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ABSTRACT 

The bioavailability of some high hepatic 6rst-pass drugs, such as propafenone 

and metoprolol, has been shown to increase substantially when they are orally 

administered with a protein-rich meaI in humans. A change in hepatic metabolic 

capacity, induced by dietary amino acids, may be one of the mechanisms contributing to 

this food effect. In this project, an attempt was made to elucidate the possible 

mechanism by examining the kinetic and metabolic interaction of propafenone and 

metoprolol with amino acids in animal models including the isolated, p&ed rat liver 

preparation and the intact rat. 

Since the metabolism of propafenone in the rat has never been reported, kinetic 

and metabolic studies on propafenone were conducted in the isolated, p e h e d  rat liver 

to ensure the feasiiility of the interaction study. Firstly, a sensitive and convenient 

HPLC method for the analysis of propafenone enantiomers in rat liver p&ate and 

human plasma has been deveIoped using Tetra-0-acetyl-P-D- 

glucopyranosylisothiocyanate as a ch id  derivatizing regent. A pilot study employing 

this assay in the isolated, perfused rat h e r  showed that propahone was higbly bound 

to hepatic tissue and its disposition was stereoselective. Secondly, by using HPLCMS 

and tandem mass spectrometry with etecttospray and atmospheric pressure chemical 

ionizations, phase I and phase II metabobtes in rat liver pef ia te  were struchrcaUy 

identified and two noveI glucufonides of hydroxylated propafenone derivatives were 

found. The levels of metabotites were determined simultaneously by a newly devdoped 

HPLC method with UV detection. The mutts revealed that a propafenone derivative 



hydroxylated in the ephenyl ring @OH-PF), which was not found in humans, was the 

major phase I metabolite in the rat Iiver, whereas N-despropylpropafemne and 5- 

hydroxypropafenone were of minor importance in quantity. Based on these findings, it 

was concluded that propafenone was not an appropriate model drug for studying the 

drug-food interaction in the isolated, perfirs& rat liver. 

The interaction between metoprolot and amino acids was studies in the isolated, 

perfbed rat liver and the in vivo rat. First of all, a modified and revalidated HPLC 

method for the simultaneous analysis of metoprolol and its metabolites, a- 

hydroxymetoprolol and 0-demethyImetoproIo1, in rat liver perfusate and rat plasma was 

described. Twenty-four livers fiorn Sprague-Dawley rats were divided into three groups, 

and perfimd in either antegrade or retrograde flow directions with 5.48 pM of 

metoprolol in an erythrocyte-enriched Krebs bicarbonate buffer, and meanwhile 

coinfused with a balanced mixture solution of amino acids, A transient and reversible 

reduction in metoprolol metabolism was observed in the presence of amino acids. The 

magnitude of the reduction was dependant on the direction of perfirsion, the hepatic 

oxygen delivery and the concentration of amino acids, consistent with the hypothesis 

that inhtiition of metoprolo1 metabolism was partially due to oxygen deprivation in the 

pericentral zone of the liver. This finding is rerevant to the food effect observed in 

humans. Finally, a pardel study was carried out, in which eighteen Sprague-Dawley 

rats were orally given metoprolol (I0 mgkg) with either water or a mixture solution of 

amino acids. The AUCoral of metoproiol showed an increasing trend with amino acids, 

while the & of metabolites was significantly proIonged. The changes in these 

pharmacokinetic parameters, probably consequent to a temporary inhibition of hepatic 



metoprolol metabolism by amino acids, resembled the food effect in humans. in 

conclusion, the results from both ex viva and in viva studies strongly support the 

proposed mechanism. 
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CBMPTER I 

INTRODUCTION 

1.1 General considerations of food-drug interactions 

It has Iong been recognized that the coadministration of food with medication 

may alter drug bioavailability (Anderson, 1988; Melander, 1978; Welling, 1977). Food 

may have marked effects on drug disposition by increasing or decreasing the extent or 

rate of drug absorption, distriiution, metabolism andlor excretion (Roberts and Turner, 

1988; Williams et al., 1996; Welling, 1977). The mechanisms by which food modifies 

drug efficacy are numerous, including purely chemical interactions and a wide range of 

physiologically mediated interactions at one or more phases of drug action (Figure 1.1). 

Acknowledging the importance of this phenomenon, most regulatory agencies around 

the worId now require information on the effects of concomitant intake of food for 

virtually ail new chemical entities and new modified-release dosage forms as well 

(Salmonson, 1993). A good understanding of drug-food interactions is also needed to 

provide a basis for predicting the extent of these interactions. 

Drug-fwd interactions refer to the instances in which food alters an individual's 

response to a drug or in which a drag interferes with an individual's nutrition 

(Hartshorn, 1977; Hathcok 1985). This chapter will focus on the effects of food intake 

on the disposition of orally administered drugs. 
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Figure 1.1. Phases of drug actions 

1.1.1 Absorption 

+ 

When a drug is administered by the oral route, it is absorbed from the 

gastrointestinal tract and then enters the systemic circulation, tlom which it is eventually 

delivered to the site of action. Absorption of drugs consists of numerous processes 

(Shargel and Yu, 1999). These processes include: I )  disintegration of the drug product 

and subsequent release of the drug, 2) dissolution of the drug in the acid gastric juice or 

in the more alkaline and biliary milieu of the small intestine; and 3) absorption across 

cell membraues of the gastrointestinal wall into the portal blood. Drugs may be absorbed 

by passive diffusion or by active transport fiom any part of the alimentary canal. For 

most drugs, the optimum site for drug absorption is the proximal region of the small 

intestine because its unique anatomical brush structure provides an immense surface 

area for the drug to diffuse. Some absorption, particularly that of acidic or neutraI 

compounds that may be soluble and in an unionized state in gastric fluids, may occur 

efficiently fiom the stomach. Drags may also be absorbed h m  distal regions of the 

intestinal tract. 

Drug-receptor 
interaction at effect 
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Once they are absorbed into the splanchnic circulation, drugs are carried to the 

liver via the portal vein, and thence by the hepatic vein into the systemic circulation. 

During this passage, drugs are exposed to the metabolizing enzymes of the liver and 

may undergo first-pass hepatic metabolism or biliary excretion. First-pass metabolism 

may also occur when certain drugs pass through the gastrointestinal wall where they 

may be transformed by metabolic enzymes. 

Probably the most important interaction between drugs and nutrients is the 

influence of food on the absorption phase of a drug. A number of studies indicate that 

food may enhance or decrease the bioavailability of a drug, Absorption of drugs may be 

reduced, increased, delayed or unaffected by the physiological changes that occur in the 

gastrointestinal tract in the fd state compared with the fasting state, or by direct 

physical or chemical interactions between drug products and food molecules (Welling, 

1984). The magnitude of a food-dnrg interaction is dependent on the physical and 

chemical nature of the drug, the formulation in which the drug is administered, the type 

and size of a meal, and the time interval that elapses between eating and drug 

administration (Welling, 1996). 

1. I.1.I Inflmnce of food on the gastrointestinal tract 

Ingested food produces a number of physiological effects on the gastrointestinal 

tract, and thereby affects the absorption of drugs. These effects are well summarized by 

P.G. Welling (1989) in Table 1 .I. 





I. Gastrointestinal motility 

Gasfric motility. Ingested food tends to inhibit gastric motility, i.e. the rate of 

stomach emptying, primarily due to feedback mechanisms fiom receptors situated in the 

proximal small intestine. Gastric emptying time is prolonged by hot food, fat and to a 

lesser extent, protein and carbohydrates, in the stomach (Welling, 1989). Large fluid 

volumes, on the other hand, accelerate stomach emptying. 

As a consequence, the most commonly observed effect of food is to delay 

absorption of the drug due to its delayed presentation to its major site of absorption in 

the proximal small intestine. Delayed stomach emptying may delay absorption of acidic 

compounds or drugs in enteric-coated formulations by deiaying drug transit kern the 

acidic environment of the stomach to the reIatively alkaline region of the small intestine. 

An excellent example is that absorption of aspirin enteric-coated tablets is markedly 

delayed by food with no drug appearing in plasma until 4 hr after dosing (Bogentoft et 

al., 1978). Delayed drug absorption means that the time for the drug to reach its peak 

blood level after a single dose is lengthened. It is generally considered not clinically 

important for the majority of drugs. For drugs such as antiiiotics which may need to 

produce high senun levels quickly, however, a delay of absorption may be significant. 

Moreover, prolonged gastric emptying time may promote absorption of some 

drugs because it permits more drug to be dissoIved in the stomach before passing on to 

the mall intestine to be absorbed. This is particularly true for drugs that have poor 

solubihty at acidic gastric pH and slowIy dissolving formuIations. It has been shown 

that food enhances the bioavailability of nitrofirrantoin in dosage forms that &'bit poor 

dissolution characteristics (Rosenberg and Bates, 1976). Increased nitrofinantoin 



absorption may be attniuted to better dissolution of the weakly acidic nitrofurantoin 

molecule by food-induced slow stomach emptying, as judged h m  studies employing 

anticholinergic pretreatment (Melander, 1978; Welling, 1977). 

Prolonged stomach retention may also increase the absorption efficiency of 

drugs that are absorbed by saturable mechanisms or that exhibit an 'absorption window' 

effect, by prolonging the time during which the drug is in contact with the active site. 

Increased absorption of riboflavin (Levy and Jusko, 1966) and niflavin-5'-phosphate 

(Levy and Jusko, 1967) in the presence of food, partidarly after high drug doses, has 

been shown to be consistent with a site-specific saturable absorption mechanism. In 

fasted subjects, high doses of vitamins saturated the absorption site in the small 

intestinal tract, resulting in reduced absorption efficiency. When the vitamin was taken 

with food, the reduced gastric emptying rate decreased the rate of drug passing the 

active absorption site and facilitated complete absorption over a wide dose range. 

Nevertheless, slow stomach emptying may decrease the absorption of acid labile 

compounds, such as penicillin (Welling, 1977), erythromycin (Melander, 1978) and 

didanosine (Knupp et al., 1993). This is due to prolonged residence in the acidic gastric 

fluids, leading to degradation of these acid-labile drugs. 

Intesrinal motility. In contrast to inhiibition of gastric motility, ingested food 

stimulates intestinal motility. Increased intestinal motility after food intake may increase 

drug avaiIaWity due to more drag dissolution and greater exposure of drug molecules to 

the intestinal epithelial surface, but may also decrease availabiIity because of a reduced 

intestinal transit time. 



II. Gastrointestinal secretions 

tugestion of food increases most gastrointestinal tract secretions, including 

digestive enzymes, hydrochloric acid and bile. All of those could increase drug 

availability depending on the acidic or basic nature and lipophilicity of the drug or drug 

dosage form, 

Biliary secretion. Increased bile flow by dietary fat may enhance absorption of 

certain highly lipid-soIubIe drugs as a resuit of the solubilizing and emulsifying activity 

of bile acids. This is believed to be the mechanism that explains the increased 

bioavailability of griseofblvin (Welling, 1977), cefuroxime (Mackay et al., 1992) and 

fenretidine (Doose et al., 1992) with a meal containing fat. Griseollvin is an antihgal 

drug with very low water solubility and hence poor bioavailability. Absorption of 

grimfblvin has been shown to be increased by high-ht meals but not by high-protein or 

high-carbohydrate meals (Welling, 1977). As griseofblvin is an extremely lipophilic 

molecule, its dissolution and hence absorption may be accelerated directly by the 

present of fat in the meal and indirectly by fat-stimulated biIe secretion. A mechanistic 

study on cefirroxime showed that hyoscine butylhmide had no effect on cefixoxine 

absorption whereas cholecystokinin resulted in a 20% increase in c e b x i m e  C,, and 

AUC values (hdackay et d., 1992). These results lead to the conclusion that bile release, 

but not gastric emptying, may be at least partially responsible for increased cefhxime 

absorption in the presence of food. On the other hand, for very hydrophilic compounds, 

such as p-blocking agents, atenolol and sotalol, absorption is reduced by food-induced 

bile secretion (Barnwell et al., 1993). The mechanism by which food decreases atenolol 

absorption was addressed in a study conducted with healthy voIunteem who received 



single doses of a commercial tablet, or of a capsule containing bile acids. It is claimed 

that bile acids reduce systemic availability of atenolol to a similar or greater extent than 

that for ingested food. 

Acid secretion. Increased acid secretion into the stomach may promote 

dissolution of basic drugs, but may prevent dissolution of acidic drugs. It may cause 

degradation of acid-labile compounds. Increasing gastric acidity may also affect drug 

absorption via interactions with the drug formulation. For most enteric-coated product., 

absorption may be considerably delayed, and possibly reduced in the presence of food, 

due to the combined effects of slow gastric emptying and inmasing acid secretion. 

Digestive enzyme secretion. Increased secretion of proteolytic enzymes into the 

duodenum and proximal small intestine may have a variable effect on drug absorption, 

depending on their interaction with particular characteristics of drugs and formulations. 

111. SpIanchnic blood flow 

Food ingestion affects splanchnic blood flow, but the degree and direction of 

change vary with the type and size of meal (Welling, 1996). A high protein meal has 

been shown to cause a 35% increase in splanchnic blood flow, whereas a liquid ghcose 

meal causes an 8% decrease (Svensson et al., 1983). In most cases after solid meals, one 

wodd expect spIanchnic bIood flow to increase. Increased postprandial spIanchnic 

blood flow has been touted as one of the mechanisms involved in decreased first-pass 

metabolism, and hence increased systemic availability of some high hepatic first-pass 

drugs, such as propran0101 and metopro101 (AxeIson et d., 1987; Melander and Mclean, 

1983; OIanoff et al., 1986). 



1.1.1.2 Direct fooddrug in~aclions 

In addition to the indirect effects on gastrointestinaI physiology, food may also 

affect drug absorption directly. Typically, food may act as a physical barrier inlviiting 

drug dissolution and preventing drug access to the mucosaI d a c e  of the 

gastrointestinal tract. Drug absorption may be reduced by chelation with specific ions or 

complexation with other substances in food. For drugs that are actively absorbed, a 

direct competition for active carriers may occur between food components and drug 

molecules, resulting in decreased systemic availability. The relative contributions of 

direct interactions and indirect interactions rdt ing  £tom changes in gastrointestinal 

physiology are uncertain. Both may contriiute to a varying degree depending on meal 

types, temporal relationships between eating and dosing, chemical and physical 

properties of the drug, and formulations. 

Inactive compIexes fonned between drugs and nutrients by chemical interactions 

are the most common known phenomena of direct food-drug interactions. The reaction 

of tetracycIines with calcium in dairy products is an exampIe of this type of interaction 

(Welliug, 1977). Tetracyclines have a strong tendency to form chelate5 with divalent 

and trivalent cations. The complexes formed between these cations and tetracyclines are 

usually insoluble and not absorbed. Therefore, when tetracyclines are taken with milk or 

other dairy products containing dcium and magnesium, their absorption efficiencies 

are reduced- The extent of inaumce by milk differs among various tetracyclines, 

depending upon their binding affinities to calcium ions. Fluoroquiaolones, such as 

ciprofloxacin (Neuvonen et al., 1991) and norfloxacin (Kivistii et al., I992), are also 



known to bind with heavy metal ions, including calcium, to form insoluble chelate. It 

has been demonstrated that coarlministration with milk or yogurt greatly reduces the 

systemic availability of these drugs. 

Some specific dietary components can result in a transient or net reduction in 

drug absorption by direct interactions with drugs. The absorption of acetaminophen is 

delayed and decreased when its intake is associated with pectin ingestion (Welling, 

1977). Pectin acts as an adsorbent and protectant in the gastrointestinal tract and may 

delay drug absorption by adsorption, complexation, or increase in the viscosity of 

gastrointestinal contents. Dietary fiber components, which have anionic and cationic 

sites, may adsorb, combine or exchange with the drug, resulting in decreased availability 

of the drug for absorption. The combination with such fiber components might also 

serve as a depot for slow release of the drug. 

L-Dopa presents an interesting example of how food may reduce drug absorption 

by competitive inhliition at the absorption site. Coadministration of L-dopa with a high 

protein meal reduces plasma levels of L-dopa (Roos et al., 1993) and inhliits the 

therapeutic effect (Welling, 1977). L-Dopa, a neutral amino acid precursor of doparnine, 

is absorbed and transported by a specific uptake system which also carries other large, 

neutral amino acids. L-Dopa absorption hence may be inhibited by the competition for 

absorption with dietary amino acids in the high protein meal. 

1.1.2 Distribution 

After a drug reaches the systemic circulation, it may be distri'buted into other 

body fIuids and tissues. The most important pharmacokinetic parameter to express the 



degree of drug distniution is the apparent volume of distriiution (Vd). The value of Vd 

depends on such factors as: 1) the drug's binding to blood components, i.e. albumin and 

other serum proteins; 2) its binding to different tissues; 3) its solubility in body fluids 

and hts; and 4) its ability to penetrate barriers. A high Vd indicates a wide distribution 

of a drug, both in the blood and outside, whereas a low Vd indicates the confinement of 

a drug primarily in the blood. An increase in the Vd of a drug may reduce the peak 

plasma concentration of the compound. This may result in altered therapeutic responses 

and adverse reactions. 

Most literature refers to the effects of chronic nutrition intake, which results in 

undernourishment and malnutrition, on drug distribution, but few report acute regulation 

of drug distribution by food ingestion. An example is L-dopa mentioned in Section 

1.1.1.2. L-Dopa, a neutral amino acid precursor of doparnine, exerts its antiparkinsonian 

effect after delivery to the brain. It has been clearly shown that a high-protein diet can 

inhiiit the therapeutic effect of Ldopa (Welling, 1977). Protein consumption increases 

the levels of large neutral amino acids (LNAAs) in the plasma, which share the same 

transport mechanism as Ldopa to cross the blood-brain barrier. Since d1 of the LNAAs 

in the plasma compete for the same uptake system, the amount of Ldopa entering the 

brain depends on the ratio of L-dopa concentration to the sum of the LNAAs. Pincus and 

Barry (1987) demonstrated that regular and high-protein diets resuited in marked 

elevations in the pIasma concentrations of the LNAAs. Despite elevated plasma L-dopa 

Ievels, a l l  patients in their study with elevated LNAA levels experienced Parkinsonian 

symptoms. When the LNAA levels dropped while Ldopa plasma leveis remained 

elevated, the subjects experienced a relief of symptoms. On a low-protein diet, however, 



the WAAS plasma levels remained low and all subjects were consistently dyskinetic 

even though the mean plasma Levels of Ldopa were lower than when the subjects 

consumed a high-protein diet These results suggest that madministration of the high- 

protein meal decreases the therapeutic response of Ldopa primarily by reducing the 

amount of L-dopa that penetrates into the brain. 

Ingestion of a high-fat meal may potentidy alter drug distriiution. Digestion 

and absorption of a high-fat meal may lead to a substantial increase in plasma free fatty 

acid levels. These molecules bind to the same sites on albumin as many drugs, which 

resuits in competitive binding and competitive displacement when both drug and 

nutrient are present. However, in the normal range of fiee fatty acid concentrations, even 

with the variation introduced by meals, the amount of drug displaced ranges fiom aImost 

none to about 30% (Hathwck, 1985). This slight effect of fatty acids suggests that it is 

posslible that following high-fat meals some drugs wiIl be dispIaced fiom albumin, but 

this food-nutrient interaction is enough to enhance the pharmacoiogical and 

toxicologicd actions to only a small degree. 

Many drugs are metabolized in the liver and sometimes also at extrahepatic sites, 

such as the gastrointestinal tract, lungs, etc. The capacity of hepatic metabolism is 

desm'bed as the hepatic c1earance of drugs, depending on the activity of enzymes 

responsible for biotransformation, and hepatic blood flow, which determines the rate of 

delivery of drugs to the liver. 



Biochemically, drug metabolism can be classified into two phases on the basis of 

biotransformation reactions: I) phase I: oxidation reactions, including hydroxylation, 

epoxidation, peroxidation and oxidative dealkylation, reduction and hydrolysis; and 2) 

phase 11: conjugation reactions, including giucuronidation, acetylation and sulfation. By 

fir the most important enzymes involved in phase I metabolism are the cytochrome P- 

450 (CYP) system. Among various CYP isoenzymes, the CW3A subfamily represents 

the predominant and most abundant enzymes in the liver (approximately 30% of total 

hepatic CYP content), and this family of enzyrnes is also expressed in the 

gastrointestinal tract (Shimada et al., 1994; Walter-Sack and KIotz, 1996). 

Concurrent intake of food may affect drug metabolism in two ways. Firstly, food 

may transiently alter presystemic drug metabolism of moderate to high hepatic clearance 

drugs, such as propranolol, metopro101 and propahone (Melander and Mclean, 1983). 

This issue will be discussed thoroughly in Section 1.2. Secondly, some dietary 

macronutrients and micronutrients may exert a direct influence on drug metabolizing 

enzymes, such as CYP enzymes and conjugating enzymes. Generally, the amount andior 

activity of most drug metabolizing enzymes can be altered by prolonged dietary 

changes, whereas some can be regdated acutely by specific food components or 

nutrients. It has been demonstrated that coadrninistmtion of grapefruit juice significantly 

increased the oral bioavailability of some drugs, of those most are CYP3A substrates, 

such as dihydropyridine calcium channel blockers, benzodiazepines and cyclosporine 

(Ameer and Weintraub, 1997). The predominant mechanism for the enhanced 

bioavailability is presumably inhlibition of intestinaI CYP3A4, but not hepatic CYP3A4 



or colon CYP3A5, by bioflavonoid naringenin and firranocoumarins in grapefit juice 

(Singh, 1999). 

1.1.4 Excretion 

The most important route for drug excretion is renal excretion. Drugs and their 

metabolites are excreted by the kidney via glomerular filtration, active tubular secretion, 

and passive reabsorption. Drugs that are effectively bound to plasma proteins are poorly 

filtered; and conversely, drugs that are not bound are cleared fiom the blood at a rate 

approximately equal to creatinine clearance. Some drugs are actively secreted by special 

mechanisms located in the mid-segment of the proximal convoluted tubule. Weakly 

acidic drugs, including many diuretic drugs, are secreted in this manner and may 

compete with endogenous acids such as uric acid for the carriers. Active secretion is a 

saturable process. Once in the tubular urine, the highly lipid-soluble, non-ionized drug 

molecules are rapidly and extensively reabsorbed; whereas polar compounds and ions 

are unable to difFuse across the renal epithelium and excreted in the urine. Since the 

metabolism of many drugs results in a less lipid-soluble product, the metabolite is more 

readily excreted than the parent compound 

Some drugs and their metabolites may be secreted by the Liver cells into the bile 

and pass into the intestine. Some or most of the secreted drug may be reabsorbed h m  

the lumen of the small intestines and undergo enterohepatic cycling the rest is excreted 

in the feces. BiIiary secretion is an active, capacity-limited process, subject to 

competitive inhlibition. Other e x d m  pathways include saIivary excretion and milk 

excretion. 



Food-induced changes in absorption, distribution and metabolism of the drug 

lead to altered rates and patterns of drug excretion. There are, however, some direct 

effects of diet and nutrients on the excretory processes of drugs (Roberts and Turner, 

1988). For example, urinary pH has a major influence on the excretion of weakly acidic 

and basic drugs. AIL fwds which tend to alkalinize or acidify the urine may influence 

the excretory pattern of drugs. High-fibre diets can cause loss of bile acids and more 

rapid biliary excretion of drugs that undergo extensive enterohepatic circulation, such as 

spironolactone and its metabolites (Roberts and Turner, 1988). 

1.1.5 Summary 

The great number of articles published during the last 20 years involving 

interaction between drugs and ingested food illustrates elevating interest and demand in 

the area, Food ingestion can cause changes in pharmacokinetic patterns of drugs. The 

mechanisms involved in food-drug interactions are numerous, including effects of food 

on absorption, distriiution, metabolism and excretion. Change in absorption is probably 

the most common mechanism responsible for food-drug interactions for oralIy 

administered drugs. In recent years, the influence of diet on drug metabolism has 

received more and more attention, in part due to the growing knowledge of drug 

metabolizing enzyme systems, such as cytochrome P-450 isoenzymes. 

The above changes in drug phannacokinetics may have a profound effect on the 

therapeutic effect. However, food may also potentiate or decrease the therapeutic effect 

of drugs, by directly altering drug pharmacodynamics. For example, the anticoagulant 

activity of wadkin is partially dependent on the presence or absence of vitamin K and 



the effectiveness of warfarin may be decreased if an excessive amount of vitamin K is 

consumed. This wouId occur with the ingestion of such food as liver or Ieafy green 

vegetables. If the diet should change in this way, the action of warfarin wodd be 

antagonized and the clotting problems that were controlled by warfarin might reappear 

(Roberts and Turner, 1988). Because insuf£icient data exist, however, the clinical 

importance of the effects of food on various phmacologic properties of drugs is stilI 

being investigated. It is ody when an adverse drug reaction follows a foad-drug 

interaction that the matter becomes of serious mncern to the patient or clinician. 



1.2 Food interaction with high hepatic fwst-pass drugs 

13.1 Theoretical considerations of hepatic clearance 

1.2.1.1 Hepanic clearance models 

For a drug eliminated predominantly by the liver, the hepatic clearance 

approximates total body clearance. Based on mass balance principles, at steady state, the 

instantaneous rate of hepatic elimination is equal to the difference between the rate of 

drug delivery to the Iiver and the rate of exit fiom the liver. Accordingly, hepatic drug 

clearance (CLH) is defined by 

where QH represents the hepatic perfhion rate, E represents the extraction ratio across 

the liver, and Ct, and COa represent the concentrations of the drug entering and leaving 

the liver, respectively. Changes in hepatic clearance can only resuIt &om an alteration in 

QH and E. 

Hepatic clearance can be thought of as a measure of the efficiency with which a 

drug is removed h m  the body by the liver. It depends on four main factors (Pang and 

Rowland, 1977): 1) hepatic blood flow rate (QH); 2) unbound hction of drug in blood 

(f,); 3) activity of hepatic drug-metabohzing enzymes, i.e. hepatic intrinsic clearance of 

the drug (CLint); and 4) difhion clearance of drug between the blood and hepatocytes. 

The diffiuion clearance is dependent upon the dissociation of the drug-protein complex 

and the permeability of the hepatocyte to the drug. In general, the diffbsion process is 



assumed to be very rapid. Therefore, in the perfusion-Limited case of hepatic 

elimination, the clearance is principally determined by the former three factors. 

SeveraI methods have been proposed to calculate the average hepatic 

concentration Earn hepatic inflow and outtlow concentrations, each method leading to a 

different relationship between hepatic clearance and its three physiological 

determinants, so-called the 'hepatic clearance' models (Wilkinson, 1987). These 

developed clearance models include the venous equilibrium, undistriiuted sinusoidal 

perfusion, distriiuted sinusoidd perfusion, and dispersion models. All of the models 

provide similar predictions with respect to hepatic clearance. However, inter-model 

differences become remarkable in their predictions of how various pharmacokinetic 

parameters are influenced by changes in the determinants of hepatic clearance, 

particularly when hepatic clearance of the drug is high. The differences among various 

modeIs of hepatic cIearance can be best illustrated by considering the venous 

equiliirium and undistributed sinusoidal models (Pang and Rowland, 1977). In the 

venous equilibrium (or 'well-stirred') model, the liver is considered as a single well- 

stirred compartment in which the concentration of substrate is assumed to be uniform 

and equal to the concentration exiting from the liver. This is the same assumption as is 

made in linear compartmental analysis. AccordingIy, hepatic clearance is dehed by 

QH .CL& -f, 
CL, = 

Q, +CL, sf, 

In the undistributed sinusoidal (or 'parallel tube') model, the liver is regarded as a series 

of p d e l  identical tubes with enzymes distributed evenly around the tubes. It is 

assumed that the concentration of drug deches exponentially along the tubes m the 



direction of fl ow, and the logarithmic average of inflow and outflow concentration is the 

concentration used in the Michealis-Menten equation. Under first-order conditions, 

hepatic clearance is descnied by 

For drugs of low hepatic clearance dative to hepatic blood flow, i.e. Iow hepatic 

extraction ratio drugs, the differences between the two models are minimal. With 

increasing hepatic clearance, however, the differences increase and may become 

considerable for high hepatic extraction ratio drugs. 

After oral administration, drugs with a high hepatic extraction ratio undergo a 

significant tirst-pass effect, which is manifested by an extremely [ow oral bioavaiIability 

even though the drug is compIetely absorbed (Gibaldi and Perrier, 1982). A high hepatic 

first-pass effect is seen with a wide range of c l i n idy  important dntgs, including certain 

b-adrenoceptor antagonists, vasoactive agents and antidepressants (Pond and Tom, 

1984). The majority of these drugs are Iipophilic bases which are extensively bound to 

plasma proteins and orr-acid glycoprotein. 

For a drug that is completely absorbed and eliminated only by hepatic 

metabolism, the oral bioavailability of the drug, i.e. the hction of the total oral dose 

that reaches the system circulation, is given by 

F = I - E  1.4) 

where F symbolizes the bioavailability. The total area under the blood drug 



concentration-time curve following a single oral dose of this drug (AUCod) is defined 

by 

F- Dose AUC, = 
CL" 

According to the veno'as 

Dose AUC,, = 
CL, . f, 

(1.5) 

equilibrium clearance model Eq. (1.2)], AUCOd can be 

whereas the undistriiuted sinusoidal model descriies AUCod as 

D ~ ~ ~ .  e-CL-"u 'QH 

AUC,, = 
Q~ .(l-e-CL=.f*'Q~ ) 

From Eq. (1.6) and (1.7). we are able to predict quantitatively the effect of changes in 

one or more of the three major physiologicaI determinants of hepatic cIearance on the 

oral bioavailability of a drug. Figure 1.2 demonstrates simulations (Maple@ V computer 

algebra program, Release 4 Student Edition, Brooks/Cole Publishing Company, Pacific 

Grove, CA, USA) of the model-dependent effects of changes in intrinsic clearance, 

hepatic blood flow and unbound tiaction in bhod on the area under the plasma 

concentration versus time curve after oral administration (AUcod) of a high extraction 

ratio drug, which is h o s t  totally bound to plasma protein and eliminated only by the 

liver. The simulations are based on a hepatic blood flow of 1.5 Umin, an unbound 

tiaction of 0.1, a hepatic clearance of 0.85 Umin and a dose of 100 mg. It is shown that 

AUCod can be increased or decreased by changing CLi, and lor f, in both models. 

However, a saiking diffefence exists between the two modeIs regarding the effect of 



QH. In the venous equiliirium model, AUCod is independent of QH, whereas a marked 

dependence of AUCod on QH is predicted in the undistriiuted siausoidal model. 

In addition to the three determinants (CLh, QH, fu), the drug input rate is another 

important factor affecting the oral bioavailability of high hepatic first-pass drugs in the 

case of a saturable first-pass effect (Wagner, 1988). Many drugs with a large 6rst-pass 

effect exhilit Michaelis-Menten kinetic characteristics, due to saturation of the drug- 

metabolizing enzymes by the relatively high drug concentrations reaching the liver 

when the drug is absorbed from the gastrointestinal tract. According to the venous 

equilibrium and undistriiuted sinusoidal models, an increase in drug input rate will 

increase AUCod more than proportionately. 
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Figure 1.2. Simulations showing the relationship between the area under the plasma 

concentration versus time curve after oral administration (AUC,& and (a) intrinsic 

clearance (CU; (b) hepatic blood flow rate (QH); and (c) unbound hction {f,), 

according to the venous equih'brium model (-) and undistributed sinusoidal model (---). 

Assuming that hepatic clearance = 0.85 U m i .  QH = 1.5 Umin, fu = 0.1, and dose = 100 

mg. Simulations were performed by using Maple@ V computer algebra program. 



13.2 High hepatic Brst-pass drugs and the food eff't 

1.2.2.1 Phenomenon of the food effect 

It has been found that concomitant food intake causes a marked increase (an 

average of approximately 50%) in the oral bioavailability of certain high hepatic first- 

pass drugs, including propran0101 (Melander et d., 1977), metoprolol (Melander et al., 

1977), labetalo1 (Daneshmend et al., 1982), dixyrazine (Liedholm et al., 1985), 

zuclopenthixol (Aaes-Jorgensen et al., 1982), propafenone (Axelson et al., 1987) and 

diprafenone (Koytchev et al., 1996). This phenomenon has been refared to as the food 

effect. Not a11 high first-pass drugs are affected by food in this way (Melander and 

McLean, 1983; Melander et al., I988), and so fm no criterion has been found to 

distinguish drugs &'biting the food effect fiom others which do not. 

Propran0101 is the model drug that has been the most extensively studied for the 

food effect on first-pass metabolism. Its increased bioavailability by food has been 

reproduced in human studies by a number of investigators (Melander et al., 1977; 

McBride et al., 1980; McLean et al., 198 1; Walle et al., I98 1; Liedholm and Melander, 

1986; OIanoE et al., 1986; Liedholm et al., 1990). The results of all these studies have 

shorn that the mean increase in AUCOa with food is about 50% and the individual 

change varies greatly from a decrease to an increase exceeding 300%. It has been 

noticed that the type of meal seems to be a factor in the food effect. High protein meah 

unquestionably enhance the bioavailability of propranolol and appear to cause the 

largest obsaved increase in AUCd (Melander et al., 1977; McLean et al., 1981; Walle 

et aI., 1981; Liedholm and Melander, 1986; Olanoff et al, 1986; Liedholm et al., 1990), 

whereas there is no or less effect following the intake of carbohydrate-rich meals 



(McLean et al., 1982; W d e  et al., I98 I; Jackman et a]., 198 1; Liedholm et d., 1990). 

Unlike human studies, how eve^? studies in rats and dogs demonstrated ambiguous 

effects of food/nutrients on the AUCorat of pmpranolol. In dogs, ingestion of protein-rich 

food does not change the AUCd of propranolol (Bai et al., 1985; Power et al., 1995). 

On the contrary, a high protein diet slightIy increases propranoIol AUCo,[ in rats (Ogiso 

et al., 1994), but ingestion of fm acids and glucose causes decreases in AUC0d, which 

is the opposite of the 'food effkct' (Chow and Lalka, 1993; Ogiso et al., 1994). 

1.2.2.2 Mechanisms of the food efiect 

The mechanisms of the food interaction with high hepatic first-pass drugs have 

been investigated in many studies, but our understanding of this phenomenon remains 

poor. As all the drugs exhibiting the food effect are completely absorbed tkom the 

gastrointestinal tract in the fasting state and undergo extensive hepatic first-pass 

metabolism, the increase in ALEod cannot be attributed to an increase in the extent of 

absorption, but rather to a reduction in first-pass metabolism (Melander et d., 1988). A 

number of hypotheses, which rely on the use of hepatic clearance models and 

incorporate the known physiologicd sequdae of food ingestion, have been proposed for 

mechanisms involved in the food effect. The most IikeIy causes are thought to be food- 

induced increase in splanchnic blood flow, inhliition of hepatic metabolism by food 

components9 alterations in plasma protein binding of the drug, changes in intrahepatic 

tissue binding of the drug increase in the absorption rate of the drug and/or others. 



I. SpIanchnic blood flow 

As mentioned in Section 1.1.1.1, ingested food may induce an increase in 

splanchnic blood flow, which makes up part of hepatic blood flow. According to the 

undistriiuted sinusoidal model of hepatic clearance, the AUCOd of drugs with moderate 

to high extraction ratio can increase with a food-induced increase in hepatic blood flow, 

but the venous equilibrium model indicates that AUCod could not change since it is 

independent of hepatic blood flow. In fact, however, a transient increase in hepatic 

blood flow may increase AUCod even according to the venous equilibrium model. This 

is because food-induced elevated hepatic blood flow during the gastrointestinal 

absorption of the drug, followed by a return to normal after absorption is complete, will 

cause a decrease in the hepatic first-pass effect (increased F) but no effect or much less 

effect on overall systemic clearance (unchanged CL) and hence an increase in AUCOd 

(Eq. 1.5). Since McLean et at. (1978) first proposed that transient changes in hepatic 

blood flow could explain much of the increase in AUCod by food and provided a 

computer simulation to demonstrate this hypothesis, a number of theoretical and 

experimental results have been reported to support this view (Elvin et al., 198 1; Walle et 

al., 1981; Heinzow et al., 1984; Olanoff et al., 1986). 

Continuing investigations uncovered potential defects of this blood flow 

hypothesis. Firstly, high carbohydratdow protein meals increased propranolol AUCod 

(McLean et aI.,1981; Jackman et al., 1981), but had little effect on QH in humans 

(Svensson et al., 1984). Furthermore, the observed time course of the change in QH 

caused by the cons~lption of a high-protein meaI did not appear to be sufficient to 

account for the observed magnitude of the increase in ppranoloI AUCa in that only 



14% and 30% increase was calculated fhm the venous equilibrium model and the 

undistriiuted sinusoidal model, respectively (Svensson et al., 1983). A computer 

simulation predicted that changed QH c w e d  even less effect on AUCOd when nodinear 

hepatic 6rst-pass metabolism was assumed during the drug absorption phase (Semple et 

al., 1990). Moreover, manipulation of posture, designed to produce changes in QH With a 

sirnilar magnitude to that observed after food consumption (20 to 50%), increased QH by 

15 to 40% but failed to change the AUCod of propran0101 (Modi et d., 1988). These 

observations suggest that the food-related changes in QH may be onIy a minor cause of 

the increase in AUCOd and other causes of decreased first-pass metabolism secondary to 

fwd consumption should be involved. 

11. Inhibition of hepatic metabolism 

Besides hepatic blood flow, intrinsic clearance (CLid is one of the main 

determinants of hepatic clearance. A reduction in C k  will cause an increase in 

AUCOd, according to either the venous equiliirium model (Eq. 1.6) or the undistributed 

sinusoidal model (Eq. 1.7). For non-linear hepatic first-pass elimination, changes in the 

maximum velocity of metabolism (Vm) can cause a large increase in AUCOd based on 

Michaelis-Menten kinetics. Therefme, the acute inhibition of hepatic metabolism by 

macrolmicmnutrients from food becomes a plausible hypothesis for the mechanism of 

the food effect. A number of animal studies have demonstrated that dietary components 

such as glucose and protein can act as modulators of hepatic drug metabolism (Chow 

and Lalka, 1992; Yang and Yw, 1988; Ogiso et al., 1994). Data from studies in isolated 

perfbed rat liver preparations demonstrated that direct addition of amino acids into the 



perfhate resulted in a transient, reversible, global reduction in propranolol and 

metoprolol metabolism (Semple and Xia, 1995; Wang and Semple, 1997), indicating 

that transient inhibition of hepatic metabolism by amino acids, derived fiom the dietary 

protein, could contribute to the mechanism of the increase in AUCod. 

Although previous studies unequivocally demonstrated an increase in 

propranolol AUCod after coadministration of food, no significant change in oxidative 

metabolite AUCod was observed in studies where plasma concentrations of the 

metabolites were also examined (WalIe et d., 198 1; Liedholm et al., 1990). OnIy one 

study showed that the food-induced increase in plasma propranolol concentration was 

accompanied by a reduction of the AUCod of conjugated propranolol (Liedholm and 

Melander, 1986), but could not account for the magnitude of increase in AUCod of 

propranoIoI. Despite no change in the propranold metabolite AUC,d, the above studies 

did show a delay in the appearance of the oxidative metabolites. These results are 

consistent with the hypothesis that food-induced transient, reversiile inhliition of 

hepatic drug metabolism may cause a reduction in rcetabolite formation during the 

absorption phase, but no change in subsequent hepatic metabolism of systemic 

propranolol. To understand the possibility and significance of inhibition of hepatic 

metabolism in the food effkct, mote animd studies on the effect of food components on 

hepatic drug metabolism are necessary. 

m. AIterations in plasma protein binding 

According to the venous equiIiium model (Eq. 1.6) and the undistributed 

sinusoidal mode1 (Eq. 1.7), a decrease in the M o n  of unbound drug (fJ, i.e- increased 



plasma protein binding, may increase AUCOd. It is well known that some food 

components, such as  fitty acids, can compete with the drug for binding sites and 

displace the drug h m  albumin and other plasma proteins. Food-induced competitive 

displacement results in an increase in f,, which should cause reduced AUCod, an 

opposite consequence to the food effect. Furthermore, high protein and high 

carbohydrate meaIs did not change the plasma protein binding of propranolol (Naranjo 

et al., 1982; Feely et d., 1983; Chow and Lalka, 1993). Thus, changes in plasma protein 

binding are not a plauslile mechanism of the food effect. 

IV. Other mechanisms 

Drug input rate becomes an important determinant of the oral bioavailability of 

high hepatic first-pass drugs, such as propranolol, when we consider that saturated first- 

pass metabolism occurs during the absorption phase. An increase in drug input rate leads 

to more drug escaping the first-pass metabolism and thereby a non-linear increase in 

AUC,d (Wagner et al., 1985; Wagner, 1985). It has been shown that the first-pass 

metabolism of propranolol is a saturable process resulting in dose-dependent 

bioavailability (Silber et al., 1983) and that the AUCod for the sustained-release product 

is lower than that for the same dose in a conventional rapid-release form (McAinsh and 

Gay, 1985; Ohashi et d., 1984; Garg et al., 1984). Moreover, concomitant food intake 

does not enhance the bioavailabiIity of sustained-reIease propranolol, indicating the 

importance of drug input rate in the food effect (Byme et al., 1984; Liedholm and 

Melander, 1986). An increase in drug input rate could be caused by a food-induced 

increase in the gastrointestinal absorption rate. However, drugs that exhibit the food 



effect are mostly lipophilic, weakly basic compounds. Theoreticaliy, their absorption 

fiom the gastrointestinal tract should be delayed by food ingestion because of delayed 

gastric emptying. Unless hard evidence showing that fwd intake promotes the 

absorption of propranolol or other drugs becomes available, it would be diEcuit to 

sustain a hypothesis that an increase in the absorption rate could be a contributing 

mechanism to the food effect, 

Hepatic clearance is also dependent on the dissociation of the drug-protein 

complex and &£hion of drug h m  blood into the hepatocytes. Usually, these processes 

are assumed to be very rapid and not to be the limiting steps in hepatic metabolism, but 

rarely is experimental evidence available to justify this assumption. Food intake could 

cause changes in the rate of dissociation andlor diffusion via aItering the intrahepatic 

tissue binding, for example, and therefore change AUC,d. 

Hormonal and neural regulation due to food ingestion can not be ignored in 

considering potential mechanisms of the food effect (Semple and Xia, 1994; Power et 

d., 1995). Power et al (1995) demonstrated an increase in AUCOd in dogs and man 

when propranolol administration followed a teasing protocoI that only allowed subjects 

to see and smell a meal but without eating it. The results suggested that the mechanism 

of the food effect might involve physioIogica1 responses to sensory exposure to food. 



13 Metoprolol 

13.1 Chemistry 

Metoprolol (ClsHzrN03, M.W. 267.3 8), L -isopropylamino-3-Ep-(2- 

methoxyethyl) phenoxyl-2-propanol, belongs to the group of P-bIocking agents known 

as aryloxypropanolamines (Figure 1.3). It contains an asymmetric carbon atom at the 2- 

ppanol  position. Like atenolol and propranolol, metoprolol is a basic drug with a pK, 

of about 9.6 (Benfield et al., 1986). It possesses intermediate Lipophilicity among the P- 

bIocking agents, which is considerably lower than that of propranold but higher than 

practolol (Ablad et al., 1975). 

MetoproIol tartrate [(CISHUNO~)~ - C4H606] (Figure 1.3) is the marketed form of 

metoprolol. Metoprolol tartrate is a white crystalline solid with solubility of >lg/mI in 

water and >0.5g/ml in methanol. It is chemically stable in both solid state and solution. 

Both the solid and aqueous solution can be stored at room temperature for more than 

five years without physical and chemicai changes (Luch, 1983). A solution of 

metoplol tartrate in water or methanol exhibits ultraviolet absorption maxima at 224 

nm and 275 nm, and affects fluorescence with an emission maximum wavelength at 298 

nm when excited with ultraviolet light. 
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Figure 13. Chemical structure of metoprolol tartrate 

132 Pharmacology 

Metoprolol is a competitive P-adrenoceptor antagonist used in the treatment of 

various cardiovascular disorders, including hypertension and ischemic heart disease 

(Benfield et al., 1986). It acts preferentially on PI-adrenoceptors and lacks intrinsic 

sympathomimetic activity (partial ago& activity). Compared with propranolol, 

metoprolol is approximately equipotent in inhlibiting stimulation of $l-adrenoceptors in 

the heart but 50- to 100- fold less potent in blocking Prreceptors (Benowitz, 1998). 

Thus, it has a weak inhibiting effect on isoprenaline-mediated tachycardia, greatly slows 

the heart and rapidly reduces cardiac output and systolic blood pressure. 

Metoprolol is a racemic compound with two enantiomeric forms, S and R. As 

with other propanolamine-type B-blockers, the S-enantiomer possesses far greater p- 

blocking potency than the corresponding R-enantiomer (Hanna, 199 1; Wahlund et al., 

1991). 



133 Pharmacokinetics 

1.3.3.1 Absorption and bioauaiIhbi@r 

Human studies have shown that metoprolo1 is rapidly and completely absorbed 

from the gastrointestinal tract in the fasting state (Regardb and Johnsson, 1980). About 

95% of the oraI dose is recovered h m  the urine. The rate of absorption is reiated to the 

type of formuIation. The maximum concentration in plasma (C,) is attained 1 to 2 hr 

after oral administration of an aqueous solution, and 1 to 3 hr after an ordinary tablet 

(Regardh et al., 1974, i975). Approximately two-thirds of metoprold leaving the 

stomach is absorbed in the duodenum, and the rest is absorbed h m  the jejunum, ileum 

and c o h  with decreasing absorption extent in anatomical order. Only negIigibIe 

amounts are absorbed in the stomach. The various regions of the intestines exhibit 

similar capacities for first-order absorption (Benfield et al., 1986). 

h the rat, metoprolo1 is also rather well absorbed after oral administration, about 

70% of the given dose being recovered h m  the urine while very little is found in the 

faeces (Borg et al., 1975a). The bioavdability after an oral dose is about 4%. The 

maximum concentration after oral administration of an aqueous solution is reached 

within 0.5 hr. 

Despite complete gastrointeshnal absorption, the bioavaiIability is only 50% in 

humans @entieid, et d., 1986) because of extensive &-pass hepatic metabofism. 

Considerable inter- and intra-individual variability exists in the area under the plasma 

concentration-time curve (AUC), peak plasma concentration (C-) and time to peak 

* .  
plasma concentration (a after oral -on. Long term treatment with 



rnetoprolol results in an increase in its system availability (Regardh and Johnsson, 1980; 

Benfield et al., 1986). 

Metoprolol is rapidly and extensively distributed to various tissues, such as lung, 

Liver and kidney, after reaching the systemic circulation (Benfield et al., 1986; Bordin et 

al., 1975). The apparent volume of distniution (V4p,) is high, about 5.5 Ukg in man, 

and 6.3 L/kg in rats (Ablad et al., 1979, indicating that only a small amount of the drug 

in the body is localized in the blood. 

Udike propranolol and some other P-blockas, metoprolol shows insignificant 

binding to plasma and serum proteins. It is about 12% bound to human serum albumin, 

and negligibly bound to other s e m  proteins (Regardh and Johnsson, 1980). The 

concentration of metoprolol in erythrocytes is 20% higher than that in plasma (Benfield 

et al., L986). 

Due to its moderate lipid solubility and low plasma protein binding, metoprolol 

readily penetrates the central nervous system (CNS) after reaching the systemic 

circulation penfield et al., 1986; Regardh and Johnsson, 1980). 

Metoprolol is eliminated mainly via hepatic oxidative metabdim. In humans, 

dmy recovery of the dose reaches about 95% within 72 hr after oral or intravenous 

administration, of which only 540% is unchanged metoprolol and 85-90% is 



metabolites (Borg et al., 1975b). In healthy subjects, the renal clearance is 0.1 I Urnin, 

and the total body clearance ranges between 0.72 Ymin and 1.54 Umin, showing that 

metoprolol is a high hepatic clearance drug (Benfield et al., 1986). h the majority of 

healthy individuals, the elimination half-life (tlmp3 varies between 3 and 4 hr, although 

extremes of 2.1 and 9.5 hr have been reported (Bedield et al., 1986). Within the 

therapeutic range, half-life is independent of dose. 

In the rat, metoprolol is eliminated by biotransformation and excretion in the 

urine mainly as metabolites (Borg et al., 197%). About 75% of the oral dose is excreted 

in the urine, while about 15% is excreted in the feces. Unchanged metopro101 in the 

urine accounts for ~ 1 0 %  (Borg et al., 197%; 197%). The tlmp) is 0.6 hr in the rat (Borg 

et al., 1975a). Dosedependent hepatic metabolism has been demonstrated in the isolated 

perfbed rat liver preparation (Shen et al., 1993). 

Metoprolo1 is metabolized by three main pathways in humans and rats without 

noticeable conjugation (Regardh and Johnsson, 1980): (L) OdemethyIation with 

subsequent oxidation, (2) a-hydroxylation (aliphatic hydroxylation of the methoxyethy1 

substituent), and (3) oxidative deamination of the long side chaia The b iodonna t ion  

of metoproIo1 in man and the rat is summarized in Figure 1.4 (Arfividsson et al., 1976). 

However, the relative abundance of the metabolites h m  these three pathways in 

humans differs from those in rats. In man, there are tbree main urinary metabolites, 

which together account for 85% of the total urinary excretion (Borg et al., 197%). 

Metopro101 acid, a secondary metabolite formed b r n  0-demetbyImetoprolo1, accounts 

for about 60% of the total lrriaary excretion, whereas a-hydrolcymetoplo1 and 

HI04483 (a metabolite from oxidative deamination) account for only 100/a each. In rat 



urine after oral administration and rat liver mimsomes (Adkidsson et al., 1976), the 

two major metabolites are metoplo1 acid and a-hydroxymetoproloI, accounting for 

62% and 25%, respectively. The other two metabolites, Oaemethylmetoprolol and 

H104/83, account for only 3.5% and 1%, respectively. It is interesting that in rat 

microsoma1 incubations the reIative amount of rnetoprolol acid increases with time, 

while those of a-hydroxymetoprolol and O-demethylmetoprolol remain constant. 

Among the metabolites of metoprolol, only OdemethyImetoprolol and a- 

hydroxymetoprolol show Pr-adrenoceptor blocking activity, but are substantially less 

potent than the parent drug (Regardh and Johnsson, 1980). Therefore, no 

pharmacologically important metaboiite is produced. 

[n humans, cytochrome P-450 2D6 (CYP2D6), the same cytochrome P450 

enzyme responsible for debrisoquine oxidation, which is absent or inactive in poor 

metabotizers, mediates exclusively a-hydroxylation and partially 0-demethylation 

(Belpaire et al., 1998; Lennard et ai., 1986; Otton et al., 1988), and CYP2D2 is the 

corresponding isoenzyme in rats (Schulz-Utennoehl et al., 1999). It is not surprising 

that, therefore, metoprolol metabolism exhiiits the debrisoquine-type of genetic 

poIymorphism in humans (Lennard, et al., 1982; 1986). 

Moderate enantioselectivity of metopro101 cIearance is found in humans, mainIy 

in extensive metabolizers (Lennard, et d., 1983). Afier an oral dose of racemic 

metoprolol, the R-enantiorner has a higher clearance than the S-enantiomer, resuIting in 

a 35% higher AUCd fbr the S-enantiomer in extensive metabolizers. The 

stereoselectivity in the O-demethylation pathway is mainly responsiile for the 

difference in the clearance of metopIoZ enandomers (Mixthy et aI., 1990; Kim, 1993), 



and the genetic polymorphism causes differences in enantiomer metabolism between 

extensive and poor metabolizers (Lennard et al., 1989). In the rat, however, there is only 

a small difference in metabolism between R and S-metoprolo1 (Venneuien et d., 1993). 

After oral administration of the racemic metoprolol, AUCOd is slightly higher for the R- 

enantiomer, whiIe cIearance is slightly lower. 

2.3.3.4 E a c t  of food 

Metoprolol is a high hepatic first-pass drug which exhibits increased 

bioavdability after concomitant intake of fwd. It has been shown that a high protein 

meal causes a mean increase in AUCOd of about 40% with a range h m  a slight 

decrease to an increase of 132% after oral administration of rnetoprolol in healthy 

subjects (MeIander et al., 1977). In the isolated, perbed rat liver, amino acids cause a 

transient, partially reversiile, global reduction in metoprolol metabolism (Wang and 

Semple, 1997), suggesting that inhl'bition of metabolism by amino acids could 

contn'bute to the mechanism of the food effect on metoprolol bioavailability. 
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Figure 1.4. Major pathways of metoprolol metabolism in man and the rat. 



1.4 Propafenone 

1.4.1 Chemistry 

Propafenone ( C ~ ~ H ~ N O S ,  M.W. 341 S), 1-12-12-hydroxy-3- 

(propylamino)propoxy] phenyl]-3-phenyE-I-propanone, was synthesized in 1970 by 

Helopharm of Germany and later licensed by Knoll AG, Gennany. It is structurally 

similar to the @-blocking agents. Propafenone has a chiral &on atom on the 

propanolamine side chain, and thus occurs as a racemic mixture of R (-)- and S (+)- 

enantiomers. It is a 1ipophiIic base with a pK, of 9.0 (Chow, et al., 1988). Propafenone is 

available as the hydrochloride salt (C2~Hz7N03-HCl, M.W. 377.9), which is siightly 

soIuble in cold water (Merck Index, 1996). 

Propafenone is a potent and effective antiatrhythmic drug widely used in the 

treatment of ventricuhr and supravenaidar arrhythmias (Chow et al., 1988). It 

possesses Class IC electrophysiologic properties according to the Vaughan Williams 

ciassification scheme (Hama and Brogden, 1987). Typically for the IC group of 

andarrhytbmic agents, propafenone has slow kinetics of interaction with fast cardiac 

sodium channels in normai and ischemic Purkinje fibers, and therefore markedly 

depresses the rate of depoIarization of phase 0 of the action potential. Its sodium channel 

blocking potency is similar to that of flecainide, and is both frequency- and voltage- 

dependent (Hii, et al., 1991). 



In addition to its Class 1C antiarrhythmic effect, propafenone exhibits both mild 

$-adrenoceptor blocking (Class 11) activity and weak calcium channel blocking (Class 

IV) activity (Fianon and Brogden, 1987). Unlike flecainide, propafenone has non- 

selective P-adrenoceptor blocking activity, and its potency is 1/20 to 1/50 that of 

propranolol (€aber and Camm, 1996). Because the plasma concentrations of 

propafenone may be 50 or more times greater than those of propranolol, the P-blocking 

effect of propahone may be clinically relevant. Clinical data show that, however, this 

effect varies between undetectable to significant (Faber and Carmn, 1996). Propafenone 

also inhi'bits the slow calcium influx at high concentration, but this action is weak 

(approximately 1/20 of verapamil) and does not contniute to the cIinical importance 

(Harron and Brogden, i 987). 

Both the R- and S-enantiomem of propahone are equaIly potent in bIocking 

sodium channels in a dose-frequency-dependent manner. However, the aflinity of the S- 

enantiomer for the human p-adrenoceptors is 100-fold greater than that of its antipode 

(Kroemer, et al., i989a). The two major metaboIites of propafenone, 5- 

hydroxypropafenone and Ndespmpylpropafenone, also have sodium channel blocking 

activity. The potency of 5-hydroxypropahone is comparable with that of the parent 

compound, while Ndespropylpropafenone is Iess potent (Thompson et al., 1988; Oti- 

Amoako et al., 1990). 



1.43 Phamaeoklnetics 

1.43.1 Absorption and Bioavaiiabili@ 

Propafenone is rapidly and almost completely absorbed after oral administration 

in the fasting state. More than 90% of the oral dose is absorbed and its peak plasma 

concentration (C-) is usually reached one to three hr after administration Wege, et al., 

I984a; Hollman, et al., 1983). Generallyy the bioavailabiIity of propafenone ranges from 

5-SO%, reflecting high first-pass clearance (Hii et al., 199 1). 

Following intravenous administration, propahone distributes rapidly into 

various tissues. The highest concentration of propafenone is found in the lung, followed 

by the liver and heart. The concentration of 5-hydroxypropafenone is similar to that of 

parent drug in the heart, but lower in the lung (Latini et al., 1987). 

By fitting with the two compartment pharmacokinetic modeI, the half-life of the 

distribution phase (tlmor,) is estimated to be 4.7 min, indicating rapid dimiution after 

intravenous administration. The volume of the centraI compartment (V,) is 0.7 to 1.1 

Jfkg and the apparent volume of distriiution at the steady state [(v&] is about 1.9-3 

Ukg (Hii, et al., 1991). 

Propafenone is highly (>95%) bound to plasma protein (Hii et aI., 1991). Two 

proteins, albumin and a,-acid giycoprotein, have been identified to be responsiile for 

binding propafenone. S-Propafenone (free hction of 4.9%) shows greater protein 

binding than that of R-propafenone (fke Eraction of%%) (Hii et d., 1991). 



1.4.3.3 Elimination 

Propafenone undergoes extensive hepatic metabolism via hydroxylation and 

conjugation in humans and dogs (Hege et al., 1984; 1984b; 1986). The major metabolic 

pathways are shown in Figure 1.5. AAer an oral dose in man, less than 1% of unchanged 

propafenone is excreted in the urine and feces (Hege et aI, 1984b). The metabolites in 

the urine and feces are almost exclusiveiy excreted as conjugates with glucwonic acid 

and sulphuric acid, mainly via the feces (53% of the dose within 48 hours). The major 

metabolites are propdenone glumnide and conjugates of 5-hydroxypropafenone, N- 

despropylpropafenone, and 5-hydroxy4methoxppaf~one (Hege et al., i984b; 

Kates et al., 1985). The most extensively studied metabolites include two 

pharmacologically active compounds, 5-hydroxypropafwone and N- 

despropylpropafenone. In the dog, the major metaboIites are 4'-hydroxypropahone and 

5-hydroxypropafenone; each of them accounting for about 15% of the dose (Hege et al., 

1984a; 1986). 

In human, the formation of 5-hydroxypropafhone is mediated by CYP2D6 

(Kroemer et al., 1989b), while the formation of the Ndespropyl metabolite is catalyzed 

by CYP3A4 and CYPlA2 (Botsch et al., 1993). As the metabolism of propafenone is 

dependent on the debrisoquine metabolker phenotype, its elimination half-life varies 

fiom 5.5 hr in extensive metabolizers to 17.2 hr in poor metabolizers (Bryson et al., 

1993). Non-linear (saturable dose-dependent) pharmacokinetic characteristics are 

observed in extensive metabolizers following an oral dose of the drug, while in poor 

metabolizers propafknone shows linear kinetics (Hii et al., 199 1). 



The enantiomers of propafenone undergo stereoselective disposition and 

elimination (Bryson et al., 1993). In both extensive and poor metaboLizers, a higher rate 

of clearance and Iower AUCOd are observed for the R- than S-enantiomer after oral 

administration of the racemic mixture of propafenone (Kroemer et al., 1989a). In 

contrast, R-propafenone has a Iower oral clearance and larger AUCOd than S- 

propafenone in extensive metabolizers following two separate doses of each enantiomer 

(Brode et al., 1988). It is concluded that, when the enantiomers are coadministered, each 

&'bits the metabolism of the other so as to reverse pharmacokinetic differences 

between enantiomers and also reduce clearance rates (Bryson et at., 1993). The 

stereoselective pharrnacokinetics of propafenone has also been demonstrated in the rat. 

After intravenous, intraperitoneal, and oral administration, the AUC for R-enantiomers 

is higher than that for S-enantiomers (Mehvar, 1990). 

1.4.3.4 Eflect of Food 

Coadministration of propafenone with a high protein meal increases its 

bioavdabitity (Axelson et d., 1987). This phenomenon represents the most prominent 

documented interaction between f d  and high hepatic 6rst-pass drugs. It is interesting 

that such enhancement of propafenone bioavailability could only be demonstrated in 

subjects with the extensive metabolizer phenotype. The mean increase in AUCOd was 

120% with a maximum of 638% when all 24 healthy subjects were used in the 

calculation, and 147% when only extensive metabolizer phenotype subjects were 

incorporated Beside the change in AUC,* C, is more rapidly attained in the presence 

of food. 



Figure 1.5. Main pathways of propafenone in man and the dog. 
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+ In the dog 



CHAPTER 2 

RATIONALE, HYPOTHESES AND OBJECTNES 

2.1 Rational 

2.1.1 Food effect and its mechanisms 

Ingestion of food has been found to enhance the oral bioavailability of certain 

drugs subject to extensive hepatic first pass metabolism, such as pmpranolol, metoproIol 

and propahone (Melander et al., 1988). The effect of food can be profound. When 

these drugs are administered orally dong with a meal, increases in the area under the 

concentration-time curve as large as 600% can occur, The dteration of systemic drug 

levels may r d t  in unexpected ineffective or toxic pharmawIogicd responses for 

individual subjects. High intra-individual variability limits the effective use of some 

high first pass drugs. Therefore, understanding the cause of the food effect is warranted. 

Although the fwd effect has been studied by many investigators for over two 

decades, its mechanisms remain unclear. The most reasonable explanation for the 

increased bioavailability is a reduction in hepatic kt-pass metabolism since 

gastrointestinal absorption of the affected drugs seems to be virtually complete in the 

fasting state. According to the concept of hepatic clearance models, hepatic extraction is 

dependent on hepatic metabolic enzyme activity (intrinsic clearance), hepatic blood flow 

and drug plasma protein binding. Much effort has been expended to detine the mIe of 

transient changes in hepatic blood flow in the food effect, which is now believed to be 



minor. Moreaver, studies on drug plasma protein binding have reveaIed that food is 

unlikely to cause an increase in the bound hction of propranoloI. Thus, inhlbition of 

hepatic metabolism, i-e., decreased intrinsic clearance, by dietary nutrients becomes a 

possible mechanism of the food effect. Although it is generally agreed to be a 

possibility, it remains to be experimentally elucidated. 

2.1.2 Interaction between amino acids and drug metabolism related to the food 

effect 

Most human diets are complex mixtures of macro-nutrients such as 

carbohydrates, fats and proteins, which are digested and transported into the portal vein 

as micro-nutrients, such as glucose, hctose, free fatty acids and amino acids. These 

micro/macro-nutrients are widely recognized to be modulating factors for hepatic drug 

metabolizing enzymes (Anderson, 1988; Yang and Yoo, 1988). Of these components in 

the diet of humans, however, only protein appears to be responsible for the 'food effect'. 

Human studies have demonstrated that protein-rich meals unquestionably enhance the 

AUCOd of propranoIo1, metoprolol and propaf'one, whereas there is no or less effect 

of carbohydrate-rich meals. 

Based on the importance of protein in the food effect, amino acids, derived from 

the gastrointestinal digestion of protein, may be a key food component involved in the 

'food effect'. Nevertheless, there is no report that reIates to acute interaction between 

amino acids and drugs exhibiting the 'fwd effect', except the perfirsed rat liver studies 

in our Iaboratory. In the isolated p&ed rat liver preparation, a mixture of amino acids 

can reversibly inhiit all pathways of propranold and metoprolol metabolism (Sempfe 



and Xia, 1995; Wang and Semple, 1997). Since it is unknown why amino acids cause 

the inhibition of drug metabolism and how the inllliition would be relevant to the 'food 

effect', tirrther investigation into the amino acid-drug interaction is necessary. 

The observed interaction may be due to direct or indirect inhibition of drug 

metabolizing enzymes. Direct hhiiition seems unlikely because amino acids at 

physiological levels have been shown not to inhibit metoprolo1 metabolism in a study of 

rat liver microsome preparations (Alcom, 1997). Therefore, indirect mechanisms shouid 

be involved, such as b t h g  the supply of cosubstrates, oxygen andor NADPH. [n 

parallel with inlzl'bition of metoprolo1 metabolism, amino acids aIso cause an acute and 

dramatic increase in hepatic oxygen consumption (Wang and Semple, I997). This 

implies that the oxygen supply couId become Iimiting in the liver. It is we11 known that 

differences in the distniution of enzymes and an oxygednutrient gradient exist along 

the hepatic acinus from the periportal to the perivenous area. The metabolism of amino 

acids, an oxygen-consuming process, is preferentially Iodized in the periportal zone of 

the acinus (Hiussinger and Gmk, 1986), and the cytochrome P450 enzymes and 

glucuronosyl transferases, which are the enzymes most commonly involved in 

xenobiotic metabolism, are mainly distn'buted in the pericentral region of the acinus 

(Thurman et al., 1986). When both amino acids and the drug are in- into the portal 

vein, the amino acid metabolizing enzymes have the priority to utilize oxygen, and thus 

a transient oxyge~ deficiency may be saffered by the drug metabolizing enzymes which 

are distriiuted downstream (Wag  and SempIe, 1997). Many drug metabolizing 

enzymes are impaired by reductions m oxygen supply (Angas et al., 1990; Woodroffe et 

al., 1995). For instance, the activity of c y t o c h e  P450 isozymes respomble for 



propranolol metabolism is very sensitive to changes in the hepatic oxygen concentration 

(Elliott et al., 1993; Woodrwffe et al., 1995). Consequently, inhiition of metoprdol 

metabolism could be attriiuted to the amino acid-mediated pericentral oxygen 

deprivation in the hepatic sinusoids. 

2. t 3 Experimental animal models 

The Sprague-DawIey strain rat has been chosen as the experimentaI animal. It is 

considered to be an extensive metabolizer in term of hepatic debrisoquine 4hydroxylase 

activity. The isolated perfUsed liver preparation appears to be an appropriate ex vivo 

model to investigate the effect of amino acids on hepatic drug metabolism because the 

architecture of the liver remains undisturbed and the zonal distribution of enzymes is 

maintained. As it is not physiologically complete, however, studies with an in vivo rat 

model are also required in order to link the 'food effect' with any proposed mechanism 

delineated from the in v i t ~ o  investigations. 

2.1.4 Selection of model drugs 

Two high hepatic first pass drugs that exhibit the 'food effect' in humans, 

propafenone and metoprolol, are considered appropriate model drugs to investigate 

mechanisms of the 'food effect'. 

Propafenone is widely used in the clinicd setting as a class IC antiarrhythmic 

drug. Food ingestion caused an average 147% increase in oral bioavailability in 20 

subjects (Axelson et al., 1987), which is the largest reported effect of food. It should be 

a potential made1 drug and can be expected to be sensitive to the effect of amino acids. 



The major pathways of propafenone metabolism in man are 5-hydroxylation and N- 

deallcylation as well as glucuronidation of both parent drug and phase I metabolites. 

Nevertheless, no information is yet available on the metabolism of propafenone in the 

rat, To evaluate whether propafenone could be a usell model drug, identification of its 

metabolites in the rat is needed. In addition to racemic propafenone metabolism, the 

disposition of propafenone enantiomers should be taken into consideration because 

steroselectivity has been shown in the pharmacokinetics of propafenone. 

Metoprolol is a selective pl-adrenergic blocking drug. In humans, its AUCOd 

was increased by an average of 40% when concomitantly given with a protein-rich meal 

(Melander et al., 1977). In the isolated, perfused rat liver, the V,, values of metoprolol 

and the two metabolites, a-hydroxyrnetoprolol and Odemethylmetoprolol were 

reversibly reduced by about 50% after coinfusion with a balanced mixture of amino 

acids (Wang and Semple, 1997). The metabolic pathways of metoprolol are similar in 

humans and rats, where metoprolol is metabolized to a-hydroxymetoprolol, O- 

demethyimetoprolol and metoprolol acid without any significant primary phase II 

conjugation. The low hepatic tissue binding (Wang, 1995) is an important advantage of 

metopro101 as a model drug in the isolated, petfused rat liver. The steady state can be 

reached within a short time even at non-saturated inIet concentrations. Therefore, 

metoprolol could atso be a good model drug to study in the isolated, perfused rat Liver. 



2.2 Hypotheses 

(I)  tnhi'bition of hepatic drug metabolism by dietary amino acids is one of the 

mechanisms involved in the 'food effect'. 

(2) Propafenone and metoprolol are appropriate model drugs for investigating the 

drug-food interaction in the isolated, p&ed rat liver. 

(3) Amino acids inhliit the metabolism of the model drugs by reduction of the 

oxygen supply to the pericentral zone of the hepatic acinus. 

(4) Ingestion of amino acids can increase the bioavailability of the model drugs after 

an oral dose in the in vivo rat. 



23 Objectives 

(1) To establish the appropriateness of the isolated perfused rat Iiver preparation 

system for studying the metabolism of propafenone and metoprolol. 

(2)  To develop and validate sensitive HPLC methods for the analysis of 

propafknone enantiomers and metoprolol, and their metabolites. 

(3) To identi@ the metabolic pathways of propafenone in rat liva, 

(4) To determine whether the effect of amino acids on propafknone and/or 

metoprolol metabolism is dependent on the oxygen delivery rate and the 

direction of flow in the isolated, p&ed rat liver. 

( 5 )  To determine whether the ingestion of amino acids can cause a food-like 

effect on propafenone andlor metoprolol kinetics in the intact rat in order to find 

a possible link between the amino acid-drug interaction ex vivo and the 'hod 

effect' in vivo. 



CRclPTER 3 

ISOLATED PERFUSED RAT LIVER PREPARATION 

3.1 Introduction 

Although it has been over 100 years since Claude Bernard first reported the use 

of the isolated perfused rat liver (Miller, 1973), it is still a valuabte and cornmonly used 

intact organ model for examining the hepatobiliary disposition of drugs. The isolated 

perfused rat liver technique and its applications have been extensively elaborated by 

many distinguished researchers (Meijer et al., 198 1; Pang, 1 984; Gores et al., 1986; 

Wolkoffet al., 1987; Powell et al., 1989; Brouwa and Thman, 1996). Compared with 

in vivo models, the use of the isolated perfused rat liver rules out complications due to 

many factors that are difficult to control such as neuronal and hormond influences on 

hepatic metabolism, as well as absorption, distniution, metabolism and excretion by 

nonhepatic mutes. In contrast to in v i ~ o  modeIs like liver dices, hepatocytes and 

microsomes, the perfused rat liver preserves hepatic architectme, enzyme heterogeneity, 

and bile flow. 

In order to investigate the disposition characteristics of propafenone and 

metoprolol, which are almost compktely eliminated via hepatic metabolism in the body, 

we used the perfUsed rat liver preparation technique throughout most of the present 

work in recognition of its advantages. Two systems were applied for different pupses. 

One system employed was the isolated perbed rat Liver preparation in the single pass 



mode, by which the hepatic metabolic pathways of propafenone were examined. The 

other system employed was the in situ perfbed rat liver system facilitated with the 

switch of antegrade and retrograde flow directions for studying the amino acid- 

metoprolol interaction. Although the techniques of these two systems had common 

features, different devices, p d i o n  media and surgical procedures were employed. 

They are thus separately d e s c n i  in the following text, 



3.2 Liver perfasion system for propafenone metabolism study 

3.2.1 Apparatus 

The schematic representation of the apparatus for single-pass experiments 

(manufactured by the University of California, San Francisco Research and 

Development Laboratory, San Francisco, CA, USA) is shown in Figure 3.1. The 

perfusion medium was passed fiom polypropylene containers, in which they were 

bubbled through gas dispersion tubes with 95% 0215% CO2, through a switching vaIve 

(model 501 1, Rheodyne, Cotati, CA, USA), peristaltic pump (Ismatec Vario with a six- 

roller pump head, Cole Parmer, NiIes, IL, USA), and bubble trap/manometer, and then 

into the liver. A portion of the effluent was passed through the microeIectrode flow- 

through cell of an oxygen monitor (YSI model 5300, Fisher Scientific, Edmonton, 

Alberta, Canada), while the major portion was collected for sample analysis. The entire 

p e o n  circuit was housed in a 37OC temperature-controlled cabinet. 

After each experiment, the perfusion system was rinsed thoroughly with distilled 

water. 



37 O C  Perfusion Chamber 

Hepatic vein 

5 

OutIet for collection 

Figure 3.1. Single-pass rat liver perfusion apparatus. 

(1) Main reservoir with perfbion medium; (2) gas dispersion tube; (3) peristaltic roller 

pump; (4) bubble trap; (5 )  microelectrode flow-through cell of an oxygen monitor. 



The perfusion medium was oxygenated with Krebs-Henseleit bicarbonate buffer 

containing 11 m .  glucose, which served as an energy source. The ample supply of 

glucose (normaIly 5.5 mM) was for providing sufficient NADPH via the pentose 

phosphate shunt to support cytochrome P-450 activity. Alternatively, sodium lactate and 

pyruvate might be included. The composition of the perfusion medium is shown in 

Table 3.1. 

Ody fresh perfision medium was used in each experiment. Typically, to make 

10 L of perfusion buffer, the solution containing all ingredients, except CaCl?, NaHCO3 

and glucose, was prepared in 9.5 L distilled, deionized water. This solution was used as 

a stock solution. On the day of each experiment, glucose and NaHC03 were added to the 

stock solution and stirred until dissolved. The CaC12 solution in 500 ml water was added 

last with stirring to avoid precipitation of cafcium as the phosphate salt. The prepared 

perfusion buffer was then transferred to the containers and placed in the perfusion 

cabinet after warming up to 37OC. The drug was added to a particular container 

containing blank perhion buffer to make a certain concentration for the metabolism 

study. The perfbsion medium was saturated directly with a mixture gas of 95% 01/5% 

C02 through a glass gas dispersion tube, and buffered to pH 7.4. To sustain adequate 

oxygenation in the liver, a flow rate of 3-4 ml/min/g hver was applied. 



Table 3.1. The composition of hemoglobin-fiee perfusion medium 

Compound 

Krebs-Henseleit bicarbonate buffer 

Sodium chloride 
(NaCI) 

Potassium chloride 
(Kcr) 

Calcium chloride dihydrate 
(CaCIp2HrO) * 
Potassium dihydrogen orthophosphate 
( m p o d  

(Magnesium sulphate heptahydrate 
(MgSOp 7H20) 

Sodium hydrogen carbonate 
(NaHC03) 

Sodium lactate 
(CH3CHOHCOONa) 

Sodium pyruvate 
(CH3COCOONa) 

Dextrose 
(C6H1206) 

* To prevent precipitation, CaC12*2H20 is dissolved in a mall amount of water and 
added slowly with stirring into the mixture solution of the other compounds. 



3 3 3  SurgicaJ procedure 

I .  Following an overnight fast, anesthesia was introduced in a male Sprague- 

Dawley rat by inhalation of 4.5% halothane (MTC Pharmaceuticals, Cambridge, 

Ontario, Canada) and the condition was maintained with 1.5% halothane through 

a mask. 

2- An abdominal midline incision and a T section were made without damaging 

the diaphragm. The intestines of the animal were covered with a saline-wetted 

gauze and then displaced to the right of the operator to expose the p o d  area of 

the iiver. 

3. The panaeaticoduodenal veins close to the portal vein were ligated. The 

celiac artery, which branches to the hepatic artery, was tied to ensure 

unidirectional flow. Double loose ligatures (surgical silk) were placed around the 

portal vein and the inferior vena caw proximal to the right rend vein. 

4. The portal vein was camulated with a 16G Jelcow intravenous catheter 

(Critikon, hc., Tampa, FL, USA), which consisted of an inner needle and an 

outer sheath for placement. After insertion, the inner needle was withdrawn, 

leaving the outer catheter in place for moving forwards to the hilus of liver. The 

perfhate with a slow flow rate of 1 d m i d  g Iiver was immediately connected 

to the portal catheter once the head of catheter was filled with the back flow of 

bIood. Introduction of an air bubble into the liver was caremy avoided at this 

stage. The inferior vena cava close to the right renal vein was severed at once to 

allow blood and perfusate to exit before a buildup of pressure in the Iiver 

occurred* 



5. After ligatures around the portal vein were dosed, the thorax was opened and 

the right atrium was cut. The rat died during these procedures. The perfusion 

flow was quickly increased to a sustained rate of  3 d m i n l g  liver. A 3 cm 

polyethyhe tube (Intramedid9, 1.67 mm i. d x 2.42 mm o,d., Clay Adam, 

Division of Becton Dickinson Company, Parsippany, NJ, USA) was inserted 

through the incision of the right atrium into the thoracic inferior vena cava and 

shifted until its tip was close to the hepatic veins. The cannula was then secured 

with double dosed Ligatures, and served as the pertirsate outlet for sample 

collection in the experiment. 

6. Another 3 an poIyethylene tube was pIaced into the abdominal vena cava to 

allow a smalI portion of the effluent to pass an oxygen monitor electrode for 

measurement of the oxygen tension in the effluent. 

7. The liver was rapidly dissected from the body cavity, and transfaed to the 

perfusion cabinet. The position of liver was adjusted so that a steady flow of 

m a t e  (3 d/minlg liver) was achieved. The liver was allowed to stabilize for 

about 20 min before commencement of the study protocol. 

3.2.4 Liver viability assessment 

The duration of liver p e o n  was within 2 hr. The viability of the isolated 

p&ed Liver was assessed throughout the experiment: 1) the gross appearance of the 

liver, 2) the weight of the liver at the end of perfirsion; 3) the oxygen consumption of the 

liver; and most importantly, 4) the hepatic clearance of the drug. The weight of liver 

should remain at 34% of total body weight. The hepatic oxygen consumption and drug 



clearrrtlce should be constant throughout the perfirsion. Normally, the oxygen 

co~lfltmption was maintained at 2-3 pmoVmin/g liver. 



3 3  Liver perfusion system for amino acid-metoprolol interaction 

33.1 Apparatus 

Normal flow through the perfused liver is fiom the portal vein to the hepatic vein 

(antegrade perfision). In order to investigate the role of enzyme heterogeneity in the 

liver, the flow direction can be reversed to create the so-called 'retrograde perfusion'. 

The device described here is specially designed for this purpose. 

The perfusion apparatus (Figure 3.2) was modified fiom that used in the 

propafenone metabolism study as descnied above. The m i o n  system, maintained in 

a temperature-controlled (37°C) cabinet, included two reservoir units, a peristaltic pump 

(Tsmatec SA, Vario-pump system, Cole-Parmer, Niles, IL, USA), a silastic tubing 

oxygenator, a bubble trap/fiIter device and two three-way stopcocks which were used to 

facilitate the switch between antegrade and retrograde flow to the liver during p d s i o n  

(Pang and Terrell, 1981). A pH meter eHM84 Research pH meter, Radiometer AfS 

Copenhagen, Denmark) and a bioIogical oxygen monitor (YSI model 5300, YSI, Inc., 

YeIlow Springs, OH, USA) were interconnected with the flow-line before and after the 

liver, respectively, to monitor the pH of inlet perfimte and the oxygen content of the 

liver effluent. A syringe pump (Model 975, Harvard Apparatus, South Natick, MA, 

USA) was attached to the p d o n  line one centimeter h m  the entry of the liver to 

coadminister a mixture solution of amino acids. 



After each experiment, the whole apparatus was cleaned by rinsing with a 

chlorhexidine (Savlon@) solution. The tubings and containers were then disassembled, 

and were sterilized in an autoclave. 
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Figure3.2. Rat liver perfhion apparatus for antegrade (solid line) and retrograde 



(dashed line) perfusion. 

(1) Main reservoir with erythrocyte-enriched perfusion medium; (2) magnetic stirring 

bar, (3) peristaltic roller pump; (4) flask with d i n e  for humidification of &KO2 gas 

mixture; (5) silastic tube oxygen exchanger, (6) flow cuvette with pH electrode; (7) 

bubble trap and filter, (8) three-way stopcock A and B facilitating the change of flow 

direction; (9) syringe pump for coinfusion of a mixture soIution of amino acids; (10) 

microelectrode flow-through cell of an oxygen monitor. For antegrade perfhion, the 

opening c of stopcock A is cIosed to establish flow into the portal vein while the 

opening a of stopcock B is closed to shuttle all reservoir buffer through stopcock A to 

the liver and to allow perfusate to exit. For retrograde perfusion, the procedure for 

stopcock A and B is reversed. 



33.2 Perfirsfon medium 

The perfhion medium consisted of 20% (v/v) washed outdated human red blood 

cells, 1% bovine serum albumin and 0.1% dextrose in a Krebs-Henseleit bicarbonate 

buffer (Table 3.2). Human red blood cells were washed with equal volumes of 

physiobgical s h e  three times, followed by equal volumes of Krebs-Henseleit 

bicarbonate buffer three times. After each wash, the red cells were collected by 

centrihgation at 1000 x g for 10 min at 4"C, and the supernatant together with protein 

deposits and ghost cells were removed by aspiration. The washed red blood cells were 

used immediately. The prepared red cells were filtered through a thin mesh prior to their 

addition to the Krebs-Henseleit buffer containing glucose and albumin. 

The perfusate was buffered to pH 7.2 - 7.4, and oxygenated by equilibration with 

a flow of 95% &/5%C& at I Urnin through a silastic tubing gas exchanger. 

Alternatively, in certain experiments, the perfusate was equiiibrated with a mixture of 

95% O2/5%C& and 95% N2/5%C& to achieve a reduced level of oxygen delivery. The 

proportion of oxygen to nitrogen determined the oxygen level in the perfusate. The liver 

was perfused at a constant rate of about 15 dmin/liver. 

Table 3.2. Preparation of 1 L liver perhate containing red blood cells 

- 

Composition Amount added 

Krebs-Henseleit buffer (Table 3. I) 800 ml 

Washed human red bIood cells 200 ml 

Glucose h2 



The surgical procedure was similar to that d e s c r i i  in 3.1.3, except for the 

following changes, The inferior vena cava proximal to the right rend vein was ligated, 

so that the thoracic inferior vena cava was cannulated for both oxygen measurement and 

sample coUection. Mer the surgery, the rat was transferred to the perfusion system 

where the liver was perfused in situ. 

33.4 Liver viability assessment 

The duration of Iiver perfbsion was about 150 min, while the retrograde 

perfirsIon was performed for no more than 75 min. The viability of the isoIated p&ed 

liver was assessed during the experiment according to the methods descnied in Section 

3.2.4. 



HPLC ASSAY FOR PROPAFENONE ENANTIOMERS IN RAT LIVER 
PERFUSATE AM) HUMAN PLASMA 

4.1 Introduction 

Propafenone (PF) is a class 1C antiarrhythmic agent which is administered as a 

racemate of S (+)- and R (-)-enantiomen (Harron and Brogden, 1987). Although both 

the R- and S- enantiomers are equally potent in blocking sodium channels, the S- 

enantiomer is a more potent P-antagonist than the R-enantiomer. The enantiomers also 

display stereoselective disposition characteristics, the R-enantiomer being cleared more 

rapidly than the S-enantiomer (Hii et al., 1991). In order to study the mechanism of 

interactions between propafenone and nutrients in isolated rat livers and human subjects, 

a stereospecific assay method was required to determine the individual enantiomen of 

PF in biologicd samples. 

Like most of the P-blocking agents, PF contains an isopropanolamine side-chain 

(Figure 4.1). Therefore, chiral derivatizing reagents can be employed for this drug. 

Tetra-0-acetyl-P-D-glucopyranosyl isothiocyanate (GITC, Figure 4.1) is a ch id  reagent 

which has been used for derivatization and separation of the enantiomers of several P- 

blockers (Egginger and Lindner, 1993). Kroemer et a1 (1989) applied this reagent for 

high performance liquid chromatographic (HPLC) analysis of the propafenone 

. . 
enantiomers in plasma after multipledose admrmtmtion of the racemate. The reported 



HPLC assay, however, utilized multi-step extraction and incompiete GITC 

derivatization processes which resulted in a detection limit of 100 nglml. The low 

sensitivity of the assay limits its utilization when lower concentrations are expected. 

In the present paper, we report a sensitive and convenient HPLC method for 

measurement of the propafenone enantiomers in rat liver p&ate and human plasma, 

based on a modification of Kroemer's method. 

Figure 4.1. Derivatization of propafenone with GITC to form the diastereomeric 

thiourea products. 



4.2 Experimental 

4.2.1 Chemicals 

Racemic propafenone hydrochloride (HCI) and GITC were purchased fiom 

Sigma (St. Louis, MO, USA). Authentic standards of racemic propahone-HC1 (Lu 

29007) and the internal standard (Li 11 lEHCL, the N-ethyl analogue of PF) were 

kindly supplied by Knoll AG, Ludwigshafen, Germany. The structures of propafenone 

and the internal standard (IS) are presented in Figure 5.1. Other chemicds used were 

commercial analytical grade purchased h m  BDH. All solvents were WLC grade 

obtained h m  BDK Chemicals Canada (Edmonton, AB, Canada). 

4.22 Standard solutions and reagents 

Stock solutions of racemic PF (100 p@d) and IS (10 Wml) were prepared 

separately in deionized, distiUed water. Appropriate dilutions of the stock solution of PF 

were made to generate a series of working standard solutions (10, 1 pg/ml). AU stock 

and working standard solutions were stored at 4OC for no more than 3 months. Varying 

volumes of the PF working solutions were added to blank perfkate or plasma to 

produce final concentrations of 200,400, 1000, 1750 and 2500 ng/ml for Iiver perfhate 

and 25,200,400,600 and 1000 ng/ml for human plasma, respectively. 

A 2 m g / d  solution of GITC in either acetonitrile or toluene was prepared. The 

solution was further diluted with either acetonitrile or toluene to give a final desired 

concentration, The solution was prepared M daily@ before use. 



4 2 3  Sample preparation 

To 1 ml of rat liver perfmate or human plasma were added 50 pl IS solution (10 

pg/ml) and 2 ml of IM carbonate buffer (pH 1 1.0). Following addition of 5 ml of a 

hexane-2-propanol(90: 10, v/v) mktue, the samples were vortex mixed for 10 min, aud 

then centrifuged for 10 rnin at 1200 x g. The organic layer was then transferred to a 

clean borosilicate glass tube and evaporated to dryness under a nitrogen stream at room 

temperature. The residue was dissolved in a mixture composed of 40 pl of the GITC 

solution (0.5 mg/rnl) and 60 ~LI of a triethyIamine (TEA) solution (5pVml) in 

acetonitrile. The samptes were slightly shaken at room temperature for 20 min. After 

evaporation under a nitrogen stream, the residue was reconstituted in 200 pl of HPLC 

mobile phase, 20 pl of which was injected into the HPLC column. 

42.4 EPLC system 

The HPLC system consisted of a Waters 510 pump, a Waters 490 programmabIe 

multiwave length detector set at a waveIength of 254 nm (Millipore-Waters, 

Mississauga, ON, Canada), a Model 7125 syringe loading sample injector with 50 pl 

loop (Rheodyne, Cotati, CA, USA) and a Chromatopac C-R3A integrator (Shimadzy 

Kyoto, Japan). Separations were carried out on a 250 x 4 mm I.D., 5 pn particle size 

Lichrospher RP-I8 column (E. Merck, Darmstadt, Germany). The mobile phase of 

0.03% triethylamine, 0.1% &Po4 in water-acetonitde (4050 viv) was pumped at a 

flow rate of 1 d m i n .  



4.2.5 Extraction efficiency 

Perfbate or plasma samples (n = 5, respectively) containing 100,2500 and 5000 

ngh l  of PF were extracted according to the extraction procedure descriied as above. 

Without derivatization with GITC, the extracted residues were reconstituted and injected 

into the HPLC system. The peak heights of the racemic PF in these samples were hen 

compared to those obtained hrn PF standard solutions with comparable concentrations. 

4.2.6 Accuracy and precision 

Rut fiver peghate sumpfes. Three sample pools containing 245, 1275 and 2550 

ng/ml of PF were prepared by adding appropriate volumes of standard solutions to drug- 

tiee liver perfirsate. The samples were stored at -20°C until analysis. Five replicate 

samples h m  each pool were extracted and analyzed on five separate days. 

Concentrations were determined by wmparison with a caliition curve prepared on the 

day of analysis. From the data obtained, intra- and inter- day relative standard deviations 

(RSD) and mean accuracy were calculated. 

Human plasma samples. Three p i s  of plasma samples containing 24.5, 510 

and 935 ng/ml of PF were prepared and stored at -20°C. On three different days, five 

replicate samples of each concentration were analyzed. The intra- and interday 

precision and accuracy were calcuIated in the same way as that for liver perfkate 

samples. 



42.7 Application to isolated perfbed rat liver study 

The present assay for PF enantiomers was applied in a pilot study, in which the 

effects of insulin and glucagon on the hepatic disposition of PF enantiomers were tested 

in the isolated p&ed rat fiver. The study was designed for examining whether insulin 

a d o r  glucagon are involved in the food effect since the portal concentrations of insulin 

and glucagons are lmown to be dramatically changed after a meal. The technique of the 

isolated perfused rat liver is descriied in the section 3.2 of Chapter 3. Racemic PF (20 

pghl) in Krebs-Henseleit bicarbonate buffer containing 4 mM glucose was idbed into 

a single-pass isolated perfused rat liver for 130 min at a flow rate of 25 to 30 rnllmin. 

Insulin or glucagon at 2 x iw9 was introduced h m  60 to 90 min. The effluent samples 

were collected every 5 min during the perfusion, and immediately stored at -20°C. The 

assay was conducted on the next day after the experiment, 



4 3  Results and discussion 

In the present study, a stereospecific HPLC assay for the enantiomers of PF in rat 

liver perfusate and human plasma has been developed using precolumn derivatization 

with GITC. Under the stated conditions, the formed diastereomers of IS and the 

diastereomer S (+)- and R (-)-PF, eluted at 10.3, 1 I .2, 13.1 and 14.2 min, respectively. 

The HPLC chromatograms are shown in Figure 4.2a for rat liver perfusate samples and 

Figure 4.2b for human plasma, respectively. 

GITC is widely used for precolumn derivatization of secondary amines in the 

development of stereospecific HPLC methods for the separation of the enantiomers of a 

number of badrenoceptor antagonists (Egginger and Lindner, 1993). GITC reacts 

rapidly with primary and secondary amines, and it is stereochemically stable and 

available in a highly pure fonn. The isothiocyanate group of GrTC reacts with the 

secondary amino p u p  of the PF enantiomer under mild conditions to form a 

corresponding stable thiourea derivative of PF (Figure 4.1). The stmseIective 

mechanism responsiile for the good separation of the fonned diastereomers presumably 

contri%utes to the formation of rigid conforms via intra molecular hydrogen bonding 

between the acetyl groups and the hydroxyl group in the P-position of the derivatized 

amino group (Egginger and Lindner, 1993). By applying this reagent in an HPLC 

method, Kroemer et al. (1989) successfully separated PF enantiomers in plasma 

However, the derivatization yield was very low under the conditions of Kroemer's 

method, in which PF reacted with GITC alone in a toluene solution. 



To optimize derivatization, GITC was dissolved in two organic solvents, 

acetonitrile and toluene, each in the presence and absence of different concentrations of 

the basic modifier, triethylarnine (TEA). The results are shown in Figure 4.3. Among the 

solvents tested, the most satisfactory result was obtained when GITC was dissolved in 

acetonitrile with the addition of 0.3% (vlv) triethylamine. GITC concentration is another 

key factor in the extent of derivatization. The derivatization yield of PF enantiomem 

reached its maximum at a GITC concentration of 0.1 mg/mI or higher (Figure 4.4). In 

our final method, the concentration of GlTC at 0.2 mghl  was added for the 

derivatization. The reaction of PF enantiomers with GITC under these conditions was 

rapid even though it was at room temperature. After 15 min, the reaction yield achieved 

its maximum (Figure 4.5); therefore the teation time was 20 min in the final method. 

Using the optimum conditions stated in the Experimental section, the derivatization 

yield, based on residual analysis of propafenone, was 93.0%- which was much higher 

than that obtained b m  Kroemer's method (71.3%). 

To increase the extraction efficiency fiom human plasma, different organic 

solvents, including dichloromethane, diethylether, toluene-n-butano1, toluene- 

diethylether, hexane-n-butanol and hexane-n-propanol, and different basic solutions, 

including carbonate buffer* NaOH solution and Na2C03 solution, were selected as 

extraction solvents. Among the solvents and basic soiutions tested, a solvent of hexane- 

2-propanol(90:IO, vlv) and a basic solution of IM carbonate buffer (pH 1 I .O) were used 

to extract the drug fiom the bioIogical samples- The extraction efficiencies (mean f SD) 

of PF fiom human pIasma were 8 1.5 f 7.2% and 80.1 f 3.5% at concentrations of 100 



and 2500 ag/ml, respectively (Table 4.1). This is contrast to the low extraction yield of 

40% which was reported by Kreomer et al. (1989) after multi-step extraction of PF. 

Using 1 ml of perfusate or plasma, the limits of detection (signaI-to-noise ratio = 

3:1) were 32 a@ for both S (+)-PF and R (-)-PF in rat liver perfusate, and 4.3 n g / d  

for S (+)-PF and 5.0 n g / d  for R (-)-PF in human plasma. The relationship between S 

(+)- or R (-)-PFtIS peak height ratios and PF plasma concentrations were linear (r > 

0.9998). The typicaI equations describing the relationship were 

in rat Iiver perfhate samples (Figure 4.6a), and 

in human plasma samples (Figure 4.6b), where y and x are the peak height ratios and 

plasma concentrations, nxpedively. 

The assay precision and accuracy for p e r h t e  and plasma sampIes are reported 

in Tables 4.2 and 4.3, respectively. The interday RSD and error vaIues ranged from 

3.8% to 14.9% and -1.4% to 5.5% for perfUsate samples, respectively; for plasma 

samples, the interday RSD and error values ranged h m  7.6% to 16.9% and -2.1% to 

16.1 %, respectively. 

The assay was successllly utilized for the d y s i s  of rat liver perhate sample 

obtained from the isolated rat liver perfused with 20 pg.d PF. The time courses of PF 



emantiomers after widbsion of insulin and glucagon are shown in Figure 4.7. The time 

to reach steady state was about 50 min, indicating that the tissue binding of PF was very 

high. The disposition of PF in the rat liver was stereoselective, but no insulin and 

glucagon interaction with PF was observed The assay for human plasma samples was 

not employed in the present work due to the dismntinuation of the study protocol. 



Figure 4.2a. Chromatograms of extracts h r n  (a) a blank liver perfirsate sample, (b) a 

blank liver perfusate sample spiked with racemic PF and IS, and (c) a liver perfusate 

sample taken at 70 min, after derivatization with GITC. 

Peaks 1 and 2 represent the diastefeorners fonned with IS; Peaks 3 and 4 represent the S 

(+)- and R (-)- PF, respectively, 



Figure 4.2b. Chromatograms of extracts h m  (a) a bIank plasma sample and (b) a 

blank plasma sample spiked with PF and IS, after derivatization with GITC. 

Peaks 1 and 2 represent the diastereomers formed with IS; Peaks 3 and 4 represent the S 

(+)- and R (-)- PF, respectiveIy. 



Figure 4.3. Effect of triethylamine concentration on the derivatization yield at 60 min 

after derivatization of S (+)-PF (solid line) and R (-)-PF (dashed line) in a 0.4 m g / d  

GKC solution in either acetonitrile (square symbol) or toIuene (circIe symbol). 



Figure 4.4. Effm of GlTC concentration on the derivatization yield at 30 min after 

derivatization of S (+)-PF (solid line) and R (-)-PF (dashed line) in 0.3% triethylamine 

acetonitrile solution. 



Readan time (min) 

Figure 4.5. Effect of reaction time on the derivatization yieid of S (+)-PF (solid line) 

and R (+PF (dashed line) after reaction with 0.4 mg/ml GITC in 0.3% hiethylamine 

sohion in either acetonitrile (square symbol) or toluene (circle symboI). 



Table 4.1. Extraction recovery of propafenone h m  rat liver perfusate and human 

plasma (n = 5 )  

Concentration Extraction Recovery (% + RSD) 

Liver -te Plasma 



PF concentration (nI)mJJ 

Figure 4.6. Standard curves of S (+)-PF (soIid line) and R (-)-PF (dashed line) for rat 

liver perfirsate samples (a) and human plasma samples (b). 



Table 4.2. Accuracy and precision for S (+)- and R (-1- PF in rat liver perfbate 

(5 days; n = 5 in each day) 

Parameter Concentration in rat liver perfusate 

Intra-day RSD a (%) 4.1 4.3 6.6 6.9 4.5 4.1 

Inter-day RSD (%) 14.9 11.7 3.8 4.9 8.8 7.1 

Mean accuracy (%) 98.6 100.9 101.7 105.5 101.3 103.4 

Mean of the daily RSD values. 
RSD values of daily means. 

Table 4.3. Accuracy and precision data for S (+)- and R (-)- PF in human plasma 

(3 days; n = 5 in each day) 

Parameter Concentration in human plasma 

Intra-day RSD a (%) 4.7 3.1 5.8 4.8 3.5 2 -9 

Interday RSD (%) 12.9 16.9 I i.2 10.5 8.8 7.6 

Mean accuracy (%) 97.9 100.8 113.3 116.1 112.3 115.2 

a Mean of the daily RSD values. 
RSD values of daily means. 
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Figure 4.7. Time comes of concentration of S (+)-PF (solid line} and R (-)-PF (dashed 

line) after coinfusion with insulin (a) and glucagon (b) in the isolated rat liver p&ed 

with 20 pdmI of racemic PF. 



CHAPTER 5 

IDENTIFICATION AND DETERMINATION OF PHASE I 
METABOLITES OF PROPAFENONE IN RAT LIVER PERFUSATE '" 

5.1 Introduction 

Propafenone (PF), 2'-(2-hydroxy-3-propylamino-propoxy)-3-phenylpropiophe- 

none, is a potent antjarrhythmic drug widely used in the treatment of ventricular and 

supraventricular arrhythmias (Harron and Brogden, 1987). Like some other high hepatic 

first-pass drugs, e.g. metoprolol and propranolol, propafenone shows dramaticaIIy 

increased bioavailability when given with food, even though it is completely absorbed 

after an oral dose (Melander and Lalka, 1988; Axelson et al., 1987). In order to carry out 

studies on this "food effectw, which may be related to the interaction between nutrients 

and drugs in the liver, the metabolism of propafenone was studied in the isolated, 

perfused rat liver- 

Propafenone undergoes extensive hepatic oxidative metabolism in the dog and 

man. Less than 1% of the dose was recovered as unchanged substance in urine and bile 

(Hege et al., 1984a; 1984b). After orid doses of deuterated propafenone in man, two 

hydroxylated propafenone derivatives, 5-hydroxypropafenone (5-OH-PF) and 5- 

- 

' Presented at the Tenth Annual American Association of Pharmaceutical 
Scientists Meeting, October 1996, SeattIe, Washington, USA. 

2 Published in I998 (Tan, W., Li, Q., Mckay, G. and SempIe, H. A. 
Identification and determination of phase I metabolites of propafenone in rat liver 
perfusate. J.  Phann. Biomed A d A n c r l  16: 991-1003). 



hydroxy4methoxypropafenone (5-0H40CH3-PF) were described as the two major 

phase I metabolites in the samples of urine, bile, feces and plasma (Hege et al., 1984a; 

1986). Moreover, N-despropylpropafenone (N-des-PF), an NdealkyIated metabolite, 

was found to accumulate in the plasma of patients during chronic therapy with the 

parent drug (Kates et ai., 1985). AU of these three major metaboIites have activity 

comparable to that of propafenone (Hege et al., 1984a; Oti-Amoako et al., 1990; 

Thompson et al., 1988). In dog urine and bile samples, the major phase I metabolites, 5- 

hydroxypropafknone and 4'-hydroxypropafenme (4'-OH-PF), accounted for about 15% 

of the dose for each (Hege et al,, 1984a; 1986), whereas 5-hydroxy4 

methoxypropafenone and Ndespropylpropafenone are quantitatively only of minor 

importance. The structures of propafenone and its major phase I metabolites in dog and 

man are shown in Figure 5.1. 

Although the major phase I metabolites of propafenone have been identified in 

humans and dogs, no metabolic studies have been reported in rats or other animals. The 

present paper descriies the identification of the phase I metabolites of propafenone in 

the effluent sampIes h m  the isolated, perttsed rat liver by high performance liquid 

chromatography/mass spectrometry (HPLC/MS) and tandem mass spectrometry 

(MSMS) methods. Finally, the IeveIs of these metabolites were determined 

simultaneousIy by a simple and convenient HPLC method. 



Figure 5.1. Structural formulae of pmpafeaone and its metabolites, and internal 

standard. 



5.2 Experimental 

5.2.1 Chemicals 

All solvents used for extraction and preparation of the HPLC mobile phase were 

HPLC grade obtained fiom BDH Chemicals Canada Ltd. (Edmonton, AB, Canada). 

Other chemicals used were commercial analytical grade purchased h m  BDH. 

Propafenone hydrochloride (HCl) and Type H- 1 p-glucuronidase (hm Helrjr pomatia) 

were obtained fiom Sigma Chemical Co. (St. Louis, MO, USA). Authentic standards of 

propafenone HCI (Lu 29007), 5-hydroxypropafenone HCI (Lu 40545), N- 

despropylpropafenone h a r a t e  (Lu 48686) and the internal standard (Li 1 1 15-HC1, the 

N-ethyl analogue of PF) were kindly supplied by Knoll AG, Ludwigshafen, Germany. 

The structures of these compounds are shown in Figure 5. I. 

5.2.2 Liver perfusion 

The surgical procedure and the perfUsion apparatus were identical to those 

previously descnied (Chapter 3, Section 3.2). Following an overnight fast, male 

Sprague-Dawley rats weighing 220 to 250 g were anesthetized by halothane inhalation, 

the vena caw and hepatic portal vein were catheterized, and the livers were isdated and 

placed in a p&on cabinet The rat livers were perfused via the hepatic portal vein 

with oxygenated perfusate (5% C@ and 95% @J at a flow rate of 25 to 30 dmin/liver. 

The perfusate contained 2 g/l of glucose and 5 or 20 pg/d of propafenone in Krebs 

bicarbonate soIution, buffered to pH 7-4. A portion of the effluent fiom the vena cava 



was passed through the microelectrode flow-through cell of an oxygen monitor (YSI 

model 5300, Fisher Scientific, Edmonton, AB, Canada), while the major portion was 

collected for analysis. The entire circuit was temperature controlled at 37OC. Perfirsate 

samples were collected during the time interval of 60 - 100 min after @on with 

drug, in which propafenone was known to be at steady state (Chapter 4, Figure 4.7). 

Aliquots of perfbate samples were stored at -20°C until analysis. 

5.23 Sample preparation 

The phase I metabolites were extracted with diethyl ether. Perfusate samples (1 

rnl) were vortex mixed with 5 d of diethyl ether for 10 min. Mer centrifugation at 

1200 x g for 10 min, the organic layer was transferred to a clean borosilicate glass tube 

and evaporated to dryness under a stream of N2 at morn temperature. The residues were 

reconstituted in 200 p1 of HPLC mobile phase, and injected into the HPLC system or 

HPLCIMS system. 

Each peak obtained fbm the HPLC with ultraviolet (UV) detection was purified 

by a Spe-ed@ cartridge packed with solid phase C,g (Applied Separations tnc, 

Bethlehem, PA, USA). The cartridge was conditioned by eluting with 2 ml of 

acetonitrile, 2 mI of methanol, and 2 ml of distilled water. Each fraction collected fiom 

the HPLC was treated with a flow of nitrogen to evaporate organic solvents, and then 

lyophilized. The residue was reconstituted in 1 ml of water, and applied on the 

conditioned cartridge. After the samples had adsorbed to the solid phase, the cartridge 

was washed with 3 ml of water to remove salts contained in the samples. F d y  the 



metabolite W o n  was eluted with 1 ml of methanol, which was evaporated under a 

stream of nitrogen. The residue was reconstituted in 1 ml of methanol for injection into 

the MSMS spectrometer. 

5.2.4 Chromatographic methods 

5.2.4.1 HPLC conditions 

Propafenone and its phase I metabolites were separated by an HPLC system with 

a mobiIe phase of ammonium acetate (0.005 M)-acetonitrile-methanol(50: L 5:35, v/v/v), 

apparent pH (pH*) 2.90 adjusted with trifhoroacetic acid, pumped at a flow rate of I 

ml/min. The HPLC system consisted of a Waters 510 pump, a Waters 490 

programmable multiwavelength detector set at 210 nm (Millipore-Waters, Mississauga, 

Ont., Canada), a Model 7125 syringe loading sample injector with 200 p.l loop 

(Rheodyne k, Cotati, California, USA), and a 250x4 mm LD., 5-pn particle size 

Lichrospher RP-IS cotumn (E. Merck, Darmstadt, Germany). The data were recorded 

using a Chromatopac C-R3A integrator (Shimadzu Co., Kyoto, Japan). 

5.2.4.2 HPL W S  and MS/MS 

HPLCiMS and MSiMS spectra were obtained using a VG Quattro-1I triple 

quadruple mass spectrometer equipped with an electrospray ion source (Micromass, 

Airrincham, UK). HPLC/MS was performed with an atmospheric pressure chemical 

ionization (APCI) interfice in the positive ion mode. The probe temperature and corona 

discharge pin were maintained at 500°C and 3.5 kV, tespectively. Product ion spectra 



were obtained by positive ion eIectrospray (+ESI) MSMS with cotlision-induced 

dissociation (0). The wUisiou energy, Elab, was 20 eV, and the argon pressure was 

set at 1.0 x mBar. The HPLC solvent delivery system utilized a model t 40A dual 

syringe pump (Applied Biosystems, Mississauga, OnL, Canada) fitted with a Rheodyne 

7 125 valve loop injector equipped with a 20 pl sample loop. The separation column and 

HPLC conditions used in HPLC/MS system are descnied as above. 

5.2.5 Quantitation of propafenone and its metabolites in rat liver perfusate 

To 1 ml of rat liver perfusate were added 30 pl of internal standard solution (100 

pg/ml). The drug, metabolites and internal standard were extracted with 5 mI of diethyl 

ether and 2 ml of sodium bicarbonate buffer (0.05M, pH 10.0). The extracted samples 

were reconstituted in 200 pl of mobile phase, and 20 pl aliquots were injected into the 

HPLC system with a mobile phase of water-acetonimle-methanol (45:20:35, vlvlv), 

containing 0.03% (vlv) triethyIamine and 0.05% (vlv) of concentrated phosphoric acid, 

apparent pH 3.10. Standard samples were prepared in 1 ml of blank rat Liver perfirsate at 

concentrations of 50, 100,200,400,800 and 1000 ngml of 5-hydroxypropafenone and 

Ndespropylpropafenone, and 5,6,8, 10, 12 and 15 pghl of propafenone. Calibration 

curves were obtained by plotting peak height ratios of druglintemal standard vs. drug 

concentrations in standard samples. 

1 d samples of Iiver perfirsate co1Iected durhg 100 - 105 min after infusion 

with 20 pglml propafenone were incubated with 5000 units of p-glucuronidase (contains 

338,000 units/g of p-glucuronidase and 16,000 units/g of suifatase) at 37°C for 4 hr, and 



the I d s  of propafenone and its phase I metabolites were determined. Quality control 

(QC) sampIes duplicated at two different concentrations (close to the highest and lowest 

standard curve concentrations) of PF and its metabolites in the range of the calibration 

mwes were prepared with the analyst blinded, and incorporated into each batch. 



53 Results 

53.1 Identification of metabolites 

A typical HPLC-UV chromatogram of an extract fiom rat liver perhate after 

infirsion of PF (Figure 5.2C) gave four major peaks which were not present in the 

chromatogram of a blank liver perfirsate extract (Figure 51A). Of the four peaks, 

assigned as peaks 1,2,3 and 4, peaks 2, 3 and 4 had the same retention time values as 

those obtained fiom authentic 5-OH-PF, Ndes-PF and PF (Figure 5.2B). The Iiver 

p a a t e  extract was then analyzed by HPLC/MS. The HPLC/MS total ion 

chromatogram scanned from m/z 200-450 (Figure 5.3) demonstrated similar 

chromatographic peaks labeled I, 2-3, and 4 as those previously obtained in the HPLC- 

UV analysis. The positive ion background-subtracted mass spectra of these peaks are 

reported in Figure 5.4. During APCI ionization, very little hgmentation was observed, 

and intense probable pmtonated molecular ions (MH+) were evidenced, respectively, at 

mi' 358,358,300 and 342, together with apparently natriurated molecular ions (MNa+). 

On the basis of their molecular weights and HPLC retention time values, peaks 2,3 and 

4 were tentatively identified as 5-OH-PF, Ndes-PF and PF, respectively. Peak 1, 

however, did not correspond to any authentic compounds, although it is suggestive of a 

hydroxylated analogue of PF because of the inferred moiecdar weight of 357 Da, I6 Da 

above that of parent drug and the same nominal m/r as that of 5-OH-PF. 

In order to obtain stnrctuwl informthn about Peak I, the appropriate hctions 

corresponding to each peak from the HPLC chromatograms were collected, desaIted, 



and then analyzed by direct loop injection into the mass spectrometer operated in the 

M S M  mode. Pre-sektion of the precursor ions, m/r 358,300 and 342, was carried out 

in each peak and the corresponding CID product ion spectra were recorded, The CID 

product ion spectra of peaks 2,3, and 4, which are shown in Figure 5.5A, 5.6 and 5.7, 

respectively, gave further confirmation of the identities to SOH-PF, Ndes-PF and PF, 

respectively, since they were practically superimpsable with the spectra of the 

authentic compounds. The product ion spectrum of peak 1 (Figure 5.8A), however, 

showed distinctive differences h m  that of peak 2, indicating that these two 

hydroxylated PF metaboIites with pseudomoIecuIar ions at m/r 358 are structural 

isomers. The product ion observed at m/r 107, could be explained if hydroxyIation 

occurred at the terminal phenyl ring. Similarly the product ions at m/z 234 and 175, 

codd be generated h m  the unhydroxylated disubstituted phenyl ring (Figure 5.88), 

strongly suggesting that the site of hydroxylation in the material eluting under peak 1 

must be on the ophenyl ring. This derivative hydroxyiated in the wphenyl ring (@OH- 

PF) should correspond to 4'-OH-PF, according to Hege et a1 (1986). In contrast to the 

product ion spectnrm of peak 1, SOH-PF showed diagnostic ions at m/I 91 generated 

from the unhydroxylated terminal phenyi ring and m/' 281 generated from the 

hydroxylated middle phenyl ring (Figure SSA), and no product ions at m/r 234, 175 and 

107. 

53.2 Determination of propofenone and its metabolites 

The HPLC chromatograms under the conditions used to quantitate PF and its 

metabolites are shown in Figure 5.9. Because no standard reference compound for peak 



1 was available, the fraction collected b m  HPLC and identified by MSMS was used as 

a standard reference to confirm the retention time of @OH-PF after the mobile phase 

was modified. The quantity of the metabolite h m  the collected fraction was indlcient 

to prepare a standard solution for a calibration curve, therefore the peak height ratios of 

dru&temal standard were used to rdect the levels of this metabolite in the rat liver 

perfusate. 

The extraction efficiency of diethy1 ether at pH 10.0 was evaluated by comparing 

the peak height ratios of the extracted spiked samples to the unextracted samples which 

were directly injected into the HPLC. The mean recoveries (n=5) after extraction were 

96.6% for 5 pghl of PF, 95.4% for 500 n@ of 5-OH-PF and 93.6 % for 500 n@ml of 

Ndes-PF, respectively. The &%ration curves for these three analytes are summarized 

in Table 5, I. All the determined concentrations of QC samples were within 12% error of 

the nominal concentrations. 

The total concentrations of PF, 5-OH-PF and Ndes-PF in rat liver perfbate after 

infhion of 20 pglml (53.0 pM) of PF were determined after cleavage of conjugates, 

which were 12657 ng/ml(33.5 pM) k 4S%, 948.6 nghl  (2.41 pM) f 3.8% and 632.3 

ng/ml(l .S2 pM) f 1.3% (mean f RSD, n=3), respectively. Peak height ratios of peak 

1 and S-OH-PF are 2.145 + 2.2% and 0,429 f 3.6%, respectively. 
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Figure 5.3. HPLCMS total (positive ion APCI) ion chromatogram (d. 200-450) of 

extract h m  rat liver perfusate after infusion of 50 pghl PF. 
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Figure 5.4. Positive ion background-subtracted mass spectra of peaks 1,2,3 and 4. 



Figure 55 .  Product ion analysis for peak 2. (A) product ion mass spectrum of the 

protonated molecde at m/.z 358; (B) proposed hgmentation pattern. 



Figure 5.6. Product ion mass specavm of the protonated molecule of peak 3 at m/,7 300. 



Figure 5.7. Product ion mass spamrm of the pmtonated molecule of peak 4 at d z  342. 



Figure 5.8. Product ion analysis for peak 1. (A) product ion mass spectrum of the 

protonateti molecule at m/r 358; (B) proposed hgmentation pattern. 







5.4 Discussion 

Studies of propafenone metabolism in humans (I-fege et al., l984b; 1986; Kates 

et al., 1985) have revealed that SOH-PF, Ndes-PF and 5-OH-4-OCH3-PF are the three 

major phase I metabolites in pIasma In dogs (Hege et al., 1984a; 19861, 5-OH-PF and 

4'-OH-PF were found to be the two major phase I metaboIites, while other metabolites, 

such as S-QH-4-OW3-PF, 41-hydroxy-3'-methoxypmpafenone (4'-OH-3'-UCH3-PF) 

and N-des-PF were present in lower quantities. We have demonstrated that at least three 

phase I metabolites, *OH-PF, 5-OH-PF and Ndes-PF were produced in isolated, 

perfirsed rat livers, and *OH-PF was the main metabolite. In dl these three species, 

aromatic ring hydroxylation commonly dominates the phase I metabolism, whereas N- 

dealkylation reactions are of secondary importance. Most drugs containing aromatic 

moieties are susceptiile to aromatic oxidation, so the ring hydroxylation of propafenone 

is not surprising. These species, however, showed different regioselectivity of 

hydroxylation in the aromatic rings. C o m p d  to humans, in which hydroxylation is 

only favored in the disubstituted phenyl ring, the cat and dog have broader spectra of 

hydroxylated metabolites as they are capable of hydroxylating both phenyl rings, and 

the rat metabolic enzymes appear more seIective for the wphenyl ring. The metabolism 

of diprafenone Figure 5-10), a new antiarrhythmic agent with a chemical structure 

analogous to PF, has also been d e d  in Sprague-Dawley rats after intravenous and 

oral administration (Bnmaer et al., 1989). A major metabolite other than 5- 

hydroxydiprafenone was found but not identified. This unknown abundant metabolite of 

diprafenone may be a derivative hybxylated in the terminal pheny1 ring based on our 



studies on the metabolism of PF, which potentially could be parallel to that of 

dipdienone. 

Figure 5.10. Structrrral formula of diprafenone. 

Different regioseiectivity of hydroxylation between species has also been 

demonstrated in some other drugs containing aromatic ring(s), e.g. pmpranolol (Figure 

5.1 I). One major metabolic pathway of propranolol is naphthahe ring hydroxylation, 

which gives rise to several regiohmeric hydroxylated metabolites in humans and rats 

(Wdle et al., 1982). Of these hydtoxylated metabolites, 4hydroxypropranolol and 5- 

hydroxypropranolol are the two major metabolites in humans, while 4- 

hydroxypropranolol and 7-hydroxypropranolol are predominant in rats (Walle et al., 

1982). This observed positiod difference in naphthalene ring hydroxylation between 

rats and humans may be attn'buted to interspeices variation in the intrinsic 

stereochemical prefetence of CYP2D enzymes (Narimatsu et al., 1999). CYP2D6 is 

respomile for 4, 5, and 7-hydmnylation in humans (Masubuchi et ai., 1994) and the 

CYP2D subfamily is responsible m rats (Masubuchi et ai., 1993), likely including 

CYP2D2 (Schulz-Utermoehl et al., 1999). Similarly to the situation with propranoI01, it 



was demonstrated that the 5-hydroxylation of PF in humans was mediated via CYP2D6 

(Kroemer et al., 1989), a debrisoquine Chydroxylase which does not exist in rats. 

Therefore, the dierences in the CYP2D subfamily between rats (or dogs) and humans 

may explain the positional difference in the phenyl ring hydroxylation of PF. 

Figure 5.1 I - Structural fonnula of propranoloI. 

The metabolites for identification were extracted into diethy1 ether directly from 

liver perfUsate of pH 8 to 9. This impties that only basic and neutral metabolites, but 

probably not acidic metabolites were extracted. Since the acidic metabolites of PF are 

secondary metabolites, present in very small quantities in dog (Hege et al., 1984a) and 

human (Hege et al., 1984b), it is postdated that acidic metabolites would be formed in 

much Iower quantities in the singlepass isolated rat liver. In addition to the 

monohydroxylated compounds, dihydroxylated and other metabolites could aIso be 

produced in rat hers, but in small ~uantities. 



Although we could not find direct evidence to co* the position(s) of 

hydroxylation in the wphenyf ring, because no standard reference was available, 4'-OH- 

PF is proposed as the most plambte chemicai structure for the metabolite hydroxylated 

on the ophenyl ring. This proposition is based on (1) the report by Hege (1986) in 

which the possibility of hydroxylation on 2', 3'-positions of the wphenyI ring was ruled 

out; and (2) the well established gerneral preference for the para position in metabolic 

arene oxidation (Low et al., 199 1). NevertheIess, hydroxylation at other positions could 

not be excluded for certain. 

Based on the identification of propafenone and its metabolites, the levels of these 

compounds in liver perfbate can be determined simultaneously by a rapid and 

convenient conventional HPLC method. The HPLC method is sensitive and accurate for 

determining the concentrations of PF and its metabolites, although the concentration 

range chosen was quite high, due to the high concentrations of FF used in our 

experiments. Unfortunately, no standard reference for *OH-PF was availabIe, so we 

used peak height ratios to record changes in its concentrations in rat liver perfkate. 

Extraction with diethyl ether at pH 10.0 provided high recoveries of PF, 5-OH-PF and 

N-des-PF b m  liver perfusate. The mobile phase was modified by the addition of 

triethylamine and phosphoric acid This modified mobile phase provided better peak 

shapes, shorter retention time values, and therefore higher sensitivity for all peaks 

(Figure 5.9) than the mobile phase used for metabolite identification, where 

triethylamine and phosphoric acid were inappropriate in the mass spectrometxk 

analysis. 



The quaatitation of PF and its metabolites after conjugate cleavage showed that 

the total phase I metabolites accounted for about 36.8% of the 20 pg/d of PF perhed 

through rat liver. Compared to dogs and humans, the smaller proportion of phase I 

metabolism may have been the result of saturation of hepatic uptake or metabolism at 

the extremely high inlet concentrations employed. Assuming that @OH-PF would give 

a similar absorbance value to that of 5-OH-PF at 210 urn, the calibration curve for 5- 

OH-PF was adapted to estimate concentrations of @OH-PF in rat liver p d a t e .  The 

results showed that @OH-PF, 5-OH-PF and Ndes-PF accounted for about 63.6%, 

12.4% and 7.7% of total phase I metabolites, respectiveIy, showing that wOH-PF is the 

major phase I metabolite in rat liver perfhate, whereas other phase I metabolites only 

accounted for a small percentage. It was observed that the ratio of these three 

metabolites changed with sample collection time and with the PF inlet concentration in 

perfbed rat livers, but @OH-PF was consistently eIuted at higher levels than those of 

the other two metabolites. 



5.5 Conclusions 

The metabolism of propafenone in rats resembles that in dogs, but not that in 

humans, N-Dealkylation and hydroxylation in the middle and terminal phenyI rings are 

the major metabolic pathways in isolated, perfUsed rat livers. The ophmyl ring 

hydroxylated metabolite is the most predominant metabolite. The difference in phase I 

metabolism of PF in the rat to that of human may limit the usefihess of this species as a 

model of human PF metabo1is-m. The position of hydroxylation in the wphenyl ring 

needs to be further elucidated because no standard references were avaiiabIe. 



CHAPTER 6 

CHARACTERIZATION OF PHASE II METABOLITES OF 
PROPAFENONE IN RATS USING ELECTROSPRAY MASS 

SPECTROMETRY '' 

6.1. Introduction 

Propafenone (PF) is a class EC antiarrfiythmic agent. Like some other lipophilic, 

high hepatic first-pass drugs, such as propranolol and metoprolol, propafenone shows a 

dramatic increase in bioavailabfiity when given with food, even though it is completely 

absorbed by fasting subjects after an oral dose (Axelson et al., 1987). The interaction 

between food and these drugs has been shown to be located in the liver but the 

mechanism has not been completely elucidated. Our aim was to investigate the 

mechanisms that might contribute to PF interaction with fwdlnutrients. Such a study 

can be facilitated through the use of the isolated, perfused rat liver mode1 system. A 

thorough understanding of the metabolism of propafenone in the rat liver is thus 

required. 

Our previous study on the metabolism of propafenone (chapter 5) has revded 

that propafenone undergoes extensive oxidative metabolism in the isolated, p&ed rat 

liver. Three phase I metabolites, ohydroxypropafenone (@OH-PF), N- 

despropylpropafenone (Ndes-PF), and 5-hydroxypropaknone (5-OH-PF) have been 

' Presented at the Tenth Annual American Association of PharmaceuticaI 
Scientists Meeting, October 1996, Seattle, Washington, USA. 

Manuscript prepared for submission to J.  Chromatogr. 



identified in rat liver perkate. Among these metabolites, the mphmyl ring 

hydroxylated metabolite was shown to make up the Iargest proportion after enzymatic 

conjugate cleavage. In addition to phase I metabolism, the parent drug and hydroxylated 

metabolites are subjected to a considerable amount of phase II conjugation. As 

enzymatic cleavage does not give direct indication of the structures of the conjugates, 

uncertainty remains with respect to the phase 11 metabolism of propahone. By using 

high performance liquid chromatography (HPLC) and subsequent tandem mass 

spectrometry (MSMS) with electrospray ionization (ESI), we have therefore examined 

the non-cleaved conjugate metabolites of propafenone in effluent samples h m  the 

isolated, perfused rat Iiver, and have characterized their structures. This report is an 

extension of our previous study on the metabolism of propafenone in the rat. 

The information about the phase II metabolism of propafenone is limited. 

Glucuronidation of propahone and its hydroxylated metabolites is known to be the 

major phase I1 metabolism pathway in humans (Hege et al., 1984b; Fromm et ai., i995) 

and dogs (Hege et al., 1984a; 1986). The major phase I1 metabolites in man were 

indicated to be propafenone gIucuronide and the conjugates of Ihydroxypropafknone 

and hyhxy-methoxy-propafenone with glucuronic acid and sulphuric acid (Hege et al., 

I984b; Fromm et d., 1995). But none of these conjugates has been unequivocally 

structurally identified. In the dog, only conjugates with gIucuronic acid have been found 

and their structures were characterized by mass spectrometry. These conjugates include 

propafenone glumnide and hydroxylated propahone derivatives conjugated to a 

hydroxyl function in the different aromatic rings (Hege et al., 1986). 



6.2. Experimental 

6.2.1. Chemicals 

All the solvents used for extraction and preparation of the HPLC mobile phase 

were HPLC grade obtained ftom BDH Chemicals Canada Ltd. (Edmonton, AB, 

Canada). Other chemicals used were commercial analytical grade purchased from BDH. 

Propahone hydrochloride (HCI) and Type H-1 P-glucuronidase (containing 338,000 

units/g of P-glucuroaidase and 16,000 unitdg of sulfatase from Helix pomatia) were 

obtained b m  Sigma Chemical Co. (St. Louis, MO, USA). Authentic standards of 

propahone HC1 (Lu 29007), 5-hydroxypropahone HCI (Lu 40545), N- 

despropylpropafenone firmarate (Lu 48686) and internal standard (Li I 1 SHC1, the N- 

ethyl analogue of PF) were kindly supplied by Knoll AG, Ludwigshafen, Germany. The 

structures of these compounds are shown in Figure 5.1. 

62.2. Liver perfusion 

The p-on apparatus, surgical procedure and sample collection were identical 

to those previously descnied (Chapter 5, Section 5.2.2). 

623. Sample preparation 

Perfkate samples (I ml) were vortex mixed with 5 rnI of diethyl ether for LO 

min. After centrifugation at 1200 x g for 10 min, the organic layer containing most of 

the parent drug and phase I metabolites was removed, and the aqueous layer was 



lyophilized to dryness. The residues were dissolved in a small amount of methanol. 

After removing the undissolved salts by centrifugation at 1200 x g for 5 min, the 

methanol solution was transfined to a clean borosilicate glass tube and evaporated to 

dryness under a stream of Nz at room temperature. The residue was reconstituted in 1 ml 

of water, and applied on a Spe-ed@ cartridge packed with solid phase C18 (Applied 

Separations hc, Bethiehem, PA, USA), which was previously conditioned with 2 ml of 

acetonitrile, 2 ml of methano1, and 2 ml of distilIed water. A h  the samples had 

adsorbed to the soIid phase, the cartridge was washed with 3 ml of water to remove salts 

contained in the samples. FinalIy the phase I1 metabolite hction was eluted with 1 ml 

of methanoI, which was evaporated under a stream of nitrogen. The residue was 

reconstituted in the mobile phase or methanoI for injection into the HPLC system with 

UV detection (HPLCWV) or mass spectrometry system. 

The eluate fractions corresponding to appropriate HPLCIUV peaks were 

collected. The fractions were treated under nitrogen to evaporate organic solvents, and 

then lyophilized. The residue of each bction was dissolved in 1 ml of water, and 

purified on a conditioned Spe-ed@ Cis cartridge according to the procedure descnied as 

above. The final eiuate was dried under a stream of nitrogen, and the residue was 

reconstituted in methanol and injected into the MS/MS spectrometer. 

62.4 Chromatographic methods 

62.AI. tiPLC conditions 

The phase IT metabolites were separated by an HPLC system with a mobile 

phase of ammonium acetate (0.005 M)-methanol(50:50, vfv), pumped at a flow rate of 
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1 mVmh The HPLC system consisted of a Waters 510 pump, a Waters 490 

programmable multiwaveIength detector set at 210 nm (Millipre-Waters, Mississauga, 

Ont., Canada), a Model 7125 syringe Loading sample injector with a 200 pl loop 

(Rheodyne Inc., Cotati, California, USA), and a 250 x 4 mm I.D., 5 pm particle size 

Lichrospher RP-18 column (E. Mack, Darxnstadt, Germany). The data were recorded 

using a Chromatopac C-MA integrator (Shimadzu Co., Kyoto, Japan). 

62.4.2. HPL UMS and M W S  

MS and MS/MS were carried out on a VG Quattro-II triple quadrupole mass 

spectrometer equipped with an electrospray ion source (Micromass, Altrincharn, UK). 

MS spectra were obtained by direct loop injection electrospray ionization in either 

positive or negative ion mode. Product ion spectra were obtained by positive ion 

electrospray (+ESI) MSMS with collision-induced dissociation (CID). The collision 

energy was 20 eV, and the argon pressure was set at 1.0 x 10-3 mBar. 

62.5. Conjugation cleavage 

The rat liver p d a t e  samples (1 mI, n = 5) coUected at steady state were 

incubated with 5000 units of b-glucuronidase at 37 OC for 4 hr at pH 4.6. The levels of 

propafenone and its phase 1 metabolites, whydroxy-pro@enone, 5-hydroxy- 

propafenone and N-despropylpropafknone were determined as d e s c n i  in Chapter 5. 



63. Results and discussion 

The conjugate cleavage results are shown in Table 6.1. Incubation of the 

pehsate samples with P-glucuronidase/sulfase showed that conjugation of oOH-PF 

and 5-OH-PF accounted for about 80% and 75%, respectively, of total 4'-OH-PF and 5- 

OH-PF. However, only 2.4% of PF was subject to conjugation. The low percentage of 

conjugated PF may result h m  saturation of hepatic enzymes, since very high 

concentrations of PF were employed to i&e into the isolated, p&ed rat livers. 

Table 6.1. The data of conjugate cleavage 

Compound Concentration (ng/ml) Conjugated % 

Before cleavage AAer cleavage 

- - 

* value is indicated as peak height ratio due to no standard reference available. 

Figure 6.1B shows a typical HPLCIUV chromatogram of the aqueous extract 

&om liver effluent collected h m  an isolated rat liver perfbed with 20 pg/d PF in 

Krebs buffer. In comparison to a blank liver perbate sample (Figure 6,1A), four major 

additional peaks, assigned as peaks 1, 2, 3 and 4, were present. The liver m a t e  

extract was then anaIyzed by direct loop injection eIectrospray ionization spectrometry 



in both positive and negative ioa modes. The positive ion mass spectrum of the aqueous 

extract (Figure 6.2A) cIearIy showed two probable protonated molecular ions + H]+ 

at d z  5 18 and 534, and their natriurated molecular ions. The i n f d  molecular weights 

of 517 and 533 Daltons @a), 176 Da above those of propafenone and hydroxylated PF 

derivatives (OH-PF), respectively, suggest that gIucuronide conjugates of PF and OH- 

PF could be present in the liver perfusate extract. The negative ion mass spectrum 

(Figure 62B) also demonstrated two quasi molecdar ions - at m/r 5 I6 and 532, 

corresponding to the two protonated molecdar ions present in the positive ion mass 

spectrum. The amphoteric characteristics of these molecules further confirmed the 

presence of PF and OH-PF glucuronides in the liver perfusate extract. 

The appropriate fractions corresponding to the HPLCiUV peaks 1 - 4 were 

collected, and each individual hction was analyzed by MS/MS spectrometry. After the 

positive ion ESI MS spectra of each fraction were observed, the precursor ions at d z  

518 or 534 were selected and their corresponding CJD product ion spectra were 

recorded. 

Peak I. The positive ion MS spectrum of peak 1 (Figure 6.3A) gave a protonated 

moIecuIar ion + H]' at m/z 534 and its corresponding sodium adduct ion + Na]' 

at m/r 556. The CID product ion mass spectnun of the quasi molecular at m/r 534 is 

displayed in Figure 63B. It showed a parent ion at m/r 534 and main fragment ions at 

m/r 358, 144, 1 16, 107 and 98. The abundant fhgment ion at m/r 358 arose h m  a loss 

of the glucuronic acid moiety (176 Da) ftom the quasi molecular ion at d z  534, strongly 

suggesting that the peak I fraction contains a glucmnide conjugate of OH-PF. The 

diagnostic ions at d z  116, I07 and 98 were in agreement with the fhgment pattern of 



@OH-PF (Chapter 5). The hgment ion at d' 144 corresponded to the propoxyamine 

side chain with a -CHO group, derived h m  the cleavage of the cS-O and cl-d bonds 

on the glucwonyl group. Accordingly, the metabolite in the peak 1 fraction was 

assigned to @OH-PF glucuronide conjugated to the hydroxyl group of the 

propoxyamine side chain. 

Peak 2. The positive ion MS spectrum of peak 2 (Figure 6.4A) also exhibited a 

protonated molecular ion [M + of m/r 534 with high intensity, together with two 

weak natriurated molecular ions, + Na]' at m/z 556 and - H + 2Na]' at mi2 578. 

An abundant hgment ion of m/z 358 was observed in the product ion spectrum (Figure 

6.48), indicating that the peak 2 metabolite is a glucuronide conjugate of OH-PF. The 

observed diagnostic hgment ion at mk 144 suggests that the glucuronide moiety should 

be conjugated to the aliphatic hydroxyl group. However, the hgment ions at d z  28 1, 

116 and 98 were inconsistent with the fragmentation pattern of @OH-PF, but in 

agreement with that of 5-OH-PF (Chapter 5). The peak 2 metabolite was thus 

characterized as 5-OH-PF glucuronide on the propoxyamine side chain. 

Peak 3. Similady as for peaks 1 and 2, the positive ion MS spectrum of peak 3 

(Figure 6.5A) exhibited an intense protonated molecular ion at d. 534, which produced 

a fragment ion at m/z 358 (Figure 6.5B) by MSMS, indicating that the peak 3 

metabolite was a OH-PF glucuronide isomer. The hgment ions at d z  236, 175, 116, 

107 and 98 showed a characteristic hgment ion pattern of @OH-PF. Inconsistent with 

that of peak 1, however, the pmduct ion spectrum of peak 3 (Fugure 6.5B) did not yield 

a diagnostic ion of m/r 144, suggesting that the location of the glucuronic acid was not 

on the propoxyamine chain but on the wphenyI ring. 



Peak 4. The protonated molecular ion at m/z 518 (Figure 6.6A) and its product 

ion at m/r 342 (Figure 6.6B) indicate that the metabolite of peak 4 corresponded to PF 

glucuronide. 



6.4 Conclusions 

The analysis of the phase U extract revealed that a considerable amount of 

glucuronides of the parent drug and the hydroxylated metabolites are present in rat liver 

effluent after perfusion with PF. By ESI MS and MSMS spectrometry, four intact 

glucuronides have been detected and characterized: 1) propafenone glucuronide; 2) 5- 

OH-PF glucuronide conjugated to the diphatic hydroxyl group; and 3) a pair of isomeric 

wOH-PF glucuronides, one being conjugated to the aliphatic hydroxyl group and the 

other to the aromatic hydroxyl group. Compared with the published findings for the 

phase U metabolites of PF in dog (Hege et al., l986), both wOH-PF glucuronide and 5- 

OH-PF glucurouide conjugated on the aliphatic side chain were identified. This 

represents the first report to the identification of OH-PF glucwonides conjugated to the 

hydroxyl group of the aliphatic side chain. 





Figure 6 2 .  Positive ion (A) and negative ion (8) mass spectra of aqueous extracts h m  

liver perfusate. 
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Figure 63. Positive ion (A) and product ion (B) mass spectra of peak 1. 



Figure 6.4. Positive ion (A) and product ion (B) mass spectra of peak 2. 
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Figure 6.5. Positive ion (A) and product ion (B) mass spectra of peak 3. 



Figrrre 6.6. Positive ion (A) and product ion (B) mass spectra of peak 4. 

126 



VALIDATION OF AN HPLC METHOD FOR DETERMINATION OF 
METOPROLOL AND ITS METABOLITES IN RAT LIVER 

PERFUSATE AND RAT PLASMA 

7.1 Introduction 

Metoprolo1 is a lipophilic cardioselective PI-adrenoceptor antagonist cornmody 

used in the treatment of hypertension and angina pectoris. It is a weak base (pKa 9.6) 

with a molecular weight of 267. The partition coefficient of metoprolo1 for an n-octanol- 

water system is 93. Similar to humans, metoprolol undergoes extensive hepatic first- 

pass metabolism in rats. The major metabolites are a-hydroxyrnetoprolol, 0- 

demethylmetoprolol and its secondary metabolite, rnetoprolol acid (Figure 1.4). 

Previous studies using an HPLC assay established in our laboratory (Wang and Semple, 

1997) have demonstrated that metoprolol metabolism is inhibited by a mixture of amino 

acids in the isolated rat liver perfused with a hemoglobin-free bicarbonate buffer; an 

observation worthy of fiuther investigation as a mechanism of the 'food effect' observed 

in humans. In fi.trther studies on the interaction between metoprolol and amino acids in 

the in vivo rat (Chapter 9) and the isolated rat liver perfbed with an erythrocyte- 

enriched medium (Chapter a), however, the previously used HPLC method was found 

not applicable, due to the direct injection method empIoyed. Under the conditions used 

in these studies, direct injection caused column blocking and a Iack of sensitivity. An 

extraction procedure therefore needed to be developed, and the chromatographic 



conditions required some modifications. As some specific validation parameters were 

likely affected by the change, revalidation of the modified assay was necessary prior to 

its routine use. 

This chapter presents a convenient HPLC method for the simultaneous analysis 

of metoprolol and its metabolites, or-hydroxymetopmlol and Odemethylmetoprolot, in 

rat liver perhate and rat piasma, modified according to the previously pubIished 

methods (Lennard, L985; Wang and Semple, t997; Aiwm, 1997). The method was then 

validated according to the procedures described by BressolIe et al. (1996), incIuding 

specificity, sensitivity, extraction recovery, linearity of cdibration curves, accuracy and 

precision. 



7.2 Experimental 

7.2.1 Chemicals 

R, S-Metoproto1 tartrate and nadolol (internal standard) were purchased from 

Sigma Chemical Co. (St Louis, MO, USA). The p-OH benzoatesalts of a- 

hydroxymetoprolol (HlI9i66) and edemethylrnetoprolol (HIOY22) were gifts fiorn 

Astra (Hissle, Sweden). MI solvents were HPLC grade obtained fiom BDH Inc. 

(Toronto, Ontario, Canada). 

7.2.2 Standard solutions 

Stock standard solutions of metoprolol, a-hydroxymetoprolol and 0- 

demethylmetoprolol were prepared separately by dissoIving I 0  mg of each analyte in 

deionized, distilled water in a 100-ml volmetric flask to give a final concentration of 

LOO pg/ml. The stock solutions were stable fbr at least three months when stored at 4°C. 

Appropriate portions of the stock so1utions were tnixed and diluted with water to make a 

series of working solutions of the thee anaIytes. The working standard solutions were 

stored at 4°C for no more than four weeks. 

The standard solutions in the biologicai matrix were prepared fieshly by addition 

of varying volumes of the working solutions to blank rat liver perfusate or blank plasma 

to generate desired concentrations. Rat liver p e h t e  and rat plasma was obtained h m  

male Sprague-Dawley rats. The liver perfUsate was fiom the supernatant of the liver 

effluent, collected as descriied in Section 3 3, after centiifbgation at 1000 x g. 



7.23 Extraction procedure 

Ertraction porn rat liver perjkate. An aliquot of Liver perfbate (1 mi), 

containing metoprolol and its metabolites as a standard or as an unknown, was mixed 

with 50 pl of nadolol solution (5 pg/mI, internal standard) in a 100 x 13-mm LD. screw- 

capped Pyrex bornsilicate tube. Following addition of 2 mI of I M sodium carbonate 

buffer solution (pH 10.5), diethyl ether-dichloromethane (4: L, viv, 5 rnl) was added to 

the tube. The contents of the tube were vortex-mixed for 10 min and centrifuged at 2500 

x g for 10 min. The organic layer was then transferred to a clean gIass tube and 

evaporated to dryness under nitrogen at room temperature. The residues were 

reconstituted in 300 pi of mobile phase, and 100 pl was injected into the HPLC system. 

Extractionfiom r a t p l ~ ~ ~ m .  The procedure of extraction firom rat plasma was the 

same as above except for minor changes. To 100 pI of standard or unknown rat plasma 

samples were added 50 pl of nadolol (1 pgM, internal standard] and 2 rnl of 1 M 

sodium carbonate buffer (pH 10.5). The parent drug, metabolites and internal standard 

were extracted with 5 ml of diethyl ether-dichloromethane (4: 1, vlv) after vortex-mixing 

for 8 min and centrifugation at 2500 x g for 10 min. The organic Layer was transferred to 

a clean glass tube and evaporated to dryness under nitrogen at room temperature. The 

residues were reconstituted in 120 pl of mobile phase, and I00 pl was Injected into the 

HPLC system. 



7.2.4 Bih-performance liquid cbromatognphy 

The HPLC instrumentation consisted of a Waters 510 pump, Waters 710B WISP 

automatic injector, Waters Baseline data system (Millipore-Waters, Mississauga, ON), 

and a Spectroflow 980 fluorescence detector (Applied Biosystems, Ransey, NJ, USA) 

set at an excitation wavelength of 224 nm. The separation of individual components was 

cam'ed out on a 250 x 4 rnm ID., 5 pm particle size Licluospher 60 RP-select B column 

(E. Merck, Darmstadt, Germany) with a pre-column. The mobile phase was water- 

acetonitrile (87:13, vlv), containing 0.3% (vlv) triethylamine7 adjusted to apparent pH 

3.0 with orthophosphoric acid, and was pumped through the column at a flow rate of 1 

rnllmin. 

7.2.5 Validation procedure 

7.2.5.1 Specificity 

The specificity was determined by chromatographic analysis of blank rat h e r  

perfusate and blank rat plasma fiom a number of Merent rats. The specificity of this 

method was established through a lack of effective responses in both blank matrices. A 

mixture of amino acids, which would be coadrninistered with metoprolol in the latter 

studies (Chapter 8 and 9), was also included in the blank matrices to screen for its 

possible interference in the assay. 



The abiity to assay low concentrations is termed sensitivity, expressed as the 

limit of detection (LOD) and the limit of quantitication (LOQ). The determination of the 

LOD of metoprolol and the two metabolites was carried out using six replicate standard 

solutions in rat liver perfusate or rat plasma. The LOD was defined as a signal-to-noise 

ratio of 3 :I. The LOQ was the estimate of the lowest concentration that could serve on 

the calibration curve. The LOQ of metoprolol and its metabolites were determined by 

using five replicate samples of each standard in rat liver perftsate or plasma. The 

accuracy of LOQ was defined to be within G O %  of the nominal concentration with a 

coefficient of variation (CV) 520%. 

Z2.5.3 Calibration curve 

A set of l-ml liver pedbsate or 0.1-ml plasma calibration standard solutions was 

prepared fiom working solutions containing metoprolol and the two metabolites. The 

cahbration concentrations (metoproIol:a-hydroxymetoproIol:O-demethyhetoproloI) 

were 50:50:20, 100: 100:50,200:200: 100,400:400:200,700:700:300 and 1000:1000:500 

nghl in liver perhate and l5:lO: 10, 3O:3O: 15, 60: lOO:3O, 100:200:50, 150:500:75 and 

200:1000:100 nghl in human plasma. The peak height ratios of each analyte to the 

internal standard were weighted by I/y and plotted against the corresponding 

concentrations. Liear regression analysis gave dira t ion curves that were used to 

calculate the concentrations of metoproIol and its metabolites in spiked control or 

unknown samples. 



On three separate days, spiked liver pefisate or pIama samples were prepared 

at three different concentration sets of metopmlo1:a-hydroxymetoprolol:Odemethyl- 

metoprolol (60:60:30, 500:500:250 and 900:900:450 nglmI in liver perfusate, and 

IS: 10: 10, 100:500:50 and 200: 1000: 100 ng/d in plasma, respectiveIy) in five replicates 

(n = 5). The samples were assayed, and the concentrations were determined &om the 

standard calibration curves prepared on the same day of analysis. The mean accuracy 

was calculated by the ratio of the actual to nominal concentration (n = 5 x 3 days). The 

precision was evaIuated by the intra- (within-) and inter- (between-) day coefficient of 

variation (CV). The intra-day CV was calculated as the mean of the daily CV (n = 5 x 3 

days). The inter-day CV was calculated as the CV of the daily means of measured 

concentrations (n = 3 days). 

Perhate or plasma samples containing three different concentration sets of 

metoprolol:a-hydroxymetoproIo1:O-demethyo (50:50:20, 500:500:250 and 

1000: 1000:SOO nglmt in liver perfbsate; and 3O:2O: 15, 100:500:50 and 200: 1000: 100 in 

plasma) were extracted according to the procedure d e s c n i  in Section 7.2.3, prior to 

injection into the EIPLC system- The recovery was determined by comparing the peak 

heights of each analyte in the extracted samples with those obtained fiom direct 

injection of extracted biank matrix to which stmdards were added at the same nominal 



concentrations- Five repticate determinations were made at each concentration of all 

drug and metabolites. 

7.2.6 Appliution of method 

The method was applied in the isolated perfused rat liver and in vivo rat studies 

of amino acid-metoprolol interactions, which are presented in the following chapters. 

Typically, perfusate samples fiorn two rat livers or the plasma samples from two to four 

rats were ananged in one analytical run. In each run, all samples including blank matrix, 

unknown samples, two sets of calibration standard samples and six QC samples were 

extracted and analyzed under the same conditions. Calibration standard samples were 

prepared fieshly on the day of andysis, and the resulting calriration curves were used to 

determine the concentrations of metoprolol and the two metabolites in unknown and QC 

samples within the run. QC samples of each analyte duplicated at three concentrations 

(one near the low end, one near the center and one near the upper boundary of the 

standard curve) were prepared on the day of sampling, and stored under the same 

conditions as unknown samples to be analyzd. The six QC samples were randomly 

located amongst the unknown samples in the run. To accept a run, at least four of the six 

QC samples were within e O o !  of their respective nominal values, where any two 

outside the e00h range were not at the same concentration. 



7.3 Results and discussion 

73.1 Specificity 

Typical chromatograms of extracts h m  liver perfbate samples and plasma 

samples are shown in Figures 7.1 and 7.2, respectiveIy. Parent drug, metabolites and the 

internal standard were completely resolved in both biological matrices with retention 

times of 4.9 f 0.2, 5.8 f 0.2, 7.2 f 0.4 and 17.0 + 1.1 min for a-hydroxymetoprolol, 0- 

demethylmetoprolol, internal standard, and metoprolol, respectively. The addition of 

amino acids in blank matrices did not produce any interfering peaks, ensuring the 

feasiility of the method in the amino acid-metoprolol interaction studies. 

7.3.2 Sensitivity 

Using 1 ml of rat liver perfusate, the limits of detection were 1.5 nghl for 

metoprolol and 1 nghl for both a-hydroxymetoprolol and 0-demethylmetoprolo~ 

whereas the limit of quantification was 5 ng/d for all three andytes. Since sensitivity 

was not critical in the andysis of p d s a t e  samples, higher concentrations than the LOQ 

were used for the standard curves. 

Using 0.1 ml of rat plasma, the Iimits of detection were 12 nglmi for metoprolol 

and 7.5 nglml for both a-hydroxymetoproloI and Odemethylmetoprolol. The limits of 

quant5cation were I5 ngld for metoprolo1 and 10 ngtml for both a-hydroxymetoprolol 

and 0-demethylmetoprolol. The LOQ served as the lowest concentrations of the 

calibration cwes. 



73.3 Calibration curves 

In determining conamations in rat livk perfusate samples, the calibration a w e  

of metoprolol was linear over the concentration range of 50 to 1000 nglml with a 

correlation co&cient (r) of 2 0.998. The calibration curves of a-hydroxyrnetoproIol 

and 0-demethylmetoprolol were also linear over the range of 50 to 1000 (r z0.999) and 

20 - 500 nghl (r 2 0.999), respectively. 

The di'bration curves for rat plasma samples were linear (r 1 0.99) over the 

concentration range of 15-200 ng/ml for metoprolol, 10-1000 nglml for a- 

hydroxymetoprolol and 10- 100 nghd for Odemethylmetoprolol. 

73.4 Accuracy and precision 

The assay precision and accuracy for perfbate and plasma samples are presented 

il Tables 7.1 and 7.2, respectively. In the analysis of liver perhate samples, the intra- 

and inter-day coefficients of variation were less than 10°h for all drug and metabolite 

concentrations. In the case of plasma, the intra- and interday coeBcients of variation 

were less than 10% for all concentrations of the parent drug and metabolites, except at 

their Limits ofquantitation (LOQ) where the intra- and inter-run CV were less than 15%. 

7.3.5 Extraction recovery 

The extraction recoveries fiom liver p h s a t e  and plasma of metoproloi and the 

metabolites are reported in Table 7.3. The recovery of metoprolol was 2 80?! for both 



biological matrixes, whereas the recoveries of a-hydroxymetoprolol and 0- 

demethylmetoprolol were less (in the 60 - 80% range). However, another major 

metabolite, metoprolol acid was not recovered using the present extraction procedure, 

due to its zwitterionic nature. 

7.3.6 Application of metbod 

The assay was s u c c e s ~ y  employed for the analysis of rat liver pefisate 

samples and plasma samples obtained in the in vim and ex vivo studies of the amino 

acid-metoprolol interaction. Under the descnied conditions, the system worked 

appropriately during all these studies. 



7.4 Conclusions 

This chapter demIbes a specific, sensitive and quantitative HPLC assay 

modified fiom a method established previously in our laboratory. Validation of this 

assay has revealed that it is a retiable analytical method for the simuItaneous 

determination of metoprolol, a-hydroxymetoprolol and 0-demethylmetoprolol in rat 

liver pefisate and plasma 



Figure 7.1. HPLC chromatograms for analysis of metoprolol and metabolites in rat liver 

(A) blank liver perfusate sample, (B) blank liver perfirsate sample spiked with standard 

references, and (C) liver p e b e  sample taken at 100 min after perfirsed with 2 pghl  

ofmetaproIo1 and a mixture solution of amino acids. 



a z 4 s a 10' n 14 11 u a 
T i m  

Figure 7.2. HPLC chromatograms for analysis of metoprolol and metabolites in rat 

pIasma. 

(A) blank plasma sample, (B) blank plasma sarnple spiked with standard references, and 

(C) plasma sample collected at 10 min after a single oraI dose of 10 mglkg. 



Table 7.1. Accuracy and precision for metoprolol and metabolites in rat liver pehsate 

(3 days, n = 5 in each day) 

Added Measured Within-day Between-day 
concentration concentration (nglml) 

Mean 

(as/m) 
CV (%) CV (%) accuracy (%) 

(MeankSD,n=5) 

a-Hydraxymetoprolol 

w1 59.42f 1.05 

60 Day 2 60.87 f 2.26 4.1 3.5 102.2 

m3 63.70f4.41 

Dqy 1 513.6 f 17.5 

500 Lky 2 499.0 f 6-71 3.2 1.4 101.3 

Day 3 507.6 + 24.3 
Day 1 926.0 * 28.2 

900 W2 931.5k43.5 3.3 3 -2 10 1.3 
Day 3 877.7 f 19.4 

Demdhy Illl~lopmlol 

- 1  31.00k1.36 

30 Day2 31.64k2.25 5.7 1.9 103.4 

-3 30.46f1.74 

-1 254.6k5.25 
250 Day 2 257.4 k 12.1 3.4 1.3 101.7 

-3  251.0k8.86 

m1 461.6 f 17.4 
450 Day 2 468.1 f 299 4.1 3.6 101.3 

Day3 4372f 9.57 



Table 7.2. Accuracy and precision for metoprolol and metabolites in plasma 

(3 days, n = 5 in each day) 

Added Measured Within-day Between-day Mean concentration concentration (ng/rnl) 
W m l )  

CV (%) CV (%) accuracy (%) 
(Mean f SD, n = 5 )  

wI 
15 Day2 

DcrV3 

100 M Y 2  

w3 

200 Day 2 

Day 3 

Day 3 9.292 f 0.93 
Day1 51.67f3.27 

50 Day 2 49.17 + 2.42 5.4 4.2 102.8 
Day 3 53.42 f 2.59 



Table 7.3. Extraction recovery of metoprolol and metabolites Erom rat liver pehsate 

and plasma ( ~ 5 )  

Liver Perfusate Plasma 

Compound Concentration Recovery Concentration Recovery 

metoprolol 
1000 



METABOLIC INTERACTION BETWEEN AMINO ACIDS AND 
METOPROLOL DURING ANTEGRADE AND RETROGRADE 
PERFUSION IN THE ISOLATED, PERFUSED RAT LIVER I*' 

8.1 Introduction 

Concomitant intake of food enhances the bioavailabilii of some high hepatic 

first-pass drugs, such as propranolol, metoprolo1 (ML) and propafenone (Melander et 

al., 1988). Because these drugs are almost completely absorbed fiom the gastrointestinal 

tract after oral administration, it has been generally agreed that a food-induced reduction 

in hepatic first-pass metabolism is responsiile for this 'food effect'. Although it has 

been investigated for more than two decades, the exact mechanisms of the food effect 

remain unclear. The hepatic extraction of a drug is mainly dependent on hepatic 

metabolic enzyme activity, hepatic blood flow rate and drug piasma protein binding. It 

was fist postulated that the most likely mechanism for the increased ord bioavailabili 

is a transient increase in hepatic blood flow, resulting in the decreased hepatic extraction 

of the drug during the absorption phase afker coadministration with food (Mclean et d., 

1978). However, it has been proposed that alteration in hepatic blood flow plays only a 

minor roIe in the fwd effect because m vivo experiments showed that flow changes 

could not account for the magnitude of the increase in AUC* (Svensson et al., 1983; 

' Presented at the TweIfth Annual American Association of Pharmaceutical 
Scientists Meeting, November 1998, San Francisco, Califbrnia, USA ' MMwaipt prepared for submission to h g  Metab- D i q m  



Modi et d., 1988). Furthermore, food has not been shown to iduence the unbound 

W o n  of propranolol in plasma (Feely et al., 1983). Therefore, transient infuiition of 

hepatic metabolic activity caused by one or more food components may contribute to 

the mechanisms of the food effect. 

Human studies have revealed that the protein content of the meal appears to be 

an important factor in the food sect (Wean et al., 1981; Wall et al., 1981; Axelson et 

al., 1987). Ingested protein is digested and absorbed into the portal circulation in the 

form of amino acids (AA), so that any dietary protein-induced change in hepatic 

metabolic activity would be caused by the absorbed amino acids interacting with drug 

metaboIizing enzymes in the liver. Previous studies in isolated pe&sed liver 

preparations (Semple and Xia, 1995; Wang and Semple, 1997) have demonstrated that a 

balanced mixture of amino acids infbsed into rat livers resulted in a transient and 

reversible reduction in the metabolism of propranolol and metoprolol by inhiiiting the 

formation of all of their measured metabolites. Since no direct inhibition of metoprolol 

metabolism by physiological levels of amino acids was observed in the study of rat Liver 

microsome preparations (Alcorn, 1999, the inhl'bition of drug metabolism may be 

caused by other mechanisms involving indirect regulation by amino acids, such as  

oxygen and/or NADPH limitation. In addition to the decrease in metopro101 metabolism, 

a tremendous increase in hepatic owgen consumption also occurred after coinfirsion of 

amino acids in the isolated, perfbsed rat liver (Wang and Semple, 1997). The increased 

oxygen consumption, due to the intensely oxygen-consuming metabolic process of 

amino acids, results in severe oxygen depletion in the liver, which may be the 

mechanism contniuting to the inhibition of metoprolol metabolism. Within the hepatic 



acinus large diffetences in distn'bution of hepatic enzymes exist fiom the periportal zone 

to the pericentral zone. The metabolism of amino acids is preferentially localized in the 

periportal zone (Hihminger and Gerok, 1986), whereas the cytochrome P-450 enymes, 

mediating drug oxidative metabolism, are mainly distributed in the pericentral zone 

(Thurman et al., 1986). When both amino acids and metoprolol are infbsed into the 

hepatic portal vein, therefore, amino acid metabolizing enzymes may utilize oxygen 

preferentially so that metabolizing enzymes for metopro101 may suffer a transient 

oxygen deficiency and thus their activities may be temporarily impaired. We therefore 

hypothesize that the inhibition of metoprolol metabolism may be attributed to the amino 

acid-diated pericenval oxygen depletion in the hepatic sinusoids (Wang and Semple, 

1997). This hypothesis can be tested by using a single-pass rat liver pefision technique 

in antegrade and retrograde directions. it would be expected that if the pericentral 

oxygen limitation caused by the metabolism of amino acids did contribute to the 

interaction between metoproloi and amino acids, metoprolol metabolism would be less 

inhibited by amino acids during retrograde than antegrade perfhion. 

Metoprolol is a P-adrenoceptor antagonist with a high hepatic extraction ratio. It 

exhiiits in human an average 40% increase in AUCd when coadministered with a 

high-protein meal even though it is completely absorbed (Melander et al., 1977). Similar 

to humans, metopro101 is metabolized in tats mainly via hepatic oxidation into a- 

hydroxymetoprolol, Odemethylmetoprolol and metoprolol acid, a secondary metabolite 

fkom O-demethylation (Adkidsson et a& 1976). Also metoprolol has been found to be 

an appropriate model drug for mechanistic studies in the isolated, pefised rat liver 

preparation due to its minor tissue binding characteristics (Wang and Semple, 1997). As 



an extension of our previous studies, this report presents the results of serial experiments 

in which the eff'ect of different I d s  of amino acids on hepatic oxygen consumption 

and metoproIo1 metabolism has been examined during antegrade and retrograde 

perfhion of the isolated rat liver under digerent oxygenation conditions of the perfbsion 

medium. We hereinafter try to answer these questions: 1) whether the inhiiition of 

metoprolol metabolism by amino acids would likely be the result of pericentral oxygen 

depletion; and 2) whether and how the amino acid-metoprolol interaction and its 

mechanisms would be relevant to the food effect observed in human studies. 



8.2 Materials and Methods 

8.2.1 Cbemicah 

R, S-Metoprolol tartrate and nadolol (internal standard) were purchased fiom 

Sigma Chemical Co. (St. Louis, MO, USA). a-Hydroxymetoprolol (HI 19/66) p-OH 

benzoate and Odemethylmetoprolol (H105122) pOH benzoate were gifts h m  Astra 

(Hilssle, Sweden). AminosynQ II 10% Amino Acids Injection came fiom Abbott 

Laboratories Ltd. (Montreal, Quebec, Canada). Bovine serum albumin Fraction V was 

obtained fiom Sigma Chemical Co. The outdated human red blood cells in Citrate 

Phosphate Dextrose Adenine Solution USP (CPDA-1) pack units were supplied by the 

Red Cross, Saskatoon, Canada. AU solvents were HPLC grade obtained fiom BDH Inc. 

(Toronto, Ontario, Canada). AU other chemicds used were analyticd grade kom BDH 

Inc. 

8.2.2 Isolated Rat Liver Perfusion 

Mde Sprague-Dawley rats (Charles River, St, Constant, Quebec, Canada), 

weighing 180-280 g, were used as liver donors. The animals were maintained on 

standard laboratory chow and water ad libitum in accordance with the guidelines of the 

Canadian Council on Animal Care. 

The surgical procedure reported by Pang (1984) was adopted with minor 

modifications. FolIowing an ovem-ght fist, rats were anesthetized by inhalation of 

halothane (MTC PharmaceuticaIs, Cambridge, Ontario, Canada). The portal vein was 



cannulated with a 16G $elcorn intravenous catheter (Critikon, hc., Tampa, FL, USA), 

which was used to provide the inlet perfusion medium. The outilow tiom the liver was 

collected via another cannula inserted through the right atrium into the thoracic inferior 

vena cam The hepatic artery and inferior vena cava (proximal to the right renal vein) 

were ligated to ensure unidirectional flow. The bile duct was also tied off because 

canndation was not required for a drug with minimal biliary excretion. The rat was then 

transferred to a perfUsion system where the liver was perfused in situ. 

The pefision apparatus was modified fiom that described previously (Semple 

and Xia, 1994). The perfusion system, maintained in a temperature-controlled (37°C) 

cabinet, included two reservoir units, a peridtic pump (Ismatec S q  Vario- 

pumpsystem, Cole-Panner, Niles, IL, USA), a silastic tubing oxygenator, a bubble 

trap/filter device and two three-way stopcocks which were used to fBcilitate the switch 

between antegrade and retrograde flow to the liver during perfhion (Pang and Terrell, 

1981). A pH meter (PHM84 Research pH meter, Radiometer A/S Copenhagen, 

Denmark) and a biological oxygen monitor (YSI modei 5300, YST, hc., YeUow 

Springs, OH, USA) were interconnected with the flow-line before and after the liver, 

respectively, to monitor the pH of inlet perfirsate and the oxygen content of outlet 

perfusate. A syringe pump (Mdd 975, Hmard Apparatus, South Natick, MA, USA) 

was attached to the perhion Iine appro&eIy I cm h m  the entry of the Iiver to add 

Aminosyn I1 10% amino acids injection, The concentrations of amino acids in the 

p d s a t e  were controlled by the infirsion rate set in the syringe pump. 

The liver was perfirsed in a single-pass mode at a constant rate of about 15 

mVmidher. The perfision m d u m  consisted of20% (vfv) washed outdated human red 



blood cells, 1% bovine s e m  albumin and 0.1% dextrose in a Krebs-Henseleit 

bicarbonate buffer. Human red cells were washed with equal volumes of physiological 

saline three times, followed by equal volumes of Krebs-Henseleit bicarbonate buffer 

three times. The washed red blood cells were used immediately. The pefisate was 

buffered to pH 7.2 - 7.4 and oxygenated by equilr'bration with 95% W5%C& in the 

silastic tubing oxygenator. To achieve a reduced level of oxygen delivery, the pefisate 

was equilibrated with a mixture of 95% 01/5%C& and 95% Nd5%COz. The proportion 

of oxygen to nitrogen determined the oxygen level in the perfbate. 

The viability of the liver was assessed by: 1) rate of oxygen consumption; 2) 

maintenance of metoprolot steady state; and 3) physical appearance of the liver. 

8.23 Experimental Design 

The experiment was designed to examine the effect of amino acids on the 

metabolism of metoprolol during antegrade and retrograde perfirsion in the liver under 

dierent perfhion and coinfusion conditions. Twenty-four rat livers were randomly 

divided into 3 groups (N = 8 each): 1) Hypo-OdHigh AA group. The livers in this group 

were perfused with hypo-oxygenated perfirsion medium equilibrated with the mixture of 

nitrogen and oxygen, and coinfirsed with high levels of amino acids. 2) Normal Omgh 

AA group. The liven were perfused with the perfusate normally oxygenated with 95% 

OJS%C&, and coi .sed with high Ievefs of amino acids. 3) Normal W o w  AA 

group, The livers were perfirsed under the normal oxygenation condition, and coinhied 

with Iow IeveIs of amino acids. 



The p d s i o n  of each liver preparation was conducted in antegrade direction 

following retrograde direction, or vtce versa. During both antegrade and retrograde 

@sion, amino acids were introduced into the liver. Thus, the total pefision duration 

consisted of four phases: antegrade (Ante), antegrade with amino acids (Ante-AA), 

retrograde W o ) ,  and retrograde with amino acids (Retro-AA). This enabled each liver 

to act as its own control for both direction of flow and eEect of amino acids. The order 

of flow direction was randomized. In each group, antegrade perfusion preceded 

retrograde pefision for four liver preparations, and retrograde perkion preceded 

antegrade perfhion for the other four. 

FolIowing a 20 min stabilization period of perfhion with blank oxygenated 

perfusion medium, the liver was perfused with the medium containing 5.84 ph4 (2 

pgfml) metoprolol, The initiation of metoprolol inhion was defined as time 0. After 30 

min, when metoprolol and metabolite concentrations and oxygen consumption rates had 

been at steady state for I5 - 20 mi4 a balanced mixture of amino acids (AminosynB II 

10% amino acids injection) was introduced into the inlet perfusate at a rate of either 0.42 

d m i n  @gh AA group) or 0.21 d m i n  (Low M group). The 6nal concentrations of 

each constituent amino acid in the perhate are given in Table 8.1 for the High AA 

group, in which the total concentration of amino acids was 21 -5 mM, whereas the fmal 

concentrations for the Low AA group were half the d u e s  of those for the High AA 

group. The coifision of amino acids was continued for 30 min. At 75 min, the direction 

of flow was reversed fiom antegrade to retrograde (or vice vem). Atter a 15 rnin 

of stabilization, the mbaure of arnino acids was introduced to the liver h r n  90 to 120 

arin, The perfusion was dowed to run a fiuther I0 min with the p d o n  medium 



containing metoprolol. A blank perfusate sample was collected fiom the vena cava at 

time 0; after time 0, effluent samples were collected every 5 min over the entire 

p d s i o n  period of 130 min. Each sample consisted of a 30 sec collection of efnuent. 

After centri&gation at 1000 x g, the pIasma of perfusate samples was separated, and 

immediately stored at -20°C until analysis. 

83.4 Analysis of Metoprolo1 and Metabolites' 

The concentrations of metoprolol and its metabolites, a-hydroxyrnetoprolol and 

0-demethylmetoprolol in liver pehsate samples were determined simultaneously using 

a revalidated HPLC method as descnied previously (Wag and Semple, 1997) with 

some modifications. In brief, to 1 mI of liver perfusate plasma was added 50 pl of 

nadotoi (5 pgM, internal standard) and 2 ml of 1 M sodium carbonate buffer (pH 10.5). 

The drug, metabolites and internal standard were extracted into 5 rnl of a mixture of 

diethy1 ether-dichloromethane (4:1, v/v) after vortex mixing for 10 min and 

centrifirgation at 2500 x g for 10 min. The organic layer was transferred to a clean glass 

tube and evaporated to dryness under nitrogenat room temperature. The residues were 

reconstituted in 300 pl of mobile phase, and 100 pi of which was injected into the 

EPLC system 

The HPLC system consisted of a Waters 510 pump, Waters 710B WISP 

automatic injector, Waters Baseline data system (Millipore-Waters, Mississauga, ON), 

and a Spectroflow 980 fluorescence detector (Applied Biosystems, Ransey, NJ, USA) 

set at an excitation wavelength of 224 nm. The separation of the indiidud components 



was achieved on a 250 x 4 mm ID., 5 pm particle size Lichrospher 60 RP-select B 

column (E. Merck, Darmstadt, Germany). The mobile phase was water-acetonitrile 

(87:13, vtv), containing 0.3% (vh) triethylarnine and phosphoric acid to adjust the 

apparent pH to 3.0. The flow rate was 1 mVmin. 

Calibration curves were linear over the concentration range studied, i.e. 50 - 
1000 nglml for metoprolol and a-hydmxymetoprolol and 20 - 500 ngld for 0- 

dernethylmetoprolol. The intra- and inter- run coefficients of variation were less than 

10?4 for all analytes. Quality control (QC) sampIes duplicated at low, medium and high 

concentrations over the range of calibration curves of the drug and metabolites were 

incorporated into each run, and all those concentrations were within 11% error of the 

nominal concentrations. 

8.2.5 Oxygen Delivery and Consumption Determinations 

The oxygen tension in the outflow perfhate was monitored throughout the liver 

perfusion experiment by the online YSI5300 biological oxygen monitor. The partial 

pressures of oxygen (pol) in the effluent were recorded every 5 min when perfirsate 

samples were wUected. The hemoglobin contents (Hb) and pOz in the inflow perfhate 

were determined using a biood gas analyzer (Model 288, CTBA-Corning, Medfieki, MA, 

USA). The oxygen content (Wt) in either the inflow or outflow perfirsate was 

dculated fiom the foUowing equation (Staub, 1992): 

O,Ct(ml/dl) = 1.34 xHb x%OzSat+0.003 x pO, ( 8 4  

where Hb and pOz are e x p d  in &I1 and mmHg, respectively, and %&Sat is the 



percentage of oxygen saturation of hemoglobii which could be estimated fiom the p& 

according to the Manual of the CTBA-Coming 288 Blood Gas System. Thus, the oxygen 

delivery rate (Wel )  in the influent was detenniLled by Eq 8.2 (Brouwer and Thunnan, 

1991): 

02Del(pmol/ mid g her) = 
O,Ct(Innow) XQ x 39.3 

LiverWt x 100 

where Q is the perfirsion flow rate ( d m i n )  and LiverWt is the weight of the Liver (g). 

The oxygen consumption rate (02Csm) was calculated by 

O,Csm(pnol/ mint g liver) = 
[O,ct(Mow) - OzCt(Outflow)] x Q x 39.3 

LiverWt x 100 (8.3) 

The oxygen extraction (OzExt) was calculated from 

8.2.6 Pharmacokinetic Analysis 

The etnuent concentrations of metoproloI and the metabolites at steady state for 

the four periods (Ante, Ante-& Retro, and Retro-M) were cdcdated by averaging 

the last three measured data points in each period, which were determined to be at 

steady state according to the method described previously (Semple and Xia, 1994). The 

efficiency of hepatic metabolism was descriied by the hepatic extraction ratio (E) and 

hepatic clearance (CL) at steady state. In each period of liver perfusion, E and CL of 

metoprolo1 were calculated by the foUowing equations: 



where Cin is the intlow concentration and Cm is the steady state outflow concentration 

of metoprolol. Metabolite formation clearance (Ch) for a-hydroxymetoprolol and 0- 

demethylmetoprolol was dculated as 

Q c, CL, = - 
c, 

where CM is the effluent metabolite concentration at steady state. 

8.2.7 Statistical Analysis 

Data are expressed as the mean f standard deviation. The difference between 

groups was evaluated by a one-way ANOVA, and the difference within groups was 

evaluated by a nested randomized complete block ANOVA (the model incIudes the rat 

nested within the order of perfirsion directions, the order of perfbsion directions, and the 

perfission phase). Comparisons between antegrade and retrograde perfbsions were made 

by paired t-test. A value ofP c 0.05 was considered statistically significant. 



Table 8.1, Concentrations of individual amino acids in the influent pefisate to the 

liver for the High AA group ' 

Amino acids rnM 

Essential amino acids 

I-Isoleucine 1.39 

I-Leucine 2.11 

I-Ly sine 1.41 

I-Methionine 0.32 

I-Phenylalanine 0.50 

I-Threonine 0.93 

I-Tryptophan 0.27 

I-Valine 1.18 

Nonessential amino acids 

I-Ahnine 

I- Arginine 

I-Aspartic acid 

I-Glutamic acid 

Gl y cine 

I-Histidie 

I-Proline 

I4erine 

N-Acetyl-1-tyrosine 

' The concentrations of the individual amino for tbe LOW AA group were haif the 
above values. 



8.3 RQSUlQ 

83.1 H-igb AA Group 

lL3.1.1 Viasrlity of Isolored Perfiysed L k  

All of the livers were welI perfbsed as evidenced by all lobes showing an equal 

and even color, the absence of leakage, adequate hepatic oxygen consumption and 

maintenance of metoprolol steady state during the whole period of perfusion. The mean 

physiological parameters of the pehsed livers are shown in Table 8.2. The oxygen 

co~lsumption rate and etnuent concentrations of metoprolol, a-hydroxymetoprolol and 

0-demethylmetoproiol quickly reached steady state (< 15 min) for both antegrade and 

retrograde perfisions (Figure 8.1). The order of flow direction in the group had no effect 

on the time to reach the steady state, oxygen consumption, metoprolol clearance and 

metabolite formation clearance of liver (P > 0.05, nested ANOVA). 

In the Hypo-&/Hi@ AA group, livers were pefised with the hyposxygenated 

p d s i o n  medium with an average & dekvery rate of 3.40 f 0.52 pmoVmin/g liver, 

approximately half of that in the normally oxygenated perfbsion mediim. The mean 

oxygen consumption was 2.49 f 0.62 pmVmin/g liver during the Ante phase and 2-41 

f 0.56 pmoVrnidg liver during the Retro phase, respectively (Table 8.3). The change in 

direction of flow thus did not dter the oxyga .consumption of the liver (P > 0.05). The 



mean oxygen extraction during the Ante and Retro phases were 72.6 f 8.8 and 70.5 + 
9.2 %, respectively. 

CoinfUsion of high levels of amino acids caused an increase in oxygen 

consumption during both antegrade and retrograde perfusion. The mean oxygen 

extraction increased to 82.2 f: 7.0 % during the Ante-AA phase and 79.4 +, 5.4% during 

the Retro-AA phase (Table 8.3). Also the rna$tude of change in oxygen consumption 

caused by amino acids during antegrade perfirsion (13.8 f 7.4%) was approximate to 

that during retrograde perfhion (13.5 2 9.8%, F > 0.05). 

The hepatic extraction ratios and cfearances of metoprolol, and the metabolite 

formation clearances during the four phases, Ante, Ante-AA, Retro, and Retro-Aq are 

shown in Table 8.3, During the Ante phase, the mean hepatic clearance of metoprolol 

was 1.56 f 0.15 ml/rnin/g her, and its extraction ratio was 87.6 f 6.2%. The mean 

formation clearances of a-hydmxymetoproiol k d  OdemethyhnetoproIol were 0.460 f 

0.079 and 0.102 It 0.069 d m i d g  liver, respectively, indicating that about 29.5% of the 

metoprolol clearance was mediated via the a-hydroxylation metabolism pathway, 

whereas only 6.5% of clearance was mediated via Odemethylation. During the Retro 

phase, the mean hepatic clearance of metopro101 was 1-51 t 0.09 rnl/min/g liver, and its 

extraction ratio was 85.3 f 4.6%. The mean formation clearances of a- 

hydrorrymetoprolol and 0-demethyhetoprolol were 0.449 t 0.064 and 0.1 14 + 0.071 

d d g  liver, respectively, aanunting for 29.8% and 7.5% of total clearance, 



respectively. Hence, the metabolism of metoproiol was not altered during retrograde 

perfirsion, as evidenced by no significant difference in metoprolol cIarances and 

metabolite fom.on  clearances between the Ante and Retro phases. 

Coinfusion of high levels of amino acids caused a reduction in metoprolol 

metabolism during both antegrade and retrograde perfusion. However? the magnitude of 

the change was smaller during retrograde pefision than during antegrade perfbsion 

(Figure 8.2). Metoprolol clearance was significantly decreased by coifision of amino 

acids fiom 1.56 f 0.15 to 1.32 f 0.19 dmin /g  liver during antegrade pefision, and 

h m  1.51 f 0.09 to 1.35 f 0.14 mVmidg' liver during retrograde perfusion. The 

percentage decrease during antegrade perfirsion was 15.6 + 5.0 %, which was 

significantly larger than 11.0 4: 4.8% decrease during retrograde pertirsion. Consistently, 

the formation clearance of a-hydroxymetoprolol was reduced by 9.6 + 4.6% when 

coinfbsed with amino acids during antegrade perfusion. The reduction by amino acids 

during retrograde pefision was only 2.0 f 5.8%, which showed significant difference 

from that of antegrade perfhsion. The percentage of a-hydroxylation accounting for the 

total metoprolol clearance seemed to sIightly increase after coinfusion of arnino acids 

fiom 29.5% to 31.8% during antegrade perfusion and fiom 29.8% to 32.8% during 

retrograde perfirsion. Unexpectedly, coinfbgon of amino acids caused significant 

increases in the formation clearance of Oderncthyhetoprolol, 35.3 * 18.3% for 

antegrade perfirsion and 26.2 k 12.1% for retrograde perfirsion The percentage of O- 

demettLyhtion acmunting for the total clearance of metoprob1 increased fkom 6.6% 

during the Ante phase to 10.1% during the Ante-AA phase, and fbm 7.5% for the Retro 

phase to 10.2% tbr the Retro-AAPhase. 



Tim (mn) 

Figure 8.1. Time courses of hepatic oxygen consumption and efnuent concentrations of 

metoprolol (ML.), a-hydmxymetopdol (a-OH-ha) and 0-demethylmetoprolol (0- 

Dem-ML) in a pefised liver fiom the Hypo-Wgh AA group. 

The liver was pemtsed with 5.84 pJM metoprolol in a hypo-oxygenated ( 0 2  delivay 

rate: 3.35 pmollmidg liver) nyllnocyte-enriched perfusion medium fiom 0 to the end of 

the experiment, and high levels o f d o  acids were coinfused fmm 30 to 60 min and 90 

to 120 min. The direction of perfirsion was reversed after 75 min. 



Table 8.2, Physiological parameters (mean f SD) of isolated, perhsed rat livers 

Group N Liver weight Perfhion flow PH 0 2  delivery rate 
(g) rate (pmoVminlg liver) - 

(mUrninlg liver) 
Hypo-Omgh AA 8 7.19 f 0.99 1.78 f 0.13 7.26 f 0.07 3.40 f 0.52 

Normal 02/High M 8 7.76 f 0.89 1.80 * 0,20 7.26 f 0.13 5.66 4 0.85 

Normal O&ow AA 8 8.70 f 0.82 1.74 f 0.20 7,24 f 0.04 5.21 f 0.72 



Table 8.3. Effect of high levels of amino acids on oxyeenation and pharmacokinetic parameters (mean k SD, N = 8) of metoprolol 

and its metabolites during antegrade and retrograde perfusion in the isolated rat liver perfused with a hypo-oxygenated medium 

(Hypo-QdHigh AA group) 

Antegrade pefision Retrograde perfusion 

No AA AA %Change * No M M %Change * 
0 2  consumption 
(junoUmttdg Nw) 

0 2  extraction (%) 72.6 f 8.9 82.2 f 7.0 ' 13.8 f 7.4 70.5 f 9.2 79.4 f 5.4 13S f 9.8 

C 

8 Metoprolol E (%) 87.6 * 6.2 74,l f 8,8 -15.6 * 5.0 85.3 f 4.6 76.0 f 7,2+b -1 1.0 f 4.8 a 

Metoprolol CL 
(inVrnhdg liver) 

u~Hydroxymetopro~ol CLF 0.460 f 0.079 0.4 18 * 0.085 a -9.6 f 4.6 0.449 f 0,064 0.439 f 0,063 -2.0 f 5.8 (mUrnhJg liver) 

O-Demethy'motOpro'olCLf 0.102f0.069 0.132f0.081a 35.3k18.3 (mII/mi~dg liver) 0.114f0.071 0.139f0.078b 26.2f12.1 

l Significant difference (P < 0.05) between No AA and M during antegrade pefision by paired t-test, 
Significant difference (P < 0.05) between No AA and AA during retrograde pefision by paired t-test. 
Significant difference (P < 0.05) between antegrade and retrograde perfusion by paired t-test 

* Percentage change upon winfhsion of M s  during antegrade or retrograde perfusion, calculated as ( [ M I - m o  M ] ) x  100+wo AA]. 
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Figure 8.2, The percentage change (mean + SD, N = 8) in oxygen consumption, 

rnetoprolol clearance (a), a-hydroxymetoprolol formation clearance (a-OK-ML CLf) 

and 0-demethyhetoprolol formation clearance (0-Dem-ML Cb) after cobfusion of 

high levels of amino acids in the isolated rat liver pefised with a hypo-oxygenated 

medium during antegrade (Ante) and retrograde (Retro) perfirsion (Hypo-Oz/High AA 

group)- 
* indicates significant difference between antegrade and retrograde perfkion by paired 

t-test (P < 0.05)- 



83.2 Normrl Ofligh M group 

a3.2.1 Yiobiliry of Isofhted Perjked Livtr 

The physiological parameters of the perfused liver are shown in Tabk 8.2. All of 

the livers were well perfused as descnied in the HypdWHigh AA group. The time to 

reach steady state was less than 15 min for metoprolol and its metabolites during both 

antegrade and retrograde perfusion. The time courses were similar to those depicted in 

Figure 8.1. The order of perfusion diiection had no e f f i  on the time courses and levels 

of oxygen consumption, and metoproiol metabolism in the perfbsed livers (P > 0.05, 

nested ANOVA). 

8.3.2.2 Oxygen Consumption 

In this group, livers were perfused with a normally oxygenated perfirsion 

medium. The mean oxygen delivery rate to the liver was 5.66 f 0.85 pmoVmitrlg liver. 

The mean oxygen consumption was 3.62 + 0.56 pmoYmin/g liver, and the mean oxygen 

extraction ratio was 63.4% during the Ante phase (Table 8.4). During the Retro phase, 

the mean oxygen consumption was 3.63 + 0.46 pmoVmidg liver, and the mean oxygen 

extraction ratio was 63.8%. There was no significant difference between antegrade and 

retrograde in hepatic oxygen consutr~ption (P > 0.05, paired * test)- 

Coinhion of high levels of amino acids caused 16.1 f 12.8% and 14.4 & 7.8% 

increase in oxygen consumption during antegrade and retrograde perfirsion, 

respectively. The difference in the magnitude of amino acid -induced increase was not 

significant between antegrade and retrograde perfbsion phases (P > 0.05, paired t-test). 



The pharrnacokinetic parameters of metoprolol and its metabolites during the 

Ante, Ante-AA, Retro, Retro-AA phases are shown in Table 8.4. During antegrade and 

retrograde pefision without coinfusion of amino acids, the hepatic extraction ratio of 

metoprolol was 86.9 k 5.7 and 86.3 5 .3%,  respectively, and the hepatic clearance of 

metoprolol was 1.56 f 0.24 and 1.56 f 0.22 mVrnin/g liver, respectively. The mean 

formation clearance of a-hydroxymetoprolol was 0.449 c 0.095 ml/min/g Liver during 

the Ante phase and 0.452 2 0.087 ml/min/g liver during the Retro phase, accounting for 

about 29.0 and 29.1% of the total clearance of metoprolol, respectively. The mean 

formation clearance of 0-demethylrnetoprolol was 0.073 f 0.018 mVrnin/g liver during 

antegrade pefision and 0.082 f: 0.021 drninfg Iiver during retrograde perfusion, 

accounting for 4.8 and 5.5% of the total clearance, respectively. No significant 

diierence in metoprolol metabolism was found between the antegrade and retrograde 

pefision phases. 

Cohfbsion of high levels of amino acids decreased the hepatic clearance of 

metoprolol by 8.7 f 3.3% during antegrade perfusion and by 6.3 f 1-90! during 

retrograde perfirsion (Figure 8.3). The magnitude of decrease for the retrograde 

pefision was less than that for the antegrade perfirsion; however, the difference was 

statistically insi@cant (P > 0.05, paired t-test). During both antegrade and retrograde 

perfirsion, the alteration in a-hydroxymetoprolot formation clearance caused by amino 

acids exhiiied large variation among the eight liver preparations in the group. In h e  



liver preparations, amino acids decread the formation clearance of a- 

hydroxymetoprolol by 1.5 to 25.9%, but in the other three preparations, the formation 

clearance was increased by 1.3 to 12.2%. The formation clearance of a- 

hydroxymetoprolol in the Ante-AA and Wo-AA phases accounted for 30.5 and 29.6% 

of the total clearances, respectively. Furthennore, the formation clearance of O- 

demethyImetoprolo1 was increased by 32.0 f: 18.8 and 2 1.9 f 15.6% after coidiision of 

amino acids during antegrade and retrograde perhion, respectively. The percentage of 

0-demethylmetoprolol accounting for metoprolol metabolism increased fiom 4.8 to 

6.8% and &om 5.5 to 6.9% during the Ante-AA and Retro-AA phase, respectively. 



Table 8.4. Effect of high levels of amino acids on oxygenation and pharmacokinetic parameters (mean f SD, N = 8) of metoprolol 

and its metabolites during antegrade and retrograde perfhion in the isolated rat liver perfbsed with a normally o~ygenated medium 

(Normal O m g h  AA group) 

Antegrade perfhion Retrograde perfhion 

O2 consumption 
(jmoWmiirdg liver) 

O2 extraction (%) 63.4 f 10.9 72.7 f 8.6 * 16.1 f 12.8 63.8 f 9.7 72.5 f 7.9 14.4 f 7.8 

Metoprolol CL 
(mVmiw'g liver) 

a-Hydroxymotopro1o1 CLf 0,449 f 0.095 0.432 * 0.091 -3.1 f 3.2 0.452 f- 0.087 0.433 f 0.102 -4.5 f 10.4 (mVmirJg liver) 

o-Demethy'metoprolol CLf 0.073 f 0.01 8 0,095 f 0.01 7 32.0 k 18.8 (mUmirdg liver) 
0.082 f 0,021 0.098 f 0.019 21.9 f 15.6 

Significant difference (P < 0.05) between No AA and AA during antegrade perfusion by paired t-test. 
Significant difference (P < 0,05) between No AA and AA during retrograde perfhion by paired t-test. 

* Percentage change upon coinfusion of AA during antegrade or retrograde perhsion, calculated as ([MI-wo AA]) x LOO i m o  
MI. 
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Figure 8.3. The percentage change (mean f SD, N = 8) in oxygen consumption, 

metopro101 clearance (CL), a-hydroxymetoprolol formation clearance (a-OH-ML CLf) 

and 0-demethylmetoproloI fonnation clearance (0-Dem-ML a) after coinfusion of 

high Ievels of amino acids in the isolated rat liver pefised with a normally oxygenated 

medium during antegrade ( M e )  and retrograde (Retro) perfirsion (Nomal W g h  AA 

8 r o w -  



8.3.3 Normal OJLow AA group 

a3.3.I V i i t y  of Isolded Pkrfkdliwr 

The physioIogical parameters ofthe pefised liver are shown in Table 8.2. All of 

the livers were well perfbsed as descriied in the Hypo-Omgh AA group. The time 

courses of oxygen consumption and concentrations of metoprolol and its metabolites 

were similar to those depicted in Figure 8.1. The order of antegrade and retrograde 

direction had no effect on the time to reach steady state, and the rate of oxygen 

consumption, metopro101 clearance and metabolite formation clearance at steady state (P 

> 0.05, nested ANOVA). 

Eight livers were perfbsed with normally oxygenated medium with a mean 

oxygen delivery rate of 5.21 k 0.72 p m o V d g  liver. The mean oxygen consumption of 

the liver was 3.47 f 0.59 pmoUminlg liver during the Ante phase, and 3.38 * 0.63 

during the Retro phase, where no significant difference existed (Table 8.5). The mean 

oxygen extraction ratio was 67.3 f 13-1 % during the Ante phase and 65.4 f 11.8% 

during the Retro phase. 

Coifision of low ievels of amino acids increased hepatic oxygen consumption 

by 0.76 to 39.6 % with an average of 10.8% during antegrade perfirsion, and by 1.4 to 

23.4% with an average of 7.9% during retrograde perfusion. The difference in the 

increase between antegrade and retrograde perhion was not significant. 



The pharmacokinetic parameters of metoprolol metabolism during the Ante, 

A n t e  Retro, and Retro-AA phases of liver perfhion are summarized in Table 8.5. 

The mean metoprolol clearance was 1.49 f 0.15 ml/min/g liver in the Ante phase and 

1.47 f 0.20 drn in /g  fiver in the Retro phase. The formation clearance of a- 

hydroxymetoprolol and 0-demethylmetoprolol was 0.384 + 0.026 (25 -8% of total 

clearance) and 0.064 * 0.024 ml/min/g liver (43% of total clearance) in the Ante phase, 

respectively; and 0.360 i 0.062 (24.6% of total clearance) and 0,068 + 0.024 ml/rnin/g 

h e r  (4.6% of total clearance) in the Retro phase, respectively. There was no significant 

difference in the hepatic extraction ratio and clearance of metoprolol, the formation 

clearance of a-hydroxymetoprolol, and the formation clearance of O- 

demethyhetoprolol during antegrade and retrograde perfirsion. 

Coinhsion of low levels of amino acids decreased metoprolol metabolism, as 

evidenced by decreasing the metoprolol extraction ratio and metoprolol clearance by an 

average of 3.8% (unchanged to 10.9%) during antegrade perfusion, and by an average of 

3.4% (unchanged to 9.5%) during retrograde perfirsion of all eight livers in this group 

(Figure 8.4). However, a-hydro~etoprolol formation clearance was not significantly 

altered by low levels of amino acids during either antegrade or retrograde perfirsion. The 

formation clearance of Odemethylmetoprolol was i n d  after coinfusion of amino 

acids by 21.6 f 11.5% during antegrade p e e o n  and by 11.8 + 6.6% during retrograde 

perfirsion. 



Table 8.5. Effect of low levels of amino acids on oxygenation and phmawkinetic parameters (mean 1 SD, N = 8) of metoprolol 

and its metabolites during antegrade and retrograde perfusion in the isolated rat liver perfUsed with a normally oxygenated medium 

(Normal 02ILow AA group) 

Antegrade perfusion Retrograde perfusion 

No M AA %Change * No AA AA %Change * 
0 2  consumption 
(pmoVmiw& liver) 

O2 extraction (%) 67.3k13.1 73.7f11.1a 10.8f13.1 65.4 f 1 1.8 70.1 f 10.3 7.9 16.9 

C 
4 
" Metoprolol E (%) 89.4 * 5.0 86.0 f 6.0 " -3.8 f 3.7 . 88.8 f 4.8 85.9 f 7.3 -3.4 f 3.7 

Metoprolol CL 
(mumi& liver) 

a-Hydr0xymet0proJo' CLr 0.384 f 0.026 0.392 f 0,038 2.0 k 4.6 0.360 * 0.062 0,373 f 0.060 4.3 f 9.6 
(mUmhJg liver) 

o-Deme'hy'metoprO1oJ C4 0.064 * 0.024 0.077 f 0.025 2 1.6 f 1 I .5 (mUmitd, liver) 0.068 f 0,024 0,076 1 0.029 1 1.8 f 6.6 

a Significant difference (P < 0,05) between No AA and AA during antegrade perfhion by paired t-test. 
Significant difference (P < 0.05) between No AA and AA during retrograde perfision by paired t-test. 

* Percentage change upon coinhsion of AA during antegrade or retrograde petfusion, calculated as ([MI-[No AA]) x 100 t m o  
MI. 



L I I I 

0 2  Metoprolol aQH-ML 0-Dem-ML 
Consumption CL cb CL, 

Figure 84 .  The percentage change (mean f SD, N = 8) in oxygen consumption, 

metoprolol clearance (CL), a-hydroxymetoprolol formation clearance (a-OH-ML Ck) 
and Odemethylmetoprolo1 formation clearance (0-Dem-ML Ck) after coinhsion of 

low levels of amino acids in the isolated rat liver perfirsed with a normaUy oxygenated 

medium during antegrade (Ante) and retrograde ( M a )  pefision (Normal M o w  AA 

group). 



8.3.4 Comparison between p a p s  

In the absence of amino acids, the metoprolol extraction ratio was found 

comparable (85 - 8 9 % )  between the three groups in both the antegrade and retrograde 

perfusion phases (P > 0.05, one-way ANOVA), although the oxygen extraction was 

higher in the Hypo-ol/High AA group than in the other two groups (P < 0.05, one-way 

ANOVA). The effect of amino acids on metoprolol metabolism differed between 

groups. The order of decreases in metoprolol clearance by amino acids was Hypo- 

Ofigh AA group > Normal Ot/High AA group > Normal Ofiow AA group in either 

the antegrade or retrograde perfirsion mode (P < 0.05, one-way ANOVA). Amino acids 

also increased the oxygen extraction to a higher level in the Hypo-Oz/High AA group as 

compared with the other two groups. 



8.4 Discussion 

8.4.1 Experimental design 

Our previous study showed that a balanced mixture of amino acids reversibly 

reduced the V,, values of metoprolol and the two metabolites, a-hydroxymetoprolol 

and 0-dernethyIrnetoproIol in the isolated rat liver perftsed with Krebs bicarbonate 

buffer (Wang and Semple, 1997). Amino acids also haeased hepatic oxygen 

consumption until oxygen in the pertitsion buffer was almost completely depleted. 

Possiile mechanisms infiriencing the V,, have been discussed, including direct 

inhl'bition of metabolic enzymes by amino acids andor cosubstrate (NADPH or oxygen) 

limitation. In our later study of rat liver microsomes (Alcom, 1997), however, no direct 

inhiiition of metoprdol metabolism was observed at physiological levels of amino 

acids. We have therefore hypothesited that the amino acid-mediated pericentral oxygen 

[imitation is the most plausible mechanism involving in the amino acid-metoprolol 

interaction. * 

The present study was designed to illustrate the effect of oxygen depletion by 

amino acids on metoprolol metabolism and its. relevance to the food effect. Unliie the 

previous work, a singIe-pass rir situ liver p d s i o n  system with erythrocytee~ched 

Krebs-Henseleit bicarbonate brrffer was used, whereby hepatic oxygen suppIy and 

perfirsion directions were adjhstable during the experiment. The hepatic oxygen delivery 

rate and oxygen consumption rate were preciseIy monitored, and the concentrations of 

metopro101 and its two metabolites, a-hydroxymetoprolol and Odernethyhnetoprolol, 

were also measured throughout the perfirsion, This study, therefore, allow us to inspect 

1 74 



the relationship between the oxygen level and metoprolol metabolism in the presence of 

amino acids in the liver, 

8.4.2 Meioprolol metabolism 

Metoprolo1 is extensively metabolized in the liver of humans and other animals 

(Ablad et al., 1975). In the present study for all three groups, metoprolol was rapidly 

eliminated in the liver perfused in either antegrade or retrograde mode, with a mean 

clearance of -1.5 dmin/g liver, which corresponds to a -13% hepatic availability. This 

availability was higher than the - 4% of bioavailability reported in rat in vivo studies 

(Borg et al., 1975a). The difference is not surprising because the metabolism of 

metoprolo[ is saturable, dthough the inlet concentration of metoprolol employed was 

relatively low (5.84 CIM). The lower in vivo avaiiab~?ity of metoprolol could be also 

caused by 1) additional metabolic sites other than the liver, and /or 2) impaired function 

of the isolated perfused Iiver. However, there is no evidence of these two possibilities. 

There are three major metabolites found in rat urine and rat liver microsomes, which are 

a-hydroxymetopmlol, 0-demethyhetoprolol, and metoprolol acid, respectively 

accounting for about 25%, 3.5% and 62% of the total metabolites produced @erg et al., 

197%; Arfbidsson et al., 1976). Two metabolites, a-hydroxymetoprolol and 0- 

demethyhetoprolol, were detected in the h e r  pehsion system, and their relative 

amounts accounted for about 28% and 5%, respectively, consistent with the reported 

d u e s  for the rat urine and rat liver microsomes. 

CoinfUsion of amino acids in the perfirstxi rat liver caused a decrease in 

metoproIoI clearance in a11 the three groups, but to a different extent. This suggests that 



amino acids inhibit rnetoprolol metabolism as discussed in the previous study (Wag 

and Semple, 1997). The effluent concentrations of metoprolol rose in the presence of 

amino acids, and recovered to the preamino acid levels after termination of amino acid 

infbsion, indicating that the effect of amino acids was temporary and reverslMe. It is 

hence unlikely that amino acids caused permanent damage to the hepatic metabolic 

enyme system. Along with the decrease in metoproIol clearance, a reduction in a- 

hydroxymetoprolol formation clearance occurred during intirsion with amino acids. The 

magnitude of reduction became more obvious when a larger decrease in parent drug 

clearance was present. The reduction in a-hydroxymetoprolol formation did not account 

for the change in total clearance of metoprolol since 0-demethylation comprised larger 

portion of metoprolol metabolism. Unexpectedly, the formation clearance of 0- 

demethylmetoprolol was considerably increased by amino acids. 0-Demethyhetoprolol 

is firrther oxidized to a secondary metabolite, metoprolol acid, which we did not 

measure in this study. The increase in Odemethylmetoprolol probably could result 

from inhition of the secondary metabolic step @om 0-demethylmetoprolol to 

metoprolol acid) to a larger extent than that of the fisrt step (hm metoprolol to 0- 

demethylmetoprolol). The formation of 0-demethyhetoprolol is mediated by CYP2D6, 

whereas the formation of rnetoprolol acid could be mediated by aldehyde 

dehydrogenase. Vgr  Likely the sensivity of these two enzymatic systems to oxygen are 

differw. It is difficult to tell what really happened with 0-demethylation during 

hiision of amino acids unless metoproIot acid is measured. 



8.4.3 Hepatic oxygen level 

In addition to the decrease in metoprolol clearance, coadministration of amino 

acids caused an increase in hepatic oxygen consumption, suggesting that oxygen 

limitation could contniute to the mechanism of inhibition. It has been long recognized 

h r n  in vitro and whole organ studies that the hepatic metabolism of many drugs can be 

affected by the oxygen level in the liver (Woodroffe et al., 1995). Especially for the 

drugs which undergo extensive oxidation via hepatic cytochrome P-450 enzymes, an 

acute decrease in oxygen results in a marked reduction of drug elimination in the liver 

(Jones et al., 1984; Angus et al., 1989; Elliott et al., 1993a). In the isolated pefised 

liver, an hypoxic threshold of oxidatively metabolized drugs has been identitied to 

d e m i e  the critical rate of oxygen delivery below which the rate of drug metabolism 

begins to decrease, as oxygen becomes rate-limiting. The oxygen delivery thresholds 

vary fiom 2.5 to 6 pmoUrninfg h e r  depending upon the substrate and the experiment 

(Angus et al., 1989; Elliott et d., 1993; Hickey et al., 1996). However, no such oxygen 

threshold has been determined tbr metoprolol. One may assume that the oxygen 

threshold of metoprolol is similar to that of propranolol, which was reported to be 2.5 

(Hickey et al., 1996) or 5 - 6 pnoVminlg liver. (Elliott et al,, 1 9 9 3 ~  1993b), since both 

of these drugs are mainly olddited by the cytochrome P-450 enzymes in the rat her. In 

our present study, two oxygen delivery rates were applied to the perfkd rat liver. In the 

Normal &/High AA group, the rate of oxygen delivery to the her  was 5.66 + 0.85 

pmoVmidg liver, matching the normai physiological range of 5 - 7 pmoUmidg h e r  in 

the tat m vivo (Bredfeldt et al., 1985; Carmichael et al., 1993). In contrast, the oxygen 

delivery in the Hypo wgh AA group was 3.40 k 0.52 pmoVmidg liver, comparable 



to that in the previous study where the liver w p  perfused with Krebs bicarbonate buffer 

only (Wang and Semple, 1997)- The clearance of metopmlol, however, was similar in 

both groups, suggesting that the oxygen threshold of metoprolol may be Iowa than 3.4 

pnsoVrnin/g liver. Oxygen thus should not be the ratelimiting factor for metoprolol 

metabolism in the h e r  pefised with either the n o d l y  oxygenated or hypo- 

oxygenated medium. 

However, the oxygen condition wodd change when an extra oxidative load is 

placed in the liver. Because the metabolism of amino acids in the liver, including 

membrane transport and gluconeogenesis, is an oxygen consuming process (Seifter and 

Englard, 1994), livers will increase oxygen extraction when amino acids are present, In 

the Hypo WKigh AA group, wadministration of amino acids caused a 13.8% increase 

in o w e n  consumption along with a 15.6% demease in metopro101 clearance (Table 

8.3). The increased oxygen consumption brought about a hepatic oxygen extraction 

increase tiom 72.6% up to 82.2%. The oxygen supply in the liver thus couId become 

limiting so that metoprolo[ metabolism was inh'bited. The magnitude of the amino acid- 

induced decrease in metoprolol metabolism was smaller when the oxygen delivery rate 

was increased. In the Normal w g h  AA group, the same concentrations of amino 

acids led to an oxygen extraction of 72.7% and only a decrease of 8.7% in metoprolo1 

clearance (Table 8.4). It is apparent that the higher oxygen ddvery somewhat 

compensated for the consumption of oxygen caused by the metabolism of amino acids. 

The metabolism of a drug by the intact h e r  depends on several hctors, including 

uptake of the substrate by the hepatocyte, enzyme activity, transport of the metabolite 

across the d d a r  or sinusoidal membrane, and availability of essential co-fictofs, 



such as oxygen and NADPE Since the steady-states of metoprolol and its metabolites 

were reached immediately upon coinhsion of amino acids, it is unlikely that amino 

acids inhibit metoproIo1 uptake and metabolite transport across the membrane. 

Furthennore, no direct inhiiition of drug-metabolizing enzymes was observed (Alcorn, 

1997). It appears most likely that the limitation of oxygen is a major contributing fictor 

to the inhibition of metoprolol metabolism caused by amino acids, while NADPH 

depletion, which was not tested in our experiments, can not be completely excluded. 

8.4.4 Retrograde perfusion 

The differences in zonal distniution of enzymes in the acinus may contribute to 

the inhibition of metoprolol metabolism by amino acids because periportally located 

metabolism of amino acids has the priority to utilize the co-substrate, oxygen, in 

comparison to metopro101 metabolism for which the enzymes are located in the 

pericentral zone. This hypothesis was tested by using retrograde liver pefision. 

Although it is a non-physiological liver model, retrograde perhion becomes a useful 

technique for examining a c k r  heterogeneity- It is believed that short-term retrograde 

perfhion has no deleterious effect on the liver in term of K', SGOT, SGPT, and LDH, 

and ultrastructure determined by tight and electron microscopy (Pang, 1984). Retrograde 

pedkiion, however, causes an increase in sinusoidal volume and sufice area (Bass et 

al., 1989; Stsierre et al, 1989). An increase in sinusoidal surface area might increase the 

hepatic clearance of a drug whose clearance is rate-limited by uptake into the 

hepatocyte. This case, however, should not apply to metoprolol, which is a flow- 

dependent drug and is considered to rapidly eqter into the cell. Indeed, our experiments 



revealed that no dif&rence existed between antegrade and retrograde pefision in both 

metoprolol clearance and oxygen consumption, indicating that the hepatic abiIity of 

metopmlol metabolism was not altered by changing the perfUsion d i d o n  under either 

hypo-oxygenation or normal oxygenation conditions. 

In the Hypo @/High AA group, the decrease of metoprolol clearance by amino 

acids during antegrade pefiion was significantly greater than during retrograde 

perfUsion. Consistently, the decrease of a-hydroxymctoprolol formation clearance was 

also greater with antegrade than with retrograde perfhion (Table 8.3, Figure 8.2). The 

results suggest that inhibition of metoprolol metabolism caused by amino acids is 

partially reversed by retrograde perfiision. These observations strongly support the 

hypothesis we proposed above that the metabolism of amino acids in the liver produces 

a pericentral oxygen deprivation which leads to the impairment of metoprotol 

metabolism. The retrograde perfusion, however, only offset about 30?4 of the decrease 

in metoprolol clearance of the antegrade perfirsion. The relatively small impact of 

retrograde perhion implies that the oxygen available for metoprolol metabolism is still 

deprived by the metabolism of amino acids during retrograde perfusion, aithough to a 

lesser extent. Hence the observations could be -&plained by: 1) A change in activities of 

amino acid metabolizing enzymes due to retrograde perfbsio~ Although the enzymes 

involved in the metabofism of amino acids are preferentially located in the periportal 

zone of the acinus, the e v e  activity depends upon the direction of flow when the 

subsaate supply is not limiting @itssinger and Gerok, 1986). 2) Periportal distriiution 

of some cytochrome P-450 isoenzymes. Although most cytochrome P-450 isoenzymes 

are indeed pericentralIy located, a few are more evenly distri'buted within the acinus 



(Thurman a d., 1986; Butkr a aI., 1992). ~ ~ o ~ m l o l  is mainly oxidized in the rat liver 

via more than one cytochrome P-450 isaforms, which have not been clearly identified 

yet (Barham et aI., 1994). The exact zonal distn'bution of metabolic enzymes for 

metoprolol is not clear. 3) Higher oxygen &ties for the amino acid metabolizing 

enzyme systems than for the metoprolol metabolizing enzyme systems. In contrast to the 

Hypo Omgh AA group, the amino acid-mediated decfease of metoprolol clearance 

during retrograde perfhion was slightly but not significantly Merent fiom antegrade 

perhion in the Normal 0 D g h  AA group, suggesting that the effect of zonai 

heterogeneity was trivia1 when the liver was notmalIy oxygenated. The result is 

consistent with a previousIy reported study of propranolol, in which the difference in 

clearance between antegrade and retrograde perhion was only demonstrated during 

hypoxia, not under conditions of normal oxygenation (Elliot, et al. 1993b). 

It should be noted that the resuIts fiom our previous study (Wang and Semple, 

1997) differed markedly with respect to various observations for Hypo O D g h  AA 

group in our present study (Table 8.3), even though the oxygen delivery rate was 

comparable. In terms of the same inlet concentration of metoprolol (5.84 CIM) as the 

present study, the differences in the previous study are as follows: 1) a smaller 

extraction ratio of metoprolol (62% compared to 87.6%); 2) a larger percentage of a- 

hydroxymetoprolol ( W !  compared to 29.5%) and O-demethyImetoprolol (12% 

compared to 6.6%) formation clearance accounting for the total metoprolol clearance; 3) 

a larger decre8~e (37.2% compared to 15.6%) in metoproloI clearance by amino acids; 

and 4) a decrease in O-demethyhetoproIo1 formation clearance by amino acids 

(compared to an increase). Because the liver was perfused with hemogIob'i-f?ee Krebs- 



Henseleit bicarbonate buffer saturated with oxygen in our previous work, the oxygen 

capacity was much lower than the erythrocyte-enriched buffer of the present study. Even 

though the oxygen delivery rate was comparable by increasing the flow rate up to -3 

mVrnidg liver, oxygen was less supplied with ihe result that the liver almost completely 

depleted oxygen in the perfbate with an extraction of 95%. Based upon our present 

findings regarding the relationship between oxygen and metoprolol metabolism, it can 

be concluded that the differences between the two studies arose because of the poor 

oxygen availability in the previous liver pefision system. 

8.4.5 Portal concentrations of amino acids 

Comparing the results fiom the Normal 0dHigh AA group with the Normal 

W o w  AA group, the lower level of amino acids caused a smaller decrease in 

metoprolol clearance and smaller changes in. the formation clearance of metabolites 

(Tables 8.4 and 8.5). This is in agreement with our previous finding that the degree of 

metabolic inhibition of propranolol was linearly correlated with the amino acid 

concentration in the influent bufFer (Semple and Xia, 1995). It is questionable as to the 

level of amino acids infused to the Liver required to simulate the p l m a  concentration of 

amino acids in the portal vein after a high protein meal. No doubt, during the 

postprandial period, there is an abrupt rise of fhe amino acids in the portal circulation 

(Rerat et al., 1976). In the dog, 1 hr after ingestion of a protein meal, the portal 

concentration of dietary amino acids reaches a plateau, 2 to 3 times that in the 

preabsorptive period, which is maintained for 8 - 12 hr (Elwyn, 1965; 1970). 

Unfortunately, there is no such mebswement adable  in man- In the present study, we 



applied two levels of amino acids delivered to the pefised liver: the Low AA group, in 

which livers were inftsed with the amino acid mixture at about 3 times the n o d  

plasma concentration in the rat portal vein (Sax et al, 1988a; 1988b), and the High AA 

group, in which the amino acid concenzration was double that of the Low AA group. 

The results revealed that the higher level of amino acids produced a larger effect on 

metoprolo1 metabolism without damage to the her. 

8.4.6 Relevance to the food e f f ~ t  

At this point, we wish to answer the question: how the inhiiition of metoprolol 

metabolism caused by amino acid-induced hepatic oxygen limitation in the perfbsed rat 

liver model would be relevant to the food effect observed in human studies. Although 

there is no direct evidence that ingestion of amino acids or protein can cause hepatic 

deprivation of oxygen, human studies have demonstrated that after a protein meal the 

splanchnic oxygen consumption increases considerably by 35 - 50%, but the splanchnic 

blood flow onIy increases by 13 - 35% (Brandt et al., 1955; Brundin, 1993; Bmdin and 

Wahren, 1994), that is, the postprandial increase in oxygen extraction fiom the 

splanchnic blood happens to meet the oxygen demand without increasing the blood flow 

(oxygen supply) to the same extent, The splanchnic oxygen consumption mainly 

includes the intestinal and hepatic oxygen required for digestion, absorptio~ and 

processing of the protein ingested, A rise in intestinal oxygen consumption may result in 

a reduction in oxygen content in the portal vein, which is simply the sum of o d o w s  of 

the extrahepatic splanchnic organs. Meanwhile, the hepatic arterial oxygen delivery is 

reduced as hepatic arterial flow, normally a major oxygen supply to the liver, does not 



change or even decreases after a meal, whereas portal venous flow increases to account 

for the increase in total hepatic blood flow (Chou, 1983; Lautt, 1983; Dauzat et al, 

1994). This is the so-called 'hepatic artery buffer response'. As a consequence, 

deprivation of oxygen may occur in the liver &er a protein meal due to increased 

hepatic oxygen consumption with less or unchanged hepatic oxygen delivery. On the 

other hand, oral ingestion of glucose or fat does not change splanchnic oxygen 

consumption but increases splanchnic blood flow (Bmdin and Wahren, 1993; Brundin 

et al., 1996; Brundii 1998). Because protein (amino acids) seems to be an important 

component of a meal that causes the 'food effect' with high hepatic extraction ratio 

drugs (Mclean, et al., 198 1; Walle, et al., 198 1) rather than carbohydrates (glucose) and 

fat (Chow and Lalka, 1993; Ogiso, 1994), we postulate that amino acid-mediated 

hepatic oxygen deprivation may be involved in the mechanism of the 'food effect'. 

Nevertheless, in vivo studies are needed to demonstrate this hypothesis. 



8.5 Conclusion 

The present study in the perfhed rat &a has revealed that amino acids cause a 

reversiiIe decrease in metoprolol metabolism. The magnitude of amino acid effect is 

proportional to the hepatic oxygen delivery rate and the concentration of amino acids. 

Retrograde pefision partially reverses the inhibition of metoprolol metabolism by 

mino acids, indicating that pwicenfral oxygen depletion may be a mechanism 

contributing to the inhibition. This amino acid-metoprolo1 interaction couId be a key to 

understanding the 'food effect' on high hepatic extraction ratio drugs. We also reaIize 

that the liver perfhion model has to be used with recognization of its limitations 

involved and hence its redts should be carefbUy interpreted since the model per se is 

finctioning under an oxygen-limited condition. 



CHAPTER 9 

EFFECT OF AMINO ACID INGESTION ON THE 
PHARMACOKINETICS OF METOPROLOL IN THE RAT ' 

9.1. Introduction 

In man, food intake has been reported to enhance the oral bioavailability of 

certain high hepatic first-pass drugs, such as propranolol (Melander et d., 1977), 

metoprolol (Melander et al., 1977), propafenone (Axelson et al., 1987) and dipdenone 

(Koytchev et al, 1996). The average area under the plasma concentration-time curve 

after oral doses of these drugs (AUCd) has been shown to increase by >40% when they 

were given with a meal. This phenomenon is called the 'food effect'. The mechanism of 

the food e m  may involve changes in drug absorption fiom the gut andlor presystemic 

metabolism. Most drugs which exhibit the food effect are known to be completely 

absorbed firom the gastrointestinal tract under the fasting condition and almost solely 

metabolized in the liver, thus a reduction in hepatic extraction, rather than an increase in 

the extent of absorption fiam the gastrointestinal tract, most likely contriiutes to the 

increase in AUC after an oral dose. It was proposed that a food-induced transient 

increase in hepatic blood flow wuId result in the observed increase in A X m l  (Mclean 

et al., 1978; Elvin et al., 1981; Walle et al., 1981; Heinzow et d., 1984; Olanoff et al., 

1986). However, the observed time course of the change in hepatic bIood flow caused 

-- 
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by food consumption is not sufiicient to explain the magnitude of the increase in 

AUCd (Svensson et al., 1983; Semple et al., 1990). Additionally, a posture-induced 

increase in hepatic blood flow, approximating that after food ingestion, was shown not 

to cause an increase in AUCd (Modi et al., 1988). Therefore, there may be other more 

important mechanisms involved in the 'food effect', such as acute inhibiion of hepatic 

metabolism, i.e., a decrease in hepatic intrinsic clearance. 

Most human diets are complex mixtures of macro-nutrients such as 

carbohydrates, fats and proteins, which are digested and transported into the portal vein 

as glucose, fructose, h e  fatty acids and amino acids, etc. These macro-nutrients are 

widely recognized to be modulating factors in the metabolism of drugs (Anderson, 

1988; Yang and Yoo, 1988). Of these components in the diet of humans, however, 

protein appears to be the most responsible for the 'food effect'. Human studies have 

demonstrated that protein-rich meals unquestionably enhance the AUCd of propranolol 

(Melander et al., 1977; Mclean et d., I98 1; Walle et al., 198 1; Liedholm and Melander, 

1986; Olanoff et al, 1986; Liedholm et aI., 1990), metoprolol (Melander et al., 1977) and 

propafenone (Axelson et d., 1987), whereas there is no or less effect of carbohydrate- 

rich meals m e a n  et al., 1981; Walle et al., 1981; Jackman et al., 1981; Liedhoh et 

al., 1990). In rats, a high protein diet can cause a small increase in the AUCd of 

propranolol (Ogiso et al., 1994), while ingestion of htty acids and glucose decreases the 

AUCd (Chow and Lalka, 1993; Ogiso et al., 1994). Furthermore, studies in the 

isolated, perfused liver have shown that amino acids, digestive products of protein, 

revemily inhibit the metabolism of propranolol and metoprolol via regulation of the 

oxygen supply in the liver (Semple and Xia, 1995; Wang and Semple, 1997; Chapter 8). 



It is very likely that metabolic inhibition by amino acids may contribute to the 'food 

effect', but no propranolol- or metoprolol- amino acid interaction in vivo has been 

reported. 

Metoprolol is a high hepatic extraction drug &'biting an average AUC increase 

of about 40% when given with a protein-rich meal in man (Melander et al., 1977). Data 

fiom studies in the isolated perfirsed rat Liver have shown that the major pathways of 

metoprob1 metabolism can be ihi'bited by coinfusion with amino acids (Wang and 

Semple, 1993; Chapter 8). To examine if amino acids can interact with metoprolol in 

vivo and how this interaction is related to the 'food effect' observed in man, we have 

specifically investigated the &kt of a mixture of amino acids on the kinetics of 

metoprolol and its metabolites after an oral dose in rats. Metoprolol is rapidly and 

completely absorbed h m  the gastrointestinal tract in the rat, and is eliminated mainly 

via extensive hepatic oxidation into a-hydroxymetoprolol, 0-demethylrnetoprolol and 

metoprolol acid (Arfwidsson et a], 1976; Borg et al., 1975a). If there is an interaction 

between metoprolol and amino acids similar to that observed in the perfbsed rat liver, 

one could expect changes in the kinetics of both parent drug and metabolites after an 

oral dose administered with amino acids. 



9.2 Materials and Methods 

9.2.1 Chemicals 

R, S-Metoprolol tartrate and nadolol ( i t d  standard) were purchased fiom 

Sigma Chemid Co. (St. Louis, MO, USA). . a-Hydroxymetoprolol (HI 19/66) p-OH 

benzoate and OdemethyImetoprolol (H105122) pOH benzoate were gifts fiom Astra 

@&isle, Sweden). Aminosynd3 II 100/0 Amino Acids Injection came fiom Abbott 

Laboratories Ltd. (Montreal, Quebec, Canada). All solvents were HPLC grade obtained 

fiom BDH Inc. (Toronto, Ontario, Canada). All other chemicals used were analytical 

grade fiom BDH Inc. 

9.2.2 Anind erptriments 

Animals. MaIe Sprague-Dawley rats (Charles River, St. Constant, Quebec, 

Canada), weighing 250-3 10 g, were used. The animals were allowed to acclimatize for 

3-4 days before commencement of the experiment. They were maintained on standard 

laboratory chow and water ad libitum in accordance with the guidelines of the Canadian 

Council on AnimaI Care. 

Swgicc11 procehre. One day before drug administration, each animal was 

anesthetized with inhaled halothane (MTC Pharmaceuticals, Cambridge, Ontario, 

Canada), and a right a d  jugular vein cannula was implanted according to the 

procedures described previously (Waynforth and Flecknet4 1994). The jugular c a d a  

consisted of 7 cm ofpolyethyIene tubing (PE 50, 0.58 cm i.d. x 0.965 cm o-d.) tipped 



with 3.2 cm of bevel-ended silastic tubiig (Silastid, 0.5 1 cm i.d. x 0.94 cm o.d,, Dow 

Corning, Midland, MI, USA). The cannula was gas sterilized with 8.6% ethylene oxide 

and 91.4% chlorotetrafiuorethane before use. The distal end of the polyethyIene tubiig 

was passed subcutaneously to emerge at the dorsal aspect of the neck. Heparin (100 

U/ml) in 0.9% saline was flushed into the catheter after implantation. All animals 

regained consciousness within 10 min after the operation, and were allowed fiee access 

to water and food until f 2 hr prior to dosing, 

Dosing and sconpfing. On the study day, the Wed animals were randomly 

divided into two groups, each consisting of 8 or 10 rats, to receive either 12 mV kg of a 

balanced mixture of dissolved amino acids (10% Aminosyn@ II, Table 9.1) or an 

equivalent volume of distilIed water. The total amount of amino acids approximated the 

content of an animal protein meal (Deferrari et a]., 1988). Metoprolol at a dose of 10 

mgkg was given via gastric intubation with amino acids or water. At 0, 5, 10, 15, 20, 

30, 40, 50, 60, 75, 90, 120, 180, 240, and 360 min after drug administration, blood 

samples of approximately 250 pi were drawn through the jugular vein cannula with 

heparinized syringes. An equal volume of saline was administered through the jugular 

vein cannula immediately after blood sampling to replace the lost blood. The samples 

were centrifuged immediately, and the p1asrna.was separated and stored at -20°C until 

the next day for assay. 

9.2.3 Andyticd procedure 

The concentrations of metoprolo1 and its metabolites, a-hydroxymetoprolol and 

0-demethyImetoprob1 in liver perhate samples were determined simultaneously using 

I90 



a revalidated HPLC-fluorescence method as demied  previously (Wang and Semple, 

1997) with some modiications. In br ie  to 100 pl of plasma were added 50 fl of 

nadolol(1 pg/ml, internal standard) and 2 ml of 1 M sodium carbonate buffer (pH 10.5). 

The drug, metabolites and internal standard were extracted into 5 ml of a mixture of 

&ethyl ether-dichloromethane (4: 1, vlv) after vortex mixing for 8 min and centrifugation 

at 2500 x g for 10 min. The organic layer was transferred to a clean glass tube and 

evaporated to dryness under nitrogen at room temperature, The residues were 

reconstituted in 120 pl of mobile phase, and 100 pl was injected into the HPLC system. 

Calibration curves were linear (r 2 0.99) over the range of 15-200 ng/ml for 

metoprolol, 10-1 000 ng/rnl for a-hydroxymetoprolol and 10- 100 ng/rnl for 0- 

demethylmetoprolol, respectively. The intra- and inter- run coefficients of variation 

(CV) were less than 1% for all compounds, except at their limit of quantitation (LOQ) 

where the intra- and inter-run CV were less than 15%. Quality control (QC) sampies in 

duplicate at three concentrations (one near the lowest, one in the middle, and one close 

to the highest end of the calibration curve) were incorporated into each run. To accept 

the run, at least four of the six QC samples must be within S O %  of their respective 

nomind values, and any two that may lie outside the EUl% must not be at the same 

concentration. 

9.2.4 Pharmacokinetic Analysis 

Pharmacokinetic parameters were determined by WINNONLIN Standard 

Edition Version 1.1 (Scientific Consulting Inc., Lexington, EX, USA). Non- 



compartmental methods were used to descn'be the disposition of metoprolol, in which 

no assumption for a specific compartment model is required. The linear trapezoidal 

method was used to calculate area under the concentration-time curve fiom 0 to 60 rnin 

( A u k )  and &om 0 to t* (AUb.), and area under the first moment wncentration- 

time curve from 0 to t* (AUMCw). The t* is the time of the last measurable 

concentration (C*). The area under the concentration-time curve (AUCk) and area 

under the first moment concentration-time curve tiom time 0 to infinity (AUMC*) 

were calculated fiom 

and 

, respectively, where the h, is 2.303 times the slope of the tenninal exponential phase of 

a plot of log concentration-time. The was estimated by linear regression using the last 

3-6 concentration data points, The half-life of the terminal phase in the plasma 

concentration-time curve (tin(=)) was calculated fiom 

Oral clearance (G) was calculated as 

Dose CL, = 
AUC, 

The mean residence time (MRT) was calculated as 



MRT = AUMC 
AUC 

Since a parallel study design was applied, an unpaired Student's t-test was used 

to evduate the si@cance of differences between amino acid and water (control) 

groups. All pharrnacokinetic parameters, except t-, were log transformed prior to 

statistical analysis. A value of P < 0.05 was considered statistically significant. Data are 

expressed as the arithmetic mean f standard deviation unless othe4se indicated. 



Table 9.1, Composition of AminosynQ II 10% Amino Acid Injection 

Amino acids mg/lOOml mM 

Essential amino acids 

I-Isoleucine 660 50.4 

I-Leucine lo00 76.3 

I-Ly sine 1050 71.9 

I-Methionhe 1 72 11.5 

Nonessentid amino acids 

I-Alanine 

I-Arginine 

I-Aspartic acid 

I-Glutamic acid 

Gl y cine 

I-Histidine 

I-Prolie 

I-Serine 

N-Acetyl-1-tyrosine 



An individual plasma concentration-time curve of metopro101 and its metabolites 

for each group is shown in Figure 9.1. The m-ean plasma concentration-time curves of 

metoproIol, a-hydroxymetoprolol and Odemethylmetoprolol are shown in Figure 9.2, 

and the corresponding phannacokinetic parameters are given in Tables 9, 2, 9.3 and 9.4. 

The mean AUCk of metoprolol showed an 18% increase after ingestion of amino 

acids. Ttrere was a larger increase (33%) in the mean AUC- of metoprolol, which 

represents the drug levels during the early entry phase. But the differences were not 

significant. The mean peak plasma concentration (L) was numerically but not 

significantly higher in the amino acids-treated animals than that in the control animds. 

The Mure to show significance between treatments may be due to the large variation 

between individual animals, which is a typicai feature of high hepatic first-pass drugs. 

The dEerences in the time to reach the concentration (b), half-life of the 

terminal phase (tlw), MR'f of metoproloi between the amino acid group and control 

group were small and not statistically significant. Since metoproIol is ahnost completely 

absorbed and solely metabolized by the liver, its C& is equivalent to the totd apparent 

intrinsic hepatic clearance (a). Compared with the hepatic blood flow rate in the rat 

(about I0 mVmiIdber), the mean C& (887 d m i n  in the amino acid group and 917 

ml/rnin in the control group) was much higher, confirming that metoprolol is a high 

hepatic extraction ratio drug. 



In contrast, the mean Cm, of a-hydroxymetoproloI in the amino acid group was 

significantly lower than that in the control group, and the t, showed a significant 

prolongation in the amino acids-treated animals (45 f 12 min vs. 18 + 6 min). However, 

the mean AUCk and AUC- of a-hydroxymetoprolol were not significantly 

different between the two groups, although the mean AUC- was smaller following 

administration of amino acids. Similarly, the mean t- of O-demethylrnetoprolol was 

significantly proIonged by 25 min in the animals administered with amino acids, but 

thae was no significant d i i n c e  in the meancan&, AUC* and AUCo.60min. The mean 

half-lives of the terminal phase (tmazl) of both a-hydroxymetoprolol and 0- 

demethylmetoprolol were not different in the amino acid group from the control group. 

The results indicated that amino acids caused a delayed appearance of the measured 

metabolites. 



Figure 9.1. Examples of plasma concentrations of rnetoprolol (e), a-hydroxymetoproloi 

(F) and OO-demethylmetopmlol (z) aAer a single o d  dose of rntopmlol (10 mgikg) 

administered with water (Control) and amino acids (AA). 



Figure9.2 Mean plasrm concentcations (ma, SEM) of metoprolol (ML), a- 

hydroxymetopro101 (a-OH-ML) and Odemethyhetopmlol(0-Dem-ML) after a single 

onl dose of me to pro lo^ (LO m e )  administered with water (r) and amino acids (A). 



Table 9.2. Mean pharmacokinetic parameters (mean k SD) of metoprolol in cats after a 

single oral dose of metoprolol(10 rne/kg) administered with water and amino acids 

Water (control) Amino acids 
(n = 8) (n = 10) 
90 + 48 120 + 86 

A U C ~ ~ O  (ng min ml“) 1387 f 466 I852 f 1321 

MRT (min) 49 + 17 4 5 f  13 

Q (mi min"} 917 + 263 887 f 437 

C-, the peak concentration. 
t-, the time ofpeak concentration. 

Table 9.3. Mean pharmacokinetic parameters (mean f SD) of a-hydroxymetoprolol in 

rats &er a single oral dose of metoprolol (10 mg/kg) administered with water and amino 

acids 

Water (control) Amino acids 
(n = 8) (n = 10) 

Gmx (n8 mrL) 488 -t 236 333 + 121* 

AUC* (ng min ml") 3798 1 + I3 697 35111 f:7814 

AUCw (ng min ml") 1801 I k 9204 146 19 + 6027 

C&, the peak concentration. 
r-, the time of peak concentration. 
* Significantly different fiom control group (P c 0.05). 



Table 9.4. Mean pharmacokinetic parameters (mean f SD) of O-demethyLmetoprolol in 

rats &er a single oral dose of metoproIol(10 mgikg) administered with water and amino 

Water (control) Amino acids 

AUCk (ng rnin d-') 10283 f 3554 10170 f 2995 

A u k  min (ng m h  dL) 3857 f 1262 3397 + 810 

MRT (min) 116 +40 112+30 

&, the peak concentration. 
t-, the time of peak concentration, 
* Significantly different fiom control group (P < 0.05). 



9.4 Discussion 

The present in vivo study demonstrates the effect of ingestion of an amino acid 

mixture, simulating the amino acid content of an animal protein meal, on the disposition 

of a high hepatic first-pass dnrg &'biting the 'food effect', metoprolol. The results 

show a trend of change in metoprolol disposition similar to that in the 'food effect' 

observed in humans, suggesting that amino acids couId be one of the dietary 

components responsl%le for the 'food effect'. 

The mean AUCd of metoprolol was increased by 18% after orally administered 

with a mixture solution of amino acids. A larger increase (33%) was observed in the 

mean AUCado d, indicating that the increase in bioavailability occurred in the early 

phase of drug disposition of the body, most keiy  during the first-pass metabolism 

period. The increase was not significant, however, and there was a large variation 

observed between individual animals. This may be due to the extremely low 

bioavaiiability of rnetoprolol caused by high hepatic first-pass extraction, An 

enhancement in the administration dose of this drug may reduce the variation, but may 

also reduce the effect of amino acids. In this his, a crossover experimental design 

would be id& to demonstrate the effect of amino acids instead of the present parallel 

study. However, we had previously experienced technical difliculties in performing such 

a crossover experiment in vivo in rats (Acorn, 1997). A pilot study of propranolol 

demonstrated that the stresses of blood sampling and volume depletion, along with the 

pharmacological &kct of propranoIol caused the death of ail experimentd rats in the 

second crossover period. 



The effect of amino acids on the parent drug mean AUCd was not associated 

with a decreased mean AUC of metabolites. The mean AUC values of a- 

hydroxymetoprolol and ode methyl me to pro lo^ bad no or Little change with 

coadministration of amino acids. This means that amino acids seemed not to cause long- 

term inhilition of hepatic metabolizing enzymes. However, it is noteworthy that the 

values of both metabolites were significantly prolonged, and the mean C- of a- 

hydroxymetoprolol was si@cantly reduced af&er amino acid treatment, The observed 

delayed appearance of metabolites could be caused by: (1) a decreased absorption rate 

of parent drug and/or (2) a decreased formation rate of metabolites. The former reason is 

unlikely because no prolongation of the t, of metoprolol was observed. Moreover, the 

decreased absorption rate should result in a decrease instead of an increase in the mean 

AUCd of parent drug since the degree of saturation of hepatic metabolism is lessened 

during the absorption phase. A decreased formation rate of metabolites could have 

o m e d  if the metabolism of parent drug was temporarily inhibited during the early 

phase, and returned to the normal level afterwards. Our data from studies in the perfbed 

rat liver have shown that the apparent intrinsic clearance can be temporarily reduced by 

coidbsion of amino acids into the liver due to an amino acid-mediated Iimitation of 

oxygen supply to the drug metabolizing enzyme system (Chapter 8). So it seems that 

when given with amino &cis in the in viw rat, metoprolol can be absorbed into the 

portal vein dong with a bolus influx of amino acids, which leads to a transient 

impairment of the drug metabolizing enzyme activity during the absorption phase of 

metoprolol. More metoprolol thus escapes from the hepatic first-pass metaboIism into 

the circulation, d t i n g  in an increased AUC of parent dmg. On the other hand, the 



escaped metoprolol will eventually be eliminated through metabolism by the liver. The 

temporarily hhi'bited hepatic metabolism would only delay the appearance of 

metabolitesy but not change the extent of hep& metabolisnt over the whole course of 

drug disposition. Therefore, the increased AUCd of parent drug (abeit not of s&atistical 

significance) along with the delayed appearance of metabolites may be attriiuted to the 

short-term inhiition of hepatic metabolism by amino acids during the early phase of 

drug disposition. 

The effect of amino acids observed in this study resembles the results &om a 

human study of the food effect on an important model drug, propranolol (Liedholm et al, 

1990), in which a protein-rich meal was shown to increase the AUCd of propranolol 

and delay the appearance of naphthoxylactic acid, a major oxidative metabolite of 

propranolol, without alteration in its AUC value. The authors argued that the increase in 

parent drug AUCd but no change in metabolite AUC could be consequent to a transient 

increase in the absorption rate caused by the alternative absorption of the drug fiom a 

food-tilled stomach, rather than enzyme inhibition by food. However, the argument can 

hardly explain the prolonged t, of parent drug observed in the reported study, which 

should be shortened if the absorption rate is increased. According to the above 

discussion, the metabolite AUC may not be decreased even if the hepatic drug 

metabolism is inhl'bited, as long as the inhiition is short-lived. This is why most studies 

on the 'food & i y  failed to show a decrease in metabolite AUC, which had been 

considered to accompany the increased parent drug AUCd (WalIe et d., 1981; 

Liedholm et al,, 1990). One exception is the reported reduction in the primary 



glucuronic acid conjugation of propranolol after food intake, but its magnitude can not 

account for the enhancement in propmolol AUCd (Liedholm and Melander, 1986). 

Although the increased bioavailability after a high protein meal has been 

reproduced in many human studies, a similar 'food effect' has not been succesdully 

demonstrated in animal models, such as rats (Chow and Lalka, 1993; Ogiso et al., 1994; 

Alcom, 1997) and dogs (Bai et al., 1985; Power et al., 1995). The reason may be due to 

species diierences in the process of digestion and absorption of food components, and 

the resultant timing of hepatic hyperemic response and oxygen consumption. For 

example, protein can be digested and absorbed rapidly in both humans and dogs, 

resulting in an abrupt rise of dietary amino acids in the portal circulation (Rerat et al., 

1976; Elwyn, 1970) and an enhancement in hepatic blood flow lasting 1-3 hr for humans 

and 3-7 hr for dogs (Bai et al., 1985). In contrast, rats exhibit a fluctuating pattern of 

protein digestionhino acid absorption such that an oral protein load causes a smalI and 

discontinuous elevation (double peaks) in portal concentrations of amino acids and 

hepatic blood flow (Femhdez-Lopez et al., 1992). This may explain why a protein meal 

(egg white) did not cause an increase in the AUCd of propranolol but double peaks in 

the plasma concentration-time curve in the rat (Alcorn, 1997). In another rat study 

(Ogiso et al., 1994), ingestion of skimmed milk increased the mean AUCd of 

propranolol by 39% (not significantly), in agreement with the results of the present 

study. The appearance of amino acids in the portal blood is more dramatic and rapid 

when amino acid mixtures (probably as wen as protein solution, such as skimmed milk) 

are given orally than after a solid protein meal because the complex hydrolytic process 

of protein is avoided in the gastrointestinal tract @eferrari et al., 1988). By ingestion of 



amino acid mixtures instead of a protein meal, therefore, we may reduce the species 

difference and thereby produce the 'food effect' in rats. 

In summary, our present study has demonstrated an increasing trend in AUCd 

of metoprolol after orally administered with an amino acid mixture in rats. The result 

resembles the observations related to the effect of high protein food on propranolol 

disposition in humans, and is consistent with the obswvations in the p e r f i d  rat liver 

that amino acids temporally inhibit the hepatic metabolism of metoprolol due to amino 

acid-mediated oxygen deprivation. Hence, amino acids may be one of the key 

components causing a decrease in hepatic intrinsic cIearance of the drug and thereby an 

increase in the A U L  (the phenomenon of the 'food effect'). However, the cause of the 

'food effect' is complex, involving more than one mechanism. The transient increase in 

hepatic blood flow by food can never be neglected, even though its role in the 'food 

effect' must be minor (Mclean et d., 1978; Olanoff et aI., 1986; Svensson et d., 1983; 

Modi et al., 1988). Moreover, neurohormond responses to food may be involved in the 

increased bioavailability of the drug (Power et al., 1995). Also food-induced alteration 

in dissociation of the drug-protein complex and difision of drug fiom blood into the 

hepatocytes can not be simply excluded in mechanisms of the 'food effect', although no 

hard evidence has been reported to reject or accept this possibiiity. Above all, a high 

absorption rate of drug seems to be an essential element to display the 'food effect' 

phenomenon. Any hctors that cause a reduction in drug absorption rate, such as use of a 

slow-release formulation (Byme et a&., 1984; Liedholm and Melander, 1986) and 

ingestion of high carbohydrate meals or gIucose (Liedholm et aI., 1990; Chow and 



Lalka, 1993), could enhance hepatic extraction of the drug and thus prevent the 

increased bioavailability after oral doses with food. 



CRAPTER 10 

CONCLUSIONS 

10.1 Overall discussion 

The main purpose of this work was to understand the mechanism of the food 

effect on the drugs which undergo extensive hepatic first pass metabolism. We 

hypothesized that inhiiition of hepatic metabolism of these drugs by dietary amino acids 

could be the cause of the increased bioavailability after an oral dose with high protein 

food. To test the hypothesis, we have investigated the drug-amino acid interaction by 

selecting the isolated perfused rat liver and the intact rat as the animal model systems, 

and propafenone and metoprolol as the model drugs. This work has therefore been 

accomplished in three parts: 

I. Establishment of the isolated, perhsed rat liver preparations 

The isolated, perfUsed rat liver preparation has many advantages for studying 

drugs which are eliminated mainly via hepatic metabolism. Two rat liver perfhion 

systems have been established. One is the isolated rat liver perfused with oxygenated 

Krebs buffer in a single pass mode. The other is a more complex liver pehsion system 

eqyipped to the exchange of antegrade and retrograde pefision duection, in which 

erythrocyte-enriched medium is used. These two perfusion systems have been 

successfUUy applied for different purposes in the various metabolic studies conducted. 



11. Evaluation of propahone as a model drug 

As its oral bioavailabii was observed to be dramatidy influenced by food 

ingestion in a human study, propaf'enone was initially chosen as a model drug for 

studying the mechanism of drug-food interactions. However, the kinetics and 

metabolism of this drug in the rat were unknown. We have therefore studied the 

disposition of propafenone in the isolated, perfused rat liver. With the information that 

we obtained, we are able to evaluate the usefirlness of propafenone as a model drug in 

the rat. 

First, a sensitive and convenient HPLC method for the analysis of propaf'enone 

enantiomers in rat her perfirsate and human plasma was developed using GITC as a 

chiral derivatidng regent. The method was completely validated and was shown to be a 

reliable analytid method for rat liver pefisate samples. It also has potential to be a 

us& assay in human studies. Application of this method in a pilot study of 

propafenone kinetics in the isolated, perfirsed rat liver indicates that propafenone is 

highly bound to the hepatic tissue and its disposition is stereoselective. 

By using HPLUMS and MSMS spectrometry, the phase I and II metabolism of 

propafenone in the isolated, pehsed rat liver has been profled. Hydroxylation in the 

terminaI pherryi ring, which is not hund in humans, is the major metabolic pathway in 

rat her, whereas N-dealkylation and hydroxyIation in the middle phenyl ring are 

relatively of minor importance. In addition to the oxidation, a considerable proportion of 

the parent dmg and the hydrodated metabolites are subject to glucuronidation Four 

glucuonide conjugates have been found and structuralIy characterized, including two 



newly identitied glucuronides of hydroxylated propafione derivatives. These studies 

represent the first report on the met.bolism of &pafknone in the rat. 

We conclude that propafenone is not an appropriate model drug for studying the 

drug-food interaction in the isolated, perfbed rat her  and the in vivo rat. The reasons 

are: 1) Propafenone is highly bound to hepatic tissue. Its approach to steady state can be 

greatly prolonged at non-saturating inlet concentrations in perfbsed rat livers, therefore, 

saturating inlet concentrations have to be employed. The resultant high inlet 

concentrations would reduce the effect of amino acids and may Limit its usefblness in 

mechanistic studies in the perfirsed rat liver. 2) Propafenone undergoes different hepatic 

metabolic pathways in the rat fiom that in humans. The diierences may be due to 

different metabolizing enzymes in the liver between these species. Therefore the rat 

should be used cautiously as an animal model in metabolic studies of propafenone. 

Nevertheless, propafenone couId be a good model drug for human studies. 

Unlike propafenone, metoprolo1 has much less hepatic tissue binding. Therefore, 

a steady state is achievable within a short time even at non-saturating inlet 

concentrations. Also, it undergoes hepatic metabolism in rats, which resembles that in 

humans. More importantly, previous studies in our laboratory have demonstrated an 

interaction between metoproiol and amino acids in the isolated, perfused rat liver. These 

evidences warrant the continuity to use metoprolol as a model drug in the proposed 

perhsed rat liver study and the in vivo rat study. 



III. Interactions between metoprolol and amino acids 

A balanced mixture of amino acids has been found to inhibit the metabolism of 

propranolol and metoprolol in the isolated perfused rat liver. Previous studies in our 

laboratory have reveaIed that the inhiiition might be due to oxygen l i tat ion caused by 

the concurrent metabolism of amino acids in the liver, rather than direct interaction 

between amino acids and the drug metabolizing enzymes. In order to understand the 

mechanism of the inhibition and thereby its relevance to the food effect observed in 

humans, the interactions between metoprolol and amino acids have been studied in the 

isolated perfused rat liver with diierent levels of oxygen delivery in either antegrade or 

retrograde perfbsions. The studies have shown that amino acids cause a temporary and 

reversiile decrease in metopro101 metabolism under both hypo- and normal hepatic 

oxygenation. The magnitude of hhiiition is proportional to the hepatic oxygen delivery 

rate. Moreover, retrograde perhion partialIy reversed the inhibition of metoprolol 

metabolism by amino acids, suggesting that oygen deprivation in the pericenval zone 

of the liver, resulting &om prefetential oxygen utilization by the metabolism of amino 

acids, is a wntniuting mechanism to the inhibition. The magnitude of inhibition is also 

dependent on the inlet concentration of coinfirsed amino acids. These findings are 

relevant to the phenomena of the food d e c t  observed in humans, Firstly, the temporary 

inhiiition of metoproIol metabolism by amino acids is consistent with what is required 

to explain the food-induced increase in the AUCd observed in humans. Secondly, 

ingm*on of proteins (amino acids), rather than carbohydrates or fat, results in oxygen 

depletion from the hepatic duent  in human studies, even though a large increase in 

hepatic blood flow occurs- Thirdly, the magnitude of the food effect in human subjects 

210 



is also found to conelate with the protein content of the meal. The relevance to the food 

effect observed in humans supports the conclusion that amino acid-mediated hepatic 

oxygen deprivation is involved in the mechanism of the 'food effect'. This studj gave 

the first solid evidence linking meal-related oxygen utilization to drug metabolism that 

has ever been uncovered since Wang and Semple (1997) postulated the possibility. 

To validate the findings in the isolated pefised rat liver, the interactions 

between metoproloi and amino acids have been studied in the in vivo rat. The results are 

in agreement with those observations in the isolated, pefised rat liver. The mean 

AUCd of metoprolol shows an increasing trend after been given with a mixture of 

amino acids in the rat. The mean t- of a-hydroxyrnetoproIo1, a major metabolite in 

rats, is significantly prolonged, while the mean C- of this metabolite is reduced. The 

changes in these pfmmacokinetic parameters appear very Likely to be due to a 

temporary inhibition of hepatic metoprolol metabolism by amino acids. The effect of 

amino acids on the kinetics of these drugs in rats also resembles the food effect in 

humans, indicating that amino acids are the key component in the food effem These 

findings are of great significance to gain understanding of the mechanism of the 'food 

effect'. This is the first time that a di- component-related effect on the 

pharmawkinetics of high first-pass drugs, resembling to the food effect observed in 

humans, has been demonstrated in the in vivo rat. It not only provides evidence of the 

effect of amino acids on drug metabolism, but also demonstrates that the in vivo rat is a 

usedid animal model for studying the food effect under certain conditions. 



10.2 Future research 

The metabolic intendon of amino acids with metoprolol should be W e r  

studied in a large animal species, such as the dog. The larger species of animal model 

can provide larger blood samples and, therefore, a crossover experiment design can be 

carried out. The crossover design is very important to demonstrate a significant 

difference between control and amino acid treatment groups, because a large 

interindividual variation of high first-pass drugs exists. The drawback of the dog as an 

animal model is that the food effect has not yet been demonstrated in this species. By 

minimizing the physiological processes in the digestion of a protein food, i.e. by giving 

amino acids instead of a protein food, the dog could be a usefbl animal model to 

demonstrate the effect of food components. Propafenone, as well as metoproloi, could 

be used as the model drug to test the interaction with amino acids in the dog. 

Meanwhile, oxygen probes can be placed into the hepatic vessels to measure the oxygen 

level before and after ingestion of amino acids. This would be of help to understand the 

role of oxygen in the regulation of drug metabolism. 

If the interaction of amino acids with metoprolol or propafenone is observed in 

the dog study and its pattern is similar to the 'food effect' in humans, it will be 

necessary to conduct a human study to eventually iUustrate the relevance of the amino 

acid e f f i  to the food effect on the pharmacokinetics and metabolism of metoprolol or 

propafenone. The study can be carried out by a crossover design incIudiag three 

treatment groups, that is, fbthg, amino acid treatment and protein meal groups. The 

differeace among the treatment groups can be analyzed by ANOVA 
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If positive results are observed in the human study, it will be worth expanding 

the drug-amino acid interaction studies to related clical situations, such as chronic 

dosing, the effect of dietary habits, hypertensive patients, etc. 



The ex vivo and in vivo interaction between metoprolol and amino acids strongly 

support our hypothesis that inhlibition of drug metabolism by dietary components 

(amino acids) is a significant mechanism contributing to the increased bioavdability of 

high hepatic first pass drugs by intake of food. The inhibition is probably caused by 

elevated consumption of oxygen in the splanchnic tissues during the absorptive and 

digestive phases of dietary protein and metabolism of absorbed amino acids. These 

findings provide insights to the mechanism of the 'food effect' observed in humans, and 

also are of importance to basic science. This understanding may lead to evolving 

rational scheduling of high first-pass drugs in relation to meals. 
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