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Abstract

In this thesis, motivated by modelling polymers, the topological entanglement com-

plexity of systems of two self-avoiding polygons (2SAPs), stretched polygons and

systems of self-avoiding walks (SSAWs) in a tubular sublattice of Z3 are investigated.

In particular, knotting and linking probabilities are used to measure a polygon’s self-

entanglement and its entanglement with other polygons respectively. For the case

of 2SAPs, it is established that the homological linking probability goes to one at

least as fast as 1−O(n−1/2) and that the topological linking probability goes to one

exponentially rapidly as n, the size of the 2SAP, goes to infinity. For the case of

stretched polygons, used to model ring polymers under the influence of an external

force f , it is shown that, no matter the strength or direction of the external force,

the knotting probability goes to one exponentially as n, the size of the polygon, goes

to infinity. Associating a two-component link to each stretched polygon, it is also

proved that the topological linking probability goes to unity exponentially fast as

n→ ∞. Furthermore, a set of entangled chains confined to a tube is modelled by a

system of self- and mutually avoiding walks (SSAW). It is shown that there exists a

positive number γ such that the probability that an SSAW of size n has entanglement

complexity (EC), as defined in this thesis, greater than γn approaches one exponen-

tially as n → ∞. It is also established that EC of an SSAW is bounded above by a

linear function of its size. Using a transfer-matrix approach, the asymptotic form of

the free energy for the SSAW model is also obtained and the average edge-density

for span m SSAWs is proved to approach a constant as m→ ∞. Hence, it is shown

that EC is a “good” measure of entanglement complexity for dense polymer systems

modelled by SSAWs, in particular, because EC increases linearly with system size,

as the size of the system goes to infinity.
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î the unit vector in R
3 along the positive direction of x-axis
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Chapter 1

Introduction

Long ring (linear) polymers have been modelled mathematically by self-avoiding

polygons (walks) in lattices [55]. A self-avoiding walk (SAW) is a path on a lattice

that does not visit the same site more than once. Similarly, a self-avoiding polygon

(SAP) is a closed undirected path on a lattice which does not intersect itself. Simple

examples of lattices are hypercubic lattices such as the square and simple cubic

lattice, with which we are mainly concerned in this thesis. For any integer number

d ≥ 2, the hypercubic lattice Zd consists of all the integer points in Rd, as vertices,

and all the unit length edges joining two integer points in R
d. A polymer is a molecule

consisting of several small units called monomers joined together by chemical bonds.

The number of monomers which bond to a monomer represents the functionality of

the monomer. A polymer which is composed of a string of bonded monomers, all

of which have functionality two is referred to as a ring polymer. In the SAP lattice

model of a ring polymer, each n-step self-avoiding polygon (or walk) represents a

possible polymer conformation, and the self-avoidance represents that there is an

excluded volume around each monomer. Let cn represent the number of n-edge

SAWs in Z3 starting at the origin. Let also pn denote the number of n-edge SAPs

in Z3 (up to translation). The asymptotic behaviour of cn (pn) is of interest to

mathematicians, in particular, because there is no exact formula for cn or pn. In

1954 Hammersley [18] proved that

κ ≡ lim
n→∞

n−1 log cn, (1.0.1)

called the connective constant for Z3, exists and is finite. A similar statement has

also been proved by Hammersley for self-avoiding polygons in Z3, i.e. it has been
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proved that

κp ≡ lim
n→∞

n−1 log pn, (1.0.2)

the connective constant for SAPs in Z3, exists and is exactly equal to κ [19].

Polymers in solution are highly flexible objects which can assume many different

configurations. These configurations can result in self-entanglement or entangle-

ment with other polymer molecules. Measurement of entanglements is important

to chemists, physicists and molecular biologists since it is believed that the entan-

glement complexity of polymers is related to their crystallization behaviour [17]

and rheological properties [14] and is important in understanding cellular processes

(replication, transcription, etc) involving biopolymers such as DNA [56, 60, 61]. In

particular, if a ring closure reaction occurs, the entanglement can appear as knots or

links in a solution of ring polymer molecules. In this case, the topology of any knot or

link (i.e. knot or link type) produced cannot change without breaking chemical bonds

in the polymer [42]. For investigating the topological entanglement of such polymer

solutions, so-called “good” measures for characterizing a polymer’s topological en-

tanglement with other polymer molecules are needed. Generally speaking, a good

measure of topological entanglement should have the property that the larger the

size of a random polymer system and the more complex its topology, the greater the

topological entanglement [50]. For instance, knotting probability was proved, using

a lattice model of polymers, to be a good measure of topological self-entanglement

[55]. In this thesis, we consider lattice models of polymers confined to tubes and

investigate their topological entanglement. We will rigorously show that the mea-

sures used here, which are based on “linking”, are good measures for characterizing

topological entanglement between lattice polymers. We will investigate the topolog-

ical entanglement of polymer systems modelled by a set of self-avoiding polygons (or

walks) confined to a tube (a sublattice of the simple cubic lattice Z
3). The models

which are considered in this thesis are systems of two self-avoiding polygons (2SAPs),

stretched polygons, loops and systems of self-avoiding walks (SSAWs). We will focus

on measures based on linking, such as linking probability and one we refer to as the

entanglement complexity (EC), in order to characterize the topological entanglement

2



of these models.

As mentioned before, the measures used in this thesis are based on the topological

concept of linking. To explain the measures further, we first review the following

topological terminology. Note that the definitions presented here are informal and

the precise definitions are given in Chapter 3. Any simple closed curve in R3 is called

a knot. Two knots K1 and K2 are said to have the same knot type if R3 can be

continuously deformed such that K1 is taken into K2 (as will be explained in Chapter

3, mathematically this means that K1 and K2 are ambient isotopic). In particular,

K is said to be unknotted if R3 can be continuously deformed such that K is taken

into the unit circle (i.e. K is ambient isotopic to S1). Otherwise K is said to be

knotted [7]. Knots in closed polymer chains are significant to physicists, chemists

and molecular biologists. For instance, knots in closed circular DNA give information

about the mechanism of enzyme action on DNA molecules [60, 61]. Knots have been

detected in circular DNA and determined by electron microscopy [8, 62], then the

knotting probability has been measured experimentally [47]. In addition to numerical

investigations of knotting probabilities and knot distributions [23, 29, 35, 59] of self-

avoiding polygons, some rigorous results are known. In particular, it has been proved

that all but exponentially few sufficiently long self-avoiding polygons are knotted and

thus the probability of knotting of lattice polygons approaches one as the size of a

polygon goes to infinity [43, 55]. A “pattern theorem” due to Kesten [28] for self-

avoiding walks was a key ingredient to this proof.

Polymers are often confined to restricted spaces; for instance the presence of some

large molecules in the cell-nucleus confines the nuclear DNA to a reduced space, with

corresponding effects on the topological properties of the DNA. The effects of such

geometrical constraints on the knot probability of ring polymers, modelled by self-

avoiding polygons in Z
3, have been investigated by restricting the polygons to a

tube. An (N,M)-tube is a sublattice of Z3 bounded by the four planes y = 0,

y = N , z = 0 and z = M . Note that in this thesis we will be mainly concerned with

lattice objects confined to a tube. It has been proved rigorously that the probability

of knotting for a polygon confined to a tube also approaches one exponentially as

3



the length of the polygon goes to infinity [49]. In a tube, SAPs and SAWs have

different asymptotic properties, in the sense that the connective constant for SAPs

is not the same as that for SAWs anymore. Instead it is strictly less than the

connective constant for SAWs [49]; this means that asymptotically the number of

SAPs and SAWs behave differently. So, unlike the situation for SAPs and SAWs in

Z3, in this case a pattern theorem for SAWs does not necessarily work for SAPs. An

appropriate pattern theorem for SAPs in a tube has been established and used to

compute the probability of knotting as n→ ∞ [51]. More details on SAWs and SAPs

and their respective asymptotic behaviour are reviewed in Chapter 2. In particular,

the existence proof of the connective constant and pattern theorems for SAWs and

SAPs in Z
3 as well as tubes are reviewed.

Polygonal self-entanglements have been investigated using knotting probability

[25, 42]. One can ask similar questions regarding the topological entanglement of two

ring polymers. A pair of polygons in a lattice can be considered as a two-component

link, which is defined to be a disjoint union of two knots. Roughly speaking, similar

to the case for knots, two links L1 and L2 are said to have the same link type if R3

can be continuously deformed such that L1 is carried to L2. We say two disjoint

knots K1 and K2 are topologically unlinked (splittable) if R3 can be continuously

deformed such that K1 and K2 are carried to a pair of knots which are separated by

a two-dimensional plane. On the other hand, K1 and K2 are said to be homologically

unlinked if K1 bounds an orientable surface which is disjoint from K2. One way to

determine whether a two-component link L is homologically linked is by calculating

the linking number and showing that it is non-zero [7] (note that the precise definition

of linking number is given in Chapter 3). Chapter 3 provides background information

about knots and links and reviews some previous works on the knotting and linking

probability of SAPs in Z
3 as well as tubes.

The topological entanglement of two ring ploymers, modelled by a pair of self-

avoiding polygons, has been measured by investigating the linking probability of

the polygon pairs [39, 58]. In Chapter 4 of this thesis, in particular, the following

question is addressed: under what conditions are all but exponentially few sufficiently
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long pairs of self-avoiding polygons linked? For pairs of mutually avoiding n-edge

self-avoiding polygons in Z3 where each polygon is constrained to be unknotted and

where the two polygons are constrained to form a non-splittable link, it has been

shown [52] that the number of embeddings grows exponentially with n and that

the exponential growth rate is independent of the link type. If the two polygons

are constrained to have a pair of edges, one from each polygon, which are within

a fixed distance from each other, we use arguments similar to those of Orlandini et

al [39] and Soteros et al [52] to establish that the exponential growth rate of the

number of topologically linked polygon pairs (up to translation) is equal to that

of the number of topologically unlinked polygon pairs. We prove this statement in

Chapter 3 of the thesis. So, unlike the situation with knotting, we cannot say that all

but exponentially few sufficiently long pairs of self-avoiding polygons are linked, even

with this distance constraint. It is possible (although not proved) that the linking

probability goes to one as n goes to infinity, but it will not go to one exponentially

rapidly.

Tesi et al [58] investigated the same question for pairs of mutually avoiding self-

avoiding polygons confined to tubes and came to the same conclusion. In a tube, as

in Z
3, even if two edges, with one from each polygon, are forced to be close, the rest of

each polygon has a considerable amount of freedom so that their centres of mass can

be very far apart. In Chapter 4 of this thesis we consider a much more severe distance

constraint. The two polygons are constrained in such a way that (roughly speaking)

each edge of one polygon is forced to be “close” to some edge of the other polygon. In

this case one might expect that for large enough values of n the two polygons would

be linked with high probability. Herein, we consider a system of two self-avoiding

polygons (2SAP) confined to a lattice tube with dimensions (∞ × N × M) with

an added constraint that forces each edge of one polygon to be close to some edge

of the other polygon and prove theoretical results about the rate that the linking

probabilities (both homologically and topologically) go to 1. Specifically we consider

a pair of mutually avoiding self-avoiding polygons each confined to and spanning a

tube. Such a pair is referred to as a System of two Self-avoiding Polygons (2SAP)
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and n is used to denote the total number of edges in the pair. We establish that the

homological linking probability goes to one at least as fast as 1−O(n−1/2) and that

the topological linking probability goes to one exponentially rapidly. Furthermore

we prove for this model that the linking number grows (with probability one) faster

than any function that is o(
√
n); i.e. for any function f(n) = o(

√
n), there exists

A ≥ 0 such that as n → ∞ the probability that |Lk(ω1, ω2)| ≥ f(n), with (ω1, ω2)

the component polygons of an n-edge 2SAP, satisfies

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1 − A√

n
+ o
( 1√

n

)
, (1.0.3)

where Lk(ω1, ω2) represents the linking number of (ω1, ω2). Hence

lim
n→∞

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1. (1.0.4)

Note that here, given a pair of functions f(n) and g(n), we write f(n) = O(g(n)) if

there exist constants A and B, and a positive integer N such that Ag(n) ≤ f(n) ≤

Bg(n) for any n ≥ N , and write f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0. We also show

that the linking number cannot grow faster than linearly in n because of the tube

constraint; i.e. there exist constants a and b such that for any n-edge 2SAP

|Lk(ω1, ω2)| ≤ an + b. (1.0.5)

We give a simple example to show that the upper bound in equation 1.0.5 for 2SAPs

can be realized.

A polymer’s topological entanglement may be affected by being subject to some

external forces. One important question in this regard is: How does the topological

entanglement change when a polymer is compressed or stretched under the influence

of an external force f? In Janse van Rensburg et al 2008 [27], a ring polymer confined

between two parallel walls (planes) and pulled by an external force in the direction

perpendicular to the wall is modelled by a lattice polygon subjected to an applied

force f along the z-direction of the lattice and perpendicular to the walls, a so-called

stretched polygon. This model explains the situation where a ring polymer, such as

circular DNA, is subject to a force in the presence of a topoisomerase which mediates
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strand passages and may change the knot type of the polymer. In [27], a pattern

theorem is proved for lattice polygons in the presence of any sufficiently large applied

force f > 0. This theorem is then used to examine the incidence of entanglements

such as knotting when the polygons are influenced by a large force. Here, in Chapter

5 of this thesis, we add the tube confinement constraint to this model and address

similar questions for polygons confined to a tube. Unlike the situation for polygons

in Z
3, in a tube, polygons under the influence of the external force f do not have

much freedom and must stay inside the tube. In particular, the tube constraint will

allow us to prove the pattern theorem for any arbitrary value of f , not just for large

values of f . We also prove a pattern theorem for loops (an undirected self-avoiding

walk in which both endpoints have the same x-coordinate). Furthermore, in addition

to investigating the knotting probability, we associate a two-component link to each

polygon (loop) in a tube and examine the incidence of topological linking when the

polygon (loop) is under the influence of a force f . Specifically, for any f , we prove

that both the knotting and topological linking probabilities go to one exponentially

as the number of edges tends to infinity. Using a transfer-matrix approach, we also

determine the asymptotic form of the free energy for stretched polygons. We use

this to show that, the average span per edge of a randomly chosen n-edge stretched

polygon approaches a positive constant as n→ ∞ and is non-decreasing in f almost

everywhere. We also establish that the average number of occurrences per edge of

a tight trefoil SAP configuration (precisely defined in Section 5.4) in any n-edge

stretched polygon approaches a positive constant (independent of n but dependent

on f) as n→ ∞.

Another area of interest for polymer chemists is characterizing entanglements for

polymers in dense systems such as melts [40, 41]. Most results about entanglement

complexity of polymers in melts are obtained using numerical studies [13, 40, 41].

However, at least one open question still remains: What is the best measure for

characterizing the entanglement complexity of polymers in dense systems and how

does this measure depend on various properties of the system? It is difficult to

find the “best” measure for this purpose but we can at least look for a “good”

7



measure. This is discussed in Chapter 6 of this thesis. One way to characterize this

entanglement complexity, proposed by Orlandini et al in 2000 [41], is as follows. A

polymer melt is considered as a set of entangled chains, modelled by a set of self- and

mutually avoiding walks. Fixing the chain conformations, imagine cutting a cube

or tube out of the system. The conformations of the parts of the chains which are

in the interior of the cube or tube are considered. Using the simple cubic lattice

model, they investigate this numerically by studying a number of self- and mutually

avoiding walks confined to a cube. For each pair of self-avoiding walks, joining the

two ends (vertices of degree one) of each walk outside the cube, a two-component

link is formed. And they take the sum of the absolute value of the linking numbers,

over all the possible SAW pairs, as a measure of the entanglement complexity (EC)

of this polymer system. Then the properties of the complete melt can be inferred by

investigating the properties of these chains in cubes.

In order to investigate Orlandini et al’s proposal further we address the problem

of the entanglement complexity of a polymer system modelled by a system of self-

avoiding walks (SSAW) (the precise definition is given in Chapter 6). The goal is to

build a theoretical framework that will allow us to apply the available mathematical

techniques towards developing and understanding the Orlandini et al 2004 model

and answering the following questions:

• How does the entanglement complexity change with respect to the total number

of monomers in the system?

• How does the entanglement complexity change with respect to the span of the

system along the tube?

• How does the entanglement complexity change with respect to the number of

chains in the system?

• How does the entanglement complexity change with respect to the system’s

density?

• How does the entanglement complexity change with respect to the size of the
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tube to which the polymers are confined?

• How does the total number of monomers, the span, the number of chains, the

density and the size of the tube depend on each other?

Specifically, in Chapter 6 we investigate, under some constraints, the entanglement

complexity of several self- and mutually avoiding walks confined to an (N,M)-tube.

We rigorously prove that the entanglement complexity (EC), as measured in [41], of

a polymer system with “size” n (size of an SSAW G can be measured by the number

of edges (f(G, 3)), span (f(G, 1)) or the number of degree one vertices (f(G, 2))) is

asymptotically (with probability one) bounded below by a linear function of n; i.e.

there exists a positive number γ such that the probability that a polymer system of

size n has entanglement complexity greater than γn approaches 1 as n goes to infin-

ity. This supports the idea that EC is a good measure of topological entanglement

in polymer systems modelled by SSAWs. It is also shown that the entanglement

complexity of SSAWs of size n is bounded above by a linear function of n. Further-

more, measuring size by the number of edges, for N ≥ 2 and M ≥ 2, the connective

constant for SSAWs in an (N,M)-tube is compared with the connective constant

for self-avoiding walks in an (N − 2,M − 2)-tube and is shown to be strictly greater

than that for SAWs. Given Y3 = [x, y, z]T , for j = 1, 2, 3, let X#j
n (Y3) be a random

variable taking its values from the set of SSAWs with size n = f(G, j) (in C∗
n) and

with the probability distribution

P(X#j
n (Y3) = G) =

xf(G,1)yf(G,2)zf(G,3)

Z#j
n (N,M, Y3)

, (1.0.6)

where

Z#j
n (N,M, Y3) =

∑
G∈C∗

n

xf(G,1)yf(G,2)zf(G,3). (1.0.7)

Ultimately, based on our theoretical results on the SSAW model we will conclude that

the following statements (equations) show how EC depends on various properties of

SSAWs such as the number of edges, span and the number of degree one vertices

and also indicate how these properties are related to each other:
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• There exists γ#1(Y3) > 0 such that the probability that the EC of a randomly

chosen span n SSAW X#1
n (Y3) is bounded below by γ#1(Y3)n and bounded

above by a′(N,M)a(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#1(Y3)n < EC(X#1
n (Y3)) ≤ a′(N,M)a(N,M)n) =

lim
n→∞

[1 − e−α
′(1,Y3)n+o(n)] =

1, (1.0.8)

where

a(N,M) = (1/2)(M + 2N + 1)[(N + 1)(4N − 2) + (9/2)(4N − 3)] (1.0.9)

and

a′(N,M) = 2N(M + 1) + 2M(N + 1) + (M + 1)(N + 1). (1.0.10)

In other words, as the span of SSAWs increases one expects EC to be bounded

linearly in the span with probability one.

We also show that the limit inferior of the average EC of span m SSAWs per

span is bounded below by a positive constant, i.e.

lim inf
m→∞

EY
(
EC(X#1

m (Y3))
)

m
≥ γl. (1.0.11)

• There exists γ#3(Y3) > 0 such that the probability that the EC of a randomly

chosen n-edge SSAW X#3
n (Y3) is bounded below by γ#3(Y3)n and bounded

above by a(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#3(Y3)n < EC(X#3
n (Y3)) ≤ a(N,M)n) = lim

n→∞
[1− e−α

′(3,Y3)n+o(n)] = 1.

(1.0.12)

In other words, as the number of edges of SSAWs increases one expects EC to

be bounded linearly in the number of edges with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen span n SSAW X#1
n (Y3) is bounded below by
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ε#1
P (Y3)n and bounded above by a′(N,M)n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 2) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,2,Y3)n+o(n)] = 1.

(1.0.13)

In other words, as the span of SSAWs increases one expects the number of

degree one vertices (the number of disjoint walks) to be bounded linearly in

the span with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of edges of

a randomly chosen span n SSAW X#1
n (Y3) is bounded below by ε#1

P (Y3)n and

bounded above by a′(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 3) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,3,Y3)n+o(n)] = 1.

(1.0.14)

In other words, as the span of SSAWs increases one expects the number of

edges to be bounded linearly in the span with probability one.

Using the transfer-matrix method, we also establish that the average number

of edges per unit volume of a randomly chosen span m SSAW, EY (f(X#1
m (Y3),3))

mNM
,

approaches a positive constant as m → ∞ and is non-decreasing in z almost

everywhere. However, it still needs further investigation to see how EC changes

with respect to Y3.

• There exists ε#3
P (Y3) > 0 such that the probability that span of a randomly

chosen SSAWX#3
n (Y3) with n edges is bounded below by ε#3

P (Y3)n and bounded

above by 2n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 1) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,1,Y3)n+o(n)] = 1.

(1.0.15)

In other words, as the number of edges of SSAWs increases one expects the

span to be bounded linearly in the number of edges with probability one.

• There exists ε#3
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen SSAW X#3
n (Y3) with n edges is bounded
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below by ε#3
P (Y3)n and bounded above by 2n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 2) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,2,Y3)n+o(n)] = 1.

(1.0.16)

In other words, as the number of edges of SSAWs increases one expects the

number of degree one vertices (the number of disjoint walks) to be bounded

linearly in the number of edges with probability one.

Furthermore, we obtain the asymptotic form of the free energy for the SSAW

model. We also investigate ρ(N,M ; ε), the growth constant for SSAWs with limiting

edge-density ε
NM

, as a function of ε. We establish the existence of this function and

show that it is a continuous and concave function of ε and is differentiable almost

everywhere in (εmin, εmax). However, in order to see how EC changes in terms of

the density, we still need to know more about ρ(N,M ; ε). In particular, proving a

pattern theorem for this function may lead to some results regarding the connection

between EC and the density.
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Chapter 2

The Lattice Model of SAWs and SAPs

In this chapter the lattice model and the lattice objects under investigation, such

as SAWs and SAPs, are introduced. The existence of the connective constant for

these lattice objects in Z
3 is reviewed in Section 2.1. In Section 2.2, the extension of

these results to the case where SAWs and SAPs are confined to a tube is reviewed

[49].

A “Pattern theorem” is the key for investigating the knotting and linking prob-

ability of lattice polygons. Kestern’s pattern theorem for SAWs in Z
3, [28], and

pattern theorems for SAPs and SAWs in tubes are reviewed in sections 2.3 and 2.4

respectively. There have been different approaches towards proving pattern theo-

rems for SAWs and SAPs. Here, in particular, we present in Section 2.5 the so

called pattern insertion approach which was first introduced in [33, 53]. The pattern

insertion strategy will later be employed to obtain pattern theorems for the lattice

objects under consideration in the next chapters, i.e. 2SAPs, SSAWs and stretched

polygons. Furthermore, in Section 2.6, a transfer-matrix argument, similar to that

presented in [51], is established. This will allow us to investigate the asymptotic

behaviour of SSAWs and stretched polygons in the next chapters.

2.1 The Connective Constant for SAWs (SAPs)

in Z
3

In this section definitions of the simple cubic lattice, Z3, a self-avoiding walk and

a self-avoiding polygon are reviewed. Some arguments regarding the existence of
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the connective constant for these lattice objects are also discussed; note that graph

theory is used for the definitions.

The three dimensional integer lattice is defined to be the infinite graph embedded

in R3 with vertex set Z3 and edge set E(Z3) = {{u, v}| u, v ∈ Z3, |u − v| = 1},

where |u− v| is the Euclidean distance between u and v. Note that in this thesis by

a “subgraph” of Z3 we mean an embedding of a graph in Z3. An n-edge self-avoiding

polygon (SAP) is an n-edge connected subgraph of Z3 with each vertex having degree

two; note that n ≥ 4. An n-step self-avoiding walk (SAW) w in Z
3 is a sequence of

distinct vertices

w := u0, u1, ..., un−1, un (2.1.1)

such that ui ∈ Z3, for i = 0, ..., n, and for each i = 0, ..., n − 1 the directed edge

(ui, ui+1) joins two nearest neighbour vertices in Z3, i.e. |ui − ui+1| = 1. u0 and un

are called respectively the starting point and end point of w. If the direction of a

SAW is ignored then it is called an undirected self-avoiding walk; in other words,

an undirected self-avoiding walk (USAW) is a finite connected subgraph of Z3 which

has exactly two vertices with degree one and every other vertex with degree two.

Examples of SAWs and SAPs are illustrated in Figure 2.1. Let î, ĵ and k̂ be the

unit vectors in R3 along the x-axis, y-axis and z-axis respectively. For convenience,

we will sometimes refer to w according to its starting point u0 and the sequence of

steps of unit length which form the walk, for example the SAW in Figure 2.1 (a) is

(2̂i, 3k̂, î,−2k̂, î,−k̂, î, 3k̂, î, k̂,−î) starting at u0 = (0, 0, 0). We will also refer to a

self-avoiding walk (self-avoiding polygon) as a walk (polygon) for short.

In the following two paragraphs some necessary definitions and terminology are

reviewed for any general finite subgraph of Z3. However, we will frequently use these

definitions specifically for the lattice objects of interest such as SAPs, 2SAPs and

SSAWs. Lexicographical order on vertices of Z3 is defined as follows. For any pair of

vertices u := (a1, a2, a3) and v := (b1, b2, b3) in Z3, we say u < v lexicographically if

and only if there exists an integer 1 ≤ k ≤ 3 such that ai = bi for any 1 ≤ i ≤ k − 1

and ak < bk. Given any finite subgraph G of Z3, let V (G) ⊆ Z3 and E(G) ⊆ E(Z3)

represent the set of vertices and edges of G respectively. vb (vt) is said to be the
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0u

17u

(a) An example of a 17-edge SAW
(2î, 3k̂, î,−2k̂, î,−k̂, î, 3k̂, î, k̂,−î) starting at
u0 in Z2.

(b) An example of a 26-edge SAP in Z2.

Figure 2.1: Examples of SAWs and SAPs in Z2.

bottom (top) vertex ofG if it is the lexicographically smallest (largest) vertex amongst

all the vertices in V (G). eb = {vb, v} (et = {vt, v}) is said to be the bottom (top) edge

of G if v is the lexicographically smallest (largest) vertex amongst all the vertices

in V (G) \ {vb} (V (G) \ {vt}) that are connected by an edge to vb (vt). Let x = x1

(x = x2) be the plane which contains the lexicographically smallest (largest) vertex

of G, i.e. vb (vt). x = x1 (x = x2) is called the left-most plane (right-most plane) of

G and bG := x2 − x1 is said to be the span of G.

Similarly, a bottom (top) edge can be defined for any set of edges, E, from Z3.

eb = {vb, v} ∈ E (et = {vt, v} ∈ E) is said to be the bottom (top) edge of E if and

only if vb (vt) is the lexicographically smallest (largest) vertex amongst all the end

vertices of the edges in E and v is the lexicographically smallest (largest) vertex

amongst all the vertices that are connected by an edge in E to vb (vt). Note that the

bottom (top) edge of a given finite graph G is the bottom (top) edge of E(G), the

set of edges in G. An edge e ∈ E is said to be a horizontal edge (vertical edge) if it

is parallel to the y-axis (z-axis). The cartesian coordinates of a vertex v = (x, y, z)

are represented respectively by x(v), y(v) and z(v) unless otherwise stated.

Let cn and pn be, respectively, the number of n-step SAWs starting at the origin

and n-edge SAPs (up to translation) in Z3. For example, c1 = 6, c2 = 30, c3 = 150,
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c4 = 726 and p4 = 3, p6 = 22, p8 = 207. These are known up to n = 30 for SAWs

and n = 32 for SAPs [5]. The quantity

κn := n−1 log cn (2.1.2)

represents the entropy per monomer for the SAW model of a linear polymer, and

the limit (as n → ∞) of this quantity, κ := limn→∞ κn, has been proved to exist

[18]. This entropy reflects the conformational freedom of the polymer. κ is also

known as the connective constant for SAWs in Z
3 [18]. A numerical estimate for κ

is log(4.68404) ≈ 1.54416 [5, Table 14].

Because a similar approach will be later used to show the existence of the connec-

tive constant for some other lattice objects such as 2SAPs and SSAWs introduced

in the next chapters, we discuss next a strategy for the proof of the existence of

the connective constant for SAWs. We start with reviewing some definitions and

properties related to sequences of real numbers, i.e. {an}∞n=1, where an ∈ R for any

n ∈ N.

A sequence {an}∞n=1 is said to be sub-additive (super-additive) if for any n ∈ N

and m ∈ N,

an+m ≤ an + am (an+m ≥ an + am). (2.1.3)

Similarly, a sequence {an}∞n=1 is said to be sub-multiplicative (super-multiplicative) if

for any n ∈ N and m ∈ N,

an+m ≤ anam (an+m ≥ anam). (2.1.4)

The following lemma is a standard result and is the main ingredient used for the

proof of the existence of the connective constant for SAWs in Z3. A proof of this

lemma is given in [32, Lemma 1.2.2].

Lemma 2.1.1. Let {an}∞n=1 be a sub-additive sequence of real numbers, then

lim
n→∞

an
n

(2.1.5)

exists in [−∞,∞) and

lim
n→∞

an
n

= inf
n≥1

an
n
. (2.1.6)
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Moreover, if the sequence {an

n
}∞n=1 is bounded below then the limit limn→∞ an

n
is a

finite number.

Note that the sequence {an}∞n=1 is super-additive if and only if the sequence

{−an}∞n=1 is sub-additive. Thus, the following result is an immediate consequence of

Lemma 2.1.1.

Lemma 2.1.2. Let {an}∞n=1 be a super-additive sequence of real numbers, then

lim
n→∞

an
n

(2.1.7)

exists in (−∞,∞] and

lim
n→∞

an
n

= sup
n≥1

an
n
. (2.1.8)

Moreover, if the sequence {an

n
}∞n=1 is bounded above then the limit limn→∞ an

n
is a

finite number.

Note that the sequence {an}∞n=1 of real positive numbers is sub-multiplicative

(super-multiplicative) if and only if the sequence {log an}∞n=1 is sub-additive (super-

additive). Hence, the following result is a generalization of Lemma 2.1.2 which will

be used for showing the existence of the connective constant for some lattice objects

discussed in the next chapters.

Lemma 2.1.3 (Wilker and Whittington 1979 [64]). Suppose {an}∞n=1 is a non-

decreasing sequence of positive numbers such that {n−1 log an}∞n=1 is bounded above

and an+f(m) ≥ anam for some positive function f which satisfies limm→∞m−1f(m) =

1. Then the limit limn→∞ n−1 log an exists and is finite.

The following lemma will be also used later, in Section 6.6, to show that the

super-additive sequence of real numbers associated to some lattice objects is bounded

above.

Lemma 2.1.4 (Madras et al 1988 [34]). For positive rational numbers a and b such

that a > b,

lim
n→∞

n−1 log

(
an

bn

)
= a log a− b log b− (a− b) log(a− b). (2.1.9)
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In order to prove the existence of the connective constant for SAWs we need to

show that the sequence {log cn}∞n=1 is sub-additive, or equivalently show that {cn}∞n=1

is sub-multiplicative. The concatenation argument for SAWs, introduced below, will

be used to prove the super-multiplicative property of {cn}∞n=1.

Let w1 and w2 be two SAWs in Z3, where

w1 := u1
0, u

1
1, u

1
2, ..., u

1
n−1, u

1
n (2.1.10)

and

w2 := u2
0, u

2
1, u

2
2, ..., u

2
m−1, u

2
m. (2.1.11)

The concatenation of w2 to w1, w1 ◦ w2, is the (n +m)-step walk

w := u0, u1, u2, ..., un+m−1, un+m, (2.1.12)

where

uk = u1
k, k = 0, ..., n, (2.1.13)

uk = u1
n + u2

(k−n) − u2
0, k = n+ 1, ..., n+m. (2.1.14)

Note that w := w1 ◦ w2 is not necessarily a self-avoiding walk. However, due to the

construction, it is self-avoiding for the initial n steps and the final m steps. Figure

2.2 shows an example of concatenating two self-avoiding walks in Z2. Note that

many of the results presented in this section hold also for Zd, d ≥ 2, but here we will

focus on d = 3 except that sometimes for illustration Z2 will be used.

The existence of the connective constant for SAWs is now a result of the above

concatenation argument and Lemma 2.1.1.

Theorem 2.1.5 (Hammersley and Morton 1954 [18]). The following limit exists and

is finite.

κ ≡ lim
n→∞

n−1 log cn. (2.1.15)
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1
0u

1
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1w

2
0u

2
9u

2w

(a) The SAWs w1 and w2 in Z2.

0u

16u

82 uu

w

(b) The walk w := w1 ◦ w2 in Z2.

Figure 2.2: An example of the concatenation of two SAWs w1 and w2

in Z2 which results in the walk w := w1 ◦w2 that is not a self-avoiding
walk.

Proof. The concatenation process for SAWs in Z3 implies that the product cncm

is equal to the number of elements in the set of (n + m)-step walks which are

self-avoiding for the initial n steps and the final m steps, but are not necessarily

self-avoiding walks. Moreover, every (n + m)-step SAW can be obtained by the

concatenation of an m-step SAW to an n-step SAW. Hence

cn+m ≤ cncm, (2.1.16)

i.e. the sequence {cn}∞n=1 is sub-multiplicative. Taking logarithms in this inequality

results in

log cn+m ≤ log cn + log cm, (2.1.17)

which shows that the sequence {log cn}∞n=1 is sub-additive. By Lemma 2.1.1, this

proves that limn→∞ n−1 log cn <∞; however this limit cannot equal −∞ since cn ≥ 1,

for any n ≥ 1, implies that log cn
n

≥ 0.

An n-step bridge is an n-step self-avoiding walk w := u0, u1, ..., un−1, un whose

vertices satisfy the inequality

x(u0) < x(ui) ≤ x(un) (2.1.18)
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for 1 ≤ i ≤ n [32]. Let bn denote the number of n-step bridges starting at the origin

in Z3. The following theorem holds.

Theorem 2.1.6 (Hammersley and Welsh 1961 [20]).

κb = κ (2.1.19)

where

κb ≡ lim
n→∞

n−1 log bn (2.1.20)

is the connective constant for bridges in Z3.

A similar statement has also been proved for SAPs in Z3. It has been proved

that the connective constant for SAPs exists and is exactly equal to κ:

Theorem 2.1.7 (Hammersley 1961 [19]).

lim
n→∞

n−1 log pn = κ, (2.1.21)

where the limit is taken over all the non-zero values of pn; i.e. n ≥ 4 and even.

The strategy for the proof of the existence of the connective constant for SAPs is

similar to that presented in Theorem 2.1.5 for SAWs. In fact, the proof results from

introducing an appropriate concatenation argument for SAPs in Z3 which then leads

to the super-multiplicative property for the sequence {pn

2
}∞n=4. Given an n-edge

polygon G1 and an m-edge polygon G2, the concatenation of these two polygons

G := G1 ◦G2 is defined as follows (as an example see Figure 2.3). Note first that the

top edge of G1, et = {vt, v} (vt is the top vertex of G1), and the bottom edge of G2,

eb, each lie in a 2-dimensional space perpendicular to the x-axis. So et (eb) is either

a horizontal edge or a vertical edge. Translate and rotate (if necessary) the polygon

G2 about the x-axis so that its bottom edge is parallel to the top edge of G1 and

its bottom vertex satisfies x(vb) = x(v) + 1, y(vb) = y(v) and z(vb) = z(v). Then

remove the top edge of G1 and the bottom edge of G2 and add back two edges to join

the two polygons into a single new polygon. Note that if originally et and eb were
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parallel then G2 only needs to be translated and not rotated. Otherwise, G2 has to

be rotated first and then concatenated to G1. So there are two distinct choices for

G2, G
′ and G′′, where G′′ is a rotated version of G′ and G1 ◦ G′ = G1 ◦ G′′. Thus,

two distinct polygons G′ and G′′ result in the same concatenated polygon and hence

there are pm/2 choices for G2 and pn choices for G1. Therefore,

pnpm/2 ≤ pn+m (2.1.22)

which implies that the sequence {pn

2
}∞n=4 is super-multiplicative.

1G 2G

(a) The 14-edge polygon G1 and the 16-edge poly-
gon G2 in Z2.

G

(b) The 30-edge polygon G = G1 ◦ G2 in Z2.

Figure 2.3: An example of concatenating two polygons in Z2. Note
that in Z2 no rotations are required.

2.2 The Connective Constant for SAWs (SAPs)

in Tubes

In this section we will present some results regarding the connective constant for

SAWs and SAPs in a tube, considered as a sublattice of Z3, and discuss the effects

of the confinement to a tube on the asymptotic behaviour of SAWs and SAPs.

An (N,M)-tube, T (N,M), is the subgraph of Z3 bounded by the planes y = 0,

y = N , z = 0 and z = M , i.e. it is the subgraph induced by the vertex set
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{(x, y, z) ∈ Z3| 0 ≤ y ≤ N, 0 ≤ z ≤ M}. SAPs (SAWs) behave differently in a

tube than in Z3 in the sense that the connective constant for SAPs is no longer the

same as that for SAWs. Let cn(N,M) be the number of n-edge SAWs in an (N,M)-

tube (up to translation). Let also pn(N,M) be the number of n-edge SAPs confined

to an (N,M)-tube (up to x-translation); see Figure 2.4 for examples of SAWs and

SAPs in a tube. The proof of the existence of the connective constant for SAWs

and SAPs in a tube is also based on an appropriate concatenation argument. Note

that concatenations introduced for SAWs and SAPs in Z3 do not necessarily work

for SAWs and SAPs in a tube since the lattice objects are constrained to stay within

a tube. The following lemmas establish the existence of the connective constant for

SAWs and SAPs in T (N,M).

N

0 11u
x

y

z

M

(a) An example of a 12-edge SAW in an
(N, M)-tube. Note that the end point of the
walk is marked by a large arrow.

N x

y

z

M

(b) An example of a 16-edge SAP in
an(N, M)-tube.

Figure 2.4: Examples of SAWs and SAPs in a tube.

Theorem 2.2.1 (Soteros and Whittington 1989 [49]). The following limit exists and

is finite:

κ(N,M) ≡ lim
n→∞

n−1 log cn(N,M). (2.2.1)

Theorem 2.2.2 (Soteros and Whittington 1989 [49]). Given (N,M) 
= (0, 0), the
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following limit exists and satisfies the following inequality:

κp(N,M) ≡ lim
n→∞

n−1 log pn(N,M) < κ(N,M) = lim
n→∞

n−1 log cn(N,M). (2.2.2)

Let bn(N,M) denote the number of n-step bridges starting at the origin in

T (N,M). The following theorem shows that a similar result to Theorem 6.7 is

also satisfied in a tube.

Theorem 2.2.3 (Whittington 1983 [63]).

κb(N,M) = κ(N,M) (2.2.3)

where

κb(N,M) ≡ lim
n→∞

n−1 log bn(N,M) (2.2.4)

is the connective constant for bridges in T (N,M).

2.3 Kesten’s Pattern Theorem for SAWs (SAPs)

in Z
3

Here we will introduce the concept of Kesten patterns and discuss Kesten’s pattern

theorem which will allow us to review results on the knotting probability of lattice

polygons in the next chapter.

Given any integer number d ≥ 2, any (relatively short) self-avoiding walk in the

lattice Zd is called a SAW pattern. Given positive integer numbers m and n such

that m ≤ n, let P be an m-edge SAW pattern (or equivalently a SAW) and w be an

n-edge SAW. We say the pattern P appears in the SAW w if w = w1 ◦ P ◦ w2 for

some SAWs w1 and w2. Let n1 ≥ 0 (n2 ≥ 0) denote the number of edges in w1 (w2)

then n = n1 +m+n2. Note that w1 (w2) is also allowed to be an empty walk defined

as a single-vertex walk with no edge in it, i.e. n1 = 0 (n2 = 0). In particular, we

say P has occurred at the start (end) of w if w1 (w2) is an empty walk, i.e. n1 = 0
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(n2 = 0). We also say P has occurred in the middle of w if both w1 and w2 are

non-empty walks (e.g. see Figure 2.5).

1w 2wP

1
0u

1
2u

2
0u

2
8u

Pu0

Pu4

(a) The 2-step SAW w1, P and the 8-step
SAW w2.

0u

14u

21 wPw

(b) The SAW w = w1 ◦ P ◦ w2 resulted from
the concatenation of w1, P and w2.

Figure 2.5: An example of an occurrence of the pattern P in the
middle of a 14-step SAW.

A SAW pattern in Z
d is called a Kesten Pattern if it appears at least three times

in a SAW in Zd, or equivalently appears in the middle of a SAW (e.g. see Figure

2.6 (a)). Three times occurrence of the pattern is needed to exclude those patterns

which can occur only at the start (end) of SAWs; examples of such patterns for Z2

are illustrated in Figure 2.6 (b), (c) and (d).

Let cn(P ) (cn(P̄ )) be the number of n-step SAWs starting at the origin in Z3

which contain (do not contain) the pattern P . The following pattern theorem for

SAWs is due to Kesten.

Theorem 2.3.1 (Kesten 1963 [28]). Let P be a Kesten pattern, then

κ(P̄ ) < κ, (2.3.1)

where

κ(P̄ ) ≡ lim
n→∞

n−1 log cn(P̄ ). (2.3.2)
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Hence, for n sufficiently large, all but exponentially few SAWs contain the pattern

P .

By Theorem 2.1.7, the connective constant for SAPs in Z
3 is the same as that for

SAWs. Note also that every SAP with its bottom vertex fixed at the origin and its

bottom edge removed and an orientation added on the edges starting at the bottom

vertex results in a SAW starting at the origin. Therefore, Kesten’s pattern theorem

introduced in Theorem 2.3.1 also yields a pattern theorem for SAPs in Z3 [55].

1
0u

1
8u

:1P

(a) P 1 is an example of a Kesten
pattern in Z2.

2
0u 2

20u

:2P

(b) P 2 is an example of a non-
Kesten pattern which cannot oc-
cur in the middle of any SAW;
note that this pattern also can-
not occur at the start or end of
any SAW other than itself.

3
0u

3
14u

:3P

(c) P 3 is an example of a non-
Kesten pattern which cannot oc-
cur in the middle of any SAW;
note that this pattern also can-
not occur at the end of any SAW
other than itself but it can occur
at the start of SAWs.

4
0u

4
14u:4P

(d) P 4 is an example of a non-
Kesten pattern which cannot oc-
cur in the middle of any SAW;
note that this pattern also can-
not occur at the start of any SAW
other than itself but it can occur
at the end of SAWs.

Figure 2.6: Examples of Kesten and non-Kesten patterns in Z2.
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)0,0,0( )0,0,(b

Figure 2.7: An example of a K8 pattern in T (0, 6); b = 8.

2.4 Pattern Theorems for SAWs (SAPs) in Tubes

In this section we will present pattern theorems for SAWs and SAPs in a tube

T (N,M). In order to do this, we first need to introduce some special SAW patterns

in T (N,M), which will correspond to Kesten patterns in the lattice Z3.

Let Cb(N,M) be the set of SAWs contained in Db(N,M) = {(x, y, z) ∈ Z3 | 0 ≤

x ≤ b, 0 ≤ y ≤ N, 0 ≤ z ≤ M} which have one endpoint at the origin and the

other at (b, 0, 0). For b > 0, any element of Cb(N,M) is called a Kb pattern (e.g. see

Figure 2.7). Let cn(N,M ; P̄ ) denote the number of n-edge SAWs in T (N,M) (up to

translation) which do not contain the pattern P . The following result holds.

Theorem 2.4.1 (Soteros and Whittington 1989 [49]). For any b > 0, let P be a Kb

pattern, then

κ(N,M ; P̄ ) < κ(N,M), (2.4.1)

where

κ(N,M ; P̄ ) ≡ lim
n→∞

n−1 log cn(N,M ; P̄ ). (2.4.2)
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bx0x

Figure 2.8: An example of a K̃8 pattern in T (0, 6).

Unlike the situation for SAWs and SAPs in Z3, the pattern theorem for SAWs in

a tube cannot be used for SAPs in a tube. This is because the connective constant

for SAPs is different from that for SAWs in a tube. The required pattern theorem

for SAPs is introduced as follows.

Define P(N,M) to be the set of SAPs in an (N,M)-tube. Let Pb(N,M) ⊆

P(N,M) be the set of SAPs with left-most plane x = 0 and right-most plane x = b.

For any b > 0, a K̃b pattern is defined to be a configuration (including both occupied

and unoccupied edges) of any element of Pb(N,M) with the edges in the x = 0 and

x = b planes excluded (e.g. see Figure 2.8). Let pn(N,M ; P̄ ) denote the number (up

to x-translation) of n-edge SAPs in T (N,M) which do not contain the pattern P .

Theorem 2.4.2 (Soteros 1998 [51]). For any integer b ≥ 2 and any K̃b pattern P ,

κp(N,M ; P̄ ) < κp(N,M) < κ(N,M), (2.4.3)

where

κp(N,M ; P̄ ) ≡ lim
n→∞

n−1 log pn(N,M ; P̄ ). (2.4.4)

(The last inequality in equation 2.4.4 follows from Theorem 2.2.2.)

The proof of this theorem in [51] relied on a transfer-matrix argument; an alter-

native proof is also given in [53]. The transfer-matrix and its main properties are
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introduced in Appendix A, and a similar argument to that given for the proof of

Theorem 2.4.2 in [51] will be later used to generalize the transfer-matrix argument

for certain types of clusters, including SSAWs and stretched polygons, in T (N,M).

2.5 The Pattern Insertion Strategy

In this section the so called pattern insertion argument used to obtain pattern theo-

rems for certain types of clusters, such as SAPs, in an (N,M)-tube is reviewed from

[33, 53]. This strategy, in the next chapters, will then be employed to establish pat-

tern theorems for some lattice objects under consideration such as 2SAPs, SSAWs

and stretched polygons.

In order to obtain the required pattern theorem for clusters in tubes via [33,

Theorem 2.1], the cluster axioms (CA1), (CA2) and (CA4) of [33] must hold for any

cluster under investigation. These axioms are reviewed here as follows.

Cluster axiom (CA1) basically defines the types of clusters that can be considered.

For the purpose here, given any integers N ≥ 0 and M ≥ 0 let the lattice T =

T (N,M). For each positive integer n, let Cn be the set of all clusters of size n.

Examples of “cluster” include SAPs, 2SAPs and SSAWs. Also examples of “size”

are the number of edges or the span of a cluster. Let

S∗ ≡ {u ∈ R
3 | T + u = T}, (2.5.1)

where T + u is the translation of T by the vector u ∈ R
3. Clearly for T = T (N,M),

S∗ = {u ∈ R
3 | T (N,M) + u = T (N,M)} = {(x, 0, 0) | x ∈ Z}. (2.5.2)

The following is the statement of (CA1) as presented in [33]:

(CA1): Cn is a collection of finite subgraphs of T that is invariant under trans-

lation (i.e., if G ∈ Cn and u ∈ S∗, then G+ u ∈ Cn). The Cn’s are pairwise disjoint

(i.e., Cn ∩ Cm = ∅ whenever n 
= m).

Before stating the cluster axiom (CA2) the definition of a weight function which

assigns positive weight to each cluster needs to be reviewed. Given C :=
⋃∞
n=1Cn,
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the weight function

wt : C → (0,∞), (2.5.3)

is defined so that it is invariant under translation, i.e.

wt(G) = wt(G+ u) for every u ∈ S∗ and G ∈ C. (2.5.4)

The cluster axiom (CA2), as given in [33], is as follows:

(CA2): For each positive integer k, there is a finite positive constant γk with the

property that

1

γk
wt(G) ≤ wt(G′) ≤ γkwt(G), (2.5.5)

whenever G and G′ differ by at most k vertices and edges (i.e. whenever | E(G) �
E(G′) | + | V (G) � V (G′) |≤ k).

Note that � here denotes a symmetric difference; i.e. for any pair of sets A and

B, A � B = (A \B)∪ (B \A). An example of a weight function satisfying (CA2) is

the constant function, i.e. wt(G) = 1 for any cluster G.

For each positive integer n, let C∗
n be the set of all clusters with size n whose

lexicographically smallest vertex is in the plane x = 0, i.e. x1 = 0. Define C∗ =⋃
n<∞C∗

n. Given any cluster G ∈ Cn, note that x1 ∈ Z is such that the translation of

G along the x-axis, G+(−x1, 0, 0), gives an element of C∗
n, i.e. G+(−x1, 0, 0) ∈ C∗

n.

For any finite set A ⊂ C, define

G(A) =
∑
G∈A

wt(G). (2.5.6)

In particular, let Gn = G(C∗
n). Let also

λ ≡ lim sup
n→∞

(Gn)
1
n . (2.5.7)

The third cluster axiom is as follows:

(CA3): The limit limn→∞(Gn)
1
n , called the growth constant for the clusters under

consideration, exists and is finite (and equals λ).

Note that (CA3) is not required for proving the pattern theorem here. However,

if it holds, the connective constant for the clusters under consideration exists and is

finite.
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In order to state the cluster axiom (CA4), some definitions and terminology about

patterns need to be introduced. For a non-negative integer b, define Vb to be the

subgraph of T (N,M) generated by the vertex set {(x, y, z) ∈ Z3 | 0 ≤ x ≤ b, 0 ≤

y ≤ N, 0 ≤ z ≤ M}; this is an example of a section with span b of T (N,M).

We next define the meaning of the term pattern as in [53]. Given any non-negative

integer b, any subgraph of Vb with at least one vertex in each of the planes x = 0

and x = b is referred to as a pattern with span b, or b-pattern for short. We say a

cluster G contains a b-pattern P if P is the subgraph of G generated by the vertices

in Vb, i.e. G ∩ Vb = P , or if there exists a translate of Vb, (Vb + (x, 0, 0)), such that

G ∩ (Vb + (x, 0, 0)) = P + (x, 0, 0); in the latter case we say P occurs at (x, 0, 0) in

G. A b-pattern P is said to be a proper b-pattern (see [53]) with respect to C∗ if

i) there are infinitely many values of n such that P is contained in some cluster

in C∗
n, and

ii) there exists a cluster G in which P occurs at some t ∈ S∗ and such that

G \ (Vb + t) still contains the left-most and right-most planes of G.

Condition (ii) is needed to exclude patterns which can only occur at the left-most or

the right-most plane of a cluster and nowhere else. A pattern P for which there exists

a cluster G having left-most plane x1 = 0 and containing P at (0,0,0) is referred to

as a start pattern. If P is a start pattern for G, then P is said to occur at the start or

at the left-most plane of G. Similarly, a b-pattern P for which there exists a cluster

G having right-most plane x2 = b and containing P at (0, 0, 0) is referred to as an

end pattern. If P is an end pattern for G, then P is said to occur at the end or at

the right-most plane of G.

The fourth cluster axiom says that any part of any cluster can be locally changed

to create an occurrence of some translate of a given proper pattern.

(CA4): For every proper pattern P there exists an integer b ≥ 0 and translation

vector b′ ∈ S∗ such that: For every cluster G ∈ C and every vertex v of G, there is

another cluster G′ ∈ C and a translation vector t = t(v) ∈ S∗ such that v ∈ Vb+b
′+t,

G′ contains P at t, and G′ \ (Vb + b′ + t) = G \ (Vb + b′ + t).
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Next we shall review the two tube axioms (TA1) and (TA2) which were introduced

in [53] specifically for applying the pattern insertion strategy to clusters in tubes.

In fact, it is shown in [53] that for clusters in tubes the cluster axiom (CA4) can be

replaced by the tube axioms (TA1) and (TA2).

The following are the tube axioms as introduced in [53]:

(TA1) (CONCAT): There exists a concatenation process for C in T = T (N,M)

and associated integers tT ≥ 0, cT ≥ 0 such that: Given G1 ∈ C∗
n and G2 ∈ C∗

m with

spans b1 and b2, concatenating G1 to the translate of G2, G2 + (tT + b1, 0, 0), forms

G ∈ C∗
n+m+cT

such that G∩Vb1−1 = G1 ∩Vb1−1 and G∩ (Vb2−1 +(tT + b1 +1, 0, 0)) =

G2 ∩ (Vb2−1 + (1, 0, 0)) (i.e. only the right-most plane of G1 and the left-most plane

of G2 can be altered in the concatenation process).

(TA2) (CAPOFF): There exists an integer mT > 0 such that: For any integer

b ≥ 0 and any b-pattern (not necessarily proper) P that occurs at (0, 0, 0) in some

finite size cluster in C∗ with span s ≥ b + 1 (i.e. P occurs at the start of some

cluster but is not itself a cluster), there exists a cluster G ∈ C∗ with span b + mT

which also contains P at (0, 0, 0) (i.e. P is also at the start of G). Similarly, given

any b-pattern P ′ that occurs at (s− b, 0, 0) in some finite size cluster in C∗ with span

s ≥ b+ 1 (i.e. P ′ occurs at the end of some cluster but is not itself a cluster), there

exists a cluster G′ ∈ C∗ with span b + mT which contains P ′ at (mT , 0, 0) (i.e. P ′

also ends G′).

(CONCAT) and (CAPOFF) together allow one to insert any proper pattern P

into an arbitrary cluster at an arbitrary location. Figure 2.9 illustrates an example

where proper 2SAP pattern P is inserted into 2SAP G; note that this procedure

will be explained in detail later when we discuss 2SAPs in Chapter 4. In particular

(CONCAT) and (CAPOFF) combined with (CA1) and (CA2) immediately give us

the following proposition.

Proposition 2.5.1 (Soteros 2006 [53]). Given T = T (N,M) and a set of clusters

C of T which satisfy (CA1) of [33] and (TA1) and (TA2), for every proper pattern

P there exists an integer b ≥ 0 and translation vector b′ ∈ S∗ such that:
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For every cluster G ∈ C and every vertex v of G, there is another cluster G′ ∈ C

and a translation vector t = t(v) ∈ S∗ such that v ∈ Vb + b′ + t, G′ contains P at t,

and G′ \ (Vb + b′ + t) = G \ (Vb + b′ + t) (see Figure 2.9).

G

CAPOFF

CONCAT

P1 P2

G1 G2

P

G3

G1 G2G3

P

Figure 2.9: For cluster G (top left) and proper pattern P (top right), a
sketch of the pattern insertion algorithm for Proposition 2.5.1 is shown:
cluster G is broken into the start pattern P1 and the end pattern P2.
P1 and P2 are capped off using (CAPOFF) to create clusters G1 and
G2. Then G1, G3 (the cluster shown below P on right), and G2 are
concatenated using (CONCAT) to create a cluster which contains P .

Let C∗
n[≤ m,P ] ⊆ C∗

n denote the set of clusters in C∗
n that contain at most m

translates of the pattern P . Then define

Gn[≤ m,P ] =
∑

G∈C∗
n[≤m,P ]

wt(G). (2.5.8)

Theorem 2.5.2 (Madras 1999 [33]). Assume that Cluster Axioms (CA1), (CA2)

and (CA4) hold. Let P be a proper pattern. Then there exists an εP > 0 such that

lim sup
n→∞

(Gn[≤ εPn, P ])
1
n < λ. (2.5.9)
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The following corollary is an immediate result of Proposition 2.5.1 and Theorem

2.5.2, and yields a pattern theorem for clusters in a tube.

Corollary 2.5.3 (Soteros 2006 [53]). Assume that Cluster Axioms (CA1), (CA2)

and Tube Axioms (TA1) and (TA2) hold. Let P be a proper pattern. Then there

exists an εP > 0 such that

lim sup
n→∞

(Gn[≤ εPn, P ])
1
n < λ. (2.5.10)

2.6 Transfer-Matrix Results for Clusters in Tubes

In this section the transfer-matrix argument, used by Soteros [51] to prove a pattern

theorem for SAPs in a tube, is generalized to enable the exploration (in chapters

5 and 6) of the asymptotic behaviour of certain types of clusters such as stretched

polygons and SSAWs in tubes. Given a positive integer t, a set of clusters C and a

vector of variables Y = [y1, ..., yt]
T , let

Zn(N,M ;Y ) =
∑
G∈C∗

n

t∏
j=1

y
d(G,j)
j (2.6.1)

be a partition function for clusters in C, where n represents the size of the clusters

in C and the d(G, j)’s are non-negative integers associated with a cluster G in C.

Note that “size” of a cluster can be measured in different ways; for example, it can

be measured by the number of edges or the span of the cluster. The d(G, j)’s also

can be defined as some quantities, such as the number of edges, the span or the

number of vertices with degree one, associated with a cluster G. The goal is to find

the asymptotic form of Zn(N,M ;Y ) as n→ ∞.

An (N,M)-tube is equivalent to Z × H(N,M), where H(N,M) is the finite

subgraph of Z2 induced by the vertex set {(y, z) ∈ Z2|0 ≤ y ≤ N, 0 ≤ z ≤ M},

and hence, in the terminology of [1], an (N,M)-tube is a one-dimensional lattice.

So an (N,M)-tube can also be considered as an alternating sequence of hinges and
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sections where for any i ∈ Z the ith hinge Hi(N,M) is defined to be the subgraph

of the tube induced by the vertex set {(i, y, z) ∈ Z3|0 ≤ y ≤ N, 0 ≤ z ≤ M} and

the ith section, Si(N,M), is defined to be the set of edges which join Hi−1(N,M) to

Hi(N,M) in the tube.

Given a cluster G with left-most (right-most) plane x = 0 (x = m) in an (N,M)-

tube, a cluster configuration with span k (k-cluster config) of G can be considered as

G’s configuration in a sublattice of the form Hi−1(N,M) ∪ Si(N,M) ∪ Hi(N,M) ∪

... ∪ Si+k−1(N,M) ∪ Hi+k−1(N,M) for some 1 ≤ i ≤ m − k + 1. We also say

the cluster config of span k corresponding to G’s configuration in Hi−1(N,M) ∪

Si(N,M) ∪Hi(N,M) ∪ ... ∪ Si+k−1(N,M) ∪Hi+k−1(N,M) occurs at the ith section

of G. G’s configuration in such a sublattice of the tube consists of the sublattice

and a specific assignment of an ordering and labelling on the edges of G in the

sublattice. An appropriate ordering and labelling of the edges for SAPs (SSAWs)

is considered and explained in detail in Chapter 5 (Chapter 6) so that a k-cluster

config at the ith section of G is defined by not just the edges of G in the section

but also their labelling and relative ordering, according to the order on the edges

in G. Two k-cluster configs are considered equivalent if they have the same set of

occupied vertices and edges, and have the same labelling and relative ordering on

their edges. Note that ignoring the ordering and labelling on the edges of a k-cluster

config results in a k-pattern (as defined in Section 2.5). In fact, depending on the

ordering and labelling on a pattern’s edges, a pattern can correspond to more than

one distinct cluster configuration. The extra information on the edges is needed in

order to ensure that the Cluster Configuration Axiom, defined below, is satisfied.

Note that start, end and proper cluster configurations are also defined in the exact

same way that start, end and proper patterns were defined in the previous section.

Given k ≥ 2, a set of clusters C and three sets of k-cluster configurations Π(k),

Π1(k) and Π2(k) corresponding to the proper, start and end k-cluster configs respec-

tively, define a digraph D0
k = (V 0

k , A
0
k, φ

0
k) as follows: Let the k-cluster configs in

Π(k) ∪ Π1(k) ∪ Π2(k) be the vertices of the digraph, i.e.

V 0
k = Π(k) ∪ Π1(k) ∪ Π2(k) = {P 0

1 , P
0
2 , ..., P

0
|V 0

k |}. (2.6.2)
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An arc from P 0
i to P 0

j belongs to A0
k if and only if the configuration of the k-cluster

config P 0
i on H1(N,M)∪S2(N,M)∪ ...∪Sk(N,M)∪Hk(N,M) is equivalent to the

configuration of the k-cluster config P 0
j on H0(N,M)∪S1(N,M)∪ ...∪Sk−1(N,M)∪

Hk−1(N,M). In this case the function φ0
k : A0

k → V 0
k × V 0

k is one to one so for

simplicity we can represent any arc from P 0
i to P 0

j by the ordered pair (P 0
i , P

0
j ).

Π(k), Π1(k) and Π2(k) are then said to satisfy the Cluster Configuration Axiom if

the following holds:

Cluster Configuration Axiom: Given r ≥ 1, 1 ≤ ij ≤ |V 0
k | for 1 ≤ j ≤ r,

consider a walk of the digraph with length r and of the form P 0
i1
, P 0

i2
, P 0

i3
, ..., P 0

ir−1
, P 0

ir ,

where P 0
i1 ∈ Π1(k), P

0
ir ∈ Π2(k) and P 0

ij
∈ Π(k) for 2 ≤ j ≤ r − 1 (this is also

called a sequence of correctly connected k-cluster configs). D0
k has the property that

every such walk defines a span r + k − 1 cluster G ∈ C∗ starting (ending) with the

cluster config P 0
i1

(P 0
ir) and in which cluster config P 0

ij
occurs at the jth section, for

j = 2, ..., r − 1. Moreover, any span r + k − 1 cluster G ∈ C∗ starting with cluster

config P 0
i1

and ending with cluster config P 0
ir corresponds to a walk of length k of D0

k

as above.

Note that it is essential to define the cluster configs so that the above axiom is

satisfied. For example, in the case of SAPs in tubes, if no ordering or labelling is

assigned to the cluster configs’ edges then the above axiom does not hold. Figure

2.6 shows an example where a sequence of three correctly connected SAP 2-patterns

does not correspond to a SAP and instead leads to the construction of a pair of

polygons. Hence, the Cluster Configuration Axiom does not hold if SAP 2-patterns

are used without assigning additional labelling.

Each k-cluster config can be considered as a configuration ofH0(N,M)∪S1(N,M)

∪H1(N,M)∪...∪Hk−1(N,M)∪Sk(N,M)∪Hk(N,M). Since these cluster configs are

contained in a finite subgraph of the lattice and the edges are ordered and labelled

in finitely many ways, there is a finite number of such cluster configs. Thus Π(k),

Π1(k) and Π2(k) are all finite sets. Hence, let

Π(k) = {P1, P2, ..., P|Π(k)|}, (2.6.3)
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(a) A sequence of three SAP 2-patterns
in T (0, 6).

(b) The resulting cluster is a pair of SAPs
not a single SAP.

Figure 2.10: An example of a sequence of correctly connected 2-SAP
configs which does not correspond to a SAP; instead it results in a pair
of polygons.

Π1(k) = {P ′
1, P

′
2, ..., P

′
|Π1(k)|} (2.6.4)

and

Π2(k) = {P ′′
1 , P

′′
2 , ..., P

′′
|Π2(k)|}. (2.6.5)

Given a set of clusters C, let a weight function wts : C∗ → R[x] be given such

that

wts(G) = xe(G), (2.6.6)

where e(G) = n represents the size of the cluster G. Let the functions h : Π(k) →

[0,∞), h1 : Π1(k) → [0,∞) and h2 : Π2(k) → [0,∞) be given such that, for any

G ∈ C with span m, wts(G) can be written as

wts(G) = xe(G) = x
h1(P ′

l1
)+h2(P ′′

lm−k+1
)+
∑m−k

l=2 h(Pli
)
, (2.6.7)

where Pli ∈ Π(k) occurs at the ith section of G, for 2 ≤ i ≤ m− k and P ′
l1

(P ′′
lm−k+1

)

is the start (end) cluster config for G. Furthermore, given a set of clusters C, let a

multi-variable weight function wt : C∗ → R[y1, ..., yt] be given such that

wt(G) =
t∏

j=1

y
d(G,j)
j , (2.6.8)
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where d(G, j) is a non-negative integer associated with G, for 1 ≤ j ≤ t. Let the

multi-variable functions f : Π(k) → [0,∞)t, f 1 : Π1(k) → [0,∞)t and f 2 : Π2(k) →

[0,∞)t be given such that, for any G ∈ C with span m, wt(G) can be written as

wt(G) =
t∏

j=1

y
d(G,j)
j =

t∏
j=1

y
f1

j (P ′
l1

)+f2
j (P ′′

lm−k+1
)+
∑m−k

l=2 fj(Pli
)

j , (2.6.9)

where Pli ∈ Π(k) occurs at the ith section of G, for 2 ≤ i ≤ m− k and P ′
l1

(P ′′
lm−k+1

)

is the start (end) cluster config for G. Note that f = (f1, ..., ft), f
1 = (f 1

1 , ..., f
1
t )

and f 2 = (f 2
1 , ..., f

2
t ).

As an example, take C to be the set of SAPs confined to an (N,M)-tube. Con-

sider e(G) (h2(P ′′
i )) to be the total number of edges in the SAP G (end cluster config

P ′′
i ) and h(Pi) (h1(P ′

i )) to be the number of edges in the first hinge and section of

Pi (P ′
i ). Let t = 2 and fix the two cluster configs P1 and P2 in Π(k). Then define

d(G, 1) (d(G, 2)) to be the number of occurrences of the cluster config P1 (P2) in G.

Let also fj(Pi) = δj,i, f
1
j (P

′
i ) = δj,i and f 2

j (P
′′
i ) = δj,i for j = 1, 2 and i = 1, 2. Then

equations 2.6.7 and 2.6.9 are satisfied.

For convenience, for any 1 ≤ i ≤ |Π(k)|, define ei = h(Pi) and, for any 1 ≤

i ≤ |Π1(k)| (1 ≤ i ≤ |Π2(k)|), define e′i = h1(P ′
i ) (e′′i = h2(P ′′

i )). Also, for any

1 ≤ i ≤ |Π(k)|, define Di = f(Pi)
T and di(j) = fj(Pi) thus Di = [di(1), ..., di(t)]

T is

a vector of non-negative integers associated to Pi ∈ Π(k). For any 1 ≤ i ≤ |Π1(k)|

(1 ≤ i ≤ |Π2(k)|), define also D′
i = f 1(P ′

i )
T (D′′

i = f 2(P ′′
i )T ) and d′i(j) = f 1

j (P
′
i )

(d′′i (j) = f 2
j (P

′′
i )) thus D′

i = [d′i(1), ..., d′i(t)]
T (D′′

i = [d′′i (1), ..., d′′i (t)]
T ) is a vector of

non-negative integers associated to P ′
i ∈ Π1(k) (P ′′

i ∈ Π2(k)).

Let

Zn(N,M ; P̄ , Y ) =
∑

G∈C∗
n(P̄ )

t∏
j=1

y
d(G,j)
j , (2.6.10)

where C∗
n(P̄ ) ⊂ C∗

n is the set of those clusters in C∗
n which do not contain the cluster

config P . Next we prove the following theorem which yields the asymptotic form of

Zn(N,M ;Y ) and leads to stronger results about the asymptotic properties of clusters

confined to an (N,M)-tube. Note that this result is a generalization of Theorem 6.1

in [51].
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Theorem 2.6.1. Given k ≥ 2, a set of clusters C in T (N,M) and three sets of k-

cluster configs Π(k), Π1(k) and Π2(k), suppose that the Cluster Configuration Axiom

and (CONCAT) hold for C. Let P be any k-cluster config in Π(k). Given weight

functions wts : C∗ → R[x] and wt : C∗ → R[y1, ..., yt], if there exist functions

h : Π(k) → [0,∞), h1 : Π1(k) → [0,∞), h2 : Π2(k) → [0,∞), f : Π(k) → [0,∞)t,

f 1 : Π1(k) → [0,∞)t and f 2 : Π2(k) → [0,∞)t such that equations 2.6.7 and 2.6.9

are satisfied, then there exist non-negative values x0(Y ) and αY such that

Zn(N,M ;Y ) = αY (x0(Y ))−n + o((x0(Y ))−n) as n→ ∞. (2.6.11)

Moreover, there exist non-negative values x̄0(Y ) > x0(Y ) and ᾱY such that

Zn(N,M ; P̄ , Y ) = ᾱY (x̄0(Y ))−n + o((x̄0(Y ))−n) as n→ ∞. (2.6.12)

Proof. Given k ≥ 2, let Dk = (Vk, Ak, φk) be the sub-digraph of D0
k (the digraph for

which the Cluster Configuration Axiom holds) induced by the set of vertices Vk =

Π(k) = {P1, P2, ..., P|Π(k)|} ⊂ V 0
k . In addition, associate the weight xei

∏t
j=1 y

di(j)
j to

each arc (Pi, Pj) ∈ Ak. The transfer matrix G(x, Y ) = (gi,j(x, Y )) is then defined as

follows:

gi,j(x, Y ) =

⎧⎪⎨⎪⎩ xei
∏t

j=1 y
di(j)
j if (Pi, Pj) ∈ Ak

0 otherwise.
(2.6.13)

Define also the |Π1(k)| × |Π(k)| matrix A(x, Y ) as follows: For 1 ≤ i ≤ |Π1(k)|

and 1 ≤ j ≤ |Π(k)|, if the configuration of the start cluster config P ′
i ∈ Π1(k) on

H1(N,M)∪S2(N,M)∪ ...∪Sk(N,M)∪Hk(N,M) is equivalent to the configuration

of the proper cluster config Pj ∈ Π(k) on H0(N,M)∪S1(N,M)∪ ...∪Sk−1(N,M)∪

Hk−1(N,M) then Ai,j(x, Y ) = xe
′
i
∏t

j=1 y
d′i(j)
j ; otherwise Ai,j(x, Y ) = 0. Similarly,

define the |Π(k)| × |Π2(k)| matrix B(x, Y ) as follows: For 1 ≤ i ≤ |Π(k)| and

1 ≤ j ≤ |Π2(k)|, if the configuration of the proper cluster config Pi ∈ Π(k) on

H1(N,M)∪S2(N,M)∪ ...∪Sk(N,M)∪Hk(N,M) is equivalent to the configuration
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of the end cluster config P ′′
j ∈ Π2(k) on H0(N,M) ∪ S1(N,M) ∪ ... ∪ Sk−1(N,M) ∪

Hk−1(N,M) then Bi,j(x, Y ) = xe
′′
i
∏t

j=1 y
d′′i (j)
j ; otherwise Bi,j(x, Y ) = 0.

Given r ≥ 1, 1 ≤ i1 ≤ |Π1(k)|, 1 ≤ ir ≤ |Π2(k)| and 1 ≤ ij ≤ |Π(k)| for 2 ≤ j ≤

r − 1, consider a sequence of r cluster configs of the form P ′
i1
, Pi2, Pi3, ..., Pir−1, P

′′
ir

such that Ai1,i2(x, Y ) 
= 0, Bir−1,ir(x, Y ) 
= 0, and gij ,ij+1
(x, Y ) 
= 0 for 2 ≤ j ≤ r− 2.

Since the Cluster Configuration Axiom holds, this sequence defines a span r+ k− 1

cluster, G, starting (ending) with cluster config P ′
i1

(P ′′
ir) and in which cluster config

Pij occurs at the jth section, for j = 2, ..., r−1. The weight associated to this cluster

in (A(x, Y )G(x, Y )r−1B(x, Y ))i1,ir is

xe
′
i1

+e′′ir
∑r−1

j=2 eij

t∏
j=1

y
d′i1 (j)+d′′ir (j)+

∑r−1
l=2 dil

(j)

j = xe(G)

t∏
j=1

y
d(G,j)
j . (2.6.14)

Also by the Cluster Configuration Axiom, any span r + k − 1 cluster starting

with cluster config P ′
i1 and ending with cluster config P ′′

ir can be decomposed into

a sequence of r cluster configs as above. Thus the generating function F (x, Y ) =∑
n≥1 Zn(N,M ;Y )xn (summed over all the values of n for which Zn(N,M ;Y ) 
= 0)

satisfies the following:

F (x, Y ) =
∞∑
h=0

Π1(k)∑
i=1

Π2(k)∑
j=1

(A(x, Y )G(x, Y )hB(x, Y ))i,j

=

Π1(k)∑
i=1

Π2(k)∑
j=1

(A(x, Y )(I −G(x, Y ))−1B(x, Y ))i,j

=

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x, Y )((I −G(x, Y ))−1)l,oBo,j(x, Y )

]
.

(2.6.15)

Note also that by Theorem A.0.2,

((I −G(x, Y ))−1)l,o =
det((I −G(x, Y ))−1; o, l)

det(I −G(x, Y ))
, (2.6.16)

where (A; o, l) represents the matrix obtained by removing the lth row and oth
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column of a given matrix A. Thus

F (x, Y ) =
1

det(I −G(x, Y ))

×
Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x, Y ) det((I −G(x, Y ))−1; o, l)Bo,j(x, Y )

]
.

(2.6.17)

Given any x > 0, it can be shown that for any pair of proper cluster configs

Pi, Pj ∈ Π(k) there exists an integer m such that (G(x, Y )m)i,j > 0 (to see this start

with a cluster in C in which proper cluster config Pi occurs and use (CONCAT)

to concatenate it to a cluster in C in which proper cluster config Pj occurs. This

yields a cluster in C in which Pi occurs at some section and cluster config Pj occurs

at a later section. From this obtain a sequence of m correctly connected cluster

configs starting with cluster config Pi and ending in cluster config Pj). Thus, by

Theorem A.0.4, G(x, Y ) is an irreducible and aperiodic matrix and Frobenius theory

(Theorem A.0.5) implies that: the spectral radius, ρ(x, Y ), of G(x, Y ) is a simple

root of det(λI−G(x, Y )); G(x, Y ) has a strictly positive eigenvector associated with

ρ(x, Y ); and ρ(x, Y ) is the only eigenvalue of modulus ρ(x, Y ). Since ρ(0, Y ) = 0

and, by Theorem A.0.7, ρ(x, Y ) is an unbounded, increasing, continuous function

on [0,∞), hence there exists a unique x0(Y ) > 0 such that ρ(x0(Y ), Y ) = 1. From

equation 2.6.17, F (x, Y ) has poles only when 1
det(I−G(x,Y ))

has poles, that is, when 1

is an eigenvalue of G(x, Y ). Thus based on the results and arguments of [1, Lemma

9 and Theorem 3] F (x, Y ) is analytic for |x| < x0(Y ) and has one simple pole when

|x| = x0(Y ), namely, x = x0(Y ). In particular, Theorem A.0.8 implies that as
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x→ x0(Y )

F (x, Y ) =

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x, Y )((I −G(x, Y ))−1)l,oBo,j(x, Y )

]
→

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x0(Y ), Y )(x0(Y ) − x)−1x0(Y )β−1

Y (ηY )l(ςY )ToBo,j(x0(Y ), Y )
]
,

(2.6.18)

where βY = x0(Y )ςTYG
′(x0(Y ), Y )ηY , and ηY and ςTY are, respectively, strictly positive

left and right eigenvectors of G(x0(Y ), Y ) associated with ρ(x0(Y ), Y ) = 1 and

normalized so that ςTY ηY = 1 (note that G′(x, Y ) denotes the derivative of G(x, Y )

with respect to x). Thus, differentiating both sides of the above equation n times

with respect to x, dividing by n! and setting x = 0 implies that

Zn(N,M ;Y ) = αY (x0(Y ))−n + o((x0(Y ))−n) as n→ ∞, (2.6.19)

where

αY = β−1
Y

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x0(Y ), Y )(ηY )l(ςY )ToBo,j(x0(Y ), Y )

]
> 0. (2.6.20)

Let P ∈ Π(k) be a specific proper cluster config. Let also P represent the

label of cluster config P in Π(k). Consider the generating function F̄ (x, Y ) =∑
n≥1 Ẑn(N,M ; P̄ , Y )xn. Then

F̄ (x, Y ) =

∞∑
h=0

Π1(k)∑
i=1

Π2(k)∑
j=1

(Ā(x, Y )Ḡ(x, Y )hB̄(x, Y ))i,j

=

Π1(k)∑
i=1

Π2(k)∑
j=1

(Ā(x, Y )(I − Ḡ(x, Y ))−1B̄(x, Y ))i,j (2.6.21)

where Ḡ(x, Y ) is obtained from G(x, Y ) by deleting its P th row and column, and

Ā(x, Y ) and B̄(x, Y ) are defined as follows. If P /∈ Π1(k) (P /∈ Π2(k)), Ā(x, Y )

(B̄(x, Y )) is defined to be the matrix obtained from A(x, Y ) (B(x, Y )) by deleting

its P th column (row). Otherwise, Ā(x, Y ) (B̄(x, Y )) is defined to be the matrix
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obtained from A(x, Y ) (B(x, Y )) by deleting its P th column (row) and lth row

(column) where l satisfies P ′
l = P (P ′′

l = P ). The argument used after equation

2.6.18 applies again so that there exist x̄0(Y ) > 0 and ᾱY > 0 such that

Zn(N,M ; P̄ , Y ) = ᾱY (x̄0(Y ))−n + o((x̄0(Y ))−n) as n→ ∞ (2.6.22)

and the spectral radius, ρ̄(x̄0(Y ), Y ), of Ḡ(x̄0(Y ), Y ) equals 1. Now consider the

matrix GP (x, Y ) obtained from G(x, Y ) by replacing the P th row and column by

a row and column of zeros. Then the spectral radius, ρP (x, Y ), of GP (x, Y ) equals

ρ̄(x, Y ). Furthermore, GP (x, Y ) ≤ G(x, Y ) and at least one element of GP (x, Y ) is

strictly less than the corresponding element of G(x, Y ). Theorem A.0.7 then implies

that ρP (x, Y ) < ρ(x, Y ) and hence for x = x0(Y ), ρP (x0(Y ), Y ) < ρ(x0(Y ), Y ) = 1

and therefore x̄0(Y ) > x0(Y ).

A function ψ : C∗ → N ∪ {0} is called an additive functional if, for any G ∈ C∗

with span m, ψ(G) can be written as

ψ(G) = d′(P ′
h1

) + d′′(P ′′
f1

)

m−k∑
i=2

ψ(Pli), (2.6.23)

where ψ(Pli) is a non-negative integer associated with the proper cluster config Pli ∈

Π(k) occurring at the ith section of G, for 2 ≤ i ≤ m−k, and d′(P ′
h1

) (d′′(P ′′
f1

)) is also

a non-negative integer associated with the start (end) cluster config P ′
h1

(P ′′
f1

) for G

[1]. Note that ψ(Pli) depends only on Pli not on G. Let Λψ(x, Y ) be a Π(k) × Π(k)

matrix with (i, j)th elements

Λψ(x, Y )(i, j) =

⎧⎨⎩ ψ(Pi)gi,j(x, Y ) if ψ(Pi) 
= 0

0 otherwise .
(2.6.24)

Define ΛA(x, Y ) to be a Π1(k) × Π(k) matrix with (i, j)th elements

ΛA(x, Y )(i, j) =

⎧⎨⎩ d′(P ′
i )Ai,j(x, Y ) if d′(P ′

i ) 
= 0

0 otherwise ,
(2.6.25)

and ΛB(x, Y ) to be a Π(k) × Π2(k) matrix with (i, j)th elements

ΛB(x, Y )(i, j) =

⎧⎨⎩ d′′(P ′′
i )Bi,j(x, Y ) if d′′(P ′′

i ) 
= 0

0 otherwise .
(2.6.26)
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Let Xn denote a random variable which takes clusters from C∗
n at random with

probabilities determined by the partition function Zn(N,M ;Y ), i.e.

P(Xn = G) =

∏t
j=1 y

d(G,j)
j

Zn(N,M ;Y )
. (2.6.27)

Next, we investigate the asymptotic behaviour of the expected value of ψ(Xn),

EY (ψ(Xn)). Note that this result is a generalization of Theorem 7 in [1].

Theorem 2.6.2. Let ψ be an additive functional. Let Y = [y1, ..., yt]
T , x0(Y ), ςY ,

ηY , G(x(Y ), Y ) and βY be given as introduced in the proof of Theorem 2.6.1. Then

there exists a γY > 0 such that as n→ ∞

EY (ψ(Xn)) = γY n+O(1). (2.6.28)

Proof. For any 1 ≤ i ≤ Π(k), 1 ≤ j ≤ Π1(k) and 1 ≤ l ≤ Π2(k), let di(t+1) = ψ(Pi),

d′j(t+ 1) = d′(P ′
j) and d′′l (t+ 1) = d′′(P ′′

l ). For any cluster G, let d(G, t+ 1) = ψ(G).

Define D1
i = [di(1), ..., di(t), di(t+ 1)]T , D′

i
1 = [d′i(1), ..., d′i(t), d

′
i(t + 1)]T and D′′

i
1 =

[d′′i (1), ..., d′′i (t), d
′′
i (t + 1)]T where Di = [di(1), ..., di(t)], D

′
i = [d′i(1), ..., d′i(t)] and

D′′
i = [d′′i (1), ..., d′′i (t)]. Set Y 1 = [Y, es]T , where yt+1 = es, i.e. s = ln yt+1. Define

G(x, Y ; s) = G(x, Y 1), A(x, Y ; s) = A(x, Y 1) and B(x, Y ; s) = B(x, Y 1). Thus

G(x, Y ; 0) = G(x, Y ), A(x, Y ; 0) = A(x, Y ) and B(x, Y ; 0) = B(x, Y ). (2.6.29)

Note that

∂

∂s
G(x(Y ), Y ; s)|s=0 = Λψ(x(Y ), Y ), (2.6.30)

∂

∂s
A(x(Y ), Y ; s)|s=0 = ΛA(x(Y ), Y ) (2.6.31)

and

∂

∂s
B(x(Y ), Y ; s)|s=0 = ΛB(x(Y ), Y ). (2.6.32)

Let also Λψ = Λψ(x0(Y ), Y ), Λ1 = ΛA(x0(Y ), Y ) and Λ2 = ΛB(x0(Y ), Y ).
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We have

EY (esψ(Xn)) =
1

Zn(N,M ;Y )

∑
G∈C∗

n

(
esd(G,t+1)

t∏
j=1

y
d(G,j)
j

)
. (2.6.33)

Hence, we obtain

∑
n≥1

EY (esψ(Xn))Zn(N,M ;Y )xn =

∑
n≥1

∑
G∈C∗

n

esd(G,t+1)xn
t∏

j=1

y
d(G,j)
j =

Π1(k)∑
i=1

Π2(k)∑
j=1

(A(x, Y ; s)(I −G(x, Y ; s))−1B(x, Y ; s))i,j =

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x, Y ; s)((I −G(x, Y ; s))−1)l,oBo,j(x, Y ; s)

]
.

(2.6.34)

Differentiating with respect to s and setting s = 0 gives

∑
n≥1

EY (ψ(Xn))Zn(N,M ;Y )xn =

∂

∂s

[ Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

Ai,l(x, Y ; s)((I −G(x, Y ; s))−1)l,oBo,j(x, Y ; s)
]
s=0

=

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

∂

∂s

[
Ai,l(x, Y ; s)((I −G(x, Y ; s))−1)l,oBo,j(x, Y ; s)

]
s=0

=

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[[ ∂
∂s
Ai,l(x, Y ; s)

]
Bo,j(x, Y ; s)((I −G(x, Y ; s))−1)l,o +

Ai,l(x, Y ; s)
[ ∂
∂s
Bo,j(x, Y ; s)

]
((I −G(x, Y ; s))−1)l,o +

Ai,l(x, Y ; s)Bo,j(x, Y ; s)
[ ∂
∂s

((I −G(x, Y ; s))−1)l,o
]]
s=0

=

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
[ΛA(x, Y )i,lBo,j(x, Y ) + Ai,l(x, Y )ΛB(x, Y )(o, j)] ×

((I −G(x, Y ))−1)l,o + Ai,l(x, Y )Bo,j(x, Y )
(
(I −G(x, Y ))−1 ×

Λψ(x, Y )(I −G(x, Y ))−1
)
l,o

]
, (2.6.35)
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where the last line of the equation is obtained by equations 2.6.29 to 2.6.32. The

right side of the above equation is analytic for | x |< x0(Y ) and Theorem A.0.8 yields

∑
n≥1

E(ψ(Xn))Zn(N,M ;Y )xn =

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
[Λ1(i, l)Bo,j(x0(Y ), Y ) + Ai,l(x0(Y ), Y )Λ1(o, j)] ×

(ηY )l(ς
T
Y )o(ς

T
YG

′(x0(Y ), Y )ηY )−1(x0(Y ) − x)−1 +

Ai,l(x0(Y ), Y )Bo,j(x0(Y ), Y )(ηY ς
T
Y ΛψηY ς

T
Y )l,o ×

(ςTYG
′(x0(Y ), Y )ηY )−2(x0(Y ) − x)−2

]
+O((x0(Y ) − x)−1)

(2.6.36)

as x→ x0(Y ).

Therefore, differentiating both sides of the above equation n times with respect

to x, dividing by n! and setting x = 0 gives

EY (ψ(Xn))Zn(N,M ;Y ) =
Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
[Λ1(i, l)Bo,j(x0(Y ), Y ) + Ai,l(x0(Y ), Y )Λ2(o, j)] ×

(ηY )l(ς
T
Y )oβ

−1
Y (x0(Y ))−n + Ai,l(x0(Y ), Y )Bo,j(x0(Y ), Y ) ×

(ηY ς
T
Y ΛψηY ς

T
Y )l,oβ

−2
Y n(x0(Y ))−n

]
+O((x0(Y ))−n)

= γ′Y n(x0(Y ))−n +O((x0(Y ))−n), (2.6.37)

where

γ′Y = β−2
Y

Π1(k)∑
i=1

Π2(k)∑
j=1

Π(k)∑
o=1

Π(k)∑
l=1

[
Ai,l(x0(Y ), Y )Bo,j(x0(Y ), Y )(ηY ς

T
Y ΛψηY ς

T
Y )l,o

]
.

(2.6.38)

Similarly, by the proof of Theorem 2.6.1, for any ε > 0 such that 0 < x0(Y )−1−ε <

1

Zn(N,M ;Y ) = αY (x0(Y ))−n +O((x0(Y )−1 − ε)n), (2.6.39)
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as n→ ∞.

Therefore, equations 2.6.37 and 2.6.39 imply that as n→ ∞

EY (ψ(Xn)) = γY n+O(1), (2.6.40)

where

γY =
γ′Y
αY

=∑Π1(k)
i=1

∑Π2(k)
j=1

∑Π(k)
o=1

∑Π(k)
l=1

[
Ai,l(x0(Y ), Y )Bo,j(x0(Y ), Y )(ηY ς

T
Y ΛψηY ς

T
Y )l,o

]
βY
∑Π1(k)

i=1

∑Π2(k)
j=1

∑Π(k)
o=1

∑Π(k)
l=1

[
Ai,l(x0(Y ), Y )(ηY )l(ςY )ToBo,j(x0(Y ), Y )

] .

(2.6.41)

Corollary 2.6.3.

1

n
EY (ψ(Xn)) → γY (2.6.42)

as n→ ∞.
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Chapter 3

Polygonal Knots and Links in Z
3

The entanglement complexity of polymers has been explored using a variety of

rigorous [43, 55] and numerical methods [23, 29, 35, 59]. In particular, knotting and

linking have been frequently used to measure the topological entanglement of ring

polymers, modeled by self-avoiding polygons [25, 42]. The main advantage of this

approach is that knots and links are mathematically well defined and they are of

special interest to chemists and molecular biologists [56, 60, 61].

In order to discuss polygonal topological entanglement via knotting and linking

we need to introduce some definitions and results from topology; this background

information is given in Section 3.1. Then some theorems and arguments concerned

with the knotting and linking probability of lattice polygons in Z3 are reviewed in

Section 3.2. In order to investigate the influence of the tube constraint on a polygon’s

topological entanglement complexity, knotting and linking probabilities for polygons

in tubes are also considered in Section 3.3.

3.1 Knots, Links and 2-String Tangles

A quick review of the main definitions and results related to knots, links and 2-

string tangles is given in this section. We will be using these results in the next

sections of this chapter as well as the next chapters to discuss the knotting and

linking probability of lattice polygons. Unless stated otherwise, the discussion in

this section is based on the presentation in [7]. Note that some of the definitions

and theorems of this section can be stated for arbitrary topological spaces X and

Y . However, for our purpose, here we will take X and Y to be subsets of the
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three-dimensional Euclidean space R3 with the usual topology.

The two topological spaces X ⊆ R
3 and Y ⊆ R

3 are said to be homeomorphic

if there exists a bijection f : X → Y such that both f and its inverse, f−1, are

continuous functions. f then will be called a homeomorphism. Any subset K of R3

which is homeomorphic to the unit circle S1 = {(x1, x2) ∈ R2 |
√
x2

1 + x2
2 = 1} ⊂ R2

is said to be a knot (e.g. see Figure 3.1 (a) and (b)). A polygonal knot in R3 is a knot

K ⊂ R3 that is the union of a finite number of closed straight-line segments, called

edges, in R3 (e.g. see Figure 3.2 (a)); the point of intersection of any two edges of a

polygonal knot is called a vertex. So a self-avoiding polygon in Z
3 can be considered

as a polygonal knot.

(a) Unknot (b) Trefoil knot

(c) Unlink (d) A linked link

Figure 3.1: Examples of knots and links.

A homotopy of a topological space X ⊆ R3 is a continuous map h : X×[0, 1] → R3

such that h(x, 0) = x for any x ∈ X. The restriction of h to level t ∈ [0, 1] is defined
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(a) An example of a polygonal knot (b) An example of a polygonal link

Figure 3.2: Polygonal knots and links.

to be ht : X → R3 given by ht(x) = h(x, t). Note that here t is chosen to indicate

time, and the images ht(X) for increasing values of t show the evolution of X in R3.

An isotopy of a topological space X ⊆ R3 is a homotopy of X, h : X × [0, 1] → R3,

such that ht : X → ht(X) is a homeomorphism for any t ∈ [0, 1]. Two topological

spaces X ⊆ R3 and Y ⊆ R3 are said to be ambient isotopic if there is an isotopy of

R3, h : R3 × [0, 1] → R3, such that it carries X to Y , i.e. h(X, 1) = h1(X) = Y .

Two ambient isotopic knots are said to have the same knot type. Any knot

ambient isotopic to the unit circle S1 is called an unknot (see Figure 3.1 (a)); otherwise

it is called knotted (e.g. see Figure 3.1 (b)).

A link L is defined to be a finite disjoint union of knots, i.e. L = K1 ∪ ... ∪Kn

for some n ∈ N. Each knot in the union is called a component of the link and

L = K1 ∪ ... ∪ Kn is called an n-component link (e.g. see Figure 3.1 (c) and (d)).

Note that a knot can also be considered as a one-component link. A polygonal link

is a finite disjoint union of polygonal knots (e.g. see Figure 3.2 (b)). Here we focus

on two-component links (a disjoint union of two knots). Two links L1 and L2 are

said to have the same link type if they are ambient isotopic, i.e. there is an isotopy

h : R3 × [0, 1] → R3 such that h(L1, 0) = h0(L1) = L1 and h(L1, 1) = h1(L1) = L2.

Hereafter we restrict our discussion to links (knots) which are ambient isotopic to a

polygonal link (knot). Hence, in the remainder of thesis the term “link” (“knot”)

refers only to links (knots) which are ambient isotopic to a polygonal link (knot).
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The following definitions and results are given for both links and knots, viewed

as one-component links. Let L ⊂ R3 be a link (knot) and let π : R3 → R2 be

a projection map. A point x ∈ π(L) is regular if π−1(x) is a single point, and is

singular otherwise. If | π−1(x) |= 2 then x is called a double point. If π(L) has

a finite number of singular points and they are all transverse double points, the

projection is said to be regular.

Theorem 3.1.1 (Theorem 3.2.1 [7]). Every polygonal link (polygonal knot) L has a

regular projection.

A link (knot) diagram D is a regular projection of a link that has relative height

information added to it at each of the double points. The convention is to make

breaks in the line corresponding to the strand that passes underneath (e.g. see

Figure 3.1). The double points in the projection are called crossings in the diagram.

Theorem 3.1.2 (Theorem 3.3.2 [7]). Every polygonal link (polygonal knot) L has a

regular diagram.

Informally, the following theorem from [31, Theorem 1, Chapter 2] says that, for

any given projection plane P and any given polygonal knot K, we can always find

another polygonal knot in the neighborhood of K which has a regular projection

into P and has the same knot type as K.

Theorem 3.1.3 (Theorem 1, Chapter 2 [31]). Given any projection plane P , let K

be a polygonal knot determined by the ordered set of vertices (v1, ..., vn). For every

number δ > 0 there is a polygonal knot K ′ determined by an ordered set of vertices

(v′1, ..., v
′
n) such that the distance from vi to v′i is less than δ for all 1 ≤ i ≤ n, K ′

and K have the same knot type, and the projection of K ′ in P is regular.

This theorem leads to the following corollary which will be particularly important

later, in sections 4.8 and 6.8, when we investigate the topological entanglement of

polygons by looking at their regular diagrams.
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Corollary 3.1.4. Given any plane P , any positive real number δ, positive integers

N , M , and any vertex-disjoint finite union G of SAPs in T (N,M), let v1, ..., vn be

the vertices of G. Then, there exists a polygonal link L in R3 with vertices l1, ..., ln

that has the same link type as G, has |li − vi| ≤ δ for each i = 1, ..., n, and has a

regular projection into the plane P . In particular we can choose P as the (x, y)- or

(x, z)-plane to generate regular projections Dz
G and Dy

G respectively. Moreover, let

{vi, vj} be any edge in G where vi = (xi, yi, zi) and vj = (xj , yj, zj). Then there is a

corresponding edge {wi, wj} in Dy
G with wi = (x̂i, 0, ẑi) and wj = (x̂j , 0, ẑj) and with

x̂i− δ ≤ xi ≤ x̂i + δ and ẑi− δ ≤ zi ≤ ẑi + δ. Similarly there is a corresponding edge

{w′
i, w

′
j} in Dz

G with w′
i = (x′i, y

′
i, 0) and wj = (x′j , y

′
j, 0) and with x′i− δ ≤ xi ≤ x′i+ δ

and y′i − δ ≤ yi ≤ y′i + δ.

Hereafter we take δ = 1/6. Given any vertex-disjoint union G of SAPs in

T (N,M), we fix a polygonal link LG = L (L′) as prescribed by the lemma and

define the regular diagram Dy
G (Dz

G) to be LG’s regular projection in the (x, z)-plane

((x, y)-plane).

Next we would like to discuss a significant invariant of links, called the linking

number. Before that we need to give a brief introduction to orientable and compact

surfaces.

The upper half-space in R2 is the set R2
+ = {(x1, x2) ∈ R2 | x2 ≥ 0}. Its

boundary is {(x1, x2) ∈ R2 | x2 = 0} which is homeomorphic to R1. A neighborhood

of x ∈ X is a set U ⊆ X, which contains an open set V containing x. Any X ⊆ R3 is

called a surface if each point x ∈ X has a neighborhood U � x which is homeomorphic

to R2 or to R2
+. If x ∈ U maps to a point in the boundary of R2

+ then x is a boundary

point of X. The set of all boundary points, denoted by ∂X, is called the boundary

of X.

A cover of a set X is a collection of sets in X, C = {Uα}α∈A where Uα ⊆ X, such

that X is a subset of the union of the sets in C, i.e. X ⊇
⋃
α∈A Uα. Any subset of

C which is a cover of X is called a subcover of C. A surface X ⊆ R3 is said to be

compact if for any given covering of X by open sets, we can find a finite subcover.
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Here since X ⊂ R3 inherits the usual topology, X is compact if and only if it is

closed and bounded.

Informally, a surfaceX ⊂ R3 is orientable if a two-dimensional figure (for example

a disc with two distinguishable sides) cannot be moved around the surface and back

to where it started so that it looks like its own mirror image. Otherwise the surface

is non-orientable. More precisely, a surface X is orientable if there is no continuous

map f : B2 × [0, 1] → X, where B2 = {(x1, x2) ∈ R
2 |

√
x2

1 + x2
2 ≤ 1} ⊂ R

2, such

that f(b, t) = f(c, t) only if b = c for any t in [0, 1], and f(b, 0) = f(r(b), 1) for every

b in B2, where r : B2 → B2 is a reflection map. i.e. r(x1, x2) = (−x1,−x2) for any

(x1, x2) ∈ B2.

There are three types of linking defined in topology: topological linking, ho-

motopic linking and homological linking. Here we focus only on topological and

homological linking. We say two disjoint knots K1 and K2 are topologically unlinked

(splittable) if there is a homeomorphism, f , of R3 onto itself such that the images

f(K1) and f(K2) are separated by a two-dimensional plane; any link ambient iso-

topic to a pair of splittable unknots is called an unlink. On the other hand, K1 and

K2 are said to be homologically unlinked if K1 bounds an orientable surface which

is disjoint from K2. K1 is said to be homotopically unlinked from K2 if there is a

homotopy h, from K1 to the constant map (i.e. h0(K1) = K1 and h1(K1) is a point)

such that ht(K1) is disjoint from K2 for any t ∈ [0, 1]. Note that homotopic linking

is not a symmetric relation; i.e. it is possible for K1 to be homotopically unlinked

from K2 but for K2 to be homotopically linked to K1. The following theorem shows

the relation between the different types of linking:

Theorem 3.1.5 ([44]). Homological linking implies homotopic linking and homotopic

linking implies topological linking.

One way to determine whether a two-component link L is homologically linked

is by calculating the linking number as follows. In a regular diagram D of L with

n crossings c1, c2, . . . , cn, let c1, c2, . . . , cl, l ≤ n, be the crossings that involve both

components of L. We choose an orientation of each of the two components of L
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and assign a sign, σi ∈ {−1, 1}, 1 ≤ i ≤ l to each of the l crossings by applying a

right-hand-rule (see Figure 3.3 (a)). The linking number of D is then computed by

the following formula (e.g. see Figure 3.3):

Lk(K1, K2) =
1

2

l∑
i=1

σi. (3.1.1)

Note that the absolute value of this linking number is independent of the choice of the

diagram D and is also independent of the orientation given to the two components.

The following theorem relates homological linking to the linking number.

Theorem 3.1.6 (Corollary 5.7.4 [7]). Two knots K1 and K2 are homologically linked

if and only if

Lk(K1, K2) 
= 0. (3.1.2)

Note that, by Theorems 3.1.5 and 3.1.6, any 2-component link with non-zero

linking number is non-splittable; however there are non-splittable links with linking

number zero (for example the Whitehead link [44] shown in Figure 3.3 (c)).

There is an operation, called the connected sum, defined on knots which allows

one to connect two knots in order to create a new knot. This operation can be

described as follows: For any pair of knots K1 and K2, consider a regular diagram of

these knots and suppose these diagrams are disjoint. Find a pair of distinct points

on K1, (a, b), and a pair of distinct points on K2, (c, d), such that: 1) The arc in K1

(K2) joining a (c) to b (d), âb (ĉd), does not contain any double point of the diagram.

2) There exist two disjoint arcs âc and b̂d in R2 connecting a to c and b to d in the

diagram, respectively, so that âc (b̂d) intersects K1 and K2 only at a (b) and c (d)

(e.g. see Figure 3.4 (c)). Now join the two knots together by deleting the two arcs

âb and ĉd from the knots and adding the arcs âc and b̂d (e.g. see Figure 3.4 (d)).

This procedure results in a diagram of a new knot which is called the connected sum

of the original knots K1 and K2 and is denoted by K1#K2 (e.g. see Figure 3.4).

Theorem 3.1.7 ([44]). For any pair of knots K1 and K2, the connected sum K1#K2
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-1

+1
-1

+1

(a) An example of a splittable link with
linking number zero

+1

+1

(b) An example of a link with linking
number one

+1

+1

-1

-1

(c) Whitehead Link; an example of a non-
splittable link with linking number zero

Figure 3.3: Examples of links with different linking numbers.

is well-defined, i.e. it is independent of the choice of diagrams for K1 and K2 and

also the choice of arcs on K1 and K2.

Given a link τ , we can also consider the augmented link τ#, defined as the union

of all links which can be obtained from τ by taking the connected sum of each of

its components with any knot (including the unknot). Any link in this union is

said to have augmented link type τ# (e.g see Figure 3.5). Note that regarding the

construction of τ#, roughly speaking, the knot components K1 and K2 of any link

L = (K1, K2) in τ# are linked in the same way as the components of the other links

in τ#; however, the links in τ# do not necessarily have the same link type.

Next, we give a brief introduction to 2-string tangles. Then we state a lemma,
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(a) Unknot (b) Trefoil knot

a
b

c
d

(c)

a
b

c
d

(d) The connected sum of unknot and tre-
foil knot

Figure 3.4: The connected sum of an unknot with a trefoil knot
resulting in another trefoil knot.

from [37, 38], indicating the conditions under which a two-component link is non-

splittable (topologically linked). We will use this result later, in chapters 4 and 5, to

define a pattern that guarantees topological linking of polygons.

The following definitions are presented from [38]. A 2-string tangle is a pair (B, t)

where B is a 3-ball, i.e. it is homeomorphic to {(x1, x2, x3) ∈ R3 |
√
x2

1 + x2
2 + x2

3 ≤

1} ⊂ R
3, and t is a set of two disjoint arcs properly embedded in B. Any subset E

of R3 that is homeomorphic to [0, 1] is called an arc. An arc E is said to be properly

embedded in B if there is a continuous function f : [0, 1] → B such that E = f([0, 1])

is homeomorphic to [0, 1] and the two endpoints of the arc, f(0) and f(1), are the

only points in the boundary of B. Note that S2 is the boundary of B. Any surface

D that is homeomorphic to D1 ≡ {(x1, x2, 0) ∈ R3 |
√
x2

1 + x2
2 ≤ 1} ⊂ R3 is called
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(a) τ (b) τ ′

Figure 3.5: τ ′ is an augmented link made by connecting a trefoil knot
to one of τ ’s components. τ ′ has augmented link type τ# but doesn’t
have the same link type as τ .

a disc. A disc D is said to be properly embedded in B if there is a continuous function

f : D1 → B such that D = f(D1) is homeomorphic to D1 and ∂D is a subset of

the boundary of B and no other point of D intersects the boundary of B. Two

tangles are considered equivalent if there is an ambient isotopy of one tangle to the

other keeping the boundary of the 3-ball fixed. A tangle (B, t) is locally trivial if any

2-sphere in B which meets t transversely in two points bounds in B the unknotted

tangle, i.e. the trivial tangle on one string. A 2-string tangle (B, t) is inseparable

if the two arcs cannot be separated by a disk properly embedded in B. A tangle is

prime if it is locally trivial and inseparable, see [30, 38] for more details on tangles.

Examples of trivial, prime and separable tangles are illustrated in Figure 3.1.

Let S3 denote the three dimensional sphere, i.e. S3 = {(x1, x2, x3, x4) ∈ R
4 |√

x2
1 + x2

2 + x2
3 + x2

4 = 1} ⊂ R4. The following is shown in [37, 38] (actually it is

shown in more general terms involving tangles on n strings):

Lemma 3.1.8 ([37, 38]). (i) Let (C, v) be a 2-string tangle and let D be a disk

properly embedded in C that intersects both arcs of (C, v) in a single point each

and separates (C, v) into two 2-string tangles (A, t) and (B, u). Let (B, u) be an

inseparable tangle. Suppose for any disk D′ properly embedded in A with D′∩∂D = ∅

and D′ ∩ t = ∅ that D′ does not separate t, then (C, v) is an inseparable tangle.

56



(a) (b)

(d) (e)

(c)

Figure 3.6: (a) is the trivial 2-string tangle, (b) is equivalent to the
trivial 2-string tangle, (c) is the trivial 1-string tangle, (d) is a prime
tangle and (e) is a separable tangle that is not locally trivial so it is not
a prime tangle.

(ii) Let L be a link in S3. Suppose that S is a 2-sphere in S3 meeting L trans-

versely in 4 points and dividing (S3, L) into two 2-string tangles (A,A ∩ L) and

(B,B ∩ L). Then if the two tangles (A,A∩ L) and (B,B ∩ L) are inseparable, then

L is non-splittable.

3.2 Asymptotic Behaviour of Polygonal Knots and

Links in Z
3

In this section some results on the asymptotic behaviour of the number of polygonal

knots and links, with some specific topological properties, in Z3 are reviewed. In

particular, the knotting probability of lattice polygons, considered as a knot or as a
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component of a two-component link in Z3, is discussed.

Let pon be the number of n-edge unknotted SAPs in Z3 up to translation. The

following theorem holds.

Theorem 3.2.1 (Sumners and Whittington 1988 [55]).

lim
n→∞

n−1 log pon ≡ κo < κ, (3.2.1)

hence the probability that an n-edge self-avoiding polygon is knotted, pn−po
n

pn
, goes to

unity as 1 − e−αn+o(n) when n→ ∞, with α ≡ κ− κo.

(a) A tight trefoil pattern (b) An occurrence of a tight trefoil pattern
in a knot

Figure 3.7: A tight trefoil pattern such that its occurrence in any
polygon guarantees that the polygon is knotted.

The proof of Theorem 3.2.1 is based on the pattern theorem for SAPs in Z3, The-

orem 2.3.1, and the fact that any lattice polygon containing a tight trefoil pattern

(see Figure 3.7) must be knotted. We will later use a similar strategy to discuss the

topological linking probability of two self-avoiding polygons. Note that the existence

of the connective constant for unknotted SAPs is mainly based on the fact that con-

catenating any two unknotted SAPs, as described in Section 2.2, results in another

unknotted SAP.

Given a non-splittable two-component link τ , let p
(2)
n (τ#) denote the number of

polygonal links (ω1, ω2) in Z3 (i.e. (ω1, ω2) has its vertices in Z3) having the same
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augmented link type as τ# and consisting of two mutually avoiding self-avoiding

polygons each with n edges (up to translation). The following theorem explores the

asymptotic behaviour of the number of such polygonal links in Z3.

Theorem 3.2.2 (Orlandini et al. 1994 [39]). Let τ be a non-splittable two-component

link. Then

lim
n→∞

log p
(2)
n (τ#)

2n
= κ. (3.2.2)

Given a two-component link τ , let p
(2)
n (M, τ#) denote the number of polygonal

links (ω1, ω2) in a cube of side M , having the same augmented link type as τ# and

consisting of two mutually avoiding self-avoiding polygons each with n edges.

Theorem 3.2.3 (Orlandini et al. 1994 [39]). Let τ be a two-component link. Then

lim
n,M→∞

log p
(2)
n (M, τ#)

2n
= κ (3.2.3)

provided that n and M both go to infinity such that M ≥ n+ q and M = eo(n). Here

q is independent of n and M , but may depend on τ .

In order to investigate the asymptotic behaviour of polygonal links, one must

somehow constrain the two polygons so that there is a finite number of configurations

with n-edges. In Theorem 3.2.2, one type of constraint is considered by assuming τ

to be a non-splittable link. Confinement of polygonal links to a cube of side M is also

another type of constraint which is assumed in Theorem 3.2.3. Next, we will consider

a similar but different type of constraint and investigate the asymptotic behaviour

of both splittable and non-splittable polygonal links in Z
3. Given any pair of edges

e and f in E(Z3), the distance between these two edges, d(e, f), is defined to be

the Euclidean distance between the midpoints of e and f . Given a non-negative

integer k, let p
(2)
n (k) be the number (up to translation) of polygonal links (ω1, ω2)

in Z3 consisting of two mutually avoiding self-avoiding polygons each with n edges

and having a pair of edges, one from each polygon, within distance k of each other.
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Let p
(2)
n (u; k) denote the number (up to translation) of such polygonal links in Z3

which are non-splittable. Hence p
(2)
n (s; k) ≡ p

(2)
n (k)−p(2)

n (u; k) is the number of those

polygonal links in Z3 which are spittable. The following theorem holds.

Theorem 3.2.4.

lim
n→∞

log p
(2)
n (k)

2n
= lim

n→∞
log p

(2)
n (u; k)

2n
= lim

n→∞
log p

(2)
n (s; k)

2n
= κ. (3.2.4)

Proof. The proof presented here is a straightforward modification of the proof of

Theorem 3.2.2 given in [39, Theorem 2.2].

Let (ω1, ω2) be a polygonal link in Z3 consisting of two mutually avoiding self-

avoiding polygons ω1 and ω2 each with n edges and having a pair of edges, one from

each polygon, within distance k of each other. Let v be the bottom vertex of ω1. ω1

is confined to a cube, C1, of side n with bottom vertex v − (n
2
, n

2
, n

2
), in particular,

because the span of an n-edge polygon cannot exceed n
2
. Let C2 be a cube, containing

C1, with side length 2n+ 2k and bottom vertex v − (n+ k, n+ k, n+ k). Note that

(ω1, ω2) cannot contain a pair of edges, one from each polygon, k units apart if

the bottom vertex of the other polygon, ω2, is not within the cube C2. So we can

construct each polygon in pn ways and translate one relative to the other in at most

(2n+ 2k)3 positions. Hence the following upper bound is obtained for p
(2)
n (k):

p(2)
n (k) ≤ (2n+ 2k)3p2

n. (3.2.5)

Taking logarithms, dividing both sides of the above equation by 2n and taking the

limit superior as n→ ∞ gives

lim sup
n→∞

log p
(2)
n (k)

2n
≤ κ. (3.2.6)

Since p
(2)
n (u; k) ≤ p

(2)
n (k) and p

(2)
n (s; k) ≤ p

(2)
n (k), the above equation also implies

lim sup
n→∞

log p
(2)
n (u; k)

2n
≤ κ (3.2.7)
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and

lim sup
n→∞

log p
(2)
n (s; k)

2n
≤ κ. (3.2.8)

Define the two-component polygonal link (ω′
1, ω

′
2) as follows (e.g. see Figure

3.8 (a)): Let ω′
1 be the polygon which is the undirected version of the closed walk

((1+k)ĵ, 2̂i, k̂,−(1+k)ĵ,−k̂,−2̂i) starting at the origin. Let also ω′
2 be the polygon

which is the undirected version of the closed walk (k̂, (1+k)ĵ,−k̂, 2̂i,−(1+k)ĵ,−2̂i)

starting at (1, 1, 0). Note that each polygon has 2k + 8 edges, and (ω′
1, ω

′
2) is a

non-splittable link containing the pair of edges e′1 = {(1, 1 + k, 0), (2, 1 + k, 0)} and

e′2 = {(1, 1, 0), (2, 1, 0)}, respectively from ω′
1 and ω′

2, exactly k units apart. Given

any pair of (n − 2k − 8)-edge polygons G1 and G2 in Z
3, using the concatenation

argument for SAPs in Z3, one can easily concatenate G1 to ω′
1 and ω′

2 to G2 to obtain

a new pair of polygons G1 ◦ ω′
1 and ω′

2 ◦G2. An example is illustrated in Figure 3.8.

Regarding the construction, (G1 ◦ ω′
1, ω

′
2 ◦ G2) is a non-splittable link containing a

pair of edges exactly k units apart. Note that, by the concatenation argument for

SAPs in Z3, both G1 (G2) and the polygon obtained by rotating G1 (G2) give rise

to the same polygon G1 ◦ω′
1 (ω′

2 ◦G2). So there are exactly pn−2k−8/2 choices for G1

(G2). Hence the following lower bound is obtained for p
(2)
n (u; k).

p2
n−2k−8/4 ≤ p(2)

n (u; k). (3.2.9)

Taking logarithms, dividing both sides of the above equation by 2n and taking the

limit inferior as n→ ∞ gives

κ ≤ lim inf
n→∞

log p
(2)
n (u; k)

2n
. (3.2.10)

Therefore, equations 3.2.7 and 3.2.10 together yield

lim
n→∞

log p
(2)
n (u; k)

2n
= κ. (3.2.11)
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1e

2e

1G 2G(ω′
1, ω

′
2)

(a) The 8-edge polygons G1 and G2, and the 20-
edge link (ω′

1, ω
′
2).

(b) The 36-edge link (G1 ◦ ω′
1, ω

′
2 ◦ G2).

Figure 3.8: An example of constructing (G1 ◦ ω′
1, ω

′
2 ◦ G2) from G1,

G2 and (ω′
1, ω

′
2). Note that the edges shown with thicker lines are in

the plane z = 1 and the rest are in the plane z = 0. The four edges
added to concatenate G1 to ω′

1 and ω′
2 to G2 are shown with dashed

lines. Note that in this example k = 1, n = 18 and the two edges
e′1 = {(1, 2, 0), (2, 2, 0)} and e′2 = {(1, 1, 0), (2, 1, 0)} are exactly 1 unit
apart.

A similar argument to that presented above works also for splittable polygons.

Define the two-component polygonal link (ω′′
1 , ω

′′
2) as follows: Let ω′′

1 be the poly-

gon which is the undirected version of the closed walk (ĵ, î,−ĵ,−î) starting at the

origin. Let also ω′′
2 be the polygon which is the undirected version of the closed

walk (ĵ, î,−ĵ,−î) starting at (k + 1, 0, 0). Note that each polygon has 4 edges

and (ω′′
1 , ω

′′
2) is a splittable link with the pair of edges e′′1 = {(1, 0, 0), (1, 1, 0)} and

e′′2 = {(1 + k, 0, 0), (1 + k, 1, 0)}, respectively from ω′′
1 and ω′′

2 , exactly k units apart.

Given any pair of (n − 4)-edge polygons G1 and G2 in Z3, using the concatenation

argument for SAPs in Z3, one can easily concatenate G1 to ω′′
1 and ω′′

2 to G2 to

obtain a new pair of polygons G1 ◦ ω′′
1 and ω′′

2 ◦ G2. Regarding the construction,

(G1 ◦ω′′
1 , ω

′′
2 ◦G2) is a splittable link containing a pair of edges exactly k units apart.

Note that, by the concatenation argument for SAPs in Z
3, both G1 (G2) and the

polygon obtained by rotating G1 (G2) give rise to the same polygon G1◦ω′′
1 (ω′′

2 ◦G2).
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So there are exactly pn−4/2 choices for G1 (G2). Hence the following lower bound is

obtained for p
(2)
n (s; k).

p2
n−4/4 ≤ p(2)

n (s; k). (3.2.12)

Taking logarithms, dividing both sides of the above equation by 2n and taking the

limit inferior as n→ ∞ gives

κ ≤ lim inf
n→∞

log p
(2)
n (s; k)

2n
. (3.2.13)

Therefore, equations 3.2.8 and 3.2.13 together yield

lim
n→∞

log p
(2)
n (s; k)

2n
= κ. (3.2.14)

Furthermore, the fact that p
(2)
n (u; k) ≤ p

(2)
n (k), equation 3.2.6 and 3.2.10 imply

that

lim
n→∞

log p
(2)
n (k)

2n
= κ. (3.2.15)

Therefore, equations 3.2.11, 3.2.14 and 3.2.15 yield

lim
n→∞

log p
(2)
n (k)

2n
= lim

n→∞
log p

(2)
n (u; k)

2n
= lim

n→∞
log p

(2)
n (s; k)

2n
= κ. (3.2.16)

Like the knotting probability of a single polygon, one can ask under what condi-

tions are all but exponentially few sufficiently long pairs of polygons linked? If the

two polygons are constrained to have a pair of edges, one from each polygon, within

a fixed distance from each other, Theorem 3.2.4 establishes that the exponential

growth rate of the number of topologically linked polygon pairs (up to translation)

is equal to that of the number of topologically unlinked polygon pairs. So, unlike

the situation with knotting, we cannot say that all but exponentially few sufficiently

long pairs of self-avoiding polygons are linked, even with this distance constraint. It

is possible (although not proved) that the linking probability goes to one as n goes

to infinity, but it will not go to one exponentially rapidly.
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The following theorem investigates the knotting probability of the knot compo-

nents of the polygonal links in Z3 which have the same augmented link type as τ#,

for a non-splittable link τ .

Theorem 3.2.5 (Orlandini et al. 1994 [39]). Let τ be a non-splittable two-component

link. The probability P(2)(n, τ#) that both components (each with n edges) of a polyg-

onal link (ω1, ω2) in Z
3 with augmented link type τ# are knotted goes to unity as

P
(2)(n, τ#) = 1 − e−αn+o(n) (3.2.17)

when n→ ∞. α is the value introduced in Theorem 3.2.1.

Given a non-splittable two-component link τ with each component the unknot,

let p
(2)
n (τ) denote the number of polygonal links (ω1, ω2) in Z3 having the same link

type as τ and consisting of two mutually avoiding unknotted self-avoiding polygons

each with n edges (up to translation). The following theorem shows that p
(2)
n (τ)

grows exponentially with n and the exponential growth rate is independent of the

link type τ [39, 52].

Theorem 3.2.6 (Orlandini et al. 1994 [39]). Let τ be a non-splittable two-component

link with each component the unknot. Then

lim
n→∞

log p
(2)
n (τ)

2n
= κo. (3.2.18)

Note that theorems 3.2.2, 3.2.4 and 3.2.5 can be easily extended to obtain similar

results for k-component links, i.e. disjoint unions of k self-avoiding polygons [52].

3.3 Asymptotic Behaviour of Polygonal Knots and

Links in Tubes

The goal of this section is to discuss the effects of the tube constraint on the topo-

logical entanglement of polygons measured by knotting and linking probability.
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Let pon(N,M) denote the number (up to x-translation) of n-edge unknotted SAPs

in an (N,M)-tube. The following theorem shows that a similar result to Theorem

3.2.1 holds for lattice polygons in tubes, i.e.

Theorem 3.3.1 (Soteros 1998 [51]). For N and M such that the (N,M)-tube can

contain a tight trefoil K̃b pattern for some b > 0

lim
n→∞

n−1 log pon(N,M) ≡ κo(N,M) < κp(N,M) (3.3.1)

and hence the probability that a self-avoiding polygon in an (N,M)-tube is knotted

goes to unity as 1 − e−α(N,M)n+o(n) when n → ∞, with α(N,M) = κp(N,M) −

κo(N,M).

The idea of the proof of this theorem is similar to that given for Theorem 3.2.1

except that here the pattern theorem for SAPs in tubes, Theorem 2.4.2, is used

instead of that for SAPs in Z3.

Given a non-splittable two-component link τ , let p
(2)
n ((N,M), τ#) denote the

number of polygonal links (ω1, ω2) in T (N,M) having the same augmented link type

as τ# and consisting of two mutually avoiding self-avoiding polygons each with n

edges (up to x-translation). The following theorem is a straightforward modification

of Theorem 3.2.2 for polygonal links in tubes.

Theorem 3.3.2 (Tesi et al. [58]). Let τ be a non-splittable two-component link.

Then

lim
n→∞

log p
(2)
n ((N,M), τ#)

2n
= κp(N,M). (3.3.2)

Let p
(2)
n ((N,M), u; k) (p

(2)
n ((N,M), s; k)) denote the number (up to x-translation)

of non-splittable (splittable) polygonal links (ω1, ω2) in T (N,M) consisting of two

mutually avoiding self-avoiding polygons each with n edges and having a pair of

edges, one from each polygon, within a fixed distance k from each other. The fol-

lowing theorem explores the asymptotic behaviour of the number of such polygonal

links in T (N,M).
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Theorem 3.3.3.

lim
n→∞

log p
(2)
n ((N,M), u; k)

2n
= lim

n→∞
log p

(2)
n ((N,M), s; k)

2n
= κp(N,M). (3.3.3)

We can use an argument similar to that given for the proof of Theorem 3.2.4

to prove Theorem 3.3.3, except that the concatenation for SAPs in a tube will be

needed instead of that for SAPs in Z3. Theorem 3.3.3 shows that in a tube, as in

Z3, even if two edges, with one from each polygon, are forced to be close, the rest of

each polygon has a considerable amount of freedom so that their centres of mass can

be very far apart. Therefore, like the situation in Z
3, we cannot say that in a tube

all but exponentially few sufficiently long pairs of self-avoiding polygons are linked.

However, later in Chapter 4, we will consider a much more severe distance constraint

and will prove that in this case for large enough values of n the two polygons would

be linked with high probability (except here n will be the total number of edges).

Given a non-splittable two-component link τ with each component the unknot, let

p
(2)
n ((N,M), τ) denote the number of polygonal links (ω1, ω2) in T (N,M) having the

same link type as τ and consisting of two mutually avoiding unknotted self-avoiding

polygons each with n edges (up to x-translation). A straightforward modification of

Theorem 3.2.6 implies the following result for polygons in a tube.

Theorem 3.3.4 (Tesi et al. [58]). Let τ be a non-splittable two-component link with

each component the unknot. Then

lim
n→∞

log p
(2)
n ((N,M), τ)

2n
= κo(N,M). (3.3.4)
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Chapter 4

The Linking Probability of Two SAPs

Confined To and Spanning a Tube

4.1 Introduction

Polygonal self-entanglements have been investigated using topological measures such

as the probability of knotting. In particular, as discussed in Section 3.2, it has been

proved, both in Z3 and in a tube, that all but exponentially few sufficiently long

self-avoiding polygons are knotted and thus the probability of knotting of lattice

polygons approaches one as the size of a polygon goes to infinity [43, 51, 55]. One

can ask similar questions regarding the entanglement complexity of two self-avoiding

polygons. For example, under what conditions are all but exponentially few suffi-

ciently long pairs of polygons linked? If the two polygons are constrained to have a

pair of edges, one from each polygon, which are within a fixed distance from each

other, Theorem 3.2.4 established that the exponential growth rate of the number of

topologically linked polygon pairs (up to translation) is equal to that of the num-

ber of topologically unlinked polygon pairs. So, unlike the situation with knotting,

we cannot say that all but exponentially few sufficiently long pairs of self-avoiding

polygons are linked, even with this distance constraint. It is possible (although not

proved) that the linking probability goes to one as n goes to infinity, but it will not

go to one exponentially rapidly.

As discussed previously in Theorem 3.3.2, Tesi et al [58] investigated the same

question for pairs of mutually avoiding self-avoiding polygons confined to tubes and

came to the same conclusion. In this chapter we consider a much more severe distance
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constraint. The two polygons are constrained in such a way that (roughly speaking)

each edge of one polygon is forced to be “close” to some edge of the other polygon. In

this case one might expect that for large enough values of n the two polygons would

be linked with high probability. This type of constraint was investigated numerically

by Orlandini et al [39] and Tesi et al [58] who considered two n-edge polygons confined

to a lattice cube with side length M and used Monte Carlo simulation to estimate

the average linking number as a function of n and M ; their results (see for example

[39, Fig. 3] or [58, Fig. 7]) show that the probability that two polygons in a cube are

homologically linked (i.e. have non-zero linking number) increases with increasing n

for fixed M , and with decreasing M for fixed n. Thus, as expected, more confined

polygon pairs have a higher linking probability. Their results also suggested that

topologically linked pairs are also homologically linked with high probability for

configurations in which the two polygons are strongly interpenetrating, whereas this

probability becomes smaller for configurations in which the two components are, on

average, further apart [39, p.342]. Off the lattice, Arsuaga et al [2] investigated both

theoretically and numerically uniform random polygons in the unit cube in R
3. For

a fixed simple closed curve S, they proved that (as n→ ∞) the probability that the

linking number, Lk(S,Rn), is non-zero for any two-component link (S,Rn), with Rn

an n-edge uniform random polygon, approaches 1 at least as fast as 1 − O(1/
√
n).

Their numerical results indicate that the probability that Lk(Rn, Rm) is non-zero,

with (Rn, Rm) a pair of uniform random polygons having n and m edges respectively,

goes to 1 like 1−O(1/
√
nm). Herein, we do not confine the polygons to a cube but

rather we consider two self-avoiding polygons confined to a lattice tube (∞×N×M)

with an added constraint that forces each edge of one polygon to be close to some

edge of the other polygon and prove theoretical results about the linking probability

(both homologically and topologically).

Specifically we consider a pair of mutually avoiding self-avoiding polygons each

confined to and spanning a tube, i.e. each with the same span in the tube direction

(see Figure 4.1). Such a pair is referred to as a System of two Self-avoiding Polygons

and n is now used to denote the total number of edges in the pair. We establish that
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the homological linking probability goes to one at least as fast as 1−O(n−1/2) and that

the topological linking probability goes to one exponentially rapidly. Furthermore

we prove for this model that the linking number grows (with probability one) faster

than any function that is o(
√
n); i.e. for any function f(n) = o(

√
n), there exists

A ≥ 0 such that as n → ∞ the probability that |Lk(ω1, ω2)| ≥ f(n), with (ω1, ω2)

the component polygons of an n-edge 2SAP, satisfies

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1 − A√

n
+ o
( 1√

n

)
. (4.1.1)

Hence

lim
n→∞

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1. (4.1.2)

We also show that the linking number cannot grow faster than linearly in n because

of the tube constraint; i.e. there exist constants a and b such that for any n-edge

2SAP

|Lk(ω1, ω2)| ≤ an + b. (4.1.3)

We give a simple example to show that the upper bound in equation (4.1.3) for

2SAPs can be realized. Thus the homological linking probability goes to one at least

as fast as 1 −O(n−1/2) and at most linearly in n.

This chapter is organized as follows. In Section 4.2, we introduce a precise def-

inition of our model. Then, in Section 4.3, two lemmas are proved to show that

(CONCAT) and (CAPOFF) are satisfied for 2SAPs. We first use these, in Section

4.4, to establish the existence of the connective constant for 2SAPs and show that it

is strictly less than that of SAPs. Then the lemmas of Section 4.3 are used in Section

4.5 to prove a pattern theorem for 2SAPs. In Section 4.6, the pattern theorem and

a pattern proved by C. Ernst to guarantee topological linking is used to establish

the results on topological linking of 2SAPs. In Section 4.7, the pattern theorem

combined with some techniques similar to the ones presented in [24] implies a lower

bound (with probability one) on the rate of increase of the linking number of 2SAPs

and proves that the linking probability goes to one as the length of a 2SAP goes to

infinity. In Section 4.8, we give an upper bound for the linking number of 2SAPs in

a tube which is of smaller order than the known upper bound for links in Z
3 due to
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the tube constraint. Finally, the results presented in this chapter are summarized in

Section 4.9.

4.2 2SAPs

In this chapter, we are going to investigate the linking probability of two mutu-

ally avoiding SAPs confined to a tube under some constraints. The model for the

configurations of a pair of SAPs is defined as follows:

Definition 4.2.1. A System of two Self-avoiding Polygons (2SAP) of size n in an

(N,M)-tube is a finite subgraph G of T (N,M) satisfying the following conditions:

(i) The total number of edges in G is n (n even).

(ii) Each vertex of G has degree two and G has exactly two connected components

ω1 and ω2 (hence ω1 and ω2 are mutually avoiding self-avoiding polygons),

where ω1 is the component that contains the lexicographically smallest vertex

of G. We write G := (ω1, ω2).

(iii) There exists x1, x2 ∈ Z such that the components ω1 and ω2 each span the

length (in the x-direction) of the subtube with vertex set {(x, y, z) ∈ Z3|x1 ≤

x ≤ x2, 0 ≤ y ≤ N, 0 ≤ z ≤M}. That is,

min{x|(x, y, z) ∈ ω1} = min{x|(x, y, z) ∈ ω2} = x1

and

max{x|(x, y, z) ∈ ω1} = max{x|(x, y, z) ∈ ω2} = x2.

Consistent with the definitions of the span and the left-most (right-most) plane

for any finite subgraph of Z3, presented in Section 2.1, we say x2 − x1 is the span

of the 2SAP and that x = x1 (x = x2) is the left-most (right-most) plane of the

2SAP. See Figure 4.1 for an example of a 2SAP. Note that in these figures (and
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all other figures in this chapter), edges of one component polygon are illustrated

with thicker edges than those of the other component polygon. Also note that

by Definition 4.2.1, there exists no 2SAP in the (N,M)-tube for the choices of

(N,M) ∈ {(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)} and at most two n-edge 2SAPs for any

n when (N,M) = (1, 1). For convenience and since we are focussing on three di-

mensions, when considering 2SAPs in an (N,M)-tube, we refer to the set of pairs

of positive integers (N,M) 
= (1, 1) as allowed tube dimensions and, unless stated

otherwise, assume that (N,M) is restricted to the allowed pairs.

5

4

3

Figure 4.1: A 2SAP with size 32 and span 5 in a (4, 3)-tube.

4.3 (CONCAT) and (CAPOFF) for 2SAPs

In order to prove our main results about linking probabilities we need to establish

a pattern theorem for 2SAPs. As discussed in Section 2.5, this can be done by

establishing that it is possible to insert any pattern at an arbitrary location in a

2SAP as depicted in Figure 4.6 and as described in Proposition 2.5.1 of Section 4.5.

The two lemmas, (CONCAT) and (CAPOFF), presented in this section are useful

for establishing Proposition 2.5.1. In addition, (CONCAT) will be used to establish

the existence of the connective constant for 2SAPs in Section 4.4.

Following the terminology of Section 2.5, we adapt the arguments given in Section

2.5 for 2SAPs. For each positive integer n, let Q∗
n be the set of all n-edge 2SAPs

whose lexicographically smallest vertex (bottom vertex) is in the plane x = 0. Define
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Q∗ =
⋃
n<∞Q∗

n. For any n-edge 2SAP G, the translation (−x1, 0, 0) along the x-axis

gives an element of Q∗
n, i.e. G+ (−x1, 0, 0) ∈ Q∗

n. Let bG = x2 − x1 denote the span

of G. Hence x = bG + x1 is the right-most plane of G.

The following lemmas show that for 2SAPs there exist choices of cT , tT and mT

for which (CONCAT) and (CAPOFF) hold.

Lemma 4.3.1. For any allowed tube dimensions (N,M), any choice of tT ≥ 18 +

8(N +M) and cT = 4tT +8(N +M)+4, (CONCAT) holds for 2SAPs in T (N,M).

Proof. In particular we prove that there exists integers tT ≥ 1, cT ≥ 1 and a con-

catenation process defined for 2SAPs in T (N,M) such that:

Given G1 = (ω1, ω2) ∈ Q∗
n and G2 ∈ Q∗

m with respective spans b1 and b2, con-

catenating G1 to the translate, G2 + (tT + b1, 0, 0), forms G ∈ Q∗
n+m+cT

such that

G∩Vb1−1 = G1∩Vb1−1 and G∩ (Vb2−1 +(tT +b1 +1, 0, 0)) = [G2∩ (Vb2−1 +(1, 0, 0))]+

(tT + b1, 0, 0) (i.e. only the right-most plane of G1 and the left-most plane of G2 can

be altered in the concatenation process).

Define e1 = {v1, v2} (v1 < v2) and e2 = {u1, u2} (u1 < u2) such that e1 is the

bottom edge in the plane x = b1 of one of the polygons of G1, e2 is the bottom

edge in the plane x = b1 of the other polygon of G1 and v1 < u2, where in the

case of ambiguity v1 is chosen such that z(v1) < z(u1) (see for example Figure 4.2

(a)). Similarly, we can obtain the two edges ê1 = {v̂1, v̂2} and ê2 = {û1, û2} on the

left-most plane (x = 0) of G2 with v̂1 < û2, where in the case of ambiguity v̂1 is

chosen such that z(v̂1) < z(û1).

The strategy for the proof of this lemma is to first show that there exists an integer

t such that it is always possible to connectG1\{e1, e2} with (G2\{ê1, ê2})+(t+b1, 0, 0)

by four mutually self-avoiding walks inside the tube; the walks connect the endpoints

vi, ui, i = 1, 2, to the endpoints v̂i + (t+ b1, 0, 0), ûi + (t+ b1, 0, 0), i = 1, 2, so that

the right-most plane of G1 is connected to the left-most plane of G2 + (t + b1, 0, 0)

and the result is a 2SAP. Then we give an argument for determining appropriate
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Figure 4.2: Converting (e1, e2) to (e∗1, e
∗
2) as needed for the proof of

Lemma 4.3.1.

values of tT and cT for which (CONCAT) holds (see for example Figure 4.3).

Let v∗1 = (b1 + 5, 0, 0), v∗2 = (b1 + 5, 1, 0), u∗1 = (b1 + 5, N − 1,M) and u∗2 =

(b1 + 5, N,M). Let e∗1 = {v∗1, v∗2} and e∗2 = {u∗1, u∗2}, as illustrated in Figure 4.2.

We will explicitly construct four paths that will connect the endpoints of ei to the

endpoints of e∗i for i = 1, 2. Then by symmetry, there are also four paths that connect

the endpoints of êi + (b1 + 10, 0, 0) to the endpoints of e∗i for i = 1, 2. Therefore,

taking the union of these paths, we obtain a connection of the endpoints of the edge

ei for i = 1, 2 to, respectively, the endpoints of êi + (b1 + 10, 0, 0) for i = 1, 2 (see

Figure 4.3 (a)).

The following algorithm describes the paths connecting ei to e∗i , i = 1, 2 respec-

tively.

1) Extend all the vertices v1, v2, u1 and u2 one unit along the positive x direction;

i.e. add the edges {v1, v1 + î}, {v2, v2 + î}, {u1, u1 + î} and {u2, u2 + î}.

2) If edge e1 is horizontal then we do the following: Since the only occupied

vertices in {(x, y, z) ∈ Z3|b1 + 1 ≤ x ≤ b1 + 4, 0 ≤ y ≤ y(v2), 0 ≤ z ≤ z(v2)} are the

vertices created by the first step, continue by adding the walk (−y(v1)ĵ,−z(v1)k̂, 4̂i)

to v1 to connect it to v∗1. Similarly, add the walk (̂i,−(y(v2)− 1)ĵ,−z(v2)k̂, 3̂i) to v2

to connect it to v∗2 (see Figure 4.2 (a)).
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3) If edge e1 was not horizontal then it is vertical. Instead of step two we do

the following: As before, the only occupied vertices in {(x, y, z) ∈ Z3|b1 + 1 ≤ x ≤

b1 +4, 0 ≤ y ≤ y(v1), 0 ≤ z ≤ z(v2)} are the vertices created by the first step. Hence

continue by adding the walk (−y(v1)ĵ, 2̂i,−z(v1)k̂, ĵ, 2̂i) to v1 to connect it to v∗2.

Similarly, add the walk (−y(v2)ĵ, 3̂i,−z(v2)k̂, î) to v2 to connect it to v∗1 (see Figure

4.2 (b), (c) and (d)).

4) If edge e2 is horizontal then we do the following: The fact that v1 < u2

guarantees that either u1 > v2 or z(u2) = z(u1) > z(v2) ≥ z(v1) (see Figures 4.2

(a) and (d)). Hence the previous constructions ensure that {(x, y, z) ∈ Z3|b1 + 1 ≤

x ≤ b1 + 4, y(u1) ≤ y ≤ N, z(u1) ≤ z ≤ M} contains only vertices created by the

first step, and the following construction is possible. Continue by adding the walk

(̂i, (N − 1 − y(u1))ĵ, (M − z(u1))k̂, 3̂i) to u1 to connect it to u∗1. Similarly, add the

walk ((N − y(u2))ĵ, (M − z(u2))k̂, 4̂i) to u2 to connect it to u∗2 (see Figure 4.2 (a)

and (d)).

5) If edge e2 was not horizontal then it is vertical. In this case, the fact that

v1 < u2 guarantees that either u1 > v2 or z(u2) > z(u1) > z(v2) = z(v1). Hence

the previous constructions ensure that the only occupied vertices in {(x, y, z) ∈

Z3|b1 + 1 ≤ x ≤ b1 + 4, y(u1) ≤ y ≤ N, z(u1) ≤ z ≤ M} are vertices created by the

first step. Instead of step three we now do the following: Continue by adding the

walk ((N − y(u1))ĵ, 3̂i,−ĵ, (M − z(u1))k̂, î) to u1 to connect it to u∗1. Similarly, add

the walk ((N − y(u2))ĵ, 3̂i, (M − z(u2))k̂, î) to u2 to connect it to u∗2 (see Figure 4.2

(b), (c)).

The above construction results in four mutually avoiding SAWs with span 5

that connect the vertices of the edges (e1, e2) to the vertices of the edges (e∗1, e
∗
2).

By symmetry, there are four mutually avoiding SAWs with span 5 that connect

the vertices of the translated edges (ê1, ê2) + (10 + b1, 0, 0) to the vertices of the

edges (e∗1, e
∗
2), and hence we can concatenate G1 with G2 by inserting the four
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SAWs of span 10 described by the above algorithm (see for example Figure 4.3

(a)). Let c(N,M, e1, e2, ê1, ê2) be the number of edges added in this construction.

Note that 40 ≤ c(N,M, e1, e2, ê1, ê2) ≤ 40 + 8(N + M + 1) and the exact value of

c(N,M, e1, e2, ê1, ê2) depends only on the edges e1, e2, ê1, ê2 from the 2SAPs G1 and

G2.
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Figure 4.3: An example illustrating how to find tT and cT for the
proof of Lemma 4.3.1. (a) Shows an example of the four SAWs of span
10 used to concatenate G1 and G2 in the proof. (b) Illustrates the
8(N + M + 1)−pattern P 2. (c) Shows P 2 inserted at P 1. (d) Shows
how to increase the number of edges by appropriately changing the
pattern P 2 to P+.

We now have to choose numbers tT ≥ 10 and cT , such that (CONCAT) holds for

all 2SAPs. To do this we need to insert an appropriate pattern into the concatenated

2SAPs. The appropriate pattern is constructed as follows (see for example Figure
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4.3). Let P 2 be the 8(N +M + 1)−pattern illustrated in Figure 4.3 (b). P 2 can be

inserted into the four SAWs by our construction. (The algorithm above describes the

construction of a 5-pattern whose right-most-plane is the 0-pattern P 1 (see Figures

4.2 and 4.3 (a)); this allows for the insertion of P 2 starting at P 1, see Figure 4.3

(c).) Inserting P 2 increases the span size by 8(N + M + 1) units and will allow a

choice of tT = 18 + 8(N + M). Inserting P 2 also increases the number of edges by

32(N+M+1). Let c = c(N,M, e1, e2, ê1, ê2)−40 Now we want to increase the number

of edges by a further 8(N + M + 1) − c to obtain a total of 40 + 40(N + M + 1)

edges within the 4 SAWs, independent of the choice of the 4 SAWs. Note that

8(N +M + 1)− c is a non-negative even integer since 40 + c is the number of edges

in a 2SAP minus 4. If M > 1 set ū = k̂; otherwise we have M = 1 and N > 1 so set

ū = ĵ. We increase the number of edges by appropriately changing the pattern P 2

to P+ (see Figure 4.3 (d)). More precisely, we replace the walk, (8(N + M + 1)̂i),

starting at u∗1 = (b1 +5, N −1,M), by the walk, (1
2
(8(N +M +1)− c)[̂i,−ū, î, ū], ĉi),

which has length 16(N +M + 1)− c. Thus the final result is a 2SAP G with length

n+m+ cT where cT = 36 + 40(N +M + 1) (recall that four edges must be deleted

from G1 and G2) and with span b1 + b2 + tT where tT = 18 + 8(N + M). (Note

that by inserting another P 2 with span k ≥ 1, one can further increase the span

by k and at the same time increase the number of edges by 4k. Therefore we can

generalize this construction by taking any tT ≥ 18 + 8(N +M) and correspondingly

cT = 4tT + 4 + 8(N +M).)

Lemma 4.3.2. (CAPOFF) holds for 2SAPs in Q∗.

Proof. We prove that there exists an integer mT > 0 such that the following two

cases hold:

Case 1: For any integer b ≥ 0 and any b-pattern P that occurs at (0, 0, 0) in some

finite size 2SAP H = (ω1, ω2) ∈ Q∗ with span s ≥ b+ 1 (i.e. P occurs at the start of

some 2SAP but is not itself a 2SAP), there exists a 2SAP G ∈ Q∗ with span b+mT
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which also contains P at (0, 0, 0) (i.e. P is also at the start of G).

Case 2: Similarly, given any b-pattern P ′ that occurs at (s− b, 0, 0) in some finite

size 2SAP in Q∗ with span s ≥ b + 1 (i.e. P ′ occurs at the end of some 2SAP but

is not itself a 2SAP), there exists a 2SAP G′ ∈ Q∗ with span b+mT which contains

P ′ at (mT , 0, 0) (i.e. P ′ also ends G′).

We will only consider the first case and construct a 2SAP G ∈ Q∗ satisfying

(CAPOFF) using the pattern P . A symmetry argument will give Case 2. In the

right most plane of P (x = b), there are an even number, i, of vertices from the

polygon ω1 and an even number, j, of vertices from the polygon ω2, where the next

step in H is a positive step in the x-direction, i.e. where the vertices have degree one

in P . In fact any capping of the pattern P to create a 2SAP must contain a total of

(i+ j)/2 mutually avoiding undirected SAWs to the right of x = b. Thus the set of

all possible ways of capping P will be contained in the set ∪(σ1,σ2)T (σ1, σ2) defined

below.

Consider any subset W consisting of an even number of vertices from V0 (recall

that V0 is the subgraph of the tube generated by the vertices with x-coordinate

x = 0). Take any partition σ of W into two element subsets, and any partition of

σ into two parts σ1 and σ2. Let T (σ1, σ2) be the set of all patterns P ′ occurring

at the end of a 2SAP, with left-most plane consisting of exactly the vertices in W ,

with the vertices in σ1 in one polygon and those in σ2 in the other, and consisting of

(|σ1|+ |σ2|)/2 mutually avoiding undirected SAWs that join up pairwise the vertices

in the left-most plane according to the pair partitions σ1 and σ2. For T (σ1, σ2) 
= ∅,

let m(σ1, σ2) > 0 denote the minimum span for any element of T (σ1, σ2). For

T (σ1, σ2) = ∅, let m(σ1, σ2) = 0. The number of ways to form σ1, σ2 is bounded

above by a finite function of N and M . Hence mT = maxσ1,σ2{m(σ1, σ2)} > 0 exists

and depends only on N and M .

Since there exists a 2SAPG′ ∈ Q∗ which starts with pattern P , there exists an end
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pattern P ′ which caps P off. Clearly P ′ and the vertices of degree one in the right-

most plane of P uniquely define a partition, (σ1, σ2), as described above. Now let P1

be a member of T (σ1, σ2) with the minimum span. Then G1 = P ∪ (P1 + (b, 0, 0))

is a 2SAP with span b + m(σ1, σ2). G1 can easily be extended to a 2SAP G with

span mT by concatenating a specific 2SAP with span (mT −m(σ1, σ2)) starting at

the plane x = b+m(σ1, σ2). Therefore 2SAPs in Q∗ satisfy (CAPOFF).

4.4 The Connective Constant for 2SAPs

Fix two positive integers N and M and let pn(N,M) be the number of n-edge SAPs

in T (N,M) (up to x-translation). Let q
(2)
n (N,M) = |Q∗

n|, i.e. the number of n-edge

2SAPs in T (N,M) whose left-most-plane is x = 0. Theorem 2.2.2, proved by Soteros

and Whittington [48, 49], shows the existence of the connective constant for SAPs

in T (N,M), i.e.

κp(N,M) ≡ lim
n→∞

(2n)−1 log p2n(N,M) <∞. (4.4.1)

In this section we prove, using lemma 4.3.1 (CONCAT), the existence of the connec-

tive constant for 2SAPs,

κ(2)
p (N,M) ≡ lim

n→∞
(2n)−1 log q

(2)
2n (N,M), (4.4.2)

and show using the pattern theorem for SAPs in T (N,M), Theorem 2.4.2, that

κ(2)
p (N,M) < κp(N,M). (4.4.3)

Theorem 4.4.1. The following limit exists

κ(2)
p (N,M) ≡ lim

n→∞
(2n)−1 log q

(2)
2n (N,M). (4.4.4)

Proof. By (CONCAT) (Lemma 4.3.1), one obtains for any even n > 7 and m > 7

q(2)
n (N,M)q(2)

m (N,M) ≤ q
(2)
(n+m+cT )(N,M). (4.4.5)
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Also, for even n ≥ 8, q
(2)
n (N,M) ≤

∑n−4
j=4 pj(N,M)pn−j(N,M). Hence, lim supn→∞

(2n)−1 log q
(2)
2n (N,M) ≤ κp(N,M) <∞. The existence of the limit now follows from

the generalized super-multiplicative arguments of Lemma 2.1.3.

Theorem 4.4.2. For any allowed (N,M), the following inequality holds.

κ(2)
p (N,M) < κp(N,M). (4.4.6)

Proof. Let A = { all proper SAP b-patterns (b > 1) which contain exactly two

disjoint walks joining the left-most plane of the pattern to the right-most plane of

the pattern }. Note that these SAP patterns cannot appear in any 2SAP. For a

given 2SAP we construct a SAP that will not contain any pattern in A either. Then

using the pattern theorem for SAPs in tubes, Theorem 2.4.2, we can show that the

connective constant for 2SAPs is strictly less than that for SAPs in a tube. Fix the

allowed pair of non-negative integers (N,M) 
= (1, 1). Let G be an n-edge 2SAP

in T (N,M). We start by defining the patterns P i for i = 3, 4, 5, 6 (see Figure 4.4).

P 3 is the 1-pattern that contains only the configurations of the two walks: (̂i, ĵ,−î)

starting at (0, 0, 0), and (̂i, ĵ,−î) starting at (0, 0, 1). Similarly, P 4 is the 1-pattern

that contains only the configurations of the two walks: (̂i, k̂,−î) starting at (0, 0, 0),

and (̂i, k̂,−î) starting at (0, 0, 3).

The 2-patterns P 5 and P 6 are defined as follows. P 5 is the 2-pattern that contains

the two walks: (2̂i, k̂,−2̂i) starting at (0, 0, 0), and (2̂i, k̂,−2̂i) starting at (0, 1, 0).

P 6 is defined to be the 2-pattern that contains the two walks: (2̂i, 3k̂,−2̂i) starting

at (0, 0, 0), and (̂i, k̂,−î) starting at (0, 0, 1).

Let G1 (see Figure 4.4) be the 8-edge 2SAP made of the two polygons composed

of the edges in the walks: (̂i, ĵ,−î,−ĵ) starting at (0, 0, 0), and (̂i, ĵ,−î,−ĵ) starting

at (0, 0, 1). Similarly, let G2 (see Figure 4.4) be the 8-edge 2SAP made of the two

polygons composed of the edges in the walks: (̂i, k̂,−î,−k̂) starting at (0, 0, 0), and
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(̂i, k̂,−î,−k̂) starting at (0, 0, 3). By Lemma 4.3.1 (CONCAT), we can concatenate

any given 2SAP G to the 2SAP G1 (or G2 if N = 0) so that the resulting 2SAP, Ĝ,

ends with the 1-pattern P 3 (or P 4 ifN = 0). Now, without changing the 2SAP except

for the configuration of its right-most plane, we can associate a SAP to this 2SAP

by connecting the two polygons of the 2SAP using the edges of two appropriately

chosen mutually avoiding SAWs. The SAWs are chosen so that they lie on the right

side of the 2SAP’s right-most plane. More precisely, we remove the two edges in the

right-most plane of Ĝ and add a translate of the 2-pattern P 5 (or P 6 if N = 0).

G1:

G2:

P 3

P 4

P 5

P 6

M

M

N

Figure 4.4: Converting a 2SAP to a SAP.

It is clear that the patterns from A cannot occur in a SAP that is constructed

from a 2SAP as explained above. For P ∈ A, let pn(N,M ; P̄ ) be the number (up to

x-translation) of n-edge SAPs in T (N,M) which do not contain P . Given a positive

integer m, let also pn(N,M ;< m,P ) denote the number (up to x-translation) of

n-edge SAPs in T (N,M) which contain fewer than m copies of P . Hence for any

ε > 0

q(2)
n (N,M) ≤ pn+c(N,M ; P̄ ) ≤ pn+c(N,M ;< �εn�, P ), (4.4.7)

where (by Lemma 4.3.1) (CONCAT) c = cT + 16 is a constant depending only on

T (N,M). (The value of 16 arises as follows: 8 obtained from G1 is added to 8 from

the pattern P 5 or P 6.) Taking logarithms, dividing by n and letting n→ ∞ through
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even n implies

κ(2)
p (N,M) ≤ κp(N,M ;< ε, P ), (4.4.8)

where

κp(N,M ;< ε, P ) ≡ lim sup
n→∞

n−1 log pn(N,M ;< �εn�, P ). (4.4.9)

Moreover, by the pattern theorem for SAPs in tubes, Theorem 2.4.2, we know that

for ε = εP

κp(N,M ;< εP , P ) < κp(N,M). (4.4.10)

Therefore, we have κ
(2)
p (N,M) ≤ κp(N,M ;< εP , P ) < κp(N,M).

4.5 Pattern Theorem for 2SAPs

In this section, following the terminology of Section 2.5, we obtain a pattern theorem

for 2SAPs in an (N,M)-tube.

(b)(a)

(c)

Figure 4.5: (a) A 2SAP start pattern in T (0, 5). (b) A 2SAP end
pattern in T (0, 5). (c) A proper 2SAP pattern in T (0, 5).

In the definition of a proper pattern in Section 2.5, Condition (ii) is needed to

exclude patterns which can only occur at the left-most or the right-most plane of

a 2SAP and nowhere else. However, due to Lemma 4.3.1 (CONCAT) any pattern

satisfying condition (ii) automatically satisfies condition (i). This is because once

a pattern P occurs in the interior of a 2SAP G (i.e. not at the start or end of

the 2SAP), by Lemma 4.3.1 (CONCAT), we can concatenate together any number
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of G’s and construct an infinite number of 2SAPs containing the pattern P . Thus

condition (ii) is sufficient for the definition of proper 2SAP patterns. (See Figure 4.5

for examples of start, end and proper 2SAP patterns.)

Remove Vb + t+ b′

CAPOFF

CONCAT

G GP

G′

P

P1 P2

G1 G2

v

v

v

v

t

mT + tTmT + tT

b′

b′

Vb

Vb

Figure 4.6: For 2SAP G (top left) and proper pattern P (top right),
the pattern insertion algorithm (top-to-bottom on left) for Proposition
2.5.1 is shown: 2SAP G has edges removed (those in Vb + t + b′; Vb
and b′ as defined on right) to result in start pattern P1 and end pattern
P2. P1 and P2 are capped off using Lemma 4.3.2 (CAPOFF) to create
2SAPs G1 and G2. Then G1, GP (2SAP shown below P on right), and
G2 are concatenated using Lemma 4.3.1 (CONCAT) to create 2SAP G′

in which P occurs at t.

Define q
(2)
n (N,M ;< m,P ) to be the number of 2SAPs in Q∗ which contain less

than m translates of P . The following result is the required pattern theorem and

it is an immediate consequence of Corollary 2.5.3 and the fact that 2SAPs satisfy

(CONCAT) and (CAPOFF).

Theorem 4.5.1. Let P be any proper pattern for 2SAPs in T (N,M). Then there

exists an εP > 0 such that

κ(2)
p (N,M ;< εP , P ) < κ(2)

p (N,M), (4.5.1)
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where

κ(2)
p (N,M ;< εP , P ) :≡ lim sup

n→∞
n−1 log q(2)

n (N,M ;< �εPn�, P ). (4.5.2)

Therefore, the following Corollary holds.

Corollary 4.5.2. Let P be any proper pattern for 2SAPs in T (N,M). Then there

exists an εP > 0 such that the probability that an n-edge 2SAP contains at least �εPn�

copies of the pattern P approaches one exponentially fast as n goes to infinity.

Proof. Given a proper 2SAP pattern P and εP > 0 as prescribed by Theorem 4.5.1,

let

g(n) =(
log q(2)

n (N,M ;< �εPn�, P ) − κ(2)
p (N,M ;< εP , P )n

)
−
(
q(2)
n (N,M) − κ(2)

p (N,M)n
)
.

(4.5.3)

By Theorem 4.4.1,

lim
n→∞

g(n)

n
= 0 (4.5.4)

hence g(n) = o(n). So

log
q
(2)
n (N,M ;< �εPn�, P )

q
(2)
n (N,M)

=
(
κ(2)
p (N,M ;< εP , P ) − κ(2)

p (N,M)
)
n+ o(n) (4.5.5)

which leads to

q
(2)
n (N,M ;< �εPn�, P )

q
(2)
n (N,M)

= e−γP n+o(n), (4.5.6)

where γP ≡ κ
(2)
p (N,M) − κ

(2)
p (N,M ;< εP , P ).

Therefore, the probability that an n-edge 2SAP contains at least �εPn� copies of

P is given by

q
(2)
n (N,M ;≥ �εPn�, P )

q
(2)
n (N,M)

=
q
(2)
n (N,M) − q

(2)
n (N,M ;< �εPn�, P )

q
(2)
n (N,M)

= 1 − q
(2)
n (N,M ;< �εPn�, P )

q
(2)
n (N,M)

= 1 − e−γP n+o(n). (4.5.7)
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By Theorem 4.5.1, γP > 0 hence the above probability goes to unity as 1−e−γP n+o(n)

when n→ ∞.

4.6 Topological Linking of 2SAPs

In this section we show that all but exponentially few sufficiently large 2SAPs are

topologically linked by first defining the pattern for 2SAPs introduced by C. Ernst

that guarantees topological linking.

Let (A, t) be the tangle as shown in Figure 4.7 (a) where the 3-ball A is not

shown and only the set of arcs t is visible. Let A + A = (B, s) be the sum of two

copies of A, see the solid lines of Figure 4.7 (b). Note that the tangle (A, t) is prime

[30] and therefore also inseparable.

The following theorem was proved by C. Ernst using Theorem 3.1.8.

Theorem 4.6.1 (Ernst 2008 [4]). Let L be a 2-component link. Assume that there

exists a 2-sphere S intersecting each component of L in 2 points such that S bounds

the tangle A+ A on one side (see Figure 4.7 (c)), then L is a non-splittable link.

Proof. Let B be a ball bounded by S and let (B, s) be the tangle A + A. Let D

be a disk in the tangle (B, s) that cuts the tangle (B, s) into its two summands

(C1, t1) and (C2, t2) (see Figure 4.7 (c)) each of which is equivalent to the tangle

(A, t) shown in Figure 4.7 (a). Let S ′ be a 2-sphere bounding the 3-ball C1. The

goal is to show that S ′ divides (S3, L) into two 2-string tangles each of which is

inseparable. One of these tangles (C1, t1) is prime and therefore inseparable. The

other is also inseparable by Lemma 3.1.8 (i). This can be seen as follows: The tangle

(cl(S3 −C1), cl(S
3 −C1) ∩ L) can be subdivided by the disk D′ = cl(S ∩ (S3 −C1))

into two tangles. One of these is (C2, t2) which is inseparable. The other is a two

string tangle that if it contains a disk that separates its two arcs then this disk must

intersect D′. Therefore by Lemma 3.1.8 (i) the tangle (cl(S3 −C1), cl(S
3 −C1)∩L)

is also inseparable. By Lemma 3.1.8 (ii) we conclude that L is non-splittable.
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(a) (b)

D

1C

2C

(c)
Figure 4.7: a) The tangle (A, t). b) Projection into the (x, y)-plane
of a tight 2SAP pattern of tangle A+A on the cubic lattice. The thick
dashed lines and thick solid lines are in one SAP and the thin dashed
lines and thin solid lines are in the other SAP. c) The angled dotted-
dashed line is the projection of the disk D, introduced in the proof of
Theorem 4.6.1, that cuts tangle (B, s) into its two summands (C1, t1)
and (C2, t2) each of which is equivalent to (A, t) in (a).

The solid lines in Figure 4.7 (b) show a tight lattice pattern, or rather its projec-

tion in the (x, y)-plane, which represents the tangle A + A. Once such a tangle has

been created within a link L on the cubic lattice then the link can’t be undone by the

rest of the lattice link. It is easy to check that this pattern occurs in a (7,1)-lattice

tube (i.e. T (7, 1)) involving both strings. If one adds two straight segments parallel

to the x-axis (shown as dashed lines in Figure 4.7 (b)), then this constitutes the

(x, y)-projection of a proper 10-pattern that can occur in a 2SAP in a (7, 1)-lattice

tube. It is easy to see that a topologically equivalent pattern can also occur in a

(2, 2), and (3, 1)-lattice tube (by increasing the b-span of the pattern).
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Therefore we obtain the following corollary to Theorem 4.6.1 and Corollary 4.5.2.

Corollary 4.6.2. For allowed (N,M) where M + N ≥ 4 the probability that an

n-edge 2SAP in T (N,M) is a non-splittable link approaches one exponentially fast

as n goes to infinity through even values of n.

4.7 Homological Linking of 2SAPs

In this section, we find a lower bound (with probability one) for the linking num-

ber of 2SAPs. The arguments needed to show the high probability of homological

linking are more complicated than those used for topological linking because there

is no local pattern P that can guarantee a non-zero linking number. Any linking

number contribution generated locally can always be undone in the 2SAP elsewhere.

Nevertheless the probability that a 2SAP has a small linking number goes to zero as

the length of the 2SAP increases. In fact we prove that the linking number asymp-

totically grows (with probability one) no slower than
√
n; i.e. for any n-edge 2SAP

Gn and any function f(n) = o(
√
n)

lim
n→∞

P
(
|Lk(Gn)| ≥ f(n)

)
= 1. (4.7.1)

As a result, we show that the probability of a non zero linking number of an n-edge

2SAP goes to one as n→ ∞.

Let q
(2)
n (N,M ;Lk ≤ m) denote the number of 2SAPs G = (ω1, ω2) (up to x-

translation) with linking number, Lk(ω1, ω2), at most m. We will use two patterns

PL and PL∗ (with projections that are mirror images of each other) whose occurrence

in any 2SAP increases or decreases the linking number by one, depending on the

order induced on the pattern’s edges by the 2SAP’s orientation. Figures 4.8 (a)

and (b) show diagrams of the projections of PL and PL∗ into the (x, z)-plane. In

particular, PL and PL∗ are chosen so that if one of them occurs in a 2SAP G, then the

corresponding sequence of edges in Dy
G (as defined in Lemma 3.1.4) creates exactly

two crossings. Note that in the patterns PL and PL∗ , the edges shown with the same

thickness are in the same polygon. However, the thicker edges do not necessarily
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belong to ω1, the first polygon of the 2SAP. In these diagrams a solid line of either

thickness is in the plane z = 1 while a dashed line of either thickness between two

2SAP pattern vertices, u and v say, represents a sequence of edges in the pattern

with u and v in the plane z = 1 and the intermediate vertices in the plane z = 0.

:LP

(a) The pattern PL.

:*LP

(b) The pattern PL∗ .

:1
LP

+1+1

(c) The occurrence type P 1
L.

:3
LP

-1-1

(d) The occurrence type P 3
L.

Figure 4.8: Projections of proper 2SAP patterns PL, P ∗
L are shown in

(a) and (b) respectively. Each pattern is a 4-pattern in T (5, 1). Lines
shown with the same thickness correspond to edges in the same polygon.
Dashed lines represent a sequence of edges in the pattern with the start
and end vertices in the plane z = 1 and the intermediate vertices in
the plane z = 0. Solid lines are in the plane z = 1. Orientations of PL
representing two of its occurrence types, P 1

L and P 3
L, are shown in (c)

and (d) respectively.

Let G be a 2SAP in which the pattern PL (PL∗) occurs. Depending on the

orientations of PL’s (PL∗ ’s) edges, as induced by an orientation of G, PL (PL∗) has

four different occurrence types P 1
L (P 1

L∗), P 2
L (P 2

L∗), P 3
L (P 3

L∗) and P 4
L (P 4

L∗). Figures

4.8 (c) and (d) show P 1
L and P 3

L. The projections of P 1
L∗ and P 3

L∗ are the mirror images

of the projections of P 1
L and P 3

L respectively. P 2
L (P 4

L, P 2
L∗ , P 4

L∗) is obtained from
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1
LP

:G
+1+1

(a)

0P

:G

(b)

Figure 4.9: (a) An example of P 1
L occurring in a 2SAP G. (b) G′

formed by replacing the 24-edge pattern P 1
L in G by the 24-edge 4-

pattern P0; in this case, Lk(G) = Lk(G′) + 1. Dashed lines represent a
sequence of edges in the pattern with the start and end vertices in the
plane z = 1 and the intermediate vertices in the plane z = 0.

P 1
L (P 3

L, P 1
L∗ , P 3

L∗) by reversing the directions on all its edges. Note that wherever

PL (PL∗) occurs in G, it can be replaced by the pattern P0 as shown in Figure 4.9

(b) (with one of its orientations) which has the same span and the same number of

edges as PL (PL∗). These definitions and Lemma 3.1.4 lead directly to the following

lemma.

Lemma 4.7.1. Let G be a 2SAP in which the pattern PL (PL∗) occurs at a specific

location and let G′ be the 2SAP constructed from G by replacing the pattern PL (PL∗)

by the pattern P0 as shown in Figure 4.9 (b). If PL (PL∗) is of type P 1
L or P 2

L (P 3
L∗

or P 4
L∗) then the following equation holds

Lk(G) = Lk(G′) + 1. (4.7.2)

If PL (PL∗) is of type P 3
L or P 4

L (P 1
L∗ or P 2

L∗) then the following equation holds

Lk(G) = Lk(G′) − 1. (4.7.3)

We need one additional lemma to prove the main theorem of this section.
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Lemma 4.7.2. For i = 1, 2, 3, 4, both P i
L and P i

L∗ occur in 2SAPs with the same

probability distribution.

Proof. For i = 1, 2, 3, 4, it can be seen from Figure 4.8 that if P i
L occurs in any n-edge

2SAP at a specific location, then we can replace P i
L by P i

L∗ without changing the

number of edges and without changing the orientation of the 2SAP. Similarly, any

occurrence of P i
L∗ can be replaced by P i

L. Therefore, P i
L and P i

L∗ appear in 2SAPs

with the same probability, i.e. the number of n-edge 2SAPs in which the pattern

P i
L occurs at a given location (j, 0, 0) is exactly the same as the number of n-edge

2SAPs in which the pattern P i
L∗ occurs at location (j, 0, 0).

Theorem 4.7.3. Let (N,M) be an allowed pair with M+N ≥ 4. For every function

f(n) = o(
√
n), the probability that the absolute value of the linking number of an n-

edge 2SAP in T (N,M) is less than f(n) goes to zero as n goes to infinity.

Proof. The proof is based on the pattern theorem for 2SAPs, Theorem 4.5.1, and

also a coin tossing argument as in [10]. Note that the proof here uses the patterns

PL (PL∗) and hence requires N ≥ 5 and M ≥ 1; modification of these patterns to fit

in other tube sizes is possible and then the arguments below give the proof for any

allowed (N,M) with N +M ≥ 4. Applying Theorem 4.5.1 for the pattern PL (PL∗),

we have a positive number εL (εL∗) and an integer NL > 0 (NL∗ > 0) such that for

even n ≥ NL (n ≥ NL∗), all except exponentially few n-edge 2SAPs contain at least

�εLn� (�εL∗n�) pairwise disjoint translates of the pattern PL (PL∗). This implies

that for ε = min{εL, εL∗} and even n ≥ max{NL, NL∗}, all except exponentially

few n-edge 2SAPs contain at least �εn� pairwise disjoint copies of P ∈ {PL, PL∗}.

Furthermore, by the proof of corollary 4.5.2, there exist γL > 0 and γL∗ > 0 such

that for γ = min{γL, γL∗}

q
(2)
n (N,M ;≥ �εn�, P )

q
(2)
n (N,M)

≥ 1 − e−γn+o(n), as n→ ∞, n even, (4.7.4)
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where q
(2)
n (N,M ;≥ �εn�, P ) is the number of n-edge 2SAPs which contain at least

�εn� copies of P ∈ {PL, PL∗}.

Let G be a randomly chosen 2SAP and let l be the total number of copies of

P ∈ {PL, PL∗} that occur in G. By Lemma 4.7.1, the two patterns PL and PL∗

occur independently in 8 different ways. Let A = {P 1
L, P

2
L, P

3
L∗, P 4

L∗} and B =

{P 1
L∗ , P 2

L∗, P 3
L, P

4
L}. Hence, by Lemma 4.7.1, every pattern from A will add one

to the linking number and every pattern from B reduces the linking number by one.

We order the occurrences of P ∈ {PL, PL∗} in G with the integers i = 1, ..., l starting

from the left-most plane of G. Now by Lemma 4.7.2, the probability that a chosen

occurrence of P (amongst the l occurrences) in G belongs to A is the same as the

probability that it belongs to B. So

P
(
P ∈ A | P occurs at the location (j, 0, 0) in a 2SAP

)
=

P
(
P ∈ B | P occurs at the location (j, 0, 0) in a 2SAP

)
=

1

2
.

So their distribution is analogous to tossing a fair coin; i.e.

P (P ∈ A exactly k times in first t occurrences of P | P occurs ≥ t times)

=

⎛⎜⎝ t

k

⎞⎟⎠(1
2

)k(1
2

)t−k
=

⎛⎜⎝ t

k

⎞⎟⎠(1
2

)t
(4.7.5)

≤ 2√
t
, (4.7.6)

where the final inequality holds only for n sufficiently large, i.e. n ≥ N ′ for some

N ′ > 0. This follows from Stirling’s formula and the fact that the probability in

equation (4.7.5) reaches its maximum at k = �t/2�.

Let Q∗
n,≥(ε, P ) ⊂ Q∗

n denote the set of 2SAPs with at least �εn� occurrences of

either PL or PL∗. For any 2SAP G ∈ Q∗
n,≥(ε, P ), let �P =(Pi, i = 1, 2, · · · , �εn�)

denote the first �εn� occurrences of PL or PL∗ in G starting from G’s left-most plane.

By Lemma 4.7.1, the linking number of G can be written as the sum of two terms
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where one term only depends on �P , i.e.

Lk(G) = Lk(G′) +

	εn
∑
i=1

(IA(Pi) − IB(Pi)) (4.7.7)

= Lk(G′) +

	εn
∑
i=1

(2IA(Pi) − 1) (4.7.8)

= Lk(G′) − �εn� + 2

	εn
∑
i=1

IA(Pi), (4.7.9)

where G′ is the 2SAP obtained by replacing each Pi by P0 (as in Figure 4.9) and

IA(P ) = 1 (IB(P ) = 1) if and only if P ∈ A (P ∈ B) and otherwise IA(P ) = 0

(IB(P ) = 0). Note that G is completely determined by (G′, Pi, i = 1, ..., �εn�), and

we express this by writing G = (G′, �P ).

We now have that |Lk(G)| < f(n) if and only if
∑	εn


i=1 IA(Pi) is an integer in

the interval I = (−f(n)−Lk(G′)+	εn

2

, f(n)−Lk(G′)+	εn

2

). Note that, regardless of the

value of Lk(G′), there are at most �f(n)� + 1 such integers. Moreover given that

G = (G′, �P ) ∈ Q∗
n,≥(ε, P ), the probability that |Lk(G)| < f(n) is equal to the

probability that
∑	εn


i=1 IA(Pi) is an integer in the interval I. By equation (4.7.6), for

n ≥ N ′ and regardless of the choice of G′, the probability that
∑	εn


i=1 IA(Pi) takes

on a particular integer value in I is bounded above by 2√
	εn
 . Hence we obtain, for

n ≥ N ′,

P
(
|Lk(G)| < f(n)|G ∈ Q∗

n,≥(ε, P )
)
≤ 2�f(n)� + 2√

�εn�
. (4.7.10)

Therefore, for n ≥ N = max{N ′, NL, NL∗} and G a random n-edge 2SAP

P
(
|Lk(G)| < f(n)

)
≤

P
(
|Lk(G)| < f(n), G ∈ Q∗

n,≥(ε, P )
)

+ P
(
G /∈ Q∗

n,≥(ε, P )
)

≤ 2�f(n)� + 2√
�εn�

(
q
(2)
n (N,M ;≥ �εn�, P )

q
(2)
n (N,M)

)
+

(
1 − q

(2)
n (N,M ;≥ �εn�, P )

q
(2)
n (N,M)

)
.

(4.7.11)

This along with equation (4.7.4) proves that P
(
|Lk(G)| < f(n)

)
goes to zero as n

goes to infinity.
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Corollary 4.7.4. The probability that an n-edge 2SAP G is homologically linked

approaches one as n goes to infinity.

Proof. Since |Lk(G)| ≥ f(n) implies that G is homologically linked, Theorem 6.7.1

implies that for any f(n) = o(
√
n)

lim
n→∞

P
(
|Lk(G)| ≥ f(n)

)
≤ lim

n→∞
P
(
G is homologically linked

)
= 1.

(4.7.12)

4.8 An Upper Bound for The Linking Number of

2SAPs

In this section we find an upper bound for the linking number of a 2SAP.

Theorem 4.8.1. Let G in T (N,M) be a disjoint union of SAPs with a total length

of n-edges. (G could be a knot or a link with any number of components.) For fixed

N and M , the crossing number of the knot or link formed by G is bounded above by

a linear function of n. Therefore the absolute value of the linking number between

any two components is bounded above by a linear function as well.

Proof. By Lemma 3.1.4 there is a polygonal link L′ with regular projection Dz
G in

the (x, y)-plane.

We will provide an upper bound for the crossing number of Dz
G by determining

an upper bound on how many crossings each edge li of L′ can generate. To do so we

need to consider two cases depending on whether the edge li in L′ corresponds to a

horizontal or a vertical edge l∗i in G. If we assume that l∗i is horizontal with vertices

(xi1 , yi1, zi) and (xi2 , yi2, zi) then, by Lemma 3.1.4, the only other horizontal edges

of G that could generate edges in L′ that subsequently generate crossings with li in
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Dz
G, are the edges that have at least one end point incident on either (xi1 , yi1, z) or

(xi2 , yi2, z) for 0 ≤ z ≤ M . There are at most 7(M + 1) of these. By Lemma 3.1.4

the only vertical edges of G that can generate crossings with li in Dz
G are the edges

that have both endpoints with (x, y)-coordinates (xi1 , yi1) or (xi2 , yi2). There are 2M

of these. Combining these we get that a horizontal edge can only generate less than

9(M + 1) crossings.

Now we assume that l∗i is vertical with vertices (xi, yi, zi) and (xi, yi, zi+1). Sim-

ilar to the argument before we can argue that there are at most 4(M +1) horizontal

edges (those with a vertex with coordinates (xi, yi, z) for some 0 ≤ z ≤ M) and M

vertical edges that can generate crossings with li. Combining the two cases gives us

the upper bound 9(M + 1)n/2 on the crossing number of the knot or link type G.

(It is 9(M +1)n/2 since each crossing will be counted twice, i.e. if an edge li crosses

an edge lj then we counted the crossing both in the upper bound for li and in the

upper bound for lj.)

By Lemma 3.1.4 there is also a polygonal link L with regular projection Dy
G in

the (x, z)-plane. A similar argument gives an upper bound 9(N + 1)n/2 on the

crossing number of the knot or link type G. Combining the two bounds results in

an upper bound on the crossing number of 9(min(M,N) + 1)n/2. Therefore the

absolute value of the linking number between any two components of G is bounded

above by 9(min(M,N) + 1)n/4.

M

N
1 2 2k3 2k-2 2k-1

Figure 4.10: An example of a 2SAP with linking number of order n.
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Remark 4.8.1. The following example shows that there exists a 2SAP with linking

number linear in its length. Let G be a 2SAP with the link type of a (2k, 2)-torus

link (see Figure 4.10). Lk(G) = k and it is easy to see that such a link can be

built with a total length not exceeding 20k + 6 in a (3, 1)-tube. We also note that

the linear growth rate of the number of crossings in terms of the overall length is

an artifact of the tube constraint. No linear upper bound exists without the tube

constraint and in fact the number of crossings can grow as fast as O(n4/3) for a knot

or link with length n. This was shown in [11] for knots and in [12] for links.

4.9 Summary

In this chapter, the following question was addressed regarding the linking probability

of two self-avoiding polygons: under what conditions does the “linking probability”

of pairs of self-avoiding polygons go to one? The answer can depend on how one

defines linking probability. In order to approach this question, we introduced the

2SAP model. We showed that (CONCAT) and (CAPOFF) are satisfied for this

model. We also established the existence of the connective constant for 2SAPs and

showed that it is strictly less than that of SAPs. We proved a pattern theorem

for 2SAPs and used it to investigate homological as well as topological linking of

2SAPs. We showed that the homological linking probability goes to one at least

as fast as 1 − O(n−1/2) and that the topological linking probability goes to one

exponentially rapidly, as n → ∞. Furthermore we proved that the linking number

grows (with probability one) faster than any function that is o(
√
n); i.e. for any

function f(n) = o(
√
n), there exists A ≥ 0 such that as n → ∞ the probability

that |Lk(ω1, ω2)| ≥ f(n), with (ω1, ω2) the component polygons of an n-edge 2SAP,

satisfies

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1 − A√

n
+ o
( 1√

n

)
. (4.9.1)

Hence

lim
n→∞

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1. (4.9.2)
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We also showed that the linking number cannot grow faster than linearly in n because

of the tube constraint; i.e. there exist constants a and b such that for any n-edge

2SAP

|Lk(ω1, ω2)| ≤ an + b. (4.9.3)

We gave a simple example to show that the upper bound in equation 4.9.3 for 2SAPs

can be realized. Hence sufficient conditions for ensuring that the linking probability

goes to one are established. Note that based on the results of this chapter, in

collaboration with C.E. Soteros (my supervisor), S.G. Whittington and C. Ernst, a

paper has been submitted to the Journal of Knot Theory and Its Ramifications.

95



Chapter 5

Stretched Polygons and Loops in a Tube

5.1 Introduction

A polymer’s topological entanglement may be affected by being subject to some

external forces. Knotting and linking probabilities have been frequently used to

measure topological entanglements of polymers [27]. In Janse van Rensburg et al

2008 [27], a ring polymer confined between two parallel walls (planes) and pulled

by an external force is modelled by a lattice polygon subjected to an applied force

f along the z-direction of the lattice and perpendicular to the walls. This model

explains the situation where a ring polymer, such as circular DNA, is subject to a

force in the presence of a topoisomerase which mediates strand passages and may

change the knot type of the polymer.

In [27], a pattern theorem is proved for lattice polygons in the presence of a

large applied force f > 0. This theorem is then used to examine the incidence of

entanglements such as knotting when the polygons are influenced by a large force.

Here, we add the tube confinement constraint to this model and address similar

questions for polygons confined to a tube. Unlike the situation for polygons in Z
3,

in a tube, polygons under the influence of the external force f do not have much

freedom and must stay inside the tube. In particular, the tube constraint will allow

us to prove the pattern theorem for any arbitrary value of f , not just for large

values of f . Furthermore, in addition to investigating the knotting probability, we

associate a two-component link to each polygon in a tube and examine the incidence

of topological linking when the polygon is under the influence of force f .

96



We will establish the existence of the limiting free energy for stretched polygons

and analyze the asymptotic form of the partition function for stretched polygons

using the transfer-matrix approach. We show that the average span per edge of a

randomly chosen n-edge stretched polygon approaches a positive constant as n→ ∞

and is non-decreasing in f almost everywhere. We also prove that the average number

of occurrences of a given proper SAP config (per edge) in any n-edge stretched

polygon approaches a positive constant as n→ ∞.

Given m ≥ 0, here we will investigate polygons of span m which are confined

to a tube. Such polygons are bounded by the tube walls (y = 0, y = N , z = 0

and z = M) as well as the two planes x = x1 and x = x1 + m, where x = x1 is

the left-most plane of the polygon. We assume that a force f parallel to the x-axis,

perpendicular and incident to the plane x = x1 + m is applied to a single polymer

modelled by a self-avoiding polygon. Figure 5.1 (a) illustrates an example of such a

scenario, where we have rotated the tube 90 degrees for comparison with the model

considered in [27]. The lattice model of polymers confined to a tube and subject

to a force f is introduced in Section 5.2. The existence of the limiting free energy

is also discussed in this section. In Section 5.3, we use the method presented in

Section 2.5, the pattern insertion approach, to prove a pattern theorem for polygons

in the presence of a given force f . In Section 5.4, the asymptotic behaviour of

such polygons is analyzed, using the transfer-matrix approach, and some results

are established regarding the average span of the randomly chosen n-edge stretched

polygons. In Section 5.5, we use the results obtained for polygons to prove a pattern

theorem for loops (an undirected self-avoiding walk which has both endpoints on

its left-most plane; see Figure 5.1 (b) for an example of a loop). Then, in Section

5.6, the pattern theorems are used to investigate topological entanglements through

the knotting probability for a polygon. Moreover, associating a two-component link

to any polygon (loop), we also use the topological linking probability to measure a

polygon’s (loop’s) topological entanglement complexity. Finally, in Section 5.7, we

discuss the main conclusions of this chapter.
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x
0f

y

z

(a) A 24-edge polygon with span 3 in
T (4, 5) which is under the influence of
force f > 0; note that the tube is rotated
90 degrees unclockwise.

0f
x

y

z

(b) A 17-edge loop with span 3 in T (4, 5)
which is under the influence of force f <
0.

Figure 5.1: Examples of polygons and loops confined to a tube and
subject to a force f .

5.2 Stretched Polygons in Tubes

The partition function of the stressed ensemble model is given by

Zn(N,M ; f) =

n/2−1∑
m=0

pn(N,M ;m)efm, (5.2.1)

where pn(N,M ;m) denotes the number of n-edge SAPs with span m in T (N,M)

(up to x-translation). If f > 0 then the force is a pulling force, tending to stretch

the polygon in the x-direction and the polygons influenced by this force are called

stretched polygons [27]. On the other hand, if f < 0, then the force tends to push

the planes x = x1 and x = x1 +m together. Here, for our convenience, regardless of

the sign of f we call the polygons under the influence of f stretched polygons.

Let Sfn be a random variable taking its values from the set of n-edge stretched

polygons with left-most plane x = 0, and with the probability distribution

P(Sfn = G) =
efm

Zn(N,M ; f)
, (5.2.2)

where m = m(G), the span of the stretched polygon G. One goal of this chapter is

to investigate the behaviour of the expected value of m(Sfn) as a function of f .
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Let

Fn(N,M ; f) ≡ 1

n
logZn(N,M ; f). (5.2.3)

We will start analyzing the model by proving the existence of the limiting free energy

for polygons confined to a tube and in the stressed ensemble. Note that the proof is

a straightforward modification of the proof given in [27, Theorem 2.1] however using

the tube concatenation for SAPs.

Theorem 5.2.1. Given f ∈ R, the limiting free energy of stretched polygons in the

tube T (N,M), defined by

F(N,M ; f) ≡ lim
n→∞

n−1 logZn(N,M ; f), (5.2.4)

exists where the limit is taken through even values of n.

In addition, there exist non-negative values cT and tT such that Zn(N,M ; f) ≤

e(n+cT )F(N,M ;f)+ftT and F(N,M ; f) is convex in f and thus continuous. More-

over, its right- and left-derivatives exist everywhere, and they are non-decreasing

functions of f . F(N,M ; f) is also differentiable almost everywhere, and whenever

dF(N,M ; f)/df exists it is given by limn→∞(dFn(N,M ; f)/df). Finally, f/2 ≤

F(N,M ; f) ≤ log μp(N,M) + f/2 if f ≥ 0 while 0 ≤ F(N,M ; f) ≤ logμp(N,M) if

f < 0 (μp(N,M) is the growth constant for polygons confined to T (N,M)).

Proof. As discussed in [49, Section 4], there exist non-negative values cT and tT such

that concatenating an n1-edge polygon with span m1 to an n2-edge polygon with

span m−m1 results in an (n1 +n2 + cT )-edge polygon with span m+ tT . Therefore,

the following inequality holds

n1/2−1∑
m1=0

pn1(N,M ;m1)pn2(N,M ;m−m1) ≤ pn1+n2+cT (N,M ;m+ tT ). (5.2.5)

Multiplying both sides of this inequality by efm and summing over m gives rise to

(n1+n2)/2−1∑
m=0

n1/2−1∑
m1=0

pn1(N,M ;m1)pn2(N,M ;m−m1)e
fm

≤
(n1+n2)/2−1∑

m=0

pn1+n2+cT (N,M ;m+ tT )efm. (5.2.6)
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Moreover, the following inequalities hold since cT ≥ 2tT , n1/2−1 < m and n1 ≥ 2m1.

Zn1+n2+cT (N,M ; f) =

(n1+n2+cT )/2−1∑
m=0

pn1+n2+cT (N,M ;m)efm

=

(n1+n2+cT )/2−1−tT∑
j=−tT

pn1+n2+cT (N,M ; j + tT )ef(j+tT ),

(5.2.7)

Zn1(N,M ; f) =

n1/2−1∑
m1=0

pn1(N,M ;m1)e
fm1 , (5.2.8)

Zn2(N,M ; f) =

n2/2+m1−1∑
m=m1

pn2(N,M ;m−m1)e
f(m−m1)

≤
(n1+n2)/2−1∑

m=0

pn2(N,M ;m−m1)e
f(m−m1). (5.2.9)

Now equations 5.2.6 to 5.2.9 imply that

Zn1(N,M ; f)Zn2(N,M ; f) ≤ eftTZn1+n2+cT (N,M ; f). (5.2.10)

Letting an = log e−ftTZn−cT (N,M ; f), equation 5.2.10 implies that {an} is a

super-additive sequence. Therefore, by Lemma 2.1.2

F(N,M ; f) = lim
n→∞

n−1an = sup
n≥1

n−1an. (5.2.11)

Furthermore, equation 5.2.11 implies that for any even integer n

n−1an ≤ F(N,M ; f). (5.2.12)

Multiplying both sides of the inequality by n and replacing an by log e−ftTZn−cT (N,M ; f)

gives

log e−ftTZn−cT (N,M ; f) ≤ nF(N,M ; f); (5.2.13)

hence

Zn(N,M ; f) ≤ e(n+cT )F(N,M ;f)+ftT . (5.2.14)
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Furthermore,

max{1, ef(n−1)/2} ≤ Zn(N,M ; f) =

n/2−1∑
m=0

pn(N,M ;m)efm

≤ max{1, ef(n−1)/2}pn(N,M). (5.2.15)

So

f/2 ≤ F(N,M ; f) ≤ log μp(N,M) + f/2 (5.2.16)

if f ≥ 0 while

0 ≤ F(N,M ; f) ≤ logμp(N,M) (5.2.17)

if f < 0.

The function Zn(N,M ; f) is a convex function of f ; this follows immediately

from the Cauchy-Schwartz inequality:

Zn(N,M ; f1)Zn(N,M ; f2) =

n/2∑
m1=0

pn(N,M ;m1)e
f1m1

n/2∑
m2=0

pn(N,M ;m2)e
f2m2

≥
( n/2∑
m=0

pn(N,M ;m)e[(f1+f2)/2]m
)2

=
(
Zn(N,M ; ((f1 + f2)/2))

)2
. (5.2.18)

Taking logarithms of this and dividing by n yields

Fn(N,M ; f1) + Fn(N,M ; f2) ≥ 2Fn(N,M ; (f1 + f2)/2). (5.2.19)

Hence, by Lemma B.0.10, Fn(N,M ; f) is convex in f . Moreover,

{Fn(N,M ; f)} → F(N,M ; f) (5.2.20)

as n → ∞ so, by Lemma B.0.12, F(N,M ; f) is also a convex function of f .

Lemma B.0.9 implies that F(N,M ; f) is continuous and Lemma B.0.13 shows that

F(N,M ; f) is differentiable almost everywhere. By Lemma B.0.11, the right- and

left-derivatives of F(N,M ; f) exist everywhere and they are non-decreasing functions

of f . Also, by Lemma B.0.14,

lim
n→∞

(dFn(N,M ; f)/df) = dF(N,M ; f)/df (5.2.21)
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almost everywhere.

The following corollary investigates the behaviour of the expected value of m(Sfn),

Ef(m(Sfn)), as a function of f .

Corollary 5.2.2. Given f ∈ R,

Ef (m(Sfn)) = n
d

df
Fn(N,M ; f) (5.2.22)

almost everywhere. Hence Ef(m(Sfn)) is non-decreasing in f almost everywhere.

Proof. By Theorem 5.2.1, the followig equality holds almost everywhere:

d

df
Fn(N,M ; f) =

d

df

[
n−1 logZn(N,M ; f)

]
= n−1

∑n/2−1
m=0 mpn(N,M ;m)efm

Zn(N,M ; f)

= n−1E(m(Sfn)). (5.2.23)

Hence by Theorem 5.2.1

Ef (m(Sfn)) = n
d

df
Fn(N,M ; f) (5.2.24)

is non-decreasing in f almost everywhere.

5.3 A Pattern Theorem for Stretched Polygons

in Tubes

In this section, we use the so called pattern insertion strategy, introduced in Section

2.5, to obtain a pattern theorem for stretched polygons in a tube. The pattern

theorem for polygons in a tube has been proved, using this approach, in [53]. So we

know that (CONCAT) and (CAPOFF), as introduced in Section 2.5, hold for SAPs

in a tube [49, 53]. In order to meet the requirements of Corollary 2.5.3, which gives

the pattern theorem, we only need to check the satisfaction of (CA1) and (CA2).

(CA1) basically gives the definition of the clusters under investigation. Here Cn is
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the set of all SAPs in T (N,M) and C∗
n ⊆ Cn represents the set of all n-edge SAPs

in T (N,M) which have their left-most plane at x = 0. It can be easily seen that Cn

is invariant under translation, i.e., given

u ∈ S∗ = {u ∈ R
3 | T (N,M) + u = T (N,M)} = {(x, 0, 0) | x ∈ Z}, (5.3.1)

G ∈ Cn implies that G + u ∈ Cn. The Cn’s are pairwise disjoint since Cn ∩ Cm = ∅

for n 
= m. So (CA1) is satisfied for SAPs in T (N,M). We also need to define an

appropriate weight function that satisfies (CA2) and leads to the required pattern

theorem. Given f ∈ R and C :=
⋃∞
n=1Cn, we consider the following weight function:

wtf : C → (0,∞), (5.3.2)

such that wtf(G) = efm for any G ∈ C, where m is the span of the polygon G. This

function is invariant under translation since the span does not change by translating

a polygon along the x-axis, i.e.

wtf(G) = wtf(G+ u) for every u ∈ S∗ and G ∈ C. (5.3.3)

The following theorem also shows that (CA2) is satisfied for this choice of weight

function.

Theorem 5.3.1. Given f ∈ R and the weight function wtf , (CA2) is satisfied for

stretched polygons.

Proof. Given k ≥ 0, let the two SAPs G and G′ differ by at most k vertices and

edges, i.e.

| E(G) � E(G′) | + | V (G) � V (G′) |≤ k. (5.3.4)

Then we claim that the difference of spans of G and G′ is bounded above by k, i.e.

| m−m′ |≤ k where m and m′ are the spans of G and G′ respectively. Suppose to

the contrary that | m−m′ |> k. Without loss of generality assume that m > m′ then

there are exactly | m −m′ | sections with span 1 in which G has at least two edges
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(because G is a polygon) and G′ does not have any edge thus | E(G) \ E(G′) |≥ 2 |

m−m′ |> 2k. This implies that

| E(G) � E(G′) | + | V (G) � V (G′) |≥| E(G) \ E(G′) |> 2k (5.3.5)

which contradicts equation 5.3.4. Therefore, the following inequality must hold

| m′ −m |≤ k. (5.3.6)

Let γk := e|f |k. Then multiplying both sides of equation 5.3.6 by | f | gives

| f(m′ −m) |≤| f | k (5.3.7)

which implies

− | f | k ≤ f(m′ −m) ≤| f | k. (5.3.8)

Hence

e−|f |k ≤ ef(m′−m) ≤ e|f |k; (5.3.9)

thus

1

γk
≤ ef(m′−m) ≤ γk. (5.3.10)

Multiplying both sides of the above inequality by efm gives

1

γk
efm ≤ efm

′ ≤ γke
fm. (5.3.11)

Hence, having wtf(G) = efm and wtf(G
′) = efm

′
, the following inequality is satisfied

1

γk
wtf(G) ≤ wtf(G

′) ≤ γkwtf(G). (5.3.12)

Therefore, since (CONCAT), (CAPOFF), (CA1) and (CA2) are all satisfied for

stretched polygons, Corollary 2.5.3 yields the pattern theorem for stretched polygons.

Note that

Zn(N,M ; f) =
∑
G∈C∗

n

wtf(G) =
∑
G∈C∗

n

efm

=

n/2−1∑
m=0

pn(N,M ;m)efm. (5.3.13)
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We define

Zn(N,M ;≤ j, P, f) =

n/2−1∑
m=0

pn(N,M ;≤ j, P,m)efm, (5.3.14)

where pn(N,M ;≤ j, P,m) represents the number of n-edge polygons (up to x-

translation) with span m in T (N,M) which do not contain more than j copies

of the pattern P . Given ε > 0, we also define

F(N,M ; ε, P, f) ≡ lim sup
n→∞

n−1 logZn(N,M ;≤ εn, P, f) (5.3.15)

to be the limit superior of the free energy for those n-edge stretched polygons which

contain no more than εn translates of P .

Theorem 5.3.2. Let P be a proper pattern for polygons in T (N,M). Then there

exists an εP > 0 such that

F(N,M ;≤ εP , P, f) < F(N,M ; f). (5.3.16)

5.4 Transfer-Matrix Results for Stretched Poly-

gons in Tubes

In this section the transfer-matrix argument, introduced in Section 2.6, is applied to

SAPs to explore the asymptotic behaviour of stretched polygons further.

An orientation on any SAP G is defined as follows. Let vb and eb = {vb, v}

be respectively the bottom vertex and edge of G. We can assign a direction to eb

by directing the edge to go from vb to v. This will naturally induce an orientation

(a direction) on G starting with edge eb as the first edge and ordering the other

edges following the direction induced by that of eb. Hence a k-cluster config (k-SAP

config) of a SAP G is considered as G’s configuration in a sublattice of the form

Hi−1(N,M) ∪ Si(N,M) ∪ Hi(N,M) ∪ ... ∪ Si+k−1(N,M) ∪ Hi+k−1(N,M) for some

1 ≤ i ≤ m− k + 1, where G’s configuration in such a sublattice of the tube consists
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of the sublattice and the ordering of the edges of G, as introduced above. With this

extra information on the edges, the Cluster Configuration Axiom, given in Section

2.6, is satisfied for the following sets of k-SAP configs:

Π(k) = {P1, P2, ..., P|Π(k)|}, (5.4.1)

Π1(k) = {P ′
1, P

′
2, ..., P

′
|Π1(k)|} (5.4.2)

and

Π2(k) = {P ′′
1 , P

′′
2 , ..., P

′′
|Π2(k)|} (5.4.3)

which are the set of all distinct proper, start and end k-SAP configs, respectively.

Figure 5.2 shows an example of a polygon in T (0, 5) with it’s associated 2-SAP

configs. Note that in Figure 5.2 the numbers beside the vertices of each 2-SAP

config represent the relative order of the walk starting at that vertex, induced by the

ordering of the edges of the SAP in which the pattern occurs; the relative order on

the walks also determines a relative order on the edges of the 2-SAP config.

For any SAP G, let e(G) and d(G, 1) denote the total number of edges and the

span of G respectively. For any 1 ≤ i ≤ |Π(k)| (1 ≤ i ≤ |Π1(k)|), let ei (e′i) be the

number of edges in the first hinge and section of Pi (P ′
i ) and, for any 1 ≤ i ≤ |Π2(k)|,

let e′′i be the total number of edges in P ′′
i . Also, for any 1 ≤ i ≤ |Π(k)| (1 ≤ i ≤

|Π1(k)|), let di(1) = 1 (d′i(1) = 1). Thus Di = [di(1)]T and D′
i = [d′i(1)]T (t = 1).

For any 1 ≤ i ≤ |Π2(k)|, let also d′′i (1) = k and thus D′′
i = [d′′i (1)]T . Then equations

2.6.7 and 2.6.9 are satisfied.

Let y1 = ef and Y = [y1]
T . Then

Zn(N,M ;Y ) =
∑
G∈C∗

n

y
d(G,1)
1 =

n/2−1∑
m=0

pn(N,M ;m)ef = Zn(N,M ; f) (5.4.4)

and

Zn(N,M ; P̄ , Y ) =
∑

G∈C∗
n(P̄ )

y
d(G,1)
1 =

n/2−1∑
m=0

pn(N,M ; P̄ ,m)ef = Zn(N,M ; P̄ , f).

(5.4.5)

The definition of SAP configuration here is the same as that given in [51] except

for the fact that the edges on the left- and right-most plane are not removed here.
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be

(a) An example of a 44-edge oriented
polygon with span 7 in T (0, 5). eb rep-
resents the bottom edge of the polygon.

3 3

1 2

2 2

4 4

1 1

5 5

1 11

2

2 3

4 2

3 5

(b) The associated 2-SAP configs.

Figure 5.2: An example of a polygon in a tube and its associated
2-SAP configs. Note that the numbers beside the vertices represent the
relative order of the walk starting at that vertex; the relative order on
the walks also determines a relative order on the edges of the 2-SAP
config.

[51, Theorem 6.1] establishes that the Cluster Configuration Axiom holds for SAP

configurations as defined in [51]. Only minor adjustments to the proof of [51, Theo-

rem 6.1] are needed to establish that the Cluster Configuration Axiom also holds for

the revised SAP configuration definition used here. Theorem 2.6.1 and the fact that

the Cluster Configuration Axiom and (CONCAT) hold for SAPs yield the following

result regarding the asymptotic form of Zn(N,M ; f) and Zn(N,M ; P̄ , f).

Theorem 5.4.1. For any integer k ≥ 2 and any proper SAP-config P ∈ Π(k), there

exist non-negative values x0(f) and αf such that

Zn(N,M ; f) = αf(x0(f))−n + o((x0(f))−n) as n→ ∞. (5.4.6)

Moreover, there exist non-negative values x̄0(f) > x0(f) and ᾱf such that

Zn(N,M ; P̄ , f) = ᾱf(x̄0(f))−n + o((x̄0(f))−n) as n→ ∞. (5.4.7)

Define m : C∗ → N∪ {0} such that m(G) is the span of G, for any SAP G ∈ C∗.

For 1 ≤ i ≤ |Π(k)| (1 ≤ i ≤ |Π1(k)|), let m(Pi) = 1 (d′l(P
′
i ) = 1). Similarly, for
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1 ≤ i ≤ |Π2(k)|, let d′′l (P
′′
i ) = k. Then equation 2.6.23 is satisfied and thus m is an

additive functional.

Let t = 1 and y1 = ef as in Theorem 5.4.1. Then m(Sfn) is a random variable, rep-

resenting the span of a randomly chosen stretched polygon Sfn , with the probability

distribution

P(m(Sfn) = m) =
pn(N,M ;m)efm

Zn(N,M ; f)
. (5.4.8)

Theorem 2.6.2 implies that there exists γf > 0 such that

Ef(m(Sfn)) = γfn+O(1) (5.4.9)

and thus
1

n
Ef(m(Sfn)) → γf (5.4.10)

as m→ ∞. Hence, the average span per edge of a randomly chosen n-edge stretched

polygon, Ef(m(Sfn)), approaches a positive constant as n → ∞. Moreover, by

Corollary 5.2.2, Ef(m(Sfn)) is non-decreasing in f almost everywhere.

Given a proper k-SAP config Pl ∈ Π(k), define ψl : C∗ → N ∪ {0} such that

ψl(G) is the number of times the SAP config Pl appears in G, for any SAP G ∈ C∗.

For 1 ≤ i ≤ |Π(k)|, let ψl(Pi) = δi,l where

δi,l =

⎧⎨⎩ 1 if i = l

0 if i 
= l .
(5.4.11)

Similarly, for 1 ≤ i ≤ |Π1(k)| (1 ≤ i ≤ |Π2(k)|), let d′l(P
′
i ) = δi,l (d′′l (P

′′
i ) = δi,l).

Then equation 2.6.23 is satisfied thus ψl is an additive functional.

Let t = 1 and y1 = ef as in Theorem 5.4.1. Then ψl(S
f
n) is a random variable,

representing the number of times the SAP config Pl appears in a randomly chosen

span m stretched polygon Sfn , with the probability distribution

P(ψl(S
f
n) = b) =

∑
G:ψl(G)=b e

fm(G)

Zn(N,M ; f)
, (5.4.12)

where the sum is over all the n-edge SAPs G ∈ C∗
n with ψl(G) = b and m(G) denotes

the span of G. Theorem 2.6.2 implies that there exists γlf > 0 such that

Ef (ψl(S
f
n)) = γlfn+O(1) (5.4.13)
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and thus
1

n
Ef(ψl(S

f
n)) → γlf (5.4.14)

as m→ ∞.

5.5 Loops in Tubes

A loop in T (N,M) is an undirected self-avoiding walk with both endpoints (ver-

tices of degree one) on its left-most plane. Let ln(N,M ;m) be the number of loops

in T (N,M) with span m and n edges. We show next that loops have the same

asymptotic behaviour as polygons in a tube. In fact, in a tube the pattern theorem

for stretched polygons results in a pattern theorem for loops in the presence of an

external force f .

Let

Ln(N,M ; f) =

n/2−1∑
m=0

ln(N,M ;m)efm. (5.5.1)

The following theorem shows that loops in the presence of force f have the same

limiting free energy as stretched polygons.

Theorem 5.5.1. Given f ∈ R,

Fl(N,M ; f) = F(N,M ; f), (5.5.2)

where

Fl(N,M ; f) = lim
n→∞

n−1 logLn(N,M ; f) (5.5.3)

is the limiting free energy for loops in T (N,M).

Proof. Given an n-edge polygon G with span m, let eb be the bottom edge of G. We

can obtain an (n − 1)-edge loop Gl with span m from G just by deleting the edge

eb. So the following inequality holds

pn(N,M ;m) ≤ ln−1(N,M ;m). (5.5.4)
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Multiplying both sides by efm and summing over m gives

Zn(N,M ;m) ≤ Ln−1(N,M ;m). (5.5.5)

Taking logarithms, multiplying both sides of this equation by n−1 and letting n→ ∞

implies

F(N,M ; f) ≤ Fl(N,M ; f). (5.5.6)

Furthermore, given an n-edge loop Gl in T (N,M) with span m, if M + N = 1

then we can connect the two endpoints of Gl by a single edge and we will have

ln(N,M ;m) ≤ pn+1(N,M ;m) (5.5.7)

which leads to

Fl(N,M ; f) ≤ F(N,M ; f). (5.5.8)

If N+M > 1 then for all the even values (odd values) of n we show next that we can

find fixed numbers cT (c′T ) and tT (t′T ) so that the endpoints of Gl can be connected

in order to create an (n + cT )-edge ((n + c′T )-edge) polygon G with span m + tT

(m+ t′T ); an example is shown in Figure 5.3. Assume that n is an even number. Let

v1 = (x(v1), y(v1), z(v1)) and v2 = (x(v2), y(v2), z(v2)) be the two endpoints of the

loop Gl, where v1 < v2 lexicographically. We connect the two endpoints v1 and v2

using the walk w : −î, (y(v2)− y(v1))ĵ, (z(v2)− z(v1))k̂, î starting at v1. This results

in an (n+ n(w)) self-avoiding polygon G1 with span m+ 1, where n(w) denotes the

number of edges in w; note that n(w) is an even number and 4 ≤ n(w) ≤ (2+N+M).

Let e′b = {vb, v} be the bottom edge of G1, where vb is the bottom vertex.

Since M + N > 1, we can choose ū ∈ {±k̂,±ĵ} so that the walk w′ (or w′′ if

w′ does not work) introduced as follows will stay inside the tube T (N,M). Let w′

be the walk −2(N + M + 2)̂i, (y(v) − y(vb))ĵ, (z(v) − z(vb))k̂, ((2(N + M + 2) −

n(w))/2)[û, î,−û, î], n(w)̂i starting at vb. Similarly, let w′′ be the walk −2(N +M +
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2)̂i, (y(vb)−y(v))ĵ, (z(vb)−z(v))k̂, ((2(N+M+2)−n(w))/2)[û, î,−û, î], n(w)̂i start-

ing at v. The polygonG with (n+6(N+M+2)) edges and span (m+2(N+M+2)+1)

can be obtained by deleting e′b and adding the walk w′ (or w′′) to G1.

Gl : G1 :

G :

Figure 5.3: An example of converting a 4-edge loop Gl, shown with
thicker edges, with span 1 in T (0, 2) to a 28-edge polygon G with span
10 in T (0, 2). Here for T (0, 2), cT = 24, tT = 9 and n(w) = 4. Note
that for this specific loop Gl the walk w′ is used with u = k̂.

Therefore, choosing cT = 6(N +M + 2) and tT = 2(N +M + 2) + 1 implies

ln(N,M ;m) ≤ pn+cT (N,M ;m+ tT ). (5.5.9)

Multiplying both sides by ef(m+tT ) and summing over m gives

n/2−1∑
m=0

ln(N,M ;m)ef(m+tT ) ≤
n/2−1∑
m=0

pn+cT (N,M ;m+ tT )ef(m+tT )

≤
(n+cT )/2−tT −1∑

m=−tT
pn+cT (N,M ;m+ tT )ef(m+tT )

(5.5.10)

thus

eftTLn(N,M ; f) ≤ Zn+cT (N,M ; f). (5.5.11)
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Note first that the number of edges of a polygon has to be an even number. Hence,

for the case that Gl had an even number of edges (n is even), an even number of

edges was also required to construct the SAP G, i.e. cT had to be even. On the other

hand, for the case that Gl has an odd number of edges (n is odd), an odd number

of edges (c′T edges) is required to construct the polygon G. This can be done using

a similar strategy that was used for loops with an even number of edges; i.e. for n

odd

eft
′
TLn(N,M ; f) ≤ Zn+c′T (N,M ; f). (5.5.12)

Taking logarithms of both sides of equation 5.5.11 and 5.5.12, multiplying both sides

by n−1 and letting n→ ∞ yields

Fl(N,M ; f) ≤ F(N,M ; f). (5.5.13)

Therefore, equations 5.5.6, 5.5.8 and 5.5.13 together imply

Fl(N,M ; f) = F(N,M ; f). (5.5.14)

Note first that, by the definition of proper patterns stated in Chapter 2, P is

a proper pattern for loops if 1) there are infinitely many values of n such that P

is contained in an n-edge loop with left-most plane x = 0 and 2) there exists a

loop G such that P occurs in the middle of G. The following argument shows that

every proper SAP pattern is also a proper pattern for loops. By (CONCAT) and

(CAPOFF) for SAPs, there are infinitely many values of n such that a proper SAP

pattern P occurs in the middle of an n-edge SAP Gn with left-most plane x = 0; i.e.

P occurs in Gn so that the left-most (right-most) plane of P is not the same as the

left-most (right-most) plane of Gn. As was explained in the proof of Theorem 5.5.1,

we can convert each Gn to a loop G′
n by just deleting the bottom edge eb of Gn. Note

that eb lies on the left-most plane of Gn so it does not change the configuration of

the pattern P . Thus every occurrence of the pattern P in the middle of a SAP Gn
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leads to the occurrence of P in the middle of a loop G′
n. Therefore, P is also a proper

pattern for loops. Similarly, it can be shown that every proper pattern for loops is

also a proper SAP pattern. In particular, every proper pattern P for loops occurs

at the start or in the middle of a loop Gl; i.e. P occurs in Gl so that the right-most

plane of P is not the same as the right-most plane of Gl. As was explained in the

proof of Theorem 5.5.1, we can convert Gl to a SAP G by increasing the span by

tT ≥ 1 while keeping the configuration of Gl fixed. This will lead to the occurrence

of P in the middle of G. Therefore, P is also a proper SAP pattern.

Let

Ln(N,M ;≤ j, P, f) =

n/2−1∑
m=0

ln(N,M ;≤ j, P,m)efm, (5.5.15)

where ln(N,M ;≤ j, P,m) denotes the number of n-edge loops (up to x-translation)

with span m which do not contain more than j copies of the proper SAP pattern P .

Also define

F(N,M ;≤ ε, P, f) ≡ lim sup
n→∞

n−1 logLn(N,M ;≤ εn, P, f) (5.5.16)

to be the limit superior of the free energy for those n-edge loops which contain

no more than εn translates of P . The following is a pattern theorem for loops in

T (N,M).

Theorem 5.5.2. Let P be a proper SAP k-pattern in T (N,M). Then there exists

an εP > 0 such that

Fl(N,M ;≤ εP , P, f) < Fl(N,M ; f). (5.5.17)

Proof. Since P is a proper SAP pattern, by Theorem 5.3.2 there exists an ε′P > 0

such that

F(N,M ;≤ ε′P , P, f) < F(N,M ; f). (5.5.18)

The above equation and Theorem 5.5.1 imply

F(N,M ;≤ ε′P , P, f) < Fl(N,M ; f). (5.5.19)
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Let tT be the constant introduced in the proof of Theorem 5.5.1. Let N be the

smallest positive integer number such that ε′P − tT/N > 0. Note that such a number

exists since limn→∞ tT/n = 0. Set εP = ε′P − tT/N . Let Gl be an n-edge loop with

span m which contains no more than εPn copies of the pattern P . Regarding the

construction of the (n+ cT )-edge polygon G with span m+ tT from Gl, as described

in the proof of Theorem 5.5.1, in addition to the k-patterns occurring in Gl, G will

contain at most tT new k-patterns. This may lead to the occurrence of at most tT

extra copies of P in G. Hence G will contain in total at most εPn + tT copies of P .

Note that, for n ≥ N , we have

ε′P − tT/N ≤ ε′P − tT/n (5.5.20)

so

εPn+ tT ≤ ε′Pn− tT + tT ≤ ε′Pn ≤ ε′P (n+ cT ). (5.5.21)

Therefore, G contains at most ε′P (n + cT ) copies of P and the following inequality

holds

ln(N,M ;≤ εPn, P,m) ≤ pn+cT (N,M ;≤ ε′P (n + cT ), P,m+ tT ). (5.5.22)

Using arguments similar to that presented in Theorem 5.5.1, the above equation

leads to

Fl(N,M ;≤ εP , P, f) ≤ F(N,M ;≤ ε′P , P, f). (5.5.23)

Therefore, equations 5.5.19 and 5.5.23 together yield

Fl(N,M ;≤ εP , P, f) < Fl(N,M ; f). (5.5.24)
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5.6 Knotting and Topological Linking of Stretched

Polygons and Loops in Tubes

Having the pattern theorem for both stretched polygons and loops in a tube, we

can now discuss the knotting probability. In particular, we can take P to be a tight

trefoil pattern (e.g. the pattern shown in Figure 3.7) in T (N,M) and prove that the

knotting probability goes to one as n→ ∞ for any arbitrary value of f .

Let

Z◦
n(N,M ; f) =

n/2−1∑
m=0

p◦n(N,M ;m)efm, (5.6.1)

where p◦n(N,M ;m) is the number of unknotted n-edge SAPs with spanm in T (N,M).

Recall that concatenating two unknotted polygons results in an unknotted polygon.

So the proof of Theorem 5.2.1 can be modified in a straightforward fashion to show

the existence of the limiting free energy for unknotted stretched polygons.

Theorem 5.6.1. The following limit exists:

F o(N,M ; f) ≡ lim
n→∞

n−1 logZo
n(N,M ; f). (5.6.2)

The following theorem discusses the asymptotic behaviour of unknotted stretched

polygons.

Theorem 5.6.2. Given f ∈ R, for N and M such that the (N,M)-tube can contain

the tight trefoil pattern P introduced in Figure 3.7, the following inequality holds:

F o(N,M ; f) < F(N,M ; f) (5.6.3)

and the probability that a stretched polygon in an (N,M)-tube is knotted goes to one

exponentially as n→ ∞.

Proof. For the tight trefoil proper SAP pattern P , as shown in Figure 3.7 (a), let

εP be the positive number as prescribed by Theorem 5.3.2. An n-edge unknotted
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polygon cannot contain the tight trefoil pattern P , thus it contains at most 0 < εPn

copies of P . Hence

p◦n(N,M ;m) ≤ pn(N,M ;≤ εPn, P,m). (5.6.4)

Multiplying both sides by efm and summing over m implies that

Zo
n(N,M ; f) ≤ Zn(N,M ;≤ εPn, P, f). (5.6.5)

Taking logarithms, multiplying both sides by n−1 and letting n→ ∞ gives

F o(N,M ; f) ≤ F(N,M ; εP , P, f). (5.6.6)

Therefore, the pattern theorem for stretched polygons, Theorem 5.3.2, together with

equation 5.6.6 show that

F o(N,M ; f) < F(N,M ; f). (5.6.7)

Furthermore, the probability that a stretched polygon is knotted is given by

Zn(N,M ; f) − Zo
n(N,M ; f)

Zn(N,M ; f)
= 1 − Zo

n(N,M ; f)

Zn(N,M ; f)
. (5.6.8)

Using a similar argument to that given in the proof of Theorem 4.5.2, this fraction

goes to one as 1 − e−γo(N,M ;f)n+o(n) when n→ ∞, with

γo(N,M ; f) ≡ F(N,M ; f) −F o(N,M ; f). (5.6.9)

Removing the bottom edge and top edge of each polygon G (the top edge of a loop

Gl) with span m results in a pair of mutually avoiding self-avoiding walks with span

m, say (w1, w2), where w1 contains the bottom vertex. One way of investigating the

topological entanglement of polygons (loops) is to see how these two walks w1 and

w2 are linked to each other. We can consider the configuration of these two walks as

a 2-string tangle (B, t) where t = {w1, w2} and B is the 3-ball [x1, x2]×[0, N ]×[0,M ]
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with x = x1 and x = x2 being the left- and right-most planes of G (Gl) respectively.

We can join the two ends of each walk from outside of the 3-ball and create a

two-component link (K1, K2) and ask about the topological linking probability of

(K1, K2). For this purpose, we will apply the pattern theorem to the pattern A′ +A′

illustrated in Figure 5.4 (b).

z

x

y

(a) An example showing how to get the
pair of self-avoiding walks (w1, w2) and
the associated link (K1, K2).

(b) The pattern A′ + A′.

Figure 5.4

Let

Zu
n(N,M ; f) =

n/2−1∑
m=0

pun(N,M ;m)efm, (5.6.10)

where pun(N,M ;m) represents the number of n-edge polygons with span m such that

their associated link (K1, K2) is topologically linked (non-splittable).

Theorem 5.6.3. Given f ∈ R, for N and M such that the (N,M)-tube can contain

the pattern A′ + A′:

Fu(N,M ; f) < F(N,M ; f), (5.6.11)

where

Fu(N,M ; f) ≡ lim sup
n→∞

n−1 logZu
n(N,M ; f). (5.6.12)
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Hence the probability that an n-edge polygonal link (K1, K2) is topologically linked

(non-splittable) goes to one as n→ ∞.

Proof. By Theorem 4.6.1 the occurrence of the pattern PA = A′ +A′ in any polygon

G guarantees the topological linking of the associated link (K1, K2). Let εPA
be the

positive number associated with the pattern PA as prescribed by Theorem 5.3.2.

Hence

pun(N,M ;m) ≤ pn(N,M ;≤ εPA
n, PA, m). (5.6.13)

Multiplying both sides by efm and summing over m implies

Zu
n(N,M ; f) ≤ Zn(N,M ;≤ εPA

n, PA, f). (5.6.14)

Taking logarithms, multiplying both sides by n−1 and letting n→ ∞ gives

Fu(N,M ; f) ≤ F(N,M ; εPA
, PA, f). (5.6.15)

Thus using the pattern theorem for stretched polygons, Theorem 5.3.2, we have

Fu(N,M ; f) < F(N,M ; f). (5.6.16)

Furthermore, the probability that the link (K1, K2) associated to a stretched

polygon is topologically linked is given by

Zn(N,M ; f) − Zu
n(N,M ; f)

Zn(N,M ; f)
= 1 − Zu

n(N,M ; f)

Zn(N,M ; f)
. (5.6.17)

This fraction goes to one as 1 − e−γu(N,M ;f)n+o(n) when n→ ∞, with γu(N,M ; f) ≡

F(N,M ; f) − Fu(N,M ; f).

Note that similar results can also be proved for loops.

5.7 Conclusions

In this chapter, we examined the topological entanglements of polygons (loops) con-

fined to a tube and under the influence of an external force f . We proved a pattern
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theorem for such polygons, the so-called stretched polygons. We used this to also

obtain a pattern theorem for loops in a tube. Note that the tube constraint allowed

us to prove the pattern theorem for any arbitrary value of f , not just for large val-

ues of f as in [27]. The pattern theorem was then used to show that the knotting

probability of an n-edge stretched polygon confined to a tube goes to one exponen-

tially as n → ∞. Furthermore, associating a two-component link to each polygon

(loop) in a tube, the incidence of topological linking was examined when the poly-

gon (loop) was under the influence of a force f . We proved that the probability that

the link associated to an n-edge polygon (loop) is topologically linked approaches

unity exponentially rapidly as n → ∞. This implies that as n→ ∞ when polygons

are influenced by an external force f , no matter its strength or direction, topolog-

ical entanglements, as defined by knotting and topological linking, occur with high

probability.

Furthermore, we proved the existence of the limiting free energy for stretched

polygons and analyzed the asymptotic form of the partition function for stretched

polygons, using the transfer-matrix approach. We showed that, the average span

per edge of a randomly chosen n-edge stretched polygon Sfn ,
Ef (m(Sf

n))

n
, approaches a

positive constant as n→ ∞. We also proved that Ef (m(Sfn)) is non-decreasing in f

almost everywhere. Let P∗ be the proper SAP config obtained by ordering the edges

of the tight trefoil pattern P introduced in Figure 3.7. Then, by proving equation

5.4.14, we established that the average number of occurrences of P∗ per edge in any

n-edge stretched polygon Sfn approaches a positive constant as n→ ∞. Future work

would involve investigating how this limiting value depends on f .
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Chapter 6

The Entanglement Complexity of Poly-

mer Systems Modelled by SSAWs

6.1 Introduction

Polymer molecules can become both self-entangled and entangled with other molecules.

These entanglements can have significant effects on some properties of the polymer

such as the crystallization behaviour of the polymer [17]. The self-entanglement of

an isolated ring polymer, modelled by a single self-avoiding polygon in Z3, is well

studied using topological measures such as the probability of knotting [25, 42]. How-

ever, many problems about entanglements in polymers in dense systems such as

melts are left unanswered [40, 41]. Most results about the entanglement complexity

of polymers in melts are obtained using numerical studies [13, 40, 41]. However, at

least the following open questions still remain and need further investigation both

rigorously and numerically:

• What is the best way to characterize the entanglement complexity of polymers

in dense systems?

• How does the entanglement complexity depend on some properties of the sys-

tem such as the total number of interpenetrating monomers in the system, the

number of polymers in the system and the density (the number of monomers

per unit volume)?

One way to characterize this entanglement complexity, proposed by Orlandini et

al in 2000 [40], is as follows. A polymer melt is considered as a set of entangled
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chains, modelled by a set of self- and mutually avoiding walks. Fixing the chain

conformations, imagine cutting a cube or tube out of the system. The conformations

of the parts of the chains which are in the interior of the cube or tube are considered.

Using the simple cubic lattice model, they investigated this numerically by studying

a number of self- and mutually avoiding walks confined to a cube. For each pair

of self-avoiding walks, by joining the two ends (vertices of degree one) of each walk

outside the cube, a two-component link is formed. And they take the sum of the

absolute value of the linking numbers, over all the possible SAW pairs, as a measure

of the entanglement complexity of this polymer system. Then the properties of the

complete melt can be inferred by investigating the properties of these chains in cubes.

In order to investigate Orlandini et al’s proposal further we address the problem

of the entanglement complexity of a polymer system modelled by a system of self-

avoiding walks (SSAW) confined to a tube, defined in Section 6.2. An example

of a polymer system is sketched in Figure 6.1. Our goal is to build a theoretical

framework that will allow us to apply the available mathematical techniques towards

developing and understanding the Orlandini et al 2004 model and answering the

following questions:

• How does the entanglement complexity change with respect to the total number

of monomers in the system?

• How does the entanglement complexity change with respect to the span of the

system along the tube?

• How does the entanglement complexity change with respect to the number of

chains in the system?

• How does the entanglement complexity change with respect to the systems’s

density?

• How does the entanglement complexity change with respect to the size of the

tube to which the polymers are confined?
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• How do the total number of monomers, the span, the number chains, the

density and the size of the tube depend on each other?

N

M

x
y

z

Figure 6.1: An example of a polymer system in an (N,M)-tube.

Specifically, we investigate, under some constraints, the entanglement complex-

ity of several self- and mutually avoiding walks confined to an (N,M)-tube. We

rigorously prove that the entanglement complexity, as measured in [41], of a poly-

mer system with size n is asymptotically (with probability one) bounded below by

a linear function of n; i.e. there exists a positive number γ such that the probability

that a polymer system of size n has entanglement complexity greater than γn ap-

proaches 1 as n goes to infinity. It is also shown that the entanglement complexity

of SSAWs of size n is bounded above by a linear function of n. Note that here

“size” can be measured by the total number of edges, the span or the number of

degree one vertices (or, equivalently, twice the number of disjoint walks) in SSAWs

. Furthermore, measuring size by the number of edges, for N ≥ 2 and M ≥ 2, the

connective constant for SSAWs in an (N,M)-tube is compared with the connective

constant for self-avoiding walks in an (N−2,M−2)-tube and is shown to be strictly

greater than that for SAWs.
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For Y3 = [x, y, z]T , let X#1
n (Y3) be a random variable taking its values from the

set of SSAWs with span m (in C∗
m) and with the probability distribution

P(X#1
m (Y3) = G) =

xf(G,1)yf(G,2)zf(G,3)

Z#1
m (N,M, Y3)

, (6.1.1)

where

Z#1
m (N,M, Y3) =

∑
G∈C∗

m

xf(G,1)yf(G,2)zf(G,3). (6.1.2)

We use the transfer-matrix results proved in Section 2.6 to obtain the asymptotic

form of the free energy for SSAWs. Let f(X#1
m (Y3), 3) be a random variable repre-

senting the number of edges in X#1
m (Y3). We use the transfer-matrix approach to

explore the asymptotic behaviour of the average edge-density of SSAWs defined by

EY (f(X#1
m (Y3),3)
NMm

), i.e. the expected value of f(X#1
m (Y3),3)
NMm

.

Moreover, we investigate the asymptotic behaviour of SSAWs in T (N,M) with a

fixed edge-density, where the edge-density of an n-edge SSAW with a fixed span m is

defined by ρ(n) = n
NMm

. In particular, we look at spanm SSAWs which contain �εm�

edges, for some ε > 0. Let qsm(N,M ; �εm�) denote the number (up to x-translation)

of such SSAWs in T (N,M). In this case,

ρ(�εm�) =
�εm�
NMm

(6.1.3)

and the limiting edge-density is defined by

ρ∗ ≡ lim
m→∞

�εm�
NMm

=
ε

NM
. (6.1.4)

We investigate the growth constant for SSAWs with a fixed limiting edge-density.

This chapter is organized as follows. In Section 6.2 we give a precise definition

of SSAWs. In Section 6.3, (CONCAT) and (CAPOFF) are proved to be satisfied

for SSAWs and the existence of the limiting free energy is shown in Section 6.4.

Then a pattern theorem is proved for the limiting free energy in Section 6.5. In

Section 6.6, it is shown that the connective constant of SSAWs in T (N,M) (when

size is measured by the number of edges) is strictly greater than that of SAWs in

an (N − 2,M − 2)-tube, for N ≥ 2 and M ≥ 2. Then, in Section 6.7, we use

the pattern theorem to investigate the asymptotic behaviour of the entanglement
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complexity of polymer systems. In Section 6.8, we prove that the entanglement

complexity of any n-edge (span n) SSAW cannot grow faster than linearly in n. In

Section 6.9, we use the transfer-matrix results obtained in Section 2.6 to determine

the asymptotic form of the free energy for SSAWs. Then, in Section 6.10, some

questions regarding the asymptotic behaviour of the average edge-density of SSAWs

are addressed. Furthermore, in Section 6.11, we discuss the properties of the growth

constant for SSAWs with a fixed limiting edge-density. Finally, we finish this chapter

by giving a summary of the obtained results in Section 6.12.

6.2 SSAWs

Here we investigate the asymptotic behaviour of the entanglement complexity of

polymer systems, measured using a quantity based on linking numbers. For this

purpose a polymer system is modelled mathematically by a system of self-avoiding

walks defined as follows:

Definition 6.2.1. A System of Self-avoiding Walks (SSAW) with n edges in an

(N,M)-tube is a finite subgraph G of T (N,M) satisfying the following conditions:

(i) The total number of edges in G is n.

(ii) Each connected component of G is an undirected self-avoiding walk which has

both its vertices of degree one and no vertex of degree two on the boundaries

of the tube (the four planes y = 0, y = N , z = 0 and z = M are considered

the boundaries of the (N,M)-tube).

(iii) For

x1 ≡ min{x|(x, y, z) is a vertex of G},

x2 ≡ max{x|(x, y, z) is a vertex of G}

and any integer x0 ∈ [x1, x2], G has at least one vertex (x, y, z) with x = x0.
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An example of an SSAW is illustrated in Figure 6.2. Consistent with the defini-

tions of the span and the left-most (right-most) plane for any finite subgraph of Z3,

presented in Section 2.1, x2 − x1 is defined to be the span of the SSAW and x = x1

(x = x2) is said to be the left-most (right-most) plane of the SSAW.

x
y

z

Figure 6.2: An example of a 25-edge SSAW in T (2, 4) with span 6.

In order to measure the entanglement complexity of an SSAW G according to

the Orlandini et al 2004 approach we need to associate a two-component link to each

pair of walks in G. Next we will explain the construction of such a link. To do this

nicely we first extend the walk endpoints in an SSAW so that they lie in either the

plane y = 0 or y = N .

Let G be an SSAW composed of the sequence of self- and mutually avoiding undi-

rected walks w1, w2, ..., wk, where k is the total number of walks in G and the walks

have been ordered according to the following algorithm: Among the two endpoints

(vertices of degree one) of each undirected self-avoiding walk wi, for 1 ≤ i ≤ k, let vi

be the vertex which is lexicographically smallest. Then the walks are ordered from

i = 1, ..., k according to the lexicographical order of the vi’s. We will assume this

order for the walks in any SSAW G after this, unless otherwise stated.

Lemma 6.2.1. Given two non-negative integers N and M , let G be an n-edge SSAW

in T (N,M). There exists an SSAW Ḡ in T (N,M+2N) such that Ḡ∩(G+(0, 0, N)) =
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G + (0, 0, N), the number of edges in Ḡ is bounded above by a linear function h(n)

where h(n) = (4N − 3)n, and Ḡ has all its degree one vertices in the planes y = 0

and y = N . Ḡ is contained in the box

BG := {(x, y, z) ∈ Z
3 | x1 ≤ x ≤ x2, 0 ≤ y ≤ N, 0 ≤ z ≤M + 2N}, (6.2.1)

where x = x1 and x = x2 are respectively the left- and right-most planes of G.

Proof. Given an n-edge SSAW G in T (N,M), let w1, ..., wk be the sequence of undi-

rected self-avoiding walks composing G. For i = 1, ..., k, let ni be the number of edges

in wi. For every USAW wi in G we associate a new USAW w̄i as follows (as an exam-

ple, see Figure 6.3): For every x∗ such that x1 ≤ x∗ ≤ x2, we order lexicographically

all the degree one vertices (x∗, y, 0) in the plane z = 0 with 0 < y < N and x = x∗,

if there are any. Let v1 < ... < vr (for some 0 ≤ r ≤ (N − 1)) represent the sequence

of these vertices. Then for j = 1, ..., r, we add the walk (−jk̂,−y(vj)ĵ) starting at vj

and then ignore the orientation on the edges. Similarly, we order lexicographically

all the degree one vertices of G in the plane z = M with 0 < y < N and x = x∗. Say

v1 > ... > vr (for some 0 ≤ r ≤ (N −1)), where the vertices are labelled from largest

to smallest. Then for j = 1, ..., r, we add the walk (jk̂, (N − y(vj))ĵ) starting at

vj and ignore the orientation on the edges. Under this transformation, any USAW

in G will be either extended, at least from one of its endpoints, or it will remain

unchanged. Now, we translate all the USAWs N units in the positive z-direction.

For i = 1, ..., k, we denote by w̄i such a USAW obtained from wi; note that each

w̄i has (ni + mi) edges where mi ≤ 4(N − 1). This results in a new SSAW, Ḡ, in

T (N,M + 2N) with the property that the USAWs in Ḡ have all their endpoints on

the boundary planes y = 0 and y = N . It is also clear from the construction that

Ḡ∩ (G+(0, 0, N)) = G+(0, 0, N). Moreover, the total number of edges in Ḡ, n(Ḡ),
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satisfies the following inequality

n(Ḡ) =

k∑
i=1

(ni +mi) ≤
k∑
i=1

ni +

k∑
i=1

mi ≤ n+ 4k(N − 1)

≤ n+ 4(N − 1)n

= (4N − 3)n. (6.2.2)

x
y

z

(a) The 11-edge SSAW G in T (2, 2) with
span 6. G is composed of the sequence of
walks w1, w2, w3, w4 with n1 = 2, n2 = 6,
n3 = 1 and n4 = 2.

x
y

z

(b) The 21-edge SSAW Ḡ in T (2, 6) with
span 6. Ḡ is composed of the sequence
of walks w̄1, w̄2, w̄3, w̄4 with n1 + m1 = 6,
n2 +m2 = 10, n3+m3 = 3 and n4+m4 =
2.

Figure 6.3: An example showing how to construct Ḡ from the SSAW
G in T (2, 2). Note that the edges added to G in order to obtain Ḡ are
shown as dashed lines.

Given an n-edge SSAW G, let w1, ...wk be the sequence of USAWs in G. By

Lemma 6.2.1, any pair of USAWs (wi, wj) (i < j) corresponds to a new pair of

USAWs (w̄i, w̄j) such that w̄i and w̄j are confined to the box BG and have their

endpoints in the boundary planes y = 0 and y = N . Let ai (aj) and bi (bj) be the

lexicographically smallest and largest vertices of w̄i (w̄j) on the boundary respec-

tively. The four points ai, bi, aj and bj lie in the boundary of BG and, regardless of

the configurations of w̄i and w̄j , ai (aj) can be connected to bi (bj) using three closed

straight-line segments lying outside BG; for example, see Figure 6.4. In particular,

this can be done so that the result is a two-component link Kij = (Ki, Kj) satis-

fying the following conditions: First, when Kij is projected into the xy-plane, the
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six closed straight-line segments of Kij which lie outside BG create no crossing with

the edges inside BG and at most one crossing amongst themselves. Secondly, when

Kij is projected into the xy-plane, the only crossing amongst edges outside BG (if

there is any) must involve both components of Kij. Such a crossing will consist of

an over-crossing from one polygon edge and an under-crossing edge from the other

polygon. The addition of the six closed straight-line segments is done so that the

polygon containing wi, Ki, contains the over-crossing. Figure 6.4 shows an example

of such a link associated to a pair of walks. The conditions under which the pro-

jection of Kij into the xy-plane creates (or does not create) a crossing outside BG

are discussed next. Without loss of generality we take i = 1 and j = 2 and we have

a1 < a2 < b2. Also, depending on the coordinates of b1, one of the following cases

holds:

1) If a1 < b1 < a2 < b2 then the following argument shows that K12 can be

constructed such that its regular projection in the xy-plane does not create any

crossing outside BG. For i = 1, 2, every ai (bi) lies in y = 0 or y = N . This

gives rise to a partition {A,B} of the set {a1, b1, a2, b2} satisfying A ∩ B = ∅ and

A ∪ B = {a1, b1, a2, b2} such that the elements in A lie in one boundary plane

and the elements in B lie in the other boundary plane. For all the possible par-

titions {{a1, b1, a2, b2}, ∅}, {{b1, a2, b2}, {a1}}, {{a1, a2, b2}, {b1}}, {{a1, b1, b2}, {a2}},

{{a1, b1, a2}, {b2}}, {{a1, b1}, {a2, b2}}, {{a1, a2}, {b1, b2}} and {{a1, b2}, {b1, a2}},K12

can be constructed such that its regular projection in the xy-plane does not create

any crossing outside BG. This is because there is a plane which divides BG so that

a1 and b1 are on one side and the other two vertices, a2 and b2, are on the other side

of the plane; so we can add three closed line segments joining a1 and b1 on one side

of the plane and another three closed line segments joining a2 and b2 on the other

side of the plane.

2) If a1 < a2 < b1 < b2 then, depending on the position of the points on the

boundary planes, K12 can be constructed such that its regular projection in the xy-

plane creates zero or one crossing outside BG. For the partitions {{a1, a2, b1, b2}, ∅}

(x(b1) > x(a2)), {{a2, b1, b2}, {a1}} (x(b1) > x(a2)), {{a1, a2, b1}, {b2}} (x(b1) <
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x(a2)) and {{a1, b2}, {a2, b1}} (x(b1) > x(a2)) the extra crossing is needed (e.g. see

Figure 6.4). On the other hand, for the partitions {{a1, a2, b1, b2}, ∅} (x(b1) = x(a2)),

{{a2, b1, b2}, {a1}} (x(b1) = x(a2)), {{a1, a2, b1}, {b2}} (x(b1) = x(a2)), {{a1, b1, b2},

{a2}},{{a1, b2}, {a2, b1}} (x(b1) = x(a2)), {{a1, a2, b2}, {b1}}, {{a1, a2}, {b1, b2}} and

{{a1, b1}, {a2, b2}} no crossing is needed.

3) If a1 < a2 < b2 < b1 then, similar to the previous case, for the partitions

{{a1, b2, b1}, {a2}} (x(b1) > x(b2)), {{a1, a2, b1}, {b2}} (x(b1) > x(a2)), {{a1, a2}, {b2,

b1}} (x(b1) > x(b2)) and {{a1, b2}, {a2, b1}} (x(b1) > x(a2)) one crossing is needed

while for the partitions {{a1, b2, b1}, {a2}} (x(b1) = x(b2)), {{a1, a2, b1}, {b2}} (x(b1) =

x(a2)), {{a1, a2}, {b2, b1}} (x(b1) = x(b2)), {{a1, b2}, {a2, b1}} (x(b1) = x(a2)), {{a1,

a2, b2, b1}, ∅}, {{a2, b2, b1}, {a1}}, {{a1, a2, b2}, {b1}} and {{a1, b1}, {a2, b2}} no cross-

ing is needed.

1w 2w

x
y

z

1a

1b
2a

2b

u

v

u

v

Figure 6.4: A two-component link K12 is associated to a pair
of USAWs (w̄1, w̄2). a1 = (x(a1), N, z(a1)), b1 = (x(b1), 0, z(b1)),
a2 = (x(a2), 0, z(a2)) and b2 = (x(b2), N, z(b2)). a1 < a2 < b1 < b2
and the corresponding partition is {{a1, b2}, {a2, b1}} (x(b1) > x(a2)).
Note that in this case we can take u = (x1 − x,N + yu, zu), v =
(x1 − x,−yv, zv), u′ = (x2 + x′,−y′u, z′u) and v′ = (x2 + x′, N + y′v, z

′
v)

where x, x′, yu, zu, yv, zv, y′v, z
′
v are arbitrary positive integers and two

positive integers y′u and z′u are chosen so that the line joining a2 and u′

lies under the line joining b1 and v.

Thus we obtain the following corollary from Lemma 6.2.1:
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Corollary 6.2.2. Given an n-edge SSAW G, let w1, ...wk be the sequence of USAWs

in G. Let Ḡ be the SSAW associated to G as prescribed in Lemma 6.2.1. For

any 1 ≤ i < j ≤ k, there exists a two-component polygonal link Kij = (Ki, Kj)

corresponding to each pair of USAWs (wi, wj) such that when it is projected into

the xy-plane those edges of Kij which lie outside BG will create no crossing with

the edges inside BG and at most one crossing, involving both polygons Ki and Kj,

amongst themselves.

The Entanglement Complexity, EC(G), of any SSAW G is now defined as follows

[41]:

EC(G) =

k−1∑
i=1

k∑
j=i+1

|Lk(Kij)|, (6.2.3)

where k is the total number of disjoint undirected walks w1, w2, ..., wk contained in G,

Kij is the two-component link associated to the pair of USAWs (wi, wj) as prescribed

in Corollary 6.2.2 and Lk(Kij) is the linking number of Kij .

6.3 (CONCAT) and (CAPOFF) for SSAWs

Given an SSAW G, let f(G, 1), f(G, 2) and f(G, 3) represent the span, the number

of degree one vertices (or, equivalently, twice the number of disjoint walks) and the

total number of edges of G respectively. For j = 1, 2, 3, define

Z#j
n (N,M, Y3) =

∑
G

xf(G,1)yf(G,2)zf(G,3), (6.3.1)

where the sum is over all the SSAWs G with “size” n, measured by f(G, j), and

left-most plane x = 0; Y3 = [x, y, z]T is a vector of variables. Note that here “size”

of an SSAW G can be measured by the total number of edges (f(G, 3)), the span

(f(G, 1)) or the number of degree one vertices of G (f(G, 2) or, equivalently, twice

the number of USAWs in G).

We first use the so called pattern insertion strategy, introduced in Section 2.5, to

obtain a pattern theorem for SSAWs. In order to meet the requirements of Corollary
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2.5.3, which gives the pattern theorem, in this section we will check the satisfaction

of (CA1), (CA2), (CONCAT) and (CAPOFF) for SSAWs. (CA1) basically gives the

definition of the clusters under investigation. Here Cn := Cn(N,M) is the set of all

SSAWs in T (N,M) and C∗
n ⊆ Cn represents the set of all SSAWs with “size” n in

T (N,M) which have their left-most plane at x = 0. It can be easily seen that Cn is

invariant under translation, i.e., given

u ∈ S∗ = {u ∈ R
3 | T (N,M) + u = T (N,M)} = {(x, 0, 0) | x ∈ Z}, (6.3.2)

G ∈ Cn implies thatG+u ∈ Cn. The Cn’s are also pairwise disjoint since Cn∩Cm = ∅

for n 
= m. So (CA1) is satisfied for SSAWs in T (N,M). Similar to the case for

stretched polygons, given C :=
⋃∞
n=1Cn, we consider the weight function

wt : C → (0,∞) (6.3.3)

such that wt(G) = xf(G,1)yf(G,2)zf(G,3) for any G ∈ C, where x, y and z are positive

real numbers. f(G, 1), f(G, 2) and f(G, 3) all remain unchanged when an SSAW G is

translated along the x-axis thus the weight function wt is invariant under translation,

i.e.

wt(G) = wt(G+ u) for every u ∈ S∗ and G ∈ C. (6.3.4)

The following theorem also shows that (CA2) is satisfied for this choice of weight

function.

Theorem 6.3.1. Given the weight function wt, (CA2) is satisfied for SSAWs.

Proof. Given k ≥ 0, let the two SSAWs G and G′ differ by at most k vertices and

edges, i.e.

| E(G) � E(G′) | + | V (G) � V (G′) |≤ k. (6.3.5)

Then we claim that

| f(G, 1) − f(G′, 1) |≤ k, | f(G, 2) − f(G′, 2) |≤ k and | f(G, 3) − f(G′, 3) |≤ k.

(6.3.6)
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Suppose to the contrary that | f(G, 1)− f(G′, 1) |> k (| f(G, 2)− f(G′, 2) |> k).

Without loss of generality assume that f(G, 1) > f(G′, 1), i.e. the span of G is

greater than that of G′, then there are exactly f(G, 1) − f(G′, 1) hinges in which G

has at least one vertex (because G is an SSAW) and G′ does not have any vertices

thus

| V (G) \ V (G′) |≥| f(G, j) − f(G′, j) |> k for j = 1, 2. (6.3.7)

This implies that

| E(G) � E(G′) | + | V (G) � V (G′) |≥| V (G) \ V (G′) |> k (6.3.8)

which contradicts equation 6.3.5. Therefore, the following inequality must hold

| f(G, j) − f(G′, j) |≤ k for j = 1, 2. (6.3.9)

Similarly, suppose to the contrary that for the number of edges,

| f(G, 3) − f(G′, 3) |> k (6.3.10)

then

| E(G) \ E(G′) |≥| f(G, 3) − f(G′, 3) |> k. (6.3.11)

This implies that

| E(G) � E(G′) | + | V (G) � V (G′) |≥| E(G) \ E(G′) |> k (6.3.12)

which contradicts equation 6.3.5. Hence, the following inequality must hold

| f(G, 3) − f(G′, 3) |≤ k. (6.3.13)

Equations 6.3.9 and 6.3.13 yield equation 6.3.6. Thus,

−k ≤ f(G′, j) − f(G, j) ≤ k for j = 1, 2, 3, (6.3.14)

which implies

x−k ≤ xf(G′,1)−f(G,1) ≤ xk, y−k ≤ yf(G′,2)−f(G,2) ≤ yk and z−k ≤ zf(G′,3)−f(G,3) ≤ zk.

(6.3.15)
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Hence, for x > 0, y > 0, z > 0,

(xyz)−k ≤ xf(G′,1)−f(G,1)yf(G′,2)−f(G,2)zf(G′,3)−f(G,3) ≤ (xyz)k. (6.3.16)

Multiplying all sides of the above inequality by xf(G,1)yf(G,2)zf(G,3) gives

(xyz)−kxf(G,1)yf(G,2)zf(G,3) ≤ xf(G′,1)yf(G′,2)zf(G′,3) ≤ (xyz)kxf(G,1)yf(G,2)zf(G,3).

(6.3.17)

Let γk := (xyz)−k. Having

wt(G) = xf(G,1)yf(G,2)zf(G,3) and wt(G′) = xf(G′,1)yf(G′,2)zf(G′,3), (6.3.18)

equation 6.3.17 yields

1

γk
wt(G) ≤ wt(G′) ≤ γkwt(G). (6.3.19)

The following lemmas show that for SSAWs and various choices of size there exist

choices of cT , tT and mT for which (CONCAT) and (CAPOFF) hold.

x
y

z G1 G2

(a) The two SSAWs G1 and G2 in T (2, 4).

x
y

z
G

(b) The SSAW G resulted from the con-
catenation of G1 and G2.

Figure 6.5: An example of concatenating the 12-edge SSAW G2 with
span 2 (f(G2, 2) = 6) to the 19-edge SSAW G1 with span 4 (f(G1, 2) =
12) which results in the 31-edge SSAW G with span 7 (f(G, 2) = 18).

Lemma 6.3.2. Given two non-negative integer numbers N and M , tT = 1 and

cT = 0 (cT = 1), (CONCAT) holds for SSAWs in T (N,M) when the size of an
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SSAW G is measured either by the number of edges, f(G, 3), or by the number of

degree one vertices, f(G, 2) (by the span, f(G, 1)).

Proof. We prove that there exists a concatenation process defined for SSAWs on

T (N,M) and associated integers tT ≥ 0 and cT ≥ 0 such that:

Given G1 ∈ C∗
n with span b1 and G2 ∈ C∗

m with span b2, concatenating G1 to the

translate ofG2, G2+(tT+b1, 0, 0), formsG ∈ C∗
n+m+cT

such thatG∩Vb1−1 = G1∩Vb1−1

and G ∩ (Vb2−1 + (tT + b1 + 1, 0, 0)) = G2 ∩ (Vb2−1 + (1, 0, 0)) (i.e. only the right-

most plane of G1 and the left-most plane of G2 can be altered in the concatenation

process).

The proof of this lemma when the size of G is measured either by f(G, 2) or

f(G, 3) is identical while slight modifications are required when the size is measured

by f(G, 1); these modifications are set off in brackets. Let G1 ∈ C∗
n with span b1

and G2 ∈ C∗
m with span b2, uniting G1 with the translate of G2, G2 + (b1 + 1, 0, 0),

forms the concatenated SSAW G with span b = b1 + b2 +1 (i.e. f(G, 1) = f(G1, 1)+

f(G2, 1) + 1) and satisfying f(G, j) = f(G1, j) + f(G2, j) for j = 2, 3. G is in C∗
n+m

if size is measured by f(G, 3) or f(G, 2) (in C∗
n+m+1 if size is measured by f(G, 1)).

An example of such a concatenation is shown in Figure 6.5. It is clear that this

concatenation process is well defined since G automatically inherits all the required

properties of SSAWs from G1 and G2. Letting tT = 1 and cT = 0 if size is measured

by f(G, 3) or f(G, 2) (cT = 1 if size is measured by f(G, 1)) proves that (CONCAT)

holds for SSAWs in T (N,M).

Note that larger SSAWs can be made by concatenating smaller ones; however,

there are many SSAWs which cannot be made by concatenating two or more small

ones. For example, SSAWs which contain only a single undirected self-avoiding walk

have this property.

Lemma 6.3.3. Given a pair of non-negative integer numbers (N,M) 
= (0, 0) and

mT ≥ (N − 1)(M − 1) + 1, (CAPOFF) holds for SSAWs in T (N,M) regardless of
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x
y

z H P

(a) The 2-pattern P which has occurred
in an SSAW H .

x
y

z G mT −m(W (P ))

(b) The SSAW G with span 2+mT which
starts with the pattern P and ends with
mT − m(W (P )) copies of the 0-pattern
P0.

Figure 6.6: An example of a 2-pattern P which occurs at the start
of an SSAW G with span 2 + mT ; note that m(W (P )) = 2 and the
edges added to P in order to obtain G are shown to be thicker than
P ’s edges.

whether size is measured by the number of edges, the span or the number of degree

one vertices.

Proof. We prove that there exists an integer mT > 0 such that:

For any integer b ≥ 0 and any b-pattern P that occurs at (0, 0, 0) in some finite

size SSAW in C∗ with span s ≥ b + 1 (i.e. P occurs at the start of some SSAW),

there exists an SSAW G ∈ C∗ with span b + mT which also contains P at (0, 0, 0)

(i.e. P is also at the start of G). Similarly, given any b-pattern P ′ that occurs at

(s − b, 0, 0) in some finite size SSAW in C∗ with span s ≥ b + 1 (i.e. P ′ occurs at

the end of some SSAW), there exists an SSAW G′ ∈ C∗ with span b + mT which

contains P ′ at (mT , 0, 0) (i.e. P ′ also ends G′).

Without loss of generality consider the first case, i.e. let P be a b-pattern that

occurs at the start of an SSAW with span > b. P may already be an SSAW or P

must have a degree one vertex in (or a degree zero vertex in the boundary of) its

right-most plane. In the latter case, to obtain an SSAW G satisfying (CAPOFF)

any degree one (or degree zero) vertex must be extended to the boundary (one unit
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in the boundary). Thus the SSAW G satisfying (CAPOFF) can be constructed from

the pattern P as follows (Figure 6.6 gives an example of such a construction):

Let W (P ) := {v1, ..., vi} be the set of all the degree one vertices (ordered lexico-

graphically from smallest to largest) in the plane x = b which are not on the bound-

aries of the tube; i.e. vj ∈ Xb := {(b, y, z) ∈ Z3|1 ≤ y ≤ N − 1, 1 ≤ z ≤ M − 1} for

j = 1, ..., i (i ≤ (N−1)(M−1)). Given vj = (xj , yj, zj), we join each vj to a point on

the boundary of the tube using a USAW. Specifically, for each 1 ≤ j ≤ i, we add the

USAW ((j + 1)̂i,−zj k̂) starting at vj and then ignore the orientation on the edges.

Next, we join any vertex u of P that has degree zero and lies on the boundary of

the tube to the vertex u+ (1, 0, 0) by adding an edge. Note that such an edge must

be on the boundary of the tube. The result will be an SSAW G1 with span equal to

b + i+ 1. Clearly, the span of G1 depends on m(W (P )) := i+ 1 which depends on

i, the number of degree one vertices in the configuration of the right-most plane of

P , i.e. W . We will remove this dependence using the following strategy.

Let W be any non-empty subset of vertices in Xb. Let W = {v1, ..., vi(W )}, where

the vj’s, j = 1, ..., i(W ), are ordered lexicographically (from smallest to largest) and

i(W ) is the number of elements in W . By the construction above, corresponding

to each W we get a set of USAWs which fit in a section of the tube with span

m(W ) := i(W ) + 1, i.e. Vm(W ) + (b, 0, 0). Since i(W ) ≤ (N − 1)(M − 1), m(W ) will

be bounded above by a function of N and M , i.e. m(W ) ≤ (N − 1)(M − 1) + 1. In

particular, taking W = W (P ) from above, m(W (P )) ≤ (N − 1)(M − 1) + 1. Thus

we can remove the dependence of the span of G1 on W (P ) by extending G1 to create

a new SSAW G having span at least (N − 1)(M − 1) + 1 + b. To see this, let mT be

an integer ≥ (N − 1)(M − 1)+1. Let P0 be the 0-pattern containing the single edge

walk (k̂) (or (ĵ) if M = 0) starting at the origin with orientation ignored. G1 can

easily be extended to an SSAW G with span mT by concatenating
(
mT −m(W (P ))

)
copies of P0 to the left-most plane of G1; for example, see Figure 6.6. Furthermore,
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by symmetry a similar argument leads to the construction of the SSAW G′ satisfying

(CAPOFF) for an end pattern P ′. Therefore (CAPOFF) is satisfied for SSAWs.

6.4 The Limiting Free Energy for SSAWs

In this section, we prove the existence of the limiting free energy for SSAWs when

the size is measured by various measures. Let q(N,M, a1, a2, a3) denote the number

of SSAWs G (up to x-translation) satisfying f(G, j) = aj for j = 1, 2, 3. Note that

for any n ∈ N, Z#j
n (N,M, Y3) from equation 6.3.1 can be written as

Z#j
n (N,M, Y3) =

∑
q(N,M, a1, a2, a3)x

f(G,1)yf(G,2)zf(G,3)

=
∑

q(N,M, a1, a2, a3)x
a1ya2za3 , (6.4.1)

where the sums are over all the non-negative integer triples (a1, a2, a3) with aj = n.

Theorem 6.4.1. For each of j = 1, 2, 3, the following limit exists and is finite

F#j(N,M, Y3) = lim
n→∞

n−1 logZ#j
n (N,M, Y3). (6.4.2)

Proof. Note first that here we prove the theorem for the case where size of any SSAW

G is measured by f(G, 3), i.e. the number of edges in G. A similar argument works

for the other two cases.

By (CONCAT) for SSAWs, Lemma 6.3.2, the following inequality holds

2n1∑
m1=0

2n1∑
c1=0

q(N,M,m1, c1, n1)q(N,M,m−m1 − 1, c− c1, n2) ≤ q(N,M,m, c, n1 + n2).

(6.4.3)

Multiplying both sides of this inequality by xmyczn1+n2 and summing over m and c

137



gives rise to

2(n1+n2)∑
m=0

2(n1+n2)∑
c=0

2n1∑
m1=0

2n1∑
c1=0

q(N,M,m1, c1, n1)q(N,M,m−m1 − 1, c− c1, n2)x
myczn1+n2

≤
2(n1+n2)∑
m=0

2(n1+n2)∑
c=0

q(N,M,m, c, n1 + n2)x
myczn1+n2

= Zn1+n2(N,M, Y3).

Moreover,

Zn1(N,M, Y3) =
2n1∑
m1=0

2n1∑
c1=0

q(N,M,m1, c1, n1)x
m1yc1zn1 , (6.4.4)

Zn2(N,M, Y3) =

m1+2n2+1∑
m=m1+1

c1+2n2∑
c=c1

q(N,M,m−m1 − 1, c− c1, n2)x
m−m1−1yc−c1zn2 .

(6.4.5)

Now equations 6.4.3 to 6.4.5 imply that

Z#3
n1

(N,M, Y3)Z
#3
n2

(N,M, Y3) ≤ x−1Z#3
n1+n2

(N,M, Y3). (6.4.6)

Letting an = log xZ#3
n (N,M, Y3), equation 6.4.6 implies that {an} is a super-

additive sequence. Therefore, by Lemma 2.1.2

F#3(N,M, Y3) = lim
n→∞

n−1an = sup
n≥1

n−1an. (6.4.7)

Any n-edge SSAW with x1 = 0 is a set of n edges from the edges in the box

{(x, y, z) ∈ Z3 | 0 ≤ x ≤ 2n, 0 ≤ y ≤ N, 0 ≤ z ≤M}. There are in total

2n(M + 1)(N + 1) +M(2n + 1)(N + 1) +N(M + 1)(2n+ 1) (6.4.8)

edges in this box. Hence, given a = 4[(M + 1)(N + 1) +M(N + 1) +N(M + 1)],

q(N,M, a1, a2, n) ≤(
2n(M + 1)(N + 1) +M(2n + 1)(N + 1) +N(M + 1)(2n+ 1)

n

)
≤
(
an

n

)
. (6.4.9)
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Since, 0 ≤ a1 ≤ 2n, 0 ≤ a2 ≤ n and a3 = n, so there are at most (2n + 1)(n + 1)

choices for the triple (a1, a2, a3). Thus

Z#3
n (N,M, Y3) ≤ (2n+ 1)(n+ 1)

(
an

n

)
max{1, x2nynzn}. (6.4.10)

Therefore, using Lemma 2.1.4, we have

lim sup
n→∞

n−1 logZ#3
n (N,M, Y3) ≤

[
a log a− (a− 1) log(a− 1)

]
+ log(x2yz) <∞.

(6.4.11)

The existence and finiteness of the limit now follows from Lemma 2.1.2.

Furthermore, for j = 1, 2, 3, Theorem 6.4.1 and [26, Section 2.1] lead immediately

to the following result for F#j(N,M, Y3).

Theorem 6.4.2 (Janse van Rensburg 2000 [26]). F#j(N,M, Y3) is a convex function

of log Y3(j). Moreover, its right- and left-derivatives exist everywhere in (0,∞),

and they are non-decreasing functions of Y3(j). F#j(N,M, Y3) is also differentiable

almost everywhere, and whenever

dF#j(N,M, Y3)/dY3(j) (6.4.12)

exists it is given by

lim
n→∞

(dF#j
n (N,M, Y3)/dY3(j)), (6.4.13)

where

F#j
n (N,M, Y3) = n−1 logZ#j

n (N,M, Y3). (6.4.14)

6.5 Pattern Theorem for the Limiting Free En-

ergy of SSAWs

Given a pattern P for SSAWs, for j = 1, 2, 3, define

Z#j
n (N,M, Y3;< m,P ) =

∑
G∈C∗

n[<m,P ]

xf(G,1)yf(G,2)zf(G,3) (6.5.1)
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to be the partition function for the SSAWs which contain less than m translates of P ,

when size of an SSAW G, n, is measured by f(G, j). (CONCAT), (CAPOFF), (CA1)

and (CA2) are all satisfied for SSAWs hence Corollary 2.5.3 yields the following

pattern theorem for the limiting free energy.

Theorem 6.5.1. Let P be any proper pattern for SSAWs in T (N,M). Then, for

j = 1, 2, 3, there exists an ε#jP (Y3) > 0 such that

F#j(N,M, Y3;< ε#jP (Y3), P ) < F#j(N,M, Y3), (6.5.2)

where

F#j(N,M, Y3;< ε#jP (Y3), P ) ≡ lim sup
n→∞

n−1 logZ#j
n (N,M, Y3;< �ε#jP (Y3)n�, P ).

(6.5.3)

Note that here any SSAW pattern is also a proper pattern. In fact, any SSAW

start (end) pattern can also occur in the middle of an SSAW. This is due to the nature

of (CONCAT) for SSAWs which leaves both the left- and right-most planes of a given

pattern P unchanged. More precisely, let P be a start pattern which occurs at the

start of an SSAW H . By Lemma 6.3.2 (CONCAT), we can concatenate together any

number of copies of H without changing the right-most or left-most plane of H . This

shows that P can occur in the middle of infinitely many SSAWs thus P is a proper

SSAW pattern. By symmetry, a similar argument also works for end patterns.

6.6 The Connective Constant for SSAWS

Given Y3 = [1, 1, 1]T , for j = 1, 2, 3 let

q#j
n (N,M) ≡ Z#j

n (N,M, Y3) (6.6.1)

be the number of SSAWs of size n measured by f(G, j). By Theorem 6.4.1, the

connective constants exist for SSAWs, i.e.

κ#j
q (N,M) ≡ F(N,M, [1, 1, 1]T ) = lim

n→∞
n−1 log q#j

n (N,M), (6.6.2)
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for j = 1, 2, 3.

As was discussed in Section 2.2, Soteros and Whittington [48, 49] proved the

existence of the connective constant for SAWs in T (N,M), i.e.

κ(N,M) = lim
n→∞

n−1 log cn(N,M) <∞, (6.6.3)

where n denotes the number edges. In this section we show, using the pattern

theorem for SSAWs in T (N,M), that the connective constant for SAWs in T (N −

2,M − 2) is strictly less than the connective constant for SSAWs in T (N,M) when

the size is measured by the number of edges.

Theorem 6.6.1. For N ≥ 2 and M ≥ 2,

κ(N − 2,M − 2) < κ#3
q (N,M). (6.6.4)

Proof. The idea of the proof is to start with a bridge w in T (N − 2,M − 2) and

construct an SSAW in T (N,M) by translating w and then extending its end vertices

to the boundary plane z = 0 of the tube T (N,M). See Figure 6.7 for an example of

such a construction. Then we use the pattern theorem for SSAWs, Theorem 6.5.1,

combined with the fact that bridges and SAWs in T (N,M) have the same connective

constant (Theorem 2.2.3) to complete the proof.

Given an n-step bridge w := u0, u1, ..., un−1, un in T (N −2,M −2), let w1 and w2

be respectively the walk (−(z(u0)+1)k̂) starting at u0 and and the walk (̂i,−(z(un)+

1)k̂) starting at un. Let w1◦w◦w2 be the walk obtained from concatenation of w1, w

and w2 (see Figure 6.7 (b)). Translating w1 ◦w ◦w2 by k̂ and then by ĵ and ignoring

the orientation on the edges results in an SSAW G′ in T (N,M) which contains only

a single USAW. The number of edges in G′, n(G′), satisfies the following inequality

n(G′) = n + n(w1) + n(w2)

≤ n + (M − 1) + (M − 1) + 1

= n + 2M − 1, (6.6.5)
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0 0

0

x
y

z
w w1 ◦ w ◦ w2 Gw

Figure 6.7: An example showing how to construct the SSAW Gw in
T (2, 3) from the bridge w in T (0, 1). Note that here n = 2, mw = 4
and n(Gw) = 7.

where n(w1) and n(w2) denote the number of edges in w1 and w2 respectively.

Note that mw := n(w1) + n(w2) ≤ 2M − 1. Let P0 be the pattern introduced in

the proof of Lemma 6.3.3. We can easily concatenate (2M − 1 −mw) copies of P0

to G′’s right-most plane and obtain a new SSAW Gw with the total number of edges

n(Gw) = n+ 2M − 1 (see Figure 6.7 (c)). Thus

bn(N − 2,M − 2)

2
≤ q#3

n+2M−1(N,M). (6.6.6)

Taking logarithms, multiplying both sides by n−1 and letting n→ ∞ implies

κb(N − 2,M − 2) ≤ κ#3
q (N,M). (6.6.7)

Using Theorem 2.2.3, we obtain

κ(N − 2,M − 2) ≤ κ#3
q (N,M). (6.6.8)

It is easy to see from the construction of the SSAW Gw that there are many

SSAW patterns that do not appear in any SSAW in T (N,M) constructed, as ex-

plained above, from a USAW in T (N − 2,M − 2). For example, each 1-span SSAW

containing only one undirected walk, considered as a pattern P , cannot occur in any
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Gw constructed from a walk w. This is because every SSAW (considered as a pat-

tern) that occurs in Gw and contains only one walk has either span zero (like P0) or

has span greater than one. In particular, let P∗ be the SSAW 1-pattern which con-

tains a single edge joining the origin to (1, 0, 0). We can use P = P∗ and the pattern

theorem for SSAWs, Theorem 6.5.1, to show that for some εP ≡ ε#3
P ([1, 1, 1]T ) > 0

κ(N − 2,M − 2) ≤ κ#3
q (N,M ;< εP , P ) < κ#3

q (N,M), (6.6.9)

where

κ#3
q (N,M ;< εP , P ) ≡ F#3(N,M, [1, 1, 1]T ;< εP , P ). (6.6.10)

6.7 Entanglement Complexity and the Asymptotic

Behaviour of SSAWs

In this section, we first use the pattern theorem for SSAWs to find a lower bound

(with probability one) for the entanglement complexity of SSAWs. We prove that

EC of SSAWs with size n, as defined in equation 6.2.3, asymptotically grows (with

probability one) at least as fast as γn for some γ > 0.

For each j = 1, 2, 3, let

Z#j
n (N,M, Y3;EC ≤ m) ≡

∑
G

xf(G,1)yf(G,2)zf(G,3), (6.7.1)

where the sum is over all the SSAWs in C∗
n with n = f(G, j) and EC(G) ≤ m. We

will show that there exists a positive number γ#j(Y3) such that all but exponentially

few SSAWs with size n ≥ N#j(Y3) (for some N#j(Y3) ∈ N) have EC greater than

γ#j(Y3)n. Let P be any SSAW containing two USAWs w1 and w2 so that the link

K12 associated to this pair of walks has a non-zero linking number. In particular,

for N ≥ 4 and M ≥ 3, we can take P = P1 to be the 2-pattern in T (N,M)

that contains the following two walks with the orientation on the edges ignored:
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((N − 3)ĵ,−2̂i, 2ĵ,−k̂, 2̂i, k̂, ĵ) starting at (2, 0, 2), and (N − 2)ĵ, k̂, 2ĵ starting at

(1, 0, 1). The projection of P1 into the xy-plane is illustrated in Figure 6.8.

Theorem 6.7.1. For j = 1, 2, 3, there exists a positive number γ#j(Y3) such that

F#j(N,M, Y3;EC ≤ γ#j(Y3)) < F#j(N,M, Y3), (6.7.2)

where

F#j(N,M, Y3;EC ≤ γ#j(Y3)) = lim sup
n→∞

n−1 logZ#j
n (N,M, Y3;EC ≤ γ#j(Y3)n).

(6.7.3)

Proof. For the pattern P = P1, introduced above, by Theorem 6.5.1 there exists a

real number ε#jP (Y3) > 0 such that

F#j(N,M, Y3;≤ ε#jP (Y3), P ) < F#j(N,M, Y3). (6.7.4)

Note that the pattern P can also be considered as an SSAW. P contains the two

USAWs w1 and w2 such that | Lk(K12) |= 1, where K12 is the two-component link

associated to (w1, w2) as prescribed in Corollary 6.2.2. So each occurrence of P in

an SSAW G adds one to EC(G). Thus P cannot appear more than ε#jP (Y3)n times in

any SSAW with size n which has EC at most ε#jP (Y3)n. Hence for γ#j(Y3) := ε#jP (Y3)

we have

F#j(N,M, Y3;EC ≤ γ#j(Y3)) ≤ F#j(N,M ;≤ ε#jP (Y3), P ). (6.7.5)

Therefore, combining equations 6.7.4 and 6.7.5, we have

F#j(N,M, Y3;EC ≤ γ#j(Y3)) < F#j(N,M, Y3). (6.7.6)

For j = 1, 2, 3, let X#j
n (Y3) be a random variable taking its values from the set

of SSAWs with size n = f(G, j) (in C∗
n) with the probability distribution

P(X#j
n (Y3) = G) =

xf(G,1)yf(G,2)zf(G,3)

Z#j
n (N,M, Y3)

. (6.7.7)

144



Figure 6.8: The regular projection into the xy-plane of the pattern
P1 with linking number 1.

Corollary 6.7.2. For γ#j(Y3) (j = 1, 2, 3) introduced in Theorem 6.7.1, the prob-

ability that an SSAW G with size n = f(G, j) has EC(G) greater than γ#j(Y3)n

approaches one exponentially as n goes to infinity, i.e.

lim
n→∞

P(EC(X#j
n (Y3)) > γ#j(Y3)n) = lim

n→∞
[1 − e−α

′(j,Y3)n+o(n)] = 1, (6.7.8)

where α′(j, Y3) ≡ F#j(N,M, Y3) −F#j(N,M, Y3;≤ γ#j(Y3)) > 0.

Proof. Let

g(n, Y3) =
(
logZ#j

n (N,M, Y3;EC ≤ γ#j(Y3)n) − F#j(N,M, Y3;≤ γ#j(Y3))n
)

−
(
logZ#j

n (N,M, Y3) − F#j(N,M, Y3)n
)
. (6.7.9)

By Theorem 6.4.1,

lim
n→∞

g(n, Y3)

n
= 0 (6.7.10)

hence g(n, Y3) = o(n). So

log
Z#j
n (N,M, Y3;EC ≤ γ#j(Y3)n))

Z#j
n (N,M, Y3)

=(
F#j(N,M, Y3;≤ γ#j(Y3)) − F#j(N,M, Y3)

)
n + o(n)

(6.7.11)

which leads to

Z#j
n (N,M, Y3;EC ≤ γ#j(Y3)n))

Z#j
n (N,M, Y3)

= e−α
′(j,Y3)n+o(n). (6.7.12)
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Therefore, for j = 1, 2, 3, the probability that an SSAW with size n has EC greater

than γ#j(Y3)n is given by:

P(EC(X#j
n (Y3)) > γ#j(Y3)n) =

Z#j
n (N,M, Y3;EC > γ#j(Y3)n)

Z#j
n (N,M, Y3)

=
Z#j
n (N,M, Y3) − Z#j

n (N,M, Y3;EC ≤ γ#j(Y3)n)

Z#j
n (N,M, Y3)

= 1 − Z#j
n (N,M, Y3;EC ≤ γ#j(Y3)n)

Z#j
n (N,M, Y3)

= 1 − e−α
′(j,Y3)n+o(n). (6.7.13)

By Theorem 6.7.1, α′(j, Y3) > 0 hence the above probability goes to unity as 1 −

e−α
′(j,Y3)n+o(n) when n→ ∞.

For k, j ∈ {1, 2, 3} and k 
= j, f(X#j
n (Y3), k) is a random variable with the

probability distribution

P
(
f(X#j

n (Y3), k) = a
)

=

∑
G:f(G,k)=a,f(G,j)=n x

f(G,1)yf(G,2)zf(G,3)

Z#j
n (N,M, Y3)

=

∑
(a1,a2,a3),ak=a,aj=n

q(N,M, a1, a2, a3)x
f(G,1)yf(G,2)zf(G,3)

Z#j
n (N,M, Y3)

.

(6.7.14)

Given γ > 0, let

Z#j
n (N,M, Y3; f(k) ≤ γn) =

∑
G

xf(G,1)yf(G,2)zf(G,3), (6.7.15)

where the sum is over all the SSAWs G ∈ C∗
n with n = f(G, j) and f(G, k) ≤ γn.

Theorem 6.7.3. Given any pair j and k such that k, j ∈ {1, 2, 3} and k 
= j, the

following inequality is satisfied

F#j(N,M, Y3; f(k) ≤ ε#jP (Y3)) < F#j(N,M, Y3), (6.7.16)

where

F#j(N,M, Y3; f(k) ≤ ε#jP (Y3)) = lim sup
n→∞

n−1 logZ#j
n (N,M, Y3; f(k) ≤ ε#jP (Y3)n).

(6.7.17)
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Proof. For the pattern (SSAW) P = P1 and ε#jP (Y3) > 0 introduced in Theorem

6.7.1, we have

F#j(N,M, Y3;≤ ε#jP (Y3), P ) < F#j(N,M, Y3). (6.7.18)

P has span 2, 2N +8 > 1 edges and 4 degree one vertices on the tube’s boundary

hence each occurrence of P in an SSAW G increases f(P, 1), f(P, 3) and f(P, 2) at

least by one. Therefore, the number of occurrences of P in an SSAW with size n is

at most f(G, i) for i = 1, 2, 3. Thus P cannot appear more than ε#jP n times in any

SSAW with size n satisfying f(G, k) ≤ ε#jP (Y3)n. Hence we have

F#j(N,M, Y3; f(k) ≤ ε#jP (Y3)) ≤ F#j(N,M, Y3;≤ ε#jP (Y3), P ). (6.7.19)

Combining equations 6.7.18 and 6.7.19, we have

F#j(N,M, Y3; f(k) ≤ ε#jP (Y3)) < F#j(N,M, Y3). (6.7.20)

Therefore, a similar argument to Corollary 6.7.2, implies the following.

Corollary 6.7.4. For k, j ∈ {1, 2, 3} and k 
= j, the probability that an SSAW G

with size n satisfies f(G, k) > ε#jP (Y3)n approaches one exponentially as n goes to

infinity, i.e.

lim
n→∞

P
(
f(X#j

n (Y3), k) > ε#jP (Y3)n
)

= lim
n→∞

[1 − e−α
′′(j,k,Y3)n+o(n)] = 1, (6.7.21)

where α′′(j, k, Y3) ≡ F#j(N,M, Y3) −F#j(N,M, Y3; f(k) ≤ ε#jP (Y3)) > 0.

6.8 An Upper Bound For The Entanglement Com-

plexity of SSAWs

In this section we find an upper bound for the entanglement complexity of SSAWs

with size n that is linear in n. Given an SSAW G, we first find an upper bound for
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EC(G) when the size of G is measured by the number of edges, then we will use this

to obtain an upper bound for the case where the size of G is measured by its span.

Given an SSAW G, for δ = 1/6 and for any pair of USAWs (wi, wj) in G, let Kij

be the two-component link associated to (wi, wj). We fix a polygonal link Lij and its

regular diagram in the (x, y)-plane, Dij, as prescribed by Corollary 3.1.4. In order to

get an upper bound for EC(G), the sum of the linking number of the Kij ’s, we will

find an upper bound for the total number of crossings in the Dij’s. There are two

types of crossings in each Dij; the crossings created by the edges of Kij which are

outside the box BG and the crossings created by the edges inside BG. Our strategy

is to bound the total sum of each type of crossing by a linear function of n. The

following lemma gives an upper bound on the total number of crossings in the Dij ’s

that result from those edges of Kij ’s which lie outside BG.

Lemma 6.8.1. Let w1, ..., wk be the sequence of USAWs in a given n-edge SSAW G

in T (N,M). Let Ḡ and w̄i (for 1 ≤ i ≤ k) be the SSAW and the USAW obtained

from G as prescribed by the proof of Lemma 6.2.1. Let Kij, 1 ≤ i < j ≤ k, be the

two-component link associated to the pair of USAWs (wi, wj) and Lij be the polygonal

link prescribed by Corollary 3.1.4. For fixed integers N and M , the total number of

crossings made by those edges of Lij which are outside BG is bounded above by the

linear function f(n) = (N + 1)(M + 2N + 1)(4N − 2)n.

Proof. Let G be an n-edge SSAW containing the USAWs w1, ..., wk. Let Ḡ be the

SSAW associated to G and w̄1, ..., w̄k be the corresponding sequence of USAWs as

prescribed in the proof of Lemma 6.2.1. Let ni and (ni + mi) (mi ≤ 4(N − 1))

denote respectively the number of edges in wi and w̄i. For 1 ≤ i ≤ k, let ai and

bi represent the x-coordinates of the two vertices of w̄i with degree one (ai ≤ bi).

For j 
= i and 1 ≤ j ≤ k, Lij will not create any crossing outside the box BG if

both aj and bj are strictly less than ai or if both aj and bj are strictly greater than

bi. Now any walk which does not satisfy this must have at least one vertex in the

set {(x, y, z) ∈ Z3|ai ≤ x ≤ bi, 0 ≤ y ≤ N, 0 ≤ z ≤ M + 2N}. There are only
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(N + 1)(M + 2N + 1)(bi − ai + 1) vertices in this set so there can be at most that

many Lij ’s which will possibly result in a crossing outside BG. Therefore, letting

f(n) = (N + 1)(M + 2N + 1)(4N − 2)n, the total number of crossings, c, made by

the Lij ’s outside BG satisfies the following inequality:

c ≤
k∑
i=1

(N + 1)(M + 2N + 1)(bi − ai + 1)

≤ (N + 1)(M + 2N + 1)
k∑
i=1

(ni +mi + 1)

≤ (N + 1)(M + 2N + 1)
k∑
i=1

(ni + 4(N − 1) + 1)

≤ (N + 1)(M + 2N + 1)(n+ 4(N − 1)n+ n)

= (N + 1)(M + 2N + 1)(4N − 2)n

= f(n). (6.8.1)

Theorem 6.8.2. Given non-negative integer numbers N and M , the entanglement

complexity, EC(G), of any n-edge SSAW G in T (N,M) is bounded above by the

linear function

g(n) = a(N,M)n, (6.8.2)

where

a(N,M) =
[
(1/2)((N + 1)(M + 2N + 1)(4N − 2)) + (9/4)(M + 2N + 1)(4N − 3)

]
.

(6.8.3)

Proof. Let G be an n-edge SSAW composed of the USAWs w1, ..., wk, for some

0 ≤ k ≤ n. By Corollary 3.1.4, corresponding to each two-component link Kij

associated to the pair of USAWs (wi, wj) (i < j), there is a polygonal link Lij

with regular projection Dij in the (x, y)-plane. By Lemma 6.8.1, we know that the

149



total contribution of the edges of Lij ’s which are outside BG to the total number of

crossings is at most f(n) = (N + 1)(M + 2N + 1)(4N − 2)n. So let us investigate

the contribution of the edges of Lij that are inside BG.

We will provide an upper bound for the total number of crossings of the Dij ’s

by estimating how many crossings each edge lr in some Lij , say Li1j1, can generate.

To do so we need to consider two cases depending on whether the edge lr in Li1j1

corresponds to a horizontal or a vertical edge l∗r in Ki1j1. If we assume that l∗r is

horizontal with vertices (xr1 , yr1, zr) and (xr2 , yr2, zr) then, by Corollary 3.1.4, the

only other horizontal edges of the Kij ’s that could generate edges in the Lij ’s that

subsequently generate crossings with lr in the Dij ’s, are the edges that have at least

one end point incident on either (xr1 , yr1, z) or (xr2 , yr2, z) for 0 < z < M+2N . There

are at most 7(M + 2N + 1) of these. The only vertical edges of the Kij ’s that can

generate crossings with lr in the Dij’s are the edges that have both endpoints with

(x, y)-coordinates (xr1 , yr1) or (xr2 , yr2). There are 2(M + 2N) of these. Combining

these we get that a horizontal edge generates fewer than 9(M + 2N + 1) crossings.

Now we assume that lr is vertical with vertices (xr, yr, zr) and (xr, yr, zr+1). Similar

to the argument before we can argue that there are at most 4(M+2N+1) horizontal

edges (those with a vertex with coordinates (xr, yr, z) for some 0 < z < M + 2N)

and M + 2N vertical edges that can generate crossings with lr. Combining the

two cases gives us the upper bound (9/2)(M + 2N + 1)(nij + mij) (nij + mij is

the number of edges of Kij inside BG; mij := mi + mj is the sum of the difference

between the number of edges wi and w̄i and wj and w̄j; note that mij ≤ 8(N − 1))

on the contribution to the number of crossings by those edges of Kij inside BG. (It

is (9/2)(M + 2N + 1)(nij +mij) since each crossing will be counted twice, i.e. if an

edge lr crosses an edge ls then we counted the crossing both in the upper bound for

lr and in the upper bound for ls.) The contribution to the linking number by those

edges is now bounded by (9/4)(M + 2N + 1)(nij +mij).
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For 1 ≤ i ≤ k and 1 ≤ j ≤ ni + mi, let lij denote the contribution of the jth

edge of the undirected walk w̄i to EC(G), i.e. to the sum of the linking number of

the Kij’s. We have proved that

lij ≤ (9/4)(M + 2N + 1). (6.8.4)

Therefore, letting g(n) = (1/2)(M + 2N + 1)[(N + 1)(4N − 2) + (9/2)(4N − 3)]n,

EC(G) ≤ (1/2)f(n) +
k∑
i=1

(ni+mi)∑
j=1

lij

≤ (1/2)f(n) +

k∑
i=1

(ni+mi)∑
j=1

(9/4)(M + 2N + 1)

≤ (1/2)(N + 1)(M + 2N + 1)(4N − 2)n+ (9/4)(M + 2N + 1)

k∑
i=1

ni+mi∑
j=1

1

≤ (1/2)(N + 1)(M + 2N + 1)(4N − 2)n

+ (9/4)(M + 2N + 1)(n+ 4(N − 1)n)

= (1/2)(M + 2N + 1)[(N + 1)(4N − 2) + (9/2)(4N − 3)]n

= a(N,M)n

= g(n). (6.8.5)

Remark 6.8.1. The following example shows that, given N ≥ 4 and M ≥ 3, for

infinitely many values of n there exists an n-edge SSAW G with EC(G) linear in

n. Let G be an n := (2N + 7)k′-edge SSAW made of concatenating k′ copies of the

(2N+7)-edge pattern (SSAW) P1 illustrated in Figure 6.8. Clearly, here, EC(G) = k′

is linear in n.

Note that the total number of edges in a slice with width 1 of an (N,M)-tube is

a′(N,M) = 2N(M + 1) + 2M(N + 1) + (M + 1)(N + 1), (6.8.6)

which depends only on N and M . Hence the number of edges in any SSAW G,

f(G, 3), satisfies

f(G, 3) ≤ a′(N,M)f(G, 1). (6.8.7)
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Thus Theorem 6.8.2 implies

EC(G) ≤ a′(N,M)a(N,M)n (6.8.8)

when the size of G is measured by its span, i.e. n = f(G, 1). Therefore, by Theorem

6.7.2 we conclude that:

• There exists γ#1(Y3) > 0 such that the probability that EC of a randomly

chosen span n SSAW X#1
n (Y3) is bounded below by γ#1(Y3)n and bounded

above by a′(N,M)a(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#1(Y3)n < EC(X#1
n (Y3)) ≤ a′(N,M)a(N,M)n) =

lim
n→∞

[1 − e−α
′(1,Y3)n+o(n)] =

1. (6.8.9)

In other words, as the span of SSAWs increases one expects EC to grow linearly

in the span with probability one.

• There exists γ#3(Y3) > 0 such that the probability that EC of a randomly cho-

sen SSAW X#3
n (Y3) with n edges is bounded below by γ#3(Y3)n and bounded

above by a(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#3(Y3)n < EC(X#3
n (Y3)) ≤ a(N,M)n) = lim

n→∞
[1− e−α

′(3,Y3)n+o(n)] = 1.

(6.8.10)

In other words, as the number of edges of SSAWs increases one expects EC to

grow linearly in the number of edges with probability one.

Furthermore, f(G, 2) ≤ 2f(G, 3) ≤ a′(N,M)f(G, 1) and f(G, 1) ≤ 2f(G, 3). So

by Theorem 6.7.4 we conclude that:

• There exists ε#1
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen span n SSAW X#1
n (Y3) is bounded below by

ε#1
P (Y3)n and bounded above by a′(N,M)n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 2) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,2,Y3)n+o(n)] = 1.

(6.8.11)

152



In other words, as the span of SSAWs increases one expects the number of

degree one vertices (the number of disjoint walks) to grow linearly in the span

with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of edges of

a randomly chosen span n SSAW X#1
n (Y3) is bounded below by ε#1

P (Y3)n and

bounded above by a′(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 3) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,3,Y3)n+o(n)] = 1.

(6.8.12)

In other words, as the span of SSAWs increases one expects the number of

edges to grow linearly in the span with probability one.

• There exists ε#3
P (Y3) > 0 such that the probability that span of a randomly

chosen SSAWX#3
n (Y3) with n edges is bounded below by ε#3

P (Y3)n and bounded

above by 2n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 1) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,1,Y3)n+o(n)] = 1.

(6.8.13)

In other words, as the number of edges of SSAWs increases one expects the

span to grow linearly in the number of edges with probability one.

• There exists ε#3
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen SSAW X#3
n (Y3) with n edges is bounded

below by ε#3
P (Y3)n and bounded above by 2n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 2) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,2,Y3)n+o(n)] = 1.

(6.8.14)

In other words, as the number of edges of SSAWs increases one expects the

number of degree one vertices (the number of disjoint walks) to grow linearly

in the number of edges with probability one.
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6.9 Transfer-Matrix Results for the SSAW Model

In this section, the transfer matrix argument, introduced in Section 2.6, is employed

to explore the asymptotic form of SSAWs with a fixed span m, i.e. Z#1
m (N,M, Y3)

where Y3 = [1, y, z].

In order to ensure that the Cluster Configuration Axiom, as stated in Section 2.6,

is satisfied, we first define an ordering and labelling on the edges of a given SSAW G.

Let G be an SSAW composed of the sequence of USAWs w1, w2, ..., wk, where k is the

total number of walks in G. We define a labelling on the edges of G such that, for

1 ≤ i ≤ k, all the edges in wi have the same label, and edges belonging to different

walks have distinct labels. As discussed before, the walks are ordered according to the

following algorithm: Among the two endpoints (vertices of degree one) of each USAW

wi, for 1 ≤ i ≤ k, let vi be the vertex which is lexicographically smallest. Then the

walks are ordered from i = 1, ..., k according to the lexicographical order of the vi’s.

An ordering can also be defined on the edges of each wi as follows: We can assume a

direction on the edge incident on vi, ei = {vi, ui}, by directing the edge to go from vi

to ui. This will naturally induce an ordering on the edges of wi starting with edge ei

as the first edge and ordering the other edges following the direction induced by that

of ei. The ordering on the wi’s and their edges will naturally induce an ordering on

the edges of G starting with edge e1 as the first edge and ordering the other edges of

G according to the ordering of the wi’s and their edges. Hence a k-cluster config (k-

SSAW config) of an SSAW G is considered as G’s configuration in a sublattice of the

formHi−1(N,M)∪Si(N,M)∪Hi(N,M)∪...∪Si+k−1(N,M)∪Hi+k−1(N,M) for some

1 ≤ i ≤ m− k + 1, where G’s configuration in such a sublattice of the tube consists

of the sublattice and the ordering as well as labelling of the edges of G, as introduced

above. With this extra information on the edges, the Cluster Configuration Axiom,

given in Section 2.6, is satisfied for the following sets of k-SSAW configs:

Π(k) = {P1, P2, ..., P|Π(k)|}, (6.9.1)

Π1(k) = {P ′
1, P

′
2, ..., P

′
|Π1(k)|} (6.9.2)
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and

Π2(k) = {P ′′
1 , P

′′
2 , ..., P

′′
|Π2(k)|} (6.9.3)

which are the set of all distinct proper, start and end k-SSAW configs, respectively.

Figure 6.9 shows an example of an SSAW in T (2, 2) with it’s associated 3-SSAW

configs. Note that in Figure 6.9 the pairs of numbers beside the vertices of each

3-SSAW config represent respectively the labelling and the relative order of the walk

starting at that vertex, induced by the ordering of the edges of the SSAW in which

the pattern occurs; the relative order on the walks also determines a relative order

on the edges of the 3-SSAW config.

For any SSAW G, let e(G), d(G, 1) and d(G, 2) denote respectively the span, the

number of edges and the number of degree one vertices of G. For any 1 ≤ i ≤ |Π(k)|

(1 ≤ i ≤ |Π1(k)|), let ei = 1 (e′i = 1) and, for any 1 ≤ i ≤ |Π2(k)|, let e′′i = k.

Also, for any 1 ≤ i ≤ |Π(k)| (1 ≤ i ≤ |Π1(k)|), let di(1) (d′i(1)) and di(2) (d′i(2)) be

respectively the number of edges and the number of vertices with degree one (on the

tube’s boundary) in the first hinge and section of Pi (P ′
i ). Thus Di = [di(1), di(2)]T

and D′
i = [d′i(1), d′i(2)]T (t = 2). For any 1 ≤ i ≤ |Π2(k)|, let also d′′i (1) and d′′i (2) be

respectively the total number of edges and the total number of vertices with degree

one (on the tube’s boundary) in P ′′
i . Thus, D′′

i = [d′′i (1), d′′i (2)]T . Then equations

2.6.7 and 2.6.9 are satisfied.

Given an SSAW config P , define

Z#1
m (N,M, Y3; P̄ ) ≡

∑
G

xf(G,1)yf(G,2)zf(G,3), (6.9.4)

where the sum is over all the span m SSAWs in C∗
m which do not contain the SSAW

config P . Also define

F#1(N,M, Y3; P̄ ) ≡ lim sup
m→∞

m−1 logZ#1
m (N,M, Y3; P̄ ). (6.9.5)

Moreover, let y1 = z, y2 = y, Y = [y1, y2]
T and Y3 = [1, y, z]T . Then

Zm(N,M ;Y ) =
∑
G∈C∗

m

y
d(G,1)
1 y

d(G,2)
2 = Z#1

m (N,M, Y3) (6.9.6)
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x
y

z

(a) An example of an 8-edge SSAW with
span 4 in T (2, 2).

1,1

2,2 1,1
2,2

(b) The associated 3-SSAW configs.

Figure 6.9: An example of an SSAW in a tube and its associated
3-SSAW configs. Note that the pairs of numbers beside the vertices of
each 3-SSAW config represent respectively the labelling and the relative
order of the walk starting at that vertex; the relative order on the walks
also determines a relative order on the edges of the 3-SSAW config.

and

Zm(N,M ; P̄ , Y ) =
∑

G∈C∗
m(P̄ )

y
d(G,1)
1 y

d(G,2)
2 = Z#1

m (N,M, Y3; P̄ ). (6.9.7)

Theorem 2.6.1 and the fact that the Cluster Configuration Axiom and (CON-

CAT) hold for SSAWs yield the following result regarding the asymptotic form of

Z#1
m (N,M, Y3) and also the asymptotic form of Z#1

m (N,M, Y3; P̄ ).

Theorem 6.9.1. For Y3 = [1, y, z]T , any integer k ≥ 2 and any proper SSAW config

P ∈ Π(k), there exist non-negative values x0(Y ) and αY such that

Z#1
m (N,M, Y3) = αY (x0(Y ))−m + o((x0(Y ))−m) as m→ ∞. (6.9.8)

Moreover, there exist non-negative values x̄0(Y ) > x0(Y ) and ᾱY such that

Z#1
m (N,M, Y3; P̄ ) = ᾱY (x̄0(Y ))−m + o((x̄0(Y ))−m) as m→ ∞. (6.9.9)
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6.10 Asymptotic Behaviour of the Average Edge-

Density of SSAWs

For any SSAW G, let ψ(G) = f(G, 3), i.e. the number of edges of G. For 1 ≤ i ≤

|Π(k)| (1 ≤ i ≤ |Π1(k)|), let ψ(Pi) (d′(P ′
i )) be the number of edges in the first hinge

and section of Pi (P ′
i ). For 1 ≤ i ≤ |Π2(k)|, let d′′(P ′′

i ) be the total number of edges

in P ′′
i . Then equation 2.6.23 is satisfied thus f(G, 3) is an additive functional.

Let t = 2, Y = [z, y]T and Y3 = [1, y, z]T as defined in Theorem 6.9.1. As

discussed before, X#
m(Y3) is a random variable taking its values from the SSAWs in

C∗
m and with the probability distribution

P(X#1
m (Y3) = G) =

yf(G,2)zf(G,3)

Z#1
m (N,M, Y3)

. (6.10.1)

hence f(X#1
m (Y3), 3) is a random variable, representing the number of edges in a

randomly chosen SSAW X#1
m (Y3) with span m, with the probability distribution

P(f(X#1
m (Y3), 3) = a) =

∑
G:f(G,1)=m y

f(G,2)za

Z#1
m (N,M, Y3)

. (6.10.2)

Also EY (f(X#1
m (Y3),3))

NMm
, the expected number of edges per unit volume, represents the

average edge-density of SSAWs. Theorem 2.6.2 implies that there exists γY > 0 such

that

EY (f(X#1
m (Y3), 3)) = γYm+O(1) (6.10.3)

and hence
1

NMm
EY (f(X#1

m (Y3), 3)) → 1

NM
γY (6.10.4)

as m→ ∞.

The following Theorem is an immediate result of Theorem 6.4.2 and investigates

the behaviour of the expected value of f(X#1
m (Y3), 3), EY (f(X#1

m (Y3), 3)), with re-

spect to log z.

Corollary 6.10.1. Given Y3 = [1, y, z]T ,

EY (f(X#1
m (Y3), 3)) = m

d

d log z
F#1
m (N,M, Y3) (6.10.5)
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almost everywhere. Hence EY (f(X#1
m (Y3), 3)) is non-decreasing in log z almost ev-

erywhere.

Proof. By Theorem 6.4.2, the following equality holds almost everywhere:

d

d log z
F#1
m (N,M, Y3) =

d

d log z

[
m−1 logZ#1

m (N,M, Y3)
]

= m−1

∑
G:f(G,1)=m f(G, 3)yf(G,2)zf(G,3)

Zm(N,M, Y3)

= m−1EY (f(X#1
m (Y3), 3)). (6.10.6)

Hence

EY (f(X#1
m (Y3), 3)) = m

d

d log z
F#1
m (N,M, Y3) (6.10.7)

is non-decreasing in log z almost everywhere.

Hence, the average number of edges per unit volume of a randomly chosen span

m SSAW, EY (f(X#1
m (Y3),3))

mNM
, approaches a positive constant as m → ∞ and is non-

decreasing in log z and thus non-decreasing in z almost everywhere.

Given a proper k-SSAW config Pl ∈ Π(k), define ψl : C∗ → N ∪ {0} such that

ψl(G) is the number of times the SSAW config Pl appears in G, for any SSAW

G ∈ C∗. For 1 ≤ i ≤ |Π(k)|, let ψl(Pi) = δi,l where

δi,l =

⎧⎨⎩ 1 if i = l

0 if i 
= l .
(6.10.8)

Similarly, for 1 ≤ i ≤ |Π1(k)| (1 ≤ i ≤ |Π2(k)|), let d′l(P
′
i ) = δi,l (d′′l (P

′′
i ) = δi,l).

Then equation 2.6.23 is satisfied thus ψl is an additive functional.

Then ψl(X
#1
m (Y3)) is a random variable, representing the number of times the

SSAW config Pl appears in a randomly chosen SSAW with span m, with the proba-

bility distribution

P(ψl(X
#1
m (Y3)) = b) =

∑
G:ψl(G)=b y

f(G,2)zf(G,3)

Z#1
m (N,M, Y3)

, (6.10.9)

where the sum is over all the span m SSAWs G ∈ C∗
m with ψl(G) = b. Also

EY (ψl(X
#1
m (Y3)))
m

represents the average density of Pl per unit span in SSAWs. Theorem
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2.6.2 implies that there exists γl > 0 such that

EY (ψl(X
#1
m (Y3))) = γlm+O(1) (6.10.10)

and thus
1

m
EY (ψl(X

#1
m (Y3))) → γl (6.10.11)

as m→ ∞.

Let Pl = P+ be the proper 2-SSAW config obtained by ordering and labelling

the edges of the 2-pattern P1 introduced in Theorem 6.7.1. Then the fact that

EC(G) ≥ ψl(G), for any SSAW G, and equation 5.4.14 imply that

lim inf
m→∞

EY
(
EC(X#1

m (Y3))
)

m
≥ γl. (6.10.12)

Hence the average value of EC per span is bounded below by a positive value, repre-

senting the density of the 2-SSAW config P+ in span m SSAWs. However, it is still

an open question how EC depends on the density of SSAWs and how γl depends on

z.

6.11 Asymptotic Behaviour of the SSAWs with a

Fixed Limiting Edge-Density

In order to explore the relation between EC and the density of SSAWs, in this section

we investigate the asymptotic behaviour of the n-edge SSAWs in T (N,M) with a

fixed edge-density ρ(n) = n
NMm

, where m represents the span. So we are primarily

concerned with the number of n-edge SSAWs with a fixed span m, denoted by

qsm(N,M ;n) ≡
∑

a2
q(N,M,m, a2, n). Note that these SSAWs are said to have edge-

density ρ(n). qsm(N,M ; �εm�) is the number of SSAWs with edge-density ρ(�εm�)

and limiting edge-density ρ∗ = ε
NM

as m → ∞. Note also that ε = NMρ∗ so ε is

proportional to ρ∗. The function ρ(N,M ; ε) is defined to be the growth constant for

SSAWs with limiting edge-density ε
NM

, i.e.

log ρ(N,M ; ε) ≡ lim
m→∞

m−1 log qsm(N,M ; �εm�). (6.11.1)
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Here we will investigate the existence of this function. Following the terminology

from [26], we will start with showing that Assumptions 3.1 from [26] are satisfied for

the SSAW model:

Lemma 6.11.1. The following statements hold:

(1) There exists a constant S > 0 independent of n andm such that 0 ≤ qsm(N,M ;n) ≤

Sm for each value of m and n.

(2) There exist a finite constant C > 0, and numbers Am and Bm such that 0 ≤

Am ≤ Bm ≤ Cm and qsm(N,M ;n) ≥ 0 if Am ≤ n ≤ Bm with qsm(N,M ;Am) >

0 and qsm(N,M ;Bm) > 0, and qsm(N,M ;n) = 0 otherwise.

(3) qsm(N,M ;n) satisfies the following inequality:

qsm1
(N,M ;n1)q

s
m2

(N,M ;n2) ≤ qsm1+m2+1(N,M ;n1 + n2). (6.11.2)

Proof. (1) Let A be the set of all SSAW 1-patterns in T (N,M). Let S be the number

of elements in A. Any SSAW 1-pattern P is composed of a set of occupied edges,

occupied vertices and unoccupied vertices from all the edges and vertices lying in

V1(N,M) = {(x, y, z) ∈ Z3 | 0 ≤ x ≤ 1, 0 ≤ y ≤ N, 0 ≤ z ≤ M}. There are in

total ((N+1)(M+1)+2N(M+1)+2(N+1)M) edges and 2(N+1)(M+1) vertices

in V1(N,M). Therefore, S is bounded above by the number of ways to choose the

occupied edges and vertices from V1(N,M) which leads to

S ≤
(
2(N+1)(M+1)+2N(M+1)+2(N+1)M

)(
22(N+1)(M+1)

)
= 23(N+1)(M+1)+2N(M+1)+2(N+1)M . (6.11.3)

Moreover, every SSAW G with span m and left-most plane x = x1 can be represented

as a sequence of length m in A, i.e. {P1, P2, ..., Pm} where Pi ∈ A occurs at x =

x1 + (i − 1) for i = 1, 2, ..., m. The total number of such sequences is Sm but not
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necessarily every sequence corresponds to an SSAW. Therefore,

0 ≤ qsm(N,M ;n) ≤ Sm. (6.11.4)

(2) Given an n-edge SSAW G with a fixed span m , let G be composed of the

USAWs w1, ..., wk. For 1 ≤ i ≤ k, let ni and vi denote respectively the number of

edges and vertices of wi. Then

k∑
i=1

ni =

k∑
i=1

(vi − 1) = −k +

k∑
i=1

vi. (6.11.5)

Each wi contains at least two vertices so

k ≤ �v
2
�, (6.11.6)

where v =
∑k

i=1 vi. Hence, equations 6.11.5 and 6.11.6 give

k∑
i=1

ni ≥ −�v
2
� + v

=

⎧⎪⎨⎪⎩ �v
2
� if v is even

�v
2
� + 1 if v is odd

≥ �m
2
� + 1, (6.11.7)

where the last inequality holds since for any span m SSAW G, by Definition 6.2.1,

there has to be at least one vertex of G in the plane x = x0 for any x1 ≤ x0 ≤ x1 +m,

where x = x1 is the left-most plane of G; i.e. v ≥ m+ 1.

Next, we will show that this lower bound for the number of edges of G can be

reached, i.e. qsm(N,M ; �m
2
�+1) > 0. If m is odd then the SSAW G′ composed of the

edges {(x, 0, 0), (x+ 1, 0, 0)}, for x ∈ Z and 0 ≤ x ≤ m− 1, has span m and exactly

�m
2
� + 1 edges. Figure 6.10 (a) shows an example of an SSAW in T (2, 4) which has

the minimum number of edges for the fixed span m = 5. On the other hand, if m is

even then the SSAW G′′ composed of the edges {(x, 0, 0), (x+1, 0, 0)}, for x ∈ Z and

0 ≤ x ≤ m− 2, and {(m− 1, 1, 0), (m, 1, 0)} has span m and exactly �m
2
�+ 1 edges.
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x
y

z5

(a) An example of an SSAW in T (2, 4)
with the minimum edge-density among all
the SSAWs with the fixed span m = 5

4

2

x
y

z6

(b) An example of an SSAW in T (2, 4)
with the minimum edge-density among all
the SSAWs with the fixed span m = 6

Figure 6.10: Examples of SSAWs with the minimum edge-density for
a fixed span m.

Figure 6.10 (b) shows an example of an SSAW in T (2, 4) which has the minimum

number of edges for the fixed span m = 6. Therefore, Am = �m
2
� + 1.

Moreover, take Bm to be the maximum number of edges that an SSAW with span

m can have. If N = 1 (or M = 1) then we will show that Bm = (M + 1)(m + 1)

(Bm = (N + 1)(m+ 1)). Suppose without loss of generality that N = 1, then every

SSAW G in T (1,M) is composed of only single-edge USAWs. Thus any G with span

m and left-most plane x = 0 will have a maximum number of edges if it occupies

all the vertices in a slice Vm(1,M) = {(x, y, z) ∈ Z3 | 0 ≤ x ≤ m, 0 ≤ y ≤ 1, 0 ≤

z ≤M} of width m in T (1,M). There are in total 2(M + 1)(m+ 1) vertices in such

a slice. Hence Bm ≤ (M + 1)(m + 1). Moreover, this upper bound for Bm can be

reached since the following SSAW G with span m has exactly (M +1)(m+1) edges.

Let G be an SSAW composed of (M+1)(m+1) single-edge USAWs each joining the

vertex (i, 0, k) to the vertex (i, 1, k) for x1 ≤ i ≤ x2 and 0 ≤ k ≤ M , where x = x1

(x = x2) is the left-most (right-most) plane of G. Therefore, Bm = (M + 1)(m+ 1)

if N = 1.

For N > 1 and M > 1, let G be an n-edge SSAW in T (N,M) with span m

and left-most plane x = 0. Let w1, ..., wk1 be the USAWs in G which do not have
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any edge in the boundary planes of T (N,M). Let w′
1, ..., w

′
k2

be the single edge

USAWs in G which lie in the boundary planes of T (N,M). For 1 ≤ i ≤ k1, let ni

denote the number of edges in wi. Let also vi denote the number of vertices of wi in

T (N − 2,M − 2) + (0, 1, 1). Note that ni− 2 = vi− 1 and hence we have ni = vi + 1

since G is an SSAW. Thus the total number of edges in G can be evaluated as follows:

n = k2 +

k1∑
i=1

ni

= k2 +

k1∑
i=1

(vi + 1)

= k1 + k2 +

k1∑
i=1

vi

≤ k1 + k2 + (N − 1)(M − 1)(m+ 1), (6.11.8)

where (N − 1)(M − 1)(m + 1) is the total number of vertices in a slice of width m

in V (N − 2,M − 2) + (0, 1, 1).

Each wi has its endpoints on the boundary planes so k1 USAWs will occupy

exactly 2k1 vertices of the total 2(N +M)(m + 1) vertices of the boundary planes.

Therefore, 2k2 ≤ 2(N +M)(m+ 1) − 2k1 so

n ≤ (N − 1)(M − 1)(m+ 1) + k1 + k2

≤ (N − 1)(M − 1)(m+ 1) + k1 + (N +M)(m+ 1) − k1

≤ (NM + 1)(m+ 1). (6.11.9)

If N or M is odd then we show next that the above upper bound for the number

of edges can be reached, i.e. Bm = (NM + 1)(m + 1). If N is odd then a span m

SSAW G1 with (NM + 1)(m+ 1) edges can be constructed as follows: let G1 be the

SSAW composed of the USAWs (Nĵ) starting at (x, 0, z), for 0 ≤ x ≤ m + 1 and

1 ≤ z ≤ M − 1, and the USAWs (ĵ) starting at (x′, 2y′, z′), for 0 ≤ x′ ≤ m+ 1, 0 ≤

y′ ≤ N−1
2

and z′ ∈ {0,M}. Note that the edge orientations are ignored. Similarly, if

M is odd, it can be shown that Bm = (NM + 1)(m+ 1). If both N and M are even
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but m is odd then again a similar argument shows that Bm = (NM + 1)(m+ 1). A

span m SSAW G2 with (NM +1)(m+1) edges can be constructed as follows: let G2

be the SSAW composed of the USAWs (Nĵ) starting at (x, 0, z), for 0 ≤ x ≤ m+ 1

and 1 ≤ z ≤ M − 1, and the USAWs (̂i) starting at (2x′, y′, z′), for 0 ≤ x′ ≤ m−1
2

,

0 ≤ y′ ≤ N+1 and z′ ∈ {0,M}. However, for the case that N , M and m are all even

the above construction leads only to a lower boundBm ≥ (NM+1)(m+1)−1. A span

m SSAW G3 with (NM + 1)(m+ 1)− 1 edges can be constructed as follows: let G3

be the SSAW composed of the USAWs (Nĵ) starting at (x, 0, z), for 0 ≤ x ≤ m+ 1

and 1 ≤ z ≤ M − 1, the USAWs (̂i) starting at (2x′, y′, z′), for 0 ≤ x′ ≤ m−2
2

,

0 ≤ y′ ≤ N + 1 and z′ ∈ {0,M}, and the USAWs (ĵ) starting at (m, 2y′′, z′′), for

0 ≤ y′′ ≤ N−2
2

and z′′ ∈ {0,M}. Thus qsm(N,M ;Bm) > 0.

We can also take C = 10NM which satisfies the following inequality:

Am ≤ Bm ≤ Cm. (6.11.10)

Furthermore, for any n < Am or n > Bm,

qsm(N,M ;n) = 0 (6.11.11)

since Am and Bm are respectively the minimum and maximum number of edges that

an SSAW with span m can have.

(3) The concatenation process, Lemma 6.3.2, implies that

qsm1
(N,M ;n1)q

s
m2

(N,M ;n2) ≤ qsm1+m2+1(N,M ;n1 + n2). (6.11.12)

The maximal and minimal densities in the model can be obtained from Am and

Bm as follows:

εmax = lim sup
m→∞

[Bm/m], (6.11.13)

εmin = lim sup
m→∞

[Am/m]. (6.11.14)
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Note that for N = 1

εmax = lim
m→∞

[Bm/m] = lim
m→∞

((M + 1)(m+ 1))/m = M + 1 (6.11.15)

and similarly for M = 1

εmax = lim
m→∞

[Bm/m] = lim
m→∞

((N + 1)(m+ 1))/m = N + 1. (6.11.16)

Also for N > 1 and M > 1,

εmax = lim
m→∞

[Bm/m] = NM + 1. (6.11.17)

Furthermore,

εmin = lim sup
m→∞

[Am/m] = lim
m→∞

(�m
2
� + 1)/m = 1/2. (6.11.18)

Now, by Lemma 6.11.1, Assumptions 3.1 from [26] are satisfied for the SSAW

model so the arguments presented in [26] can be used in a very straightforward

fashion to give a proof for the following theorems.

Lemma 6.11.2 (Janse van Rensburg 2000 [26]). Given ε > 0, there exists a function

zm1,m2, dependent on ε, and with |zm1,m2 | ≤ 1, such that

qsm1
(N,M ; �εm1�)qsm2

(N,M ; �εm2� + zm1,m2) ≤ qsm1+m2+1(N,M ; �ε(m1 +m2 + 1)�)

. (6.11.19)

Let ε ∈ (εmin, εmax). The following theorem proves the existence of ρ(N,M ; ε),

the growth constant for the SSAWs with the limiting edge-density ε
NM

.

Theorem 6.11.3 (Janse van Rensburg 2000 [26]). Given any ε ∈ (εmin, εmax), the

following limit exists and is finite:

log ρ(N,M ; ε) = lim
m→∞

m−1 log qsm(N,M ; �εm�). (6.11.20)

Moreover, there exists ηm ∈ {0, 1} such that for each value of m,

qsm(N,M ; �εm� + ηm) ≤ [ρ(N,M ; ε)]m. (6.11.21)
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Theorem 6.11.4 (Janse van Rensburg 2000 [26]). log ρ(N,M ; ε) is a concave func-

tion of ε ∈ (εmin, εmax). Therefore, log ρ(N,M ; ε) is continuous in (εmin, εmax), has

right- and left-derivatives everywhere in (εmin, εmax), and is differentiable almost ev-

erywhere in (εmin, εmax).

Theorem 6.11.5 (Janse van Rensburg 2000 [26]). Let δm be a sequence of integers

such that Am ≤ δm ≤ Bm for all m ≥M0, where M0 is a fixed integer. Suppose that

limn→∞[δm/m] = δ with εmin < δ < εmax. Then

lim
m→∞

m−1 log qsm(N,M ; δm) = log ρ(N,M ; δ). (6.11.22)

By Theorem 6.11.3, the function ρ(N,M ; ε) is defined on (εmin, εmax). We can

also define this function at the boundary point εmin as follows:

Lemma 6.11.6. The following limit exists and is finite for the SSAW model:

log ρ(N,M ; εmin) ≡ lim
m→∞

m−1 log qsm(N,M ;Am) =
1

2
log(2N + 2M). (6.11.23)

Proof. Let G be an SSAW with fixed span m and Am = �m
2
� + 1 edges. Let G be

composed of the USAWs w1, ..., wk. For 1 ≤ i ≤ k, let ni and vi denote respectively

the number of edges and vertices of wi. The value of qsm(N,M ;Am) is calculated in

the following distinct cases:

1) If m is odd then Am = �m
2
� + 1 implies that

v =
k∑
i=1

vi ≤ 2(�m
2
� + 1) = m+ 1 (6.11.24)

since each walk wi contains at least two vertices. Moreover, by the definition of

SSAWs, v ≥ m+ 1 for any SSAW with span m. Therefore, v = m+ 1.

Furthermore,

Am =

k∑
i=1

ni =

k∑
i=1

(vi − 1)

= −k + v

= −k +m+ 1. (6.11.25)
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Hence,

k = m+ 1 − Am = m+ 1 − �m
2
� − 1 = �m

2
� + 1. (6.11.26)

Therefore, G contains exactly �m
2
�+ 1 USAWs. Each wi has exactly 2 vertices since

otherwise v =
∑k

i=1 vi > 2k = m+ 1. Since G has span m, by the SSAW definition

it must have at least one vertex in each of the m+ 1 planes x = x1, ..., x = x1 +m.

Since v = m+ 1, hence wi must lie on a boundary plane with an edge from (x, y, z)

to (x+1, y, z), for some integer values of x, y and z. Because the vertex (x, y, z) lies

on a boundary plane, for any 0 ≤ x ≤ m− 1, there are exactly 2N + 2M choices for

the pair (y, z). Therefore, in total there are (2N + 2M)	
m
2

+1 choices for G. Since m

is odd, �m
2
� = m−1

2
; hence

qsm(N,M ;Am) = (2N + 2M)	
m
2

+1 (6.11.27)

and

log ρ(N,M ; εmin) = log ρ(N,M ;
1

2
) = lim

m→∞
m−1 log qsm(N,M ;Am)

= lim
m→∞

m−1 log[(2N + 2M)	
m
2

+1]

=
1

2
log(2N + 2M), (6.11.28)

when the limit is taken through odd values of m.

2) If m is even then Am = �m
2
� + 1 implies that

v =
k∑
i=1

vi ≤ 2(�m
2
� + 1) = m+ 2. (6.11.29)

If v = m + 1 then k = m + 1 − �m
2
� − 1 = �m

2
� = m

2
. Each walk has at least

two vertices so there has to be exactly one walk, w′, with three vertices. By the

definition of SSAWs, w′ cannot lie in a boundary plane and hence because of the

structure of T (N,M) all the three vertices of w′ must have the same x-coordinates.

Therefore, there are m + 1 − 1 = m more x-coordinates to fill in but there are left

only m + 1 − 3 = m − 2 more vertices. This is a contradiction. Hence, v = m + 2
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and k = m+ 2 − �m
2
� − 1 = �m

2
� + 1 = m

2
+ 1. Each wi has exactly 2 vertices since

otherwise v =
∑k

i=1 vi > 2k = m+ 2. By the definition of SSAWs, wi must lie on a

boundary plane of G. Since G has span m, there is exactly one x1 ≤ x∗ ≤ x2 so that

there are two vertices u1 and u2 of G with x(u1) = x(u2) = x∗. Now, we consider

the following two cases separately:

a) If all the edges of G are parallel to the x-axis then there exists an undirected

walk, wt where 1 ≤ t ≤ k, in G with its bottom vertex in {u1, u2}. There are

�m
2
� choices for the x-coordinate of the bottom vertex of wt, x∗, so that wt =

{(x∗, y, z), (x∗ + 1, y, z)} for some integer values of y and z. There are exactly

R(N,M) = 2N + 2M − 1 choices for the pair (y, z). Moreover, G contains ex-

actly �m
2
� edges of the form {(x, y, z), (x + 1, y, z)}, for some integer values of x, y

and z. There are exactly 2N + 2M choices for the pair (y, z). Therefore, in total

there are (2N + 2M)	
m
2

 choices for such edges. Hence, for even m with G having

all its edges parallel to the x-axis, the number of such SSAWs with Am edges is

�m
2
�R(N,M)(2N + 2M)	

m
2

. (6.11.30)

b) Otherwise, there exists a walk, w′
t where 1 ≤ t ≤ k, of G with a single

edge {u1, u2}. There are �m
2
� choices for the x-coordinate of the vertices of w′

t,

x∗, so that w′
t = {(x∗, y, z), (x∗, y + 1, z)} or w′

t = {(x∗, y, z), (x∗, y, z + 1)} for

some integer values of x, y and z. There are exactly R′(N,M) = 2N + 2M (or

R′(N,M) = 2N + 2M + M − 1 if N = 1 and M > 1 or M = 1 and N > 1)

choices for the pair (y, z). Moreover, G contains exactly �m
2
� edges of the form

{(x, y, z), (x+1, y, z)}, for some integer values of x, y and z. There are also 2N+2M

choices for the pair (y, z). Therefore, in total there are (2N + 2M)	
m
2

 choices for

such edges. Hence, for m even,

qsm(N,M ;Am) = �m
2
�
(
R(N,M) +R′(N,M)

)
(2N + 2M)	

m
2

 (6.11.31)
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and

log ρ(N,M ; εmin) = log ρ(N,M ;
1

2
)

= lim
m→∞

m−1 log qsm(N,M ;Am)

= lim
m→∞

m−1 log
[
�m

2
�
(
R(N,M) +R′(N,M)

)
(2N + 2M)	

m
2

]

=
1

2
log(2N + 2M), (6.11.32)

where the limit is through even values ofm. Combining equations 6.11.28 and 6.11.32

gives the result.

q#1
m (N,M) =

∑
n≥0

qsm(N,M ;n) (6.11.33)

is the number of SSAWs with span m. In Theorem 6.4.1 it was shown that

μs(N,M) ≡ eκ
#1
q (N,M) = lim

m→∞
(q#1
m (N,M))1/m (6.11.34)

exists and is finite. The following theorem shows that the maximum value of

ρ(N,M ; ε) is in fact equal to μs(N,M).

Theorem 6.11.7 (Janse van Rensburg 2000 [26]). There exist values ε0 and ε1 in

[εmin, εmax] such that ρ(N,M ; ε) = μs(N,M) for all values of ε ∈ [ε0, ε1].

Proof. Given fixed integer m > 0, let δm be the minimum value of n which maximizes

qsm(N,M ;n), i.e.

δm = min
n∈N

{n | qsm(N,M ;n) ≥ qsm(N,M ;n′) ∀n′}. (6.11.35)

Then

qsm(N,M ; δm) ≤ q#1
m (N,M) =

Bm∑
n=Am

qsm(N,M ;n) ≤ (1 +Bm − Am)qsm(N,M ; δm).

(6.11.36)

Therefore, taking logarithms and dividing by m gives

lim
m→∞

m−1 log qsm(N,M ; δm) = log μs(N,M). (6.11.37)
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Let also ςm be the maximum value of n which maximizes qsm(N,M ;n), i.e.

ςm = max
n∈N

{n | qsm(N,M ;n) ≥ qsm(N,M ;n′) ∀n′}, (6.11.38)

and

ε0 = lim inf
m→∞

[δm/m], ε1 = lim sup
m→∞

[ςm/m]; (6.11.39)

then by Theorem 6.11.5 ρ(N,M ; ε) = μs(N,M) for all values of ε ∈ [ε0, ε1].

The following theorem also shows the relationship between ρ(N,M ; ε) and the

limiting free energy F#1(N,M, Y3) when Y3 = [1, 1, z]T .

Theorem 6.11.8 (Janse van Rensburg 2000 [26]).

F#1(N,M, Y3) = sup
εmin≤ε≤εmax

{log ρ(N,M ; ε) + ε log z} (6.11.40)

and

log ρ(N,M ; ε) = sup
0<z<∞

{F#1(N,M, Y3) − ε log z}. (6.11.41)

Also F#1(N,M, Y3) ≥ max{εmin log z, εmax log z}.

In this section we investigated ρ(N,M ; ε), the growth constant for SSAWs with

limiting edge-density ε
NM

, as a function of ε. However, in order to see how EC changes

in terms of the density, we need to know more about ρ(N,M ; ε). In particular,

proving a pattern theorem for this function may lead to some results regarding the

connection between EC and the density.

6.12 Summary

In this chapter, we considered the measure proposed in [41] and asked how its value

depends on various properties of SSAWs such as the total number of edges, span,

the number of degree one vertices (or, equivalently, twice the number of disjoint

walks) and the density. We rigorously proved that the entanglement complexity,

as measured in [41], of a polymer system with size n (e.g. the number of edges,
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span or the number of degree one vertices) is asymptotically (with probability one)

bounded below by a linear function of n; i.e. there exists a positive number γ such

that the probability that a polymer system of size n has entanglement complexity

greater than γn approaches 1 as n goes to infinity. This supports the idea that

EC is a good measure of topological entanglement in polymer systems modelled by

SSAWs. We also showed that the entanglement complexity of SSAWs of size n is

bounded above by a linear function of n. Furthermore, measuring the size by the

number of edges, for N ≥ 2 and M ≥ 2, we compared the connective constant for

SSAWs in an (N,M)-tube with the connective constant for self-avoiding walks in an

(N − 2,M − 2)-tube and showed that it is strictly greater than that for SAWs.

Ultimately, based on our theoretical results on the SSAW model we conclude that

the following statements (equations) show how EC depends on various properties of

SSAWs such as the number of edges, span and the number of degree one vertices

and also indicate how these properties are related to each other:

• There exists γ#1(Y3) > 0 such that the probability that the EC of a randomly

chosen span n SSAW X#1
n (Y3) from the distribution in equation 6.7.7 (for

j = 1) is bounded below by γ#1(Y3)n and bounded above by a′(N,M)a(N,M)n

goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#1(Y3)n < EC(X#1
n (Y3)) ≤ a′(N,M)a(N,M)n) =

lim
n→∞

[1 − e−α
′(1,Y3)n+o(n)] =

1, (6.12.1)

where

a(N,M) = (1/2)(M + 2N + 1)[(N + 1)(4N − 2) + (9/2)(4N − 3)] (6.12.2)

and

a′(N,M) = 2N(M + 1) + 2M(N + 1) + (M + 1)(N + 1). (6.12.3)

In other words, as the span of SSAWs increases one expects EC to be bounded

linearly in the span with probability one.
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We also showed that the limit inferior of the average EC of span m SSAWs per

span is bounded below by a positive constant, i.e.

lim inf
m→∞

EY
(
EC(X#1

m (Y3))
)

m
≥ γl. (6.12.4)

• There exists γ#3(Y3) > 0 such that the probability that the EC of a randomly

chosen n-edge SSAW X#3
n (Y3) from the distribution in equation 6.7.7 (for j =

3) is bounded below by γ#3(Y3)n and bounded above by a(N,M)n goes to one

exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#3(Y3)n < EC(X#3
n (Y3)) ≤ a(N,M)n) = lim

n→∞
[1− e−α

′(3,Y3)n+o(n)] = 1.

(6.12.5)

In other words, as the number of edges of SSAWs increases one expects EC to

be bounded linearly in the number of edges with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen span n SSAW X#1
n (Y3) is bounded below by

ε#1
P (Y3)n and bounded above by a′(N,M)n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 2) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,2,Y3)n+o(n)] = 1.

(6.12.6)

In other words, as the span of SSAWs increases one expects the number of

degree one vertices (the number of disjoint walks) to be bounded linearly in

the span with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of edges of

a randomly chosen span n SSAW X#1
n (Y3) is bounded below by ε#1

P (Y3)n and

bounded above by a′(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 3) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,3,Y3)n+o(n)] = 1.

(6.12.7)

In other words, as the span of SSAWs increases one expects the number of

edges to be bounded linearly in the span with probability one.
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Using the transfer-matrix method, we also established that the average number

of edges per unit volume of a randomly chosen span m SSAW, EY (f(X#1
m (Y3),3))

mNM
,

approaches a positive constant as m → ∞ and is non-decreasing in z almost

everywhere. However, it still needs further investigation to see how EC changes

with respect to Y3.

• There exists ε#3
P (Y3) > 0 such that the probability that span of a randomly

chosen SSAWX#3
n (Y3) with n edges is bounded below by ε#3

P (Y3)n and bounded

above by 2n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 1) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,1,Y3)n+o(n)] = 1.

(6.12.8)

In other words, as the number of edges of SSAWs increases one expects the

span to be bounded linearly in the number of edges with probability one.

• There exists ε#3
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen SSAW X#3
n (Y3) with n edges is bounded

below by ε#3
P (Y3)n and bounded above by 2n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 2) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,2,Y3)n+o(n)] = 1.

(6.12.9)

In other words, as the number of edges of SSAWs increases one expects the

number of degree one vertices (the number of disjoint walks) to be bounded

linearly in the number of edges with probability one.

Furthermore, we obtained the asymptotic form of the free energy for the SSAW

model. We also investigated ρ(N,M ; ε), the growth constant for SSAWs with limiting

edge-density ε
NM

, as a function of ε. We established the existence of this function and

showed that it is a continuous and concave function of ε and is differentiable almost

everywhere in (εmin, εmax). However, in order to see how EC changes in terms of the

density, we need to know more about ρ(N,M ; ε). In particular, proving a pattern

theorem for this function may lead to some results regarding the connection between

EC and the density.
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Chapter 7

Conclusions and Future Work

In this thesis, we investigated the topological entanglement of 2SAPs, stretched

polygons and SSAWs confined to a lattice tube measured by homological (topo-

logical) linking probability, topological linking probability and EC respectively. We

mainly addressed the following question: “Are these good measures for characterizing

topological entanglement between polymers and how do these measures depend on

various properties of the lattice object under consideration?” We rigorously showed

that these are good measures for characterizing topological entanglement between

polymers in the sense that the larger the “size” of a polymer system (where size can

be measured by the number of edges, span or the number of degree one vertices), the

greater its measure [50]. The main theoretical results obtained regarding the topo-

logical entanglement of the lattice objects under consideration (2SAPs, stretched

polygons and SSAWs) as well as the important open questions raised from these

models are summarized as follows.

In Chapter 4, the following question was addressed regarding the linking probabil-

ity of two self-avoiding polygons: under what conditions does the “linking probability”

of pairs of self-avoiding polygons go to one? The answer can depend on how one de-

fines linking probability. In order to approach this question, we introduced the 2SAP

model. We showed that (CONCAT) and (CAPOFF) are satisfied for this model. We

also established the existence of the connective constant for 2SAPs and showed that

it is strictly less than that of SAPs. We proved a pattern theorem for 2SAPs and

used it to investigate homological as well as topological linking of 2SAPs. We showed

that the homological linking probability goes to one at least as fast as 1 −O(n−1/2)

and that the topological linking probability goes to one exponentially rapidly, as
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n → ∞. Furthermore we proved that the linking number grows (with probability

one) faster than any function that is o(
√
n); i.e. for any function f(n) = o(

√
n),

there exists A ≥ 0 such that as n → ∞ the probability that |Lk(ω1, ω2)| ≥ f(n),

with (ω1, ω2) the component polygons of an n-edge 2SAP, satisfies

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1 − A√

n
+ o
( 1√

n

)
. (7.0.1)

Hence

lim
n→∞

P
(
|Lk(ω1, ω2)| ≥ f(n)

)
= 1. (7.0.2)

We also showed that the linking number cannot grow faster than linearly in n because

of the tube constraint; i.e. there exist constants a and b such that for any n-edge

2SAP

|Lk(ω1, ω2)| ≤ an + b. (7.0.3)

We gave a simple example to show that the upper bound in equation 7.0.3 for 2SAPs

can be realized. Hence sufficient conditions for ensuring that the linking probability

goes to one are established.

The future work needed regarding the 2SAP model is as follows: Although we

proved that the homological linking probability goes to one as n → ∞, unlike the

situation for topological linking, we still don’t know if it can go to one exponentially

rapidly. This is an open question that needs further investigation. Furthermore, in

the 2SAP model, in order to increase the likelihood of interpenetration between the

two polygons, the polygons are confined to a tube and are constrained to have the

same left- and right-most plane. One important question is whether we can weaken

these conditions and still have the linking probability going to one. For instance, we

may look at pairs of polygons confined to a tube and constrained so that the two

polygons share a slice of span of order n− o(n).

In Chapter 5, we were mainly concerned with the following question: how does

the topological entanglement change when a polymer is compressed or stretched under

the influence of an external force f? We proved a pattern theorem for stretched

polygons. We used this to also obtain a pattern theorem for loops in a tube. The

tube constraint allowed us to prove the pattern theorem for any arbitrary value of f ,
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not just for large values of f as in [27]. The pattern theorem was then used to show

that the knotting probability of an n-edge stretched polygon confined to a tube goes

to one exponentially as n → ∞. Furthermore, by associating a two-component link

to each polygon (loop) in a tube, the incidence of topological linking was examined

when the polygon (loop) was under the influence of a force f . We proved that the

probability the link associated to an n-edge polygon (loop) is topologically linked

approaches unity exponentially as n → ∞. This implies that as n → ∞ when

polygons are influenced by an external force f , no matter its strength or direction,

topological entanglements as defined by knotting and topological linking are highly

probable. In addition, using a transfer-matrix approach, the asymptotic form of the

free energy for stretched polygons confined to a tube was obtained. We used this to

show that, the average span per edge of a randomly chosen n-edge stretched polygon

Sfn ,
Ef (m(Sf

n))

n
, approaches a positive constant as n → ∞ and is non-decreasing in

f almost everywhere. We also established that the average number of occurrences

of the tight trefoil SAP config P∗ per edge in any n-edge stretched polygon Sfn

approaches a positive constant as n→ ∞.

The future work needed regarding stretched polygons is as follows: Like the 2SAP

model, in addition to the topological linking, the homological linking probability of

stretched polygons in a tube can be investigated. Other suitable link invariants can

be investigated using the models and methods introduced here to analyze further

the effect of an external force on the topological entanglement of ring polymers.

We associated a 2-string tangle to a stretched polygon (loop). The tangle model

of stretched polygons and suitable tangle invariants can also be used to find out

more about the topological entanglement of stretched polygons (loops). Future work

on stretched polygons would also involve investigating how the average number of

occurrences of the tight trefoil SAP config P∗ (per edge) depends on f .

The work presented in Chapter 6 was motivated by the following question: What

is the best measure for characterizing the entanglement complexity of polymers in

dense systems and how does this measure depend on various properties of the system?

Needless to say, it is difficult to find the “best” measure for this purpose. So we
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approached this question by looking for a “good” measure of entanglement. We

considered the measure proposed in [41] and asked how its value depends on various

properties of SSAWs such as the total number of edges, span, the number of degree

one vertices (or, equivalently, twice the number of disjoint walks) and the density.

We rigorously proved that the entanglement complexity, as measured in [41], of a

polymer system with size n (e.g. the number of edges, span or the number of degree

one vertices) is asymptotically (with probability one) bounded below by a linear

function of n; i.e. there exists a positive number γ such that the probability that a

polymer system of size n has entanglement complexity greater than γn approaches 1

as n goes to infinity. This supports the idea that EC is a good measure of topological

entanglement in polymer systems modelled by SSAWs. We also showed that the

entanglement complexity of SSAWs of size n is bounded above by a linear function

of n. Furthermore, measuring the size by the number of edges, for N ≥ 2 and

M ≥ 2, we compared the connective constant for SSAWs in an (N,M)-tube with

the connective constant for self-avoiding walks in an (N−2,M−2)-tube and showed

that it is strictly greater than that for SAWs.

Ultimately, based on our theoretical results on the SSAW model we conclude that

the following statements (equations) show how EC depends on various properties of

SSAWs such as the number of edges, span and the number of degree one vertices

and also indicate how these properties are related to each other:

• There exists γ#1(Y3) > 0 such that the probability that the EC of a randomly

chosen span n SSAW X#1
n (Y3) from the distribution in equation 6.7.7 (for

j = 1) is bounded below by γ#1(Y3)n and bounded above by a′(N,M)a(N,M)n

goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#1(Y3)n < EC(X#1
n (Y3)) ≤ a′(N,M)a(N,M)n) =

lim
n→∞

[1 − e−α
′(1,Y3)n+o(n)] =

1, (7.0.4)

where

a(N,M) = (1/2)(M + 2N + 1)[(N + 1)(4N − 2) + (9/2)(4N − 3)] (7.0.5)
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and

a′(N,M) = 2N(M + 1) + 2M(N + 1) + (M + 1)(N + 1). (7.0.6)

In other words, as the span of SSAWs increases one expects EC to be bounded

linearly in the span with probability one.

We also showed that the limit inferior of the average EC of span m SSAWs per

span is bounded below by a positive constant, i.e.

lim inf
m→∞

EY
(
EC(X#1

m (Y3))
)

m
≥ γl. (7.0.7)

• There exists γ#3(Y3) > 0 such that the probability that the EC of a randomly

chosen n-edge SSAW X#3
n (Y3) from the distribution in equation 6.7.7 (for j =

3) is bounded below by γ#3(Y3)n and bounded above by a(N,M)n goes to one

exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P(γ#3(Y3)n < EC(X#3
n (Y3)) ≤ a(N,M)n) = lim

n→∞
[1− e−α

′(3,Y3)n+o(n)] = 1.

(7.0.8)

In other words, as the number of edges of SSAWs increases one expects EC to

be bounded linearly in the number of edges with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen span n SSAW X#1
n (Y3) is bounded below by

ε#1
P (Y3)n and bounded above by a′(N,M)n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 2) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,2,Y3)n+o(n)] = 1.

(7.0.9)

In other words, as the span of SSAWs increases one expects the number of

degree one vertices (the number of disjoint walks) to be bounded linearly in

the span with probability one.

• There exists ε#1
P (Y3) > 0 such that the probability that the number of edges of

a randomly chosen span n SSAW X#1
n (Y3) is bounded below by ε#1

P (Y3)n and
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bounded above by a′(N,M)n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#1
P (Y3)n ≤ f(X#1

n (Y3), 3) ≤ a′(N,M)n
)

= lim
n→∞

[1−e−α′′(1,3,Y3)n+o(n)] = 1.

(7.0.10)

In other words, as the span of SSAWs increases one expects the number of

edges to be bounded linearly in the span with probability one.

Using the transfer-matrix method, we also established that the average number

of edges per unit volume of a randomly chosen span m SSAW, EY (f(X#1
m (Y3),3))

mNM
,

approaches a positive constant as m → ∞ and is non-decreasing in z almost

everywhere. However, it still needs further investigation to see how EC changes

with respect to Y3.

• There exists ε#3
P (Y3) > 0 such that the probability that span of a randomly

chosen SSAWX#3
n (Y3) with n edges is bounded below by ε#3

P (Y3)n and bounded

above by 2n goes to one exponentially rapidly as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 1) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,1,Y3)n+o(n)] = 1.

(7.0.11)

In other words, as the number of edges of SSAWs increases one expects the

span to be bounded linearly in the number of edges with probability one.

• There exists ε#3
P (Y3) > 0 such that the probability that the number of degree

one vertices of a randomly chosen SSAW X#3
n (Y3) with n edges is bounded

below by ε#3
P (Y3)n and bounded above by 2n goes to one exponentially rapidly

as n→ ∞; i.e.

lim
n→∞

P
(
ε#3
P (Y3)n ≤ f(X#3

n (Y3), 2) ≤ 2n
)

= lim
n→∞

[1 − e−α
′′(3,2,Y3)n+o(n)] = 1.

(7.0.12)

In other words, as the number of edges of SSAWs increases one expects the

number of degree one vertices (the number of disjoint walks) to be bounded

linearly in the number of edges with probability one.

Furthermore, we obtained the asymptotic form of the free energy for the SSAW

model. We also investigated ρ(N,M ; ε), the growth constant for SSAWs with limiting

179



edge-density ε
NM

, as a function of ε. We established the existence of this function

and showed that it is a continuous and concave function of ε and is differentiable

almost everywhere in (εmin, εmax).

The future work needed regarding the SSAW model is as follows: We were able

to obtain theoretical results on how EC depends on various properties of SSAWs

such as the number of edges, span and the number of degree one vertices. We also

showed how these properties change with respect to each other. However, in order

to see how EC changes in terms of the density, we need to know more about the

function ρ(N,M ; ε), the growth constant for SSAWs with limiting edge-density ε
NM

.

In particular, proving a pattern theorem for this function may lead to some results

regarding the connection between EC and the density. We may also investigate

the relation between EC and the density of SSAWs by learning more about the z

dependence of γl in equation 7.0.7.
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Appendix A

Transfer-Matrix Method

In this appendix, the transfer-matrix method is briefly introduced. Note that
the discussion here is based on the presentation in [54], unless stated otherwise. A
directed graph or digraph D is a triple (V,A, φ), where V is a set of vertices, A is a
set of (directed) edges or arcs, and φ is a map from A to V × V . If φ(e) = (u, v),
then e is called an edge from u to v, with initial vertex u and final vertex v. This is
denoted by u = int e and v = fin e. If u = v then e is called a loop. A walk in D
of length n from vertex u ∈ V to vertex v ∈ V is a sequence e1, e2, ..., en of n edges
such that u = int e1, v = fin en, and fin ei = int ei+1 for 1 ≤ i < n. If also u = v,
then Γ is called a closed walk based at u.

Let w : A → C be a weight function on A. If Γ = e1, e2, ..., en is a walk then
the weight of Γ is defined by w(Γ) = w(e1)...w(en). Note that we assume D is finite
so V = {v1, ..., vp} and A are finite sets. For any n ∈ N, let [n] denote the set
{1, 2, ..., n}. For any i, j ∈ [n], define

Aij(n) =
∑

Γ

w(Γ), (A.0.1)

where the sum is over all walks Γ in D of length n from vi to vj. In particular, for
n = 0, let

Aij(0) = δij, (A.0.2)

where δij is defined by

δij =

{
1 if i = j
0 otherwise .

(A.0.3)

Let A(n) = (Aij(n)). The main concern of the transfer matrix method is the
evaluation of Aij(n). Let p = |V |. Define a p× p matrix B = (Bij) by

Bij =

{ ∑
e∈φ−1((vi,vj))

w(e) if φ−1((vi, vj)) 
= ∅
0 otherwise .

(A.0.4)

Note that Bij = Aij(1). The matrix B is called the adjacency matrix of D, with
respect to the weight function w. The following theorem shows that, for any n ∈ N,
A(n) can be obtained by evaluating the nth power of the matrix B.

Theorem A.0.1. For any n ∈ N,

Aij(n) = (Bn)ij. (A.0.5)

(Here we define A0 = I even if A is not invertible.)
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The behaviour of the function Aij(n) can be analyzed through its generating
function, i.e.

Fij(D, x) =
∑
n≥0

Aij(n)xn =
∑
n≥0

(Bn)ijx
n. (A.0.6)

The following theorem relates the generating function of Aij(n) to the matrix B.

Theorem A.0.2. The generating function Fij(D, x) is given by

Fij(D, x) =
(−1)i+j det(I − xB : j, i)

det(I − xB)
, (A.0.7)

where (C : j, i) denotes the matrix obtained by removing the j-th row and i-th column

of C. Thus in particular Fij(D, x) is a rational function of x whose degree is strictly

less than n0, the multiplicity of 0 as an eigenvalue of B.

A matrix or vector A is said to be non-negative (non-positive) if all its elements
are non-negative (non-positive) and we write A ≥ 0 (A ≤ 0).

Theorem A.0.3 ([46]). A non-negative matrix always has a non-negative real eigen-

value r such that the modulus of any other eigenvalue of the matrix does not exceed

r. To this maximal eigenvalue corresponds an eigenvector with non-negative coordi-

nates.

A permutation matrix is a square matrix that has exactly one entry 1 in each
row and each column and has 0’s elsewhere. A matrix is called reducible if there

is a permutation matrix P such that the matrix P−1AP is of the form

(
X 0
Y Z

)
,

where X and Z are square matrices. Otherwise, we say A is irreducible.

Theorem A.0.4 ([46]). A matrix A is irreducible if for each i, j there exists an

m ≥ 1 such that (Am)ij > 0.

The period d of an irreducible matrix A is the greatest common divisor of the
integers m for which (Am)ii > 0; A is said to be an aperiodic matrix if d = 1.

A digraph D = (V,A, φ) is called strongly connected if for each pair of vertices
vi and vj in V , there exists a walk from vi to vj. Let D = (V,A, φ) be a strongly
connected digraph with the weight function w : A → C such that w(a) > 0 for any
a ∈ A. Then B, the adjacency matrix of D, is non-negative and irreducible.

Theorem A.0.5 (Perron-Frobenius Theorem [46]). An irreducible non-negative ma-

trix A always has a positive eigenvalue r that is a simple root of the characteristic
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polynomial of A. The modulus of any other eigenvalue of A does not exceed r. To

the maximal eigenvalue r corresponds a positive eigenvector. Moreover, if A has h

eigenvalues of modulus r then they are all distinct roots of xh−rh = 0. Furthermore,

if A is aperiodic then r is the only eigenvalue with modulus r.

Note that the maximal eigenvalue of any matrix A is also called the spectral
radius of A.

Theorem A.0.6 ([46]). Increasing any element of a non-negative matrix A does not

decrease the maximal eigenvalue. The maximal eigenvalue strictly increases if A is

an irreducible matrix.

In particular,

Theorem A.0.7 ([46]). The maximal eigenvalue r′ of every principle sub-matrix

(obtained by removing one row and one column) of a non-negative matrix A does not

exceed the maximal eigenvalue r of A. If A is irreducible, then r′ < r always holds.

Theorem A.0.8 (Lemma 9 [1]). Suppose that M(x) ≥ 0 is a continuously differen-

tiable matrix valued function of x > 0 and let ρ(x) be the spectral radius ρ(M(x)).

If ρ(x0) > 0 is a simple eigenvalue of M(x0) and η and ςT are corresponding eigen-

vectors, normalized such that ςTη = 1, then

ρ′(x0) = ςTM ′(x0)η (A.0.8)

and provided ρ′(x0) 
= 0,

(x0 − x)(ρ(x0)I −M(x))−1 → 1

ρ′(x0)
ηςT = (ςTM ′(x0)η)

−1ηςT (A.0.9)

as x → x0.
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Appendix B

Convex Functions

Convex and concave functions have a significant role in the study of the free
energies of various models in statistical mechanics. If f(x) is a concave function
then −f(x) is convex. So all the results presented here can be easily reworded to
obtain similar results for concave function. In this appendix, the main properties
of convex functions are reviewed. The discussion here is based on the presentation
in [26]. More detailed information about the properties of convex functions can be
found in [21] and [45].

A function is said to be convex on a closed interval [a, b] ⊂ R if

λf(x) + (1 − λ)f(y) ≥ f(λx+ (1 − λ)y), (B.0.1)

for every a ≤ x < y ≤ b whenever 0 ≤ λ ≤ 1. Convex functions are continuous
under some conditions; these conditions are explained in the next lemma.

Lemma B.0.9. If f(x) is a convex function in [a, b], and f(x) is bounded above in

some open interval I ⊆ (a, b), then there exists an interval (c, d) ⊇ I such that f(x)

is bounded above and continuous in (c, d), and f(x) = +∞ in (a, b) \ (c, d).

In order to prove that a function f is convex, it is usually easier to first show
that f satisfies the relation

f(x) + f(y) ≥ 2f((x+ y)/2), (B.0.2)

for any x and y. Then, the next lemma can be used to show that the function is
convex.

Lemma B.0.10. Suppose that f(x)+f(y) ≥ 2f((x+y)/2) for all a ≤ x ≤ y ≤ b. If

f(x) is bounded above in some open interval I ⊂ (a, b), then there exists an interval

(c, d) ⊇ I such that f(x) is convex and bounded above in (c, d), and f(x) = +∞ in

(a, b) \ (c, d).

The following lemma shows that finite convex functions have left- and right-
derivatives everywhere.

Lemma B.0.11. If f : [a, b] → R is a convex function and is finite in (a, b), then

d−f(x)/dx and d+f(x)/dx exist everywhere in (a, b). Moreover,

−∞ < d−f(x)/dx ≤ d+f(x)/dx <∞ (B.0.3)
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and both the left- and right-derivatives are non-decreasing with increasing x.

Let {fn}n≥1 be a sequence of functions fn : [a, b] → R, n = 1, 2, .... The sequence
is said to converge pointwise to a function f : [a, b] → R if the sequence of real
numbers {fn(x)}n≥1 converges to f(x) for any x ∈ [a, b]. The following lemma shows
that convergent sequences of convex functions have a convex limit.

Lemma B.0.12. Suppose that fn : [a, b] → R, n = 1, 2, ..., is a sequence of convex

functions converging pointwise to a limit f : [a, b] → R. Then f(x) is convex in [a, b].

Convex functions have another property which is important in applications. They
are differentiable almost everywhere, i.e. they are differentiable everywhere except,
possibly, on a set with measure zero.

Lemma B.0.13. Let f be a non-decreasing, real-valued function on [a, b]. Then f

is differentiable almost everywhere.

Lemma B.0.14. Suppose that the sequence of convex functions {fn}n≥1 approaches

a limit f . Then the right- and left-derivatives satisfy

d−

dx
f(x) ≤ lim inf

n→∞
d−

dx
fn(x) ≤ lim sup

n→∞

d+

dx
fn(x) ≤

d+

dx
f(x). (B.0.4)

Moreover, this implies that

lim
n→∞

d

dx
fn(x) =

d

dx
f(x) (B.0.5)

almost everywhere.
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