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Abstract

In the development of the fifth-generation (5G) as well as the vision for the future genera-

tions of wireless communications networks, massive multiple-input multiple-output (MIMO)

technology has played an increasingly important role as a key enabler to meet the growing

demand for very high data throughput. By equipping base stations (BSs) with hundreds

to thousands antennas, the massive MIMO technology is capable of simultaneously serv-

ing multiple users in the same time-frequency resources with simple linear signal processing

in both the downlink (DL) and uplink (UL) transmissions. Thanks to the asymptotically

orthogonal property of users’ wireless channels, the simple linear signal processing can ef-

fectively mitigate inter-user interference and noise while boosting the desired signal’s gain,

and hence achieves high data throughput. In order to realize this orthogonal property in a

practical system, one critical requirement in the massive MIMO technology is to have the

instantaneous channel state information (CSI), which is acquired via channel estimation with

pilot signaling. Unfortunately, the connection capability of a conventional massive MIMO

system is strictly limited by the time resource spent for channel estimation. Attempting to

serve more users beyond the limit may result in a phenomenon known as pilot contamina-

tion, which causes correlated interference, lowers signal gain and hence, severely degrades the

system’s performance. A natural question is “Is it at all possible to serve more users beyond

the limit of a conventional massive MIMO system?”. The main contribution of this thesis is

to provide a promising solution by integrating the concept of nonorthogonal multiple access

(NOMA) into a massive MIMO system.

The key concept of NOMA is based on assigning each unit of orthogonal radio resources,

such as frequency carriers, time slots or spreading codes, to more than one user and utilize a

non-linear signal processing technique like successive interference cancellation (SIC) or dirty

paper coding (DPC) to mitigate inter-user interference. In a massive MIMO system, pilot

sequences are also orthogonal resources, which can be allocated with the NOMA approach.

By sharing a pilot sequence to more than one user and utilizing the SIC technique, a massive

MIMO system can serve more users with a fixed amount of time spent for channel estimation.

However, as a consequence of pilot reuse, correlated interference becomes the main challenge
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that limits the spectral efficiency (SE) of a massive MIMO-NOMA system. To address this

issue, this thesis focuses on how to mitigate correlated interference when combining NOMA

into a massive MIMO system in order to accommodate a higher number of wireless users.

In the first part, we consider the problem of SIC in a single-cell massive MIMO system in

order to serve twice the number of users with the aid of time-offset pilots. With the proposed

time-offset pilots, users are divided into two groups and the uplink pilots from one group are

transmitted simultaneously with the uplink data of the other group, which allows the system

to accommodate more users for a given number of pilots. Successive interference cancellation

is developed to ease the effect of pilot contamination and enhance data detection.

In the second part, the work is extended to a cell-free network, where there is no cell

boundary and a user can be served by multiple base stations. The chapter focuses on the

NOMA approach for sharing pilot sequences among users. Unlike the conventional cell-

free massive MIMO-NOMA systems in which the UL signals from different access points are

equally combined over the backhaul network, we first develop an optimal backhaul combining

(OBC) method to maximize the UL signal-to-interference-plus-noise ratio (SINR). It is shown

that, by using OBC, the correlated interference can be effectively mitigated if the number

of users assigned to each pilot sequence is less than or equal to the number of base stations.

As a result, the cell-free massive MIMO-NOMA system with OBC can enjoy unlimited

performance when the number of antennas at each BS tends to infinity.

Finally, we investigate the impact of imperfect SIC to a NOMA cell-free massive MIMO

system. Unlike the majority of existing research works on performance evaluation of NOMA,

which assume perfect channel state information and perfect data detection for SIC, we take

into account the effect of practical (hence imperfect) SIC. We show that the received signal at

the backhaul network of a cell-free massive MIMO-NOMA system can be effectively treated

as a signal received over an additive white Gaussian noised (AWGN) channel. As a result,

a discrete joint distribution between the interfering signal and its detected version can be

analytically found, from which an adaptive SIC scheme is proposed to improve performance

of interference cancellation.
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1. Introduction and Thesis Organization

1.1 Introduction

Over the last decade, the world has witnessed a breakthrough development of wireless

communication technology as well as the growing demand for high-throughput, low-latency

and massive-connectivity wireless communication services. This is resulted from the in-

troduction of smartphone, Internet of Things (IoT) applications, auto pilot vehicles, etc.

According to Cisco’s annual Internet report in 2019, it is predicted that in the next 5 years,

the network throughput requirement for a single user may reach to 60 mega bits per second

(Mbps) [1]. Moreover, it is expected that there will be billions more communication devices.

This presents a huge problem on the connection capability of wireless networks in order to

meet such a demand.

To deal with this problem, the author in [2] proposes the concept of massive multiple-

input-multiple-output (MIMO), a wireless system in which the base stations (BSs) are

equipped with hundreds antennas and can serve multiple users in the same time-frequency

resources. Instead of scheduling users to operate on different orthogonal resource units like

time slots (time-division multiple access, or TDMA) or frequency bands (frequency-division

multiple access, or FDMA), a massive MIMO system enables all users to operate on the

common resources simultaneously, which is promising to solve the limited connection prob-

lem. Far beyond just a scalable version of a conventional multiuser MIMO (MU-MIMO)

system, where the number of antennas at each BS is not too large and inter-user interfer-

ence is usually a major problem that degrades the system’s performance, a massive MIMO

system can asymptotically mitigate interference, thanks to the large antenna array effect.

In a nutshell, a massive MIMO system creates favorable propagation without the need for
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a sophisticated non-linear interference management method such as successive interference

cancellation (SIC) or dirty paper coding (DPC) [3, 4]. Using linear precoding in the down-

link (DL), i.e., from the BS to users, and linear combining for the uplink (UL), i.e., from

a user to a BS, with the aid of a massive antenna array, a massive MIMO system enjoys

a low-complexity solution for the BSs, while only a single antenna is required at an user’s

equipment [2–4]. As a result, the massive MIMO technology is not only promising in terms of

connection capability, but also in terms of providing high spectral efficiency communication

without the requirement of extra bandwidth or increasing cell density. The key advantages

of massive MIMO systems can be summarized as follows [2–5]:

• Massive connection capability: By serving all users in the same time-frequency

resources, massive MIMO systems can serve tens to hundreds times more users as

compared to existing communication networks with the same radio resources.

• High spectral efficiency (SE) and energy efficiency (EE): Thanks to the large

antenna arrays, massive MIMO systems can achieve extremely strong, deterministic

array gain while mitigating the effect of small-scale fading. Furthermore, inter-user

interference can be effectively reduced as a result of asymptotically orthogonal property

of users’ channels [2–5]. Thus, massive MIMO systems can provide very high SE, high

EE and high reliability communication.

• Low complexity signal processing: Unlike conventional multiuser MIMO systems,

where the number of antennas is not large enough to asymptotically mitigate inter-

ference and non-linear interference management methods like SIC or DPC must be

employed, a massive MIMO system can have simple linear signal processing at the BS

side and does not require any extra signal processing at the users’ equipments. Hence,

the complexity of the system on both transmission ends can be low [2–5].

With all these advantages, the massive MIMO technology has drawn great attention in

both academia and industry, and it is expected to play an important role in the design of

next-generation wireless networks.
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However, a massive MIMO system also faces several problems. Although time and fre-

quency become common resources for all users, another important resource in massive MIMO

systems that needs to be wisely allocated is the pilots, which are known signals used for

channel estimation. Unfortunately, the number of pilots is strictly limited by the wireless

channel’s coherence time [4, 7]. Ideally, users should be allocated with mutually orthogonal

pilots [6], which also means that the number of users should not exceed the number of pi-

lots. However, in practice, pilot reuse is inevitable. The problem is that reusing the same

pilot sequence for more than one user results in the so-called pilot contamination effect,

which degrades the quality of channel estimation and causes correlated interference, which

cannot be eliminated by the large antenna effect [2, 4, 8]. To deal with this problem, some

research works have been done to reduce the effect of pilot contamination, such as strate-

gically reusing pilots with certain reuse factor and pattern [8], creating multiple pilot sets

from a basic set [9], or using time-offset pilots [10]. However, all these methods can only

reduce the impact of pilot contamination, but cannot completely eliminate it.

Recently, a new approach to deal with the problem of having limited number of pilots

in massive MIMO systems that has gained a lot of attention is nonorthogonal multiple

access (NOMA) [11–14]. Generally, NOMA is based on the idea of sharing each orthogonal

radio resource such as time slot, frequency subcarrier or spreading code to more than just

one user [15]. It is shown in many research works that NOMA can outperform orthogonal

multiple access (OMA) in terms of both the sum data rate and fairness by smartly allocating

more powers to users which have worse channel conditions and performing SIC to mitigate

interference [15–17].

In a massive MIMO system, because users operate in the same time-frequency, the con-

cept of NOMA can be employed by means of sharing pilots [11–13,18]. Unlike sharing other

types of orthogonal resources, where the performance gain comes from optimally allocating

different levels of power to users to achieve the maximum sum rate (which is shown to be

always equal or greater than the sum rate achieved by OMA [15]), sharing pilots in a mas-

sive MIMO system can be either advantageous or disadvantageous. On one hand, by sharing

pilots, less time is required for channel estimation, which can enhance SE since more time
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resources can be spent for data transmission. On the other hand, sharing pilots to multiple

users results in severe pilot contamination, which reduces the signal-to-interference-plus-noise

ratio (SINR) of the system. The performance of this approach has been analyzed in [11],

which shows that the number of connections of a NOMA-aided massive MIMO system can

be significantly enhanced, with the trade-off being reduced per-user data rate.

The pilot contamination problem has motivated us to carry out research on power control

in massive MIMO systems with the aid of NOMA in the form of non-orthogonal pilots

and SIC. The objective is to mitigate the effect of pilot contamination resulted from the

nonorthogonality among different users’ pilot sequences. This shall be achieved by fulfilling

two main tasks. First, we exploit the structure of a massive MIMO system to eliminate

correlated interference, which is caused by reusing pilots and could severely degrade the

system’s performance. Second, we formulate and solve power control problems to ensure

that all users are equally served with the best quality of service (QoS).

1.2 Organization of the Thesis

This thesis is presented in a manuscript-based style. In Chapter 2, the main concepts

of massive MIMO systems and NOMA are introduced. The benefits as well as existing

challenges of massive MIMO systems and NOMA are discussed and linked to the main

contributions of the thesis. The remaining body of the thesis contains contributions that

have been published or accepted for publication.

Chapter 3 includes a manuscript that proposes the use of the SIC technique in a single-cell

massive MIMO system with time-offset pilots, in which users are divided into two groups.

Every coherence interval is scheduled so that the pilots of one group are transmitted simul-

taneously with UL data of the other group. In this way, with a fixed number of pilots, the

number of users can be served in the system is doubled. The SIC technique is utilized to

remove correlated interference caused by the pilots of each group to the other. Furthermore,

a power control algorithm which is based on the bisection method is proposed to optimally

balance the rate contribution between the training phase and data phase.
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In the next two chapters, the work is extended to a NOMA cell-free massive MIMO

system, a wireless system with no cell boundary and having multiple BSs serving all users

at the same time. In the manuscript included in Chapter 4, a NOMA approach is proposed

to share each pilot sequence to more than one user. Exploiting the co-operation of BSs,

which are connected via a backhaul network, we show that the correlated interference caused

by reusing pilots can be effectively mitigated by optimally combining the signals from all

BSs. The max-min QoS power control problem is also formulated and solved to achieve

the best QoS value that can be equally served to all users in the network. In addition, to

analyze the effect of imperfect SIC to a NOMA cell-free massive MIMO system, we derive a

discrete joint distribution model between the interfering signal and its detected version before

performing SIC. Based on this statistical model, an adaptive SIC algorithm is proposed to

improve performance of interference cancellation. This contribution is presented in the third

manuscript included in Chapter 5.

Finally, Chapter 6 summarizes the contributions of the thesis.
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2. Background

2.1 Statistical Model of a Wireless Channel

Figure 2.1 Communication over a wireless channel.

In a wireless communication system, in order to transmit a baseband data signal xB(t),

which occupies the frequency band limited to W/2 Hz, over a wireless channel, it must be

modulated with a sinusoidal carrier at a higher radio frequency (RF) before being transmitted

using a transmit antenna. This is illustrated in Fig. 2.1 for the simplest case of having one

transmit antenna and one receive antenna.

In the transmitter, the information bits enter a baseband digital signal processing (DSP),

whose outputs are the in-phase and quadrature signal samples. These signal samples are con-
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verted into the continuous-time baseband signals by two digital-to-analog (D/A) converters,

one for the in-phase samples and one for the quadrature samples, respectively. The complex

baseband signal xB(t) = <{xB(t)} + j={xB(t)} is up-converted to a passband frequency by

multiplying with a sinusoidal carrier of frequency fc. The resulting passband signal xt is

mathematically expressed by:

x(t) = <{xB(t) exp {j2πfct}} (2.1)

where <{·} denotes the real part of the enclosed quantity. This passband signal is then

transmitted by an antenna to the receiver. At the receiver side, an antenna acquires the

signal y(t), which is then down-converted to baseband to obtain the baseband signal yB(t).

The baseband signal yB(t) is then converted to digital samples (in-phase and quadrature

samples) by using a pair of analog-to-digital (A/D) converters. Finally, the digital samples

are processed by the DSP block to recover the information bits.

To examine the effect of the wireless channel to the transmitted signal, it is necessary to

establish a mathematic relationship between the baseband transmitted and received signals,

namely xB(t) and yB(t). In practice, when x(t) is transmitted over a wireless channel, at

destination, the antenna usually receives multiple replicas of the original signal, which are

propagated over different paths. This is because the signal transmitted in different directions

can get reflected or diffracted when hitting obstacles, or scattered when traveling over a large

number of small objects and reflected in different directions.

This phenomenon results in the so-called fading effect, which is further classified into

large-scale fading and small-scale fading. Large-scale fading accounts for the attenuation

of the received signal strength due to path loss during propagation and shadowing, which

is affected by propagation environment and terrains between the transmitter and receiver.

Large-scale fading changes very slowly with respect to the change of distance (over hundreds

or thousands of wavelengths). On the other hand, small-scale fading refers to the rapid

fluctuation in the signal’s strength due to the constructive or destructive effect when different

signal copies arrive at the receiver after traversing multiple paths that have different path

losses, time delays, and frequency offsets caused by the Doppler effect. Small-scale fading

changes rapidly over time and distance, which causes the signal strength to vary significantly.
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To represent the characteristics of a multipath wireless channel, a common model is to

describe the multipath phenomenon in the form of a filter with time-varying channel impulse

response (CIR):

h(τ, t) =

NP∑
i=1

ai(t)δ(τ − τi(t)) (2.2)

where ai(t) and τi(t) denote the attenuation and time delay of the ith path as functions of

time and NP is the number of paths. With this CIR, the passband signal obtained at the

receiver’s antenna can be expressed as:

y(t) = x(t)⊗ h(τ, t) =

NP∑
i=1

ai(t)x(t− τi(t)) (2.3)

By substituting x(t) = <{xB(t) exp {j2πfct}} and y(t) = <{yB(t) exp {j2πfct}} into the

above equation, the following relationship can be achieved between xB(t) and yB(t):

yB(t) =

NP∑
i=1

ai(t) exp {−j2πfcτi(t)}xB(t− τi(t)) (2.4)

This also represents a linear time-varying system whose impulse response is

hB(t, τ) =

NP∑
i=1

âi(t)δ(τ − τi(t)) (2.5)

where âi(t) = ai(t) exp {−j2πfcτi(t)}. The channel frequency response can be therefore

calculated by:

HB(f, t) =

NP∑
i=1

ai(t) exp {−j2πfcτi(t)} (2.6)

By sampling the received signal yB(t) in (2.4) with the sampling rate W , the following

discrete-time model can be obtained:

yB[m] =
L∑
l=1

hl[m]xB[m− l], (2.7)

where hl[m] is the lth channel filter tap at time m. The value of hl[m] depends on the

strength of signal âi(t) from the ith paths whose time delay τi(t) is close to l/W . Hence, the

number of taps to represent a wireless channel depends on the channel bandwidth W and

the maximum delay spread Td , i, j
max
|τi(t)− τj(t)|. This is summarized as follows:
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• 1/W � Td: This means that signals from all paths arrive within a symbol period.

Hence, only one tap is needed to represent the channel. This is called a one-tap

channel model.

Moreover, when W � 1
Td

, the change in channel’s frequency response in (2.5) over

the bandwidth of W can be considered negligible, and the channel is typically called

frequency flat. Flat fading is desirable in communications since it offers relatively equal

gain for a signal at all frequency, which avoids non-linear distortion.

• 1/W � Td: This means that the signals from different paths arrive at the receiver

over different symbol periods. As a result, multiple taps are required to represent the

channel.

In this case, when moving within the bandwidth of W , the change in channel’s fre-

quency response is significant, which may cause non-linear distortions to the signal.

The channel in this case is called frequency selective.

In this thesis, we focus on the case of a flat fading channel. With flat fading, the channel

can be represented by one channel tap. As a result, the tap’s gain hl[m] is the sum of all

path gains âi(t) evaluated as the corresponding sampling time. Assume that the signals from

all paths are mutually independent, from the central limit theorem, the tap’s gain can be

effectively modeled as a complex Gaussian random variable. In such a case, the amplitude

of the tap’s gain follows a Rayleigh distribution. This fading model is widely known as a

Rayleigh fading channel, which shall also be used throughout this thesis.

2.2 Fundamentals of Massive MIMO Systems

A massive MIMO system is illustrated in Fig. 2.2 in which multiple users are served by

a BS equipped with a very large number of antennas (could be hundreds or thousands). All

users in the system operate in the same time-frequency resources [2–5].

To see how a massive MIMO system works, consider a simple single-cell massive MIMO

system with K users transmitting their uplink (UL) signals to a BS which is equipped with

a massive antenna array with M antennas. Because all users operate in the same radio
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Figure 2.2 Illustration of a single-cell massive MIMO system.

resources, the UL signal received at the BS is a superposition of signals from all users, which

can be expressed as:

y =
K∑
k=1

hkxk + n (2.8)

where hk = [hk,1, . . . , hk,M ]T ∼ CN (0, IM) represents the UL Rayleigh fading channel from

the kth user to the BS, xk denotes the UL data symbol which belongs to a unit-power

quadrature-amplitude modulation (QAM) constellation, and n ∼ CN (0, IM) is AWGN noise

at the BS, which is mostly due to thermal vibrations of atoms in conductors.

Assume that the BS has the perfect instantaneous channel state information (CSI) from

all the users, one can apply the maximum ratio combining (MRC) to process y. For example,

in order to detect the data symbol x1 for the first user, the MRC combining vector is

v1 = 1
M
h1 [7] and:

s1 = vH1 y = vH1 h1x1 +
K∑
k=2

vH1 hkxk + vH1 n (2.9)

Assume that the channel vectors from different users to the BS are mutually independent,
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the following properties can be established by the law of large numbers [7]:

vH1 h1 =
1

M
‖h1‖2 a.s−−−−→

M→∞
1 (2.10)

vH1 hk =
1

M
hH1 hk

a.s−−−−→
M→∞

0, ∀k 6= 1 (2.11)

vH1 n =
1

M
hH1 n

a.s−−−−→
M→∞

0. (2.12)

where
a.s−−−−→

M→∞
denotes almost sure convergence. This implies that after combining, only the

signal from the first user remains, while the interference and noise terms are completely

removed. The property in (2.10) is called channel hardening since when M → ∞, the

desired signal gain gets close to E[|h1,1|2], which means the effect of small-scale fading can

almost be eliminated and the gain converges to a determined value [4, 7, 8]. This property

is very useful in terms of demodulation and power control at the receiver side [4, 7, 8]. On

the other hand, the effect in (2.11) is known as favorable propagation, which is resulted from

the asymptotic orthogonality between different users’ channels. This allows multiple users

to operate on the same time-frequency resources [4, 7, 8].

2.2.1 Channel Estimation

In the above discussion, we assume that the instantaneous CSI is perfectly known at the

BS side. However, in practice, in order to acquire CSI, channel estimation is required. The

radio resources are divided into time-frequency resource blocks in which the channels can be

considered frequency-flat and time-invariant. The time interval that the channels stay static

is called coherence length and assumed to span τc symbols. This means that the channels

have to be re-estimated after every τc symbols and how this can be done depends on the

duplexing mode, namely time division duplex (TDD) or frequency division duplex (FDD).

This is depicted in Fig.2.3.

FDD mode:

In the FDD mode, UL and DL transmissions occupy separated frequency bands, and the

CSI of both channels is required at BS side. To obtain the DL CSI from M antenna of the

BS to the users in the system, the BS has to spend at less M symbols in the DL channel to
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Figure 2.3 FDD versus TDD time frame.

transmit pilots. The users, after receiving pilots and estimating the channels, have to send

the estimated CSI back to the BS (called CSI feedback), which requires at least another M

symbols in the UL channel. Meanwhile, in order for the BS to estimate UL channels, K

users also need to send pilots, which requires K symbols in the UL channel. As a result,

in total, channel estimation with the FDD mode requires at least M + K symbols in the

UL channel and M symbols in the DL channel. In a situation that the BS is equipped with

hundreds to thousands antennas, this leads to a huge overhead for the system.

TDD mode:

In a massive MIMO system operating in the TDD mode, channel reciprocity is exploited

in channel estimation. Due to the fact that both the UL and DL transmissions occupy the

same frequency band, the system is designed in such a way that the total time resources

spent for UL and DL data transmissions fit in one coherence interval. With this design, in

every coherence interval, K users only need to send K UL pilots to the BS for the channel

estimation purpose, which only takes K symbols. It can be seen that with the TDD mode,

the time required for channel estimation is independent of the number of antennas M , which

makes the TDD mode more adaptive with the scaling of the antenna array.
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2.2.2 UL Training Phase with Pilot Sequences

Given the advantages of the TDD mode over the FDD mode, in this thesis, we choose to

investigate massive MIMO systems with the TDD mode. This section shows how channel

estimation with pilots in a TDD massive MIMO system can be carried out. Consider a

single-cell multi-user massive MIMO system in which one M -antenna BS serves K users,

who are randomly distributed over the cell. The channels between the users and the BS are

assumed to be Rayleigh fading, frequency flat and approximately constant within a coherence

interval of length τc symbols. This means that the channel vector of user k can be modeled

as hk ∼ CN (0, βkIM), where βk represents large-scale fading.

It is assumed that the BS does not know the exact channel coefficients but the channel

statistics. For the channel estimation purpose, a set of K length-τp pilot sequences is used.

These pilots are collectively represented by a τp × K pilot matrix Φ = [φ1,φ2, . . . ,φK ]

where ‖φk‖2 = τp. With the sequence length of τp symbols, there are at most τp sequences

which are mutually orthogonal. Hence, usually, in order to achieve orthogonality among

pilot sequences of all users, the pilot length is set at the minimum value τp = K. Otherwise,

some users have to use pilot sequences which are not orthogonal to other users’ sequences.

Figure 2.4 MMSE channel estimation with pilots in a massive MIMO system.

In the following, we consider a general case of τp to see how the relationship between τp

and K can affect the performance of a massive MIMO system in the training phase. With
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all users sending UL pilots as in Fig. 2.4, the signal matrix Y ∈ CM×τp received at the BS

over τp time slots (symbols) is given as:

Y =
K∑
k=1

hk

√
ρ

(p)
k φ

H
k +N , (2.13)

where ρ
(p)
k is the pilot power, and N ∈ CM×τp denotes AWGN noise matrix whose entries

are complex Gaussian random variables with zero mean and variance of σ2. To estimate

the channel from the qth user, the BS multiplies the received signal with the corresponding

pilot, which results in:

rq = Y
φq
‖φq‖

= hq

√
ρ

(p)
q τp +

K∑
k∈Sq ,k 6=q

hq

√
ρ

(p)
q τp

φHk φq
‖φq‖

+N
φq
‖φq‖

. (2.14)

where Sq is the set containing all pilot sequences φk which are not orthogonal to φq. There

are two different situations:

• τp ≥ K: There are enough mutually orthogonal pilot sequences for all K users. As a

result, the second term in (2.14) disappears and the observation for channel estimation

is corrupted by AWGN noise only.

• τp < K: Due to the fact that there are not enough mutually orthogonal sequences

for all users, some users (say the qth user) will have to use a pilot sequence which

is not orthogonal to at least one of the other users in the system. Consequently, the

observation used for estimating the channel of the qth user contains not only AWGN

noise, but also the channel information of other users, which degrades the quality of

channel estimation. This phenomenon is known as pilot contamination.

From the observation in (2.14), the estimate of hq can be obtained by using the minimum

mean-squared error (MMSE) estimator [20] as:

ĥq =
cov {hq, rq}

var {rq}
rq = µqrq, (2.15)

where

µq =

√
ρ

(p)
q τpβq

ρ
(p)
q τpβq + ρ

(p)
k βk

φH
k φq

‖φq‖ + σ2
.

14



As a result, the estimated channel is a random vector, which follows the distribution ĥq ∼

CN (0, γqIM), where

γq =
ρ

(p)
q τpβ

2
q

ρ
(p)
q τpβq + ρ

(p)
k βk

φH
k φq

‖φq‖ + σ2
. (2.16)

Furthermore, the estimation error eq = hq− ĥq is independent of the estimated channel and

distributed as eq ∼ CN (0, (βq − γq)IM).

After obtaining the channel estimation, the BS applies a linear processing vector for the

detection of the UL data to each user.

2.2.3 UL Achievable Rate with MRC Combining

Figure 2.5 Linear combining at the BS over M antennas.

After the CSI has been obtained, the UL data transmission is carried out. With all users

in the system simultaneously sending their UL data in the same frequency, the signal received

at an arbitrary antenna of the BS is the sum of signals from all K users after propagation

through wireless channels. As a result, the signal y = [y1, y2 . . . yM ] ∈ CM×1 received at all

M antennas of the BS over one symbol period can be written in vector form as:

y =
K∑
k=1

hk
√
pkxk + n, (2.17)

where, as before, xk represents the respective data symbol from the kth user. To detect data

of an arbitrary user, say the qth user, the BS multiplies the above received signal with the
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corresponding MRC combining vector vq = ĥq before demodulation, as illustrated in Fig.

2.5. This yields

rq = vHq y =
K∑
k=1

vHq hk
√
pkxk + vHq n. (2.18)

To see how the desired data is affected by different components, decompose the signal as:

rq = E
{
vHq hq

}√
pqxq︸ ︷︷ ︸

DSq- Desired signal

+
(
vHq hq − E

{
vHq hq

})√
pqxq︸ ︷︷ ︸

CUq- Channel gain uncertainty

+
K∑

k=1,k 6=q

vHq hk
√
pkxk︸ ︷︷ ︸

IoUq- Interference

+ vHq n︸︷︷︸
Nq- Noise

,
(2.19)

The decomposition of the received signal in Eq. (2.19) has an intuitive structure. The first

component, DSq, is the desired signal, which experiences a constant gain. Due to imperfect

CSI at the BS, the second term CUq is the interference originating from the desired signal

itself, which is independent from the first term. The last two terms represent interference

from other users and thermal noise.

With this signal decomposition, a lower bound on the UL achievable SE can be obtained

by the definition of mutual information [21] as:

Rq =

(
1− τp

τc

)
log2 (1 + SINRq) bits/Hz/s (2.20)

where the effective SINR is defined as:

SINRq =
E
{
|DSq|2

}
E
{
|CUq|2

}
+ E

{
|IoUq|2

}
+ E

{
|Nq|2

}
=

pq
∣∣E{vHq hq}∣∣2∑K

k=1 pkE
{∣∣vHq hk∣∣2}− pq ∣∣E{vHq hq}∣∣2 + σ2

ULE
{
‖vq‖2}

(2.21)

By calculating the first and second moments of different terms in (2.19), we can arrive at

the following closed-form expression of the effective SINR [2,21]:

SINR(MRC)
q =

pqγqM∑K
k=1 pkβk +

∑
k∈Sq ,k 6=q pkγk

φH
k φq

‖φq‖ M + σ2
UL

(2.22)

From (2.22), it can be seen that when all users are assigned with mutually orthogonal pilots

(i.e., when K ≤ τp), the second term of the denominator of (2.22) disappears and the SINR
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grows proportionally with the number of antennas. However, when K > τp, nonorthogonal

pilots must be used and pilot contamination exists. As a consequence, the second term

of the denominator causes the SINR saturated at a finite value even when the number of

antennas tends to infinity. Hence, with nonorthogonal pilots, the system cannot enjoy the

array gain from the antennas and the system’s performance is saturated as a result of pilot

contamination. The second term of the denominator in (2.22) is originated from the so-called

correlated interference, which is, similar to desired signal, amplified by antenna’s array gain

and causes the SINR to saturate.

2.2.4 Challenges with Massive MIMO System Design

The effectiveness of a massive MIMO system is based on the key concept of asymptotic

orthogonality among users’ channels. However, practical realization of this technology is

challenged by the following problems, mostly related to the orthogonality property.

Pilot contamination:

From the previous discussion, if all users are assigned with mutually orthogonal pilots,

there is no pilot contamination and inter-user interference is effectively mitigated. How-

ever, in practice, the number of users tends to be much larger than the number of pilots

and consequently, reusing pilots is inevitable [2, 19]. This results in very poor quality of

channel estimation. Furthermore, having users share the same pilot also causes correlated

interference, which can not be asymptotically mitigated with the large antenna effect. Due

to this problem, the system’s SE is saturated even when the number of antenna tends to

infinity [7, 8].

On the other hand, to provide good SE for all users by assigning them with orthogonal

pilots, the number of users which can be served simultaneously on the same radio resources

will be strictly limited by the channel’s coherence length [7, 22].
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Unfavorable channel condition:

As previously discussed, the ability to mitigate inter-user interference of a massive MIMO

system comes from the favorable propagation property. This property strongly depends

on the correlation among users’ channels. In practice, it is not possible to have perfect

orthogonality between channel vectors of two users, which results in unfavorable propagation

and negatively affects the massive MIMO system’s performance [4, 7].

2.3 Fundamentals of NOMA

With the growing demand of higher data throughput and massive connectivity, conven-

tional OMA schemes such as TDMA, FDMA, CDMA and OFDMA are unable to meet the

requirements of future wireless networks. The key principle of these conventional OMA

methods is to allocate orthogonal radio resources to different users. In TDMA, one time

slot is occupied by only one user. In FDMA and OFDMA, a carrier frequency is allocated

to only one user. In CDMA, the radio resources are represented as spreading codes, one of

which is used for only one user at a time. OMA strictly limits the number of connections

available with a fixed amount of resources. This motivates the use of a new multiple access

technique that allows sharing/reusing the common radio resources, which is NOMA.

As opposed to OMA, where only one user occupies a resource unit, NOMA allows multiple

users to share the common radio resources. This means time slots, carriers or spreading

codes can be used by more than just one user. In this way, the number of connections

is significantly greater than that in OMA with the same resources. This is promising to

meet the massive connectivity requirement of future wireless networks. However, NOMA

can result in severe inter-user interference due to reusing resources [15,17]. Fortunately, this

problem can be solved by a key signal processing technique that enable NOMA: successive

interference cancellation.
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2.3.1 Channel Capacity with Successive Interference Cancellation

To illustrate how NOMA works, consider a simple example where two users transmit

their data symbols xi, (i = 1, 2) with the respective powers Pi, (i = 1, 2) to a BS on fixed

time-frequency resources. For simplicity, it is assumed that the channels hi from users to the

BS are perfect, i.e., h1 = h2 = 1. As a result, the signal received at the BS over one symbol

period can be expressed follows:

y =
√
P1h1x1 +

√
P2h2x2 + n =

√
P1x1 +

√
P2x2 + n (2.23)

where n ∼ CN (0, σ2) denotes AWGN noise. By treating the second user’s signal as noise,

the channel capacity of the first user is:

C1 = log2

(
1 +

P1

P2 + σ2

)
(2.24)

With the signal from the first user detected, the BS can subtract it from the received signal

before detecting data of the second user, which results in the capacity:

C2 = log2

(
1 +

P2

σ2

)
(2.25)

The sum capacity is therefore calculated by:

C(NOMA)
sum = C1 + C2 = log2

(
1 +

P1 + P2

σ2

)
(2.26)

For a fair comparison with OMA, suppose the radio resources are divided with the weight

factors of α1 and α2 with α1 + α2 = 1. The sum capacity of OMA in this case is:

C(OMA)
sum = α1log2

(
1 +

P1

α1σ2

)
+ α2log2

(
1 +

P2

α2σ2

)
≤ log2

(
1 +

P1 + P2

σ2

) (2.27)

The above inequality comes from the arithmetic-geometric mean inequality. Thus, it can be

seen that the sum channel capacity with NOMA is always greater or equal to that of OMA.

The equality holds only when P1/P2 = α1/α2. In the case when P1 � P2 (i.e., when the

signal from the first user is dominant), in order to achieve the same performance as NOMA,

the OMA system has to allocate almost entire radio resources for the dominant user, which

is unfair. Meanwhile, with NOMA, the second user, despite of having a weak signal, is still

able to achieve the best performance.
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2.3.2 Challenges with NOMA

Although NOMA can enhance the system’s sum data rate as compared to OMA, there

are important problems that need to be considered:

• The user who detects last will have to decode the signals from all previous users, which

causes a significant overhead to the hardware as well as a large delay [11,15].

• One critical problem of NOMA is how well the SIC is implemented. It is obvious

that if the signals from users who get detected first are decoded correctly, a large

amount of interference can be removed from the signals of the succeeding users. On

the other hand, if the decoding step is carried out incorrectly, the SIC may result in

more interference, which eventually degrades the system’s performance [23].

• From the example discussed in the previous section, the gain of NOMA over OMA in

terms of the sum rate is significant only when the channel conditions between the two

users are significantly different. Otherwise, the gain is negligible. This leads to the

importance of the grouping problem, whose objective is to find which users should be

assigned to use the same orthogonal resource unit to achieve the best gain with NOMA

over OMA. Of course, this also causes a large overhead to the system [15].

2.3.3 Integration of NOMA into Massive MIMO Systems

In a massive MIMO system, the users have already operated on the same time-frequency

resources thanks to the asymptotically orthogonal property of the channels [2, 4, 7]. How-

ever, there is still an important resource that can be exploited: the pilot sequences. It has

been shown that the number of pilots in a massive MIMO system is strictly limited by the

coherence length, and that the more time spent for the UL training phase, the less time left

for data transmission. This will limit the number of users admissible in the system. To deal

with this problem, a NOMA approach can be applied to share pilots among all users and

utilize the SIC technique to reduce interference [11–13].

Another problem when applying NOMA in a massive MIMO system is that it degrades

the channel estimation quality due to pilot contamination. Hence, to integrate NOMA with
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a massive MIMO system, beside SIC, power allocation and user pairing/grouping are critical

to reduce the effect of pilot contamination [12, 14]. All these respects of integrating NOMA

into massive MIMO systems will be presented in the next chapters of this thesis.
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Systems with Time-Offset Pilots and Successive Interference Cancellation”, IEEE Access,

vol. 7, pp. 132748–132762, 2019.

In Chapter 2, a single-cell massive MIMO system has been considered to explain the

channel estimation stage with pilots in two cases: orthogonal and nonorthogonal pilots. This

chapter examines a novel approach of arranging pilots, namely time-offset pilots. With time-

offset pilots, instead of scheduling all users to transmit their pilots synchronously, the uplink

training phase is designed such that a group of users transmits their pilots when another

user group transmits their uplink data simultaneously. In this way, pilot contamination is

not caused by the nonorthogonality between different users’ pilot sequences, but between

pilots of users in one group and data symbols from the other group. The development of the

system model together with detailed analysis in the manuscript show that with this method,

the system can server twice the number of users as compared to the conventional case of

using orthogonal pilots, while correlated interference caused by pilot contamination can be

effectively reduced with successive interference cancellation.

25



Multiuser Massive MIMO Systems with Time-Offset

Pilots and Successive Interference Cancellation

The Khai Nguyen, Ha H. Nguyen, and Tien Hoa Nguyen

Abstract

This paper proposes time-offset pilots for a single-cell multiuser massive multiple-input

multiple-output (MIMO) system and studies its performance under the minimum mean-

squared error channel estimator and successive interference cancellation. With the proposed

time-offset pilots, users are divided into two groups and the uplink pilots from one group are

transmitted simultaneously with the uplink data of the other group, which allows the system

to accommodate more users for a given number of pilots. Successive interference cancellation

is developed to ease the effect of pilot contamination and enhance data detection. Closed-

form expressions for lower bounds of the uplink spectral efficiencies in both the training and

data phases are derived when the maximum-ratio combining receiver is used at the base sta-

tion. The power control problem is formulated with the objective of either maximizing the

quality of service that can be equally provided to all users, or minimizing the total transmit

power. Since the original power control problems are NP-hard, we also propose algorithms

based on the bisection method to solve the problems separately in training and data phases.

Analysis and numerical results show that the effect of pilot contamination can be mitigated

by successive interference cancellation and proper power control.

3.1 Introduction

Over the last decade, massive multiple-input multiple-output (MIMO) systems have

gained a strong interest as a promising key technology for enabling the next and future

generations of wireless communications. With hundreds of antennas equipped at each base

station (BS), a massive MIMO system allows multiple users to simultaneously operate in

the same time-frequency blocks, while co-channel interference can be effectively mitigated

as a result of channel hardening and favorable propagation effects [1–4]. Furthermore, by

utilizing proper power control algorithms, massive MIMO systems have the ability to achieve
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very high spectral efficiency (SE) and energy efficiency (EE) [5–7].

However, performance of a massive MIMO system is limited by the quality of channel

estimation [8–10]. As discussed in these papers, in every coherence interval where the wireless

channels between BSs and users are approximately constant, the number of symbols spent

for channel estimation directly determines the maximum number of pairwise-orthogonal pilot

sequences that can be generated for channel estimation. Conventionally and preferably, pilot

sequences are designed to be mutually orthogonal and distinct pilot sequences are assigned

to different users to avoid pairwise correlation between them. Unfortunately, the number of

orthogonal pilot sequences could be limited by the small length of the coherence interval,

especially when the propagation environment changes quickly. Therefore, if the number of

users served by one BS keeps increasing, pilot sequences must be reused, resulting in the

so-called pilot contamination [11–13]. As a consequence, with simple linear receivers such

as maximum-ratio combining and zero-forcing, the network’s SE becomes saturated, even

when the number of antennas goes to infinity [14–17].

3.1.1 Related Works

There have been many research works addressing the pilot contamination problem in

multi-cell massive MIMO systems [1, 18–21]. For multi-cell massive MIMO systems, the

basic approach to reduce the effect of pilot contamination is reusing pilots [16, 19, 22, 23].

With this approach, an arbitrary pilot sequence can be assigned one time only within a

cluster of ϑ cells. This has been investigated in [16] and it was shown that using a higher

pilot reuse factor helps to lessen pilot contamination. It should be pointed out that, a larger

value of ϑ implies that the cell size, as well as the number of users who can be served within

each cell, are reduced. Another method to reduce the effect of pilot contamination in a

multi-cell massive MIMO system is to use different pilot sets [18]. Specifically, from a basic

mutually-orthogonal pilot set, the authors in [18] construct the so-called dictionary of linear

combinations of the original pilot set to exploit the degree of freedom, which is demonstrated

to lower the interference level during the training phase. With this method, non-orthogonal

pilots are used even within a cell.
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All the works discussed above are for multi-cell massive MIMO systems where users are

geographically separated into a cellular topology and hence, pilots can be reused across cells

with large distance separations [9]. On the other hand, the joint pilot and payload power

control problem in a single-cell massive MIMO system is investigated in [24]. In this work,

the authors show that the optimal number of pilots should be set equal to the number of users

in the system because using orthogonal pilots maximizes the signal-to-interference-plus-noise

ratio (SINR). However, when the number of users increases and/or the coherence interval is

short (as seen in fast-varying channels), the total throughput inversely decreases with the

number of pilots. Another work examining the pilot contamination problem can be found

in [6]. In this paper, a cell-free massive MIMO system with multiple access points (APs)

is considered. As explained in [6], during the training phase, a set of orthogonal pilots can

be assigned to a larger number of users by using a greedy algorithm. This assignment was

shown to provide an improvement of approximately 10% in spectral efficiency as compared

to a random pilot assignment. However, via the large-antenna analysis, it is shown in [6,25]

that if a pilot sequence is assigned to more than one user, the SINR is still upper-bounded

because not only the desire signal power, but also the correlated interference power caused

by pilot contamination increases proportionally with the number of antennas.

In all the works discussed above, uplink (UL) pilots are transmitted at the same time

for all users. This method is known as aligned pilots in [1] or synchronous pilots in [26].

Another method to deal with pilot contamination is using time-offset (or asynchronous)

pilots [1, 21, 26–28]. In particular, the authors in [1, 21] propose to schedule UL pilots so

that the pilot signaling of one cell can be carried out while other cells are transmitting

downlink (DL) data. Using the large-antenna analysis, these papers show that with such a

pilot design, when the number of antennas goes to infinity, the SINRs in both UL and DL

increase proportionally with the number of antennas. In addition, the authors also point out

that having users in one cell transmitting UL pilots while users in other cells are transmitting

UL data is not optimal because the performance is saturated when the number of antennas

goes up to infinity.

To address the disadvantage of transmitting UL pilots simultaneously with UL data, the
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authors in [26, 27] propose a semi-blind pilot decontamination scheme. In such a scheme,

under the assumption of time-invariant channel, least-square estimation of the channel is

obtained by UL pilot sequences and with the aid of UL data extraction. This method is

shown to significantly improve the quality of channel estimation when the length of data

increases. However, such an improvement is difficult to achieve in the case of fast-varying

channels as demonstrated in [10]. In particular, the authors in [10] show that, in practice, in

order to allow data transmission plus channel estimation, the number of users needs to be

well below the coherence length. The authors then propose a blind pilot decontamination

method in which the pilot data is not required to find a subspace projection, which is used

to improve channel estimation. Other research works on combating pilot contamination

with time-offset pilots for multi-cell massive MIMO can be found in [29,30] which introduce

new coherence block structures with extra intervals for BS channel estimation [29] or null

transmission [30]. However, if the coherence length is short, spending more symbols for

channel estimation may result in an insufficient time interval for data transmission [10].

Another emerging technique to accommodate more users without requiring extra pilots

is beam-domain user grouping for massive MIMO [31–33]. In these papers, the authors

introduce a beam-domain grouping method that assigns users into different groups based

on the direction of arrival (DOA) and then reuse pilots in different groups. The channel

vector’s elements are assumed to be correlated with an array response vector, which allows

a beam-domain presentation of the actual channel. With such a method, it is shown that

the training resources can be reduced, whereas inter-group interference and self interference

at the BS can be effectively mitigated thanks to the properties of the beam-domain channel.

3.1.2 Contribution

In this paper, we investigate a new approach with time-offset pilots in a single-cell massive

MIMO system. For the system considered in this paper, all users are divided into two

groups. During the training phase, one group transmits orthogonal pilot signals, while the

other group sends data signals. The BS gathers all pilot signals and performs the minimum

mean-square error (MMSE) channel estimation. With this method, channel estimation is
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not contaminated by correlation between pilots, but by the data transmitted by the other

group, whose power is typically much lower than the pilot power. In addition, with a fixed

number of pairwise orthogonal pilot sequences, this approach allows to double the number

of users compared to the orthogonal pilot approach. Different from previous works, in which

the pilot power is usually set at the maximal level to maximize the channel estimation

quality [6, 34], or assigned based on a long-term average power constraint [24], our work

takes into account both pilot power and data power to optimally allocate users’ UL power

to satisfy a predetermined cost function. Moreover, we also develop a successive interference

cancellation method that does not require the perfect channel state information. The method

is shown to be able to significantly suppress the interference caused by pilot contamination.

Naturally, this advantage comes at the expense of higher implementation complexity. The

main contributions of the paper are as follows:

• We derive a closed-form expression of the UL ergodic spectral efficiency for the proposed

time-offset pilot method under Rayleigh fading channels and when the maximum ratio

combining (MRC) is used at the BS. Many interesting observations concerning the

effects of array gain, interference, and additive noise are revealed.

• We develop a successive interference cancellation method for the detection of UL data

at the BS to mitigate the impact of pilot contamination in UL transmission. Under

the assumption of ideal error-free detection, it is shown that the UL SE is no longer

bounded when the number of antennas increases.

• We formulate and solve the power control problem for two different cost functions: the

first problem focuses on maximizing the minimum quality of service (QoS) or max-

min QoS, whereas the second problem is on total power minimization. Because of the

NP-hardness of the original problems, we propose algorithms based on the bisection

method to decompose these NP-hard problems into two subproblems which can be

solved in polynomial time.

• A group assignment method is also proposed to mitigate the interference that cannot

be removed by the MRC. The proposed group assignment helps to further improve the
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UL ergodic spectral efficiency.

The remainder of this paper is organized as follows. Section II presents the model of

a single-cell multiuser massive MIMO system with time-offset pilots and channel estima-

tion. Section III analyzes UL spectral efficiencies in both training and data phases. Section

IV studies power control problems. Section V provides simulation results and discussion.

Section VI concludes the paper.

Notations: Vectors are formatted in bold lower-case, matrices are in bold upper-case.

The transpose and conjugate transpose are denoted with superscripts T and H, respectively.

The K ×K identity matrix is IK . The operator E{·} denotes the expectation of a random

variable. The notation ‖ · ‖ stands for the Euclidean norm and tr(·) represents the trace of a

matrix. The notation n ∼ CN (0,C) means that n is a zero-mean complex Gaussian vector

with covariance matrix C.
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Figure 3.1 (a) Conventional pilot design, and (b) Time-offset pilot design.

3.2 Time-Offset Pilots and Channel Estimation

Consider a single-cell multi-user massive MIMO system in which one M -antenna BS

serves N users, who are randomly distributed over the cell. The channels between the users

and the BS are assumed to be frequency flat and approximately constant within a coherence

interval of length τc symbols. The UL and DL transmissions in the system operate in time-

division duplex (TDD) mode. As a result, conventional pilot designs can take advantage of
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channel reciprocity to estimate both UL and DL channels within a coherence interval. In

massive MIMO systems, pilot sequences are usually transmitted synchronously by all users

at the same time. This is problematic if the coherence interval is short, since to maintain

orthogonal pilots, a smaller number of symbol periods can be used for data transmission.

Motivated by the work in [6], we consider time-offset pilot design as illustrated in Fig. 3.1.

Here, N users in the system are separated into G = 2 groups, each having K = N/2 users and

taking turn to transmit UL pilots in different time slots. To improve the SE, the transmission

of UL pilots by one group happens concurrently with UL data transmission from the other

group. An important point to note is that pilot transmission must be carried out at the

beginning of every coherence interval.

Dropping the block index for simplicity and without loss of generality, the M×1 received

signal vector at the BS in one symbol time can be generally written as:

y =
K∑
k=1

(
h1,k
√
p1,kx1,k + h2,k

√
p2,kx2,k

)
+ n, (3.1)

where xg,k (g = 1, 2) is the transmit signal of the kth user in the gth group that is normalized

to have unit power, i.e., E {|xg,k |2} = 1, whereas the actual transmit power is specified by pg,k.

Note that xg,k represents either the data or the pilot symbol during the training phase (see

the illustration in Fig. 3.1). The term n ∼ CN (0, σ2IM) models additive white Gaussian

noise (AWGN) at the BS. The channels are assumed to be uncorrelated Rayleigh fading.

That is, the channel vector hg,k from the kth user of the gth group to the BS is modeled as

having a circularly-symmetric complex Gaussian distribution, hg,k ∼ CN (0, βg,kIM), where

βg,k represents large-scale fading.

The BS does not know the exact channel coefficients but the channel statistics. To

estimate the channels for each user group, a set of K length-τp pilot sequences is used.

These pilots are collectively represented by a τp × K pilot matrix Φ = [φ1,φ2, . . . ,φK ]

which satisfies ΦHΦ = τpIK . Usually, the pilot length is set at the minimum value τp = K

in order to achieve the orthogonality between pilot sequences.

Without loss of generality, suppose that the first group transmits pilots first at the

beginning of the training phase, while the other group transmits data. Then the signal
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matrix Y ∈ CM×τp received at the BS over τp time slots (symbols) is given as:

Y =
K∑
k=1

(
h1,k

√
ρ

(p)
1,kφ

H
k + h2,k

√
ρ

(d)
2,kx

(tp)
2,k

)
+N , (3.2)

where ρ
(p)
1,k is the pilot power, ρ

(d)
2,k is the power assigned to the normalized data signal vector

x
(tp)
2,k ∈ C1×τp of the kth user in the second group during τp time slots of the training phase,

which satisfies x
(tp)
2,k ∼ CN

(
0, Iτp

)
.

To estimate the channel from the qth user in the first group, the BS multiplies the received

signal with the corresponding pilot of the qth user. This results in:

r1,q = Y
φq
‖φq‖

= h1,q

√
ρ

(p)
1,qτp +

K∑
k=1

h2,k

√
ρ

(d)
2,kx

(tp)
2,k

φq
‖φq‖

+N
φq
‖φq‖

. (3.3)

Then, the estimate of h1,q can be obtained by using the MMSE estimator [35] as:

ĥ1,q =
cov {h1,q, r1,q}

var {r1,q}
r1,q = µ1,qr1,q, (3.4)

where

µ1,q =

√
ρ

(p)
1,qτpβ1,q

ρ
(p)
1,qτpβ1,q +

∑K
k=1 ρ

(d)
2,kβ2,k + σ2

.

As a result, the estimated channel is a random vector, which follows the distribution ĥ1,q ∼

CN (0, γ1,qIM), where

γ1,q =
ρ

(p)
1,qτpβ

2
1,q

ρ
(p)
1,qτpβ1,q +

∑K
k=1 ρ

(d)
2,kβ2,k + σ2

. (3.5)

Furthermore, the estimation error e1,q = h1,q − ĥ1,q is independent of the estimated channel

and distributed as e1,q ∼ CN (0, (β1,q − γ1,q)IM).

After obtaining the channel estimation, the BS applies a linear processing vector for the

detection of the UL data belonging to the same user. By employing the maximum ratio

combining (MRC), the combining vector is given as:

v1,q = ĥ1,q. (3.6)

For the second group, the same channel estimation process applies, but with the roles of the

two groups reversed.
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3.3 Uplink Data Transmission

3.3.1 Analysis in the training phase

To examine data detection in the training phase, focus on the time slots over which

the first group transmits UL data while the second group transmits UL pilots for channel

estimation. The signal received at the BS over one symbol can be rewritten from (3.1) as:

y(tp) =
K∑
k=1

h1,k

√
ρ

(d)
1,kx

(tp)
1,k +

K∑
k=1

h2,k

√
ρ

(p)
2,kφk + n, (3.7)

where φk simply denotes one entry of the pilot vector φk. To detect data of the qth user of

the first group, the BS multiplies the above received signal with the corresponding combining

vector v1,q as specified in (3.6). This yields

vH1,qy
(tp) =

K∑
k=1

vH1,qh1,k

√
ρ

(d)
1,kx

(tp)
1,k +

K∑
k=1

vH1,qh2,k

√
ρ

(p)
2,kφk + vH1,qn. (3.8)

To see how the desired data is affected by different components, decompose the signal in

(3.8) as:

vH1,qy
(tp) = vH1,qh1,q

√
ρ

(d)
1,qx

(tp)
1,q︸ ︷︷ ︸

DS
(tp)
1,q – Desired signal

+
K∑

k=1,k 6=q

vH1,qh1,k

√
ρ

(d)
1,kx

(tp)
1,k︸ ︷︷ ︸

IwG
(tp)
1,q – Interference within group

+
K∑
k=1

vH1,qh2,k

√
ρ

(p)
2,kφk︸ ︷︷ ︸

IP
(tp)
1,q – Interference from pilot

+ vH1,qn︸ ︷︷ ︸
N

(tp)
1,q – Noise

.

(3.9)

The first component in (3.9) is the desired signal for the detection of data x
(tp)
1,q . The second

term accounts for interference from users in the same group. The terms IP
(tp)
1,q quantifies

the interference from pilot transmissions conducted by users in the second group. The last

component in (3.9) is filtered additive Gaussian noise.

Next, consider the case that the MRC is used at the BS, i.e., v1,q = ĥ1,q = µ1,qY
φq

‖φq‖ .

Given the distribution of the channel estimate ĥ1,q ∼ CN (0, γ1,qIM), the following analyzes

the behavior of each term in (3.9) when M →∞.
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First, the desired signal component is

DS
(tp)
1,q =

(
µ1,qY

φq
‖φq‖

)H
h1,q

√
ρ

(d)
1,qx

(tp)
1,q

=

[
µ1,qh

H
1,qh1,q

√
ρ

(p)
1,qρ

(d)
1,qτp + µ1,q

K∑
k=1

hH2,kh1,q

√
ρ

(d)
2,kρ

(d)
1,qx

(tp)
2,k

φq
‖φq‖

+ µ1,q

(
N

φq
‖φq‖

)H
h1,q

√
ρ

(d)
1,q

]
x

(tp)
1,q .

(3.10)

Due to the fact that the channels from the BS to all users are mutually independent, by

applying the law of large numbers, the second and third components in (3.10) go to zero

when M goes to infinity. It follows that

1

M
DS

(tp)
1,q

a.s−−−−→
M→∞

µ1,qβ1,q

√
ρ

(p)
1,qρ

(d)
1,qτpx

(tp)
1,q , (3.11)

where the notation
a.s−−−−→

M→∞
means almost sure convergence as M →∞. On the other hand,

due to fact that all the components of v1,q = ĥ1,q are statistically independent of h1,k for all

k 6= q, IwG
(tp)
1,q and N

(tp)
1,q vanish when M →∞. That is,

1

M
IwG

(tp)
1,q

a.s−−−−→
M→∞

0, (3.12)

and
1

M
N

(tp)
1,q

a.s−−−−→
M→∞

0. (3.13)

Next, the interference term IP
(tp)
1,q that originates from the second group which transmits

UL pilots is decomposed as:

vH1,qh2,k

√
ρ

(p)
2,kφk

=

(
µ1,qY

φq
‖φq‖

)H
h2,k

√
ρ

(p)
2,kφk = µ1,qh

H
1,qh2,k

√
ρ

(p)
1,qρ

(p)
2,kτpφk

+ µ1,q

K∑
k=1

hH2,kh2,k

√
ρ

(d)
2,kρ

(p)
2,kx

(tp)
2,k

φq
‖φq‖

φk + µ1,q

(
N

φq
‖φq‖

)H
h2,k

√
ρ

(d)
2,kφk.

(3.14)

The first and third terms of (3.14) also vanish when M → ∞. Therefore, the remaining

term is:
1

M
IP

(tp)
1,q

a.s−−−−→
M→∞

K∑
k=1

µ1,qβ2,k

√
ρ

(d)
2,kρ

(p)
2,kx

(tp)
2,k

φq
‖φq‖

φk. (3.15)
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In summary, the above analysis shows that, when the number of antennas at the BS goes

to infinity, the received signal for the qth user of the first group consists of the desired signal

component as in (3.11) and the interference caused by users of the other group as a result

of pilot contamination during its training phase (3.15).

The presence of IP
(tp)
1,q in (3.15) is due to the correlation between the channel estima-

tion errors of the pilot-transmitting group and the received signals of the data-transmitting

group. The impact of this interference can be reduced by applying the following interference

cancellation method. At first, it can be seen from (3.14) that the part in IP
(tp)
1,q that remains

when M →∞ is:

Υ
(IP)
1,q = µ1,q

K∑
k=1

hH2,kh2,k

√
ρ

(d)
2,kρ

(p)
2,kx

(tp)
2,k

φq
‖φq‖

φk. (3.16)

Since the UL transmit power and UL pilot sequences are known and the UL signal x
(tp)
2,k

was already detected first, the term Υ
(IP)
1,q can be estimated by replacing hH2,kh2,k with its

statistical average. That is,

Υ̂
(IP)
1,q = µ1,q

K∑
k=1

E
{
‖h2,k‖2}√ρ

(d)
2,kρ

(p)
2,kx

(tp)
2,k

φq
‖φq‖

φk. (3.17)

The above estimated value can then be subtracted from the received signal of the qth user

in the first group (see (3.9)), which should reduce the interference caused by pilot contami-

nation. The result after performing interference cancellation in (3.9) is:

s1,q = vH1,qy
(tp) − Υ̂

(IP)
1,q = vH1,qh1,q

√
ρ

(d)
1,qx

(tp)
1,q +

K∑
k=1,k 6=t

vH1,qh1,k

√
ρ

(d)
1,kx

(tp)
1,k

+
K∑
k=1

vH1,qh2,k − µ1,qE
{
‖h2,k‖2} √ρ

(d)
2,kx

(tp)
2,k φq

‖φq‖


︸ ︷︷ ︸

IP
(tp)
1,q −Υ̂

(IP)
1,q

√
ρ

(p)
2,kφk + vH1,qn.

(3.18)

It can be seen from (3.17) that:

1

M
Υ̂

(IP)
1,q

a.s−−−−→
M→∞

K∑
k=1

µ1,qβ2,k

√
ρ

(d)
2,kρ

(p)
2,kx

(tp)
2,k

φq
‖φq‖

φk, (3.19)

which means that the term
(
IP

(tp)
1,q − Υ̂

(IP)
1,q

)
converges to zero when M →∞, hence pilot con-

tamination can be removed. Thus, as M goes to infinity, only the desired signal component

DS
(tp)
1,q remains in (3.18).
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SINR
(tp, MRC)
1,q =

Mρ
(d)
1,qγ1,q∑K

k=1

(
ρ

(d)
1,kβ1,k + ρ

(p)
2,kβ2,k

)
+
∑K

k=1 ρ
(p)
2,k

ρ
(d)
2,k

ρ
(p)
1,qτp

γ1,q

(
β2,k
β1,q

)2

+ σ2

. (3.21)

Next, Theorem 1 gives a closed-form expression for a lower bound of the UL spectral

efficiency for the qth user of the first group when MRC is used at the BS. Note that this

result is valid for finite M .

Theorem 1: The UL spectral efficiency of the qth user in the first group in the training

phase with MRC at the BS and successive interference cancellation is given as:

R
(tp)
1,q ≥ log2(1 + SINR

(tp, MRC)
1,q ), (3.20)

where SINR
(tp, MRC)
1,q is given as in (3.21).

Proof: See the Appendix 3.A. It should be pointed out that, the same result applies to

users in the second group during its training phase.

From (3.21), one can see that the array gain is proportional to the number of antennas,

while the power of interference in the denominator is independent of the number of antennas.

In particular, the denominator consists of two components: (i) uncorrelated interference,

whose power equals to the signal power of all users received at the BS and noise power,

and (ii) correlated interference caused by users in the second group as a result of pilot

contamination.

3.3.2 Analysis in the Data Phase

In the data phase, both groups transmit their UL data. The received signal in the data

phase is given as in (3.1) by substituting xg,k = x
(dp)
g,k (for g = 1, 2). Similar to the training

phase, after applying a combining vector v1,q, the received signal of the qth user from the
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first group is decomposed as:

vH1,qy
(dp) =

K∑
k=1

(
vH1,qh1,k

√
p1,kx

(dp)
1,k + vH1,qh2,k

√
p2,kx

(dp)
2,k

)
+ vH1,qn

= vH1,qh1,q
√
p1,qx

(dp)
1,q︸ ︷︷ ︸

DS
(dp)
1,q – Desired signal

+
K∑

k=1,k 6=q

vH1,qh1,k
√
p1,kx

(dp)
1,k︸ ︷︷ ︸

IwG
(dp)
1,q – Interference within group

+
K∑
k=1

vH1,qh2,k
√
p2,kx

(dp)
2,k︸ ︷︷ ︸

IoG
(dp)
1,q – Interference from other group

+ vH1,qn︸ ︷︷ ︸
N

(dp)
1,q – Noise

.

(3.22)

Unlike the training phase, there is no interference caused by pilot transmission of the

other group. Instead, there is interference, denoted as IoG
(dp)
1,q , caused by concurrent data

transmission from the other group. Following the same analysis as in the training phase, the

terms IwG
(dp)
1,q and N

(dp)
1,q vanish when M goes to infinity. The only terms remained in (3.22)

are the desired signal component,

1

M
DS

(dp)
1,q

a.s−−−−→
M→∞

µ1,qβ1,q

√
ρ

(p)
1,qp1,qτpx

(dp)
1,q , (3.23)

and interference from users in the other group:

1

M
IoG

(dp)
1,q

a.s−−−−→
M→∞

K∑
k=1

µ1,qβ2,k

√
ρ

(d)
2,kp2,kx

(tp)
2,k

φq
‖φq‖

x
(dp)
2,k . (3.24)

Different from the training phase, where the correlated interference from the pilot-

transmitting group can be subtracted from the received signal of the data-transmitting group,

the data signals x
(dp)
1,k and x

(dp)
2,k in (3.24) are unknown, and therefore the interference can-

cellation method cannot be applied in the same way as in the training phase. However,

assuming that the signal from the second group, x
(dp)
2,k , is detected first by treating x

(dp)
1,k as

noise, then one can subtract an estimated value of IoG
(dp)
1,q from the received signal of the

first group. This successive cancellation has been investigated in [36] and [37] and shown to

significantly improve the minimal SINR value of users.

With the knowledge of x
(dp)
2,k , an estimation of IoG

(dp)
1,q can be formed as:

Υ̂
((IoG)
1,q = µ1,q

K∑
k=1

E
{
‖h2,k‖2}√ρ

(d)
2,kp2,kx

(tp)
2,k

φt
‖φt‖

x
(dp)
2,k , (3.25)
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SINR
(dp,MRC)
1,q =

Mp1,qγ1,q∑K
k=1 (p1,kβ1,k + p2,kβ2,k) +

∑K
k=1 p2,k

ρ
(d)
2,k

ρ
(p)
1,qτp

γ1,q

(
β2,k
β1,q

)2

+ σ2

. (3.28)

SINR
(dp,MRC)
2,q =

Mp2,qγ2,q∑K
k=1 (p1,kβ1,k + p2,kβ2,k) +

∑K
k=1 p1,k

ρ
(d)
1,k

ρ
(p)
2,qτp

γ2,q

(
β1,k
β2,q

)2

(M + 1) + σ2

.

(3.29)

By subtracting (3.25) from (3.22), the received signal corresponding to the qth user in the

first group now becomes:

vH1,qy
(dp) − Υ̂

(IoG)
1,q = vH1,qh1,q

√
ρ

(d)
1,qx

(tp)
1,q +

K∑
k=1,k 6=t

vH1,qh1,k

√
ρ

(d)
1,kx

(tp)
1,k

+
K∑
k=1

vH1,qh2,k − µ1,qE
{
‖h2,k‖2} √ρ

(d)
2,kx

(tp)
2,k φq

‖φq‖


×√p2,kx

(dp)
2,k + vH1,qn.

(3.26)

Based on (3.26), a lower bound on the UL SE of the qth user of the first group when the

MRC is employed at the BS during the data phase can be obtained as in Theorem 2.

Theorem 2: The UL spectral efficiency of the qth user in the gth group (g = 1, 2) when

the MRC is employed at the BS in the data phase is given as:

R(dp)
g,q ≥ log2(1 + SINR(dp,MRC)

g,q ), (3.27)

where the SINRs of the qth users of the first and second groups can be calculated as in (3.28)

and (3.29), respectively.

Proof : The proof follows the same steps as carried out for proving the UL spectral

efficiency in the training phase.

From (3.29), it can be seen that the correlated interference originating from pilot con-

tamination in the denominator is proportional to (M + 1). As a consequence, for the second

group, this component does not vanish when the number of antennas goes to infinity, unless

the data power in the training phase is set to zero (equivalently, no data is transmitted in the
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training phase). Based on this observation, an adaptive power control method is proposed

in the next section to optimize the UL data rate.

Before closing this section, it is worth pointing out that how to assign users into two

different groups (i.e., group assignment method) can affect the spectral efficiency. In general,

it is desired to optimally assign users into two groups such that the highest SE can be

obtained. With time-offset pilots, group assignment impacts performance in both training

phase and data phase, and not in the same way.

Unfortunately, optimizing group assignment is a combinatorial problem and, therefore,

difficult to find the optimal solution. As discussed at the end of Section 3.1.1, a beam-domain

group assignment approach was proposed in [31–33] which assigns users to different groups

based on DOA. However, this approach is not applicable for the system model considered

in this paper in which the channel vector’s elements are mutually independent and hence

cannot exploit the advantage of the beam-domain channel presentation. In this paper, in

order to remove as much correlated interference as possible, we instead consider a group

assignment exploiting the large-scale fading conditions of users. In this method, users in the

cell are divided into inner and outer regions based on their locations. Since users in the inner

region have generally better channel conditions compared to users in the outer region, they

are assigned to the second group, whose data is detected first as described in Section III-B.

The other users belong to the first group.

Before closing this section, it should be pointed out that the proposed time-offset pilot

approach can be extended to more than 2 groups. In such a design, users are also grouped

based on large-scale fading by dividing the coverage area into ring regions with different

radii. The users in the group experiencing better channels will have their signals detected

first, followed by users in the group having the next best channels, and so on. As a result,

an arbitrary group can remove the known UL signals of all groups which have been already

detected before by using successive interference cancellation (SIC). With more than 2 groups,

the training phase needs to be divided into more sub-intervals, each one for one group to

transmit its UL pilots. This implies that a more complicated power control method is re-

quired. Given the more severe pilot contamination and the higher complexity of interference
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cancellation if the system is designed with more than 2 groups, considering only 2 groups in

the proposed approach appears most attractive and practical.

3.4 Power Control

This section studies power control problems under two cost functions: max-min QoS and

total power minimization. The approach to solve these two problems is to decompose the

original problem into two subproblems corresponding to two phases (training and data) in

one coherence interval.

3.4.1 Max-Min QoS Optimization

Consider the optimization problem in which the cost function is to maximize the QoS

value that can be equally provided to all users in the system. In the considered system model

with time-offset pilots, data transmission of each user happens in both training and data

phases. The training phase lasts for τp time slots and has a SE of R
(tp)
g,q (g = 1, 2). The data

phase has a SE of R
(dp)
g,q and is over (1− 2τp) time slots. As a result, the average UL SE in

one coherence interval of τc time slots can be calculated as:

R(total)
g,q =

τp
τc
R(tp)
g,q +

(
1− 2τp

τc

)
R(dp)
g,q . (3.30)

With the above UL spectral efficiency, the max-min QoS optimization problem is formu-

lated as:

maximize
ρ
(p)
g,q ,ρ

(d)
g,q ,pg,q

min
q=1,...,K

{
R

(total)
1,q , R

(total)
2,q

}
subject to 0 ≤ ρ(p)

g,q ≤ pmax,∀g, q,

0 ≤ ρ(d)
g,q ≤ pmax,∀g, q,

0 ≤ pg,q ≤ pmax,∀g, q,

(3.31)

where the objective is to maximize the minimum QoS and the constraints are to limit the

data and pilot powers under a predetermined maximum UL transmit power pmax.

The above optimization problem has the same form as the max-sum SE optimization

problem studied in [38], which is a signomial programming and proved to be NP-hard [39].
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Therefore, an algorithm based on the bisection method is proposed here, which iteratively

solves the max-min QoS problem in training phase and data phase, separately.

In Training Phase: The power allocation problem to maximize min-QoS with UL trans-

mit power constraints in the training phase can be formulated as:

maximize
ρ
(p)
g,q ,ρ

(d)
g,q

min
q=1,...,K

{R1,q, R2,q}

subject to 0 ≤ ρ(p)
g,q ≤ pmax,∀g, q,

0 ≤ ρ(d)
g,q ≤ pmax,∀g, q.

(3.32)

The epigraph form of the above problem is:

maximize
ρ
(p)
g,q ,ρ

(d)
g,q ,λ(tp)

λ(tp)

subject to SINR(tp)
g,q ≥ λ(tp),∀g, q,

0 ≤ ρ(p)
g,q ≤ pmax,∀g, q,

0 ≤ ρ(d)
g,q ≤ pmax,∀g, q.

(3.33)

By dividing both the nominator and denominator of SINR(tp)
g,q to γg,q, the first constraint of

this problem can be converted into a valid constraint of geometric programming (GP) where

the left-hand side of the “greater-than” inequality is a monomial and the right-hand side is

a posynomial. As a result, this GP can be solved in polynomial time by using GP solvers

like MOSEK solver with CVX [39,40].

In Data Phase: With the power allocation strategy obtained in the training phase, the

value of γg,k can be calculated as in (3.5). Similar to the training phase, the max-min QoS

power control in the data phase can be formulated in an epigraph form as:

maximize
pg,q ,λ(dp)

λ(dp)

subject to SINR(dp)
g,q ≥ λ(dp),∀g, q,

0 ≤ pg,q ≤ pmax, ∀n, q.

(3.34)

The objective is to maximize λ(dp), which is the lower bound of all SINR(dp)
g,q as expressed

in the first constraint, whereas the transmit power is limited as in the second constraint.
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Similar to the training phase, the max-min QoS optimization problem in the data phase is

also a GP and hence can be solved in polynomial time.

Max-Min QoS Power Allocation using the Bisection Method: With the optimization

problems formulated above for training and data phases, a joint adaptive max-min QoS

power allocation using the bisection method can be performed as follows. In the first stage,

the max-min QoS problem in the training phase (3.33) is solved to obtain the maximum

value of the achievable QoS (say R
(tp)
ini ) and the corresponding SE R

(dp)
ini . Intuitively, a higher

rate in the training phase causes a lower rate in the data phase because of lower-quality

channel estimation. Hence, to find the value of R
(tp)
g,q that maximizes the total rate R

(total)
g,q ,

its lower and upper bounds Rmin ≤ R
(tp)
g,q ≤ Rmax are chosen such that Rmax = R

(tp)
ini is the

optimal solution for (3.33) and Rmin = 0. Applying bisection searching within this interval,

in each iteration, the following problem is solved

minimize
ρ
(p)
g,q ,ρ

(d)
g,q

θ

subject to
ρ

(p)
g,k

ρ
(d)
g′,q

≤ θ, ∀k, q, g 6= g
′
,

SINR(tp)
g,q ≥ λ(tp)

req ,∀g, q,

0 ≤ ρ(p)
g,q ≤ pmax,∀g, q,

0 ≤ ρ(d)
g,q ≤ pmax,∀g, q,

(3.35)

where λ
(tp)
req is the value of the SINR corresponding to

R(tp)
req = log2(1 + λ(tp)

req ). (3.36)

The cost function and the first constraint in (3.35) aim to minimize the interference caused

by pilot-transmitting group as in (3.21), while maintaining a required QoS as expressed in

the second constraint. After obtaining the power allocation with respect to (3.35), the total

achievable UL rate can be calculated by (3.30). This procedure is iterated until R
(total)
g,q

converges. The proposed power allocation method is summarized in Algorithm 1. With the

proposed power control algorithm, the max-min QoS with time-offset pilots is not upper

bounded by a saturation level as in the case of using non-orthogonal pilots. The reason
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Algorithm 1 Bisection-based algorithm for max-min QoS power control

Require: The maximum achievable rate in training phase R
(tp)
ini and its corresponding SE

R
(dp)
ini

δ =∞;

Rmax = R
(tp)
ini

Rmin = 0

R
(total)
prev = R

(total)
ini where R

(total)
ini is calculated as in (3.30)

while δ > δthreshold do

R
(tp)
req = (Rmin +Rmax)/2

Solve (3.35) with respect to λreq = R
(tp)
req

Recalculate the corresponding R
(tp)
req and obtain the new R

(total)
new by applying (3.30).

if R
(total)
new ≤ R

(total)
prev then

Rmax = R
(tp)
req

else

Rmin = R
(tp)
req

R
(total)
prev = R

(total)
new

end if

δ = Rmax −Rmin;

end while

return R
(total)
new

44



is that the SINR in the training phase grows proportionally with the number of antennas.

When the coherence interval is short, this even leads to a larger amount of SE compared to

the orthogonal pilot method. This is because the orthogonal pilot method has to spend more

time slots for pilot signaling and there will be fewer time slots left for data transmission. On

the other hand, when the coherence interval is large, the proposed algorithm can adaptively

reduce data power in the training phase to ease the effect of pilot contamination to the data

phase. It should also be pointed out that when the data power in the training phase is set

to 0, there is no pilot contamination, and the system with time-offset pilots is equivalent to

the system using orthogonal pilots with the pilot length of 2τp.

3.4.2 Minimization of Total Power

This section studies the power control problem in which the objective is to minimize the

total transmit power of the system while guaranteeing a predetermined QoS to be equally

provided to all users. Because one coherence interval is separated into two phases, the

average power is:

P
(total)
g,k =

τp(ρ
(p)
g,k + ρ

(d)
g,k) + (τc − 2τp)pg,k

τc
. (3.37)

For a required QoS value of ξ that is equally provided to all users, the optimization

problem is:

minimize
ρ
(p)
g,k,ρ

(d)
g,k,pg,k

2∑
g=1

K∑
k=1

P
(total)
g,k

subject to R
(total)
g,k ≥ ξ, ∀g, k,

0 ≤ ρ
(p)
g,k ≤ pmax,∀g, k,

0 ≤ ρ
(d)
g,k ≤ pmax,∀g, k,

(3.38)

where the first constraint is to ensure that the required QoS value of ξ is equally served to

all users, whereas the next two constraints limit the transmit power by a maximum value of

pmax. The left-hand-side of the SE constraint is in the form of a fraction whose denominator

and nominator are posynomials, while the right-hand-side is a constant. This means that

the above optimization problem is a signomial programming, which is NP-hard [39]. Hence,
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like in the previous section, the original problem in (3.38) are separated into two subprob-

lems for the training phase and data phase. By iteratively solving this two subproblems

until convergence, a suboptimal solution for (3.38) is obtained. The two subproblems are

formulated and discussed next.

Power Control in Training Phase: The power minimization problem in the training phase

can be written as:

minimize
ρ
(p)
g,k,ρ

(d)
g,k

2∑
g=1

K∑
k=1

(ρ
(p)
g,k + ρ

(d)
g,k)

subject to SINR
(tp)
g,k ≥ λ(tp)

req , ∀g, k,

0 ≤ ρ
(p)
g,k ≤ pmax,∀g, k,

0 ≤ ρ
(d)
g,k ≤ pmax,∀g, k,

(3.39)

where λ
(tp)
req is the required SINR, which is equivalent to a predetermined value of QoS as

defined in (3.36). This optimization problem is a GP, and hence can be solved in polynomial

time.

Power Control in Data Phase: In the data phase, the power minimization problem is:

minimize
pg,k

G∑
g=1

K∑
k=1

pg,k

subject to SINR
(dp)
g,k ≥ λ(dp)

req ,∀g, k,

0 ≤ pg,k ≤ pmax,∀g, k,

(3.40)

where λ
(dp)
req is the required SINR, which is equivalent to a predetermined value of QoS R

(dp)
req :

R(dp)
req = log2(1 + λ(dp)

req ). (3.41)

The above power minimization is convex, hence it is easily solved by existing convex opti-

mization packages such as CVX.

Joint Power Minimization: To minimize the total transmit power during a coherence

interval which includes both the training and data phases as in (3.38) is a problem with high

complexity. Hence, an iterative method based on the bisection algorithm is performed as

follows.

46



For a QoS requirement of ξ, in the first stage, we solve the max-min QoS problem in the

training phase to obtain the maximum value of the achievable QoS in this phase, say R
(tp)
max.

In the next step, we find the optimal UL rate contributed by the data phase, R
(tp)
req , which

minimizes the total UL transmit power. This can be done by bounding Rmin ≤ R
(tp)
req ≤ Rmax

where the upper-bound and lower-bound are initially chosen as Rmin = 0 and Rmax = R
(tp)
max

and then updated in each iteration until the two bounds converge. With the allocated UL

rate in the training phase, R
(tp)
req , the required QoS in the data phase is:

R(dp)
req =

τcξ − τpR(tp)
req

τc − 2τp
. (3.42)

By using the power profile obtained in the training phase to estimate the channel coef-

ficients, we can solve (3.40) with respect to the required data rate as in (3.42) and acquire

the optimal transmit power in the data phase and the total UL transmit power. In the next

iteration, the required data rate in the training phase is reduced to lower the effect of pilot

contamination, which enhances the data rate in the data phase. The new total UL transmit

power is then calculated by solving (3.40) with respect to the new required QoS. If the total

UL transmit power in the new iteration is higher than the previous one, it means that the

allocated QoS in the training phase has been reduced to much, which causes excessive power

in the data phase. In this case, Rmin needs to be updated to raise the allocated QoS in

the training phase and ease the burden in the data phase. Otherwise, if the total power in

the new iteration is lower than the previous one, we can continuously reduce the allocated

power in the training phase by updating Rmax. The iteration process stops when two bounds

converges (when δ = Rmax − Rmin is lower than a threshold value δthreshold). The proposed

procedure is summarized in Algorithm 2.

3.5 Simulation Results

In this section, numerical results are given to evaluate the performance of the multiuser

massive MIMO system with time-offset pilots in terms of achievable QoS and power con-

sumption. The results are also compared to results obtained with orthogonal pilots and

non-orthogonal pilots. The performance is observed by changing the number of antennas,

coherence interval and the required QoS. The massive MIMO system considered in simula-
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Algorithm 2 Bisection algorithm for power minimization

Require: The maximum achievable rate in training phase R
(tp)
max and the required QoS ξ

δ =∞;

P
(total)
prev =∞;

Rmax = R
(tp)
max;

Rmin = 0;

R
(tp)
req = Rmax;

while δ > δthreshold do

Solve (3.39) with respect to λ
(tp)
req calculated in (3.36).

Calculate the required R
(dp)
req as in (3.42) and solve (3.40).

P
(total)
new =

∑G
g=1

∑K
k=1 P

(total)
g,k ;

if P
(total)
new ≤ P

(total)
prev then

Rmax = R
(tp)
req ;

P
(total)
prev = P

(total)
new ;

else

Rmin = R
(tp)
req ;

end if

R
(tp)
req = (Rmin +Rmax)/2;

δ = Rmax −Rmin;

end while

return P
(total)
new
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Table 3.1 Simulation parameters.

Parameter Value

Peak UL radio transmit power 23 dBm

Number of users 30

Shadowing standard deviation 10 dB

Penetration loss (indoor users) 20 dB

Noise figure 5 dB

Pathloss 131 + 42.8log10d

tion consists of one multi-antenna BS and 30 randomly-distributed users. In each iteration,

the locations of 30 users are randomly generated within the 200 meters radius around the

BS. Numerical results are averaged over 200 iterations. The large-scale fading coefficients

are modeled according to the 3GPP LTE standard [41]. Specifically, the large scale fading

is computed as βg,k = −131− 42.8log10dg,k + zl,k (dB), where dg,k denotes the distance from

the BS to the kth user of the gth group and zg,k is the standard deviation of the shadowing

variable. The noise figure of 5dB translates to a noise variance of -96dBm. The simulation

parameters are summarized in Table 3.1. In all simulation scenarios, the number of pilots

for time-offset and non-orthogonal pilot methods is τp, whereas, in order to serve the same

number of users, the orthogonal pilot method needs twice the number of pilots, i.e., 2τp.

Fig. 3.2 plots the maximum QoS that all users can be equally served by the BS. It can

be seen that using time-offset pilots yields a far better performance compared to using non-

orthogonal pilots. Moreover the performance gap between this two methods increases with

the number of antennas, from about 0.5 bits/sec/Hz at M = 100 to almost 1 bit/sec/Hz

at M = 500 for the case of τc = 100 symbols. The reason is that, when M increases, the

denominator in the SINR expression increases proportionally with M for non-orthogonal

pilots [19, 24], while it is not the case with time-offset pilots, thanks to the power control

algorithm represented in Section IV-B. Another remarkable observation is that the perfor-

mance curves with time-offset pilots are just slightly below that with orthogonal pilots for the

case τc = 100, while the performance curves with time-offset pilots are better when τc = 50.
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Figure 3.2 Max-min QoS versus the number of antennas (N = 30 users).

This is because when the coherence interval is short, the orthogonal pilot method has to

spend a larger portion of the coherence interval for channel estimation, while the time-offset

pilot method has a much longer duration for data transmission.

The achievable rates that the BS can equally serve all users for different coherence in-

tervals are illustrated in Fig. 3.3. Obviously, when τc → K × G, there are no time slots

available for data transmission in the orthogonal pilot case and the data rate goes to zero.

On the other hand, non-orthogonal and time-offset pilot methods can still provide SEs of up

to 1 and 1.5 bits/sec/Hz, respectively (when M = 400). When τc increases, the SE achieved

with the non-orthogonal pilot method tends to asymptotically approach 1.7 bits/sec/Hz for

400 antennas and 1.3 bits/sec/Hz for 200 antennas due to pilot contamination. In contrast,

the SEs achieved with time-offset and orthogonal pilot methods sharply increase with τc and

reach up to 2.6 bit/sec/Hz when τc = 120. It can also be seen that when the coherence in-

terval is shorter than about 70 symbols, using time-offset pilots yields a better performance

than using orthogonal pilots. The intersection value increases when the number of antennas

goes up (at τc = 66 for 200 antennas and τc = 70 for 400 antennas).
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Figure 3.3 Max-min QoS versus coherence interval (N = 30 users).

The max-min QoS values versus the number of users for different coherence lengths are

shown in Fig 3.4. The number of pilots is set as half of the number of users for time-offset

and non-orthogonal pilots. The max-min QoS value decreases when the number of users

increases because there are more interference sources. However, the time-offset pilot method

still outperforms the non-orthogonal pilot method. This is because interference cancellation

can be applied for data detection and better UL channel estimation can be obtained with

time-offset pilots compared to non-orthogonal pilots. Remarkably, when τc = 60 the time-

offset pilot method eventually shows a better performance compared to orthogonal pilots

when N ≥ 30 users. Again, the reason is that with orthogonal pilots, the system has to

spend a larger portion of time slots of pilots, which leaves a smaller number of time slots for

data transmission. Furthermore, the contribution from the training phase to the total UL

SE is presented in Table 3.2 for the case N = 30. When the coherence interval τc = 30, it

is obvious that the training phase contributes 100% of the total UL SE. The contribution in

total uplink SE of the training phase decreases when τc increases. When τc = 65 symbols,

the SE contribution from the training phase approximately approaches zero, which means

that no data is transmitted in the training phase. In such a case, the system is equivalent
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Table 3.2 Rate contribution from the training phase.

Coherence length (τc) 30 35 40 45 50 55 60 65 70 75

Percentage (%) 100 79.66 63.74 40.62 32.71 18.24 6.60 1.29 1.13 1.00

to the one that uses orthogonal pilots with the length of 2τp.
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Figure 3.4 Max-min QoS versus the number of users (M = 300 antennas).

Fig. 3.5 plots the cumulative distribution function (CDF) of the max-min QoS of all three

pilot methods, where the number of antennas is 500 for the non-orthogonal pilot method, and

300 for the other two methods. For the time-offset pilot method, proposed and random group

assignments are considered. As can be seen, by performing group assignment according to

large-scale fading information as described at the end of Section III, the time-offset pilot

method can provide a max-min QoS of more than 4.2 bits/Hz/s, which is far better than

when group assignment is performed randomly. In addition, the figure also shows that the

time-offset pilot method outperforms the non-orthogonal pilot method when employing the

same number of pilots.

Fig. 3.6 illustrates the optimal values of per-user average transmit power at the required

QoS of 1.5 bits/sec/Hz with τc = 80 and 120 symbols. As can be seen, the non-orthogonal
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pilot method enjoys a significant transmit power reduction when the number of antennas in-

creases. However, the power minimization problem is not always feasible with non-orthogonal

pilots. Specifically, when τc = 80, the problem is feasible for the number of antennas larger

than 400, whereas for τc = 120 the minimum number of antennas required to have a feasible

problem is 300. Similarly, the power consumption in the case of orthogonal pilots decreases

when the number of antennas increases, but much slower. The same trend can be observed

for time-offset pilots, where the power consumption drops noticeably when the number of

antennas increases from 200 to 300.
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Figure 3.5 Cumulative distribution function of the max-min QoS (N = 10 users,

τc = 120).

The impact of coherence interval on the optimal power allocation is illustrated in Fig.

3.7. With the required QoS of 1.5 bits/sec/Hz and the number of antennas is 200 or 400, the

power consumptions of all three pilot methods reduce when the coherence interval increases.

Specifically, the power consumption of the time-offset pilot method decreases by 10 mW when

the coherence interval increases from 60 to 120 symbols in both cases. With non-orthogonal

pilots, the power minimization problem is infeasible with M = 300 antennas. When M =

400, this problem is solvable only when τc ≥ 70 symbols. In contrast, the transmit power
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reduction of the orthogonal pilot method is not very significant. This reduction in power

consumption can be explained as a result of the lower required SINR when there are more

time slots for data transmission.
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Figure 3.6 Per-user average transmit power versus the number of antennas

(QoS=1.5 bit/Hz/s, N = 30 users).

Fig. 3.8 compares the change in per-user transmit power of the three pilot methods with

respect to different required QoS levels when the BS has 300 antennas and the coherence

interval is set at 60 and 120 symbols. Obviously, the transmit power increases when the

required QoS increases. It can be seen that the slope of the curve under the non-orthogonal

pilot method is much sharper than that of the two other methods. Noticeably, the curve

with the time-offset pilot method only increases slightly when the required QoS increases

from 0.5 to 1.5 bits/sec/Hz. The same tendency can also be observed in the case of the

orthogonal pilot method but the change is larger.

Finally, Fig. 3.9 compare the sum SE of all users in the system between the orthogonal

and proposed time-offset pilot methods. Although the per-user UL SE is lower with the

time-offset pilot method than the orthogonal pilot method, with a fixed number of pilots
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Coherent interval τc
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Figure 3.7 Per-user average transmit power versus coherence interval (QoS=1.5

bit/Hz/s, N = 30 users).
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Figure 3.8 Per-user average transmit power versus required QoS level (M = 300

antennas, N = 30 users).
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Coherence interval τc
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Figure 3.9 Comparison of the sum SE: N = 15 users with orthogonal pilots and

N = 30 users with time-offset pilots.

sequences (here τp = 15), the time-offset pilot method can serve twice the number of users

(30 users) as compared to the conventional orthogonal pilot method (15 users). As a result,

the sum SE is significantly larger with the time-offset pilot method than the orthogonal pilot

method.

3.6 Conclusions

This work investigated performance of time-offset pilots in the UL of a single-cell mul-

tiuser massive MIMO system. It is shown that the correlated interference, a consequence of

the correlation between pilots of one group and UL data of the other group, can be effectively

removed by applying successive interference cancellation. We further formulate power con-

trol problems for two different cost functions: max-min QoS and total power minimization.

Due to the signomial constraints, these two problems are NP-hard and hence very compu-

tationally demanding. Therefore, we proposed algorithms to find the suboptimal solutions

based on the bisection method, which solve a series of GPs. Numerical results have shown
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that the time-offset pilot method provides a far better performance than the non-orthogonal

pilot method. The time-offset pilot is also better than the orthogonal pilot method when

the coherence interval is short.
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3.A Appendix I

From the received signal in (3.26), a lower bound on the UL ergodic SE of the qth

user in the first group can be obtained based on the definition of the mutual information

between the original base-band signal x
(tp)
1,q and the received signal (after multiplied with the

corresponding combining vector) s1,q:

R
(tp)
1,q ≥ I

(
x

(tp)
1,q ; s1,q, Ĥ

)
, (3.43)

where Ĥ denote the knowledge of channel estimation at the BS. Under the input distribution

x1,q ∼ CN (0, 1), the mutual information can be equivalently expressed as

I
(
x

(tp)
1,q ; s1,q, Ĥ

)
= h(x

(tp)
1,q )− h

(
x

(tp)
1,q |s1,q, Ĥ

)
= log2(πe)− h

(
x

(tp)
1,q |s1,q, Ĥ

)
, (3.44)

where h(x
(tp)
1,q ) is the differential entropy and h

(
x

(tp)
1,q |s1,q, Ĥ

)
is the conditional entropy.

Because of the fact that the entropy does not change when subtracting a known variable,

h
(
x

(tp)
1,q |s1,q, Ĥ

)
can be bounded from above as

h
(
x

(tp)
1,q |s1,q, Ĥ

)
= h

(
x

(tp)
1,q − αs1,q|s1,q, Ĥ

)
≤h(x

(tp)
1,q − αs1,q)

≤log2

(
πeE

{
|x(tp)

1,q − αs1,q|2
})

,

(3.45)

where α is a deterministic scalar. The best upper bound for h
(
x

(tp)
1,q |s1,q, Ĥ

)
can be found by

minimizing the expectation in (3.45) with respect to α. Since the UL data signals of users in

the system are mutually independent, calculating the statistical average E
{
|x(tp)

1,q − αs1,q|2
}

over x
(tp)
g,k (g = 1, 2) leads to a quadratic function of α:

E
{
|x(tp)

1,q − αs1,q|2
}

= 1− 2αE

{
L∑
l=1

vH1,qh1,q

}√
ρ

(d)
1,q

+ α2

[ K∑
k=1

(
ρ

(d)
1,kE

{∣∣vH1,qh1,k

∣∣2}+ ρ
(p)
2,kE

{∣∣vH1,qh2,k

∣∣2})
− E

{∣∣∣Υ̂(IP)
1,q

∣∣∣2}+ σ2E
{
‖v1,q‖2

}]
.

(3.46)

The minimum value of this quadratic function can be easily obtained as:

E
{
|x(tp)

1,q − αs1,q|2
}
≥ 1

1 + SINR
(tp)
1,q

. (3.47)
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SINR
(tp)
1,q =

ρ
(d)
1,q

∣∣∣E{vH1,qh1,q

}∣∣∣2∑K
k=1

(
ρ
(d)
1,kE

{∣∣∣vH1,qh1,k

∣∣∣2}+ ρ
(p)
2,kE

{∣∣∣vH1,qh2,k

∣∣∣2})− E
{∣∣∣Υ̂(IP)

1,q

∣∣∣2}− ρ(d)1,q

∣∣∣E{vH1,qh1,q

}∣∣∣2 + σ2E {‖v1,q‖2}
.

(3.48)

where SINR
(tp)
1,q is defined in (3.48). By choosing this value, the tightest lower bound of

I
(
x

(tp)
1,q ; s1,q, Ĥ

)
is obtained. Finally, plugging the result from (3.44) to (3.47) into (3.43)

we obtain the lower bound for UL SE that the qth user of the first group can achieve as in

Theorem 1.

With the MRC, the combining vector for the qth user of the first group is v1,q = ĥ1,q,

and we can calculate the closed-form SINR expression as follows.

The expected squared norm of the Rayleigh-distributed channel between the BS and the

qth user is

E
{
‖v1,q‖2

}
= E

{
‖ĥ1,q‖2

}
= γ1,qM. (3.49)

and

E
{
vH1,qh1,q

}
= E

{
ĥH1,q(ĥ1,q + e1,q)

}
= E

{
‖ĥ1,q‖2

}
= γ1,qM , (3.50)

The expectation E
{∣∣vH1,qh2,k

∣∣2} is:

E
{∣∣vH1,qh2,k

∣∣2} = γ1,qβ2,kM +
ρ

(d)
2,kρ

(p)
1,qτpβ

2
1,q(

ρ
(p)
1,qτpβ1,q +

∑K
k=1 ρ

(d)
2,kβ2,k + σ2

)2E
{
‖h2,k‖4}

= γ1,qβ2,kM +
ρ

(d)
2,kρ

(p)
1,qτpβ

2
1,q(

ρ
(p)
1,qτpβ1,q +

∑K
k=1 ρ

(d)
2,kβ2,k + σ2

)2β
2
2,k

Γ(M + 2)

Γ(M)

= γ1,qβ2,kM +
ρ

(d)
2,k

ρ
(p)
1,q

τpγ
2
1,q

(
β2,k

β1,q

)2

M(M + 1).

(3.51)

Consider the interference within the first group, when k = q, one has:

E
{∣∣vH1,qh1,q

∣∣2} = E
{∣∣∣vH1,q (ĥ1,q + e1,q

)∣∣∣2} = E
{∣∣∣vH1,qĥ1,q

∣∣∣2}+ E
{∣∣vH1,qe1,q

∣∣2}
= γ2

1,q(M +M2) + γg′,q (β1,q − γ1,q)M

= (γ1,qM)2 + β1,qγ1,qM.

(3.52)
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In the case when k 6= q, one has:

E
{∣∣vH1,qh1,k

∣∣2} = γ1,qβ1,kM. (3.53)

With Υ̂
(IP)
1,q being defined as in (3.17), the reduced amount of interference is:

E
{∣∣∣Υ̂(IP)

1,q

∣∣∣2} =
K∑
k=1

ρ
(p)
2,k

ρ
(d)
2,k

ρ
(p)
1,qτp

γ2
1,q

(
β2,k

β1,q

)2

M2. (3.54)

Substituting (3.49) to (3.54) into (3.48), one obtains the SINR as in (3.21).
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In the previous chapter, the use of time-offset pilots is investigated and compared with

synchronous pilots in a single-cell massive MIMO system. Despite the fact that employ-

ing successive interference cancellation can bring significant performance improvement, the

correlated interference, which grows proportionally with the number of antennas, cannot be

eliminated for all users. Motivated by this shortcoming, in this chapter, we extend our work

to a cell-free massive MIMO system with the aid of NOMA in the form of nonorthogonal pi-

lots. Considering the structure of a cell-free network, in which there is not cell boundary and

a user can be simultaneous served by multiple base stations, we propose an optimal backhaul

combining method to maximize the signal-to-interference-plus-noise ratios for users in the

system. It is shown that the proposed scheme is capable of eliminate correlated interference

for all users by effectively combining the received signals from multiple base stations at the

backhaul central processing unit.
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Max-Min QoS Power Control in Generalized Cell-Free

Massive MIMO-NOMA with Optimal Backhaul

Combining

The Khai Nguyen, Ha H. Nguyen, and Hoang Duong Tuan

Abstract

This paper studies the uplink (UL) transmission of a generalized cell-free massive multiple-

input multiple-output (massive MIMO) system in which multiple base stations (or access

points), each equipped with a multiple-antenna array and connected to a central processing

unit (CPU) over a backhaul network, simultaneously serve multiple users in a cell-free service

area. The paper focuses on the non-orthogonal multiple access (NOMA) approach for shar-

ing pilot sequences among users. Unlike the conventional cell-free massive MIMO-NOMA

systems in which the UL signals from different access points are equally combined over the

backhaul network, this paper first develops an optimal backhaul combining (OBC) method

to maximize the UL signal-to-interference-plus-noise ratio (SINR). It is shown that, by using

OBC, the correlated interference can be effectively mitigated if the number of users assigned

to each pilot sequence is less than or equal to the number of base stations (BSs). As a re-

sult, the cell-free massive MIMO-NOMA system with OBC can enjoy unlimited performance

when the number of antennas at each BS tends to infinity. A closed-form SINR expression

is derived under Rayleigh fading and used to formulate a max-min quality-of-service (QoS)

power control problem to further enhance the system performance. To deal with the NP-

hardness of the concerned optimization problem, a successive inner approximation technique

is applied to convert the original problem into a series of convex optimizations, which can be

solved iteratively. In addition, a user grouping algorithm is also developed and shown to be

better than random user grouping and a grouping method recently proposed in the literature.

Numerical results are presented to corroborate the analysis and demonstrate the superiority

of the proposed optimal backhaul combining over both equal-gain backhaul combining and

zero-forcing backhaul combining.
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4.1 Introduction

Over the last decade, the demand for high-speed wireless communication services has

grown tremendously. The next generations of communication systems, the fifth-generation

(5G) and beyond, require 1000 times higher network capacity. This presents a huge challenge

for the limited frequency resource. Among many potential enabling techniques, massive

multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) have

emerged as key solutions to address the problem of limited spectrum [1–4].

NOMA exploits the power domain to enable users to effectively share the same system’s

resources (such as frequency, time slots and spreading codes) [2,5–8]. By allocating different

power levels to users and using superposition coding and successive interference cancellation

(SIC), NOMA allows the network’s resources to be efficiently used and hence increases the

number of connections, as well as the network’s sum spectral efficiency (SE) [2, 5–10].

On the other hand, by using hundreds antennas, a massive MIMO BS can serve multiple

users in the same time-frequency resources with very high spectral efficiency, thanks to its

high array gain and robustness against noise and interference [11–13]. Recently, a new setup

of massive MIMO networks, called cell-free massive MIMO, has been shown to significantly

enhance the network’s SE as well as energy efficiency (EE) [14–18]. Cell-free networks imply

that there is no cell classification, no cell boundaries and a user can be served by multiple

BSs at a time and the signals received at BSs are gathered, combined and processed by a

backhaul network [14]. In particular, the conventional cell-free massive MIMO setup has a

massive number of single-antenna “base stations”, which are more appropriately called access

points (APs), that are geographically distributed over the service area. The cell-free setup

is shown to bring up to 5 folds better performance as compared to the small-cell setup [14].

Given the distinctive benefits of massive MIMO and NOMA, the integration of these

two techniques is expected to inherit important advantages of both techniques: high SE

and massive connectivity [19, 20]. In [21], the authors propose a limited-feedback NOMA

scheme. By decomposing a massive MIMO system into multiple single-input single-output

NOMA channels, system design is significantly simplified. In [22], the user pairing problem
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for superposition coding in massive MIMO-NOMA is considered. By proper scheduling the

detection order in each group and designing the interference cancellation matrix, an excellent

sum rate can be achieved. The incorporation of massive MIMO, NOMA and interleaved

division-multiple access (IDMA) is studied in [23]. This scheme is proved to be capable of

offering high throughput and robustness against pilot contamination. The authors in [24]

propose and analyze performance of a new convergent Gaussian message passing (GMP)

multi-user detection method (called scale-and-add GMP) for a coded massive MIMO-NOMA

system under the scenario that the number of users is larger than the number of BS antennas

(i.e., an user overloaded scenario). The NOMA approach in pilot design for massive MIMO is

investigated in [25]. In that paper, UL pilot and data transmission are scheduled in parallel,

which allows the system to serve as many users as the length of a coherence interval. The

authors in [26] exploit the channel’s covariance matrix to group users into clusters. Thanks

to the linear-independence property between clusters’ covariance matrices [27], inter-cluster

interference can be mitigated while data detection within each cluster can be improved with

SIC.

All the aforementioned works examine single-cell and multi-cell systems. There are only

a few studies of NOMA under the cell-free setup. Specifically, the application of NOMA

in cell-free massive MIMO is considered in [28, 29] in terms of reusing pilots. By grouping

users into clusters, in which users in the same cluster use the same pilot sequence, this

scheme can serve significantly more users than the conventional orthogonal multiple-access

(OMA) method. However, the trade-off is a decrease in the sum rate due to the intra-cluster

interference. To maximize the achievable rate that can be equally served to all users, a

NOMA/OMA mode selection for cell-free massive MIMO is proposed in [30]. This hybrid

technique, when combined with SIC, can yield better performance as compared to each

individual single-mode (NOMA or OMA) system.

For a cell-free massive MIMO system, there are generally two stages of signal combin-

ing: one at each BS for signals received over multiple antenna elements, and one at the

backhaul central processing unit (CPU) for signals sent by all BSs. To avoid confusion,

signal combining taking place at the backhaul CPU is called backhaul combining (BC).
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Existing works in cell-free massive MIMO consider either equal-gain backhaul-combining

(EBC) [14,15,17,31] or zero-forcing backhaul-combining (ZFBC) [18,32]. In particular, the

ZFBC method in [18,32] is performed on the signals that are forwarded directly from all the

antennas of all BSs to the backhaul CPU (i.e., no combining is performed at each BS). Such

a method requires the instantaneous channel state information (CSI) from all users to all

BSs in the system, which presents a very large overhead for the backhaul network.

Against the above background, we investigate in this paper the UL data transmission of

a generalized cell-free massive MIMO-NOMA network with two stages of signal combining.

In the first state, the signals received at each BS are combined using the maximum-ratio-

combining (MRC) technique. The resulting signals from all the BSs are then optimally

combined over the backhaul network. The considered cell-free massive MIMO setup becomes

the conventional cell-free massive MIMO system when the number of BSs (or APs) is massive

and each AP has a single antenna [14]. On the other hand, it becomes a cooperative massive

MIMO (or network MIMO) system when there are few BSs, each equipped with a massive

antenna array [33,34]. It is pointed out that, while the system model considered in this paper

is similar to the one in [14,31], an important difference is that OBC is developed and employed

instead of the equal-gain backhaul-combining (EBC). Furthermore, for completeness and to

illustrate the superiority of the OBC method, we also develop a ZFBC method that, similar

to the OBC, does not require the instantaneous CSI at the backhaul CPU. As such, this

ZFBC is markedly different than the ZFBC method in [18,32].

The optimal backhaul-combining method developed in this paper is to maximize the worst

UL SINR among all users in the system without the requirement for instantaneous CSI at

backhaul CPU. The analysis focuses on a NOMA scenario, where users are assigned into

groups and users in the same group share the same pilot sequence. Such a NOMA approach

in pilot design was also employed in [35] and allows more users to be served as compared

to OMA. This is very desirable for a cell-free system, in which the number of users tends

to be very large due to the large co-coverage of multiple BSs and reusing pilot is inevitable.

This approach is especially effective in the scenario that coherence interval is short (e.g.,

due to high velocity of mobile users), since there would be a short interval available for
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data transmission if orthogonal pilots are used. The technique of SIC is carried out within

each group to improve the achievable UL SE. Although optimal signal combining has been

widely studied in adaptive antenna arrays [36], its application in cell-free massive MIMO

was only recently examined in [16]. However, no analytical expression for the combining is

given in [16]. Instead, the authors formulate an optimal combining optimization problem,

and refine it iteratively. As a result, the expression for the achievable UL rate is a function of

both transmit power and combining coefficients. In contrast, we provide a tight closed-form

lower-bound expression for the achievable UL SE that depends on the users’ UL transmit

powers only. The closed-form expression reveals many useful observations regarding the

performance of a cell-free massive MIMO-NOMA system.

Focusing on the case that there are a few BSs, each equipped with a massive number of

antennas (i.e., the cell-free cooperative MIMO setup), the paper also examines the asymptotic

behavior of UL SINR when the number of antennas goes to infinity. It was shown in [12,17,37]

that correlated interference, as a consequence of using non-orthogonal pilots, cannot be

asymptotically mitigated by using a large antenna array at each BS and causes saturation

of the system performance. Our recent work concerning time-offset pilots in [35] shows that

the correlated interference caused by transmitting pilots simultaneously with data in the

training phase can be effectively removed with SIC thanks to the knowledge of all pilot

sequences at the BS. However, in the data phase, SIC cannot be applied since the UL data

is unknown at the BS. As a consequence, performance in the data phase is still saturated

when the number of antennas increases. It shall be shown in this paper that, by using OBC,

performance of a cell-free massive MIMO-NOMA system increases proportionally with the

number of antennas.

Finally, the paper formulates and solves a power control problem to optimize the system’s

performance. Unlike most of existing works in NOMA that focus on the maximization of

the sum SE, we formulate a max-min QoS optimization problem that maximizes the QoS

value that can be equally served to all users in the network. Due to the non-convexity of

such an optimization problem, an inner approximation algorithm is developed to solve the

optimization problem iteratively. In each iteration, the non-concave cost function is approx-
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imated by a concave one so that an alternative convex optimization problem is obtained,

whose optimal solution is feasible for the original problem. The proposed method is shown

to converge to a suboptimal point of the original problem.

In summary, the main contributions of the paper are as follows1:

• We develop the optimal backhaul combining method in a NOMA cell-free massive

MIMO system that does not require the instantaneous CSI. In addition to the optimal

combining weight vector, the resulting uplink SINR expression is obtained in a closed

form as a function of the transmit powers.

• We perform asymptotic analysis of the system’s uplink SINR under different back-

haul combining methods and show that, unlike EBC, the system’s performance of

both OBC and ZFBC is not saturated when the number of antennas tends to infinity.

Nevertheless, OBC always outperforms ZFBC.

• We propose a user grouping method to further improve the system’s performance. The

proposed user grouping algorithm is based on minimizing the similarity between large-

scale fading profiles of users within a group, which helps to reduce pilot contamination

and correlated interference.

• We formulate and solve a max-min QoS power control problem to optimize the system’s

performance. Due to the non-concave nature of the cost function, an inner approxima-

tion is applied to solve the power control problem iteratively, whose solution converges

to a suboptimal solution of the original problem.

The remainder of this paper is organized as follows. Section 4.2 introduces the system model,

including channel estimation and uplink data transmission. Section 4.3 investigates derives

a closed-form expression for the optimal combining vector as well as a lower bound of the

ergodic uplink spectral efficiency. Section 4.4 performs asymptotic analysis and compares

performance of the OBC method to that of the EBC and ZFBC methods. Section 4.5

1Some preliminary results are briefly presented in a conference paper [38].
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proposes a user grouping algorithm to enhance the system’s performance. Section 4.6 studies

power optimization problems. Section 4.7 presents simulation results and discussion. Section

4.8 concludes the paper.

4.2 System Model

4.2.1 Generalized Cell-Free Massive MIMO System

Figure 4.1 System model.

Consider a generalized cell-free massive MIMO system as illustrated in Fig. 4.1, which

has L BSs, each equipped with M antennas, to serve 2K users. All BSs are connected to a

backhaul network over which the signals from all L BSs are sent to and processed at a CPU.

As discussed before, such a model becomes the conventional cell-free massive MIMO system

when L is very large and M = 1 [14], whereas it is a cooperative MIMO system when L is

small and M is very large [33, 34]. Similar to [14, 31], in order to accommodate more users

with a fixed number of mutually-orthogonal pilot sequences, the users are arranged into K

groups with two users in each group who share the same pilot sequence. The pilot sequences

assigned to different groups are pairwise orthogonal. The channels between BSs and users
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are assumed to be flat fading, mutually independent and stay constant within a coherence

interval of τc symbols satisfying τc ≥ K.

4.2.2 Channel Estimation

Assuming that the system works in the time-division duplex (TDD) mode, a set of K

length-τp pilot sequences is used for UL channel estimation. With τp symbols used for

pilot, the maximum number of pairwise orthogonal pilots available is τp. As a result, in

order to have enough orthogonal pilots to assign to all K groups, we set τp = K. These

pilots are collectively represented by a τp × K pilot matrix Φ = [φ1,φ2, . . . ,φK ] which

satisfies ΦHΦ = τpIK . With 2 users using the same pilot sequence and different groups using

orthogonal pilots, the signal matrix Yl ∈ CM×τp received at the lth BS over τp time slots

(symbols) is given as:

Yl =
K∑
k=1

(
hl,1,k

√
p

(p)
1,kφ

H
k + hl,2,k

√
p

(p)
2,kφ

H
k

)
+ Nl, (4.1)

where p
(p)
g,k, g = 1, 2, denotes pilot power, hl,g,k ∼ CN (0, βl,g,kIM) is the uncorrelated Rayleigh

fading channel between the gth user of the kth group and the lth BS, and βl,g,k is the large

scale fading coefficient. Here, Nl ∈ CM×τp represents AWGN noise.

To estimate the channel for users in the qth group, the lth BS multiplies the received

signal with the corresponding pilot of the qth group. This results in:

Yl
φq
‖φq‖

= hl,1,q

√
p

(p)
1,qτp + hl,2,q

√
p

(p)
2,qτp + Nl

φq
‖φq‖

. (4.2)

Then, the estimate of hl,g,q (g = 1, 2) can be obtained by using the minimum mean

squared error (MMSE) estimator as [39]:

ĥl,g,q =
cov

{
hl,g,q,Yl

φq

‖φq‖

}
var
{

Yl
φq

‖φq‖

} Ylφq
‖φq‖

= µl,g,q
Ylφq
‖φq‖

(4.3)

where µl,g,q =

√
p
(p)
g,qτpβl,g,q

p
(p)
1,qτpβl,1,q+p

(p)
2,qτpβl,2,q+σ2

UL

. As a result, the estimated channel is a random vector

with distribution ĥl,g,q ∼ CN (0, γl,g,qIM), where

γl,g,q =
p

(p)
g,qτpβ

2
l,g,q

p
(p)
1,qτpβl,1,q + p

(p)
2,qτpβl,2,q + σ2

UL

. (4.4)
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Furthermore, the channel estimation error el,g,q = hl,g,q − ĥl,g,q is independent of the esti-

mated channel and distributed as el,g,q ∼ CN (0, (βl,g,q − γl,g,q)IM).

4.2.3 UL Data Transmission

Once channel estimation has been acquired in the training phase, uplink data transmis-

sion is carried out. As discussed before, in a cell-free massive MIMO system a user can be

served by multiple BSs. The signals received by multiple antennas at each BS are first com-

bined. Then the combined signal is sent by each BS over the backhaul network to the CPU.

At the CPU, the multiple signals sent by all BSs are then combined again (i.e., backhaul

combining) for detecting each user’s signal.

The UL data signal received at the lth BS over each symbol time can be presented as:

yl =
2∑
g=1

K∑
k=1

hl,g,k
√
pg,kxg,k + nl, (4.5)

where pg,k is the UL transmit power of the gth user of the kth group, xg,k represents its

data signal which has zero mean and unit power and nl denotes AWGN noise. In order to

extract the signal of the first user of the qth group, the signals received by different antenna

elements of the BS are combined using the MRC rule. This is achieved by multiplying yl

with the MRC combining vector vl,1,q = ĥl,1,q, which yields:

κl,1,q = vHl,1,q

(
2∑
g=1

K∑
k=1

hl,g,k
√
pg,kxg,k + nl

)
. (4.6)

The signal components sent by all L BSs over the backhaul network are received by the

CPU. Assuming error-free transmission over the backhaul network, the L signal components

received at the CPU are collected in a L × 1 signal vector κ1,q = [κ1,1,q, κ2,1,q, . . . , κL,1,q]
T.

These L components are then combined together using a L× 1 weighting vector w1,q, which

leads to:

r1,q = wT
1,qκ1,q =

L∑
l=1

wl,1,qv
H
l,1,qyl. (4.7)

Our objective is to find the OBC weights to maximize the SINR for each user. This is

accomplished in the next section.
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4.3 Optimal Backhaul Combining

Finding the OBC weights to maximize SINR amounts to finding the covariance matrix

of the signal vector κ1,q. In essence, this means that we need to find the correlation between

any two components in κ1,q.

First, decompose the signal in Eqn. (4.6) as:

κl,1,q = E
{
vHl,1,qhl,1,q

}√
p1,qx1,q︸ ︷︷ ︸

DSl,1,q- Desired signal

+
(
vHl,1,qhl,1,q − E

{
vHl,1,qhl,1,q

})√
p1,qx1,q︸ ︷︷ ︸

CUl,1,q- Channel gain uncertainty

+ vHl,1,qhl,2,q
√
p2,qx2,q︸ ︷︷ ︸

IwGl,1,q- Interference within group

+
2∑
g=1

K∑
k=1,k 6=q

vHl,1,qhl,g,k
√
pg,kxg,k︸ ︷︷ ︸

IoGl,1,q- Interference from other group

+ vHl,1,qnl︸ ︷︷ ︸
Nl,1,q- Noise

,
(4.8)

The decomposition of the received signal in Eqn. (4.8) has an intuitive structure. The

first component, DSl,1,q, is the desired signal, which experiences a constant gain sl,1,q =

E
{
vHl,1,qhl,1,q

}√
p1,q. Due to imperfect CSI at the BSs, the second term CUl,1,q is the inter-

ference originating from the desired signal itself, which is independent from the first term.

The last three terms represent interference from other users and thermal noise [14–16,40].

The analysis in Appendix 4.A reveals that, except the third component in Eqn. (4.8),

all other components are uncorrelated across BSs. The third component is correlated across

the BSs, i.e., the correlation between IwGl,1,q and IwGl′,1,q is non-zero whenever l 6= l′. To

see what the correlation value is, expand the term IwGl,1,q as:

IwGl,1,q = µl,1,qh
H
l,1,qhl,2,q

√
p

(p)
1,qp2,qτpx2,q + µl,1,qE

{
hH
l,2,qhl,2,q

}√
p

(p)
2,qp2,qτp︸ ︷︷ ︸

cl,1,q

x2,q

+ µl,1,q
(
hH
l,2,qhl,2,q − E

{
hH
l,2,qhl,2,q

})√
p

(p)
2,qp2,qτpx2,q

+ µl,1,q

(
Nl

φq
‖φq‖

)H

hl,2,q
√
p2,qx2,q.

(4.9)

In Eqn. (4.9), the second term is correlated across the BSs since:

cov
{
cl,1,qx2,q, cl′1,qx2,q

}
= µl,1,qµl′ ,1,qp

(p)
2,qp2,qτpβl,2,qβl′ ,2,qM

2,∀l 6= l
′
, (4.10)

whereas all other components are uncorrelated across BSs. As a result, all the interfer-

ence and noise terms in κ1,q can be grouped into two length-L vectors: the uncorrelated
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interference-plus-noise u1,q, and the correlated interference-plus-noise c1,q. Specifically,

κ1,q = s1,qx1,q + c1,qx2,q + u1,q, (4.11)

where s1,q = [s1,1,q, s2,1,q, . . . , sL,1,q], and the elements of u1,q and c1,q are as follows:

ul,1,q = CUl,1,q + IoGl,1,q + Nl,1,q + IwGl,1,q − µl,1,qE
{
hH
l,2,qhl,2,q

}√
p

(p)
2,qp2,qτpx2,q, (4.12)

cl,1,q = µl,1,qE
{
hH
l,2,qhl,2,q

}√
p

(p)
2,qp2,qτp. (4.13)

Next, it is convenient to normalize (i.e., scale) the signal vector in Eqn. (4.11) so that the

uncorrelated interference-plus-noise term, ul,1,q is normalized to ûl,1,q, which has a unit power

(i.e., E
{
|ûl,1,q|2

}
= 1). This is achieved by simply diving the lth element by E {|ul,1,q|}. It

follows from the analysis in Appendix 4.D that

E
{
|ul,1,q|2

}
=

(
2∑
g=1

K∑
k=1

pg,kβl,g,k + σ2
UL

)
γl,1,qM,

E
{
|sl,1,q|2

}
= p1,qγ

2
l,1,qM

2,

E
{
|cl,1,q|2

}
= p2,q

p
(p)
2,q

p
(p)
1,q

(
γl,1,q

βl,2,q
βl,1,q

)2

M2.

The normalization produces the following equivalent signal vector:

κ̂1,q = ŝ1,qx1,q + ĉ1,qx2,q + û1,q, (4.15)

where E
{
û1,qû

H
1,q

}
= IL. Furthermore, it can be shown that the variance of the normalized

effective channel gain ŝl,1,q is exactly the signal to uncorrelated-interference-plus noise ratio

of the first user of the qth group at the lth BS:

E
{
|ŝl,1,q|2

}
=

Mp1,qγl,1,q∑2
g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

, SNRl,1,q. (4.16)

Likewise, the variance of each element in the normalized correlated interference term ĉl,1,q

is

E
{
|ĉl,1,q|2

}
=

Mp2,q
p
(p)
2,q

p
(p)
1,q

γl,1,q

(
βl,2,q
βl,1,q

)2

∑2
g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

. (4.17)
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If the pilot power is set at the maximum UL transmit power, i.e., p
(p)
g,q = pmax,∀g, q, we

obtain:

E
{
|ĉl,1,q|2

}
=

Mp2,qγl,2,q∑2
g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

, SNRl,2,q, (4.18)

which is exactly the signal-to-uncorrelated-interference ratio of the second user of the qth

group at the lth BS.

Finally, the covariance matrix of the total interference-plus-noise in Eqn. (4.15) is given

as

R̂1,q = E
{

(κ̂1,q − ŝ1,qx1,q) (κ̂1,q − ŝ1,qx1,q)
H
}

= E
{
û1,qû

H
1,q + ĉ1,qĉ

H
1,q

}
= ĉ1,qĉ

H
1,q + IL. (4.19)

Following [36], the optimal combining coefficients to maximize the individual user’s SINR

and the corresponding effective SINR expression are given in Theorem 1.

Theorem 1: The combining vector that maximizes the SINR of the combined signal in

Eqn. (4.7), in which the desired signal vector is ŝ1,qx1,q and the covariance matrix of the

total interference-plus-noise component is R̂1,q, is

w
(OBC)
1,q = αR̂−1

1,qŝ1,q = α
(
ĉ1,qĉ

H
1,q + IL

)−1
ŝ1,q, (4.20)

where α is a constant. Furthermore, the resulting maximum effective SINR is given as:

SINR
(OBC)
1,q = ŝH1,qR̂

−1
1,qŝ1,q =

L∑
l=1

SNRl,1,q −

(∑L
l=1

√
SNRl,1,q

√
SNRl,2,q

)2

1 +
∑L

l=1 SNRl,2,q

. (4.21)

Proof: Please see Appendices 4.B and 4.C. �

Corollary 1: By considering uncorrelated Gaussian noise as the worst-case distribution

of noise and interference [14–16,40], a lower bound on the UL spectral efficiency of the first

user of the qth group with OBC is given as:

R
(OBC)
1,q ≥

(
1− τp

τc

)
log2

(
1 + SINR

(OBC)
1,q

)
. (4.22)

It is pointed out that the above lower bound on spectral efficiency is based on the property

of the mutual information as established in [41]. Such a lower bound is optimized so that
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the gap between this lower bound and the actual value is minimized. This lower bound is

widely used for performance analysis in massive MIMO research (e.g., see references [11–18,

25–31,37,40–42]). It shall also be used as the QoS metric for power control optimization in

Section 4.6, as well as performance analysis and comparison in Section 4.8.

Remark 1: The system model considered in this section can be extended to accom-

modate more than two users in one group, which allows more users to be served by the

system [2, 5–7, 10]. However, there are three main drawbacks of assigning more than two

users into one group. First, having more users in one group makes it complicated to find

a closed-form SINR expression for the UL SE with OBC because of the high complexity

in the structure of the eigenvalues of the interference-plus-noise covariance matrix. Second,

as shown in Appendix 4.F, in order to keep the SINR proportional to the number of BSs’

antennas, the number of users in each group should not exceed the number of participating

BSs. Since the last user to detect data in each group will have to decode and subtract the

signals from all other users, the third disadvantage is the larger delay and signal processing

overhead. As a result, assigning 2 users in a group appears most attractive and practical.

Although all the analysis and expressions obtained in the previous subsections are for

the first user in each group, the same results apply to the second user in the group as well.

In case the detection of one user (say, without loss of generality, the first user) is very

good and can be assumed ideal, then it is possible to apply SIC to subtract the detected

signal of the first user from the UL signal before detecting the second user in each group.

This is a reasonable assumption and the SIC technique is commonly used in various works

on massive MIMO-NOMA [21, 26]. As can be seen from Eqn. (4.13), by subtracting the

correlated interference term, the correlation matrix of the normalized interference-plus-noise

component for the second user of the qth group becomes an identity matrix, i.e., R̂2,q =

E
{
û2,qû

H
2,q + ĉ2,qĉ

H
2,q

}
= IL. It then follows that the OBC vector for the second user of the

qth group simplifies to:

w
(SIC−OBC)
2,q = αR̂−1

2,qŝ2,q = αI−1
L ŝ2,q = αŝ2,q, (4.23)

which is equivalent to a maximum ratio combining method. As a result, the SINR of the
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SINR
(EBC)
1,q

=
Mp1,q

(∑L
l=1 γl,1,q

)2

∑L
l=1

∑2
g=1

∑K
k=1 pg,kβl,g,kγl,1,q +Mp2,q

p
(p)
2,q

p
(p)
1,q

(∑L
l=1 γl,1,q

βl,2,q
βl,1,q

)2

+ σ2
UL

∑L
l=1 γl,1,q

.
(4.25)

second user of the qth group with SIC becomes:

SINR
(SIC−OBC)
2,q =

L∑
l=1

SNRl,2,q. (4.24)

Remark 2: If users are assigned mutually orthogonal pilot sequences (i.e., in an OMA

cell-free massive MIMO system), correlated interference does not exist, i.e., R̂1,q = R̂2,q =

IL,∀q. In this case, SIC is not needed and the optimal combining vector and the correspond-

ing SINR are similar to Eqns. (4.23) and (4.24), respectively.

4.4 Asymptotic Analysis

4.4.1 Equal-Gain Backhaul Combining and Zero-Forcing Back-

haul Combining

In order to illustrate the advantage of OBC in the considered cell-free massive MIMO-

NOMA system, it is of interest to compare its performance with those of EBC and ZFBC.

First, with EBC, the combining vector at the CPU is simply w
(EBC)
g,k = [1, 1, . . . , 1]T.

Appendix 4.D shows that the resulting SINR is given as in Eqn. (4.25), shown on top of the

next page.

On the other hand, the principle of ZFBC is to null the interference in the received signal.

It follows from Eqn. (4.15) that the ZFBC can be obtained as:[
w

(ZFBC)
1,k ,w

(ZFBC)
2,k

]
= Θ

(
ΘHΘ

)−1 ∈ CL×2, (4.26)

where Θ = [ŝ1,q, ĉ1,q] ∈ CL×2. With this combining vector, Appendix 4.E shows that the
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resulting SINR is given as:

SINR
(ZFBC)
1,q =

L∑
l=1

SNRl,1,q −

(∑L
l=1

√
SNRl,1,q

√
SNRl,2,q

)2

∑L
l=1 SNRl,2,q

. (4.27)

4.4.2 Asymptotic Analysis

The asymptotic analysis in this section focuses on the cell-free cooperative MIMO setup,

i.e., when L is small and M → ∞. Similar results can be obtained for the conventional

cell-free massive MIMO setup (i.e., M = 1 and L→∞).

First, for EBC, by dividing both the numerator and denominator of Eqn. (4.25) to M ,

both the desired signal power and interference power from users in the same group remain

finite when the number of antennas goes to infinity. This means that both the SINR and

the UL SE are saturated when the number of antennas grows without bound. The saturated

value of the SINR can be found by calculating the limit of Eqn. (4.25) when M →∞:

lim
M→∞

SINR
(EBC)
l,1,q =

p1,q

(∑L
l=1 γl,1,q

)2

p2,q
p
(p)
2,q

p
(p)
1,q

(∑L
l=1 γl,1,q

βl,2,q
βl,1,q

)2
. (4.28)

The above result can be explained by the fact that both the desired signal DSl,1,q and cor-

related interference originating from pilot contamination are proportional with the number

of antennas. As a consequence, when the number of antennas goes to infinity, the SINR

achieved with EBC is saturated around the value in Eqn. (4.28). It should be also noted

that the same effect happens with the max-SNR association method, where only one BS

(with the highest channel quality) serves each user [31, 41]. By plugging L = 1 into (4.28),

it can be seen that the resulting SINR is also bounded at a finite value.

For the case of OBC, with some simple manipulations, the SINR of the first user of the

qth group in Eqn. (4.21) can be rewritten as in Eqn. (4.29).

It can be easily seen that the first terms in both the numerator and the denominator

of Eqn. (4.29) are proportional to M . Meanwhile, the second term of the numerator is in

the form of a product of M2 with a nonnegative scalar, say ν1,q (corresponding to the first

81



SINR
(OBC)
1,q

=

∑L
l=1 SNRl,1,q + 1

2

∑L
l=1

∑L
l′=1

(√
SNRl,1,q

√
SNRl′ ,2,q −

√
SNRl′ ,1,q

√
SNRl,2,q

)2

1 +
∑L

l=1 SNRl,2,q

.
(4.29)

user of the qth group). As a result, if ν1,q 6= 0, the SINR increases without bound when the

number of antennas goes to infinity, i.e.,

lim
M→∞

SINR
(OBC)
1,q =∞. (4.30)

Similar analysis shows that ZFBC can also enjoy unlimited performance like OBC when

M →∞. However, it is simple to see that the SINR corresponding to OBC in Eqn. (4.29)

is always higher than the SINR corresponding to ZFBC in Eqn. (4.27).

4.5 User Grouping

User grouping plays an important role in NOMA. In general, performance gain with

NOMA can only be obtained when the channel conditions of users are different [2]. Moreover,

when reusing pilots, the distance between users using the same pilot strongly affects the

quality of channel estimation [12, 14, 17]. Therefore, an optimal user group assignment is

desired to further improve the system’s performance.

Unfortunately, optimization of user grouping is a combinatorial problem and hence, can-

not be solved in polynomial time. In the conventional NOMA approach, user grouping and

decoding order are usually based on large-scale fading. In particular, for a single-cell system,

users with the best channels are usually grouped with users with the worst channels. Within

each group, the users whose channels are better (closer to the BS) will have their signals

detected first, followed by users having the next best channels, and so on. As a result,

an arbitrary user can remove the known UL signals of all users which have been already

detected before by using SIC. However, this approach is not possible in the cell-free setup,

where it is not straightforward to determine which users have better channels because each

user communicates with multiple BSs.
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Furthermore, in massive MIMO, users with similar channel conditions tend to severely

contaminate each other’s channel estimation when using the same pilot. For the case of cell-

free massive MIMO where there are multiple BSs, strong pilot contamination appears when

assigning the same pilot for users in close vicinity of each other [12,14,17,26,42]. In NOMA,

this problem is usually addressed by exploiting the similarity in channel statistics among

users. For example, in [26], the authors propose a grouping method based on the similarity

among the channel matrices of users in a cell to the serving BS. In a NOMA cell-free system,

the authors in [42] utilize the Jaccard coefficient to calculate the similarity between each

user’s large-scale fading profile with a predetermined centroid. Then users having strong

similarity coefficients will be assigned into different groups.

For the system model considered in this paper, in order to mitigate the effect of pilot

contamination, the similarity of large-scale fading profiles of two users within a group shall

be minimized. Before acquiring any group assignment, define βi ∈ CL×1 as the vector

containing the large-scale fading coefficients from the ith user to all L BSs (for simplicity,

the group index has been dropped). Inspired by the channel matrix similarity in [26,27], the

similarity of the large-scale fading profiles of the ith and the jth users can be quantified by

the following correlation coefficient:

λi,j =

∥∥∥βiβH
i

[
βjβ

H
j

]H∥∥∥∥∥βiβH
i

∥∥∥∥βjβH
j

∥∥ , (4.31)

For i = j, the correlation coefficient equals 1, i.e., λi,i = 1,∀i. For i 6= j, the smaller λi,j is,

the less pilot contamination occurs between the two users. Therefore, the grouping problem

becomes choosing K out of (2K)2 values of {λi,j}, ∀i, j, such that the maximum value is

minimized. This assignment problem can be accomplished by Algorithm 3, whose main steps

are described below.

Initially, all possible pairs of users are saved into a class named ϑ with three properties:

• ϑ.user1 is the first user of the pair.

• ϑ.user2 is the second user of the pair.

• ϑ.value is the correlation value between the two users’ large-scale fading profiles.

83



Algorithm 3 User Grouping
Require: Large-scale fading correlation coefficients {λi,j} ∀i, j.

1: Let S be the set of grouped users. Initially, S = ∅

2: Step 1: Save all possible pairs {λi,j} , ∀i < j into a class named ϑ

3: n = 0;

4: for i = 1 : 2K do

5: for j > i do

6: n = n+ 1;

7: ϑ(n).value = λi,j ; //Correlation value

8: ϑ(n).user1 = i; //First user

9: ϑ(n).user2 = j; //Second user

10: end for

11: end for

12: Step 2: Sort ϑ in ascending order of ϑ.value.

13: Step 3: User grouping

14: Define χ as the position of the worst pair of users after grouping, initially: χ = 0

15: k = 0;

16: Let Sc = {1, . . . , 2K} be the set of users who are not in any pairs of the first k pairs.

17: while S̄ 6= ∅ do {Stop when all users are grouped}

18: Scan from the first pair until all users are in at least one pair

19: while Sc 6= ∅ do

20: k = k + 1;

21: if {{ϑ(k).user1} , {ϑ(k).user2}} ∈ Sc then

22: Sc = Sc \ {{ϑ(k).user1} , {ϑ(k).user2}}

23: end if

24: end while

25: if χ = 0 then

26: χ = k; // Save worst pair’s position.

27: end if

28: if k ≤ χ then {If new pair is better than the worst pair}

29: S = S ∪ {ϑ(k).user1, ϑ((k).user2)} ; //Add new pair

30: else {If new pair is worse that the worst pair}

31: S = ∅; // Clear all current assignment.

32: χ = χ+ 1; //Update new worst pair’s position.

33: S = S ∪ {ϑ(χ).user1, ϑ((χ).user2)}; // Add this pair as the worst pair

34: end if

35: Sc = {1, . . . , 2K} \ S; //Paired users are not re-scanned; in the next loop.

36: k = 0;

37: end while

38: return S

After that, all (2K)2 elements of the class are sorted in an ascending order of ϑ.value. Then,

the sorted class is scanned from the first pair (i.e., the pair having the lowest correlation

value between two users’ channels) until every user appears in at least one pair. The pair
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where the scanning stops is chosen as the worst group position, denoted χ. This pair is

then added into the set of grouped users, denoted as S. In the next iteration, the class is

re-scanned to find the next worst pair, but all pairs containing a user in the worst pair of the

previous loop will not be scanned again. If the worst pair of the current loop is worst than

the pair at position χ, all group assignment is cleared. The worst pair position is updated

as χ = χ+ 1 before the next iteration. The algorithm continues until all users are grouped.

With this algorithm, K pairs of users are formed such that the maximum correlation value

is minimized.

4.6 Power Control Optimization

For the max-min QoS power control problem considered in this section, it is assumed

that some method of user grouping has been applied and the objective is to maximize the

minimum rate among users subject to a maximum power constraint. Focusing on the case

that SIC is applied to the second user in each group, the power control problem at hand can

be formulated as:

maximize
pg,q

min
q=1,...,K

{
R

(OBC)
1,q , R

(SIC−OBC)
2,q

}
subject to 0 ≤ pg,q ≤ pmax,∀g, q,

(4.32)

where pmax is the maximum transmit power of each user. The above min-QoS maximization

is equivalent to maximizing the minimum UL SINR, which is stated as:

max
pg,q

min
q=1,...,K

{M ·R1,q(p),M ·R2,q(p)} (4.33a)

subject to 0 ≤ pg,q ≤ pmax,∀p, q. (4.33b)

where

R2,q(p) ,
1

M
SINR

(SIC−OBC)
2,q = p2,q

L∑
l=1

γl,2,q
ηl(p)

,

R1,q(p) ,
1

M
SINR

(OBC)
1,q = p1,q

L∑
l=1

γl,1,q
ηl(p)

− p1,q

(
L∑
l=1

γl,q
ηl(p)

)2

1

Mp2,q

+
L∑
l=1

γl,2,q
ηl(p)

.
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In the above expressions, ηl(p) ,
∑2

g=1

∑K
k=1 pg,kβl,g,k+σ2

UL is an affine positive function,

whereas γl,q ,
√
γl,1,qγl,2,q > 0. The above optimization problem is obviously equivalent to

max
pq,q

ϕ(p) , min
q=1,...,K

{R1,q(p), R2,q(p)}

subject to (4.33b), (4.34)

which is a nonconvex problem because its objective function ϕ(p) is nonconcave.

The remaining of this section presents a method to solve the above optimization problem.

First, let p($) be a feasible point for (4.34) that is found from the ($ − 1)th iteration. By

using the inequalities (4.76) and (4.77) in Appendix 4.G, we have

R2,q(p)

≥ p2,q

L∑
l=1

(
2γl,2,q
ηl(p($))

− γl,2,qηl(p)

(ηl(p($)))2

)

= p2,q

L∑
l=1

2γl,2,q
ηl(p($))

− p2,q

L∑
l=1

γl,2,qηl(p)

(ηl(p($)))2

≥ p2,q

L∑
l=1

2γl,2,q
ηl(p($))

− R2,q(p
($))

4

(
p2,q

p
($)
2,q

+
p

($)
2,q

R2,q(p($))

L∑
l=1

γl,2,qηl(p)

(ηl(p($)))2

)2

, R
($)
2,q (p), (4.35)

where R
($)
2,q (p) is concave quadratic. Analogously, for R̃1,q(p) , p1,q

∑L
l=1

γl,1,q
ηl(p)

, it is true that

R̃1,q(p) ≥ R̃
($)
1,q (p) , p1,q

L∑
l=1

2γl,1,q
ηl(p($))

− R̃1,q(p
($))

4

(
p1,q

p
($)
1,q

+
p

($)
1,q

R̃1,q(p($))

L∑
l=1

γl,1,qηl(p)

(ηl(p($)))2

)2

.

(4.36)

Now, introduce a positive variable xq satisfying

R̄1,q(p) , p1,q

(
L∑
l=1

γl,q
ηl(p)

)2

1

p2,q

+
L∑
l=1

γl,2,q
ηl(p)

≤ (xq)
2. (4.37)
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Then one has

R1,q(p) ≥ R
($)
1,q (p, xq) , R̃

($)
1,q (p)− (xq)

2, (4.38)

where R
($)
1,q (p, xq) is a concave quadratic function.

The next step is to handle the nonconvex constraint (4.37), which is equivalent to(
L∑
l=1

γl,q
ηl(p)

)2

1

p2,q

+
L∑
l=1

γl,2,q
ηl(p)

≤ (xq)
2

p1,q

. (4.39)

By using inequality (4.78) in Appendix 4.G, one has

RHS of (4.39) =
(xq)

2

p1,q

≥ 2x
($)
q

p
($)
1,q

xq −
(x

($)
q )2

(p
($)
1,q )2

p1,q. (4.40)

Likewise,

LHS of (4.39) ≤ Λ($)
q (p) =

Λ
($)
q,NUM(p)

Λ
($)
q,DEN(p)

,

(
L∑
l=1

γl,q
ηl(p)

)2

2

Mp
($)
2,q

− p2,q

M(p
($)
2,q )2

+
L∑
l=1

γl,2,q

(
2

ηl(p($))
− ηl(p)

(ηl(p($)))2

)
(4.41)

under the trust region

Λ
($)
q,DEN(p) > 0. (4.42)

The function Λ($) is convex over the trust region (4.42). Thus, the nonconvex constraint

(4.39) is innerly approximated by the following convex constraint

Λ($)
q (p) ≤ 2x

($)
q

p
($)
1,q

xq −
(x

($)
q )2

(p
($)
1,q )2

p1,q. (4.43)

Initialized by a feasible p(0) for the power constraint (4.33b) and x
(0)
q =

√
R̄2,q(p(0)),

q = 1, . . . , K, at the $th iteration we solve the following convex optimization problem to

generate the next feasible point (p($+1), x($+1)) for (4.34):

max
p,x=(x1,...,xK)

min
q=1,...,K

min{R($)
1,q (p, x), R

($)
2,q (p)}

subject to (4.33b), (4.42), (4.43),

(4.44)
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which is equivalently expressed as in Eqn. (4.45).

max
p,x,y=(y1,...,L)

ϕ($)(p, x) , min
q=1,...,K

min{R($)
1,q (p, x), R

($)
2,q (p)}

subject to 0 ≤ pg,q ≤ pmax,∀p, qyl 1

1 ηl(p)

 � 0, ` = 1, . . . , L,


2x

($)
q

p
($)
1,q

xq −
(
x
($)
q

)2
(p

($)
1,q )2

p1,q.
L∑
l=1

γl,qyl

L∑
l=1

γl,qyl Λ
($)
q,DEN(p)

 � 0.

(4.45)

The above optimization problem can be easily solved by convex optimization tools such as

CVX. Note that ϕ($)(p($+1), x($+1)) > ϕ($)(p($), x($)) as far as (p($+1), x($+1)) 6= (p($), x($))

because (p($+1), x($+1)) is the optimal solution of (4.44) but (p($), x($)) is only its feasible

point. Therefore we have

ϕ(p($+1)) ≥ ϕ($)(p($+1), x($+1)) > ϕ($)(p($), x($)) = ϕ(p($)),

i.e., the sequence {p($)} is of improved feasible points for the nonconvex problem (4.34)

and as such, it converges at least to a locally optimal solution of (4.34), which satisfies the

Karush-Kuh-Tucker optimality condition [43].

Remark 3: By focusing on the case that SIC is applied for the second user in each

group, it is implicitly assumed that the decoding order in each group has been determined.

In practice, this is an important step and could strongly affect the system’s performance.

Here we propose to determine the decoding order for SIC implementation by first solving

the power control problem for the non-SIC case, i.e., by replacing R
(SIC−OBC)
2,q with R

(OBC)
2,q in

Eqn. (4.32). Once such a power control problem is solved, we can choose the user having a

higher transmit power in each group as the worse user to perform SIC (i.e., it is the second

user as in the analysis in Section 4.2), whereas the other user having a lower transmit power

is treated as a better user. With such a decoding order in each group, the worse user is

granted a more favorable signal detection as compared to the better user. This enhances

fairness in the system and therefore, a better max-min QoS can be achieved.
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4.7 Simulation Results

Although all the numerical expressions (except the asymptotic analysis) and the power

control problem are valid for a general case of finite L (number of BSs or APs) and M

(number of antennas on each BS), all the results are presented for the cell-free cooperative

MIMO setup, i.e., when L is small and M is large. The only exception is the last figure, which

presents results for different combinations of M and L while M × L is fixed. The massive

MIMO system considered in the simulation consists of L multi-antenna BSs and 2K users.

In each iteration, locations of users are randomly generated within the co-coverage area of

all BSs (a 400m × 400m square) and all numerical results are averaged over 300 iterations.

The large-scale fading coefficients are molded according to the 3GPP LTE standard. In

particular, the large scale fading is defined as βl,g,k = −131−42.8log10dl,g,k + zl,g,kdB, where

dl,g,k is the distance from the lth BS to the kth user of the gth group and zl,g,k is the standard

deviation of the shadowing variable. The noise figure of 5dB translates to a noise variance of

−96dBm. The simulation parameters are summarized in Table 4.1. The QoS performance

metric used to compare different backhaul combining methods is the tight lower bound of

the UL SE, which is directly related to the SINR. In all simulation scenarios, the number of

pilot sequences used for NOMA is exactly half of that used for OMA.

Table 4.1 Simulation parameters.

Parameter Value

Peak UL transmit power 23 dBm

Shadowing standard deviation 10 dB

Penetration loss (indoor users) 20 dB

Noise figure 5 dB

Coherence interval 100 symbols

Pathloss 131 + 42.8log10d

Except for Fig. 4.2, all the results presented in this section are obtained with max-min

QoS optimization of power control2. Without a proper power control, it is not possible to

2The power optimization problems for EBC and max-SNR association are quasi-convex problems, which
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Figure 4.2 Cumulative distribution function of UL SE with and without power

control (3 BSs, each having 300 antennas).

ensure that all users are equally served with a predetermined QoS value. An illustration

on the effect of power control can be seen in Fig. 4.2, where the performance obtained

with OBC is compared between the two cases of max-min QoS power control and equal

power allocation. As expected, with equal transmit powers, some users enjoy very good

performance, while others severely suffer from interference, which means very low QoS.

Fig. 4.3 shows the cumulative distribution functions (CDFs) of UL SE achieved with

NOMA using different combining methods when the network has 3 BSs, each havingM = 300

antennas, and 30 users randomly grouped in 15 pairs. For the results in this figure, SIC is

implemented to subtract the correlated interference from the first user before detecting the

second user in every group. As can be seen, OBC is always better than EBC and max-SNR

association. The average value of the UL SE achieved with OBC is around 3.1 bits/s/Hz,

which is about 30% higher than that achieved by EBC (2.6 bits/s/Hz) and almost twice the

can be solved by the bi-section method [14]. On the other hand, the max-min QoS power control problem

for ZFBC can be solved similarly as with the proposed power control algorithm for OBC in Section 4.6.
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Figure 4.3 Cumulative distribution functions of UL SE for three different backhaul

combining methods (3 BSs, each having 300 antennas).

value of the max-SNR method (1.8 bits/s/Hz). With a favorable channel condition, OBC

could achieve up to about 4 bits/s/Hz in UL SE. The ZFBC method can also achieve peak

performance similar to that of OBC. However, the UL SE of ZFBC is widely distributed be-

tween 0 to 4 bits/Hz/s. The reason is that ZFBC ignores uncorrelated noise-and-interference,

hence its performance is poor in the low SINR, while it can achieve similar performance as

that of OBC in the high SINR.

The effect of user grouping and SIC is illustrated in Fig. 4.4 for 10 users and with three

BSs, each having M = 300 antennas. It is clear from the figure that the proposed user

grouping method yields a significant improvement in UL SE when compared to random user

grouping. The average UL SE obtained with OBC and the proposed grouping is approxi-

mately 5.6 bits/s/Hz, which is 12% higher than 5 bits/s/Hz obtained with OBC and random

user grouping. Although Section 4.2 shows that the SINR achieved with OBC and without

SIC is not limited by the impact of correlated interference when the number of antennas

tends to infinity, applying SIC yields a noticeable improvement. It can be seen from the
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Figure 4.4 Cumulative distribution function of UL SE with and without grouping

(3 BSs, each having 300 antennas).

figure that the CDF obtained with SIC is consistently better than the CDF obtained with-

out SIC. Moreover, while the UL SE obtained without SIC varies widely around its median

value and can be sometimes below 1 bit/Hz/s, the UL SE obtained with SIC is almost al-

ways greater than 3.5 bits/s/Hz and concentrates more around the median value. The figure

also shows that our proposed grouping method performs better than the method in [42].

However, the tradeoff is the higher complexity since the method in [42] needs to calculate

only 2K coefficients, whereas our method requires to calculate (2K)2 coefficients.

Given the advantages of the proposed user grouping and SIC, these two methods are

always implemented to obtain the results presented in the remaining figures of this section.

Fig. 4.5 compares the average UL SE obtained with OMA and NOMA that can be equally

served to 30 users in the network versus the number of antennas in each BS. With OMA,

the number of pilot sequences required is τp = 30, which is equal to the number of users. In

contrast, NOMA only needs half the number (τp = 15) of pilot sequences, which saves more

symbol times for data transmission. For both OMA and NOMA, OBC provides the best
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Figure 4.5 Max-min QoS versus the number of antennas (30 users, 3 BSs).

performance, followed by EBC and max-SNR schemes. In addition, the performance gaps

among different combining methods under NOMA are noticeably greater than that under

OMA. For OMA, the performance gap between OBC and EBC is consistently 0.1 bit/Hz/s,

whereas it is 0.4 bits/s/Hz between OBC and max-SNR association. With NOMA, the slope

of the performance curve obtained with OBC is much sharper than the slopes of other curves.

Compared to EBC and max-SNR association, the performance gains provided by OBC are

about 0.5 bit/Hz/s and 1 bit/Hz/s, respectively. The performance gain also increases with

the number of antennas. This is expected since the SINR obtained with OBC increases

without a bound with increasing number of antennas, whereas the SINRs obtained with

both EBC and max-SNR methods are saturated when the number of antennas tends to

infinity as analyzed in Section 4.2. The performance of ZFBC is eventually better than that

of EBC and max-SNR association when the number of antennas is large enough. However,

it is always worse than the performance of OBC. Also note that in the case of OMA, ZFBC

and OBC are the same, and so are their performance curves.

Since for both NOMA and OMA, OBC always yields the best performance, from now
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Figure 4.6 Max-min QoS versus the number of users (3 BSs, each having 300

antennas).

on, we only consider OBC at the backhaul network. In Fig. 4.6, the max-min QoS is plotted

versus the number of users with three BSs, each having 300 antennas. Obviously, when there

are more users in the network, the max-min QoS value gets smaller. When the number of

users increases to about 20, NOMA starts to outperform OMA, which is because the effect of

using less symbol times for pilot sequences starts to kick in. The performance gap between

the two methods widens when the number of users increases.

Fig. 4.7 shows the CDFs of UL SE for different numbers of participating BSs with

M = 300 antennas at each BS and 30 users. As expected, the system’s performance is

enhanced when there are more BSs serving each user. The average UL SE is approximately

2.7, 3.9 and 4.2 bits/s/Hz when there are 2, 3 and 4 BSs, respectively. Compared to OMA

in terms of average performance, NOMA performs poorer if there are only 2 BSs, but better

when there are 3 or 4 BSs. Moreover, the CDF curves for the cases of having 3 and 4 BSs

vary less and concentrate more around the median values as opposed to the CDF for the

case of having 2 BSs.
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Figure 4.7 Cumulative distribution function of UL SE versus the number of serving

BSs (30 users, 300 antennas at each BS).
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Figure 4.8 Cumulative distribution functions of UL SE for a cell-free massive

MIMO system: M × L = 144 and 50 users.
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Finally, Fig. 4.8 compares the CDFs of QoS obtained with OBC and EBC with a fixed

total number of antennas, namely M ×L = 144. The BSs are equally distanced in grid sizes

12×12, 6×6, 4×4 and 3×3 with the numbers of antennas being 1, 4, 9, 16, respectively. It

can be seen that the performance with EBC deteriorates when L increases and M decreases.

This is because the signal after the first stage of combining (at each BS) contains mostly

noise and uncorrelated interference as the channel hardening property is weak with a small

number of antennas. When M grows and L decreases, noise and uncorrelated interference

declines, which is consistent with the results for EBC in Fig. 4.8 when M increases from 1 to

9. However, when M increases, not only the desired signal but the correlated interference also

grows and at some value of M , it surpasses noise and uncorrelated interference and becomes

dominant. At that point, increasing M further may cause the SINR to decline and gradually

converge to the saturation value as analyzed with large M in Section 4.4. Unlike EBC, with

ZFBC and OBC, when M is small, the amount of correlated interference is insignificant

as compared to noise and uncorrelated interference, and hence can be ignored. When M

increases, correlated interference becomes dominant, which causes more degradation to the

SINR as can be seen from the SINR expressions for OBC and ZFBC in (4.21) and (4.27),

respectively. That explains why OBC and ZFBC are better in low M and large L regime.

Another reason is that when deploying more BSs in a fixed area, the distances between a

user and BSs become shorter, which leads to better channel conditions.

4.8 Conclusions

This paper has considered the uplink transmission in a generalized cell-free massive

MIMO-NOMA system and developed an optimal combining method for the signals for-

warded by multiple BSs to the CPU over the backhaul network. The proposed combining

method has been shown to provide unlimited uplink SINR when the number of antennas

at each BS tends to infinity, despite the existence of pilot contamination originating from

sharing pilot sequences. To optimize system performance, a max-min QoS power control

problem was formulated and solved in which a desired QoS value that can be equally served

to all users is maximized, subject to a maximum transmit power for every user. Because of
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the non-convexity of the problem, an inner approximation method is developed to convert it

into a series of convex optimization, which can be solved iteratively. In addition, to further

improve the achievable max-min QoS, a user grouping algorithm is introduced and shown to

be better than random user grouping and a user grouping method recently proposed in the

literature. Numerical results were presented to corroborate the analysis and demonstrate

that the proposed optimal backhaul combining method outperforms both equal-gain com-

bining and zero-forcing combining. Moreover, simulation results also show that, by using

the proposed optimal backhaul combining, cell-free massive MIMO-NOMA is superior than

cell-free massive MIMO-OMA in both max-min QoS and connectivity.

4.A Examination of correlation property

This appendix examines correlation properties of different signal components in Eqn.

(4.8). First, the channel gain uncertainty CUl,1,q is uncorrelated interference since:

cov
{

CUl,1,q,CUl′ ,1,q

}
= p1,qE

{
vHl,1,qhl,1,q(v

H
l′ ,1,q

hl′ ,1,q)
}

− p1,qE
{
E
{
vHl,1,qhl,1,q

}
(vH

l′ ,1,q
hl′ ,1,q)

}
− p1,qE

{
vHl,1,qhl,1,qE

{
vH
l′ ,1,q

hl′ ,1,q

}}
+ p1,qE

{
vHl,1,qhl,1,q

}
E
{
vH
l′ ,1,q

hl′ ,1,q

}
= 0,

(4.46)

due to the fact that vHl,1,qhl,1,q and vH
l′ ,1,q

hl′ ,1,q are independent when l 6= l
′
. Similarly, it is

easy to verify that:

cov
{

IoGl,1,q, IoGl′ ,1,q

}
=

2∑
g=1

K∑
k=1,k 6=q

pg,kE
{
vHl,1,qhl,g,k(v

H
l
′
,1,q
hl′ ,g,k)

}
= 0, (4.47)

and

cov
{

Nl,1,q,Nl′ ,1,q

}
= E

{
vHl,1,qnl(v

H
l′ ,1,q

nl′ )
}

= 0. (4.48)

Performing the same analysis for other terms of Eqn. (4.9), on arrives at the conclusion that

the only correlated interference term is cl,1,qx2,q.
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4.B Proof of Theorem 1: Optimal weight combining vector

The proof can be carried out by applying the Schwartz inequality [44]. With the signal

model in Eqn. (4.7), the SINR at the BS after combining signals with the OBC vector w1,q

is:

SINR
(OBC)
1,q =

∣∣wT
1,qs1,q

∣∣2
E
{∣∣wT

1,q(κ1,q − s1,qx1,q)
∣∣2} =

∣∣wT
1,qs1,q

∣∣2
wH

1,qR1,qw1,q

. (4.49)

By the definition in Eqn. (4.19), R1,q is a positive-definite Hermitian matrix. Therefore,

it can be rewritten via a unitary decomposition as follows:

R1,q = ΨHD2
1,qΨ (4.50)

where D1,q is a diagonal matrix whose elements are the square roots of the eigenvalues of

R1,q and Ψ is a unitary matrix. As a result, the SINR with OBC is:

SINR
(OBC)
1,q =

∣∣∣∣wT
1,q (DΨ)T

[
(DΨ)T

]−1

s1,q

∣∣∣∣2
wH

1,qΨ
HD2

1,qΨw1,q

=

∣∣∣∣(DΨw1,q)
T
[
(DΨ)T

]−1

s1,q

∣∣∣∣2
‖DΨw1,q‖2 .

(4.51)

Applying the Schwartz inequality leads to:

SINR
(OBC)
1,q ≤

‖DΨw1,q‖2

∥∥∥∥[(DΨ)T
]−1

s1,q

∥∥∥∥2

‖DΨw1,q‖2 =

∥∥∥∥[(DΨ)T
]−1

s1,q

∥∥∥∥2

= sH1,qR
−1
1,qs1,q.

(4.52)

The equality holds when DΨw1,q = α
[
(DΨ)T

]−1

s1,q, which is equivalent to the backhaul

combining vector w1,q = αR−1
1,qs1,q, where α is a constant.

4.C Proof of Theorem 1: SINR with OBC

The normalized interference-plus-noise covariance matrix can be rewritten as:

R̂1,q = E
{
û1,qû

H
1,q + ĉ1,qĉ

H
1,q

}
= IL + ĉ1,qĉ

H
1,q. (4.53)

Multiplying this matrix with ĉ1,q leads to:

R̂1,qĉ1,q = ĉ1,q + ĉ1,q ∗ ‖ĉ1,q‖2 =
(
1 + ‖ĉ1,q‖2) ĉ1,q. (4.54)
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The above equation means that ĉ1,q is an eigenvector of R̂1,q with the corresponding eigen-

value:

λ1,1,q = 1 + ‖ĉ1,q‖2 . (4.55)

Any other vectors which are orthogonal to ĉ1,q are also eigenvectors with an unit eigenvalue,

which means λl,1,q = 1, (l = 2, . . . , L). By a unitary decomposition of R̂−1
1,q, the SINR in Eqn.

(4.21) can be rewritten as:

SINR
(OBC)
1,q = ŝH1,qΨ

Hdiag(λ−1
1,1,q, . . . , λ

−1
L,1,q)Ψŝ1,q

= ŝH1,qΨ
HILΨŝ1,q − ŝH1,qΨHdiag(1− λ−1

1,1,q, 0, . . . , 0)Ψŝ1,q

= ‖ŝ1,q‖2 − ŝH1,qΨHdiag(1− λ−1
1,1,q, 0, . . . , 0)Ψŝ1,q,

(4.56)

where Ψ is a unitary matrix. It can be easily seen that the first columnψ1 of Ψ corresponding

to λ1,1,q is also the eigenvector of R̂1,q corresponding to eigenvalue λ1,1,q. With this property,

the SINR of the first user in the qth group is simplified to:

SINR
(OBC)
1,q = ‖ŝ1,q‖2 −

∣∣ψH
1 ŝ1,q

∣∣2 (1− λ−1
1,1,q

)
= ‖ŝ1,q‖2 −

∣∣ŝH1,qĉ1,q

∣∣2
‖ĉ1,q‖2

(
1− 1

1 + ‖ĉ1,q‖2

)

= ‖ŝ1,q‖2 −
∣∣ŝH1,qĉ1,q

∣∣2
1 + ‖ĉ1,q‖2

=
L∑
l=1

SNRl,1,q −

(∑L
l=1

√
SNRl,1,q

√
SNRl,2,q

)2

1 +
∑L

l=1 SNRl,2,q

.

(4.57)

4.D Derivation for the SINR of EBC

With the signal decomposition in Eqn. (4.8), the desired signal power equally combined

at the CPU is computed as:

E


∣∣∣∣∣
L∑
l=1

DSl,1,q

∣∣∣∣∣
2
 = p1,q

∣∣∣∣∣∣
(

L∑
l=1

E
{
vHl,1,qhl,1,q

})2
∣∣∣∣∣∣

= p1,q

∣∣∣∣∣∣
(

L∑
l=1

E
{
‖ĥl,1,q‖2

})2
∣∣∣∣∣∣ = p1,q

(
L∑
l=1

γl,1,qM

)2

.

(4.58)
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The power of the channel gain uncertainty, E
{∣∣∣∑L

l=1 CUl,1,q

∣∣∣2}, is obtained using the

same method in [31] as:

p1,qE


∣∣∣∣∣
L∑
l=1

vHl,1,qhl,1,q −
L∑
l=1

E
{
vHl,1,qhl,1,q

}∣∣∣∣∣
2


= p1,q

(
L∑
l=1

γ2
l,1,q(M +M2) +

L∑
l=1

γl,1,q (βl,1,q − γl,1,q)M

)

− p1,q

(
L∑
l=1

γl,1,qM

)2

≤ p1,q

L∑
l=1

γl,1,qβl,1,qM.

(4.59)

The interference which is caused by the second user of the qth group can be decomposed

as in Eqn. (4.9). As a result, the power of the interference from the user using the same

pilot in the group is:

E


∣∣∣∣∣
L∑
l=1

IwGl,1,q

∣∣∣∣∣
2
 = p2,q

L∑
l=1

γl,1,qβl,2,qM + p2,q

p
(p)
2,q

p
(p)
1,q

(
L∑
l=1

γl,1,q
βl,2,q
βl,1,q

)2

M2. (4.60)

Due to the fact that the channels of different users are mutually independent and IoGl,1,q

is uncorrelated interference, the total power of IoGl,1,q after using EBC is:

E


∣∣∣∣∣
L∑
l=1

IoGl,1,q

∣∣∣∣∣
2
 =

L∑
l=1

2∑
g=1

K∑
k=1,
k 6=q

pg,kβl,g,kγl,1,q. (4.61)

Finally, the power of the noise term is easily calculated as:

E


∣∣∣∣∣
L∑
l=1

Nl,1,q

∣∣∣∣∣
2
 = σ2

UL

L∑
l=1

γl,1,q. (4.62)

Diving the power of the desired signal, E
{∣∣∣∑L

l=1 DSl,1,q

∣∣∣2}, by the sum of the powers of

remaining terms, we obtain the SINR expression as in Eqn. (4.25).
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4.E Derivation for the SINR of ZFBC

From Eqn. (4.15), the SINR with ZFBC can be calculated as:

SINR
(ZFBC)
1,q =

∣∣∣∣(w(ZFBC)
1,q

)T
ŝ1,q

∣∣∣∣2
E

{∣∣∣∣(w(ZFBC)
1,q

)T
(κ̂1,q − ŝ1,qx1,q)

∣∣∣∣2
} . (4.63)

With the property of ZFBC, we have

∣∣∣∣(w(ZFBC)
1,q

)T
ŝ1,q

∣∣∣∣2 = 1 and

∣∣∣∣(w(ZFBC)
1,q

)T
ĉ1,q

∣∣∣∣2 = 0.

Substituting into Eqn. (4.63) results in:

SINR
(ZFBC)
1,q =

1∣∣∣∣(w(ZFBC)
1,q

)T
û1,q

∣∣∣∣2 =
1∥∥∥w(ZFBC)

1,q

∥∥∥2 =
1[

(ΘHΘ)−1
]

1,1

.
(4.64)

Since:

ΘHΘ =

 ‖ŝ1,q‖2
∣∣ŝT1,qĉ1,q

∣∣∣∣ŝT1,qc1,q

∣∣ ‖ĉ1,q‖2,

 (4.65)

the element
[(

ΘHΘ
)−1
]

1,1
can be computed as:

[(
ΘHΘ

)−1
]

1,1
=

1

det {ΘHΘ}
‖ĉ1,q‖2 =

‖ĉ1,q‖2

‖ŝ1,q‖2‖ĉ1,q‖2 −
∣∣ŝT1,qĉ1,q

∣∣2 . (4.66)

Plugging Eqns. (4.16), (4.18) and (4.66) into (4.64), we have the result for the SINR of

ZFBC as in (4.27). �

4.F Examination on how many BSs should serve a user

This appendix examines the question that how many users should be grouped to share

the same pilot sequence. Assuming that N users share one pilot, we have the interference-

plus-noise covariance matrix of the first user in the qth group as

R̂1,q = E

{
û1,qû

H
1,q +

N∑
n=2

ĉ1,q,nĉ
H
1,q,n

}
= IL +

N∑
n=2

ĉ1,q,nĉ
H
1,q,n, (4.67)

where ĉ1,q,n denotes the normalized gain of correlated noise originating from the nth user

(n ≥ 1).
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Case 1: N > L

In order to analyze the behavior of UL SINR with OBC, the following Lemma is useful.

Lemma 2: Any eigenvectors of Eqn. (4.67) must have the form of:

a =
N∑
n=2

θnĉ1,q,n. (4.68)

Proof: If a is an eigenvector of R̂1,q, it satisfies:

R̂1,qa = a+
N∑
n=2

ĉ1,q,nĉ
H
1,q,na = λ1,1,qa, (4.69)

which is equivalent to:

a =
1

λ1,1,q − 1

N∑
n=2

ĉ1,q,nĉ
H
1,q,na. (4.70)

By defining θn = 1
λ1,1,q−1

ĉH1,q,na, we obtain the result as in Lemma 2. �

Multiplying R̂1,q with its eigenvector leads to:

R̂1,qa =
N∑
n=2

θnĉ1,q,n +
N∑
n=2

θnĉ1,q,n

ĉH1,q,nĉ1,q,n +
N∑

n′=2,n′ 6=n

θn′

θn
ĉH

1,q,n′ ĉ1,q,n


= λl,1,q

N∑
n=2

θnĉ1,q,n,

(4.71)

where λl,1,q is an eigenvalue of R̂1,q. Then a is an eigenvector if and only if:

ĉH1,q,nĉ1,q,n +
N∑

n′=2,n′ 6=n

θn′

θn
ĉH

1,q,n′ ĉ1,q,n = constant,∀n. (4.72)

As a result, all L eigenvalues of R̂1,q must have the form of:

λl,1,q = 1 + ĉH1,q,nĉ1,q,n +
N∑

n′=2,n′ 6=n

θn′

θn
ĉH

1,q,n′ ĉ1,q,n, (4.73)

The second term in the above equation has the value equal to the sum of SNRs from all L

BSs of the nth user (n ≥ 1) of the qth group, which is a source of correlated interference

to the first user of the qth group. According to the analysis in the paper, this value is
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proportional to the number of antennas M . With these eigenvalues, the instantaneous SINR

is defined by:

SINR
(OBC,inst)
1,q = ŝ

(inst),H
1,q R̂−1

1,qŝ
(inst)
1,q = ŝ

(inst),H
1,q ΨHdiag

(
λ−1

1,1,q, . . . , λ
−1
L,1,q

)
Ψŝ

(inst)
1,q , (4.74)

where ŝ
(inst)
1,q represents the instantaneous gain vector corresponding to the normalized de-

sired signal and Ψ is a unitary matrix obtained by the unitary transform of R̂−1
1,q. Because

multiplying with a unitary matrix does not change the distribution of a random vector, the

expectation of Eqn. (4.74) can be computed as:

E
{

SINR
(OBC,inst)
1,q

}
= E

{
ŝ

(inst),H
1,q diag

(
λ−1

1,1,q, . . . , λ
−1
L,1,q

)
ŝ

(inst)
1,q

}
=

L∑
l=1

∣∣∣ŝ(inst)
l,1,q

∣∣∣2
λl,1,q

. (4.75)

Due to the fact that both the desired signal power and the eigenvalues are proportional to

the number of antennas M , all addends of (50) converge when M tends to infinity. This

means that with N > L, the instantaneous SINR is saturated when M goes to infinity.

Case 2: N ≤ L

The same analysis can be carried out for the case N > L. However, in this case, there are

only N − 1 eigenvectors lying on the hyperplane defined by ĉ1,q,n, . . . , ĉ1,q,N . The remaining

eigenvectors which are orthogonal to this hyperplane are corresponding to the unit eigenvalue.

As a result, at least one addend of Eqn. (4.75) is proportional to M , which means the

instantaneous SINR in this case is not bounded when M goes to infinity. This result shows

that in order to acquire the array gain in cell-free massive MIMO-NOMA with OBC, the

number of BSs serving each user must be equal or greater than the number of users in each

group (i.e., N ≤ L).

4.G Fundamental inequalities for convex approximation

The following fundamental inequalities are used:

1

x
≥ 2

x̄
− x

x̄2
∀ x > 0, x̄ > 0. (4.76)

xy ≤ x̄ȳ

4

(
x

x̄
+
y

ȳ

)2

∀x > 0, y > 0, x̄ > 0, ȳ > 0. (4.77)
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x2

y
≥ 2x̄

ȳ
x− x̄2

ȳ2
y ∀ x > 0, y > 0, x̄ > 0, ȳ > 0. (4.78)

Note that the functions on the left-hand side (LHS) of (4.76) and (4.78) are convex while the

functions on the right-hand side (RHS) are their first-order approximations. As such (4.76)

and (4.78) follow from a standard condition of convex functions [45]. Lastly, (4.77) follows

from a standard least-square.
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5. Adaptive Successive Interference Cancellation
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In the previous chapter, a NOMA-aided cell-free massive MIMO system has been con-

sidered under the assumption that successive interference cancellation (SIC) can be carried

out perfectly. To study the effect of detection error to the system’s performance, in this

manuscript, we extend the work in Chapter 4 to consider imperfect SIC. By treating noise

plus interference as white Gaussian noise, a discrete statistical model between the transmitted

signal and received uplink signal is derived and used to develop a more proper implementa-

tion of SIC. The developed adaptive SIC method is analytically and numerically shown to

be better than the conventional SIC method.
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Adaptive Successive Interference Cancellation in

Cell-free Massive MIMO-NOMA

The Khai Nguyen, Ha H. Nguyen, and Hoang Duong Tuan

Abstract

This paper proposes a novel successive interference cancellation method to enhance the er-

godic spectral efficiency of a cell-free massive multiple-input multiple-output (MIMO) system

with non-orthogonal multiple-access (NOMA). Unlike the majority of existing research works

on performance evaluation of NOMA, which assume perfect channel state information and

perfect data detection for successive interference cancellation, we take into account the effect

of practical (hence imperfect) successive interference cancellation (SIC). We show that the

received signal at the backhaul network of a cell-free massive MIMO-NOMA system can be

effectively treated as a signal received over an AWGN channel. As a result, a discrete joint

distribution between the interfering signal and its detected version can be analytically found,

from which an adaptive SIC scheme is proposed to improve performance of interference can-

cellation.

5.1 Introduction

On the journey to the sixth generation (6G) of wireless networks, cell-free massive MIMO

has become one of the most promising technological advances to enable very high speed and

energy-efficient communications with low latency [1–5]. With a massive number of single-

antenna access points (APs) ubiquitously distributed, or a few base stations (BSs) each

equipped with a massive number of antennas, a cell-free system is capable of simultane-

ously serving a large number of users in the same frequency resources [1–5]. Furthermore,

when integrated with non-orthogonal multiple-access (NOMA), a cell-free massive MIMO-

NOMA system can provide a flexible tradeoff between accommodating a very large number

of terminals and having lower per-user spectral efficiency (SE) [4, 6, 7].

One critical issue when incorporating NOMA into a cell-free system (or any other com-

munication systems in general) is how well successive interference cancellation (SIC) can
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perform [4,6–8]. Previous works on performance evaluation of NOMA assume that SIC can

be carried out perfectly [9–12]. This assumption implies perfect channel state information

(CSI) and perfect signal detection before the SIC stage, which are not possible in practical

systems.

To deal with imperfect CSI when implementing SIC, the works in [4,13,14] have estimated

and used the effective channel gains for cancelling the interfering signals, which are known by

the receiver. As a result, after implementing SIC, only a small residue interference remains

while a substantial amount of correlated interference is eliminated. Nevertheless, no existing

works have considered the effect of errors in data detection before the SIC stage. In recent

attempts to address the impact of both imperfect CSI and imperfect data detection, the

authors in [6–8, 15] model the decoded signal as a linear function of the transmitted signal.

This model depends on the correlation coefficient between the transmitted signal and the

decoded signal, which is suggested to be obtained by long time observation. However, this

approach does not lead to an accurate analysis of the imperfect SIC and it cannot account

for the change when real time power optimization is applied.

Motivated by the above discussions, we propose in this paper a method to analytically

obtain the statistical relationship between the transmitted and decoded signals and use that

information to develop an adaptive SIC technique. The system model considered in this

paper is similar to the one in [16] where a cell-free massive MIMO-NOMA system consisting

of a few massive-antenna BSs simultaneously serving all users in the network (i.e., there is no

cell boundary). Using a quadrature-amplitude modulation (QAM) constellation, a statistical

relationship between the signals at the input and output of such a system is obtained. Due

to the combination of signals from multiple massive-antenna BSs, noise and interference

at the backhaul central processing unit (CPU) can be effectively modeled as a Gaussian

random variable, which allows us to consider the signal detection problem in a generalized

cell-free massive MIMO-NOMA system the same as that over an AWGN channel. With

such an equivalent model, the correlation coefficient between the transmitted signal and the

decoded signal (before applying SIC) is analytically found. Using the obtained correlation

information, we then introduce an adaptive SIC algorithm to enhance the system’s ergodic
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spectral efficiency (SE). Our proposed method is analytically and numerically shown to be

better than the conventional SIC method.

5.2 System Model

The system model considered in this paper is the same as that in [16]. Specifically, we

consider the uplink (UL) of a cell-free massive MIMO-NOMA system, which comprises of

L base stations, each having M antennas and simultaneously serving 2K users. All BSs

are connected to a backhaul network over which the signals from all L BSs are sent to and

processed at a CPU. The users are assigned into K groups with two users in each group

who share the same pilot, whereas pilot sequences assigned to different groups are pairwise

orthogonal. Such pilot sharing allows more users to be served with a fixed number of pilots,

and as a consequence, more information symbols are sent in every coherence interval as

compared to using orthogonal pilots. As one of the main contributions of [16], an optimal

backhaul combining (OBC) method that maximizes the UL signal-to-interference-plus-noise

ratio (SINR) was developed and shown to effectively mitigate the correlated interference. In

order to present our proposed adaptive SIC method, this section reviews the main results

in [16] with respect to the OBC method.

With the system operating in the time-division duplex (TDD) mode, a set of K length-τp

pilot sequences is used for UL channel estimation. These pilots are collectively represented

by a τp ×K pilot matrix Φ = [φ1,φ2, . . . ,φK ] which satisfies ΦHΦ = τpIK . With 2 users

using the same pilot sequence and different groups using orthogonal pilots, the signal vector

Yl ∈ CM×τp received at the lth BS over τp time slots (symbols) is given as

Yl =
K∑
k=1

(
hl,1,k

√
p

(p)
1,kφ

H
k + hl,2,k

√
p

(p)
2,kφ

H
k

)
+ Nl, (5.1)

where p
(p)
g,k denotes pilot power, hl,g,k ∼ CN (0, βl,g,kIM) is the uncorrelated Rayleigh fading

channel between the gth user of the kth group and the lth BS, and βl,g,k is the large scale

fading coefficient.

To estimate the channel for the gth user in the qth group, the lth BS multiplies the
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received signal with the corresponding pilot of the qth group, which yields

Yl
φq
‖φq‖

= hl,1,q

√
p

(p)
1,qτp + hl,2,q

√
p

(p)
2,qτp + Nl

φq
‖φq‖

. (5.2)

Then the minimum mean squared error (MMSE) estimate of hl,g,q can be obtained as [17]

ĥl,1,q =
cov

{
hl,1,q,Yl

φq

‖φq‖

}
var
{

Yl
φq

‖φq‖

} Yl
φq
‖φq‖

= µl,1,qYl
φq
‖φq‖

, (5.3)

where µl,g,q =

√
p
(p)
g,qτpβl,g,q

p
(p)
1,qτpβl,1,q+p

(p)
2,qτpβl,2,q+σ2

UL

. As a result, the estimated channel is a random vari-

able with distribution ĥl,g,q ∼ CN (0, γl,g,qIM), where γl,g,q =
p
(p)
g,qτpβ

2
l,g,q

p
(p)
1,qτpβl,1,q+p

(p)
2,qτpβl,2,q+σ2

UL

. Fur-

thermore, the channel estimation error el,g,q = hl,g,q − ĥl,g,q is independent of the estimated

channel and distributed as el,g,q ∼ CN (0, (βl,g,q − γl,g,q)IM).

After CSI is acquired, UL data transmission is carried out. The UL data signal received

at the lth BS over each symbol time can be presented as:

yl =
2∑
g=1

K∑
k=1

hl,g,k
√
pg,kxg,k + nl, (5.4)

where pg,k is the UL transmit power of the gth user of the kth group and xg,k represents its

data signal. In order to extract the signal of the first user of the qth group, before being

sent to the backhaul CPU, the signal in (5.4) is multiplied with ĥHl,1,q, which leads to:

κl,1,q = ĥHl,1,qyl = ĥHl,1,q

2∑
g=1

K∑
k=1

hl,g,k
√
pg,kxg,k + ĥHl,1,qnl

= E
{
ĥHl,1,qhl,1,q

}√
p1,qx1,q︸ ︷︷ ︸

DSl,1,q- Desired signal

+
(
ĥHl,1,qhl,1,q − E

{
ĥHl,1,qhl,1,q

})√
p1,qx1,q︸ ︷︷ ︸

CUl,1,q- Channel gain uncertainty

+ ĥHl,1,qhl,2,q
√
p2,qx2,q︸ ︷︷ ︸

IwGl,1,q- Interference within group

+
2∑
g=1

K∑
k=1,k 6=q

ĥHl,1,qhl,g,k
√
pg,kxg,k︸ ︷︷ ︸

IoGl,1,q- Interference from other group

+ ĥHl,1,qnl︸ ︷︷ ︸
Nl,1,q- Noise

,

(5.5)

Excluding the desired signal, it not hard to verify that the interference within group is

correlated across the BSs since E
{

IwGl,1,q, IwGl′ ,1,q

}
6= 0, ∀l 6= l

′
, whereas all other compo-

nents are uncorrelated across BSs. As a result, the vector κ1,q = [κ1,1,q, κ2,1,q . . . κL,1,q]
T can
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be decomposed into three length-L vectors: the desired signal, the uncorrelated interference-

plus-noise u1,q, and the correlated interference-plus-noise c1,q. Specifically,

κ1,q = s1,qx1,q + c1,qx2,q + u1,q (5.6)

where s1,q = [s1,1,q, s2,1,q . . . sL,1,q] with s1,1,q being the desired signal gain:

sl,1,q = DSl,1,q = E
{
ĥHl,1,qhl,1,q

}√
p1,q. (5.7)

The elements of c1,q and u1,q are as follows:

cl,1,q = µl,1,qE
{
hHl,2,qhl,2,q

}√
p

(p)
2,qp2,qτp (5.8)

ul,1,q = CUl,1,q + IoGl,1,q + Nl,1,q + IwGl,1,q − cl,1,qx2,q (5.9)

Next, normalize (i.e., scale) the signal vector in (5.6) so that the uncorrelated interference-

plus-noise term has unit power. This is achieved by simply diving the lth element by

E {|ul,1,q|}. It can be easily seen that:

E
{
|ul,1,q|2

}
=

2∑
g=1

K∑
k=1

pg,kβl,g,kγl,1,qM + σ2
ULγl,1,qM (5.10)

E
{
|sl,1,q|2

}
= p1,qγ

2
l,1,qM

2 (5.11)

E
{
|cl,1,q|2

}
= p2,q

p
(p)
2,q

p
(p)
1,q

(
γl,1,q

βl,2,q
βl,1,q

)2

M2 (5.12)

The normalization produces the following equivalent signal vector:

κ̂1,q = ŝ1,qx1,q + ĉ1,qx2,q + û1,q (5.13)

where E
{
û1,qû

H
1,q

}
= IL. Furthermore, it can be shown that the variance of the normalized

effective channel gain ŝl,1,q is exactly the signal to uncorrelated-interference-plus noise ratio

of the first user of the qth group at the lth BS:

E
{
|ŝl,1,q|2

}
=

Mp1,qγl,1,q∑2
g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

, ξl,1,q. (5.14)

Likewise, the variance of each element in the normalized correlated interference term ĉl,1,q

is

E
{
|ĉl,1,q|2

}
=

Mp2,qγl,2,q∑2
g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

, ξl,2,q, (5.15)
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which is exactly the signal-to-uncorrelated-interference ratio of the second user of the qth

group at the lth BS.

Finally, the normalized signal vector κ̂1,q is combined at the backhaul CPU with a weight

vector w1,q ∈ CL×1, which results in:

r1,q = wT
1,qκ̂1,q = wT

1,q(ŝ1,qx1,q + ĉ1,qx2,q + û1,q) (5.16)

Following the same derivation steps in [16, 18], the combining vector that maximizes the

effective SINR of the combined signal in (5.16) is

w
(OBC)
1,q = αR̂−1

1,qŝ1,q = α
(
ĉ1,qĉ

H
1,q + IL

)−1
ŝ1,q (5.17)

where α is a constant [16] and the matrix R̂1,q is the correlation matrix of the total interfer-

ence plus noise:

R̂1,q = E
{
û1,qû

H
1,q + ĉ1,qĉ

H
1,q

}
= ĉ1,qĉ

H
1,q + IL (5.18)

The resulting maximum effective SINR is given as:

SINR
(OBC)
1,q = ŝH1,qR̂

−1
1,qŝ1,q =

L∑
l=1

ξl,1,q −

(∑L
l=1

√
ξl,1,qξl,2,q

)2

1 +
∑L

l=1 ξl,2,q
. (5.19)

Of course, the same result can be obtained for the second user in every group [16].

5.3 Successive Interference Cancellation

To further enhance the system’s performance, SIC can be carried out by subtracting the

decoded data of the first user when detecting the data of the second user in every group.

With the conventional SIC method, the decoded data of the first user in each group is directly

subtracted from the overall signal, which is an optimal strategy if data detection of the first

user is perfect. However, such a direct subtraction operation is not optimal when there are

detection errors. Therefore, in this section, we introduce an adaptive method to improve

performance of SIC.

Let x̂1,q denote the detected data of the first user in the gth group. In order to minimize

the power of the residue interference after performing SIC, instead of directly subtracting
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x̂1,q as in the conventional SIC, we propose an adaptive SIC method to improve the ergodic

UL spectral efficiency. Specifically, we aim at finding α
(I)
1,q and α

(Q)
1,q such that:

minimize
α
(I)
1,q ,α

(Q)
1,q

E
{∣∣∣x1,q − α(I)

1,qR{x̂1,q} − jα(Q)
1,q I{x̂1,q}

∣∣∣2} . (5.20)

It is not hard to see that the above problem is to minimize a quadratic function and the

solution is α
(I)
1,q = ρ

(I)
1,q and α

(Q)
1,q = ρ

(Q)
1,q , where ρ

(I)
1,q and ρ

(Q)
1,q are the correlation coefficients

between x1,q and x̂1,q on the inphase (I) and quadrature (Q) channels, respectively.

The signal vector after implementing the adaptive SIC is:

κ̂
(aSIC)
2,q = ŝ2,qx2,q + ĉ2,q

(
x1,q − ρ(I)

1,qR{x̂1,q} − jρ(Q)
1,q I{x̂1,q}

)
︸ ︷︷ ︸

Residue interference

+û2,q. (5.21)

With the above adaptive SIC, the SINR of the second user of the qth group becomes

SINR
(OBC−aSIC)
2,q =

L∑
l=1

ξl,2,q −

(∑L
l=1

√
ξ

(aSIC)
l,1,q ξl,2,q

)2

1 +
∑L

l=1 ξ
(aSIC)
l,1,q

,
(5.22)

where:

ξ
(aSIC)
l,1,q ,

M

(
1− (ρ

(I)
1,q)2+(ρ

(Q)
1,q )2

2

)
p1,qγl,1,q∑2

g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

. (5.23)

It is pointed out that the case of conventional SIC corresponds to α
(I)
1,q = α

(Q)
1,q = 1 and

we have the same result as in (5.22), but with ξ
(aSIC)
l,1,q replaced by ξ

(nSIC)
l,1,q , given as

ξ
(nSIC)
l,1,q ,

M
(

2− ρ(I)
1,q − ρ

(Q)
1,q

)
p1,qγl,1,q∑2

g=1

∑K
k=1 pg,kβl,g,k + σ2

UL

. (5.24)

Comparing (5.24) and (5.23) reveals that the power of the residue correlated interference

in the proposed adaptive SIC method is consistently smaller than that in the conventional

SIC. Intuitively, the case that ρ
(I)
1,q → 1 and ρ

(Q)
1,q → 1 means very good data detection of

the first user of the qth group, hence the adaptive SIC will remove most of the correlated

interference for the second user. On the other hand, the case that ρ
(I)
1,q → 0 and ρ

(Q)
1,q → 0

means very poor data detection of the first user of the qth group, hence the adaptive SIC

117



will not subtract any amount of signal from the overall signal because doing so degrades the

quality of the signal used in data detection of the second user.

Obviously, an important information required by the proposed adaptive SIC method

is the correlation coefficients. The remainder of this section shows how to obtain such

information. From (5.16), it can be seen that all the components are independent and

identical distributed. With a very large number of users, the signal combined at the backhaul

CPU from the massive number of antennas at the BSs can be effectively approximated by

a Gaussian random variable by applying the central limit theorem (see Fig. 5.1 for the

verification of such an approximation). As a result, the detection problem of the signal in

(5.16) can be simplified to the detection problem over an AWGN channel as:

r̂1,q = x1,q + z1,q (5.25)

where:

z1,q =
wT

1,q(ĉ1,qx2,q + û1,q)

wT
1,qŝ1,q

−→ CN
(

0, 1
/

SINR
(OBC)
1,q

)
. (5.26)

Consider a 16-QAM constellation. The problem of finding ρ
(I)
1,q and ρ

(Q)
1,q can be broken

down into considering transmitting two 4-PAM signals over two independent AWGN channels

(I and Q channels). In order to have E {|x1,q|2} = 1 the Euclidean distance between two

adjacent points in the 4-PAM constellation {±∆,±3∆} should be 2∆ = 2/
√

10. The signal

after backhaul combining r1,q in (5.16) has the SINR specified by (5.19). As a result, with

a 4-PAM signal transmitted over a AWGN channel and experiences the SNR specified in

(5.16), the conditional symbol error probabilities are obtained as in Table 5.1. In the table,

we have Pi∆ = Q

(
i

√
SINR

(OBC)
1,q

5

)
, for i = 1, 3, 5.

From Table 5.1, the correlation coefficient between x1,q and x̂1,q on either the I or Q

channel can be computed as:

ρ
(I)
1,q =

cov {R{x1,q},R{x̂1,q}}
var {R{x1,q}} var {R{x̂1,q}}

=

∑4
i=1

∑4
j=1 sisjPsi→sj
10∆2

=
10− 6P∆ − 8P3∆ − 6P5∆

10

(5.27)

It is pointed out that, since 0 ≤ Q(·) ≤ 1, one has −1 ≤ ρ
(I)
1,q = ρ

(Q)
1,q ≤ 1, a intuitively

satisfying property.
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Table 5.1 P (sj decided | si transmitted)

s1 s2 s3 s4

s1 1− P∆ P∆ − P3∆ P3∆ − P5∆ P5∆

s2 P∆ 1− 2P∆ P∆ − P3∆ P3∆

s3 P3∆ P∆ − P3∆ 1− 2P∆ P∆

s4 P5∆ P3∆ − P5∆ P∆ − P3∆ 1− P∆

5.4 Optimal Power Control with Adaptive SIC

It is of interest to maximize the minimum rate among users subject to a maximum power

constraint. Such a max-min QoS power control problem is formulated and solved in [16] for

the case of perfect SIC. For the case that the adaptive SIC is applied to the second user in

each group, the power control problem is formulated as:

max
pg,q

min
q=1,...,K

{
SINR

(OBC)
1,q , SINR

(OBC−aSIC)
2,q

}
(5.28a)

subject to 0 ≤ pg,q ≤ pmax, ∀p, q (5.28b)

According to (5.22) and (5.23), the above power control problem requires the prior knowledge

of ρ
(I)
1,q and ρ

(Q)
1,q . Hence, an iterative algorithm is proposed and summarized in Algorithm

4 to solve the above power control problem, and at the same time obtain the correlation

coefficients iteratively.

Algorithm 4 Max-min QoS power control with adaptive SIC
Require: Large scale fading coefficients βl,g,k

1: Initially set ρ
(I)
g,q = ρ

(Q)
g,q = 0 (no information of correlation, SIC is not utilized).

2: while Until convergence do

3: Solve (5.28).

4: Obtain new ρ
(I)
g,q and ρ

(Q)
g,q by (5.27).

5: end while

6: return pg,k.

Initially, since the correlation coefficients between x1,q and x̂1,q are unknown, ρ
(I)
1,q and

ρ
(Q)
1,q are set to zero, which means that SIC is not utilized in the first iteration. After the
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first iteration, problem (5.28) is solved by following the method proposed in [16]. With the

obtained power allocation, the new value for ρ
(I)
1,q and ρ

(Q)
1,q is calculated by (5.27), which is

then used to solve (5.28) in the next iteration. The algorithm continues until convergence.

5.5 Numerical Results and Discussion

In this section, simulation results are provided to compare performance of the proposed

adaptive SIC and conventional SIC in both perfect and imperfect cases. For simulation, a cell-

free system is considered with 9 BSs deployed in a 3×3 grid over a coverage area of 500×500

squared meters, each BS has 16 antennas. The systems simultaneously serves 30 uniformly

distributed users. With 2 users assigned into each group, τp = 15 orthogonal pilot sequences

are required. The large scale fading is defined as βl,g,k = −131 − 42.8log10dl,g,k + zl,g,kdB,

where dl,g,k is the distance from the lth BS to the kth user of the gth group and zl,g,k is the

standard deviation of the shadowing variable. The noise figure of 5dB translates to a noise

variance of −96dBm. The simulation parameters are summarized in Table 5.2.

Table 5.2 Simulation parameters.

Parameter Value

Peak UL transmit power (pmax) 23 dBm

Shadowing standard deviation 10 dB

Penetration loss (indoor users) 20 dB

Noise figure 5 dB

Coherence interval (τc) 200 symbols

Pathloss 131 + 42.8log10d

First, Fig. 5.1 plots the histogram of noise-plus-interference term in the I channel of an

arbitrary user in the system and when the 4-PAM constellation is used. As can be seen, the

distribution is very close to the Gaussian fit of the same variance. This means that data

detection can be treated as a detection problem over an AWGN channel.

Fig. 5.2 displays the correlation coefficients obtained by our method and the long time
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Figure 5.1 Histogram of a user’s noise-plus-interference term in the I channel with

4-PAM constellation.

observation method suggested in [6–8, 15]. As expected, the longer the observation time is,

the better the estimated values of ρ
(I)
g,q and ρ

(Q)
g,q can be obtained. With the assumption that

the channels stay unchanged within τc symbols, the observation time grows proportionally

with τc. Another issue with the long time observation approach is that by the time ρ
(I)
g,q and

ρ
(Q)
g,q are acquired, the locations or transmit powers of users may have changed significantly,

which can readily change the correlation coefficients. In contrast, our proposed method can

determine the correlation coefficients in every coherence interval and the obtained values are

very accurate.

Finally, Fig. 5.3 plots the cumulative distribution functions (CDF) of the achievable QoS

for different SIC methods (as noted in the figure’s legend). The figure clearly shows that

imperfect data detection severely degrades performance of the conventional SIC method.

With the proposed adaptive SIC, the CDF curve is much more favorable and closely ap-

proaches the CDF curve achieved with the perfect SIC, especially for QoS values higher

than 2 bits/sec/Hz.
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Figure 5.3 Cumulative distribution functions of the achievable QoS.

5.6 Conclusion

The effects of imperfect CSI and data detection errors on the SIC operation have been in-

vestigated for a cell-free massive MIMO-NOMA system. Unlike previous works which assume
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a linear relationship between the transmitted and decoded signals before the SIC stage, we

develop a nonlinear model when the transmitted signal is drawn from a QAM constellation.

With the interference being effectively treated as Gaussian noise, the relationship between

the signals used by the SIC operation can be modeled with a discrete joint probability dis-

tribution. From the obtained relationship, we propose an adaptive SIC method to enhance

the ergodic uplink spectral efficiency among all users in the network. The proposed method

is analytically and numerically shown to be better than the conventional SIC method.
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6. Conclusion

6.1 Conclusion

This thesis has studied the integration of NOMA into massive MIMO systems via the

use of time-offset pilots and the SIC algorithm. The main objective for this study is to be

able to accommodate more users (i.e., a higher number of connections) in the network with

limited radio resources. The main contributions of this research are as follows:

• Chapter 3 investigates the performance of a single-cell massive MIMO system with

time-offset pilots with the aid of SIC. Numerical results show that the proposed method

can achieve a significant performance enhancement as compared to the conventional

orthogonal pilot method.

• Chapter 4 proposes the integration of NOMA into a cell-free massive MIMO network

with OBC. Analytical and numerical results are provided to demonstrate that with

the use of OBC, a NOMA cell-free massive MIMO system can achieve unlimited per-

formance when the number of antennas at each BS goes to infinity.

• Power control problems are formulated and solved to further improve the system’s

performance. Due to the NP-hardness of the problem, a successive approximation ap-

proach is adopted to convert the original optimization problem to a series of convex

problems, whose solutions are feasible to the original one and satisfy the KKT condi-

tions. Simulation results have shown that power control not only improves the system’s

SE but also users’ fairness.

• We also investigate the effect of imperfect SIC and introduce an adaptive SIC method

to address this imperfection. Simulation results shown the advantage of the proposed
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method over the conventional SIC not only in terms of SE but also in time requirement.

6.2 Future Research Topics

Although the integration of NOMA into massive MIMO systems is promising to solve

the problem of limited number of connections in wireless networks, there are several issues

that can be further studied and they are discussed below.

• Although reusing pilots in massive MIMO systems can improve the connection capa-

bility, assigning too many users with the same pilot sequence can result in very poor

channel estimation. Hence, how many users should be assigned with the same pilot se-

quence and how to optimally decide which users should use the same resources remain

interesting questions to study.

• The majority of research works on massive MIMO-NOMA systems consider single-

carrier transmission. It is relevant and interesting to exploit the structure of multi-

carrier transmission to solve the problem of limited connection capability in a massive

MIMO system.
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