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Time-Optimal Control of Two-Link Manipulators

Time-optimal maneuvers of rigid Two-Link Manipulators (TLM) are analysed
using the Pontryagin’s Minimum Principle. The problem is formulated using Optimal
Control Theory and ideas developed in the Calculus of Variations. The dynamics of
rigid TLM is obtained using the Lagrange’s equations of motion.

The optimal solutions with bang-bang controls are found by solving the corre-
sponding nonlinear Two-Point Boundary Value Problems (TPBVP). Since the prob-
lem is very sensitive to the unknown initial costates, a strategy which combines the
Forward-Backward Method (FBM) and the Shooting Method (SM) is proposed and
used successfully.

The FBM is a numerical procedure, which finds a non-optimal solution that sat-
isfies the state equations and the initial and the final boundary conditions. This
solution is used to obtain approximate locations of the switch times and the initial
values of the costates. The initial costates are required to initiate the SM which
then is used to find the optimal solution that satisfies the state equations, the costate
equations, and all the boundary conditions. Usefulness of the FBM for generating the
initial costates such that the SM converges is demonstrated by numerical examples.
Linear and nonlinear systems with single, or double controls are considered.

Several rigid TLM with different mechanical properties undergoing various ma-
neuvers are discussed in detail.

It is shown that for the time-optimal maneuvers of the TLM the number of
switches is related to the magnitude of the maneuver and is not constant as sug-
gested in earlier works. In general, for the cases investigated, shorter maneuvers
required three switches while longer maneuvers required four switch times.

The effects on TLM time-optimal maneuvers of physical parameters such as ge-
ometry, link masses and masses at both link tips as well as changes in the limits of
control forces are also examined. It is shown that, the maneuver time can be further

shorten by altering the lengths of the links and the ratio of the controls applied at

the two joints.



For analysis of the effects of flexibility of the manipulator, the forces obtained
from optimal solution of the rigid TLM are applied to the flexible manipulator and the
response is simulated by the nonlinear finite element method. The effects of flexibility
are measured in terms of the amount of vibrations generated and the distance between
the tip of the manipulator at the end of the maneuver and the target point. The
performance of such forces to control the flexible TLM is found to be satisfactory if

the slenderness of the links is sufficiently small.
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Abstract

Time-optimal maneuvers of rigid Two-Link Manipulators (TLM) are analysed
using Pontryagin’s Minimum Principle. The problem is formulated using Optimal
Control Theory and ideas developed in the Calculus of Variations. The dynamics of
rigid TLM are obtained using the Lagrange equations of motion.

The optimal solutions with bang-bang controls are found by solving the correspond-
ing nonlinear Two-Point Boundary Value Problems (TPBVP). Since the problem is
very sensitive to the unknown initial costates, a strategy which combines the Forward-
Backward Method (FBM) and the Shooting Method (SM) is proposed and used suc-
cessfully.

The FBM is a numerical procedure which finds a non-optimal solution that satisfies
the state equations and the initial and the final boundary conditions. This solution
is used to obtain approzimate locations of the switch times and the initial values of
the costates. The initial costates are required to initiate the SM which then is used
to find the optimal solution that satisfies the state equations, the costate equations,
and all the boundary conditions. Usefulness of the FBM for generating the initial
costates such that the SM converges is demonstrated by numerical examples. Linear
and nonlinear systems with single, or double controls are considered.

Several rigid TLM with different mechanical properties undergoing various ma-
neuvers are discussed in detail.

1t is shown that for the time-optimal maneuvers of the TLM the number of switches
is related to the magnitude of the maneuver and is not constant as suggested in ear-
lier works. In general, for the cases investigated, shorter maneuvers required three
switches while longer maneuvers required four switch times.

The effects on TLM time-optimal maneuvers of physical parameters such as ge-
ometry, link masses and masses at both link tips as well as changes in the limits of
control forces are also examined. [t is shown that the maneuver time can be further
shortened by altering the lengths of the links and the ratio of the controls applied at
the two joints.

For analysis of the effects of flexibility of the manipulator, the forces obtained
from optimal solution of the rigid TLM are applied to the flexible manipulator and the
response ts simulated by the nonlinear finite element method. The effects of flexibility
are measured in terms of the amount of vibration generated and the distance between
the tip of the manipulator at the end of the maneuver and the target point. The
performance of such forces to control the flexible TLM is found to be satisfactory if
the slenderness of the links is sufficiently small.
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Nomenclature

Listed below are the symbols and abbreviations used most frequently in the text.

Occasionally, the same symbol may have a different meaning defined in the text.
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final iteration
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Forward-Backward Method
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Chapter 1

Introduction

1.1 Background

Most automated manufacturing tasks are carried out by robots designed to perform
specific functions in a manufacturing process. The Czech word robota is considered
to be the origin of the word robot. The meaning of the word in Webster’s dictionary

is (quoted from [2]):

an automatic device that performs functions ordinarily ascribed to human

beings.
The Robot Institute of America has a more precise description of industrial robots [2]:

A robot is a re-programmable multi-functional manipulator designed to
move materials, parts, tools, or specialised devices, through variable pro-

grammed motions for the performance of a variety of tasks.

An industrial robot is a general purpose manipulator with several rigid links which
is controlled by a computer. An example of the popular industrial robot PUMA [1}
is shown in Figure 1.1.

Since manipulators are typically used to repeat a prescribed task a large number
of times, even small improvements in their performances may result in large monetary

savings.



Figure 1.1: The industrial robot PUMA [1].

Here an attempt is made to minimise the maneuver time (time-optimal control)
between two points if the controls (the driving forces) are constrained by their max-
imum and minimum values available from the installed motors. Any trajectory that
can be realized by applying the available driving forces and connecting the starting
point with the target point can be used to implement the maneuver. The major
objective of this thesis is to develop a method that would determine the time-optimal
trajectory and the corresponding values of driving forces for two-link manipulators

(i.e. a robotic arm consisting of two segments).
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1.2 Problem Formulation

The dynamics of manipulators relates the control u(t) with their dynamic response
z(t). Typically, there are two kinds of problems when dynamics are used to design
manipulators. The problem is called inverse dynamics when the trajectory z(t) is
known and the control forces have to be determined. This can be symbolised as
u(t) <= z(t). The other type is the direct dynamics problem where the behaviour of
the manipulator for the assumed forces is to be determined, and can be symbolised
as u(t) = z(¢). It should be emphasised that, formally, when using the governing
equations of dynamics in the design process, either r or u must be known.

In the classical design of manipulators, the inverse dynamics problem (u(t) <=
z(t)) and the direct dynamics problem (u(t) = z(¢)) are used alternatively to grad-
ually improve the performance and establish the control as u(t) or u(z).

The objective of optimal control theory, which nowadays plays an important role
in the design of advanced systems, is to determine simultaneously such u(¢) and
z(t) that would minimise a specific performance measure. In optimal control the

performance is written as
ty
J(u):/ g(z.u.t)dt — min (1.1)
to

This imposes extra conditions on the variables u(¢) and z(t) related through the
governing equations of dynamics and combines the search for the best control with
the search for the best trajectory into one optimisation process. It is expected that
at least one z(t¢) and one u(t) exists that satisfies condition (1.1). Such a solution is
recognised as an optimal solution.

An optimal control problem requires a mathematical model of the process to be
controlled, a statement of physical constraints. and a performance measure. Here dif-
ferent aspects of the problem formulation for the time-optimal control of manipulators

are reviewed.



1.2.1 Dynamics of Manipulators

In control theory the state of the system, which here is meant to represent the math-

ematical model of the dynamics of the manipulators. is usually written in the form
z =a(zx,u,t) (1.2)

where z is the vector of state variables, u is the vector of controls, and a is the vector
of nonlinear functions of states and controls.

In structural dynamics the equations of motion are usually written in the form
M(@)@(t) + Cp)p + K(p)o(t) = F(t) (1.3)

where M(y), C(¥). and K(p) are nonlinear mass, damping, and stiffness matrices.
© is the vector of Degrees Of Freedom (DOF) or generalised displacement, and F(¢)
is the vector of control forces driving the system. Equations (1.3) can be easily

rewritten in the form of (1.2). Each component of ; in the DOF vector forms

two state variables: z§ = ¢; and ¥ = ;, where k = 2i — 1. [ = 2 = k + 1.
{ = 1,...,n. The superscripts ¢ and * denote displacement and the rate of change

of displacement, respectively. It allows the state vector z to be split into two parts:
r = [z¢,z4, 28, 2, .. .. 2%,_1, 25,)7. Substituting into (1.3), the equations of motion

in terms of the state variables are

3f =z}

i} = MG F, —(Cji £} + K,; 1)]

(1.4)

Where 7,j = 1,....n. Thus any system with n DOF can be defined by 2n state

variables.



1.2.2 Boundary Conditions and Constraints

The mathematical model of the problem discussed earlier should include the bound-
ary conditions and the physical constraints imposed on the states or controls. The

boundary conditions for a manipulator are:
.’r(to) = ZIg .l‘(tj)z.l'f (].5)

where z(to) and z(¢s) represent the positions and velocities of the links at the begin-
ning and at the end of the maneuver, respectively. There may also be some constraints

imposed on the states such as:
Tmin S l’(t) S Trnar (16)

Any state trajectory which satisfies these state constraints for the entire time of
motion is called an admissible trajectory.

The constraints on the controls are:
U~ <wu(t) <UF (1.7)

where U and U7 are the minimum and maximum forces or moments which can be
generated by particular driving motors. The term admissible control is used when a

control history satisfies the control constraints during the entire motion.

1.2.3 Performance Index

In optimal control a performance index (measure) is minimised or maximised. The
designer might be required to consider several performance measures before selecting
one.

For example, large structures/manipulators used in space applications are made

flexible to reduce the high cost of lifting mass into orbit. However, more flexibility may

Ut



introduce some vibrations, affecting the accuracy of the maneuvers. Manipulators to
be used in space might be optimised with respect to their precision as well as to their
weight. This can be achieved by vector optimisation which can include those two
goals.

To drive a manipulator for which a general task is given within particular limits
for controls (U¥) and space (zo,z/), one can use optimal control theory, in which a

performance index

J(u) = /tt’ 9(z,u, t)dt (1.8)

has to be minimised. Note that, formally, the left hand side of (1.8) should be written
as J(z,u); however, since u and z are related via the state equation, the performance
is dependent only on the control.

The accomplishment of such an optimal control depends on the particular form of
g(z,u,t). If g = g1(z), the corresponding performance index can be used to suppress
the vibration or follow a particular path. For example, for ¢ = ¢;(z) = T Kz, where
K is the stiffness matrix, the performance represents the strain energy of the system.
If g = g2(u), the corresponding performance index can be used to minimise the fuel
consumption or minimise the use of power. Using g = go(u) = uTQu. where Q is a
given matrix, suppresses the magnitude of the control forces.

If g = ¢, where ¢ is a constant. the performance index represents the minimum

time; that is
t
J(u)=/!cdt=c(t,—to) (1.9)

to
Since to is known, this performance index will minimise ¢;. This is a time-optimal

control problem.

1.2.4 Formulation of Optimal Control Problem

The purpose of the optimal control problem is to determine the control u(¢) that

minimises the performance index J(u). From the physical point of view. the state r



must be continuous, but the control u can be discontinuous. For a better performance.
the control may be required to change suddenly from its maximum value U7 to its
minimum value U;". Such an instant is referred to as the switch time. If the control is
performed using only the extreme values, switching between minimum and maximum.
it is referred to as bang-bang control.

Optimal control means finding an admissible control u(t) which makes the system
(1.2) follow an admissible trajectory z(t) and minimises the performance measure
(1.8). Such u and z are optimal controls and optimal state trajectories. Minimum

J(u) = J™(u) means that

I = [ g u,0de < [ gz, u.t)d (1.10)

to to

for all admissible states and all admissible controls. The quantities J=, =, u* are
the optimal values of the parameters. They define the global minimum of J. The
inequality of (1.10) may also be met only for some range of states (||z|| < b), where
|| || means a norm of admissible trajectories and b is a positive value. In this case
(1.10) would define a local minimum. For simplicity the superscript * will be dropped

throughout the thesis, unless its existence is considered to be necessary.

Example 1: Linear Mass and Spring System

For illustration of the time-optimal control problem a linear mass and spring system
shown in Figure 1.2 is used. At ¢t =t = 0 the mass M is at location B specified by
the initial stretch z,(0) = zp and the initial velocity z2(0) = vg. This mass must be
brought to the unstretched configuration A where (z;(ty) =0 = z2(¢)) in a shortest
time given that the control force is limited by |u(¢)] < U. Without u the system
would vibrate indefinitely. If u was proportional to the current displacement and
velocity, as it would be assumed in classical control (the proportionality coefficient
would constitute the gain matrix of the feedback), theoretically, the mass would also

vibrate indefinitely with decreasing amplitude. [t is desired here that the mass be

T



stopped completely at ¢;.
Using the time-optimal control strategy with g(z,u.t) = 1. the performance index
would be

ty
J(u)=¢ dt =ty — min
V]

The equation of motion of such a linear system with one degree of freedom is given
by
Mo+ Kp = F(t)

and can be transformed into the state equation in the form

1 =1z
te (1.11)
Io=—z:4+u

where z; represents non-dimensional displacement and z, non-dimensional velocity.
and u non-dimensional control force (see Section 6.1.1). Note that the state equa-
tion (1.11) cannot be solved independently since the control u(#) is still unknown.
Details of the solution to this problem are given in Section 6.1. Here only some
typical results are shown. For time-optimal trajectory the control u takes extremal
values (bang-bang control), switching two times during the whole maneuver as shown
in Figure 1.3. The optimal force should be u = U~ (pressing down) during the
intervals 0 < t < ¢, and t,, < t < ty, and u = U* (pulling up) in the interval
ts1 < t < t;2. The locations of the mass and its velocity at the beginning of the
maneuver, at each switch time, and at the final time are indicated in Figure 1.2.
The solution of a time-optimal control problem with bounded control, such as this
example, is always a bang-bang control where the control take its extreme values.

The numerical values of non-dimensional boundary conditions and limits on con-

o



0<t <ty

tyy <t < ty2
u(t)=U"

‘.92 <t<L t[
u(t) = U+

u(t)y=U-

13-'2(3,1)

T1(ts2)

tg =0 ty = .374 ty2 = 3.52 t; = 4.99
rp=r1(to) =3 z1(ts) =29  zri(ts2)=-9 zi(ty) =0
vg = r2(tg) = .5 z2(ta) = -1

z2(ts2) = 1 T2(ty) =0

Figure 1.2: Optimal motion of linear mass and spring system.

Ty, Lo, U

+.5 3

Figure 1.3: The optimal control solution and trajectory for example 1. z, and z, are
states, u is optimal control.



trol for this problem are (after [3]).

z,(0) = 3.0 22(0) = 0.5
Il(tf) = 0.0 .'Ez(tf) = 0.0
~1l=U"<u<Ut=+1

All the values presented here are also non-dimensional (see Section 6.1). Note that
at the target point, which is reached in time ¢; (the time of optimal maneuver), the

mass remains at rest when the control process is terminated.

1.2.5 Types of Optimal Control

Optimal control law or optimal control policy provides an admissible control history
in the form u(t) = f(z(t),t). From the view point of control it is considered a closed
loop control system if it depends on the state. The optimal control law can be a
linear, time invariant feedback of the states if u(¢) = Cz(t). where C is real constant
matrix. The optimal control has an open loop form if u(t) = f(t), because it does not
depend on the state. Open loop control has several applications. Radar tracking of
a satellite when the orbit is set, or industrial robot manipulators with a specific task
are examples of the open loop control systems in that sense. Here, optimal control of

a two-link manipulator is considered.

1.3 Solution of Optimal Control Problem

Optimal control, like all optimisation problems, can be approached using two meth-
ods: the direct and the indirect. The direct method is one approach in which the sets
(z®), u®) and (z*+1), u{*+1)) should be selected in two consecutive iterations in such
a way that J*+1) < J®) Thus the performance is directly minimised, while trying to
meet all the constraints, using various search techniques. Usually direct methods use

parameter optimisation methods such as penalty. gradient. conjugate gradient. etc.
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The direct methods (also referred to as parametric optimisation), which can solve
any optimisation problem, are quite inefficient due to the large number of parameters
involved [4] and because they are exhaustively time consuming (see Appendix A).

The alternative approach is the indirect method. This method is more analytical
than the direct method. The conditions to be met on the optimal path must be
derived first. These conditions form Pontryagin’s Minimum Principle (PMP) and are
the necessary conditions for an optimum solution. The next step is to determine
the controls and the trajectory that meet these conditions. When successful, the
indirect methods, in general, converge more quickly, but can experience problems
with convergence. They may also become very complicated mathematically. Due to
this complexity, the indirect methods are now mostly used only for verification of
the solutions found with the help of other optimisation methods. Here, the indirect
method for determination of time-optimal control of Two-Link Manipulators (TLM) is
used. The optimal solutions are found by solving the optimality conditions formulated
with the help of the PMP.

For solving optimal control problems of complicated systems such as TLM. a
numerical approach is needed. Since the PMP for time-optimal control includes the
initial and final boundary conditions. the problem is referred to as the Two-Point
Boundary Value Problem (TPBVP). The shooting method is one of the basic ways of
solving TPBVP. However, the method is extremely sensitive and difficult to converge
for optimal control of TLM. Here a Forward-Backward Method is introduced and
combined with the shooting method. With the help of the Forward-Backward Method
and the shooting method, the very sensitive TPBVP of time-optimal control of TLM

are successfully solved and analysed.

11



1.4 Concluding Remarks

If the control is bounded, and only the maneuver time is minimised, the optimal
trajectory requires a bang-bang control, in which the controls take their maximum
or minimum values throughout the time domain. The corresponding non-singular,
nonlinear TPBVP can be formulated using the PMP. This problem may be solved
by the shooting method or other analytical or numerical methods to determine the
switching times for the optimal sequence of the control. However, unless the system
is linear, time invariant, and of low order, there is little hope of determining the
optimal control law analytically [5]. In general, for nonlinear systems, optimal control

solutions are very difficult to obtain [6].

1.5 Scope and Objectives

[n Chapter 2, the literature is reviewed and categorised into four major groups. from
very general to a more specific. In Chapter 3, mathematical aspects of the optimal
control theory are discussed. In Chapter 4, time-optimal maneuvers of rigid two-
link manipulators (Figure 1.4) are analysed using Pontryagin’s Minimum Principle.
The dynamics of rigid TLM is obtained using the Lagrange equations of motion. In
Chapter 5. the optimal solutions with bang-bang controls are found by solving the
corresponding nonlinear two-point boundary value problems. Since the problem is
very sensitive to the unknown initial costates, a strategy which combines the Forward-
Backward Method and the Shooting Method is proposed and used successfully. In
Chapter 6, results and analysis obtained for TLM are presented. Several numerical
examples of optimal motion of TLM for different geometries of the target point are
shown. It is shown that for the time-optimal maneuvers of the TLM the number of
switches is related to the magnitude of the maneuver and is not constant as suggested
in earlier works. Also, effects of flexibility of two-link manipulators are discussed

there. For analysis of the effects of flexibility of the manipulator. the forces obtained
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elbow tip

shoulder joint

\_/

Figure 1.4: Rigid two-link manipulators.

from optimal solution of the rigid TLM are applied to the flexible manipulator and the
response is simulated by a nonlinear finite element analysis. The effects on TLM time-
optimal maneuvers of physical parameters such as geometry, link masses and masses
at both link tips as well as changes in the limits of control forces are also examined.
It is shown that the maneuver time can be further shortened by altering the lengths
of the links and the ratio of the controls applied at the two joints. Chapter 7 contains
the conclusion and the possible future work in this research area. In Appendix A
the direct method of solving optimal control problems is outlined. In Appendix B
the details of the analytical derivations are given. In Appendix C the computer
code (OC2ADC13 of Section 5.4) that implements the Forward-Backward Method
for TLM is explained. In Appendix D the computer code (XRKOCT of Section 5.2)

that implements the shooting method is given.
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Chapter 2

Literature Review

A large number of papers and books covering various aspects of optimal control have
been published in recent years. The topics considered here are categorised into four
major groups, starting from general optimisation problems to more specific topics
related directly to the time-optimal control of the Two-Link Manipulators (TLM).
The first group of papers deals with formulation of optimal control problems from
the view point of vector optimisation. The second group presents the application
of optimal control to flexible manipulators/structures. The third category consists
of the time-optimal control problem and its applications, which is the main topic of
this thesis. The fourth category outlines the numerical methods for solving different

optimal control problems.

2.1 Multiple Criteria Optimisation

Typically, several aspects of a design process should be looked at and optimised.
This creates an optimisation problem with more than one objective referred to as
vector optimisation. A vector optimisation involving optimal control problems can be
written as

ty

Ji(u) = gi(z,u, t)dt — min (2.1)

to
where : = 1,....m and m is the number of criteria to be optimised. With multiple

criteria or vector optimisation, one deals with a design variable vector which satisfies
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all the constraints and minimises the components of a vector of objective functions.

One of the characteristic features of the multicriteria optimisation problems is the
appearance of an objective conflict. That means that none of the solutions allows the
simultaneous minimisation of all objectives. This sometimes is called a compromise
performance inder. This problem is normally reduced to a scalar optimisation problem
by formulating the substitute problems or a substitute performance function. Using

the Method of Objective Weighting a substitute problem is solved:

o
(V]

t! m
J(u):/t Zw,— xgi(x,u,t)dt (
¢ =1

The single performance index is determined by a linear combination of the criteria
J1,...,Jm and the corresponding weighting factors wi, ..., wn. It is possible to gen-
erate Pareto-optima for the original problem by changing the weight factors w; in the
performance index. A Pareto-optima or Pareto solution set is referred to the solution
of a multicriteria optimisation problem. It is a reference to V. Pareto (1848-1923), the
French-Italian economist who established the multicriteria optimisation concept [7].

There are other methods proposed to handle the vector optimisation problem
such as Method of Distance Functions, Method of Constraint Oriented Transformation
(Trade-off Method), and Method of Min-Maz Formulation. Details of these methods
can be found in [7]. The following papers on optimisation problems deal with this
type of optimal control problem.

A survey of multicriteria optimisation in mechanics is carried out in [8]. A Pareto
set of a particular multicriteria optimisation problem dominates almost all of the
optimal solutions in the literature.

In [9], simultaneous control and structure design is considered. The objective
combines the weight of the structure and the robustness of the closed-loop control
system. The robustness is represented by the sensitivity of the closed-loop eigenvalues

with respect to uncertain parameters. The optimum design was obtained by using the

method of feasible directions for constrained minimisation and the finite difference

15



gradients.

An optimisation procedure that combines the structural and control design criteria
into a single problem formulation is also discussed in [10]. The necessary conditions
for Pareto optimality are derived there.

Combined structures-controls-integrated optimisation using distributed parame-
ters models is presented in [11]. An explicit closed-form expression for a clamped
lattice-truss, using an equivalent anisotropic Timoshenko beam model is presented
there.

Path following and the time-optimal control of robot manipulators are the objec-
tives of the optimisation discussed in [12]. Extended Pontryagin’s Minimum Principle
(PMP) and parameter optimisation are used to solve the problem. It is found that
one and only one control is always in saturation in every time interval along optimal
path, while the other controls take on values within their bounds to guarantee the
motion along prescribed path.

A minimum time and minimum control effort (see Section 3.1) of manipulators
is considered in {13]. The approach presented there uses approximated dynamics in
which the parameters are kept constant in each sampling time. The authors claimed
that this process can be implemented on-line. The control sign is determined using
simplified decoupled dynamics before hand and updated later using an averaging
process.

A numerical solution to the optimal control problem with the compromise perfor-
mance index of time and fuel using the minimum principle is the topic of discussion
in {14]. The numerical method used for solving the corresponding two point boundary
value problem is called the “target practice method.” The initial costates are guessed
first and corrected later.

A combined energy and travelling time control of the two-link manipulator is
the topic in [15]. The problem is formulated using the PMP. The corresponding

Two-Point Boundary Value Problem (TPBVP) is solved using a numerical algorithm

16



which employs the gradient method and the shooting method. A method named
“transition-matriz algorithm” is used for solving the time-optimal control problem
(when the weighting function for energy is set to zero.)

Simultaneous optimal control of the maneuver time and vibration of a flexible
spacecraft (similar to a flexible single link manipulator) is the concern of [16]. A
perturbation method is employed to solve the problem. The slewing of the rigid
spacecraft is regarded as a zero order problem while the vibration is regarded as a
first order problem.

Minimum-time trajectory of a two-degree of freedom system under the average
heat generation is investigated in [17]. The performance index is a combination of
minimum time and heat generation. The solution is obtained in two phases. First a
minimum time solution is obtained when the coefficient of heat generation is assumed
using the parameter optimisation method (finite element and steepest descent). Then
a search for the coefficient is determined considering the average heat generation for

rigid dynamics for the motion of the manipulator.

2.2 Optimal Control of Flexible Structures

Application of optimal control to flexible bodies with highly nonlinear governing equa-
tions are the topic of the following papers.

In (18] adaptive decentralised control of flexible multi body structures is con-
sidered. The decentralised technique allows the model to be divided into a set of
subsystems, each of which is controlled independently.

Feedback control for end-effector tracking for flexible manipulators is considered
in {19], where the feedback law is derived by using a series of steady state regulators
at intermediate configurations along the desired path.

In [20], approximate optimal control of a flexible manipulator with the objective

function which combines minimum time and tip tracking is solved using finite element
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and recursive quadratic programming. As an initial control. the control configuration
for a rigid arm has been used. The optimal control solution is not bang-bang even
when only time is the objective function for the rigid arm.

Combined structural and control optimisation for flexible systems is considered
in [21]. The objective of the optimisation is to minimise the mass and vibrational
energy simultaneously. The control part is a linear regulator problem which can be
minimised using the Riccatti equation. For the structural optimisation the gradient
search is used. The algorithm combines finite element, optimal control, and gradient
search.

A survey on the control of flexible structures is done in [22]. The work includes
model reduction, active and passive control, hierarchical/decentralised control, com-
bined structural-control, optimal design, and actuator/sensor location selection for
flexible structures.

In [23], optimal control of a flexible single link manipulator is analysed by using
the finite element method and Pontryagin’s Minimum Principle.

Optimal control of a flexible single link manipulator is discussed in [24]. Using
the technique of modal expansion, a finite dimensional dynamic model is developed.
Pontryagin’s Minimum Principle is employed to derive the differential equation of
motion.

Dynamics and control of a space based mobile flexible manipulator is studied
in [25]. The performance index is designed to suppress deviation of the tip of the
link from its prescribed path. The nonlinear equation of motion is linearised about
the planned path. With the linearised equation the problem is converted to a linear
quadratic regulator problem which is solved using the Riccatti matrix equation. A
routine DGEAR from IMSL/LIB is used for numerical solution.

Large angle maneuvers of a flexible spacecraft with a fixed final time is discussed
in [26]. The control is accomplished in two phases. In the first phase a frequency

shaped open loop solution for the nonlinear rigid body is used to control the band
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width of the control system. The corresponding TPBVP is handled by the continu-
ation method which progresses from a simplified solution to the full solution. In the
second phase, the feedback control of the flexible body is obtained by linearisation
along the rigid body solution. The performance measure includes the response of the
system as well as the control. It is a combined measure of power consumption and
vibration suppression.

In [27] multicriteria optimisation of nonlinear structural (mass and stress) and
control is investigated and the numerical results for a flexible robot arms are dis-
cussed. The method uses a step by step integration procedure. The analogy between
mechanical and electrical systems is shown. The gradient based optimisation method

is then used to solve the problem.

2.3 Time-Optimal Control

Time-Optimal Control (TOC) problems can be represented by the following perfor-

mance index

¢
Juy= [Tdt=t; -t (2.3)
to

where the final time ¢; is unknown. A characteristic feature of these problems is that
the controls are not usually continuous. Two types of problems can be considered
here: for a known trajectory, the control u has to be found (path following problem
in the shortest time), or both trajectory and u have to be found (minimum time
problem). TOC problems are the main topic of the following papers.

In {28], where a path planning problem for the two-link manipulator is considered.
the extended PMP was used. It was argued there that one and only one control torque
Is in saturation along the optimal trajectory. So the solution is not a bang-bang form.

Time-optimal control for arbitrary point-to-point transfers for three different
robots is discussed in [29]. One of the robots is a robot with a horizontal articulated

arm with two links. The parameter optimisation method is used for the numerical
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analysis. The author divided the solution into six categories based on final position
of the inner link. Singular solutions were found in two categories.

Mathematical discussion of the time-optimal control of rigid robot arms with fric-
tion is the topic of [30]. The author analytically proved that, for a rigid manipulator
such as a TLM with friction, a time-optimal control always exists if the final state
can be reached from the initial state by the manipulator (Fillipov’s theorem). He also
concludes that for almost all times, at least one of the controls should take one of its
extreme values.

The existence of regular or singular control solutions of the time-optimal point-
to-point control of rigid manipulators is discussed in [31].

A note about the time-optimal control of two kinds of manipulators with relatively
simple governing equations and symmetric boundary conditions is presented in [32].
A short discussion about the number of switches. when a singular arc exists, is given.

A short discussion on the time-optimal control of a single link manipulator is
presented in [33]. The authors claimed that the number of switches of bang-bang
control for a one-bending mode model would be, at most, three.

A numerical method for a special family of the time-optimal control problems (i.e.
minimum-time pointing control of a two-link manipulator when the final conditions of
the links are not specified completely) is discussed in [34]. An interesting discussion

about the pattern of switches of bang-bang control is presented there.

2.4 Numerical Methods for Optimal Control

Numerical solutions are the most common way of solving optimal control problems.
The shooting method for optimal control problems was used in [3] to solve a few
simple examples for which it was possible to obtain a good guess for initial costates
intuitively. It was found that the shooting method is highly sensitive to the guess of

the initial values of costates.



A shooting method to find the switching times for the bang-bang control for the
near-minimum-time problem is used in [35]. The initial costates are generated with
the help of a quasilinearisation technique. The authors also applied their method for
solving the minimum time attitude maneuver of a rigid spacecraft [36]. The minimum
time is determined by sequentially shortening the slewing time. A set of methods
based on the Euler’s principal axis rotation is developed to estimate the unknown
initial costates and the final time as well as to generate the nominal solutions for
starting the quasilinearisation algorithm.

In [37] a perturbation method for the numerical solution of optimisation problems
subject to inequality constraints explicitly containing the control is introduced. The
solution is not a bang-bang type because of the nature of the constraints on controls.
Perturbation is along the nominal trajectory, and uses the linear terms only. Two
methods of convergence based on the norm-reduction and on magnitude-limitation
were investigated. The latter converges more rapidly than the former. However the
latter case was prone to divergence.

A method used in [38] permits determination of the number and the location
of the zeros of the switching functions. The cost function includes the switching
times and the final time of a bang-bang control. A direct search method (gradient
method) is used to minimise the cost function. The expressions for the gradient of
the cost function with respect to the switch times are obtained explicitly. The author
also applied the approach to a linear plant with bounded control and a quadratic
performance index (an optimal regulator problem [39].)

A numerical procedure to compute non-singular, time-optimal solutions for non-
linear systems that are linear in control and have fixed initial and final states and
bounded control is presented in [40]. The authors introduced a numerical test that de-
termines whether bang-bang solutions satisfy Pontryagin’s Minimum Principle. They
stated there that "the test reveals the fact that, for non-linear systems, with linear

control and dimension n, the probability that a bang-bang solution with more than



n — 1 switches satisfies Pontryagin’s Minimum Principle is almost zero.” This claim
is challenged in this thesis (see Section 6.1).

A general purpose subroutine which solves optimal control problems with a fixed
terminal time using control parameterisation is introduced in [41]. The approach
uses a direct optimisation technique (a zeroth order spline) based on the concept of
sequential quadratic programming.

The superiority of the conjugate gradient method over the steepest descent for
a class of optimal control problems is claimed in [42]. For a fixed final time with
nonlinear or linear state equations and a linear or nonlinear performance index, the
conjugate gradient method is employed. The constrained problem is converted to
an unconstrained one using the penalty function. The authors conclude that the
conjugate gradient method is faster than steepest descent for this group of optimal
control problems but slower than second order methods.

In [43], the choice for initial multipliers for the quasilinearisation solution of some
optimal control problems is introduced. The authors use an auxiliary minimisation
problem with diagonal matrices of weighting coefficients in the performance index.
This index includes the cumulative error in the constraints and the optimality con-
ditions in the original problem. The authors believe that if the initial choice of the
nominal function for the optimal solution is close enough. the chance of convergence
of the quasilinearisation algorithm to the optimal solution of the control problem
would be high.

The method of particular solutions, which is a general technique for solving non-
linear TPBVP, is introduced in {44]. In that method the equations and the boundary
conditions are first linearised about a nominal function which satisfies the boundary
conditions. The method of particular solutions is then employed to get the perturba-
tion of nominal function to its varied function.

In [45] a gradient approach with bounded controls is introduced. The method

uses an adjustable control-variation weight matrix rather than a penalty function to
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enforce the bounded controls. Like other approaches which use the gradient method.
it has the weakness that the objective function is independent of the sign of switch
functions; consequently, it converges to solutions which are not necessarily bang-bang.

It is notable that some papers do not calculate the costates: the solution (control)
then is not verified with the switch functions and may not be optimal. For example.
in (46}, a numerical method for solving the minimum-time problem of robot manipu-
lator is introduced. The application of the method to the two-link rigid manipulator
is presented. In that algorithm a vector of bang-bang control forces as well as the
switch times are first assumed. Also, an initial value for the control vector is guessed.
With a gradient based method the switch times are corrected in each iteration to
minimise the error of the states at the target. However, the solution obtained that
way did not consider the costates and was found not to be optimal [47], as will be

discussed also later in Section 6.1.

2.5 The Contribution of the Candidate

The author has contributed to the third and fourth groups of the above literature
review. For the first time, the complete solutions (containing the controls, the states.
and the costates) to the time-optimal maneuver problem of Two-Link Manipulators
(TLM) are obtained directly from the PMP. The solutions allow for analysis of some
characteristic features of the maneuver, such as the number of switches, for example.
Details of the numerical method presented in this thesis have been published in several
papers.

A Forward-Backward Method (FBM) that solves the time-optimal control problem
(see Section 5.4) is discussed in [47], [48], and [49]. In the method, the switching times
were directly approximated in each iteration from a solution of the state equations
that meets the initial and final conditions. The FBM generates the initial costates

which then are used in the shooting method. The results show that the FBM is



capable of generating a good initial guess for systems with one or two control forces.
Cases discussed in [48] had the order of the state equation of less than two. Those
cases included a single link robot with a single control force and a linear or nonlinear
system with two state variables or less. The results of applying the FBM to two-link
manipulators was presented in [47] and [49]. The time-optimal control problem for
two-link manipulators was also formulated there. Next, a description of the numerical
approach that solves two-point boundary value problem was given. The approach
combined the shooting and forward-backward methods in order to obtain the time-
optimal control solution. The method was also used to control the motion of flexible
manipulators [50]. The finite element method was used to solve the dynamics of
flexible manipulators. The expected number of switches for the time-optimal control

was investigated in [31].



Chapter 3

Mathematical Statement of Problem

The task of optimal control is to determine the controls (the driving forces and mo-
ments) that minimise a performance index and simultaneously satisfy the physical
constraints.

For evaluating the performance of a system, selection of a performance measure is
necessary. For the time-optimal control problems. the performance measure is clearly
the elapsed time. However, in some cases the selection of a performance index is a
subjective matter. In the following, a few performance measures indicating different

optimal control problems are mentioned.

3.1 Review of Some Optimal Control Problems

The performance functional for an optimal control problem can be written in a

different form (see Equation 3.25) as

Jw) = hatr),t) + [ gle(), ue), 0t (3.1)

Q

where g and h are functionals of states, controls, and time. Here h represents the
state at the target and g is a function depending on the whole time domain. This

form can be easily transformed to the form of Equation (1.8). (see Section 3.3.1).
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The objective of optimal control is to find control u which causes the system
z(t) = a(z(t), u(t). ) (3.2)

to follow a trajectory r with the given boundary conditions and minimises J(u). Some

typical control problems are as follows.

3.1.1 Time Minimum Problem
The task is to transfer a system from initial state z(to) = zo to a target state z(t;) =

zs in minimum time. The performance index to be minimised is

t
Jwy= [Tdt =t; —tq (3.3)

to

3.1.2 Problem of Terminal Control

Deviation of the final state of a system from its desired value r(¢;) must be minimised.

The performance measure in this case can be
J(u) = h(z(ty).ty) = z(ts) — r(tys) || (3.4)

where |||| denotes a norm of the vector [z(t;) — r(¢/)].

3.1.3 Problem of Minimum Control Effort

The problem is to minimise the expenditure of control effort for transferring a system
from the initial state zq to a target state z;. The performance index may be in one

of the following forms:

J(u) = /t" | u(t) | dt (3.5)



or

J(u) = t!(uTRu)dt (3.6)

to
where R is a real, symmetric, positive definite weighting matrix. The latter perfor-

mance index is sometimes called a control energy problem.

3.1.4 Path Following Problem

A tracking problem or a path following problem is to maintain the state z(¢) as close

as possible to the desired state r(t) during the motion for ¢ € [to, ¢/].

)= [[z(t) ~ r(0)dr (3.7)

to

Moreover, if the states are to be close to their desired values at the final time as
well as being close to the desired state r(t) during the motion, the performance index

can be set to

(09

Jw) =l 2(ty) = rit) |+ [ Te(e) = rie)ae (3.5

Clearly, if £(t) = r(t) for the optimal solution the indices defined by (3.7) and (3.8)
are equivalent. A special case of the tracking problem is the regulator problem when

the states are zero all the time.

3.2 Calculus of Variations

The objective in optimal control problems is to determine a function that minimises
a functional called the performance measure or performance index. Calculus of Vari-
ations is a branch of mathematics which deals with analytical problems of minimising
functionals. Typically only well-behaved functions (that is the functions which are
continuous up to a sufficient order) are used to define the governing equations (the
Euler-Lagrange equations). Since the functions describing the admissible control and

the states are less well-behaved (the controls are. in general, discontinuous), the rules
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of Calculus of Variations should be slightly modified to be applicable in optimal
control. Nevertheless, the strategies used in Calculus of Variations and in Optimal

Control are analogous and are briefly discussed in this chapter.

3.2.1 The Fundamental Theorem of Calculus of Variations

Consider the functional (function of function) J(z) defined as
ty ) -
J@) = [7 gla(t),5(2), 5(t), ... t)dt (3.9)
to
The increment of J, where J is said to be differentiable on z, can be written as
AJ(z,éz) = J(z + éz) — J(z) = é§J(z, éx) + higher order terms (3.10)

The variation éJ is linear in éz.
The fundamental theorem of calculus of variations says that if z= is an extremal

which minimises (or maximises) J(z), then the variation of J must vanish:
6J(z",6z) =0 (3.11)

for all admissible 6z. (The admissibility of éz means that z* + §z is a member of
the same class as z* and éx, e.g. both are continuous functions.) The proof of this

theorem can be found in [5].

3.2.2 Variation of Functionals of Several Functions

Consider a functional of the vector £ made of n independent functions z, (where

¢t = 1...n) and their first derivatives. The functional J(z) is

I = [ glz(e),4(0), t)de (3.12)



This case is commonly used in mechanics where r € C! (meaning that the functions
r and their first derivatives are continuous). Also g has continuous partial first and
second derivatives with respect to z, z, and ¢t. Assume that to and z(to) are specified
and t; and z(¢s) are not specified (Figure 3.1).

To make use of (3.11) the extremal z~ and a neighbouring curve z = z* + 6z can
be compared. Note that §z(¢;) is the difference in z at ty and dzy is the difference in

z of the endpoints of the two curves. In general §z(¢;) # bzy.

to tf tf+5tf

Figure 3.1: Extrernal z* and another neighbouring curve z for free final point.

The fundamental theorem of calculus of variations must be used to find the nec-
essary conditions for functions z that must be satisfied to obtain minimum of J.
The increment AJ(z,éz) using the standard manipulations can be determined fol-

lowing [5]. The star denoting the extremal curve is omitted for convenience.

Ad(z,ér) = J(z+6éz)— J(z) (3.13)
Lot t
- /’ lg(l‘+5.r,:i:+5;i'.t)dt—/fg(x,.i',t)dt
to to
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ty [0 d |¢
/zo! {% zr,r,t)— m [-g—i(z,:i:,t)}}(é:r)dt + O(-)

+ [g—:(x,i, t)}tl bz (ts) + [g(z, z, t)]t! 8y

Where O(.) denotes terms of higher than first order. From Figure 3.1. it can be seen
5:1:(tf) =52:f—.’23(tf)6tf (3.14)

substituting the equation (3.14) into (3.13) one can get the variation §J(z, éz) (first

order terms of the increment AJ) as

6J(z,6z) = /z:I {g_i(z,x',t) - % [g—g(r,i.t)” (6z)dt (3.15)
99 (.3 (99, . )]
+ [ﬁ(z,x,t)] y oz + [g(x,a:,t) - (%—(x,x,t)) _zJ } Sty =0

For this variation to vanish for arbitrary éz (the fundamental theorem of calculus
of variation) the following conditions must be satisfied.
dg . d {dg )
= (r.5.t) — — | =(r. 5. t)| = 3.
31:(I z.t) 7 [8.§:(I r t)J 0 (3.16)
for all t € [to,ts]. This is the Euler-Lagrange equation for the problem (3.12). the
integration of which enables one to define the optimal z. The second part of (3.13)

involves the boundary condition at the final time which, if (3.16) is met, makes the

variation é6J equal to:

6J(z,bz) = [22(.)3, z, t)]

oz

dzy + [g(x,i:,t)— <%(.r,j:,t)) i:] 6ty =0 (3.17)
ty

ty

Note that the conditions r(tg) = zo is assumed to be always satisfied. Equations

(3.16) and (3.17) are the necessary conditions that must be satisfied by an extremal
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curve.

Boundary conditions

From (3.17) the boundary conditions at the final time can be easily specified for some
particular cases. Three such cases are as follows.
Case 1: If z(ts) is specified and ¢; is free, then 6z; = 0, and the boundary

conditions are:

z(ty) = =z
g(l'vi:vt)t, - (%(zvivt)) x(tf)=0 (318)
ty

Case 2: If z(ty) is free and ty is specified, then 6t; = 0, 6z # 0, and from (3.17)
then:

dg. .
a—i(z.x.t),, =0 (3.19)

Case 3: If both z(ts) and t; are free and independent of each other. then the

boundary conditions which satisfy (3.17) are:

a—g(r, .i,t)gl =0

Jdz
g(z.2,t);, =0 (3.20)

Note that Equation (3.16) with appropriate boundary conditions can be written for

each component of the vector z.

3.3 Calculus of Variations and Optimal Control

In the discussion above it was assumed that the components of r are independent of

each other. However. in control problems the functional representing the performance
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index contains n states z and m controls u. Thus. such functional includes n + m
functions of z and u, but only m of them are independent (controls u). The state
equations imposes n constraints on z and u in the form of (3.2). Now the necessary
conditions (3.16) and (3.17) have to be extended to handle such a constraint problem.

When the controls are not bounded the necessary conditions of optimality can
still be derived using classical calculus of variations. However, if the controls are
bounded, some continuity requirements used in calculus of variations are not met.
Therefore, a generalisation of the fundamental theorem of the calculus of variations
has to be introduced. This generalisation will lead to the Pontryagin’s Minimum
Principle (PMP). Time-optimal control problems using the PMP are discussed at the

end of this section.

3.3.1 Unbounded Optimal Control

Consider the admissible control vector u containing m components that drives the

system defined by n components of the state vector z and satisfying the equation
z(t) = a(z(¢), u(t).t) (3.21)
Optimal control must minimise the performance index
J(u) = h(z(t), t)e, + /tt' g(z(t), u(t), t)dt (3.22)

Here it is assumed that z(tq) and ¢, are fixed, and r is determined by control u which
does not have limits (unbounded control). This problem is considered as an initial
fixed point and final free point problem in the calculus of variations.

To be consistent with the formulation in the previous section, h(z,t)., can be



included in the integral sign assuming that h is differentiable such that

= [ {g(z(t),u(t),t) + di’th(z(t),t)}dt (3.23)

In order to include the constraints (3.21) the augmented functional [ is formed bv
introducing n Lagrange multipliers as the costates vector p(t). One can write (3.23)

as

1w = [fate0.u0.0+ | Few.0] 0 + e

+p7 (1) [a(=(0), u(t),1) - f(t)]}dt (3.24)

I(u) by analogy to (3.12) can be rewritten as

[(¥)
ot
~

I(u) = /tt’ ga(2(2), (t), u(t), p(t), t)dt (3.2;

where

go(z, L, u.p. t) =g(1:,u,t)+pT[a(J:.u.t)—i'] l:gi(x t)] +g—?(z,t) (3.26)

Replacing g(r, u.t) by g.(z,Z,u.p.t) in (3.15) and introducing the variations ér. 8z.

du, dp, and 8ty the variation of [ can be obtained in the form

61(u) = /:{[ag"(x(t),i-(t),u(t),p(t),t) & %0 (a(1), (1), u(0), (1), ]6()

Oz dt 0z
[ o000, w0000 sut0) + [ L ater 001 o). 000000 6p }dt+

"*l
~—

9., . . d9., .
+[§;—(z,x,u,p,t)] 6zf+[ga(x..v.,u,p,t)—(%(x.x,u,pt) ]

ty

If the chain rule is applied to the terms involving % inside the integral, they will cancel
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each other out. Then the remaining terms of the integral are
t d
/,o!{ Hg—i(“’(t)’ u(®), t>] +p' (1) [S—gma,uu),t)] += T(t)} 5z(t)
+ Hg—g(z(t),u(t),t)] +pT(2) [g—a(z(t),u(t),t)” bu(t)
u u

+[a(z(t), u(t), t) ~ :i:(t)]&p(t)}dt (3.28)

Regardless of the boundary conditions this integral must be equal to zero for §/(u)
to vanish for admissible variations ér, éu, and ép. If the constraints in (3.21) are
satisfied, then the coefficient of the ép(¢) is automatically zero. The state equations

represented by (3.21) is repeated here for convenience:
z(t) = a(z,u,t) (3.29)

Since the costates p are arbitrary, one can select them in such a way that the coefficient

of dz(t) also vanishes on the extremal. that is

#0) = =7 (0) | §2(au.0)| — Lzt (3.30

This set of n ODEs is called the costate equations. Since the variation of u(t) is

independent, its coefficient must be set to zero as well. resulting in

) d
5%(1, u, t) + pT(t) [a—Z(J:, u.t)] =0 (3.31)

This set of m algebraic equations is to define the controls u as a function of z and p.
In mechanics a(z, u,t) is a linear function of u; if g(z,u,t) is also linear in terms of
u (or independent of u), then Equation (3.31) can not be used. Also, this equation
is not valid for bounded or discontinuous controls. For the cases mentioned above.
Equation (3.31) must be modified as explained in Section 3.3.2.

The boundary conditions are obtained by setting the remaining part of the vari-
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ation 6/(u) given by (3.27) to zero. Substituting back the function g, as defined by

(3.26) into the term representing boundary condition gives

Oh oh ]
—(z.t) = p(t)| bz5+ |g(z,u.t)+ i—(J:.t) +pT(t)[a(z. u.t)] o0ty =0 (3.32)
a.’L‘ tf at ty
The above equation is similar to (3.17). This boundary condition must be satisfied
at the final time.
Note that n state equations (3.29), n costate equations (3.30), and a set of m

algebraic relations (3.31) constitute the necessary conditions which must be satisfied

throughout the interval [to, /]

By defining the following function H, called the Ham:ltonian,
H(z,u,prt) = g(z,u,t) + p7 (t)[a(z. u, )] (3.33)

the necessary conditions (3.29), (3.30), (3.31) can be written as:

{(t) = a—H(.r.u.p.t) (3.34)
dp

p(t) = —a—H(z.u.p.t) (3.33)
Jdz

0 = a—7-[(.'L'.,u,p,t) (3.36)
du

These equations must be satisfied at all time t € [to,¢f]. The boundary conditions
at initial time to are x(fg) = ro and at final time ¢; as given by (3.32) which can be
rewritten as:

[ah

oh
-a—x—(:z: t) — p(t)] dzy + [H(J:. u,p.t) + E(I’t)] oty =0 (3.37)

ty ty

The conditions (3.34) and (3.33) form a set of 2n first order ODE’s and the condition
(3.36) a set of m algebraic relations. The set of functions to be determined includes

n state variables r. n costate variables p. and m controls u.
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Boundary conditions:

The initial condition is always given as z(¢y) = zo. The boundary condition at the
final time can be obtained from (3.37) as follows:

Final time fixed: If the final time ¢y is specified, then ét; = 0. If the final state
is also specified then édzy = 0 and (3.37) is satisfied automatically. The boundary

conditions at {y are
:L‘(tf) =Ty (338)

If the final state is free, then éz;y # 0. Using (3.37) the following boundary

conditions at t; can be obtained

oh
g(-’r»t):, —plty) =0 (3.39)
Final time free: If the final time ¢; is free, then 6ty # 0. When the final state

z(tys) is fixed, then éz;y = 0. Using (3.37) the boundary conditions are

z(ty) = zy
dh

H(z,u,p.t), + E(r,t)t, =0 (3.40)
This case is characteristic for the time-optimal control problem for which the initial
and final configuration of the links are known and the final time is minimised.
When the final state is free, then éz; # 0 and 6ty # 0. Using (3.37) provides the
following boundary conditions at the final time.
oh .
=(2.t)y, = plty) =0 (3.41)
dh
H(z.u.p.t), + a—t(r.t),, =0

There are other possibilities for final states that are not considered here. The char-
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acteristic feature of these conditions is that they are imposed on both ends of the
trajectory at {o and ¢y creating the two-point boundary value problem as mentioned

before.

3.3.2 Bounded Controls

Up to now, the admissible controls were not constrained. However, in real situations,
physical actuators have limitations. For example, electrical and mechanical motors
can produce torques only up to a certain amount. The necessary conditions derived
before have to be modified to deal with such limits on controls. The generalisation
of the fundamental theorem of Calculus of Variations when the controls are limited
or discontinued is called Pontryagin’s Minimum Principle.

[f u is the optimal control, for all admissible controls close to this control, the

functional J has relative minimum when
AJ(u,bu) = J(u + du) — J(u) = éJ(u, du) + higher order terms > 0 (3.42)

where 6J is linear with respect to du. When the norm of éu approaches zero. the
higher order terms approach zero too. Asin the previous section (unbounded control).
a necessary condition for u to be extremal is that the variation 6 J(u, du) be zero for all
admissible §u with a sufficiently small norm. However since the controls are bounded.
some of the variation of du might lie in an inadmissible region. So, when all admissible
variations || éu || are small enough such that the sign of AJ is determined by §J. a

necessary condition for u to minimise J is
0J(u,bu) >0 (3.43)

when u lies on the boundary of admissible controls in any time interval t € [to, {/],

and

6J(u.bu) =0 (3.44)
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when u is within the boundary of admissible controls for the whole time interval [¢o. ¢ f].
Using the definition of the Hamiltonian, and (3.27), 3.28), the variation §J(u. du)

has the form

{[aa—H(a:, u,p,t) + P(t)] brt [?ﬂ(x’ Hepet) = j:(t)] P
T 9p

oH ah’
+ [a—u(xv u, pv t)] 6u}dt + [a—r(l‘,t) -— p} . 61.']

§5J(u,6u) = /"

to

dh
+ I"H(:r:, u,p, t) + —(z,t)]| 6ty (3.43)
I ot 4
When the costates are selected to satisfy (3.35), the coefficient of 8z in the integral
vanishes. If the state equations (3.34) are satisfied. the coefficient of §p in the integral

vanishes. If also the boundary conditions (3.37) are satisfied, from (3.45) one can have

t
57 (u, bu) = / g [a—H(z, u. p. t)] Sudt (3.46)
to au
which can be written as
_ ty
0J(u,bu) = / (H(z,u + 6u,p, t) — H(z, u, p. t)]dt (3.47)
to

Since 8J(u,éu) > 0 from (3.43). the necessary condition for u to minimise the

functional J is )
u

pr——
H(z,u + du.p,t) > H(z.u,p,t) (3.48)
or H(z,u,p,t) -, min

for all admissible variation éu and for all ¢t € [to,t;]. Here @ defines any admissible
control including non-optimal controls. This equation shows that optimal control
must minimise the Hamiltonian. It represents an extension of (3.36) for the cases in

which u is bounded or discontinued.
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In summary Pontryagin’s Minimum Principle for bounded controls is

z(t) = %—?(z,u,p.t) (3.49)
. oH

p(t) = _-67(37 U-,Pst) (350)
H(z,u,p,t) £ H(z.,p,t) (3.51)

for all time ¢ € [to, ts], where u is optimal control and % is admissible control. The
boundary condition at final time ¢y is identical to (3.37), that is
| Ok oh
[—(1:, t) — p(t)] orys + [’H(:c, u,p.t) + =(z,t)]f 6ty =0 (3.32)
al' ty at ty
It should be mentioned that u is a control that causes H(z,u, p,t) to assume its
absolute or global minimum. Also, the set of equations (3.49), (3.50), (3.51), (3.52) are

necessary conditions of optimality in general; that is, Pontryagin’s Minimum Principle

can be applied to problems with bounded or unbounded controls.

Other necessary conditions:
The variation of H(z, u,p,t) in Equation (3.47) is

oH oH oH OH
5H = -6761‘ -+ a—pap + a—u&u + —6—t"6t

Using the necessary conditions (3.34), (3.35), (3.36) one can have

?ﬂéx + a—Hép = —pbzr + £bép = —pzét + zpét =0
oz Jdp
For optimal control either %—t‘ = 0 for u within the bound, or éu = 0 for u on the

bound; therefore, §H = %&. When the Hamiltonian does not depend on time
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explicitly, then along any optimal trajectory:

§H =0 (3.53)

There are two more necessary conditions when the Hamiltonian does not depend
on time explicitly, derived from (3.53) by Pontryagin [52] as follows.

1. When the final time is fixed (6t = 0) then, using (3.53), the Hamiltonian must

be constant for all time t € [to, t/].
H(z,u,p) = constant (3.54)

2. When the final time is free (6t; # 0), and when %% = 0 then, from (3.52) and

(3.33), the Hamiltonian must be zero identically on a trajectory for all time ¢ € [to. ¢/].

H(z.u,p) =0 (3.33)

3.4 Time-Optimal Control Problem

The objective of the time-optimal control is to transfer a system from an arbitrary

initial state to a target state in minimum time. Then the performance measure is

t
Ju)=[Tdt=t; -t (3.56)

to

where {o is always known. The PMP is used to determine the time-optimal control

for a particular class of systems governed by the equation of motion in the form.
z(t) = a(z,t) + c(x. t)u(t) (3.37)

where z is the vector of n state variables, a is an n-dimensional vector and cisan n xm

matrix of nonlinear functions of states. Note that the states are linear in controls.
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which is the case for mechanical systems. For a time-optimal control problem. the

state departing from the initial conditions:

z(tg) = zo (3.38)
must reach the final conditions:
.’B(tf) =Ty (359)

in a minimum time. Each component of the admissible control vector u is bounded

as

Um <a(t) SUY i=1,...,m (3.60)

for t € [to,ts] where U and U are lower and upper bounds of controls.
Since h(z,t);, = 0 and g(z,u,t) = 1 in the performance measure (3.56), the

Hamiltonian H(z, u, p,t) defined by (3.33) is now given as:
H(z,u,p.t) =1+ pf(t)[a(z.t) + (. t)u(t)] (3.61)

Note that for this case, because H is a linear function of u and g = 1, the condition
(3.36) does not provide any useful relation between the controls and the states.
Using Pontryagin’s Minimum Principle, the optimal solution must satisfy the nec-

essary conditions (3.49), (3.50), (3.51):

z(t) = aa—fl;-(l‘, u,p.t) (3.62)
. JaH

p(t) = 55 (T pet) (3.63)
H(z,u,p,t) < H(z,q,p,t) (3.64)

Substituting (3.61) into (3.64) one can have
pT(t)e(z. t)u(t) < pT(t)e(z. t)a(t) (3.65)
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for all admissible controls @(¢) and for all ¢ € [to,tf]. The optimal control u(t)
causes pT(t)c(z,t)i(t) to take its minimum value (the term pT(t)c(z,t)(t) should
be minimised with respect to any control #(t)). It forces the control i(t) to take its
extremal values. Since the components of the controls are independent of each other.

the optimal controls u;(¢) to satisfy (3.64) or (3.65) must be assumed as:

Ut for pT(t)ci(z,t) <0

ui(t) =¢ U” for pT(t)ci(z,t) >0 (3.66)

unknown for p%(t)ci(z,t) =0

Here c;(z,t) is the ith column of matrix ¢(z,t). The function Gi(z, p,t) = pT (t)ci(z. t)
is called the switch function corresponding to the control u;. When Gi(z.p.t) =
pT(t)ci(z.t) = 0 for a period of time, the PMP is not able to define any optimal
value of u;. It is called a singular condition, and the control is referred to as singular
control. Thus, for singular control, the necessary condition that u must minimise H
provides no information about the value of the controls u. If the switch functions G;
are zero at individual points only, the control is nonsingular. This type of control
(3.66) is referred to as bang-bang control. The controls take their extremal values
throughout the whole motion to minimise the maneuver time.

Additionally. since the Hamiltonian is not an explicit function of time, it must

satisfy the additional necessary condition (3.55):
H(z,u,p) =0 for all ¢ (3.67)

The set of differential equations (3.62) and 3), the requirements (3.66) and

(3.6
(3.67), and the initial and the final conditions (3.58) and (3.59) completely define a
time-optimal control problem. This problem belongs to a class of two-point boundary
value problems. The solution of n state (z) and n costate (p) equations must satisfy

2n initial and final conditions imposed on the state only. It is assumed that any
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optimal trajectory remains bounded on a closed. bounded interval containing t¢ and
t.

If the state equations are nonlinear, from the mathematical view point there is
little known about characteristics of the above problem. However, the existence of
the solution was considered and proven in [6], [30]. For time-invariant linear systems

of the form:
#(t) = Az + Cu (3.68)

where A and C are constant matrices, the following observation can be made {3].

1. If all of the eigenvalues of A have non-positive real parts, then there is an optimal

control that transfers any initial state zo to the origin.

2. If an optimal control exists, it is unique. In other words, the PMP is both a

necessary and sufficient condition for the time-optimal control of such systems.

3. If all of the eigenvalues of A are real, and a time-optimal control exists, then each

control component can switch at most (n — 1) times when n is the number of states.
The case of Two-Link Manipulators (TLM) considered here is inherently nonlinear

and the above observations do not apply. In [40] an attempt was made to extend rule

3 to a TLM. However, as it will be shown in Chapter 6, such an extension, in general.

1s not correct.
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Chapter 4

Time-Optimal Control of Two-Link Manipulators

4.1 Necessary Conditions

The purpose of this chapter is to derive the time-optimal control problem for the T wo-
Link Manipulators (TLM) shown in Figure 4.1. Here. the states ¢, = ¢, 2, = 5,
are rotation and angular velocity of the first link (shoulder link), and the states
T3 = 2,4 = 2 are rotation and angular velocity of the second link (elbow link) as
it is shown in Figure 4.1.

The TLM is considered rigid and driven by two control torques u; and u, applied
in the first joint (shoulder joint) and the second joint (elbow joint). Any given mass
or geometric characteristics of the links as well as the joints of a real manipulator can
be specified in terms of the parameters indicated in the Figure 4.1.

Here the objective is to transfer a system moving in a plane (y, z), from an arbi-
trary initial state zo to a target state zy in minimum time. Then the performance

measure is to minimise the maneuver time ¢;

J=[Tdt =t; -t (4.1)

to

Since o can be set arbitrarily (here to = 0), the time-optimal control problem for

the TLM can be summarised as follows
minimise J = ¢y

14



shoulder joint

Figure 4.1: Physical parameters used in formulation of two-link manipulators.

subject to the equation of motion in the form

Zi(t) = ai(z) + cij(z)u;(¢)  i=1,....4, j=1.2 (4.2)

where z is vector of 4 state variables, a is vector of 4 nonlinear functions of states.
and c is 4 x 2 matrix of nonlinear functions of states. The detailed form of (4.2) is
derived in Section 4.2.

The boundary conditions are:

T
170:{ Tio T20 T30 -7540} (4.3)

T
Iy ={ T1f ZIa2f I3f ZIaf }
The Hamiltonian H is defined as

H(z,u,p,t) =1 + pT(t)[a(z) + c(z)u(t)] (4.4)

As it was stated in the previous chapter, using Pontryagin's Minimum Principle

(PMP). the optimal solution must satisfy the necessary conditions (3.62), (3.63).
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(3.64):

z(t) = 3 (z,u,p,t) (+.5)
p(t) = —5—(z.u.p.t) (4.6)
H(z,u,p,t) < H(z,a,p,t) (1.7)

Due to the special form of (4.4), the costate equations can be obtained as:
pi(t) = pe fu(z,u) L k=1,....4 (4.8)

where the functions fix(z,u) are nonlinear function of states and controls. These
functions are defined in Section 4.3.

The admissible control bounds @ are
U~ <4ty < UF
L Si(t) SU; (4.9)
Uy <io(t) < UF

for ¢ € [to,¢;] where U7 and U;" are lower and upper bounds of controls. The forces

for time-optimal control obtained from the PMP are:

ui(t) = (4.10)

Ut for G; <0
U~ for G;>0

where Gi(z,p) = Z‘J‘:l pj(t)cji(z.t) is the switch function corresponding to the control
u;, and ¢;(z,t) is the ith column of matrix ¢(z,t). The function G; are formulated in
detail in Section 4.4.

Since the final time is free and the Hamiltonian does not depend on time explicitly.

it must be identically zero on an optimal trajectory for all time ¢t € [to, ¢/], or
H(z,u.p) =0 (4.11)
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4.2 The State Equations of Dynamics

Since the rigid TLM is a two degree of freedom system, its equation of motion can be
derived by minimising the kinetic and potential energies of the system. The resulting
set of equations is called the Lagrange equations [33]. For the TLM one has to include
the kinetic and potential energies due to rotations and translations of the links and
joints.

The energy functional /g for the rigid TLM can be written as:
ty N
Ie(p) = [ Lip(t), 2(0), t)dt (4.12)
0

where L is the Lagrangian defined as

where Ej, E, are the kinetic and the potential energies of the TLM, respectively.
Minimising the functional energy (4.12), the following Lagrange equations are ob-
tained:

d ocC . aL . T

where @ is the vector of generalised forces. For the TLM the potential energy is

independent of the velocity (%ﬁ = O); therefore. substituting (-.13) into (4.14) gives

dIE, OE; + oF,
dt 9 d dy

=Q7T (4.15)

The kinetic energy of the TLM with rigid links shown in Figure 4.2 can be written
as follows (terms in the first bracket represent the kinetic energy of the first link and

the terms in the second bracket are the kinetic energy of the second link):

2x Ep = {(fo+ I + L)w} + muwd + mav2} + {(I + L)} + movd, + mpe?} (4.16)
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lLi,my, Ih

Figure 4.2: Motion of rigid two-link manipulators.

where I, and I, are mass moment of inertia of the links w.r.t. their centres of gravity,
I, and I, are mass moment of inertia of the masses m, and m; w.r.t. their centres.
I is mass moment of inertia of the mass at the shoulder joint including the inertia
of the shoulder motor. The terms m; and m, are the masses of the shoulder and
elbow links, respectively, m, is mass at the elbow joint. and m; mass at the end of
the manipulator. The terms v, and v. are linear velocities of the centres of the
links, and v, and v, are linear velocities of tips of the links. The terms w; and w»
are angular velocities of the links as well as the angular velocities for m, and m;,.
respectively. The lengths {; and [, are the lengths of the links, {.; and /., locate the

centres of gravity of the links.



The linear and angular velocities in Equation (4.16) can be obtained as:

W = ¢, Vey = wyla ve = wil)

w2 = QY1 + @2 Veasa = walca Ubja = wals

v = v; + 2/, + 2040274 COS(2)

v =vi+ Ug/a + 20,03/, cOS(2)

Substituting into (4.16) gives

2 x Ex = cih1® + ea( b1 + 62)% 4 2c361(1 + B2) cos(02) (4.17)
where the constants ¢, c3, c3 are

i =To+ L+ L) +mil3 + (my + mg + my)l?
Cyp = (12 + [b) + mglfz =+ mblg

cz = li(maley + myls)

Assuming motion in a gravitational field, the potential energy for the rigid links

for a vertical (¥, z) plane can be written as follows

E, = {[mlhcl + mghg] + [mahe + mbhb]}gr (4.18)
where g, is the gravitational acceleration and

hcl = lcl Sin(ﬁpl) ha = 11 Sin(‘r’l)
hea = lysin(1) + leasin(pr + ©02)  hs = [1 sin(py) + Lo sin(@; + ©2)

Substituting into (4.18) gives

E, = {c4 sin(yy) + cssin(yy + ¢2)}gr (4.19)
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where the constants c,, c5 are

cs = myly + (M2 + mq + my) 4

cs = male + myly

If the plane of motion is horizontal or the gravitational field does not exist. then

E, = 0. For that case, g, is set to zero in the equations of motion.

The derivatives necessary for the Lagrange equations (4.15) are given in Appendix

(B). The generalised forces corresponding to ¢; and ¢, are Q; = u; and Q, = u..

respectively. Substituting into (4.13) the equations of motion are obtained as

where:

aii

a2

a3

a2

Q14

a24

an@r + a1292 — a13(291 + S2)P2 + areg, = u, (4.20)

@121 + @282 + a13p1” + axg, = Uy (4.21)

c1 + c2 + 2c;3 cos(pz)
C2 + c3 cos(wa)
3 sin(ep2)

C2

(o]

C2

C3

Cq4

¢y cos(1) + cs cos(pr + @2) cs

¢s cos(p1 + 2)

Using the states defined as:

Ir; =

I3 =2 T4

= (lo+ L + L) + m% + (ma + my + my) 2
= (L2 + L) + m2lZ, + myl3

= [i(maloa + myly)

= mly + (ma2 + mg + my)ly

= m21c2 + mbl2

—

Y1 I =

s

the equations of motion (4.20) and (4.21) can be transformed to the form (4.2); that

is:

Ti(t) = ai(z) + ci;(r)u;(t) (4.24)
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where:

and

c(z) =

(]

0
+as;

0

[ —412

X [az2(2z2 + z4)z4 + a1223] —

= T2 x [a12(272 + T4)74 + ani T3] +

0
—a2

0

+ar ]

u(t)

& X (@14@22 — a4a12)

(4.23)
L x (a14a12 — azsay,y)
231
(4.26)
U2

The parameters a;; are given by the relations in (4.22) in which 2, and 2, are

replaced by z; and z3, respectively. The dominator parameter A in Equation (4.25)

and Equation (4.26) is defined as:

A = aq1a0 — afz = ci1Cp — cg cosz(:r;;) (4.27)

It can be shown that \ > 0 for any configuration of the manipulator.



4.3 The Costate Equations

As it was stated in the previous chapter, the optimal solution must satisfy the nec-
essary conditions (4.5), (4.6), (4.7) resulting from Pontryagin’s Minimum Principle.
The second necessary condition (4.6) represents the costate equation. For calculating

the costate equation the Hamiltonian can be defined as (3.33) or as (3.61)
H(z,u,p,t) = 1+ pe(t)[ar(z) + cay(z)u;(1)] (4.28)

where k=1,....,4and j =1,2.

The costate equations then are

. OH
pl(t) = —T(xvuvpvt) = Pk fik(xv U) (4.29)
I
where
: _ 8ak 6ckj . )
ftk(l‘.U) = — [*5;: + _—a;u_]jl (4.30)
where i,k =1,...,4and j =1,2.

The partial derivatives of 3;:"‘- and %.L are given in Appendix (B). Substituting
those derivatives into (4.30) gives the costate equations in the following form (4.29)
as:

pr = p2 X fi12(z) + ps x f14(z)
P2 = —p1 + p2 X foa(z) + ps x fas(T) (4.31)
P3 = p2 X fa2(z,u) + py x fas(z,u)

p'4 = —p3 -{-pg X f42(1:) +P4 X f44(r)

ot
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where the non-zero functions fix(z,u) are:

fiz(z) = E x [(a12 — azz)cssin(zy + £3) — azcysin(zy)]

fu(z) = =% x [(a11 — ar2)cssin(zy + z3) — ar2c4sin(zy)]

-
N
Il
|
—

falz) =

faa(z,u) = =% x {(a12 — a22) [@22(272 + z4)T4 + a1273] — aZ,23
A

fa2(z) = '32 X aiz(@a12z2 + azzz,)

Az X a13(a112 + aaz4)

+ai3uz — g, [(a12 — az)cssin(zy + z3) + 013024]}
+37 X 2a13(a12 — a22){a13 [a22(2z2 + z4)z4 + a1223]
+azxu; — ajpus — gr [a14a22 — 024012]}
fa(z,u) = + x {(012 — a2) [a12(222 + z4)z4 + anzd] — ad5[(z2 + z4)? + 2]
+a13(2u2 — wy) — g- {(a11 — ar2)essin(zy + z3) + a13(2a9, — au)]}
— 35 X 2a13(a12 — 022){013 [@12(2z2 + r4)zy + apiz3]
+a12u; — ayuz — g, [ar1sai2 — 024011]}

fa=-1
faa(z) = %2 X @13@22(T2 + 74)

fau(z) = ﬂ x ayza2(x2 + z4)
A



4.4 The Switch Functions and Controls

The optimal control forces can be obtained from the PMP as

UFr for G;<0

u]'(t) = (432)
U~ for G; >0
The switch function (Gj, j = 1,2) corresponding to control u; are:
4
Gj(z,p) =)_ pici;(z) (4.33)
=1

where the matrix ¢;; are given in Equation (4.26). Using this matrix in the explicit
form the switch functions which define the controls u; and u, are:

Gi(z,p) = § X (+P2a22 — psar2) (4.34)

Ga(z,p) = & X (—p2a12 + psanr)
Whenever G; changes sign the corresponding control u; switches from one extreme
to another extreme (bang-bang control). The complete sequence of controls is given

by Equation (4.32).



Chapter 5

Method of Solving Optimal Control Problems

5.1 Shooting Method

The time-optimal control problem defined in Chapter 4 belongs to the Two-Point
Boundary Value Problems (TPBVP) with the initial and the final boundary con-
ditions to be met. Usually no analytical solutions to these problems can be found:
therefore. substantial efforts have been made to solve them numerically. The Shooting
Method (SM) is one of the basic numerical approaches of solving TPBVP.

In the SM the initial conditions are used explicitly but the final conditions are
replaced by unspecified conditions at the initial point (the unknown initial conditions).
With a guessed set of unknown initial conditions. the differential equations can be
integrated numerically up to the final point (shooting to the target final conditions.)
If the computed final states satisfy the given final states, the problem is solved. If
these final values do not satisfy the given target point (which is usually the case).
the errors at the target are used to correct the unknown initial conditions. For the
nonlinear differential equations or nonlinear boundary conditions, the correction of
unknown initial conditions should be done iteratively.

The shooting methods are quite general and are applicable to a variety of differ-
ential equations of any order (even or odd). They are relatively easy to implement
in a computer code. However. for nonlinear problems the shooting methods may be

very sensitive to the unknown initial conditions. It makes the method difficult to
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converge. Such a situation arises when the SM is applied to TPBVP for time-optimal
control of Two-Link Manipulators (TLM). Several authors have tried unsuccessfully
to apply the SM to the TLM [29].

A brief description of the shooting methods for TPBVP is as follows. The set of

n nonlinear Ordinary Differential Equations (ODE) can be written as
z(t) = a(z,t) (3.1)

where z is an n vector and a is an n vector which is a nonlinear function of the
dependent variable z and assumed to be twice differentiable with respect to z. and ¢
is the independent variable.

In general the initial conditions may be given as:

z;i(to) = ¢, t=1,...,r (5.2)
also the final conditions are given as:
Im(ty) = Cm, m=r+1,....n (3.3)

Clearly r < n for having the boundary conditions on both ends. In the case of the
TLM, n =8 and r = 4.
In the SM the unknown initial conditions are corrected by an amount which de-

pends on the difference between the calculated final values and the given final condi-

tions.

If there are n — r final conditions (5.3), the error L,, = zn,(t;) — cm calcu-
lated at t; is function of r initial conditions ¢;,...,¢, and n — r unknown initial
conditions denoted as z,41(¢),...,Z(to). The purpose of the SM is to find such



Tr+1(to),-...Tn(to) that makes L, = 0; that is.

Lo(Zrs1, Trg2y---3Tn)e =0, m=1,...,.n—r (5.4)

Different approaches are used for solving the system of equations (5.4). For a linear
system (5.1), the set (5.4) represents m linear algebraic equations which can be eas-
ily solved. For nonlinear problems the SM reduces to a set of nonlinear equations
which should be solved by iterations applying the Newton-Raphson method, for ex-
ample. The method of adjoints and the method of complementary functions are two
of the most frequently used shooting methods [54]. The former employs backward
integration of the adjoint equations, while the later employs forward integration of
the variational equations (see Appendix B.4).

For stability of numerical procedures such as the SM, it is required that small
changes to the initial values z,.;(¢o),....zn(t0) should result in small changes in
the solution z,41(tf),...,za(tf). Such problems are called well conditioned. Any
problem which does not has this property is called ill conditioned. Such problems are
numerically unstable, and very sensitive to the initial guess of the unknown initial

conditions. Unfortunately the TPBVP for the TLM belongs to this class of problems.

-1
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5.2 Shooting Method for Two-Link Manipulators

Here the SM for a particular class of the TPBVP for time-optimal control problems is
discussed. In these problems, the control is bang-bang, and the final time is unknown.
Experience shows that this TPBVP is sensitive to the initial conditions because of
strong interaction between the states and controls, the controls and switch functions
and the switch functions and costates.

The SM for solving the TPBVP for time-optimal problems with a single control
was originally proposed in [3]. Here the method is expanded to include multiple
controls and to handle Two-Link Manipulators as defined in Chapter 4.

The equations of states, costates, initial and final conditions, control forces. and

Hamiltonian [(4.3), (4.6), (4.3), (4.10), (4.11)] can be rewritten as

X = F[X(t), u(t)] (5.3)
X(to) = K[zo. B] (5.6)
L[l‘(B,tf),tj] =0 (3.7)

[U,-* i f Gi(X)<0}
ui(t) =
Ur if Gi(X)>0

Where, X = [z, p]T 1s vector of 2n variables which includes both states £ and costates
p- F[X,u] is vector of nonlinear functions of states and costates as given by the right
hand side of (4.5), (4.6). Equation (5.5) formally combines (4.5) and (4.6) together.

Equation (5.6) represents the initial conditions where z¢ is 2 known n dimensional
vector of initial states, and B = p(ty) is an n dimensional vector of unknown initial
conditions (costates). Thus A[zg, B] is 2n dimensional vector of initial states as well
as unknown initial conditions B (costates).

The final conditions are handled by Equation (5.7), where L[z(B.t),t;] is an [
dimensional vector, with [ > n, representing the error at the target point. This error

depends on the choice of B and t; when integrating Equation (5.3). The vector L
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includes the final conditions of states (4.3), and the extra condition for Hamiltonian

(4.11) to be met at the target point. For the TLM the components of the L vector

are:
L,‘[l‘(B,tj),tf]=v,'X [:I:i(tf)—.l‘,'!] 1= 1....,7’1
(5.9)

Li[z(B,ty), ts] = vi x H(ty)
Here z;(ts) are calculated final states and z;s are final conditions for states, and v;
are weight functions to accommodate the difference between the dimensions of the
states as well as of the Hamiltonian. The choice of weight functions v; is discussed in

Appendix D.

UF, U7 are upper and lower controls bounds. and G;(.X) are switching functions
defined by (4.34).

In order to reduce L[z(B,t),ts] to zero, the values of B, t(fk) in iteration k.

have to be corrected in the next iteration using the following formula:

Bk+1) B(k) A B (5.10)
= + J.
(k+1) (k) (k)
ty ty Aty

In each iteration the correction A B, At(fk) can be computed by minimising a norm

of the target error, L as:
1/2

i
LIl = (Z L?) (5.11)
=1
The Newton-Raphson method is used for this purpose. The vector of corrections

is defined as:
A B®*) 6 B) (5.12)
= —o 3.12)
At 5t



where § B*) and 5t(fk) are calculated as:

(%)
AL[BM ), (F]  aL[Bk) ) 6B _ (k) (k) - 1
[ daty o o = L[B® +})] (5.13)
s

The positive scalar ay, calculated in each iteration, is added for improvement of the

convergence and is chosen from:

B )
o = min {1.0, Al fm]”, (5.14)
I[6B™. 8t 1li

where 0 < p < 1.

The scalar p effects the value of a;. Intuition is required when choosing p for
convergence of the SM. If the unknown initial conditions B are far from their optimal
values then p can be chosen to be small. typically 0.01 < p < 0.05. If they are close
to their optimal values then p can be chosen close to one (0.9 < p < 0.99).

Components of the partial derivative matrix { 2 % ]lx[ can be calculated as
follows:

15)

ot

8L_<8L8X 8L) oL (8[,(1\’ 81;) (

96 ~ \0XdB ' 3B),_, o, \aX &t ' ai,

All of the above partial derivatives can be obtained analytically, with the exception

of g‘;. For computing M the following equation derived from (5.5) can be used:

aX(tf) aK [1:0, N+l ) u(r)]OX(7)\
9B Z/t X 58 )@
Jt;

+ F[X,t)ey- — FIX ), b =2 5.16

;{[ e — FIX g} 52 (516)

The following sequence of ODE can also be used:
d aX(t)\ (OF\ (9X(t) (
dt\ B ) \9X B -
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valid for ¢;_; < ¢t < t;, where ¢; is the jth switch time (1 < j < N + 1), tngr = ty.

and the initial value for the above equation is:

dX(t)) _ 9K[zo. B)

0B JdB (5.13)
There is a jump in the value of -a—é’%ﬂ at every switch (¢;) which is calculated as:
OX(tf) oX(t7 ot .

a(BJ _ a(BJ ) | {F[X, Ul — FLX, u]m;} e (5.19)

This equation indicates that % is discontinuous at a switch time if the corresponding
F[X,u] is discontinuous. For the TLM it occurs only for X,, Xy. and X- because the
derivatives of these components of X explicitly contain the control u.

Since at switch time ¢; the corresponding switch function G;[X(t,)] = 0, then

=0 (3.

t=tl

(W1}
[ )
(e

0G; [0X  dX ot]  0G, ot
dX |oB dt OB dJt 9B

This can be rearrange as

9GidX 0G| ot  09G:oX) o
X dt " ot |9B T ax 0B __ "

The derivative % for each switch function G; . using the total derivative, can be
calculated as (where % = %L% + %C—:'-)
-1, ,
aB G dt oX 0B _
] t=£1

For a nonsingular system, it is assumed that % # 0 at every switch time.
The equations (5.5), (5.6), (5.7), (5.8), (5.10), (5.11), (5.12), (5.13), (5.14), (5.15).
(5.17), (5.18), (5.19), (5.22) are used in the SM for the TLM.

For starting the iterations a guess of the values for B(® and t(fo) is needed. [t is
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known (see [48]) that convergence of the SM is very sensitive to these initial guesses.
If the guess is sufficiently close to the optimal values of the initial costates, the SM
works as well as the regular Newton-Raphson method for solving nonlinear algebraic
equations. For the TLM, however, it is extremely difficult to have a good guess of
B9 and t(fo) intuitively, because the costates do not have any simple interpretation
or physical meaning. Therefore a new method is proposed which automatically gen-
erates a sufficiently good guess of the unknown initial conditions B (costates). This
method is referred to as Forward-Backward Method and is discussed in Section 5.3

and Section 5.4.



5.3 Forward-Backward Method (Single Control)

The Forward-Backward Method (FBM) is a numerical method used to find an ap-
proximate solution of TPBVP. In particular, it satisfies the initial and final conditions
on the state automatically [47], [48]. In the first step the FBM uses the states only
to find the switch times that would allow a bang-bang control to move the state of
the system from the initial to final location. However, neither the number of switches
nor their location is optimal in the sense that switch functions are not necessarily
zero at the switch points. The second step of the FBM is to find the costates. In the
subsequent iterations, when both the states and costates are available, the optimality
conditions are checked and the number and locations of the switch times are corrected
correspondingly.

The procedure is first explained for the case of single control. Suppose the bang-
bang solution for time-optimal control problem has only one switch. Using the initial
and final conditions for the states, and assuming one switch for the single control u
together with the assumption of the sign of the control, the switch time is located.

For a control u and a single switch function G, the following steps should be taken.

5.3.1 Iteration One
Step 1: Finding one switch time

The single control u can take the value Ut or U~ at zg and zs. At z¢ the control
u most likely should be U™* (to accelerate the mass from rest) and when approaching
zy it should be U~ (to decelerate the mass until it stops). Therefore starting from the
initial conditions zq. it is assumed that the control u/¢ = ['* and the state equation
integrated forward in time up to an assumed final time t$ to obtain z(zo, ul?. t)
as shown in Figure 5.1. Simultaneously, starting from the final conditions z;, the
control is taken as u®® = U~ and the state equation is integrated backward in time

from the same assumed final time ¢$ to obtain z(z;. ubd.t; —t). Here the superscripts
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Figure 5.1: Step 1 of the FBM. time domain.

(/%) and (%?) denote the control values in forward, and backward integration paths.
respectively. On the phase plane, the separation between the forward and backward

paths in each time instant is defined by the vector e(t,¢;) (Figure 5.2), where:

e1(t.ty) ’rl(xo,ufd.t)—xl(xf.ubd.tj—t)!
e(t.ty) = = (5.23)

eg(t,tf) Il‘z(.l‘o, uf‘i,t)+r2(.1:_,.ubd,tj—t)|

Here z; and z, are the states of the system. For example, for a mass and spring
system they are the displacement and the velocity respectively. When e(¢,t;) — 0.

for t — ¢,, the continuity of states is satisfied. and consequently

(A1}
[0V
e
—

r(zq, ul?. ts) = z(ry, ub?, ty —ts) (3.:
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Figure 5.2: Step 1 of the FBM, phase domain.

This point is the first switch £,, and the corresponding ¢; is the final time of the
trajectory that meets the initial condition ro, and the final condition r;. Numerically.

the values of ¢, and ¢; are found (when the number of states is n = 2) by minimising

o 6;2 + 652
B 2

el = e X w, €; = €2 X Wy

the following norm of e(t,t5):

o~
Ut
O]
at
-~

where w;, w, are weight functions to accommodate the difference in dimensions of the
states. If (5.24) can not be met, forward integration with u/¢ = U~ and backward

integration with u** = U+ should be carried out.



Step 2: Finding the costates

At the end of Step 1 ¢, and ¢ are given, where ¢, is the first switch time and ¢y is
the final time. It is still not known whether ¢; is the minimum maneuver time. To
verify this the costates and the switch function have to be calculated. Assuming that
ts is the first switch time for optimal maneuver and since (4.11) is valid for all time.

it can be used at t, together with (4.10) to determine the costates (p; and p2) at ¢,

H(t,) =0
G(t,) =0

—>p(L.) (5.26)

where G(t,) is switch function used in (4.10).

Now one can obtain the costates for the entire time domain. First the state
equations should be integrated from tg to ¢, to obtain z(¢,). Then the states and
costates should be integrated simultaneously backward from ¢; to to using r(ts).
and p(t,) as the initial conditions. Also the states and costates must be integrated
simultaneously forward from ¢, to t; using z(t,), and p(¢,) as the initial conditions.
Using (4.10) more switch times can be computed, if they exist (control u can now be
defined by the switch function G(z,p)). This step is illustrated in Figure 5.3. The

subsequent iterations are described below.

5.3.2 Subsequent Iterations

Step 1 of Iteration one is repeated using p(to) and p(t;) from the previous iteration
as initial and final values for the costates, and zq, r; as the initial and the final values
for the states, and (4.10) is used for defining the controls. There is no need to guess
the sign of control forces at second and subsequent iterations, because they are defined
by the sign of switch function G(z,p). Also, this switch function determines the new

set of the switch times t,; found from the condition G(z,p) = 0. The continuity
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Figure 5.3: Step 2 of the FBM, calculation of costate and another switch.

criteria of the states for multiple switches, t,;, now is:
bd -
z(zo, ufd,t,,-) =x(zsu ty — ty) (5.27)

where uf?. u*? are determined by the switch function G(z,p) from (4.10) with the
initial and final costates known from the previous iteration. Satisfying (5.27) means
that the state equations are met for controls obtained from (4.10) starting with p(¢q)
of the previous iteration. However, when performing Step 2. in which the costates
are calculated for the current iteration, the new switch times may be different than
those in Step 1.

The following convergence norm, defining optimality of the solution, can be spec-



ified at the end of each iteration (indicated here as iteration k + 1):

& =&+ +e)/m (5.28)

where:

k+1 (k (k)
tyt =65/t

€5 =

and where ty;-) is the jth switch time, and t(fk) is the final time calculated in the
iteration k. If e, — 0, the state and the costate equations will be satisfied and the

optimal solution will be generated.

5.3.3 Combining Forward-Backward & Shooting Methods

[t has been found that the convergence of the FBM procedure is slow or difficult to
obtain. In particular, it is difficult to apply the Newton-Raphson method to reduce
the error (5.28). Better results were obtained by combining the Forward-Backward
Method with the Shooting Method (SM). Implernent.é'.tion of the FBM on several
examples has proved that the costates generated at each iteration are relatively close
to the optimal costates.

[t should be emphasised that. for the FBM iterations, the initial and the final
conditions for the states are always met; however, some discontinuity in the states.
defined by (5.25), may be present at one point of the trajectory. The SM (Section 5.2)
can be started with:

B = p(to)FBM (5.29)

where p(to)rFpar are taken from the FBM.

This way, a random guessing of the initial costates for starting the shooting method
can be avoided. For most cases solved in Chapter 6 only one FBM iteration was needed
to obtain satisfactory initial costates to converge the SM. It should be noted that the

states and costates integrated by the SM are always continuous; however, there may



be some error at the target as defined by (5.9).

5.4 Forward-Backward Method for TLM

In the first step the forward-backward method uses the states only to find the switch
times. Physically the motion is from zg to z; with the controls being U¥. However,
as explained in previous section, neither the number of switches nor their location
is optimal in that sense that switch functions are not necessarily zero at the switch
points. After obtaining z¥2M and u*BM the approximation of the initial costates
p(to) is obtained by assuming that the corresponding switch function G; is zero at
switch time ¢,;. In Section 5.3 the FBM for cases with one control, when the order of
the state equation was two, was discussed. The initial costates were obtained there
using the Hamiltonian and a switch function at any single switch time. However, when
the number of states is larger than two, more switch times are needed to start the
integration of the costates. In case of the Two-Link Manipulators (TLM), there are
four state variables. four costate variables, and two control forces (and consequently
two switch functions) to be considered. Since at each switch time one switch function
as well as the Hamiltonian vanish, at least two switch times are needed for numerical
integration of the four costate equations. The number of switches will increase during
the iteration process since for optimal solutions of various manoeuvres of TLM. it
should be between 3 to 5 switches as reported in [29]. Discussion about the number
of switches can be also found in [38], [40], and [51].

The forward-backward method for TLM is stated as follows. Suppose the bang-
bang solution for time-optimal control problem has j switches. If the locations of j — 1
switches are known one can use the initial and the final states to find the location
of the jth switch. In the first step of the FBM it is assumed that there is only one
switch time. If Step 1 fails, then one can suppose that there are j > 2 switches, in

which j — 1 switches are assumed. and the last switch is determined. For the FBM
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for TLM with two controls the following steps have to be taken.

5.4.1 Iteration One

Step 1: Finding one switch

Starting from the initial conditions z¢, it is assumed that the control u/? = '+

and the state equation integrated forward in time up to an assumed final time ¢$
to obtain :r(:z:o,u,-fd,t). Simultaneously using the final conditions zy, the control is
taken u? = U7 and the state equation is integrated backward in time up to the
same assumed final time % to obtain z(zy, ubd, t; —t). As before the superscripts (/¢)

and (%¢) denote the values of parameters in forward, and backward integration paths

respectively (Figure 5.4, Figure 5.5).

3

bd

t

Figure 5.4: Step 1 and sub Step 2.1 of the FBM, controls and states of shoulder
link (.21, .’L‘f_)).



\z3(ty)
x4(ty)

Figure 5.5: Step 1 and sub Step 2.1 of the FBM, controls and states for elbow link
(I3y 1:4)'

The separation between the forward and backward paths in each time instant is

defined by the the vectors e;,, e34 (Figure 5.9), where:

ei2(t, ty) ei(t, ty) ea(t,ty)
e(t,ty) = ez(t, ty) = eaq(t, ty) = (5.30)

634(t,t/) ez(t,t/) 64(t,tf)

d
|1-‘1(-To, u{ at) - xl(‘rfv u?d? tf - t)l
812(t7tf) =

d
|$2(zo,U{ o) + zo(zguld ty — t)l



|x3(:1:0, u{d, t) — za(zyp, utd, ty — t)'
634(t9 tf) =
fd bd 4
|I4($O’ui )+ za(zyp,ui®, by t)l
For TLM the states z; = ¢; and z, = ¢, are the displacement and the velocity of the
shoulder link respectively, and the states z3 = ¢, and z4 = 5, are the displacement
and the velocity of the elbow link respectively. When e(t.t;) — 0, for t — t,; the

continuity of states is satisfied, and consequently
d -
z(zo, u;-f 1) = z(zp,ul? ty — tg) (5.31)

The trajectory meets the initial condition zo, and the final condition s where tg
is the first switch time, and the corresponding ¢; is the final time. Numerically. the

values of ¢,; and t; are found by minimising the following norm of e*(¢, tr):

A 1/2
e = (Z Zefz) e; = e X w; (5.32)
=1
where w;, ¢ = 1,...,4 are weight functions to accommodate the difference in mag-

nitudes of the states. If e;,;,. > 0 and can not be reduced, the continuity condition
(5.31) can not be met. In that case, other possible combinations of the control values
for forward and backward integrations should be tried. The following eight cases are

all possibilities that may be considered in this step:

case u{d u{d u'l’d ugd case u{d u{d ugd ugd
1 WU |Us (| UF\US 5 |UF U | UT | UF
2 ((UF (U U | UT 6 (UF|\Us |UT|US
3 (U iU ||\Ur U T WU US| US| US
4 \UT|UF|UF I US 8 |UF US| U |US

There are eight more possibilities for which uf? = u%?. However, if the motion of
g P 1 1

=1
o



the shoulder link is less than a specified value (e.g. «v§ = 0.98[rad] for the IBM 7533
B 04 robot considered in [29]), these possibilities can be ruled out instantly because
of the limit on the number of switches of the shoulder link (one switch).

For example, if one wishes to go from zo to z; with only one switch as shown
in Figure 5.6, cases 5 to 8 are good candidates for selecting the control torques and
performing the forward and backward integrations. If none of the four candidates
satisfies the continuity of all the states, it can be concluded that there must be either
separate switches for the shoulder and elbow links or more switches. To handle this.

the strategy discussed in Step 2 should be used.

) i r.o
) 4
U{d = Ul+ u%d = U2—

Figure 5.6: Different possibilities for u; and u, for the FBM for TLM.

Step 2: Finding two switches in one step

This step consists of two sub steps.

Sub Step 2.1: If Step 1 fails to satisfy the continuity of all the states, which is
usually the case, the continuity of the states of the shoulder link might be satisfied
first, and the states of the elbow link be considered later. For this purpose Step 1

considering only €2 as the measure of the state continuity should be repeated. When
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e12(t,ty) — 0 at ¢t — t,;, and consequently
d -
15(307 U{ 7tsl) = .’L‘,’($!,U?d,tf - tsl) (0.33)

where : = 1,2 this instant is called the first switch ¢,;, and the corresponding ¢; is
called the final time of the solution that meet the initial condition zo; and the final
condition zy;, : = 1,2 (see Figure 5.4 and Figure 3.5). One can use the same switch
time for the elbow link; however, the continuity of this link may not be met in this
sub step.

Sub Step 2.2: Now Step 1 including both e;; and e3; in the measure e*(t, ¢/)
should be repeated. This can be done using the following controls (see Figure 5.7 and

Figure 5.8):

d(s2.1) .
u{ G200 <ty bd(s2.1)
Uy

d . -
') = | W ese, | W)= (5:34)
fd(s2.1) Uz
Uz

fd(s2.1) ul?d(s2.l)
y Uy

Here u; are the control forces which are chosen in sub Step 2.1. When

e*(t,ty) — 0att — t,,, continuity of all the states and consequently (5.31) is satisfied.
The new switch time is t,, and the corresponding t; is the new final time of the
solution that meet the initial condition zo; and the final condition z4;,7 = 1,...,4. If
the continuity of all four states still cannot be satisfied, it means that more switches
are required, and Step 3 should be carried out. Experience shows that for TLM at

least three switches are needed.

Step 3: Using pre-specified switches

If Step 1 and Step 2 fail to satisfy the continuity of the states (5.31), one or
two pre-specified switch times for u; should be used (¢,; and t,; in Figure 5.10 and

Figure 5.11). The location of these pre-specified switches may be corrected later.
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Figure 5.7: Sub Step 2.2 of the FBM, controls and states for shoulder link (z,, z,).

Step 2 can be repeated with ¢,; as the first switch and At,, as the difference between
the second switch and the assumed final time (At = t7 —t,2). In forward integration

and in backward integration the following controls (5.35) may be used:

u{d(sl) ul;d(sl)
w/f(t) = | WY if <ty | uwie) = 5N F ot < A, (5.35)
—udY G sy, —ud¥CN GF s A,

The control forces u{d(’l), u?d(’l)

are chosen from the candidate controls in Step 1.
When e*(t,t;) — 0 at t — t,3, continuity of all the states and consequently (5.31) is
satisfied. This instant is the new switch time t,3, and the corresponding ‘tf the final
time of the solution that meet the initial condition zo and the final condition z;. Like

Step 2, this step is also performed in two sub steps. sub Step 3.1 (Figure 5.10 and

-~
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Figure 5.8: Sub Step 2.2 of the FBM, controls and states for elbow link (z3, z.).

Figure 5.11), and sub Step 3.2 (Figure 5.12 and Figure 5.13). The controls in sub
Step 3.2 are,

d(s3.1) .
u{ (s3.1) if ¢t S t,3 bd(s3.1)
d 1) . Uy -
wlf(t) = | u i t>tg | wi) =) (5.36)
fd(s3.1) Uqg
Uz

where u{d(’s'”, u?d(ss'l) are the control forces in sub Step 3.1.

The numerical results indicate that the continuity of all the states can be obtained

upon correcting t,; and At,. The initial values of t5; and At, can be approximated

using the results of Step 2 as:
tg?) = t§~;2.2)/2 At’(o) — (tj _ tsl)(s2.2)/2 (
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Figure 5.9: Step 2 or Step 3 of the FFBM, state trajectory for both links.

The values of t;; and At, can be corrected by a gradient search method for the

minimum differences of the forward and backward states, (€2, e34) in the following

time intervals:
0 <ty <332 0 < At, < (t; — t,3)532) (5.38)

Note that when this step is completed the initial and the final boundary condi-
tions are satisfied; however, there still may be some discontinuity when the states

integrated from the initial and the final points are matched. This discontinuity is

defined by (5.32).
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Figure 5.10: Step 3.1 of the FBM, controls and states for shoulder link (z,, z2).

Step 4: Finding the costates

At the end of Step 3 two or three switches, t3,, t3,, t33, in increasing order, and the

final time, t; are given such that:

Step 4 can be carried out, even if Step 3 is not completed, i.e. even if some
discontinuity of the states is still present. As it was stated at the beginning of this
section, two time instances are needed for numerical integration of the four costate
equations. The first two switch times, t},, t;,, are used to calculate the costates. Since
(4.11) is valid for all time, one can use (4.10) and (4.11) to get costates in t';l <t < t3,.
Suppose the control u; switches at t3,, and u, switches at ¢;,. Then there are four

equations and four unknown costates. that can be solved using a TPBVP solver with
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Figure 5.11: Step 3.1 of the FBM, controls and states for elbow link (z3, z4).

the following boundary conditions,

H(t3)=0
G2(t5,) =0 - - -
= p(t) for t;; <t <t;, (5.40)
H(t;2) =0
| Gi(t5;) =0 |

where G(t3;) and G(t3,) are switch functions (4.10) at ¢;; and at ¢;,. Since the
costates are dependent on the states, the state and costate equations have to be in-
tegrated simultaneously. Consequently, the states are needed in ¢, or ¢3,. First the
state equations should be integrated from ¢o to 3, to obtain z(¢;,). Then, using z(¢3;)
and the implicit boundary conditions (5.40) for p, the states and the costates should

be integrated simultaneously forward from ¢}, to t3,. In order to obtain p(¢y), the
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Figure 5.12: Step 3.2 of the FBM, controls and states for shoulder link (z;, z,).

controls of Step 3 can be used and the states and the costates can be integrated simul-
taneously backward from ¢}, to ¢o using z(fo) and p(t;;) as the boundary conditions.
For calculating p(t;) the states and the costates have to be integrated simultaneously
forward in time with the sequence of controls as in Step 3. The states and the
costates can be integrated simultaneously forward from t3, to t3; using p(t:,) and
z(t3,) as initial conditions. Finally, the states and the costates have to be integrated
simultaneously forward from t}; to ¢y using p(t;;) and z(t3;) as initial conditions. If
there are more than three switch times, the integration can be continued forward in
time from ¢;; to t7, ).

This strategy ensures that the boundary conditions for the states are satisfied

(though at one of the switch times the discontinuity may still be present) and the

continuity of the costates over the entire time domain is ensured. Thus, as explained
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Figure 5.13: Step 3.2 of the FBM, controls and states for elbow link (z3, z4)-

above, for calculating the costates only the first two switches have been used. In fact.
for this purpose any two switches could be used.

At this moment the state and the costate are determined. However. even if the
states are continuous (e* — 0) the switch functions probably do not match the
calculated switch times. That is at ¢,; when one of the controls switches, the corre-
sponding switch functions is not zero. This problem is considered in the next and

subsequent iterations as discussed below.

5.4.2 Subsequent Iterations

[teration One is repeated from Step 3 using p(to) and p(ts) from the previous iteration
as initial values for the costates, and zo, z; as initial and final values for the states,

and (4.10) is used for defining the controls. Since the switch functions Gi(z,p) are
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now explicitly calculated, there is no need to guess the sign of control forces in this
iteration. Also, these switch functions determine the new set of the switch times t**"
found from the conditions Gi(z,p) = 0. The criterion for continuity of the states at

the switch time t,; is now:
d
2(1.07 U{ 7t3i) =$(2:f,u?d, tf —tsi) (5'41)

where uf?, ub? are determined by the switch functions (4.10).

The following convergence norm, defining optimality of the solution. can be spec-

ified at the end of each iteration:

&= (& +---+&)/m (5.42)

where:

(k+1 k k
e = |15 — 1)) /¢

Here tg;-) is the jth switch time, and (tffk)) is the final time calculated in the iteration
k. Satisfying (5.41) means that the state equations are met for controls obtained from
(4.10) starting with p(¢o0) and p(ty) of the previous iteration.

Note that if ¢, — 0, the states and costates equations will be satisfied and the
optimal solution will be generated. It means that the global error in each iteration is
going to zero and the switch times are matching the switch functions. This can only

happen when there is no state discontinuity; i.e. only if e* — 0.

5.4.3 Combining Forward-Backward & Shooting Methods

As mentioned before, in practice the process of reducing ¢, to zero was found to be
slow. Better results were obtained by combining the Forward-Backward Method with
the Shooting Method (SM). It has been found numerically that if e, < ¢, the values

of p(to) generated by the FBM are good enough to cause the convergence of the SM.
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The value of ¢y depends on the physical parameters of the manipulator and the task.
For the examples tried in Chapter 6 the FBM was terminated and the SM was started
when ¢g = 0.5.

It should be emphasised that for the FBM iterations the initial and the final
conditions for the states are always met; however, some discontinuity in the states
may be present at one point of the trajectory. For the SM iterations, which starts
with the initial conditions of the states and the initial conditions of the costates
(B = p(to)rBMm) generated by the FBM, all the states are continuous but the final
conditions have to be met in final iteration.

Here in order to explain the FBM, the trajectories with up to three switches have
been considered. As soon as three switch solutions are obtained, then, if needed. the
optimal initial costates of this class of motion can be used as starting point for the
SM to obtain the optimal solution with four switches. Then using the continuation
method, explained in Section (B.4), one can obtain the solution of original problem
(using the optimal initial costate of the previous problem as initial guess for the next

problem.)
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Chapter 6

Results and Analysis

6.1 Numerical Examples

Three examples to show the usefulness of the method presented in Chapter 3 are
discussed. The first example is a linear system with two states. This example was
solved in {3] using the shooting method. The second and third examples illustrate
the application of the method for the time-optimal control of Two-Link Manipulators

(TLM).

6.1.1 Example One: Linear Problem

Here the linear mass and.spring system introduced briefly in Chapter 1 is analysed.

The equation of motion of that system (see Figure 1.2) is,
Mo(t) + Kp(t) = F(t)

with the limit on control force |F(t)| < Fy. Using non-dimensional variables t = \/%’t,

P = cp%;, and u(t) = %Q, this equation can be transformed to an ODE in the following

form

d*p F
-—(p-}-(t-a:——:u

dt? Fo
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The non-dimensional equation of motion can be written in the form of the state
equations ifr, =@,z =, = %%f and where |u| = |F/Fo] < 1. Now the time-optimal

motion of the mass can be analysed as the following optimal control problem.

minimise ty
subject to the state equations,
Iy =z
1 2 (6.1)
To=—z14+u
The control bounds are,
—1=U"<u<Ut=+1 (6.2)

This problem is identical to the problem in [3] if the initial conditions are assumed
as,

71(0) =3.0 z,(0) =0.5 (6.3)

The final conditions are,
zi(ty) = 0.0 z,(ts) = 0.0 (6.4)
Using Pontryagin’s Minimum Principle (PMP) the costate equations are,

pP1 = p2
ﬁz =N

(6.5)

and the Hamiltonian is

H(z,p,u)=1+p) 22+ p2 (—z1 + u) (6.6)



The control forces can be obtained from the PMP as
vt if <0
u= R (6.7)
U- if p2 > 0
The equations (6.1), (6.3), (6.4), (6.3), (6.7) form the Two-Point Boundary Value
Problem (TPBVP) for 0 <t < ¢y.
For starting the Shooting Method (SM) the state with z,(0), z,(0) and the costate
equations with p;(0) = By, p2(0) = B, have to be integrated from ¢q to t;, where B;.
B, are the assumed unknown initial costates. The target error vector given by (5.7)

should vanish at the final time ¢;. The components of this vector (see Equation (5.9))

are:
Ly=zy(ty) L2=za(t;) Ls=HU",t;)x HU*.t;) = p(t;) — 1 (6.8)

Note that H(t;) = 1 + p2(ts)u(tys), where u(t;) can take the values of F1. In order
to avoid guessing the sign of u(¢s), the component Lj of target error is formulated
in such a way that it should be zero in both cases (z = +1 or u = —1). The target

error norm ||L]| is:

LIl = /(L2 + L2 + L2) (6.9)

The shooting method is terminated when this norm is less than a small positive
value, ||L|| = 107, in this case. Here the unknowns are B, B, ts. This example has
been executed several times with different initial values of By, B,, t f-

In order to discuss convergence the following norm that defines the closeness of

the initial and the converged values of the calculated parameters is introduced:

d= \] (i(B:’v — B,?”P) + (ty — t9)? (6.10)

=1

where B}*. Bf" are initial values and optimal values for the initial costates, and n is
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the number of costates. The parameters t'’, t5* are initial values and optimal values
for the final time. This norm is only a rough indication of the closeness of the starting
point to the optimal point, mainly because not all of the costates in (6.10) appear in
the switch functions which define the controls.

Table 6.1 summarises the results of these executions. If the initial costates are
not close enough to their optimal values, the SM fails to converge (e.g. d < 1.93 for
this example). The set of initial costates marked by literature in the Table refers to
the starting point for the SM used in [3]. This set was not a blind guess for B and
ty. It was chosen by using some available information. The FBM set, shown in the
second column of Table 6.1, indicates the set of initial costates obtained from the
first iteration of the FBM described in Section 5.3. The approximated initial costates
from FBM were sufficiently close to their optimal values and made the SM converge.
The set random was chosen to cause divergence using trial and error from numbers
close to the FBM and literature. The purpose of this set of initial data was to show
that the SM is very sensitive to the starting point, and it may not converge, if the
starting point is not close to the solution. As explained earlier, the norm d is only
an indication of the closeness, and d < 1.93 for this example does not give a definite

conclusion that the SM never converges for the values d > 1.93.

Table 6.1: Initial and final values of parameters for the SM (Example One).

parameters | literature | FBM | random || converged
B, 0.89 0.75 -.93 0.93
B, 0.44 0.68 0.71 0.36
ty 5.00 5.26 4.61 4.99
d 0.09 0.46 1.93 0.00

Figure 6.1 shows the convergence of the SM with different initial values. The
random set has diverged. This Figure shows that the convergence of the SM can
be fast if the unknown initial costates are sufficiently close to their optimal values

(small d), or that convergence may never happen if they are not sufficiently close to
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Figure 6.1: Target error ||L|| for various starting values (Example One).

the optimal. Figure 6.2 shows the time-optimal control solution for this example. As
can be seen, the switch function G is matched with the control u. Each time G = 0.
there is a change in the sign of the control (u switches from one extreme to another).
Figure 6.3 shows the first iteration of FBM. The superscripts indicate the number
of switches, and the subscripts indicate the time. The state integration starts from
A (forward) and from B (backward). The corresponding trajectory is denoted as r!
with one switch at z; denoted as C,. After calculating the costates and integrating
the states r? and costates p? in reverse from C;, another switch is located at r? .
Continuing the reverse integration up to to = 0 the state reaches the point z2 and
the costate point p3. For comparison the exact solutions denoted as r and p are
also shown. As can be observed, the FBM in the second step of the first iteration
(calculating the costates) produced a poor approximation for the state variables but

a good approximation for the costate variables.
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Examples for two-link manipulators

Here two examples of application of the procedure that combines the FBM with the
SM for the time-optimal control of Two-Link Manipulators (TLM) is discussed. It
should be noted that only two examples of the time-optimal control of TLM were
found in the literature. The solutions reported were found using different methods
from the proposed method, as discussed in the introduction. To verify the method
presented here, these two cases, referred as Example Two and Example Three, are
analysed. Example Two is a rest-to-rest motion from straight-to-straight configura-
tions (2(0) = 0,¢2(ts) = 0) with four state variables and two controls (Figure 6.4).
The physical properties have been taken from [46]. It will be shown that results
presented in [46] are, in fact, non optimal. Example Three is also a rest-to-rest mo-
tion from straight-to-straight configurations (¢2(0) = 0.p2(ts) = 0) with four state
variables and two controls (Figure 6.14). However, the physical properties have been
taken from [29] and [40]. With this example, it is shown that some conclusions reached
in those papers related to the number of switches in the time-optimal motion are not
correct.

For starting the Shooting Method (SM) the state with zo, and the costate equa-
tions with p;(to) = B; have to be integrated from ¢y to t;, where B; are the initial
values of costates. The target error vector (5.7). should vanish at the final time ¢;.

The components of this vector as indicated by Equation (5.9) are:

L,‘[I(B,tf),tf] =v; X [.’E,'(tf) —I,'f] 1= 1,...,4

(6.11)
Ls[z(B, ty), tg] = vs x H(ts)
and the target error norm || L]| is:
LIl = /L3 + L3+ L3+ L2 + L2 (6.12)
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Here, v; are weight functions to accommodate the difference of the magnitudes of the
states as well as of the Hamiltonian. The choice of v; is discussed in Appendix D.
The unknowns are B, By, B3, By, t;. When this norm (|[L]||) is less than a small
positive pre-specified value, the iterations in the shooting method are terminated. For
the numerical examples the convergence criteria is set to [|L]| = 107¢. The closeness
norm of the initial and the converged values of the calculated parameters is the same

as in Equation (6.10).

6.1.2 Example Two: Motion in a Vertical Plane (Gravity)

This example is a rest-to-rest motion of a two-link manipulator in the gravitational
field from straight-to-straight configurations (©2(0) = 0,p2(¢;) = 0). The physical

parameters as reported in [46] are as follows:

Ly =20, =02[m] UF =F10.0 [Nm]

lp =2l =02 [m] UF =F5.0[Nm] [, =0.004167 [kg.m?]
my = 1.0 [kg] me =0 =m, I, = 0.004167 [kg.m?]
mq = 1.0 [kg] Lh=Ib=0,=0 g, =9.81 [m.s7?

(6.13)

where I; and I, are the mass moment of inertia of the links with respect to their
centres of gravity, I, and I, are mass moment of inertia of the masses m, and m,
with respect to their centres, Iy is mass moment of inertia of the mass at the shoulder
joint including the inertia of the shoulder motor. The terms m; and m, are the masses
of the shoulder and elbow links respectively, m, is the mass at the elbow joint, and
my the mass at the tip of the manipulator. The lengths {; and [, are of the links, /.
and [ locate the centres of gravity of the links, Uf and UF are bounds of controls
(Figure 4.1). Following [46] the gravitational acceleration g, is Earth gravity. To
compare with the results reported in [46] where v, = 1(0) = 60° = 1.047 [rad], the
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initial and the final conditions of the states in [rad] and [rad/s] are (Figure 6.4):

T
r(0)=[1.047 0.0 0.0 0.0]
(6.14)

T
:c(tf)=[o.o 0.0 0.0 o.o]

Y1, = 1.04Trad
z(ty) y(t)

© = -

Figure 6.4: The initial and the final conditions of the TLM (Example Two).

This example has been executed several times using different methods to obtain
the initial values for B;, and final time ¢; to start the SM method. Table 6.2 sum-
marises the initial sets and the converged values. The Semi-Optimal Control (SOC)
set was obtained using the location of the switch times ¢,; and t; from the optimal
control solution reported in [46]. This information and the boundary conditions (5.40)
for the costates permit calculations of a set of initial costates by applying the proce-
dure described in Step 4 of Iteration One of the FBM method (see Section 5.4).
The reason this set is called semi-optimal control is because the information of the

semi-optimal solution reported in [46] has been used to generate the set of initial
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Table 6.2: Initial and final values of parameters for the SM (Example Two).

parameters SoC FBM | random || converged
B, 0.067684 | 1.141600 0.5 0.063566
B, 0.006206 | 0.058565 0.5 0.006176
B; 0.014805 | 0.470310 0.2 0.013303
B, 0.001834 | 0.020709 0.2 0.001817
ty 0.210000 | 0.191800 0.2 0.194385
d 0.016218 | 1.172229 | 0.713 0.0

costates and final time for the SM. The set defined as FBM was obtained using the
FBM method, and the set random was selected to cause divergence using trial and
error from numbers close to the FBM and SOC as explained for Example One.
Figure 6.5 shows the convergence of the SM with different initial values of B and ¢;.
The set SOC converged very quickly. However, it was based on the previous knowledge
of the location of the switch times known from literature. Somewhat surprisingly
it was found that the set FBM converged to two different solutions indicated by
FBM(runl) and FBM(run2). In these two runs, different sets of weighting functions
(v; in Equation (6.11)) were used. The set random did not converge. Figure 6.6
shows the convergence of the final states in the SM with the initial values of costates
generated by the FBM. As can be seen there, the final velocities of the links (z2(ty).
z4(ts)) converge more slowly than the rotations. Figure 6.7 shows the convergence
of the switch times in the SM with initial values generated by the FBM. Comparing
Figure 6.6 and Figure 6.7 indicate that when the number of switches is right (three
here) deviation of the final calculated states from the given states are small. Figure 6.8
shows the trajectories of end points of the elbow and the shoulder at final iteration
(kf = 55), as well as the path of elbow end point at 15th and 16th iterations (k1 = 15
and k2 = 16). In iteration k2 = 16 the number of switches was picked up correctly
(see Figure 6.7); nevertheless, the trajectory missed the target point substantially.

There are two optimal control solutions generated from the FBM set that satisfy

93



target error(||L||)

final states

! HEL t I T 1
? & s0C —
— " FBM(runl) --- =
: ! FBM(run2) ----
. {) random -~ _
. (R4
: ) g
: i::. ....................................................................................................
- .-‘. " _
."‘-.I) ;ll |.},\
e -': l‘ ! , ‘\ -
SR BRI N
o 1
[ 1
- N -
- S _
\ e T
i [} 1 A 1 1
0 10 20 30 40 50 60
iteration

Figure 6.5: Target error ||L|| for various starting values (Example Two).
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Figure 6.6: Convergence of the final states z; for FBM(runl) (Example Two).
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Figure 6.7: Convergence of the switch times t,; for FBM(runl) {Example Two).

0 0.1 0.2 0.3 0.4 0.5

y(t)
Figure 6.8: Trajectories of tip of the elbow link (ys, ;) and tip of the shoulder link
(Ya, 2o) for FBM(runl) (Example Two).
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the PMP: each represents a local minimum. The FBM(runl) solution which gives a
smaller ¢ty and should be considered as a global optimum. It has three switches, (¢,; =
0.019758.¢,o = 0.068059.¢,3 = 0.116491 sec). and the final time ty = 0.194385sec
with the sequence for controls as in Figure 6.9. The FBM(run?2) solution has four
switches, (¢,; = 0.012310,¢,, = 0.053549,¢,3 = 0.086854,ts4 = 0.173929 sec), and
the final time t; = 0.197307sec with the sequence for controls as in Figure 6.10. In
terms of ¢; this solution is only 1.5% worse. Note that, for this example, a semi-
optimal control solution with three switches was reported in [46] with ¢; = 0.2053sec
(5.6% worse than FBM(runl) solution.) Because there are only two solutions for this
initial and final conditions (three and four switch solutions), the shorter final time is
considered global and the other local. As demonstrated in Section 6.2 this rotation
angle 1, = 1.047 is the border interval of three and four switch times solutions. The
optimal solution has either three or four switch times as is explained in Section 6.2.

Figure 6.9 shows the scaled switch functions (250 G;) of the time-optimal control
of the manipulator for the FBM(runl) solution with three switches. Figure 6.10 shows
the scaled switch functions (250 G;) of the time-optimal control of the manipulator
for the FBM(run2) solution with four switches. Figure 6.11 and Figure 6.12 show
the optimal states and controls for the FBM(runl) solution with three switches. As
can be seen, from these two figures, the magnitude of the velocities are considerably
bigger than the magnitude of the rotations.

Figure 6.13 shows the trajectory of elbow link (ys, z,) for the FBM(runl) solution
(3 switches) versus the FBM(run2) solution (4 switches) as well as semi-optimal
control (SOC) solution with three switches as reported in [46]. Note that these
two (FBM(runl) and FBM(run2)) optimal solutions have quite different trajectories
despite almost identical final times.

As it is seen from Table 6.2, if the initial costates are not close enough to their
optimal values, the SM fails to converge (d ~ 0.713 for this example). The initial

costates obtained from the first iteration of the FBM (d = 1.172229) are close enough
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Figure 6.13: Trajectory of tip of elbow link (ys,z25) for FBM(runl) with t; = 0.1944.
FBM(run2) with ¢ty = 0.1973, SOC with ¢; = 0.2053 (Example Two).

to their optimal values to allow the SM to converge. Although the parameter d for
the random set is lower than the one for the FBM, the SM did not converge. As it was
explained when the closeness norm d was defined in Equation 6.10, the norm d may
not be a good indication of the closeness of the starting point to the optimal point.
Particularly for this Example, the costates (p; and ps3), which define the controls and
do not appear in the switch functions G;, have the same weight as those which appear
in the switch function (p; and ps). Probably, this is the reason for having a smaller
norm (d = 0.713) for the random set, which did not converge, than the FBM set norm

(d = 1.172229), which did converge.
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6.1.3 Example Three: Motion in a Horizontal Plane

This example is a rest-to-rest motion of a two-link manipulator without gravity from
straight-to-straight configurations. The physical parameters are for the IBM 7535 B

04 robot as reported in [29] and [40] and are given as:

I, = 2y = 0.40 [m] UF = F25.0 [Nm]

lp =2l = 0.25 [m] UF = ¥9.0 [Nm] h=041679 lkgm?)
15

my = 29.58 [kg] me =0, my = 6.0 [kg] I, = 0.205625 [kg.m?]

mo = 15.00 [kg] I,=I,=5,=0 gr =0 [m.s77

In this example the initial and the final conditions of the states in [rad] and [rad/s]

(Figure 6.14) are identical to those in [40]:

T

r(0)=[0.0 0.0 0.0 0.0] (6.16)

T
z(tf)=[o.975 0.0 0.0 o.o]

Similarly, this example has been executed several times with different initial values
for B;, ;. Table 6.3 summarises the initial sets and the converged values. The initial
costates SOC (Semi-Optimal Control) were calculated in a similar manner to those
in Example Two using information about the switch times for the optimal solution

reported in [29] and [40].

Table 6.3: Initial and final values of parameters for the SM (Example Three).

parameters S0C FBM | random || converged
B, -1.086330 | -0.990 2.0 -0.456692
B, -0.419652 | -0.366 -2.0 -0.298622
B; -0.323267 | -0.280 2.0 -0.093548
By -0.111253 | -0.949 -2.0 -0.074258
ty 1.085000 | 0.795 2.0 1.083378
d 0.6821 1.0826 | 4.2260 0.0
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Figure 6.14: The initial and the final conditions of the TLM (Example Three).

Figure 6.15 shows the iterations of the SM with different initial values: the SOC
and the FBM that converged, and the random set which did not converge. Figure 6.16
shows the convergence of the final states in the SM with initial values generated by the
FBM. In this Figure all of the final states should go to zero except the final rotation
of the shoulder link, which should be z,(¢;) = 0.975. The optimal control solution
has three switches, (t,, = 0.08751933.¢,, = 0.5416889, t,3 = 0.5872438 sec), and the
final time £y = 1.083378sec. Figure 6.17 shows the convergence of the switch times in
the SM with initial values generated by the FBM. Again comparing Figure 6.16 and
Figure 6.17 indicate that when the number of switches is appropriate (three here) the
SM continue to converge smoothly. Figure 6.18 shows the trajectories of end points
of the elbow and the shoulder at final iteration (kf = 22), as well as the path of elbow
end point at 5th and 7th iterations (k1 = 5 and k2 = 7). In those iterations the correct
number of switch times are determined by the SM. Figure 6.19 shows the convergence
of the initial costates B; with initial values generated by the FBM for Example Three.

As can be seen from that Figure, even if the variation of the initial costates are not
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Figure 6.15: Target error ||L|| for various starting values (Example Three).

much in magnitude (—1.2<B;<0), but it has big effects on the convergence of the SM
(see Figure 6.16), on the number of switches (see Figure 6.17). and on the trajectory
of the tip of elbow (see Figure 6.18). Figure 6.20 shows the scaled switch functions
(250 G;) of the time-optimal control solution of the manipulator. Figure 6.21 shows
the optimal states solution for Example Three. The figure clearly indicates that the
two-point boundary conditions are satisfied. As can be seen from Table 6.3, if the
initial costates are not close enough to their optimal values, the SM fails to converge
(d = 4.22 for this example). The initial costates obtained from the first iteration of
FBM (d = 1.0826) are sufficiently close to their optimal values and the SM converges.
The SM converged faster for the SOC set than for the FBM set, while for the random

set did not converge during the test period.
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(Ya» za) (Example Three).
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Three).
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6.2 Effects of the Magnitude of Maneuver

In the cases of time-optimal controls of Two-Link Manipulators (TLM) presented in
Section 6.1, the maneuvers were characterised by the angle ,;, = 2;(0) or ©1, =
@1(ts) which was equal to ¢;, = 60° for Example Two and @1, = 55.9° for Example
Three. Here the effects of magnitude of the maneuver on the time-optimal trajec-
tories of the TLM in rest-to-rest motion from straight-to-straight configurations are
analysed. First, the TLM presented in Example Two (see Section 6.1.2) with the
physical parameters as reported in [46] and given in Equation (6.13). is considered.
Next, the TLM presented in Example Three (see Section 6.1.3) with the physical

parameters as reported in [29] and [40] and given in Equation (6.15), is discussed.

6.2.1 Two-Link Manipulator from Example Two (Gravity)

This example is a rest-to-rest motion of a two-link manipulator in a gravitational
field from straight-to-straight configurations (y2(to) = 0, w2(ts) = 0). The physical
parameters as in [46] are given in Equation (6.13). The case p;, = 60° = 1.047[rad]
was presented in Section 6.1.2, where two different time-optimal trajectories were
found with almost identical maneuver times t;, but different numbers of switches.
Here, it is shown that the optimal solution for this TLM should have three and
four switches. Schematically this situation is presented in Figure 6.22. The method
presented here generated optimal solutions with only three switches for y;, < 1.047.
with only four switches for ¢y, > 1.19, and double (three and four switches) solutions
for 1.047 < ¢1, < 1.19. Double solutions interval is because the three and four
switches solutions are overlapped. The typical configuration of optimal controls with
three switches was shown in Figure 6.9, and with four switches is shown in Figure 6.23.

The following problem is an example when the number of switch tirhes is four.
Note that this solution contradicts the statement in [40] according to which the chance

of having more than three switches for TLM is "almost zero”.

106



3 & 4 switch solutions

021 L 3 switch solutions /

4 switch solutions

0.19 <
0.17 4
08 1 1.2 1.4 1.6
Plg

:=; ‘20 - \\ -
O AN
-30 \\\ -
) S ppu— \ -
Gy --- ‘\\
-390 - Z; _-_...-..-. \\\ 7
-60 ! ] ] 1 ™
0 0.05 0.1 0.15 0.2 0.25
time

Figure 6.23: Optimal control, and scaled (250 G;) switch functions (Example Two).

The initial and the final conditions of the states in {rad] and [rad/s] are:

T
r(to)=[2.09044 0.0 0.0 o.o]
(6.17)

T
r(tf)=[o.o 0.0 0.0 0.0]
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Figure 6.24 shows the trajectory of the optimal control solution which. for this
case, (1, = 119.8%) has four switches (t,; = 0.031250. t,, = 0.096390. ¢,5 = 0.149692.
tsq = 0.216585). and the final time t; = 0.233483 sec. The sequence of controls and
the switch functions (250 G;) of the time-optimal control of the manipulators are
shown in Figure 6.23. Figure 6.25 and Figure 6.26 show the optimal states; the
controls are shown again for reference.

The calculations were carried out for ¢;, varying from 0.01 to 2.09044 for this

Table 6.4: Converged switch times and final time for various y;, (Example Two).

Pio tf tsl ts2 ts3 t34

0.01 | 2.262984e — 2 | 3.009902¢ — 3 | 6.875248¢ — 3 | 1.210933e — 2

0.1 7.099302e — 2 | 9.080023e — 3 | 2.165279%¢ — 2 | 3.869921e — 2

0.3 1.185223e — 1 | 1.352152e¢ — 2 | 3.689333¢e — 2 | 6.793785e — 2

0.6 1.583224e — 1 | 1.655116e — 2 | 5.137521e — 2 | 9.393380e — 2

0.9 1.843600e — 1 | 1.873540e — 2 | 6.286723e — 2 | 1.105064e — 1

0.98 | 1.899912e — 1 |1.929065¢ — 2 | 6.571662¢ — 2 | 1.139097e — 1

1.047 | 1.943858e — 1 | 1.975870e — 2 | 6.805973e — 2| 1.164911le — 1

1.15 | 2.006384e — 1 {2.049171e — 2| 7.159919e — 2 | 1.200212¢ — 1

1.19 | 2.029181e — 1 | 2.078223e — 2| 7.295600e — 2 | 1.212581e — 1

1.2 2.034756e — 1 | 2.090897e — 2 | 7.322001e — 2 | 1.217578e — 1 | 0.2033833
1.21 | 2.040258e — 1 | 2.10817le — 2 | 7.341957e — 2 | 1.224270e — 1 | 0.2037624
1.23 | 2.051043e — 1 | 2.141474e — 2 | 7.383069¢ — 2 | 1.237116e — 1 | 0.2045193
1.25 |{2.061552e — 1 | 2.173289%e — 2 | 7.425562e — 2 | 1.249310e — 1 | 0.2052730
1.28 |2.076834e — 1 | 2.218753e — 2 | 7.491466¢e — 2 | 1.266509¢ — 1 | 0.2063951
1.31 |2.091580e — 1 | 2.262054e — 2 | 7.559537e — 2 | 1.282540e — 1 | 0.2075046
1.34 | 2.105835e — 1 | 2.303393e — 2 | 7.629408e — 2 | 1.297535e — 1 | 0.2086000
1.4 2.133022e¢ — 1 | 2.381872e¢ — 2 | 7.773601e — 2 | 1.324795¢ — 1 | 0.2107484
1.5 2.175017e — 1 | 2.503373e — 2 | 8.024226e — 2 | 1.363486e — 1 | 0.2142098
1.571 | 2.202720e — 1 | 2.584695e — 2 | 8.207840e — 2 | 1.386705e¢ — 1 | 0.2165857
1.9 2.318255¢ — 1 | 2.935283e — 2 | 9.110341e — 2 | 1.464363e — 1 | 0.2272525
2.0 2.351313e — 1 | 3.035957e — 2 | 9.396661e — 2 | 1.481993e — 1 | 0.2305007
2.05 |2.367784e — 1 | 3.085508e — 2 | 9.541383e — 2 | 1.490326e — 1 | 0.2321436
2.065 | 2.372727e — 1 | 3.100194e — 2 | 9.584972e — 2 | 1.492785e — 1 | 0.2326394
2.08 [2.377673e — 1 |3.114861e — 2 | 9.628634e — 2} 1.495228¢ — 1 | 0.2331367
2.081 | 2.377838e — 1 | 3.115350e — 2 | 9.630091e — 2 | 1.495310e — 1 | 0.2331533
2.09 |2.381118e — 1 {3.125059¢ — 2 | 9.659065e — 2 | 1.496922¢ — 1 | 0.2334837
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TLM. The number and the locations of switches as well as the final time of the
bang-bang time-optimal control for these motions are given in Table 6.4 and plotted
in Figure 6.27. These solutions have three or four switches. The optimal initial
costates are given in Table 6.5. Figure 6.28 and Figure 6.29 show the initial costates
B; = pi(to) versus the rotation ¢;,. As can be seen, in the time-optimal solutions.

the number of the switches are three if o, < 1.047, and four if ;, > 1.19.

Table 6.5: Converged initial costates for various ¢,, (Example Two).

Y1 B, B, Bj B,

0.01 |1.131076e — 0| 7.778124e — 3 | 3.566842¢ — 1 | 2.452987e — 3
0.1 3.447834e — 1 | 7.602686e — 3 | 1.076539¢ — 1 | 2.388014e — 3
0.3 1.740699e — 1 | 7.041198e — 3 | 5.168767e — 2 | 2.177734e — 3
0.6 1.035751e — 1 | 6.514514e — 3 | 2.759441e — 2 { 1.971925¢ — 3
0.9 7.321899¢ — 2| 6.249575¢ — 3 | 1.681304e — 2 | 1.855829¢ — 3
0.98 |6.768495¢ — 2| 6.206348e — 3 | 1.480558¢e — 2 | 1.834003e — 3
1.047 | 6.356638e — 2 | 6.176809e¢ — 3 | 1.330301e — 2 | 1.817900e — 3
1.15 |5.798168e — 2 | 6.141888e — 3 | 1.125638¢ — 2 | 1.796556e — 3
1.19 | 5.602172e¢ — 2 (6.131519e¢ — 3 | 1.053674e — 2 | 1.789308e — 3
1.2 5.939384e — 2 6.112890e — 3 | 1.029867e — 2 | 1.781736e — 3
1.21 5.464557e — 2 | 6.080387¢ — 3 | 1.001038¢ — 2 | 1.769187e — 3
1.23 [5.322102e — 2 [ 6.019279¢ — 3 | 9.463446e — 3 | 1.745497e¢ — 3
1.25 | 5.188338e — 2| 5.962862e — 3 | 8.952294¢e — 3 | 1.723507e — 3
1.28 | 5.002142e — 2| 5.886020e — 3 { S8.244985e — 3 | 1.693334e — 3
1.31 [4.831331e — 2 {5.817481e — 3 | 7.600884e — 3 | 1.666153e — 3
1.34 [ 4.674113e — 2| 5.756377e¢ — 3 | 7.012765¢ — 3 | 1.641664e — 3
1.4 4.395515e — 2 | 5.654160e — 3 | 5.984043e — 3 | 1.599869¢ — 3
1.5 4.020567e — 2 | 5.536446e — 3 | 4.639369e¢ — 3 | 1.549111e — 3
1.571 | 3.812295e — 2 | 5.489864¢ — 3 | 3.925378¢ — 3 | 1.526292¢ — 3
1.9 3.323645e — 2| 5.661760e — 3 | 2.619796e — 3 | 1.557207e — 3
2.0 3.294882e¢ — 2 | 5.838763e — 3 | 2.725410e — 3 | 1.610092¢ — 3
2.05 |[3.294835e¢ —2{5.947118e — 3 | 2.837967¢ — 3 | 1.643378¢ — 3
2.065 | 3.296335e — 2 | 5.982022e¢ — 3 | 2.878014e — 3 | 1.654192e — 3
2.08 | 3.298465e — 2 | 6.017973e — 3 | 2.920700e — 3 | 1.665364e — 3
2.081 [ 3.298546e — 2 | 6.019189%¢ — 3 | 2.922166e — 3 | 1.665743e — 3
2.09 | 3.300296e — 2 | 6.043597e — 3 | 2.951868e¢ — 3 | 1.673345¢ — 3
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Figure 6.24: Trajectories of tip of the elbow link (ys, z5) and tip of the shoulder link
(Ya» 2a) (Example Two).
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Figure 6.25: Optimal solution, z; states (Example Two).
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Figure 6.26: Optimal solution, z; states, u; controls (Example Two).
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Figure 6.28: Optimal initial costates B;, B3 (Example Two).
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6.2.2 Two-Link Manipulator from Example Three

This example is also a rest-to-rest motion of a two-link manipulator from straight-to-
straight configurations (2(to) = 0,2(ts) = 0). The physical parameters as in [29]
and [40] are given in Equation (6.15). In [29] the time-optimal trajectories with three
and four switches were reported; however, in [40] it was concluded that only the
solutions with three switches were optimal. Here we show that, as in the previous
case, the optimal solutions have three switches for smaller ¢, , and four switches
for larger ¢,,. Here the results are presented for 0.76 < ¢;, < 3.1415 [rad]. It is
expected that for ¢, < 0.76 the solutions will have always three switches. For this
example, the only parameter which varies is the rotation of shoulder link ¢, ;- Again
the optimal solutions have three or four switches. A typical time-optimal solution
with three switches was presented in Section 6.1.3 for @, = 55.9° = 0.975 [rad] (see
Figure 6.20).

The following is an example of time-optimal control when the number of switch
times is four. The initial and the final conditions of the states in [rad] and [rad/s]

are:

T
x(to)=[0.0 0.0 0.0 0.0] (6.18)
.18

z(ts) = [ 3.1415 0.0 0.0 0.0 }T

Figure 6.30 shows the trajectory of the optimal control solution which has four
switches, (¢t5; = 0.061168, t; = 0.634483, t,3 = 0.817584, t,q = 1.242685), and the
final timet; = 1.512833 sec. The sequence for controls and the scaled switch functions
(250 G;) of the time-optimal control of the manipulators are shown in Figure 6.31.
Figure 6.32 shows the optimal states for Example Three.

For the TLM in this example, the calculations again were carried out for ©1,
varying from 0.76 to 3.1415. The optimal control solution has three or four switches
as reported in Table 6.6. Figure 6.33 indicates the number and the locations of the
switches as well as the final time of the bang-bang optimal control for these motions.

The optimal initial costates are given in Table 6.7. Figure 6.34 and Figure 6.35 show
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(Ya» 2a) (Example Three).
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Table 6.6: Converged switch times and final time for various ¢, , (Example Three).

Y1, ty ts1 ts2 ts3 tsq

0.76 0.974963 | 7.571537e — 2 | 4.874812e — 1 | 5.426642e — 1

0.9 1.047979 | 8.346379¢ — 2 | 5.239894¢ — 1 | 5.739498¢e — 1

0.975 | 1.083378 | 8.751933e — 2 | 5.416889¢ — 1 | 5.872438¢e — 1

0.98 1.085656 | 8.778758¢e¢ — 2 | 5.428282¢ — 1 | 5.880497e — 1

0.98 1.084077 | 2.946801e — 2 | 4.507253e¢ — 1 | 5.715065¢ — 1 | 0.970975
1.0 1.091563 | 3.325808e — 2 | 4.479418e¢ — 1 | 5.790395¢ — 1 | 0.974051
1.25 1.166824 | 5.507388e — 2 | 4.493728e — 1 | 6.384861e — 1 | 1.013591
14 1.201874 | 6.106139%¢ — 2 | 4.612327e¢ — 1 | 6.619982e — 1 | 1.031755
1.45 1.212537 | 6.238261e — 2 | 4.658690e — 1 { 6.686512¢ — 1 | 1.037215
1.47 1.216692 | 6.284398¢ — 2 { 4.678144e — 1 [ 6.711898e — 1 | 1.039333
1.48 1.218747 | 6.306144e — 2 | 4.688051e — 1 | 6.724350e — 1 | 1.040380
1.485 | 1.219770 | 6.316696e — 2 | 4.693047e — 1 | 6.730518¢ — 1 | 1.040900
1.486 | 1.219974 | 6.318782e — 2 | 4.694050e — 1 | 6.731747e — 1 | 1.041004
1.4865 | 1.220076 | 6.319821e — 2 | 4.694551e — 1 | 6.732361e — 1 | 1.041056
1.6 1.242467 | 6.507204e — 2 | 4.814797e¢ — 1 | 6.863057e — 1 | 1.052456
1.75 1.270386 | 6.638350e — 2 | 4.987245¢ — 1 | 7.015764e — 1 | 1.066996
1.8 1.279425 | 6.660462¢ — 2 | 5.046588¢ — 1 | 7.063171e — 1 | 1.071866
1.9 1.297261 | 6.680875¢ — 2 | 5.166141e — 1 | 7.154392¢ — 1 | 1.081809
2.0 1.314894 | 6.676847e — 2 | 5.285101e — 1 | 7.242152¢ — 1 | 1.092145
2.25 1.358624 | 6.600738e — 2 | 5.569972¢ — 1 | 7.453195¢ — 1 | 1.120216
2.4 1.384789 | 6.521420e — 2 | 5.725402¢ — 1 | 7.576089¢ — 1 | 1.138713
2.5 1.402213 | 6.467714e — 2| 5.823972¢ — 1 | 7.657838e — 1 | 1.151630
2.6 1.419613 | 6.403436e — 2 | 5.914844e — 1 | 7.738407e — 1 | 1.165029
2.8 1.454282 | 6.291964e — 2 | 6.087622¢ — 1 | 7.900607e — 1 | 1.192825
3.0 1.488693 | 6.195136e — 2 | 6.246889¢ — 1 | 8.062979¢ — 1 | 1.221707
3.1415 | 1.512833 | 6.116775¢ — 2 | 6.344832¢ — 1 | 8.175843e — 1 | 1.242685

the initial costates B; = p;(to) versus ¢;,. As can be seen, the number of the switches

is three if w1, < 0.98, and four if w1, = 0.98.




Table 6.7: Converged initial costates for various ¢, (Example Three).

Y1, B, B, By B,

0.76 —5.579808e — 1 | —3.098280e — 1 | —1.232082¢ — 1 | —7.7682835¢e — 2
0.9 —4.879275e¢ — 1 | —3.024319¢ — 1 | —1.026793e¢ — 1 | —7.542207e — 2
0.975 | —4.566919e — 1 | —2.986221e — 1 | —9.354806e — 2 | —7.425754¢ — 2
0.98 —4.547446e — 1 | —2.983736e — 1 | —9.298028¢ — 2 | —7.418156e — 2
0.98 —3.825371e — 1 | —2.321680e — 1 | —1.636708¢ — 1 | —8.799163e — 2
1.0 —3.664889%¢ — 1 | —2.300996e — 1 | —1.595359¢ — 1 | —8.735937¢e — 2
1.25 —2.523828e — 1 | —2.137025e¢ — 1 | —1.260441e — 1 | —8.231080e — 2
1.4 —2.175666e — 1 | —2.092486e — 1 | —1.144341le — 1 | —8.098576e — 2
1.45 —2.092150e — 1 | —2.082189¢ — 1 | —1.114584e — 1 | —8.067103e — 2
1.47 —2.062550e — 1 | —2.078754¢ — 1 | —1.103778¢ — 1 | —8.056600e — 2
1.48 —2.048512e — 1 | —2.077176e — 1 | —1.098597e — 1 | —8.051774e — 2
1.485 | —2.041678e — 1 | —2.076420e — 1 | —1.096061le — 1 | —8.049464¢ — 2
1.486 | —2.040326e — 1 | —2.076272e — 1 | —1.095558¢ — 1 | —8.049010e — 2
1.4865 | —2.039651e — 1 | —2.076198e — 1 | —1.095307e — 1 | —8.048784¢ — 2
1.6 —1.914926e — 1 | —2.064584e — 1 | —1.04677%¢ — 1 | —8.013287¢ — 2
1.75 —1.818154e — 1 | —2.061424e¢ — 1 | —1.003636e — 1 | —8.003625¢ — 2
1.8 —1.798278e — 1 | —2.062494e¢ — 1 | —9.932808e — 2 | —8.006898¢ — 2
1.9 —1.771410e — 1 | —2.066682¢ — 1 | —9.770493e¢ — 2 | —8.019700e — 2
2.0 —1.756708e — 1 | —2.072619e — 1 | —9.653656e — 2 | —8.037851e — 2
2.25 —1.745321e — 1 | —2.089963e — 1 | —9.477485¢ — 2 | —8.090867¢e — 2
2.4 —1.742458e — 1 | —2.098603e — 1 | —9.406859¢ — 2 | —8.115854e — 2
2.5 —1.740387e — 1 | —2.104567e — 1 | —9.368122¢ — 2 | —8.133900e — 2
2.6 —1.736486e — 1 | —2.108799¢ — 1 | —9.328249e — 2 | —8.145342e — 2
2.8 —1.726499e — 1 | —2.118907e — 1 | —9.257682¢ — 2 | —8.176465e — 2
3.0 —1.712244e — 1 | —2.129118e — 1 | —9.188735¢ — 2 | —8.209856¢ — 2
3.1415 | —1.698736e — 1 | —2.133731e — 1 | —9.133232¢ — 2 | —8.223627e — 2
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6.3 Effects of Flexibility of the Manipulator

In this section maneuvers of Two-Link Flexible Manipulators (TLFM) are discussed.
The following strategy is used. First, the control forces. using Pontryagin’s Minimum
Principle are obtained assuming rigid links. Next, these forces are applied to the flex-
ible manipulator and the response is simulated by a nonlinear finite element method.
The effects of flexibility are measured in terms of the amount of vibrations generated
and the distance from the tip of the manipulator to the target point at the end of
the maneuver. A quantitative relationship between these effects and the slenderness
of the links is obtained.

The dynamics of flexible manipulators can be simulated using the Finite Element
Method (FEM). At present, numerical routines capable of including all the flexibility
effects in the equations of motion and securing high accuracy of the time integration
schemes are available in commercial software. Of course this integration can be carried
out only if the forces applied to the manipulator are known. For example, in [23]
time-optimal control of very flexible single link manipulators is analysed by using the
FEM program ADINA. In [20], approximate optimal control of a flexible manipulator
is solved combining the FEM and the recursive quadratic programming.

Here, the motion of flexible links is simulated by ANSYS [55]. This FEM software
package solves problems involving nonlinear equations of motion by direct integration.
The forces required to drive the manipulator to the target are obtained using the
methods described in Chapter 5. Structural damping was not considered for the
flexible manipulator. Total number of iterations is set to 20000 with maximum time
step of 0.0015 sec. The maximum time step was chosen around T/20, where T is the
period of the dominant mode of vibration. The numerical damping is set to 0.005.

Details of the elements used here and the FEM can be found in [55].
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6.3.1 Dynamics of Flexible Manipulators

The equations of motion for flexible manipulators can be derived using the Lagrange
equations in which the functional of energy includes the potential and kinetic energies.
and the strain energy of the links. However, the problem of specifying an appropriate
set of Degrees Of Freedom (DOF) describing such systems is more challenging [56].
if one is to follow the derivation presented in Chapter 4. This problem is solved con-
veniently in the FEM formulation in which DOF are the displacements and rotations
of the assumed nodal points. The finite element formulation is used here, in which

the equations of motion are written in the form:

M(p)d(t) + C(p)d + K(p)p(t) = u(t) (6.19)

where M(), C(p), and K(y) are nonlinear mass, damping, and stiffness matrices.
The vector ¢ represents Degrees Of Freedom at each nodal point (two components
of displacement and rotation for a 2-Dimensional beam element are shown in Fig-
ure 6.36). The vector of control forces u(t) is obtained from time-optimal solutions
for rigid manipulators. Here an ANSYS program in which the motion is considered
in the (Y, Z) coordinate system is used. The matrices M, C, and K which define the
inertia, damping and stiffness properties of the element IJ in this coordinate system.

change as the element changes its orientation during the maneuver.

6.3.2 Modelling of Flexible Manipulators

The two-dimensional elastic beam element (BEAM3) of the ANSYS element library
has been used to model the two links of the flexible manipulator. This element uses

the standard approximation of the displacements of any point of the element in the

Us = Q1 + 028
{ e 3} (6.20)

V. = 3 + 45 + a552 + ags

form of:
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Figure 6.36: Beam element (BEAM3).

where v, and v. are displacements components in the local coordinate system (s, y)
shown in Figure 6.36, and «; are constants. The constants «; are related to six
DOF describing three components of displacement (v,,v.,®) at each node. Ten such
elements in each link have been used. In total, twenty elements of type BEAMS3
modelled the links of the TLM. The structural mass element (MASS21) was used
to include the lumped mass at the tip of each links and at the hub. This element
has one node and three DOF. Two such elements (MASS21), one at the tip of the
shoulder and one at the tip of the elbow link, have been used to include m, and m..
The joints were generated by coupling of the translational DOF at the corresponding
nodal points. The driving moments were applied at these joints.

Two cases will be examined here to show the effects of flexibility of the manipu-
lators under the optimal control obtained from the solution for rigid links. The first
case (Example Four) is a rest-to-rest motion where its optimal solution has three
switch times. The second case (Example Five) is also a rest-to-rest motion but its
optimal solution has four switch times. For comparing response of the rigid links with

flexible ones, structural damping was not considered for the flexible manipulator.
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6.3.3 Example Four: Straight-to-Straight Configurations

This example is a rest-to-rest motion of the TLFM from straight-to-straight configu-
rations (where for rigid links @,(%0) = 0, ©2(ts) = 0). The optimal solution obtained
for a rigid manipulator had three switch times. The physical parameters are the same

as in [50] and have the following values:

) = 2L, = 0.40 [m] UF = F0.25 [Nm]
I =2l =0.25[m] UF =F0.10 [Nm] I, = 3.2688e — 3 [kg.m?]
my = 0.245 [kg] me =0, my = 0.5 [kg] I, =0.7986e — 3 [kg.m?]
me =0.15315[kg] IL,=I,=L=0 g=0[m.s77

(6.21)

These data had to be translated into the ANSYS input data format for BEAM3
element. For each link the cross sectional area of the beam A;, the area moment of
inertia J;, and the height H; of the cross section are required. Here ;: = 1,2 indicate
the link number. Assuming that the links are made of solid cylindrical rods with
diameter d;. and density p; the relations for I; and m; are

1’)’2,1,2 mgd?

li=—73 16

m; = pl;A; = piliwd? /4 (6.22)

Using (6.21) and (6.22) the input data for element BEAMS3 for this example is:

dl =00lm A1 = Wd¥/4 = 7.854e - 3 m2 ‘42 = Al
p1 = 7800 kg/m® J, = 7d}/64 = 4.909¢ — 10 m* J, = J; (6.23)
H1 =d1=001m H2=H1

A typical ANSYS input file for the TLFM can be found in Appendix B.
Here, slenderness of the links is indicated by the geometrical aspect ratio of each

link defined as ar; = iL. These aspect ratios for the TLM analysed in Example Four



are:

ar; = — = —— = 40 ara = — = —— =25 (6.24)

The initial and the final conditions of the states in [rad] and [rad/s]| are:

T
r(0)=[0.0 0.0 0.0 o.o]
(6.25)

T
-’L‘(tf)=[0.376 0.0 0.0 o.o]

Rigid Links
Using the numerical approach described in Chapter 5, the optimal control solution has
been obtained. It has three switches, (¢,; = 0.039623, t,, = 0.616536, t,3 = 0.664337).

and the final time t; = 1.233072, where all time are given in seconds.

Figure 6.37 shows the scaled switch functions (0.1 G;) of time-optimal control of

1 1 1 1 ] i 1/
G = ,,
- 2 TT7 e —
08 Gz P
U -oveeene ,//
0.6 7 -
/
L
< 0.4 - ,’ -
- 7
© o2 : .
0 ."-n:s\.;.:::...............-..................—."",,e ................................ —
-0.2 - -
0.4 | i 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2
time

Figure 6.37: Optimal control, and scaled (0.1 G;) switch functions of rigid links
(Example Four).

123



the manipulator of rigid links. The moments u,(¢) and u,(t) as given in Figure 6.37

are applied to the shoulder and elbow joints of the flexible manipulator.

Flexible Links

For the ANSYS analysis the links are specified by data given in Equation (6.23).
Flexibility of the TLM can be numerically manipulated by assuming different values
of the modulus of elasticity £ of the material. Here, three moduli of elasticity to
represent Steel (E = 200 GPa), Aluminium 6061-T6 (E = 69 GPa), Magnesium
Alloy AM 100A (E = 44.8 GPa) have been used.

In the graphs showing the results, the symbols .r and . fA are used meaning rigid
and flexible links (made from Aluminium), respectively. Figure 6.38 compares the
planar trajectories of motion of tip of the elbow link for the rigid and the flexible
manipulator. For flexible manipulators angles of rotation of nodal points along each

link vary to account for their deformability.

0.25 T T T T
flexible(Al) —
0.2 rigid --- _
0.15 |-
& 0.1 |
0.05 -
0 i
1 I 1 L
06 061 062 063 0.64 0.65
Ys

Figure 6.38: Planar motion of elbow’s tip (rigid & flexible (Al), Example Four).
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Here only the rotation and angular velocities of the tip of shoulder link and the
tip of elbow link are shown and compared with the rotation and angular velocity of
the corresponding rigid links. These rotations are indicated in Figure 6.39 as (*? for
the shoulder link (»4® for velocity) and as ¢4 for the elbow link (%" for velocity).
Figure 6.40 compares the rotations of the links for rigid manipulator (z,.r = ¢, and
T3.r = 2) and the rotations of tip of the flexible links (z;.fA = @¥?, z3.fA = 4P).

It should be noted that the trajectories and the states presented in this section
were obtained by the FEM. For rigid links these plots agree very closely with the
results calculated with the help of the method given in Chapter 5. This supports
correctness of all the derivatives used there. As can be seen the angles of rotation
of the rigid TLM and the TLFM made of Aluminium are very close. Differences are
more visible when plotting the angular velocities. Figure 6.41 compares the angular
velocity of the rigid shoulder link (z,.r = ¢5;) with the angular velocity of tip of the
flexible shoulder link (z;.fA = ¢§i”). Figure 6.42 compares the angular velocity for
the rigid elbow link (z4.r = ¢»2) with the angular velocity of tip of the flexible elbow
link (z4.fA = c,'o;ip). These plots (Figure 6.41 and Figure 6.42) indicate some vibration

(1)

Node 22

A

Figure 6.39: A two-link flexible manipulator.



of the links which, however, affect the trajectory of the tip of the manipulator very
little.
The maneuver error due to the flexibility, e,, is defined as the absolute difference

(in meters) between the tip positions of the rigid and flexible manipulators.

ea = V(¥ — ) + (= — ={)? (6.26)

The relative error is defined as e, = e,/L, where L = [, + [5 is the total length of
the two links. The dynamic responses of the flexible links for other materials to this
control are very similar. The tip position and the corresponding errors are listed in
Table 6.8. As can be seen from this Table that the tip position of the manipulator is
almost identical for the rigid and the flexible manipulators, even with the least rigid

material (Magnesium).

0.5 T T T T T T

time
Figure 6.40: Rotations of links (rigid & flexible (Al), Example Four).
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Figure 6.41: Angular velocity of shoulder’s tip (rigid & flexible (Al), Example Four).
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Figure 6.42: Angular velocity of elbow’s tip (rigid & flexible (Al), Example Four).




Table 6.8: The tip position of elbow (ys, 2) (Example Four).

tip position error
case E [GPd] Yb N €a er
rigid - 0.604605 | 0.238649 0.0 0.0
Steel 200 0.604610 | 0.238632 || 1.772e-5 | 2.726e-5

Aluminium 69 0.604609 | 0.238633 || 1.649e-5 | 2.537e-5
Magnresium 44.8 0.604653 | 0.238512 || 1.452e-4 | 2.323e-4

6.3.4 Example Five: Straight-to-Broken Configurations

This example is a rest-to-rest motion of the TLFM from straight-to-broken configu-
rations (where for rigid links @2(¢0) = 0, w2(¢s) # 0). The optimal solution obtained
for rigid manipulator has four switch times. The physical parameters are the same

as in [50] and have the following values:

h=2y=10[m] UF=F3.90[Nm]

12 = 2lc2 = 0.625 [m] Uzq: = ;1.56 [Nm] II = 51.0547e — 3 [kg.m2] (6 ()___)
27

my = 0.61261 [kg] m, =0, my = 1.25 [kg] [, = 12.4660e — 3 [kg.m?

me, =0.38288 [kg] L =I,=I,=0 g =0[m.s7?

Again these data have to be translated into BEAM3 of ANSYS input data format.
The input data for element BEAM3 of ANSYS for this example is the same as the data
given by Equation (6.23). Here, however, the links are more slender. The geometrical

aspect ratios for the TLM analysed in Example Five are:

A 1.0 [, 0.625 _ .
= T ool a2 = o= o1 920 (628

The initial and the final conditions of the states in [rad] and [rad/s] are:

T
3(0)=[o.o 0.0 0.0 o.o} (6.29)

T
r(tf)=[0.s 0.0 0.2 0.0]
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Rigid Links

Using the numerical approach described in Chapter 5, the time-optimal control so-
lution has been obtained. It has four switches, (¢t,; = 0.122441, t,, = 0.708397.
tss = 1.188230, tsq = 1.518571), and the final time ¢, = 1.620396, where all time
are given in seconds. Figure 6.43 shows the scaled switch functions (0.1 G;) of time-
optimal control of the manipulator of rigid links. The moments u;(t) and u,(t) as
given in Figure 6.43 are applied to the shoulder and elbow joints of the flexible ma-

nipulator.

Flexible Links

For the ANSYS analysis the links are specified by data given in Equation (6.23).
Flexibility of the TLM again can be numerically manipulated by assuming different

values of the modulus of elasticity F of the material. Here, two moduli of elasticity

G,’, U

time

Figure 6.43: Optimal control, and scaled (0.1 G;) switch functions of rigid links
(Example Five).
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to represent Steel (£ = 200 GPa) and Aluminium 6061-T6 (£ = 69 GPa) have been
used.

In plots that follow the rotations and velocities of the flexible manipulator are
denoted similar to that of Example Four. Figure 6.44 compares the planar trajectories
of motion of tip of the elbow link for the rigid and the flexible manipulator. The
symbols .r and .fS indicate rigid and flexible links made from Steel respectively.
Figure 6.45 compares the rotations of the links for rigid manipulator (z,.r = ¢; and
z3.1 = ;) and the rotations of tip of the flexible links (z,.fS = O z3.f5 = ©5P).
Figure 6.46 compares the angular velocity of the rigid shoulder link (z,.r = ¢;) with
the angular velocity of tip of the flexible shoulder link (z,.fS = $4?). Figure 6.47
compares the angular velocity of the rigid elbow link (z4.r = 3;) with the angular
velocity of tip of the flexible elbow link (z4.fS = c,'cf;p). These plots (Figure 6.46
and Figure 6.47) indicate vibrations of the links. For this case. because of higher

slenderness of the links (the geometrical aspect ratio). the vibrations are stronger

1.4 T T T

T
flexible(St) —
1.2 |- rigld --- -

1
0.8 1 1.2 1.4 1.6

Yo
Figure 6.44: Planar motion of elbow’s tip (rigid & flexible, Steel, Example Five).
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time
Figure 6.45: Rotations of links (rigid & flexible, Steel, Example Five).

than for Example Four. However, these vibrations still have very little affect on the
trajectory of the tip of the manipulator. The dynamic responses of the flexible links for
other materials to this control are very similar. The tip position and the corresponding
errors are listed in Table 6.9. As can be seen from this Table the tip position of the
manipulator is almost identical for the rigid and the flexible manipulators, even for

Aluminium. The maneuver error, e,, is defined in Equation (6.26).

Table 6.9: The tip position of elbow (ys, z3) (Example Five).

tip position error
case E [GPa] Ys b €q er
rigid - 1.03436 | 1.24321 0.0 0.0
Steel 200 1.03446 | 1.24135 || 1.863e-3 | 1.146e-3
Aluminium 69 1.03434 | 1.23884 || 4.370e-3 | 2.68%e-3

In conclusion, Finite Element Method may be used to verify the performance of

real (that is flexible) manipulators driven by the forces obtained by the time-optimal
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Figure 6.46: Angular velocity of shoulder’s tip (rigid & flexible, Steel, Example Five).
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Figure 6.47: Angular velocity of elbow’s tip (rigid & flexible, Steel, Example Five).




control of rigid manipulators. The results show that the vibrations due to flexibility
have a greater effect on the response of the links than the motion of the tip of the
manipulator. In general, the dynamic performance of the flexible manipulators under
the controls obtained from the rigid solution is satisfactory if the slenderness of the
links is sufficiently small. Particularly, with the geometrical aspect ratios, ar; = 100

and ar; = 62.5, and for the Steel links the performance is satisfactory.
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6.4 Physical Parameters & Control Forces

Here the effects of physical parameters (such as geometry and masses of the links
as well as masses at the tips of the links) and the effects of changing the limits of
control forces on time-optimal maneuvers of the Two-Link Manipulator (TLM) are
discussed. Effects of the length of links of TLM are shown in Example Six, with
two different maneuvers. In that example the total length of the links is constant.
as is the total mass of the links, but their ratio is varied. Example Seven shows the
effects of different limits of control forces on time-optimal maneuvers of TLM. In that
example the total magnitude of moments applied at the joints is constant, but their
ratio is varied. Effects of the mass m, at the tip of shoulder link and the mass m,
at the tip of the elbow are investigated in Example Eight, and effects of the gravity
are investigated in Example Nine. The following ratios of the link lengths, the link

inertias and the applied moments are defined as
RL=2—=—-=RM Ry = — (6.30)
2
Other ratios related to Ry and Ry are also used.
I Ry U, /U,

= — = == — e 31
R A Ry R, ../ T, (6.31)
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6.4.1 Example Six: Effects of Length of the Links

This example is rest-to-rest motion of a two-link manipulator from straight-to-straight
configurations with two different maneuver angles ©;, = ¢1(ts). The length ratio of
the links R., defined in (6.30), is varied here. The physical parameters of this example

are modified from Example Three of Section 6.1 and are given as follows:

I =20, UF = 725 [Nm] d; = d, = 0.1098723 [m]
L + 12 =0.65 [m] me =my =0 Iz = ma(l3/12 + d2/16) [kg.m?] o

m1+m2=4807[kg] Io=Ia=Ib=0 gr=0

where d; and d, are diameters of the cylindrical links. The total length of the links
i1s constant, as is the total mass of the links; however, their ratio is varied.

The initial conditions of the states for both maneuvers are z;(t0) =0, i = 1,....4.
The final conditions for the maneuver angles w1, = 0.76 and ¢;, = 0.6, respectively,

are:

z(ts)=[0.76 0.0 0.0 0.0 )7 (6.33)
z(ty) =106 0.0 0.0 00]" (6.34)

For 1, = 0.76 the ratio Ry is varied from 1.0 to 1.60 and for ¥1, = 0.6 the ratio
Ry is varied from 1.60 to 2.0, while the Ry = 2.77778 is kept constant. The reason
for choosing two different ¢, is to show the similarity and also the difference of the
effects of the R on the minimum maneuver time w.r.t. ®1,-

Table 6.10 shows the change in the physical parameters of the manipulator when
Ry changes. Table 6.11 shows the change in the optimal final time with the change
in Rp. Since the cross sectional area of the links is kept constant, the variation of R

will also change the values of R; and Ry shown in Table 6.11. Figure 6.48 shows
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optimal switch times ¢,; and final time ¢; with the length ratio R, for w1, = 0.76 and
Figure 6.49 for 1, = 0.6. Figure 6.50 shows optimal initial costates as functions of
R; for @1, = 0.76 and Figure 6.51 for ©1, = 0.6. These two figures show the trend
of changes in the initial costates as function of R, and that the changes are smooth.
Figure 6.52 shows optimal maneuver time ¢, as function of R, for w1, = 0.76 and
Figure 6.53 for optimal maneuver time ¢ for ¢;, = 0.6.

As can be observed, if Ry and R, increase, the maneuver time decreases. It
indicates that when designing for minimum maneuver time, the shoulder link should
be as long as possible and the elbow link should be as short as possible when other
parameters are constant. The decrease of t; with R, is sharper for ©1, = 0.76 than

for ¢,, = 0.6.
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Table 6.10: Physical parameters of (Example Six, Ry = 2.777778).

R | [ m ma 5 I
1.00 | .3250000 | .3250000 | 24.03499 | 24.03499 | .2296922 | .2296922
1.05 | .3329268 | .3170732 | 24.62121 | 23.44877 | .2459950 | .2141446
1.10 | .3404762 | .3095238 | 25.17951 | 22.89047 | .2622403 | .2000225
1.20 | .3545454 | .2954546 | 26.21999 | 21.84999 | .2944426 | .1754324
1.30 | .3673913 | .2826087 | 27.16999 | 20.89999 | .3261084 | .1548718
1.40 | .3791666 | .2708334 | 28.04082 | 20.02916 | .3571028 | .1375413
1.50 { .3900000 | .2600000 | 28.84198 | 19.22799 | .3873332 | .1228252
1.60 | .4000000 { .2500000 | 29.58152 | 18.48846 | .4167393 | .1102435
1.65 | .4047169 | .2452831 | 29.93036 | 18.13962 | .4311212 | .1046319
1.70 | .4092592 | .2407408 | 30.26628 | 17.80370 | .4452851 | .0994189
1.75 | .4136363 | .2363637 | 30.58998 | 17.48000 | .4592294 | .0945693
1.80 | .4178571 | .2321429 | 30.90212 | 17.16785 | .4729531 | .0900515
1.85 | .4219298 | .2280702 | 31.20331 | 16.86666 | .4864562 | .0858372
1.90 | .4258620 | .2241380 | 31.49412 | 16.57586 | .4997392 | .0819010
2.00 | .4333333 | .2166667 | 32.04665 | 16.02333 | .53256495 | .0747734
Table 6.11: Optimal final time ¢; as function of R, (Example Six, Ry = 2.777778).

Ry o1, | Ry Ry ty

1.00 | 0.76 | 1.000 | 2.777778 | 0.8962093

1.05 [ 0.76 | 1.149 | 2.418123 | 0.8890710

1.10 1 0.76 | 1.311 | 2.118736 | 0.8818791

1.20 {0.76 { 1.678 | 1.655033 | 0.8682559

1.30 | 0.76 | 2.106 | 1.319192 | 0.8561131

1.40 | 0.76 | 2.596 | 1.069886 | 0.8454381

1.50 [ 0.76 | 3.154 | 0.880846 | 0.8360224

1.60 { 0.76 | 3.780 | 0.734828 | 0.8276434

1.60 | 0.60 | 3.780 | 0.734829 | 0.7546849

1.65 { 0.60 { 4.120 | 0.674159 | 0.7518880

1.70 { 0.60 | 4.479 [ 0.620195 | 0.7492062

1.75 | 0.60 | 4.856 | 0.572029 | 0.7466287

1.80 | 0.60 [ 5.252 | 0.528896 | 0.7441462

1.85 | 0.60 | 5.667 | 0.490151 | 0.7417496

1.90 [ 0.60 | 6.102 | 0.455243 | 0.7394319

2.00 { 0.60 | 7.030 | 0.395138 | 0.7350008
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Figure 6.49: Optimal switch times t,; & t; as function of R (Example Six, 1, = 0.6).
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Figure 6.50: Optimal initial costates B; as function of R, (Example Six, w1, = 0.76).
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Figure 6.51: Optimal initial costates B; as function of R, (Example Six, p1, = 0.6).
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Figure 6.53: Optimal final time ¢; as function of Ry (Example Six, w1, = 0.6).
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6.4.2 Example Seven: Effects of Control Forces

This example is one of the cases of Example Six with R, = 1.0. In this example
the total magnitudes of the control forces are constant, but their ratio Ry, defined in
(6.30), is varied. The physical parameters of TLM are given in (6.35). This example
is also a rest-to-rest motion of a two-link manipulator from straight-to-straight con-
figurations. The initial and the final conditions of the states are the same as (6.33)

and (6.34).

I =20y = .325 [m]
Iy = 2l = .325 [m]
my = 24.035 [kg]
m, = 24.035 [kg]

Ur +U; =-34[Nm] d, =d, =0.1098723 [m]
Uf +Uf = +34 [Nm] I, = 0.229692 [kg.m?]
I = 0.229692 [kg.m?]

(6.33)
m,=mp=0

L=I,=0=0 g =0

Table 6.12 shows the effects of the change in the control forces applied to the manip-
ulator (variation of Ryr) on the optimal final time for w1, = 0.76 and for ¢;, = 0.6
The parameters U, /I, Uy/I;, and Ry, are also given there. Because R; = 1.0 and

consequently I, = I,, then Ry; = Ry.

Table 6.12: Control forces and optimal ¢; (Example Seven. @1, =0.76,0.6, R, = 1.0).

Ry

Uy

U,

Ui/hL

Ua/ Iz

Ry

£;(0.76)

£,(0.6)

0.78947
0.88889
1.00000
1.26667
1.42857
1.61538
1.83333
2.09091
2.40000
2.77778
3.00000

15.0
16.0
17.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
25.5

19.0
18.0
17.0
15.0
14.0
13.0
12.0
11.0
10.0
9.00
8.50

65.30477
69.65842
74.01208
82.71938
87.07303
91.42668
95.78033
100.1340
104.4876
108.8413
111.0181

82.71938
78.36573
74.01208
65.30477
60.95112
56.59747
52.24382
47.89017
43.53652
39.18286
37.00604

0.78947
0.88889
1.00000
1.26667
1.42857
1.61538
1.83333
2.09091
2.40000
2.77778
3.00000

0.8724345
0.8680668
0.8642263
0.8597692
0.8599207
0.8621044
0.8664952
0.8739482
0.8847785
0.8962094
0.8978919

0.8170388
0.8106437
0.8052761
0.7963664
0.7935635
0.7918445
0.7922263
0.7941729
0.7977509
0.8004635
0.7987488
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Figure 6.54 shows optimal final time ¢ as function of Ry for >, = 0.76 and £, =
0.6. For w1, = 0.76, as Ry increases, final time decreases down to a minimum point
ty = 0.8597692 at Ry = 1.27. For ¢;, = 0.6 the minimum point is t; = 0.7918445
at Ry = 1.62. Figure 6.55 shows optimal final time t; as function of U,/I, and
U,/I, for v1, = 0.76 and for ¢1, = 0.6. From the practical point, these plots help
to make the best choice of U; and U, for the manipulator design. In other words, it
is practical to choose the best ratio of the control forces Ry such that the maneuver
time is shortened further. For this example, the minimum final time corresponds to
the point Ry = 1.27, U,/I; = 82.72, U,/I, = 65.30 for ¢1, = 0.76, and Ry = 1.62.
U,/I, =91.43, Uy/I, = 56.6 for w1, = 0.6. This figure has another practical use that
would allow to choose the appropriate control forces in relation to the mass moment
of inertia of the links. Figure 6.56 shows optimal switch times ¢,; and final time ty
for various combination of control forces Ry for maneuver ¢, = 0.76. Figure 6.57 is
the plot of optimal switch times t,; and final time ¢; as function of Ry for @1, = 0.6.
Figure 6.58 and Figure 6.59 show optimal initial costates as functions of Ry for

@1, = 0.76 and ¢;, = 0.6 respectively.
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Figure 6.56: Optimal switch times ¢,; & ¢; versus Ry (Example Seven, w1, = 0.76).
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Figure 6.57: Optimal switch times t,; & t; versus Ry (Example Seven, w1, = 0.6).
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6.4.3 Example Eight: Effects of Joint/Tip Masses

To show the effects of the mass m, at the tip of shoulder link and the mass m,; at
the tip of elbow link two cases are considered. In the first case, for which m, varies
and my = 0, it is assumed that R; = 1.6 and Ry = 2.78. The physical parameters

are given as:

I, =2, = .40 [m] UF = ¥25.0 [Nm] d; = d5 = 0.1098723 [m]
ly =2l = 25[m] UF =F9.0([Nm] I, = 0.416739 [kg.m?]
my = 29.58152 [kg] my=0<m, <5 [, =0.110244 [kg.m?]
my = 18.48846 [kg] I, =1, =L,=0 g, =0

(6.36)

In the second case, for which m; varies and m, = 0, it is assumed that R, = 1.0,

Ry = 1.83. The physical parameters are given as:

I =2y = .325 [m] UF =F220[Nm] d, = d; = 0.1098723 [m]
Iy = 2, = 325 [m] UF = F12.0 [Nm] [, = 0.229692 [kg.m?]
my = 24.035 [kg] m.=0<mp <12 I, = 0.229692 [kg.m?]
m, = 24.035 [kg] I,=1I,=0,=0 gr=0

(6.37)

These example are again rest-to-rest motion from straight-to-straight configurations.
The initial and the final conditions of the states are same as (6.34).

Figure 6.60 and Figure 6.61 show optimal switch times ¢, final time ¢;, and
optimal initial costates as functions of shoulder tip mass m, for w1, = 0.6. Figure 6.62
and Figure 6.63 show optimal switch times t,;, final time ¢;, and optimal initial
costates as functions of elbow tip mass m; for ¢, = 0.6. From these plots one
can observe that the increase in the tip masses m, and m; increases the final time
of maneuver. Figure 6.62 indicates the jump from three switches solution to four
switches solution at m, = 11. As well Figure 6.60 and Figure 6.62 show sharper change

of maneuver time for m; than the change for m,. which is instinctively predictable.
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Figure 6.60: Optimal switch times t,; & ¢; versus m,(Example Eight, ¢;, = 0.6).
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6.4.4 Example Nine: Effects of Gravity

The effects of the gravity on optimal rest-to-rest motion of two-link manipulators
from straight-to-straight configurations is discussed here. The physical parameters

are given as:

L =20, =02 [m] UF = F10.0 [Nm]

l =2, =02[m| UF=%50[Nm] I, =0.004167 [kg.m?]
m; = 1.0 [kg] m,=0=m, I, = 0.004167 [kg.m?]
mo = 1.0 [kg] L=L=L,=0 0<g, <98l [m.s7?

(6.38)

In this example the gravity g, is varied. Physically, such a variation can be imple-
mented by tilting the plane of motion between being vertical (when g, = 9.81 [m.s~?])
to being horizontal (when g, = 0).

The initial and the final conditions of the states in [rad] and [rad/s] are:

T
z(to) = [ 1.047 0.0 0.0 O-OJ (6.39)

x(tf)=[0.0 0.0 0.0 o.o]

Figure 6.64 shows optimal switch times ¢,; and final time ¢, for various gravitation
gr- As can be seen, the increase in the gravity increases the final time of maneuver
only slightly. Figure 6.65 shows optimal initial costates as functions of g, for this
example. Interestingly, time-optimal maneuvers have four switches if g, < 7 [m.s7?
and three switches if g, > 8 [m.s™2]. Also note that for the parameters selected for
this TLM, the maximum equivalent moments due to the Earth gravity (for the TLM
in horizontal configuration) are about 1 NM in the elbow joint and about 4 NM in
the shoulder joint. These moments represent about 20% of the control moment in
the elbow joint and about 40% of the control moment in the shoulder joint. However

they increase the maneuver time ¢; by about 9%.



I P S S—©
i ty —
‘. tsl —+-
! ts2 r- 1
1 Ls3 -
' ts4 A =
!
- 0.12 Txxx ---------------- Y O S x‘\ ...... Ioreneerees Hrenee X
s 0.1 [ i -
o \
i S ol = S = SO e A i -
0 08 8-l B} - :\.- Q----. cF-- 8
0.06 |- L 1
\
0.04 L -
\
0.02 F+—+—+-——-—- e e - — ]
0 I 1 | 1 1 I | .‘L - Q
0 1 2 3 4 5 6 7 8 9 10

gr
Figure 6.64: Optimal switch times ¢,; & ¢; versus g,(Example Nine, ;0 = 1.047).

0.06
0.05
0.04 [ -
-
0.03 -
0.02 - -
........... B8----G-----&---8
......... 8
Olgr@-B-8---" o
0.0 EI—%E——!— ------ + - e —+—-———-+—----4—--:
PR S e it S’ S S—" Do S S
o 1 2 3 4 5 6 7 8 9 10
gr

Figure 6.65: Optimal initial costates B; as function of g.(Example Nine, ;9 = 1.047).

150



Chapter 7

Closing

In closing, the main points of the research presented here are summarised and con-

cluded. Also, possible future work of this research area is suggested.

7.1 Summary

A rest-to-rest maneuver time of Two-Link Manipulators (TLM) is minimised by the
optimal use of the forces available to drive it. The problem is formulated using the
optimal control theory. This theory mostly uses the ideas developed in Calculus of
Variations as shown in Chapter 3. Also Pontryagin's Minimum Principle (PMP).
which is applied to determine optimal paths, was explained in that chapter. The
Lagrange equations for dynamics of rigid TLM were obtained in Chapter 4. Detailed
formulation of the time-optimal control problem of TLM, including the explicit form of
the state and costate equations and the corresponding switch functions was presented
in that chapter. This problem was solved numerically as a Two-Point Boundary Value
Problem (TPBVP) by the method described in Chapter 5. The results were presented
in Chapter 6.



7.2 Conclusion

The TPBVP describing time-optimal control of two-link manipulators are not well
behaved, and the solutions are not easy to obtain. Nevertheless results presented in
Chapter 6 prove that this strategy, which directly uses the PMP to generate opti-
mal solutions, can be successful. The results of are obtained with high numerical
precision. Particularly, the values of the switch times and the final time of the bang-
bang control are calculated more accurately than any other methods. When using
general optimisation methods (the parametric optimisation outlined in Appendix A)
accuracy of the solutions presented in the literature, especially in terms of location
of the switch times, was usually quite poor. It can be only speculated that in order
to achieve the precision of the results shown in this thesis, it would probably have
required an unreasonably large number of iterations. In the following sections the
discussion of more important conclusions of the solution method and the results is

presented.

7.2.1 Solution Method

Shooting methods (SM) were used to solve TPBVP arising from time-optimal control
problems for TLM.

Since the problem was very sensitive to the unknown initial conditions (costates).
a procedure had to be worked out that would provide the initial costates sufficiently
close to their optimal values for the SM to converge.

This was achieved by introducing a numerical approach, called the Forward-
Backward Method (FBM). This method by itself can solve time-optimal control prob-
lems, although the convergence of the FBM was difficult to obtain. Nevertheless, the
initial costates generated by the FBM were found to be sufficiently close to their op-
timal values. It allowed the combination of the FBM and the SM into the procedure

that was able to solve TPBVP for time-optimal control of TLM successfully.



The usefulness of the FBM for generation of the initial costate for linear and
nonlinear systems with single, or double controls was demonstrated on numerical
examples. Since the FBM does not use any linearisation in generating the initial

costates, it can be applied to any nonlinear problems.

7.2.2 Number of Switches of the Bang-Bang Control

The number of switches for bang-bang time-optimal control has been investigated by
many researchers. In [40] it was concluded that only the solutions with three switches
could be optimal. Here it was shown that the number of switches is not constant and
is related to the magnitude of the maneuver. In general, the optimal solution has

three switches for smaller tasks and four switches for bigger tasks.

7.2.3 Effects of Flexibility

The effects of flexibility of the manipulator were investigated in Section 6.3. The finite
element method was used to verify the performance of the flexible manipulators under
the control calculated for time-optimal control problems of rigid manipulators. The
results indicated that the vibrations due to flexibility affected the response (angular
velocity) of the links more than the motion of the tip of the manipulator. In general.
the dynamic performance of the flexible manipulators under such controls was found
to be satisfactory if the slenderness of the links was sufficiently small as explained

earlier.

7.2.4 Physical Parameters of Manipulator

The effects of physical parameters such as geometry and masses of the links as well as
masses at the tips of the links and the effects of changing the limits of control forces
on time-optimal maneuvers of the TLM were investigated.

It was concluded that a shorter maneuver time could be obtained by maximising
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the ratio of the length of shoulder link over the length of elbow link. It was also
shown that there is an optimal ratio of control force applied in the shoulder joint over
the control force applied in the elbow joint, at which the time of optimal maneuver
is minimised.

The effects of the mass m, at the tip of the shoulder link and the mass m; at the
tip of the elbow link were found to be as intuitively predicted. The increase in the
tip masses m, and/or m, increases the final time of maneuver.

The effects of the gravitation were also determined. Interestingly, even though
the equivalent forces at joints due to gravity were almost half of the control forces
applied, they caused only slight increase to the final time of maneuver (in comparison

with the maneuver without the gravity).

7.3 Future Work

As an extension of this research the future work should include study towards further
improvement of the numerical procedure calculating the optimal paths of rigid TLM.
Also. effects of flexibility of the links, which were briefly touched here, should be more

throughly investigated. This can be done in one of the following two ways.

7.3.1 Flexible Manipulator with Control of Rigid Dynamics

The optimal control forces were obtained assuming the dynamics for the rigid links.
Consequently the vibrations due to those control forces were observed. Those vibra-
tions were not significant, at least for the examples that were used. However, for
more slender links one may expect some significant vibrations during the maneuver.
For reducing those vibrations, one can use the sensitivity of the final conditions and
a shooting method to correct the control forces applied. In this approach the control
forces obtained using the rigid dynamics become the initial guess for the iterative

method which includes the flexible dynamics. The control configuration can be cor-
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rected through the iteration by changing the locations of switch times and the final
time (using parametric optimisation for example). Using the error of calculated final
configuration of flexible manipulator and the given final conditions. the vibration of
the links can be reduced to zero. For the dynamics of flexible links an FEM program
such as ANSYS can be used. This can be considered as the iteration of the approach
used in Section 6.3 and parametric optimisation when the locations of switch times
and the final time are the optimisation variables. The similar approach has been suc-
cessfully implemented for a single-link manipulator in [23]. This approach however

would be a semi time-optimal control rather than time-optimal control.

7.3.2 Optimal Control of Flexible Manipulator

The other alternative is to use the dynamics of flexible manipulators when solving the
time-optimal control problem of TLM. However, for this approach, the explicit form
of the dynamics of the flexible TLM is required. Deriving the state and the costate
equations for such a system would probably be too difficult. However, a simplified
form of the explicit dynamics rather than the exact dynamics for flexible TLM might
be used. One can always use a finite element approximation for the dynamics. As
soon as a set of equations to calculate the costates is established and an explicit form
of switch functions becomes available, then the numerical approach introduced in

Chapter 5 can be used to calculate the optimal control forces.
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Appendix A

Parametric Optimisation

Here the Direct Method (DM) of solving optimal control problems is briefly outlined.

This method sometimes is called Parametric Optimisation Method.

The optimal control problems can be transformed to optimum design problems

and treated by the parametric optimisation methods as described in [4].

First the integral for the performance measure J is replaced by the summation.

t n—1 tk+l
J(u) =/t’G(x,u,t)dt = J(up t;) = Z/t G(ze, ur, te)dt (A.1)
o k=0 Yk

where n is the number of time steps, thus ¢, = ¢;. In the time interval ¢, < t < tiq,

the control uy is assumed constant, and the state zx(¢) in that time interval is obtained

u(ts)
\

Un f2(ty)

Ug

o

t

to At =

tn/n tn=tf to At:tn/n tn=tf

Figure A.1: Control, states
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from integration of the state equation (dynamic constraint),
Tr = a(zk) + c(zrju (A.2)

where z; and u; are the vectors of states and controls at time step ¢,.

The controls constraint is,

U™ <up <U* (A.3)

The boundary conditions constraint are
Io(to) =T9 .’L‘n(tf) = 1'] (A4)

Here the objective function is J(uk,ts;) and the optimisation variables are
(41,-..,Un,tf). The control must meet the inequality constraints given in equation
(A.3), and the state variables z(¢) must satisfy the equality constraints, equation
(A.4). Note that the equality constraints (A.2) are automatically satisfied when in-
tegrating the state equations.

For time-optimal control if one attempts only bang-bang controls then the number
of optimisation variables u; can be reduced. Instead of using equal intervals dt one
can use the switch times as optimisation variables and assume uy = U~ or uy = U'™.
Thus

m Lsig1
J(tsists) = > /:,. G( Ty, Ugi, by )dt (A.5)

n=1

where m + 1 is the number of optimisation variables or switch times plus final time.
Some of numerical methods described in [4] can solve formulated optimal con-
trol problems. It must be noted that the costate equations does not come into the

calculation here. Only the state equations are used.



Appendix B

Analytical Derivations

B.1 Derivations for Calculus of Variations

The complete derivations of the Section 3.2 is as followed. Let z be a vector of
admissible functions which satisfy the end conditions, and determine the variation

6J(z,éz) from the increment AJ(z,éz),

AJ(z,6z) = J(z+6z)—J(z) (B.1)
t!+5t! ty
- / g(:z:-+-6a:,:i:+6i:,t)dt—/ 9z, &, 1)dt (B.2)

to to

t
- /’[g(z+5x.,5c+5¢,t)—g(x,a':,t)]dt
to
te+6t
+/’ " g(z + bz, % + 62, t)dt (B.3)
ty

where é1 = %6.1:. Eventually, AJ will be expressed entirely in terms of z, z. and éz.

The first integrand can be expanded about z, z in Taylor series to give AJ as

AJ(z,6z) = /t" {[—g%(a:,j:,t)] §z + [%(z,i,t)] 51«} dt + O(6z,6%)

te+6t
+[’ "9(z + 62,3 + 62, t)dt (B.4)
s

Where O(éz, 6z) or simply O(.) denotes terms of higher than first order. Also we can

write the second integrand as

te46t
/’ "g(z + 6z,& + 6,1)dt = [g(z + 6z, & + 63,1)],, 8t; + O(6t;) (B.5)
ty

163



or at t = t; using the Taylor series expansion

g(z+éz,2+8z.t), = g(z,Z,t), + [8—g(z.i,t)} bz(ts)+ [@-(:t,i:,t)} oz(ts)+O(-)
ty

Oz y oz
(B.6)
Integrating (B.4) and substituting (B.5) and (B.6), we get
_ ty [0g, . d | dg } .
AJ(z,bz) = /:o {a—x(x,z,t) -= [E(I,x,t)] } (6z)dt + O(-)
a
+ [gg(x,i,t)] 5z(ts) + lg(z, &, 1)],, 6t (B.7)

ty
The variation of J, which is §J, includes only first order terms of the increment
AJ, and the dependence of éz(ts) to ét; and 8z, is linearly approximated. From

Figure 3.1 we have
bx(ty) = bxy — z(ty)bts (B.8)

substituting this equation (B.8) into (B.7) we can get the variation 6J(z,8z) as

§J(z.67) =0 = /t" {g—i(x,i,t) - % [%(z,:&,t)} } (6z)dt (B.9)

+ [%(z,i,t)] oy + [g(.r,j:,t) - (g—z(r,i,t)) i},! oty

Applying the fundamental theorem of calculus of variation (vanishing the first

ty
variation) we find that a necessary condition for = to be an extremal is

g—i(x,:i:,t) - dit [g—g(x,i,t):' =0 (B.10)
for all t € [to,ts]. This is the Euler equation for fixed end points problem. It must
be noted that an extremal for this free end point problem must also be an extremal
for certain fixed end points problem. So z is the solution of fixed as well as free end

point problems. The boundary condition then at the final time are determined by

the relationship

§J(z,6z) =0 = [%(z,z},t)]t, bz; + [g(:z:,z’:,t) — (g—z(x,a’:,t)) 5;] . §t;  (B.11)
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Equations (B.10) and (B.11) are the necessary conditions that must be satisfied

by an extremal curve.

B.2 Derivations for State Equations

The linear and angular velocities in Equation (4.16) can be obtained as:

w1 = @1 Vep = wy X g Vo = wy X [

Wy = P1+ P2 Vegja =wz Xl vy =wa x Iy

Uez = Ua + Ue2/a Vi = Vg + Vi + 20,02/, cOS(2)

Up = Ug + Ub/a v =02+ vf/a + 205U/ cOs(2)

vh = 6’
02 = By?
vh = §é1° + B(é1 + ¢2)° + 2[Lié][lea( b1 + 2)] cos(s02)
= §é1% + (61 + 02)° + 2[hii][la($1 + B2)] cos(2)
The kinetic energy for the rigid links is (4.17)

2 x Ex = a1p1” + c2(P1 + $2)* + 2c361(61 + 2) cos(2) (B.12)
Also, the potential energy for the rigid links is (4.19)
E, = {c4 sin() + cssin(p + ¢2) }g (B.13)

The derivatives necessary for the Euler-Lagrange equation (4.13) using (B.12) and
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(B.13) are

e = 151 + 21 + B2) + c3(261 + 2) cos(i22)
%‘f = c2(P1 + P2) + a1 cos(ip2)

cos(2) = —@2sin(p2)
% = (1 + c2 + 2c3 cos(p2))p1 + (c2 + c3 cos(2))P2 — €a(2¢91 + B2)W2 sin(ip2)

1

&ln Bln &l
[+3] fo5)
2

I

(€2 + c3 cos(p2) )1 + cap2 — cap1P2 sin(ws)

Il
o

= —c3p1(p1 + W2) sin(p2)
= {c4 cos(p1) + cs cos(pr + soz)}g
= {Cs cos(1 + m)}g

Q@
)
»

The parameters a;; are given by relations (4.22) in which ¢, and ¢, are replaced

by z; and z3 respectively.

a1 = ¢ + ¢ + 2¢3 cos(z3) a= o+ L+ L) +ml + (m2+ m, +m)l?
a2 = ¢ + c3 cos(zs) c2 = (I + L) + mal3, + myl?

a3 = casin(z3) c3 = [i(mala + myly)

a2 = C2 cs = myly + (Mo + me + my)l

@14 = c4¢0s(z1) + cscos(zy + z3) €5 = maleg + mypls

az4 = cscos(zy + z3) A = apaz; — ai, = cic; — ¢ cos?(x3)
(B.14)
B.3 Derivations for Costate Equations
The equation of motion (4.2) can also be written in the form:
z(t) = Ai(z,u,t) (B.13)

where

Ai(z,u) = z;
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Ao(z,u) =

A‘!(Ia u)

+1x “
A 13

[azz("xz + T4)T4 + a1273) —

g(ayaa22 — azqay2) + (azu; — al2u2)}

Az(z,u) = z4

-1

A

X {413 [012(91'2 + T4)T4 + 0111‘2] —g(a14a12 — az4ay,) + (ajouy — auuz)}

Using the state equations (B.15) for TLM, and the following definitions for a;;(z;, z3):

the partial derivatives 5

Then,

an(z3) = ¢; + ¢z + 2¢3 cos(3)

a12(z3) = ¢z + c3cos(z3)

a13(T3) = c3sin(z3)

a2 = C2

a14(z1, z3) = cqcos(zy) + cs cos(z, + z3)

a24(z1,T3) = cscos(z) + z3)

A(z3) = a11a22 — a?, = c1c2 — ¢ cos?(z3)

a -
5. are:

—cysin(z,) — cssin(z; + z3)

—cssin(zy + z3)

da.,;

8Aa
! 31: =0

aa
) 31'2 =0

? a.‘.l.'q

34,

s =0

the partial derivatives

O
Q@
3

3::1
3Aa -

o
Q@
kN

=0.

34 :)

1 8.1:3
A1 _
0 3ry
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—2¢3sin(z3) = —2a;3
—c3sin(z3) = —a3
c3cos(T3) = @i — aze
0

—cssin(zy + z3)
—cssin(zy + z3)

2 sin(z3) cos(z3) = 2a;3(a;2 — azg)

3z 10 equation (4.29) can be obtained as follows:

34 __
=0 —‘Laz‘ =0
3Ax __

0 T =1



=% x [%’Z‘azz - %012} = Z x[(a12 — an)cs sin(z) + £3) — axncysin(z1)]
% =+% x [Qagx’]ialz - %f‘all] = £ x [(a11 — a12)es sin(zy + 73) — @racysin(zy)]
g_.;tzz — _+_7_2§ X arz[ai2Tz + azezy]
g_;a:_ = _.% X als[aul'z + a1274)
3_:‘1 = +§ X @13@22{T2 + 4]
g_::. —ﬁ- X ajzaiz(z, + -'54]

For calcula.tmg a.nd the auxiliary variables A, = A ® and Ay = % defined

as follows, are needed.

Ny = {013 [022(21'2 + T4)T4 + 0121'%] — g(a14a22 — anqa12) + (a22u; — a12'u2)}

— ¢ 2
Ny = —{013 [012(21«'2 + Z4)T4 + 01132] — g(@14a12 — azsa11) + (ajou; — auuz)}
3A; _ 1 [aNz ] 13N, _ 1.8
3z A2 x A— 8:::3 N A Bz, A2 3r; N2
aN. 3 a3
52 = 522 [an(2z2 + z4)z4 + @1273] + a13 [_220 (272 + z4)z4 + 212 ]
8az2,, _ Baz, | _ 8az2 __ a4 -
+ [61:3 et 31’3 ] 9 [31'3 @z + ad14 dz3 9z3 a2 a24 823
34 1 3A A7 1 3N, 1 14
S8t — 2 EAL S —_ 2 Yi¥s __ __
8rs — A2 x [ar A- Er N J — A 8z3 A? 31, A
AN, da 3 3
St = S22 [a12(222 + z4)z4 + a1 23] + a13 [—u"z(‘)f" + z4)T4 + 7‘?;“10]

8212, _ fan, | _ Say2 _ - dayy
+ [82:3 Uy 81:3 ] g [81:3 a2 + a4 3za 8::3 a“ a24 3z,

substituting the partial derivatives %31- and 53 into the above relations results:

%4 = 1 x {(alz — a22) [a22(2z2 + z4)z4 + a1272] — a?;22
+aizus — g [(a12 — az)cssin(z; + r3) + 013024]}
— 37 X 2an3(ar2 — 022){013 [a22(222 + z4)z4 + a1273)
+azu; — ajpuz — g (arsa2 — 024012]}
r=—3x {(012 — a2) [a12(222 + z4)z4 + anz3] — aizl(z2 + 24)* + 23]

+a13(2uz — u1) — g [(ann — a2)essin(zy + z3) + a13(2az4 — 014)]}
+3ar X 2a13(a12 — 022){013 [@12(222 + z4)z4 + a1173]

+aju; —ajuz — g [‘114012 - 024011]}
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B.4 Details of Shooting Method

In general the initial conditions may be given as:
z;(to) = i, t=1,...,r (B.16)
also the final conditions are given as:
ZTin(tf) = Cipms m=1,...,n—r (B.17)

Clearly r < n for having the boundary conditions on both ends. In case of TLM.
n = 8 and r = 4. The subscripts on the final conditions are c;,, to include the
boundary conditions which are not disjoint. For example if n = 6, and z1(¢0), z2(to).
z3(to), T2(ty), za(ts), ze(ts) are specified as boundary conditions, then 7; = 2, 7, = 4.
13 =6, 50 z;,(tf) = T2(ty), Ti,(ty) = za(ty), Tiy(ty) = z6(ty).

For stability of the SM a method is said to be convergent if z; — z(¢;) when A — o
for all starting values which approach the true initial conditions as A — o. Here A is
the integration step size, and z; is true solution. Partial stability may occur in some
numerical methods like Runge-Kutta, when the numerical solution approximates the
true solution for step size A below a specific value hg. The method however fails when

h is greater than h,.

B.4.1 Method of Adjoints

One of the most important shooting methods is the method of adjoints. If we have a

linear nth order TPBVP of the form
z(t) = A(t)z + f(t) (B.18)

with the initial conditions (B.16) and the final conditions (B.17). We can form the

following adjoint equations
y(t) = —AT(t)y (B.19)
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where y is the n vector of adjoint variables. The boundary conditions of adjoint
system are related to the boundary conditions of the original system (B.18) by an
identity. With simple calculus one can find the following relationship between the
boundary conditions of systems (B.18) and (B.19), i.e.; multiplying (B.18) by y. and
(B.19) by z and adding the results, then integrating the sum over [tq, /].
S ultp)altn) - S ulto)zilio) = [ 3yt fi(t)d (B.20)
=1 =1 fo =
This is called the fundamental identity for the method of adjoints. For any choice of
boundary conditions of y variable, this is a linear relationship between the unspecified
zi(tg). We can integrate the adjoint equations (n — r) times backward with the

following boundary conditions.

(m) 1 i1=1,
y; (ty) = m=1,...,.n—r (B.21)
0 i1#in,
where (m) is for the mth backward integration of the adjoint equations and i, is for
the specified final conditions a:fm)(tf) of (B.17). Using (B.21) one can write (B.20) as
> 4™ (to)zilt) = zinlty) - }:y‘ Mtolaitto) ~ [ S yr(fid (B.22)
t=r+1 to ;=i
This is a set of (n —r) linear algebraic relations for (n —r) unknown initial conditions
which can be solved for z,4+1(%0), Zr4+2(%0),---,Za(to). The y,(m)(to) in LHS of (B.22)
is known from backward integration of adjoint equations with (B.21) as boundary
conditions. As it can be seen, the unknown initial conditions of linear TPBVP can
be obtained in one step by the method of adjoints.
For non linear TPBVP of the form

z(t) = a(z,t) ‘ (B.23)

with the initial conditions (B.16) and the final conditions (B.17) we have to use

iterative approach to find the unknown initial conditions. If z(t) is the solution of
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(B.23), and 8z(¢) is the first variation of this solution, then z+6z is the nearby solution
of (B.23) as well. Substituting the nearby solution in (B.23), using Taylors series
expansion. and cancelling equal terms from the sides, give the following variational

equations for éz

S_j aa‘az,- i=1...,n (B.24)

The adjoint equations for t;he variational equations can be written similar to the linear

TPBVP (B.19) as

'-_—ZgZ’ i=1,...,n (B.25)

=1
Here equations (B.24) and (B.25) are linear ODE’s. Then similar to (B.20) the

fundamental identity of the method of adjoints for these systems would be

;y:(t! )ézi(ty) z;y:(to )6zi(to) =0 (B.26)
For iteration (k), the variation of z; can be calculated as
5z = ¢, — z® i=1,....n k=0,1,... (B.27)
Since the r initial conditions are specified, we have
- 8z% (1) = 0 i=1,....r (B.28)
also, for r final conditions which are not specified we have
6z8(t;) =0 m=n—r+1,...,n (B.29)
Also for (n — r) specified final conditions we use the following

§z{(ts) = 7, () — P (2;) m=1,....n—r (B.30)

Like before, the fundamental identity (B.26) can be used to obtain the corrections

to the unknown initial conditions z;(¢,). If the Kronecker delta (B.21) be used as
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terminal conditions of adjoint variables y;(¢s), then (B.26) can be rewritten as

yite) - v (ko) 6z (to) 58 (¢5)
= ) (B.31)
v () - v (to) 6z (to) 5z (ty)

The correction terms 6:r§k)(to) can be calculated now, since everything else in (B.31)

are known. The unknown initial conditions then are
5 (1) = 2P (o) + 629 (20) i=r+1l.....n (B.32)

B.4.2 Newton-Raphson Method

It should be emphasised here that the method of adjoints is identical with the Newton-
Raphson Method for solving non linear TPBVP. If we look back at the function of
missing final distance L,,, m = 1,...,n — r which should be set to zero to enforce

the final conditions.
Lo = z:,(t;) — 28(2)) i=r+1,....n (B.33)
It can be written as function of unknown initial conditions as
Ln(zi)y =0 m=1,....n—r, i=r+1,...,n (B.34)
Then the correction terms based on the Newton-Raphson method would be

AL\
25D (o) = 20 (8) — (—%) L(z®),, (B.35)
a:ri to

Comparing this equation with the similar equation in the method of adjoints (B.32),

it can be concluded that

8L\~

(m) _ m

Yi (to) = — (3I$k))zo (B.36)
§z5(ts) = Ln(2)), (B.37)



La(z) (B.38)

8L, \ !
oz'd

Details of the proof can be found ir [54].

sl =~

to

B.4.3 The Continuation Method

Computational experience shows that if the method of adjoints is going to converge, it
would do so within the first 10 iterations. Also it is better to choose smaller time step
and employ fewer iterations than using larger time steps and employ more iterations.

When the SM is diverging for the TPBVP which are too sensitive to the unknown
initial conditions, the continuation method may help [54]. When a problem cannot
be solved by the regular SM, it may be solved in conjunction with continuation.
The idea of which is to solve a sequence of TPBVP for a sequence of time [to, t,].
[to, t2],--.,[ta. tf] where tg < t; < ... < t;. The initial conditions and final conditions
of the sequence TPBVP are the same. The initial conditions determined by the
solution of the TPBVP when t € [to,t,] are taken as the initial guess of unknown
initial conditions for the TPBVP when t € [to, t;]. This method allows for avoiding

numerical overflow or underflow in computer for the problem with sensitive initial

conditions.
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B.5 ANSYS Input File

A typical ANSYS input file for maneuver of a Two-Link Flexible Manipulator of
Section 6.3 is as follows.

/core,,,1000000

/prep?

/title,Example-4(2D-Robot, rest to rest, flexible arms(Mg), no gravity)
et,1,3

et,3,2:,,,3

r1=.005
a1=3.1415926535*(r1es2)
in1=(3.1415926535/4.0)«(r1es4)

hi=2sr1 ‘(circular cross section)
r,1,al,inl ,ht

r,3,0.5,0 t(end mass without inertia)
ex,1,69.0e+9 1(flexible arms, Aluminium 6061-T6)
dens,1,7800 t(Steel density)

nuxy,1,.3

t81=3.962303e-2
ts2=6.165361e~1
ts3=26.645379e~1
t£=1.233072

tds=15.0

itot=20000

ddt=0.0015
dts2=(ts2-ts1)/tds+ts1
dts3=(ts3-ts2)/tds+ts2
dtf=(tf-ts3)/tds+ts3
is1=(ts1-0.001)/tfeitot
ig2=(ts2-dts2)/tfsitot
is3=(ts3-dts3)/tfsitot
ifs(tf~dtf)/tfeitot
ids2=is2/tds
ids3=is3/tds

idf=if/tds
itp=30+is1+is2+is3+if+ids2+ids3+idf
kan,4

kay,5,2

kay,6,1

kay,9,1

gamma,0.005

ceseacel, ,9.81 !(no gravity)

n,1

n,11, .4

£ill

n,12,.4
n,22,.65
£ill

type,1
real,l

e,1,2
egen,10,1,1
e,12,13
egen,10,1,11
type,3
real,3

e,22
cp,1,uy,11,12
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cp,2,ux,11,12

d,1,ux
d,1i,uy

kbec,1
time,0.001
f,1,mz,+.25
£f,11 mz,+.1
£,12,mz,~.1
iter,20,0,1
lerite

kbe,1
time,tsl,ddt
f£,1,mz,+.25
£,11 mz ,+.1
£,12,mz ,-.1
iter,-is1,0,1
lurite

kbc,1
time,dts2,(ddt/3.0)
f£,1 ,mz,+.25
f£f,11 ,mz,-.1
£f,12,mz,+.1
iter,-ids2,0,1
lurite

kbc,1
time,ts2,ddt
f£f,1,mz,+.25
f£,11,mz,~-.1
£f,12,mz,+.1
iter,~-is2,0,1
lerite

kbc,1
time,dts3,(ddt/3.0)
f,1,mz,-.25
f,11,mz,-.1

f,12,mz,+.1
iter,-ids3,0,1
lerite

kbec,1
time,ts3,ddt
f,1,mz,-.25
f,11 ., mz,~-.1
f,12,mz,+.1
iter,-is3,0,1
lurite

kbc,1
time,dtf,(ddt/3.0)
f,1,mz,-.25

f£,11 mz,+.1
f£f,12,mz,-.1
iter,-idf,0,1
leurite

kbc,1

time,tf ,ddt
f,1,mz,-.25
f,11 ,mz,+.1
£,12,mz,-.1

(@1]



iter,-if ,0,1
lurite

afurite
finish

/input,27
finish

/post26

numvar,25
disp,2,1,rotz,phlb
disp,3,11,rotz,phle
disp,4,12,rotz,te2b
disp,5,22,rotz,te2e
disp,6,1 ,ux,zero
add,7,2,4,,ph2b,,,~1
add,8,3,5, ,ph2e,,,-1
deriv,9,2,1, ,dpib
deriv,10,7,1, ,dp2b
deriv,11,3,1, ,dple
deriv,12,8,1, ,dp2e
nforce,13,1,1 ,mz ,mz1b
nforce,14,1:,12 mz ,mz2b
add,15,13,6,,U1,,,~1
add,16,14,6,,02,,,-1
deriv,17,4,1,,dt2b
deriv,18,5,1, ,dt2e
disp,19,22,ux,ux2e
disp,20,22,uy,uy2e
int1,21,6,1, ,zero,auxl,,,,0.65
add,22,19,21, ,uxee
lines,itp
/output,ocl8fb,out t (base displacements)
prvar,2,9,7,10,15,16
/output

/output ,ocl8fe,out ! (end displacements)
prvar,3,11,8,12,22,20
/output

finish
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Appendix C

Computer Code for the Forward-Backward
Method

The computer code OC2ADCI13 that implements the Forward-Backward Method
(FBM) of Section 5.4 for time-optimal control of Two-Link Manipulators (TLM)
is included and explained here. This program, which uses the Fortran programming
language, contains a main body and ten subroutines, and in total is 2506 lines long.
One of the main subroutines of this code, DBVPMS, which solves a Two Point Bound-
ary Value Problem (TPBVP) with known RHS for ODE’s using multiple shooting
method is taken from IMSL/LIB. The code OC2ADC13, basically is a driver program
for DBVPMS.
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C.1 Input Files

The input data files SYSD.IN, SYSD2.IN, SYSD3.IN for initialising the FBM are:

SYSD.IN
to 2 BTOL DTOL MAXIT
SYSD2.IN

h A " &

SIGMA  ALFA BETA NITR
ty) At,©
KCONT  SIGM1

gr
Ur Ut Us Uuf

11 12 lcl lc2

m, ms Mg my

11 12 [0 [a Ib
SYSD3.IN

Z10 Z20 Z30 T 40

Iif Taf Taf Taf

p1(to) pa(to) p3(to)  pal(to)
pi(ty) p2(ty)  pa(ty)  palty)

Note that specifying pi(to), pi(ts), ¢ = 1,...,4 is necessary, if one wishes to skip
Iteration One of the FBM and go to the Subsequent Iterations from the beginning.
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Some of the parameters which are not defined before are:

BTOL: Boundary conditions error tolerance

DTOL: Differential equation error tolerance

MAXIT: Maximum number of Newton iterations allowed
SIGMA: The initial value for e*(¢,t;) of Equation (5.32)

ALFA: Program constant, use +1.0

BETA: Program constant, use -1.0

NITR: Maximum number of iterations of the main loop
KCONT: Continuity key 12 — e},, 1234 — e" of Equation (5.32)
SIGM1: A positive small number such as 0.00001

The input files SYSD.IN, SYSD2.IN, SYSD3.IN for Example Two of Section 6.1.2

are:

SYSD.IN

0.0 0.205296 5.0E-4 5.0E-4 41

SYSD2.IN

-10.0 -5.0 +10.0 +5.0

0.050001 +1.0 -1.0 19

0.072 0.018

12 0.00001

9.81

-10.0 +10.0 -5.0 +5.0

0.2 0.20.10.1

1.0 1.0 0.0 0.0

4.167E-03 4.167E-03 0.0 0.0 0.0
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SYSD3.IN

1.047 0.0 O.
0.0 0.0 O.
0.0 0.0 O.
0.0 0.0 O.

0 0.0
0 0.0
0 0.0
0 0.0

C.2 Output Files

The code creates several output files, some of the important ones are:

File name Contents

T2D15.DAT States in Step 1 in each iteration

T2D15C.DAT | Costates in Step 1 in each iteration

T2DS.DAT States and controls at the end of each iteration

T2DC.DAT Costates and switch functions at the end of each iteration
TSF1.DAT States and controls at the end of first iteration

TCF1.DAT Costates and switch functions at the end of first iteration
TSF2.DAT States and controls at the end of second iteration
TCF2.DAT Costates and switch functions at the end of second iteration
TSF3.DAT States and controls at the end of third iteration
TCF3.DAT Costates and switch functions at the end of third iteration
T2D7.DAT First switch time t,,, final time ¢;, and error e" in each iteration
T2D8.DAT Switch times ¢, final time ¢, and error e* in each iteration
T2D16.DAT Input data, p(to), p(ts), tsi, ts, and e* in each iteration

However, there are other output files such as
T2D3.DAT, T2D5.DAT, T2D10.DAT, T2D3C.DAT, T2D11.DAT, T2D12.DAT
, T2D21.DAT, T2D22.DAT, T2D23.DAT, T2D27.DAT, T2D28.DAT
which prints different parameters or states, costates, and switch functions in different

stages of the FBM.
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C.3 Weight Functions W,

The weight functions w; in Equations (5.32) are to accommodate the difference of the
dimensions of the states. They are calculated and selected as follows. For convenience

Equation (5.30), (5.32) is repeated here.

e12(t, ts) ei(t,ty) ea(t,ty)
e(t,ty) = e12(t, ty) = ea(t, ty) = (C.1)
634(t,tf) Cg(t,tf) 64(t, tf)

( 3

zi(zo,uf? t) — zi(zy ulh by — 1)

612(t7tf) = < ¢
d

zo(zo, u{ ) t) + IZ(xf»u?dv ty — t)

( fd bd )

-733(-1‘0, u; , t) - 33(3.(-“{ tf— t)

eaqa(t,ts) = < .

d
{ 1’4(Io,u{,t)+:r4(1‘f,u?d,tf—t) J

L 1/2
e':(ZZefz) e =¢e xw;, t=1,...,4 (C.2)
=1

The weight functions w! are calculated as follows:

14 = maz|zfY)|, i=1,...,4

wl
wi? = maz|z?(t)], i=1,...,4
W; = maz(w!® wt), i=1,....4
wy .
wy =—, 1=1, s 4
Wy

Note that w; is non-dimensional and usually is 0 < w;<1. Presence of weight functions
w; in (C.2) insures that error norm e is not dominated by magnitude of one or more
states, because of the difference in the magnitudes of rotations and angular velocities.

In other words, error vector e" is considered a dimensionless vector.
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C.4 The Listing of the Program OC2ADC13

The computer code OC2ADC13 that implements the FBM for time-optimal control

of two-link manipulators is as follows.

CCCCC67-9 9. 9 9 9 9 9 72
CCCCCGT—STAR’I‘ING A NEW a'I‘EP 49 72
CCCCCE7-9 9 9 72

INTEGER LDY,NEQNS, NMAX.LDY?,NEQNS2
C1CCC687-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE— -T2
PARAMETER (NEQNS=4 NMAX=301.LDY=NEQNS . NEQNS2=2"NEQNS3,LDY2=2"LDY)
INTEGER [LMAXIT, NINIT,IS,IT NITR.KCONT,II.LKK
DIMENSION K5(10),K5B(10)
DOUBLE PRECISION
1 FCNEQNL,FCNEQNU,FCNEQNC
& ,FCNBCSL,FCNBCSU,FCNBCLI.FCNBCUIL
& ,FCNBC,FCNJACB
2 ,FLOAT.SQRT,ABS,SIN,COS, MAX,SSET,DTOL,BTOL,XLEFT ,XLEND XRIGHT
XREND,.E1,E2,E3,E4,EB1,EB2,EB3,EB4,EB1234,EB,EBF,E1F,E2F
JE3F,E4F,WFL1,WFL2,WFL3,WFL4, WFU1,WFU2 WFU3 WFU4,SIGMA,EBS0,EBS
,EBI1,EBI2,EBI3,EBI4,EBI1234,EBIL ES1F,ES2F,EBIS,EBFI,DX
WX(2*NMAX),XL(2*NMAX),XU(2*NMAX),XLC(2*NMAX), XUC(2°NMAX)
XLI(2*NMAX),XUI(2*NMAX),XB(2°NMAX),XF(2*NMAX),XFI[(2*NMAX)
JXFR(2®*NMAX),XSW(10,20),EBJ(NMAX°NMAX)
,YSS(LDY2,20),YSST(LDY?2,20),YL(LDY2,2*NMAX),YU(LDY2,2*NMAX)
,YLC(LDY2,2*NMAX),YUC(LDY2,2°NMAX),YF(LDY2,2*NMAX)
JYFI(LDY2,2°NMAX),YFR(LDY2,2"NMAX)
JZYLI(LDY2,2°NMAX),YUI(LDY2,2*NMAX),YB(LDY2,2°NMAX)
.GC1(2"NMAX),GC2(2*NMAX),GS1(2*°NMAX),G52(2*NMAX)
JUL1(2*NMAX),UL2(2*NMAX),UU1(2°NMAX),UU2(2*NMAX)
JUF1(2°NMAX),UF2(2*NMAX), UCF1(2*NMAX),UCF2(2*NMAX)
XSF(10,NMAX),XS1T(20),X512(20),XS3TT(20),XS3C({20).XTT1
XTT(20),XT(20),XBS5(10.20)
,SIGNT(10,20),YSW(LDY2,10),YBS(LDY2,10)
H(10,2*°NMAX)
,L1,L2,M1,M2,MA ,MB,LC1,LC2,RI1,RI2,X1,X2,X3,X4,P1,P2,P3,P4
,A11,A12,A13,A22,A14,A24,DE, T1,T2,ALFA,BETA
C—67—COMMON PARAMETERS 72
INTEGER J11,KFJ.NSW,IEQ,IBC,1JB
DIMENSION KSW(10)
DOUBLE PRECISION
+YBCL(8},.YBCR(8),X51(20),X52(20),X53(20),SIGN(8.20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.C1.C2,C3,C4,.CS5,GR, TIMIN, TIMAX, T2MIN, T2MAX,SIGM1
COMMON /PARAM/ YBCL,YBCR,X51,XS2,X53.SIGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR
+ . TIMIN, TIMAX,T2MIN, T2MAX,SIGM1,K5W,J11, KFJ ,NSW, IEQ IBC.IUB
C—67—COMMON PARAMETERS

k“’"‘kﬂ.‘*‘k"‘“kkk‘kk“kkk

INTRINSIC FLOAT,SQRT.ABS,5IN,COS.MAX
EXTERNAL DBVPMS,SSET
1 ,FCNEQNL,FCNEQNU FCNEQNC
& ,FCNBCSL,FCNBCSU,FCNBCLI,FCNBCUI
& ,FCNBC,FCNJACB
COMMON /WORKSP/ RWKSP
REAL RWKSP(64328)
CALL IWKIN(64328)

OPEN(UNIT=1, FILE="t2ds.dat'.STATUS= '"UNKNOWN")
OPEN(UNIT=3, FILE="t2d3.dat’,STATUS="UNKNOWN")
OPEN(UNIT=5, FILE="t2d5.dat',STATUS= '"UNKNOWN")
OPEN(UNIT=7, FILE="t2d7.dat’,STATUS="UNKNOWN")
OPEN(UNIT=8, FILE="'t2d8.dat',STATUS= 'UNKNOWN")
OPEN(UNIT=10, FILE='t2d10.dat',STATUS="UNKNOWN")
OPEN(UNIT=15. FILE="t2d15.dat’,STATUS= "UNKNOWN")
OPEN(UNIT=16, FILE="t2d16.dat’,STATUS= "UNKNOWN")
OPEN(UNIT=18, FILE="t2d15¢c.dat’,STATUS= '"UNKNOWN")
OPEN(UNIT=19, FILE="t2d3c.dat’,STATUS="UNKNOWN"')
OPEN(UNIT=20, FILE='t2dc.dat’.STATUS= "UNKNOWN")
OPEN(UNIT=27, FILE="t2d27.dat’,STATUS= "UNKNOWN")
OPEN(UNIT=28, FILE="'t2d28.dat',STATUS= '"UNKNOWN")

WF1=0.0
WF2=0.0
WF3=0.0
WF4=0.0

OPEN(UNIT=13, FILE="sysd2.in'.STATUS='OLD")
READ(13,®) SIGN(1.1),SIGN(2.1),5IGN(3,1),SIGN(4.1),SIGMA
&,ALFA,BETA.NITR,X&82(1),XS3(1),KCONT,SIGM1



READ(13.”) GR,TIMIN. TIMAX,T2MIN, T2MAX
READ(13.") L1,L2,LC1,LC2.M1,M2,MA MB.RI1 RI2
CLOSE(UNIT=13)

C1=MI1"LC1°LCI+RIl + (M2+MA+MB)*L1*L1
C2=M2"LC2"LC2+RI2 + MB"L2"L2
Ci=(M2°LC2+MB*"L2)"L1

C4e=MI1"LC1 + (M2+MA+MB)"L1
C5=(M2"LC2+MB"L2)

WRITE(16,°) SIGN(1,1)

WRITE(16,") SIGN(2.1)

WRITE(16,) SIGN(3.1)

WRITE(16,") SIGN(4,1)

WRITE(16,*) SIGMA

WRITE(16,") ALFA

WRITE(16,*) BETA

WRITE(16,*) NITR

WRITE(16,") X52(1)

WRITE(16,*) XS3(1)

WRITE(16,*) KCONT

WRITE(16,) SIGM1
WRITE(16,*) GR, TIMIN, TIMAX.T2MIN,T2MAX
WRITE(16,®) L1.L2.LC1.LC2
WRITE(16,") M1,M2,MA.MB
WRITE(16,*) RII1,RI2

C2CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
OPEN(UNIT=17, FILE='sysd3.in’.STATUS='OLD"})
DO J2=1,NEQNS

READ(17.%) YSCL(J2.1)

END DO

DO J2=1,NEQNS

READ(17,*) YSCU(J2.1)

END DO

DO J2=NEQNS+1,NEQNS2

READ(17,") YSCL(J2,1)

END DO

DO 12=NEQNS+1,NEQNS2

READ(17.*) YSCU(J2.1)

END DO

CLOSE(UNIT=17)

CCCCC67-9 9 9 9 9 9 72
CCCCCGT—-:TARTXNG THE XTERATION LOGOP 49 T2
CCCCC67-9 9 9 T2

DO 1450 J11=1.NITR

OPEN(UNIT=2, FILE='sysd.un' STATUS='OLD")

READ(2,*) XLEND,XREND,BTOL.DTOL MAXIT

CLOSE(UNIT=2)

XLEFT=XLEND

XRIGHT=XREND
WRITE(S.'(20X,A,15/20X,A)’)'ITR="J11,’ ’
WRITE(S.'(5X.A,E15.6,5X,A,E15.6/) YXLFTO0='XLEFT,'XRGTF="XRIGHT

Is=0

JS=0

CCCCCe7-9 9 9 9 9 9 9 T2
CCCCCST—-[N"‘EGRATION OF STATES 49———72
CCCCCe7-9 9 9 9 9 9 72

[F(J11.GE.2) THEN
WRITE(16,"(18X.A,18X,A)’) 'YSCL','YSCU"
DO J2=1,NEQNS
YSCL(J2,J11)=Y5CL(J2.1)
YSCU(J2,J11)=YSCU(J2,1)
WRITE(16,®) YSCL(J2.J11),YSCU(J2,J11)
END DO
DO J2=NEQN5+1,NEQNS2
YSCL(J2,J11)=YF(J2,1)
YSCU(J2,J11)=YFR(J2,NFR)
WRITE(16,*) YSCL(J2,J11),YSCU(J2,J11)
END DO
END IF
IEQ=0
IBC=0
1JB=0

CCCCCe7-9 9 9 9 9 9 72

CCCCC67QINTEGRATION OF’ :TATES FROM XTO-XTF*AS—————JZ

CCCCC87-9 9

NINIT=NMAX

C DEFINE THE SHOOTING POINTS

DO 10 I=1, NINIT
X(I)=XLEFT+4+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)

IF(J11.EQ.1) THEN
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CALL SSET (NEQNS2, 0.0, YL(L.I), 1)
CALL SSET (NEQNS2, 0.0, YU(1,I), 1)
END iF
10 CONTINUE

IF(J11.GE.2) THEN
DO I=1,NFL
DO J=1,NEQNS2
YL(J.D=YF(J.])
END DO
END DO
DO 1=1.NFR
12=NFR-I+1
DO J=1,NEQNS2
YU(J,1)=YFR(J.I2)
END DO
END DO
DO J=1,NEQNS52
YL(J,1)=YSCL(J,J11)
YU(J,1)=YSCU(J,J11)
END DO
END IF

C SOLVE PROBLEM
KFJ=10
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBCSL NEQNS2, XLEFT XRIGHT.DTOL,
& BTOL MAXIT NINIT X, YL, LDY2,NMAX,NFL,XL,YL,LDY2)
QPEN(UNIT=11, FILE='t2d11.dat'.STATUS= "UNKNOWN")
WRITE(11,'(5X,A,6X.A,5X,A,6X,A,5X,A,8X,A.8X,A/))
& 'T','X1=PH1','X2=DPH1''X3=PH2',’X4=DPH2''U1','U2’

WFL1=0.0
WFL2=0.0
WFL3=0.0
WFL4=0.0
DO 111 I=1,NFL
C6CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
X3=YL(3.1)
P2=YL(6,1)
P4=YL(8,I)
All1=C14C242°C3"COS5(X3)
A12=C24C3*COS5(X3)
A13=C3"SIN(X3)
A22=C2
DE=A11%A22-A12%A12
GS1(1)=(P2*A22-P4"A12)/DE
GS2(I)=(-P2"A12+P4"A1l1)/DE
IF(GS1(I).LE.0.0) THEN
ULI(I)=T1MAX
ELSE
ULL(I)=T1MIN
END IF
IF(GS2(I).LE.0.0) THEN
UL2(I)=T2MAX
ELSE
UL2(I)=T2MIN
END IF

IF(J11.EQ.1) THEN
IF(ABS(XS2(J11)).LE.SIGM1) THEN
UL2(1)=SIGN(2,J11)
ELSE IF(ABS(XS52(J11)).GT.SIGM1) THEN
IF(XL(I).LE.X52(J11)) THEN
UL2(1)=SIGN(2,J11)
ELSE
UL2(1)=-5IGN(2,J11)
END IF
END IF
UL1(1)=SIGN(1,J11)
END IF
C1CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
WRITE(11,9992) XL(I),(YL(J2,1),J2=1,NEQNS),UL1(I},UL2(])
WFL1=MAX(ABS(YL(1,1)),WFL1)
WFL2=MAX(ABS(YL(2,1}),WFL2)
WFL3=MAX(ABS(YL(3,1)),WFL3)
WFL4=MAX(ABS(YL(4,1)),WFL4)
111 CONTINUE
CLOSE(UNIT=11)

72

CCCCCe7-9 9 9 9 9 72
CCCCC87—-INTBGRATION OF DTATES FROM XTF-XT0—49——m————=72
CCCCC67-9 9 9 9 9 72

WRITE(S,'(5X,A, EIS 6,5X,A,E15. 6/) YXLFTOo="XLEFT,'’XRGTF="'XRIGHT

KFJ=20
CALL DBVPMS (FCNEQNU,FCNJACB,FCNBCSU ,NEQNS2,XLEFT,XRIGHT,DTOL,
& BTOL MAXIT.NINIT.X,YU,LDY2, NMAX NFU XU, YU,LDY2)
OPEN(UNIT=12, FILE='t2d12.dat’.STATUS= "UNKNOWN")
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WRITE(12,'(5X.A.6X,A,5X.A,6X,A,5X,A,8X,A8X,A/))
& 'T°,'X1=PH1''X2=DPH1'.'X3=PH2','X4=DPH2','U1''U2"
WFU1=0.0
WFU2=0.0
WFU3=0.0
WFU4=0.0
DO 113 I=1 NFU
C6CCC67~-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE———-T2
X3=YU(3.I})
P2=YU(6.1)
P4=YU(8.1)
All1=C14C242%C3"COS5(X3)
A12=C24+C3*COS5(X3)
A13=C3=SIN(X3)
A22=C2
DE=A11"A22-A12%A12
GS1(1)=(P2"A22-P4*A12)/DE
GS2(1)=(-P2*A12+P4*A11)/DE
IF(GS1(I).LE.0.0) THEN
UUL(I)=T1IMAX
ELSE
UUi()=TIMIN
END IF
IF(GS2(I).LE.0.0) THEN
Uu2()=T2MAX
ELSE
UuU2A1)=T2MIN
END IF

IF(J11.EQ.1) THEN
IF(ABS(XS3(J11)).LE.SIGM1) THEN
UUA(1)=SIGN(4,J11)
ELSE IF(ABS(XS3(J11)).GT.SIGM1) THEN
IF(XU(I).LE.XS3(J11)) THEN
UU2(1)=-SIGN(4,J11)
ELSE
UU2(1)=5IGN(4,J11)
END IF
END IF
UUL(I)=SIGN(3,J11)
END IF
C1CCC87-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
WRITE(12,9992) XU(I),YU(1.1),-YU(2,1),YU(3.1},-YU(4.1)
&, UU1(1),UU2(])
WFU1=MAX(ABS(YU(1,1)),WFU1)
WFU2=MAX(ABS(YU(2.1)),WFU2)
WFU3=MAX(ABS(YU(3.1)),WFU3)
WFU4=MAX(ABS(YU(4.1}), WFU4)
113 CONTINUE
CLOSE(UNIT=12)

g.

CCCCCE7-9 9 9 9 9 9 72
CCCCC67—FIRSET MINIMIZATION FOR PLACE OF XS1(CONTINUITY OF S&C)—-72
CCCCC67-9 9 9 9 9 9 9 72
EBF=10000.0
EBF1=10000.0
WRITE(7,'(20X,A,15/20X,A)’ ) ITR=",J11," '
WRITE(10,'(20X,A,15/20X,A)')'ITR=",J11,"——"
WRITE(10,'(4E15.6)') WF1,WF2,WF3,WF4
WF1=MAX(WFL1,WFU1)
WF2=WF1/MAX(WFL2,WFU2)
WF3=WF1/MAX(WFL3,WFU3)
WF4=WF1/MAX(WFL4,WFU4)
WF1=WF1/WF1
WRITE(10,9735)
WRITE(10,'(4E15.6)’) WF1,WF2,WF3,WF4
WRITE(7,9731)
JC=1
DO I=1,NFL
DO J=1,NFU
E1=ABS( YL(1.I) - YU(1,J} )*WF1
BE2=ABS( YL(2.I) + YU(2.J) )*WF2
E3=ABS( YL(3,1}) - YU(3,])) )*WF3
E4=ABS( YL(4.I) + YU(4,J) )*WF4
EB1=3QRT((E1"*24E2*"2)/2.0)
EB2=SQRT((E3"*2+E4""2)/2.0)
EB3=SQRT((E1""24E3""2)/2.0}
EB4=SQRT((E2**2+E4"*®2)/2.0)
EB1234=SQRT((EB3**24+EB4""2)/2.0)
IF(KCONT.EQ.12) EB=EBI1
IF(KCONT.EQ.13) EB=EB3
IF(KCONT.EQ.34) EB=EB2
IF(KCONT.EQ.1234) EB=EB1234
IF(EB.LT.EBF) THEN
EBF=EB
EBJ(JC)=EBF
JC=JC+1




END IF
END DO
END DO
SIGMA=EBJ(JC-11)
EBF=10000.0
WRITE(10.'(20X,A,12,A,E15.4/20X,A)")'SIGMA ' J11,'=",SIGMA ' ——*
WRITE(10,9732)

DO 117 I=1,NFL
DO 119 I=] NFU

El1=ABS( YL(1,I)- YU(1,J) )"WF1
E2=ABS( YL(2.I) + YU(2.J} }*WF2
E3=ABS( YL(3.I)- YU(3.,J) )*"WF3
E4=ABS( YL(4,I) + YU(4,J) )*WF4
EB1=SQRT((E1**2+E2°"2)/2.0)
EB2=SQRT((E3""2+E4"*2)/2.0)
EB3=SQRT((E1"*2+4+E3""2)/2.0)
EB4=SQRT{{E2°=2+E4**2)/2.0)
EB1234=SQRT({EB3**2+EB4*"2)/2.0)
IF(KCONT.EQ.12) EB=EB1
IF(KCONT.EQ.13) EB=EB3
IF(KCONT.EQ.34) EB=EB2
IF(KCONT.EQ.1234) EB=EB1234
IF(EB .LT. SIGMA) THEN
IF(EB.LT.EBF) THEN
EBF=EB
IST=I
JST=J
ITT=IST+JST
XS1T(J11)=XL(IST)
XTT(J11)=XL{IST)+XU(JST)
XS3TT(J11)=XTT(J11)-XS3(J11)
WRITE(10,9730)IST,ITT,XS2(J11),XS1T(J11),XS3TT(J11),XTT(J11),EBF

CCCCccCer- 9. 9 9 9 9 9 72
CCCCCS?—INTEGRATION OF S'I‘ATES F‘ROM (XSl D)-(XSI+D)———?2
CCCCC87-9 9 9 9

XLEFT=XL(IST-1)
IF(IST.EQ.1) XLEFT=XL(IST)
XRIGHT=XL(IST+1)
IF(IST.EQ.NFL) XRIGHT=XL(IST)
WRITE(S,"(1X,A,E12.4,2X,A,E12.4,4X,A,14,2X,A.[4)'VXLFT=",XLEFT
&,'XRGT=",XRIGHT.'IST="IST,'ITT="ITT
DO 114 J2=1,NEQNS2
YSLB(J2,J11)=YL(J2,IST.1)
IF(IST.EQ.1) YSLB(J2,J11)=YL(J2,IST)
114 CONTINUE
DO 107 I2=1, NINIT
XLI(12)=XLEFT+FLOAT(12-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YLI(1.12}, 1)
107 CONTINUE
KFJl=10
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBCLI NEQNS2,XLEFT XRIGHT.DTOL,
& BTOL,MAXIT.NINIT,XLIL,YLILDY2 NMAX NFLIXLI,YLI,LDY2)

CCCCcCe7-9 9 9. 72
CCCCCS'I—[NTEGRATION OP :TATE: FROM ((XT X:l) D)-((XT-X31)+D)— --72
CCCCCe7-9

XLEFT= ’(U(JDT-I)
IF(JST.EQ.1) XLEFT=XU(JST)
XRIGHT=XU(JST+1)
IF(JST.EQ.NFU) XRIGHT=XU(J5T)
WRITE(S,'(1X,A,E12.4,2X,A,E12.4,4X,A,14,2X, A, 14)VXLFT="XLEFT
& 'XRGT=",XRIGHT, JST=",JST, ITT="ITT
DO 116 J2=1,NEQNS2
YSUB(J2,J11)=YU(J2,IST-1)
IF(JST.EQ.1) YSUB(J2,J11)=YU(J2,JST)
116 CONTINUE
DO 108 J2=1, NINIT
XUI(J2)=XLEFT+FLOAT(J2-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YUI(1,J2), 1)
108 CONTINUE
KFJ=20
CALL DBVPMS (FCNEQNU,FCNJACB,FCNBCUINEQNS2 XLEFT.XRIGHT,.DTOL,
& BTOLMAXIT,NINIT XUILYULLDY2NMAX NFUI[,XUILYUILLDY2)

CCCCCe7-9 9 9 9 9 9 9 72
CCCCC67—SECOND MINIMIZAT[ON FOR PLACE OF XSI(CONT[NUITY OF 5&C)—-72
CCCCCe67-9 9 9 9

DO 122 12=1,NFLI
DO 124 J2=1,NFUIl
C3CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
EiF=ABS( YLI(1,12) - YUI(1,J2) )*WF1
E2F=ABS( YLI(2,12) + YUI(2,J2) )*WF2
E3F=ABS( YLI(3,12) - YUI{3,]J2) )*"WF3
E4F=ABS( YLI(4.12) + YUIl(4,J2) )*WF4
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EBI1=SQRT((E1F*~2+E2F""2)/2.0)
EBI2=SQRT((E3F*"24E4F==2)/2.0)
EBI3=SQRT((E1F*"2+E3F®*"2)/2.0)
EBI4=SQRT((E2F*"2+E4F*"2)/2.0)
EBI1234=SQRT((EBI3""2+EBI4"*2)/2.0)
IF(KCONT.EQ 12) EBI=EBI1
IF(KCONT.EQ.13) EBI=EBI3
IF(KCONT.EQ.34) EBI=EBI2
IF(KCONT.EQ.1234) EBI=EBI1234
IF(EBILLT.EBFI) THEN
EBFI=EBI
ISF=I2
JSF=J2
ITF=ISF+JSF
Is=1
JS=J
IT=IS+JS
XSF(1,J11)=XLI(ISF)
XS1(J11)=XSF(1,J11)
XSF(4,J11)=XLI(ISF)4+XUI(JSF)
XT(J11)=XSF(4.J11)
XS3C(J11)=XT(J11)-XS53(J11)
DO 120 J3=1.NEQNS2
YSS(J3,J11)=YLI(J3,ISF)
120 CONTINUE
ESi1F=0.0
DO 1081 JJ2=1,NEQNS
ESIF=ES1F+YLI(JJ2,12)*YLI(JJ2,12)
1081 CONTINUE
ES1F=SQRT(ES1F)
ES2F=0.0
DO 1082 JJ2=1,NEQNS
ES2F=ES2F+YUI(JJ2,J2)*YUI(1J2,12)
1082 CONTINUE
ES2F=SQRT(ES2F)
EBIS=ABS( ES1F . ES2F )
END IF
124 CONTINUE
122 CONTINUE
WRITE(7,973)IS,IT,XS1(J11),XT(J11),EBFIL,EBIS
END IF
END IF
119 CONTINUE
117 CONTINUE
IF(XT(J11).LE.0.0) THEN
WRITE(15.") 'CONTINUITY OF STATES OF FIRST ARM DIDNOT HAPPEN"®
WRITE(18,*) "CONTINUITY OF STATES OF FIRST ARM DIDNOT HAPPEN'
GO TO 10000

END IF
CCCCCe7-9 9 9 9 9 9 9 72
CCCCC67—-PRINT RESULTS 72
C2CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE T2
WRITE(15."(20X,A,15/20X,A)' )’ ITR=",J11,"
WRITE(15,'(5X.A,7X,A,6X,A,6X,A,5X,A.8X,A,8X,A)")
& 'T','X1=PH!I''X2=DPHI1'.’X3=PH2','X4= DPH2' 'ur,'g2’
WRITE(18,'(20X,A,15/20X,A)')'ITR=",J11,"
WRITE(18,'(5X.A,7X,A,6X.A,6X,A.5X,.A,8X,A,8X,A)")
& T°'P1°PHI','P2"DPH1''P3"PH2',"P4"DPH2','U1",'U2’
DO 127 [=1,IS
WRITE(15,9992) XL(1),( YL(J3,1),J3=1,NEQNS),UL1(I),UL2(I)
WRITE(18,9992) XL(I),(YL(J3.1),J3=NEQNS+1,NEQNS52),UL1(I),UL2(I)
127 CONTINUE
DO 129 [=1]S,1,-1
WRITE(15.9992) XT(J11)-XU(I1),YU(1,1),-YU(2,1),YU(3.1),-YU(4.1)
&, UUI),uu2(n)
WRITE(18,9992) XT(J11)-XU(I),(YU(J3,1),J3=NEQNS+1,NEQNS2)
&, UUI(1),UUuA1)
129 CONTINUE
Ccccc67 qg. (-} qg. Q. q. q. n 72
CCCCCS'I——-INTEGRATION OP aTATES FROM XTO XTF FOR PLACE OF TS2 72
CCCCC67.9 9 72

NINIT=NMAX
XLEFT=XLEND
XRIGHT=XT(J11)
WRITE(S,'(5X,A,E15.6,5X.A,E15.6/)')XLFTO0="XLEFT,'XRGTT="XRIGHT
DO [=1, NINIT
X(1)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YL(1,1), 1)
CALL SSET (NEQNS2, 0.0, YU(1,1). 1)
END DO

KFl=11
CALL DBVPMS (FCNEQNL.FCNJACB,FCNBCSL,NEQN352, XLEFT.XRIGHT.DTOL.
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& BTOL.MAXIT.NINIT.X,YL,LDY2,NMAX,NFL,XL.YL LDY2)

OPEN(UNIT=21, FILE="t2d21.dat',STATUS= "UNKNOWN")
WRITE(21,'(5X,A,6X,A,5X,A,6X,A,5X,A,8X,A,8X,A/)")
& 'T''X1=PH1'.'X2=DPH1''X3=PH2',’X4=DPH2',"U1''U2’
WFL1=0.0
WFL2=0.0
WFL3=0.0
WFL4=0.0
DO 1111 I=1,NFL
C6CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE———-72
X3=YL(3.I)
P2=YL(s6.I)
P4=YL(8.,I)
Al1=C14C242"C3"COS5(X3)
A12=C2+4C3*COS5(X3)
A13=C3"SIN(X3)
A22=C2
DE=A11"A22-A12"A12
GS1(I1)=(P2"A22-P4"A12)/DE
GS2(I)=(-P2"A124P4*A11)/DE
IF(GS1(1).LE.0.0) THEN
ULI(I)=T1MAX
ELSE
ULI1(I)=TIMIN
END IF
IF(GS2(I1).LE.0.0) THEN
UL2(I)=T2MAX
ELSE
UL2()=T2MIN
END IF

IF(J11.EQ.1) THEN
IF(XS1(J11).NE.0.0) THEN
IF(XL(I).LE.XS1(J11)) THEN
UL1(I)=5IGN(1,J11)
ELSE
UL1(I)=SIGN(3.J11)
END IF
ELSE
ULI1(1)=SIGN(1,J11)
END IF

IF(ABS(X52(J11)).LE.SIGM1) THEN
UL2(1)=SIGN(2,J11)

ELSE IF(ABS(XS2(J11)).GT.SIGM1) THEN

IF(XL(I).LE.XS2(J11)) THEN
UL2(I)=SIGN(2.J11)
ELSE
UL2(1)=-SIGN(2,111)
END IF

END IF

END IF

WRITE(21.9992) XL(I),(YL(J2,1),J2=1,NEQNS),UL1(I),UL2(])
WFLI=MAX(ABS(YL(1,1)},WFL1)
WFL2=MAX(ABS(YL(2,1)},WFL2)
WFL3=MAX(ABS(YL(3,I)),WFL3)
WFL4=MAX(ABS(YL(4.,1)),WFL4)

1111 CONTINUE

CLOSE(UNIT=21)

CCCCCe7-9 9 9 9 9 9 9 72
CCCCC67—INTEGRATION OF STATES FROM XTF-XTO FOR PLACE OF TS2 72
CcCccccer-9 9 9 9 9 9 9 72

WRITE(S,'(5X,A,E15.6,5X,A,E15.6/) )’XLFTO0="XLEFT.,'XRGTT=",XRIGHT
KFJl=21
CALL DBVPMS (FCNEQNU,FCNJACB,FCNBCSU ,NEQNS2 XLEFT . XRIGHT,DTOL,
& BTOL MAXIT,NINIT . X,YU,LDY2,NMAX ,NFU,XU.YU,LDY2)
OPEN(UNIT=22, FILE='t2d22.dat',STATUS= "UNKNOWN"}
WRITE(22,'(5X.A,6X,A,5X,A,6X A.SX,A8X,A.8X,A/))
& 'T'.'X1=PH1''X2=DPH1''X3=PH2',’X4=DPH2",'U1','U2"
WFU1=0.0
WFU2=0.0
WFU3=0.0
WFU4=0.0
DO 1131 I=1,NFU
CeCCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE———.72
Xa=YUu(a.1n
P2=YU(6.1)
Pe=YU(8.1)
Al11=C14C242"CI*CO35(X3)
A12=C24C3"COS(X3)
A13=C3°SIN(X3)
A22=C2
DE=A11"A22-A12%A12
GS1(I)=(P2"A22-P4"A12)/DE



GS2(1)=(-P2*A124+P4"A11)/DE
IF(GS1(1).LE.0.0) THEN

UUL(I)=TIMAX
ELSE

UUI(D)=TIMIN
END IF
IF(GS2(1).LE.0.0) THEN

UU2A(1)=T2MAX
ELSE

UU2(1)=T2MIN
END IF

IF(J11.EQ.1) THEN
IF(ABS(X53(J11)).LE.SIGM1) THEN
UU2(1)=5SIGN(4.J11)
ELSE IF(ABS(XS3(J11)).GT.SIGM1) THEN
IF(XU(I).LE.XS3(J11)) THEN
UU2(1)=-SIGN(4,J11)
ELSE
UU2(1)=SIGN(4,J11)
END IF
END IF
UUI(I)=5IGN(3,J11)
END IF
WRITE(22,9992) XU(I),YU(1,1),-YU(2,1),YU(3.1).-YU(4.1)
&, UU1(I1),UU2(1)
WFU1=MAX(ABS(YU(1,1)),WFU1)
WFU2=MAX(ABS(YU(2.1)),WFU2)
WFU3=MAX(ABS(YU(3.1)).WFU3)
WFU4=MAX(ABS(YU(4,1)),WFU4)
1131 CONTINUE
CLOSE(UNIT=22)

CCCCCer-9 9 9 9 9 9 72

CCCCC67—FIRSET Mmmxzn‘xou FOR PLACE OF Tsz(cou'rmm'rv OF S&C)—.72

CCCCC67-9 9

OPEN(UNIT=23, FILE="12d23.dat’ STATUS- 'UNKNOWN )
WRITE(10,*)

WRITE(23,9733)

EBF=10000.0

EBFI1=10000.0

E1F=10000.0

E2F=10000.0

E3F=10000.0

E4F=10000.0

WF1=MAX(WFL1,WFU1)

WF2=WF1/MAX(WFL2,WFU2)

WF3=WF1/MAX(WFL3, WFU3)

WF4=WF1/MAX(WFL4,WFU4)

WF1=WF1/WF1

WRITE(10,9736)

WRITE(10,'(4E15.6)') WF1,WF2,WF3,WF4
WRITE(10,9737)

DO 1171 I=1,NFL

DO 1191 J=1,NFU

C3CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
E1=ABS( YL(1.I) - YU(1,}) )*WF1
E2=ABS( YL(2.I) + YU(2.J) )*WF2
E3=ABS( YL(3,I) - YU(3,J) }*"WF3
E4=ABS( YL(4.I) + YU(4,J) )"WF4

EB1=3SQRT((E1**2+E2""2)/2.0)

EB2=SQRT((E3""2+E4""2)/2.0)

EB3=SQRT((E1"*2+E3°*2)/2.0)

EB4=SQRT((E2"*2+E4"*2)/2.0)

EB1234=SQRT((EB3="2+EB4°*2)/2.0)

=SQRT((EB1"*2+EB2"*2)/2.0)
IF(EB.LT.EBF) THEN

EBF=EB

IST=<I

JST=J

ITT=IST+JST

X512(J11)=XL(IST)

XTT(J11)=XL(IST)+XU(JIST)

XS3C(J11)=XTT(J11)-X53(J11)

WRITE(10,9730)IST.ITT,XS1(J11),XS512(J11),XTT(J11),EBF

DO 13=1,NEQNS2

YSST(J3,J11)=YL(J3,IST)

END DO

END IF

IF(E1.LT.E1F.AND.I.GT.1) THEN

E1F=E1

ITT1=I+4+J

XTT1=XL(I)+XU(J)
WRITE(23,9734)LITT1,X513(J11),XL(I},XTT1.E1,E2,E3.E4,EB
END IF
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IF(E2.LT.E2F.AND.L.GT.1) THEN
E2F=E2
ITTi=I4J
XTT1=XL{1}+XU(J)

END IF

{F(E3.LT.E3F.AND.LL.GT.1) THEN
E3F=E3
ITT1=I4J
XTT1=XL(1)+XU(J)

END IF

IF(E4.LT.E4F.AND.I.GT.1) THEN
E4F=E4
ITT1=I4+J
XTT1=XL(1)+XU(J)

END IF

1191 CONTINUE
1171 CONTINUE
CLOSE(UNIT=23)

=0
DO [=1,IST
IF(XL(I).LE.X512(J11)) THEN
H=Il4+1
XF(I=XL(I)
DO J=1,NEQNS2
YF(J,II)=YL(J.I)
END DO
UFI(IN)=UL1(I)
UF2(I1)=UL2(1)
END IF
END DO
DO I=JST,1,-1
IF((XTT(J11)-XU(1)).GT.XS12(J11)) THEN
II=1141
XF(I)=XTT(J11)-XU(I)
DO J=1,NEQNS2
YF(J.IND=YU(JI)
IF((J.EQ.2).0R.(J.EQ.4)) YF(J.II)=-YF(J.II)
END DO
UFI(I)=U0UL(])
UF2(11)=U0U2(I)
END IF
END DO

Jao=J11440
J50=J11+50
[F(J11.EQ.1) THEN
OPEN(UNIT=J40, FILE="tefl.dat".5STATUS= "UNKNOWN"}
OPEN(UNIT=J%0, FILE="tsf1.dat’',STATUS= 'UNKNOWN")
ELSE IF(J11.EQ.2) THEN
OPEN(UNIT=J40, FILE="tcf2.dat' . STATUS= 'UNKNOWN")
OPEN(UNIT=J50, FILE="tsf2.dat’,STATUS= 'UNKNOWN")
ELSE IF(J11.EQ.3) THEN
OPEN(UNIT=J40, FILE="tcf3.dat’',STATUS= '"UNKNOWN")
OPEN(UNIT=J50, FILE="tsf3.dat’,STATUS= "UNKNOWN")
END IF
WRITE(J40,'(5X,A,7X,A.6X,A,6X A ,5X,A ,8X,A,8X.A)")

& 'T''P1"PH1',’P2"DPH1','P3"PH2''P4"DPH2' ,'U1','U2’
WRITE(J50,'(5X,A,7X,A,6X,A,6X,A,5X,A,8X,A,8X,A))

& 'T','X1=PH1','’X2=DPH1',’X3=PH2','X4=DPH?2' ,U1','U2"
DO I=1,11
WRITE(J50,8992) XF(I),(YF(J3.1),J3=1,NEQNS),UFI1(I),UF2(I)
WRITE(J40,9992) XF(I).(YF(J3,I),J3=NEQNS+1,NEQNS2),UFI(I),UF2(I)
END DO

KK=0

DO J=1,II.1

IF(UF1(J41)*UF1(J).LT.0.0) THEN
KK=KK+1
KS(KK)=J
KSW(KK)=1
UFW(KK,1)=UF1(J)
UFW(KK,2)=UF2(J)
XSW(KK,J11)=XF(J)+(XF(J+1)-XF(J))/2.0
DO J2=1 ,NEQNS2

YSW(J2,KK)=YF(J2,J)4+(YF(J2,J+1)-YF(J2,J))/2.0

END DO

ELSE IF(UF2(J+1)*UF2(J).LT.0.0) THEN
KK=KK+1
KS(KK)=1J
KSW(KK)=2
UFW(KK,1)=UF1(J)
UFW(KK.2)=UF2(J)
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XSW(KK.J11)=XF(J)+(XF(I+1)-XF(J))/2.0
DO J2=1 NEQNS2
YSW({J2,KK)=YF(J2,J)4+(YF(J2,J+1)-YF(J2,1))/2.0
END DO
END IF
END DO

J=I1

KK=KK+1

KS(KK)=J

KSW(KK)=0

UFW(KK,1)=UF1(J)

UFW(KK,2)=UF2(J)

XSW(KK,J11)=XF(J)

DO J2=1 NEQNS2
YSW(J2,KK)=YF(J2,J)

END DO

WRITE(J(O.'(SX,A.SX,AJX,A.IOX.A.IOX.A,lOX.A.lOX.A)')'KK'.'KS’
+ JXSWI1','YSWS5','YSWE' 'YSWT' 'YSWs’
WRITE(JSO,'(SX.A.SX.A.'IX.A.lOX.A.lOX.A.lOX,A.lOX.A)')’KK'.'KS'
+ JXSWI''YSWI''YSW2''YSW3’,'YSW¢'
DO JK=1,KK
WRITE(JS0,'(215,1PSE14.6)") JK,KS(JK),XSW(JK,J11)
4+  J(YSW(J2,JK),J2=1,NEQNS)
WRITE(J40,’(215,1PSE14.6)') JK,KS(JK),XSW(JK,J11)
+ J(YSW(J2,JK),J2=NEQNS+1,NEQNS2)
END DO
WRITE(.HO,'(JX,A.JX.A.2X.A.1lX.A.IOX.A.IOX.A)')'KK'.'KS'
+ JKSW''XSW' 'UFW1''UFW?2’
WRITE(J50,"(3X,A,3X.A,2X,A,11X,A,10X,A,10X,A)' )’ KK, 'KS"*
+ JKSW' 'XSW''UFW1','UFW2’
DO JK=1,KK
WRITE(J50,'(315,3E14.6)") JK,KS(JK),KSW(JK),XSW(JK,J11)
+ UFW(IJK,1),UFW(JK,2)
WRITE(J40,(315,3E14.6)") JK,K5(JK),KSW(JK),XSW(JK,J11)
+ JUFW(JK,1),UFW(JK.,2)
END DO

IF(XTT(J11).LE.0.0) THEN
WRITE(J40,*) '"CONTINUITY OF STATES OF BOTH ARMS DIDNOT HAPPEN'
WRITE(J50.®) '"CONTINUITY OF STATES OF BOTH ARMS DIDNOT HAPPEN"

END IF

CcCCCcCer.9 9 9 9 9 9 9 72
C—67—- INTEGRATION OF STATES FROM XT0-XSW1 T2
CCCCcCer-9 9 9 9 9- 9 9 T2

DO J=1,NEQNS2
YBCL(J)=YSCL(J,J11)
YBCR(J)=YF(J.KS(1))
END DO
XLEFT=XLEND
XRIGHT=XSW(1,J11)
DX=ABS(XRIGHT-XLEFT)
NINIT=NMAX*(DX/ABS(XREND-XLEND))
NINIT=MAX(NINIT,10)
WRITE(5.'(5X.A,E15.6,5X,A.E15.6/)’)'XLFT0=", XLEFT,' XRGTS1=".XRIGHT
C Define the Shooting Points
DO I=1, NINIT
XF(I)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT.XLEFT)
CALL SSET (NEQNS2, 0.0, YF(1,1), 1)
END DO

KFl=30
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBC,NEQNS2,XLEFT.XRIGHT.DTOL,
& B‘I‘OL.MAXIT.NINIT,XF.YF.LDY2,NINIT.NPL.XF.YF.LDY!)

9 9. 9. 9 T2

CCCCCe7-9: 9 9 T
C—67—INTEGRATION OF STATES & COSTATES FROM XSW1-XSW2
CCCCCs7-9 9 9 9 9 9 9 72
DO J=1,NEQNS2
YBCL(J)=YF(J,1)
YBCR(J)=YF(J,NFL)
END DO
XLEFT=XSW(1,J11)
XRIGHT=XSW{(2,J11)
DX=ABS(XRIGHT-XLEFT)
NINIT=NMAX*(DX/ABS(XREND-XLEND))
NINIT=MAX(NINIT,10)
WRITE(5,'(5X,A,E15.6,5X,A.E15.6/)")'XLFS1=' XLEFT,'XRGTS2=",XRIGHT
C Define the Shooting Points
DO =1, NINIT
XFI(I)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YFI(1,1), 1)
END DO

—_72

C Solve Problem
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KFJ=32
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBC,NEQNS2 XLEFT.XRIGHT,.DTOL,
& BTOL ,MAXIT NINIT XFIL,YFLLDY2 NINIT NFLILXFLYFILLDY?2)

CCCCcCer-9 9 9 9 9 9 9 72
C—67—-INTEGRATION OF STATES & COSTATES FROM XLEND-X5W1 -72
CCCCCs?-9 9 9 9 9 9 9 72

DO 1=1,(NEQNS2/2)

YBCL(J)=YSCL(J.J11)

YBCR(J)=YFI(J.NFLI)

END DO

DO J=(NEQNS2/2+41),NEQNS2

YBCL(J)=YFI(J,1)

YBCR(J)=YFI(J,NFLI)

END DO

XLEFT=XLEND

XRIGHT=XSW(1.J11)

DX=ABS(XRIGHT-XLEFT)

NINIT=NMAX*(DX/ABS(XREND-XLEND))

NINIT=MAX(NINIT,10)

WRITE(S,'(5X.A,E15.6,5X,A,E15.6/)' ) XLFT0="XLEFT,’XRGTS1=",XRIGHT

C Define the Shooting Points

DO I=1, NINIT
XF(I)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YF(1,I), 1}

END DO

KFl=31
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBC NEQNS2, XLEFT,XRIGHT,DTOL,
& BTOL MAXIT,NINIT.XF,YF,LDY2, NINIT ,NFL,XF,YF,LDY2)

[efe{efofol - ¥ - 9 9 9 9 9 9 T2
CCCCC87———————Print Result 72
CCCCCs7-9 9 9 9 9 9 9 72

WRITE(1,"(6X,A,5X.A,4X,A,5X,A,4X,A,7X,A,TX.A, 10X, A)")

& 'T''X1=PH1'’X2=DPH1',’X3=PH2',"X4=DPH2' ,'U1','U2''H"
WRITE(20,"(6X,A,5X,A,4X,A.5X,A,4X,A,7X,A,TX,A,10X ,A)")

& 'T°,P1°PH1','P2"DPH1',’"P3"PH2'.'P4 " DPH2' ,'G1','G2','H"

KFJ=31
DO I=1,NFL

X1=YF(1.I)
X2=YF(2,I)
X3=YF(3,I)
X4=YF(4.1)
P1=YF(5,I)
P2=YF(6.1)
P3=YF(7.1)
P4=YF(8,)

IF(KFJ.EQ.31.0R.KFJ.EQ.30) THEN
UFi1(1)=UFW(1.,1)
UF2(I)=UFW(1.2)

END IF

IF(KFJ.EQ.32) THEN
UFI(I)=UFW(2,1)
UF2(1)=UFW(2,2)

END IF
T1=UFI(I)
T2=UF2(I)
DE = C1*C2.C3*"2°COS(X3)*"2
All = C14C2+42*C3"COS3(X3)
Al12 = C24C3*COS(X3)
A13 = C3*SIN(X3)
A22 = C2
Al4 = C4"CO35(X1)+C5"COS(X1+X3)
A2¢ = C5"COS(X1+4X3)

H(I,J11)=

&14P1°X24P3*X44+P2/DE"(-GR"(A22"A14-A12"A24)+ A22°T1-A12°T2+A13%(A12°
+X2%"24A22%(2°X2°X4+4X4""2)))+P4/DE*(GR®(AI12*A14-A11%A24)-A12°T1+4All
+"T2-A13%(A11"X2""24+A12%(2°X2° X4+ X 4°%2)))
GC1(1)=(P2*A22-P4*A12)/DE
GC2(1)=(-P2"A124P4*A11)/DE
WRITE(1,1007)XF(1)(YF(J1.1).J1=1,NEQNS),UF1(1),UF2(1),H(1,J11)
WRITE(20,1007)XF(1),(YF(J1,1),J1=NEQNS+1 ,NEQNS2),GC1(1),GC2(1)

& H(1,111)
END DO
KFJ=32
DO I=1,NFLI
X1=YFI(1.I)
X2=YFI(2,])
X3=YFI(3.,1)

X4=YFI(4,I)
P1=YFI(5.])
P2=YFI(6,I)
P3=YFI(7.]1)
P4=YFI(8,I)
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IF(KFJ.EQ.31.0R.KFJ.EQ.30) THEN
UF1(I)=UFW(1.1)
UF2(I)=UFW(1,2)

END IF

IF(KFJ.EQ.32) THEN
UF1(1)=UFW(2.1)
UF2(1)=UFW(2.2)

END IF
T1=UFI(])

T2=UF2A(I)

DE = C1°C2-C3"*2°COS(X3)="2
All = C14C2+2°C3°COS5(X3)
Al2 = C2+C3*COS(X3)

Al13 = C3"SIN(X3)

A22 = C2
Al4 = C4°COS(X1)+C5*COS(X1+X3)
A24 = CS*COS(X1+X3)

H(1,J11)=

&1+P1*X24+P3"X4+P2/DE®(-GR*(A22"A14-A12"A24)+ A22°T1- Al2°T2+A13°(A12"
+X2"%24+A22%(2°X2"X4+X4""2)))+P4/DE"(GR*(A12°A14-A11"A24)-A12°T1+All
+°T2-A13%(A11°X2"°24+A127(2"X2"X 4+ X4°*2)))

GC1(I)=(P2"A22-P4*A12)/DE

GC2(I)=(-P2"A124+P4"A11)/DE
WRITE(1,1007)XFI(I),(YFI(J1,I),J1=1 NEQNS),UF1(I),UF2(1),H(I,J11)
WRITE(20,1007)XFI(I).(YFI(J1,I),JI=SNEQNS+1. NEQNS2),GC1(1),GC2(1)

7”2

& H(1,J11)
END DO
ccccceev 9 9 9 9 72
CCCCCS?—[NTBGRATION OF DTATES L' COSTATES FROM XSW2.XREND
CCCCCe7-9 9 9 72

DO J=1 NEQNS2
YBCL(J)=YFI(J.1)
YBCR(J)=YFI(J.NFLI)
END DO
DO 130 JK=3,KK
NSW=JK
XLEFT=XSW(JK-1,J11)
XRIGHT=XSW(JK,J11)
DX=ABS(XRIGHT-XLEFT)
NINIT=NMAX®(DX/ABS(XREND-XLEND))
NINIT=MAX(NINIT.10)
WRITE(S5,'(5X,A,I1,A,E15.6 5X,A.I1,A.E15.6/)')XLFS" JK-1,'=
+,XLEFT,XRGTS' JK,'=" XRIGHT
C Define the Shooting Points
DO I=1, NINIT
XFR(1)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YFR(1.I), 1)
END DO

o4 Solve Problem
KFJ=33
CALL DBVPMS (FCNEQNL,FCNJACB,FCNBC NEQNSz XLEFT.XRIGHT.DTOL,
& BTOL MAXIT NINIT.XFR,YFR,LDY2 NINIT,NFR,XFR,YFR,LDY?2)
DO J=1,NEQNS2
YBCL(J)=YFR(J.1)
YBCR(J)=YFR(J.NFR)
END DO
DO [=1,NFR
X1=YFR(1,I)
X2=YFR(2.I)
X3=YFR(3.])
X4=YFR(4.l)
P1=YFR(5.])
P2=YFR(6,I)
P3=YFR(7.])
P4=YFR(8.I)
UFI(I)=UFW(JK,1)
UF2(I)=UFW(JK,2)
T1=UFI(I)
T2=UF2(I)
DE = C1*C2-C3**2*COS(X3)""2
All = C14C242"C3°COS(X3)
Al12 = C24C3"COS5(X3)
A13 = C3"SIN(X3)

A22 = C2
Al4 = C4"COS(X1)+Cs5"COS5(X14+X3)
A24 = C5*COS(X1+4X3)

H(LJ11)=

&£14P1*"X2+4P3°X44P2/DE*(-GR*(A22"A14-A12"A24)}4+ A22"T1-A12° T2+ A13%(A 12"
+X2%%24 A22°(2°X2"X44X4"*2)))+P4/DE"(GR"(A12"A14-A11"A24)-A12°T1+ A1l
+=T2-A13"(A11"X2°"24A12°(2°X2°X 4+ X4°*2)))
GC1(1)=(P2"A22-P4*A12)/DE
GC2(1)=(-P2"A12+4+P4"A11)/DE
WRITE(1,1007)XFR(I).(YFR(J1,1),J1=1,NEQNS), UF1(I),UF2(1).H(L.J11)
WRITE(20.1007)XFR(I),(YFR(J1,1),J1=NEQNS+1,NEQNS2).GC1(1),GC2(1)
&, H(1,J11)

193



END DO

130 CONTINUE
CLOSE(UNIT=J40)
CLOSE(UNIT=Js0)

CCCCC67-9 9 9 9 9 9 72
CCCCCST—CHEKING THE COVVERGENCE CRITERIA——m———— — 72
CcCCccCcCer.9 9 9 72

EB5=0.0

DO JK=1,KK

XSW(JK.0)=0.0
EBS= (XSW(JK.J11)-XSW(JK.J11-1))"*2+EBS
END DO
EBS=SQRT(EBS/KK)
WRITE(S,'(10X,A/5X,A,5X,A,9X.A.9X,A,9X,A)") '"o=wsaas
L*INTERMEDIATE RESULTS==**==: /[TR’, ' XSW1','XSW2'.'XSW3*.'XSW4"’
WRITE(S,"(50X.A,10X,A,9X,A/)’) "XS1','XT",'EBS’
WRITE(8,1002) J11,(XSW(JK,J11),JK=1,KK)
WRITE(8,1012) XS12(J11).XTT(J11),EBS
WRITE(8,") *

IF((J11.GE.2).AND.(EBS.LT.DTOL)) THEN
WRITE(8,"(10X,A/5X,A 4¢X,A4X,A,4X,A 4X,A)’) '*

L"FINAL RESULTS®*=****' '[TR''XSW1''XSW2','XSW3' ' XSW4'
WRITE(8,(50X,A,10X,A,9X,A/)) 'X512''XTT'.,'"EBS

WRITE(8,1002) J11,(XSW(JK,J11),JK=1,KK)

WRITE(8,1012) XS512(J11), XTT(JII) EBS

WRITE(S8.") '
GOTO 10000

END IF

1450 CONTINUE

CCCCCe7-9 9: 9 9 9. 9 9 T2
CCCCC67-END OF THE ITERATION LOOP T2
CcCcCccCcer- 9 72

o

WRITE(1,'(10X.A)’) "THE PROGRAM DID NOT CONVERGE.'
WRITE(8.'(10X,A)") 'THE PROGRAM DID NOT CONVERGE.®
WRITE(15,'(10X,A)’) "'THE PROGRAM DID NOT CONVERGE.'
WRITE(18,(10X,A)’) 'THE PROGRAM DID NOT CONVERGE.'
WRITE(20,'(10X,A)") "'THE PROGRAM DID NOT CONVERGE.'

GOTO 10000

CCCCC67-9 9 9 9 9 9 72

CCCCC67—-FINDING COSTATES FROM XO TO X:l —_72
CCCCCe7-9 9 9 9 T2

NINIT=I5

IF(NINIT.EQ.1) NINIT=2

CCCCCs87-9 9 9. 9 9 9 T2

CCCCCG7——DEF‘XN[NG I‘UTIAL COSTATE: U:ING HAM. & SWITCH FUNCS. 2
ccccceer-9 9 9 T2

72

C2CCC67-THIS LINE/LINES :HOULD BE CHANGED FOR ECACH EXAMPLE
Al1=C14C24+2*C3=CO5(X3)
A12=C2+C3*COS5(X3)
A13=C3*SIN(X3)
A22=C2
Al4 = C4*COS(X1)4+C5*COS(X1+X3)
A2¢ = C5"COS(X1+X3)
DE=A11"A22-A12"A12

P1=ALFA"X1

P3=BETA®X3

T1=ULI(IS)

T2=UL2(IS)

CCCCC67-9——- P2G1=0 -9 9 9 9 9 T2

P2=

LDE®(1.0+P1°X24+P3%X4)/(A22"GR"A11"A24-A22"A11°T24+A22%A13"A11°X2°"2.
+A12"°2°GR"A24+ A12°"2°T2. Al2“2'A13‘x2"2)'Al2

CCCCCB7-9—— P4G1=0 -9 9 9 72

P4=

kA?z'DE'(l.0+Pl'x2+?3'x()/(AZ?'GR'AIl'A?‘-A22'A1l'T2+A22'A13'AIl'x?
+%"2-A12"°2°"GR"A24 4 A12°"2°T2-A12"°2%A13*X 2""2)

XLEFT=XLEND

XRIGHT=XS1(J11)
WRITE(S5."(1X,A,E12.4,2X,A,E12.4,4X,A,14,.2X,A,I4)'XLFTC=",XLEFT
&, 'XRGTC="XRIGHT I=",1,'IS=",I5

IF(XRIGHT.LE.XLEFT) THEN

NFLC=1

XLC(NFLC)=XLEFT

UCFI(NFLC)=UL}(NFLC)

UCF2(NFLC)=UL2(NFLC)

DO 1472 J2=1.,NEQNS52

YLC(J2,NFLC)=YSCL(J2,J11)

1472 CONTINUE

KK=0

GO TO 1340

194



END IF

C DEFINE THE SHOOTING POINTS
DO 137 I=1, NINIT
XLC(I)=XLEFT+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YLC(1.1), 1}
137 CONTINUE
KFJ=12
C CALL DBVPMS (FCNEQNC,FCNJACB,FCNBCLC NEQNS2,XLEFT,XRIGHT,DTOL.
C & BTOL,MAXIT NINIT,XLC,YLC,LDY2,NINIT ,NFLC,XLC,YLC,LDY2)
DO 1371 J=1,NFLC
C68CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
X3=YLC(3.J)
P2=YLC(6.J)
P4=YLC(8,])
All=C14C242°C3"COS(X3)
Al12=C24+C2*"COS5(X3)
A13=C3"SIN(X3)
A22=C2
DE=A11%A22.A12"A12
GC1(J)=(P2"A22-P4"A12)/DE
GC2(J)=(-P2"A12+P4"A11)/DE
IF(GC1(J).LE.0.0) THEN
UCF1(J)=TIMAX

72

ELSE
UCF1(J)=TI1MIN

END IF

IF(GC2(J).LE.0.0) THEN
UCF2(J)=T2MAX

ELSE
UCF2(J)=T2MIN
END IF
1371 CONTINUE
KK=0

DO 1331 J=1,NFLC-1

IF(GC1(J+1)"GC1(J).LT.0.0) THEN
KK=KK+1

KS(KK)=J
XSW(KK,J11)=XLC(J)(XLC(J+1)-XLC(I))*GCUI)/(GC1(I+1)-GC1(I))
DO 1332 J2=1 NEQNS2
YSW(J2,KK)=YLC(J2,J)-(YLC(J2.J+1)-YLC(J2,J))*GC1(J)/

& (GC1(J+1)-GC1(J))
1332 CONTINUE
END IF
IF(GC2(J+1)"GC2(J).LT.0.0) THEN
KK=KK+1
KS(KK)=J

XSW(KK,J11)}=XLC(J)-(XLC(J+1)-XLC(J))*GC2(J)/(GC2(I+1)-GC2(I))
DO J2=1,NEQNS2
YSW(J2,KK)=YLC(J2,1)-(YLC(J2,J+1)-YLC(J2,1))"GC2(J)/
& (GC2(J+1)-GC2(J))
END DO
END IF
1331 CONTINUE

1340 CONTINUE

WRITE(3,1003) J11

WRITE(19,1006) J11

DO 134 [=1,NFLC

WRITE(3,9991) XLC(I), (YLC(J2.1).J2=1.,NEQNS) .UCF1(1),UCF2(I)
WRITE(19,9991)XLC(1).( YLC(J2,1),J2=NEQN5+1.NEQNS2),UCF1(1).UCF2(I)

134 CONTINUE

KK=KK+1

KS(KK)=IS

XSW(KK,J11)=X51(J11)
CCCCCB7-9 9 9 9 9 9 9 7
CCCCC67—-FINDING COSTATES FROM XSt TO XT 72
CCCCCE7-9 9 9 9 9 9 9 72

NINIT=IT-.IS
IF(NINIT.EQ.1) NINIT=2
XLEFT=XS1(J11)
XRIGHT=XT(J11)
WRITE(S, (1X,A.E12.4,2X,A.E12.4,4X,A,[4,2X,A,14)')XLFTC=",XLEFT
&,'XRGTC="XRIGHT,'IS="I5."IT=",IT
IF(XRIGHT.LE.XLEFT) THEN
NFUC=1
XUC(NFUC)=XLC(NFLC)
UCF1(NFUC)=UCF1(NFLC)
UCF2(NFUC)=UCF2(NFLC)
DO 1342 J2=1,NEQNS2
YUC(J2,NFUC)=YLC(J2,NFLC)
1342 CONTINUE
GO TO 140
END IF

C DEFINE THE SHOOTING POINTS



DO 138 I=1, NINIT
XUC(I)=XLEFT+4FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YUC(1.1), 1)
138 CONTINUE
KFl=22
C CALL DBVPMS (FCNEQNC,FCNJACB,FCNBCUC,NEQN52,XLEFT,XRIGHT.DTOL,
(o4 & BTOL MAXIT NINIT,XUC,YUC,LDY2 NINIT ,NFUC,XUC.YUC,LDY2)

DO 1381 J=1,NFUC
C6CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE—
X3=YUC(3.J)
P2=YUC(6.J)
P4=YUC(8.J)
Al1=C14C242°C3°COS5(X3)
A12=C2+C3"COS5(X3)
A13=C3°SIN(X3)
A22=C2
DE=Al1"A22-A12%A12
GC1(J)=(P2"A22-P4=A12)/DE
GC2(J)=(-P2*A12+P4*A11)/DE
IF(GC1(J).LE.0.0) THEN
UCF1(J)=TIMAX
ELSE
UCF1(J)=TI1MIN
END IF
IF(GC2(J).LE.0.0) THEN
UCF2(J)=T2MAX
ELSE
UCF2(J)=T2MIN
END IF
1381 CONTINUE
DO 1385 J=2,NFUC-1
IF(GC1(J+1)*GC1(J).LT.0.0) THEN
KK=KK+1
KS(KK)=J
XSW(KK,J11)=XUC(J)-(XUC(J+1)-XUC(N))*GC1(J)/(GC1(J+1)-GC1(J))
DO 1386 J2=1,NEQNS2
YSW(J2,KK)=YUC(J2,J)-(YUC(J2, 341} YUC(J2,1))*GC1(J)/
& (GC1(J+1)-GC1(J))
1386 CONTINUE
END IF
IF(GC2(J+1)*GC2(J).LT.0.0) THEN
KK=KK+!
KS(KK)=J
XSW(KK,J11)=XUC(J)(XUC(J+1)-XUC(J))*GC2A I/ (GC2(J+1)-GC2(J))
DO J2=1,NEQNS2
YSW(J2,KK)=YUC(J2,J)}-(YUC(J2.J+1)-YUC(J2.J))*GC2(J)/
& (GC2(J+1)-GC2(J))
END DO
END IF
1385 CONTINUE

.72

DO 141 I=2,NFUC

I¢=I+1S-1

WRITE(3,9991) XUC(I), (YUC(J2,0),J2=1,NEQNS) ,UCF1(]),UCF2(I)
WRITE(19,9991)XUC(I),(YUC(J2,1),J2=NEQNS+1,NEQNS2},UCF1(I),UCF2(I)

141 CONTINUE

140 CONTINUE

C6CCC67-THIS LINE/LINES SHOULD BE DROPED 72

CCCCCe7-9 9 9 9 ] s 9 72

C DEFINING THE SIGN OF CONTROL FOR THE NEXT ITERATION

CCCCCo7.9 9 9 9 9 ° 9 7

SIGN(1,J11)=UF2(1)

SIGNT(3,J11)=UF2(IS+1)

SIGN(2,J11)=UF2(IS-1)

SIGN(4,J11)=UF2(IT-1)

WR.ITE(3.'(2x.A.EB.Z.SX.A.ES.2.5X.A.EB.2.5X.A.E!.2)')'51='.SIGN(
£1,111),'S1T="SIGNT(1,J11),'S3=",SIGN(3,111),"S3T=",SIGNT(3,J11)

WRITE(3,"(2X.A,E8.2,5X,A,E8.2.5X.A,E8.2,5X.A,E8.2)')’S2=",5IG N(
&2,J11),'S2T=",SIGNT(2,J11),’S4=",SIGN(4,J11),’S4T=",SIGNT(4.J11)

C8CCCeé7-THIS LINE/LINES SHOULD BE DROPED T2
72

C9CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
WRITE(3,'(/3X.A,3X,A,7X,A,16X,A,10X,A,10X A, 10X, A) KK','KS’
+ SXSWI''YSWI''YSW2''YSWI','YSWY¢'
WRITE(19,'(/3X,A.3X.A,7X,A,10X,A,10X,A,10X,A,10X,A )’ )'KK',"KS’
+ JXSWI''YSWI1','YSW2','YSW3','YSW4'
DO 1413 JK=1,KK
WRITE(3,'(215,1P5E14.6)") JK,KS(JK),XSW(JK,J11)
+ (YSW(J2,JK),J2=1,NEQNS)
WRITE(19,'(215,1P5E14.6)") JK,KS(JK),XSW(JK,J11)
+ J(YSW(J2,JK),J2=NEQNS5+1,NEQNS?2)
1413 CONTINUE

CCCCC67T—INTEGRATING BOTH STATES & CO AT THE END OF EACH ITERATION.T2

196



CCCCC67-USING THE SOLUTION OF COSTS AS INITIAL CONDITION FOR YC(X(0))-7
DO 1491 J3=1,NEQNS
JA4=NEQNS5+J3
C YSCB(J3,J11)=YSCL(J3,J11)
C YSCB(J4,J11)=YSCL(J4,J1141)
1491 CONTINUE
XLEFT=XLEND
XRIGHT=XT(J11)
WRITE(S.'(5X,A,E15.6,5X,A,E15.6/)')’XLFTB='XLEFT,’XRGTB="XRIGHT
NINIT=IT-1

C DEFINE THE SHOOTING POINTS

DO 151 I=1, NINIT
XB(I)=XLEFT<+FLOAT(I-1)/FLOAT(NINIT-1)*(XRIGHT-XLEFT)
CALL SSET (NEQNS2, 0.0, YB(1,]), 1)

151 CONTINUE

KFJ=12

C CALL DBVPMS (FCNEQNC,FCNJACB,FCNBCB,NEQNS2 XLEFT,XRIGHT.DTOL.

[of & BTOL,MAXITNINIT.XB.YB,LDY2.NINIT ,NFB.XB,YB,LDY2)

CCCCC67—CALCULATING THE HAMILTONIAN s

CCCCC87—PRINTING THE FINAL RESULTS OF EACH ITERATION————— 72

WRITE(1,'(/1X,A)") ,

WRITE(1,/(11X,A,14X.A,14X,A,14X,A)'),’YSCB1’,'YSCB2",'YSCB3*
&,'YSCB4’

C WRITE(1,"(1P4E19.11/)') (YSCB(J2.J11),J2=1,.NEQNS)

WRITE(20,"(11X,A,14X,A,14X,A.14X.A)'),' YSCBS',"YSCB6','YSCB 7’
&,'YSCBS*

C WRITE(20,'(1P4E19.11/)") (YSCB(J2,J11),J2=NEQNS+1,NEQNS2)

WRITE(1,1005) J11

WRITE(20,1008) J11

DO 153 J=1,NFB
C1CCC87-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE

X1=YB(1,J)

X2=YB(2,J)

X3=YB(3.J)

X4=YB(4.J)

P1=YB(5,J)

P2=YB(6,J)

P3=YB(7.J)

P4=YB(8,])

Al1=C14+C242%C3"COS5(X3)

A12=C24C3"COS5(X3)

A13=C3"SIN(X3)

A22=C2

Al4 = C4"COS5(X1)+Cs5"COS(X1+X3)
A24 = CS"COS(X1+4X3)

DE=A11"A22-A12"A12

GC1(J)=(P2"A22.P4®A12)/DE

GC2(J)=(-P2*A124+P4"A11)/DE

IF(GC1(J).LE.0.0) THEN

UF1(J)=TIMAX

ELSE

UF1(J)=TI1MIN
END IF
IF(GC2(J).LE.0.0) THEN
UF2(J)=T2MAX
ELSE
UF2(J)=T2MIN
END IF
T1=UF1(J)
T2=UF2(J)

H(J. J11)=
&1+P1°X2+P3°X4+P2/DE"(-GR*(A22"A14-A12%A24)+ A22°T1-A12°T2+A13%(A12"
+X27%24+ A22%(2°X2"X4+X4""2)))+P4/DE®(GR"(A12°A14-A11"A24)-A12°T1+ A1l
+°T2-A13%(A11"X2°"24 A 12%(2°X2"X 4+ X 4%22)))

WRITE(1,1007) XB(J),(YB(J1,),J1=1,NEQNS),UF1(J),UF2(J),H(J,J11)

WRITE(20,1007) XB(J).(YB(J1.J),J1=NEQNS+1 ,NEQNS2),UF1(J),UF2(J)

& H(J.J11)

153 CONTINUE

KKB=0

DO 1531 J=1,NFB-.1

IF(GC1(J+1)*GC1(J).LT.0.0) THEN
KKB=KKB+1
KSB(KKB)=J
XBS(KKB,J11)=XB(J)-(XB(J+1)-XB(J))*GC1(I)/(GC1(I+1)}GC1(J})
DO 1532 J2=1,NEQNSs2

YBS(J2,KKB)=YB(J2,J)-(YB(J2,J+1)-YB(J2,IJ)*°GC1(I)/(GC1(I+1)
& -GC1(J))

1532 CONTINUE

END IF

IF(GC2(J+1)"GC2(J).LT.0.0) THEN
KKB=KKB+1
KSB(KKB)=J
XBS(KKB,J11)=XB(J)-(XB(J+1)-XB(J))*GC2(JI)/(GC2(I+1)-GC2( 1))
DO J2=1,NEQNS2

72
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YBS(J2,KKB)=YB(J2.J)-(YB(J2,J+1)-YB(J2,J))*GC2(J)}/(GC2(J+1)
& -GC2(J))
END DO
END IF
1531 CONTINUE

T2

C5CCC67-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE—
WRITE(1,"(/3X,A.3X,A,7X,A,10X,A,10X,A . 10X.A,10X,A)°)
+ 'KKB''KSB','XBS',’YBS1','YBS2',"YBS3',"YBS4’
WRITE(20,"(/3X,A,3X,A,7X,A,10X,A,10X,A,10X,A,10X,A)")
+ 'KKB''KSB','’XBS','YBSs','YBS6’,'YBST',"YBS8"
DO 1533 JK=1,KKB
WRITE(1,'(215.1P5E14.6)") JK,KSB(JK),XBS(JK,J11)
+ (YBS(J2,JK),J2=1,NEQNS)
WRITE(20,"(215,1P5E14.6)') JK,KSB(JK),XBS(JK.J11)
(YBS(J2,JK),J2=NEQN5+1,NEQNS2)
1533 CONTINUE
WRITE(1,'(/A.3X,A,9X,A,14X,A,14X,A,14X,A)')" IS''IT*,'XS2',’XS1’
*,'XS3','XT’
WRITE(1,'(215,1P4E17.9/)")IS,IT,XS2(J11),XS1(J11),XS3(J11),XT(J11)
CCCCC87—CHEKING THE CONVERGENCE CRITERIA -72
EBS=0.0
DO 157 JK=1,KK
XSW(JK,0)=0.0
EBS= (XSW(JK.J11)}-XSW(JK,J11-1))**24+EBS
157 CONTINUE
XT(0)=0.0
EBS=(XT(J11}XT(J11-1))"*24EBS
EBS=SQRT(EBS/(KK+1))
WRITE(8,1002) J11,(XSW(JK.J11).JK=1,KK)
WRITE(8.1012) XS1(J11),XT(J11).EBS
WRITE(8,") * ’

C3CCC67-THIS LINE/LINES SHOULD BE DROPED 72

EBS0=SQRT(((XS1(J11)-XS1(J11-1))**24(XSF(2,J11)-XSF(2.J11))*
&=24(XSF(3,J11)-XSF(3,J11))**24(XT(J11)-XT(J11-1))*=2)/4)
WRITE(16,1001) J11,XSF(2.J11),XS1(J11),XSF(3,J11),XT(J11),EBS0

C3CCCe87-THIS LINE/LINES SHOULD BE DROPED 72

IF(EBS.LT.DTOL) THEN
WRITE(8."(10X,A/5X.A.4X,A4X A 4X,A,4X,A)") '=sn=sses

&*FINAL RESULTS******> 'ITR’,'XSW1','XSW2''XSW3' 'XSW4’
WRITE(8,"(50X,A,10X,A,9X.A/)') ‘XS1','XT' 'EBS"

WRITE(8,1002) J11,{XSW(JK.J11),JK=1,KK)

WRITE(8,1012) X51(J11),XT(J11),EBS

WRITE(8,") * :
GOTO 10000

END IF

-~
(=]

C3CCC687-THIS LINE/LINES SHOULD BE DROPED

IF(EBS0.LT.DTOL) THEN

WRITE(16,'(10X,A/6X,A,10X,A,10X,A,10X,A,9X,A,10X,A)") 'e=nmesss
L*FINAL RESULTS®===®=*seses: \[TR’ *TS2",'TS1','TS3","TF','"EBSO’
WRITE(16,1001) J11,XSF(2,J11),XS1(J11),XSF(3,J11),XT(J11),EBSO

GOTO 10000
END IF
C3CCC67-THIS LINE/LINES SHOULD BE DROPED T2

CCCCC67-END OF THE ITERATION LOOP 72
145 CONTINUE

WRITE(1,"(10X,A)’) "THE PROGRAM DID NOT CONVERGE.'
WRITE(3,’(10X.A)") "THE PROGRAM DID NOT CONVERGE.’
WRITE(8,'(10X,A)’) "THE PROGRAM DID NOT CONVERGE.’
WRITE(15,’(10X,A)") 'THE PROGRAM DID NOT CONVERGE.*
WRITE(18,’(10X,A)’) 'THE PROGRAM DID NOT CONVERGE.'
WRITE(19,’(10X,A)’) 'THE PROGRAM DID NOT CONVERGE.’
WRITE(20,'(10X,A)’) 'THE PROGRAM DID NOT CONVERGE."

CCCCCs87-9 9 9 9 9 9 9 72
CCCCC67-FORMATS 72
CcCcCcCcCer-9 g 9 9 9 72

9 9 T2

C27CC87-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
973 FORMAT(216,4E16.6)
9730 FORMAT(216,5E13.4)
9731 FORMAT(4X,'IS" 4X,'IT"

& ,9X,'XS1',14X,’XT",12X,'"EBFI',12X,'EBIS")
9732 FORMATUX,'IST'.3X,'ITT'

& 9X,'X52°,9X,'X51T",8X,'XS3TT",10X,’XTT',10X,'EBF")
9733 FORMAT(1X,'IST".1X,'ITT",1X,"X51",6X,'X52",6X,'XT".7X

& 'E1',7X,'E2',7X,’"E3",7X,'E4",7X,'EB")
9734 FORMAT(214,8E9.1)
9735 FORMAT(5X,"WF1.1',10X,"WF2.1',10X,"WF3.1",106X,"WF4.1")
9736 FORMAT(5X,'WF1.2°,10X,"WF2.2',10X,"WF3.2",10X,"WF4.2'")
9737 FORMAT(1X,'IST".3X,'ITT",10X,'XS1",10X,'X512',9X,"XTT",10X,’EBF")
999 FORMAT(F10.4,1P5E14.5)
9992 FORMAT(F8.4,1P6E12.4)
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1001  FORMAT(I10,5E13.5/' ———-*)
1002 FORMAT(I8,9F8.4)
9991 FORMAT(FS8.4,1P6E12.3)
1003 FORMAT(/,30X,"STATES .10X,'ITR=",15,//.6X,"T".
& 6X,’X1=PH1',5X,'X2=DPH1',6X,'’X3=PH2'.5X.’X4=DPH2',9X,'UC1’
& 9X.,'UC2'/)
1006 FORMAT(/,30X,"COSTATES",10X,'ITR=",15.//.6X.'T",
& 7X,'P1°X1',7X,'P2°X2',7X,'P3°X3',7X,'P4~X4'.9X,'UC1"
& 9X,'UC2'/)
1004 FORMAT(/,30X,"COSTATES",10X,'ITR=",15.//.4X.'T",
& 8X,X1=Y',7X.'X2=Y",7X.'P1°X1',7X,"P2"X2",9X.'UC2",10X,'UC"/)
1005 FORMAT(16X,'STATES",22X. ITR=",12//5X."T",
& 3X,'X1=PH1'4X,'X2=DPH1"’,5X,'X3=PH2'.4X,'X4=DPH2".6X,'UF1’
& ,6X,'UF2',10X,'H’/)
1008 FORMAT(16X,"COSTATES".22X,"ITR="12//5X.'T",
& 4X,'P1°X1°,6X.'P2°X2',6X,'P3°X3',6X,’P4-X4',6X,'UF1"
& ,6X,'UF2'.10X,'H’/[)
1007 FORMAT(F7.4,4E11.3,2F9.4,E11.3)
1012 FORMAT(42X,1P3E12.4)

10000 CONTINUE

END

CCCCCs7-9 9 9 9 9 9 9 72
CCCCC87-END OF MAIN PROGRAM 72
CCCCCe7-9 9. 9 72

CCCCCe7 9 9 9 9. 9 72

CCCCC&’I—SUBPROGRAM FOR DEF[NING :TATE: & COSTATES EQUATIONS AT LEFT-72
CCCCCe7-9 2
SUBROUTINE FCNEQNL(NEQNSZ X.Y,pP DYDX)
INTEGER NEQNS2
DOUBLE PRECISION X,Y(NEQNS2),P.DYDX(NEQNS2)
C—87—COMMON PARAMETERS 72
INTEGER J11.KFJ NSW,IEQ,IBC,IJB
DIMENSION KSW(10)
DOUBLE PRECISION
+YBCL(8),YBCR(8),X51(20),X52(20),XS3(20),SIGN(8,20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20), UFW(10,2)
+.C1,C2,C3,C4,C5,GR, TIMIN, TIMAX, T2MIN, T2MAX,SIGM1
COMMON /PARAM/ YBCL,YBCR,XS1,XS2,XS3,5IGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4.C5,.GR
+. TIMIN, TIMAX,T2MIN, T2MAX,SIGM1,KSW,J11, KFJ NSW, IEQ IBC,IJB
C—67—COMMON PARAMETERS

DOUBLE PRECISION X1,X2,X3,X4,P1,P2,P3,P4,T1,T2,A11,A12,A13,A22
&,DE,G1,G2,G

DOUBLE PRECISION SIN,COS,SQRT

INTRINSIC SIN,COS,SQRT

C DEFINE PDE

G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
P1 = Y(5)
P2 = Y(8)
P3 = Y(7)
P4 = Y(8)

Al11=C1+4+C2+4P*2*C3°COS(X3)
A12=C24P*C3"COS(X3)
A13=P"C3*SIN(X3)
A22=C2
DE=A11"A22-A12"A12
IF(J11.EQ.2) THEN
IEQ=IEQ+1
MIF=MOD(IEQ,100000)
IF(ABS(DE).LE.10.0E-10) THEN
WRITE(27,'(/3110,A)') J11,IEQ,MIF,” WARNING DEY’
WRITE(27,"(5E15.6)’) X.(Y(J2),J2=1,NEQNS2/2)
WRITE(27,"(5E15.6)') X,(Y(J2),J2=NEQNS52/2+1.NEQNS2)
END IF
DO J=1,NEQNS2
IF(ABS(Y(J)).LT.10.0E-20.AND.ABS(Y(J)).NE.0.0) THEN
WRITE(27,'(/3110,A)") J11,IEQ,MIF,” WARNING Y’
WRITE(27,"(5E15.6)°) X,(Y(J2),J2=1,NEQNS2/2)
WRITE(27,'(SE15.6)') X.(Y(J2),J2=NEQNS2/24+1.NEQNS2)
GO TO 11
ELSE IF(ABS(Y(J)).GT.10.0E+20) THEN
WRITE(27./(/3110,A)") J11,IEQ,MIF,” WARNING Y'
WRITE(27,"(5E15.6)') X,(Y(J2),J2=1,NEQNS2/2)
WRITE(27,"(5E15.6)') X.(Y(J2),J2=NEQN52/2+1,NEQNS2)
GO TO 11
END IF
END DO
11 CONTINUE
END IF
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G1=(P2"A22-P4=A12)/DE
G2=(-P2*A12+P4"A11)/DE
IF(G1.LT.0.0) THEN
T1=TIMAX
ELSE
T1=TIMIN
END IF
IF(G2.LT.0.0) THEN
T2=T2MAX
ELSE
T2=T2MIN
END IF
IF(J11.EQ.1) THEN
IF(KFJ.EQ.10) THEN
IF(ABS(XS52(J11)).LE.SIGM1) THEN
T2=SIGN(2,J11)
ELSE IF(ABS(XS2(J11)).GT.SIGM1) THEN
IF(X.LE.XS2(J11)) THEN
T2=S5IGN(2,J11)
ELSE
T2=-SIGN(2,J11)
END IF
END IF
T1=SIGN(1,J11)
END IF
IF(KFJ.EQ.11) THEN
IF(XS1(J11).NE.0.0) THEN
IF(X.LE.XS1(J11)} THEN
T1=SIGN(1,J11)
ELSE
T1=S5IGN(3,J11)
END IF
ELSE
T1=SIGN(1,J11)
END IF
IF(ABS(X52(J11)).LE.SIGM1) THEN
T2=SIGN(2.J11)
ELSE IF(ABS(XS2(J11)).GT.SIGM1) THEN
IF(X.LE.X52(J11)) THEN
T2=SIGN(2,J11)
ELSE
T2=-5IGN(2,J11)
END IF
END IF
END IF

IF(KFJ.EQ.31.0R.KFJ.EQ.30) THEN
T1=UFW(1,1)
T2=UFW(1.2)
END IF
IF(KFJ.EQ.32) THEN
T1=UFW(2.1)
T2=UFW(2,2)
END IF
IF(KFJ.EQ.33) THEN
T1=UFW(NSW.1)
T2=UFW(NSW,2)
END IF
END IF
DYDX(1)=X2
DYDX(2)=
+P/(C1%C2.C3""2"COS(X3)**2)*(- G*(C2*(C4*COS(X1)+C5*COS(X1+X3))-(C2+
+C3°COS(X3))"CS"COS(X1+X3))+C2°T1-(C24CI"COS(X3))*T2+C3*SIN(X3)"((C
+24C3"COS(X3))*X2*"24C2%(2"X2*X 4+ X4°"2)))
DYDX(3)=X+4
DYDX(4)=
+P/(C17C2.C3"*22COS(X3)*"2)*(G*((C2+CI*COS(X3))*(C4"COS(X1)+C5*COS(
+X14X3))-(C14C2+42°C3*COS5(X3))*C5*COS(X1+X3))-(C24+C3I"COS(X3))"T1+(C1
++C242"C3*COS5(X3))*T2-C3*SIN(X3)*((C1+C242°CI*COS(X3))*X2"24(C2+C3
+2COS5(X3))*(2°X2"X4+X4""2)))

DYDX(5)=
+-P*(-P2/(C1°C2-C3**2*COS(X3)**2)*G*(C2°(-C4*SIN(X1)-C5*SIN(X 1+ X3))
+4(C2+C3°COS(X3))"CS*SIN(X14+X3))+P4/(C1°C2-C3**2*COS(X3)""2)*G=((C2
+4+C3"COS(X3))*(-C4*SIN(X1)-C5*SIN(X1+X3))4+(C1+C2+2"C3*COS5(X3))*CS"S
+IN(X14X3)))

DYDX(6)=
+-P*(P14P2/(C1"C2-C3**2*COS(X3)*"2)*C3"SIN(X3)*(2°(C2+C3"COS(X3))*X
+242%C2"X4)-P4/(C1°C2-C3"*2°COS5(X3)""2}* CI*SIN(X3)"(2%(C1+C2+2°C3"C
+085(X3))*X2+42°(C2+C3°COS(X3))*X4))

DYDX(7)=
+-P*(-2°P2/(C1*C2-C3°*2"COS(X3)**2)**2%(.G*(C2*(C4*COS(X1)+C5~COS(X
+14X3))-(C24+C3°COS(X3))*C5*COS(X14X3))+C2"T1-(C2+CI*COS(X3))"T2+C3"
+SIN(X3)"((C2+C3*COS(X3))*X2""2+4+C2°(2°X2°X 4+ X4"2)))*C3°*2°COS5(X3)"
+SIN(X3)4P2/(C1"C2-C3**2*COS(X3)**2)*(-G*(-C2"C5"SIN(X 14X 3)+C3=SIN(

+X3)*Cs*COS(X14X3)4(C2+C3"COS(X3))"C5"SIN(X14X3))+CI*SIN(X3)"T24C2"

+COS5(X3)"((C24C3°COS(X3))"X2"*24C2"(2"X2"X4+X4""2)).C3""2*SIN(X3)*"
+2%X2%%2)-2"P4/(C17C2-C3""2"COS5(X3)*"2)**2*(G"((C2+ CI*CO5(X3))*(C4"
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+COS(X1)+C5"COS(X1+X3))-(C14+C242*CI*COS(X3))*C5°COS(X1+X3))-(C24+Ca"
+COS(X3))*T1+(C1+C242°C3"COS(X3))*T2-CI*SIN(X3)"(( C14C242°C3*COS(X3
+))"X2°%24(C24C3°COS(X3))"(2°X2"X4+X4%°2)))"C3"=2"COS5(X3)"SIN( X3 )+P
+4/(C1°C2.C3**2"C0O5(X3)*"2)*(G*(-C3*SIN(X3)*(C4*COS(X1)4+C5°"COS(X1+X
+3))-(C2+C3"COS(X3))"C5°SIN(X14+X3)+2"C3I*SIN(X3)*C5*COS(X1+X3 }+(C14C
+242%C3*COS(X3))"CS*SIN(X1+X3))+C3I*SIN(X3)*T1-2°C3*SIN(X3)*T2.C3°CO
+5(X3)"((C1+C242°C3"CO5(X3))"X2°"24(C24+C3*COS(X3 N(2"X2°X 44 X47"2))
+-C3°SIN(X3)*(-2°C3*SIN(X3)"X2°*2.C3I*SIN(X3)*(2*X2*X 44+ X 4""2))))

DYDX(8)=
+-P"(P34P2/(C1°C2.C3*72*CO5(X3)"*2)*C3*SIN(X3)*C2"(2°X2+2"X 4 )-P4/{(C
+1°C2-C3°°2°CO5(X3)°*2)"C3"SIN(X3)*(C2+CI*COS(X3))*(2"X2+2"X4))

Y(1) = X1
Y(2) = X2
Y(3) = X3
. Y(4) = X4
Y(5) = P1
Y(6) = P2
Y(7) = P3
Y(8) = P4

IF(J11.EQ.2) THEN
IF(MIF.EQ.1) THEN
WRITE(27,’(/3110,1E20.6)") J11,IEQ,MIF,DE
WRITE(27,'(9E9.1)") X,(Y(J),J=1,NEQNS2)
WRITE(27,’(9E9.1)') X,(DYDX(J),J=1,NEQNS2)
END IF
IF(ABS(X).LE.10.0E-15) THEN
WRITE(27,’(/3110,1E20.6)') J11,IEQ,MIF,DE
WRITE(27,'(9E9.1)") X,(Y(J),J=1,NEQNS2)
WRITE(27.'(9E9.1)") X,(DYDX(J),J=1,NEQNS2)
END IF
IF(ABS(DE).LE.10.0E-10) THEN
WRITE(27,"(/3110,A)’) J11,IEQ,MIF,” WARNING DEDYDX'
WRITE(27,'(5E15.6)") X,(DYDX(J2),J2=1,NEQNS2/2)
WRITE(27,"(5E15.6)") X,(DYDX(J2),J2=NEQNS2/2+1,NEQNS2)
END IF
DO J=1,NEQNS2
IF(ABS(DYDX(J)).LT 10.0E-20.AND.ABS(DYDX(J)).NE.0.0) THEN
WRITE(27,"(/3110,A)") J11,IEQ,MIF," WARNING DYDX"'
WRITE(27,’(SE15.6)") X,(DYDX(J2),J2=1,NEQN52/2)
WRITE(27,'(5E15.6)') X,(DYDX(J2),J2=NEQNS2/2+1,NEQNS2)
GO TO 12
ELSE IF(ABS(DYDX(J)).GT.10.0E+20) THEN
WRITE(27,"(/3110,A)’) J11,IEQ,MIF," WARNING DYDX’
WRITE(27,"(5E15.6)"') X,(DYDX(J2),J2=1,NEQNS2/2)
WRITE(27,'(5E15.6)') X,(DYDX(J2),J2=NEQNS52/2+1.NEQNS2)
GO TO 12
END IF
END DO
12 CONTINUE
END IF
RETURN
END

CCCCcCe7-9 9 9 9 9 9 9 T2
CCCCC67-SUBPROGRAM FOR DEFINING STATES & COSTATES EQUATIONS AT RIGHT-T2
CCCCCe67-9 9 9 9 9 9 9 72

SUBROUTINE FCNEQNU(NEQNS2,X,Y,P,DYDX)

INTEGER NEQNS2

DOUBLE PRECISION X,Y(NEQNS2),P,DYDX(NEQNS2)

C—67—COMMON PARAMETERS 72
INTEGER J11,KFJ,NSW. IEQ,IBC,IJB

DIMENSION KSW(10)

DOUBLE PRECISION
+YBCL(8),YBCR(8),X51(20),X52(20),XS3(20),SIGN(8,20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.C1,C2,C3,C4,C5,GR, TIMIN, TIMAX,T2MIN,T2MAX,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,XS52,XS3,S5IGN
+,YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5,GR
+.TIMIN, TIMAX,T2MIN,T2MAX,SIGM1,KSW,J11 KFJ ,NSW,IEQ,IBC,1JB

C—67—COMMON PARAMETERS T2

DOUBLE PRECISION X1,X2,X3,X4,P1,P2,P3,P4,T1,T2,A11,A12,A13,A22
&,DE,G1.G2,G

DOUBLE PRECISION SIN,COS,5QRT

INTRINSIC SIN,COS,SQRT

C DEFINE PDE

G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
P1 = Y(5)
P2 = Y(6)
P3 = Y(7)
P4 = Y(8)
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Al1=Cl1+C24+P*2*C3*CO35(X3)
A12=C24P=C3"COS5(X3)
A13=P*"C3"SIN(X3)
A22=C2
DE=AI1"A22-A12"A12
IF(J11.EQ.2) THEN
IBC=IBC+1
MIF=MOD(IBC,100000)
IF(ABS(DE).LE.10.0E-10) THEN
WRITE(28,'(/3110,A)") J11,IBC,MIF,” WARNING DEY’
WRITE(28,"(5E15.6)") X.(Y(J2),J2=1,NEQNS2/2)
WRITE(28,(5E15.6)") X,(Y(J2),J2=NEQNS2/241,NEQNS2)
END IF
DO J=1,NEQNS2
IF(ABS(Y(J)).LT.10.0E-20.AND.ABS(Y(J)).NE.0.0) THEN
WRITE(28,"(/3110,A)") J11,IBC,MIF,' WARNING Y’
WRITE(28,'(5E15.6)') X,(Y(J2),J2=1,NEQNS2/2)
WRITE(28,'(5E15.6)") X,(Y(J2),J2=NEQNS2/2+41,NEQNS2)
GO TO 11
ELSE IF(ABS(Y(J)).GT.10.0E+20) THEN
WRITE(28,'(/3110,A)") J11,IBC MIF,"” WARNING Y’
WRITE(28,"(5E15.6)°) X (Y(J2),J2=1 NEQNS2/2)
WRITE(28,'(5E15.6)") X,(Y(J2),J2=NEQNS2/2+1.NEQNS2)
GO TO 11
END IF
END DO
11 CONTINUE
END IF
G1=(P2"A22-P4"A12)/DE
G2=(-P2"A12+P4"A11)/DE
IF(G1.LT.0.0) THEN
Ti=TIMAX

IF(G2.LT.0.0) THEN
T2=T2MAX

END IF
IF(J11.EQ.1) THEN
IF(KFJ.EQ.20.0R.KFJ.EQ.21) THEN
IF(ABS(XS3(J11)).LE.SIGM1) THEN
T2=SIGN(4,J11)
ELSE IF(ABS(X33(J11)).GT.SIGM1) THEN
IF(X.LE.XS3(J11)) THEN
T2=-SIGN(4,J11)
ELSE
T2=SIGN(4.J11)
END IF
END IF
T1=SIGN(3.J11)
END IF
END IF
DYDX(1)=X2
DYDX(2)=
+P/(C1=C2.C3"*2°COS(X3)"*2)*(- G*(C2*(CA"COS(X1}4+C5*COS(X1+X3))-(C2+
+C3*COS(X3))"C5"COS(X14X3))4+C2*T1-(C2+CI*COS(X3))*T2+C3I"SIN(X3)*((C
+24C3"COS(X3))"X2%%2+C2%(2°X2*X 4+ X47"2)))
DYDX(3)=X4
DYDX(4)=
+P/(C1°C2-C3""2°COS(X3)""2)*(G*((C2+C3*COS(X3))*(C4="COS(X1)+C5*COS(
+X14X3))-(C1+C2+2"C3*COS(X3))*C5*COS(X1+X3))}(C2+CI*COS(X3))*T1+(C1
+4C2+2°C3°COS(X3))"T2-C3*SIN(X3)*((C14C2+2°CI*COS(X3})"X2**24(C2+C3
+=COS(X3))*(2°X2*X4+X4"*2)))

DYDX(5)=
+-P=(-P2/(C1=C2-C3°"2*COS5(X3)**2)*G*(C2*(-C4"SIN(X1)-C5*SIN(X1+X3))
++4(C2+4C3*COS(X3))*CS"SIN(X1+X3))+P4/(C1*C2-C3**2"COS(X3)"*2)*G=((C2
+4C3*COS(X3))"(-C4=SIN(X1)-CS*SIN(X1+X3))4+(C1+C2+42°C3"COS5(X3))*C5"S
+IN(X14+X3)))

DYDX(6)=
+-P*(P14P2/(C1"C2-C3"*2"COS(X3)*=2)=C3*SIN(X3)"(2°(C2+C3"COS(X3))*X
+2+2%C2°X4)-P4/(C1%C2-C3**2°COS(X3)""2)* CI*SIN(X3)"(2°(C14+C2+2°C3*C
+0S(X3))"X2+2°(C24+C3I"COS(X3))*X4))

DYDX(7)=
+-P*(-2°P2/(C1°C2-C3"=2=COS(X3)"*2)**2%(.G*(C2*(C4*COS(X1)+C5°COS(X
+1+4X3))-(C2+CI*COS(X3))*C5*COS(X14X3))+C2*T1.{C24+CI"COS(X3))*T2+C3"
+SIN(X3)*((C2+C3°COS(X3))"X2"*24 C2%(2*X2° X4+ X4°2)))"C3="2°COS(X3}*
+SIN(X3)+P2/(C1°C2-C3"*2*COS(X3)**2)*(-G*(-C2*C5*SIN(X 14+ X 3)+C3"SIN(
+X3)"C5*COS(X1+X3)4(C2+C3*COS(X3))"C5*SIN(X1+X3))+CI=SIN(X3)*T2+C3*
+COS(X3)"((C24C3*COS(X3))"X2°*24+C2%(2°X 2" X4+ X 4°°2))-C3**2*SIN(X3)**
+2°X2%92)-2"P4/(C1°C2.C3**2*COS(X3)**2)**2°(G*{{C2+ C3*COS(X3))*(Cs*
+COS(X1)+CS"COS(X1+X3))-(C14+C2+2°C3*COS5(X3))*C5*COS(X1+X3))-(C24Ca"
+COS(X3))*T1+(C1+C2+2*C3*COS(X3))"T2-C3"SIN(X3)"((C1+C2+42°C3I*COS(X3
+))"X27"24(C2+C3"COS(X3))"(2°X2"X 4+ X47*2)))=C3°*2*COS5(X3)"SIN(X3)+ P
+4/(C1°C2-C3""2°COS(X3)"*2)*(G*(-CI*SIN(X3)"(C4"COS(X1)+C5*COS(X14+X
+3))-(C2+C3*COS(X3))"C5"SIN(X14X3)+2°CI"SIN(X3)"C5°COS(X1+X3}4(C1+C



+2+42°C3*COS(X3))"C5"SIN(X1+X3))+C3"SIN(X3)"T1.2*C3"SIN(X3)*T2-C3*CO
+S5(X3)"((C1+C2+4+2°C3°COS5(XI))*X2""24(C2+CI"COS(X3))"(2"X2*X 4+ X4"*2))
+-C3*SIN(X3)"(-2°C3"SIN(X3)*X2"*2.C3"SIN(X3)*(2"X2"X 4+ X 4°"2))))
DYDX(8)=
+-P*(P3+4+P2/(C1°C2-C3"*2°COS(X3)""2)"CI*SIN(X3)*C2°(2°X2+2"X4)-P4/(C
+1°C2.-C3"*2°COS5(X3)**2)*C3I*SIN(X3)*(C2+CI"COS(X3))*(2"X2+2"X4))

¥Y(1) = X1
Y(2) = X2
Y{(3) =

Y(4) = X4
Y(5) = P1
Y(6) = P2
Y(7) = P3
Y(8) = P4

IF(J11.EQ.2) THEN
IF(MIF.EQ.1) THEN
WRITE(28,'(/3110,1E20.6)"') J11,IBC,MIF,DE
WRITE(28,(9E9.1)'} X.(Y(J),J=1,NEQNS2)
WRITE(28,'(9E9.1)") X,(DYDX(J),J=1,NEQNS2)
END IF
IF(ABS(X).LE.10.0E-15) THEN
WRITE(28,'(/3110,1E20.6)") J11,IBC,MIF,DE
WRITE(28,’(9E9.1)’) X,(Y(J),J=1,NEQNS2)
WRITE(28,'(9E9.1)') X,(DYDX(J),J=1,NEQNS2)
END IF
IF(ABS(DE).LE.10.0E-10) THEN
WRITE(28,'(/3110,A)") J11,IBC,MIF,” WARNING DEDYDX’
WRITE(28,"(SE15.6)’) X,(DYDX(J2),J2=1,NEQNS52/2)
WRITE(28,'(5E15.6)') X,(DYDX(J2),J2=NEQNS52/2+41,NEQNS2)
END IF
DO J=1,NEQNS2
IF(ABS(DYDX(J)).LT.10.0E-20.AND. ABS(DYDX(J)) NE.0.0) THEN
WRITE(28,'(/3110,A)") J11,IBC,MIF,” WARNING DYDX’
WRITE(28,'(5E15.6)’) X,(DYDX(J2),J2=1,NEQNS52/2)
WRITE(28,'(5E15.6)") X,(DYDX(J2),J2=NEQNS52/2+1,NEQNS52)
GO TO 12
ELSE IF(ABS(DYDX(J)).GT.10.0E+20) THEN
WRITE(28,'(/3110,A)") J11,IBC,MIF,” WARNING DYDX"’
WRITE(28,’(5E15.6)’) X,(DYDX(J2),J2=1,NEQNS52/2)
WRITE(28,'(5E15.6)’) X,(DYDX(J2),J2=NEQNS2/2+1,NEQNS2)
GO TO 12
END IF
END DO
12 CONTINUE
END IF
RETURN
END

CCCCCe7-9 9 9 9 72

CCCCCGT—:UBPROGRAM FOR DEFINING STS & COSTS EQUS AFTER FINDING X51—72
CCCCCs7-9 9

SUBROUTINE FCNEQNC(NBQNSZ X Y.P, DYDX)

INTEGER NEQNS2

DOUBLE PRECISION X,Y(NEQNS2),P,.DYDX(NEQNS52)

C—87—COMMON PARAMETERS 72
INTEGER J11,KFJ NSW.IEQ,IBC,IJB

DIMENSION KSW(10)

DOUBLE PRECISION
+YBCL(8),YBCR(8),X51(20).X52(20),XS3(20),5IGN(8,20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.C1,C2,C3,C4,.C5,.GR, TIMIN. TIMAX,T2MIN,T2MAX,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,X52,XS3,SIGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5,GR
+.TIMIN, TIMAX, T2MIN, T2MAX,SIGM1,KSW,J11,KFJ,NSW IEQ,IBC,IJB

C—-67—COMMON PARAMETERS 72

DOUBLE PRECISION X1,X2,X3,X4,P1,P2,P3,P4,T1,T2,A11,A12,A13,A22
&,DE.G1,G2,.G

DOUBLE PRECISION SIN,COS,SQRT

INTRINSIC SIN,COS,SQRT

C DEFINE PDE

G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
Pl = Y(5)
P2 = Y(6)
P3 = Y(7)
P4 = Y(8)

Al1=C14C24P*2*°C3"CO5(X3)
A12=C24P*C3"COS(X3)
Al13=P*C3"SIN(X3)
A22=C2
DE=A11"A22-A12"A12
C9CCC87-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE. 72

203



cCcCcccer-9 9 9 9 ;
SUBROUTINE FCNBCSL (NEQNS2, YLEFT. YRIGHT, P, F)

INTEGER NEQNS2

DOUBLE PRECISION YLEFT(NEQNS2),YRIGHT(NEQNS2),P.F(NEQNS2)
C—67—COMMON PARAMETERS 72

G1=(P2"A22-P4"A12)/DE
G2=(-P2®A12+P4"A11)/DE
IF(G1.LT.0.0) THEN
T1=TIMAX
ELSE
T1=TIiIMIN
END IF
IF(G2.LT.0.0) THEN
T2=T2MAX
ELSE
T2=T2MIN
END IF

DYDX(1)=X2
DYDX(2)=

+P/(C1%C2.C3""2"COS5(X3)""2)"(-G"(C2*(C4*COS(X1)4+C5*COS(X14+X3))}-(C2+
+C3"COS5(X3))*C5"COS5(X1+4+X3))+C2°T1-(C2+CI*COS(X3))"T2+C3*SIN(X3)*((C
+24C3"COS(X3))"X2°°2+C2%(2°X2"X 44+ X4""2)))

DYDX(3)=X4
DYDX(4)=

+P/(C1%C2.C3**2"COS(X3)**2)*(G*((C2+C3"COS(X3))*(C4"COS(X1)+C5*COS(
+X14X3))-(C14+C242%C3"COS(X3))*C5"COS(X14X3))-(C24+C3I*COS(X3))*T1+(C1
++4+C242%C3°COS(X3))*T2-C3*SIN(X3)*((C1+C2+2"C3"COS(X3))*X2""24(C2+C3
+°COS(X3))*(2"X2*"X4+X4""2)))

DYDX(5)=
+-P*(-P2/(C1°C2-C3""2°COS(X3)**2)"G"(C2"(-C4"SIN(X1)-C5*SIN(X1+X3))
+4(C24C3"COS(X3))*CS"SIN(X1+X3))+P4/(C1=C2.C3I="=2"COS(X3)*"2)*G~((C2
++C3%COS(X3))*(-C4"SIN(X1)-C5*SIN(X14X3))+(C1+C242"C3*COS5(X3})*C5°S
+IN(X1+X3)))

DYDX(6)=
+-P*(P1+P2/(C1°C2-C3*%2°COS(X3)**2)*C3"SIN(X3)*(2*(C2+C3"COS(X3))*X
+242%C2"X4)-P4/(C1°C2-C3="2°COS(X3)"*2)"C3"SIN(X3)*(2*(C1+C2+42°C3°C
+08(X3))"X242%(C2+C3"COS5(X3))*X4))

DYDX(7)=
+-P*(-2"P2/(C1°C2-C3*"2"COS(X3)**2)"*2*(.G"(C2"(C4"COS(X1)+C5°COS(X
+1+4+X3))}-(C24C3I*COS(X3))*"C5*COS(X1+X3))4+C2"T1-(C24+C3I*"COS(X3))*T24C3"
+SIN(X3)*((C2+C3"COS(X3))°X2""2+C2°(2"X2" X4+ X47%2)))"C3**2*COS5(X3)*
+SIN(X3)+P2/(C1"C2-C3°"2°COS(X3)*"2)"(-G*(-C2*C5"SIN(X14+X3)+CI"SIN(
+X3)"C5°COS(X1+X3)+(C2+C3*COS(X3))*CS*SIN(X1+4X3))+C3*SIN(X3)*T24C3"
+COS(X3)*((C24+C3"COS(X3))*X2*=24+C2%(2"X 2" X4+ X 4%"2))-C3""2"SIN(X3)""
+27X2%%2).2%P4/(C1°C2.C3*"2*COS(X3)""2)""2*(G*((C2+ C3*COS(X3))"(C4"
+COS5(X1)4C5*COS(X1+4X3))-(C14+C242*C3"COS(X3))"C5"COS(X1+X3))(C2+C3"
+COS(X3))"T14(C1+C2+2"C3*COS5(X3))*T2-CI*SIN(X3)*((C1+C2+2°C3"COS5(X3
+))"X2"%24(C24+C3"COS5(X3))*(2*X2" X4+ X4""2)))"C3""2*COS(X3)"SIN(X3)+P
+4/(C1°C2-CA""2*COS5(X3)*"2)*(G"(-C3I="SIN(X3)*(C4*COS(X1)+C5"CO5(X1+X
+3)}(C24C3"°COS5(X3))*CS*SIN(X14+X3)4+2"C3"SIN(X3)"C5"COS(X1+X3}4+(C1+C
+242"C3*COS(X3))"CS*SIN(X1+X3))+C3"SIN(X3)*T1.2*"C3*SIN(X3)"T2-C3*CO
+5(X3)%((C1+C242"C3*COS(X3))*X2""24(C2+4+C3"COS(X3))"(2"X2"X4+X4*"2))
+-C3"SIN(X3)"(-2"C3"SIN(X3)*X2°"2-C3"SIN(X3)"(2*X2" X4 +X4°"2)})}

DYDX(8)=
+-P*(P3+P2/(C1°C2-C3%%2°COS(X3)*=2)"C3*SIN(X3)*C2"(2"X2+2"X4)-P4/(C
+1%C2.C3°"2"COS5(X3)**2)"C3°SIN(X3)"(C2+4+C3°"COS(X3))*(2*X24+2"X4))

Y(1) = X1
Y(2) = X2
Y(3) = X3
Y(4) = X4
Y(5) = P2
Y(6) = P2
Y(7) = P3
Y(8) = P4
RETURN
END
oletelolel T X" 9 9 9 9 3 9

9 72
CCCCC67-SUBPROGRAM FOR BOUNDARY CONDITIONS OF LEFT STS & COSTS
9 9 9

9 9 -

INTEGER J11,KFJ,NSW,IEQ,IBC,1JB

DIMENSION K5W(10)
DOUBLE PRECISION

+YBCL(8),YBCR(8),X51(20),X52(20),XS3(20),SIGN(8,20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.,C1,C2,C3.C4,C5,GR, TIMIN, TIMAX, T2MIN, T2MA X ,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,XS2,X53,SIGN

+,YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR
+.TIMIN, TIMAX,T2MIN,T2MAX,SIGM1,KSW J11,KFJ,NSW. IEQ,IBC,1JB

C-—67—COMMON PARAMETERS 72

C DEFINE BOUNDARY CONDITIONS
DO 11 J2=1 NEQNS2
F(J2) = YLEFT(J2)-YSCL(J2.J11)
11 CONTINUE
RETURN
END

204
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CCCCCs7-9 9 9 9 g 9 72

CCCCCS:-SUBPROGRAM POR BOUNDARY CONDITIONS OF RIGHT 5T5 & COSTS——™2

CCCCC67-9 9 72

SUBROUTINE FCNBCSU (NEQNS2 YLEFT YRIGHT, P, F)

INTEGER NEQNS2

DOUBLE PRECISION YLEFT(NEQNS2),YRIGHT(NEQNS2),P F(NEQNS?)

C—87—COMMON PARAMETERS

INTEGER J11,KFJ,NSW IEQ,IBC.IJB

DIMENSION KSW(10)

DOUBLE PRECISION
+YBCL(8),YBCR(8),X51(20),X52(20),X53(20),SIGN(8.20)
+.,YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10.2)
+.C1,C2,C3,C4,C5.GR, TIMIN, TIMAX, T2MIN, T2MAX.SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,X52,X53,SIGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR
+. TIMIN, TIMAX,T2MIN,T2MAX,SIGM1 KSW, J11, KFJ NSW,IEQ.IBC.IJB

C-—67—COMMON PARAMETERS 72

C DEFINE BOUNDARY CONDITIONS
DO 11 J2=1,NEQNS2
F(J2) = YLEFT(J2)-YSCU(J2.J11)
11 CONTINUE
RETURN
END

CCCcCcsr 9 9 9 9 9 72

CCCCCGT-SUBPROGRAM F‘OR BOUNDARY CONDITIONS OF LEFT INTERMEDIATE STS-72

CCCCCs7-9 9 9

SUBROUTINE F‘CVBCLI (NEQNSZ YLEFT YRIGHT, P P)

INTEGER NEQNS2

DOUBLE PRECISION YLEFT(NEQNS2), YRIGHT(NEQNS2), P, F(NBQN=2)

C—67—COMMON PARAMETERS

INTEGER J11,KFJ,NSW.IEQ.IBC,1IB

DIMENSION KSW(10)

DOUBLE PRECISION
+YBCL(8).YBCR(8),XS51(20),X52(20),XS53(20),SIGN(8.20)
+.YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.C1,C2,C3,C4,C5,GR, TIMIN, TIMAX, T2MIN, T2MAX,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,X82,XS2,SIGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR
+ . TIMIN. TIMAX,T2MIN,T2MAX,SIGM1, KSW,J11, KFJ NSW, IEQ IBC.1JB

C—67—COMMON PARAMETERS

C DEFINE BOUNDARY CONDITIONS
DO 11 J2=1,NEQNS2

F(J2) = YLEFT(J2)-YSLB(J2,J11)
11 CONTINUE

RETURN
END

cccccer-s 9 9 9 9 9 72

CCCCCE7-SUBPROGRAM FOR BOUNDARY CONDITIONS OF RIGHT INTERMEDIATE STS-72
CCCCC6T-9 9 o 72

SUBROUTINE FCNBCU! (NEQNS!. YLEFT. YRIGHT, P, F)

INTEGER NEQNS2

DOUBLE PRECISION YLEFT(NEQNS2), YRIGHT(NEQNS2), P, F(NEQNS2)

C—-67—COMMON PARAMETER.

INTEGER J11,KFJ.NSW.IEQ.IBC.,IIB

DIMENSION KSW(10)

DQUBLE PRECISION
+YBCL(8),YBCR(8),X51(20),X52(20),X53(20),SIGN(8,20)
+,YSCL(8.20),YSCU(8,20),YSLB(8,20),YSUB(8,20),UFW(10,2)
+.C1,C2,C3,C4,C5.GR, TIMIN, TIMAX,T2MIN,T2MAX,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS1,X52,X53,SIGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR
+, TIMIN, TIMAX,T2MIN, T2MAX,5IGM1,KSW, J11,KFJ NSW, IEQ IBC.1JB

C—67—COMMON PARAMETERS

C DEFINE BOUNDARY CONDITIONS
DO 11 J2=1,NEQNS2

F(J2) = YLEFT(J2)-YSUB(J2.J11)
11 CONTINUE

RETURN

END

CCCCcCe7-9 9 9 9 9 9 72

CCCCCG?-SUBPROGRAM FOR BOUNDARY CONDITIOV= OF LEFT STS & COSTS——-72
CCCcCccCe7-9 9 72

SUBROUTINE FCNBC(NEQN=2 YLEFT YRIGHT P, F)

INTEGER NEQNS52

DOUBLE PRECISION YLEFT(NEQNS2),YRIGHT(NEQNS2),P,F(NEQNS2)

DOUBLE PRECISION X1.X2,X3,X4,P1,P2,P3,P4,HL HR,GIL,G1R,G2L.G2R
& ,DE,A11,A12,A13,A22,A14,A24,T1,T2

C—-67—-COMMON PARAMETERS 72

INTEGER J11,KFJ,NSW.IEQ,IBC,IJB
DIMENSION KSW(10)
DOUBLE PRECISION

(S
o
(o]



+YBCL(8).YBCR(8),XS1(20),X52(20),X53(20),SIGN(8,20)

+,YSCL(8,20),YSCU(8,20),YSLB(8,20),YSUB(8.20),UFW(10,2)

+.C1,C2,C3,C4,C5,GR, TIMIN, TIMAX,T2MIN, T2MAX.SIGM1
COMMON /PARAM/ YBCL,YBCR,.X51,X52,XS3,5IGN

+,YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3,C4,C5.GR

+ TIMIN, TIMAX,T2MIN, T2MAX, SIGM1,KSW,J11,KFJ,NSW IEQ,IBC.1JB
C-—67—-COMMON PARAMETERS 72

C DEFINE BOUNDARY CONDITIONS
G=GR

IF(KF1.EQ.31.0R.KFJ.EQ.30) THEN
T1=UFW(1,1)
T2=UFW(1,2)

END IF

IF(KFJ.EQ.32) THEN
T1=UFW(2,1)
T2=UFW(2,2)

END IF

IF(KFJ.EQ.33) THEN
T1=UFW(NSW,1)
T2=UFW(NSW,2)

END IF
X1=YLEFT(1)
X2=YLEFT(2)
X3=YLEFT(3)
X4¢=YLEFT(4)
P1=YLEFT(5)
P2=YLEFT(6)
P3=YLEFT(7)
P4=YLEFT(8)

DE = C1%C2.C3""2*COS(X3)""2

All = C1+C2+42"C3"COS(X3)

Al2 = C24+C3*COS(X3)

Al3 = C3*"SIN(X3)

A22 = C2

Al4 = C4"COS(X1)+C5"COS(X14X3)
A24 = C5"COS(X1+4X3)

HL=
&14+P1%X24P3°X44P2/DE"(-G"(A22"A14-A12°A24)+ A22°T1-A12*T24+A13%(A12°X
+2°24A22%(2°X2"X44+X4""2)))+P4/DE*(G*(A12"A14-A1 1%°A24)-A12°T14A11*T
+2-A13%(A11°X2°"24+A127(2"X2"X4+X4""2)))

GilL=
&0.1E1/DE*(P2™"A22-P4"A12)

G2L=
&0.1E1/DE®(-P2"A124+P4"A1l)

X1=YRIGHT(1)
X2=YRIGHT(2)
X3=YRIGHT(3)
X4=YRIGHT(4)
P1=YRIGHT(5)
P2=YRIGHT(S)
P3=YRIGHT(7)
P4=YRIGHT(S)

DE = CI1"C2.C3"*2"COS(X3)""2

All = C14C242°C3"COS5(X3)

Al12 = C24C3"COS(X3)

Al13 = C3"SIN(X3)

A22 = C2

Al4 = C4"COS(X1)4C5"COS(X1+X3)
A24 = C3"COS(X1+X3)

HR=
&l+P1'x2+P3‘x4+P2/DE'(-G'(A22‘All'A12'A21)+A22'T1-A12'T2+A13‘(A12'X
+2"2+A22'(2'x2'x4+Xl"?)))+P‘/DE'(G'(AI2'A1(-A11'A21)~A]2'TX+AIl'T
+2-A13%(A11°X2%%24+A12%(2"X2* X4+ X 4""2)))

G1lR=
&0.1E1/DE®(P2*A22-P4"A12)

G2R=
&0.1E1/DE"(-P2"A12+P4"A11)

IF(KFJ.EQ.30) THEN
DO 1=1,NEQN52
F(I) = YLEFT(I)-YBCL{I)
END DO
END IF
IF(KFJ.EQ.31) THEN
DO I=1,(NEQN52/2)
F(I) = YLEFT(I)-YBCL(1)
END DO
DO I=(NEQN52/2+1),NEQNS2
F(I) = YRIGHT(1}-YBCL(I)
END DO
END IF
IF(KFJ.EQ.32) THEN



DO I=1,(NEQN52/2)
F(1) = YLEFT(I)-YBCR(I)

END DO
IF((KSW(1).EQ.2).AND.(KSW(2).EQ.1)) THEN
F(5) = GIR
F(6) = HR
F(7) = G2L
F(8) = HL
ELSE IF((KSW(1).EQ.1). AND.(KSW(2).EQ.2)) THEN
F(5) = Gi1L
F(6) = HR
F(7) = G2R
F(8) = HL
END IF
END IF

IF(KFJ.EQ.33) THEN
DO [=1,NEQNS2
F(1) = YLEFT(I1)YBCR(I)

END DO

END IF
RETURN
END
CCCCC87-9 9. 9 9 9 9- 9 72
CCCCC67-SUBPROGRAM FOR DEFINING JACOBIAN T2
CCCCCe7-9 9 9 9 9 9 9 72

SUBROUTINE FCNJACB (NEQNS2, X, Y. P, DYPDY)

INTEGER NEQNS2

DOUBLE PRECISION X, Y(NEQNS2), P, DYPDY(NEQNS2,NEQNS2)

C—67— COMMON PARAMETERS 72

INTEGER J11,KFJ,NSW IEQ,IBC.1JB

DIMENSION KSW(10)

DOUBLE PRECISION
+YBCL(8),YBCR(8),X51(20).XS52(20),XS3(20),5IGN(8,20)
+,YSCL(8,20),YSCU(8,20).YSLB(8,20),YSUB(8,20),UFW(10,2)
+.,C1,C2,C3,C4,C5,GR, TIMIN, TIMAX,T2MIN, T2MAX,SIGM1

COMMON /PARAM/ YBCL,YBCR,XS51,XS2,X53,5IGN
+.YSCL,YSCU,YSLB,YSUB,UFW,C1,C2,C3.C4,C5,GR
+. TIMIN, TIMAX, T2MIN, T2MAX,SIGM1.KSW J11,KFJ,NSW,IEQ,IBC.I1JB

C—67— COMMON PARAMETERS 72

DOUBLE PRECISION X1,X2,X3.X4,P1,P2,P3,P4,T1,T2,A11.A12.A13,A22
&,DE,G1,G2,G

DOUBLE PRECISION SIN,COS,5QRT,SN3,CS3,CS1,5N13,C513

INTRINSIC SIN,COS,SQRT

C4CCC87-THIS LINE/LINES SHOULD BE CHANGED FOR ECACH EXAMPLE
G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
P1 = Y(5)
P2 = Y(6)
P3 = Y(7)
P4 = Y(8)

Al11=C14+C2+4P®*2"C3*COS(X3)
Al12=C2+P*C3*COS(X3)
A13=P*C3"SIN(X3)
A22=C2
DE=AI1"A22-A12%A12
G1=(P2"A22.P4"A12)/DE
G2=(-P2*A124P4"A11)/DE
IF(G1.LT.0.0) THEN
Ti1=T1IMAX
ELSE
T1=T1MIN
END IF
IF(G2.LT.0.0) THEN
T2=T2MAX
ELSE
T2=T2MIN
END IF

IF(J11.EQ.1) THEN

IF(KFJ.EQ.10) THEN
IF(ABS(XS2(J11)).LE.SIGM1) THEN
T2=SIGN(2,J11)
ELSE IF(ABS(XS2(J11)).GT.SIGM1) THEN
IF(X.LE.XS2(J11)) THEN
T2=SIGN(2,J11)
ELSE
T2=-SIGN(2,J11)
END IF
END IF
T1=5IGN(1.J11)
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END IF

IF(KFJ.EQ.11) THEN
IF(XS1(J11).NE.0.0) THEN
IF(X.LE.XS1(J11)) THEN
T1=5IGN(1,J11)
ELSE
T1=SIGN(3,J11)
END IF
ELSE
T1=SIGN(1,J11)
END IF
IF(ABS(XS2(J11)).LE.SIGM1) THEN
T2=5IGN(2,J11)
ELSE [F(ABS(XS2(J11)).GT.SIGM1) THEN
IF{X.LE.XS2(J11)) THEN
T2=SIGN(2,J11)
ELSE
T2=-SIGN(2,J11)
END IF
END IF
END IF

IF(KFJ.EQ.20.O0R.KFJ.EQ.21) THEN
IF(ABS(XS3(J11)).LE.SIGM1) THEN
T2=SIGN(4,J11)
ELSE IF(ABS(XS3(J11)).GT.SIGM1) THEN
IF(X.LE.XS3(J11)) THEN
T2=-SIGN(4,J11)
ELSE
T2=SIGN(4,311)
END IF
END IF
T1=SIGN(3,J11)
END IF

IF(KFJ.EQ.31. OR.KFJ.EQ.30) THEN
T1=UFW(1,1)
T2=UFW(1,2)

END IF

IF(KFJ.EQ.32) THEN
T1=UFW(2,1)
T2=UFW(2,2)

END IF

IF(KFJ.EQ.33) THEN
T1=UFW(NSW.1)
T2=UFW(NSW,2)

END IF
END IF

DO 11 I=1,NEQNS2
DO 12 J=1,NEQNS2
DYPDY(J,1)=0.0

12 CONTINUE

11 CONTINUE

DYPDY(1.2)=1.0

DYPDY(2.1)=
+-P/(C1°C2-C3°"2°COS(X3)"*2)* G=(C2%(-C4*SIN(X1)-C5"SIN(X 14 X3)}+(C2+
+C3°COS(X3))*C5*SIN(X14X3))

DYPDY(2.2)=
+P/(C1°C2-C3""2°COS(X3)"=2)"C3*SIN(X3)*(2*(C24+C3I=COS(X3))* X2+2°C2*X
+4)

DYPDY(2.3)=
+-2"P/(C1°C2-C3="2"COS(X3)""2)*=*2%(.G*(C2*(C4*COS(X1)+ C5"COS(X1+ X3)
+)(C24C3*COS(X3))"C5"COS(X1+X3))+C2°T1.(C2+C3*COS(X3))* T2+ C3*SIN(X
+3)°((C2+C3*COS(X3))"X2""24+C2(2°X2*X 44+ X4"°2)))*C3*=2=CO5(X 3)"SIN(X
+3)4P/(C1°C2-C3"=2"COS(X3)**2)%(-G *(-C2*C5*SIN(X1+X3)+C3*SIN(X3)*C5
+"COS(X1+X3)+(C2+C3"COS(X3))*C5*SIN(X1+X3))+C3"SIN(X3)*T2+C3*COS(X3
+)*((C24C3*COS(X3))*X2""24 C2%(2*X 2" X4+ X4"*2)). C3=*2=SIN(X3)**2°X2=*
+2)

DYPDY(2.4)=
+P/(C1%C2-C3*"2*COS(X3)**2)*C3*SIN(X3)"C2°(2"X2+2"X4)

DYPDY(3,4)=1.0

DYPDY(4.1)=
+P/(C1°C2-C3"*2°COS(X3)"*2)"G"({C24+C3*COS(X3))*(-C4*SIN(X1)-C5*SIN(
+X14X3))4(C1+C2+42°C3*COS(X3))*C5*SIN(X1+X3))

DYPDY(4.2)=
+-P/(C1°C2-C3*"2°COS(X3)="2)" C3=SIN(X3)%(2%(C1+C242°C3°COS(X3))"X 2+
+2%(C24C3°COS(X3))"X4)

DYPDY(4,3)=
+-2%P /(C17C2-C3°*2°COS(X3)**2)**2%(G*({C2+ CI*COS(X3))*(C4"CO5(X1)4+C
+5°COS(X1+4X3))-(C14+C2+2°C3"COS(X3))"Cs*COS(X 14 X3))-(C2+4 C3*COS(X3))"
+T14(C14+C242°C3°COS(X3))*T2-C3*SIN(X3)"((C14+C242°C3"COS(X3))"X2°*2+
+(C24+C3°COS(X3))"(2°X2"X4+X4%%2)))*C3="2°COS(X3)*SIN(X3)}4+P/(C1*C2-C
+3""2°COS(X3)"*2)*(G"(-C3"SIN(X3)*(C4"COS(X1)+C5°COS(X1+X3))-(C24+C3
+°COS(X3))°CS*SIN(X1+X3)+2*C3*SIN(X3)*C5*COS(X1+X3)+(C14+C2+2°C3*COS
+(X3))"CS"SIN(X1+X3))+C3"SIN(X3)*T1-2°C3*5IN(X3)"T2-C3°COS5(X3)*((C1
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++C2+42°C3°COS(X3))"X2""2+(C24+CI*COS(X3))"(2°X2*X4+X4"*2))-C3*SIN(X3
+)%(-2*C3"SIN(X3)"X2"*2-C3"SIN(X3)*(2*X2"X 4+ X4°*2)})

DYPDY(4.4)=
+-P/(C1%C2-C3"*2"COS(X3)"*2)*C3*SIN(X3)*(C2+C3"COS(X3))*(2"X2+2"X 4)

DYPDY(S,1)=
+-P*(-P2/(C1°C2-C3"*2=COS5(X3)*"2)*G"(C2*(-C4"COS(X1}-C5*COS(X1+X3))
++(C24+C3*COS(X3))*C5"COS(X1+X3))+P4/(C1=C2-C3°*2"CO5(X3)"*2)*G*((C2
++C3*COS5(X3))"(-C4"COS(X1)-C5"COS(X1+X3))+(C1+C242°CI*COS(X3))*C5°C
+0S(X1+4+X3)))

DYPDY(5,2)=0.0

DYPDY(5,3)=
+-P*(2°P2/(C1°C2-C3"*2*COS5(X3)*"2)**2*G"(C2"(-C4*SIN(X1)-C5*SIN(X 1+
+X3))4+(C24+C3°COS(X3))*CS*SIN(X14X3))*C3*"2"COS5(X3)*SIN(X3)-P2/(C1"C
+2-C3%*2°COS(X3)*"2)*G"(-C2°C5"COS(X1+X3)-C3"SIN(X3)*C5*SIN( X1 +X3)+
+(C24C3°COS(X3))*C5°COS(X14X3))-2°P4/(C1"C2-C3**2°COS(X3)"*2)"*2*G"
+((C2+C3*COS(X3))*(-C4*SIN(X1)-C5"SIN(X1+X3))4+(C14C242°C3*CO5(X3))*
+C5"SIN(X14X3))"C3**2"COS(X3)"SIN(X3)+P4/(C1=C2-C3**2*COS(X3)"=2)"G
+%(-CI"SIN(X3)"(-C4°SIN(X1)-C5"SIN(X14X2))-(C24+C3°COS(X3))*C5*COS(X
+1+4X3)-2°C3*SIN(X3)*C5"SIN(X14X3)+(C14C2+2°C3°COS(X3))"C5"COS(X1+X3
+)))

DYPDY(5,4)=0.0

DYPDY(5,5)=0.0

DYPDY(5,6)=
+P/(C1%C2.C3**2*COS(X3)**2)"G"(C2"(-C4*SIN(X1)-C5*SIN(X1+X3))+(C2+C
+3°COS(X3))*CS*SIN(X1+X3))

DYPDY(S,7)=0.0

DYPDY(5,8)=
+-P/(C1%C2.C3*"2°COS(X3)""2)*G*((C2+ CI*COS(X3))*(-C4*SIN(X1)-C5*SIN
+(X14X3))+(C1+C2+2"C3"COS(X3))*CS*SIN(X1+X3))

DYPDY(6.1)=0.0

DYPDY(6.2)=
+-P*(P2/(C1%C2.C3"*2°COS5(X3)""2)"C3*SIN(X3)*(2°C2+2°C3*COS5(X3)).P4/
+(C1°C2-C3""2°COS(X3)**2)*CI*SIN(X3)"(2"C142*C24+4°C3*COS(X3)))

DYPDY(6,3)=
+-P*(-2°P2/(C1°C2-C3**2"COS(X3)**2)*"2°C3°*3*SIN(X3)**2*(2%(C2+C3*C
+0S5(X3))*X242°C2"X4)*COS(X3)+P2/(C1*C2-C3**2*COS(X3)""2)*C3*COS(X3)
+%(2°(C2+C3°COS(X3))"X2+2"C2°X 4)-2*P2/(C1"C2.C3**2°COS(X3)*"2)°Ca*~
+2°SIN(X3)"*2°X2+2"P4/(C1°C2-C3"*2*COS(X3)**2)""2"C3**3°SIN(X 3)*"2"
+(2%(C14+C242"C3°COS(X3))"X2+42"(C24+C3I*COS(X3))*X4)*COS(X3)-P4/(C1*C2
+-C3%*2*COS(X3)**2)"C3*COS(X3)*(2"(C1+C2+42"CI*COS(X3))*X2+2%(C2+C3*
+COS5(X3))*X4)-P4/(C1*C2-C3**2*COS(X3)**2)*CI*SIN(X3)*(-4*C3*SIN(X3)
+°X2-2°C3*SIN(X3)"X4))

DYPDY(6.4)=
+-P=(2°P2/(C1%C2-C3**2"CO5(X3)"*2)"C3*SIN(X3)*C2-P4/(C1°C2-C3*=2°CO
+5(X3)"*2)*C3"SIN(X3)*(2*C2+2=C3*CO5(X3)))

DYPDY(6,5)=-1.0

DYPDY(6.6)=
+-P/(C1%C2-C3*=2"COS(X3)""2)*C3*SIN(X3)"(2°(C2+C3"COS(X3))*X2+2°C2*
+X4)

DYPDY(6,7)=0.0

DYPDY(6,8)=
+P/(C1%C2-C3%=2"COS(X3)"*2)*CI*SIN(X3)*(2"(C14+C2+2*C3I"COS(X3))"X2+2
+"(C24C3°COS5(X3))"X4)

DYPDY(7.1)=
+-P*(2°P2/(C1%C2-C3""2"COS(X3)*"2)**2=G=(C2%(-C4*SIN(X1).CS*SIN(X 1+
+X3))+(C2+C3*COS(X3))"C5*SIN(X1+X3))"C3*"2"COS(X3)*SIN(X3)-P2/(C1°C
+2.C3%°2*C0OS(X3)°*2)"G"(-C2"C5"COS(X1+X3).CI"SIN(X3)*CS*SIN(X 1+ X3)+
+(C24C3*COS(X3))"C5°COS(X1+X3))-2*P4/(C1=C2-C3**2°COS(X3)""2)"*2*G*
+((C2+C3°COS(X3))=(-C4™SIN(X1)-CS"SIN(X1+X3))+(C14+C24+2°CI*COS5(X3))*
+C5"SIN(X14X3))"C3°*2"COS(X3)*SIN(X3)+P4/(C1=C2.C3**2°COS(X3)"*2)*G
+*(-C3"SIN(X3)*(-C4"SIN(X1)-C5*SIN(X1+X3))-(C2+C3*COS(X3))*C5*COS(X
+1+X3)-2%C3"SIN(X3)*C5"SIN(X1+X3)+(C14C242°C3°COS(X3))*CS="COS(X1+X3
+)))

DYPDY(7,2)=
+-P*(-2°P2/(C1"C2-C3°°2"COS(X3)"*2)*=2"C3**3*SIN(X3)**2°(2%(C2+C3I*C
+05(X3))*X242%C2"X4)*COS(X3)+P2/(C1*C2-C3**2°COS(X3)**2)*(C3*COS(X3
+)*(2%(C24C3°COS5(X3))"X2+2"C2"X4)-2"C3**2°SIN(X3)"*2°X2)+2"P4/(C1*C
+2-C3**2°COS5(X3)""2)"*2"C3**3*SIN(X3)**2%(2°(C14+ C24+2°C3*COS5(X3))*X2
++42°(C24+C3°COS(X3))"X4)"COS(X3)+P4/(C1°C2-C3**2°COS(X3)"*2)*(-CI*CO
+35(X3)"(2*(C14+C242"C3*COS(X3))*X2+2%(C2+C3°COS(X3))*X4)-CI"SIN(X3)*
+(-4"C3°SIN(X3)*X2-2°C3"SIN(X3)*X4)))

CCCCC67-9 9 9 9 9 9
SN3=SIN(X3)

CS3=COS(X3)

CS1=COS(X1)

SN13=SIN(X1+X3)

CS13=COS5(X1+X3)

DYPDY(7.3)=
+-P=(8*P2/(C1"C2-C3""2"CS3°"2)*"3%(-G*(C2"(C4*CS14+C5°CS13)
+-(C24C3*CS3)"C5°CS13)4+C2*T1-(C24+C3*CS3)*T24+CI*SN3I*
+((C24C3=CS3)"X2"*24C2%(2*X2"X 4+ X 4°%2)))*C3°*4{"C53**2°SN3**2
+-4"P2/(C1°C2-C3°°2"CS3%%2)**2*(-G*(-C2°C5"SN134
+C3"SN3I*C5%°CS513+4(C2+4+C3"CS3)*C5*SN13)4+C3*SNI*T24
+C3"CS3%((C2+C3"CS3)" X272+ C2°(2*X2*X 4+ X 4%%2)).CI**2°SN3I**2°X2**2)
+*C3%*2"CS3*SN3+2"P2/(C1°C2.C3%*2°CS3**2)*"2%(.G*(C2*(C4*CS1 +
+C5%CS13).(C24+C3"CS3)"C5"CS13)+C2"T1-(C24+CI*CS3)*T2+
+C3®SN3"((C2+C3"CS3)"X2""24 C2%(2"X2*X 4 + X4"%2)))*C3**2*SN3"=2.

9 oy

209



+2°P2/(C1*C2-C3°*2°CS3°%2)*=2%(-.G=(C2*(C4*CS1+C5*C513)-
+(C24C3"CS3)*C5*CS513)4+C2°T1-(C2+C3*CS3)*T24+C3*SN3*
+((C2+C3°CS3)"X 272+ C2%(2°X2° X 4+ X4°°2)))*C3="2=CS3°"2+
+P2/(C1°C2-C3*2*CS3*%2)*(.G*(-C2°C5*C5134+ C3*CS3*C5*CS13-
+2°C3*SN3*C5*SN134(C2+C3*CS3)"C5°CS13)+ C3*CS3*T2.C3=*SNa*
+((C2+C3"CS3)"X2="2+C2%(2"X2"X 4+ X4°°2))-3C3°*2°CS3*SN3"X2°"2)+
+8°P4/(C1°C2-C3=*2*CS53"=2)**3"(G*({C2+C3"CS3)"(C4"CS1+C5"CS13)-
+(C14+C242°C3*CS53)"C5°CS13)-(C2+C3°CS3)*T1+(C14C2+2°C3*CS3)*T2-
+C3"SN3*((C1+C2+2"C3"CS3)"X2""24(C2+C3°CS53)°(2°X2° X4+ X4°°2)))*
+C3%°4"CS3**2=SN3"*2-4*P4/(C1*C2.C3*=2°CS3"=2)"*2*(G*(-C3"SN3*
+(C4*CS14+C5*CS13)-(C24+C3*CS3)*C5"SN13+2"C3*SNI="CS*CS13+
+(C1+C242°C3"CS3)*C5"SN13)+C3*SN3I*T1.2°C3"SN3"T2-C3*CS3*"
+((C14+C242°C3°CS3)*X2°*24(C2+C3I*CS3)"(2°X 2°X 4 + X4°2))- CI*SN3~(
+-2*C3"SN3"X2"72.C3*SN3%(2°X2"X 44+ X4%°2)))*C3=*2*CS3"SN3+
+2°P4/(C1%C2-C3=°2=CS3""2)**2%(G"((C24C3*CS3)*(C4°CS1+CS*CS13)
+(C14C2+42°C3"CS3)*C5*CS13)-(C24+C3I*CS3)*T14(C1+C2+2°Ca*CS3)*T2-
+C3°SN3*((C14C2+2°C3*CS3)"X27"24(C24 C3*CS3)"(2°X2°X4 + X4%°2)})*
+C3%*2°SN3"2.22P4 /(C1=C2-C3"*2°CS3**2)=*22(G*((C2+C3"CS3)*(C4°CS1+
+C5°CS13)-(C14+C2+2"C3*CS3)"CS"CS13)-(C24+C3*CS3)*T14(C14C24+2°C2=CS3)
+°T2-C3"SN3*((C14+C2+42°C3"CS3)°X2°"24+(C2+C3*CS3)*(2°X2"X 44
+X4792)))"C3**25CS3°*24+ P4 /(C1°C2-C3°*2*CS3"*2)*(G*(-C3*C53*
+(C4*CS14+C5°CS13}-2*C3*SN3*C5*SN13.(C24+C3*CS3)"C5"CS13+2°CI"C35a*
+C5°CS134(C14+C2+2°C3*C53)"C5°CS13)+CI"CS3*T1-2°C3*CS3*T2+ CI*SN3®
+({C14C242°C3°CS3)"X2°"24(C2+C3*CS3)*(2° X2 X4 +X4"=2) ).
+2°C3°CS3%(-2*C3*SN3°X2°*2.C3*SN3*(2°X2° X4+ X4°=2))-
+C3"SN3%(-2"C3*CS3%X2%%2-C3*C53%(2°X2° X4+ X4"*2)))}

cccccer.9 9 9 9 9 s 9 72

DYPDY(7,4)=
+-P®(-2°P2/(C1"C2-C3*"2"COS(X3)**2)**2°C3**3*SIN(X3)**2"C2*(2"X 2+ 2*
+X4)"COS(X3)+P2/(C1°C2-C3""2*COS(X3)**2)*C3*COS(X3)*C2%(2"X2+2"X4)+
+2"P4/(C1°C2.C3=*2°COS(X3)"*2)**2*C3**3*SIN(X3)**2"(C2+C3*COS(X3))*
+(2°X2+2°X4)"COS(X3)+P4/(C1%C2-C3**2°COS(X3)**2)*(-CI*COS(X3)*(C24+C
+3*COS(X3))%(2°X2+2"X4)+C3"*2°SIN(X3)*=2%(2*X2+2°X4)))

DYPDY(7,5)=0.0

DYPDY(7.6)=
+-P=(-2/(C17C2-C37=2"COS(X3)"*2)*=2%(.G*(C2"(C4*COS(X 1)+ C5°COS(X1+X
+3))-(C24C3°COS(X3))*C5°COS(X1+X3))+C2*T1-(C24+C3*COS(X3))"T2+Ca*SIN
+(X3)*((C2+C3°COS(X3))"X2**2+C2°(2°X2°X 4+ X4="2)))*C32*25COS(X3)*SIN
+(X3)41/(C1°C2.C3°=2*COS(X3)*=2)"(-G"(-C2*C5*SIN(X1+4 X3)4 C3*SIN(X3)"
+C5°COS(X1+X3)4+{C2+C3"COS(X3))"C5*SIN(X1+X3))+ CI"SIN(X3)*T2+CI*COS(
+X3)"((C24C3"COS(X3))"X2**24+C2°(2*X2°X 4+ X4=2))-C3=*2"SIN( X3 )*=2 X2
+°%2))

DYPDY(7.7)=0.0

DYPDY(7.8)=
+-P=(-2/(C1°C2-C3**2=COS(X3)*"2)"*2%(G*((C2+C3*COS(X3)}*(C4"COS(X1)
++C5"COS(X1+X3))-(C1+C2+2"C3*COS(X3))*C5"COS(X1+ X3))-(C2+CI*COS(X3)
4)"T1+(C1+C242"C3"COS(X3))*T2-C3"SIN(X3)*((C1+C2+2°C3*COS(X3})"X2**
+24(C24C3°COS5(X3))*(2=X2° X4+ X4%2)))*C3**2°COS(X3)=SIN(X3)+1/(C1"C2
+-C3%*2°COS5(X3)"=2)"(G"(-C3*SIN(X3)*(C4*COS(X1)+C5"COS(X1+X3))}-(C2+
+C3°COS(X3))*C5*SIN(X14X3)+2"C3*SIN(X3)*C5*COS(X1+X3)4+(Cl+C2+2°C3*C
+05(X3))*CS"SIN(X1+X3))+C3"SIN(X3)*T1-2°C3*SIN(X3)*T2-C3*COS(X3)"((
+C1+C242°C3*COS(X3))"X2°"24(C2+C3"COS(X3))*(2*X2* X 4+ X 4°*2))- CI*SIN(
+X3)%(-2"C3"SIN(X3)"X2"*2-C3*SIN(X3)"(2°X2°X4+X4"2))))

DYPDY(8,1)=0.0

DYPDY(8.2)=
+-P=(2*P2/(C1°C2-C3"*2*COS(X3)**2)"Ca*SIN(X3)"C2-2°P4/(C1°C2.C3*"2*
+COS(X3)"*2)*C3*SIN(X3)*(C2+C3*COS(X3)))

DYPDY(8,3)=
+-P=(-2°P2/(C17C2-C3""2°COS(X3)"*2)"=2°C3°=3=SIN(X3)"*2*C2"(2"X 2+ 2"
+X4)"COS(X3)+P2/(C1=C2-C3°*2"COS(X3)**2)*C3"COS(X3)~C2%(2"X2+2X4)+
+2°P4/(C1°C2-C3"=2°COS(X3)""2)**2°C3"*3°SIN(X3)**2%(C2+C3°CO3(X3))"
+(2%X2+2"X4)"COS(X3)-P4/(C1*C2-C3=*2°COS5(X3)**2)*C3~COS(X3)"(C2+C3*
+COS(X3))"(2"X2+2"X4)+P4/(C1=C2-Ca*"2°COS5(X3)*"2)"C3""2*SIN(X3)"*2~
+(2°X242°X4))

DYPDY(8.4)=
+-P*(2"P2/(C1*C2-C37""2=COS(X3)"*2)*C3*SIN(X3)"C2-2"P4/(C1*C2-C3==2*
+COS(X3)*"2)*C3*SIN(X3)"(C2+C3*COS(X3)))

DYPDY(8,5)=0.0

DYPDY(8.6)=
+-P/(C1°C2-C3=*2°COS(X3)**2)*C3"SIN(X3)"C2"(2°X 24 2"X4)

DYPDY(8,7)=-1.0

DYPDY(8.8)=
+P/(C1%C2-C3*"2°COS(X3)""2)"CI"SIN(X3)"(C24+C3*COS5(X3))*(2"X2+42°X4)
Y(1) = X1
Y(2) = X2
Y(3) = X3
Y{4) = X4
Y(5) = P1
Y(6) = P2
Y(7) = P2
Y(8) = P4

RETURN

END
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Appendix D

Computer Code for the Shooting Method

The computer code XRKOC7.FOR that implements the Shooting Method (SM) of
Section 5.2 for time-optimal control of Two-Link Manipulators (TLM) is included and
explained here. This program, which also uses the Fortran programming language,
contains a main body and seventeen subroutines. and in total is 1911 lines long.
Some of the subroutines of this code, which perform standard jobs, are taken from
Numerical Recipes in Fortran [57], and with minor or major modification are used by
the main program.

There is another computer code, XRKOCS, that does the same thing as XRKOC?.
The only difference with XRKOCT is that XRKOCS uses adaptive step size 4th order
Runge-Kutta method when calculating %%f—) for integration of Equation (5.17), while
XRKOCT uses constant step size 4th order Runge-Kutta method for integration of
the ODE’s.

The XRKOCT algorithm is quite complicated. However, a brief description of main
body of the program is as following. The program XRKOC?7 uses the unknown initial
costates generated by the Forward Backward Method (FBM) implemented by pro-
gram OC2ADCI13.FOR, and reads two input filess XRKOC1.DAT and XRKOC2.DAT.
The program then uses the SM and solve the associated Two Point Boundary Value

Problem (TPBVP) with time-optimal control of TLM.



D.1 Input Files

The input data files XRKOC1.DAT, XRKOC2.DAT for initialising the SM are:

XRKOC1

NITR K1 K2 KKM SCG
Ur Ut Us Ut

p EBSIL SIGMA

T10 20 30 40

Z1f Z2f Z3f Zaf

to

B, B, Bs B, ty
EBSXO H1XO SM Pa Pm Pmin VT areT
END

XRKOC?2

gr

L [ [ 2

my may m, my

L I, Io I I

N
—
(8]



Some of the parameters which are not defined before are:

NITR: Number of maximum iterations

K1, K2: Iteration numbers for plotting the (ys, z3) trajectory

KKM: Maximum number of switches to be printed in output file
TEMP9.0UT

SCG: Scale factor for switch functions G;

EBSIL: Convergence criteria for |[L[z(B,ts), t/]||

SIGMA: Convergence criteria for calculating switch times from G; = 0

EBSXO: Criteria for boundary conditions for adaptive step size Runge-
Kutta in XRKOCS8

H1XO: Initial value for adaptive step size Runge-Kutta in XRKOCS

SM: The criteria of small in routine SVDCMP

Pas Pm, Pmin: Values for adjusting p |

prmin: Minimum allowable value for v;

ap®: Maximum allowable value for a;

The input files XRKOC1.DAT, XRKOC2.DAT for Example Two of Section 6.1.2
are:

XRKOC1.DAT

70 1 2 7 250.0
—1.000000E+01 1.000000E+01 -5.000000E+00 5.000000E+00
4.000000E-02 1.000000E-05 1.000000E-11
1.047000E+00 0.000000E+00 0.000000E+00 0.000000E+00
0.000000E+00 0.0QC0000E+00 0.000000E+00 0.000000E+00
0.000000E+00
6.7684E-02 6.2063E-03 1.4805E-02 1.834003E~03 2.100000E-01

1.00E-06 2.00E-01 1.00E-08 5.0E-03 0.0E+00 1.00E-02 1.00E-02 1.0E+00
END



XRKOC2.DAT
9.810000E+00
2.000000E-01
1.000000E+00
4.167000E-03

2.000000E-01 1.000000E-01 1.000000E-01
1.000000E+Q0 0.000000E+00 0.000000E+00
4.167000E-03 0.000000E+00 0.000000E+0Q0 O.O0QE+00

D.2 Owutput Files

The code creates several output files, some of the important ones are:

File name

Contents

TEMP3.0UT

TEMPS.OUT

TEMPC.OUT

TEMPS1.0UT

TEMPS2.0UT

However, there are other output files (TEMP1.OUT, TEMP2.0UT, TEMP4.OUT,
TEMP9.0UT, TEMP91.0UT, TEMP92.0UT, TEMPC1.0UT) which prints differ-

Contents of input files XRKOC1, XRKOC2, plus switch times
tsi, convergence parameters p, ax, RLC= ||L[z(B,ty), ts]l,
RDBT= ||[6B, étf]||, initial costates B; and final time ¢, for each
iteration

Optimal states z;, Hamiltonian, and optimal Control forces u,
in time if the program converges

Optimal costates p;, Hamiltonian, and scaled switch functions
G; in time if the program converges

Planar trajectory (y, z) of points corresponding to mg, .2, my
(see Figure 4.1) for three different iterations, if the program
converges

Links configuration in (y. z) plane for final iteration. if the pro-

gram converges

ent parameters or states, costates, and switch functions in different stages of the

SM.



D.3 Weight Functions v;

The weight functions v; in Equation (6.11) are to accommodate the difference of the
dimensions of the states as well as of the Hamiltonian. They are calculated and

selected as follows. For convenience Equations (6.11) and (6.12) are repeated here.

Li[z(B,ts),t5]] = v; x [zj(ty) —zif] j=1,...,4

(D.1)
Ls[z(B,ts),ts] = vs x H(ty)
and the target error norm ||L]| is:
ILIl = /L3 + L3 + L} + L% + L2 (D.2)
The weight functions v; (¢ = 1,...,5) are calculated as follows:
0; = maz|z;(t)|, j=1,...,4 U5 = maz|H(t)|
w0 _ (k=1 xof" V13
vi =
k
VUmazr = maz(m)
1
o) 1
‘Ui- = . v = —¢ (D3)
Umaz v;

Note that here £ is iteration number and the non-dimensional v is always 0 < v} < 1.

Presence of weight functions v; in (D.1) insures that the target error norm |[L]| is
not dominated by the magnitude of one or more states or Hamiltonian, because of the
difference in the magnitudes of rotations, the angular velocities, and the Hamiltonian.
In this way the target error vector L[z(B,ts),ts] is considered as a dimensionless
vector. In Equation (D.1), weight functions v; have been used rather than v;. The

reason for this choice is that the SM usually converges much faster with v; than with

v;.

(8]
—
Ut



D.4 The Listing of the Program XRKOCT

The computer code XRKOC7 that implements the SM for time-optimal control of

Two-Link Manipulators is as follows.

PROGRAM XRKOC
CCCCCe7-9 9 9 9 9 9 9 72
C DRIVER FOR ROUTINES RK4D,RK4H,RKDUMBH,DXSVB,SVDCMP.PYTHAG,SVBKSB
[ (CONSTANT STEP SIZE RUNGE-KUTTA 4TH ORDER METHOD)
CCCCCs7-9 9 9 9 9 9 9 T2
REAL SCG
INTEGER K,K1,K2,JK1,JK2,IK1,IK2,KKM,IPR
INTEGER N M1 M2,NM ,NMAX NMXI.MIP,NSTEP
DOUBLE PRECISION EBSX0,H1X0,5M
PARAMETER(N=8,M1=N/2,M2=2,NM=N*"M1 NMAX=35 NMXI=201,MiP=M1+1
+.,NSTEP=500)

DIMENSION IS(NMAX),JSN(NMAX),ISW(NMAX)

DOUBLE PRECISION V(N),DV(N),VS(N),VJ(N),DVJ(N),YS(N,NMAX),VF(N)
1,LDFDV(N,N),DFDY(N,N),XS(NMAX),CU(NSTEP +1,M2),G(NSTEP+1.M2)
2,BTF(M1P,NMXI),XX(NSTEP+1),Y(N,NSTEP+1),KB(NM),XH(NSTEP+1)

3, YH(NM,NSTEP+1),EBSIL.SIGMA
4,FL(N,NMAX),FR(N,NMAX),F(N,NMAX),CS(2*M2)
5,GM(M2),DGM(M2),DGX(M2,N),YHSL(NM),YHSR(NM),FS(N),LC(M1P),DYF(N)
6.DLDX(M1P,N),DLDB(M1P,M1),DLDTF(M1P),YHF(NM),D(MI1P,MI1P),YF(N)
7,BTFF(M1P),RLC(NMXI),RDBT(NMXI),RBT(NMXI),VSS(N)
8,DBTC(M1P),AK(NMXI),ALK(NMXI),SIGST(NMAX),ROIA,ROIM,ROMIN WSM,ALKM
9.DT(M1P,M1P),DBT(M1P),DSIN,DCOS,DSQRT.ABS

1LHAM HA(NSTEP+1),WF(M1P), WFMAX,WFMIN,WFO(MI1P),CPM,CPB,P2L.P4L
2,XV(N),YV(N),XYSP(3,6 NSTEP+1)
3,A11,A12,A13,A14,A24,P4G1,P2G2,DE,DEG1,DEG2.DISI(M1P),DIS(NMXI)

DOUBLE PRECISION X,X1,X2,X25,X3,XJ,XHJ H.HJ H2,HT

DOUBLE PRECISION MHJ HJ1,DMHJ, Ho
1,L1,L2,AM1,AM2,MA MB,LC1,LC2,RI1,RI2,RI0.RIA,RIB

DOUBLE PRECISION UCS(2),C1,C2.C3,C4,C5,GR

COMMON /PATH/UCS,C1,C2,C3,C4,C5,GR.

CHARACTER TXT®3

EXTERNAL DERIVS,DERIVSH,GDGTX,DTDBS,LDXBT,DLSBT.DYDBTO,UCONT
+.DJACOB.HAM

INTRINSIC DSIN.DCOS,DSQRT

CCCCCe7-9 9 9 9 9 9 7
C OUTPUT FILES INCLUDE INTERMEDIATE RESULTS OF EACH ITERATION

OPEN(UNIT=1, FILE='templ.out’)

OPEN(UNIT=2, FILE='temp2.out')

OPEN(UNIT=3, FILE="temp3.out’)

OPEN(UNIT=4, FILE='temp4.out’)

OPEN(UNIT=9, FILE='temp9.out’)

OPEN(UNIT=91, FILE="temp91l.0ut')

CCCCCe67-9 9 9 9 9 39 7

(o INPUT FILE INCLUDE GEOMETERY OF THE MOTION AND CONTROL FORCES
OPEN(UNIT =7 FILE="xrkocl.dat'.STATUS="OLD")

CCCCC67-9 9 9 9 9 9 9 72

READ(7.")

READ(7.") NITR,K1,K2,KKM,SCG

READ(7.®)

READ(7,*) (CS(J),J=1,2"M2)

READ(7,*)

READ(7,*) RO,EBSIL,SIGMA

READ(7.")

READ(7,*) (VS(J).J=1,M1)

READ(7.®)

READ(7,*) (VF(J),J=1.M1)

READ(7.,*)

READ(7,") X0

READ(7.*)

READ(7.*) (BTF(J,1),J=1,M1P)

READ(7.”)

READ(7,") EBSXO,H1XO,5M,ROIA . ROIM,ROMIN, WSM,ALKM

READ(7,'(A3)') TXT

IF (TXT.NE."END') THEN

WRITE(".") ' DATA FILE IS INCOMPLETE, TRY A NEW SET OF DATA’
GO TO 9900

END IF

CLOSE(UNIT=7)

WRITE(".®") ' DATA FILE (xrkocl.dat) IS COMPLETE"

g 72

g 72

CCCCC67-9 9 9 9 9 9 9 72

[ INPUT FILE INCLUDE PHYSICAL PARAMETERS OF THE ARMS
OPEN(UNIT=8,FILE="xrkoc2.dat',STATUS='OLD")

CCCCCs7-9 9 9 9 9 9 9 72
READ(8,*) GR,L1,L2,LC1,LC2,AM1,AM2,MA ,MB RI1,RI2,RI0,RIA.RIB
CLOSE(UNIT=8)
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WRITE(".") * DATA FILE (xrkoc2.dat) IS COMPLETE"
WRITE(*.,") ' THE PROGRAM IS RUNNING

WRITE(3.'(10X.A)’) 'INPUT FILES "xrkocl.dat” AND “xrkoc2.dat"*

WRITE(3.(8X,45A)") (*=",J=1,45)
WRITE(3,{T10,A,T21,A.T33,A,T43,A,T53,A,T68,A)")
& 'NITR''KIITR)''K2(ITR)','"KKM(NPT3s)","SCG{scale.G)".'(NSTEP )

WRITE(3,'(4112,F12.4,112)") NITR,K1,K2,KKM.5CG,NSTEP
WRITE(3,(T11,A,T25,A,T39,A, T53.A) ) UL " 'UL"4','U2°.* U2 4*

WRITE(3,'(1P4E14.6)") (CS(J).J=1,2"M2)
WRITE(3,'(T10,A,T24,A,T38,A)’) RO',"EBSIL",'SIGMA"’

WRITE(3.'(1P4E14.6)') RO,EBSIL,SIGMA
WRITE(3,"(T12,A,T26,A,T40.A,T54,A)')'X10°,°X20','X30",'X40°

WRITE(3,'(1P4E14.6)’) (VS(J),J=1,M1)
WRITE(3,'(T12,A,T26,A,T4C,A,T54,A)° )’ X1F",'X2F",'X3F",'X4F"*

WRITE(3,'(1P4E14.6)') (VF(J),J=1,M1)
WRITE(3,'(T13,A)’)'TQ’

WRITE(3,(1P4E14.6)’) X0
WRITE(3,"(T13,A,T28,A,T43,A,TS8,A,T73,A)")
&'P10°,’P20°,’P30’,’P40’," TF"’

WRITE(3,'(1P5E15.6)') (BTF(J.1),J=1,MI1P)

WRITE(3.'(A3)’) TXT

WRITE(3,'(70A)') (*-',J=1,70)
WRITE(3,'(T8,A)' )’GRAVITY"

WRITE(3,(1P4E14.6)’) GR
WRITE(3.'(T12,A,T26,A,T40,A,TS54,A)')’ L1',' L2','LC1",'LC2"

WRITE(3,(1P4E14.6)*) L1,L2,LC1,LC2
WRITE(3,'(T13,A,T27,A,T41.A,T55.A)')’'M1' 'M2' "MA"."MB"*

WRITE(3,'(1P4E14.6)’) AM1,AM2,MA ,MB
WRITE(3,'(T13,A,T27.A.T41,A,T55,A,T69,A))'11",'12°,'I0",'1A",'IB"

WRITE(3.'(1P5E14.6)") RI1,RI2,RIO,RIA RIB
WRITE(3."(TS,A.T16,A,T26,A,T36,A,T46,A,T55,A,T66,A, T74,A)")
& 'EBSXO0’,’H1XO','SMDX'.'ROIA’,"ROIM"' 'ROMIN' 'WSM’ 'ALKM"’
WRITE(3,"(1P7E10.2,1PE8.1)')EBSX0,H1X0,SM,ROIA , ROIM.ROMIN,WSM,ALKM
WRITE(3,(A)'END"*

WRITE(3,'(78A)") ('=",J=1,78)

Ci1=(RIO+RII+RIA) + AMI®LCI*LCl + (AM24+MA+MB)*L1*L]
C2=(RI24RIB) + AM2"LC2"LC2 + MB"L2°L2
C3=(AM2"LC2+MB"L2)"L1

C4=AMI1°LC1 + (AM2+MA+MB)"L1}

CS5=(AM2"LC24+MB"L2)

WRITE(3.(10X,A)’) 'OUTPUT FILE "temp3.out” from "xrkoc?.for"’

WRITE(3."(8X,45A)") ('=",J=1,25)

WRITE(3.'(2X,A.9X,A,11X A, 11X,A,11X,A,11X,A)') 'K','XS1','X52"
&,'XS3','X354", ...

WRITE(3,(26X,A,12X,A,12X,A,11X,A)) "RO''ALK','RLC",'"RDBT"

WRITE(3,'(19X,55A)") (*-",J=1,55)
WRITE(9.'(A,IX, A, 7TX, A, 7X. A TX, A, TX A TX,A.7X A, TX.A.TX.A,TX.A.TX
LATXATXA T AT A TX A TX AT, A TX A TXAY)
&'#''K',’ALK','"RLC',’ RD",* B1’,” B2*,” B3’,' B4',’ BS’
&, Y1'," Y2',' Y3',' Y4','G10’.°G20",'XS1",'XS2","XS3",'XS4"."..."
WRITE(91,(A1X, A 7X, A 7TX A, 7X, A, 7X, A TX A ,7X,A, 7X, A, 7X A, 7X. A, TX
LA TXATX A TX A TX A Y # K WI' W2 W3 we' Wse
&,'LC1',’LC2','LC3','LC4',"LCS","HTO"'HTF","CPM",'CPB’

JK1=5

JK2=10

DO 125 I=1,M1P

WFO(I)=0.0D0

125 CONTINUE

CCCCCe7-9 9 9 9 9 9 9 72
[of STARTING THE MAIN ITERATION LOOP
ccccceer-9 9 9 9 9 9 9 72

9 7
WRITE(",") ' STARTING THE MAIN ITERATION LOOP'
DO ! K=1,NITR
WRITE(","(/A,l14)') ' THE PROGRAM IS RUNNING, STARTING INTERATION
& NO 'K

cCcccecesr-g 9 9 9 9 9 9 7
C INTEGRATION OF STATES & COSTATES USING GUESS VALUES FOR COSTATES
WRITE(",*) ' INTEGRATION OF STATES & COSTATES USING GUESS VALUES®
H=BTF(M1P K)/NSTEP
KK=0
15(0)=0
X=Xo0
DO 110 J=1,KKM
XS(J)=0.0Do
110 CONTINUE
DO 2 J=1,M1
J2=M14J
2 V35(J2)= BTF(J.K)

CCCCCe7.9 9 9 9 9 9 9 72
c MODIFYING THE INITIAL COSTATES(P2.P4) FORCING H(10)=0
P2L=VS(6)
P4L=VS(8)

[S]
—
=1



CALL UCONT(VS,CS,UCS)
CALL DERIVS(N,X,VS,DV)
HA(1)=HAM(M1,X,VS.DV)
CPM=-DV(2)/DV(4)
CPB=-1.0D0/DV(4)
WRITE(4,) "MODIFYING THE INITIAL COSTATES(P2.P4) FORCING H=0'
WRITE(4,'(1P2E15.6)’) CPM,CPB
WRITE(4,991) X,(DV(J),J=1,M1)
WRITE(4.991) X.(VS(J),J=M1+1.N),HA(1),(UCS(J},J=1.M2)

RBT(K)=0.0D0
DO 3 I=1,M1P

3 RBT(K)=RBT(K)+BTF(LK)*BTF(LK)
RBT(K)=DSQRT(RBT(K))
AK(K)=MAX(RBT(K),1.0D0)
RDBT(1)=AK(1)*EBSIL+10.0DO®EBSIL

DO 10 J=I.N
Y(J.1)=VS(J)
10 V(J)=VSs(J)
XX(1)=X
CALL GDGTX(N,M2,X,V.GM,DGM,DGX,DERIVS)
DO 101 J=1,M2
101 G(1.J)=GM(J)
DO 11 I=1 ,NSTEP
CALL UCONT(V,CS,UCS)
DO 112 J=1,M2
112 CU(1,J)=UCS(J)
CALL DERIVS(N,X,V,DV)
HA(I)=HAM(M1,X,V.DV)
CALL STPA(L1,L2,LC1,LC2,V,XV,YV)
DO 114 J=1.3
Ji=2"J.1
J2=2%J
IF(K1.GE.1.AND.K2.GE.1) THEN
IF(K.LT.K1.AND.K.LT.K2) THEN

IF(K.EQ.JK1) THEN
XYSP(1,J1,1)=XV(J)
XYSP(1,12,1)=YV(J)

ELSE IF(K.EQ.JK2) THEN
XYSP(2,J1.I)=XV(J])
XYSP(2,J2.)=YV(J)

END IF

ELSE IF(K.GE.K1.AND K.LT.K2) THEN

IF(K.EQ.K1) THEN
XYSP(1,J1,1)=XV(J])
XYSP(1,]2.l)=YV(J)

ELSE IF(K.EQ.JK1.OR.K.EQ.JK2) THEN
XYSP(2,J1,1)=XV(J)
XYSP(2,J2.0)=YV(J)

END IF

ELSE IF(K.GE.K1.AND.K.GE.K2) THEN

IF(K.EQ.K1) THEN
XYSP(1,J1.1)=XV(l])
XYSP(1,J2,)=YV(d)

ELSE IF(K.EQ.K2) THEN
XYSP(2,]J1.I)=XV(J)
XYSP(2,J2.)=YV(J)

END IF

END IF
ELSE IF(K1.LE.O.AND.K2.LE.O) THEN

IF(K.EQ.JK1) THEN
XYSP(1.J1,1)=XV(3)
XYSP(1,J2,1)=YV(J)

ELSE IF(K.EQ.JK2) THEN
XYSP(2,J1.1)=XV(J)
XYSP(2,J2.1)=YV(J)

END IF

END IF
XYSP(3.,J1,I)=XV(J)
XYSP(3,J2,1)=YV(])
114 CONTINUE
CALL RK4D(V.DV N X.H,V.DERIVS)
X=X+H
XX(I+1)=X
DO 13 J=1,N
13 Y(J,I+1)=Vv(J)
CALL GDGTX(N.M2,X.V.GM,DGM.DGX.DERIVS)
DO 131 JG=1,M2
G(I141,JG)=GM(JG)

CCCCCe7-9 9 9 9 9 9 9 72
[ CHECKING THE SIGN OF SWITHCHING FUNCTION
IF( G(1.JG)*G(I+1,JG).LT.0.0D0 ) THEN
JT=0
KK=KK+1

WRITE(".’(A.l14)’) ' FINDING THE SWITCH TIME NO ' KK
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14
15

16

161

17
131
11

113

111

XJ=XX(I)
HO=-H*G(L.JG)/(G(1+1.JG)-G(LJG))
Hl=Ho

DO 14 J1=1,N

Vi(J1)=Y(J1.I)

CALL UCONT(VI,C5.UCS)

JT=JT+1

CALL DERIVS(N.XJ,VI.DV])

CALL RK4D(VI,DVIN,XJ HI, VI DERIVS)

XHI=XJ+HJ

CALL UCONT(VJ,CS,UCS)

CALL GDGTX(N,M2,XHJ,VJ,GM,DGM,DGX,DERIVS)
MHJI=GM(JG)

DMHJ=DGM(JG)

HI1=-MHJ/DMHJ

IF(MIN(ABS(MHJ),ABS(HJ1)).LT.SIGMA) THEN
WRITE(",'(A,I4)’)' FOUND SWITCH TIME NO ' KK
SIGST(KK)=MAX(ABS(MHJ),ABS(RJ1))
SIGST(KK)=10.DO*MAX(SIGST(KK),SIGMA)
WRITE(4,'(/5X.A,10X,A,10X,A,9X,A,11,A))

& '‘—MHJ—''—HJ1—","SIGMA','SIGST(' KK,"')

WRITE(4,"(1P5E15.7)') ABS(MHJ),ABS(HJ1),51GMA,SIGST(KK)
JSN(KK)=JT
IS(KK)=I
ISW(KK)=JG
XS(KK)=XHJ
DO 16 Ji=1,N
YS(J1.KK)=VI(J)
H2=SIGMA
CALL DERIVS(N,XHJ,V1,DVJ)
CALL RK4D(VJ,DVIJ,N,XHJ H2, VI, DERIVS)
XHI=XHJ+H2
H2=XX(I+1)-XHJ
CALL UCONT(VJ,C5,UCS)
CALL DERIVS(N,XHJ,VI.DVJ])
CALL RK4D(VJ,DVIN,XHIJ, H2,V,DERIVS)
DO 161 J1=1,N
Y(J1.I41)=V(J1)
CALL GDGTX(N,M2,X,V,GM,DGM,DGX.DERIVS)
G(1+1,JG)=GM(JG)
GO TO 17
END IF

XJ=XHJ
HI=HJ1
GO TO 18
END IF
CONTINUE
CONTINUE
CALL UCONT(V,CS,UCS)
DO 113 J=1,M2
CU(NSTEP+1,]J)=UCS(J)
CALL DERIVS(N ., X,V,DYF)
DO 111 J=1,N
YF(J)=V(J)
HA(NSTEP+1)=HAM(M1,X,YF.DYF)
CALL STPA(L1,L2,LC1,LC2,YF XV .YV)
DO 116 J=1,3
J1=2"J-1
J2=2"J
IF(K1.GE.1.AND.K2.GE.1) THEN
IF(K.LT.K1.AND.K.LT.K2) THREN
IF(K.EQ.JK1) THEN
IK1=JK1
XYSP(1,J1,NSTEP+1)=XV(J)
XYSP(1,J2,NSTEP+1)=YV(J)
ELSE IF(K.EQ.JK2) THEN
IK2=JK2
XYSP(2,J1,NSTEP+1)=XV(J)
XYSP(2,J2,NSTEP+1)=YV(J)
END IF
ELSE IF(K.GE.K1.AND.K.LT.K2) THEN
IF(K.EQ.K1) THEN
IK1=K1
XYSP(1,J1,NSTEP+1)=XV(J)
XYSP(1,J2,NSTEP+1)=YV(J)
ELSE IF(K.EQ.JK1.OR.K.EQ.JK2) THEN
IF(K.EQ.JK1) IK2=JK1
IF(K.EQ.JK2) IK2=JK2
XYSP(2,J1.NSTEP+1)=XV(J)
XYS5P(2,J2,NSTEP+1)=YV(J)
END IF
ELSE IF(K.GE.K1.AND.K.GE.K2) THEN
IF(K.EQ.K1) THEN



IK1=K1
XYSP(1,J1,NSTEP+1)=XV(J)
XYSP(1,J2,NSTEP+1)=YV(J)
ELSE IF(K.EQ.K2) THEN
IK2=K2
XYSP(2,J1,NSTEP+1)=XV(J)
XYSP(2,J2,NSTEP+1)=YV(J)
END IF
END IF
ELSE IF(K1.LE.0.AND.K2.LE.0) THEN
IF(K.EQ.JK1) THEN
IK1=JK1
XYSP(1,J1,NSTEP+1)=XV(J)
XYSP(1,J2,NSTEP+1)=YV(J)
ELSE IF(K.EQ.JK2) THEN
IK2=JK2
XYSP(2,J1,NSTEP+1)=XV(J)
XYSP(2,J2,NSTEP+1)=YV(J)
END IF
END IF
XYSP(3,J1,NSTEP+1)=XV(J)
XYSP(3,J2,NSTEP+1)=YV(J)
116 CONTINUE
IF(K.EQ.JK1) JK1=JK1+10
IF(K.EQ.JK2) JK2=JK2+10
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WRITE(4,*) "MAXIMUM VALUES OF STATES & HA. FOR SCALING THE LCa#’
DO 115 J=1,M1P
WF(J)=0.0D0
115 CONTINUE
DO 119 I=1,(NSTEP+1)
DO 117 J=1,M1
WF(J)=MAX(WF(J),ABS(Y(J.1))}

117 CONTINUE
WF(MI1P)=MAX(WF(M1P),ABS(HA(1)))
119 CONTINUE

DO 120 I=1,M1P
WF(D)=(WFO(1)*(K-1)+WF(I))/K
WFO(I)=WF(I)

120 CONTINUE

WFMAX=0.0D0

DO 121 I=1,M1P
WF(1)=1.0D0/WF(I)
WFMAX=MAX(WFMAX,WF(I))

121 CONTINUE
DO 123 I=1,M1P
WF(I)=WF(I)/WFMAX
123 CONTINUE
WRITE(4,'(11X,A,11X,A,11X,A,11X,A,11X,A))
& 'WF(1),'WF(2)',"WF(3)""WF(4)',’WF(5)'

WRITE(4.'(6E16.8)") (WF(J),J=1,M1P)

WRITE(4,") 'SATURATION OF WS FOR SCALING THE LCs’

WFMAX=0.cD0

WFMIN=1.0D0

DO 124 I=1,M1P
WFMAX=MAX{WFMAX,WF(I))
WFMIN=MIN(WFMIN, WF(I)) -

124 CONTINUE

DO 1241 I=1,MIP

IF(WF(I1).LT.WSM) WF(1)=(1.0D0+(WF(I)-WFMIN)/(WFMAX-WFMIN))*WSM
1241 CONTINUE
IF(WSM.GT.0.5D0) THEN
DO 1242 I=1,M1P
WF(I)=1.0D0
1242 CONTINUE
END IF
WRITE(4,"(11X,A.11X,A,11X.A,11X,A,11X,A)")
L'WF(1),"WF(2)',"WF(3)","WF(4)',WF(5)’
WRITE(4.'(6E16.8)") (WF(J),J=1,M1P)
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C  PRINTING THE RESULTS OF INTEGRATION OF STATES & COSTATES
WRITE(",*)’ PRINTING THE RESULTS OF INTEGRATION OF STATES & C.*
WRITE(1,"(20X,A,I5/20X,A)' )’ ITR=",K.’ .
WRITE(1,'(6X,A,5X,A,4X,A,5X,A,4X,A,10X,A.8X,A.8X.A)")
& T X1=PH1','’X2=DPH1','X3=PH2','X4=DPH2"'H’,’U1","U2"
WRITE(2,'(20X,A,15/20X,A)')'ITR=".K,’ '
WRITE(2,'(6X,A.5X,A,4X.A,5X,A,4X,A,10X,A,8X,A,8X,A)")
& 'T'P1"PH1','P2 DPHI'’P3 PH2','P4 DPH2''H’','G1'.'G2"’
DO 21 I=1,(NSTEP+1)
WRITE(1,991) XX(I),(Y(J.1),J=1,M1},HA(I),(CU(I,J),J=1,M2)
WRITE(2,991) XX(1).(Y(J.1),J=M1+1.N),BA(I).(G(I.J),J=1,M2)
21 CONTINUE
WRITE(1,992)
WRITE(2.992)
DO 19 J=1,KK

[SV]
o
o



WRITE(1,993) J.IS(J).ISW(J1),XS(J).(YS(J1.J}),J1=1.M1)
WRITE(2,993) J.IS(J),ISW(J),XS(J).(YS(J1.J),J1=M141.N)

19 CONTINUE

CCCCCs7-9 9 9: 9 9 9 72
o4 CHEKING THE CONVERGENCE CR.I'I‘ERIA
CCCCCe7-9 9 9 72

WRITE(".") CHEKING 'rux-: couvsncsncz CRITERIA’
X2=BTF(MIP,K)
CALL UCONT(YF,CS,UCS)

CALL LDXBT(N,M1,X2,YF,VF,DFDY,LC,DLDX,DLDB,DLDTF,WF,DERIVS,DJACOB)
WRITE(4.'(/A.I4)') 'STATES AT FINAL TIME AT ITR NO'.K
WRITE(4.'(12X,A,10X,A,10X,A,10X,A,10X.A,5X,A.5X.A)") ‘X’

& 'YF1','YF2','YF3','YF4','U1",'U2’
WRITE(4,'(SE13.5,2F7.1)")X2,(YF(J),J=1,M1),(CU(NSTEP +1.J).J=1.M2)
WRITE(4.'(5E13.4,2F7.1)"}X2,(YF(J),J=M1+1.N)

RLC(K)=0.0D0
DO 191 I=1,M1P
RLC(K)=RLC(K)+LC(I)‘LC(I)

191 CONTINU
RLC(K)= DSQRT(RLC(K))
cCcCcCceer-s 9 9 9 72
IF( MAX(RDBT(K)/AK(K) RLC(K)) LT EBS[L) THBN
CcCcCccer-9
DO 192 [=1,MI1P
192 BTFF(1)=BTF(1.K)

WRITE(",®) ' THE PROGRAM CONVERGED AFTER'
WRITE(®,'(5X,13,5X,A)") K, 'ITERATION"
WRITE(1,") ' THE PROGRAM CONVERGED AFTER'
WRITE(1,'(5X,13,5X,A)") K, 'ITERATION"
WRITE(1,1000)
WRITE(1,1001) K,(BTFF(I),I=1,M1P)
WRITE(3,'(13,1P10E14.6)') K,(XS(L),L=1,KK)
WRITE(3,'(18X,1PE10.2,1P3E15.6)') RO,ALK(K),RLC(K),RDBT(K)
WRITE(3,'(78A)") (*-',J=1,78)
WRITE(3,1000)
DO 193 I=1,K
WRITE(3,1001) I(BTF(J.I),J=1,M1P)

193 CONTINUE
WRITE(3,1000)
WRITE(J3,1001) K,(BTFF(I),I=1,M1P)
WRITE(3,'(78A)') ("=".J=1,78)
WRITE(3.'(T5,A.13,T15.A,13,T35,A,13, T45,A.13.T70.A.13)")

& 'JK1=",JK1-10,"JK2=",JK2-10,"IK1="IK1,'IK2=",1K2," KF="K

CCCCCs7-9 9 9 9 9
C PRINTING THE DI:TANCEJ OF CONVERGED [N[TIAL COSTATES & INITIAL COSTATES

CCCCCe7-9 9 9 9 9 9 9 72
C OUTPUT FILE INCLUDE INTERMEDIATE RESULTS OF EACH ITERATION
OPEN(U’NIT-92 FILE ‘temp92.0ut’)

CCCCCe7-9 9 9 9. 9 72
WRITE(92.'(A.1X.A.SX.A.SX.A.SX,A.SX.A,QK.A.SX.A)')
& "#'°K',;” D, D1',’ D2',’ D3'." D4'." D%"

DO 1931 I=1.K
DIS(1)=0.0D0
DO 1932 J=1,MI1P
DISI(J)=0.0D0
DISI(J)=ABS(BTFF(J)-BTF(JI))
DIS(I)=DISI(J)"DISI(J)+DIS(I)
1932 CONTINUE
DIS(1)=DSQRT(DIS(I))
WRITE(92.'(13.1P6E12.4)")I,DIS(1),(DISI(J),J=1,M1P)
IF( 1.LEQ.1) THEN
WRITE(3,'(78A)") (*-",J=1,78)
WRITE(3.(A,1X.A,9X,A,9X,A.9X.A,9X,A,9X,.A,9X,A)")

& '#',K', D', D1', D2, D3', D4’ DS’
WRITE(3,'(I3,1P6E12.4)")I,DIS(1),(DISI(J),J=1.M1P)
END IF
1931 CONTINUE
CCCCCe7-9 9 9 9 72
C PRINTING THE CONVERGED RESULTS OF STATES & COSTATES

CCCCC67-9 9 9 9 9 9 9 72

C OUTPUT FILES INCLUDE OPTIMAL STATES, COSTATES, AND COSTATE PRODUCTS
OPEN(UNIT=5,FILE="temps.out')
OPEN(UNIT=6,FILE="tempc.out’)
OPBN(UN[T—GI FILE:'temp:l out )

CCCCCs7-9 9 72
WRITE(5,'(A,5X.A, 5X A4X,A5X,A4X,A,10X,A 8X,A.8X,A)")
& ‘#'. T, X1=PH1','X2=DPH1''X3=PH2",'X4=DPH2''H’,'U1",'U2’

WRITE(G.'(A.SX.A.SX.AAX.A.5X.A.1X.A.10X.A.lX.F?.J.A.1X.F7.3.A\')'
L#'.'T''P1"PH1',"P2"DPH1',’"P3"PH2''P4"DPH2','H'.5CG."G1",5CG.'"G?

WRITE(61."(A,T7.A.T16,A . T27,A,T38,A,T49,A.T61,A, T71,A.T80,A, T31.A.
&T102,A,T115,A,T126,A,T135. A, TI46,A) )'#","T","A11',"A12""A13","A1l
4£4°,'C2'.'A24','DELTA’,'"P4G1',’P2G2','P2",'"P4','DEG1','DEG2"*

221



DO 194 [=1,(NSTEP+1)
A11=C1+4+C242°C3"DCOS(Y(3.1))
Al12=C24C3"DCOS(Y(3.1))

A13=C3*DSIN(Y(3.1))
Al4=C4"DCOS(Y(1.1))+C5*DCOS(Y(1.1)+Y(3,1))
A24=CS5*"DCOS(Y(1.)+Y(3.1))
DE=C1%C2-C3**2"DCOS(Y(3.1))*"2
DEG1=G(l,1)*DE/C2
P4G1=Y(8,I)"A12/C2
DEG2=G(l,2)*DE/A11l
P2G2=Y(6,1)"A12/A11
WRITE(61,9911) XX(I1),A11,A12,A13,A14,C2,A24.DE

+ .P4G1,P2G2,Y(6,1),Y(8.1),DEG1,DEG?2
WRITE(S5,991) XX(I),(Y(J.I),J=1,M1),HA(I).(CU(1,J),J=1,M2)

. WRITE(6,991) XX(I),(Y(J,1),J=M14+1,N)LHA(I)(SCG"G(1,J),J=1,M2)

194 CONTINUE

WRITE(5,994)

WRITE(6,994)

DO 195 J=1,KK
WRITE(5.995) '#',J,I5(J),ISW(J),XS5(J).(YS(JI1,J),J1=1,M1)
WRITE(6,995) "#',4,IS(J),ISW(J),XS(J)(YS5(J1,1),J1=M1+1,N)

195 CONTINUE

CCCCCe7-9 9 9 9 9 9 9 72

C OUTPUT FILE INCLUDE TRAJECTORIES OF 3 ITERATIONS OF THE HAND

OPEN(UNIT=51,FILE='tempsi.out’)
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WRITE(51,'(A,T5,A,13,T20.A.13,T35,A,13)')'#’
&,'IK1=",IK1,'IK2=",IK2,’ KF=",K
WRITE(51,'(A,4X,A,5X,A,5X,A,5X,A,5X,A,5X,A,5X,A,5X,A,5X,A
&.SX.A,SX.A.sx.A..'hx,A.SX.A.SX.A.SX.A.SX.A.SX.1\)')'#'

&, X1.1°, Y1.1',°X2C.1°,'Y2C.1°,” X2.1',* Y2.1'
&, X1.2', Y1.2°,'X2C.2°,'Y2C.2"' X2.2',' Y2.2'
&," X1.F',' Y1.F''X2C.F','"Y2C.F',’ X2.F',' Y2.F'

IPR=NSTEP/15

DO 196 [=1,(NSTEP+1),IPR
WRITE(51,'(1P18E10.2)’) ((XYSP(L,J,I),J=1,6),L=1,3)

196 CONTINUE

WRITE(51,’(1P18E10.2)') ((XYSP(L,J NSTEP+1),J=1,6),L=1,3)

CcCcCccceer-9 9 9 9 9 9 9 72

C OUTPUT FILE INCLUDE OPTIMAL TRAJECTORY OF THE HAND

OPEN(UNIT=52,FILE="temps2.0out’)

CCCCCs7-9 9 9 9 9 9 9 72
WRITE(52.'(A . 4X,A,5X,A,5X,A,5X,A,5X,A,5X,A,.5X,A,5X,A,5X A
&,5X,A,5X,A,5X,A 5XK,A,5X,A,5X,A,5X,A,5X,A,5X,A))#

&, X.1') Y., X.3', Y.3', X.5', Y.5
&, X7, Y., X9 Y.9', X.11', Y.y
&, X.13', Y.13', X.15',"' Y.15' X.17° ' Y™
[PR=IPR"2
WRITE(52.'(18A)’) ((" 0.00E-01',}J=1,2),I=1,(NSTEP+1),IPR)
&,(° 0.00E-01°,J=1,2)
WRITE(S52,'(1P18E10.2)’) ((XYSP(3,J,1),J=1,2),I=1,(NSTEP+1),IPR)
& (XYSP(3,J,NSTEP+1),J=1,2)
WRITE(52.'(1P18E10.2)") ({XYS5P(3,J,1),J=5,6),I=1(NSTEP+1).,IPR)
& (XYSP(3,J.NSTEP+1).J=5,6)

CLOSE(UNIT=5)

CLOSE(UNIT=6)

CLOSE(UNIT=51)

CLOSE(UNIT=52)

CLOSE(UNIT=61)

CLOSE(UNIT=92)

GOTO 9900
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END IF
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cCccccer-9 9 9 9 9 9 9 72

C CALCULATING THE PARTIAL DERIVATIVES OF Y'S WRT B'S (DY/DB)
WRITE(®.®)' CALCULATING THE PARTIAL DERIVATIVES OF (DY/DB)’
C INTEGRATION OF DY/DB FROM X0-X5(1)
WRITE(*.") INTEGRATION OF DY/DB FROM X0-XS(1)'
CALL DYDBTO(N,M1,KB)
Xi=Xo
DO 371 I=1,N
VSS(I)=VS(1)
an CONTINUE

DO 40 L=1,KK
X25=XS(L)
X2=XS(L)-SIGST(L)
X3=XS(L)+SIGST(L)
JS=IS(L)-IS(L-1)
WRITE(".'(A.I2,A.14)") * JS OF SWITCH NO (*,L.")= ", JS
IF(JS.LE.0) THEN

JS=NSTEP

WRITE(*,'(A.I2.A,I4)') MODIFIED JS OF SWITCH NO(".L,")= ".J3
END IF
CALL UCONT(VSS,CS.UCS)



WRITE(4.’(/A,214)'’'STATES AT SWITCHING TIMES AT SWITCH NOS5'.L-1.L
WRITE(4,"(12X,A,10X.A.10X,A,10X.A. 10X A,5X. A.5X A )') "X’
&,'VS1','V52','V53','V54','U1","U2"
WRITE(4,"(5E13.5,2F7.1)"}X1,(V5S(J),J=1,M1),(UC5(J},J=1,M2)
WRITE(4,'(SE13.4,2F7.1)")X1,(V5S(J),J=M1+1,N)

CALL RKDUMBH(N,NM,VSS,DFDV.KB.X1,X2,J5.XH,YH,DERIVS,DERIVSH)
WRITE(4,'(5E13.5,2F7.1)")X2.(VSS(J),J=1,M1),(UCS(1),J=1,M2)
WRITE(4,'(5E13.4,2F7.1)")X2,(VSS(J),J=M1+1,N)
WRITE(4,"(12X,A,10X,A,10X,A,10X.A,10X.A.5X.A,5X,A)") 'X’
&,'YS1°,'YS2'.,'YS3,'YS4','UL",'U2
WRITE(4,'(5E13.5,2F7.1)")X2,( YS(J,L),J=1,M1),(UCS(J),J=1,M2)
WRITE(4.'(5E13.4,2F7.1)")X2,(YS(J,L),J=M1+1,N)

WRITE(4,'(/A)")’ INTEGRATION OF DY/DB FROM XS5(KK-1}-XS(KK)"
WRITE(C,'(QX.A.El(.e.sx.l\.l(.A.El(.S//Qx.A,lsx.A.le,A)')
&'XH(1)="XH(1),'XH(",25+1,")="XH(I3+1),'I','YH 1(1)","YH JS+1(1)
DO 27 J=1,NM
WRITE(4,998) J,YH(J,1),YH(J,JS+1)
27 CONTINUE
CCCCCe7-9 9. 9 9 9 9 9 ™2
(o4 CALCULATING THE JUMP VECTOR F AT SWHICHING TIMES
WRITE(",*) CALCULATING THE JUMP VECTOR F AT SWHICHING TIMES"*
WRITE(4,'(/6X.A.13,10X,A.I3)') 'ITR="K,"SWITCH NO=",L
HT=.SIGST(L)
DO 29 [=1,N
29 V(D=YS(LL)
CALL UCONT(V.CS.UCS)
CALL DERIVS(N,X25,V,DV)
CALL RK4D(V,DV ,N,X25 HT,V.DERIVS)
CALL UCONT(V.CS,UCS)
CALL DERIVS(N,X2,vV.DV)
WRITE(4,'(/10X,A,10X,A,10X,A,10X,A,4X,A,4X,A.6X,A)")
& 'X','DYS2','DYS4’,'DYS7’,'U1','U2''(-HT)HT"
WRITE(4,'(F11.8,3E14.6,2F6.1,E13.5)")
&X2,DV(2),.DV(4),DV(7)(UCS(J),J=1,M2),HT
DO 30 I=1,N
FL(LL)=DV(I)
30 V(I)=YS(LL)
HT=SIGST(L)
CALL UCONT(V,CS,UCS)
CALL DERIVS(N,X25,V.DV)
CALL RK4D(V,DV,N ,X2.HT ,V,DERIVS)
CALL UCONT(V.CS,UCS)
CALL DERIVS(N,X3,V,DV)
WRITE(4,'(F11.8,3E14.6,2F6.1,E13.5)")
£X3,DV(2),DV(4),DV(7).(UCS(J),J=1.M2).HT
WRITE(4.'(/20X,A/)') "'THE F VECTOR"'
DO 31 I=1,N
FR(LL)=DV(I)
F(I.L)=FL(LL)-FR(I,L)
FS(I)=F(LL)
VSS()=V(I)
WRITE(4,'(20X,A,12,A,11,A,1PE20.10)") 'F(",1,",".L.") =',F(I,L)
31 CONTINUE
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[of CALCULATING THE INTIAL CONDITION FOR (DY/DB) AFTER SWITCHING TIME
WRITE(",*)’ CALCULATING THE INT COND FOR (DY/DB) AFTER 5W TIME'
DO 32 I=1,NM
32 YHSL(I)=YH(1,JS+41)
CALL GDGTX(N,M2,X3.V55,GM,DGM.DGX,DERIVS)
ISF=ISW(L)
CALL DTDBS(N M1 ,M2,NM,ISF,YHSL,DGM,DGX,FS,YHSR)
WRITE(4."(/5X,A,23X,A/)') '"YH BEFORE JUMP''YH AFTER JUMP®
DO 33 I=1,NM
WRITE(4,'(5X,A,12,A.1PE20.10,5X,A,12,A.1PE20.10)") 'YHSL('.]
&,') =' ' YHSL(I),YHSR('.l,") ='.YHSR(I)
KB(I)=YHSR(I)
a3 CONTINUE
X1=X3
40 CONTINUE
X2=BTF(M1P,K)
JS=NSTEP-IS(KK)
WRITE(",'(A,12,A,I4)') ' JS TO END AFTER SWITCH NO (',KK,")= ' JS
IF(JS.LE.0) THEN
JS=NSTEP
WRITE(®.,'(A,I2,A,14)') MODIFIED JS OF SWITCH NO(',KK.")=",JS
END IF
CALL UCONT(VSS,CS.UCS)
WRITE(4.'(/A,214)')'STATES AT SWITCHING TIMES AT SWITCH NOS'.L-1,L
WRITE(4.'(12X,A,10X,A,10X,A,10X,A,10X,A,5X,A,5X.A)') 'X"
&,'YS1','YS2','YS3','YS4",'UL'U2’
WRITE(4,"(5E13.5.2F7.1)"}X1.(V55(J).J=1,M1),(UCS(J),J=1.M2)
WRITE(4,"(5E13.4,2F7.1)")X1.(VS5(J),J=M1+1,N)
CALL RKDUMBH(N ,NM.V55,.DFDV,KB,X1,X2,J5 XH,YH,DERIVS,DERIVSH)
WRITE(4.'(5E13.5,2F7.1)')X2,(VS5(J).J=1,M1),(UCS(J),i=1.M2)
WRITE(4,'(5E13.4,2F7.1)")X2,(V353(J),J=M1+1.N)
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WRITE(4,"(12X,A,10X,A,10X,A,10X,A,10X,A,5X,A,5X,A)') 'X"
&,'YF1''YF2','YF3','YF4','Ul1','U2"
WRITE(4,'(5E13.5,2F7.1)")X2,(YF(J),J=1.M1).(CU(NSTEP +1.J).J=1,M2)
WRITE(4,'(5E13.4,2F7.1)")X2,(YF(J),J=M1+41,N)
WRITE(4,'(/A)')' INTEGRATION OF DY/DB FROM XS(KK)-XF*
WRITE(4,'(9X,A,E14.6,5X,A.14,A E14.6//9X,A,13X,A,10X,A)")
L'XH(1)=".XH(1),’XH(",JS+1,")=" XH(IS+1),'I'",)YH 1 (1)',"YH IS+ 1(I)’
DO 42 J=1,NM
WRITE(4,998) J,YH(J,1),YH(J,JS+1)
42 CONTINUE

CCCCC87.9: 9 9 9 9 9 9 72
C CALCULATING THE DEVIATION MATRIX D AT THE END
WRITE(®.") ' CALCULATING THE DEVIATION MATRIX D AT THE END
DO 44 I=1 NM
44 YRF(1)=YH(1,JS+1)
CALL DLSBT(N,M1,YHF,DLDX,DLDB,DLDTF.DYF,D)
DO 468 I=1,MIP
DO 48 J=1M1P
DT(J.I)=D(1.I)
48 CONTINUE
DBT(1)=LC(I)
46 CONTINUE
WRITE(4,'(/A)') 'THE DEVIATION MATRIX AT FINAL TIME’
WRITE(4,"(9X,A,9X,A,9X.A,9X,A,9X,A)")
&'DT(1.J).'DT(2,J)'.'DT(3,1)'.'"DT(4,J).'DT(5,J)
DO 45 I=1 M1P
45 WRITE(4.'(6E16.8)’) (DT(L.J),J=1,M1P)
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C CALLING SUBROUTINE DXSVB FOR SOLVING LINEAR ALG. EQUATION DT*"DBT=LC
CALL DXSVB(M1P,SM,DT,LC,DBT)
WRITE(4.'(/A)))THE SOLUTION & COMPARISON’
WRITE(4,'(10X,A,10X,A,10X,A,10X,A,10X,A)")
&'DBT(1),'"DBT(2)'’'DBT(3),'DBT(4)''DBT(5)
WRITE(4,'(6E16.8)') (DBT(J),J=1,M1P)
WRITE(4,’(A)’ )’ORIGINAL RIGHT-HAND SIDE VECTOR LC.*
WRITE(4."(11X,A,11X,A11X,A,11X,A,11X,A)")
&'LC(1),'LC(2)','"LC(3)",'"LC(4)",'LC(5)’
WRITE(4,'(6E16.8)') (LC(J),J=1,M1P)
DO 47 I=1,M1P
LC(I)=0.0D0
DO 49 J=1 M1P
LC(I)=LC(I)+D(1.J)*DBT(J)
49 CONTINUE
47 CONTINUE
WRITE(4.'(A)')’RESULT OF (MATRIX)*(S5OL N VECTOR):’
WRITE(4,"(11X.A.11X,A,11X,A,11X,A11X,A)’)
&'LC(1)','LC(2)",'"LC(3).,'"LC(4)','LC(5)’
WRITE(4,’(6E16.8)') (LC(J),J=1,M1P)
WRITE(4,") ssssusessnarman:
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C  MODIFYING THE INTIAL GUESS FOR COSATATES & FINIAL TIME
WRITE(".®)' MODIFYING THE INTIAL GUESS FOR COSATATE & FINIAL TIME'
RDBT(K+1)=0.0D0
DO 51 [=1,M1P
51 RDBT(K+1)=RDBT(K+1)+DBT(1)*DBT(I)
RDBT(K+1)=DSQRT(RDBT(K+1))
ALK(K)=MIN(ALKM,RO*RET(K)/RDBT(K+1))
DO 52 [=1,M1P
DBTC(I)=-ALK(K)*DBT(I)
BTF(L.K+1)=BTF(I,K)+DBTC(!)
52 CONTINUE
WRITE(4.(/A)')’RESULTS OF MODIFIED PARAMETERS"®
WRITE(4,'(10X,A,14X,A,13X,A)')’ALK(K)','RLC(K)'"RDBT(K+1)'
WRITE(4,"(1P3E20.10)) ALK(K),RLC(K),RDBT(K+1)
WRITE(4,'(10X,A,10X,A,10X,A,10X,A,10X,A)")
&'BTF(1),'BTF(2).'BTF(3)','BTF(4)’,'BTF(5)"
WRITE(4,(1P5E16.8)') (BTF(J,K+1),J=1,M1P)
WRITE(4.'(9X,A.9X,A,9X.A,9X,A,9X,A)")
&'BTFO(1)'.'"BTFO(2)','BTFO(3)",'BTFO(4)".'BTFO(5)"
WRITE(4,'(1P5E16.8)') (BTF(J.K),J=1,M1P)
WRITE(4.(25X,A.5X.13)') '"END OF ITERATION="K
WRITE(4.'(40A)") (*-*,J=1,40)
WRITE(3,'(13.1P10E14.6)') K,(XS(L),L=1,KK)
WRITE(3.'(18X,1PE10.2,1P3E15.6)') RO,ALK(K),RLC(K),RDBT(K+1)
WRITE(3,'(19X.55A)") (*-'.J=1.55)
WRITE(9,(13,1P22E10.2)')K,ALK(K),(RLC(K)/M1P),(RDBT(K)/MI1P)
&, (BTF(J.K),J=1,M1P)(YF(J),J=1,M1),(G(1,J).J=1,M2),(X5(L),L=1.KKM)
WRITE(91.(13,1P14E10.2)")K.(WF(J),J=1,M1P),(LC(J),J=1,M1P)
& HA(1),HA(NSTEP+1),CPM,CPB
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c ADJUSTING THE STEP SIZE FACTOR RO
IF(ALK(K).NE.ALKM) THEN
IF(K.EQ.1) THEN

N
()
=S



IF(RLC(K).LT.5.0D3) THEN
RO=RO+ROIA
ELSE IF(RLC(K).GT.5.0D3) THEN
RO=RO-ROIA
END [F
ELSE IF(K.EQ.2) THEN
IF(RLC(K).LT.RLC(K-1)) THEN
RO=RO+ROIA
ELSE IF(RLC(K).GT.RLC(K-1)) THEN
RO=RO-ROIA
END IF
ELSE IF(K.GT.2) THEN
IF(RLC(K).LT.RLC(K-1).AND.RLC(K-1).LT.RLC(K-2) ) THEN
RO=RO+ROIA+RO“ROIM
GO TO 53
ELSE IF(RLC(K).GT.RLC(K-1).AND.RLC(K-1).GT RLC(K-2) ) THEN
RO=RO-ROIA-RO*ROIM
GO TO s3
ELSE IF(RLC(K).LT RLC(K-1)) THEN
RO=RO+ROIA
ELSE IF(RLC(K).GT.RLC(K-1)) THEN
RO=RO-ROIA
END IF
END IF
END IF
53 IF(RO.GT.0.999D0) RO=0.999D0
IF(RO.LT.ROMIN) RO=ROMIN

1 CONTINUE
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[ END OF THE ITERATION LOOP
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WRITE(®,*) ' END OF THE ITERATION LOOP '
WRITE(3,'(2X.A.9X,A,9X.A,9X,A,9X,A,9X.A)")

&'K','BTF(1),'BTF(2)."BTF(3)','BTF(4)."BTF(5)"

DO 60 K=1,NITR

WRITE(3,'(13,1P5E15.6)') K, (BTF(J,K),J=1,MIP)

60 CONTINUE

WRITE(3,'(40A)") (*-'.J=1,39)

WRITE(3,'(T5,A.I3,T15,A,13.T35,A,13,T45.A,13,T70.A.13)")

&'JK1=',JK1-10,"JK2=",JK2-10,'IK1=",IK1,'IK2="IK2," KF=",NITR

WRITE(3,"(40A)") ("~',J=1,39)

WRITE(".®) ' THE PROGRAM DID NOT CONVERGED AFTER’

WRITE(",’(10X,13,5X,A)’) NITR, 'ITERATION’

WRITE(1,”) ' THE PROGRAM DID NOT CONVERGED AFTER’

WRITE(1.'(10X,13,5X,A)’) NITR, 'ITERATION"'

WRITE(2,*) ' THE PROGRAM DID NOT CONVERGED AFTER’

WRITE(2,'(10X,13,5X.A)’) NITR, 'ITERATION’

WRITE(3,*) * THE PROGRAM DID NOT CONVERGED AFTER'

WRITE(3,'(10X.13,5X,A)’) NITR, 'ITERATION"®

WRITE(4,*) ' THE PROGRAM DID NOT CONVERGED AFTER"’

WRITE(4.°(10X,13,5X,A)’) NITR, 'ITERATION’

CLOSE(UNIT=1)

CLOSE(UNIT=2)

CLOSE(UNIT=3)

CLOSE(UNIT=4)

CLOSE(UNIT=9)

CLOSE(UNIT=91)

990 FORMAT(/'ITR =',I5/15X,"STATES",24X,"COSTATES"'//3X,'T".8X.'X1=Y"
= 7X,X2=Y'",7X,’X3=P1",7X.'X4=P2',8X,'U",10X,'EB"/}

991 FORMAT(F7.4,1P5E11.3,1P2E10.2)

9911 FORMAT(F7.4,1P13E11.3)

992 FORMAT(/1X,'KK',1X.'15°,2X,'JG",6X,'X5",8X,'YS1',8X,'Y52',8X
&,'YS53',8X,'YS4’)

993 FORMAT(12,14,14,1P6E11.3)

994 FORMAT('#'.’KK',1X,'15°,2X,"JG",6X,'XS".8X,"Y51',8X,'YS52",8X
&,'YS3',8X,'YS4’)

995 FORMAT(A.I2,14,14,1P6E11.3)

998 FORMAT(I10,1P2E20.10)

1000 FORMAT(12X,'BF(1)",10X,'BF(2)',10X,’"BF(3)",10X,'BF(4)'.13X,'"TF")
1001 FORMAT(I3,1P5E15.6)
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9900 END
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9 9 9 7
C USER SUPLLIED SUBROUTINE FOR DERIVATIVES OF STATES & COSTATES
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SUBROUTINE DERIVS(N,X.Y,DYDX)

DOUBLE PRECISION UCS5(2),C1,C2,C3,C4,C5,GR

COMMON /PATH/UCS,C1.C2,C3,C4.C5.GR

DOUBLE PRECISION X,P.Y(N),DYDX(N)

DOUBLE PRECISION X1,X2,X3,X4,P1,P2,P3,P4.T1.T2,G

™)
]
i



DOUBLE PRECISION SIN,COS
INTRINSIC SIN.COS

P=1.0Do0
G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
P1 = Y(5)
P2 = Y(6)
P3 = Y(7)
P4 = Y(8)
T1=UCS(1)
T2=UCS(2)
DYDX(1)=X2
DYDX(2)=

+P/(C1*C2-C3**2*COS(X3)"*2)*(-G*(C2°(C4*COS5(X1)+C5"COS(X1+X3))-(C2+
+C3"COS(X3))"C5*COS(X1+X3))+C2"T1-(C24C3*COS(X3))*T2+C3I*SIN(X3)*((C
+2+4C3"COS5(X2))*X2*"24C2"(2*X2" X4 +X4""2)))

DYDX(3)=X4

DYDX(4)=
+P/(C17C2.C3°=2*COS(X3)""2)*(G*((C2+C3*COS(X3))*(C4*COS(X1)+C5*COS(
+X14X3))-(C1+C2+2"C3I*COS(X3))*CS"COS(X1+X3))-(C24+C3*COS(X3))*T14+(C1
++C2+42"C3°C0OS5(X3))*T2-CI*SIN(X3)*((C14+C2+42°CI*COS(X3))"X2""24(C24+C3
+°COS(X3))%(2°X2*X4+X4""2)))

DYDX(S)=
+-P*(-P2/(C1"C2.C3**2°COS(X3)*"2)*G*(C2*(-C4*SIN(X1)-C5"SIN(X1+X3))
+4+(C24+C3°COS(X3))*CS*SIN(X1+X3))+P4/(C1°C2-C3**2*COS(X)""2)"G*((C2
++C3"COS(X3))*(-C4*SIN(X1)-C5°SIN(X1+4+X3)}+(C14+C2+2°C3"COS(X3))*C5°S
+IN(X1+X3}))

DYDX(6)=
+-P'(Pl+P2/(C1'C2-C3"2'COS(XJ)"2)‘C3'SIN(x3)'(2'(C2+C3'COS(XJ))‘x
+242"C2°X4 }P4/(C1°C2.C3*"2*COS5(X3)*"2)"C3"SIN(X3)*(2*(C14+C2+4+2"C3°C
+0S(X3))"X242%(C2+C3"COS(X3))*X4))

DYDX(7)=
+-P*(-2*P2/(C1°C2-C3"*2*COS(X3)"*2)""2*(-G*(C2*(C4°COS(X1)+C5*COS(X
+14X3))-(C24+C3°COS(X3))*Cs"COS(X1+X3))+C2*T1-(C24+C3*CO5(X3))*T2+C3"
+SIN(xJ)'((C2+C3'C05(x3))'x?"2+cz'(2'x2'x4+x1"2)))'CS"Z'COS(XS)'
+SIN(X3)4P2/(C1%C2-C3"*2°COS(X3)*"2)"(-G*(-C2=C5*SIN(X1+X3)+C3*SIN(
+X3)"C5°COS(X1+X3)+(C2+CI*COS(X3I))*C5*SIN(X1+4X3))}+CI*SIN(X3)*T2+C3*
+COS(X3)"({C2+CI“COS(X3))*X2""24C2%(2*X2* X4+ X 4"°2))-C3"*2*SIN(X3)**
+2°X2%%2).2°P4/(C1*C2-C3"*2"COS(X3)"*2)**2*(G*((C2+C3I*COS(X3))*(C4"
+COS5(X1)4C5*COS(X14X3))-(C14C242°C3*COS(X3))*C5*COS(X14X3))-(C2+C3"
+COS5(X3))*T1+(C14C2+2"C3*COS(X3))*T2-C3*SIN(X3)"((C14+C242*C3"COS(X3
+))"X2%%24(C24C3"COS(X3))*(2"X2"X4 4+ X4""2)))*C3=""2*COS(X3)*"SIN(X3)+P
+4/(C17C2.C3°°2*COS5(X3)"*2)*(G*(-C3"SIN(X3)*(C4*COS(X1)+C5"COS(X1+X
+3))~(C2+C3'COS(xJ))'CS'SIN(X1+x3)+2'C3‘5[N(x3)'c5'c05(x!+X3 J+(C14C
+2+2%C3°COS5(X3))"C5"SIN(X1+X3))4+CI*SIN(X3)*T1-2*C3=SIN(X3)*T2.C3a*CO
+35(X3)%((C14+C242"C3*COS(X3))"X2""24+(C24+C3"COS(X3))*(2°X2"X 4+ X4==2))
+-C3'SXN(XS)'(-Z'CJ'SIN(XJ)'x2"2-c3'SlN(x3)'(2'x?'x4+x1"2))))

DYDX(8)=
+‘P'(P3+P2/(CI'C2-C3"2‘COS(XJ)"2)'C3'SIN(x3)‘C2'(2'X2+2'X4)-P(/(C
+1°C2-C3%*2"COS5(X3)""2)"CI"SIN(X3)"(C24C3*COS(X3))"(2"X2+2"X4))

Y(1) = X1
Y(2) = X2
Y(3) = X3
Y(4) = X4
Y(5) = P1
Y(6) = P2
Y(7) = P3
Y(8) = P4
RETURN
END

CCCCCe7-9 9 9 9 9 9 9 72

C USER SUPLLIED SUBROUTINE FOR SECOND DERIVATIVES (JACOBIAN) OF 54C
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SUBROUTINE DJACOB(N,X,Y,.DFDY)

DOUBLE PRECISION UCS(2),C1,C2,C3,C4.C5.GR

COMMON /PATH/UCS,C1,C2,C3.C4,C5,GR

DOUBLE PRECISION X,P,Y(N),DFDY(N.N)

DOUBLE PRECISION X1,X2,X3,X4.P1,P2,P3,P4,.T1,T2,G

DOUBLE PRECISION SIN,C0S.53,03,A11,A12,A13,A14,A24,DE

&,A241,A12X2,DL4.DLS,DL6,DLTAL
INTRINSIC SIN,COS

P=1.0D0
G=GR

X1 = Y(1)
X2 = Y(2)
X3 = Y(3)
X4 = Y(4)
P1 = Y(5)
P2 = Y(6)
P3 = Y(7)
P4 = Y(8)



T1=UCS(1)
T2=UCS(2)

DO 12 [=1,N

DO 11 J=1,N
11 DFDY(J,I)=0.0D0
12 CONTINUE

DFDY(1.2)=1.0D0

DFDY(2,1)=
+-P/(C1%C2.C3=°2"COS(X3)"=2)*G=(C2%(-C4=SIN(X1)-C5*SIN(X 1+ X3))+(C2+
+C3"COS(X3))"C5*SIN(X1+X3))

DFDY(2,2)=
+P/(C1°C2-C3=*2=COS5(X3)""2)"C3*SIN(X3)*(2°(C2+C3"COS(X3))*X2+2"C2"X

+4)

DFDY(2,3)=
+-2°P /(C1®C2.C3"=2=COS5(X3)*"2)*"2%(-G*(C2%(C4*COS(X1)+C5"COS(X1+X3)
+)-(C24C3*COS(X3))"C5"COS(X1+X3))4+C2*T1-(C24+CI*COS(X3))* T2+ CI*SIN(X
+3)"((C2+4C3"COS(X3))*X2**24C2%(2°X2" X 4+ X47%2)) )" C3**2°COS(X3}*SIN(X
+3)4P/(C1°C2.C3**2*COS(X3)"*2)*(-G*(-C2*°C5*SIN(X 1+ X3)+C3*SIN(X3)*Cs
+*COS(X1+X3)4(C2+C3*COS5(X3))"CS*SIN(X1+X3))+CI"SIN(X3)*"T2+C3I"COS(X3
+)"((C2+C3"COS(X3))"X2"°24C2%(2°X2°X 4+ X4°*2) ) CI*="27SIN(X3)"=2"X 2"~
+2)

DFDY(2,4)=
+P/(C1%C2.C3**2"COS5(X3)"*2)*C3*SIN(X3)*C2"(2*X2+2"X4)

DFDY(3,4)=1.0D0

DFDY(4,1)=
+P/(C1"C2-C3""2°COS(X3)**2)*G*((C24+C3*COS(X3))*(-C4"SIN(X1)-C5*SIN(
+X14X3))+(C14+C2+2°C3°COS(X3))*CS="SIN(X1+X3))

DFDY(4,2)=
+-P/(C1%C2-C3"*2*COS(X3)"*2)"CI*SIN(X3)*(2*(C1+C2+2*C3*COS(X3))* X2+
+2*(C24C3°COS(X3))"X4)

DFDY(4,3)=
+-2°P/(C1*C2-C3°*2°COS(X3)""2)"*2"(G*((C2+ C3*COS(X3))*(C4*COS(X1)+C
+5"COS(X1+X3))-(C14+C242°CI"COS(X3))*CS*"COS(X1+X3))-(C24+C3*COS(X3))*
+T14(C14+C2+42°C3°COS(X3))*T2-C3I*SIN(X3)*((C1+C2+2"C3"COS(X3))"X2""2+
+(C2+4C3"COS(X3))"(2°X2"X44+X4""2)))*C3"*2°COS(X3)*SIN(X3)4+P/(C1"C2-C
+3"2°COS(X3)""2)*(G*(-C3*SIN(X3)*(C4=COS(X1)+CS*COS(X1+X3))-(C2+C3
4+*COS(X3))"C5"SIN(X14X3)4+2"C3*SIN(X3)*CS5"COS(X14+X3)+(C14C242°C3°COS
+(X3))*C5=SIN(X14X3))4+C3"SIN(X3)*T1.2"Ca*SIN(X3)*T2-C3"COS(X3)*((C1
++C242"C3°COS(X3))"X2""24(C24+ C3=COS(X3))"(2°X2°X 4+ X4°"2))-C3I*SIN(X3
+)"(-2*C3*SIN(X3)"X2*"2.C3*SIN(X 3)*(2°X2°X 4+ X4*"2)))

DFDY(4,4)=
+-P /(C1"C2.C3""2*COS(X3)**2)"C3*SIN(X3)*(C2+C3"COS(X3))"(2°X2+2"X4)

DFDY(5.1)=
+-P*(-P2/(C1%C2-C3""2*CO5(X3)**2)"G*(C2"(-C4*COS(X1)-CS*COS( X1+ X3))
++(C24+C3"COS(X3))*C5*COS(X1+X3))4+P4/(C1*C2-C3°*2*COS(X3)*=2)*G*((C2
++C3°COS(X3))"(-C4*COS(X1)-C5°COS(X1+X3))+(C1+C2+2°C3*COS5(X3))"C5"C
+0S(X1+X3)))

DFDY(5,2)=0.0D0

DFDY(5,3)=
+-P*(2°P2/(C1"C2-C3"*2*COS(X3)**2)"*2*G"(C2"(- C4"SIN(X1)-C5*SIN(X 14
+X3))4(C24C3°COS(X3))"CS*SIN(X1+X3))"C3=*2"COS(X3)*SIN(X3)-P2/(C1"C
+2-C3°"2"CO5(X3)""2)*G*(-C2*Cs"COS(X14X3)-C3*"SIN(X3)"CS*SIN(X1+X3)+
+(C24C3"COS(X3))*Cs"COS(X14+X3))-2°P4/(C1°C2-C3*=2*COS(X3)""2)"=2"G*
+((C24C3"COS(X3))*(-C4*SIN(X1)-C5*SIN(X1+X3))+(C1+C242°C3=COS(X3))*"
+C5"SIN(X1+X3))*C3""2°COS(X3)*SIN(X3)4+P4/(C1°C2-C3**2=C0OS(X3)""2)*G
+(-C3"SIN(X3)"(-C4"SIN(X1)-CS*SIN(X14X3))-(C24+C3*COS(X3))*Cs*COS(X
+14X3)-2"C3"SIN(X3)*CS"SIN(X14+X3)+(C14+C242=C3*COS(X3})*C5"COS(X1+X3
+)))

DFDY(S5,4)=0.0D0

DFDY(5,5)=0.0D0

DFDY(5,6)=
+P/(C1"C2-C3""2"COS(X3)""2)*G*(C2"(-C4*SIN(X1)-C5*SIN(X1+X3))+(C2+C
+3°COS(X2))*CS"SIN(X1+X3))

DFDY(5,7)=0.0D0

DFDY(5,8)=
+-P/(C1%C2.C3""2"COS5(X3)**2)*G*((C24 CI*COS(X3))*(-C4*SIN(X1)-C5*SIN
+(X14X3))+(C14+C242°C3=COS5(X3))"CS*SIN(X1+X3))

DFDY(6,1)=0.0D0

DFDY(6,2)=
+-P*(P2/(C1"C2.C3**2°COS5(X3)**2)* C3*SIN(X3)*(2°C242°C3°COS(X3))-P4/
+(C1%C2-C3*"2"COS5(X3)**2)*C3I*SIN(X3)*(2°C14+2°C2+4*C3°COS(X3)))

DFDY(6,3)=
+-P®(-2"P2/(C1"C2-C3°*2"COS(X3)**2)**2*C3**3*SIN(X3)**2°(2°(C2+C3°C
+05(X3))*X242"C2°X4)°COS(X3)+P2/(C1*C2-C3I**2*COS(X3)**2)*C3*COS(X3)
+°(2%(C24C3"COS(X3))*X2+2"C2"X4)-2*P2/(C1°C2-C3**2°COS(X3)*"2)*Ca*"
+2%SIN(X3)"*2*X2+2"P4/(C1*C2-C3*=2*COS(X3)**2)*"2*C3**3*SIN(X 3)**2"*
+(2°(C14C242°C3*COS5(X3))"X242%(C24+C3°COS(X3))"X4)*COS(X3)-P4/(C1°C2
+-C3%°2°COS5(X3)*"2)"CI*CO5(X3)*(2*(C14+C2+2*C3*COS(X3))"X2+2"(C2+C3"
+COS(X3))"X4)-P4/(C1°C2-C3°=2*COS(X3)**2)"C3*SIN(X3)*(-4*CI*SIN(X3)
+°X2-2°C3°SIN(X3)*X4))

DFDY(6.4)=
+-P*(2"P2/{C1"C2.C3°*2*COS5(X3)**2)*C3*SIN(X3)*C2-P4/(C1°C2.C3=°2°CO
+5(X3)*"2)"C3*SIN(X3)"(2=C242°C3*CO5(X3)))

DFDY(6.5)=-1.0D0

DFDY(6.6)=



+-P/(C1°C2-C3""2*COS(X3)**2)*CI*SIN(X3)*(2*(C2+CI"COS(X3))"X2+2°C2*
+X4)

DFDY(6,7)=0.0D0

DFDY(6,8)=
4P /(C1°C2-C3°*2°COS(X3)**2)"C3*SIN(X3)"(2*(C1+C242"C3"COS(X3))"X2+2
+°(C2+C3°COS(X3))"X4)

DFDY(7,1)=
+-P*(2°P2/(C1%*C2-C3*"2*COS(X3)""2)**2G*(C2*(-C4=SIN(X1)-C5"SIN(X 14
+X3))4(C2+C3I"COS(X3))*CS*SIN(X1+X3))*C3"*2COS(X3)*SIN(X3)-P2/(C1=C
+2-C3°°2"COS(X3)"*2)"G~(-C2°C5"COS(X1+X3)- C3=SIN(X3)"CS"SIN( X1+ X3 )+
+(C2+C3"COS(X3))*C5*COS(X1+X3))-2°P4/(C1°C2-C2==2"COS(X3)="2)""2"G*
+((C2+C3*COS(X3))*(-C4"SIN(X1)-C5*SIN(X1+X3))+(C14+C242°C3*COS5(X3))"
+C5°SIN(X14X3))*C3""2*COS(X3)*SIN(X3)+P4/(C1C2-C3**2"CO5(X3)**2)*G
+°(-C3*SIN(X3)"(-C4"SIN(X1)-C5*SIN(X1+4X3))-(C2+C3"COS(X3))*C5*COS(X
+;)-4;x3 }-2*C3°SIN(X3)*Cs*SIN(X14X3)+(C1+C2+2"C3*COS(X3))"CS*COS(X14+X3
+

DFDY(7,2)=
+-P*(-2°P2/(C1°C2-C3**2"COS(X3)"*2)**2°CI**3SIN(X3)"*2°(2°(C2+Ca"C
+0S5(X3))*X242°C2*X4)*COS5(X3)+P2/(C1°C2-C3**2*COS(X3)*"2)*(C3"COS(X3
+)%(2%(C24C3"COS(X3))"X2+2°C2*X4)-2°C3**2°SIN(X3)*=2°X2)+2"P4/(C1°C
42-C3%*2*COS(X3)**2)**2=C3**3*SIN(X3)**2%(2%(C1+C2+42*Ca*COS(X3))"X2
+42°(C24+C3"COS(X3))"X4)*COS(X3)+P4/(C1*C2-C3**2"COS(X3)**2)*(-C3*CO
+5(X3)%(2°(C14C2+2C3*COS5(X3))*X2+42%(C2+C3"COS(X3))*X4)-C3°SIN(X3)"
+(-4*C3*SIN(X3)*X2-2*C3"SIN(X3)*X4)))

S3=SIN(X3)

03=COS5(X3)

All1=(C14+C2+2°C3*COS5(X3))

A12=(C2+C3"COS(X3))

A13=C3*SIN(X3)

Al4=(C4"COS5(X1)+C5*COS(X1+X3))

A24=C5°COS(X1+X3)

DE=(C1°C2-C3**2°CO5(X3)**2)

A241=C5°SIN(X1+X3)

A12X2=(A12°X2**24C2%(2°X2" X4+ X4°"2}))

DL4=(A11"X2%"2+4 A12°(2°X2°X 4+ X4°*2))

DLS=(-G*(C2"A14-A12"A24)+C2°T1-A12°T2+A13°A12X2)

DL6=(-2"A13"X2%*2.A13°(2°X2" X4+ X4°*2))

DLTA1=(G"(A12"A14-A11"A24).A 12'T1+A11'T2-A13'DL1)

DFDY(7,3)=-P*(8*P2/DE®*3"DL5°C3°*4*03"*2"53"*2
+-4"P2/DE""2"(-G"(-C2"A2414+A13A24 +A12°A241)$A13°T24+C3" 03 A 12X2
+-C3°*2°53%*2°X2°2)*C3*=2=03"53
++2°P2/DE®*2*DL5"C3%*2°53%*2.2°P2/DE*"2"DLS"C3"*2°03"*2
++P2/DE®(-G"(-C2"A24+C3°03%A24-2"A13"A24 14+ A12%A24 )+ C3"03°T2
+-A13"A12X2-3%C3°*2%03*53°X2%"2)
++48°P4/DE®=3*DLTA1"C3**4*03°*2°53""2
4-4"P4/DE""2"(G"(-A13"A14-A12°A2414+2°A13"A24 +A11"A241)+A13"T1
+-2"A13*T2-C3"03°DL4-A13°DL6)"C3**2°03"53
++2°P4/DE**2"DLTA1°C3"*2"53"*2
+-2°P4/DE®"2"DLTA1*C3**2°03*~2
++P4/DE~(G*(-C3"03"A14-2A13"A241-A12° A244+2"C3"03"A24 + A11°A24)
++C3"03*T1.2°C3*03*T2+A13"DL4-2°C3*03°DL6
+-A13%(-2°C3%03*X2°*2-C3"03"(2*X2*X4+X1"*2)}})

DFDY(7.4)=
+-P*(-2"P2/(C1"C2.C3**2"COS(X3)**2)**2°CI"=3=SIN( X3)==2"C2%(2"X 2+ 2"
+X4)"COS(X3)4P2/(C1°C2-C3"=2°COS(X3)**2)*CI"COS(X3)"C2°(2°X2+2"X4}+
+2°P4/(C1%"C2-C3""2"COS(X3)**2)**2*C3""3"5IN(X3)*=2°(C2+C3*COS5(X3})"
+(2%X242%X4)*COS(X3)+P4/(C1"C2-C3""2°COS5(X3)"*2)*(-C3"COS(X3)*(C2+C
+3*COS(X3))"(2°X2+2%X4 )+ C3**2*SIN(X3)"*2%(2°X2+2"X4)))

DFDY(7,5)=0.0D0

DFDY(7.8)=
+-P*(-2/(C1°C2-C3*=2°COS5(X3)**2)**2%(-G*(C2*(C4*COS(X 1)+ C5°COS(X1+X
+3))-(C2+C3"COS(X3))*C5"COS(X1+X3))+C2*T1-(C24+CI*COS(X3))"T2+C3"SIN
+(X3)"((C24C3"COS(X3))* X224 C2*(2"X2* X4+ X4""2)))*C3*"2°COS(X3)"SIN
+(X3)+1/(C1°C2-C3**2°COS(X3)**2)*(-G*(-C2"C5*SIN( X1+ X3)+C3®SIN(X3)"
+C5"COS(X1+X3)4(C24+Ca*COS(X3))"C5*SIN( X1 4X3))+CI=SIN(X3)*T2+C3°COS(
+X3)*((C24C3"COS(X3))"X2""2+C2"(2°X2" X4+ X4=°2))-C3°=2°SIN(X3)**2°X2
+%2))

DFDY(7,7)=0.0D0

DFDY(7.8)=
+-P*(-2/(C1"C2-C3**2*CO5(X3)*"2)**2*(G*((C2+C3"COS(X3))*(C4=COS(X 1)
++C5"COS(X1+X3))-(C14+C2+2=C3"COS(X3))*C5"COS(X1+ X3))-(C24+C3I*COS(X3)
+)*T14+(C1+C2+2°C3°COS(X3))*T2-C3*SIN(X3)*((C1+C24+2°C3°CO3(X3))"X2""
+24(C24C3°COS(X3))"(2°X2"X 4+ X4=%2)))*CI**2°COS(X3)"SIN(X3)+1/(C1°C2
+-C3°*2*COS(X3)"*2)*(G"(-CI*SIN(X3)"(C4*COS(X 1)+ C5*COS(X14+X3))-(C2+
+C3*COS(X3))*C5*SIN(X14X3)+2°C3*SIN(X3)*C3*COS(X14+X3)+(C14+C2+27C3°C
+05(X3))"C5=SIN(X1+X3))+C3"SIN(X3)*T1.2°C3*SIN(X3)=T2.C3*COS3( X3)*((
+C14+C2+2°C3"COS5(X3))"X2°*2+4(C2+C3*COS(X3))*(2*X2°X 44X 4°°2))- CI*SIN(
+X3)%(-2°C3"SIN(X3)*X2°*2-C3*SIN(X3)*(2°X2" X4+ X4°*2))))

DFDY(8,1)=0.0D0

DFDY(8.2}=
+-P*(2°P2/(C1"C2-C3**2*COS(X3)**2)*C3"SIN(X3)*C2-2*P4/(C1°C2-C3*=2*
+COS(X3)*=2)*C3*SIN(X3)*(C2+C3°COS(X3)))

DFDY(8,3)=
+-P*(-2°P2/(C1"C2-C3**2°COS(X3)*"2)**2°C3**3"SIN(X3)"*2°C2%(2°X2+42*
+X4)*CO5(X3)+P2/(C1"C2-C3**2*COS(X3)**2)"C3"COS(X3)*C2%(2"X2+2°X4)+
+2°P4/(C17C2-C3**2°COS5(X2)"*2)"*2=C3**3*SIN(X3)*"2°(C2+C3°COS5(X3))"
+(2°X242°X4)"COS5(X3)-P4/(C1=C2-C3="2°CO5(X3)"=2)*C3"COS(X3)"(C2+Ca"
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+COS(X3))"(2°X2+2°X4)+P4/(C1*C2-CI"*2*COS(X3)**2)* CI*=2*SIN(X3)==2*
+(2"X242°X4))

DFDY(8.4)=
+-P*(2°P2/(C1"C2-C3°*2*COS(X3)**2)*Ca*SIN(X3)"C2-2°P4/(C1°C2-C3*=2=
+COS(X3)*=2)"C3*SIN(X3)*(C2+C3*COS(X3)))

DFDY(8,5)=0.0D0

DFDY(8.6)=
+-P/(C17C2.C3""2*COS(X3)**2)"C3*SIN(X3)*C2"(2°X 242" X4)

DFDY(8,7)=-1.0D0

DFDY(8.8)=
+P/(C1=C2. C3“2‘C05(x3)"2)'C3'SXN(x3)'(C2+C3'C°S(x3))'(2'x2+2'x4)
Y(1) = X1
Y(2) = X2
Y(3) = X3
. Y(4) = X4
Y(5) = P1
Y(6) = P2
Y(7) = P3
Y(8) = P4
RETURN
END
CCCCCer-9 9 9 9 9 9 7
C SUBROUTIVE FOR CALCULATING DERIVAT!VES OF DX/DB
CCCCC67-9

suanourxm: DERIVSH(N, NVAR X.YS, DFDY Y, DYDX DJACOB)
PARAMETER(NT=16, M1T=NT/2)
DOUBLE PRECISION UCS5(2).C1,C2,C3,C4.C5.GR
COMMON /PATH/UCS,C1,C2.C3.C4.C5.GR
DOUBLE PRECISION Y(NVAR).DYDX(NVAR),DFDY(N,N),DYDB(NT,MIT),YS(N)
& DYHDT(NT,M1T),SUM
DOUBLE PRECISION X
INTEGER N,MI1,NVAR
EXTERNAL DJACOB
M1=N/2
CALL DJACOB(N.X.YS,DFDY)
DO 14 I=1.M1
DO 13 J=1,N
1J=(1-1)"N+J
13 DYDB(J.1)=Y(1J)
14 CONTINUE
DO 17 L=1,M1
DO 16 J=1,N
LJI=(L-1)*N4J
SUM=0.0DG
DO 15 I=1,N
15 SUM = DFDY(J,[)*DYDB(I,L)+SUM
DYHDT(J.L)=5UM
DYDX(LJ)=DYEDT(J,L)
16 CONTINUE
17 CONTINUE

RETURN

END
CcCcccCcer-9 9 9 9 9 72
C USER :UPLIED SUBROUTINE FOR CON’TROL FORCES/TORQUE>
CCCCCe87-9 9

suanotrrme UCONT(Y.CS, UC)
DOUBLE PRECISION UCS(2),C1,C2.C3,.C4,C5,.GR
COMMON /PATH/UCS,C1,C2.C3.C4.C5.GR
DOUBLE PRECISION Y(*").CS(*),UC(*).G(2)
DOUBLE PRECISION Al11.A12,A13.A22,DE.DSIN.DCOS
INTRINSIC DSIN.DCOS
A11=C1+C2+2"C3*DCOS(Y(3))
A12=C2+C3*DCOS(Y(3))
A13=C3*DSIN(Y(3))
A22=C2
DE=A11"A22-A12"A12
G(1)=(+Y(8)"A22-Y(8)"A12)/(A11"A22-A12°A12)
G(2)=(-Y(6)"A12+Y(8)"A11)/(A11*A22.A127A12)
IF(G(1).GT.0.0D0) THEN
UC(1)=Cs(1)
ELSE
UC(1)=C5(2)
END IF
IF(G(2).GT.0.0D0) THEN
UCc(2)=Cs(3)
ELSE
UC(2)=CS(4)
END IF
RETURN
END

cccceceer-9 9 9 9

C USER SUPPLIED aUBR.OUTINE FOR CALCULAT[NG SWITCH FUNCTIONS AND
C ITS DERIVATIVE: (G, DG/DT DG/DX)

cCcccecer-9 9 9 72
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SUBROUTINE GDGTX(N.M2,X,Y,G,.DGDT,DGX.DERIVS)
PARAMETER(NT=16)
DOUBLE PRECISION UCS(2),C1,C2,C3.C4,C5,GR
COMMON [PATH/UCS,C1,.C2.C3.C4,C5.GR
DOUBLE PRECISION X,Y(N),G(M2),DGDT(M2),.DGX(M2.N),DYDX(NT)
DOUBLE PRECISION A11,A12,A13,A22.DE,DSIN,DCOS
INTRINSIC DSIN.DCOS
DO 11 I=1,M2
DO 12 J=1,N
12 DGX(1,J)=0.0D0
11 CONTINUE
A11=C14C242°C3*DCOS(Y(3))
A12=C24C3*DCOS(Y(3))
A13=C3"DSIN(Y(3))
A22=C2
DE=AI11%A22-A12"A12
G(1)=(+Y(6)"A22-Y(8)"A12)/(A11°A22-A12%A12)
G(2)=(-Y(8)"A12+Y(8)"A11)/(A11"A22-A12°A12)
DGX(1,3)=A13%(Y(8)-2.0D0%(A12-A22)*G(1))/(A11*A22-A12°A12)
DGX(1,6)=+A22/(A11"A22-A12°A12)
DGX(1,8)=-A12/(A11°A22-A12°A12)
DGX(2,3)=A13%(Y(6)-2.0D0"(Y(8)+(A12-A22)°G(2)))/(A11°A22-A12°A12)
DGX(2,6)=-A12/(A11"A22-A12°A12)
DGX(2.8)=+A11/(A11"A22-A12"A12)
CALL DERIVS(N,X,Y,DYDX)
DO 14 I=1,M2
DGDT(1)=0.0D0
DO 13 J=1.N

13 DGDT(I)=DGX(1,J)*DYDX(J)+DGDT(!)
14 CONTINUE

RETURN

END
CCcCeer-9 9 9 9 9 9 9 72

C USER SUPPLIED SUBROUTINE FOR CALCULATING VECTOR L(X,B,TF) AND ITS
C DERIVATIVES AT THE FINAL TIME (L,DL/DX.DL/DB,DL/DTF)
cCccceer-9 9 9 9 9 9 9 72
SUBROUTINE LDXBT(N ,M!1.X,Y.VF,DFDY,LC,DLDX,DLDB,DLDTF,WF.DERIVS
&,DJACOB)
PARAMETER(NT=16)
DOUBLE PRECISION UCS(2),C1,C2,C2,C4,C5,GR
COMMON /PATH/UCS,C1,C2,C3,C4,C5,GR
DOUBLE PRECISION Y(N),LC(M1+1),DLDX(M1+41,N),DLDB(M1+1,M1)
& ,DLDTF(M141).DYDX(NT),DFDY(N,N),VF(N),SUM,WF(M1+1)
DOUBLE PRECISION X
EXTERNAL DERIVS,DJACOB
CALL DERIVS(N X, Y, DYDX)
CALL DJACOB(N,X,Y.DFDY)
SUM=0.0D0
DO 15 I=1,M1
LC(I)=Y(1)-VF(I)
SUM=Y(MI1+)*DYDX([}+35UM
15 CONTINUE
LC(M141)=1.0D0+SUM
DO 13 [=1,M1+41
DO 11 J=1,N

1 DLDX(1,J)=0.0D0
DO 12 J=1,M1
12 DLDB(I,J)=0.0D0

13 CONTINUE
DO 18 [=1,M1
DLDX(L.I)=1.0D0
SUM=0.0D0
DO 17 J=1,M1
17 SUM=Y(M1+J)*DFDY(J,I)+SUM
DLDX(M1+1,I)=5UM
DLDX(M1+41,M141)=DYDX(I)
16 CONTINUE
DO 14 I=1 M141
14 DLDTF(1)=0.0D0

DO 19 I=1,M1+1
LC(1)=LC(I)/WF(I)
CWS LC(I)=LC(I})*WF(I)
DO 18 J=1,N
DLDX(1,J)=DLDX(1.J)/ WF(I)

Ccws DLDX(I1,J)=DLDX(L.J)*WF(I)
18 CONTINUE
19 CONTINUE
RETURN
END
CcCCcCcCe7-9 9 9 9 9 9 9 72
C USER SUPLLIED SUBROUTINE FOR INITIAL CONDITIONS OF DX/DB
CCCCCe67-9 9 9 9 9 9 9 72

SUBROUTINE DYDBTO(N.M1,DKDB)
PARAMETER(NT=16 M1T=NT/2)
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DOUBLE PRECISION DYDB(NT,M1T),DKDB(N"M1)
DO 12 I=1.M1
DO 11 J=1,N
11 DYDB(J.I)=0.0D0
12 CONTINUE
DO 15 I=1,M1
DYDB(M1+1.1)=1.0D0
15 CONTINUE
DO 14 I=1,M1

DO 13 J=1,N
J=(I-1)*N+4J

13 DKDB(1J)=DYDB(J,I)
14 CONTINUE

RETURN

END
CCCCCe7-9 9 9 9 9 9 9 72
C SUBROUTINE FOR CALCULATING JUMP OF (DY/DB) AT SWITCHING POINTS
CCCCCe7-9 9 9 9 9 9 9 T2

SUBROUTINE DTDBS(N.Ml.M?.NM.ISF.YHSL.DGDT.DGX.F,YHSR)
PARAMETER(NT=16, M1T=NT/2,M2T=M1T/2)
DOUBLE PRECISION UCS(2),C1,C2,C3,C4,C5.GR
COMMON /PATH/UCS,C1,82,C3,C4,C5,GR
DOUBLE PRECISION YHSL( NM)YHSR(NM),YHT(NT .MI1T),GYH(M2T ,MIT)
&,DGDT(M?),DTDB(MIT).FTB(NT.M!T).F(N),DGX(M?.N),SUL{
DO 15 I=1,M1
DO 14 J=1,N
IJ=(1-1)*N+J
14 YHT(J.I)=YHSL(1J)
15 CONTINUE
DO 12 J=1,M1
SUM=0.0D0
DO 11 I=1,N
11 SUM = DGX(ISF.I)*YHT(LJ)4+SUM
GYH(ISF,J)=5UM
12 CONTINUE
DO 16 J=1,M1
16 DTDB(J)=-GYH(ISF.J)/DGDT(IiSF)
DO 19 J=1,M1
DO 18 I=1,N
18 FTB(1,J)= F(I)*"DTDB(J)
19 CONTINUE
DO 21 I=1,M1
DO 20 J=1,N
[J=(1-1)*N+J
YHT(J.)=YHT(J.H+FTB(J.I)

20 YHSR(1J)=YHT(11)
21 CONTINUE
RETURN
END
CCCCC67-9 9 9 9 9 9 9 72

C  SUBROUTINE FOR CALCULATING (D-MATRIX)DEVIATION OF Y'S AT THE END
cccecsr.g 9 3 9 9 9 9 72
SUBROUTINE DLSBT(N,M1,YHF,DLDX,DLDB,DLDTF,DVF,D)
PARAMETER(NT=16,MIT=NT/2)
DOUBLE PRECISION UCS(2),C1,C2,C3.C4.C5,.GR
COMMON /PATH/UCS,C1,C2.C3,C4.C5.,GR
DOUBLE PRECISION YHF(N"M1),DLDX(M1+1,N},DLDB(M1+1.M1).DLDTF(M1+1)
&,DVF(N),DLSDB(M1T+1,MIT),DLSDT(MIT+1),D(M1+1.M1+1),YHT(NT.M1T).5UM
DO 12 I=1,M1
DO 11 J=1.N
LI=(1-1)"N+1
11 YHT(J.)=YHF(1J)
12 CONTINUE
DO 15 L=1,M141
DO 14 J=1.M1

SUM=0.0D0
DO 13 I=1,N
13 SUM = DLDX(L,I)*YHT(I,J)+SUM
DLSDB(L,J)=5UM+DLDB(L.J)
14 D(L,J)=DLSDB(L.,J)

15 CONTINUE
DO 17 L=1,M1+41

SUM=0.0D0
DO 16 [=1,N
16 SUM = DLDX(L.I)*'DVF(1)+SUM
DLSDT(L)=SUM+DLDTF(L)
17 D(L,M141)=DLSDT(L)
RETURN
END
CCCCCe7-9 9 9 9 9 9 9 72
C FUNCTION FOR CALCULATING HAMILTONIANS
CCCCC67-9 9 S 9 9 9 9 72

FUNCTION HAM(M1,X,Y,DYDX)
DOUBLE PRECISION X,Y("),DYDX(").HAM



HAM=0.0D0
DO 11 [=1,M1
HAM=Y(M1+[)*"DYDX(I)+HAM
11 CONTINUE
HAM=1.0D0+HAM

RETURN

END
CCCCCe7-9 9 9 9 9 9 T2
C SUBROUTINE FOR CALCULATING :PACXAL TRAJECTORY PATH
CCCCC67-9 72

auanourms :TPA(LI L2 LCI.LC?.Y.XP,YP)
DOUBLE PRECISION Y(*),XP(®),YP(*),L1,L2,LC1,LC2,DSIN.DCOS
INTRINSIC DSIN.DCOS
XP(1)=L1*DCOS(Y(1))
YP(1)=L1"DSIN(Y(1})
XP(2)=L1°DCOS(Y(1))+LC2*DCOS(Y(1)+Y(3))
YP(2)=L1*DSIN(Y(1))4+LC2*DSIN(Y(1)4+Y(3))
XP(3)=L1"DCOS(Y(1))+L2*DCOS(Y(1)+Y(3))
YP(3)=L1*DSIN(Y(1))4+L2*DSIN(Y(1)+Y(3))
RETURN
END

CCCCCs7-9 9 9 9 9
(o4 SUBROUTINE ONE STEP INTEGRATION USIN’G (TH ORDER RUNGE-KUTTA METHOD
cCccccer-9 9 72
SUBROUTINE RK(D(Y DYDX N X,H,YOUT, DER[VS)
PARAMETER (NMAX=80)
DOUBLE PRECISION Y(N).DYDX(N),YOUT(N),YT(NMAX),DYT(NMAX).DYM(NMAX)
DOUBLE PRECISION H.HH,H6 XH,X
EXTERNAL DERIVS
HH=H"0.5D0
Heé=H/6.D0
XH=X+HH
DO 11 I=1.N
YT()=Y(I)+ HH*DYDX(1}
11  CONTINUE
CALL DERIVS(N.XH,YT,DYT)
DO 12 [=1,N
YT(l)=Y(I)+HR*"DYT(I)
12 CONTINUE
CALL DERIVS(N,XK,YT,DYM)
DO 13 I=1,N
YT(I)=Y(1)+H*DYM(I)
DYM(I)=DYT(I)+DYM(I}
13 CONTINUE
CALL DERIVS(N.X+H,YT.DYT)
DO 14 I=1,N
YOUT(I)= Y(I)+H6'(DYDX(I)+DYT([)+2 DO"DYM(I))
14 CONTINU

RETURN
END
C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE (MODIFIED)
CCCCCe67-9 9 9. 9 9 72
(o4 aUBROUT[NE ON’E STEP IVTEGRAT[ON' USING 4TH ORDER RUNGE-KUTTA METHOD
CcCCCCCs7-9 9 72

:UBROUT[NE RK(H(Y.DYDX.N.NVAR.X.H.YS.DFDY.YOUT.DERIVS.DERIVSH)
PARAMETER (NMAX=80)
DOUBLE PRECISION Y(NVAR),DYDX(NVAR),YOUT(NVAR).YT(NMAX),DYT(NMAX}
&, DYM(NMAX)
DOUBLE PRECISION YS(N),DYS(NMAX),DFDY(N,N)
DOUBLE PRECISION H,HH,H6 XH,X
DOUBLE PRECISION UCS(2),C1,C2,C3,C4,C5.GR
COMMON /PATH/UCS,C1,C2,C3,C4,C5,GR
EXTERNAL DERIVSH,DJACOB.DERIVS
HH=H"0.5D0
H6=H/6.D0
XH=X+HH
DO 11 I=1,NVAR
YT(D=Y(I}+HE"DYDX(I)
11 CONTINUE
CALL DERIVSH(N,NVAR ,XH,YS,DFDY,YT,DYT.DJACOB)
DO 12 I=1,NVAR
YT(DH=Y(I)+HH*DYT(I)
12 CONTINUE
CALL DERIVSH(N,NVAR.XH,Y5,DFDY,YT.DYM,DJACOB)
DO 13 I=1,NVAR
YT(I)=Y(1)+ H*DYM(I)
DYM(I)=DYT(I)+DYM(I)
13 CONTINUE
CALL DERIVSH(N,NVAR,.X+H.YS,DFDY,.YT.DYT.DJACOB)
DO 14 I=1,NVAR
YOUT(I)=Y(1)+H6"(DYDX(I)+DYT(I)+2.D0O"DYM(I))
14 CONTINUE
CALL DERIVS(N.X.YS.DYS)
CALL RK4D(YS.DYS,N,X,H.Y5,DERIVS)
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RETURN
END
C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE (MODIFIED)

CCCCCe7-9 9 9 9 9 72
C SUBROUTINE INTEGRAT[ON OF ODB 3 USING CONSTANT STEP SIZE RUNGE-KUTTA
CCCCcCer-9 9
SUBROUTINE RKDUMBH(N, NVAR VS DPDV VS’IAR’I’ X1,X2,NSTEP.XH,YH.DERIVS
& ,DERIVSH)
PARAMETER (NMAX=80)
DOUBLE PRECISION VSTART(NVAR),V(NMAX),DV(NMAX),VS(N),DFDV(N,N)
DOUBLE PRECISION XH(NSTEP+1),YH(NVAR,NSTEP+1)
DOUBLE PRECISION X1,X2.X,H
DOUBLE PRECISION UCS(2),C1,C2.C3,C4,C5,GR
COMMON /PATH/UCS,C1,C2,C3,C4,C5,GR
EXTERNAL DERIVS,DERIVSH,DJACOB
DO 11 I=1,NVAR
V(I)=VSTART(])
YH(L1)=V(I)
11  CONTINUE
XH(1)=X1
X=X1
H=(X2-X1)/NSTEP
DO 13 K=1,NSTEP
CALL DERIVSH(N,NVAR,X,VS,DFDV,V,DV.DJACOB)
CALL RK4H(V,DV N NVAR,X,H,VS,DFDV,V,DERIVS.DERIVSH)
IF(X+H.EQ.X)PAUSE 'Stepsize not significant in RKDUMB.'
X=X+H
XH(K+1)=X
DO 12 I=1,NVAR
YH(LK+1)=V(I)
12 CONTINUE
13 CONTINUE
RETURN
END
C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE (MODIFIED)

cCccCcCccer.g 9. 9. 9 9 72
C SUBROUTINE FOR SOLVING LINEAR ALGEBRIC EQUATION A*X=C
C DRIVER FOR ROUT[NE bVBKSB WHICH CALLS ROUTINE SVDCMP
CCCCCs7-9 9 9 72
SUBROUTINE DXSVB(N.)M AC x)
INTEGER MP,NP
PARAMETER(MP=20,NP=20)
INTEGER J,K.,L.N
DOUBLE PRECISION A(N,N),C(N),X(N)
DOUBLE PRECISION U(NP,NP),V(NP.NP),W(NP},AT(MP.NP)
DOUBLE PRECISION WMAX,WMIN,SM
(o4 COPY A INTO U
DO 12 K=1,N
DO 11 L=1,N
U(K.Lj=A(K.L)
11 CONTINUE
12 CONTINUE
C DECOMPOSE MATRIX A
CALL SVDCMP(U,N N ,NP,NP,W,V)
WRITE(4.") 'CHECK PRODUCT AGAINST ORIGINAL MATRIX"
WRITE(4.%) '"ORIGINAL MATRIX:"
WRITE(4.'(10X,A,10X,A,10X,A,10X,A,10X,A)")
&A1) VA(,T)0A(3T)CA(4,0) CA(ST)
DO 45 L=1,N
45 WRITE(4,'(6E16.8)') (A(L.J),J=1,N)
WRITE(4.") 'PRODUCT U*W*(V-TRANSPOSE):’
DO 18 K=1.,N
DO 19 L=1,N
AT(K.L)=0.0D0
DO 21 J=1,N
AT(K,L)=AT(K,L)+U(K,J)*W¢J)*V(L,J)
21 CONTINUE
19 CONTINUE
WRITE(4,'(6E16.8)") (AT(K,L),L=1,N)
18 CONTINUE
WRITE(4.") wesas,
C FIND MAXIMUM SINGULAR VALUE
WRITE(4.*) 'FIND MAXIMUM SINGULAR VALUE®
WRITE(4,"(11X,A,11X,A,11X,A,11X,A,11X,A)")
&' W(1)',' W(2)," W(3)',' W(4)',' W(s)
WRITE(4,'(6E16.8)') ( W(K),K=1,N)
WMAX=0.0D0o
DO 13 K=1.N
IF (W(K).GT.WMAX) WMAX=W(K)
13 CONTINUE
o4 DEFINE "SMALL"
WMIN=WMAX"SM
ZERO THE "SMALL" SINGULAR VALUES
DO 14 K=1,N
{F (W(K).LT.WMIN) W(K)=0.0D0
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14 CONTINUE
WRITE(4,") 'ZERO THE "SMALL" SINGULAR VALUES®
WRITE(4,’(6E16.8)') ( W(K),K=1,N)
C BACKSUBSTITUTE FOR RIGHT-HAND SIDE VECTOR
CALL SVBKSB(U,W,V N N ,NP,NP,C.X)
END
C (C) COPR. 1986-92 NUMERICAL RECIPES SOFTWARE (MODIFIED)

cCcccceer-9 9. 9 g9 9 9 9 72
o4 SUBROUTINE FOR SOLVING LINEAR ALGEBRIC EQUATION A*X=C
C ROUTINE SVDCM
CCCccCcCer.9 9 - 9 9. 9 9 72
SUBROUTINE svdcmp(a.m.n.mp,np,w,v)
INTEGER m.mp,n,np,NMAX
DOUBLE PRECISION a(mp.np),v(np,np),w(ap)
PARAMETER (NMAX=500)
cyU USES pythag
INTEGER i,its,j,jj, k.l,am
DOUBLE PRECISION anorm.c.f,g,h,s,scale,x,y,z,rv}(NMAX),pythag
£=0.0d0
scale=0.0d0
anorm=0.0d0
do 25 i=1,n
I=i41
rvl(i)=scale®g
g£=0.0d0
$=0.0d0
scale=0.0d0
tf(i.le.m)then
do 11 k=i,m
scale=scaletabs(a(k,i})
11 continue
if(scale.ne.0.0d0)then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)®a(k,i)
12 continue
f=a(i.i)
=-s1gn(sqre(s),f)
h={"g.s
a(ii)=t-g
do 15 j=i,n
$=0.0d0
do 13 k=i.m
s=s4+a(k,i)%a(k,j)
13 continue
f=s/h
do 14 k=i,m
a(k,j)=a(k,;)+™a(k.i}
14 continue
15 continue
do 16 k=i,m
a(k,i)=scale®a(k.i)
16 continue
endif
endif
w(i)=scale *g
£=0.0d0
4=0.0d0
scale=0.0d0
if((i.le.m).and.(i.ue.n))then
do 17 k=L.n
scale=scaletabs(a(i.k))
17 continue
tf(scale.ne.0.0d0)then
do 18 k=Il.n
a(i,k)=a(i,k)/scale
s=stalik)®a(i,k)
18 continue
f=a(il)
g=-sign{sqre(s).f)
h={"g-s
a(il)=t-g
do 19 k=l,n
rvl(k)=a(i,k)/h
19 continue
do 23 j=l.m
$=0.0d0
do 21 k=l,n
s=s+a(j,k)*a(i.k)
21 continue
do 22 k=l,n
a(),k)=alj.k)+s"cvi(k)
22 continue
23 continue
do 24 k=Ln
a(i,k)=scale®a(i.k)
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24

25

26

27

28
29

31

32

33

34

35

6

a8

39

42
43

continue
endif
endif
anorm=max(anorm,(abs(w(i))+abs(rvi(i})))
continue
do 32 i=n,l.-1
if(i.lt.a)then
1{(g.ne.0.0d0then
do 26 )=l.n
v(id)=(a(i.j)/ail))/g
continue
do 29 j=l,n
4=0.0d0
do 27 k=l,n
s=s4a(i.k)®v(k.})
continue
do 28 k=!,n
v(k,j)=v(k,))+s®v(k.1)
continue
continue
endif
do 31 j=la
v(i,j)=0.0d0
v(j,i)=0.0d0
continue
endif
v(i,i)=1.0d0
g=rvi(i)
1=
continue
do 39 i=min(m.n).1,-1
=il
g=w(i)
do 33 j=l,n
a(i,j)=0.0d0
continue
if(g.ne.0.0d0)then
=1.0d0/g
do 36 j=l.n
$=0.0d0
do 34 k=i,m
s=s+a(k.i)*a(k.})
continue
=(s/a(i.i))"g
do 35 k=i,m
a(k.j)=alk,j)+™a(k.i)
continue
continue
do 37 j=i.m
a(ji)=a(j.i)*g
continue
else
do 38 )=1.m
a(),1)=0.0d0
continue
endif
a(i,i)=a(ii)+1.0d0
continue
do 49 k=n.1,-1
do 48 1t5=1,30
do 41 I=k.1,-1
am=l-1
if((abs(rvi(l))+anorm).eq.anorm) goto 2
if((abs(w(nm))+anorm).eq.anorm) goto 1
continue
¢=0.0d0
+=1.0d40
do 43 i=Lk
f=4"rvi(i)
rvl(id=c®rvi(i)
if((abs({}+anorm).eq.anorm) goto 2
g=w(1)
h=pythag(f.g)
w(i)=h
h=1.0d0/h
€= (g"h)
s=-({"h)
do 42 )=1,m
y=a(j,am)
z=a(jae)
a(j.am)=(y"c)+(2"s)
a(j,i)=-(y*s)+(z"c)
continue
continue
z=w(k)
if(l.eq.k)then
if(2.18.0.0d0)then
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w(k)=-2
do 44 )=1.n
v(j.k)=-v(j.k)
44 continue
endif
goto 3
endif
1f(its.eq.30) pause 'no convergence in svdcmp’
x=w(l)
nm=k-1
y=w(am)
g=rvi(nm)
h=rvi(k)
f=((y-z)"(y+2)+(g-h)"(g+h))/(2.0d0"h"y)
g=pythag(f,1.0d0)
f=({x-2)%(x+2)+b"((y/({+agn(5.1)))-h))/x
c=1.0d0
$=1.0d0
do 47 j=l.nm
i=j41
g=rvi(i)
y=w(i)
h=s"g
g=c"g
z=pythag(f.h)
rvl(j)=z2
c={/z
s=h/z
f= (x"c)+(g"s)
=-(x"s)+(gc)
h=y®s
y=y®c
do 45 jj=1.,n
x=v(i).i)
z=v(jj.i)
v(j)a)= (xTc)+(2"s)
v(jj.i)=-(x"s)+(2%c)
45 continue
z=pythag({,h)
w(i)=z
if(z.ne.0.0d0)then
2=1.0d0/z
c={"z
s=h"z
endif
= (c"g)+(s"y)
x=-(s"g)+(c"y)
do 46 jj=1,m
y=a(js.i)
z=a(jjd)
a(jjg)= (y%c)+(2%s)
a(jji)=-(y*s)+(2%c)

46 continue
47 continue
rv1(1)=0.0d0
rvi(k)={
w(k)=x
48 continue
3 continue
49 continue
return
END

C (C) Copr. 1986-92 Numerical Recipes Software j:'414155.

CCCCCe7-9 9 9 9 9 9 9 72
C SUBROUTINE FOR SOLVING LINEAR ALGEBRIC EQUATION A®X=C
C FUNCTION pythag
CCCCCe7-9 9 9
FUNCTION pythag(a,b)
DOUBLE PRECISION a,b.pythag
DOUBLE PRECISION absa,absb
absa=abs(a)
absb=abs(b)
if(absa.gt.absb)then
pythag=absa®sqrt(1.d0+(absb/absa)*"2)
else
if(absb.eq.0.d0)then
pythag=0.40
else
pythag=absb®sqrt(1.d04(absa/absb)**2)
endif
endif
return
END
C (C) Copr. 1986-92 Numerical Recipes Software j:'&14155.
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C SUBROUTINE FOR SOLVING LINEAR ALGEBRIC EQUATION A*X=C
C SUBROUTINE svbksb
CCCCC67-9 9 9 9 9 9
SUBROUTINE svbksb(u,w,v.,m,n,mp,ap,b,x)
INTEGER m,mp,n,np,NMAX
DOUBLE PRECISION b(mp),u(mp,np),v(np,np),w(np),x(np)
PARAMETER (NMAX=500)
INTEGER i.j,jj
DOQUBLE PRECISION s,tmp(NMAX)
do 12 j=1,n
1=0.d0
if(w(j).ne.0.d0)then
do 11 i=1l,m
s=s4u(i,j)*b(i)
11 continue
s=s/w(j)
endif
tmp(j)=s
12 continue
do 14 j=1,n
+=0.d0
do 13 jj=1,n
s=s+v(jij)*tmp(jj)
13 continue
x(j)=s
1% continue
return
END
C (C) Copr. 1986-92 Numerical Recipes Software j:'&1415S.

9 72
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