter 5). 

5.3.2 Computational protein-protein interaction methods 
Four PPI predicting methods from four out of six categories discussed in chapter 1 

were chosen, including phylogenetic profiles (PP), chance co-occurrence distribution 

coefficient (CC), gene expression profiles (GE), and maximum likelihood estimation 

(MLE). The criteria of choosing these methods were based on: their genome-wide 

applicability and competitive results in the category (Marcotte et al., 1999; Butland et al., 

2005; Tu et al., 2006; Liu et al., 2005). Detail information on implementation of these 

methods is as follows: 
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1. Phylogenetic profiles (PP): The numbers of proteins studied in two organisms are, 

m=5863 in S.cerevisiae and m=12095 in C.elegans. The proteins of each organism were 

considered as queries and aligned against a database comprising 90 genomes using 

BLAST program. The list of reference genomes is in Supplementary Data (Chapter 5). 

Genomes were obtained from www.ncbi.nlm.nih.gov. Running BLAST program, using 

SEG filter over 75% similarity of the sequences, the output was a list of homolog proteins 

and their e-values within each genome that better match the query sequence. The best hit 

in each genome was taken as one bit in the profile and then profiles were created for each 

individual protein. These profiles should be converted into binary profiles in the form of 

1 and 0 to represent the presence or absence of an individual protein in other genomes. 

To convert e-values to binary numbers it was required to know if the alignment score for 

each protein sequence Pi was statistically significant. Statistical significance of an 

alignment was described by the probability of finding a higher score when two sequences 

were compared based on a random selection. This probability depends on the number of 

comparisons made. If the number of proteins encoded in query genome is m  and the 

number of encoded proteins in 90 reference genomes is p  the total number of 

comparisons is: pm× . Therefore, the probability of finding a match for an individual 

protein sequence is )/(1 pm× . In this study p=370461 and m for each organism is given 

above. We considered this probability as a threshold based on which e-values could be 

translated to present or absent status. Once the binary profiles were established, they were 

compared to find interacting proteins. Matching profiles were considered ‘interacting’.  

2. Gene co-expression profiles (GE): Genes with similar co-expression patterns are 

more likely to interact. To find out which genes are co-expressed, the expression levels of 

the studied genes were extracted from normalized DNA microarray data files obtained 

from Stanford Microarray Database (Ball et al., 2005). Each file corresponds to an 

experiment. All expression values were collected in a gene expression matrix in which 

each row represents a different gene and each column corresponds to a different 

microarray experiment (100 experiments in S. cerevisiae, 575 experiments in C. elegans). 

The matrix is supplied into EXPANDER program (Shamir et al., 2005) for clustering. 

Choosing click algorithm to cluster genes, the resulting number of clusters were 6 and 10 

for yeast and worm genes, respectively. Overall homogeneity of clustering was 0.552 in 
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yeast and that of 0.631 in worm. Genes in the same cluster are co-expressed genes in 

different biological conditions. These genes were paired and considered ‘interacting’. 

3. Chance co-occurrence distribution (CC): Genes with identical patterns of 

occurrence across organisms tend to prediction of interactions; however, the requirement 

that the profiles be identical restricts the number of links that can be established by such 

pylogenetic profiling. Thus, there is a technique that relies on scoring phylogenetic 

patterns and matches them based on those scores rather than identical profiles. The 

scoring function provides more information than the simple presence or absence of genes. 

Chance co-occurrence probability distribution has been used as a measure of 

similarity between two phylogenetic profiles. Based on the probability that a given 

arbitrary degree of similarity between two profiles would occur by chance, with no 

biological pressure, the interaction predictions are drawn with the criterion used to reject 

the null hypothesis. The probability P(z|N,x,y) of observing by chance (i.e. no functional 

pressure) z co-occurrence of genes X and Y in a set of N genomes, given that X occurs in 

x genomes, and Y occurs in y genomes is calculated as follows: 

                                                                
W

wwP zz=                                                        (5.1) 

where zw  is the number of ways to distribute z co-occurrence over the N genomes, zw  is 

the number of ways of distributing x-z and y-z genes over the remaining N-z genomes, 

and W is the number of ways of distributing X and Y over N genomes without restriction. 

The final equation is as follows: 
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The general trend of –log(P) versus z for each protein pair (X,Y) is illustrated in Figure 

5.1. Critical co-occurrence, zc, is defined as the minimum number of co-occurrences 

required between two proteins to be considered as interacting proteins. Thus, as shown in 

this figure, protein pairs whose –log(P) is higher than a cut-off threshold (here, 8) and 

czz ≥  were predicted as interacting proteins.  
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Figure 5.1. The negative logarithm of probability of z co-occurrence by chance (P) versus z. 

Based on the threshold value and zc protein pairs with –log(P) located on the right-hand side 

portion of the curve are chosen as interacting proteins.   

 

4. Maximum Likelihood Estimation (MLE): The underlying hypothesis in this method 

is two proteins interact if and only if at least one pair of domains from the two proteins 

interact. Let D1, D2,….,DM denote the M domains, and P1, P2,….PN denote N proteins. Pij 

denotes the protein pair of Pi and Pj, and Dij denotes the domain pair of Di and Dj. 

Treating protein-protein interactions, and domain-domain interactions as random 

variables, the probability of interacting two proteins under stated assumption is: 

                                                    ∏
∈

−−==
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mnijP )1(0.1)1Pr( λ                                   (5.3) 

where λmn= Pr(Dmn=1) denotes the probability that domain Dm interacts with domain Dn. 

False positive rate (fp) and false negative rate (fn) are defined based on observed 

interactions. Let Oij be the variable for the observed interaction result for proteins Pi and 

Pj. Oij =1 if the interaction is observed and Oij=0 otherwise. Then, 

                                                           )0|1Pr( === ijij POfp                                       (5.4) 

                                                          )1|0Pr( === ijij POfn                                        (5.5) 

Thus, the probability of observing a protein-protein interaction is: 

                                    fpPfnPO ijijij ))1Pr(1()1)(1Pr()1Pr( =−+−===                    (5.6) 
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The probability of the observed whole genome interaction dataset is  

                                      ijij O
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O
ij OOL −=−==∏ 1))1Pr(1())1(Pr(                                 (5.7) 

where Oij=1 if the interaction of Pi and Pj is observed and Oij=0 otherwise. L is the 

likelihood and is a function of λmn, fp, and fn. In this calculation we fix fp and fn (see 

Chapter 4) and compute λmn using a recursive formula. First, initial values for λmn are 

chosen. Then Pr(Pij=1) and Pr(Oij=1) are computed by equations (5.3) and (5.6), 

respectively. Parameter λmn is updated using the following equation: 
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and likelihood function is computes by Equation (7S). Calculations continue until the 

value of likelihood function is unchanged within a certain error.  

The four prediction methods were applied to S. cerevisiae, and C. elegans genomes. The 

resulted eight datasets are available in Supplementary Data (Chapter 5). 

5.3.3 Gene ontology annotations 
The GO annotations of proteins were retrieved from the UNIPROT knowledgebase 

(Bairoch and Boeckman, 1992), which is collaborated with the GO database (The Gene 

Ontology Consortium, 2000). Annotations in both UNIPROT and GO databases are 

updated on a regular basis. In this study, the UNIPROT knowledgebase (Release 8, June 

2006) and the GO database (Version 1.362, May 2006) were used to extract keywords for 

the false positive reduction on the predicted protein pairs. 

5.3.4 Keywords extraction 
Proteins involved in experimentally verified protein pairs were submitted to 

UNIPROT. Then GO and InterPro cross-reference assignments of the protein were 

retrieved. Through “interpro2go” (retrieved from Mappings to GO in GO website), all 

InterPro entries were mapped to GO terms and the GO terms of each protein were 

searched using AMIGO term search engine. The searched GO term information of each 

protein was collected and redundant information was removed. The remaining term 

definition relevant to molecular function annotation (a part of term information) was 

compiled and used as a training dataset. The dataset was further manually grouped into 

different clusters according to their general molecular activities; for instance, 
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GO:0003723 and GO:0000166 were placed in the same cluster because of molecule-

binding activities. Refer to Supplementary Data (Chapter 5) for a complete listing of all 

clusters for S. cerevisiae and C. elegans.  

In order to determine a representative keyword in a cluster, the number of 

occurrences (n) of a word in a cluster was counted, and the probability of finding that 

word in the training dataset was calculated using Poisson distribution: 

                                                        
!
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n

enp
nλλ−=                                                         (5.9) 

where λ = N x f, in which N is the total number of words in a cluster, and f is the relative 

frequency of that word found in the whole training dataset. To avoid floating point errors 

and facilitate computation, n! was approximated by Stirling’s approximation, resulting in: 

                                         )!ln(ln)(ln nnnp −+−= λλ                                               (5.10)      

This calculation is valid when the total number of words in the training dataset is much 

greater than N or when f is small. In order to identify most comprehensive words in each 

cluster, grammatical terms such as proposition, and chemical formulae were purposefully 

eliminated. In “enzymatic function” cluster, all enzyme activities were considered as “ase 

activity” since enzymes are introduced with “ase” suffix in biochemistry literature. In 

each cluster the word with the most negative logarithmic value was selected as the 

representative keyword.  

5.4 Results and Discussion  
Using information deposited in the UNIPROT and GO databases, the experimentally 

obtained protein pairs for yeast and worm were processed, resulting in 1042 non-

redundant GO term information (including 4391 yeast proteins) and 748 non-redundant 

GO term information (including 3390 worm proteins), respectively. These pieces of term 

information were further clustered, resulting in 35 and 25 keywords for yeast and worm, 

respectively (see Supplementary Data, Chapter 5). 

 

5.4.1 Significant keywords 
 Low frequencies of appearance of some keywords in the training dataset prompts 

that all extracted keywords do not contribute equally to discriminate GO annotations. As 
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listed in Table 5.1, the frequency of appearance of each keyword was ranked in 

descending order. Eight top-ranking keywords were chosen for the following analyses, 

and the remaining keywords (27 in yeast and 17 in worm) were grouped and called it as 

“remains”. In order to evaluate the significance of these top-ranking keywords, the 

sensitivity and specificity analysis was conducted. Sensitivity (SN) is the percentage of 

protein pairs that are recovered using a certain keyword or a group of keywords when 

they are applied back to the source (the training dataset). Specificity (SP) is the 

percentage of protein pairs recovered when keywords are applied to predicted datasets 

(the test datasets). 

The sensitivity of each keyword was calculated as: 

1001100
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where x is the total number of pairs in the experimental dataset (the training dataset). If ni 

=1, it indicates that two proteins in pair i are represented by a keyword; and ni =0, 

otherwise. Cumulative sensitivity of all keywords was obtained as: 

 

 

Table 5.1. Frequencies of extracted keywords in the yeast training set (experimental dataset). 

Keywords frequency 

Binding 3337 

ase activity 2797 

Porter activity 397 

Transcription activity 372 

Ribosome 134 

Translation activity 58 

Structural activity 51 

Receptor activity 23 

Remaining keywords ( 27 keywords) 230 
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where z is the number of keywords. If nij=1, it shows that two proteins in pair i are 

represented by the common keyword j; and nij=0, otherwise. Cumulative sensitivity 

demonstrates the recovery power of all keywords collectively when they are applied to 

the source (training set). Specificity of a keyword and cumulative specificity of all 

keywords are similarly defined and calculated: 
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where y is the total number of pairs in the predicted dataset (the test dataset). Cumulative 

specificity translates into the recovery power of all keywords when they are applied to a 

predicted dataset (test set).  

Figure 5.2 illustrates the cumulative sensitivity variations among extracted keywords 

in both organisms. The cumulative sensitivity of all keywords is 64.43%. While only the 

top 8 high-scored keywords are considered, the cumulative sensitivity is 64.21%, 

indicating that the remaining keywords imposed relatively insignificant contribution to 

the cumulative sensitivity. Similarly, in worm the same eight keywords contributed to 

80.83% cumulative sensitivity and the remaining keywords increased that value to 

80.88% (i.e. 0.05% increase). Thus, in trade-off between the lowest number of keywords 

and the highest cumulative sensitivity, it is favourable to neglect 27 keywords in yeast 

(17 keywords in worm) with the price of 0.22% (0.05% in worm) lower sensitivity. 

In order to further examine the significance of extracted top-ranking keywords from 

the training dataset, the cumulative specificity of the keywords applied to four predicted 

protein-protein interaction datasets were calculated. These four predicted datasets were 

obtained using computational methods including phylogenetic profiles (PP), gene 

expression (GE), maximum likelihood estimation (MLE), and chance co-occurrence 

distribution (CC). The implementation of these methods is described in Methods. As 

illustrated in Figure 5.3, the cumulative specificity varies from 25% in PP dataset to 69% 

in MLE dataset. In all four predicted datasets specificity changes very slightly when it is 
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extended from top-ranking keywords to all extracted keywords. Similarly, in Figure 5.4, 

cumulative specificity ranges from 32% in PP dataset to 64% in MLE dataset using top-

ranking eight keywords. The remaining keywords exert negligible changes to cumulative 

specificities in all four datasets. Therefore, these top-ranking eight keywords extracted 

from the experimental datasets of both organisms are capable of representing the 

common functions of interacting proteins either experimentally specified or 

computationally predicted. 
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Figure 5.2. Cumulative sensitivity of keywords for yeast and worm datasets. Each column 

indicates sensitivity of a keyword in addition to sensitivities of previous keywords. The highest 

sensitivities are 64.43% and 80.88% in yeast and worm training datasets, respectively.  

Abbreviations for keywords are as follows: BI (binding), AS (ase activity), PO (porter activity), 

TC (transcription activity), RI (ribosome), TL (translation activity), ST (structural activity), RE 

(receptor activity), and RK (remaining keywords).   
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Although the eight top-ranking keywords significantly recover the experimental or 

predicted datasets, the cumulative sensitivity or specificity is not distributed equally as 

seen in Figures 5.2-5.4. Among keywords “binding (BI)” is an exception with the 

sensitivity of 53.22% in yeast dataset, for instance, compared to 8.20% for “ase activity 

(AS)”, 0.43% for “porter activity (PO)”, and so on. This drastic difference between the 

sensitivity or specificity of this particular keyword and that of other keywords stems from 

the fact that our experimental dataset is a collection of protein interactions detected 

mainly by two-hybrid technique. This high-throughput technique detects physical 

interactions among proteins in which binding of a protein to active site of another protein 

is a crucial step. Accordingly, most of these protein pairs are assigned with “binding” 

molecular function annotation in GO database. On the other hand, contribution of some 

keywords such as “receptor activity (RE)” in cumulative sensitivity is 0.20% which is not 

a remarkable contribution; however, it is significant when it is compared with 0.22% 

increase in cumulative sensitivity by “remaining keywords (RK)” which represents 27 

keywords in case of yeast.       

It should be noted that the highest obtainable cumulative sensitivity, in yeast for 

example, is 64.43% and 64.21% as top-ranking eight keywords were employed. 

Currently, it is impossible to obtain complete sensitivity (100%), as some experimental 

pairs do not have consistent annotations. This inconsistency comes from the fact that 

there are deficiencies in either annotation or experimental techniques. In case of worm 

the inconsistency is worse than yeast. Only 55% of worm genes are annotated and many 

annotations are not consistent. It is also notable that GO molecular function annotations 

can not be used directly as keywords. When the definition of GO molecular function was 

considered as a keyword, the cumulative sensitivity of the training dataset was only 45%, 

comparing to that of 64% the keyword extraction approach was implemented. 

 

 

 

 



 85

-- -- B I A S P O T C R I T L S T R E R K
0

10

20

30

40

50

60

70

80

90

100
C

um
ul

at
iv

e 
SP

(%
)

K e yw o rd s

YE A S T
 P .P .
 M L E
 G .E .
 C .C .

 
 

Figure 5.3. Cumulative specificity of trained keywords for yeast dataset. The keywords are 

applied to four predicted PPI datasets. Each data point indicates specificity of a keyword in 

addition to specificities of previous keywords. Abbreviations for keywords are as follows: BI 

(binding), AS (ase activity), PO (porter activity), TC (transcription activity), RI (ribosome), TL 

(translation activity), ST (structural activity), RE (receptor activity), and RK (remaining 

keywords). RK includes 27 keywords with negligible contribution to cumulative SP.  
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Figure 5.4. Cumulative specificity of trained keywords for worm dataset. The keywords are 

applied to four predicted PPI datasets. Each data point indicates specificity of a keyword in 

addition to specificities of previous keywords. Abbreviations for keywords are as follows: BI 

(binding), AS (ase activity), PO (porter activity), TC (transcription activity), RI (ribosome), TL 

(translation activity), ST (structural activity), RE (receptor activity), and RK (remaining 

keywords). RK includes 17 keywords with negligible contribution to cumulative SP.  
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5.4.2 Heuristic Rules 
Protein interactions take place in either permanent or transient complexes formed in a 

cell (Cho et al., 2006) suggesting that proteins are required to exist in close proximity to 

interact physically (Nooren and Thornton, 2003).  Hence, the concept of protein-protein 

interactions in cellular systems is based on the following two observations: (i) interacting 

proteins often perform similar general functions, assuming that two proteins functioning 

in the same general category are more likely to interact than two proteins involved in 

different functions: (ii) co-localization may serve as an useful tool to predict protein 

interactions. Physical interactions occur when two proteins are located in the same 

cellular component, either a permanent cellular location or a transient complex. 

Motivated by the two observations, two heuristic rules were set to be satisfied by 

predicted interacting protein pairs. These rules are:  

(I) Two predicted proteins in the pair should match one of the eight trained function 

keywords. 

(II) Two predicted proteins in the pair should be in the same GO cellular components.  

 

As many computational protein interaction prediction techniques suffer from mass 

false positive predictions, satisfying the rules filters the predicted datasets and removes 

the false interactions to some extent. 

Based on the algorithm depicted in Figure 5.5, these two rules were applied to eight 

predicted PPI datasets for both yeast and worm (see Supplementary Data, Chapter 5 for 

source codes and output files). The algorithm reads PPI pairs predicted by PP, GE, MLE, 

and CE sequentially. The algorithm then examines if two proteins in the same pair 

possess GO annotations: molecular function and cellular component. If so, such a pair 

with annotations is checked with the proposed rules. Satisfying rule 1 and rule 2, this 

protein pair is considered as an interacting one. Finally, the filtered predicted dataset is 

compared with experimental dataset to assess the level of agreement with experimental results.  
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Figure 5.5. The flowchart of algorithm used to filter predicted protein interaction datasets. 

 

In order to evaluate the improvement made by applying rules to the predicted PPI 

datasets, the signal-to-noise ratio (SNR) (Fujimori et al., 1974) was employed. SNR is a 

measure of signal strength relative to background noise. In bioinformatics, SNR is 

translated to the ratio of capability of a computational technique in creating protein pairs 

to pairing proteins on a random basis. Therefore, we define SNR as the ratio of the true 

positive fraction of a predicted dataset to the true positive fraction of a randomly selected 

dataset with the same sample size. True positive fraction of a dataset is the ratio of 

matched protein pairs found in the experimental dataset to the total number of pairs in the 

same dataset: 

Predicting protein-protein interaction 

GO annotation 

Rule 1 AND Rule 2 

yes 

yes 

Compare with experimental results 
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SNR was calculated for all four predicted datasets for yeast and worm in the following 

two circumstances: before applying the rules to a dataset (raw dataset), and after applying 

the rules to a dataset (filtered dataset). The effect of the rules on the reduction of false 

positive predictions was measured by strength (S): 

                                             
DatasetRaw

DatasetFiltered

SNR

SNR
S =                                                        (5.16) 

Table 5.2 indicates values of the strength in four predicted datasets in each studied 

organism. As seen in this table when rules were applied to a predicted dataset and false 

positive predictions were removed, the true positive fraction of the dataset improved from 

approximately 2-fold to 10-fold compared to true positive fraction of the same dataset 

prior to applying the rules. Despite overall improvement in true positive fraction of 

predicted datasets, the strength value depends on the computational method employed to 

create a predicted dataset. In PP method, rules play more effective roles to eliminate false 

positive predictions than other three methods. The Strength was 9.9 in PP dataset in yeast 

while it was 2.32 when rules were applied to MLE dataset. The same trend was observed 

in worm datasets. The highest strength 3.94 occurred in PP. dataset and the lowest 

strength was obtained in MLE dataset. This indicates that in MLE method the rules are 

less effective than others due to the higher accuracy of this prediction method in the first 

place that relies on domain content of proteins, and protein-protein interactions are build 

upon domain-domain interactions. Overall strength values in yeast are greater than their 

corresponding values in worm. This is due to more availability of experimental 

information on yeast protein interactions than that on worm. Yeast is a well studied single 

cellular organism with many characterized proteins, while worm is a more complicated 

multi-cellular organism with numerous uncharacterized proteins.  
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Table 5.2. SNR and S values of predicted datasets, before (raw dataset) and after (filtered dataset) 
removing false positives.  

 Yeast Worm 

Method SNR*(Raw 

Dataset) 

SNR* (Filtered 

Dataset) 

S SNR* (Raw 

Dataset) 

SNR* (Filtered 

Dataset) 

S 

PP 1.59 15.78 9.90 32.78 129.0 3.94 

GE 1.89 8.83 4.67 27.36 66.0 2.41 

CC 3.10 12.21 3.94 51.88 202.0 3.89 

MLE 13.44 31.14 2.32 197.2 387.0 1.96 

(*) SNR was calculated based on Equation (5.15). Random datasets were established based on the same 
number of protein pairs with corresponding sets and their true positive fractions were calculated based on 
the mean of 100 trials.  
 

The algorithm proposed here to reduce the number of false positive interaction 

predictions has a global application. This algorithm can be applied to any predicted 

protein-protein interaction dataset and is not biased toward any computational approach. 

The algorithm is a post-prediction processing step so that it is applied to the resulted 

predicted dataset when a computational method is implemented. Thus, it can be attached 

to any computational strategy for further improvement of predicted results. However, it 

should be noted that ontology is an ongoing process and for new genomes only a few 

percentage of genes have been fully annotated. With more genes assigned with GO terms, 

the proposed filtering algorithm becomes a promising approach to reduce the number of 

false positive interactions and enhance the accuracy of inferring protein-protein 

interactions. 

5.5 Conclusion 
Gene ontology annotation was used as a common ground to evaluate protein pairs 

predicted by four different PPI-predicting methods. Molecular function annotations in 

Gene Ontology database were used to extract discriminating keywords, upon which 

heuristic rules were set. The rules were incorporated into an algorithm by which predicted 

datasets were filtered and false positive predictions were partially removed from the 

datasets. When only eight top-ranking keywords were chosen, on average 71% of 

molecular function annotations could be recovered as indicated by the cumulative 

sensitivity for both experimentally obtained and computationally predicted protein pairs. 
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The effectiveness of the proposed algorithm to filter false positive predicted protein pairs 

varies from one method to another. The proposed algorithm was unbiased and could be 

implemented to any existing computational method to increase the accuracy of PPI 

prediction. As more genes are assigned with GO annotations, the proposed filtering 

algorithm will become more effective accordingly.  
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6  

EXPANDING RECONSTRUCTED METABOLIC NETWORK OF C. 
ELEGANS USING NEW PREDICTED PROTEIN-PROTEIN 
INTERACTIONS 

 
Contribution of this chapter to the overall study 

In this chapter newly predicted protein-protein interactions were incorporated into the 

current metabolic network of C. elegans and new function for uncharacterized proteins 

were inferred. These new functions were outcome of the expanded version of the 

metabolic network resulted in this research.  

 

6.1 Abstract 
Metabolic networks are greater portrays of entire metabolic activities taking place in a 

living cell. This picture consists of many elements including genes, proteins (enzymes), 

metabolites, and reactions categorized into pathways. Growing efforts are made to 

identify all these elements and discover relationships among them and eventually put 

them in a network context. No metabolic network has been completed so far as many 

organisms’ cellular systems especially eukaryotes are extremely complicated. 

Nevertheless, many attempts were made, including this chapter, to expand these 

sophisticated networks step by step. To expand a metabolic network more protein-protein 

interaction information were supplied to the current network. These pair-wise interactions 

were compared with the known interactions and new partners were identified. With the 

predicted interaction dataset provided by signature profiling method, 1024 novel 

interactions were introduced upon which the known metabolic proteins in C. elegans 

metabolic network increased from 17% to 22%, nearly 27% increase compared to the 

current network. Novel interactions were used to infer function for the unknown proteins 

involved in these interactions. The possible locations and the association of metabolic 

reactions of these unknown proteins within the network were inferred to eventually 

narrow down the number of experiments ought to be performed to confirm these links.       
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6.2 Introduction 
Two-dimensional genome annotation refers to the integration of various levels of 

metabolic information and reconstruction of metabolic networks. Metabolic information 

is presented in different ‘omics’ including genomics, transcriptomics, proteomics, and 

recently metabolomics (Beecher, 2002). Metabolomics is the latest piece of this chain. It 

is defined as the collection of all metabolites synthesized by proteins in a living cell. 

Metabolite profiling of some species has been performed (Roessner et al., 2002) and 

many metabolites have been characterized due to this global approach (Fernie, 2003). 

With the availability of metabolite data in biological systems, analysis of biological 

processes especially metabolic networks will be more accurate and comprehensive 

(Thomas, 2001). Computational approaches such as machine learning algorithms have 

been used to discover simple and robust rules in the metabolomic map of organisms 

(Kell, 2002). Furthermore, numerous experimental techniques are available to detect the 

metabolite profile of organisms. These techniques are discussed elsewhere (for example, 

Castrillo et al., 2003) and are beyond the scope of this chapter.  

With the combination of all these hierarchies now researchers are able to link these 

different pieces of information and discover missing links in functional associations (Hall 

et al., 2002), novel pathways (Weckwerth and Fiehn, 2002), uncharacterized genes and 

their attributes (Trethwey, 2001) and eventually understand metabolic networks (Fiehn, 

2001). Early studies on metabolic networks, especially dynamic mathematical models, 

relied on heuristic-based methods such as cybernetic framework, because of low 

availability of biological information (Varner and Ramkrishna, 1999). With the growing 

number of sequenced genomes, Jeong et al. (2000) proposed a large-scale mathematical 

model for metabolic networks. This model was applied to 43 organisms in three domains 

of life and despite significant variation in their individual pathways the model could 

demonstrate striking similarities among organization of metabolic networks. Thus, all the 

requirements of the mathematical model of a metabolic network were identified and the 

type of resources utilized in this mathematical representation has already been specified 

(Wiechert, 2002). Integrating information captured by multi-parallel techniques on 

metabolic organization of an organism is one way to develop mathematical models. In 

plant biology Arabidopsis is a pre-eminent plant model extensively studied (Fiehn et al., 
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2001). Even comparing model organisms may provide substantial information on 

quantitative analysis of common reactions and their missing substrates (Krijgsveld et al., 

2003). Structural bases also provide valuable information on substrate specificity of 

metabolic reactions which is useful in flux analysis (Brinkworth et al., 2003). Integration 

of metabolic pathways with non-metabolic pathways such as regulatory and signalling 

may reveal some metabolic relationships which are involved in non-metabolic activities. 

Mastellos et al. (2005) employed a text-based data mining technique, called systems 

literature analysis (SLA), to elucidate interactions as such. With all this information, and 

using powerful bioinformatics tools, gene and their products are now assigned to 

metabolic pathways with high precision (Popescu and Yona, 2005). Pathway assignment 

also specifies the phylogenetic relationship of genes as conserved property of the 

genomes which has been practical with the aid of gene ontology and enzyme 

relationships (Clemente et al., 2005).  

Visualizing metabolic networks is another front to understanding and interpreting the 

network identity. Luyf et al. (2002) developed a visualizing tool, ViMAc, to explore the 

layout of yeast metabolic network representing expression data in a metabolic context. 

Visualization and interpretation of genome-wide functional linkages inferred from 

computational methods was performed to explore the hierarchy of genes in expression 

data (Strong et al., 2003). In this representation each linkage was displayed on a two-

dimensional scatter plot, organized according to the order of gene on chromosome. These 

visualizing tools were not applicable to large-scale networks. Adai, et al. (2004) proposed 

an algorithm to visualize very large biological networks. This algorithm is based on a 

force-directed iterative layout guided by a minimal spanning tree of the network. Using 

the algorithm, 23 new protein families were identified. As many network algorithms 

produce machine-readable representation of the networks, a process diagram was 

proposed to further represent metabolic networks in a human-readable form which is 

more useable to infer biological information from the network (Kitano et al., 2005).  

One of the immediate outcomes of metabolic networks is function inference. 

Different strategies have been used to infer gene function. Accumulation of data on gene 

expression and gene sequencing has motivated integrating most pertinent functional data 

for function inference (Date and Marcotte, 2001). RNA-mediated interference targeted 
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elucidating function for approximately 14% of C. elegans unknown genes mainly on 

chromosome I (Fraser et al., 2000). Following advances in RNA-mediated methodology, 

this information was integrated with other large-scale data such as microarray and protein 

interaction maps to enhance the speed and reliability of such function inference 

(Sugimoto, 2004). Intracellular concentration of metabolites were also used to establish a 

functional strategy for ‘silent’ S. cerevisiae genes which show no phenotype in terms of 

growth rate or other fluxes when they are deleted from the genome (Raamsdonk et al., 

2001). Probabilistic approaches were applied to metabolic networks and protein 

interaction maps to predict function on a genome scale (Letovsky and Kasif, 2003). 

Moreover, since most function inference techniques need manual curation of the 

information, probabilistic approaches such as gene ontology are able to assign gene 

functions through an iterative process that ultimately converges on the correct functions 

(Fraser and Marcotte, 2004). The robustness of these approaches intensively depends on 

the accuracy of the datasets employed that emphasizes on the importance of gold 

standard interaction datasets for function inference (Jansen and Gerstein, 2004). Now 

there are systematic genome-wide methods available to determine the function of an 

unknown gene and its products. These methods were reviewed by Carpenter and Sabatini 

(2004). Recently, structural genomics was used to predict function for un-annotated 

enzymes in metabolic networks (von Grotthuss et al., 2006). It has been shown in another 

study, proteins that co-operate in these networks in form of functional modules are 

groups of interacting proteins that are responsible for a specific step in a biological 

process (Chen and Yuan, 2006).          

New experimental technologies and emerging computational prediction techniques 

produce a huge amount of protein-protein interaction information. Thus, metabolic 

networks should be updated to keep up with the rapid increase in available protein-

protein interaction information. In order to include new information to the current 

knowledge of metabolic activities, it should be verified by means of statistical evaluation 

techniques and experimental findings. Following this validation process, the predicted 

results would be accurate enough to be candidates for further experiments. Therefore, the 

ultimate goal of computational prediction is suggesting potential interactions for further 

experimental validation.  
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In this chapter, the new protein-protein interactions, predicted by signature profiling 

method and evaluated by the rules inferred from GO annotations, have been integrated 

into the current metabolic network of C. elegans resulting in a bigger picture of metabolic 

activities in this species. In this expanded network, new proteins are associated with 

pathways and new enzymatic activities can be inferred for the uncharacterized enzymes 

in each pathway.  

6.3 Methods 
 Metabolic networks are reconstructed based on the catalytic activities of enzyme 

proteins. Basically, regulation of each metabolic reaction in a cell is the outcome of the 

activity of many regulatory and signalling proteins. However, in a metabolic network 

those regulatory and signalling proteins do not appear, since they make the network much 

more complicated. On the other hand, genome-wide protein-protein interaction prediction 

methods are not able to distinguish among different types of proteins such as metabolic, 

regulatory, signalling, etc. Therefore, in our working protein interaction dataset, predicted 

by signature profiling approach, the protein pairs in which at least one partner is involved 

in metabolism in the current metabolic network were selected. The selected pairs were 

compared against the existing protein-protein interaction map of C. elegans (see Section 

3.3.3) and new interactions were specified. Since in each pair one protein was known, the 

unknown partner was assigned to the pathway in which the known partner was 

participating. In cases where there is more than one partner for the known protein, the 

interacting protein with highest binary similarity score has the highest probability to be 

involved in that pathway and the remaining partners were ranked for their involvement in 

the pathway based on their binary similarity scores. This ranking was further used for 

function inference. Because of the generality of function of some proteins they may 

appear in more that one pathway. These proteins contribute to the interconnectivity of the 

network. Figure 6.1 illustrates the assignment procedure of new protein interactions to 

existing pathways.  

Once the unknown interacting proteins were assigned to pathways, gene function 

inference was performed based on novel protein-protein interactions in the expanded 

metabolic network. The function inference is upon the notion that when a known protein 

is involved in a reaction within a particular pathway, its unknown partner is predicted to     



 101

 
 

 

 

Figure 6.1. Pathway assignment procedure using new protein-protein interaction data. The upper 

part of the figure represents an existing web of interactions in a pathway. The lower part, 

demonstrates the association of newly characterized proteins with their known partners. The solid 

lines represent the current interactions in one particular pathway in the metabolic network. The 

dash lines represent new assignments to the pathway based on predicted interactions resulting 

from signature profiling approach. 
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be involved in the consecutive reaction (downstream or upstream) or in a parallel reaction 

that synthesize same product in an alternative path. Because the pathway structures were 

retrieved from KEGG, newly assigned proteins to the pathways are suitable candidates 

for enzymes whose reactions are known in KEGG, but their encoding genes are still 

unknown. Thus, it can be inferred that the unknown proteins (genes) interacting with 

known proteins encode those enzymes whose working reactions are given. When more 

than one unknown protein was involved for a particular enzymatic function, the protein 

with the highest binary similarity score was given the highest chance to link to that 

function. 

6.4 Results and Discussion 

6.4.1 Novel protein interactions 
Signature profiling approach predicted interacting protein pairs in C. elegans (see 

chapter 4). These pairs were predicted and screened through the false positive reduction 

algorithm discussed in chapter 5. Selecting the pairs in which at least one partner is 

known to be involved in metabolism, 1235 pairs remained in our dataset. This result is 

complying with the observation that approximately 10-20% of proteins in organisms are 

involved in metabolism (van Nimwegen, 2003). The dataset of 1235 protein pairs was 

compared to current protein-protein interaction map of C. elegans (see chapter 3) to find 

out how many novel pairs have been predicted by the signature profiling method. Of 

1235 pairs, 211 of which exist in the current map resulting in 1024 new predicted 

interactions (see Supplementary Data, Chapter 6). In these novel interactions one known 

protein is interacting with its unknown partner. The dataset of 1024 new interactions 

consisted of 294 proteins. Novel interactions were embedded to current protein-protein 

interaction map (see chapter 3) and the number of interactions increased from 32902 

pairs to 33926 pairs (see Supplementary Data, Chapter 6). In this expanded protein-

protein interaction map, the connectivity of each protein decreases from 42 to 34 because 

the number of characterized metabolic genes increases from 792 to 1009. This translates 

to a 27% increase in the number of characterized genes involved solely in metabolism. 

From the network’s point of view, this is one step forward toward the completion of 

metabolic network of C. elegans. 
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6.4.2 Function inference and pathway association 
Employing the strategy discussed in Methods ( Section 6.3), all 1024 novel 

interactions were distributed in 94 metabolic pathways and their probable function were 

inferred (see Supplementary Data, Chapter 6), resulting in an expanded metabolic 

network of C. elegans. The uncharacterized proteins in novel interactions were assigned 

to pathways based on the pathway association of their known partners and their general 

functions can be unfolded. It should be noted that pathway association of new proteins 

are only predictions that should be further investigated by experiment. However, using 

binary similarity score of each pair we can rank proteins candidate for a particular 

metabolic function. Two examples of function inference are illustrated in Figures 6.2 and 

6.3.  

 

 
 

Figure 6.2. Inferring gene function. Coding genes of enzyme 3.5.1.38 may be one of the 

predicted interacting partners with gene DH11.1 based on their binary similarity scores. 

 

Figure 6.2 describes an example of conclusions made based on predicted protein-

protein interactions. In this example, DH11.1 is a gene that encodes for the enzyme 

catalyzing the hydrolysis of glutamine to glutamate. This enzyme participates in 

glutamate metabolism pathway and interacts with 49 other enzymes in the current protein 

L-Glutamine + H2O  L-Glutamate + NH3 
3.5.1.2.               &           3.5.1.38

DH11.1

                          binary similarity scores 
F35D6.1               1.0000 
C29E6.2                1.0000 
ZC21.2                  1.0000 
ZK1320.7              0.6667 
F46F3.4                 0.6667 
F37A4.4                0.6667 
ZK1005.1              0.5000 
F02A9.6                0.2857 
R107.8                  0.2857  
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interaction map. In the new predicted interaction dataset, this enzyme is the known 

partner for 9 uncharacterized proteins. Thus, it can be concluded that the primary 

prediction for pathway association of these 9 unknown proteins is glutamate metabolism 

pathway. In order to further investigate the molecular functions of these 9 unknown 

proteins, and to support the primary prediction of pathway assignment, we should note 

that the reaction of hydrolysis of glutamine to glutamate is catalyzed by two enzymes 

including hypothetical protein 3.5.1.2 and hypothetical protein 3.5.1.38. The enzyme 

3.5.1.2 is encoded by gene DH11.1 and the second enzyme is encoded by an unknown 

gene. Each of 9 predicted interacting proteins with DH11.1 could be a possible candidate 

for encoding enzyme 3.5.1.38 as illustrated in Figure 6.2. These candidates can be ranked 

based on their binary similarity scores as a criterion for experimental investigation. As 

seen in Figure 6.2, genes F35D6.1, C29E6.2, and ZC21.2 are more likely to be the coding 

gene of enzyme 3.5.1.38, since their binary similarity scores are the highest.  

Some genes encode enzymes which appear in parallel reactions indicating that there 

may be an interaction between the genes which are encoding theses rival enzymes. For 

instance, as shown in Figure 6.3, ADP-ribose is converted to ribose-5-phosphate 

catalyzed by either ADP-ribose diphosphatese (3.6.31.13) in one step (reaction A) or 

ADP-sugar diphosphatase (3.6.1.21) and phosphopentomutase (5.4.2.7) in two steps 

(reactions B and C) in Purine metabolism pathway (cel00230). Enzyme 3.6.1.13 is 

encoded by gene W02G9.1, but the two other enzymes are still uncharacterized in terms 

of the encoding genes. W02G9.1 is found to interact with 7 other genes whose binary 

similarity scores are ranging from 0.5 to 1. Thus, genes with higher scores equally likely 

express the two uncharacterized enzymes 3.6.1.21 and 5.4.2.7 in reactions B and C, 

respectively. It is also predicted that these seven genes participate in Purine metabolism 

pathway (cel00230) along with previously known partners. There may be some other 

possibilities for the function assignment of each seven unknown genes in this example, 

however each assignment based on computational predictions need to be confirmed by 

experiment. The advantage of these computational assignments is that they can narrow 

down the number of experiments to confirm a link. 
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Figure 6.3. Inferring the possible enzymes encoded by C. elegans unknown genes. Each of the 

seven specified genes which are predicted to interacting with W02G9.1 may code either enzyme 

B or C. 

 

6.5 Conclusion  
Metabolic network of C. elegans has not been completely reconstructed yet. 

However, the efforts to understand the complex metabolic system of this multi-cellular 

organism are on going. Reconstruction of metabolic networks relies on the existing 

genomic information and organization of this information in a network context. The more 

the available genomic information, the more complete the network will be. Protein-

protein interaction information is the key genomic data upon which the networks are 

built. Computational techniques are part of the tools available to predict protein 

interaction datasets; however, these approaches are not yet advanced enough to predict 

protein interactions with high reliability. In this chapter the new predictions were 

incorporated into the reconstructed metabolic network through pathway and possibly 

reaction assignment of newly characterized proteins. In the light of new assignments, the 

number of known metabolic proteins in this organism increased 27% and 1024 new 

interactions were all distributed in 94 metabolic pathways in the network of C. elegans. 

The expanded metabolic network is part of the efforts to complete the reconstruction of 

full metabolic network of C. elegans which is far to achieve. This expanded network 

provided guidelines to direct researches to design new experiments which focus on 

ADP-ribose  Ribose-5-phosphate  

Ribose-1-phosphate 

(A) 3.6.1.13----- W02G9.1 

(B) 3.6.1.21-----  ? 

Y37H9A.6(1.0000) 
T26E3.2(1.0000) 
F52G2.1b(1.0000) 
EEED8.8(1.0000) 
C43E11.7(1.0000) 
Y87G2A.14(1.0000) 
Y38A8.1(0.5000) 
 

Ribose-5-phosphate  
(C) 5.4.2.7-----  ?
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determining substrate specificity of newly annotated enzymes and other detail 

information about metabolic reactions such as directionality and stoichiometry. 

Therefore, computational approaches and experimental techniques together are the two 

ways by which metabolic networks can be fully discovered to understand the 

sophisticated cellular activities inside living organisms.    
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7  

GENERAL DISCUSSION 

 

7.1 Discussion 
Proteins in cell are not independent entities instead they create associations to 

perform a biological task. Thus, identification of biological associations is essential to 

understand cellular activities and then integrate them in a network context which provides 

a larger picture of all cellular activities in an organism. Due to the complicated multi 

cellular structure of C. elegans only a small fraction of proteins and their interactions in 

this species has been elucidated. Thereby, the metabolic network of C. elegans is still 

under investigation and more research is yet to be done to achieve a complete portrait of 

metabolic processes in this organism. More robust and comprehensive protein-protein 

interaction datasets need to be available to be accommodated into the network to expand 

the current metabolic network. Experimental techniques to screen protein-protein 

interactions are expensive and time consuming. As an alternative, computational 

approaches have been widely used to detect more protein-protein interactions in a less 

time consuming way and supply adequate information to improve metabolic 

reconstruction studies. However, computational approaches are not only inaccurate but 

also suffer from mass false positive predictions. The predicted datasets need to be refined 

to improve the reliability of final links. The contribution of this research to all concerns 

mentioned above is clarified in the remainder of this section. These concerns form the 

objectives of this research as outlined in Chapter 2.  

The first objective of this study was reconstructing the metabolic network of the 

studied organism based on current genomic information obtained form public databases. 

As described in chapter 3 the current metabolic network of C. elegans was reconstructed 

and 792 known proteins were specified in 94 metabolic pathways. These proteins were 

involved in 32902 pair-wise interactions called as current protein-protein interaction map. 

The 792 known proteins and the relationships among their encoding genes were used to 

create the visualized representation of the reconstructed network. This network 

demonstrated the current situation of known proteins within the genome. The network 
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became more meaningful in conjunction with those functionally-assigned genes which 

contributed to the interconnectivity of the system and were represented by an undirected 

two-mode graph to investigate its topological property. In the resulted protein-protein 

interaction map each protein was connected to 42 other proteins by average and some 

proteins had partners in 15 different pathways. Protein relationships outside pathway 

boundaries contributed to the interconnectivity of the network which revealed alternative 

routes to synthesize essential metabolites at different environmental conditions. Analysis 

of the network showed that how reactions and enzymes at different pathways were 

working together to accomplish a biological task. This reconstructed network consisted of 

792 known metabolic proteins which accounts for approximately 17% of proteins 

involved in metabolism and 3.5% of all genes in C. elegans genome.  

In comparison with previously reconstructed networks, discussed in Chapter 3, the 

approach employed here was more relying on genomic information and protein-protein 

interaction data. In other reconstruction strategies metabolites were the center points. 

Because of the shortage of genomic information in the past, relationship among 

metabolites, i.e. reactions, were either directly searched through public databases or 

identified by means of experiments. In other words, the required reaction information to 

reconstruct the network was collected manually. Interactions were considered only 

physical contacts dealing with a pair of reactant and product. In our strategy, pathways 

played the central role and the knowledge of association of genes and proteins in 

pathways was required to reconstruct the network. In order to assign genes and proteins 

to pathways, protein-protein interaction information was essential. This information came 

from genomic data of different organisms which do not solely focus on physical contacts. 

One aspect of genomic data is signature content information of proteins. This information 

was used in this research to elucidate protein-protein interactions for the fulfilment of the 

second objective.      

Given the importance of protein interaction information in reconstructing metabolic 

networks, in Chapter 4 a new method of predicting protein-protein interactions was 

proposed. The underlying hypothesis of this method was based on the observation that 

proteins interact with each other through their functionally independent, structurally 

conserved, and biologically related signatures when they have some signatures in 
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common. These properties established new insight into the prediction of protein-protein 

interactions. Existing domain-based prediction methods used the interaction probability 

score between two signatures. The scoring function was trained based on a learning 

dataset and subsequently applied to predict protein interactions. In contrast, the proposed 

approach did not require training information and proteins were directly paired based on 

their signature contents, providing that they had at least one signature in common. 

Removing proteins with a low number of known signatures (one and two signatures) 

from the dataset the confidence level of the prediction significantly increased. Thus, as 

more and more proteins with known signature contents across organisms are discovered, 

the coverage and accuracy of protein interacting pairs predicted by this approach is 

expected to rise. The proposed method was applied to three model organisms including S. 

cerevisiae, C. elegans, and H. sapiens resulting in three predicted PPI datasets that 

contained many novel pair interactions. Critical comparison between the proposed 

approach and similar approaches was performed in Chapter 4. The predicted PPI pairs 

along with other datasets predicted by other computational methods were used as 

potential building blocks of reconstructing metabolic networks.  

In order to increase the reliability of protein pair interactions predicted by means of 

all computational methods including the proposed method, as targeted in the third 

objective of this research, a filtering algorithm was proposed in Chapter 5 to partially 

remove false positive interactions from predicted datasets. The algorithm utilized gene 

ontology annotation as a common ground to specify computational predictions which 

were confirmed by experimental results. Molecular function annotations of 

experimentally confirmed protein pairs were used as the training set to extract 

discriminating keywords which well represented the training set. Then based on the 

extracted keywords two heuristic rules were set. The rules were incorporated into an 

algorithm by which predicted datasets were filtered and false positive predictions were 

partially removed from the datasets. Statistical analyses showed that keywords were over-

represented words in the datasets and only eight keywords were significantly able to 

recover molecular function annotations of experimental and computational interacting 

proteins. Furthermore, applying the algorithm to specified datasets improved the true 

positive fractions of the datasets compared to random pairing. The improvement varied 
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among datasets depending on the approach utilized to predict protein relations. The 

approach was unbiased toward different datasets. It can be embedded to all computational 

protein-protein interaction prediction methods. Currently, no genome is fully annotated in 

Gene Ontology and there are many genes yet to be annotated. However, the proposed 

approach could be readily applied to newly annotated genes to predict their functional or 

physical partners.  

Eventually, in pursuing the fourth objective of this research, with the availability of 

current metabolic network of C. elegans, and the novel protein-protein interactions 

predicted by the proposed method which was further filtered by the proposed algorithm 

to partially remove false positive interactions, we integrated the novel predictions to the 

current metabolic network of C. elegans in Chapter 6. As a result, an augmented network 

was reconstructed. In the light of new assignments, the number of known metabolic 

proteins in this organism increased 27% and 1024 new interactions were all distributed 

into 94 metabolic pathways in the network of C. elegans. In the augmented network, 

known metabolic proteins increased to 1009 which accounted for 22% of C. elegans 

genes involved in metabolism and 4.4% of all genes in the genome. Connections in the 

network provided guidelines to direct researchers to design new experiments that focus 

on determining substrate specificity of newly annotated enzymes. Computational 

prediction of protein-protein interactions were able to narrow down the direction of future 

experiments and raised new thoughts to discover new proteins and their functions.  

7.2 Conclusions and Recommendations 
Overall, the metabolic network of C. elegans was reconstructed using current 

genomic information available in KEGG database. Proposing a new computational 

method to predict protein-protein interactions, the reconstructed metabolic network was 

expanded and more proteins were assigned function. As the reliability of genomic 

information incorporated into metabolic networks is crucial, a global framework was also 

established to increase the true positive fraction of predicted datasets and reduce the 

number of false positives. Thus, a new strategy based mostly upon genomic information 

was employed to reconstructing metabolic networks. In the initial step of reconstructing 

the metabolic network of C. elegans it was shown that the graph representation of the 

network reveals hidden mechanisms through which the organism may survive under 
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different environmental circumstances. With the discovery of more protein-protein 

interactions the network became further complete and more protein functions became 

known. The proposed computational method to predict protein interactions performed 

well, or even better, than equivalent methods in terms of prediction power. However, 

since all computational methods predict true positive interactions along with numerous 

false positives, predicted datasets were required to be filtered to increase the true positive 

fraction.  

Therefore, the metabolic network of C. elegans became more complete using 

genomic information available through public sources. This approach can be applied to 

any species and in this research C. elegans was chosen as a model organism.   

In order to pursue the pace of this research a few recommendations are made as follows:  

1. With the emerging high-throughput screening techniques and more computational 

methods, more in-depth data mining approaches need to be utilized to collect as 

much genomic information as possible to obtain more complete metabolic 

networks.  

2. Genomic databases and function-based references are updated on a regular basis. 

As metabolic networks are constructed based on that type of information, they 

need to be updated regularly and new information should be accommodated in the 

network. Changes and obsolete items should be abandoned in the updated version 

of the network.  

3. Biological databases sometimes contain inconsistent data with other sources. It is 

recommended to use information that is more common among databases with 

more rigid referencing.  Basically, when a piece of information is documented by 

at least two databases it is more reliable. 

4. Functions inferred from the expanded version of the metabolic network are solely 

candidates for further experiments. Experimental investigations, narrowed down 

by these predictions, can reveal the practical interactions.       
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APPENDIX 
Supplementary data is provided in a compact disc (included) and arranged based on 

chapters. Input/output data files and perl scripts discussed in each chapter are collected in 

the same folder. A complete listing of folders and their contents is as follows: 

 

Folder No. File name Description 

1 celGene.txt A complete listing of C. 
elegans genes 

2 celPath.txt A complete listing of 
103 pathways in C. 
elegans genome 
including 94 metabolic 
pathways 

3 celReact.txt A complete listing of 
metabolic reactions 
carried out by different 
enzymes in C. elegans 
metabolic pathways 

4 celNetwork.txt Reconstructed 
metabolic network of 
C. elegans based on 
current information 

5 celNetwork_prg.pl Source perl script that 
integrates information 
provided by files 1-3 to 
reconstruct the 
metabolic network. 

 

 

 

 

 

 

 

Chapter 
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6 currentPPImap.txt Protein-protein 
interactions obtained 
from the current 
metabolic network. 

1 cel_experimental_data.txt A complete listing of 
344 experimentally 
confirmed protein-
protein interactions in 
C. elegans.  

2 hsa_experimental_data.txt A complete listing of 
13319 experimentally 
confirmed protein-
protein interactions in 
H. sapiens. 

 

 

Chapter 

4 

3 sce_experimental_data.txt A complete listing of 
3745 experimentally 
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confirmed protein-
protein interactions in 
S. cerevisiae. 

4     reference_genomes.doc A complete listing of 
90 reference genomes 
utilized in BLAST 
program for 
phylogenetic profile 
method. 

5 cel_signature_pairs_no_removal.txt Protein-protein 
interactions in C. 
elegans predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores. 

6 cel_signature_pairs_1signature_removal.txt  Protein-protein 
interactions in C. 
elegans predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with ONE 
known signatures were 
deleted from genome. 

7 cel_signature_pairs_2signature_removal.txt Protein-protein 
interactions in C. 
elegans predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with TWO 
known signatures were 
deleted from genome. 

8 hsa_signature_pairs_no_removal.txt Protein-protein 
interactions in H. 
sapiens predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores 

9 hsa_signature_pairs_1signature_removal.txt Protein-protein 
interactions in H. 
sapiens predicted by 
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signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with ONE 
known signatures were 
deleted from genome. 

10 hsa_signature_pairs_2signature_removal.txt Protein-protein 
interactions in H. 
sapiens predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with TWO 
known signatures were 
deleted from genome. 

11 sce_signature_pairs_no_removal.txt  Protein-protein 
interactions in S. 
cerevisiae predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores 

12 sce_signature_pairs_1signature_removal.txt Protein-protein 
interactions in S. 
cerevisiae predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with ONE 
known signatures were 
deleted from genome. 

13 sce_signature_pairs_2signature_removal.txt Protein-protein 
interactions in S. 
cerevisiae predicted by 
signature profiling 
method and their 
corresponding binary 
similarity scores while 
proteins with TWO 
known signatures were 
deleted from genome 

14 sce_mle_pairs.txt Protein-protein 
interactions in S. 
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 cerevisiae predicted by 
Maximum likelihood 
estimation (MLE) and 
their interaction 
probabilities. 

15 cel_phylogenetic_pairs.txt  

 

Protein-protein 
interactions in C. 
elegans predicted by 
phylogenetic profiles 
method. 

16 hsa_phylogenetic_pairs.txt Protein-protein 
interactions in H. 
sapiens predicted by 
phylogenetic profiles 
method. 

17 sce_phylogenetic_pairs.txt  Protein-protein 
interactions in S. 
cerevisiae predicted by 
phylogenetic profiles 
method. 

18 cel_gene_expression_pairs.txt  Protein-protein 
interactions in C. 
elegans predicted by 
gene expression 
profiling method. 

19 hsa_gene_expression_pairs.txt  Protein-protein 
interactions in H. 
sapiens predicted by 
gene expression 
profiling method. 

20 sce_gene_expression_pairs.txt  Protein-protein 
interactions in S. 
cerevisiae predicted by 
gene expression 
profiling method. 

21 signature-profiling-prosite.pl source perl script for 
signature profiling 
method 

22 OtherMethods.pl  source perl script for 
implementing 
phylogenetic profiles 
and gene expression 
methods. 

23 MLE.pl  source perl script for 
implementing 
maximum likelihood 
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estimation (MLE) 
method. 

1 sce_experimental_dataset.txt A complete listing of 
experimentally 
confirmed protein-
protein interactions in 
S. cerevisiae compiled 
from multiple sources. 

2 cel_experimental_dataset.txt A complete listing of 
experimentally 
confirmed protein-
protein interactions in 
C. elegans compiled 
from multiple sources. 

3 reference_genomes.doc:  Complete listing of 90 
reference genomes 
utilized in BLAST 
program for 
phylogenetic profile 
method. 

4 sce_PP_raw_dataset.txt Predicted protein-
protein interactions in 
S. cerevisiae using 
phylogenetic profiles 
method 

5 cel_PP_raw_dataset.txt Predicted protein-
protein interactions in 
C. elegans using 
phylogenetic profiles 
method. 

6 sce_GE_raw_dataset.txt Predicted protein-
protein interactions in 
S. cerevisiae using gene 
expression profiles. 

7 cel_GE_raw_dataset.txt Predicted protein-
protein interactions in 
C. elegans using gene 
expression profiles. 

8 sce_CC_raw_dataset.txt Predicted protein-
protein interactions in 
S. cerevisiae using 
chance co-occurrence 
distribution method. 

Chapter 

5 

9 cel_CC_raw_dataset.txt Predicted protein-
protein interactions in 
C. elegans using 
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chance co-occurrence 
distribution method 

10 sce_MLE_raw_dataset.txt Predicted protein-
protein interactions in 
S. cerevisiae using 
maximum likelihood 
estimation method. 

11 cel_MLE_raw_dataset.txt Predicted protein-
protein interactions in 
C. elegans using 
maximum likelihood 
estimation method 

12 clusters_and_keywords.txt 

 

A complete listing of 
GO term clusters and 
their representative 
keywords in S. 
cerevisiae and C. 
elegans training sets. 

13 sce_PP_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of S. cerevisiae 
using proposed 
algorithm. Interactions 
are predicted by 
phylogenetic profiles 
method. 

14 cel_PP_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of C. elegans 
using proposed 
algorithm. Interactions 
are predicted by 
phylogenetic profiles 
method. 

15 sce_GE_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of S. cerevisiae 
using proposed 
algorithm. Interactions 
are predicted by gene 
expression method. 

16 cel_GE_filtered_dataset.txt 

 

A filtered protein-
protein interaction 
dataset of C. elegans 
using proposed 
algorithm. Interactions 
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are predicted by gene 
expression method. 

17 sce_CC_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of S. cerevisiae 
using proposed 
algorithm. Interactions 
are predicted by chance 
co-occurrence 
distribution method 

18 cel_CC_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of C. elegans 
using proposed 
algorithm. Interactions 
are predicted by chance 
co-occurrence 
distribution method. 

19 sce_MLE_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of S. cerevisiae 
using proposed 
algorithm. Interactions 
are predicted by 
maximum likelihood 
estimation method. 

20 cel_MLE_filtered_dataset.txt A filtered protein-
protein interaction 
dataset of C. elegans 
using proposed 
algorithm. Interactions 
are predicted by 
maximum likelihood 
estimation method. 

21 CC.pl Source perl script to 
implement chance co-
occurrence method and 
proposed algorithm to 
the resulted dataset. 

22 GE.pl 

 

Source perl script to 
implement gene 
expression method and 
proposed algorithm to 
the resulted dataset. 

23 PP.pl Source perl script to 
implement 
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phylogenetic profiles 
method and proposed 
algorithm to the 
resulted dataset. 

24 MLE.pl 

 

Source perl script to 
implement maximum 
likelihood method and 
proposed algorithm to 
the resulted dataset. 

1 signature_profiling_novelPPIs.txt A complete listing of 
novel C. elegans PPIs 
predicted by signature 
profiling methods. 

2 expandedPPImap.txt A complete listing of 
protein-protein 
interactions known in 
C. elegans genome 

3 Function_assignment.doc A complete listing of C. 
elegans proteins whose 
functions were inferred 
based on new protein-
protein interaction 
information. 
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4 metabolic_reconstruction.pl Source perl script to 
integrate new PPI 
information into the 
current map resulting in 
expanded PPI map 

 


