

USING A PERMISSIONLESS BLOCKCHAIN TO BUILD A SMART DOOR LOCK

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

In the Department of Computer Science

University of Saskatchewan

Saskatoon

By

LUCAS DE CAMARGO SILVA

© Copyright Lucas de Camargo Silva, June 2020. All rights reserved.

i

PERMISSION TO USE

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this

thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by

the professor or professors who supervised my thesis/dissertation work or, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis/dissertation or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood that due

recognition shall be given to me and to the University of Saskatchewan in any scholarly use which

may be made of any material in my thesis.

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in

whole or part should be addressed to either:

Head of the Department of Computer Science

 Department of Computer Science

 University of Saskatchewan

 176 Thorvaldson Building, 110 Science Place

 Saskatoon, Saskatchewan S7N 5C9 Canada

OR

 Dean

 College of Graduate and Postdoctoral Studies

 University of Saskatchewan

 116 Thorvaldson Building, 110 Science Place

 Saskatoon, Saskatchewan S7N 5C9 Canada

ii

ABSTRACT

Door locks connected to the internet, also known as smart locks, offer more convenience and

security to control access to a place if compared to conventional locks that use physical keys or

with those that use keypads. For instance, smart locks are managed remotely and even if someone

once had access permission at some point, they cannot copy the key to attempt unauthorized access

later. Those benefits, however, might be compromised due to the centralized system architecture

offered by locks’ vendors and manufacturers which allow users to control their devices - someone

could gain access over the user’s device and data.

 This work explores how a permissionless blockchain – the public network of the Ethereum

blockchain - can be leveraged to build a convenient and secure smart lock system, while giving

the device owners full control over their devices by eliminating the central authority. It proposes

an architecture and discusses in-depth the required components and other factors that must be taken

into consideration while designing and implementing the system. Furthermore, a proof-of-concept

application based on people that rent their places using hospitality services like Airbnb is

implemented. The system allows hosts to remotely manage guests' permissions, delegate

management rights to others, and allow guests to use a feature that blocks the owner’s permission

to unlock the device during their stay.

 The proof-of-concept is evaluated regarding its functionalities, how long they take to be

processed by the blockchain, and how much they cost to be executed. Among the findings are: (i)

the proposed architecture and implementation were capable of delivering the expected behaviors

for the smart lock functionalities; (ii) the delay associated with using the Ethereum blockchain are

reasonable and fit the application use cases; (iii) besides the one-time-only operation to deploy the

smart contract in the blockchain, the cost yielded for all other actions stayed below CAD 0.40,

which is believed to be feasible considering the application context.

iii

ACKNOWLEDGEMENTS

To my wife, Bárbara, thanks for your extraordinary support, for countless discussions about

this work, and for all the revisions of this text.

 To my supervisor, Dr. Ralph Deters, thanks for the unimaginable and life changing

opportunity to pursue my master’s degree working with you and with the colleagues from Madmuc

Lab.

 To my research fellow, Mayra, thanks for your help with the previous work that inspired

this thesis.

 To my parents, family, and friends, thanks for always being there for me.

v

CONTENTS

PERMISSION TO USE ………………………………………………………...……... i

ABSTRACT ………………………………………………………….……………...…. ii

ACKNOWLEDGEMENTS ……………………………………......……………......… iii

CONTENTS ……………………………………………………….…….……………... iv

LIST OF TABLES ……………………………………………….…………………….. vii

LIST OF FIGURES …………………………………………………………………… viii

LIST OF ABBREVIATIONS …………………………………………………………. xi

CHAPTER 1: INTRODUCTION ..………………………………………………….... 1

CHAPTER 2: PROBLEM DEFINITION ………………………………………...…. 3

2.1 Research Questions ...….……………………………………………………. 5

2.2 Research Objectives …………...………………………………….……….... 5

CHAPTER 3: LITERATURE REVIEW ….….….……………………………...….... 6

3.1 Blockchain …………..……………………….....…...………………………. 6

3.2 Ethereum ………………………..…..………………………...........…........... 8

3.3 Privacy In Blockchain ………….………………………………..….…...…... 9

3.4 Blockchain Applied To Smart Home ……..….….…..….….….….….…...…. 11

3.5 Blockchain Applied To Smart Locks …..........….………...………….….…... 14

CHAPTER 4: DESIGN AND ARCHITECTURE …………………………………..... 17

4.1 PoC Use Cases …..….……….….….….….….....…...………………………. 20

4.2 System Architecture ..……………………….....…...………………………... 36

 4.2.1 Ethereum blockchain public network ...……………………......…... 36

 4.2.2 Ethereum query gateway ……..…….…………………………...…. 38

4.2.3 Ethereum wallet …………………….….………………………..…. 40

4.2.4 Lock’s management interface ….……..………………….…….…... 41

4.2.4 Lock hardware …………….………..………………….…….…….. 42

CHAPTER 5: IMPLEMENTATION ………………………………………………..... 44

5.1 PoC Architecture .…………………………….....…...…………………...….. 44

5.2 Ethereum Development and Evaluation Tools …....…...…………………….. 46

5.3 Use Cases Implementation ….………………….....…...…………………….. 47

iv

v

5.3.1 Unlock and lock the door – Host …....…………………………....... 47

5.3.2 Add support for Guests …....…………….………………................. 52

5.3.3 Exclusive permission feature ………….……..….………................. 58

5.3.4 Add support for Managers …..…………..………………................. 60

5.3.5 Add events …....……………..………........…..........……................. 62

5.4 Lock’s management interface .….…..….….….……....................................... 66

CHAPTER 6: EXPERIMENTS AND EVALUATIONS ….….….….….…....…..…... 68

6.1 Methodology …....….................………...........................….….….…....…….. 68

6.1.1 Test cases …....…………………………………………………....... 69

6.1.2 Evaluating performance …....…………………..………………....... 77

6.1.2.1 The base case experiment ….…………………………...... 77

6.1.2.2 The network dynamics experiment ….….….……….…..... 82

 6.1.2.3 The Gas price experiment ….…………………….…......... 83

6.1.3 Evaluating cost …....…………………………................................... 85

6.1.3.1 The base case experiment ….…………………………...... 86

6.1.3.2 The test network experiment …………………….............. 86

 6.1.3.3 The multiplicity experiment ….………………………..... 89

6.2 Results …....….................………...........................….….….…....…….. …… 92

6.2.1 Performance evaluation: The base case experiment ……………..... 92

6.2.2 Performance evaluation: The network dynamics experiment 98

6.2.3 Performance evaluation: The gas price experiment ……………..... 100

6.2.4 Cost evaluation: The base case experiment ……….....………......... 103

6.2.4.1 Deploy ……….….….….….….…….…….….….....…..... 104

6.2.4.2 UC2 – Register Guest ….……………….……………...... 104

6.2.4.3 UC3 – Remove Guest ….……………….……………...... 106

6.2.4.4 UC5 – Register Manager ….…………..…..…………...... 108

6.2.4.5 UC6 – Remove Manager ….…………..…..…………...... 110

6.2.4.6 UC8 – Turn on exclusive permission .…….…………...... 111

6.2.4.7 UC9 – Turn off exclusive permission .…….………......... 113

6.2.5 Cost evaluation: The test network experiment ……....………......... 114

6.2.6 Cost evaluation: The multiplicity experiment ……....……….......... 115

v

v

CHAPTER 7: CONCLUSIONS, CONTRIBUTION, AND FUTURE WORK …….. 120

7.1 Limitations………...........................….….….…....………….…… 121

7.2 Contributions………...........................….….….…....……………… 122

7.3 Future Work………...........................….….….…....….….……… 123

REFERENCES …………………………………………………………………………. 124

vi

vii

LIST OF TABLES

Table 3.1 Literature review summary ………………………………………….………… 16

Table 4.1 Functional requirements versus use cases matrix ………….….…..………… 35

Table 6.1 Relationship between the experiments and the research objectives from chapter

…………two …………………………………………………………………………..… 68

Table 6.2 Set of tests for the performance base case experiment ………..……………… 78

Table 6.3 Ethereum accounts for the performance base case experiment ……….……… 81

Table 6.4 Set of tests for the network dynamics experiment .…………………………… 82

Table 6.5 Set of tests for the Gas price experiment .………………………..…………… 84

Table 6.6 Ethereum accounts for the Gas price experiment .…….….….…..…………… 85

Table 6.7 Set of tests for the network cost experiment …………….…....….….….. …… 87

Table 6.8 Set of tests for the multiplicity cost experiment ………………….….………. 89

Table 6.9 Ethereum accounts for the multiplicity case cost experiment ……….………. 91

Table 6.10 Excluded transactions from the performance base case analysis .……..…… 94

viii

LIST OF FIGURES

Figure 2.1 Smart lock proposal representation ………………………………….………. 5

Figure 4.1 Smart lock PoC overview ………………………………….………………… 17

Figure 4.2 Smart lock use cases ………………………………….……………………… 26

Figure 4.3 System Architecture ………………………………….……………………… 36

Figure 5.1 PoC Components ………………………………….………………………… 45

Figure 5.2 Smart Contract - Host unlock the door ……………………….………….….. 48

Figure 5.3 Contract’s publicly available data ………………………………….……….. 49

Figure 5.4 Contract’s deploy transaction - Publicly available data …………………….. 50

Figure 5.5 Infura API request and response to the contract unlock function……. 51

Figure 5.6 Smart Contract Snippet – some Guests related functionalities….. 54

Figure 5.7 Infura API request and response to retrieveGuests function – call from a

…………..random account ..…. 55

Figure 5.8 Infura API request and response to retrieveGuests function – call from

…………..Host account ..…….. 56

Figure 5.9 Publicly available transaction details to register a Guest 57

Figure 5.10 Publicly available transaction details to remove a Guest….. 58

Figure 5.11 Metamask warning before sending a transaction that does not meet an

…….……...expected precondition ..…. 59

Figure 5.12 Host removes inexistent Guest - Failed transaction details 60

Figure 5.13 Smart contract functions using require() to enforce preconditions…. 61

Figure 5.14 onlyOwner and eitherOwnerOrManager access modifiers

……………implementation ……………………………………………………...…….. 62

Figure 5.15 turnExclusiveFeatureOn function implementation…... 62

Figure 5.16 Event log for a register guest transaction ...…... 64

Figure 5.17 Event log for a remove guest transaction ...……. 65

Figure 5.18 Smart contract’s UML class diagram .. 65

Figure 5.19 Management Interface: Register Guest ... 66

Figure 5.20 Management Interface: Guest retrieve Managers list 67

Figure 6.1 UC1 sequence diagram – Unlock and lock the door……... 70

viii

Figure 6.2 UC2.MSS, AP2 sequence diagram – Register Guest….. 70

Figure 6.3 UC2.AP1 sequence diagram – Register Guest……... 70

Figure 6.4 UC3.MSS, AP2 sequence diagram – Remove Guest……... 71

Figure 6.5 UC3.AP1, AP3, AP4 sequence diagram – Remove Guest……... 71

Figure 6.6 UC4.MSS, AP2 sequence diagram – Retrieve Guests……... 71

Figure 6.7 UC4.AP1 sequence diagram – Retrieve Guests……... 72

Figure 6.8 UC5.MSS sequence diagram – Register Manager……... 72

Figure 6.9 UC5.AP1, AP2 sequence diagram – Register Manager…….. 72

Figure 6.10 UC6.MSS, AP2 sequence diagram – Remove Manager…….. 73

Figure 6.11 UC6.AP1, AP3, AP4 sequence diagram – Remove Manager……... 73

Figure 6.12 UC7.MSS, AP2 sequence diagram – Retrieve Managers……... 73

Figure 6.13 UC7.AP1 sequence diagram – Retrieve Managers…….. 74

Figure 6.14 UC8.MSS, AP1 sequence diagram – Turn on exclusive permission .…….. 74

Figure 6.15 UC8.AP2, AP3, AP4, AP5 sequence diagram – Turn on exclusive

........permission ..…….. 74

Figure 6.16 UC9.MSS sequence diagram – Turn off exclusive permission……... 75

Figure 6.17 UC9.AP1, AP2 sequence diagram – Turn off exclusive permission ……… 75

Figure 6.18 UC10.MSS, AP2 sequence diagram – Check exclusive permission ……… 75

Figure 6.19 UC10.AP1 sequence diagram – Check exclusive permission……... 76

Figure 6.20 UC11 sequence diagram – Verify permission……... 76

Figure 6.21 Deploy sequence diagram ..…….. 76

Figure 6.22 Query latency ...…... 93

Figure 6.23 Performance evaluation base case: Transaction latency…… 94

Figure 6.24 Performance evaluation base case: Transaction latency by its

……properties…………………………………………………... 95

Figure 6.25 Performance evaluation base case: Confirmation timestamp comparison

……between Metamask and Etherscan .….…………….………….….….…… 97

Figure 6.26 Network dynamics performance evaluation: Latency…… 99

Figure 6.27 Network dynamics performance evaluation: Latency share…... 99

Figure 6.28 Gas price performance evaluation: Time elapsed between Tx

……submissions ...… 101

ix

viii

Figure 6.29 Gas price performance evaluation: Latency ..……… 102

Figure 6.30 Cost evaluation: Performance base case Gas consumption……... 103

Figure 6.31 Cost evaluation: Register Guest ..……….. 105

Figure 6.32 Function registerGuest implementation ...…. ……. 105

Figure 6.33 Modifier eitherOwnerOrManager and function isManager

……implementations ..………. 106

Figure 6.34 Cost evaluation: Remove Guest ..………. 107

Figure 6.35 Function removeGuest implementation ...….. …… 107

Figure 6.36 Cost evaluation: Register Manager ...………. 109

Figure 6.37 Function registerManager implementation….. …… 109

Figure 6.38 Cost evaluation: Remove Manager ...………. 110

Figure 6.39 Function removeManager implementation……….. 111

Figure 6.40 Cost evaluation: Turn on exclusive permission….…… 112

Figure 6.41 Function turnExclusiveFeatureOn implementation……….. 112

Figure 6.42 Cost evaluation: Turn off exclusive permission……… 113

Figure 6.43 Function turnExclusiveFeatureOff implementation………. 114

Figure 6.44 Multiplicity cost evaluation: Register Guest (UC2.MSS)……. 116

Figure 6.45 Multiplicity cost evaluation: Register Manager (UC5.MSS)……. 116

Figure 6.46 Multiplicity cost evaluation: Remove Guest (UC3.MSS)……. 117

Figure 6.47 Multiplicity cost evaluation: Remove Manager (UC6.MSS)……. 118

Figure 6.48 Multiplicity cost evaluation: Turn the exclusive feature on

……(UC8.AP1 and UC8.AP2) ..……. 119

Figure 6.49 Multiplicity cost evaluation: Turn exclusive feature off (UC9.MSS) 119

x

xi

LIST OF ABBREVIATIONS

AP Alternative Path

CAD Canadian Dollars

DApp Decentralized Application

EDT Eastern Daylight Time

ETH Ether (Ethereum currency)

EVM Ethereum Virtual Machine

FR Functional Requirement

HSP Home Service Providers

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoT Internet of Things

IPFS InterPlanetary File System

MSS Main Success Scenario

P2P Peer-to-Peer

PoC Proof-of-Concept

PoW Proof-of-Work

RPC Remote Procedure Call

SHS Smart Home Systems

Tx Transaction

UC Use Case

UML Unified Modeling Language

1

CHAPTER 1

INTRODUCTION

Conventional door locks based on keys have some limitations, mainly due to the necessity to handle

somebody else a key to allow them to open the door. Those keys can be copied, stolen, or lost, and

replacing the secret is usually expensive. Door locks with keypads are an alternative to give access

without the physical exchange of keys, but they face some similar issues than before. The code can

also be copied, stolen, or forgotten, and although changing it is more feasible than previously, it

requires physical interaction with the device. Door locks connected to the internet, also known as

smart locks, solve those issues. The device is managed remotely, over the internet, and people do

not have to handle physical keys or unique passcodes to others anymore. Therefore, they are a more

secure and convenient alternative to manage access to places. On the other hand, the centralized

system architecture used by those locks still contains some security and privacy risks.

Smart lock manufacturers provide users with an online interface to manage the devices

(August, 2020; Friday, 2020; Google, 2020; Kwikset, 2020). Those solutions are entirely owned

and controlled by the company, which means that they have full access over the user’s data and

device. Intentionally or not, someone could read, edit, or delete user’s data and even acquire access

to the lock without their consent. The same could happen if a hacker successfully attacked the

company or even one of their IT providers, for example. In summary, a user must trust the smart

lock manufacturer in order to use it.

Blockchain has been proposed to eliminate the need of central authorities – stakeholders

with control power - in some applications since it allows trustless interaction between unknown

parties through a decentralized architecture (Christidis and Devetsikiotis, 2016; Lu, 2018). Among

hundreds of options, the Ethereum blockchain is one of the most popular choices to explore those

capabilities. Ethereum supports smart contracts - pieces of codes that run in the blockchain - which

enables the system to enforce custom rules or behaviors. One of the most exciting features about it

is that once a smart contract is deployed, no one can change it, and it is only possible to interact

with it honoring the programmed rules and behaviors. It is crucial to note, however, that Ethereum

is not a single piece solution when it comes to building decentralized applications. Designing a full

2

application to leverage it requires various components that must be chosen carefully among a

complex range of possibilities.

Anyone can join and be part of the public Ethereum blockchain network, which indicates

that anyone can see the transactions and other information about it. While this transparency is

essential to the blockchain architecture, it also brings some privacy concerns, and it must be taken

into consideration when building on the platform. A further characteristic that must be paid

attention to is the economics of the Ethereum network. In order to the blockchain to properly work

and avoid attacks, users must pay fees to execute transactions in it. Additionally, Ethereum needs

time to process those transactions which impose a latency to actions that depend on the blockchain.

Therefore, the cost to use it and latency times should be considered when designing solutions with

Ethereum.

Finally, this thesis proposes a Proof-of-Concept (PoC) application that builds a smart lock

system that uses the Ethereum blockchain, discussing all the relevant considerations from

designing the application to building and evaluating it. This work is organized as follows: (i)

Chapter two presents the problem definition and the research questions and objectives; (ii) Chapter

three brings a literature review on the blockchain, and its application to smart homes and smart

door locks; (iii) Chapter four defines the PoC application and discuss the system architecture to

build it; (iv) Chapter five details all the considerations and decisions about the implementation of

the PoC; (v) Chapter six presents the experiments to evaluate the functionalities, performance, and

operating cost of the PoC; (vi) Chapter seven brings the conclusion about the work, its

contributions, and discuss future work possibilities.

3

CHAPTER 2

PROBLEM DEFINITION

Alice needs to give Bob access to her house, but she cannot keep locking and unlocking the door

for him every time he needs to enter or leave the place. The simplest solution one could think is

that Alice can just handle Bob a key. Then, he can use it to enter and leave her house as needed

and, once his access is no longer required, he returns the key to Alice. That solution, however,

hides a much more complex set of requirements and assumptions behind the key exchange.

First, an assumption is made that Alice and Bob can physically exchange the key between

them. In addition to that, Alice expects that:

• Her door can only be unlocked by her specific and unique secret, that she holds

through her key;

• Bob is the only one that will use the key - i.e., the permission is individual and

personalized;

• She is in control of Bob’s access and that she can cease it at her will;

• No one besides her can control the access to her place – or maybe someone that she

explicitly trust to do it for her. Therefore, she controls the access management.

Note that, with minor modifications, a similar set of requirements could be described if

Alice would manage access to her workplace, to her school locker, to her car, among other physical

places that she might be in charge of the access control.

Regular door locks that use physical keys fail to meet most of Alice’s requirements because:

• Bob can make copies of that key without her consent – she is not in control over

Bob’s access;

• Anyone with that same key can successfully open the lock – the access is not

personalized;

• Bob can provide others with access to Alice’s lock – she is not in control of the

access management.

4

Moreover, exchanging a physical key is inconvenient, and so is changing the lock’s secret,

which is also expensive.

Door locks that use keypads show some improvements when compared to physical keys,

which are mainly related to Alice’s control of one’s access. However, it still fails to meet all the

requirements because anyone that knows the passcode can type it in and successfully open the lock.

On the other hand, exchanging the secret is more convenient than before, and so is changing the

secret when needed – although it requires physical access to the device to modify it.

Door locks controlled remotely through the internet solve most of those issues found in the

previous locks. It is possible, easy, and convenient to create and manage personalized permissions.

However, Alice’s control over managing the access might be at risk. The lock’s management

platforms offered by vendors and manufacturers are entirely under their control, and they could

potentially override Alice’s permissions – either intentionally or by suffering hacker attacks, for

instance.

The blockchain has been proposed to eliminate the necessity of central authorities in various

scenarios, which is precisely the problem with the current door locks connected to the internet,

where the lock’s provider is a central authority.

At last, this work proposes and implements a smart lock solution – partially illustrated in

Figure 2.1 – which provides Alice with the following functionalities:

1. Assign individualized permission to open her lock over a time frame – e.g., let Bob

unlock the door from June 15th, 3 PM, to 9:30 AM of the 18th;

2. Have full control over one’s access to her lock – e.g., she can remove Bob’s

permission to unlock the door, and there is nothing that Bob can do to use his past

authorization to unlock the device afterward;

3. Allow individuals to control the access management on her behalf – e.g., she can

allow Diana to assign permissions to open the device;

4. Have full control over the access management of her lock – e.g., only Alice and

people she authorizes can assign permissions to the device, and she is the only one

who can create and edit authorizations;

5. Manage the lock remotely over the internet – i.e., execute the actions above without

requiring physical access to the lock device.

5

Figure 2.1 – Smart lock proposal representation

2.1 Research Questions

1. How can a smart lock solution be implemented using a permissionless blockchain to

address the five functionalities presented above?

2. How much time would the proposed solution take to perform the management actions listed

earlier?

3. How much money would it cost to run the proposed solution?

2.2 Research Objectives

1. Design and implement a smart lock system architecture using the blockchain

2. Regarding the five functionalities previously described:

a. Verify that the proposed system delivers them

b. Evaluate how long their executions are expected to take – i.e., the delay between

the user sending an action and getting the corresponding response

c. Evaluate how much money their executions are expected to cost – i.e., how much

the blockchain charges the user to perform them

6

CHAPTER 3

LITERATURE REVIEW

This chapter presents a literature review that covers the blockchain technology, which centers on

the main characteristics and applications of blockchain that are relevant to building a smart lock

solution. Table 3.1, found on the last page of this chapter, shows a summary of the literature review

conducted.

3.1 Blockchain

Blockchain can be explained, in summary, as a distributed ledger of transactions or, more

specifically, a distributed append-only timestamped data structure (Casino et al., 2018). Satoshi

Nakamoto (2008) introduced a cryptocurrency called Bitcoin, which is known as the first practical

implementation of a blockchain. The proposed public peer-to-peer (P2P) network solved the

double-spending problem – where one spends the same resource twice - through a consensus

algorithm called proof-of-work (PoW), which enabled untrusted parties to execute transactions

without relying on a central authority to validate and orchestrate it, e.g., a bank. Through

asymmetric cryptography, users digitally sign their transactions, which ensures that the user indeed

sent it and that the content was not exploited along the way. Following, those transactions are

broadcasted to every node in the network, and inserted into blocks, with its corresponding

timestamp, a process called mining. Blocks are then chained to each other in chronological order

through a hash function reference. Any changes made to past transactions would alter the block’s

resulting hash number, causing a break in the chain, easily verifiable by anyone. In other words,

all nodes in the network hold a transparent and persistent copy of the ledger. Consequently, unlike

traditional centralized systems, there is not a central component – like a server or a database – that

attackers could exploit to tamper with the data.

Bitcoin introduced a powerful combination of techniques that allowed the exchange and

storage of cryptocurrency in a trustless and distributed environment while avoiding the previously

required use of a central authority. Undoubtedly revolutionary, the application of Bitcoin was

7

somehow limited to simple exchanges of cryptocurrency values. The architecture, on the other

hand, offered the necessary characteristics to implement the idea of smart contracts proposed about

a decade earlier by Szabo (1994, 1997). The author described the implementation of contracts in

computer code, where a protocol would automatically enforce all the agreed terms between the

parties. The inclusion of this feature into the blockchain technology enabled an extensive set of

possible applications to the technology, going beyond financial to business, IoT, education, public

and social services, to name a few (Casino et al., 2018; Zheng et al., 2018; Brandão et al., 2018).

This movement towards smart contracts is so relevant that it created a turning point in blockchain

history. Bitcoin and other cryptocurrencies are referred to as being part of the Blockchain 1.0

generation, while those with smart contracts functionalities are labeled as Blockchain 2.0 (Lu,

2018).

Generally, a blockchain will have mechanisms in place: (i) that allow participants to form

a peer-to-peer network; (ii) that allow users to be uniquely addressable in the network and sign

their transactions; (iii) that allow the network to verify and process transactions; (iv) that allow the

network to agree on the state of the ledger; (v) optionally, it might include smart contracts features

that allow the execution of computational steps given a particular transaction occurs; (vi) that allow

the maintenance and upgrade of the blockchain itself; (vii) optionally, it might restrain access to

the network (Christidis and Devetsikiotis, 2016; Tama et al., 2017). The last mechanism, used to

control access to the network, determines if a blockchain is public, private, or consortium, also

referred to as federated or hybrid (Buterin, 2015). In public blockchains, also known as

permissionless, there is no restriction on who can participate in the network. Anyone can send

transactions, join the consensus process, among other capabilities. On the contrary, a fully private

blockchain, categorized as permissioned, centralizes the mining capability to a single node,

implements a whitelist of users allowed to be part of the network, and might even constrain what

kind of action each user can perform. Consortium is also a permissioned blockchain, which limits

access to the network, but instead of centralizing the consensus process on a single entity, it defines

a set of authorized nodes to do it. In other words, its semi-decentralized topology is a hybrid

approach between public and private blockchains (Memon et al., 2018).

Finally, a summary of the key characteristics of blockchain technology is: (i)

decentralization; (ii) transparency; (iii) immutability, persistency; (iv) privacy, pseudo-anonymity;

(v) auditability; (vi) reliability; (vii) versatility (Seebacher and Schüritz, 2017; Zheng et al., 2018).

8

3.2 Ethereum

One of the leading players on blockchain 2.0 is Ethereum, which was conceptualized by Vitalik

Buterin in late 2013 (Buterin, 2014a; Buterin, 2014b), and Gavin Wood launched its first

specification in early 2014 (Wood, 2014). The blockchain supports smart contracts by including a

built-in Turing-complete programming language, known as Ethereum Virtual Machine (EVM)

code, which allows users to write arbitrary rules and create decentralized applications (Ethereum

White Paper, 2019). The EVM code is a low-level bytecode language, but smart contracts are

usually written in high-level languages. For instance, Solidity and Vyper are considered the most

popular options for writing smart contracts, although others are available (Ethereum Developer

Resources, 2019). Smart contracts deployed in the blockchain are also immutable, meaning that

once they are sent there, no one can change its code, not even to fix bugs.

 Ethereum blockchain contains two types of accounts: (i) externally owned accounts; (ii)

contract accounts. The difference between them is that a private key controls the former, while the

latter is controlled by code. However, both can hold a balance of Ether (ETH), the platform’s

currency token.

Since every transaction demands some work from the network to process it, Ethereum

charges fees – specified in unities of Gas - to avoid abuses and to prevent infinite loops execution

in smart contracts (Wood, 2014; Ethereum White Paper, 2019). In practice, it works as a limit to

how many computational steps are allowed to happen. Each of those steps corresponds to a low-

level operator that has a fixed cost associated with it. If the Gas allowance assigned by a transaction

is not enough to fully execute the action, all the computation is reversed, but the Gas was spent

whatsoever. Miners are the nodes responsible for running the network mostly, and those fees are

used to reward them for their work. They can even choose to ignore transactions if they find the

Gas price set by the creator too low. In other words, the system imposes a trade-off on the

transactors between Gas price and processing time.

It is possible to use Ethereum by either joining the public network or running a

private/hybrid version, and each approach offers advantages and disadvantages. Zheng et al. (2018)

summarize the main characteristics of public, private, and consortium blockchains. Public

blockchains, which are largely decentralized, offer higher levels of immutability due to the

difficulty of tampering with the data. At the same time, a large number of nodes to propagate

9

transactions and blocks to, limits transaction throughput and raises latency times. Private and

consortium blockchains, on the other hand, restrain the number of participants in the consensus

process and the network. As a result, transactions are processed faster than before, but the difficulty

to tamper with this centralized network architecture is lower. Besides the tread-off between security

and latency, there is a third critical characteristic that must be taken into consideration, privacy. In

public blockchains, all transactions are visible to the public, while permissioned blockchains

control access to it. Finally, to use a public network means that there are no infrastructure costs

associated with it, contrary to the private approach where one is responsible for setting up and

managing the network completely (Casino et al., 2018). In addition to that, once various peers are

using the network and holding value in it, there are many people with high interest in monitoring

and keeping it secure, decentralizing the management as well.

It is undeniable that there are many variables involved in the decision to use a public or a

hybrid blockchain. However, one can argue that decentralization is one of the main characteristics

of blockchains, and partially or entirely centralizations break that premise, or at least weakness it

substantially (Buterin, 2015). In fact, the Ethereum whitepaper (Ethereum White Paper, 2019)

states that one of the reasons to develop Ethereum was to offer a blockchain platform that would

allow people to build custom applications on top of, instead of bootstrapping their custom version

of Bitcoin. The authors argue that the majority of those custom applications are too small to run

their own blockchain network with a proper decentralized consensus protocol.

3.3 Privacy In Blockchain

As explained before, privacy is a crucial factor to take into consideration when using a public

blockchain due to its transparency feature. Feng et al. (2019) conducted a survey on privacy issues

related to blockchain and divided them into two types, identity and transaction. Identity privacy is

about decoupling real identities from the transactions, as well as the links between transactions.

Blockchain usually uses a random number to represent someone’s address, but it provides limited

privacy. It is possible to monitor the network and reveal users’ identities, and that is why it is said

to offer pseudo-anonymity (Halpin and Piekarska, 2017; Tikhomirov, 2017; Feng et al., 2019).

Transaction privacy, on the other hand, means to protect the transaction content from public access,

instead of broadcasting the data itself.

10

 Different research has been conducted to study those privacy limitations in blockchains,

and generally, they can be separated into two areas, they either provide tools to improve existing

blockchains, or they propose creating new ones that address the issue from the design. An interested

reader can find more details about these methods, privacy-aware blockchains, and further

discussions in the works of Mercer (2016), Buterin (2016), Wahab (2018), and Feng et al. (2019).

Wahab (2018) argues, which is corroborated by Unterweger et al. (2018), that it is not feasible to

run state-of-the-art privacy technologies on blockchains that do not consider that constraint from

conception. The reason is the high computation time and power that is required from them, which

leads to scalability limitations, and high costs to run them in smart contract platforms, e.g.,

Ethereum.

 The threat imposed by the data exposure will differ based on how the blockchain is being

used. Generally speaking, the privacy issues related to the use case of simple cryptocurrency

exchange relies mostly on people eventually learning the account owner identity, the account

balance, and the detailed history of transactions executed by the account – in no particular order.

In addition to that, all those transactions contain information about both parties involved, the value

of the transactions, among others. On the other hand, for those applications built on blockchains

that support smart contracts, the analysis is not so straightforward. Since the transactions can carry

any custom data and perform custom actions, the threats will be directly related to the context of

that specific use case and how the smart contract is implemented.

 To illustrate those privacy concerns related to public blockchains, the e-voting application

- a system that allows people to vote through the internet - is a good scenario. To build such a

system, besides meeting high-security requirements, voters’ privacy must be addressed. When

someone casts a vote, it is not ideal that other people have knowledge of the details, but it is crucial

that anyone can verify the validity of a vote, as well as that the eventual result is reliable. Ethereum

is a popular choice of blockchain to create and study e-voting applications, and a variety of

approaches have been proposed (McCorry et al., 2017; Yavuz et al., 2018; Li, 2019). However,

more important than discussing the details, findings, and limitations of those works, is to highlight

two ideas: (i) the necessity to consider privacy when building applications for blockchains; (ii) the

privacy threats depend on the use case context and how it was implemented. An interested reader

can find related discussions applied to auction application built with Ethereum smart contracts in

the works of Galal and Youssef (2019a, 2019b).

11

3.4 Blockchain Applied To Smart Home

Several definitions for the term smart home is found in the literature (Schiefer, 2015). Widely, they

refer to a house that incorporates devices capable of executing automated tasks, and that can be

controlled remotely by the users. For instance, devices might be light bulbs, air-conditioners, house

appliances, door locks, among many others. Since they are being used to control different aspects

inside people’s homes, they have a direct impact on their life and well-being, and successful attacks

can result in severe consequences – e.g., leaking of private information, monitoring user’s activity,

opening doors, to name a few. For that reason, the use of blockchain has been proposed in different

ways to enhance the smart home environment.

Rahman et al. (2019) present an idea to enable secure and privacy-preserving rent of

Internet of Things (IoT) devices, introducing a marketplace that gathers IoT providers, travel

agencies, hotels, and guests. This sharing economy of devices – e.g., lock or a light bulb - makes

it possible for businesses to offer those products to guests, without owning it. Still, the system

addresses some security and privacy challenges encountered when sharing such resources with

third parties. It is done by using Ethereum and Hyperledger blockchains, InterPlanetary File System

(IPFS) off-chain storage of multimedia data, data processing at the edge to store information more

efficiently, among other components and features. However, there are a variety of ways to write

smart contracts and interact with the blockchain, which can show different privacy and security

levels. Therefore, a discussion on the implementation is crucial. One more element that requires

investigation is the cost to run the proposed solution.

Set to explore the capabilities of combining IoT with blockchain, Joseph and Navaie (2019)

propose a system to manage home appliances and resources supply in rented places. In their design,

landlords can write conditions to supply resources to tenants – e.g., water and energy – and when

a successful payment into the smart contract occurs, the blockchain automatically provides the

resource. The system is built using a private Ethereum network customized to lower the proof-of-

work (PoW) requirements, resulting in lower transaction confirmation times. The authors argue

that since the participants must be authenticated and authorized into the network by the landlord,

the overall security of the blockchain would not be compromised by the lower PoW values.

Unfortunately, there are other vulnerabilities when adopting private blockchain networks that must

be considered. First, the number of nodes is low, as probably would the number of transactions be,

12

which makes 51% attacks easier to perform. Second, this topology requires significant technical

knowledge from the landlords to properly maintain the network. Although they know the identity

of all the participants, identify attacks, misconduct, and revert those actions is not easy. Third, the

participants might not have many incentives to attack the network and compromise their supplies,

as stated by the authors, but if any of them gets hacked, the system would be exposed. One can

argue that this issue described is not relevant when dealing with water and energy supply control,

once an outside attacker would hardly benefit from it. However, when dealing with door locks, as

proposed in the future work section, the issue is pertinent. Lastly, all participants of the network

would be able to access transaction information on the system. In which case, a privacy analysis

would be interesting to reveal what kind of information is available for the participants of the

network. For instance, the lock proposed as future work is said to record every entry and exit of

people, which is a sensitive security piece of information to be available.

One more work exploring the intersection of blockchain and smart home IoT devices to

improve on existing security and privacy issues was developed by Aung and Tantidham (2017).

Their design uses a private Ethereum network, composed by a single node, to communicate and

control temperature sensors and air conditioner equipment. This architecture presents similar

limitations and risks to those discussed before on the work of Joseph and Navaie (2019), which

also chose to run a private blockchain. In this case, however, the risk is even higher, once there is

only a single node in the network. In addition to that, the proposed design includes a central

database to offload some data from the blockchain, which lacks some discussion. It is not clear

what information is recorded there, and how much its use can compromise the acquired privacy

and security from the blockchain. The same architecture can be achieved through a variety of

implementation strategies, and authors must explain the low-level system details to assess the

features of their designs effectively. An example of this idea is the work done by Xu et al. (2018).

Although they present a similar application, which applies the Ethereum private Blockchain to

smart home systems, their detailed discussion enhances the understanding of this type of

architecture and enable new analyses. Their work demonstrates a smart home application using

Ethereum that monitors humidity and temperature of a room, then acts on it based on predefined

thresholds. For instance, if the room temperature is found higher than set by the user, the smart

contract would turn on the air conditioner. The authors describe the miner and node topology

required to properly run the system, which includes the use of two computers, each one assigned

13

to run two Ethereum miner nodes. This is done to improve security and take the computationally

expensive miner responsibility from the sensor devices. It is not explicitly stated, but it seems that

each place being monitored would run its own private network, or in other words, each user would

have two machines running Ethereum miner nodes. There are some issues with that approach that

might contradict the increase in security strategy and even the applicability of the system. First, it

requires that the users keep two computers turned on twenty-four hours, which seems a waste of

energy compared to the monitoring task in hand. Second, those computers are inside the same

internet network, which means that if someone gains access to it, they potentially can reach all the

miners – overall, the same that would happen if they were running a single miner node. Even when

that is not the case, and attackers only acquire access to one of the machines, it would still represent

50% of the mining power, compromising the reliability of the blockchain.

An alternative use of a private blockchain to build smart home systems was proposed by

Zhou et al. (2018). The work proposes a framework that combines a private blockchain network,

presumably Hyperledger, with a public one. The topology determines that each house has its private

network - with one miner node - and IoT devices, that are each a non-mining node. The devices

send their data through smart contracts to be stored in the private blockchain, and they can

communicate with each other to exchange information and services. The public blockchain is used

to form a network of homes, that shares IoT services, and it receives the data from the private

blockchains periodically. Although the architecture allows new functionalities not included in the

previous works, it still faces most of the security and management issues discussed above on using

private blockchains, notably when it contains a single miner node. Nonetheless, when a public

blockchain is used, there are privacy concerns that must be addressed, and the authors do not

provide details about it.

Following their previously discussed work on how to integrate IoT devices with blockchain

to build Smart Home Systems (SHS), Aung and Tantidham (2019) present a new application

inspired on their design. The authors propose an SHS, once again based on the private Ethereum

blockchain, that integrates the system with external Home Service Providers (HSP) to send

emergency calls given a specific condition occurs. For example, if the home security system detects

a break-in, it could automatically send an emergency call to the police, and maybe to the security

company hired by the household. Generally, a combination of sensors and other monitoring devices

that identifies a predefined behavior could generate emergency calls to the correspondent HSP,

14

such as the fire department, a health service agency, the hardware manufacturer, to name a few.

One positive aspect of this work is the security and privacy awareness of the design, which uses a

combination of encrypted messages and IPFS to prevent forgery and unintended access to

emergency calls. Moreover, the authors provide a detailed explanation of how the system works

and discuss the privacy and security aspects of various parts of it. Contrary to their last proposed

architecture, the householders do not have to run Ethereum miner nodes, which is now the

responsibility of the HSP. Although the design shows an improvement from the last application

regarding the Ethereum private network usage, resulting in a potential increase in security, one can

argue that the effort required to form and maintain a new network might not be worth compared to

leveraging the existing public Ethereum network. In addition to that, given the smart contracts

implementations, it seems that some information about the homeowners could be viewed, and even

manipulated, by anyone participating in the network. Since potentially there will be different HSP

collaborating in the network, this might represent an issue.

3.5 Blockchain Applied To Smart Locks

Aligned with the smart home definition introduced in section 3.4 (Schiefer, 2015), a smart lock can

be described as a lock device capable of executing automated lock and unlock tasks, and that can

be controlled remotely by the users.

Han et al. (2017) propose a smart door lock system, based on the blockchain, to overcome

vulnerabilities to forgery and hacking encountered in smart locks. The work proposes the device’s

hardware components, which include interfaces for three sensors to monitor the surroundings and

aid the system in decision-making situations. The capabilities offered by this solution are

lock/unlock the door given that the user is within a determined distance range from the device,

detect indoor intrusion while the device is locked, and finally detect outside intrusion, like someone

trying to tamper with the lock. Although the work addresses some smart lock vulnerabilities from

an appealing perspective, combining blockchain and sensors, it is still in early stages, and more

information and evaluation is required. First, it is not clear where the described functionalities run,

embedded on the device, or deployed on the blockchain, which is not the same. Second, the

proposed architecture apparently uses a custom private blockchain, either built from scratch or

derived from an existing one, e.g., Ethereum. Given that, the devices and users must authenticate

15

themselves to the network and manage their accounts in order to interact with it, processes that are

not discussed. In addition to that, the system diagram suggests that the blockchain nodes are

running on the users’ smartphone and on the smart lock itself. Since running a proof-of-work node

usually requires computationally intensive operations, more discussion about the blockchain

implementation and its interface with mobiles would be required. Moreover, the authors mention

a reduction in the proof-of-work requirements to increase the transaction speed, but this might also

lower the security of the blockchain. Furthermore, if their implementation requires a new private

network to operate each smart lock, the number of participants would be low, maybe a few people

that live in the house, for instance, which also compromises the blockchain security features.

Therefore, to properly apply this solution requires a further investigation of the vulnerabilities of

the custom blockchain.

Zaparoli et al. (2019) identified convenience and security issues related to the exchange of

keys between hosts, guests, and other stakeholders of Airbnb and other hospitality service

providers. The work proposes a solution that includes a smart lock, a web platform to manage

reservations, an Android app to communicate with the lock, and the use of Ethereum smart

contracts to manage access. In the design, if someone wants to rent a property, they would open

the reservation tool, book the place, pay for it, and when the time comes, they would access the

venue using the Android app to unlock the door. An exciting feature introduced by this work is

that, when a stay is active, only the guest can lock/unlock the device, not even the property

managers or owner can open it. However, in many cases, people offering rent in such platforms

also live in the place or have multiple bedrooms available, and the authors do not mention the

support for those diversified access scenarios, which limits the application of their solution.

Moreover, it is not clear if there are means to deal with guests’ no shows, for example. A further

limitation in the proposed solution is the reservation platform, where the user books and pays for

rent. If they must use this new system to work with the lock, it means that they would not be able

to use popular platforms like Airbnb, which offers many benefits to them on top of booking and

payment.

Regarding the use of Ethereum and smart contracts by Zaparoli et al. (2019), some elements

require further discussion. For instance, details about the smart contract implementation are not

provided, which makes it hard to assess the security, privacy, and the functionalities coded. When

working with a public blockchain, it is crucial to ensure that only authorized people can interact

16

with the contract, that people cannot exploit it somehow, that the functionalities are reliable, and

pay attention to how much data about the user is publicly available. For example, assume a hack

successfully occurs at the system’s database, it is essential to understand what the attackers could

achieve with the information acquired on users and the smart contract addresses stored there.

Besides security, privacy, and reliability, there is still the economic aspect of using Ethereum. The

authors mention that for every new reservation, a new smart contract deploy happens in the

blockchain, and this is one of the most expensive actions to execute (Wood, 2014). Therefore,

further investigations about the operating costs to use the system are essential to understand its

feasibility and propose alternative architectures to lower those values if necessary. About the

proposed architecture, it relies on the server to lock/unlock the device, meaning that if it goes

offline for any reason, the users would not be able to use the lock. For that reason, more discussion

on that risk is necessary. Finally, the work is still in early stages, as discussed, but shows an

interesting approach to address hospitality services challenges on access management.

Table 3.1 – Literature review summary

Topic Outcome References

Blockchain It shows excellent characteristics, and it is suitable

to build the proposed solution

12

Ethereum It shows excellent characteristics, and it is suitable

to build the proposed solution

8

Privacy in blockchain One must pay attention to information transacted

and recorded publicly in the blockchain

12

Blockchain applied to smart

home

The application shows potential, but further

investigation is needed

7

Blockchain applied to smart

locks

The application shows potential, but further

investigation is needed

4

17

CHAPTER 4

DESIGN AND ARCHITECTURE

Door locks are used worldwide to control access to places, and they are used in different situations,

with particular frequencies, by certain people, in various contexts. Of course, open and close the

lock are evident standard functionalities that a door lock should offer. However, it still requires the

management of accesses and other auxiliary activities that might lead to context-specific

requirements. Therefore, in order to explore the use of smart locks with blockchain, and guide the

discussion within a clear scope, defining a proof-of-concept (PoC) use case scenario is a good idea.

In the work of Zaparoli et al. (2019) discussed in the last chapter, the authors chose the hospitality

service providers’ use case – e.g., Airbnb and hotels – to develop their smart lock proposal, which

has attractive characteristics for a PoC in this thesis. Therefore, a similar approach is used here but

restricted to the Airbnb scenario. Figure 4.1 shows a high-level overview of the proposed PoC.

Figure 4.1 – Smart lock PoC overview

Airbnb is a peer-to-peer hospitality service platform, and it allows property owners (hosts)

to find people (guests) to rent and stay in their properties – houses, apartments, or even only single

18

rooms. Although all the booking process is facilitated by the website, where everything is done

remotely and conveniently, challenges for both hosts and guests emerge when it comes to managing

access to the rented places, which can compromise security, privacy, and convenience for them.

First, it is significant to understand that Airbnb hosts might not be doing that as a full-time job but

rather as an extra income source by renting their otherwise vacant spaces. Hosts, therefore, might

have limited availability to deal with renting related tasks. Second, hosts might be using Airbnb to

offer stays in their vacation properties – e.g., camping or beach houses – which they are not near

to, creating even more challenges.

The security, privacy, and convenience issues addressed in this work related to managing

access to the place are directly dependent on the kind of door lock that the hosts are using in their

places, being either conventional locks with physical keys, locks with keypad, or smart locks –

locks with internet access. The following paragraphs show the discussion for each one of them.

Conventional locks that use physical keys require hosts and guests to meet in person to

exchange the door key. If their availability does not match, and they cannot agree on a meeting

schedule for some reason, the host might choose to leave the key with third parties or leave it

hidden and unattended somewhere. This potential sharing of keys, which can also be done by guests

at any point during their stay, leads to a problem because anyone with the key can make copies of

it, which can be used to access the place illegally later. An alternative for hosts would be to change

the lock’s secret from time to time, ideally after every guest leaves, but it is not feasible, since

changing the secret of this kind of lock is usually expensive, labor-intensive, and the duration of

Airbnb bookings might be for as short as a single day stay. Besides making copies, people might

also just lose the key, which would incur in the same expensive costs to replace the secret. That is

why conventional door locks lack convenience and compromise security and privacy for both hosts

and guests.

Locks with keypad are an alternative to address some of the challenges with conventional

locks. By using them, it is not mandatory that hosts and guests meet in person since they can

exchange the access code remotely by various means. As a consequence, it also avoids the potential

involvement of third parties that would have access to the key. However, it still faces some of the

issues with the former lock. For example, people can still share the code with others, or someone

can steal it by hearing, watching people type, intercepting the message where the code was

exchanged, to name a few possibilities. In any case, anyone who knows the code can try to access

19

the place illegally later. On the other hand, with keypad’s locks, it is feasible to continually change

the key, even daily, which reduces the risk when compared to conventional locks, but this

convenience comes with an assumption. In order to change the access code, the host must do it in

person, and as stated before, they are not always close to the place. Therefore, if that is not the case,

this kind of lock will face similar threats than those discussed for locks with physical keys.

Moreover, even when hosts are able to change the secret daily, they still face low convenience to

manage them, keeping track of the current code, and updating people about it – e.g., family

members, maintenance team. That is why, to a certain degree, door locks with keypads still

compromise user’s convenience, security, and privacy.

A third door lock alternative available are those equipped with an internet connection, also

known as smart locks, which allow them to be controlled remotely, which brings more convenience

than keypad locks. Besides the fact that it is not mandatory that hosts and guests meet in person to

exchange keys, same as for keypad locks, now it is easy for hosts to manage access remotely.

Accordingly, it reduces the probability that people that have had access in the past, or others that

have acquired the code somehow, successfully open the lock illegally in the future. Although this

solution definitely enhances convenience, security, and privacy, it does contain threats. The

management platform offered to the users by the lock’s vendors or manufacturers is implemented

through a centralized architecture, which they hold full control over. This control includes having

access to all user’s data, having administrative power to edit or delete them, which can even mean

including people in the lock’s access list, deleting someone from it, hiding information from users,

or inferring when they are home or not. Therefore, employees of the company with bad intentions

and hackers that successfully gain access to the company could potentially acquire control over the

smart lock without the owner's knowledge. Similarly, depending on how the management platform

was developed, the same could happen even if some of their IT providers are compromised – again,

either an employee or hacker. Without getting into the discussion of what are the probabilities of

those situations happening, the possibility itself must be enough to justify further investigations

into how to enhance this architecture since door locks play a crucial security role in people's lives.

Therefore, while extremely convenient, smart locks still compromise security and privacy for users.

Finally, all locks discussed above bring privacy and security issues from an Airbnb guest

perspective. With hosts using any of those devices, guests can never be sure that no one will enter

20

the place during their stay, since many might have the means to do so, and it can be either people

with illegal access or even the owner.

 Going back to the decision of why choosing the Airbnb use case as the PoC for this thesis,

it was guided by the belief that a PoC should allow the development of a complete set of targeted

requirements without being overly specialized. In that way, the discussion and knowledge gained

with this study could be extensible to other use case scenarios. Generally speaking, the Airbnb

scenario offers the expected lock and unlock requirements, but mixed with particular access

requirements – e.g., expiry date - and business rules – e.g., ensure unique access for someone

overruling even the device owner’s right. Therefore, the discussion in this context could be applied

to other hospitality service scenarios as hotels, to access control in the workplace or universities,

to gym or school lockers, to self-storage facilities, among others. Moreover, the smart lock itself

allows the study also to be extended to other IoT devices that must perform any access control over

data, functionality, or any other resource.

 This chapter is organized as following: section 4.1 develops the PoC use cases, and section

4.2 describes and discusses the system architecture.

4.1 PoC Use Cases

The PoC proposed has three actors, which are Host, Manager, and Guest. The Host is the smart

lock owner and possibly the person who is putting the place to rent in Airbnb. A Manager is

someone with management privileges over the device, which can only be provided by the Host.

Managers have most of the Host’s functionalities, except for register, remove, and retrieve

managers. In addition to that, a Manager cannot turn on the exclusive permission feature for itself.

A Guest is anyone that the Host, or any Manager, will potentially provide permission to unlock the

door. The definition of the use cases to be implemented in this work started by compiling a set of

functional requirements (FR). Therefore, the use cases are derived from a clear representation of

expectations from all stakeholders regarding the system’s functionalities. The functional

requirements are presented below, where each of them contains a unique reference code, a

description, and optionally details for the requirement’s preconditions, postconditions, or any

necessary information. All requirements are treated as mandatory for the system.

21

Reference FR1

Description The Host and Managers must be able to lock and unlock the door at any time

Required info None

Precondition Exclusive permission is inactive

Postcondition None

Reference FR2

Description The Host and Managers must be able to remotely provide a Guest with

permission to lock and unlock the door

Required info Guest

Start date and time, and expiry date and time

Precondition None

Postcondition None

Reference FR3

Description The System must automatically deactivate a Guest’s permission once the

expiry date and time set are past

Required info None

Precondition None

Postcondition None

Reference FR4

Description A Guest with permission must be able to lock and unlock the door at any time

Required info None

Precondition 1 The attempt to unlock occurs between the Guest permission’s start and expiry

dates and time

Precondition 2 Exclusive permission is inactive

Postcondition None

Reference FR5

Description The Host and Managers must be able to withdraw a Guest’s permission

before the expiry date remotely

Required info None

22

Reference FR5 - Continue

Precondition The Guest’s exclusive permission is inactive

Postcondition None

Reference FR6

Description The Host and Managers must be able to allow one or more Guests to have

simultaneous permission to lock and unlock the door

Required info None

Precondition None

Postcondition None

Reference FR7

Description The Host and Managers must be the only ones with the power to provide or

withdraw Guests’ permission to lock and unlock the door

Required info None

Precondition None

Postcondition None

Reference FR8

Description A Guest must be able to check remotely the details about its permission to

lock and unlock the door

Required info None

Precondition None

Postcondition Start date and time, and expiry date and time are informed

Reference FR9

Description The Host and Managers must be able to remotely retrieve the Guests with

permission to lock and unlock the door

Required info None

Precondition None

Postcondition Guests are informed along with their start date and time, and expiry date and

time

The list only contains Guests with the expiry date set in the future

23

Reference FR10

Description The Host must be able to remotely provide one or more people with

management privileges over the device

Required info Manager

Precondition None

Postcondition None

Reference FR11

Description The Host must be able to remove management privileges over the device

from a Manager remotely

Required info Manager

Precondition None

Postcondition None

Reference FR12

Description The Host must be able to retrieve the Managers of the device remotely

Required info None

Precondition None

Postcondition Managers are informed

Reference FR13

Description The Host must be allowed to remotely turn on the exclusive permission to

lock and unlock the door for either itself, a Manager, or a Guest

Required info The Host, a Manager, or a Guest

Expiry date and time

Precondition 1 Exclusive permission is inactive

Precondition 2 The desired exclusive permission Actor must have active permission to lock

and unlock the door

Postcondition Actor’s exclusive permission is active

24

Reference FR14

Description A Manager must be allowed to remotely turn on the exclusive permission to

lock and unlock the door only for a Guest

Required info Guest

Expiry date and time

Precondition 1 Exclusive permission is inactive

Precondition 2 The desired exclusive permission Guest must have active permission to lock

and unlock the door

Postcondition Guest’s exclusive permission is active

Reference FR15

Description The Host, Managers, and Guests must be able to remotely verify if they hold

active exclusive permission to lock and unlock the door

Required info None

Precondition None

Postcondition None

Reference FR16

Description The Host and Managers must be able to remotely verify if anyone holds

active exclusive permission to lock and unlock the door

Required info None

Precondition None

Postcondition Exclusive permission status is informed

If any, the Actor that holds the active exclusive permission is informed, along

with its related expiry date

Reference FR17

Description Only one Actor can hold the exclusive permission to lock and unlock the

door at a given moment

Required info None

Precondition None

Postcondition None

25

Reference FR18

Description Only the exclusive permission holder must be able to lock and unlock the

door

Required info None

Precondition Exclusive permission is active for that Actor

Postcondition None

Reference FR19

Description The Host, a Manager, or a Guest must be able to turn off only their own

exclusive permission to lock and unlock the door

Required info None

Precondition The Actor must hold an active exclusive permission

Postcondition Exclusive permission is inactive

Figure 4.2 summarizes all the use cases (UC) derived from the functional requirements

detailed above. Following the picture are detailed step-by-step behavior descriptions for each one

of the eleven use cases. Alternative paths (AP) to the main success scenario (MSS) are also

provided when a particular step has multiple possible outcomes. However, a given step can only

happen through a single behavior, either the one described in the MSS or one of the AP. For

example, UC1 - unlock and lock the door - has three possible behaviors for the second step of the

MSS. For a given execution, either will happen behavior MSS.2, AP.2a, or AP.2b, followed by the

next steps defined by each of them. It is possible to go back from alternative paths to the main

success scenario, which can lead to other alternative behaviors. For instance, a given execution for

UC3 - remove Guest - could go from AP.5a to AP.6a.

26

Figure 4.2 - Smart lock use cases

Reference UC1

Name Unlock and lock the door

Actors Host, Manager, Guest

MSS 1. The Actor requests the smart lock to unlock or lock the door

2. The smart lock verifies that the exclusive permission feature is OFF

3. The smart lock verifies that the actor is the Host or a Manager

4. The smart lock unlocks the door

AP.1 2a.1. The smart lock verifies that the exclusive permission feature is ON

2a.2. The smart lock verifies that the actor is the same that holds the exclusive

permission

2a.3. The smart lock unlocks the door

AP.2 2b.1. The smart lock verifies that the exclusive permission feature is ON

2b.2. The smart lock verifies that the actor is not the same that holds the exclusive

permission

2b.3. The smart lock ignores the request

27

Reference UC1 - Continue

AP.3 3a.1. The smart lock verifies that the actor is a Guest

3a.2. The smart lock verifies that the permission start date and time are in the past

3a.3. The smart lock verifies that the permission expiry date and time are in the

future

3a.4. The smart lock unlocks the door

AP.4 3b.1. The smart lock verifies that the actor is a Guest

3b.2. The smart lock verifies that the permission start date and time are in the future

3b.3. The smart lock ignores the request

AP.5 3c.1. The smart lock verifies that the actor is a Guest

3c.2. The smart lock verifies that the permission start date and time are in the past

3c.3. The smart lock verifies that the permission expiry date and time are in the past

3c.4. The smart lock ignores the request

Reference UC2

Name Register Guest

Actors Host, Manager

MSS 1. The Actor selects “Register Guest” in the smart lock management website

2. The Actor informs the Guest, the permission start date and time, and the

permission expiry date and time

3. The Actor clicks “Register”

4. The System verifies that the request comes from either the Host or a Manager

5. The System verifies that the Guest does not have permission registered

6. The System registers the Guest permission

AP.1 4a.1. The System verifies that the request does not come from either the Host or a

Manager

4a.2. The System ignores the request

4a.3. The System informs the error

AP.2 5a.1. The System verifies that the Guest has permission registered

5a.2. The System overrides the existing permission with the data from step 2

28

Reference UC3

Name Remove Guest

Actors Host, Manager

MSS 1. The Actor selects “Remove Guest” in the smart lock management website

2. The Actor informs the Guest

3. The Actor clicks “Remove”

4. The System verifies that the request comes from either the Host or a Manager

5. The System verifies that the exclusive permission feature is OFF

6. The System verifies that the Guest has permission registered

7. The System terminates the Guest permission

AP.1 4a.1. The System verifies that the request does not come from either the Host or a

Manager

4a.2. The System ignores the request

4a.3. The System informs the error

AP.2 5a.1. The System verifies that the exclusive permission feature is ON

5a.2. The System verifies that the Guest is not the exclusive permission holder

5a.3. Go back to step 6 of the main success scenario

AP.3 5b.1. The System verifies that the exclusive permission feature is ON

5b.2. The System verifies that the Guest is the exclusive permission holder

5b.3. The System ignores the request

5b.4. The System informs the error

AP.4 6a.1. The System verifies that the Guest does not have permission registered

6a.2. The System ignores the request

6a.3. The System informs the error

29

Reference UC4

Name Retrieve Guests

Actors Host, Manager

MSS 1. The Actor selects “See Guests” in the smart lock management website

2. The System verifies that the request comes from either the Host or a Manager

3. The System finds all Guests registered with expiry date and time set in the future

of the request

4. The System retrieves all Guests found in step 3 with their correspondent start

date and time, and expiry date and time

AP.1 2a.1. The System verifies that the request is not from either the Host or a Manager

2a.2. The System ignores the request

2a.3. The System informs the error

AP.2 3a.1. The System does not find any Guests registered with expiry date and time set

in the future of the request

3a.2. The System informs that there are not Guests registered

Reference UC5

Name Register Manager

Actors Host

MSS 1. The Host selects “Register Manager” in the smart lock management website

2. The Host informs the Manager

3. The Host clicks “Register”

4. The System verifies that the request comes from the Host

5. The System verifies that the informed Manager is not registered

6. The System registers the Manager

AP.1 4a.1. The System verifies that the request does not come from the Host

4a.2. The System ignores the request

4a.3. The System informs the error

AP.2 5a.1. The System verifies that the Manager is already registered

5a.2. The System ignores the request

5a.3. The System informs the error

30

Reference UC6

Name Remove Manager

Actors Host

MSS 1. The Host selects “Remove Manager” in the smart lock management website

2. The Host informs the Manager

3. The Host clicks “Remove”

4. The System verifies that the request comes from Host

5. The System verifies that the exclusive permission feature is OFF

6. The System verifies that the Manager is registered

7. The System removes the Manager

AP.1 4a.1. The System verifies that the request does not come from the Host

4a.2. The System ignores the request

4a.3. The System informs the error

AP.2 5a.1. The System verifies that the exclusive permission feature is ON

5a.2. The System verifies that the Manager is not the exclusive permission holder

5a.3. Go back to step 6 of the main success scenario

AP.3 5b.1. The System verifies that the exclusive permission feature is ON

5b.2. The System verifies that the Manager is the exclusive permission holder

5b.3. The System ignores the request

5b.4. The System informs the error

AP.4 6a.1. The System verifies that the Manager is not registered

6a.2. The System ignores the request

6a.3. The System informs the error

Reference UC7

Name Retrieve Managers

Actors Host

MSS 1. The Host selects “See Managers” in the smart lock management website

2. The System verifies that the request comes from the Host

3. The System retrieves all Managers registered

31

Reference UC7 - Continue

AP.1 2a.1. The System verifies that the request does not come from the Host

2a.2. The System ignores the request

2a.3. The System informs the error

AP.2 3a.1. The System does not find any Managers registered

3a.2. The System informs that there are not Managers registered

Reference UC8

Name Turn on exclusive permission

Actors Host, Manager

MSS 1. The Actor selects “Exclusive Permission – Switch ON” in the smart lock

management website

2. The Actor informs the Host, a Manager, or a Guest, and the exclusive

permission expiry date and time

3. The Actor clicks “Switch ON”

4. The System verifies that the request comes from the Host

5. The System verifies that the exclusive permission feature is OFF

6. The System verifies that the desired exclusive permission holder currently has

active permission to lock and unlock the door

7. The System turns the exclusive permission ON

AP.1 4a.1. The System verifies that the request comes from a Manager

4a.2. Executes step 5 of the main success scenario

4a.3. The System verifies that the desired exclusive permission holder is a Guest

4a.4. Go back to step 6 of the main success scenario

AP.2 4b.1. The System verifies that the request comes from a Manager

4b.2. Executes step 5 of the main success scenario

4b.3. The System verifies that the desired exclusive permission holder is either the

Host or a Manager

4b.4. The System ignores the request

4b.5. The System informs the error

32

Reference UC8 - Continue

AP.3 4c.1. The System verifies that the request does not come from either the Host or a

Manager

4c.2. The System ignores the request

4c.3. The System informs the error

AP.4 5a.1. The System verifies that the exclusive permission feature is ON

5a.2. The System ignores the request

5a.3. The System informs the error

AP.5 6a.1. The System verifies that the desired exclusive permission holder currently

does not have active permission to lock and unlock the door

6a.2. The System ignores the request

6a.3. The System informs the error

Reference UC9

Name Turn off exclusive permission

Actors Host, Manager, Guest

MSS 1. The Actor selects “Exclusive Permission – Switch OFF” in the smart lock

management website

2. The System verifies that the exclusive permission feature is ON

3. The System verifies that the request comes from the exclusive permission

holder

4. The System turns the exclusive permission OFF

AP.1 2a.1. The System verifies that the exclusive permission feature is OFF

2a.2. The System ignores the request

2a.3. The System informs the error

AP.2 3a.1. The System verifies that the request does not come from the exclusive

permission holder

3a.2. The System ignores the request

3a.3. The System informs the error

33

Reference UC10

Name Check exclusive permission

Actors Host, Manager

MSS 1. The Actor selects “See Exclusive Permission Details” in the smart lock

management website

2. The System verifies that the request comes from either the Host or a Manager

3. The System verifies that the exclusive permission feature is ON

4. The System informs that the feature is active, the Actor who holds it, and its

expiry date

AP.1 2a.1. The System verifies that the request comes from neither Host nor a Manager

2a.2. The System ignores the request

2a.3. The System informs the error

AP.2 3a.1. The System verifies that the exclusive permission feature is OFF

3a.2. The System informs that the feature is OFF

Reference UC11

Name Verify permission

Actors Guest

MSS 1. The Guest selects “See My Permission Details” in the smart lock management

website

2. The System verifies that the exclusive permission feature is OFF

3. The System informs the Guest permission’s start date and time, and expiry date

and time

AP.1 2a.1. The System verifies that the exclusive permission feature is ON

2a.2. The System verifies that the Guest holds the exclusive permission feature

2a.3. The System informs that the Guest has an exclusive permission active, along

with its expiry date

2a.4. The System informs the Guest permission’s start date and time, and expiry

date and time

34

Reference UC11 - Continue

AP.2 2b.1. The System verifies that the exclusive permission feature is ON

2b.2. The System verifies that the Guest is not who holds the exclusive permission

feature

2b.3. Executes step 3 of the main success scenario

AP.3 3a.1. The System does not find permission registered for the Guest

3a.2. The System informs that the Guest is not registered

Table 4.1 shows a matrix mapping the relationship between all the functional requirements

and the use cases, where the code in the intersection means that the use case scenario in the column

addresses the functional requirement in the row. Drawing this relationship is helpful for several

reasons. First, if the matrix is constructed before detailing the use cases, it supports the development

of its steps focused on the desired requirements to meet, and the Actors involved. Furthermore, the

matrix helps to identify alternative paths to the main success scenario and to make sure no

requirement is left unaddressed. Second, the matrix can be used to understand the quality of the

use case design. For example, if a use case has intersections with too many requirements, it is either

because they are too general, and its scope or domain is not well defined, or the requirements

provided are overly specialized, probably being minor deviations of the same behavior, and could

be grouped under a common goal. The inverse relationship, where a requirement has intersections

with too many use cases, also follows that same logic.

On the other hand, a use case that does not connect with any requirement means either that

it is not essential in the system to achieve the desired goals, or that the requirements provided are

somehow incomplete. Third, the matrix serves as a traceability tool. Accordingly, in the event of

any changes being made after the design phase to any of the use cases, or requirements, it is

straightforward to determine what is potentially impacted by the modification.

35

Table 4.1 – Functional requirements versus use cases matrix

 UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9 UC10 UC11

FR1 MSS

FR2 MSS

AP2

FR3 AP4

AP5

FR4 AP3

FR5 MSS

AP2

AP3

AP4

FR6 MSS

FR7 AP1 AP1

FR8 MSS

AP3

FR9 ALL

FR10 ALL

FR11 ALL

FR12 ALL

FR13 MSS

AP3

AP5

FR14 AP1

AP2

AP3

FR15 ALL ALL

FR16 ALL

FR17 AP4

FR18 AP1

AP2

FR19 ALL

36

4.2 System Architecture

Figure 4.3 shows the system’s components, and a discussion about each of them is presented in the

following pages. Please note that the architectural design goal is to discuss possibilities, concerns,

limitations, and other aspects surrounding the components, rather than narrowing into specific

solutions for each of them, besides the use of the Ethereum blockchain public network. The

architectural discussion shows, however, how complex it is to design applications that leverage the

blockchain and why it matters. In summary, it focuses on showing how it is possible to build a

system around Ethereum, what are the implications of doing it, but the main emphasis of this thesis

is to explore the implementation and behavior of the use cases in the blockchain.

Figure 4.3 – System Architecture

4.2.1 Ethereum blockchain public network

As explained at the beginning of this chapter, smart locks that use centralized management

platforms, although offering a convenient manner to remotely control the device, face some issues

regarding user’s security and privacy. Those issues are mostly due to the full control over the

system that manufacturers or vendors have, which potentially enable user’s data inspection and

manipulation.

37

In order to address that concern, the main component of the proposed system’s architecture

is the Ethereum Blockchain, which has suitable characteristics to develop a decentralized

application (DApp) to manage the door lock. Blockchain is promising to overcome that limitation

due to its capabilities of allowing uniquely addressable users, in a peer-to-peer network, to send,

verify, and process signed transactions while agreeing in the state of the ledger. Ethereum, while

leveraging the blockchain general attributes, still allows users to write arbitrary rules – programs -

and deploy them to be executed on the blockchain. Among other features, it means that the code is

immutable, so no one can change it once it has been published. Thus, implementing all the use

cases in Ethereum smart contracts means that Host, Managers, and Guests still have the

convenience to control the smart lock remotely, but through a decentralized tool in which they can

trust to execute the rules as intended – assuming they were implemented correctly in the first place

- without the interference of unauthorized parties. It is important to emphasize that all the rules

detailed by the use cases are executed in the blockchain, written in smart contracts, so they are fully

decentralized.

Ethereum can be used by joining its public network or by running a private instance of it,

and it must be clearly stated since each one brings its advantages and disadvantages that must be

taken into consideration at the design phase. Deciding between the two options involves a tradeoff

between mainly security, transaction throughput, and managing the network infrastructure. The

security aspect is directly related to the decentralization of the network. In the public environment,

largely decentralized in terms of the number of nodes and their geographic locations, tampering

with the data is extremely difficult. Besides the high number of malicious nodes needed to perform

an attack, a large number of peers holding value in the network also means that many people are

monitoring it. Private networks, slightly decentralized because they usually have only a few nodes

participating in comparison with the public network, are generally less robust against attacks. The

number of nodes, however, has an impact on transaction throughput and latency times. The higher

the number of participants, the higher is the latency times, and fewer transactions can be processed.

Finally, to run a private network, the user takes the responsibility of arranging the infrastructure

equipment and of configuring, monitoring, and maintaining it, which requires financial resources,

time, and technical knowledge.

Having expressed that, the system proposed will leverage the public Ethereum network due

to the higher security features and less network management responsibilities that it brings,

38

outweighing the lower transaction latency. Moreover, only a few use cases are compromised by

having a latency time higher than a few seconds, namely, unlock and lock the door (UC1), retrieve

guests (UC4), retrieve managers (UC7), check exclusive permission (UC10), and verify permission

(UC11). However, Ethereum allows all of them to be implemented as a query to the blockchain. A

query means that one is only retrieving information from the blockchain, not writing information

in it – that is what a transaction does and, therefore, only transactions need to be processed by the

network. For all other use cases, a latency limitation is consequently imposed, where the user must

wait for the network to process their transactions. Even so, it is not believed that this limitation

compromises the use cases in question since they are not sensitive to real-time execution. For

example, the Host can register a guest at any point before the stay, as a start date is provided. Thus,

even if the transaction takes more than 60 minutes, which is not usual, the functionality is not

damaged. Of course, there could be exceptions to those use cases that would require faster

responses from the blockchain, and Ethereum has a mechanism in place to address that need – it is

possible to offer a higher fee price to the miners to incentivize them to process that transaction

before others. However, it is out of the scope of this work to account for them, though advanced

Ethereum users would still be able to take advantage of this option using the same smart contracts

developed for this architecture, even if the smart contract is already in regular use.

In summary, Ethereum acts as a decentralized database while also responsible for storing

and executing the smart lock business rules – in other words, the smart contracts. Given that, note

that Ethereum by itself does not make up for a full application but rather its back-end structure. In

order to build that, it still requires some communication mean between the blockchain and the door

lock device, as well as an interface where users would manage the lock functionalities. Therefore,

it is mandatory to include other components in the architecture, considering that Ethereum neither

provides an API endpoint to interact with it nor is it suitable to host files. Moreover, it demands a

mechanism through which users can sign their transactions before sending them to the blockchain.

4.2.2 Ethereum query gateway

For the purpose of communicating with the Ethereum network, one must have access to an

Ethereum node, i.e., a client participating in the network. Those nodes offer a remote procedure

call (RPC) interface that enables data exchange to occur. Therefore, the first option to build this

39

bridge is by running a node and use it to interact with the blockchain. On the other hand, it demands

infrastructure – a machine to run, internet connection, to name a few -, high technical skills to start

and maintain the node, and introduces a single point of failure in the system – if the infrastructure

fails, e.g., either the internet or the power at the place is down, the access to Ethereum is lost. Note,

also, that this structure requires that the users trust who is hosting the node, acting as a central

authority, similarly as required by the vendor of the fully centralized smart lock solution. Therefore,

based on that premise only, it would not make sense to change the existing solution, i.e., it would

not make sense to run an Ethereum node. Of course, it is possible to propose an architecture where

each door lock owner would run its own Ethereum node, but the overhead of work, knowledge,

and resources it demands, make it extremely impractical.

Due to the high demands and constraints associated with running a node, companies started

offering the Ethereum infrastructure as a service, where they take care of setting up and maintaining

it, plus offering simple API options to exchange data with the blockchain. While it significantly

lowers the barrier of entry into the network, it implicates in placing a middleman hosting an

interface between users and the blockchain, which brings back trust and centralization concerns

that the blockchain was set to address in the first place. For example, a malicious API could ignore

or delay relaying any transaction to Ethereum, could interrupt the service entirely, could relay

information to parties other or rather than the blockchain, among others. Despite that, a valid

workaround to weaken those issues would be using multiple Ethereum API providers to form the

Ethereum gateway component. Consequently, the trust is divided between them – the majority wins

strategy - and this creates some redundancy to access the blockchain – if any service is interrupted,

there are other paths available. Some API providers are Infura (2020), Nodesmith (2020), Alchemy

(2020), and Etherscan (2020).

As a consequence of the undesired reintroduction of a central authority in the blockchain

application stack, while at the same time recognizing the importance of their role in abstracting the

intensive demands of building a blockchain infrastructure, decentralized API networks projects and

companies were developed. Since the API network itself behaves like a blockchain, similar

characteristics are present, e.g., decentralization and trustless environment. Therefore, they do not

break the design principle that has led to the use of Ethereum in the first place. Slock.it Incubed

Client (2020) and Pocket Network (2020) are two available API providers of this nature.

40

Finally, note that the query word is present in the Ethereum gateway name, and the main

reason is to constrain its scope of use in the architecture. In Ethereum, when someone wants to

write data in the blockchain, the call is referred to as a transaction. Once they change the state of

the chain, transactions are paid and take effect only after the network has processed them and

confirmed their validity. On the other hand, when someone wants only to retrieve data from

Ethereum, the call is named a query, which is free of charges and does not require network

confirmation. The distinction in the component’s name is necessary considering that, in practice,

this gateway is capable of handling both transactions and queries. However, in the proposed

architecture, a different component is used to perform transactions, and the reason is elaborated

next.

4.2.3 Ethereum wallet

An Ethereum wallet is a software that holds and manages the user’s accounts and their respective

tokens. It allows users to sign transactions with their private key, and to interact with the network

and applications built on top of it. The main advantage of including an existing wallet in the system

architecture is because Ethereum users are already familiar with those tools, and they can choose

the one that better fits their needs. There are a variety of wallet options available, and each of them

addresses different requirements, e.g., desktop or mobile use, browser add-ons, hardware wallet,

multiple token support, robust security features, among others. Generally, Ethereum wallets

provide APIs to connect to and interact with the blockchain, not different than what was discussed

for the Ethereum query gateway. Popular software libraries, e.g., JavaScript’s Web3.js (2020) and

Java’s Web3j (2020), used to write software to interact with Ethereum can work with different

providers already.

However, the trust relationship required from the user on the wallet solution is not only

comparable to that discussed for APIs but even worse. A malicious wallet could acquire the means

to sign transactions of an account, so an attacker could legitimately control the account. Wallet

providers will address this trust issue in a particular manner. For instance, some providers have

their wallet code available open-source, while others are built entirely like that. Potentially, by

doing so, the software gets reviewed - or developed - by a community of users, which then

reinforces the trust on the tool. The trust concern is one more reason for the architecture to allow

41

the use of a variety of wallets, leaving users free to choose the solution which they feel comfortable

using. In addition to that, when using not only Ethereum but any blockchain, the lesser the places

that one must provide their account’s secret key, the better it is for their security.

In any way, the proposed architecture does not leave those risks imposed by the wallet

completely unaddressed. The strategy adopted is restricting the use of the wallet solely to

submitting transactions to the blockchain, and then use the Ethereum query gateway to retrieve the

information. Therefore, to successfully control the lock without the user’s knowledge, multiple

pieces must be compromised.

4.2.4 Lock’s management interface

The management interface is the tool that allows Host, Managers, and Guests to control the lock

functionalities, check for relevant information, and receive guidance and feedback on the actions

performed. Note that this interface presents similar centralization and trust issues than those

discussed for other components of this architecture, namely the Ethereum query gateway and

wallet. Indeed, it acts as a middleman between the user and both the wallet and the gateway.

Accordingly, it is a powerful tool once it controls not only the data flow but, more importantly,

what the users see. For instance, a malicious management interface in the proposed architecture

would not allow attackers to sign users’ transactions, as could happen in a compromised wallet. On

the other hand, they could mislead them to sign tampered ones by controlling what the interface

shows to them. Ethereum wallets will usually allow users to see the transaction’s data before they

sign it. However, they are encoded in a low abstract level form, which is not very comprehensible

for reading. In addition to that, depending on where one hosts the interface, attackers could drop

its availability, prohibiting the stakeholders from managing the locks. For those reasons, the

architecture must have mechanisms in place to diminish the trust requirements and centralization

risks on this component.

 An interesting approach is by leveraging blockchain-like storage platforms, i.e., distributed

file systems, e.g., IPFS (2020) and Swarm (2020). Thus, instead of having the interface code, also

referred to as the application’s front-end, hosted on a specific server controlled by someone, a peer-

to-peer network hosts it. Typically, a file deployed in the network is addressable by its hash string,

which is accepted as unique and unpredictable. Consequently, if one makes any changes to that

42

particular file, it will cause a change of its hash string, which then results in a different address to

access it in the network. Hence, note that the trust imposed on a file is limited up to the moment

that its upload to the network occurs, which takes care of keeping it unaltered throughout time. In

contrast, for regular central party authority hosting, even though at some point a file might have

been trusted, changes can happen. That is why trust is continuously required.

 Regarding the faith still demanded on the original files, making the source code publicly

available so anyone interested can review them, as some blockchain wallets are doing, is an

attractive option. As a result, the trust does not lie on a single actor anymore. Instead, a community

of people and organizations anchors it.

 Using the strategy for hosting and managing the interface source code, as detailed above,

does not impose the use of a specific design pattern, language, or framework to build the front-end

tool. However, it favors having a web page rather than other types of applications. First, the

management interface runs simply by accessing the file address through a web browser. Thus, it

does not demand users to download and run the file somewhere, which could introduce new

concerns into the architecture. Second, a web page can be accessed by any device that supports a

web browser and an Ethereum wallet, entirely different from building smartphone apps or computer

installed programs, which are often platform-specific. As a result, a single solution fits a broader

range of users without compromising the system’s use cases.

4.2.5 Lock hardware

The Lock hardware component is an abstraction of the physical infrastructure required to operate

the door lock device. However, provide technical details about this piece is out of the scope of this

thesis, which is limited to outline how the component fits in the proposed architecture, and what it

must have to support the system’s use cases.

 Of course, a full hardware solution development would require discussions about security,

about alternative means to guarantee the system’s availability even without internet access or

power supply at the place, among other needs not considered in this work. However, in the interest

of the use cases, the discussion is surrounding two steps that the door lock must be able to complete:

(i) receive the open and lock command from the users; (ii) verify the person’s permission on the

blockchain.

43

 First, regarding the communication between the user and the lock device, this architecture

presumes that the interaction ensures that an access code can only be received from its owner. For

example, if they are exchanging an Ethereum account address, this communication must ensure

that the person sending the information is the actual account holder. To make it clear, assume that

Alice holds permission to open the lock, but Bob knows about it. There should be means in place

to avoid Bob from providing Alice’s permission at the door and successfully open it, and it must

be at that layer. Otherwise, the blockchain will find valid permission registered. In the work of

Zaparoli et al. (2019), introduced earlier in this thesis, they present an appealing message exchange

protocol between a smartphone and a device that could be adapted to suit this functionality. In

addition to that, for the user’s convenience, the lock hardware could have physical means to lock

and unlock the door from the inside without requiring to go through the blockchain to check

permissions.

 The system’s architecture imposes two other requirements on the lock hardware: (i) it must

be able to handle HTTP requests for the purpose of interacting with the Ethereum query gateway;

(ii) it must be fully operational without the need to send transactions to the blockchain, only query

data from it; (iii) ideally, it must ask the blockchain for a permission status every time someone

tries to lock or unlock the door from the outside. The word ideally is because, for implementing a

system robust against power and internet connection losses, it demands a workaround strategy on

that requirement, at least for exceptional operation environment conditions.

Note that the system’s architecture allows for locks to share a smart contract, being merely

a matter of pointing to the same address. Therefore, in places where two or more devices are needed

to operate under the same rules, no extra work is required.

44

CHAPTER 5

IMPLEMENTATION

Designing and developing for blockchain, as noticeable from the system’s architecture discussion,

involves many particular concerns not necessarily present when dealing with other types of

applications. The implementation of Ethereum smart contracts also includes many specificities that

can lead to different, unexpected, and undesired behaviors. Solidity offers multiple ways to code

to achieve a particular outcome, not differently from many general-purpose programming

languages. However, when dealing with Ethereum smart contracts, one must pay attention to

aspects like cost and privacy, for instance, surrounding the development.

 Therefore, this chapter presents the implementation process and relevant discussions about

it. It starts with section 5.1, which details the PoC architecture to be implemented. Section 5.2

brings the development tools used throughout the process. Then, section 5.3 details the

implementation for each iteration. Finally, section 5.4 shows the lock’s management interface.

5.1 PoC Architecture

The discussion on section 4.2 focused on the generalized architecture components is hugely

relevant to understand the available options to build the parts, how they might impact the system

purpose, how they fit with one another, among other aspects. Section 4.2 addresses one of the

research questions for this work about how the Ethereum blockchain can be leveraged to create a

smart door lock solution. However, to answer the remaining research questions, defining a PoC

lower-level architecture is required – see Figure 5.1.

45

Figure 5.1 – PoC Components

Ethereum test networks are designed to emulate the Ethereum network behavior, and they

are useful during the development and testing phases of smart contracts and decentralized

applications. Among the reasons for their use are: (i) Ethereum test networks are free to use. They

still charge the Ether associated with the transactions happening, but no money is required to

acquire them there. On the other hand, Ether costs money in the public Ethereum network.

Therefore, using test networks cut development costs; (ii) Ethereum test networks usually process

transactions faster than the Ethereum public network. Although they emulate the Ethereum

blockchain behavior, they use different mechanisms to process transactions, which might result in

shorter confirmation times. Therefore, using test networks accelerates development; (iii) Ethereum

test networks offload beta and development traffic from the Ethereum public network, which

improves its performance; (iv) public Ethereum test networks leave its records open to anyone –

transparency - like the main network does, allowing developers to inspect their smart contracts’

data flow behavior. Finally, Görli (2020) is one of the Ethereum public test networks available, and

it is used in this architecture to emulate the public Ethereum network present in the system’s

architecture – see section 4.2.1.

The Ethereum query gateway discussed in section 4.2.2 is implemented in this architecture

through the use of Infura (2020). As discussed before, using a single centralized API provider for

the system’s architecture is not ideal. However, it works great for the context of validating the

46

architecture and running the experiments - i.e., to build the PoC. The knowledge acquired using

only Infura applies to the Ethereum query gateway component as a whole. Therefore, it provides

the primary gateway functionality of bridging the management interface to the blockchain through

an API, which allows for the validation of the component in the system’s architecture.

As explained in section 4.2.3, the choice of the Ethereum wallet is left to the user’s

preference. Metamask (2020) is the choice of Ethereum wallet for the PoC because besides offering

all the standard features of a wallet, it still offers a browser extension that improves the

development experience.

For the lock’s management interface, a web page is used in accordance with the discussion

in section 4.2.4. The technology stack follows a standard web development stack combining

JavaScript, HTML, and CSS, plus the use of Web3.js (2020) to interact with the wallet, which fits

within the system’s architecture component. As explained before, the ideal solution for this part is

hosting the tool in a distributed file system. Note, however, that the interface’s functionalities have

the same behavior regardless of the hosting strategy. The files are the same, and the only change is

from where they are being served. Therefore, for the purpose of architecture validation and user

case testing of the PoC, the web page is served from a centralized host since it cuts development

time and improves debugging capabilities.

Finally, as stated before, the lock hardware implementation is out of the scope of this work.

However, since the query strategy is the same that the management interface tool will perform

through the Infura API - providing that the lock is capable of performing the HTTP calls as the

requirement presented in section 4.2.5 -, the component architecture is also validated.

5.2 Ethereum Development and Evaluation Tools

First is Remix (2020), a web-based integrated development environment (IDE) that enables

writing, testing, debugging, and deploying Ethereum smart contracts. From Remix, it is possible

to use Metamask to deploy and interact with the smart contract in various Ethereum networks –

e.g., the Görli test network. Also, it offers a built-in sandbox blockchain where transactions happen

instantly, perfect for early development stages and quick testing of smart contracts. Furthermore,

Remix enables automating tests by writing scripts to run against smart contracts.

47

Second is Etherscan (2020a, 2020b), an Ethereum block explorer, which can search and

show all data recorded in the blockchain about the blocks, transactions, and more. Etherscan

supports not only the main Ethereum network but also public test networks - e.g., the Görli test

network -, which is perfect to evaluate what information is made publicly available by the

blockchain.

The third tool is Postman (2020), an API development tool that facilitates testing HTTP

calls, among other functionalities. During the development phase, Postman is useful to simulate

the calls to the smart contract coming from the lock hardware or the lock’s management interface

- which pass through the Infura API - and investigate their behavior early in the process.

5.3 Use Cases Implementation

The development follows an incremental approach. It means that the use cases are gradually

implemented, tested, and evaluated against different criteria, e.g., the information publicly

available in the blockchain, access through Infura API, among others. If it meets the requirements

and functionalities proposed, the development continues. On the contrary, it allows for early

intervention, which potentially saves time and resources. This in-depth discussion is relevant to

show the different aspects surrounding design decisions for writing smart contracts in Ethereum.

5.3.1 Unlock and lock the door - Host

The most basic functionality that works as the backbone structure for the application is the Host

locking and unlocking the door – see UC1 in section 4.1. Therefore, it is a great place to start. The

smart contract of Figure 5.2 shows the implementation of this functionality. It is essential to

highlight some aspects of the smart contract:

• It is set to work with the latest full developed version of the Solidity language, v0.5;

• The address variable type refers to an Ethereum account public key;

• The internal keyword imposes that only the smart contract itself, or contracts derived from

it, can read and modify the host variable;

• The constructor is called only once in the smart contract life cycle, only when it is deployed;

48

• The msg.sender value refers to the address of the account that makes the call to the smart

contract. Therefore, the constructor sets as host the Ethereum address that deploys the smart

contract;

• The view modifier on the unlock function means that it does not make changes to state

variables, only read them. A call to this function, then, is free and does not require

processing from the blockchain – also known as a query;

• The unlock function is meant to be called by both the lock device and the management tool,

which then informs the address to be verified. Note that anyone can call it for any address

and check its unlock ability. Although it enables anyone to potentially find addresses that

can unlock the door, if the lock hardware follows the requirement detailed in section 4.2.5,

it should not be an issue there. Also, it is not an issue for the management tool since the

secret key would also be required to change anything in the contract.

Figure 5.2 – Smart Contract - Host unlock the door

Along with the smart contract, following a good programming practice, a test script to run

in Remix is also developed. It automates the contract tests to ensure that past implemented

functionalities still behave as expected, regardless of the current development, while saving the

time that would be spent by manually testing the contract every once in a while.

As explained earlier, Metamask can be used with Remix to deploy and interact with smart

contracts in many Ethereum networks, and Görli is one of them. The deployment of the contract

above happens to enable the evaluation of the public information available about it, and how it

behaves when called through the Infura API.

49

The smart contract is deployed in the Görli network with the address

0xbA1dC49D71883c8475Bb3eC16751D1683AB37FC5. Anyone can see the details about it by

using the Etherscan website to inspect the blockchain. Figure 5.3 shows the information available

about the contract, while Figure 5.4 brings what is available about the transaction that originated

it. At this point, no other interaction happened with the contract besides its creation.

Figure 5.3 – Contract’s publicly available data

First, it is worth highlighting that to have access to those pages shown, at this point, one

must know either the transaction hash that originated the contract, the contract address, or the

Host’s account address. At this stage, though, no one else besides the Host has reasons to hold that

knowledge, which would make the contract hard to find. On the other hand, by the time the contract

is completely written and in use, all those required information can be found or inferred by a variety

of means, since all stakeholders interact with it. In conclusion, all the evaluations through Etherscan

in this work assumes that any interested party can have access to it. Furthermore, remember that

the stakeholders must know their real identities to make the arrangements of a stay. Consequently,

the pseudo-anonymity provided by the Ethereum address is compromised. Even if the

implementation design were to separate the functionalities in different contracts by stakeholder,

eventually, they would require exchanging data between themselves, and it would be equally

recorded in the blockchain.

50

Going back to the data available, the most important information one can learn is the Host’s

address. In Ethereum, however, no one will be able to use it to interact with the smart contract since

the private key – secret key - is also required for that. For that reason, it represents no risk to the

application. At this point, that is all to inspect, once the only function available to call is unlock,

which is called as a query and, therefore, does not leave any records in the blockchain.

Figure 5.4 – Contract’s deploy transaction - Publicly available data

Finally, the last aspect of evaluating this contract is how it behaves when called from the

Infura API. Ideally, the calls to Infura would come from either the lock hardware or the

management tool. However, as discussed before, they both communicate with Infura in the same

way, through HTTP requests. To test and evaluate the architecture with those HTTP calls during

development, applying less effort than building the management interface along with the smart

51

contract would require, Postman is used. As a result, the management tool implementation can be

postponed and safely start after the smart contract is fully developed.

Figure 5.5 shows a request from Postman to the Infura API endpoint. It asks Infura to call

the unlock function of the smart contract deployed on the Görli network, using the Host address as

a parameter. The image also shows the response from Infura, where the result field means that the

unlock function returned true – the address can unlock the door. It is worth highlighting the

following:

• The parameter from corresponds to which account is making the call. In this case, a random

account address is used since anyone can call the function;

• The parameter to is which address to call. I.e., the smart contract address at the Görli

network;

• The parameter data is encoded with the smart contract function to be called and the

corresponding parameters – if any. The encoded message can be obtained in Remix. By

visually inspecting the call, though, it is possible to identify the Host address – that is the

function expected parameter.

Figure 5.5 – Infura API request and response to the contract unlock function

52

To continue the development is extremely important to bear in mind that to make a query

call to the smart contract does not require signing the message with the account’s secret key. In

other words, anyone can use that address to query the function. That is not the case for transactions,

however. No one can submit a transaction without signing it with the account’s private key. Of

course, this function could be written to require a transaction call, but that would bring two issues

to the architecture. First, transactions are paid, meaning that the lock hardware and the management

interface would have to pay every time that information was needed, which appears to be

unreasonable. Second, the network must process those transactions, which can take a while. It does

not seem reasonable to impose this wait at someone that is at the door waiting to get in.

In conclusion, it is better to work with the query constraint in mind than paying and waiting

for transactions.

5.3.2 Add support for Guests

Once Managers are fundamentally a special case of the Host, more precisely a constrained one, it

makes sense to implement first all the use cases considering only the existence of Host and Guests.

For that reason, the next increment builds the necessary functionalities to begin supporting Guests.

More specifically, they correspond to the use cases: (i) UC2 – Register Guest; (ii) UC3 – Remove

Guest; (iii) UC4 - Retrieve Guests; (iv) UC11 – Verify Permission; (v) UC1 – Unlock and lock the

door.

Similar to section 5.3.1, following are some significant highlights about the smart contract

implementation partially shown by Figure 5.6:

• The smart contract requires the Ethereum account address of anyone to be registered as a

Guest. It demands, therefore, that Host and Guest exchange that information outside the

application, e.g., through Airbnb after booking the place;

• The functions registerGuest() and removeGuest() alter the data in the smart contract, which

means they require a transaction to be called. The modifier onlyOwner included at the

functions’ declaration enforces that, in order to call them, one must be the registered owner

of the smart contract. If anyone else tries to use them, none of the code insides is executed.

Furthermore, the Guest is only added, or removed, after the blockchain process the

transaction, as explained before;

53

• In Solidity, dates are represented in the Unix Epoch time (Wikipedia, 2020), which is the

number of seconds that have elapsed since 00:00:00 UTC of 1 January 1970. For instance,

the Unix Epoch time for 09:30:00 GMT of 30 January 2020 is 1580376600;

• In solidity, the most efficient data type to record relationships between entities is a mapping,

which works similarly as a key-value dictionary. However, unlike dictionaries of popular

object-oriented languages, Solidity’s mapping does not allow iteration through its keys. In

other words, one must know the key to access its corresponding value. Therefore, a second

data type, an array, is demanded to allow for Guests retrieval, i.e., keep track of the mapping

keys;

• The function retrieveGuests() returns the addresses of all Guests registered in the mapping.

Once smart contract functions do not return structs – the data structure used to record

Guests’ permission dates -, the management interface must call guestPermissionDetails()

for each Guest address retrieved to meet the UC4 scenario correctly. Furthermore,

retrieveGuests() includes past Guests with expired permissions. Again, to meet the UC4

scenario, the management interface must use the permission details to hide past Guests from

the user.

The UC4 specifies in the second step of the main success scenario that the system verifies

that the retrieve request comes from either the Host or a Manager and, if that is not the case, the

system should ignore the request, i.e., not respond. However, as shown in the previous section

5.3.1, query calls to smart contract functions - as it is the case for retireveGuests() – do not require

signing the message with the accounts' private key. In other terms, anyone could make a query call

defining which address it should be made from. Nevertheless, the transactions to register Guests

are open in the blockchain with the permission details –more details are following -, and any

interested party could derive a Guest list from the smart contract calls. In any case, both

retireveGuests() and guestPermissionDetails() functions have the modifier that constraints who

can call them for two reasons: (i) to avoid casual users of retrieving the Guest list and acquiring

other Guests’ permission details through the management interface – which is assumed to be honest

and do not allow calls from accounts not owned by the person; (ii) to make it more complex to

acquire that information. As discussed before regarding the host address, the fact that Guest

addresses and their permission details are public, it does not represent a significant threat due to

the private key required to use those accounts to interact with the system.

54

Figure 5.6 – Smart Contract Snippet – some Guests related functionalities

The following experiment is executed - at the given order - to illustrate the query call issue

better:

• Using Remix and Metamask, the smart contract is deployed in the Görli network at the

address 0xd8875Bd3A0dE5aB0f2aF880Aa796b1f2f93Fc8DA by the account

0xFd2a96AEA8E2C886915a031b80FEb3f099b719eb;

55

• The Host account registers the address

0x3d1b95E8Dff394bfD428ae1aCA99C3681B2d5263 as Guest, with start date as

1580376600 and expiry date as 2590376699;

• Using Postman to call the Infura API, a request is made to the function retrieveGuests()

using a random address – which simulates the honest call made from the management

interface. The request and the response can be found in Figure 5.7, which resulted in a failed

call as expected;

• The last step was repeated but using the Host address. The request and the response can be

found in Figure 5.8, which resulted in a successful call containing the registered Guest’s

address;

Figure 5.7 – Infura API request and response to retrieveGuests function – call from a

random account

56

Figure 5.8 – Infura API request and response to retrieveGuests function – call from Host

account

Next, the Host account removes the Guest previously added. The reason is to investigate

the publicly available information related to registering and removing a Guest. Once again,

Etherscan is used to inspect the smart contract address, which displays all the transactions in

chronological order. Figure 5.9 shows the transaction details of registering a Guest. Note that the

input data field has four hexadecimal numbers encoded between zeros, and it contains all the

permission information as following:

• 0x65d63832: This number encodes the function to call - in this case, registerGuest. Each

function in the smart contract has its identifier, that can be easily obtained from different

sources. Remix, for instance, is one of them;

• 3d1b95e8dff394bfd428ae1aca99c3681b2d5263: The Guest address;

• 5e32a218: Hexadecimal representation of number 1580376600;

• 9a6602fb: Hexadecimal representation of number 2590376699.

57

Figure 5.9 – Publicly available transaction details to register a Guest

The transaction details of removing a Guest are in Figure 5.10. Observe that the input data

field reveals the removeGuest function call, encoded as 0x5256bfe7, for the Guest

3d1b95e8dff394bfd428ae1aca99c3681b2d5263, analogously to what happened for registerGuest.

In conclusion, all data sent to the smart contract is open to the public. Although not ideal,

the knowledge of the Host, Guests, and eventually Managers accounts does not allow unauthorized

manipulations as, for example, register and remove Guests or unlocking the door – assuming that

the lock hardware follows the architecture guidelines. The knowledge obtained from the

transactions also does not enable people to monitor or infer if someone is currently at the place or

not. The query calls to verify permissions from the lock hardware are not recorded in the blockchain

and, even if someone knows that there is no Guest registered at a given time, Host and Managers

are still capable of unlocking the door.

58

Figure 5.10 – Publicly available transaction details to remove a Guest

5.3.3 Exclusive permission feature

The next increment builds the exclusive permission feature. More specifically, it covers the use

cases that follow: (i) UC8 – Turn on exclusive permission; (ii) UC9 – Turn off exclusive

permission; (iii) UC10 – Check exclusive permission. However, this feature also has an impact on

many other use cases, as described by their main success scenarios and alternative paths. Therefore,

reviewing the following use cases, partially implemented before, is necessary: (i) UC1 – Unlock

and lock the door; (ii) UC3 – Remove Guest; (iii) UC11 – Verify Permission.

As the implementation leverages the same structure and elements used for coding the

previous versions, it is not necessary to discuss the functions in depth. However, it is worth

mentioning a new approach used to enforce functions’ preconditions. Figure 5.6 shows the

removeGuest function starting with an if condition to check if the Guest is registered. Otherwise, it

59

does not make sense to remove it. However, in those cases where the Guest was not registered, the

Host would still be able to make a successful call to the function, useless but successful. The danger

is that a typo could give the Host the wrong impression that the Guest's permission was removed

when, in fact, it was still there. This behavior was changed using the require function, which forces

a transaction to fail if its condition evaluates to false. Going back to the Guest remove example, if

the Host tries to remove an inexistent Guest, the transaction will fail, and they will know that

something went wrong. The Metamask wallet can inform users that the transaction at hand is likely

going to fail even before they approve and send it. As an example, Figure 5.11 displays the warning

gave by Metamask when the Host tries to call the removeGuest function to remove an inexistent

address. Assumes that the Host ignores this warning, sends the transaction, and it fails. Using

Etherscan to inspect the transaction reveals the custom message written in the require function that

explains the error, which in this case is “The Guest is not registered” – see Figure 5.12.

Figure 5.11 – Metamask warning before sending a transaction that does not meet an expected

precondition

Figure 5.13 presents three functions using this strategy to enforce pre-conditions - e.g.,

turnExclusiveFeatureOn() will reject a transaction if the feature is already on.

One more relevant characteristic to emphasize is that details about the exclusive permission

feature – the address that holds the permission and when it expires – are available in the blockchain.

As demonstrated before, although the functions responsible for retrieving the information only

answer calls from the host address, advanced users can emulate that call, e.g., using Infura API, or

find the information using block explorers to find and view transactions details. Despite that, this

knowledge does not enable anyone to illegally control the smart contract and, therefore, the smart

lock.

60

Figure 5.12 – Host removes inexistent Guest - Failed transaction details

5.3.4 Add support for Managers

The next increment includes support for Managers, which represent a Host with some functionality

constraints. Therefore, it implements the following use cases: (i) UC5 – Register Manager; (ii)

UC6 – Remove Manager; (iii) UC7 – Retrieve Managers. In addition to that, all the use cases that

contain the Manager as one of the actors must be revisited. In other words, all the use cases besides

UC11 – Verify permission.

61

Figure 5.13 – Smart contract functions using require() to enforce preconditions

 The implementation of Managers follows precisely the same data structure strategy used

for Guests, which is a combination of a mapping variable with an array of Manager addresses. As

a consequence of that, the operations of registering, removing, and retrieving Managers are highly

similar to those of Guests, which implicates that all the discussions in section 5.3.2 - Add support

for Guests – related to those actions are equally applicable for Managers. For instance, inspecting

the blockchain record of transactions reveals Manager addresses registered as it does for Guests.

Also, it is possible to successfully call the function to retrieve the list of Managers without the need

to sign the request, as shown for Guests previously.

Besides the introduction of the data structure and of those operations to control Managers,

use cases already implemented must accommodate the newly introduced actor. Note from the use

cases, however, that when they allow both Manager and Host to act, they expect an identical

behavior from both actors – there is a single exception to that, UC8 Turn on exclusive permission.

It means that most of the changes necessary to support Managers are simply changing the

functions’ custom access modifier from onlyOwner to the new eitherOwnerOrManager - see

62

Figure 5.14. Regarding UC8, where the Manager has a limitation in functionality compared to the

Host, the modification besides changing the modifier was checking for whom the Manager tries to

turn the feature on – compare Figure 5.15 with Figure 5.13 to see the difference. As a result of

those minimal changes, the discussion presented in previous sections of this chapter remain valid

and can be applied to Managers.

Figure 5.14 – onlyOwner and eitherOwnerOrManager access modifiers implementation

Figure 5.15 – turnExclusiveFeatureOn function implementation

5.3.5 Add events

At this stage, the smart contract implements all the use cases proposed. However, it works as a

single way of communication. For instance, when the management tool wants to interact with the

smart contract to retrieve information or send transactions, it reaches the smart contract with the

63

desired action. The smart contract, on the other hand, does not have the means to reach external

components and update them on some changes that have happened. For example, say that Bob, a

Guest holding the exclusive permission feature, decides to turn off its exclusive access. This

modification is relevant to Alice, the Host, but unless she checks the exclusive feature status with

the smart contract every other time, she would not know about it. A second illustration for this

behavior has Alice, the Host, registering a new Guest through the management interface. She

approves the transaction in her wallet, and a few moments later, she receives the confirmation of

the transaction’s successful execution. For Alice to check if the Guest was registered correctly, she

would need to manually ask for it, which works but is not user-friendly. If a change in the Guests’

list could be notified to the management tool, it could automatically fetch the updated information.

Fortunately, Ethereum offers smart contract events to address this concern.

 Ethereum events work as a publish-subscribe design pattern. Custom events are declared

inside the smart contract and are published – emitted - when some desired condition is met – e.g.,

when a function executes. External clients can subscribe to listen to particular events of specific

contracts. As a consequence, any external stakeholder can be notified by the smart contract when

something of their interest happens. Events can include tailored data, but it is crucial to understand

that, similarly to what happens with transactions, they are kept open in the blockchain to anyone

to see. In other words, there is not a mechanism to protect who can subscribe to a particular event.

Another significant characteristic of events is that only transactions can emit them since they have

a cost. Free query calls to functions that retrieve information cannot use events - e.g., get the

Guests’ list.

 In summary, while events are convenient to enhance the user experience and the

applications using Ethereum smart contracts, it brings limitations in terms of privacy and costs. For

those reasons, the system’s smart contract implements only three events, and none of them

publishes additional information. Those events are:

• GuestChange: Emitted every time a Guest is registered or removed;

• ManagerChange: Emitted every time a Manager is registered or removed;

• ExclusiveFeatureChange: Emitted every time the exclusive permission feature is either

turned on or off.

Going back to the lock’s management interface example, now it can subscribe to those

events and retrieve the related data automatically when they happen, they do not require any action

64

from the user. It provides the desired functionality without exposing too much information about

the smart lock management.

Using Etherscan, it is possible to see the events emitted by a particular transaction. Figure

5.16 shows the event log for the register Guest transaction

0xaff6204d9c13e06b3f23fe2d586a992f368b2d8143b66c0f8ee57dc274f42cb8. As usual, the topic

is encoded but corresponds to the GuestChange event. Note that this topic matches the one shown

by the event log in Figure 5.17, which corresponds to the remove Guest transaction

0xa2eb4ff8b541e6b89a10dd083847e4de11c6cfcab0ac2d13050bb3e5bac93fb5. Also, observe that

both events have the data field empty.

Finally, the smart contract implementation is complete and Figure 5.18 shows the contract’s

UML class diagram representation.

Figure 5.16 – Event log for a register guest transaction

65

Figure 5.17 – Event log for a remove guest transaction

Figure 5.18 – Smart contract’s UML class diagram

66

5.4 Lock’s Management Interface

As discussed in section 5.1, this interface is built using JavaScript, HTML, CSS, and Web3.js

(2020). This tool allows Host, Managers, and Guests to execute all the actions as described by each

of the eleven use cases. For instance, Figure 5.19 shows the interface to register a Guest. Note in

the figure that the title brings a clock icon, which communicates to the user that the action – a

transaction to the blockchain – might take some time to complete.

Figure 5.19 – Management Interface: Register Guest

 The PoC version of the management interface shows all the functions regardless of the

Actor type – Host, Managers, and Guests – even though only the Host can use all of them. The

main reason for implementing the tool like that is to be able to test all the use cases properly, which

includes Actors trying to execute actions that they are not allowed to do and that the system should

67

handle at the smart contract level, as discussed before. Figure 5.20 illustrates a scenario where the

Guest tries to retrieve the list of Managers, which they are not allowed to access.

Figure 5.20 – Management Interface: Guest retrieve Managers list

 The management interface includes two functionalities not specified by the use cases

because they are related to the use of Ethereum smart contracts. First, the interface provides an

option to deploy a new smart contract in the blockchain. Second, it enables users to inform the

address of an existing contract. It is only after completion of one of those two options that the

interface is set for use. Observe that users must keep their smart contract addresses saved

somewhere once the management interface does not store any data. In addition to that, Hosts must

share that address with their Managers and Guests to enable then to interact with their smart

contract.

68

CHAPTER 6

EXPERIMENTS AND EVALUATIONS

Transactions on Ethereum are not free and, therefore, the system requires Host, Managers, and

Guests, to spend money to manage the lock. Hence, it is critical to evaluate the system for operating

costs. In addition to that, all the use cases must be systematically assessed to ensure that the system

displays behaviors that match the description of the scenarios. Moreover, there is the necessity to

measure the latency times encountered to manage the lock that is imposed by the Ethereum

network. As a result, it is then possible to understand the impact that the blockchain has on the

overall system, and what kind of limitation it imposes, if any. This chapter first presents the

methodology developed for each experiment in section 6.1, followed by the results and their

corresponding discussions in section 6.2.

6.1 Methodology

Initially, it is fundamental to observe that all the evaluations presented in this section are connected

to the eleven use cases developed earlier in chapter four. Sets of those test cases were selected to

validate the system functionalities, measure its performance, as well as evaluate its running costs.

 This section is organized as follows: 6.1.1 is the test case details; 6.1.2 presents the

methodology for three experiments designed to evaluate performance; and 6.1.3 details the

methodology for three experiments designed to evaluate the cost. Table 6.1 shows how those six

experiments are related to the research objectives presented in chapter two.

Table 6.1 – Relationship between the experiments and the research objectives from chapter two

Research Objective Experiments

2.a – Verify functionalities 6.1.2.1

2.b – Evaluate delay 6.1.2.1, 6.1.2.2, and 6.1.2.3

2.c – Evaluate costs 6.1.3.1, 6.1.3.2, and 6.1.3.3

69

6.1.1 Test cases

Since all use cases already show systematically detailed descriptions for their functionalities, they

can be treated as test cases. Every use case has a main success scenario and some alternative paths,

where each of them represents a test case for that functionality. Test cases are referred to by the

use case number plus either the letters “MSS,” for the main success scenario, or the letters “AP”

followed by a number, for the individual alternative path. For instance, the test case UC1.AP3

represents the unlock and lock the door use case executed through the alternative path 3, and

UC1.MSS refers to its main success scenario. Moreover, multiple executions of a single test case

might happen in some evaluations– e.g., a Host registering several Guests. The test case sets

defined for each experiment will be described in the according section.

 Besides the test cases extracted from the use cases, the system requires one further test. In

order to set up the system, the smart contract must be deployed in the Ethereum blockchain, which

adds costs and performance considerations to the system. This test case is called “Deploy.”

 Although the use cases are described systematically in terms of functionality, they lack

relevant information about their corresponding implementation. For instance, the test cases must

carefully describe where they initiate the action, what are the components and Actors involved,

which smart contract functions are called, among others. To address those matters, figures 6.1 to

6.21 are UML sequence diagrams that illustrates the use cases flow.

The sequence diagrams make some assumptions:

• The Actor is logged in to the Metamask wallet;

• The smart contract is deployed in the blockchain – except for the Deploy use case

of Figure 6.21;

• The lock’s interface management tool is set with both the smart contract address

and the Actor’s Ethereum account address;

• The Actor always sends the transaction to the smart contract, even in those cases

where they get a warning saying that a transaction might fail;

• Metamask obtains the transaction confirmation from the blockchain. How this

process happens internally in Metamask, however, is not relevant to the diagrams.

70

Once the implementation of the lock’s hardware is out of the scope of this work, the test

case for UC1 emulates the hardware call through the lock’s management interface – as explained

in section 5.1.

Figure 6.1 – UC1 sequence diagram – Unlock and lock the door

Figure 6.2 – UC2.MSS, AP2 sequence diagram – Register Guest

Figure 6.3 – UC2.AP1 sequence diagram – Register Guest

71

Figure 6.4 – UC3.MSS, AP2 sequence diagram – Remove Guest

Figure 6.5 – UC3.AP1, AP3, AP4 sequence diagram – Remove Guest

Figure 6.6 – UC4.MSS, AP2 sequence diagram – Retrieve Guests

72

Figure 6.7 – UC4.AP1 sequence diagram – Retrieve Guests

Figure 6.8 – UC5.MSS sequence diagram – Register Manager

Figure 6.9 – UC5.AP1, AP2 sequence diagram – Register Manager

73

Figure 6.10 – UC6.MSS, AP2 sequence diagram – Remove Manager

Figure 6.11 – UC6.AP1, AP3, AP4 sequence diagram – Remove Manager

Figure 6.12 – UC7.MSS, AP2 sequence diagram – Retrieve Managers

74

Figure 6.13 – UC7.AP1 sequence diagram – Retrieve Managers

Figure 6.14 – UC8.MSS, AP1 sequence diagram – Turn on exclusive permission

Figure 6.15 – UC8.AP2, AP3, AP4, AP5 sequence diagram – Turn on exclusive permission

75

Figure 6.16 – UC9.MSS sequence diagram – Turn off exclusive permission

Figure 6.17 – UC9.AP1, AP2 sequence diagram – Turn off exclusive permission

Figure 6.18 – UC10.MSS, AP2 sequence diagram – Check exclusive permission

76

Figure 6.19 – UC10.AP1 sequence diagram – Check exclusive permission

Figure 6.20 – UC11 sequence diagram – Verify permission

Figure 6.21 – Deploy sequence diagram

77

6.1.2 Evaluating performance

Although the Ethereum test network Görli is an excellent choice to emulate the Ethereum

blockchain functional behavior, it is not suitable to evaluate performance metrics and extrapolate

the findings to the Ethereum main network – also referred to as mainnet. For this work,

performance is measured by how long the blockchain takes to process a transaction and to reply to

a query call. This time is referred to as transaction latency, and it might vary according to a diverse

set of factors, e.g., by the number of transactions at a given time. The Gas price offered by users

also has an impact on that considering that, the higher the value, the more attractive it is to miners

to process the transaction and collect the fee. This may lead to lower latency times in comparison

to other transactions since the Ethereum network does not impose an order that the transactions

must be processed, i.e., the miners are free to choose among them. Therefore, there is not a direct

relationship between the performance of Ethereum test networks and the mainnet. In short, in order

to properly evaluate the system’s performance, the smart contract must be deployed in the

production environment, the main Ethereum network.

In total, this thesis proposes three experiments to measure performance: (i) a base case; (ii)

a network dynamics case; (iii) a Gas price case. The three of them enable a discussion about what

the use cases latency are, how they can be affected by the network dynamics, and how they can be

manipulated by the Gas price setting. The next sections detail each one of these experiments.

6.1.2.1 The base case experiment

This experiment follows the methodology presented below:

1. Define a methodical set of test cases chronologically arranged – see Table 6.2;

2. Define a fixed set of Ethereum accounts and the actors they correspond to – see Table

6.3;

3. Define a fixed Gas price to be offered by every transaction;

4. Execute the test cases in the mainnet, using a single Metamask wallet account and the

same browser;

4.1 Record the transaction number – if applicable;

4.2 Record the smart contract address;

78

4.3 Record if the behavior matches the expectation;

4.4 For transactions:

• Record both the submission and confirmation times obtained from the

Metamask wallet log;

4.5 For queries – calls to the smart contract’s view functions:

• Record the submission time obtained from the management interface tool;

• Record the response time obtained from the management interface tool;

4.6 Calculate and record the latency as the response time minus the submission time.

To address the third step of the methodology, the definition of the Gas price, Ethereum Gas

Station website (2020) is used. This website monitors Gas prices in the network and provides real-

time recommendations of prices based on the expected confirmation time for a transaction. It offers

three price recommendations: (i) the ”Safe Low” price represents an expected confirmation time

up to 30 minutes; (ii) the “Standard” price, up to 5 minutes; (iii) the “Fast” price, up to 2 minutes.

Those prices regularly change according to the network usage. For this experiment, the “Fast”

recommended price when starting the experiment execution must be taken as the fixed value for

step three. In other words, immediately before starting the execution of this experiment, the “Fast”

price recommended by the Ethereum Gas Station at that moment must be used by all the

transactions defined by step two. Even if the recommended price changes during the experiment,

the Gas price offered should not change.

The Actor “Guest Past” represents a past Guest of the Host, meaning that the person has

had permission at some point to open the lock, but now it has expired. In practice, to simulate that

scenario, that Guest is registered with an expired permission date - start and expiry date set

anywhere in the past. Similarly, the “Guest Future” represents a Guest who will stay at the place at

some point. Therefore, it is a Guest that is registered with both start and expiry permission dates

set anywhere in the future.

Table 6.2 – Set of tests for the performance base case experiment

ID Short Description Use Case Call Arguments Caller

T1 Smart contract deploy Deploy

Host

T2 Host can open the lock UC1.MSS Host Host

T3 Host adds new Manager UC5.MSS Manager 1 Host

T4 Manager can open the lock UC1.MSS Manager 1 Manager 1

79

Table 6.2 Continue

ID Short Description Use Case Call Arguments Caller

T5 Host tries to add existing Manager UC5.AP2 Manager 1 Host

T6 Manager tries to add a new Manager UC5.AP1 Manager 2 Manager 1

T7 Unknown tries to add new Manager UC5.AP1 Manager 2 Unknown

T8 Host adds new Guest UC2.MSS Guest 1, 1583049600,

1591027200

Host

T9 Manager adds new Guest UC2.MSS Guest Future,

1591027200,

1593619200

Manager 1

T10 Guest can open the lock UC1.AP3 Guest 1 Guest 1

T11 Guest verifies its permission details UC11.MSS

Guest 1

T12 Future Guest tries to open the lock UC1.AP4 Guest Future Guest

Future

T13 Guest Future verifies its permission

details

UC11.MSS

Guest

Future

T14 Unknown verifies its permission

details

UC11.AP3

Unknown

T15 Guest tries to add a new Manager UC5.AP1 Manager 2 Guest 1

T16 Guest tries to add Guest UC2.AP1 Guest 1, 1583049600,

1592027220

Guest 1

T17 Unknown tries to add Guest UC2.AP1 Guest 1, 1583049600,

1592027220

Unknown

T18 Host adds existing Guest UC2.AP2 Guest 1, 1583049600,

1593027240

Host

T19 Host adds new Manager UC5.MSS Manager 2 Host

T20 Manager adds new Guest UC2.MSS Guest Past,

1580554800,

1581554820

Manager 2

T21 Past Guest tries to open the lock UC1.AP5 Guest Past Guest Past

T22 Host retrieves Guests UC4.MSS

Host

T23 Manager retrieves Guests UC4.MSS

Manager 2

T24 Guest tries to retrieve Guests UC4.AP1

Guest 1

T25 Unknown tries to retrieve Guests UC4.AP1

Unknown

T26 Host retrieves Managers UC7.MSS

Host

T27 Manager tries to retrieve Managers UC7.AP1

Manager 1

T28 Guest tries to retrieve Managers UC7.AP1

Guest

Future

T29 Unknown tries to retrieve Managers UC7.AP1

Unknown

T30 Host turns exclusive on to self UC8.MSS Host, 1591027200 Host

T31 Manager checks exclusive details UC10.MSS

Manager 1

T32 Host exclusive ca

n open the lock

UC1.AP1 Host Host

80

Table 6.2 Continue

ID Short Description Use Case Call Arguments Caller

T33 Manager tries to open the lock when

exclusive is on to other

UC1.AP2 Manager 1 Manager 1

T34 Host exclusive turns it off UC9.MSS

Host

T35 Host checks exclusive details when

off

UC10.AP2

Host

T36 Manager tries to turn exclusive on to

self

UC8.AP2 Manager 1,

1591027200

Manager 1

T37 Host turns exclusive on to Manager UC8.AP2 Manager 1,

1591027200

Host

T38 Host checks exclusive details UC10.MSS

Host

T39 Guest tries to check exclusive

details

UC10.AP1

Guest 1

T40 Unknown tries to check exclusive

details

UC10.AP1

Unknown

T41 Manager exclusive can open the

lock

UC1.AP1 Manager 1 Manager 1

T42 Host tries to remove Manager that

holds exclusive permission

UC6.AP3 Manager 1 Host

T43 Host adds new Manager while

exclusive is on

UC5.MSS Manager 3 Host

T44 Host removes Manager while

exclusive is on to another Manager

UC6.AP2 Manager 3 Host

T45 Guest verifies its permission details

when exclusive is on to other

UC11.AP2

Guest 1

T46 Host tries to open the lock when

exclusive is on to other

UC1.AP2 Host Host

T47 Guest tries to open the lock when

exclusive is on to other

UC1.AP2 Guest 1 Guest 1

T48 Host tries to turn exclusive off when

on to other

UC9.AP2

Host

T49 Manager exclusive turns it off UC9.MSS

Manager 1

T50 Host tries to turn exclusive off when

off

UC9.AP1

Host

T51 Guest tries to turn exclusive on to

self

UC8.AP3 Guest 1, 1591027200 Guest 1

T52 Unknown tries to turn exclusive on

to Guest

UC8.AP3 Guest 1, 1591027200 Unknown

T53 Manager turns exclusive on to Guest UC8.AP1 Guest 1, 1591027200 Manager 1

T54 Host tries to remove Guest that

holds exclusive permission

UC3.AP3 Guest 1 Host

T55 Host removes Guest while exclusive

is on to another Guest

UC3.AP2 Guest Past Host

T56 Guest exclusive can open the lock UC1.AP1 Guest 1 Guest 1

81

Table 6.2 Continue

ID Short Description Use Case Call Arguments Caller

T57 Host tries to open the lock when

exclusive is on to other

UC1.AP2 Host Host

T58 Host tries to turn exclusive on to

Guest when already on

UC8.AP4 Guest 1, 1591037220 Host

T59 Guest exclusive verifies its

permission details

UC11.AP1

Guest 1

T60 Guest exclusive turns it off UC9.MSS

Guest 1

T61 Host tries to turn exclusive on to

Future Guest

UC8.AP5 Guest Future,

1591037220

Host

T62 Host tries to turn exclusive on to

Unknown

UC8.AP5 Unknown,

1591037220

Host

T63 Guest tries to remove Guest UC3.AP1 Guest Future Guest 1

T64 Unknown tries to remove Guest UC3.AP1 Guest Future Unknown

T65 Manager removes Guest UC3.MSS Guest Future Manager 2

T66 Host tries to remove a not existing

Guest

UC3.AP4 Unknown Host

T67 Guest tries to remove Manager UC6.AP1 Manager 2 Guest 1

T68 Host removes Guest UC3.MSS Guest 1 Host

T69 Host retrieves Guests when none is

registered

UC4.AP2

Host

T70 Manager tries to remove Manager UC6.AP1 Manager 2 Manager 1

T71 Unknown tries to remove Manager UC6.AP1 Manager 1 Unknown

T72 Host tries to remove a not existing

Manager

UC6.AP4 Unknown Host

T73 Host removes Manager UC6.MSS Manager 1 Host

T74 Host removes Manager UC6.MSS Manager 2 Host

T75 Host retrieves Managers when none

is registered

UC7.AP2

Host

Table 6.3 – Ethereum accounts for the performance base case experiment

Actor Account address

Host 0xcA18f8947783a38A61a710752673B3f5d0159F6F

Manager 1 0x470b57384Be9C15C9416958D8D35027a0b2a9f30

Manager 2 0x71330E718D52b82506c14A18bE625C585F194b01

Guest 1 0xc2596913A7283C727DF156f8F3a359c68559bBb2

Guest Past 0xDb0Dd99ffd184DcC1aD7C908a485E89A3a054935

Guest Future 0x59494603B8B16EaB741e9730cf612BF89cC2bC6D

Unknown 0x3d3bEcd44835ded70fB3820D3F9AA52aa3b308b3

82

6.1.2.2 The network dynamics experiment

Performance experiment two is set to evaluate how different Ethereum network conditions can

impact the latency time. It is crucial to note that the proposed methodology assumes that a different

day of the week and time of the day manifest distinct network dynamics. Ideally, those transactions

happening on a later day should occur precisely at the same time as the previous day. However,

since the transaction confirmation time varies unpredictably, and the test cases are sequential, the

methodology sets only a start time. Then, the subsequent tests are continuously executed as early

as the previous transactions are confirmed. The detailed methodology is:

1. Define a methodical and chronologically arranged subset of transactions from the base

case experiment – see Table 6.4, which uses the same Ethereum accounts from Table

6.3;

2. Use the same Gas price offered in the base case experiment;

3. Execute the set of test cases:

▪ Starting at nine AM on a Thursday;

▪ Starting at six PM on the same Thursday;

▪ Starting at nine AM on the following Sunday;

▪ Starting at six PM on the same Sunday;

4. Execute the test cases in the mainnet, using the same Metamask wallet account and the

same browser of the base case experiment;

4.1 Execute the following test case as soon as the previous one is confirmed by the

network;

4.2 Record the transaction number;

4.3 Record the smart contract address;

4.4 Record both the submission and confirmation times obtained from the Metamask

wallet log;

Table 6.4 – Set of tests for the network dynamics experiment

ID Short Description Use Case Call Arguments Caller

T1 Smart contract deploy Deploy

Host

T3 Host adds new Manager UC5.MSS Manager 1 Host

T8 Host adds new Guest UC2.MSS Guest 1, 1583049600,

1591027200

Host

83

Table 6.4 Continue

ID Short Description Use Case Call Arguments Caller

T9 Manager adds new Guest UC2.MSS Guest Future,

1591027200,

1593619200

Manager 1

T19 Host adds new Manager UC5.MSS Manager 2 Host

T30 Host turns exclusive on to self UC8.MSS Host, 1591027200 Host

T34 Host exclusive turns it off UC9.MSS Host

T37 Host turns exclusive on to

Manager

UC8.AP2 Manager 1, 1591027200 Host

T49 Manager exclusive turns it off UC9.MSS

Manager 1

T53 Manager turns exclusive on to

Guest

UC8.AP1 Guest 1, 1591027200 Manager 1

T60 Guest exclusive turns it off UC9.MSS

Guest 1

T65 Manager removes Guest UC3.MSS Guest Future Manager 2

T68 Host removes Guest UC3.MSS Guest 1 Host

T73 Host removes Manager UC6.MSS Manager 1 Host

T74 Host removes Manager UC6.MSS Manager 2 Host

6.1.2.3 The Gas price experiment

Performance experiment three is set to investigate the impact of Gas price on the transaction

confirmation time, where three distinct values are offered. Due to the networking dynamics,

ideally, transactions having different Gas prices must be submitted simultaneously. It is important

to highlight that Ethereum does not process multiple transactions from a single account in parallel.

The blockchain follows the order that they were issued, which means that only after the first

transaction sent is confirmed, the second is taken, and so on. Therefore, three different accounts

are needed to examine the desired Gas price influence.

Having that said, a custom version of the management interface was developed to reduce

the time necessary to submit those transactions. Essentially, this changed interface enables the

creation and use of three contracts, each of which offers a different Gas price for its transactions.

The value is selected accordingly to the account currently in use in Metamask. However, even with

those changes, it is not possible to send all three transactions simultaneously. It is still required to

manually change between accounts in Metamask and approve each transaction manually.

Nevertheless, they are executed shortly after one another under the assumption that a few seconds

is not enough to have a significant change in the network dynamics that could affect the experiment.

84

 The detailed methodology is:

1. Define a methodical set of test cases chronologically arranged – see Table 6.5;

2. Define a fixed set of Ethereum accounts and the actors they correspond to – see Table

6.6;

3. Define three different Gas prices;

4. Execute the test cases in the mainnet, using the same Metamask wallet account and the

same browser of the base case experiment;

4.1 For each test case, select the appropriate account in Metamask and execute the test

case with the corresponding Gas price offer – start from the lowest Gas price, then

do the medium, and finally, do the highest price;

4.2 Execute the next test case only after the network confirms all three previous

transactions;

4.3 Record the smart contract address;

4.4 Record the transactions number;

4.5 Record both the submission and confirmation times obtained from the Metamask

wallet log.

Table 6.5 shows three possible callers for the first test case, but each Host must execute it

exactly once. The following test cases refer to the “Respective Host” generally meaning the Actor

that deployed the corresponding smart contract. For instance, GT3 is executed three times, once

from each Host – Low, Medium, and High – where each of them interacts with the smart contract

they deployed in GT1 using their address as the call argument.

To address the third step of the methodology, the definition of Gas prices, the values 3, 6,

and 12 Gwei (12x10-9 ETH) are used. The reason for that choice is to have a fixed multiplier factor

difference between the prices to investigate the resulting impact they have in the latency.

Table 6.5 – Set of tests for the Gas price experiment

ID Short Description Use Case Call Arguments Caller

GT1 Smart contract deploy Deploy

Host Low

Host Medium

Host High

GT2 Host adds new Manager UC5.MSS Manager PE3 Respective Host

GT3 Host adds new Guest UC2.MSS Guest PE3, 1583049600,

1591027200

Respective Host

85

Table 6.5 Continue

ID Short Description Use Case Call Arguments Caller

GT4 Host turns exclusive on

to self

UC8.MSS Respective Host,

1591027200

Respective Host

GT5 Host exclusive turns it

off

UC9.MSS Respective Host

GT6 Host removes Guest UC3.MSS Guest PE3 Respective Host

GT7 Host removes Manager UC6.MSS Manager PE3 Respective Host

Table 6.6 – Ethereum accounts for the Gas price experiment

Actor Account address

Host Low 0x71330E718D52b82506c14A18bE625C585F194b01

Host Medium 0x470b57384Be9C15C9416958D8D35027a0b2a9f30

Host High 0xcA18f8947783a38A61a710752673B3f5d0159F6F

Guest PE3 0xc2596913A7283C727DF156f8F3a359c68559bBb2

Manager PE3 0xDb0Dd99ffd184DcC1aD7C908a485E89A3a054935

6.1.3 Evaluating cost

A transaction cost in Ethereum is determined by its Gas consumption, measured in units of Gas.

Each low-level Ethereum EVM operation has a determined Gas cost, and the transaction is charged

according to the low-level steps it goes through. Two steps are necessary to arrive at the Canadian

Dollar equivalent cost from the Gas consumption value. First, when submitting a transaction, users

choose the Gas price in Ether (ETH), the Ethereum currency, they are willing to pay – see section

6.1.1. Therefore, the transaction cost in ETH is a simple multiplication of the Gas consumption and

the price offered. Second, the ETH price in Canadian Dollars is set by the market, how much people

are willing to pay to have them.

 This section proposes three experiments to evaluate the cost to run the smart contract: (i) a

base case; (ii) a test network case; (iii) a multiplicity case. They enable a discussion about what the

running cost expected for using the smart contract is, how the number of actors registered impact

that cost, and how accurate are the Gas consumption calculations of the Görli test network.

86

6.1.3.1 The base case experiment

The same test set used by the performance base case can be used to assess cost. Since the execution

of that experiment already yields the Gas consumption and Gas cost of the transactions, without

requiring any extra step, it is not necessary to perform a new experiment. All that is needed for this

base case cost evaluation is to record the Gas consumption registered when running the experiment

6.1.2.1, obtaining the value from Etherscan. Observe that query call test cases – e.g., T2 “Host can

open lock” - can be ignored since they are free of charge.

Note that the execution of performance experiments two and three, network and gas price

respectively, also provide Gas consumption values without any further work. Those observations

are useful to compare Gas consumption consistency when performing the same action, for instance.

For that reason, the Gas consumption registered when running those experiments must also be

compiled, obtaining the value from Etherscan.

In summary, the base case cost evaluation consists of gathering the Gas consumption data

obtained through all three performance experiments.

In addition to gathering Gas consumption, the ETH cost in Canadian Dollars (CAD) must

be defined. The Coinbase (2020) website is used as it tracks the market value of ETH. The

methodology is:

1. Collect the Gas consumption and Gas price registered by all the transactions from the

three performance experiments – see section 6.1.2 -, obtaining the values through the

Etherscan website;

2. Define the ETH cost in Canadian Dollars

6.1.3.2 The test network experiment

Having the base case evaluation executed in production brings an exciting opportunity for the

second experiment, which is to evaluate the Gas consumption calculations issued by Görli.

Differently from the performance experiments discussion, network dynamics do not influence the

Gas consumption of a transaction. In other words, Ethereum test networks as Görli can and do

emulate that value. However, it is not clear how accurate those calculations are.

87

This experiment to investigate the accuracy, then, is to repeat the transactions from the

performance base case experiment methodically but using the Görli test network and ignoring

transaction latency measurements. Observe that query call test cases – e.g., T2 “Host can open

lock” - can be ignored since they are free of charge. The methodology in detail is:

1. Methodically repeat all the transactions from the performance base case experiment

from section 6.1.2.1 – see Table 6.7, which uses the same Ethereum accounts from

Table 6.3;

2. Execute the test cases in the Görli test network;

2.1 Record the transaction number;

2.2 Record the smart contract address;

2.3 Record if the behavior matches the expectation – otherwise, it might yield a

different cost caused by a wrong behavior;

2.4 Record the Gas consumption obtained from the Etherscan website

Table 6.7 – Set of tests for the network cost experiment

ID Short Description Use Case Call Arguments Caller

T1 Smart contract deploy Deploy

Host

T3 Host adds new Manager UC5.MSS Manager 1 Host

T5 Host tries to add existing Manager UC5.AP2 Manager 1 Host

T6 Manager tries to add a new Manager UC5.AP1 Manager 2 Manager 1

T7 Unknown tries to add new Manager UC5.AP1 Manager 2 Unknown

T8 Host adds new Guest UC2.MSS Guest 1, 1583049600,

1591027200

Host

T9 Manager adds new Guest UC2.MSS Guest Future,

1591027200,

1593619200

Manager 1

T15 Guest tries to add a new Manager UC5.AP1 Manager 2 Guest 1

T16 Guest tries to add Guest UC2.AP1 Guest 1, 1583049600,

1592027220

Guest 1

T17 Unknown tries to add Guest UC2.AP1 Guest 1, 1583049600,

1592027220

Unknown

T18 Host adds existing Guest UC2.AP2 Guest 1, 1583049600,

1593027240

Host

T19 Host adds new Manager UC5.MSS Manager 2 Host

T20 Manager adds new Guest UC2.MSS Guest Past,

1580554800,

1581554820

Manager 2

T30 Host turns exclusive on to self UC8.MSS Host, 1591027200 Host

88

Table 6.7 Continue

ID Short Description Use Case Call Arguments Caller

T34 Host exclusive turns it off UC9.MSS

Host

T36 Manager tries to turn exclusive on to

self

UC8.AP2 Manager 1,

1591027200

Manager 1

T37 Host turns exclusive on to Manager UC8.AP2 Manager 1,

1591027200

Host

T42 Host tries to remove Manager that

holds exclusive permission

UC6.AP3 Manager 1 Host

T43 Host adds new Manager while

exclusive is on

UC5.MSS Manager 3 Host

T44 Host removes Manager while

exclusive is on to other Manager

UC6.AP2 Manager 3 Host

T48 Host tries to turn exclusive off when

on to other

UC9.AP2

Host

T49 Manager exclusive turns it off UC9.MSS

Manager 1

T50 Host tries to turn exclusive off when

off

UC9.AP1

Host

T51 Guest tries to turn exclusive on to

self

UC8.AP3 Guest 1, 1591027200 Guest 1

T52 Unknown tries to turn exclusive on

to Guest

UC8.AP3 Guest 1, 1591027200 Unknown

T53 Manager turns exclusive on to Guest UC8.AP1 Guest 1, 1591027200 Manager 1

T54 Host tries to remove Guest that holds

exclusive permission

UC3.AP3 Guest 1 Host

T55 Host removes Guest while exclusive

is on to other Guest

UC3.AP2 Guest Past Host

T58 Host tries to turn exclusive on to

Guest when already on

UC8.AP4 Guest 1, 1591037220 Host

T60 Guest exclusive turns it off UC9.MSS

Guest 1

T61 Host tries to turn exclusive on to

Future Guest

UC8.AP5 Guest Future,

1591037220

Host

T62 Host tries to turn exclusive on to

Unknown

UC8.AP5 Unknown, 1591037220 Host

T63 Guest tries to remove Guest UC3.AP1 Guest Future Guest 1

T64 Unknown tries to remove Guest UC3.AP1 Guest Future Unknown

T65 Manager removes Guest UC3.MSS Guest Future Manager 2

T66 Host tries to remove a not existing

Guest

UC3.AP4 Unknown Host

T67 Guest tries to remove Manager UC6.AP1 Manager 2 Guest 1

T68 Host removes Guest UC3.MSS Guest 1 Host

T70 Manager tries to remove Manager UC6.AP1 Manager 2 Manager 1

T71 Unknown tries to remove Manager UC6.AP1 Manager 1 Unknown

89

Table 6.7 Continue

ID Short Description Use Case Call Arguments Caller

T72 Host tries to remove a not existing

Manager

UC6.AP4 Unknown Host

T73 Host removes Manager UC6.MSS Manager 1 Host

T74 Host removes Manager UC6.MSS Manager 2 Host

6.1.3.3 The multiplicity experiment

Finally, the last experiment is set to evaluate if the quantity of Guests and Managers registered in

the system modifies Gas consumption values. Note that, if the experiment from section 6.1.3.2

shows that Görli correctly emulates the Gas consumption, the test network can be used to run the

tests instead of using Ethereum mainnet. The methodology for this experiment is:

1. Define a methodical set of test cases chronologically arranged – see Table 6.8;

2. Define a fixed set of Ethereum accounts and the actors they correspond to – see Table

6.9;

3. Execute the test cases using the Görli test network instead of Ethereum mainnet:

3.1 If experiment 6.1.3.2 shows that Görli’s Gas calculations match those yielded by

the mainnet;

4. Execution instructions:

4.1 Record the transaction number;

4.2 Record the smart contract address;

4.3 Record the Gas consumption obtained from the Etherscan website.

Table 6.8 – Set of tests for the multiplicity cost experiment

ID Short Description Use Case Call Arguments Caller

CT1 Smart contract deploy Deploy

Host

CT2 Host adds new Manager UC5.MSS Manager 1 Host

CT3 Host adds new Manager UC5.MSS Manager 2 Host

CT4 Host adds new Manager UC5.MSS Manager 3 Host

CT5 Host adds new Manager UC5.MSS Manager 4 Host

CT6 Host adds new Manager UC5.MSS Manager 5 Host

CT7 Host adds new Manager UC5.MSS Manager 6 Host

CT8 Host adds new Manager UC5.MSS Manager 7 Host

CT9 Host adds new Manager UC5.MSS Manager 8 Host

CT10 Host adds new Manager UC5.MSS Manager 9 Host

90

Table 6.8 Continue

ID Short Description Use Case Call Arguments Caller

CT11 Host adds new Manager UC5.MSS Manager 10 Host

CT12 Host adds new Guest UC2.MSS Guest 1, 1583049600,

1591027200

Host

CT13 Host adds new Guest UC2.MSS Guest 2, 1583049600,

1591027200

Host

CT14 Host adds new Guest UC2.MSS Guest 3, 1583049600,

1591027200

Host

CT15 Host adds new Guest UC2.MSS Guest 4, 1583049600,

1591027200

Host

CT16 Host adds new Guest UC2.MSS Guest 5, 1583049600,

1591027200

Host

CT17 Manager adds new Guest UC2.MSS Guest 6, 1583049600,

1591027200

Manager 1

CT18 Manager adds new Guest UC2.MSS Guest 7, 1583049600,

1591027200

Manager 1

CT19 Manager adds new Guest UC2.MSS Guest 8, 1583049600,

1591027200

Manager 1

CT20 Manager adds new Guest UC2.MSS Guest 9, 1583049600,

1591027200

Manager 1

CT21 Manager adds new Guest UC2.MSS Guest 10,

1583049600,

1591027200

Manager 1

CT22 Host turns exclusive on to the first

Manager

UC8.AP2 Manager 1,

1591027200

Host

CT23 Manager exclusive turns it off UC9.MSS

Manager 1

CT24 Host turns exclusive on to the fifth

Manager

UC8.AP2 Manager 5,

1591027200

Host

CT25 Manager exclusive turns it off UC9.MSS

Manager 5

CT26 Host turns exclusive on to the tenth

Manager

UC8.AP2 Manager 10,

1591027200

Host

CT27 Manager exclusive turns it off UC9.MSS

Manager 10

CT28 Manager turns exclusive on to the

first Guest

UC8.AP1 Guest 1, 1591027200 Manager 1

CT29 Guest exclusive turns it off UC9.MSS

Guest 1

CT30 Manager turns exclusive on to the

fifth Guest

UC8.AP1 Guest 5, 1591027200 Manager 1

CT31 Guest exclusive turns it off UC9.MSS

Guest 5

CT32 Manager turns exclusive on to the

tenth Guest

UC8.AP1 Guest 10,

1591027200

Manager 1

CT33 Guest exclusive turns it off UC9.MSS

Guest 10

CT34 Host removes fourth added Guest UC3.MSS Guest 4 Host

CT35 Host removes eighth added Guest UC3.MSS Guest 8 Host

91

Table 6.8 Continue

ID Short Description Use Case Call Arguments Caller

CT36 Host removes sixth added Guest UC3.MSS Guest 6 Host

CT37 Host removes second added Guest UC3.MSS Guest 2 Host

CT38 Host removes tenth added Guest UC3.MSS Guest 10 Host

CT39 Manager removes third added Guest UC3.MSS Guest 3 Manager 5

CT40 Manager removes fifth added Guest UC3.MSS Guest 5 Manager 5

CT41 Manager removes ninth added Guest UC3.MSS Guest 9 Manager 5

CT42 Manager removes first added Guest UC3.MSS Guest 1 Manager 5

CT43 Manager removes seventh added

Guest

UC3.MSS Guest 7 Manager 5

CT44 Host removes sixth added Manager UC6.MSS Manager 6 Host

CT45 Host removes fourth added Manager UC6.MSS Manager 4 Host

CT46 Host removes ninth added Manager UC6.MSS Manager 9 Host

CT47 Host removes second added

Manager

UC6.MSS Manager 2 Host

CT48 Host removes tenth added Manager UC6.MSS Manager 10 Host

CT49 Host removes first added Manager UC6.MSS Manager 1 Host

CT50 Host removes fifth added Manager UC6.MSS Manager 5 Host

CT51 Host removes eighth added Manager UC6.MSS Manager 8 Host

CT52 Host removes third added Manager UC6.MSS Manager 3 Host

CT53 Host removes seventh added

Manager

UC6.MSS Manager 7 Host

Table 6.9 – Ethereum accounts for the multiplicity case cost experiment

Actor Account address

Host 0xcA18f8947783a38A61a710752673B3f5d0159F6F

Manager 1 0x470b57384Be9C15C9416958D8D35027a0b2a9f30

Manager 2 0x3d3bEcd44835ded70fB3820D3F9AA52aa3b308b3

Manager 3 0xFd2a96AEA8E2C886915a031b80FEb3f099b719eb

Manager 4 0x9847f30610f6F76363Ed5978d40841d89F4DE687

Manager 5 0x71330E718D52b82506c14A18bE625C585F194b01

Manager 6 0x3d1b95E8Dff394bfD428ae1aCA99C3681B2d5263

Manager 7 0x4D71139A5DbC2d7d03e004f26B7B01AaB9EE18c7

Manager 8 0x6CA44286bB7e7841E861BC9CeF912d09C24b9c46

Manager 9 0x9c171798f4794F024e6bF93Bc5EC8766bda4F192

Manager 10 0xB5274295A8820D6E6Bb735D939a776437310C16b

Guest 1 0xc2596913A7283C727DF156f8F3a359c68559bBb2

Guest 2 0xDCdb60D1A30a1335ae0Ed349F8f7A5C62dF70DfF

Guest 3 0x6272803c8D64053ec2e2dF4730e179a47faF3d50

Guest 4 0x38f30f7414287951167a62cab37bB7Fd133FE897

Guest 5 0xDb0Dd99ffd184DcC1aD7C908a485E89A3a054935

92

Table 6.9 Continue

Actor Account address

Guest 6 0x67E551Cc0684c761Ab3f16f77C6d069792135B8D

Guest 7 0x133a06D3408518C1c932f29Cf934fcb8568481A2

Guest 8 0x30FBa3d2c2Ec41DBdeEE8506bdaDA71b6241d9dD

Guest 9 0x6443992197f258A7c6f0696E3DaF2Dd522E0cA19

Guest 10 0x59494603B8B16EaB741e9730cf612BF89cC2bC6D

6.2 Results

This section presents and discusses the findings from the performance and cost evaluations defined

in section 6.1, following the same order in which the experiments were introduced. Note that all

the transactions were recorded in the public network they were executed – either Görli or Ethereum

mainnet – and they can be viewed using the Etherscan website.

6.2.1 Performance evaluation: The base case experiment

The experiment’s procedure defined a set of seventy-five (75) sequential test cases comprised of

both transactions and queries to the smart contract. The smart contract address is

0xe4D483036750d386D1f9eee9F401c45b13a2cFcC. The experiment was performed on April 15,

2020, approximately between 9:00 AM to 11:10 AM EDT.

The use case behavior was verified along with each test case execution and all of them met

their specification. Therefore, the smart contract functionalities are verified, and it works as

expected.

To measure query latency, the submission and response timestamps were provided by the

management interface tool. The results are shown in Figure 6.22 – the y-axis is the latency

measured in milliseconds, and the x-axis is the test case ID. First, note that all queries get an answer

quickly, within a few hundred milliseconds generally. More precisely, approximately eighty (80)

percent of the queries replied within one hundred (100) milliseconds. Those results mean that the

architecture can deliver reasonable response times to retrieve data from the blockchain, including

the unlock function that the door lock hardware relies on.

93

The two slowest queries – T22 and T23 - are related to retrieving the Guest list. As

explained before and illustrated by Figure 6.6, this operation, to be fully completed, needs to query

the smart contract G+1 times, where G is the number of Guests registered. Therefore, the higher

the number of Guests, the longer it will take to retrieve them along with their permission

information as described by the use case UC4. The wait, however, seems insufficient to affect the

user experience or compromise the use case success.

Figure 6.22 – Query latency

To measure transaction (Tx) latency, the submission and confirmation times were acquired

through the Metamask wallet log file, downloaded at the end of the experiment. At that moment,

however, the log was missing data for the first three transactions of the experiment – i.e., test cases

T1, T3, and T5. The wallet erased the records for those transactions apparently due to a capability

limit on the account’s contract interaction history. Nevertheless, it is possible to verify that all

transactions happened, and their respective information, using Etherscan – Table 6.10 brings their

hashes. The problem is that Etherscan does not track submission time, it provides only the

confirmation time of a transaction. For that reason, the latency for the first three test cases is not

included in the results discussed next. It is crucial to note that the test cases T1, T3, and T5 were

executed multiple times by other performance experiments and are discussed later in this work.

Therefore, their absence here does not harm the proposed evaluation.

94

Table 6.10 – Excluded transactions from the performance base case analysis

Item Tx Hash

Tx T1 0x5dcf06331e862bed48de969d2a63a711f311540d84c223ee99a3d4695613b3cf

Tx T3 0x0040715edb8ff93f7b4ffec72ecc65d082bcd9eb72e1c6b1467ba2d3a51ac8b0

Tx T5 0xfd3e8e9a1cf5c435e270f92a15542aac5b2429b51911925bcd9c4d453bcac016

As described by the methodology, the recommendation for the “Fast” Gas price was taken

from the Ethereum Gas Station website at the beginning of the experiment, and the suggested value

was eight Gwei (8x10-9 ETH). The transaction latency results are shown in Figure 6.23 – the y-axis

is the latency measured in seconds, and the x-axis is the test case ID. First, observe that except for

a single observation, all transactions were confirmed within one minute. As argued before, besides

unlocking the door, none of the use cases are considered time-sensitive. Therefore, having a

confirmation time under a couple of minutes seems realistic.

Figure 6.23 – Performance evaluation base case: Transaction latency

Note that Figure 6.23 sort the observations according to the latency values, causing the test

case ID’s to be completely out of order – remember that those IDs also represent the execution

sequence. Considering that the Gas price offered was the same for all the transactions, the chart

shows how the network behavior changes dynamically. Looking at this figure alone, however,

95

might lead to an incomplete analysis. Each test case belongs to a different use case scenario and is

performed by a different Actor. To draw a complete picture, each of those variables must be

investigated for the latency results. Hence, Figure 6.24 shows the same latency chart but including

three transaction properties to axis x, namely the use case, the scenario type – i.e., either the main

success scenario or an alternative path -, and the Actor that executed it.

The use case and Actor properties do not display any relationship with the transaction

latency outcome. However, from the use case scenario type property, it is possible to infer that the

main success scenarios (MSS) are typically confirmed faster by the network than the alternative

paths (AP). That is a positive result, keeping in mind that many of those alternative paths would

not happen often, as mentioned before, once the blockchain wallet would warn the user about the

transaction failure in advance.

Figure 6.24 – Performance evaluation base case: Transaction latency by its properties

Finally, Figure 6.24 indicates that the Ethereum network behavior changes dynamically and

that it might be the primary factor to determine a transaction latency outcome – given a fixed Gas

price offer.

96

Test case T43 shows the longest latency measured, which more than doubles the second-

highest value. There are many possible explanations for that behavior. To begin with, the network

might have been too busy at that moment, with a high transaction volume, which could cause a

higher latency for a transaction offering a Gas price of eight Gwei. It is also possible that the

network slowed down the mining process for some consensus reason. Beyond the blockchain

behavior, there is a chance that Metamask registered the wrong timestamp in the log file, which

could be caused by a bug, by a problem in their backend service, or even by a local network issue

at the machine running the experiment.

For the transaction in question, Metamask registered a submission timestamp of

1586960396, and confirmation 1586960551, hence the 155 seconds latency. Inspecting the

transaction details in Etherscan – Tx hash

0x922ec2822cf76178deffc9a1fc4d74a07df50248dc2e36fbdaa31a0ee7aa8741 -, the confirmation

timestamp registered is 1586960513, 38 seconds earlier than Metamask. Although this value could

support the Metamask delay issue hypothesis, it requires finding the confirmation difference

between them for all other transactions – see Figure 6.25, where the y-axis is the confirmation

timestamp difference in seconds (Metamask minus Etherscan), and the x-axis displays the test case

ID. The chart shows that the timestamp confirmation discrepancy can go from six seconds up to

forty-nine (49) seconds, and therefore it does not enable drawing a conclusion on the outlier value

found for the test case T43 transaction.

The timestamp shown by Etherscan is equal to the block creation timestamp in which the

transaction was confirmed, and it shows the value that is recorded in the Ethereum network, not a

value they measured locally at their website server. In fact, various Etherscan timestamp values are

even lower than the submission timestamp recorded by Metamask, a fact that indicates that they

were operating under a distinct clock. On the other hand, this evidence does not explain the high

variance found in the timestamp comparison. The best hypothesis is that Metamask relies on a

signal to trigger the confirmation event at the local machine and that for some reason – e.g., internet

issues - the wallet had some delays to get or process it.

It is crucial to remark that once Etherscan does not track submission timestamps, the

blockchain wallet is still the best option to measure transaction latency. In addition to that, the

experiments seek to investigate the system’s performance under the user’s point of view, and the

97

blockchain wallet is the user’s gateway to send transactions to the blockchain. Consequently, it

strengths the Metamask timestamps as the best choice.

Figure 6.25 – Performance evaluation base case: Confirmation timestamp comparison between

Metamask and Etherscan

In summary, the performance experiment base case shows that:

• The smart contract behavior matches the use case requirements;

• All queries to the blockchain have reasonable response time;

• All transactions have a feasible confirmation latency – considering the Gas price set at

the “Fast” price recommendation at the beginning of the experiment;

• The Ethereum network performance appears to change constantly;

• The Metamask account log must be downloaded after every transaction performed to

avoid data loss;

• Metamask and Etherscan timestamps are neither equivalent nor comparable;

• Although Metamask displays some inconsistencies when measuring latency, it is still

the best representation of latency concerning the user experience.

98

6.2.2 Performance evaluation: The network dynamics experiment

The experiment’s procedure defined a set of fifteen (15) sequential test cases, being a subset of

those transactions from the base case evaluation. It also established a fixed Gas price offer of eight

Gwei (8x10-9 ETH) for all transactions, matching the previous experiment price. The test set was

executed four times as following:

• On April 16, 2020, from 9:00 AM to approximately 9:55 AM EDT – smart contract

address 0xCa0b9f3Cd393D4768Fe060ADAAb2cB8067bC5BD7;

• On April 16, 2020, from 6:00 PM to approximately 6:30 PM EDT – smart contract

address 0xc4C068404dA742b169a88dd2E2d30d4b243B29DD;

• On April 19, 2020, from 9:00 AM to approximately 9:30 AM EDT – smart contract

address 0x5E349E3D973a876BeAcF6B3EF1A3D9723b595f5C;

• On April 19, 2020, from 6:01 PM to approximately 6:25 PM EDT – smart contract

address 0x1B938BA5ac432046Cd9e6277424F68dA75cBACD9.

The latency results are shown in Figure 6.26 – the log2 scale y-axis is the latency measured

in seconds, the x-axis is the test case ID, and each bar represents one of the four executions. To

begin with, from a total of sixty (60) transactions, eighty-five (85) percent had a latency time under

sixty (60) seconds. Moreover, only a couple of transactions took more than two minutes to get a

confirmation, and they both happened on the 9:00 AM EDT procedure from April 16. As

mentioned before, those values are realistic to the use cases and support the proposed architecture.

In addition to that, Figure 6.26 displays the dynamic changes that happen in the Ethereum

network. The same transaction, offering the same Gas price, performed in a different day, or time

of the day, yielded various latency values, without any consistency. Figure 6.27 brings an

alternative view to that chart that compares transaction latency between the four executions – the

y-axis is the latency share, i.e., how much the given latency amount represents of the test case’s

total, and the x-axis is the test case ID. Observe that although the first test set run needed almost

twice the time to complete than the following three trials, only one-third of their transactions took

longer to confirm than their peers’ – namely T1, T8, T30, T65, and T73.

99

Figure 6.26 – Network dynamics performance evaluation: Latency

Figure 6.27 – Network dynamics performance evaluation: Latency share

The transaction with the overall highest latency is from test case T1, the smart contract

deploy on April 16 at 9:00 AM EDT – Tx hash

0xd208aaec4c29065ad2f9eb3557125092aa1519b6e0132e790bd822d65c01d61e. Although

100

Metamask and Etherscan timestamps cannot be compared as explained earlier, it can provide at

least an evidence that indicates if either Metamask had any issue to log the confirmation, or the

network took more time to process it. Furthermore, since that is the transaction that started the

evaluation, its submission time is established exactly at 9:00 AM EDT, which takes the Metamask

submission time out of the equation. According to Etherscan, that transaction was confirmed at

9:16:50 AM EDT – i.e., 1010 seconds -, which is close to the 1014 seconds yielded by Metamask.

Therefore, it is possible to affirm that the network indeed took more time to confirm that

transaction. However, the reason does not seem to be related to the test case action of deploying

the smart contract once its three other executions took Ethereum under sixty (60) seconds to

confirm.

The transaction with the second-highest latency is from test case T30, also on the April 16

at 9:00 AM EDT execution – Tx hash

0x3cc78d5045ef86a3d9d885f8e08d9c2e2c16904e8dc16e69f97235cfd68c284a. Etherscan shows

the confirmation at 9:34:26 AM EDT, while Metamask logged it at 9:34:32 AM EDT, extremely

close once again. Even though there is no submission time to rely upon besides the Metamask log,

it is feasible to infer that the network actually took more time to process that transaction. And,

similarly as before, it does not seem to be related to the test case action when the three other

observations for T30 are considered - twenty-nine (29), one hundred and one (101), and thirty-nine

(39) seconds respectively.

In summary, the network dynamics performance experiment shows that:

• The Ethereum network performance changes constantly;

• Following the “Fast” Gas price from the base case experiment, eighty-five (85) percent

of the transactions were confirmed in less than one minute, whereas ninety-seven (97)

percent were processed in less than two minutes.

6.2.3 Performance evaluation: The Gas price experiment

The experiment’s procedure defined a set of seven sequential test cases. Each of them was executed

three times, offering three different prices of Gas – three, six, and twelve (12) Gwei. The smart

contracts created by the deploy test case GT1 for each Gas price category were:

• Low price – contract address 0x1e9769e79a656ef48093273c65ca229670a4bb62;

101

• Medium price – contract address 0x6c625f3bf4cfa4c75b91a6d7135ab8888c03e3fb;

• High price – contract address 0x3173ae8AE0fDc8AE1C9aD662e24E0BC62cD01Bb8.

To compare latency results between the Gas price offers, the transactions for a given test

case were sent in the order defined – from the lowest to the biggest offer -, and as soon as possible,

to minimize the network dynamics effect.

However, the Metamask wallet could not handle quick interactions and slowed down to

show the next transaction for approval and to change between the Actors’ account afterward,

causing an undesired delay between submissions. Figure 6.28 shows the amount of time elapsed

between each test case transaction and the corresponding low gas price submission – the y-axis is

the test case Tx submission time for the respective Gas price minus the low Gas price Tx

submission time – i.e., the delay -, and the x-axis is the test case ID. Unfortunately, the delays

between the steps were too long, generally over forty (40) seconds, compromising the proposed

analysis. The reason is that, due to those long intervals, it is not reasonable to isolate the network

dynamics impact on the results.

Figure 6.28 – Gas price performance evaluation: Time elapsed between Tx submissions

Although it is not feasible to draw exact conclusions on the Gas price and latency

relationship, the data still offers some insights about the network behavior in general. It is crucial

102

to highlight that, contrary to the base case and network dynamics evaluations, the test cases of this

experiment did not happen on the same day. Figure 6.29 shows the latency results – the log2 y-axis

is the latency measured in seconds, the x-axis is both the test case ID and the respective low Gas

Tx submission date (EDT). Each bar in the chart represents a Gas price offer.

First, note that all transactions offering the high Gas price were confirmed under one

minute. Second, note that both test cases that started in the morning – GT1 and GT4 – display

extremely high latency for both medium and low Gas prices. Considering that those values are

significantly higher than the time elapsed between their submissions, it is possible to infer that the

network was busy at that moment, which led to meaningful latency discrepancies based on the Gas

offer. Moreover, observe that for most of the other test cases, the latency did not exhibit an

expressive disparity.

Finally, those results suggest that high Gas price offers can keep the latency in a reasonable

value regardless of the network condition. Whereas lower offers might yield equally low latencies

but are more vulnerable to network changes.

Figure 6.29 – Gas price performance evaluation: Latency

103

6.2.4 Cost evaluation: The base case experiment

The experiment procedure did not require any additional testing, because all the transactions from

previous experiments yielded the amount of Gas required to execute them. Although some of those

transactions offered different Gas prices for the same test case, the Gas consumption is the same,

only the final cost in ETH – Gas used multiplied by the Gas price – is affected.

Note that the Gas price choice directly impacts the transaction cost and, as shown before,

its resulting latency. As a consequence, the Gas price used for this analysis is twelve (12) Gwei,

because it was consistently able to get transactions confirmed under one minute.

 As defined by the procedure, the ETH cost in CAD must be obtained from the Coinbase

website, and, as of April 29, 2020, at 02:08 PM, the value of 1 ETH was CAD 296.75.

 Figure 6.30 shows the Gas consumption of the performance experiment base case

transactions – the log2 left y-axis is the unit of Gas used by the transaction, the log2 right y-axis is

the respective cost in CAD, and the x-axis is the test case ID with the corresponding use case ID.

Figure 6.30 – Cost evaluation: Performance base case Gas consumption

104

First, observe that the most expensive operation is the smart contract deploy – test case T01

– costing CAD 6.63 (1,862,258 Gas units). Although a relevant sum of money, the deploy is a one-

time-only action. Besides that, all other transactions yielded costs below forty (40) cents, where

the second most expensive use case is register Guest (UC2.MSS), followed by register Manager

(UC5.MSS), and turn on the exclusive permission (UC8.MSS, AP1, and AP2).

 In general, those costs are believed to be too low to be prohibitive, especially considering

the application context. For example, when someone needs to constantly alter the smart contract,

it could mean that multiple rents are happening, which can dilute the costs to manage the door lock.

On the other hand, a domestic setting would hardly demand constant changes, keeping those

expenses low and sparse over time.

The following sections expand the cost analysis for each use case, including results from

the two other performance evaluations.

6.2.4.1 Deploy

The smart contract deploy was executed a total of eight times, from different Actor accounts, and

consistently yielded a Gas consumption of 1,862,258 Gas units, which amounts to CAD 6.63 -

considering the Gas price at 12 Gwei. For a one time only operation, the value seems reasonable

considering the application context. Take into consideration that if low latency is not required, that

price can drop significantly – i.e., CAD 1.66 at three Gwei.

6.2.4.2 UC2 – Register Guest

Figure 6.31 shows all seventeen (17) transactions related to registering a Guest – the y-axis is the

units of Gas used, the x-axis is the test and use cases IDs, and above each column is the respective

cost in Canadian Dollars.

There are five different Gas consumption values, though one of them is not visible in the

chart. At the same time, note that among the same test case, the Gas consumption was consistently

the same. To support the discussion, Figure 6.32 reveals the implementation for the registerGuest

function – see sequence diagrams 6.1.3.2 and 6.1.3.3 for details.

105

Figure 6.31 – Cost evaluation: Register Guest

Figure 6.32 – Function registerGuest implementation

Starting from UC2.AP1, this alternative path represents a failed transaction – e.g., someone

other than the Host or a Manager trying to add a Guest. Hence, only the identity check at the

eitherOwnerOrManager modifier happens, and nothing is stored in the smart contract, keeping

those costs low.

106

 Use case UC2.AP2 is an alternative path where the Host registers a Guest that is already

registered, in which case only updates the start and expiry dates – it skips lines 50 and 51.

Therefore, it requires more computation than UC2.AP1, but less than to register a new Guest.

Next, the other three values are 108,424 (T08), 113,591 (T09), and 113,615 (T20) Gas units,

where the second and third amounts represent approximately a five percent increase from T08.

Two main characteristics distinguish between those test cases: (i) the Host registers the Guest in

T08, while the Manager does it in both other cases; (ii) the Host always register the first Guest

(T08), followed by the Manager adding the second (T09) and third Guests (T20).

To allow the registration, the function initially verifies the caller’s identity using the

eitherOwnerOrManager modifier. The process to verify if the address sending the transaction is a

Manager involves more computational steps than what is required to check the Host identity,

consequently rising the cost – see Figure 6.33. This explains the extra charge from T08 to T09.

On the other hand, the cost to add the third Guest (T20) had a subtle increase from T09,

which can be explained by either the push method slightly raising the cost according to the array

size, or by the different Guest address, start date, and expiry date used.

Figure 6.33 – Modifier eitherOwnerOrManager and function isManager implementations

6.2.4.3 UC3 – Remove Guest

Figure 6.34 shows all eighteen (18) transactions related to remove a Guest – the y-axis is the units

of Gas used, the x-axis is both the test and use cases IDs, and above each column is the respective

Dollar amount.

107

Figure 6.34 – Cost evaluation: Remove Guest

 There are six different Gas consumption values, though two of them are not distinguishable

looking at the chart – T66 and T65. On the other hand, among the same test case, Gas consumption

was consistently equal. To support the discussion, Figure 6.35 reveals the implementation for the

removeGuest function – see sequence diagrams 6.1.3.4 and 6.1.3.5 for details.

Figure 6.35 – Function removeGuest implementation

108

Similarly to UC2.AP1, UC3.AP1 represents a failed transaction – e.g., someone other than

the Host or a Manager trying to remove a Guest, which stops the execution at the identity check.

UC3.AP3 also fails because the Host is trying to remove a Guest that holds the exclusive

permission, stopping at the second function modifier. The last failing use case is UC3.AP4, where

the Host tries to remove someone not registered as a Guest, error identified at line 64, aborting the

execution. Therefore, those three failed transactions use distinct amounts of Gas as they quit the

function at different points.

Observe that UC3.MSS is executed by two test cases, T65 and T68. Two main

characteristics distinguish between those test cases: (i) The Host removes the Guest in T68, while

the Manager does it in T65; (ii) T65 removes one of two Guests registered, and T68 removes the

last one.

As explained before, the identity check for a Manager requires more work than verifying a

Host, consequently using more units of Gas. Furthermore, the function removeGuest

implementation shows that, when the array of Guests has only one address stored, lines sixty-seven

(67) and sixty-eight (68) are not executed. Thus, both aspects have an impact on the resulting cost.

Finally, test case T55 costs slightly less than T65, and both remove a Guest with the

respective array size larger than one. In this case, however, the Host executes the action instead of

the Manager, and it happens while the exclusive permission is turned on to another Guest.

Therefore, there is less work to check the identity, but more effort to verify that the Guest is not

the exclusive permission holder.

6.2.4.4 UC5 – Register Manager

Figure 6.36 shows all eighteen (18) transactions related to registering a Manager – the y-axis is the

units of Gas used, the x-axis is both the test and use cases IDs, and above each column is the

respective cost in Canadian Dollars.

There are four different Gas consumption values but among the same test case, the Gas

consumption was consistently the same. To support the discussion, Figure 6.37 reveals the

implementation for the registerManager function – see sequence diagrams 6.1.3.8 and 6.1.3.9 for

details.

109

Figure 6.36 – Cost evaluation: Register Manager

Figure 6.37 – Function registerManager implementation

Similarly to previous discussions, UC5.AP1 and UC5.AP2 are prohibited actions that result

in failed transactions. The former is someone other than the Host trying to register a Manager, and

the latter is the Host trying to add an existing Manager. Their subtle Gas consumption discrepancy

relates to where the code execution stops, one at the onlyOwner modifier and the other at line

seventy-nine (79).

 Test cases T03, T19, and T43 executes the use case UC5.MSS, and all of them have the

Host adding a new Manager to the smart contract. Test case T43 adds a third Manager while the

exclusive permission feature is turned on to someone, but this is not relevant to this function – i.e.,

it does not check anything related to that as shown by the implementation.

110

 Finally, the first Manager registration consumes slightly fewer Gas units than the following

additions, suggesting that the array size indeed alters the push method cost.

6.2.4.5 UC6 – Remove Manager

Figure 6.38 shows all nineteen (19) transactions related to remove a Manager – the y-axis is the

units of Gas used, the x-axis is both the test and use cases IDs, and above each column is the

respective Dollar amount.

Figure 6.38 – Cost evaluation: Remove Manager

 There are six different Gas consumption values, though one of them is not recognizable

looking at the chart – T72. For the first time, the same test case yielded two distinguished costs,

namely T73. However, the cheapest T73 transactions, identified with a * symbol, were executed in

the Gas price performance experiment, and, in that case, only a single manager was registered in

the smart contract. Those expensive T73 transactions were removing the second to last Manager in

both other experiments. Therefore, the test cases T73* are, in fact, equivalent to T74 of the

remaining experiments. Consequently, Gas consumption is consistent among the same test cases

as expected.

111

Figure 6.39 reveals the implementation for the removeManager function – see sequence

diagrams 6.1.3.10 and 6.1.3.11 for details. Since the removeManager implementation, use cases,

and cost behavior are highly similar to removeGuest, their cost analyses are also equivalent. For

that reason, no further discussion is necessary here.

Figure 6.39 – Function removeManager implementation

6.2.4.6 UC8 – Turn on exclusive permission

Figure 6.40 shows all twenty-four (24) transactions related to turning on the exclusive feature – the

y-axis is the units of Gas used, the x-axis is both the test and use cases IDs, and above each column

is the respective cost in Canadian Dollars.

There are eight different Gas consumption values, though one of them is not distinguishable

looking at the chart – T51. On the other hand, among the same test case, Gas consumption was

consistently the same. To support the discussion, Figure 6.41 reveals the implementation for the

turnExclusiveFeatureOn function – see sequence diagrams 6.1.3.14 and 6.1.3.15 for details.

Similar to previous discussions, some alternative paths represent prohibited actions that

result in failed transactions, therefore consuming small amounts of Gas. In this case, those

scenarios are: (i) UC8.AP4, where the Host tries to turn the feature on when it is already on; (ii)

UC8.AP3, where someone other than the Host or a Manager tries to turn the feature on; (iii)

112

UC8.AP5, when the Host tries to turn the feature on to someone without permission to unlock the

door; (iv) UC8.AP2, where a Manager tries to turn the feature on to itself.

Figure 6.40 – Cost evaluation: Turn on exclusive permission

Figure 6.41 – Function turnExclusiveFeatureOn implementation

113

Use case UC8.MSS is the Host turning the feature on to itself, whereas in UC8.AP2 the

Host turns it on to a Manager, both having the same expiry date. Their resulting cost differs by only

995 units of Gas can be attributed to the unlock method call to verify if the desired exclusive

permission holder can open the lock. Once again, a Manager requires more steps than the Host.

Test case T53 is performed by a Manager, turning the feature on to a Guest. Besides the

usual extra work to check the identity and the unlock method call to a Guest – the most complex

stakeholder to validate the ability to unlock the device -, it requires an extra validation of conditions

– refer to line one hundred and twenty-four (124). Hence the highest cost.

6.2.4.7 UC9 – Turn off exclusive permission

Figure 6.42 shows all twenty (20) transactions related to turning off the exclusive permission

feature – the y-axis is the units of Gas used, the x-axis is the test and use cases IDs, and above each

column is the respective Dollar amount.

Figure 6.42 – Cost evaluation: Turn off exclusive permission

114

There are three different Gas consumption values but among the same test case, the Gas

consumption was consistently equal. To support the discussion, Figure 6.43 reveals the

implementation for the turnExclusiveFeatureOff function – see sequence diagrams 6.1.3.16 and

6.1.3.17 for details.

Figure 6.43 – Function turnExclusiveFeatureOff implementation

 Use case UC9.MSS, where the permission holder successfully turns the feature off, is

executed by three test cases, T34, T49, and T60. The distinction between them is who the

permission holder is and, consequently, who is calling the function, respectively the Host, a

Manager, and a Guest.

However, note that this function is the simplest in terms of access control among all others

discussed. As long as the person calling holds the exclusive permission, the function runs, and it

does not care if that someone is the Host, a Manager, or a Guest. Furthermore, it does not insert

any additional data to the smart contract, it only changes the value for a couple of variables already

created. That is the reason why the use case UC9.MSS is the cheapest one, as shown in Figure

6.30.

Finally, UC9.AP1 and UC9.AP2 are alternative paths that result in transaction failure. The

former is the Host trying to turn the feature off when it is already off, and the latter is the Host

trying to turn it off when someone else holds the permission. Ethereum charges unsuccessful

transactions a base Gas amount plus the computational steps executed to reach that conclusion.

6.2.5 Cost evaluation: The test network experiment

The experiment’s procedure established a set of forty-three (43) sequential test cases, more

specifically formed by all the transactions from the performance experiment base case, to be

115

executed using the Görli test network. The smart contract address is

0x21Be6d84605607989934Cf5294e789dD681c8297 and can also be viewed using Etherscan

when Görli is selected.

The test case behaviors were verified along with each execution as defined in the

methodology, and all of them met the specification. Furthermore, all transactions resulted in the

same Gas charge yielded by Ethereum mainnet.

In conclusion, the Görli testnet perfectly emulates the Gas calculations of the Ethereum

main network.

6.2.6 Cost evaluation: The multiplicity experiment

The experiment’s procedure defined a set of fifty-three (53) sequential transactions, which were

executed using the Görli test network due to the results reported in the previous section. The smart

contract address is 0xEf007eE1d68A16AF5D005caBF543CDA61F20Ea8c. The following

paragraphs present and discuss the findings for each use case.

 Figure 6.44 shows the Gas consumption of ten Guest registrations, ordered by execution –

the y-axis is the units of Gas used, and the x-axis is both the Actor doing the transaction and the

test case ID. As explained before based on the implementation, the first Guest is cheaper to register

due to less work required to complete the action. After that, the only Gas charge change happens

from CT16 to CT17, exactly when the Manager starts adding Guests, surcharge also discussed

before. In conclusion, the number of Guests registered in the smart contract only impacted the cost

when none was registered.

 Figure 6.45 shows the Gas consumption of ten Manager registrations, ordered by execution

– the y-axis is the units of Gas used, and the x-axis is the test case ID. Remember that only the Host

can successfully register Managers. Similarly to registering Guests, the number of Managers only

altered the Gas consumption when none was registered. After that, the cost was the same.

116

Figure 6.44 – Multiplicity cost evaluation: Register Guest (UC2.MSS)

Figure 6.45 – Multiplicity cost evaluation: Register Manager (UC5.MSS)

Figure 6.46 shows the Gas consumption of ten Guest removals, ordered by execution – the

y-axis is the units of Gas used, and the x-axis is both the Actor doing the transaction and the test

case ID. As expected, the chart shows the price increase when changing the stakeholder from the

Host to a Manager. Then, the last three transactions, therefore the last three Guests removed from

the smart contract, required lower Gas than the others.

117

The fact that the last removal used the least amount of Gas was expected following the

results from section 6.2.4.3. For CT41, the reason is the position that the Guest occupies in the

array. To remove a Guest from the smart contract, it must be in the last position of the Guest array

– see Figure 6.35. CT41 is the only test case in which the Guest being removed is already in the

last position. CT42 requires a position swap, but between the first and last elements, which

consumed slightly less Gas than CT39 and CT40. Therefore, to remove Guests, the Gas

consumption might change according to the Guest quantity and the respective array position

occupied by the desired address.

Figure 6.46 – Multiplicity cost evaluation: Remove Guest (UC3.MSS)

Figure 6.47 shows the Gas consumption of ten Manager removals, ordered by execution –

the y-axis is the units of Gas used, and the x-axis is the test case ID. Remember that only the Host

can successfully remove a Manager. Once again, this discussion is similar to removeGuest since

they share most of the implementation strategy, including removal by position swapping.

The first four Managers are positioned in the middle of the array, hence the higher cost.

CT48, on the other hand, was already positioned at the last position. The next four Managers –

CT49 to CT52 - were always located at the first position of the array, requiring a swap between the

first and last elements. Lastly, as expected, the lowest cost was to remove the last Manager.

118

Figure 6.47 – Multiplicity cost evaluation: Remove Manager (UC6.MSS)

Figure 6.48 shows the Gas amount required to turn on the exclusive permission, ordered by

execution – the y-axis is the units of Gas used, and the x-axis is the use case ID. Use case UC8.AP2

is the Host turning the feature on to three Managers, each located either at the beginning, the

middle, or at the end of the Manager’s array. Therefore, the Manager position does not impact the

cost of that use case.

Use case UC8.AP1 is the Manager turning the feature on to three Guests, each located either

at the beginning, the middle, or at the end of the Guest’s array. Once again, the Gas consumption

does not change according to the Guest position.

The surcharge of UC8.AP1 in comparison to UC8.AP2 was explained earlier in section

6.2.4.6.

Finally, Figure 6.49 shows the cost to turn off the exclusive permission feature (UC9.MSS),

ordered by execution – the y-axis is the units of Gas used, and the x-axis is who is the Actor

performing the transaction.

In accordance with the findings and analysis of section 6.2.4.7, the cost to turn off the

feature does not change regardless of how many Managers or Guests are registered in the smart

contract.

119

Figure 6.48 – Multiplicity cost evaluation: Turn the exclusive feature on (UC8.AP1 and

UC8.AP2)

Figure 6.49 – Multiplicity cost evaluation: Turn exclusive feature off (UC9.MSS)

120

CHAPTER 7

CONCLUSIONS, CONTRIBUTION, AND FUTURE WORK

This work proposes, implements, and evaluates a smart lock system built using the Ethereum

blockchain. The system allows a person to have full control of their device and manage it remotely

without requiring a central authority – e.g., the lock’s manufacturer - to host and administrate the

solution.

 The architecture discussion in chapter four addresses the first research question and

objective – how a smart lock solution can be implemented using a permissionless blockchain. It

creates a detailed application scenario in which various functionalities are required from the smart

lock and proposes an architecture capable of meeting those needs. The discussion demonstrates

how complex it is to build an application that properly embraces decentralization and the many

aspects and components that should be considered when doing so. Moreover, it shows that poorly

designed solutions can use the blockchain but still face some of the same issues encountered when

using centralized applications.

 From a different perspective and at a lower level of abstraction, chapter five also addresses

the first research question and objective. The discussion surrounding the smart contract

implementation shows that data privacy and security must be accounted for when writing every

function. If they are not designed properly, the smart contract can expose sensitive data or allow

unauthorized users to perform actions that they are not supposed to. Furthermore, it debates on the

tradeoffs associated with some design decisions as, for example, when to use a transaction or a

query-based function and the corresponding access control security and delay to process the call.

In summary, chapters four and five show that it is possible to design the desired smart lock

solution, how it looks like, how it is implemented, and how it works. In addition to that, it highlights

the impact that some architecture and implementation decisions can have on the system behavior.

The experiments and evaluations from chapter six address the remaining research questions

and objectives, related to the system behavior, performance, and cost. First, it shows that the system

delivers the expected behavior to all the test cases. Therefore, it demonstrates that the architecture

121

and implementation are indeed capable of meeting the needs and use cases described throughout

this work.

Regarding the performance, the evaluation shows that the delay to retrieve data from the

blockchain – i.e., from the smart contract – is in the milliseconds' range. On the other hand, it also

reveals that transaction delays – i.e., sending data to the smart contract – are affected by many

factors but that there is a mechanism that users can leverage to keep them low, offering higher gas

prices. Regardless of the network dynamics, a Gas price of twelve Gwei was able to keep the

transaction delays under one minute. Besides unlocking the lock, which is a data retrieval operation

that happens in milliseconds, all the other actions are not time-sensitive, meaning that delays of a

few minutes are acceptable and do not compromise the applicability of the proposed solution.

The cost evaluation adopted the high Gas price mentioned above to calculate the cost of

each use case scenario representing a worst-case scenario – users less sensitive to longer waiting

times could offer lower Gas prices, consequently paying less money. The evaluation shows that,

even with that consideration, the most expensive action is to deploy the smart contract, which costs

approximately seven CAD. This deployment, however, is a one-time-only operation performed

when setting up the device. Besides that, all other transactions yielded costs between five and forty

cents. Therefore, the results suggest that the costs are reasonable considering the application and

the benefits of the proposed system.

In conclusion, this work shows that it is possible and feasible to leverage the public

Ethereum blockchain to build a smart lock solution.

7.1 Limitations

The limitations of this work are:

• Lock’s hardware development: This device plays a crucial role in the success of the

proposed solution and must be carefully designed to support the use cases securely for

all stakeholders. It was out of the scope of this work due to its high complexity, which

is believed to require a thesis of its own. For instance, additional use cases and

considerations for the application might be necessary – e.g., how to set up and keep the

smart contract address of the device, how the stakeholders' identities are verified, how

to allow the smart contract address to be changed without compromising the

122

stakeholders' rights over the device, and how to deal with an unavailable internet

connection.

• Use cases: (i) Only a single Guest can hold the exclusive permission feature, but it could

be necessary to enable others to have it simultaneously – e.g., a couple or a group of

friends staying at a place might not want to rely on single permission; (ii) The smart

contract only allows a single Host to exist, but it could be necessary to have multiple

people with the same rights over the device.

• User experience: (i) Once the lock’s management interface does not keep any state

saved, users must store they smart contract address somewhere and inform it every time

they open the tool; (ii) Users are required to exchange their Ethereum accounts and

smart contract addresses to manage the device; (iii) The architecture would allow a

malicious Host to trick a Guest by creating a fake smart contract that is not the one

being used by the lock device.

• Privacy: As discussed before, information as the start and end dates of stays, and the

address of the Guests and Managers, for instance, can be obtained through the records

of the blockchain transactions.

• Cost: Although the Gas amount charged by the transactions are fixed, the corresponding

value of ETH in CAD changes frequently, which might impact users.

7.2 Contributions

The contributions of this work are:

• The early version of this work was published (De Camargo Silva et al., 2019).

• Architecture and implementation: The in-depth discussion surrounding the required

components, issues, and factors that must be taken into consideration when designing

and developing an application that leverages the blockchain;

• Evaluations: It shows that it is possible and feasible to build and use the proposed smart

lock solution using the Ethereum blockchain while demonstrating its tradeoffs.

• Architecture, implementation, and evaluations: Sets a foundation that can be extended

to build many other applications as gym and school lockers, self-storage facilities,

123

access control to workplaces, hospitality services, other physical properties, among

others. It provides an initial idea about expected costs and performance for that kind of

application.

7.3 Future Work

Some possibilities for future works associated with this thesis are:

• Develop the lock device hardware discussed in this architecture;

• Address the limitations presented in section 7.1;

• Build other access control applications based on this architecture as suggested in section

7.2;

• Substitute Ethereum with other public blockchains, or even with private or consortium

blockchains, and contrast the architecture, implementation, tradeoffs, behavior,

performance, and cost with the system proposed in this thesis.

124

REFERENCES

[1] Alchemy. (2020). Retrieved January 13, 2020, from https://alchemyapi.io/

[2] August (2020). August Lock – How it Works. Retrieved June 12, 2020, from

https://august.com/pages/how-it-works

[3] Aung, Y. N., & Tantidham, T. (2018). Review of Ethereum: Smart home case study.

Proceeding of 2017 2nd International Conference on Information Technology, INCIT 2017,

2018-Janua, 1–4. https://doi.org/10.1109/INCIT.2017.8257877

[4] Aung, Y. N., & Tantidham, T. (2019). Ethereum-based Emergency Service for Smart Home

System: Smart Contract Implementation. International Conference on Advanced

Communication Technology, ICACT, 2019-Febru, 147–152.

https://doi.org/10.23919/ICACT.2019.8701987

[5] Brandão, A., Mamede, H. S., & Gonçalves, R. (2018). Systematic Review of the Literature,

Research on Blockchain Technology as Support to the Trust Model Proposed Applied to Smart

Places. In 10th European Conference on Information Systems Management. Academic

Conferences and publishing limited (Vol. 1, pp. 1163–1174). https://doi.org/10.1007/978-3-

319-77703-0_113

[6] Buterin, V. (2016). Ethereum: Platform Review - Opportunities and Challenges for Private

and Consortium Blockchains. Retrieved October 25, 2019, from

https://pt.scribd.com/doc/314477721/Ethereum-Platform-Review-Opportunities-and-

Challenges-for-Private-and-Consortium-Blockchains

[7] Buterin, V. (2015). On Public and Private Blockchains. Retrieved October 2, 2019, from

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/

[8] Buterin, V. (2014a). Ethereum: A Next-Generation Generalized Smart Contract and

Decentralized Application Platform. Retrieved October 25, 2019, from

https://web.archive.org/web/20140111180823/http:/ethereum.org/ethereum.html

[9] Buterin, V. (2014b). Ethereum: Now Going Public. Retrieved October 25, 2019, from

Ethereum blog website: https://blog.ethereum.org/2014/01/23/ethereum-now-going-public/

[10] Casino, F., Dasaklis, T. K., & Patsakis, C. (2019). A systematic literature review of

blockchain-based applications: Current status, classification and open issues. Telematics and

Informatics, 36(November 2018), 55–81. https://doi.org/10.1016/j.tele.2018.11.006

125

[11] Christidis, K., & Devetsikiotis, M. (2016). Blockchains and Smart Contracts for the Internet

of Things. IEEE Access, 4, 2292–2303. https://doi.org/10.1109/ACCESS.2016.2566339

[12] Coinbase. (2020). Retrieved March 13, 2020, from

https://www.coinbase.com/price/ethereum/cad

[13] De Camargo Silva, L., Samaniego, M., & Deters, R. (2019). IoT and Blockchain for Smart

Locks. IEEE 10th Annual Information Technology, Electronics and Mobile Communication

Conference (IEMCON), Vancouver, BC, Canada, 2019, pp. 0262-0269, doi:

10.1109/IEMCON.2019.8936140.

[14] Ethereum Developer Resources. (2019). Retrieved October 25, 2019, from Ethereum

website: https://www.ethereum.org/developers/#getting-started

[15] Ethereum Gas Station. (2020). Retrieved March 13, 2020, from https://ethgasstation.info/

[16] Ethereum White Paper. (2019). Retrieved October 25, 2019, from Github website:

https://github.com/ethereum/wiki/wiki/White-Paper

[17] Etherscan. (2020a). Ethereum Developer APIs. Retrieved January 13, 2020, from

https://etherscan.io/apis

[18] Etherscan. (2020b). Retrieved January 21, 2020, from https://goerli.etherscan.io/

[19] Feng, Q., He, D., Zeadally, S., Khan, M. K., & Kumar, N. (2019). A survey on privacy

protection in blockchain system. Journal of Network and Computer Applications, 126, 45–58.

https://doi.org/10.1016/j.jnca.2018.10.020

[20] Friday (2020). Friday Smart Lock. Retrieved June 12, 2020, from

https://www.fridayhome.net/views/home-page.html

[21] Galal, H. S., & Youssef, A. M. (2019a). Verifiable Sealed-Bid Auction on the Ethereum

Blockchain. https://doi.org/10.1007/978-3-662-58820-8_18

[22] Galal, H. S., & Youssef, A. M. (2019b). Trustee: Full Privacy Preserving Vickrey Auction

on top of Ethereum. Retrieved from http://arxiv.org/abs/1905.06280

[23] Google (2020). Nest X Yale Lock. Retrieved June 12, 2020, from

https://store.google.com/ca/product/nest_x_yale_lock

[24] Görli. (2020). Görli Testnet. Retrieved January 21, 2020, from https://goerli.net/

[25] Halpin, H., & Piekarska, M. (2017). Introduction to Security and Privacy on the Blockchain.

2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), 1–3.

https://doi.org/10.1109/EuroSPW.2017.43

126

[26] Han, D., Kim, H., & Jang, J. (2017). Blockchain based smart door lock system. International

Conference on Information and Communication Technology Convergence: ICT Convergence

Technologies Leading the Fourth Industrial Revolution, ICTC 2017, 2017-Decem, 1165–1167.

https://doi.org/10.1109/ICTC.2017.8190886

[27] Infura. (2020). Retrieved January 13, 2020, from https://infura.io/

[28] Joseph, J., & Navaie, K. (2019). Blockchain Enabled Rooms Implementation For Internet

of Things. (IoTSMS).

[29] Kwikset (2020). Kwikset Premis Lock. Retrieved June 12, 2020, from

https://www.kwikset.com/premis

[30] Li, Y. (2019). A privacy preserving ethereum-based E-voting system (University of

Stuttgart). Retrieved from http://dx.doi.org/10.18419/opus-10409

[31] Lu, Y. (2018). Blockchain and the related issues: a review of current research topics.

Journal of Management Analytics, 5(4), 231–255.

https://doi.org/10.1080/23270012.2018.1516523

[32] McCorry, P., Shahandashti, S. F., & Hao, F. (2017). A Smart Contract for Boardroom

Voting with Maximum Voter Privacy. https://doi.org/10.1007/978-3-319-70972-7_20

[33] Memon, M., Hussain, S. S., Bajwa, U. A., & Ikhlas, A. (2018). Blockchain Beyond Bitcoin:

Blockchain Technology Challenges and Real-World Applications. 2018 International

Conference on Computing, Electronics & Communications Engineering (ICCECE), 29–34.

https://doi.org/10.1109/iCCECOME.2018.8658518

[34] Mercer, R. (2016). Privacy on the Blockchain: Unique Ring Signatures. Retrieved from

http://arxiv.org/abs/1612.01188

[35] Metamask. (2020). Metamask. Retrieved January 21, 2020, from https://metamask.io/

[36] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from

https://bitcoin.org/bitcoin.pdf

[37] Nodesmith. (2020). Retrieved January 13, 2020, from https://nodesmith.io/

[38] Pocket Network. (2020). Retrieved January 13, 2020, from https://www.pokt.network/

[39] Postman. (2020). Retrieved March 13, 2020, from https://www.postman.com/

[40] Rahman, M. A., Loukas, G., Abdullah, S. M., Abdu, A., Rahman, S. S., Hassanain, E., &

Arafa, Y. (2019). Blockchain and IoT-based secure multimedia retrieval system for a massive

crowd: Sharing economy perspective. ICMR 2019 - Proceedings of the 2019 ACM

127

International Conference on Multimedia Retrieval, 404–407.

https://doi.org/10.1145/3323873.3326924

[41] Remix. (2020). Retrieved January 21, 2020, from https://remix.ethereum.org/

[42] Schiefer, M. (2015). Smart Home Definition and Security Threats. 2015 Ninth International

Conference on IT Security Incident Management & IT Forensics, 114–118.

https://doi.org/10.1109/IMF.2015.17

[43] Seebacher, S., & Schüritz, R. (2017). Blockchain Technology as an Enabler of Service

Systems: A Structured Literature Review. https://doi.org/10.1007/978-3-319-56925-3_2

[44] Slock.it Incubed Client. (2020). Retrieved January 13, 2020, from

https://slock.it/incubed/#products

[45] Szabo, N. (1997). Formalizing and Securing Relationships on Public Networks. First

Monday, 2(9). https://doi.org/10.5210/fm.v2i9.548

[46] Szabo, N. (1994). Smart Contracts. Retrieved October 2, 2019, from

http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinte

rschool2006/szabo.best.vwh.net/smart.contracts.html

[47] Tama, B. A., Kweka, B. J., Park, Y., & Rhee, K.-H. (2017). A Critical Review of

Blockchain and Its Current Applications. International Conference on Electrical Engineering

and Computer Science (ICECOS) 2017, 109–113.

[48] Tikhomirov, S. (2017). Ethereum: state of knowledge and research perspectives.

International Symposium on Foundations and Practice of Security, 206–221. Springer.

[49] Unterweger, A., Knirsch, F., Leixnering, C., & Engel, D. (2018). Lessons Learned from

Implementing a Privacy-Preserving Smart Contract in Ethereum. 2018 9th IFIP International

Conference on New Technologies, Mobility and Security (NTMS), 1–5.

https://doi.org/10.1109/NTMS.2018.8328739

[50] Wahab, J. (2018). Privacy in Blockchain Systems. Retrieved from

http://arxiv.org/abs/1809.10642

[51] Wang, H., Zheng, Z., Xie, S., Dai, H. N., & Chen, X. (2018). Blockchain challenges and

opportunities: a survey. International Journal of Web and Grid Services, 14(4), 352.

https://doi.org/10.1504/ijwgs.2018.10016848

[52] Web3.js. (2020). Web3.js - Ethereum JavaScript API. Retrieved January 13, 2020, from

https://web3js.readthedocs.io/

[53] Web3j. (2020). Web3j. Retrieved January 13, 2020, from http://web3j.io/

128

[54] Wikipedia. (2020). Unix time. Retrieved January 30, 2020, from

https://en.wikipedia.org/wiki/Unix_time

[55] Wood, G. (2014). ETHEREUM: A SECURE DECENTRALISED GENERALISED

TRANSACTION LEDGER. Retrieved from

https://www.semanticscholar.org/paper/ETHEREUM%3A-A-SECURE-DECENTRALISED-

GENERALISED-LEDGER-

Wood/da082d8dcb56ade3c632428bfccb88ded0493214?citationIntent=methodology#citing-

papers

[56] Xu, Q., He, Z., Li, Z., & Xiao, M. (2019). Building an Ethereum-Based Decentralized Smart

Home System. Proceedings of the International Conference on Parallel and Distributed

Systems - ICPADS, 2018-Decem, 1004–1009. https://doi.org/10.1109/PADSW.2018.8644880

[57] Yavuz, E., Koc, A. K., Cabuk, U. C., & Dalkilic, G. (2018). Towards secure e-voting using

ethereum blockchain. 2018 6th International Symposium on Digital Forensic and Security

(ISDFS), 1–7. https://doi.org/10.1109/ISDFS.2018.8355340

[58] Zaparoli, M. X., de Souza, A. D., & de Oliveira Monteiro, A. H. (2019). SmartLock: Access

Control Through Smart Contracts and Smart Property. (Itng), 105–109.

https://doi.org/10.1007/978-3-030-14070-0_16

[59] Zheng, Z., Xie, S., Dai, H. N., Chen, X., & Wang, H. (2018). Blockchain challenges and

opportunities: a survey. International Journal of Web and Grid Services, 14(4), 352.

https://doi.org/10.1504/IJWGS.2018.10016848

