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ABSTRACT 

There is currently a general agreement that the long-term performance of many civil infrastructure 

facilities, such as bridges, tunnels, harbor facilities, nuclear power plants etc. is strongly dependent, 

not only on mechanical loading, but also on the harshness of their service environment. Corrosion-

Fatigue (CF) is a damage mechanism commonly found in many Reinforced Concrete (RC) 

structures (bridges, harbor structures, oil platforms, etc.) exposed to variable loading and a 

corrosive environment. CF is a synergetic phenomenon between corrosion and fatigue wherein the 

damage caused by the simultaneous action of both mechanisms is usually greater than when either 

corrosion or fatigue is acting alone. Recognizing that aging of these structures may adversely 

impact their ability to fulfill their intended function in the future, some strategies have been 

developed for predicting their service life and for mitigating the effects of aging on their 

performance.  Despite its practical importance, only a relatively small number of studies have been 

carried out on the CF of reinforced concrete structures. Indeed, most durability studies in RC focus 

on either corrosion alone or fatigue without corrosion. In the few instances where CF was 

considered, oftentimes only RC structural elements, such as beams, were tested. Although 

providing important information about the overall CF behavior of this kind of structure, such tests 

also make it virtually impossible to extrapolate the application of those results to other structures 

or loading/exposure conditions.  

This study proposes a new approach for assessing the CF of reinforced concrete structures that 

relies on a realistic constitutive characterization of CF of steel reinforcement in simulated concrete 

pore solutions. The novelty of the proposed approach resides in its ability to accelerate both 

corrosion and fatigue loading simultaneously and independently so that a given field condition can 

be represented without favoring one mechanism over the other. Given the difficulty in accelerating 

corrosion to the required values to match the acceleration of fatigue loading, oftentimes the 

acceleration factor for fatigue is much higher than the one used for corrosion, making the test 

results not very representative of the field conditions.  

The research objectives of this study were divided into two main sequential stages. In stage one, 

the corrosion-fatigue behavior of carbon steel reinforcement is characterized as a material 
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operating in a chloride-laden simulated concrete pore solution in a way that is compatible with two 

widely used fatigue analysis approaches (S-N curves and Fracture Mechanics).  A combination of 

pore solution chemistry and an electrochemical method is used in this study to develop a novel 

corrosion fatigue cell that can accelerate, independently, both corrosion and fatigue so that the 

degradation rates are representative of typical in-service conditions. The simulated pore solution 

chemistry is chosen so that it is representative of typical concrete environments that favor pitting 

corrosion in the presence of chloride ions. The electrochemical method is used to overcome the 

limitations of the maximum corrosion rates that can possibly be achieved through the chemical 

composition of the simulated pore solution alone, so that CF tests (representative of field 

conditions) can be carried out within a reasonable time frame. In stage two, the ability of the two 

constitutive models, developed in stage one, to predict the fatigue life of reinforced concrete beams 

in a corrosive environment is assessed, as an example of a structural component. 

The results of the model predictions, for both approaches (S-N curves and Fracture Mechanics), 

were compared with the experimental results from an independent set of RC beams tested under 

corrosion-fatigue. The results show that both methods can be used to estimate the service life of a 

RC structure subjected to corrosion-fatigue. It is worth mentioning that the S-N curve approach 

provided more precise estimations than those provided by fracture mechanics, with standard errors 

ranging from 9.0% to 23.0%, instead of ranges between 26.7% and 54.2%, respectively. However, 

although the estimation of the fracture mechanics approach shows a higher error range, this method 

provides more insight into the evolution of damage in the rebar over time. The fracture mechanics 

model accounts for the four main stages of the metal degradation process: pit nucleation and 

growth, pit-to-crack transition, crack growth state, and ultimate fracture failure. The results 

indicate that the pit nucleation and growth stage occupies over 79.9% of the total service life in 

the prediction of the tested RC beams under CF. This result suggests that unstable crack 

propagation would not take place before the occurrence of extensive corrosion in the material. In 

other words, corrosion plays a more significant role than usually reported in the corrosion fatigue 

life of RC under realistic conditions.  
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1 Introduction 

1.1 Background  

Most reinforced concrete (RC) structures serve a lifespan of several decades, or even over a century 

in some instances (Ishida, 2009). The long-term performance of these structures highly depends 

on both their in-service loading and the harshness of the environment in which they operate (S. 

Ahmad, 2003; Mori & Ellingwood, 1993; Rodriguez, Ortega, & Casal, 1997). Corrosion-fatigue 

(CF), which is defined as the simultaneous action of a fluctuating load and a corrosive environment, 

is commonly observed in many RC structures, e.g. bridges, harbor structures, oil platforms, etc. 

(Jaske, Payer, & Balint, 1981; Thomas, Edyvean, & Brook, 1988; Wahab & Sakano, 2001). 

Realizing that the aging of these structures may adversely impact their ability to fulfill their 

intended functions in the future, various strategies have been developed for predicting their service 

life and for mitigating the effects of aging on their performance.  

Despite its practical importance, only a relatively small number of studies have been carried out 

on the corrosion-fatigue of RC structures. Most durability studies in RC focus on either corrosion 

or fatigue acting alone (Harlow & Wei, 1993; S. Li, Zhang, Gu, & Zhu, 1998; Masoud & Soudki, 

2006; R. E. Melchers & Jeffrey, 2008; Soudki, Rteil, Al-hammoud, & Topper, 2007). In the few 

instances where CF was considered, RC structural elements, such as beams or slabs, were often 

tested providing valuable information about the overall CF behavior of such structures (Z. Liu, 

Diao, & Zheng, 2015; Loo, Foster, & Smith, 2013; Yi, Kunnath, Sun, Shi, & Tang, 2011). 

However, it is virtually impossible to extrapolate the applicability of those results to other 

structures or loading/exposure conditions.  

Corrosion-fatigue is particularly severe in high strength metal alloys, such as stainless steel, 

aluminum alloys, and titanium alloys (DeJong, Heffernan, & MacDougall, 2009; El, Palin-luc, 

Saintier, & Devos, 2013; Hoeppner, 2011; Khan & Younas, 1996; Menan & Hénaff, 2010; Pao, 

Gill, & Feng, 2000; Radian, 1989; Wei & Gangloff, 1989; Weng, Zhang, Kalnaus, Feng, & Jiang, 

2013). In those metals, the microstructural flaws induced by corrosion cause stress concentration 

effects that typically enhance the ability of fatigue loading to further grow those defects to form 

macro-cracks or macro-defects which greatly accelerates the degradation process in the metallic 
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alloy. Corrosion and fatigue facilitate each other in a way that creates synergetic effects when 

acting simultaneously. Hence, corrosion-fatigue-induced damage is typically greater than the sum 

of damages from cyclic stresses and corrosion, acting separately (Sastri, 2012).  

Most published models about corrosion-fatigue in RC involve a sequential exposure to corrosion 

and fatigue wherein typically pre-corroded samples are tested under cyclic loading (E. Maaddawy, 

Soudki, & Topper, 2006; Yi et al., 2011). Consequently, the synergetic effects of corrosion and 

fatigue are not adequately captured. Although this kind of tests are relatively easy to carry out, 

strictly speaking, their results are only applicable to situations where a corroded RC structure will 

no longer be exposed to a strongly corrosive environment in the future. Another class of studies 

involves direct exposure of a RC structural element, such as a beam or a slab, simultaneously to a 

cyclic load and a corrosive environment, typically seawater, and monitoring the response of the 

system over extended periods of time (Katwan, 1988; Sonali, 1993).  

An advantage of the long-term monitoring study is that it provides valuable information about the 

Corrosion-Fatigue performance of RC structural elements, as a system. However, such results 

would be almost impossible to apply to other exposure or loading conditions that are significantly 

different from the tested conditions. Also, it becomes extremely difficult to quantify the evolution 

of damage in the concrete and reinforcing steel in a way that can provide fundamental insights into 

this phenomenon as a function of the major external stimuli (harshness of the corrosive 

environment and severity of the fatigue loading). This is a consequence of the fact that what is 

monitored and modeled is the response of the entire concrete-steel reinforcement system, and not 

the response of its individual constituents. 

The CF fatigue response of a structural element is the result of a combined effect of material 

behavior, geometry of the structure, environmental and loading conditions (Ettouney & Alampalli, 

2016). For this reason, such models are unable to provide a deep insight into the root causes of 

damage in the Corrosion-Fatigue of RC structures and the influence of different controlling 

parameters. A more advantageous approach consists in characterizing the CF behavior of the 

reinforcing bar at the material level as a function of applied stress and corrosion rate without 

consideration of the structural aspects (Milella, 2013; Schijve, 2009).  
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There are a few corrosion-fatigue studies where only the bare steel reinforcing rebar is tested under 

the simultaneous action of corrosion and fatigue. Most available data indicate that the fatigue 

strength of bare reinforcing bars is sharply reduced when tested in seawater as compared to the 

performance in air (Slater, 1983; Tilly, 1979). Placing the bars inside concrete and testing in 

seawater exhibits a similar fatigue behavior as for the bare rebar (Baker, Money, & Sanborn, 1977). 

In this kind of study, frequency is reported as an important variable, as it has a strong effect on 

crack propagation rates in corrosion.  

The main drawback of virtually all the studies reported in the literature is that the acceleration of 

the two major mechanisms governing the degradation of steel under CF is not done in a way that 

can reproduce a given field condition without distorting it. Indeed, given the excessively long 

periods of time that would be required to test and characterize the behavior of a given metal under 

actual field conditions, accelerated laboratory tests are typically designed so that the results are 

obtained within a relatively short period of time (Hartt, 2012; Yu, Francois, Dang, L’Hostis, & 

Gagne, 2015).  

Acceleration of the fatigue loading is a rather well-established technique and can be implemented 

relatively easily in the laboratory to simulate the effect of many decades of loading cycles within 

only a few days or a few weeks. On the other hand, acceleration of corrosion rates in a given 

environment, is typically done by altering the chemistry of the service environment (concrete pore 

solution or sea water, etc.)  so that higher corrosion rates are achieved. However, given the 

solubility limits of the various chemical compounds used in the service electrolyte, there is a 

maximum corrosion rate that cannot be exceeded using this approach. As a consequence, there are 

practical difficulties one encounters when attempting to accelerate both corrosion and fatigue 

loading in a way that preserves the relative importance they have under a given service 

environment (proportional increase).  

Because of the need to obtain results within a reasonable time frame, oftentimes the acceleration 

factor used for fatigue is much higher than the one used for corrosion, making the test results not 

very representative of the field conditions. For instance, one can easily imagine that in situations 

where corrosion and fatigue damage play comparable roles, the results of accelerated tests where 

the acceleration factor is increased by three times for corrosion and increased by one hundred times 
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for fatigue, the damage induced by fatigue may become more dominant than that induced by 

corrosion. Hence, it is important to find ways to characterize the CF of rebars in a way that takes 

place over wide ranges of both corrosion rates and loading frequencies. 

1.2 Problem statement 

Assessing the long-term performance of materials and structures, over many decades or even 

centuries in some instances, requires a good knowledge of the behavior of those materials and their 

degradation mechanisms over the same periods of time. Given the excessively long periods of time 

that would be needed to produce such performance data for the actual field conditions, various 

accelerated techniques have been proposed to overcome this time difficulty. However, accelerated 

testing methods come with their own deficiencies and great care must be taken when designing 

them to make sure that the simulated conditions are representative of the service conditions. The 

difficulty to characterize the long-term behavior of materials and structures is greatly increased 

when both complicated loads and environmental conditions need to be taken into consideration, 

simultaneously, such as in the case of corrosion-fatigue of RC structures. A particularly 

challenging situation occurs when there is a risk that “excessive acceleration” in the laboratory 

could lead to changes in the degradation mechanisms, making the results of the accelerated tests 

not applicable to the field conditions. Unpredicted structural failures are poised to occur and may 

require expensive rehabilitation or replacement costs if the long-term behavior of a structure is not 

represented adequately (Starke, 1996).  

One major disadvantage of virtually all accelerated testing methods lies in their relative simplicity, 

and hence, inability to recreate very accurately all aspects of the complicated loading and 

environmental conditions observed in the field (Starke, 1996). The field conditions may consist of 

many fluctuating effects such as loading, temperature, humidity, radiation, corrosive type, 

corrosive content, and their synergetic effects. As a result, most accelerated tests cannot represent 

exactly all the service conditions and, if not designed carefully, may induce major changes in the 

degradation mechanisms controlling the behavior of the materials (Starke, 1996).  At present, a 

good characterization of the aging of many construction materials and the associated constitutive 

equations under the action of both loading and the environment are not available for practical field 

conditions. In particular, the CF behavior of reinforcing bars is not understood well enough, in 
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quantitative terms, to be representative of many practical field conditions. This fundamental 

knowledge is necessary for the development of reliable numerical and physical models for 

assessing the service performance of structures containing such materials.  

The long-term performance of an RC structure depends not only on its mechanical loading but also 

on the severity of its service environment. In particular, the corrosion-fatigue of RC structures, 

such as bridges and oil platforms, is a potential issue that can trigger great economic damage and 

even loss of life if it is not addressed properly. Although there have been studies focusing on CF, 

they mostly investigated the structural performance or the rehabilitation of specific RC structures. 

In other words, a general method for evaluating the corrosion-fatigue performance of a RC 

structure in its service environment is still lacking. Moreover, the presently available acceleration 

approaches for the simulating the combined action of corrosion and fatigue in RC are not versatile 

enough to produce CF data that is representative of the field conditions. Hence, the development 

of effective acceleration techniques to simulate CF in reinforced concrete structures is a topic that 

requires further research, especially for corrosion.  

1.3 Objectives  

The main focus of this research is on the development of innovative accelerated tests and 

constitutive modeling of the corrosion-fatigue behavior in reinforced concrete, which will enable 

reliable calibration of theoretical models and provide some insight on the long-term performance 

of such materials from short-term tests. Because of the complexity of isolating the Corrosion-

Fatigue behavior of steel reinforcement inside a concrete structure from the structural response of 

the component where it is embedded, it is proposed in this study to proceed in three separate stages. 

Firstly, find a way to accelerate corrosion in such a way that CF tests can be carried out in 

reasonable periods of time without distortion of the relative importance of corrosion and fatigue.  

Secondly, once a suitable acceleration test is developed, it will be used to study the corrosion 

fatigue of a carbon steel rebar in a synthetic concrete pore solution. Thirdly, the constitutive models 

developed in Stage 2 will be used to predict the response of RC beams under corrosion-fatigue. 

The sub-objectives of this study are as follows:  
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1) To assess the possibility of achieving reliable highly accelerated corrosion rates through a 

combination of pore solution chemistry and electrochemical corrosion means. Both Potentiostatic 

and Galvanostatic modes of control will be investigated and compared. 

2) To develop appropriate tests to characterize the corrosion-fatigue behavior of reinforcing steel, 

as a material operating in a chloride-laden simulated concrete pore solution, in a way that is 

compatible with two widely used fatigue analysis approaches (S-N curves and Fracture 

Mechanics).   

3) To assess the ability of the constitutive models developed in Objective 2 to capture the fatigue 

life of reinforced concrete beams in a corrosive environment, as an example of a structural 

component. The results of the model predictions, for both approaches (S-N curves and Fracture 

Mechanics), will be compared with the experimental results for an independent set of RC beams 

tested under corrosion-fatigue. Specifically, the study addresses the following:  

3.1) Use of the S-N curves developed in Objective 2 in a relatively simple fatigue-life-

based model to predict the corrosion-fatigue of carbon steel rebar in concrete.  

3.2) Development of a more sophisticated fracture-mechanics-based model to gain a better 

insight into the evolution of damage in the rebar over time. The model should account for 

the four main stages of the metal degradation process: pit nucleation and growth, pit-to-

crack transition, crack growth state, and ultimate fracture failure. 

4) To conduct failure analysis of specimens used in the corrosion-fatigue tests for the stress-life 

method, Fracture Mechanics, and reinforced concrete beams. Scanning Electron Microscope (SEM) 

and Energy-Dispersive X-ray Spectroscopy (EDS) are used to examine the nature of the fracture 

surfaces and identify the origin of pitting-induced fractures.  

1.4 Scope  

In practice, the electrolyte for the rebar corrosion in reinforced concrete is the actual concrete pore 

solution. However, a synthetic concrete pore solution was used for the rebar corrosion in the two 

approaches considered in this study to estimate the corrosion-fatigue life, namely, the S-N 

approach and the Fracture Mechanics approach.  
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1.5 Outline of dissertation  

This dissertation contains seven chapters in addition to this Introduction Chapter (Chapter 1):  

Chapter 2 contains a background review of the corrosion-fatigue phenomenon and its applications 

in the context of reinforced concrete structures. The advantages and disadvantages of previous 

studies for evaluating the service life of reinforced concrete structures are discussed in this chapter. 

The considered approaches include the estimation of rebar corrosion and the loss of mechanical 

performance in the steel reinforcement induced by corrosion.  

Chapter 3 introduces the two approaches used in this study to estimate the corrosion-fatigue life 

of RC beams – stress-life method and fracture mechanics – and the corresponding experimental 

programs needed for their characterization.  

Chapter 4 presents the proposed acceleration methods for rebar corrosion in both solution and 

concrete environments. Potentiostatic and Galvanostatic polarization techniques are investigated 

and compared to determine the most suitable method for high acceleration of corrosion in a CF 

test.  

Chapter 5 discusses the CF results obtained by the stress-life approach (S-N curves) in simulated 

concrete pore solutions. This chapter also presents a procedure for transforming the test results 

obtained for a rebar in a synthetic pore solution so they can be used to predict the service life of 

RC beams under CF. Furthermore, the fracture surfaces of tested specimens are also analyzed by 

SEM and EDS.  

Chapter 6 builds two fracture mechanics models for predicting the corrosion-fatigue of RC beams 

that take into account the following four stages of damage development: pit nucleation and growth, 

pit-to-crack transition, crack propagation, and fracture failure. The details of the constitutive 

models for each stage are presented in this chapter.  

Chapter 7 introduces the test results of the RC beams that were tested directly under CF conditions 

and compares them with predictions based on the previously developed stress-life approach and 
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fracture mechanics approach. The advantages and disadvantages of each approach are also 

discussed in this chapter.  

Chapter 8 presents the conclusions of this study, together with a discussion of contributions, and 

suggestions for future work.  
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2 Literature review 

This chapter contains the reviews of the chloride-induced corrosion in reinforced concrete (RC), 

the fatigue phenomenon of metals, and the synergetic effect of corrosion and fatigue in metals. 

The methods to evaluate corrosion-fatigue are then introduced.  

2.1 Corrosion, fatigue, and corrosion-fatigue 

2.1.1 Chloride induced corrosion in reinforced concrete 

2.1.1.1 Passivity of reinforcing steel in concrete 

Steel reinforcement in concrete is usually protected by a natural barrier of concrete cover and 

highly alkaline concrete-pore-solution with a pH above 13  (Luca Bertolini & Polder, 2013; 

Broomfield, 1997). The concrete pore solution is formed by the hydration of cement, and mainly 

consists of sodium and potassium hydroxides. Once an RC structure is constructed, cement 

hydration produces a highly alkaline environment and the surface of the rebar starts to oxidize 

since oxygen and water are available in sufficient amounts at that time. As the oxidizing process 

continues, the oxide layer on the rebar starts to grow and becomes the main barrier preventing 

oxygen and water from reaching the surface of the bare metal beneath it.  The growth of the oxide 

film takes place with a decreasing rate, over time, because the formation of the oxide film gradually 

inhibits the reactants from penetrating through the film. Beyond a critical thickness, the oxide film 

would greatly reduce the movement of chemical species in the pore solution, and the oxidization 

process almost comes to a halt (Marcus, 2002). The passivity of steel reinforcement in concrete is 

typically maintained by a highly alkaline environment that leads to the formation of a protective 

oxide film (a few nanometers).  

The oxide layer develops according to the following reactions (Broomfield, 1997):  

 Fe → Fe2+ + 2e- (Anodic dissolution) (2.1) 
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 Fe2+ + 2OH- → Fe(OH)2 (Ferrous hyroxide) (2.2) 

 2 Fe(OH)2 + O2 → 2FeOOH + H2 (Ferric hyroxide) (2.3) 

 O2(g) + 2H2O + 4e- → 4(OH)-(aq) (Cathodic reaction) (2.4) 

The composition of the oxide layer is usually either Fe2O3 or Fe3O4, both of which are stable in a 

concrete environment. The most stable passive film in RC is Fe2O3 in the form of γ-FeOOH that 

is produced during the reaction of O2 and Fe(OH)2.  

 4Fe(OH)2 + O2 → Fe2O3·H2O + 2H2O (2.5) 

Since the corrosion rate is very low, while passivating conditions are maintained, a carbon steel 

rebar can operate during the entire service life of a structure without any significant corrosion-

induced damage. However, any factor that destroys the alkaline environment or the protective 

oxide layer would cause the degradation of reinforcing steel. It is reported that RC structures most 

often fail in environments of high humidity and high temperature, or those surrounded by 

hygroscopic substances (Fernandez, Bairan, & Mari, 2015; Islam & Sugiyama, 2010; Strength, 

Concrete, & Fly, 2010). Thus, to maintain the passivity of rebar in concrete, the quality of concrete 

should be rigorously specified and carefully monitored. In other words, the quality of the fresh 

concrete properties (workability, settlement & bleeding, plastic shrinkage, etc.) during 

construction, together with the hardened state properties (porosity, resistance to freeze-thaw cycles, 

etc.) play a major role on the long-term performance of a reinforced concrete structure.  

2.1.1.2 Chloride attack in RC 

The long-term degradation of concrete usually comes from two main mechanisms, chloride 

penetration and carbonation (Luca Bertolini & Polder, 2013; Broomfield, 1997; Kim, Boyd, Kim, 

& Lee, 2015; Sohail, 2013). Carbonation decreases the pH of the concrete pore solution to values 

that cause a destruction of the protective oxide layer on the rebar surface. Although the pH value 

of the pore solution in concrete remains practically constant during chloride penetration, the 

presence of chloride ions can produce pitting corrosion on the rebar.  
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Chloride induced corrosion is a type of localized corrosion. The mechanism of chloride attack in 

RC is usually divided into several stages: transport of chloride ions though the concrete cover, 

passive film breakdown on rebar, pitting corrosion (L. Bertolini & Redaelli, 2009; Luca Bertolini, 

2008). In the field, two typical types of sources introduce chloride in RC, coastal environments 

and de-icing agents. Other sources of chloride ions may be aggregates containing chlorides, saline 

mixing water, and addition of chloride as a component of an admixture during the mixing process 

(Z. Ahmad, 2006; Broomfield, 1997).  

Transport of chloride in concrete 

In a concrete environment, ions have to be transported in the pore solution of the inter-connected 

pores. Chloride transport in concrete is mainly governed by three mechanisms: capillary suction, 

migration, and diffusion (Luca Bertolini, 2008; Boulfiza, Sakai, Banthia, & Yoshida, 2003; 

Broomfield, 1997; Martın-Pérez, Pantazopoulou, & Thomas, 2001). Capillary suction is the 

phenomenon that liquid enters a porous medium caused by capillary forces. Migration in concrete 

is defined as the movement of a substance in concrete induced by magnetic field. Diffusion is 

considered as the movement of a substance from high concentration to low concentration. Many 

scientists (Bastidas-arteaga, 2009; Luca Bertolini, 2008) approximate the chloride ingress rate by 

the laws of diffusion. However, depending on the exposure conditions, the ingress of chloride in 

concrete is typically far more complicated than through simple molecular diffusion. As chlorides 

appear on the concrete surface, suction usually governs the chloride ingress when the concrete 

surface is dry. Deeper inside concrete, the chloride ingress rate is mainly controlled by diffusion. 

Many factors could increase the transport rate of chloride in concrete such as wet-dry cycling, 

evaporation, freeze-thaw cycling, etc. However, a number of  mechanisms might reduce the 

penetration rate of chlorides, among those one can mention bonding with the solid matrix and the 

reaction with hydration products (Luca Bertolini & Polder, 2013).  

Breakdown of passive film 

Provided that enough oxygen and moisture are available at the reinforcement location within 

concrete, the oxide film protecting the rebar is destroyed thorough pitting corrosion whenever the 

concentration of the chloride ions reaches a threshold value. The breakdown mechanisms are not 
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yet fully understood, e.g. localized corrosion in the presence of chlorides, and the interaction 

between the chloride anions and the oxide film (Szklarska-Smialowska, 2005).  

Many researchers (Luca Bertolini & Polder, 2013; Landolt, 2007; Szklarska-Smialowska, 2005) 

studied the mechanisms of chloride-induced pitting corrosion. Their findings agree that adsorption 

of chlorides on the passive film is the first step in pitting corrosion while chlorides act as catalysts 

for pitting. The corrosion rate has been shown to depend on the amount of free chlorides available 

in the pore solution. The amount of bound chlorides does not affect the corrosion rate. Previous 

research also shows that a threshold concentration of chloride is required in order to destroy the 

oxide layer and initiate pitting. Below that threshold the chloride anions are simply adsorbed on 

the metal surface in the form of clusters and the passive layer is able to rehabilitate itself (Janik-

Czachor, Szummer, & Szklarska-Smialowska, 1975; Okada, 1984).  

Many scientists (Luca Bertolini & Polder, 2013; Vonezawa, Ashworth, & Procter, 1988) have 

characterized the critical chloride concentration in terms of the chloride/hydroxyl ratio or simply 

the chloride concentration. Researchers observed that the chloride/hydroxyl ratio of 0.6 or the 

chloride concentration of 0.05 M could break down the passive film and nucleate pits on the rebar 

(Hausmann, 1967; Mohamed, 2009). However, all the proposed thresholds are only approximate 

because: (1), pH in concrete is affected by the cement type and the concrete mixing ratio; (2), 

chlorides might be adsorbed both chemically and physically; (3), the activation of chlorides 

depends not only on the reaction environment but also on the concentration of the reactants. 

Pitting corrosion 

With the protective passive layer breaks down, the steel areas directly exposed to the bulk alkaline 

solution act as anodes (active zones, pits) while the surrounding areas, still covered with the 

passive layer, act as cathodes. In the anodic areas, steel corrosion takes place and produces 

electrons due to the dissolution of metal iron to form ferrous or ferric ions. Those electrons are 

then transferred to the cathode and react with oxygen and water to produce hydroxide ions. The 

cathodic areas surrounding the pit remain protected during the pitting process.  
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A schematic of pitting corrosion is shown in Figure 2.1. As soon as the passive layer is destroyed 

by chemicals such as chlorides, fresh steel is exposed to the pore solution. Although the pH of a 

chloride contaminated concrete maintains the conditions of a highly alkaline environment, which 

practically suppresses the corrosion rate of reinforcing steel, the presence of a sufficient amount 

of chlorides leads to pitting corrosion, provided that enough moisture and oxygen are available for 

corrosion to occur. 

 

Figure 2.1. The model of pitting corrosion (Luca Bertolini & Polder, 2013) 

Following its direct exposure to the bulk solution, fresh steel at the depassivated spots start to 

corrode and pits are nucleated. A severe form of pitting corrosion occurs when there is formation 

of a pit cap, which is composed by the porous rust clustered in the pit mouth. The environment 

within the pit is very different from the bulk alkaline solution. Due to the electrochemical features 

in the pitting area, the corrosion current produced in the electrochemical reactions drives the 

chloride ions towards the anodic zones because of their negative charge. Chlorides permeate 

through the porous cap, cluster in the pit, and interact with the hydrogen ions produced by the 

reaction between Fe2+ and water, producing HCl, a strong acid that produces a highly acidic micro-

environment inside the pit which in turn leads to a very aggressive corrosion of steel. Some 

researchers reported that the pH in the pit could go down to 5, while others confirmed in the 

laboratory that the pH was as low as 2 (Luca Bertolini & Polder, 2013; Pacheco, Polder, Fraaij, & 

Mol, 2011). The corrosion rate inside the pit is rather high (up to 1 mm/year) in comparison with 
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the rates typically observed in general corrosion. The high penetration rates of pitting corrosion 

can cause a rapid reduction in the cross section of the reinforcement, and this in turn, could greatly 

reduce the load-bearing capacity of an RC structure.  

The corrosion of a carbon steel rebar is an electrochemical reaction, which consists of anodes and 

cathodes. The general corrosion process of steel is seen as:  

 Iron + oxygen + water → corrosion products (2.6) 

At the anodes, the anodic process consists of the dissolution of iron into solution and the liberation 

of electrons along the way. At the cathodes, the cathodic process is the reduction of oxygen and 

consumption of the electrons produced by the anodic process.  

 Anodic reaction: Fe(s) → Fe2+ + 2e- (2.7) 

 Cathodic reaction: O2(g) + 2H2O + 4e- → 4(OH)-(aq) (2.8) 

In the absence of oxygen, the main cathodic reaction that takes place in a typical concrete pore 

solution is the evolution of hydrogen gas: 

 2H2O + 2e- → H2(g) + 2(OH)-(aq) (2.9) 

As an electrochemical reaction, an essential part of corrosion is the transport of electrons from the 

anodic regions (pits) to the cathodic regions (rebar surface surrounding the pits). The transport of 

electrons causes the flow of current from the anode to the cathode.   

As shown in the anodic reaction, iron dissolves in the pore solution. However, the corrosion 

product is not the usual rust we would see in cracked or spalled concrete. More processes (shown 

from Eq. (2.10) to Eq. (2.12)) are required to form that rust:   

 Fe2+ + 2(OH)- → Fe(OH)2 (2.10) 
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 4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (2.11) 

 2Fe(OH)3 → Fe2O3·H2O + H2O (2.12) 

Depending on the availability of oxygen and other chemicals in the electrolyte, the exact 

composition of the final corrosion products varies from case to case. However, the two corrosion 

products, Fe2O3 and Fe3O4, are often observed (Z. Ahmad, 2006).  

2.1.2 Fatigue  

The definition of fatigue, cited from ASTM 1823 (ASTM, 2013a) standard, can be written as – the 

process of progressive localized permanent structural change occurring in a material subjected to 

conditions that produce fluctuating stresses and strains at some point or points and that may 

culminate in cracks or complete fracture after a sufficient number of fluctuations. Fatigue failure 

is a phenomenon where a structure fails after exposure to a number of cycles of a fluctuating load, 

the maximum stress of which is less than the ultimate stress the structure can bear.  

The process of fatigue can be divided into several phases from the fracture mechanics point of 

view: cyclic slip, crack nucleation, micro-crack growth, macro-crack growth, and final failure 

(Schijve, 2009). A schematic of this process is provided in Figure 2.2.  

 

Figure 2.2. Growing stages of fatigue from initiation until failure (Schijve, 2009).  
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2.1.2.1 Crack initiation  

The applied stress caused by the fatigue loading is usually fairly low compared with the ultimate 

tensile stress (UTS) of the material. For high fatigue loading (e.g. close to the UTS), a single 

loading cycle could cause a crack on the surface of the material. However, for most fatigue loading 

conditions (e.g. below the yield stress), a crack is often unable to nucleate in the early stages of 

cyclic loading. Each cycle of the loading produces a plastic deformation on the surface of the 

material since the loading is too weak to fracture the solid. A single loading cycle could be treated 

as a monotonic loading, which produces dislocations on the specimen’s surface exhibiting a 

staircase morphology, as shown in Figure 2.3 (a) (Suresh, 1998). The appearance of the strain 

offset depends on the properties of the grains – size and shape, crystallographic orientation – and 

the elastic anisotropy of the material (Schijve, 2009).  

With fatigue loading, the strain offset would firstly appear similarly as in the case of the monotonic 

loading. However, during the reverse loading period in a loading cycle, fresh strain offsets would 

be created instead of the complete recovery of the previous strain offsets (Hertzberg, 2012). That 

is because strain hardening in the slip zone is unable to fully reverse and an oxide layer might form 

on the previous slip tips once they have been created. Since a monotonic load creates a geometrical 

discontinuity on the metal surface, the dislocation spot facilitates the nucleation of new 

dislocations because of stress concentration. As a result, the accumulated damage of the cyclic 

loading is caused by the slips with extrusions and intrusions observed on the metal surface, shown 

in Figure 2.3 (b). These non-reversible slips are also known as persistent slip bands (Milella, 2013).  

 

Figure 2.3. Plastic strain-induced surface offsets: (a) monotonic loading caused slip offsets; (b) 

fatigue loading caused extrusions and intrusions (Hertzberg, 2012).  
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Some researchers (Hertzberg, 2012; Milella, 2013) concluded that these slips act as fatigue crack 

nucleation sites. The reason can be attributed to the fact that micro-cracks usually form at these 

extrusions and intrusions. Alden and Backofen (Alden & Backofen, 1961) have shown that fatigue 

life can be improved as long as the slips on the specimen’s surface are constantly polished during 

the testing period. Other studies (Hertzberg, 2012) illustrated the fact that the plastically deformed 

slip bands soften the specimen’s surface and concentrate stress in the fatigue testing. Therefore, 

cyclic plastic deformation, caused dislocation activities, are the dominant behavior prior to crack 

initiation in metals. Figure 2.4 shows the cyclic slip bands in a copper specimen after two million 

cycles.  

However, some researchers (Milella, 2013; Palin-luc et al., 2010) reported that inclusions or pre-

existing flaws near the surface of a specimen may also trigger a crack. Moreover, some studies 

(DeJong et al., 2009; El May, Palin-Luc, Saintier, & Devos, 2013) showed that corrosion induced 

flaws such as pits were also an essential source to the initiation of cracks.  

 

Figure 2.4. Slip bands in a copper specimen (Bullen, Head, & Wood, 1953).  
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2.1.2.2 Crack growth 

Short crack growth 

Prior to cracking, fatigue only affects the surface of the material. Hence, the material surface 

conditions would greatly influence the nucleation of a crack. Once a micro-crack is formed, fatigue 

behavior steps into a new stage.  

Unlike the macro-cracks (known as large cracks or long cracks) that have steady growth rates, the 

growth of micro-cracks (also known as short cracks or small cracks, usually with a crack length of 

several grain diameters) is usually unstable and unpredictable in the same material (Lankford, 1982; 

Narasaiah & Ray, 2005). The growth rate of a short crack might slow down or even stop because 

of the change in the crack tip stress field. Thus, despite the existence of short cracks in a specimen, 

it may have a fairly long fatigue life or even ‘infinite’ life as defined in fracture mechanics (Suresh, 

1998). The concept of stress intensity factor K is used in fracture mechanics to describe the stress 

state in a crack tip. According to the definition of stress intensity factor shown in ASTM E399 

(ASTM, 2013c) standard, it is magnitude of the ideal-crack-tip stress field, for a particular mode 

of crack displacement, in a homogeneous, linear-elastic body. Figure 2.5, which depicts the stress 

intensity factor range ΔK against crack growth rate dc/dN, shows the difference in crack growth 

between short cracks and long cracks.  

 

Figure 2.5. Small crack growth and large crack growth (Larsen & Allison, 1992). 
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The reasons for the short-crack effects have been intensively studied. Both linear elastic fracture 

mechanics (LEFM) and nonlinear or elastic-plastic fracture mechanics (using the concepts of J-

integral and crack closure) have been proposed to explain the observed short-crack effects (Larsen 

& Allison, 1992). Moreover, metallurgical features are also used to explain these effects (Lankford, 

1982; Newman Jr, 1983). In materials that are markedly inhomogeneous and anisotropic, the local 

grain orientation and grain boundary features could affect the crack propagation rate and the 

growth directions (Blom et al., 1986). Also, the irregularities and the inclusions of the crack front 

would affect the local stress distributions, and crack growth would be affected.  

Long crack growth 

A long crack is defined as a crack that can steadily grow from the fatigue crack growth threshold 

ΔKth, where the da/dN closes to zero, until fracture failure as depicted in Figure 2.5. The growth 

of a long crack is usually governed by the loading conditions, the properties of the material, and 

the environmental effects. The stress intensity factor is usually used to characterize a crack 

geometry and the applied stress. A typical image of the logarithmic scale of the stress intensity 

factor range (ΔK) against the fatigue crack growth rate (FCGR, da/dN) is presented in Figure 2.6.  

 

Figure 2.6. Typical crack growth curve in metals (Milella, 2013).  
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Three zones can be identified in the typical FCGR curve shown in Figure 2.6. The left zone, Region 

I, the so-called threshold zone, is characterized by a certain threshold value, ΔKth, below which no 

apparent fatigue crack growth would occur. Cracks in this zone are strongly affected by the 

microstructure and mechanical properties of the material. In the central part of the curve, Region 

II, the fatigue crack growth rate da/dN varies linearly with K in the log-log scale and it is 

governed by the well-known Paris law. This region is largely independent of the microstructure 

and the inclusions presented in the material when the metal is in a non-corrosive environment. The 

typical character of the final region, Region III, is the fast FCGR that causes low fatigue cycles. In 

this stage, the FCGR takes place very rapidly and one single cycle could cause the failure of the 

specimen. Furthermore, the ΔK at which failure occurs defines the fracture toughness KIc of the 

material. Similar to Region I, the microstructure and material properties greatly affect the FCGR 

in this region.  

2.1.3 Synergetic effect of corrosion and fatigue 

The fatigue behavior discussed in Section 2.1.2 would be affected if the material is in a corrosive 

environment. In general, any environment including dry air could become potentially aggressive, 

depending on the material and the loading conditions. The synergetic effect of corrosion and 

fatigue is highly complex and their interactions are greatly affected by chemical, mechanical, and 

metallurgical factors.  

In corrosion-fatigue, the degradation of a material accounts for the singular effects of corrosion 

and fatigue and the interactions between the two. Hence, environmentally assisted fatigue is highly 

dependent on the effects of both corrosion and fatigue, acting simultaneously. However, the 

relative importance of corrosion and fatigue should be “close enough” for the synergetic effects to 

be observed. Otherwise, either corrosion or fatigue would dominate the corrosion-fatigue response 

and eclipse the other degradation mechanism.  

2.1.3.1 Corrosion-fatigue mechanisms 

During the crack initiation period, corrosion affects fatigue in two ways. First, corrosive 

environments such as chlorides nucleate pits that become the stress concentrators and cause short 
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cracks (T. Chen, 2014; Sankaran, Perez, & Jata, 2001). Second, when cyclic loading forms slip 

bands, the fresh slip bands could be oxidized and the products may penetrate into the specimen 

surface when the loading is reversed in a cycle (Zhao, Wang, Zhang, & Wang, 2012). The 

consequence of the oxides on the steel surface is that the oxide damage accelerates the initiation 

of cracks. Moreover, corrosion products embedded in the slip planes would decrease the cohesive 

strength of steel between two adjacent slip planes, and this would accelerate the propagation of 

fatigue cracks along these planes.  

In the crack propagation period, many factors from both corrosion and fatigue aspects would affect 

the fatigue crack propagation response of a material subjected to a corrosive environment, which 

includes test frequency, load ratio, load profile, temperature, inclusions, and chemical species 

(Hertzberg, 2012; Milella, 2013). Thus, these factors somehow have an effect on either corrosion 

or fatigue or both.  

 

Figure 2.7. A schematic of the propagation in the crack tip (Milella, 2013). 

When a crack is formed, the propagation of the crack tip is mainly governed by anodic dissolution 

and fatigue loading. A schematic of the propagation in crack tip is shown in Figure 2.7. The passive 

film might form in the crack tip front. Depending on the severity of the corrosive environment, 

either corrosion or some fatigue cycles could break the oxidized layer of film and produce the 

active anodic dissolution of the bare metal in the crack tip. The metal in the front of the crack tip 



22 

 

would be unable to re-passivate since the fatigue loading could break the passive film in each cycle. 

In corrosion-fatigue, both anodic dissolution and fatigue loading facilitate the propagation of the 

crack tip.  

2.1.3.2 CF and stress corrosion cracking (SCC) 

CF and SCC might be simultaneously triggered in an environmentally assisted fatigue testing, 

depending on both environment and cyclic loading. A schematic of the relationship between CF 

and SCC is shown in Figure 2.8. Film rupture, anodic dissolution and hydrogen embrittlement are 

the three typical types of SCC, and they are often activated in corrosion-fatigue testing. For 

instance, the reduction of the loading frequency or the increase of the stress ratio (R ratio) can 

activate the SCC mechanism (see Figure 2.9). The true corrosion fatigue (TCF) behavior in Figure 

2.9 (a) shows that, in an aggressive environment, fatigue crack growth threshold could shift to a 

lower value and the shape of fatigue crack propagation curve could change. Depending on the 

environmentally assisted cracking threshold KISCC, it might be higher or lower than Kth, which 

means a SCC mechanism might be triggered before or after the occurrence of TCF, as shown in 

Figure 2.9 (b) and (c), respectively.  

 

Figure 2.8. Interdependence among true corrosion fatigue (TCF), film rupture-anodic dissolution 

and hydrogen embrittlement of stress corrosion cracking (SCC) (Fontana, 1987). 
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Hydrogen embrittlement is severe in many strong metals since a hydrogen atom has a small 

diameter and could penetrate through the grain boundaries. The weakening of the grain boundaries 

greatly increases the crack propagation along them. The SCC mechanism would dominate, on the 

condition that the crack propagation induced by SCC is faster than what induced by true corrosion 

fatigue as seen in Figure 2.9 (c).  

 

Figure 2.9. Different types of corrosion-fatigue propagation curves in terms of fatigue crack 

growth rate da/dN against stress intensity factor range ΔK (Milella, 2013). 

2.2 Studies on corrosion-fatigue and corrosion-fatigue evaluation  

This section introduces the previous studies on CF and the evaluation of CF in RC structures. 

Previous studies on CF can be divided into two main categories; those based on the material point 

of view and those based on the structural point of view. However, the vast majority of the published 

studies focus mostly on some aspect of the consequences of the corrosion-fatigue phenomenon in 

concrete rather than on a fundamental understanding of its root causes. For instance, many studies 

were concerned with the issues of structural rehabilitation, uncoupled corrosion and fatigue, the 

bonding strength between concrete and rebar, fatigue strength, and service life loss (Amleh, Mirza, 

& Ahwazi, 2000; Luca Bertolini, 2008; Das, Cheng, & Murray, 2006; Song & Yu, 2015). Few 

studies, however, have been conducted on the evaluation of CF. Corrosion-fatigue evaluation is 

usually studied in two ways: the transport of corrosive chemicals in concrete and the degradation 

of reinforcing steel. The former focuses on the transport of corrosive chemical species through 
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concrete and their reaction on the reinforcing steel surface. Studies on the degradation of rebar, on 

the other hand, concentrate on the mechanical performance loss in a rebar because of corrosion.  

2.2.1 Previous studies on corrosion-fatigue  

Many researchers (Al-hammoud, Soudki, & Topper, 2011; Coca, Tello, Romero, & Villafañe, 

2011; S. Li et al., 1998; Oyado, Kanakubo, Sato, & Yamamoto, 2011; Soudki et al., 2007; Yi et 

al., 2011)(Z. Liu et al., 2015) examined the load-bearing capacity loss and reduction of fatigue life 

induced by pre-corrosion in RC beams. The main findings were: (1), the fatigue cycles of RC 

beams are increasingly reduced with an increasing mass loss of steel; (2), brittle failure of rebar is 

observed; (3), the yield strength of reinforcement declines with an increasing mass loss of steel; 

and (4), pitting will happen beyond 7% mass loss of reinforcement.  

Many researchers (Masoud & Soudki, 2006; Soudki et al., 2007)(Loo et al., 2013; Song & Yu, 

2015)(Feldman, Boulfiza, Zacaruk, Christensen, & Sparks, 2008) studied the response of various 

pre-corroded RC structures (mostly beams) for the purpose of their rehabilitation by externally 

bonded fiber reinforced polymers (FRP), or simply for assessing the loss of fatigue life induced by 

corrosion. Their research found that, with external FRP reinforcement, the fatigue strength of 

corroded RC beams were typically 15% higher than the beams without.  

Fatigue bond strength in RC was examined by Al-Hammoud et al as well (Al-Hammoud, Soudki, 

& Topper, 2010). Their research showed that even a low corrosion level could reduce the fatigue 

bond strength by about 30% and the crushed spots in concrete induced by the expansion of 

corrosion products lead to a significant reduction in the bonding between concrete and rebar.  

Besides studies on high cycle fatigue in steel bars, many researchers (Apostolopoulos, 2007; 

Apostolopoulos & Pasialis, 2009; Khan & Younas, 1996) also investigated low cycle fatigue under 

corrosion as it took shorter testing times in the laboratory and the results somewhat reflect 

corrosion-fatigue in the field. Since most corrosion-fatigue studies in RC structures are not strictly 

considered as corrosion-fatigue because of the separation of corrosion and fatigue processes during 

testing, the results they produced could not account for the synergy between these two degradation 

mechanisms.  
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From a material angle, many studies (Luca Bertolini, 2008; Rahman, Al-Kutti, Shazali, & Baluch, 

2012; Ravikumar & Neithalath, 2013) have been carried out on corrosive species penetration and 

accumulation at the reinforcement location. In particular, chloride ions play an essential role in 

pitting corrosion. A critical amount of chloride ions is needed to initiate pitting and can be used as 

a threshold for determining the start of active corrosion. Although concrete cover in RC somewhat 

prevents chlorides from penetrating through concrete, the porous nature of concrete can not 

completely block the transport of chlorides. Scientists investigated the transport of chloride by 

different mechanisms in concrete cover, including diffusion, capillary suction, permeation, and 

migration (Bertolini, 2008; Bertolini, Elsener, Pedeferri, & Polder, 2004). By considering those 

mechanisms, the accumulated chloride concentration at the reinforcement location can be assessed, 

and used to estimate the service life of an RC structure. Although, the transport of chloride ions 

shows promising results in inferring estimates about the service life of RC through the use of 

empirical corrosion rates, this remains an indirect method with a lot of limitations, even for cases 

where only corrosion is present. The limitations are far more sever when used for evaluating CF 

life in RC.  

Another class of studies that can be found in the published literature considers the CF phenomenon 

from the material degradation standpoint (Y. Liu & Weyers, 1998; Suwito & Xi, 2008). In this 

type of study, the main issues addressed included corrosion-induced crack failure in the concrete 

matrix, structural evaluation under fatigue loading, and pitting-corrosion-fatigue of steel bar.  

The service life of reinforced concrete structures with chlorides present can be divided into three 

stages: chloride diffusion through concrete cover, corrosion and rust accumulation on the 

reinforcing steel surface, and the initiation of cracks in concrete and their propagation. Depending 

on the corrosion products volume expansion in RC, Suwito et al (Suwito & Xi, 2008) and Liu et 

al (Y. Liu & Weyers, 1998) proposed time-to-corrosion-cracking models to generate the critical 

amount of corrosion products to fill the space around reinforcement, and produce the required 

pressure to overcome the tensile strength of concrete and generate cracks in the concrete cover. 

The time needed to cracking is computed by the models and the service life of RC is obtained.  

Oh et al. (Oh, Asce, Lew, & Choi, 2007) evaluated the CF of a bridge deck slab by the stress-life 

(S-N curve) relationship. Modeling the rebar cross section loss at a specified corrosion rate, the 
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authors combined the cross section loss with the S-N curves of a slab. The total required time was 

computed as the total service life an RC structure can withstand. Despite the fact that this approach 

did somewhat reflect the RC structure performance in the field, the synergetic effect of corrosion 

and fatigue was neglected.  

Regarding the published studies on the pitting-induced-corrosion-fatigue crack growth of 

reinforcement, the process from pitting initiation to structural failure was usually divided into 

several stages: pit nucleation, pit-to-crack transition, small crack growth, large crack growth, 

unstable crack growth and structural failure. This model studied CF from a fracture mechanics 

point of view and was widely used in the CF life prediction of many metals, e.g. stainless steel, 

aluminum alloys, titanium alloys (G. S. Chen, Wan, Gao, Wei, & Flournoy, 1996; Dolley, E.J.; 

Lee, B.; Wei, 2000; Hoeppner, 1979, 2011; Medved, Breton, & Irving, 2004; Weng et al., 2013). 

Bastidas-Arteaga et al. (Bastidas-Arteaga, Sánchez-Silva, Chateauneuf, & Silva, 2008) tried the 

pitting-corrosion-fatigue (PCF) model for estimating the CF life of reinforcement. However, no 

corrosion effect was shown in the fatigue crack growth of reinforcing steel. Scott (Scott, 1983) 

performed fracture analyses under fatigue of structural steels in seawater. Instead of evaluating CF, 

the study mainly focused on the fracture behavior under various environments, i.e. stress ratios (R 

ratios), wet-dry cycles, and cathodic protection. The effect of corrosion was implicitly present but 

buried within the observed fracture behavior.  

2.2.2 Corrosion assessment   

In the study of rebar corrosion in concrete, researchers usually defined concrete spalling as the end 

of the functional service life in an RC structure (Ferro, Carpinteri, & Ventura, 2007; Yu et al., 

2015). The total service life of an RC structure could be divided into three parts from the corrosion 

point of view: the diffusion period of chemicals, the time from corrosion initiation to crack 

initiation, and the period from the crack initiation to the critical crack causing spalling and 

delamination of concrete cover. A schematic of these three stages can be seen in Figure 2.10.  
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Figure 2.10. A three-stage lifespan of RC structures (Suwito & Xi, 2008).  

Depending on the exposure conditions, the transport of chloride in concrete could be governed by 

many mechanisms, including, diffusion, capillary suction, permeation, and migration. Each 

mechanism has its individual governing equations. A concentration gradient causes diffusion and 

it might be affected by the status of the solution. Under non-stationary 1D transport conditions a 

unidirectional flux caused by diffusion can be described using Fick’s second law shown in Eq. 

(2.13).  

 
𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
 (2.13) 

where C(x,t) is the chloride concentration (in mol/m3) at time t (in s) and depth x (in m);  and D is 

the diffusion coefficient (in m2/s).  

For capillary suction, the mass of liquid absorbed in a unit surface is assumed to be proportional 

to the square root of time. A pressure difference in solution can produce permeation and this 

behavior is characterized by Darcy’s law presented in Eq.(2.14) (Luca Bertolini, 2008).  

 
𝑑𝑞

𝑑𝑡
=

𝑘𝐻𝐴

𝐿
 (2.14) 
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where 
𝑑𝑞

𝑑𝑡
 is the flow rate (in m3s-1), H (in m) is the pressure head across the specimen, k is the 

coefficient of permeability (in m·s-1), A is the cross-section area (in m2) and L is the thickness (in 

m). 

Provided that there is an electric field, migration of chlorides also occurs because the charged ions 

are driven by the electrical field. Because of the electrical field, the charged ions would migrate 

through the porous concrete medium by the electrical force. However, unless a specific electric 

field is applied, the migration of chlorides in concrete is usually ignored because of the absence of 

such an electric field.  

In the field, RC structures usually suffer from the penetration of chlorides by dual or multiple 

mechanisms mentioned above. For the purpose of approximation, some scientists (Hartt, 2012; 

Suwito & Xi, 2008) used the diffusion model – the main transport mechanism of chloride – to 

represent the penetration of chlorides into concrete.  

Many research findings (Alonso, Castellote, & Andrade, 2002; Jiang, Huang, Xu, Zhu, & Mo, 

2012; Maslehuddin, Al-Zahrani, Ibrahim, Al-Mehthel, & Al-Idi, 2007) indicated that a threshold 

chloride concentration existed in order to produce chloride-induced-pitting. Upon reaching the 

threshold concentration, chloride-induced corrosion occurs. Depending on the curing conditions 

and the mix proportions, concrete shrinks somewhat during the hardening period; hence, creating 

a porous zone between the concrete matrix and rebar. Because of the volume expansion of 

corrosion products in comparison with the reactants in the corrosion reactions, they would firstly 

fill up this porous zone, then generate pressure on the surrounding concrete, and finally cause 

cracks in the concrete cover.  

The time-to-cracking from the initial corrosion in rebar to spalling or delamination of the concrete 

cover are studied by examining the volume expansion of corrosion products and the resultant 

pressure on the concrete cover (Y. Liu & Weyers, 1998; Suwito & Xi, 2008). The composition of 

the corrosion products are firstly analyzed and their volume ratios are examined. The total amount 

of corrosion products in the three corrosion stages – free expansion around the steel/concrete 

interface, stress in the concrete cover, cracking in the concrete cover – is estimated by the 
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quantitative approximation of the total volume of the interconnected pores around the 

steel/concrete interface and the amount of corrosion products needed to overcome the concrete and 

generate cracks. The critical amount of rust can be evaluated by Eq. (2.15) and the growth of 

corrosion products can be approximated by Eq. (2.16) (Y. Liu & Weyers, 1998). Therefore, the 

amount of time required to produce the critical cracking of concrete can be estimated.  

 𝑊𝑐𝑟𝑖𝑡 = 𝜌𝑟𝑢𝑠𝑡 (𝜋 [
𝐶𝑐𝑓𝑡

′

𝐸𝑒𝑓
(

𝑎2 + 𝑏2

𝑏2 − 𝑎2
+ 𝑣𝑐) + 𝑑0] 𝐷 +

𝑊𝑠𝑡

𝜌𝑠𝑡
) (2.15) 

where Wcrit is the critical amount of rust (in kg/m), ρrust is the rust density (in kg/m3), Cc is the 

concrete cover depth (in m), ft’ is the tensile strength of the concrete (in MPa), Eef is the effective 

elastic modulus of the concrete (in MPa), a and b are the two radii of the assumed thick-wall 

concrete cylinder around the rebar (in m), vc is Poisson’s ratio of the concrete, d0 is the thickness 

of the porous zone around the steel/concrete interface (in m), D is the diameter of steel 

reinforcement (in m), Wst is the amount of corroded steel (in kg/m), ρst is the density of steel (in 

kg/m3). The rate at which the rust increases is given by:  

 
𝑑𝑊𝑟𝑢𝑠𝑡

𝑑𝑡
=

𝑘𝑝

𝑊𝑟𝑢𝑠𝑡
 (2.16) 

where Wrust is the amount of rust (in kg/m), t is the corrosion time (in years), kp is the rate of rust 

production (in kg/(m2 year)).  

2.2.3 Deterioration of reinforcement performance 

The corrosion-fatigue study of reinforcement usually focuses on the fracture mechanics point of 

view. In this approach, the service life of rebar is evaluated from the initial corrosion until fracture 

failure.  

Bastidas-Arteaga et al (Bastidas-Arteaga, Bressolette, Chateauneuf, & Sánchez-Silva, 2009) and 

Zhang et al (Zhang & Mahadevan, 2001) proposed a pitting corrosion fatigue (PCF) model to 

predict the service life of an RC structure that suffers both chloride-induced corrosion and fatigue 
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damage. The PCF model consists of three stages: corrosion initiation and pitting nucleation, pit-

to-crack transition, and crack growth.  

To simplify the corrosion initiation process, Fick’s second law is used to estimate the transport of 

chloride in concrete. At any depth x, from the concrete surface, the instantaneous chloride 

concentration C(x,t) (in kg/m3) could be expressed as a function of the parameters: depth in 

concrete x, exposure time t, chloride concentration on the concrete surface Cs, and the chloride 

diffusion coefficient in concrete Dcl, as seen in Eq. (2.17) (Zhang & Mahadevan, 2001).  

 𝐶(𝑥, 𝑡) = 𝐶𝑠 [1 − 𝑒𝑟𝑓 (
𝑥

2√𝐷𝑐𝑙𝑡
)] (2.17) 

where Cs is the chloride concentration on the concrete surface (in kg/m3), erf() is the error function, 

Dcl is the chloride diffusion coefficient in concrete (in m2/s), x is the depth in the chloride path (in 

m), t is the diffusion time (in years).  

The pit is assumed to volumetrically grow according to the uniform corrosion current density. 

Hence, the growth rate of a pit in volume can be estimated by the Faraday’s law, as presented in 

Eq. (2.18) (Harlow & Wei, 1998; Kondo, 1989):   

 
𝑑𝑉

𝑑𝑡
=

𝑀𝑖𝑐𝑜𝑟𝑟

𝑛𝐹𝜌
 (2.18) 

where M is the molecular mass of iron (in kg/mol), icorr is the corrosion current density (in A/m2), 

n is the valence of iron, F is Faraday’s constant (in C/mol), and ρ is the density of iron (kg/m3). 

Even though fatigue crack propagation in Region I and III of the crack growth curve depends on 

the microstructure and the properties of the material, fatigue crack propagation is not governed by 

the Paris law, which is found to govern the crack propagation in Region II. The entire crack growth 

is assumed to be governed by the Paris law presented in Eq. (2.19):   
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𝑑𝑎

𝑑𝑁
= 𝐶𝑝(∆𝐾)𝑚 (2.19) 

where a is the crack length (in mm), N is the number of cycles, ΔK is the stress intensity factor 

range (in MPa√m), and Cp and m are material constants.  

The stress intensity factor of crack propagation in rebar is computed by Eq. (2.20) (Bastidas-

Arteaga et al., 2009):   

 ∆𝐾 = ∆𝜎 𝑌 (
𝑎

𝑑0
) √𝜋𝑎 (2.20) 

where Δσ is the stress range (in MPa), a is the crack length (in mm), d0 is the original diameter of 

the rebar (in mm), and Y(a/d0) is a dimensionless geometry function.  

The pit-to-crack transition is calculated by equating the pit growth rate with the equivalent crack 

growth rate in which the pit depth substitutes the crack length in Eq. (2.20). Therefore, the time 

required to develop the critical pit and the beginning of a crack can be obtained. As a crack in rebar 

grows, the rupture point of a rebar is calculated by the remaining cross section of rebar that will 

yield to the applied load.  Following the Paris law in Eq. (2.19), the cycles of a growing crack until 

fracture failure can be computed, and the service time during crack propagation can be obtained 

by the division of the calculated cycles and the loading frequency.   

A cumulative distribution function (CDF) of the total corrosion-fatigue life is used by many 

researchers (Bastidas-Arteaga et al., 2009)(Zhang & Mahadevan, 2001). Integrating the 

mechanical model of pitting corrosion fatigue into a probabilistic framework, the probability 

function is presented in Eq. (2.21) (Zhang & Mahadevan, 2001):   

 𝐹𝑇(𝑡) = 𝑃𝑟{𝑇 ≤ 𝑡} = ∫ 𝑓(𝑥)𝑑𝑥
𝑡𝑝+𝑡𝑐≤𝑡

 (2.21) 
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where FT(t) is the cumulated probability, x is the vector of the involved random variables and f(x) 

is the joint probability density function of x, tp is the pit growth period (in years), tc is the crack 

propagation period (in years).  

With the help of the limit-state-based reliability method, the failure probability of a structure can 

be estimated on the condition that the critical crack size is defined.  
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3 Methodology and experimental design 

The methods used to characterize corrosion-fatigue, and describes the corresponding experimental 

design are discussed in this chapter. Prior to introducing the characterization approaches, a fast 

corrosion acceleration method is firstly reviewed and two corrosion-fatigue (CF) characterization 

methods – stress-life (S-N) relationship and Fracture Mechanics – are then demonstrated. Finally, 

CF studies in reinforced concrete (RC) beams are introduced in order to confirm the validity in the 

evaluation of CF by the stress-life (S-N) relations and the Fracture Mechanics model.  

3.1 Electrochemical corrosion acceleration 

Due to the fact that CF in RC structures is a long lasting process (decades, or even enduring the 

entire lifespan), both corrosion and fatigue have to be accelerated. Regarding fatigue, increasing 

the loading frequency is the optimal option. The generally used cyclic loading machines usually 

tolerate a frequency up to several Hz, which allows millions of cycles to be completed in a few 

days, hence fast enough for fatigue testing. Corrosion acceleration, on the other hand, is more 

difficult to achieve at the same rate as the fatigue acceleration.  

Electrochemical acceleration takes the advantage of the electrochemical corrosion in metals. In 

metal corrosion, the process is usually governed by an electrochemical mechanism. Metal in 

corrosion serves as both anode and cathode depending on the different locations on metal surface, 

and a humid or liquid environment surrounding the metal acts as an electrolyte. A potential 

difference is then generated between the two electrodes because of the electrochemical mechanism. 

In the electrochemical corrosion in this project, a potential is applied between the rebar – the anode 

– and an externally added cathode. Simulated concrete pore solution or actual concrete serves as 

the electrolyte. Hence, rebar corrodes actively with an adjustable corrosion rate depending on the 

potential applied.  

There are two ways to manage the electrochemical corrosion: Potentiostatic, which controls a 

constantly applied potential, and Galvanostatic, which controls a constantly applied current. In this 

project, a comparison between these two approaches was firstly performed and the approved with 

superior performance was implemented in the corrosion acceleration of CF in the S-N relations, 
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the fracture mechanics approach, and the validation of RC beams. The corresponding reinforcing 

steel mass loss at a corrosion current density can be computed by Eq. (3.1) (T. A. El Maaddawy 

& Soudki, 2003):  

 ∆𝑚 =
𝑀𝑖𝑐𝑜𝑟𝑟𝐴𝑡

𝑧𝐹
 (3.1) 

where ∆𝑚 is the mass loss of corroded steel (in g); 𝑀 is the molar mass of steel (in 𝑔/𝑚𝑜𝑙); 𝑖𝑐𝑜𝑟𝑟 

is the corrosion current density (in 𝐴/𝑐𝑚2); 𝐴 is the corrosion area (in 𝑐𝑚2); 𝑡 is corrosion time 

(in seconds); 𝑧 is the ionic charge, 2 for Fe; 𝐹 is Faraday’s constant, 96,500 𝐴 ∙ 𝑆/𝑚𝑜𝑙.  

3.2 Stress-life (S-N) relationship  

The stress-life diagrams (S-N curves), also known as Wöhler’s diagram, depict the relationship 

between the applied stress amplitudes or the stress ranges and the number of fatigue cycles to 

failure in a log-log scale. Two types of S-N curves are seen in Figure 3.1. This figure shows that 

ferrous alloys and titanium have a stress amplitude below which a specimen exhibits infinite 

fatigue life; hence, this stress amplitude is defined as the fatigue limit of a metal. For nonferrous 

alloys, on the other hand, the fatigue limit has to be defined at a number of cycles (e.g. 108 cycles) 

since these alloys only have fatigue strength rather than fatigue limit as ferrous alloys. Between 

103 cycles and the cycles at the fatigue limit of ferrous metals and titanium, a linearly logarithmic 

S-N relationship often exists with the fitted equation indicated by Eq. (3.2). Given the S-N curve 

and a stress amplitude, the fatigue life corresponding to that stress amplitude can easily be 

calculated from the linear regression of the curve:   

 
𝑙𝑜𝑔𝑆 − 𝑙𝑜𝑔𝑆0

𝑙𝑜𝑔𝑁 − 𝑙𝑜𝑔𝑁0
=

𝑙𝑜𝑔𝑆1 − 𝑙𝑜𝑔𝑆0

𝑙𝑜𝑔𝑁1 − 𝑙𝑜𝑔𝑁0
 (3.2) 

where N0 is 1000 cycles, S0 is the applied stress at N0 (in MPa), S1 is the fatigue limit (in MPa), 

N1 is the cycles at S1.  

The laboratory test for S-N curves is usually produced by the rotating bending test with a 

completely reversed loading at a mean stress of zero. However, in most field loading environments, 
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the mean stress is usually non-zero; therefore, the mean stress effect has to be corrected. Generally, 

there are three empirical equations proposed to correct the mean stress effect in S-N curves: the 

Goodman relation, the Gerber relation, and the Soderberg relation. The equations of these relations 

are seen from Eq. (3.3) to Eq. (3.5), respectively, (Hertzberg, 2012; Milella, 2013) and a schematic 

of these three relations is presented in Figure 3.2.  

 Goodman relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 −
𝜎𝑚

𝜎𝑡𝑠
) (3.3) 

 Gerber relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 − (
𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.4) 

 Soderberg relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 −
𝜎𝑚

𝜎𝑦𝑠
) (3.5) 

where 𝜎𝑎 is fatigue strength in terms of stress amplitude (in MPa), where 𝜎𝑚 ≠ 0; 𝜎𝑚 is mean stress 

(in MPa);  𝜎𝑓𝑎𝑡 is fatigue strength in terms of stress amplitude (in MPa), where 𝜎𝑚 = 0;  𝜎𝑡𝑠 = 

ultimate tensile strength (in MPa); 𝜎𝑦𝑠 is yield strength (in MPa).  

 

Figure 3.1. Two types of S-N curves (Milella, 2013).  
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Figure 3.2. Goodman, Gerber, and Soderberg diagrams illustrating the relationships between 

fatigue limit and mean stress (Schijve, 2009).  

The empirical data demonstrate that the testing results usually fall between the Goodman line and 

the Gerber parabola. Accounting for the mean stress effect, the Goodman line is a more 

conservative criterion in comparison with the Gerber parabola; the Soderberg line, on the other 

hand, is the most conservative among the three.  

Besides the mean stress effect, there are many other factors influencing the fatigue limit or fatigue 

strength of an S-N curve, i.e. the notch effect, sample size effect, surface finish, surface treatment, 

temperature, loading type, etc. Eq. (3.6) (Schijve, 2009) accounts for these effects in the fatigue 

endurance calculation by adding modifying factors for each effect:   

 𝑆𝑒 = 𝑆𝑒
′ 𝐶𝑛𝑜𝑡𝑐ℎ𝐶𝑠𝑖𝑧𝑒𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑖𝑛𝑖𝑠ℎ𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐶𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (3.6) 

where   𝑆𝑒 = the actual fatigue limit for a real component (in MPa) 

  𝑆𝑒
′  = the fatigue limit measured by the standard rotating bending test (in MPa) 
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𝐶𝑛𝑜𝑡𝑐ℎ, 𝐶𝑠𝑖𝑧𝑒, 𝐶𝑙𝑜𝑎𝑑, 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑖𝑛𝑖𝑠ℎ, 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝐶𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒  = the effects of 

notch, component size, loading type, surface finish, surface treatment, and 

temperature, respectively.  

However, the drawback of the correction of the endurance limit in Eq. (3.6) is that it only applies 

to the modification of the fatigue limit, not to all fatigue strengths in an S-N curve. Since this study 

focuses on the fatigue life prediction at a specific fatigue load, the application of Eq. (3.6) in 

estimating CF of a structure is limited.  

In a corrosive environment, the S-N curves usually shift to the left of those generated in a non-

corrosion environment, indicating that fewer fatigue cycles are required to cause the failure of a 

specimen. Moreover, the fatigue limit disappears because of the corrosion damage accumulated 

on the specimen surface with time, thus a fatigue strength replaces the fatigue limit at a tested 

stress amplitude. Even though little research has been conducted on corrosion effects on S-N 

curves, corrections are required in considering the corrosion effect, as well as other factors such 

as temperature, notches, loading type, surface treatment, etc.  

In a chloride environment, the fatigue failure of a specimen usually derives from chloride-induced 

pits. A specimen with smooth surface possesses a longer fatigue life than one with a notch. Thus, 

this study proposes that the presence of pits are considered as notches on specimen surfaces. The 

notch effect is modified by the fatigue notch factor, which is then added to correct the resultant 

fatigue strength in S-N curves. The formula used to calculate the notch factor is seen in Eq. (3.7) 

(Stephens, Fatemi, Stephens, & Fuchs, 2000):  

 𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + 𝑎/𝑟𝑛
 (3.7) 

where 𝐾𝑓 is the fatigue notch factor (in MPa√m), 𝐾𝑡 is the elastic stress concentration factor (in 

MPa√m) which can be cited from a literature review or obtained from experimental measurement, 

𝑎 is another material characteristic length (in mm), 𝑟𝑛 is the radius of the notch root (in mm). An 

empirical equation relating the ultimate tensile strength 𝑆𝑢 and 𝑎 for steels is given as:  
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 𝑎 = 0.0254 (
2070

𝑆𝑢
)1.8  with 𝑆𝑢 in MPa and 𝑎 in mm (3.8) 

In Eq. (3.7), Kt, which is the elastic stress concentration factor (in MPa√m) of the material, could 

be obtained either by conducting an experiment or by citing from literature. The radius of the notch 

root rn in Eq. (3.7) could be calculated by the stress intensity factor equation (K~a formula) 

according to the geometry of a specimen. Therefore, the fatigue notch factor could be calculated 

based on the known material properties and the specimen geometry.  

Taking into account the notch effect, the Goodman and Gerber relations can then be rewritten as 

(Stephens et al., 2000):  

 Goodman relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
 (1 −

𝜎𝑚

𝜎𝑡𝑠
) (3.9) 

 Gerber relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
(1 − (

𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.10) 

where 𝜎𝑎 is fatigue strength in terms of stress amplitude (in MPa), with 𝜎𝑚 ≠ 0; 𝐾𝑓 is the fatigue 

notch factor; 𝜎𝑚 is mean stress (in MPa);  𝜎𝑓𝑎𝑡 is fatigue strength in terms of stress amplitude (in 

MPa), with 𝜎𝑚 = 0;  𝜎𝑡𝑠 = ultimate tensile strength (in MPa); and 𝜎𝑦𝑠 is yield strength (in MPa).  

Therefore, transforming both the mean stress and notch effect, the fatigue life at a tested stress 

amplitude can be estimated by the Goodman and the Gerber relations.  

3.3 Fracture Mechanics  

From the Fracture Mechanics point of view, the fatigue life of a metal structure (shown in Figure 

3.3) consists of four stages: crack formation or nucleation; micro-structurally dominated crack 

propagation; crack propagation governed by Linear Elastic Fracture Mechanics (LEFM), Elastic 

Plastic Fracture Mechanics (EPFM), or Fully Plastic Fracture Mechanics (FPFM); and final 

instability of crack propagation. In a chloride environment, cracks are repeatedly reported to 

initiate from chloride-induced pits (Huang & Xu, 2013; Kondo, 1989; Rokhlin, Kim, Nagy, & 
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Zoofan, 1999). As a result, the four stages of fracture mechanics are divided into seven phases in 

the presence of chlorides: pit nucleation, pit growth, pit-to-crack transition, short crack growth, 

short crack to long crack transition, long crack growth, and fracture failure. Currently available 

studies are unable to model each stage with models. Hence, in this study, a four-stage model is 

used: pit nucleation and growth, pit-to-crack transition, crack growth, and fracture failure.  

 

Figure 3.3. A depiction of the degradation process of a material (Hoeppner, 1979). 

A typical logarithmic relationship of the crack growth rate against the stress intensity factor range 

is shown in Figure 2.6, and the fatigue life of a specimen is computed by the four-stage model 

mentioned above. Prior to the threshold of stress intensity factor range ΔKth, the fatigue life is 

considered as pit nucleation and growth, and pits transit to cracks at ΔKth. In other words, the crack 

length a is the same as the pit depth at ΔKth; thus, the maximum pit depth can be calculated by the 

ΔK~a relation in fracture mechanics. In the pit-to-crack transition, the pit growth rate may be 

higher than the initial crack propagation rate at ΔKth. In this case, the pit would keep growing until 

its propagation agrees with the calculated crack propagation rate. Therefore, two rules govern the 

pit-to-crack transition, the stress intensity factor range threshold ΔKth and a higher crack growth 

rate at any ΔK than the correspondent pit growth rate. The number of fatigue cycles in pit growth 

until pit-to-crack transition is calculated according to the pit growth from the initiation of a pit 
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until ΔKth or a ΔK, at which the crack growth rate equals pit growth rate. The growth of pit depth 

is documented as a function of time as shown in Eq (3.11) (R E Melchers, 2006; Robert E. 

Melchers, 2012):  

 𝑑 = {
𝐴(𝑡 − 𝑡0)𝐵, 𝑡 ≥ 𝑡0

0, 𝑡 < 𝑡0
 (3.11) 

where d is the pit depth (in mm), 𝑡0 is the pit nucleation time (in hours), t is the pitting time (in 

hours), A and B are the constants associated with the material and the corrosive environment.  

Given the pit depth growth function, the critical pit size, and the loading frequency, the number of 

cycles in pit nucleation and propagation can be estimated by dividing the frequency by the time to 

nucleate the critical pit.  

In the crack propagation stage, the initiated crack grows from the threshold of the stress intensity 

factor range ΔKth until the fracture toughness KIc. In order to estimate the fatigue life between ΔKth 

and KIc, the crack growth rate da/dN against ΔK is required. The crack length a from ΔKth to KIc 

can be calculated by the ΔK~a relation. The total number of fatigue cycles from pitting nucleation 

to fracture failure is the sum of the cycles to produce the critical pit and the cycles allowing a crack 

growth from its formation until the final fracture failure.  

Many equations are proposed for the ΔK~a relationships, depending on the geometry of the metal 

and the shape of cracks.  Eq. (3.12) and Eq. (3.13) (Milella, 2013) account for two circumstances: 

the general plate metal with a small flat crack in the center of a specimen and the cylindrical metal 

accompanied with a semi-elliptical crack on sample edge. Although rebar has ribs, this study 

assumes the geometry of rebar is round, hence, Eq. (3.13) is used to calculate the ΔK~a relation:  

 𝐾𝐼 = 1.1 σ √𝜋(
𝑎

𝑄
) (3.12) 
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 𝐾𝐼 =  𝜎√𝜋𝑆 𝑓(
𝑎

𝑐
) (3.13) 

 𝑆 = 𝑟 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑐

𝑟
) (3.14) 

 𝑓 (
𝑎

𝑐
) =  0.7433(

𝑎

𝑟
)2 − 0.2194 (

𝑎

𝑟
) + 0.6757 (3.15) 

where 𝐾𝐼 is the stress intensity factor of mode I cracks (in MPam),  σ is the applied stress (in 

MPa), 𝑎 is the critical pit depth or crack length (in m), Q is the function of material and shape, and 

2S is the length of the arc (in m) corresponding to the two axis 2c and r (in m) of the surface crack 

in the specimen. A schematic of the growth of semi-elliptical crack in the cylindrical sample is 

seen in Figure 3.4.  

 

Figure 3.4. Semi-elliptical crack growth in round specimen (Milella, 2013).  

The required parameters and the procedures to properly estimate fatigue life in pitting corrosion 

fatigue are:  

 The critical pit size (the initial crack size) assessment: The threshold of stress intensity 

factor range ΔKth must be measured. The critical pit size can be examined by three 

approaches. Firstly, the critical pit depth is calculated by the ΔK~a equations, e.g. Eq. (3.12) 
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and Eq. (3.13). Moreover, the critical size is also able to be determined by experiments in 

the laboratory. By applying a series of stress patterns to pitted specimens, the critical pits 

that transform to a crack can be identified and their sizes can be measured. The final 

approach is to cite from literature where fracture analysis has been conducted and the initial 

crack size identified. In this study, Eq. (3.13) is used to estimate the critical pit size.  

 The critical crack size for instability examination: The critical crack size at the fracture 

toughness can be calculated by the ΔK~a relations with an experimentally measured 

fracture toughness KIc. Another approach performs failure analysis of the failure surfaces, 

on which the critical crack size is obtained of the same size rebar as long as the final fracture 

failure could be identified on the corroded fracture surface. In this study, due to the fact 

that intense corrosion products are produced on fracture surface during CF, the unstable 

crack size is calculated by Eq. (3.13) with a measured KIc.  

 Crack growth rate (da/dN) vs stress intensity factor range ΔK curves: This study examines 

the (da/dN) ~ ΔK relations at different corrosion degrees in the laboratory. Based on the 

ΔK~a equation and the range of crack length (from ~ ΔKth to KIc), the number of cycles 

that causes a crack from its initiation until failure is integrated in a reverse manner using 

the (da/dN) ~ ΔK curves. This study implements experimental tests to produce the da/dN 

~ ΔK curves from the non-corrosive exposure to the significantly aggressive corrosive.  

 Pit-depth vs. time equation: Parameters in the pit growth equation are either obtained from 

literature or examined through experiments in the laboratory. The number of service cycles 

from pit nucleation to the critical pit resulting in the ‘first’ crack is estimated by the division 

between the time required to produce the critical pit size and the loading frequency. This 

study examines the pit-depth vs. time curves by measuring the development of pit depth 

with time at various corrosives.  

 Depending on the pit growth rate at the critical pit size and the crack growth rate at the 

ΔKth, the cycles in the pit nucleation and propagation stage is evaluated by the pit size at 

ΔKth or the above mentioned equivalent ΔK.  

 The total number of cycles is the sum of cycles calculated in pit growth and crack 

propagation.  



43 

 

3.4 Experimental setup 

3.4.1 Materials and corrosive environment  

The material studied in this project is general-use 400R structural rebar, the chemical composition 

of which is listed in Table 3.1, as cited from the mill certificate of the manufacturer. The yield 

strength and the ultimate tensile strength of the used steel rebar were determined according to 

ASTM E8 standard and their values were 440 MPa and 666 MPa, respectively. 

Table 3.1. Rebar chemical composition 

Composition Percentile (%) Composition Percentile (%) 

C 0.38 Ni 0.10 

Mn 0.95 Cr 0.16 

P 0.015 Mo 0.020 

S 0.051 V 0.100 

Si 0.22 Cb 0.003 

Cu 0.32 CEA706* 0.57 

*CEA706: A706 CARBON EQUIVALENT 

Except for the CF test in RC, other tests involving corrosion were carried out in chloride 

concentration(s) mixed in a base solution, defined as a simulated pore solution (SPS) environment. 

The pore solution in concrete has a high pH value – usually above 13 – which protects 

reinforcement. The pore solution has a complicated composition and many scientists have 

proposed combinations of chemicals to simulate concrete pore solutions (Ghods, Isgor, McRae, & 

Miller, 2009; Moreno, Morris, Alvarez, & Duffó, 2004; Poursaee, 2010; Schmidt & Rostasy, 1993; 

Vonezawa et al., 1988). This study simulated concrete pore solution by mixing 1 g/L Ca(OH)2, 8 

g/L Na(OH), and 22.44 g/L K(OH) as proposed by Ghods (Ghods et al., 2009). The pH was found 

to be 13.60 after 7 days of mixing. 
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3.4.2 Corrosion acceleration 

The specimen used for the corrosion acceleration test was a disk-shaped cross-section, with a 

thickness around 2 mm cut from of a Φ15 mm rebar. The disk specimens were polished on one 

side in the following order of sandpapers: 80 grit, 150 grit, 240 grit, 360 grit, and 600 grit. Then 

the disks were covered with Gamry sample masks and 1 cm2 of the polished surfaces was exposed 

to both pure chloride corrosion and electrochemical corrosion. Figure 3.5 gives a photo of a 

polished disk, which is covered with a sample mask and ready for test.  

 

Figure 3.5. A photo of a polished specimen covered with sample mask. 

The corrosion rate of pure chloride corrosion acceleration was measured by both linear polarization 

resistance (LPR) and Potentiodynamic (Tafel) scan to ensure the accuracy of the measurement. 

Electrochemical corrosion was divided into a Potentiostatic scan and a Galvanostatic scan, the 

mass losses of which were weighted to compare with the estimated mass losses by the Faraday’s 

law.  

3.4.2.1 Pure chloride corrosion acceleration 

Linear Polarization Resistance (LPR) 

In order to stabilize the corrosion potential of specimen in the tested solution environment, a 

specimen was exposed to the corrosive solution for an hour prior to a LPR test. The test parameters 

were:  
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 Initial E: defines the potential prior to any potential step. The value was set at – 0.02 V vs 

the open circuit potential EOC.  

 Final E: This defines the ending potential after the potential step. The Final E value was 

set at + 0.02 V vs EOC.  

 Scan Rate: This defines the speed of the potential sweep during data acquisition. The scan 

rate was 0.125 mV/sec.  

 Sample period: This defines the spacing between data points. The sample period was 1 

second.  

 Beta Anodic / Beta Cathodic: These are the Tafel constants and depend on many 

parameters such as electrode material and solution.  

 Initial delay: This defines the starting time of a test in order to keep a relatively steady 

varying rate of the corrosion potential. The initial delay was set at 300 seconds unless the 

varying rate of the open circuit potential was less than 0.1 mV/sec.  

 Potentiodynamic (Tafel) scan 

The Potentiodynamic scan was performed after an hour of exposure to the designed corrosive 

environments. The parameters in the Tafel scan were:  

 Initial E: This defines the potential prior to any potential step. The Initial E was set at – 

0.15 V vs EOC.  

 Final E: This defines the ending potential after the potential step. The value was set at + 

0.20 V vs EOC.  

 Scan Rate: This defines the speed of the potential sweep during data acquisition. The scan 

rate was set at 0.167 mV/sec.  

 The sample period: This defines the spacing between data points. The value was set at 1 

second.  

 Initial delay: This defines the starting time of a test in order to keep a relatively steady 

varying rate of the corrosion potential. The Initial delay value was 600 seconds unless the 

varying rate of the open circuit potential was less than 0.1 mV/sec.  
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3.4.2.2 Potentiostatic scan 

The Potentiostatic scan utilized the disk-shape specimens as the working electrode, a graphite rod 

as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. The 

electrolyte used in the test was the simulated pore solution mixed with 0.6 M NaCl. A Gamry 

Interface 1000 applied a constant potential between the working electrode and the counter 

electrode, and the machine recorded the corresponding current vs time data for 600 seconds. The 

applied potential (vs SCE) levels were selected at 0.1 V, 0.3 V, 0.5 V, and 0.7 V. Prior to testing, 

a 300 seconds initial delay was implemented after the setup of a test (see Figure 3.6) in order to 

obtain a steady open circuit potential (OCP).  

 

Figure 3.6. A schematic of the testing setup of both Potatiostatic and Galvanostatic scans. C, R, 

W in the beaker represent the counter, reference, and working electrodes, respectively.  

3.4.2.3 Galvanostatic scan 

Sharing the same specimen preparation and test setup as the Potentiostatic scan, the Galvanostatic 

scan differed in applying a constant current between the anode and cathode and in recording the 

instantaneous potential over time. In this study, the testing conditions (e.g. the applied current, 

chloride concentration, and the applied duration) are listed in Table 3.2. ASTM G1 (ASTM, 2011) 

standard describes the procedures to remove the corrosion products from the sample surface when 

a test is done. The mass differences of the specimens (listed in Table 3.2) before and after the 

Galvanostatic scan were measured and compared to the calculated values.  
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Table 3.2. Galvanostatic scan test parameters 

Sample No. Applied current /mA 
[Cl] in simulated pore 

solution /M 
Duration /min 

0.1 M1mA30 Min 1 0.1 30 

0.6 M1mA60 Min 1 0.6 60 

0.6 M10 MA60 Min 10 0.6 60 

1.5 M10 MA60 Min 10 1.5 60 

3.4.2.4 Corrosion acceleration in pure solution environment  

Prior to any CF test (e.g. CF examination of rebar in SPS and of RC beams), the verification of 

electrochemical acceleration was performed and a schematic of the testing setup is presented in 

Figure 3.7. In a pure solution environment, the disk-shaped specimens, whose exposed area was 

controlled at 1 cm2, were connected to the positive pole of an output-current controllable GW 

Instek DPD 4303S DC power supply, while the negative pole was connected to a graphite rod. 

Simulated pore solution plus chlorides (0.6 M or 1.5 M NaCl) acted as the electrolytes in the test. 

Currents of 10 mA or 20 mA were applied individually in the electric circuit for 30 minutes each 

time, for a total of 60 minutes. Mass differences before and after the test of all specimens were 

measured by the same procedures as those in Potentiostatic and Galvanostatic scans. The actual 

mass loss of the specimens was plotted and compared to the theoretical mass loss.  

 

Figure 3.7. A schematic of corrosion acceleration in a pure solution environment. 
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3.4.2.5 Corrosion acceleration in RC 

Due to the concrete cover, electrochemical corrosion in RC was performed slightly different than 

the previous corrosion acceleration examinations. The presence of porous concrete prohibits 

chlorides contacting rebar at the moment that a potential was being applied between the rebar in 

concrete and the counter electrode. Even though concrete is a porous media and some pores are 

connected through the concrete cover, it requires time to transport chloride from the concrete 

surface to the embedded rebar.  

 

Figure 3.8. A schematic of RC corrosion acceleration 

When a potential is applied, the electric field drives chlorides from the concrete cover surface to 

the rebar, hence chloride transport is not governed by diffusion, which takes months, even years, 

to travel through the concrete cover. Because of the complex porous structure in concrete, a period 

of time is required for the migration process at an applied potential. Aguayo et al (Aguayo, Yang, 

Vance, Sant, & Neithalath, 2014) studied the transport behavior of electrically driven chlorides in 

concrete. Their results showed that chlorides migrated a depth of 20 mm after 24 hours of applying 

a potential of 60V. In the RC beams with a concrete cover thickness of 20 mm in this study, the 

potential was applied 24 hours prior to counting the actual corrosion time of rebar.  

Another issue in applying potential on rebar is their ribs that help to increase the bonding between 

concrete and rebar. Since the accurate calculation of rebar surface area is almost impossible, this 

study assumes rebar to be round. The corrosion length of rebar was controlled to 20 cm with a 

coating width of 5 cm on both ends of the controlled corrosion length. A schematic of the 

acceleration is shown in Figure 3.8. Rebar was connected to the positive pole of a GW Instek DPD 

4303S DC power supply and a graphite rod was connected to the negative pole. A piece of 10 cm 
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wide cotton towel was attached to the bottom of the RC beam that covered the center of the 

uncoated 20-cm length portion. Both ends of the towel were immersed in SPS mixed with 0.6 M 

NaCl.  

El Maaddawy and Soudki (T. A. El Maaddawy & Soudki, 2003) studied the impressed current 

technique for rebar corrosion in concrete and concluded that an applied current density above 200 

µA/cm2 exaggerated strain and crack width in concrete due to the quick corrosion of reinforcement. 

Therefore, the corrosion acceleration of rebar in concrete was controlled at an applied current 

density below 200 µA/cm2 and the tests were performed as shown in Table 3.3.  

Table 3.3. Electrochemical corrosion in RC testing parameters.  

Sample No. Applied current /mA 

[Cl] in externally 

simulated pore 

solution /M 

Duration /days 

10 MA9d 10 0.6 9 

20 MA9d 20 0.6 9 

20 MA18d 20 0.6 18 

15mA13d 15 0.6 13 

15mA45d 15 0.6 45 

 

3.4.3 Stress-life (S-N) relationship  

3.4.3.1 Specimen preparation  

The standard rotating bending test specimen in ASTM E466 (ASTM, 2002) standard  and the draft 

of specimens used in this study are shown in Figure 3.9 (a) and (b), respectively. The central neck 

section of the standard sample was around 25.4 mm wide, while the sample used in this study had 

a 17.8 mm length in the neck region. The smaller neck width was used to leave space in the sample; 

hence, a corrosion chamber can be mounted to apply accelerated corrosion. The specimen diameter 
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was machined to 6 ± 0.001mm with a surface roughness around 0.3 µm. Figure 3.10 provides a 

photo of the machined rotating bending test specimen.  

 
 

(a) (b) 

Figure 3.9. Draft of rotating bending test samples: (a) standard test sample; 

 (b) the sample tested in this project. 

 

Figure 3.10. A machined rotating bending test specimen. 

3.4.3.2 Testing procedures 

Three groups of rotating bending tests were conducted: a fatigue test in air (reference group), under 

an accelerated corrosion environment produced by chloride concentrations, and under 

electrochemical corrosion. A fatigue test at atmospheric condition seeks to find the linear stress-

fatigue life relationship (S-N curve) and the fatigue limit of the metal. Tests were manually 

terminated when the number of cycles reached 10 million, the stress amplitude of which was 

considered as the fatigue limit in this study.  

Prior to both types of corrosion-fatigue test, around 2 mm of width in the central neck region of a 

specimen was left blank, and the rest of the neck zone was coated with rust preventative in order 

to prevent corrosion in undesired regions. Specimens were then attached to a specially designed 
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corrosion chamber, which had an open mouth on the top. The fatigue test was carried out using a 

Krouse machine (Figure 3.11). The spinning rate for both CF tests was 1000 rpm.  

 

Figure 3.11. The Krouse machine used to conduct rotating bending test. 

In the chloride-controlled CF test, 0.1 M and 0.6 M NaCl mixed in synthetic pore solution were 

selected to increase the corrosion rate. The specimens were required to undergo 24 hours of pre-

pitting under a moist 0.6 M NaCl environment. In the electrochemical corrosion-fatigue test, a 

current-controllable DC power supply was connected by its anode to the test sample while the 

cathode was connected to a graphite rod. The electrolyte was a synthetic concrete pore solution 

mixed with 0.6 M NaCl.  

A schematic of the pre-test process and the test setup are shown in Figure 3.12. The designed 

fatigue cycle levels were introduced from AASHTO (AASHTO, 1977) for a service life of 75 

years at different traffic loadings: 500,000, 2 million, and above 2 million cycles. Three corrosion 

rates were chosen: 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2, which stood for low, moderate, 

and severe aggressiveness, respectively. The required current for the specimen was evaluated from 

the total corrosion current lasting 75 years and the fatigue cycles at each stress amplitude in the 

reference group. At the tested stress amplitude below the fatigue limit, the maximum number of 

tested cycles were selected at 2 million and 5 million, above which the test was manually 

terminated.  

The obtained fatigue cycles tested at the combinations of stress levels and corrosion rates were 

recorded and these data were plotted as the S-N curve graph while the fracture surface was 
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analyzed by Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy 

(EDS). SEM is a type of microscope that provides the image of a surface by scanning the surface 

with a beam of electrons. EDS, on the other hand, gives the elemental mapping or chemical 

characterization of a scanned sample.  

 

Figure 3.12. A schematic of rotating bending test flow under electrochemical corrosion. 

3.4.4 Fracture Mechanics  

Even though the Fracture Mechanics approach is divided into four stages from pit nucleation to 

final fracture failure as introduced before, the corresponding experimental part in this study mainly 

consisted of three sections in the experimental design: pit growth, crack propagation, and the 

measurement of KEAC, KIc, and ΔKth. During crack propagation, a fracture grows from initiation 

until the fracture failure. However, many researchers (Milella, 2013; Schijve, 2009) reported that 

environmentally assisted cracking (KEAC) may affect the crack propagation curves. That was the 

reason why KEAC had to be measured.  

3.4.4.1 Pit growth test 

The specimens used in the pit growth test had the same disk-shape as the specimens used to 

determine the corrosion rate by LPR and Tafel scans. One side of the specimen was polished in 

the following order of sandpapers: 80 grit, 150 grit, 240 grit, 360 grit, 600 grit, 1000 grit, and 2000 

grit. For the short term pit growth test, the specimens were further polished using 0.3 µm and 0.1 

µm polishing solutions to obtain a finely polished mirror surface finish. In terms of the long-term 
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pit growth test, two types of surface roughness were examined, 1 µm and 15 µm. Prior to each test, 

the specimen was immersed in the SPS for 12 hours to produce a passive layer on the exposed 

rebar surface.  

Short term pit growth 

The effect of chloride on corrosion was investigated at three chloride levels, 0.1 M, 0.6 M, and 1.5 

M. In order to prevent corrosion from occurring on the unpolished area, a layer of rust preventative 

was applied to the unpolished area, leaving only the polished plate surface exposed to the corrosive. 

The short term pit growth test was conducted in an ambient environment and the samples were 

immersed in the SPS mixed with chlorides for a period of 2 hours, 12 hours, and 24 hours. After 

each corrosion period, the tested specimens were washed off with double distilled water and then 

viewed using a Scanning Electron Microscope (SEM) to observe the nucleation of pits.  

Long-term pit growth 

A schematic of the testing procedure is shown in Figure 3.13. Prior to the immersion of specimens 

in the corrosive medium, specimens were coated by rust preventative to leave only one side of 

exposure. The tested specimen was placed upside down on a piece of sleeve to prevent rust deposit 

on the corrosion surface. Air was entrained in the solution. Slow stirring was introduced in the 

solution to evenly distribute the reactants on the reacting area, including oxygen, hydroxide, and 

chloride. To maintain the pH of the solution, the corrosive was replaced semi-monthly. The tested 

environments are listed in Table 3.4; two specimens were exposed to each condition. In addition, 

specimens were cleaned monthly by the procedures described in ASTM G1 (ASTM, 2011) 

standard and then scanned by a Vantage50 profilometer to examine the maximum depth on the 

sample surface for a total of six months. Many scientists (Jarrah et al., 2011; R. E. Melchers, 2004; 

Rob E. Melchers, 2005) studied the occurrence of the maximum pit depth at a certain corrosion 

duration. They concluded that that was a possibility that a certain pit depth would occur. In other 

words, a pit with a rather large depth would not happen in each tested specimen. In the trial tests 

and the formal tests of this project, differences (0.005 mm – 0.015 mm) were observed in the 

depths of the deepest pits in both specimens. Hence, the average depth of the top three 
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measurements of the two specimens was considered as the equivalent maximum pit depth in a 

corrosion period.  

 

Figure 3.13. A schematic of pit growth test flow chart.  

Table 3.4. Pit depth test parameters.  

Sample NO. Cl / M pH Surface / µm 

1-1, 1-2 0.6 

 

13.3 1 

1-3, 1-4 0.6 

 

9.3 1 

15-1, 15-2 0 

 

 

13.3 15 

15-3, 15-4 0.1 13.3 15 

15-5, 15-6 0.6 13.3 15 

15-7, 15-8 1.5 13.3 15 

15-9, 15-10 0 

 

 

9.3 15 

15-11, 15-12 0.1 9.3 15 

15-13, 15-14 0.6 9.3 15 

15-15, 15-16 1.5 9.3 15 
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3.4.4.2 General information about crack-propagation related testing 

Specimens  

Compact tension (CT) specimens with a longitudinal transverse (LT) orientation of the material 

were machined for the fatigue-crack-propagation related study. All specimens were machined 

from a piece of 45M rebar. The thickness of the disk-shaped specimen (B in ASTM E399) was 4.0 

mm, and the width of the specimens (W in ASTM E399) was 30.0 mm. The surface roughness of 

the machining was measured at Ra 0.85. Notches were cut using a profile metal slitting saw and 

the angle of the notch was 60°. The entire machining process was performed under a coolant 

environment in order to prevent heat treatment of specimens because of the heat produced in the 

machining process. Figure 3.14 presents a schematic with dimensions (in mm) of the specimen for 

testing environmentally assisted cracking KEAC, threshold stress intensity factor range ΔKth, 

fracture toughness KIc, and the fatigue crack growth curves.  

 

Figure 3.14. A schematic with dimensions of the specimen in measuring KEAC, KIc, ΔKth, and the 

fatigue crack growth curves. 

Multi-testing system (MTS) loading frame and corrosion chamber 

The general setup for all three tests is presented in Figure 3.15. The setup was composed of a 

fatigue loading cell, a corrosion chamber, a data acquisition system, and an optical microscope for 

monitoring crack growth.  
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All three tests were conducted by an IPC Global universal testing system with a 50 kN capacity 

load cell. The loading system consisted of a loading controller, a hydraulic power supply, and an 

actuator.  

The corrosion chamber, with a volume of two litres and an open mouth on the top, was machined 

from transparent plastic material and the side view of the chamber is presented in Figure 3.16. The 

entire corrosion chamber was attached to the base of the hydraulic loading frame. The loading 

arms, used to apply loads to specimens during testing, were machined from SS316 stainless steel 

to prevent corrosion on the arms. The bottom loading arm was sealed and attached to the fixed 

corrosion chamber base.   

 

Figure 3.15. A general schematic of the experimental setup of the threshold stress intensity factor 

 

Figure 3.16. A side view of the testing specimen setup in the corrosion chamber. 
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The optical microscope used was a Zeiss microscope with a magnification range from 8 to 50 

times. A built-in rule was embedded in the microscope; the crack length and the corresponding 

number of cycles were recorded manually every 0.10 mm increment of the crack length.  

Table 3.5. Testing parameters for fatigue tests involved in fracture mechanics. 

Measurement Method 
Stress 

ratio 

Max Load / 

kN 

Frequency 

/ Hz 

Corrosive 

environment 

Pre-cracking  0.1 0.7 20 NA 

ΔKth Stepped load 0.1 

0.7, 0.8, 0.9, 

1.0, 1.1, 1.2, 

1.3  

10 
SPS + 0.6 M 

NaCl 

Corrosion-

fatigue crack 

propagation 

Electrochemical 

corrosion 
0.1 1.2, 1.6, 2.0  10 

Air; SPS + 0.6 M 

NaCl; SPS + 0.6 

M NaCl with 1 

mA or 5 mA 

applied current 

Acidic 

corrosion 
0.1 0.9 1 

0.6 M NaCl 

mixed in double 

distilled water, 

0.1 M H3PO4, and 

1.0 M H3PO4 

R ratio effect 

on crack 

propagation 

CF crack 

propagation 

0.1, 0.3, 

0.5, 0.7 
1.6 1 

SPS + 0.6 M 

NaCl with 1 mA 

applied current 

 

Pre-cracking  

Prior to pre-cracking, specimens were washed with 95% methanol to clean the residual oil or 

coolant left on the specimen surfaces during the sample machining process. All specimens were 

pre-cracked according to ASTM (ASTM, 2013b) standard to the maximum stress intensity factor 

of 7.0 MPa√m at a tested stress ratio of 0.1. All pre-crack processes were conducted in air at a 

testing frequency of 20 Hz. Table 3.5 lists the general testing parameters for the fatigue tests 
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involved in the fracture mechanics approach, some of which are introduced in the following 

sections.   

3.4.4.3 KEAC measurement 

In order to measure KEAC, two approaches were tried: the constant loading displacement method 

and the constant loading rate method. The testing conditions are listed in Table 3.6. In the 

measurement of KEAC, the corrosive environment was SPS mixed with 0.6 M NaCl. Prior to the 

KEAC test, specimens were immersed in the corrosive solution for 24 hours of pre-corrosion.  

Table 3.6. Loading and environment in KEAC measurement. 

Methods Loading  Corrosive environment 

Constant loading rate 0.1 N/sec SPS + 0.6 M NaCl 

Constant loading displacement 
2E-4 mm/s, 1E-4 mm/s, 5E-

5 mm/s 
SPS + 0.6 M NaCl 

 

Constant loading rate 

In the constant load approach, the applied load started from zero and the loading rate of the MTS 

system was set at 0.1 N/sec. The applied load and the corresponding testing time was automatically 

recorded by the data acquisition system. The crack length, on the other hand, was recorded 

manually every 15 minutes until the crack length increment was above 0.1 mm, beyond which the 

crack length was recorded every 5 minutes until fracture failure.  

Constant loading displacement 

In the constant loading displacement method, the loading displacement rates were controlled at 

2E-4 mm/s, 1E-4 mm/s, and 5E-5 mm/s. The corresponding crack lengths were recorded every 15 

minutes.  
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3.4.4.4 Threshold stress intensity factor range ΔKth measurement 

Multi-stepped load 

The stepped load approach was cyclically loaded at a stress ratio of 0.1 and the loading frequency 

was 10 Hz. The load level was in the order of 0.7 kN, 0.8 kN, 0.9 kN, 1.0 kN, 1.1 kN, 1.2 kN, and 

1.3 kN. Every load level was tested for a maximum period of three hours, while the crack length 

was recorded every 30 minutes.  

3.4.4.5 KIc measurement 

Fracture toughness KIc was measured in an air environment and the testing procedures were 

conducted according to ASTM E399 (ASTM, 2013c) standard. The loading rate was set as 0.1 

kN/s. The crack mouth displacement was replaced by the displacement recorded in the loading 

cell. Triple tests were conducted, and the average value was used to calculate the fracture 

toughness.  

3.4.4.6 CF crack propagation 

CF crack propagation tests were conducted according to ASTM E647 (ASTM, 2013d) standard in 

two types of corrosion environments, SPS and acidic corrosive solutions. CF crack growth in SPS 

required electrochemical corrosion on rebar disks; hence, the validity of this acceleration approach 

had to be determined.  

Electrochemically accelerated corrosion in pre-cracked rebar disks 

The electrochemically accelerated corrosion approach was used in the rebar crack growth under 

CF. Although this method was introduced and used for rebar corrosion in SPS and in concrete 

environments, corrosion acceleration in the crack still required further trials and modifications. 

Two types of coating – rust preventative and high-pressure vacuum grease – were used to prevent 

corrosion outside the crack surface. A two mA current was applied between the coated specimen 

and the SPS mixed with 0.6 M NaCl (pH 13.3) for four hours. Figure 3.17 and Figure 3.18 give 

the views of the pre-crack after ten minutes of corrosion and four hours of corrosion, respectively. 
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Figure 3.17 clearly shows that corrosion occurs in the crack. Figure 3.18 shows that the corrosion 

products in both samples mainly appear on the pre-cracks and the surrounding area (circled by red 

ellipses). Therefore, both coatings worked well. Because the rust preventative required 24 hours 

to dry, high vacuum grease was chosen in this study for rebar crack growth under CF.  

 

Figure 3.17. Corrosion in pre-crack after applying electrochemical corrosion.  

 

Figure 3.18. Two types of coating are used on rebar disks exposed to 2 mA to accelerate 

corrosion: the specimen coated by rust preventative, (a), fracture view, (b), top view, (c), rear 

view; the specimen coated by high vacuum grease, (d), fracture view, (e), top view, (f), front 

view. 
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CF crack propagation in SPS 

The crack propagation test in the SPS solution consisted of two types of corrosion, pure solution 

corrosion and electrochemical corrosion. The corrosive solution in this test was SPS mixed with 

0.6 M NaCl and the test frequency was 10 Hz. The stress ratio of the applied loading in the SPS 

environments was 0.1 while the maximum loads were 1.2 kN, 1.6 kN, and 2.0 kN. Two types of 

reference tests were used, specimens tested in air and in pure solution. Electrochemical corrosion 

tests were conducted by applying a constant current – 1 mA or 5 mA – between the tested specimen 

and the SPS. Specimens were coated with Dow high-pressure vacuum grease. A GW Instek DPD 

4303S DC power supply was used to apply the required current. The disk-shaped sample acted as 

an anode and a graphite bar acted as the cathode. A schematic of the test setup and the actual 

testing frame in the laboratory are shown in Figure 3.19 and Figure 3.20, respectively. Figure 3.21 

shows a magnified figure of the loading cell, corrosion chamber, specimen, and microscope.  

Prior to applying current, a drop of the SPS solution was placed on the notch side of the pre-crack 

for a period of 30 minutes in order to induce corrosion on the pre-crack surface. The crack length 

was recorded prior to the start of a test and periodic measurements – crack length and the 

corresponding number of cycles – by the optical microscope were taken for every 0.25 mm 

increment in the crack length, as suggested in ASTM E647 standard. Specimens were tested until 

complete fracture failure.  

 

Figure 3.19. CF crack propagation test by electrochemical corrosion acceleration.  
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Figure 3.20. A layout of CF crack propagation test frame. 

 

Figure 3.21. A magnified figure showing the loading cell, corrosion chamber, specimen, and 

microscope 

CF crack propagation in acidic solutions 

Prior to each test, the specimen was coated with Dow high-pressure vacuum grease. Three types 

of acidic solutions were used: 0.6 M NaCl mixed in double distilled water (DDW), 0.1 M H3PO4, 
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and 1.0 M H3PO4. The load range was 0.09 kN to 0.9 kN and the loading frequency was 1 Hz. 

Periodic measurements of the crack length taken every 0.10 mm increment of the crack length 

from the beginning of a test until the final fracture failure of the sample.  

Crack propagation affected by R ratio effect 

The maximum load in this test was chosen at 1.6 kN with a loading frequency of 1 Hz. The R 

ratios were selected at 0.1, 0.3, 0.5, and 0.7. The corrosive environment is SPS + 0.6 M NaCl with 

an applied current at 1 mA. Crack length was recorded every 0.10 mm increment until the failure 

of the sample.  

3.4.5 Corrosion-fatigue testing of reinforced concrete beams  

Specimen dimension and concrete specifications 

Prior to RC beam casting, a layer of rust preventative with a width of 5 cm was applied on both 

ends of the central 20 cm length of a 10 M rebar. The dimensions of the RC beam were 10 × 10 × 

100 cm with the concrete mix ratio listed in Table 3.7. The center of the rebar was placed 2.0 cm 

above the bottom of the concrete cover. The cast RC beams were cured in > 90% relative humidity 

and a temperature of 23 ± 2 °C for 28 days prior to CF tests. The average compressive strength of 

three cylinder specimens was measured at 39.95 MPa.  

Table 3.7. Concrete mixing ratio in RC beams. 

Cement  Sand 
Gravel, size 4-13 

mm 
water 

Daracem-19 

Superplasticizer 

1 1.65 2.92 0.4 
1000 ml / 100 kg 

concrete 
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Testing frame compositions  

A schematic of the entire test system is presented in Figure 3.22 and the actual testing fame is 

presented in Figure 3.23. A hydraulic cylinder accompanied by a hydraulic pump supplied the 

cyclic loading in the RC beams. A cooling fan was located near the hydraulic pump to prevent the 

pump from overheating. The data acquisition system was connected to the hydraulic system and 

the displacement sensors on the RC beam to collect instantaneous data, i.e. loading cycles, testing 

time, loads, and displacements.  

Fatigue testing was conducted using a Sheffer 1 1/8 HH hydraulic cylinder at a loading frequency 

of 1.0 Hz. The average bending test capacity of three RC beams after 28 days of curing was 

measured at 18.05 kN. The applied load range of RC beam was 0.9 kN to 9 kN. Electrochemical 

corrosion was implemented in a similar manner to that in tests of the validation of corrosion 

acceleration of rebar in concrete as indicated in Section 3.4.2.5.  

Specimens were tested in an air environment – as a reference – and three designed corrosion 

current densities, 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2. In calculating the required current, 

the rebar was assumed to be a cylindrical bar with a diameter of 11.2 mm (for 10 M rebar). 

Electrochemical corrosion was designed for a period of 75 years of corrosion in the three levels of 

corrosion current densities. The three applied corrosion current densities were computed at the 

testing frequency of 1 Hz and the applied current was further calculated at a fixed corrosion area 

on rebar.  

Prior to applying fatigue loading to the RC beams, the potential was applied for 24 hours. RC 

beams were tested until the fracture failure of the RC beam or manually terminated when the 

number of cycles reached the two-million limit.  

Post-test examinations 

Once the RC beam failed, the number of cycles was recorded for each corrosion condition. The 

crack maps on the RC beam surface were recorded and analyzed. The morphology of the fracture 
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surface was examined using SEM and the failure mode would be analyzed. Moreover, the rebar 

cross section loss along the corroded length was estimated and analyzed.  

In this study, the cross section loss was estimated by the mass difference of a small piece of rebar 

before and after the CF test. As the test was completed, the central 20 cm of corroded rebar was 

cut and cleaned according to the rust cleaning procedures listed in ASTM G1 (ASTM, 2011) 

standard. The corroded rebar was then cut into pieces at a width around 1 cm. The weights of these 

corroded pieces were examined and their original weights were computed by the width of those 

pieces and the unit weight of the entire piece of rebar prior to CF test. The unit weight (g/cm) of 

the rebar was examined by dividing the mass of the entire rebar prior to casting the RC beam by 

the rebar length. Since the original cross section area of the rebar was 100 mm2 and the density of 

the rebar was constant, the cross section after corrosion could be computed according to the 

weights prior to and after corrosion.  

 

Figure 3.22. A schematic of the CF test in RC beams.  
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Figure 3.23. The actual testing frame of RC beams.   
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4 Rebar corrosion acceleration 

It is critical to accelerate both the corrosion and fatigue processes in the laboratory since a natural 

corrosion-fatigue process usually takes decades to happen. Sufficient corrosion acceleration is 

rather difficult to achieve and control. Previous studies usually have estimated the corrosion-

fatigue of metals under chloride solutions with high concentrations or investigated the fatigue 

behavior of reinforcing steel after a certain period of salt sprays (Apostolopoulos & Michalopoulos, 

2006; Apostolopoulos & Pasialis, 2009; El et al., 2013; Fernandez et al., 2015; Palin-luc et al., 

2010). In this chapter, Linear Polarization Resistance (LPR) and Tafel scans are applied to measure 

the accelerated corrosion rates in different chloride-added simulated pore solutions (SPS). The 

accelerated corrosion rate of this electrochemical corrosion approach is verified via the mass losses 

of rebar with both Potentiostatic and Galvanostatic scans. The approach producing faster corrosion 

rates was subsequently validated by examining the mass loss of rebar corrosion in both an SPS 

and concrete environments with the DC power supply.  

4.1 Rebar corrosion in simulated-concrete-pore-solutions containing NaCl 

Prior to the LPR and Tafel scans, an open circuit potential (OCP) was measured. Figure 4.1 shows 

a typical group of the tested data. The OCP increased immediately when exposed to the chloride 

contaminated SPSs, which indicated a passivation process in the rebar – the formation of a thin 

layer of oxide film in a chloride environment. After one hour, the OCP became steady, which 

implied that one-hour of standing was suitable for the measurement of corrosion current densities. 

The OCP of the sample immersed in a chloride free solution maintained a slow but steady increase, 

as the absence of chloride failed to induce a quick passivation. Figure 4.1 also shows that: the OCP 

had a higher value in the chloride environment than in the non-chloride environment; as chloride 

concentration increases, there was no observable shift of the OCP values in a more positive 

direction.  

4.1.1 Linear polarization resistance (LPR) 

Figure 4.2 presents the LPR curves of one group of specimens. The linear increments in and around 

the zero current density validated the tests. Figure 4.3 shows all the acquired corrosion current 
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densities, and presents the the data range (box range in the figure), mean value (hollow circle in 

the box), and the median (line in the box). The mean corrosion current density, which presumably 

increases with an increasing content of chloride, rose at first and then declined to as low as 124.2 

nA/cm2 at 1.5 M NaCl + SPS. This was probably because of the drawback of the LPR regarding 

the low corrosion current density in 1.5 M NaCl + SPS. Fontana (Fontana, 1987) pointed out that 

the approximation involved in the LPR calculations could introduce errors up to 50%. Therefore, 

LPR should always be compared with the other measurement techniques of corrosion rate to ensure 

the accuracy of LPR.    

 

Figure 4.1. Open circuit potential of mixed simulated pore solutions with NaCl 

 

Figure 4.2. Linear polarization resistance data plot  
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Figure 4.3. Corrosion current densities of mixed simulated pore solutions with NaCl 

4.1.2 Tafel scan 

The Tafel scan is the second technique used in this project for the measurement of corrosion rate. 

A typical group of scan curves is shown in Figure 4.4. In the figure, chloride content has little 

effect on the corrosion potential. Moreover, in the four repeated testing groups, the corrosion 

current densities in one group tests clearly showed that the corrosion rate increased with increasing 

chloride content. To ensure the accuracy of the corrosion rate results, four replicate tests were 

carried out.  The collected corrosion current densities are plotted in Figure 4.5, showing the data 

range, quarter range data (box range in the figure), mean value (hollow circle in the box), and the 

median (line in the box). The correspondent descriptive statistics of Figure 4.5 are shown in Table 

4.1. Both the box chart and the statistical table presented that the mean corrosion current density 

increased with the increase of chloride concentration. Furthermore, the coefficients of variation 

(CV) of current densities were rather high – 27.3%, 37.0%, and 29.7% – at 0.1 M NaCl, 0.6 M 

NaCl, and 1.5 M NaCl, respectively, when compared to the chloride free environments, whose CV 

was 20.5%. This is probably because of the occurrence of unstable electrochemical reactions on 

the rebar surfaces in the chloride contaminated solutions as these three environments are more 

likely to initiate a pit than the chloride free environment.  
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Figure 4.4. Tafel scans of simulated pore solutions with NaCl 

 

 

Figure 4.5. Rebar corrosion current densities of simulated pore solutions with NaCl 
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Table 4.1 Descriptive statistics of rebar corrosion current densities in simulated pore solutions 

with NaCl 

Chloride concentration /M 
Corrosion current densities 

mean value / nA/cm2 
Standard deviation / nA/cm2 

0 143.15 29.38 

0.1 223.80 61.04 

0.6 260.45 96.32 

1.5 325.90 96.70 

 

4.1.3 Validity of chloride corrosion acceleration  

The results of LPR and Tafel show that the corrosion current densities in the chloride contaminated 

solutions were higher than in the non-chloride simulated pore solution, even though LPR results 

individually could not be used to quantitatively analyze the current density in a specific chloride 

environment. Compared to the corrosion current density in the non-chloride environment of 103.98 

nA/cm2 measured by LPR and 143.15 nA/cm2 tested by Tafel, the most severe corrosion current 

densities were 246.75 nA/cm2 and 325.90 nA/cm2 measured by LPR and Tafel, respectively. In 

other words, a heavily chloride-contaminated simulated-pore-solution only lead to an increased 

corrosion rate by several times. However, this program aimed at shortening the corrosion duration 

from 75 years to several days, even hours, which means that the corrosion rate should have been 

enhanced by hundreds, even thousands, of times. Therefore, simply mixing a high concentration 

of chlorides would likely have failed to effectively accelerate the corrosion rate to achieve this 

target.  

4.2 Electrochemical corrosion acceleration  

4.2.1 Potentiostatic scan 

The Potentiodynamic polarization curves of the structural steel under a simulated pore solution 

mixed with 0 M, 0.1 M, 0.6 M, and 1.5 M NaCl are shown in Figure 4.6. The corrosion potential 
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and current density from the Tafel region in this figure are presented in Table 4.2. The table 

provides that, compared with the chloride entrained solutions, the non-chloride solution had the 

highest corrosion potential (-0.430 V/SCE) and the highest corrosion current density (0.708 

µA/cm2). Nevertheless, compared with a non-chloride testing environment, chloride bearing 

solutions had slightly lower corrosion potential ranging from -0.406 V/SCE to -0.420 V/SCE, and 

corrosion current density ranging from 0.501 µA/cm2 to 0.687 µA/cm2. In other words, chlorides 

had no apparent impact on the corrosion potential and corrosion current.  

 

Figure 4.6. Rebar potentiodynamic polarization curves in simulated pore solution mixed with 

chlorides 

Above the Tafel zone in the polarization curves, the Potentiodynamic scan firstly goes through the 

passivation region and then enters the trans-passive region. Figure 4.6 shows no significantly 

observable differences in the passivation breakdown potentials of +0.57 V/SCE, +0.57 V/SCE, 

and +0.58 V/SCE in the 0 M, 0.1 M and 0.6 M NaCl solutions, respectively. However, the 

specimen tested in 1.5 M Cl had a much lower passivation breakdown potential of +0.26 V/SCE 

than the other three solutions, and this may be attributed to a higher pitting ability in 1.5 M NaCl. 

Therefore, based on the chloride content in SPS, an applied potential on the reinforcing steel 
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between +0.26 V/SCE and +0.58 V/SCE increased the corrosion to reach the trans-passive region 

and generate a fast corrosion rate.  

Table 4.2. Corrosion potential and corrosion current density from potentiodynamic polarization 

curves 

Chloride concentration in 

simulated concrete pore 

solution /M 

Corrosion potential, Ecorr / V 

vs SCE 

Corrosion current density, icorr 

/ µA/cm2 

0 -0.430 0.708 

0.1 -0.420 0.524 

0.6 -0.406 0.501 

1.5 -0.409 0.687 

 

In order to explore the relationship between the current density and time at a designated potential, 

Potentiostatic scans were performed at four potentials (+0.1 V/SCE, +0.3 V/SCE, +0.5 V/SCE, 

and +0.7 V/SCE). The results are presented in Figure 4.7, which shows that the corrosion current 

densities exponentially declined with time at +0.1 V/SCE and +0.3 V/SCE. By applying a constant 

potential in the passivation region, the corrosion process is viewed as the applied potential steps 

from the open circuit potential to a passive potential (Bard & Faulkner, 2001). The Potentiostatic 

process demands a great amount of current since it happens instantly, which leads to a high current 

value in the circuit. However, the initial reduction also creates a number of ferrous ions that adhere 

to the sample surface, which subsequently start to form a passive film because of the high 

concentration of hydroxyl ions in the alkaline solution. The thin film grows, and the enlarging 

passive film gradually prevents the steel surface from contacting with the corrosive solution. This 

process depletes the amount of current, and thus the measured current value declines sharply 

(Figure 4.7) in the curves of +0.1 V/SCE and +0.3 V/SCE, and in the curves of +0.5 V/SCE and 

+0.7 V/SCE at the first 15 seconds.  

Figure 4.7 also shows that the current densities decrease at the beginning but then increase 

afterwards and fluctuate with time at +0.5 V/SCE and +0.7 V/SCE. The initial decline in current 
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density is probably due to the depletion of current as discussed above. The +0.5 V/SCE and +0.7 

V/SCE were located at the trans-passive zone of the steel (Figure 4.6), which could break down 

the passive film and generate a trans-passive dissolution. Hence, after the first 15 seconds of 

passivation, the specimens de-passivates and the corresponding current rises and violently 

fluctuates with time (Figure 4.7). The Potentiostatic curves also reveal that destroying the passive 

layer under +0.5 V/SCE takes around 10 minutes, longer than that under +0.7 V/SCE by roughly 

four minutes.  

 

Figure 4.7. Potentiostatic scans of structural steel immersed in SPS + 0.6 M Cl at four potentials: 

+0.1 V/SCE, +0.3 V/SCE, +0.5 V/SCE, and +0.7 V/SCE.  

Two one-hour Potentiostatic scans were performed at two potentials  (+0.5 V/SCE and +0.7 V/SCE) 

and the results are given in Figure 4.8. The graph suggests that the responding currents fluctuate 

violently with time for both potential levels, and +0.7 V/SCE breaks down the passive film sooner 

than +0.5 V/SCE. Both points agree with the results presented in Figure 4.7.  
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Figure 4.8. Ten minutes of Potentiostatic scan of rebar disks at 0.5 V/SCE and 0.7 V/SCE in SPS 

+ 0.6 M Cl.  

 

Figure 4.9. Rebar disk mass losses after exposure to 0.5 V and 0.7 V for 1 hour under 0.6 M 

NaCl mixed with simulated concrete pore solution. 

After the Potentiostatic scans, the mass losses of specimens were determined by three approaches: 

the actually weighed mass loss; the computed mass losses using the corrosion mass formula by 
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integrating the current-time curve; and by the mean current value. The results in Figure 4.9 

illustrate that, compared to the measured mass loss after a Potentiostatic scan, the integrated mass 

loss (total current is integrated by the area under the current curves in Figure 4.8) and the mean-

current-calculated mass loss are 1.1% and 5.2% higher at +0.5 V/SCE, but 8.8% and 12.8% higher 

at +0.7 V/SCE. Thus, estimating of the corroded mass loss found by using the mean current density 

introduces an error in comparison with the integrated weight loss. Therefore, an instantaneous 

current acquiring device was required to precisely procure the total current during the 

electrochemical process.  

4.2.2 Galvanostatic scan 

Figure 4.10 (a) shows the results of Galvanostatic scan results of the two levels of applied current 

in SPS (1 mA and 10 mA) mixed with 0.1 M, 0.6 M, and 1.5 M NaCl. By controlling 1 mA at 0.1 

M NaCl, the potential suddenly jumped between 180 s and 320 s but then remained steady. 

However, the other three combinations present a steep drop of potentials at the beginning and then 

a randomly oscillating potential that maintains a constant output current. Theoretically, under a 

constant current output, the applied potential between the anode and cathode should increase at the 

beginning, then reach a plateau, and finally grow exponentially to an extremely high value (Bard 

& Faulkner, 2001). The reason is that, as iron is oxidized to ferrous iron, the divalent iron forms a 

thin layer of passive film at the iron surface that blocks the corrosive solution from contact with 

the iron. Thus, the applied potential should increase in order to maintain a constantly applied 

current. As the passive film grows and finally covers the entire sample surface, less and less ferrous 

irons can be produced and the applied potential increases dramatically to supply a constant current.  

In Figure 4.10 (b), the 0.1 mA curve fits the theoretical format with no observable final dramatic 

increment that could be attributed to the incomplete formation of a passive film. Figure 4.10 (b) 

also shows that the 1 mA curve gradually climbed at first, then underwent a short period of 

fluctuated potential, and finally reached a steady state. The fluctuating potential may have been 

caused either by electromagnetic interference or by the formation of metastable pits. Both 

explanations agree with the optical observation, with no visible corrosion product observed with a 

10X optical microscope after the Galvanostatic scan. Therefore, the 1 mA curve also fit in the 

theoretical format. The 10 mA curve in Figure 4.10 (b) rose slightly at the start, but went through 
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random fluctuation over the rest of the scan. This indicates that the passivation layer is formed 

beforehand and destroyed afterward.  

 

Figure 4.10. Galvanostatic scan results of specimens tested under: (a), a combination of chloride 

concentration, applied current, and corrosion time; (b) 0.1 M NaCl, three current levels for 30 

minutes; (c) 0.6 M NaCl, three current levels for 30 minutes; (d) 1.5 M NaCl, three current levels 

for 30 minutes. 

All curves in Figure 4.10 (c) and (d) show that the applied potentials grew in the beginning, then 

dropped sharply to negative values, and randomly oscillated until the end of the tests. The short 

increment at the beginning of a test may be triggered by the quick formation of the passive film at 

a high current density, as described in the typical above-mentioned process (Bard & Faulkner, 

2001; Landolt, 2007).  
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In a Galvanostatic scan, a current density higher than the critical current of passivation provokes 

the formation of a passivation film that rapidly increases the anode potential. The higher applied 

the current density, the more a potential could be elevated (Szklarska-Smialowska & Janik-

Czachor, 1971). This phenomenon was confirmed in this study with three applied current levels 

(0.1 mA, 1 mA, and 10 mA) as shown in Figure 4.10 (b), (c), and (d). In Figure 4.10 (c) and (d), 

the potential declined dramatically beyond a short rise at the beginning. The same phenomenon 

was observed in the study by Frangini and De Cristofaro; Smialowska believed that the formation 

of a passive layer facilitates the decline of potential in the anode (Frangini & De Cristofaro, 2003; 

Szklarska-Smialowska & Janik-Czachor, 1971).  

 

Figure 4.11. Rebar mass losses after Galvanostatic scans 

Figure 4.11 compares the theoretical mass losses that are calculated based on the applied current 

and duration, the actual mass losses, weight difference before and after the test in Figure 4.10 (a). 

The results illustrate that the tested mass loss in rebar specimens was in line with the theoretical 

mass loss at 0.6 M and 1.5 M NaCl solutions. However, there was no detectable mass loss from 

the sample in the 0.1 M NaCl solution with the applied current. This is probably because of the 

passive film breakdown potential (Eb) and the oxygen revolution potential (Erev,O2). In the 

environment without aggressive anions, Eb > Erev,O2, oxygen formation dominates the trans-passive 

zone, and iron dissolution barely exists at low current densities (Landolt, 2007). Although the rebar 
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sample was tested in 0.1 M NaCl solution, the highly alkaline background suppressed the pitting 

potential to a value shown in the non-NaCl polarization curve (Figure 4.6). In other words, the 

oxygen revolution dominated the competition, and the rebar dissolution contributed little current 

to the transpassive corrosion.  

4.2.3 Comparison between Potentiostatic and Galvanostatic scans 

The scan data and the corrosion weight losses of Potentiostatic and Galvanostatic scans were 

introduced in the previous paragraphs. From the mass loss in both approaches, the rebar corrosion 

could be greatly accelerated either by a potential-controlled device or by a current-controlled 

output equipment. However, an instant current acquisition system was necessarily installed in the 

potential-controlled device in order to integrate a more precise total current. Moreover, a small 

potential difference could result in a large current difference in the trans-passive region, as shown 

in Figure 4.6. Thus, an automatic setting is required of the potential-controlled device. However, 

it is usually hard to access such equipment. The current-controlled method, on the other hand, can 

easily manage the current in the circuit and produce a more precisely designed corrosion rate. In 

addition, these current-controlled DC power supplies are more readily accessible, depending on 

the required accuracy of measurement. Consequently, the current-controlled output approach is 

preferred to accelerate the corrosion of rebar.  

4.3 Corrosion mass loss examination 

In the Galvanostatic scans of Chapter 4.2, applying a current on rebar was found to produce the 

designed corrosion current density with the assistance of the delicate Gamry testing frame. 

However, there were some concerns regarding use of the general DC power supply to apply current. 

Thus, a mass loss validation of electrochemical corrosion acceleration was carried out, not only in 

a solution environment, but also in a concrete environment.  

4.3.1 Corrosion mass loss in simulated pore solution 

By using a laboratory GW Instek GPD 4303S DC power supply to control the output current in 

rebar corrosion, the theoretical and actual mass losses are provided in Figure 4.12. The overall 

tested weight loss because of the anodic dissolution matches the theoretical values.  
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Figure 4.12. Theoretical and tested mass losses under electrochemical corrosion 

The differences between the two mass losses in 10 mA samples varied from 10.7% to 32.7%. In 

comparison to an applied current of 20 mA, 10 mA had a lower correspondent potential in 

Galvanostatic polarization, therefore, oxygen reduction may have contributed to the current 

production in the competition between the transpassive dissolution and oxygen reduction. On the 

other hand, equipment resolution may have also caused the errors. The current output resolution 

of GPD 4303S is 1 mA, therefore, it may have also raised the error to the total current difference 

in the 10 mA tests. Moreover, the error of the scale was magnified by the small mass loss.  

4.3.2 Rebar corrosion mass loss in concrete environment 

Many studies (Al-hammoud et al., 2011; El-Zeghayar, Topper, & Soudki, 2011; E. Maaddawy et 

al., 2006) simplify the electrochemical corrosion in reinforced concrete by entraining chloride ions 

in concrete during the casting process of RC beams, and use the concrete pore solution as the 

electrolyte. However, an extra counter electrode has to be embedded in the concrete to complete 

the electrochemical corrosion loop, and the electrode usually interferes with the properties of RC 

beams, e.g. an additional reinforcement (counter electrode) in the compression zone or tension 

zone. In this study, chlorides are placed externally and they have to transport through the concrete 

cover to reach the rebar. Due to the three-phase property of a concrete cover, the concrete 
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environment is complicated rather than simply a solution or a solid environment, hence concrete 

itself has an effect on the corrosion acceleration in rebar by applying the same electrochemically 

accelerated corrosion in a homogeneous SPS condition. Since the transport rate of chloride ions in 

concrete is slow, a period of pre-applying current is required. The study of Aguayo et al (Aguayo 

et al., 2014) concluded that 24 hours of electric field drove chloride ions to 20 mm depth in 

concrete, the same value as the concrete cover thickness in this test. The actual and theoretical 

mass losses after 24 hours of pre-applying current are plotted in Figure 4.13. The results show that 

the mass losses were in a good agreement with the theoretical values, with the errors range from 

8.8% to 34.29%.  

 

Figure 4.13. Rebar actual and theoretical mass losses after electrochemical corrosion in concrete 

environment 

 

Table 4.3 lists the detailed mass loss percentages after corrosion, and the results indicate a mass 

loss of 3.98% occurred in approximately 18 days. As it might take months to years for the diffusion 

of chloride from the concrete surface to the rebar in field, therefore, one is able to conclude that 

electrochemical corrosion greatly reduces the corrosion time. Moreover, the mass loss errors of 

the measured specimens were fairly small except sample 10MA9d with a mass loss of 0.72% and 
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an error of 34.29%. The error might have been introduced by residual, unremoved corrosion 

products and concrete on the rebar. Because of the low applied current and the short corrosion 

time, the mass loss of the rebar was small, thus the resultant tiny mass difference could provoke a 

large error in the mass loss determination. Overall, the actual mass loss agreed well with the 

theoretical mass loss, indicating that the Galvanostatic corrosion acceleration is applicable to 

reinforcement in concrete.  

Table 4.3. Applied corrosion current, duration and the resultant corrosion degree of steel 

Sample No. 
Applied 

current /mA 

Corrosion 

time /hr 

Theoretical 

mass loss 

percentage 

/% 

Actual mass 

loss percentage 

/% 

Mass loss 

error /% 

10MA9d 10 209 1.09 0.72 34.29 

20MA9d 20 209 2.11 1.83 13.53 

20MA18d 20 424 4.36 3.98 8.80 

15mA13d 15 317.5 2.46 1.87 23.87 

15mA45d 15 1074 8.21 7.44 9.30 
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5 Stress-life (S-N) approach to estimate corrosion-fatigue of rebar 

The fatigue life of a structure represents the total number of cycles from the beginning of its service 

until its final failure. In a non-corrosion environment, several approaches are available that 

evaluate the fatigue life of a material. Among them, the stress-life (S-N) approach depicts the 

relationship between the applied stresses and the corresponding number of fatigue cycles to failure. 

Provided that the S-N curves of a material are generated, the fatigue life of a structure fabricated 

from the same material can be directly or indirectly obtained from the curve for a given applied 

stress.  

In this chapter, the electrochemical corrosion acceleration approach was used for rapid corrosion 

of rebar during the rotating bending test in air and in NaCl solutions as references. In the rotating 

bending test, the stress amplitudes were selected at five levels: specifically, 366.47 MPa, 329.82 

MPa, 302.48 MPa, 272.83 MPa, and 243.17 MPa. The corrosion degrees were selected to present 

75 years of corrosion under three corrosion levels of 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2, 

respectively. The fatigue life of each stress amplitude in the designed corrosion rate was obtained 

by the rotating bending test in the combined environment of a stress amplitude and a corrosion 

condition. In a chloride corrosion environment, the rebar under cyclic loading usually generates 

pitting-induced corrosion-fatigue. Hence, a fracture analysis by SEM and EDS was carried out to 

determine the fracture failure mode of specimens. Thereafter, the S-N curves were analyzed to 

extrapolate the corrosion-fatigue at a different mean stress.  

5.1 S-N curves  

Tests in non-corrosion and SPS + NaCl environments 

Figure 5.1 (a) shows the results from the rotating bending test in air and in SPSs mixed with two 

NaCl concentrations (0.1 M and 0.6 M). The reference test in air indicates that the fatigue life 

almost linearly increased with a decreasing stress amplitude from 659.6 MPa to 329.8 MPa. By 

conducting a linear fitting, the linear equation was found as log S = 3.14 – 0.10 log N. Table 5.1 

provides the Analysis of Variance (ANOVA) results from the linear fitting of the logarithmic S-N 

data of the reference test in air. The total sum of squares (245,091.29 cycle2) equaled to the sum 
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of squares of the model (239,579.64 cycle2) plus the sum of squares of the error (5,511.65 cycle2). 

The F value of the predicted model was 695.49, which equaled to the division of mean square of 

the model 239,579.64 cycle2 and the mean square of error 344.48 cycle2. The P-value, which 

indicates the area to the right of the calculated F value in a designed confidence level, was 

determined at 1.30E-14. Thus, this P value was significantly less than the confidence interval of 

0.05. The adjusted R-squared was 0.976, indicating a well-fitted regression in the data. Therefore, 

it was concluded that a linear relationship dominates the S-N above the stress amplitude of 329.8 

MPa. In the same curve, the average numbers of cycles at 329.8 MPa and 326.2 MPa were 1.08E6 

and 1.04E7, respectively. The small decrement in stress with a sharp increment in the fatigue cycles 

suggested the existence of a fatigue limit (endurance limit) in the material at 326.2 MPa. The entire 

curve showed a typical S-N relationship for a mild steel: a linear S-N relation with a fatigue limit.  

Since the corrosion-fatigue data are compacted in Figure 5.1 (a) (encircled in gray), a magnified 

graph is provided in Figure 5.1 (b). Compared with the reference test in air, the results from the 

corrosive environments clearly showed that both chloride concentrations had a negative impact on 

the fatigue life. At 366.5 MPa, the clustered data in 0.1 M and 0.6 M NaCl indicated similar 

damages from both corrosives. Since the specimens were tested at 1000 cpm, a rough duration of 

two hours was required to complete the test. In contrast, the pre-pitting occurred in 24 hours. 

Therefore, the pre-pitting period dominated the damage to the fatigue life. Corrosion damage from 

both corrosives could be distinguished at 329.8 MPa and 311.5 MPa because of the observable 

differences in the average cycles of the two stress amplitudes. At the descending stresses from 

366.5 MPa to 293.2 MPa, the correspondent cycles gradually increased until 10 million, which 

was defined as the fatigue limit for a non-corrosion group in this study. Thus, it was concluded 

that a chloride environment can shorten the service life of the pre-pitted reinforcing steel, though 

a fatigue limit still exists.  
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Figure 5.1. Stress-life (S-N curve) of rebar tested in corrosive environments: (a), all data; (b), 

data near fatigue limit.  

Table 5.1. ANOVA table for linear regression of the data tested in air with a logarithmic S-N 

relationship above the stress of 329.8 MPa.  

 
Degree of 

Freedom 

Sum of 

Squares / 

cycle2 

Mean Square 

/ cycle2 
F Value 

Probability > 

F 

Model 1 239579.64 239579.64 695.49 1.30E-14 

Error 16 5511.65 344.48   

Total 17 245091.29    

 

Tests under corrosion acceleration of electrochemical approach 

Both corrosion and fatigue have to be accelerated during corrosion-fatigue in the rotating bending 

examination. In this test, the fatigue life of a stress amplitude tested in air presumably requires 75 

years (AASHTO, 1977). For the same duration, corrosion is assigned for different corrosion rates, 

0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2. With these parameters, the applied current can be 

calculated by the Faradaic formula for the stresses above the endurance limit. Below the endurance 

limit, a number of fatigue cycles have to be defined as the maximum fatigue cycles of testing, 
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otherwise, the steps of corrosion and fatigue cannot be matched in CF testing. At stress amplitudes 

of 366.5 MPa and 329.8 MPa, the applied currents were computed according to the mean fatigue 

cycles at these two stress levels. Below 326.2 MPa, though, the maximum fatigue cycles were 

chosen to be 2 million and 5 million.  

Figure 5.2 (a) presents the results of the electrochemically controlled CF tests, the CF tests in 

background solution, and the fatigue test in air. Due to the high density of CF data in Figure 5.2 

(a), a corresponding magnified plot (enclosed by the dashed box) is presented in Figure 5.2 (b). 

Compared with the fatigue cycles obtained from the reference tests in air at 366.5 MPa and 329.8 

MPa, the fatigue lives of specimens tested in electrochemical corrosion were shorter than those in 

the chloride environment, which indicated that the corrosion acceleration by an applied current 

was faster than by a pure chloride. Furthermore, no fatigue limit was observed in current-applied 

specimens.  

 

Figure 5.2. S-N curves of rebar in electrochemically accelerated corrosion environments: (a), all 

tested data; (b), magnification of condensed data. 

The results of electrochemical corrosion seemed to have linear relations; hence, the linear 

regressions are carried out, and the regression lines, the summary and the ANOVA of the fittings 

are shown in Figure 5.3, Table 5.2, and Table 5.3, respectively. The summary of the linear 

regressions in Table 5.2 provides that the adjusted R-squared of these six regressions in Figure 5.3 

were all above 0.931, suggesting that the linear models closely fit the selected data. To confirm 
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that linear fitting was the optimal fit of the CF S-N data, ANOVA tests were executed between the 

actual data and the modeled linear relations. The results of the ANOVA presented in Table 5.3 

illustrated that all the P-values (probability > F) were smaller than 3.74E-9 and far less than the 

confidence interval – 0.05, and therefore demonstrated little probability of a non-linear relationship 

between load and cycle life. Therefore, not only the adjusted R-squared but also the results of 

ANOVA test results suggested that linear relationships governed the corrosion-fatigue S-N results.  

 

Figure 5.3. Corrosion-fatigue life at a pre-designed 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2 

for 75 years and the linear regression of S-N: (a) pre-designed maximum 2 million cycles at 

stress amplitude of 302.5 MPa and below; (b) pre-designed maximum 5 million cycles at stress 

amplitude of 302.5 MPa and below 

In the results of two million and five million groups, Figure 5.3 (a) and (b) show that: the higher 

the applied current, the lower the respondent fatigue cycles were at all stress amplitudes. In 

addition, the fitted parameters of the linear regressions are explored in Table 5.2. In the group of 

two million cycles, the fitted line of 0.05 µA/cm2 had a slope of – 0.142, higher than – 0.163 for 

the other two lines, suggesting a decreasing effect of corrosion in CF. Due to the fact that the two 

corrosion rates (0.15 µA/cm2 and 0.32 µA/cm2) shared the same slope value and close standard 

errors in the regressions of 0.011 and 0.009, it was concluded that both corrosion rates had a similar 

increment rate of fatigue life on CF at decreasing stresses. The similar relationship of slopes was 

also observed in the results obtained from test with the maximum cycles of five million. Compared 

with the tests at two million cycles, tests assigned with the five million cycles actually prolonged 
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the corrosion duration. Thus the corrosion effect was less severe than the damage resulting from 

the same stress, and the corresponding slopes in the S-N relations were lower shown in Table 5.2.  

Table 5.2. Summary of linear regressions of S-N data in both 2 million and 5 million groups 

 Intercept Slope Statistics 

 Value 
Standard 

Error 
Value 

Standard 

Error 

Adjusted R-

Square 

0.05 µA/cm2, 

2 million 
3.252 0.056 -0.142 0.010 0.931 

0.15 µA/cm2, 

2 million 
3.351 0.0600 -0.163 0.011 0.938 

0.32 µA/cm2, 

2 million 
3.317 0.048 -0.163 0.009 0.956 

0.05 µA/cm2, 

5 million 
3.071 0.026 -0.105 0.005 0.974 

0.15 µA/cm2, 

5 million 
3.246 0.037 -0.141 0.007 0.968 

0.32 µA/cm2, 

5 million 
3.216 0.037 -0.140 0.007 0.967 
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Table 5.3. ANOVA of linear regressions of S-N data in both 2 million and 5 million groups 

  
Degree of 

Freedom 

Sum of 

Squares 

Mean 

Square 
F value Prob>F 

0.05 µA/cm2, 

2 million 

Model 1 0.0542 0.0541 191.28 3.74E-9 

Error 13 0.0037 2.83E-4   

Total 14 0.0578    

0.15 µA/cm2, 

2 million 

Model 1 0.0545 0.0545 213.61 1.90E-9 

Error 13 0.0033 2.55E-4   

Total 14 0.0578    

0.32 µA/cm2, 

2 million 

Model 1 0.0555 0.0555 304.78 2.10E-10 

Error 13 0.0024 1.82E-4   

Total 14 0.0578    

0.05 µA/cm2, 

5 million 

Model 1 0.0564 0.0564 516.52 7.53E-12 

Error 13 0.0014 1.09E-4   

Total 14 0.0578    

0.15 µA/cm2, 

5 million 

Model 1 0.0561 0.0561 429.88 2.41E-11 

Error 13 0.0017 1.31E-4   

Total 14 0.0578    

0.32 µA/cm2, 

5 million 

Model 1 0.0561 0.0561 406.25 3.44E-11 

Error 13 0.0018 1.38E-4   

Total 14 0.0578    
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5.2 Fracture analysis  

Fatigue fracture failure usually initiates from the fracture origin – persistent slip bands (PSB), and 

their presence nucleates a micro-crack that grows to a macro-crack until the critical fracture failure. 

Pits presumably nucleate on the PSBs if chlorides exist (Zhao et al., 2012). As pits propagate, 

stress concentrates in them which finally results in the first crack. Thereafter, cracks propagate 

with the cyclic loading until fatigue failure (Medved et al., 2004; Organization, 2011; Rokhlin et 

al., 1999).  

A typical fracture surface of a specimen under CF testing was observed by SEM as shown in Figure 

5.4 (a). Similar to most of non-corroded rotating bending fracture surfaces, the presence of multiple 

ratchet lines illustrated that multiple origins initiate cracks before the final ductile fracture failure 

of a specimen. The elliptical zone encircled by the dashed line near the center was the final unstable 

fracture failure of the sample. The magnified morphologies of the elliptical zone are magnified in 

Figure 5.4 (b), (c), and (d). These microstructural figures clearly showed the dimples during the 

ductile tensile fracture that confirmed the encircled zone as the final fractural surface.  

 

Figure 5.4. SEM of fracture surface after corrosion-fatigue test: (a), entire fracture surface; (b), 

dimple zone 100X; (c), dimple zone 400X; (d) dimple zone 2000X. 
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After fatigue failure, the fracture surface was scanned to identify the fracture origins. On the edge 

of the sample surface after the CF test, the radiation feature marked by the solid black arrowheads 

in Figure 5.5 (a) and (b) provided two fractural initiation sites – two typical pits – along the tips of 

both white arrowheads. Cracks were initiated from both pits until the fracture failure.  

 

Figure 5.5. Pits on the fracture surface of a failed specimen: (a) crack origin from a pit; (b) crack 

origin from another pit.  

Striations, another typical feature of fatigue failure in BCC, HCP, and FCC metals, are usually 

observed only on a magnified fracture surface because of their small sizes. Thousands or even tens 

of thousands of striations form a single clamshell marking on the service failure fracture surfaces 

of metals. The clustered clamshell markings are visible by naked eye on the fracture surfaces, 

however, their visibility is highly correlated with the material/environment. Due to the 

environmental and/or metallurgical or the service situations, striations may appear clearly or 

poorly. Hence, it is hard to have visible clamshell markings with unclear striations.  

Each fatigue loading cycle advances the increment of the crack tip and leaves a mark of the loading 

on the fracture surface as a striation (Hertzberg, 2012). A striation usually grows perpendicular to 

the crack growth, and the width of a striation depends on the stress range. In this test, some 

suspicious and broken clamshell markings could be observed perpendicular to the ratchet lines in 

Figure 5.6 (a). At higher magnifications near the pit in Figure 5.6 (a) and (b), the clearer 

microscopic striations are seen in Figure 5.6 (c) and (d). Even though these striations were 

discontinuous and some were corroded – seen in the dashed box in Figure 5.6 (d), their appearance 

strongly implied the existence of striations because of the fatigue loading. In addition, Figure 5.6 
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(d) also shows that a broken striation was observed caused by corrosion (enclosed in the dashed 

box). 

 

Figure 5.6 Pit on fracture surface and corroded striations: (a), crack origin from a pit; (b), 400X 

of the pit; (c), 2000X of the striations around the pit; (d), broken striations (indicated by the 

dashed box).  

In the fatigue failure process without corrosion, stress concentrates on the PSB and initiates tiny 

cracks. Although the small cracks are mainly unstable, some of them propagate thereafter at steady 

growth rates. Finally, the growth of cracks becomes unstable, reaches the critical rate, and then 

results in fracture failure. Without corrosion, the existing crack surface before fracture failure is 

exposed to air, thus no corrosion products would deposit on the surface.  

Furthermore, in the CF test, specimens were immersed in chloride-contaminated simulated 

concrete pore solutions with a dynamic potential applied between the specimen and corrosive. 

Thus, before the fracture failure, the existing cracks in specimens underwent accelerated corrosion. 

In other words, corrosion products could be examined on the fracture surface prior to the final 

fracture failure, especially surrounding the fractural origins or pits. Since iron accounts for 97.925% 

of the content in the tested rebar (Table 3.1), the elemental distributions around the fractural origin 
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implied the existence of iron and oxygen beyond the CF test. In the same scanned region of EDS, 

Figure 5.7 and Figure 5.8 provide the all-layered mapping and the atomic spectrum, respectively. 

Figure 5.8 shows that: the atom content of iron and oxygen were 51.2% and 43.1% respectively; 

therefore, the sum of iron and oxygen was 94.3%. Hence, iron and its oxidation products 

dominated the compounds around the pit. Moreover, the element mapping of iron and oxygen 

presented in Figure 5.9 showed that both elements were almost evenly distributed around the pit.  

 

Figure 5.7. Fracture surface layered EDS mapping after rotating bending test 
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Figure 5.8. Rotating bending test specimen fracture surface element spectrum-EDS 

 

 

 

 

Figure 5.9. Rotating bending test specimen fracture surface element mapping 

5.3 Service life prediction by S-N curves 

The fundamental idea behind using the S-N curves to estimate fatigue life of a metal under a certain 

load is based on the property of metals, especially steels, that a linearly logarithmic relationship 
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exists between the stress and the number of cycles from the fatigue limit to 90% of the ultimate 

tensile strength (UTS). In other words, given this linear relationship and the applied stress 

amplitude, the approximate fatigue cycles could be found from the linear relationship after a few 

corrections of the tested parameters. The main procedures of this approach are: firstly use the UTS 

to estimate the fatigue limit, then build the linear function of S-N data, and finally find the fatigue 

cycles at the desired stress amplitude.  

The evaluation of the fatigue limit starts with assessing the effect of the applied mean stress and 

then other factors such as component size, loading type, notch, surface finish, and surface treatment. 

However, the corrections for these factors are applied to the fatigue limit rather than the S-N curves. 

Thus, this study firstly applied the mean stress effect modification on S-N curves according to the 

testing conditions of RC beams. Goodman and Gerber relations shown in Eq. (3.3) and (3.4) were 

utilized in the correction, and the corrected stresses were then plotted to the new S-N curves:   

 Goodman relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 −
𝜎𝑚

𝜎𝑡𝑠
) (3.3) 

 Gerber relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 − (
𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.4) 

Referring to the S-N curves in Figure 5.3, with the given the mechanical properties of reinforcing 

steel (yield strength of 440 MPa and tensile strength of 666 MPa), and an applied stress ranging 

from 22 MPa to 220 MPa, Figure 5.10 gives the corrected mean stress effect according to Eq. (3.3) 

and (3.4). Figure 5.10 presents that, for both the Goodman and Gerber corrections, a positive mean 

stress degrades the fatigue strength, agreeing with the results of past studies (Hertzberg, 2012; 

Milella, 2013).  
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Figure 5.10. The fatigue cycles with the corrected mean stress effect at three pre-designed 

corrosion rate for a duration of 75 years and the two types of limit cycles: (a), 0.05 µA/cm2, 2 

million cycles; (b), 0.15 µA/cm2, 2 million cycles; (c), 0.32 µA/cm2, 2 million cycles; (d), 0.05 

µA/cm2, 5 million cycles; (e), 0.15 µA/cm2, 5 million cycles; (f), 0.32 µA/cm2, 5 million cycles.  
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Besides the mean stress, the corrosion effect should also be taken into account for the correction 

of S-N curves as a form of notch effect because of the chloride-induced pits on the specimen 

surface. A notch factor was calculated according to the stress concentration factor and the 

geometry of the notch as shown in Eq. (3.7):  

 𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + 𝑎/𝑟
 (3.7) 

 𝑎 = 0.0254 (
2070

𝑆𝑢
)1.8  with 𝑆𝑢 in MPa and 𝑎 in mm (3.8) 

The notch effect was then used to modify the mean stress using Goodman line and Gerber parabola. 

From the literature (J. Newman, 1999), the elastic stress concentration factor is 3.0 MPa√m for a 

reinforcing steel. The radius of the notch root is calculated by the stress intensity factor formula 

Eq. (3.13) with an elastic stress concentration factor:  

 𝐾𝐼 =  𝜎√𝜋𝑆 𝑓(
𝑎

𝑐
) (3.13) 

Given the metal properties, e.g. the ultimate tensile strength, the notch factor Kf can be determined. 

Since Kt is 3.0 MPa√m, 𝑎 and 𝑟 are positive values, the value of Kf is larger than 1 in reinforcing 

steel. A notch in the specimen causes the reduction of the fatigue strength after adding the notch 

factor to Goodman and Gerber relations as shown in Eq. (3.9) and (3.10):   

 Corrected Goodman relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
 (1 −

𝜎𝑚

𝜎𝑡𝑠
) (3.9) 

 Corrected Gerber relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
(1 − (

𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.10) 

After the corrections of mean stress and notch effect, the newly obtained S-N curves can be applied 

to predict the fatigue cycles of RC beam under a CF environment.    

  



98 

 

6 Pitting-corrosion-fatigue approach for estimating corrosion-

fatigue of rebar in simulated concrete pore solution 

Engineering failure usually causes enormous economic damage and possible loss of life. Scientists 

(Clark, 2001; Hoeppner, 1979; Murtaza & Akid, 2000; Wang, 2003; Zhang & Mahadevan, 2001) 

performed abundant studies on the development of stress concentrations on structure surfaces that 

nucleate cracks, the propagation of which causes final fracture failure. They also developed models 

of the entire degradation process in order to estimate the fatigue life of a structure in service.  

This chapter presents the test data for estimating corrosion-fatigue (CF) of rebar in simulated pore 

solution (SPS) by the fracture mechanics approach, which includes the four stages of this model: 

pit nucleation and pit growth, pit-to-crack transition, crack growth, and fracture failure. Prior to 

thoroughly presenting the service life evaluation by fracture mechanics, the growth of a pit in 

chloride contaminated concrete pore solution and the propagation of a crack in a corrosion-fatigue 

environment have to be determined. Pit growth consists of the nucleation of a pit and its 

propagation rate over time. Crack propagation, on the other hand, includes the nucleation of a 

crack, the instable propagation of a small crack, the stable propagation of a long crack, and the 

final unstable growth of a crack near fracture failure.  

In this study, pit growth is composed of two types of investigations, short term pitting and long-

term pitting. Short term pitting examines the initiation of a pit and the difference in pit sizes in 

SPS mixed with 0.1 M, 0.6 M, and 1.5 M NaCl. Long-term pitting, on the other hand, mainly 

evaluates the development of the maximum pit depth over time in a combination of chloride 

concentration and pH of the solution.  

The crack propagation determines a crack on the rebar from the threshold of the stress intensity 

factor ΔKth until the stress toughness KIc. In this study, both ΔKth and KIc of a rebar disk were 

measured in an SPS environment mixed with 0.6 M NaCl. Crack growth behavior of rebar disks 

were examined in diverse environments, such as in air, 0.6 M NaCl + SPS, applied current (1 mA 

and 5 mA), 0.6 M NaCl, 0.1 M H3PO4, and 1.0 M H3PO4.  
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Finally, two types of Fracture Mechanics models, the direct approach and indirect approach, were 

introduced to predict the service life of a corrosive environment by computing fatigue cycles 

involving all four stages of fracture mechanics.  

6.1 Pitting growth test results  

6.1.1 Pitting initiation  

Figure 6.1 shows the morphology evolution of pit initiation in chloride contaminated SPSs. Figure 

6.1 (a) shows that, the rebar surface contained flaws prior to corrosion since entrained air bubbles 

with various sizes were observed. After two hours of corrosion, polygon-shaped pits are seen in 

Figure 6.1 (b). Regular elliptical pits shown in usual publications (Landolt, 2007; Szklarska-

Smialowska, 2005) were found in Figure 6.1 (c) and (d) under a corrosion period of 12 hours and 

24 hours, respectively.  

The polygonal 2-hour-corrosion pit shapes in Figure 6.1 (b) indicated that chlorides in 13.3 pH 

solution corrode reinforcing steel lightly on the surface. Light corrosion usually happened at low 

corrosion potentials and short corrosion periods. According to the previously measured corrosion 

current of high pH SPS mixed with 0.1 M chloride, the corrosion current was 0.115 µA/cm2, which 

is much lower than the corrosion current density in low pH solutions of around 100 µA/cm2 

(Marcus, 2002). Because high pH usually prevents corrosion from occurring and the SPS used in 

the test had a pH of 13.3, it was reasonable to conclude that it was the SPS resulting in light 

corrosion on reinforcement surface, at least for the duration of the tests.  

Shape change of the pits was observed from a polygon shown in Figure 6.1 (b) to an ellipse shown 

in Figure 6.1 (c) and (d). This could be explained by a change in corrosion potential as discussed 

in Sundaresan’s study (Sundaresan, 1989). Marcus (Marcus, 2002) holds the view that a high 

corrosion potential leads to a high local current density, which thereafter increases the corrosion 

production on the surface of pits resulting in a round pit configuration. Low corrosion potentials 

may not have sufficient corrosion current to form a round pit even over an accumulated corrosion 

period. Figure 6.1 clearly shows that the corrosion potential at the beginning (2-hour corrosion) 

could not reach the necessary potential to produce elliptical corrosion pits. However, at 12 and 24 
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hours corrosion, the pitting ability could produce elliptically shaped pits because of the longer 

corrosion periods.  

 

Figure 6.1. Pit initiation in chloride contaminated high pH environment: (a), 0 hour; (b), 2 hours; 

(c), 12 hours; (d), 24 hours. 

Figure 6.2 to Figure 6.4 represent the SEM images of pits at high pH (pH 13.3) SPS mixed with 

0.1 M, 0.6 M, 1.5 M chloride after a corrosion period of 2 hours, 12 hours, and 24 hours, 

respectively. As can be seen from these three figures, the number of pits increased with an increase 

of chloride concentrations from 0.1 M to 1.5 M at a pitting period of 12 hours and 24 hours but 

not at two hours.  
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Figure 6.2. Pit size at 0.1 M, 0.6 M, 1.5 M chloride mixed high pH SPS after 2 hours of 

corrosion: (a), 0.1 M; (b), 0.6 M; (c), 1.5 M.  

 

Figure 6.3. Pit size at 0.1 M, 0.6 M, 1.5 M chloride mixed high pH SPS after 12 hours of 

corrosion: (a), 0.1 M; (b), 0.6 M; (c), 1.5 M. 

 

Figure 6.4. Pit size at 0.1 M, 0.6 M, 1.5 M chloride mixed high pH SPS after 24 hours of 

corrosion: (a), 0.1 M; (b), 0.6 M; (c), 1.5 M. 

Based on the assumption that pits are elliptical, the major and the minor axes of each pit were 

measured and the area of each pit was computed. Table 6.1 provides the statistics of the pit sizes 

at a combination of pitting time (2 hours, 12 hours, 24 hours) and chloride concentration (0.1 M, 

0.6 M, 1.5 M). The pit sizes data indicated that, the pit diameter difference between the major axis 

and the minor axis was small, ranging from 0.14 µm to 2.50 µm, under all combinations. However, 
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the deviations of the diameters were relatively large, ranging from 1.81 µm to 4.78 µm. In 

comparison, the diameter values ranged from 4.69 µm to 8.35 µm. The large deviation in diameter 

generated a large deviation in the average area of a single pit, ranging up to 28.47 µm2.  

Table 6.1. Statistics of pits size after 2 hours, 12 hours, and 24 hours of pitting in 0.1 M, 0.6 M, 

and 1.5 M chloride mixed high pH SPS  

Corrosion 

period 

(hour) 

Chloride 

concentration 

(M) 

Average elliptical pit dimensions 
Single pit average 

area (µm2) Major axis (µm) Minor axis (µm) 

2 

0.1 8.35±3.38 5.85±3.43 40.16±27.46 

0.6 7.16±2.46 5.55±1.81 31.83±16.95 

1.5 6.99±4.78 4.69±2.69 25.72±20.9 

12 

0.1 7.41±4.05 6.97±4.04 40.88±28.47 

0.6 6.89±3.14 6.64±3.83 36.57±26.09 

1.5 5.94±2.65 5.80±1.95 26.95±14.16 

24 

0.1 8.17±2.87 7.49±3.33 49.42±26.42 

0.6 7.36±2.70 5.38±1.95 31.19±14.32 

1.5 6.15±3.17 5.21±2.64 24.98±16.58 

 

Comparing the dimensions and the average area of pits at a pitting time of 2 hours, 12 hours, and 

24 hours, one finds out that pit size fluctuated with the increase of corrosion time. However, the 

size and the average area of a pit decreased with the increase of chloride content at chloride levels 

of the same pitting period. Figure 6.2 to Figure 6.4 show that the density of pits rose along with 

chloride concentration. This phenomenon might be attributed to the competitive behavior of pitting 

under a chloride environment. A higher chloride concentration or a longer pitting period gives the 

corrosive a higher capacity to generate pits on metal surface. From the electrochemical standpoint, 

the pitted area of the micro-pit acts as an anode while the area surrounding the pit acts as a cathode 
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that is protected from corrosion. In a corrosive contaminated by a low chloride concentration but 

still above the critical threshold, the size of a pit could expand to a large size since the distance 

between two pits is far enough to guarantee the required cathodic area for sustaining the 

development of pitting. At high chloride content, for example 1.5 M in this study, the potential of 

pitting is more severe than what it is in 0.1 M NaCl and this causes the competition of pitting areas 

including both the anode and the cathode, the result of which leads to smaller pits in 1.5 M NaCl 

solutions.  

Pitting initiation time 

Even though some researchers (Acuña-González, González-Sánchez, Dzib-Pérez, & Rivas-

Menchi, 2012) propose that the empirical pit-depth growth equation should be written as 𝑑 = 𝐴𝑡𝐵, 

where d is the pit depth, t is the pitting time, A and B are the constants associated with the material 

and the corrosive environment, some other scientists (C. Q. Li, Yang, & Melchers, 2008; R E 

Melchers, 2005) suggest the equation should be written as 𝑑 = 𝐴(𝑡 − 𝑡0)𝐵, where 𝑡0 is the pitting 

initiation time. In terms of 𝑡0 in this study, Figure 6.2, Figure 6.3, and Figure 6.4 show pits with 

visible depth. Thus, it may be concluded that the pitting initiation time of rebar in SPS mixed with 

chlorides was less than two hours. Although two hours is a short time in the service life of an RC 

structure, e.g. 75 years, it is unclear whether or not if it should be ignored in the development of 

pits so far since the growth rate of a pit is unknown.  

6.1.2 Long-term pit growth 

In order to generate the relationship between the pit depth on rebar and the corrosion time under 

the concrete environment, this study simulated the process by immersing polished rebar samples 

in a simulated concrete pore solution. Several possible factors were also taken into consideration, 

e.g. chloride content, pH, and surface treatment.  

Morphological examination with SEM  

Figure 6.5 shows the one-month pitted specimen surfaces under the combined environment of two 

SPSs – the normal high pH (13.3) SPS and the carbonated SPS (pH 9.3) – and four types of chloride 
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contamination – 0 M, 0.1 M, 0.6 M, and 1.5 M. Figure 6.5 (a) and (e) present the specimens 

immersed in non-chloride SPSs. Both figures show no visible pits or corrosion product on the 

exposed surfaces.  

In the high pH SPS mixed with a chloride concentration of 0.1 M, 0.6 M, and 1.5 M, the 

morphology of the pitted samples for a month are seen from Figure 6.5 (b) to (d). Little difference 

was observed on the pitted sample surfaces from these images. In the carbonated SPS mixed with 

the same order of chloride concentrations, the one-month pitted sample surfaces are presented from 

Figure 6.5 (f) to (h). Clearly, severe pitting was observed in 0.6 M and 1.5 M NaCl; however, no 

apparent pitting is seen in 0.1 M NaCl, suggesting that the pitting ability of 0.6 M and 1.5 M NaCl 

is higher than that in 0.1 M NaCl. Compared with the corroded specimens in high pH SPS, the 

specimens immersed in 0.6 M and 1.5 M NaCl in the carbonated SPS had rougher surfaces, 

suggesting that a lower pH facilitated the occurrence of pitting.  

 

Figure 6.5. Specimens’ surfaces after one-month pitting: a, 0 M Cl + pH 13.3 SPS; b, 0.1 M Cl + 

pH 13.3 SPS; c, 0.6 M Cl + pH 13.3 SPS; d, 1.5 M Cl + pH 13.3 SPS; e, 0 M Cl + pH 9.3 SPS; f, 

0.1 M Cl + pH 9.3 SPS; g, 0.6 M Cl + pH 9.3 SPS; h, 1.5 M Cl + pH 9.3 SPS.  
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Besides pitting corrosion, another type of corrosion was also observed beneath some of the coated 

specimen surfaces: crevice corrosion. In the dash-box of Figure 6.6 (a), magnified in (b), two spots 

with honeycomb-shaped crevice corrosion were detected. Even though the rust preventative 

adhered tightly with the rebar disk surface, some gaps may still occur between the coating and the 

specimen surface, and crevice corrosion was nucleated in the presence of oxygen.  

 

Figure 6.6. Crevice corrosion at a corrosive combination of one-month corrosion and high pH 

SPS mixed with 0.6 M NaCl: (a), a large area of crevice corrosion (dashed box); (b), two spots of 

crevice corrosion (two dashed boxes). 

Figure 6.7 shows the specimen surfaces after a corrosion period of one month for coupled effects 

of the surface polish and the aggressiveness of solutions. For specimens immersed in pH 13.3 SPS, 

light pitting was seen on specimens with their surfaces polished to 1 µm and 15 µm, as shown in 

Figure 6.7 (a) and (b), respectively. In terms of specimens immersed in pH 9.3 SPS, severe pitting 

was observed on specimens with a surface treatment of 1 µm and 15 µm seen in Figure 6.7 (c) and 

(d). Hence, the visual examination of samples indicated that there was no obvious difference 

between the two types of surface treatments at a corrosion period of one month. The actual pitted 

depth in the combined effect of surface treatment and the pH of the corrosives was further 

examined by a profilometer; the data of pit depth were analyzed later.  
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Figure 6.7. Specimens’ surfaces after one-month of pitting under a combination of surface 

treatment and pH of the corrosive: a, 1 µm, 0.6 M Cl + pH 13.3 SPS; b, 15 µm, 0.6 M Cl + pH 

13.3 SPS; c, 1 µm, 0.6 M Cl + pH 9.3 SPS; d, 15 µm, 0.6 M Cl + pH 9.3 SPS.  

Figure 6.8 provides the comparison of two groups of specimens corroded for a four-month pitting 

in two types of SPS and four levels of chloride contaminations, similar to those in the one-month 

pitting. No apparent corrosion was seen on the specimen surfaces immersed in non-chloride SPSs, 

shown in Figure 6.8 (a) and (e). In addition, little corrosion product was observed during the test. 

Compared to the one-month pitted specimens shown in Figure 6.5, the pitted samples in Figure 

6.8 were “messier” at both high pH and carbonated SPSs, indicating that pitting was more severe 

in both types of solutions beyond four months of immersion. Moreover, more severe pitting 

damage was observed in the carbonated SPS mixed with 0.6 M and 1.5 M NaCl than that in 0.1 M 

NaCl. Overall, both low pH corrosive and long corrosion period facilitated the development of pits.  
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Figure 6.8. Specimen surfaces after four-month pitting: a, 0 M Cl + pH 13.3 SPS; b, 0.1 M Cl + 

pH 13.3 SPS; c, 0.6 M Cl + pH 13.3 SPS; d, 1.5 M Cl + pH 13.3 SPS; e, 0 M Cl + pH 9.3 SPS; f, 

0.1 M Cl + pH 9.3 SPS; g, 0.6 M Cl + pH 9.3 SPS; h, 1.5 M Cl + pH 9.3 SPS.  

Figure 6.9 displays the effect of surface treatment on the corroded surfaces of specimens after four 

months of corrosion at two pH levels, pH 13.3 and pH 9.3. As can be seen in specimens polished 

to 1 µm and 15 µm, these two samples had similarly corroded surfaces as shown in Figure 6.9 (a) 

and (b). Severe pitting was observed in specimens immersed in carbonated SPS shown in Figure 

6.9 (c) and (d). Hence, the SEM images led to the conclusion that the polish of specimen surface 

had a negligible effect on the corrosion behavior in the four-month corrosion in both carbonated 

and non-carbonated SPSs. The effect of surface polish on pit depth was analyzed in later chapters.  
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Figure 6.9. Specimen surfaces after four-month pitting under a combination of surface treatment 

and pH of the corrosive: a, 1 µm, 0.6 M Cl + pH 13.3 SPS; b, 15 µm, 0.6 M Cl + pH 13.3 SPS; c, 

1 µm, 0.6 M Cl + pH 9.3 SPS; d, 15 µm, 0.6 M Cl + pH 9.3 SPS. 

Pit depth data analysis 

In the pit depth test, the maximum depth of the pits on each specimen was measured by the Vantage 

50 profilometer. Figure 6.10 presents a 3D plot of the pit depth of the specimens with coupled 

effect of pH value in SPS and chloride concentration. This image clearly demonstrates that: pit 

depth increases with time in both chloride-contaminated SPSs, and carbonated SPS overall 

produces more severe pitting damage than high pH SPS. Two separate 2D graphs plotted using the 

same data as Figure 6.10 are shown in Figure 6.11.  
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Figure 6.10. Pitting growth bar chart of rebar in the corrosive solution at the combination of 

chloride and simulated concrete pore solution 

Figure 6.11 (a) depicts the development of pit depth in high alkaline (pH 13.3) SPS. The data 

indicate no pitting in non-chloride SPS. The maximum pit depth of these three chloride levels 

increased steadily with time, and the maximum pit depth generally decreased from 1.5 M NaCl to 

0.1 M NaCl in an SPS solution.  

It is documented (Luca Bertolini & Polder, 2013) that a higher chloride concentration usually 

becomes more competitive in introducing pitting. Hence, high chloride concentration promotes the 

total pitting area, which was confirmed by the short term pitting results in this study. The pit depth, 

however, depends on the microenvironment in and around the pit. The formation of a pit cap could 
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isolate the pit from the bulk environment and this usually facilitates a decrease in the pH of the 

microenvironment in the pit, even from an alkaline condition to an acidic environment.  

Many researchers (Landolt, 2007; Szklarska-Smialowska, 2005) reported that the isolated 

microenvironment causes the quick growth of pit depth. Due to the fact that the corrosion current 

density is higher in an SPS mixed with higher chloride concentration, it is probable that the 

breakdown of the passivation film and the formation of the cap on a pit are faster in the higher 

chloride-concentrated solution. Furthermore, chlorides could transport through the porous cap into 

the pit because of the chloride concentration difference between the pit interior and the bulk 

solution. The higher the concentration of chloride in the bulk solution, the more chlorides penetrate 

to a pit. The concentration of hydrochloride acid increases as the chloride concentration increases, 

and this phenomenon increases the acidity of the corrosive environment, which facilitates the 

growth of pit depth. Therefore, the corrosive environment mixed with a higher chloride 

concentration requires a shorter time to develop a pit in comparison with the solution mixed with 

a lower chloride concentration. This explains why the maximum pit depth in the SPS solutions 

was descending in the order of 1.5 M, 0.6 M, and 0.1 M NaCl.  

In the carbonated SPS shown in Figure 6.11 (b), the growth pattern of pit depth was mostly 

different from that in non-carbonated SPS. In SPS with non-chlorides, both Figure 6.11 (a) and (b) 

showed no pit growth in either high pH SPS or carbonated SPS. In the carbonated SPS with added 

0.1 M NaCl, pits grew slower than that mixed with 0.6 M and 1.5 M NaCl. As can be seen in 

Figure 6.11 (b), the maximum pit depth in the SPSs with 0.6 M and 1.5 M NaCl was similar at all 

corrosion durations. Hence, a one-way ANOVA analysis was performed to identify whether 

chloride has an effect on the pit growth. The results in Table 6.2 show that the P value was 0.952 

(much larger than 0.05), which means chloride concentration had no effect on the maximum pit 

depth. Overall, unlike the growing pattern of pit depth in a high pH SPS, a pit in the carbonated 

SPS grew slower in 0.1 M NaCl than in 0.6 M and 1.5 M NaCl, and there was no apparent pit 

depth difference between the corrosives mixed with 0.6 M and 1.5 M NaCl.  
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Figure 6.11. Pit depth growth of rebar in 0 M, 0.1 M, 0.6 M, and 1.5 M chloride mixed with: (a), 

high pH (pH 13.3) SPS; (b), carbonated (pH 9.3) SPS.  

Table 6.2. Chloride concentration effect (0.6 M and 1.5 M) of the max pit depth in carbonated 

SPS solutions.  

 DF 
Sum of 

Squares 
Mean Square F Value Prob>F 

Model 1 8.76E-5 8.76E-5 0.0037 0.952 

Error 12 0.284 0.0237   

Total 13 0.284    

 

Figure 6.12 depicts the effect of surface treatment – 1 µm and 15 µm – on the growth of pit depth 

on the rebar disks in both carbonated and high pH SPSs. Little difference between the two surface 

treatments was seen at all six corrosion periods. The surface quality of a metal is essential for the 

nucleation and the development of pits, including both metastable and stable pits. Many scientists 

have reported that both the pitting potential and the critical pitting temperature (CPT) are lower on 
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rougher surfaces than on smoother ones (Burstein & Pistorius, 1995; Burstein & Sasaki, 2000; G. 

E. Coates, 1990; Moayed, Laycock, & Newman, 2003; Sasaki & Burstein, 1996). In other words, 

the initiation time of a pit is significantly influenced by the surface. However, the nucleation time 

of a pit varies from minutes to hours in most commonly used metals and alloys. This nucleation 

period is rather short in comparison with the corrosion duration of one-month interval, which was 

used for measurement in this study. Hence, the effect of surface fails to be reflected in a long-term 

test as shown in Figure 6.12.  

 

Figure 6.12. Pitting growth of rebar specimens polished by 1µm and 15µm sandpapers and tested 

in the 0.6 M chloride mixed with high alkaline and carbonated SPSs.  

Since multiple factors, such as chloride concentration, pH, and surface treatment, influence pit 

growth, their individual effects and synergetic contributions were both investigated in this study. 

The interactions of chloride and pH were firstly compared by the two-way ANOVA in Table 6.3 

with a confidence level of 0.05. This table shows that chloride and pH individually had a P value 

of 2.60E-6 and 0.008, suggesting that both factors had an effect on the growth of pit depth. The 

interaction of Cl and pH had a P value of 0.094, hence, no significance was presented in the 

interaction since the P value was above 0.05. A one-way ANOVA was performed on the effect of 

surface treatment as shown in Table 6.4. The generated P value was 0.873, which exceeded 0.05; 
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therefore, it was concluded that surface treatment had no effect on the long-termed development 

of pit depth. Therefore, ANOVA results confirmed the observation and discussion of Figure 6.12.  

Moreover, a two-way ANOVA was executed to examine the interaction effect of pH and surface 

treatment as seen in Table 6.5. At the 0.05 confidence level, both the P-values of surface treatment 

and the interaction in the table were higher than 0.05, denoting that both null hypotheses should 

be rejected and both surface treatment and the interaction had little influence on the growth of pit 

depth.  

Table 6.3. ANOVA table for pH, Cl, and their synergetic effects influencing pit depth  

 DF 
Sum of 

Squares 
Mean Square F Value P Value 

Cl 3 0.363 0.121 12.046 2.60E-6 

pH 1 0.075 0.075 7.458 0.008 

Interaction 3 0.067 0.022 2.230 0.094 

Model 7 0.550 0.079 7.817 9.23E-7 

Error 62 0.624 0.010   

Corrected Total 69 1.174    

 

Table 6.4. ANOVA for the pit growth at 1µm and 15µm polished surface under both high pH 

and carbonated SPS mixed with 0.6 M NaCl  

 
Degree of 

freedom 

Sum of 

squares 
Mean square F value 

Probability > 

F 

Model 1 4.790E-4 4.790E-4 0.026 0.873 

Error 26 0.479 0.0184   

Total 27 0.480    
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Table 6.5. ANOVA for the pit growth data between pH of SPS and surface treatment 

 DF 
Sum of 

Squares 
Mean Square F Value P Value 

pH 1 0.136 0.136 9.543 0.005 

Surface treatment 1 4.790E-4 4.790E-4 0.034 0.856 

Interaction 1 3.467E-4 3.467E-4 0.0243 0.877 

Model 3 0.137 0.046 3.200 0.041 

Error 24 0.343 0.014   

Corrected Total 27 0.479    

  

Pit growth data fitting 

Many researchers (Kawai & Kasai, 1985; R E Melchers, 2006) have studied the relationship 

between the maximum pit depth and exposure time. Their statistical results suggested that pit depth 

growth is governed by an empirical power formula Eq. (3.11).  

 𝑑 = {
𝐴(𝑡 − 𝑡0)𝐵, 𝑡 ≥ 𝑡0

0, 𝑡 < 𝑡0
 (3.11) 

In the short term pitting analysis of Section 6.1.1, it was concluded that pit initiation time was less 

than two hours. In comparison with the pit growth test period – six months, a two-hour (0.00278 

months) pit initiation time in the empirical power equation might be ignored. In order to illustrate 

that the initiation time can be ignored, a power equation is fitted with a boundary condition that 0 

≤ 𝑡0 ≤ 0.00278 in both SPSs mixed with three chloride levels. The fitted parameters turned out 

such that four out of six 𝑡0 were regressed at 0 and the other two 𝑡0 are regressed at 0.00278. Due 

to the fact that 𝑡0 had to be constant for all fitted pit growth equations, a 𝑡0 value of zero was 

chosen for all regressions in this study.  
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Thus, a simplified equation, seen in Eq. (6.1), was used to regress the data obtained in Figure 6.11. 

The corresponding fitting curves and regression parameters are shown in Figure 6.13 and Table 

6.6, respectively:  

 𝑑 = 𝐴𝑡𝐵  (6.1) 

where d is pitting depth (in mm), t is pitting time (in hour), A and B are both empirical parameters 

which depend on the material and the environment.  

Figure 6.13 (a) reveals that the growth of pits gradually increased from 0.1 M to 1.5 M NaCl in 

the high pH SPS. Figure 6.13 (b), on the other hand, demonstrates pit growth was faster in 0.6 M 

and 1.5 M NaCl than in 0.1 M NaCl in the carbonated SPS. The pit growth rates for the first four 

months were higher in the carbonated SPS mixed with 0.6 M NaCl than 1.5 M NaCl. From the 

long run in both non-carbonated and carbonated SPSs, the pit growth rate climbed along with 

increasing chloride concentration. Moreover, the adjusted R-squared values in Table 6.6 were 

above 0.970 and the standard error for both constants – A and B – were fairly small in comparison 

to the regressed values, denoting that the predicted models closely agreed with the collected data.  

 

Figure 6.13. Empirical fitting of pit growth data in two types of SPS: (a), high pH SPS; (b), 

carbonated SPS 
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Table 6.6. Fitting parameters of pit growth data in both high pH SPS and carbonated SPS  

Corrosion 

conditions 

A B Statistics 

Value 
Standard 

Error 
Value 

Standard 

Error 

Adj. R-

Square 

0.1 M Cl, high pH 

SPS 
0.047 0.004 0.670 0.044 0.983 

0.6 M Cl, high pH 

SPS 
0.051 0.004 0.707 0.043 0.980 

1.5 M Cl, high pH 

SPS 
0.053 0.005 0.719 0.042 0.991 

0.1 M Cl, 

carbonated SPS 
0.049 0.005 0.728 0.072 0.970 

0.6 M Cl, 

carbonated SPS 
0.124 0.006 0.678 0.034 0.991 

1.5 M Cl, 

carbonated SPS 
0.110 0.007 0.749 0.043 0.989 

 

6.2 KEAC, KIc, and rebar crack growth under CF  

6.2.1 Fracture toughness (KIc) 

Fracture toughness was measured using the disk-shaped rebar specimen according to ASTM E399 

(ASTM, 2013c) standard. The applied loading was within the range from 0.55 to 2.75 MPa√m/s 

and the resultant load-crack-opening-displacement relationship is seen in Figure 6.14. The curves 

denote that the tested metal was a ductile material because of the non-linear increment beyond the 

linear portion of load-crack opening relationship. Following the steps in the ASTM E399 standard 

to obtain the correct maximum load in calculating the fracture toughness, this study determined 

three calculated KIc values shown in Table 6.7. The resultant average fracture toughness of rebar 

was 29.92 MPa√m.  
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Figure 6.14. Load and crack opening relationship in measuring fracture toughness.  

Table 6.7.  Reinforcing steel fracture toughness measured by ASTM E399 standard 

 Sample 1 Sample 2 Sample 3 Average 

Fracture 

toughness / 

MPa√m 

29.45 29.82 30.29 29.92 

 

6.2.2 Stress intensity factor threshold for environment-assisted cracking (KEAC)  

The stress intensity factor is used in the field of fracture mechanics to represent the stress 

distribution near the crack tip which is produced by a remotely applied load or a residual stress 

(Schijve, 2009). The stress intensity factor threshold for environment-assisted cracking (KEAC) 

refers to the highest value of the stress intensity factor (K), below which crack growth cannot be 

observed for a specific combination of static load and environment (ASTM, 2013a, 2013b).  

The standard measurements of KEAC (ASTM, 2013b) involve several methods for various shapes 

of specimens. All approaches share the same idea that the specimen has to be loaded with a certain 

mass in a corrosion chamber containing a 3% NaCl aqueous solution. The crack development is 

examined beyond an incubation time, depending on the tested metal and the testing environment. 
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The incubation time for steels with yield strength less than 1200 MPa is 10,000 hours as cited in 

the ASTM (ASTM, 2013b) standard. Considering that the incubation time is fairly long for a test, 

this study examined the KEAC of reinforcing steel by experiment using a constant load rate-control 

or constant displacement rate-control as proposed by Kalnaus et al (Kalnaus, Zhang, & Jiang, 

2010).  

Constant load rate-control method 

The constant load rate test controlled the loading rate at 0.1 N/sec on a disk-shaped specimen, 

which was immersed in an SPS mixed with 0.6 M NaCl. The applied load verses the correspondent 

crack length was recorded by the data acquisition system. The test data is shown in Figure 6.15, 

which reveals that crack growth initiated around 17 MPa√m prior to crack propagation in both 

tests. Hence, the measured KEAC by this approach was 17 MPa√m.  

 

Figure 6.15. Crack length against stress intensity factor range at a constant loading rate of 0.1 

N/sec.  

Constant displacement rate-control method 

The constant displacement rate test controls three displacement rates (2E-4 mm/s, 1E-4 mm/s, and 

5E-5 mm/s) and records the instant data of load and the corresponding crack length. The test results 

are shown in Figure 6.16.  



119 

 

 

Figure 6.16. Variation of the stress intensity factor in load rate-controlled test and displacement 

rate-controlled tests.  

Unlike the data of Kalnaus et al (Kalnaus et al., 2010) shown in Figure 6.17, in which the stress 

intensity factor threshold appears as the COD rate decreases, the results indicated in Figure 6.16 

showed little difference in the growth pattern of the stress intensity factors at the three declining 

displacement rates. During the test, the observed opening of a crack mouth enlarged with an 

increasing applied load; however, the crack tip had little increment. As the climbing of applied 

load, plastic deformation in front of the crack tip was observed. As long as the plastic deformation 

reached the critical value, rapid crack growth occurred with a sudden drop of the applied load, 

resulting in a jump in crack length at an almost constant stress intensity factor in Figure 6.16.  

Since the displacement being rate-controlled in the test and reinforcing steel being ductile, sudden 

crack growth until failure is impossible. After the first quick increment of crack length, another 

round of plastic zone deformation initiates and continues until the next jump in crack length. This 

process proceeds in a cycle until the complete failure of the specimen. Even though a plateau was 

seen in Figure 6.16 in the relationship between the stress intensity factor and the crack length, the 

observation in the test demonstrates this phenomenon to be caused by the slow rate of loading 

displacement. In reality, the sample would fail immediately after reaching the critical plastic 

deformation. Thus, the plateau is completely different from that in Figure 6.17, in which the 
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threshold stress intensity factor was obtained by a combination effect of corrosion and loaded 

displacement rate.  

The reason why the displacement rate-controlled approach fails to examine the stress intensity 

factor threshold is attributed to the insensitivity of small flaws in low strength metal. Unlike the 

high strength metals, in which flaws in the metal (e.g. chloride induced pit and grain boundary 

corrosion) could lead to crack propagation, low strength metals are insensitive to the flaws caused 

by corrosion.  

 

Figure 6.17. Variation of stress intensity factor in COD rate-controlled experiments (Kalnaus et 

al., 2010).  

6.2.3 The threshold of fatigue stress intensity factor ΔKth 

In order to examine the threshold stress intensity factor range under environment-assisted cracking, 

the multi-stepped fatigue loading approach was executed in this study. Samples were exposed to 

the maximum fatigue loads in the order of 0.7 kN, 0.8 kN, 0.9 kN, 1.0 kN, 1.1 kN, 1.2 kN, and 1.3 

kN. Each fatigue load sustained a period with the R ratio at 0.1. The growth of crack length was 

recorded along with cycles, and the data were then transferred to the logarithmic relationship 

between crack growth rate and stress intensity factor range as plotted in Figure 6.18.  

Figure 6.18 clearly demonstrates the three stages of the growth of a crack indicated in Figure 2.6, 

and data in Region I provide that the average ΔKth of three examinations was 5.70 MPa√m. The 
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measured ΔKth was much lower in comparison to the KEAC, 17 MPa√m, which was reasonable 

since stress corrosion cracking usually happens at a higher stress intensity factor in steels.  

 

Figure 6.18. Fatigue crack propagation behavior in reinforcing steel for stepped fatigue loads. 

6.2.4 Rebar crack growth under electrochemically accelerated CF 

FCGR under corrosion was studied by many researchers in different metals, e.g. low-alloy steels, 

stainless steels, aluminum alloys, and titanium alloys (G. S. Chen et al., 1996; Gregory, 1999; Hu, 

Meng, Liu, Song, & Wang, 2015; Kalnaus et al., 2010; Ostash, Kostyk, & Makoviichuk, 1999; 

Seifert, Ritter, & Leber, 2012a, 2012b; Sivaprasad, Tarafder, Ranganath, Tarafder, & Ray, 2006; 

Werner & Koliasinsky, 2003). However, few studies have been conducted on the FCGR of 

structural steel. In this section, the rebar crack growth under CF is examined with the coupled 

effect of corrosion environments (in air, in Cl mixed SPS, 1 mA and 5 mA electrochemical 

corrosion) and fatigue loads (1.2 kN, 1.6 kN, and 2.0 kN), and the results are plotted in Figure 6.19. 

Figure 6.19 shows that the data were condensed; hence, the plot was separately plotted by the 

maximum load amplitude in Figure 6.20, Figure 6.21, and Figure 6.22.  

Because of the crack closure effect in crack propagation, this effect must be corrected. In this study, 

the effective stress intensity factor range ΔKeff replaces ΔK in the ΔK~da/dN curves, and the 

transformation between ΔK and ΔKeff is provided in Eq. (6.2) (J. C. Newman & Annigeri, 2012).  
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 ∆𝐾𝑒𝑓𝑓 =
1 − 𝐾0/𝐾𝑚𝑎𝑥

1 − 𝑅
 ∆𝐾 (6.2) 

 
𝐾0

𝐾𝑚𝑎𝑥
= 0.343 + 0.027𝑅 + 0.917𝑅2 − 0.287𝑅3 (6.3) 

where 𝐾0 is the stress intensity factor at the crack opening, 𝐾𝑚𝑎𝑥 is the maximum stress intensity 

factor, 𝑅 is the stress ratio.  

 

Figure 6.19. FCGR at the combination of load (1.2kN, 1.6kN, 2.0kN) and environment (in air, in 

SPS+0.6 M Cl solution, an electrochemical corrosion of 1mA and 5 mA) 

Figure 6.20 shows the FCGR curves tested under different environments at the maximum load of 

1.2 kN. Obviously, a ΔKth was observed from all four test environments – in air, in 0.6 M Cl mixed 

SPS, in electrochemical corrosion of 1 mA and 5 mA – and the four ΔKth values seemed to 

approach 9 MPa√m. Like the crack propagation of many metals governed by the Paris law, a linear 

relationship between da/dN and ΔK was seen on the plot at the ΔK range from 10 MPa√m to 30 

MPa√m. Compared to the data tested in air, FCGR was barely affected by CF and this might be 

attributed to the fact that structural steel is mild steel which is insensitive to chloride-induced 

corrosion in comparison with high strength steel, e.g. stainless steel.  
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Figure 6.21 and Figure 6.22 provide the FCGR curves tested under different environments at the 

maximum load of 1.6 kN and 2.0 kN, respectively. Similar to the FCGR curves tested at the 

maximum load of 1.2 kN, ΔKth was observed in the curves of 1.6 kN and 2.0 kN with a value of 

11.2 MPa√m and 13.4 MPa√m, respectively. Extracting data from 13 MPa√m to 32 MPa√m in 

Figure 6.21 and from 14 MPa√m to 32 MPa√m in Figure 6.22, the relationships between da/dN 

and ΔK looked linear in both ranges.  

To sum up the results in Figure 6.20, Figure 6.21, and Figure 6.22, a higher load amplitude 

enhanced the ΔKth from 9 MPa√m to 13.4 MPa√m with respect to the maximum load amplitude 

from 1.2 kN to 2.0 kN. Figure 6.23 provides the comparison of the maximum load effect on FCGR 

curves, and the plots indicated that the ΔKth rose with the increasing tested maximum load under 

all four environments, including both non-corrosive and corrosive circumstances. The Paris law 

seemed to govern the stable crack growth region in all figures; however, further analysis was 

required to identify the CF effects on FCGR. Thus, linear regressions were required to perform in 

the suspicious region to examine the postulated linearity of FCGR curves.  

 

Figure 6.20. FCGR curves tested under different environments at a maximum load of 1.2 kN.  
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Figure 6.21. FCGR curves tested under different environments at a maximum load of 1.6 kN. 

 

 

Figure 6.22. FCGR curves tested under different environments at a maximum load of 2.0 kN. 
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Figure 6.23. FCGR in different environments: (a) in air; (b) in SPS+0.6 M Cl solution; (c) 

electrochemically applied 1 mA; (d) electrochemically applied 5 mA. 

Table 6.8 provides the linear fitting parameters of the FCGR under various CF environments. Most 

of the adjusted R-squared values in the table exceeded 0.9 and the minimum was 0.828, denoting 

that the postulated linear regressions fit well with the original data. The effect of CF on the Paris 

postulation was reflected mainly in the slope or the intercept of an FCGR curve.  

In comparison with the in-air group data, Table 6.8 showed a slight increase in the slope with the 

increase of the aggressiveness of the corrosive at all three load amplitudes – 1.2 kN, 1.6 kN, and 

2.0 kN. In the data of the 1.2 kN group, slopes gently climbed from 2.86 to 3.41 with an average 

standard error of 0.12. The same phenomenon was observed in the data of the 1.6 kN group and 

the 2.0 kN group. Hence, unlike many metals where the slopes of the Paris law remain constantly 

in corrosive environments, corrosion in reinforcing steel marginally increases the FCGR by 

electrochemically accelerated corrosion.  
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As can be seen in Table 6.8, the intercepts of the FCGR curves tested in air, solution, 1mA 

corrosion, and 5 mA corrosion were -7.32, -7.33, -7.89, and -7.95 for the load level of 1.2 kN. The 

same descending order was also observed in the data of 1.6 kN and 2.0 kN in spite of small 

deviation. Therefore, two conclusions could be made: (a), electrochemical corrosion was more 

severe than the corrosiveness of SPS mixed with 0.6 M NaCl; (b), a higher applied current by 

electrochemical corrosion had a greater effect on the intercept of the logarithmic Paris equation.  

Overall, even though differences were observed in both slope and intercept of the logarithmic 

Paris’s law, the effect of electrochemically accelerated corrosion was limited in promoting the 

corrosion rate of the crack surface. The possible reason attributes to that an applied corrosion 

current produces the expansion of corrosion on the crack surface however not necessary the crack 

tip, the corrosion on which causes the synergetic effect of corrosion and fatigue.  

Table 6.8. Linear fitting of the Paris postulation governed region in the logarithmic FCGR curves 

under CF environments  

CF 

conditions 

Intercept Slope Statistics 

Value 
Standard 

Error 
Value 

Standard 

Error 

Adj. R-

Square 

In air, 1.2 kN -7.32 0.15 2.86 0.13 0.976 

In sol, 1.2 kN -7.33 0.18 2.89 0.15 0.961 

1mA, 1.2 kN -7.89 0.17 3.26 0.14 0.972 

5mA, 1.2 kN -7.95 0.06 3.41 0.05 0.997 

In air, 1.6 kN -7.24 0.24 2.79 0.20 0.943 

In sol, 1.6 kN -7.43 0.15 2.88 0.12 0.981 

1mA, 1.6 kN -7.49 0.43 3.00 0.35 0.862 

5mA, 1.6 kN -8.50 0.38 3.86 0.31 0.907 

In air, 2.0 kN -7.37 0.18 2.96 0.14 0.976 

In sol, 2.0 kN -7.66 0.34 3.16 0.26 0.841 

1mA, 2.0 kN -8.10 0.45 3.49 0.34 0.912 

5mA, 2.0 kN -8.26 0.68 3.63 0.52 0.828 
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The effect of stress ratio – R-ratio – was evaluated at the maximum load amplitude of 1.6 kN with 

four levels – 0.1, 0.3, 0.5, and 0.7. The corresponding FCGR curves and crack length curves are 

provided in Figure 6.24 and Figure 6.25, respectively. Figure 6.24 displays the FCGR curves of 

these four R ratio levels in an electrochemical corrosion of 1 mA and in the reference – 0.6 M Cl 

mixed SPS. The FCGR curves show that R ratio had a great effect on the FCGR: the higher the 

stress ratio, the lower the stress intensity factor range. In Figure 6.24, the entire ΔK range of the 

R=0.1 test was from 10.3 MPa√m to 32.2 MPa√m, while it ranged from 3.5 MPa√m to 9.9 MPa√m 

for R=0.7. Moreover, both ΔKth and fracture toughness were observed to descend along with the 

increase of R ratios in the FCGR curves. In other words, the entire FCGR curve shifted left to a 

smaller ΔK region as an R ratio increased, which agreed with the divergence phenomenon 

provided in the literature (Crooker, 1971; Crooker & Krause, 1972; Milella, 2013; Miller & 

Gallagher, 1981).  

 

Figure 6.24. FCGR at different R ratios (0.1, 0.3, 0.5, and 0.7) for a maximum load of 1.6 kN. 
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Figure 6.25. Fatigue crack length vs. elapsed cycles recorded at different R ratios under a 

maximum load amplitude of 1.6 kN and an electrochemical corrosion of 1 mA.  

The effect of R ratio on the threshold stress intensity factor range ∆𝐾𝑡ℎ can be modified by the 

equation below (Weng et al., 2013) 

 ∆𝐾𝑡ℎ = ∆𝐾𝑡ℎ0[1 − ⟨𝑅⟩]𝛾𝑡ℎ  (6.4) 

where ⟨𝑅⟩ = R when R ≥ 0 and R = 0 when R < 0; ∆𝐾𝑡ℎ0 is the threshold stress intensity factor 

range at R = 0; 𝛾𝑡ℎ is a material constant.  

Plotting the 1–R value against ΔKth in Figure 6.24, Figure 6.26 provided ∆𝐾𝑡ℎ = ∆𝐾𝑡ℎ0(1 −

〈𝑅〉)1.15, hence, the material constant 𝛾𝑡ℎ in Eq. (6.4) is 1.15.  
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Figure 6.26. R ratio effect on the ΔKth in SPS mixed with 0.6 M Cl. 

Despite the fact that the ΔKth decreased with the ascending of R ratio, the total number of fatigue 

cycles at a higher R-ratio was higher than that at a lower R-ratio as shown in Figure 6.25. This is 

probably due to the effective stress intensity factor range. In the fatigue crack growth of metal, 

there appears to be an opening stress intensity factor Ko, below which a crack will not propagate. 

Moreover, in the low ΔK region, both Kmax and Kmin are rather low. Thus, the effective stress 

intensity factor range from Ko to Kmax is also smaller in comparison with a high ΔK, which causes 

a slow crack propagation.  

Figure 6.27 displays the logarithmic FCGR curves affected by the coupled effects of R ratio – 0.1 

and 0.3 – and corrosion – electrochemically applied 1 mA and 5 mA, and the correspondent linear 

fittings of the Paris-postulation-governed regions are shown in Table 6.9. Figure 6.27 shows that 

the R = 0.1 FCGR curve seemed to have a higher crack growth rate in 1 mA corrosion than in 5 

mA. However, the R=0.3 FCGR curve in 1 mA corrosion had a lower crack growth rate than that 

in 5 mA. In Table 6.9, the slope differences between the two acceleration rates at the same R-ratio 

were within 0.87. Nevertheless, considering the large standard errors in the FCGR diagrams and 

the experimental error of a fatigue test, little differences were seen at various corrosion 

environments. At a high ΔK which approaches KIc, cracks grow at a high rate that corrosion has 
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little effect on crack development. The effect of R-ratios, on the other hand, was significantly 

greater than that of corrosion rate and this effect was observed in both Figure 6.27 and Figure 6.28.  

 

Figure 6.27. FCGR curves of two corrosion acceleration rates – 1 mA and 5 mA – tested in the R 

ratio of 0.1 and 0.3 at a maximum load amplitude of 1.6 kN.  

Table 6.9. Coupled effects of R ratio (0.1 and 0.3) and corrosion (electrochemically applied 1 

mA and 5 mA) affecting the Paris postulation governed region in the logarithmic FCGR curves 

the maximum load amplitude of 1.6 kN. 

CF 

conditions 

Intercept Slope Statistics 

Value 
Standard 

Error 
Value 

Standard 

Error 

Adj. R-

Square 

R 0.1, 1 mA -7.29 0.31 2.99 0.26 0.883 

R 0.1, 5 mA -8.50 0.38 3.86 0.31 0.907 

R 0.3, 1 mA -8.95 0.27 4.59 0.25 0.969 

R 0.3, 5 mA -8.33 0.21 3.92 0.19 0.969 
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Figure 6.28. Fatigue crack length vs. elapsed cycles tested at a maximum load amplitude of 1.6 

kN with the combinations of R ratios (0.1 and 0.3) and electrochemical corrosion (1 mA and 5 

mA). 

6.2.5 Rebar crack growth of CF under acidic solutions 

The effect of electrochemical corrosion on FCGR curves are discussed in Section 6.2.4, and the 

results revealed that electrochemical corrosion had a minor effect on fatigue crack growth of rebar. 

In this section, the results of fatigue crack growth tested in acidic solutions were introduced.  

Figure 6.29 displays the relationship of da/dN against stress intensity factor range ΔK under an 

increasing order of acidity in the SPSs mixed with 0.6 M NaCl (reference), 0.6 M NaCl + DDW, 

0.1 M H3PO4, and 1.0 M H3PO4. Figure 6.29 shows that the acidity of corrosives had a great effect 

on the FCGR curves. The curves show that the FCGR of rebar increased with the increase in acidity 

of the solution, as the crack started to grow. The FCGR curve in 1.0 M H3PO4 presents a steady 

increase of da/dN from 6.7 MPa√m to 24.0 MPa√m, suggesting that corrosion governed the fatigue 

growth rate during the testing instead of a synergetic effect of corrosion and fatigue. In other words, 

for a rather aggressive corrosive, the FCGR curves presented the tendency of the curve shape to 

change from an interaction of corrosion and fatigue to a purely corrosion-controlled fatigue growth.  
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Figure 6.29. FCGR curves generated in acidic corrosives.  

6.2.6 Fractographic observation of crack propagation specimens 

In order to study the corrosion effect on the crack propagation under CF, the fractographic 

examination was performed on the fracture surface of the tested specimens. A schematic of the 

fracture surface is provided in Figure 6.30, in which the locations that were scanned by SEM are 

indicated on the right side.  

 

Figure 6.30. A schematic of the specimen surface completing crack propagation.  
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During a test, the crack fronts were observed growing step by step rather than continuously in all 

environments, including in air, SPS mixed with chloride, SPS applied with current, and acidic 

solutions. Many marks of the crack front along the longitudinal direction of rebar were observed 

on the fracture surface; an example is provided in Figure 6.31, where the crack grows from left to 

right.  

A 2000X magnification image of the crack front is provided in Figure 6.31 (b) and (d) corresponds 

to the ΔK of 15 MPa√m and 25 MPa√m. Both pictures clearly show that striations cover the 

fracture surface. The spacing of two consecutive striations looks more consistent in the low ΔK 

region than in the high district, and this may be attributed to the rapid crack propagation at ΔK=25 

MPa√m.  

Another feature – crack branching – could be detected in the comparison of fracture surfaces in 

Figure 6.31 (a) and (c). At the ΔK of 15 MPa√m in Figure 6.31 (a), cracks propagated slower than 

that in 25 MPa√m, thus the crack usually propagated along the crack front as indicated by the black 

arrows. In ΔK=25 MPa√m in Figure 6.31 (c), on the other hand, a crack developed violently. This 

behavior caused branched cracks that were perpendicular or angular to the fracture surface and 

highly elongated in the direction of fatigue crack propagation.  

The typical fracture types without and with corrosion are presented in Figure 6.32 and Figure 6.33, 

both of which indicate that the fracture in the reinforcing steel was transgranular. An aggressive 

environment corrodes the sharp edges in the fracture but not the type of fracture.  

The final rapid fracture propagation was also transgranular fracture as shown in Figure 6.34. 

Comparing Figure 6.34 (b) and (d) at a magnification of 2000X, Figure 6.34 (b) shows clear 

cleavage fracture and corrosion only blurs the surface as seen in Figure 6.34 (d).  
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Figure 6.31. SEM graphs of the specimen tested in high SPS applied with 5mA current: (a), low 

ΔK, ≈ 15 MPa√m; (b) 2000X magnification of the central point in (a); (c), high ΔK, ≈ 25 

MPa√m; (d) 2000X magnification of the central point in (c). 
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Figure 6.32. Transgranular fracture in the specimen tested in high pH SPS applied with 5mA 

current (500X).  

 

Figure 6.33. Transgranular fracture in the specimen tested in 0.1 M H3PO4 (500X). 
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Figure 6.34. Rapid fracture surface of fatigue fractured specimens: (a), in air, 100X; (B), in air, 

2000X; (c), in 0.1 M H3PO4, 100X; (d), in 0.1 M H3PO4, 2000X. 

6.3 Rebar fatigue life evaluation under Fractural Mechanics model  

Pit nucleation and growth 

In a concrete environment, pit nucleation consists of two parts: the penetration of chloride through 

the concrete cover, and the accumulation of chloride that initiates pitting on rebar. In a solvent 

circumstance, on the other hand, pit nucleation is defined as the breakdown of the passive film and 

the initiation of pitting (Missert, Virtanen, Davenport, & Ryan, 2007).   
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Pit nucleation and growth could be estimated by the empirical pit growth equations generated in 

Section 6.1.2. In Sections 6.1.1 and 6.1.2, the incubation time of pitting was regressed at zero and 

the growth of the maximum pit depth was estimated from the curves in Figure 6.13 (a) in high pH 

SPS because of the general concrete environment. The fitted parameters of Eq. (6.1) in these curves 

are provided in Table 6.10. The relations between the corrosion current density and the fitted 

equation constants – A and B – were linearly fitted as Figure 6.35 and Figure 6.36. Since the 

corrosion current densities of both constants were known, both graphs could be used to extrapolate 

A and B values at other corrosion current densities.  

 𝑑 = 𝐴𝑡𝐵  (6.1) 

Table 6.10. Fitting parameters of pit growth data in high pH SPS. 

Corrosion 

conditions 

A B Statistics 

Value 
Standard 

Error 
Value 

Standard 

Error 

Adj. R-

Square 

0.1 M Cl, high pH 

SPS 
0.047 0.004 0.670 0.044 0.983 

0.6 M Cl, high pH 

SPS 
0.051 0.004 0.707 0.043 0.980 

1.5 M Cl, high pH 

SPS 
0.053 0.005 0.719 0.042 0.991 
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Figure 6.35. Constant A in the pit growth equation against corrosion current density. 

 

Figure 6.36. Constant B in the pit growth equation against corrosion current density. 
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Pit-to-crack transition  

In Sections 6.2.3 and 6.2.1, the threshold stress intensity factor range ΔKth and the fracture 

toughness KIc were measured as 5.70 MPa√m and 29.92 MPa√m. The FCGR curves under acidic 

corrosion in Figure 6.29 covered a ΔK range from 6.00 MPa√m to 29.98 MPa√m, which generally 

fit in the measured stress intensity factor range from ΔKth to KIc. Hence, the FCGR curves under 

various corrosion rates were reasonably used to predict fatigue cycles at a selected corrosion 

current density.  

Due to the fact that the rebar used in the field has ribs, this study assumed that the reinforcing steel 

was round bar without ribs. The corresponding stress intensity factor equation citied from Eq. (3.13) 

is repeated here.  

 𝐾𝐼 =  𝜎√𝜋𝑆 𝑓(
𝑎

𝑐
) (3.13) 

 𝑆 = 𝑟 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑐

𝑟
) (3.14) 

 𝑓 (
𝑎

𝑐
) =  0.7433(

𝑎

𝑟
)2 − 0.2194 (

𝑎

𝑟
) + 0.6757 (3.15) 

Eq. (3.13) requires a crack shape function 𝑓(
𝑎

𝑐
) in the equation; therefore, a constant a/c ratio has 

to be selected during the pit growth and the crack propagation. Then, the critical pit size that 

transits to a crack is calculated by the a/c aspect ratio and the applied tensile stress. The 

confirmation of using ΔKth to calculate the critical pit size has to be conducted since the crack 

growth rate at ΔKth might be smaller than its pit growth rate. If the calculated da/dN is less than 

the pit growth rate at ΔKth, a larger crack size a is required to assure that the correspondent da/dN 

equals to the corresponding pit growth rate. The crack size a is considered as the initial crack which 

defines the pit-to-crack transition. Then, providing the pit growth curves and the corrosive 

environment of a rebar, the time needed to develop a critical pit depth could be estimated. Finally, 

the fatigue cycles are approximated by the division of the calculated pitting corrosion time and the 

cyclic loading frequency.  
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Crack propagation 

The crack propagation stage covers the initiation of a crack until its fracture failure. There are two 

approaches to estimate fatigue cycles by the da/dN vs ΔK curves in Figure 6.29: direct approach 

and indirect approach.  

Direct approach: This approach directly uses the da/dN vs ΔK equation seen in Eq. (6.5) to predict 

fatigue cycles at different corrosion rates (Weng et al., 2013).  

 𝑑𝑎/𝑑𝑁 = 𝐴(∆𝐾 − ∆𝐾𝑡ℎ)𝐵 (6.5) 

where 𝑑𝑎/𝑑𝑁 is the crack propagation rate, in mm/cycle; ∆𝐾 is the applied stress intensity factor 

range, in MPa√m; ∆𝐾𝑡ℎ  is the threshold stress intensity factor range, in MPa√m; A and B are 

constants depending on the material and the testing environment.  

 

Figure 6.37. Power equation fitting of the da/dN vs ΔK curves under corrosion.  

Since A and B depend on the tested metal and the corrosive environment, both constants were 

generated by the four da/dN vs ΔK curves in Figure 6.29, which were produced in corrosive 

environments from almost non-aggressive to extremely aggressive. Both constants A and B are 

plotted against the corrosion current density in Figure 6.38 and Figure 6.39, respectively; hence, 



141 

 

A and B for a corrosion current density located within the plot range could be projected from both 

graphs. The fatigue cycles of that current density were then reversely integrated by the obtained 

crack growth curve and the stress intensity factor equation. 

Table 6.11. Parameters of fitted power equation of the the da/dN vs ΔK curves under corrosion. 

Corrosive 

environment 

Corrosion 

current density 

/ µA/cm2 

Constant A Constant B 

Value 
Standard 

error 
Value 

Standard 

error 

SPS + 0.6 

M Cl 
0.26 4.12E-6 1.07E-6 1.80 0.15 

0.6 M Cl 242.68 1.96E-5 0.42E-5 1.37 0.10 

0.1 M 

H3PO4 
1570.00 1.48E-4 0.60E-4 0.58 0.09 

1.0 M 

H3PO4 
5047.50 6.72E-4 1.22E-4 0.34 0.08 

 

Figure 6.38. Constant A fitting in the da/dN vs ΔK curves. 
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Figure 6.39. Constant B fitting in the da/dN vs ΔK curves. 

Indirect approach: In this approach, a CF prediction model is used and shown in Eq. (6.6) (Weng 

et al., 2013):   

 (𝑑𝑎/𝑑𝑁)𝐶𝐹 = [(
𝑑𝑎

𝑑𝑁
)

𝐿𝐶𝑅
](1−𝛽)((𝑑𝑎/𝑑𝑁)𝐿𝐶𝑅 + (𝑑𝑎/𝑑𝑁)𝐻𝐶𝑅)𝛽 (6.6) 

 𝛽 = 𝜆(∆𝐾𝑡ℎ/𝐾𝑚𝑎𝑥)ℎ∆𝐾𝑡ℎ/∆𝐾𝑡ℎ0 (6.7) 

 ∆𝐾𝑡ℎ = ∆𝐾𝑡ℎ0[1 − ⟨𝑅⟩]𝛾𝑡ℎ  (6.8) 

where (
𝑑𝑎

𝑑𝑁
)

𝐿𝐶𝑅
 and (

𝑑𝑎

𝑑𝑁
)

𝐻𝐶𝑅
 are the crack growth rates at a rather low corrosion rate and extremely 

high corrosion rate; 𝜆  and ℎ  are the model constants defined by material and environment 

combination; ∆𝐾𝑡ℎ is the threshold stress intensity factor of rebar under corrosion; 𝐾𝑚𝑎𝑥 is the 

maximum stress intensity factor in a loading cycle; R is the stress ratio; ⟨𝑅⟩ = R when R ≥ 0 and 

R = 0 when R < 0; ∆𝐾𝑡ℎ0 is the threshold stress intensity factor range at R = 0; 𝛾𝑡ℎ is a material 

constant and found at 1.15 from Figure 6.26.  
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The main idea of the CF model involves two extremes of corrosion current densities (rather low 

and significantly high) in the crack growth, and uses the ΔK against da/dN curves of both current 

densities to predict the crack propagation curve within these two extremes.  

(
𝑑𝑎

𝑑𝑁
)

𝐿𝐶𝑅
 and (

𝑑𝑎

𝑑𝑁
)

𝐻𝐶𝑅
 represent the crack growth curves generated in high pH SPS+0.6 M Cl and 

1.0 M H3PO4, respectively. Table 6.12 provides the parameters in Eq. (6.5) of both growth curves. 

 Except for 𝜆 and ℎ, other parameters in Eq. (6.7) are material-dependent or constant during a CF 

test. Therefore, 𝜆 and ℎ , governed by material/environment, control the crack propagation curve 

of a specimen in a specific metal/environment condition. All four groups of 𝜆  and ℎ  were 

computed by Origin software and the fitted values are provided in Table 6.12. Figure 6.40 plots 

the corrosion current density against 𝜆 or ℎ and the correspondent fitting equations are presented 

in Eq. (6.9) and Eq. (6.10), respectively:  

 λ = 0.02583(𝑖𝑐𝑜𝑟𝑟)0.441 (6.9) 

 ℎ = −0.74 + 0.000704 𝑖𝑐𝑜𝑟𝑟 − 0.0000001113(𝑖𝑐𝑜𝑟𝑟)2 (6.10) 

Table 6.12. Fitted 𝜆 and ℎ for crack growth curves in four corrosives. 

Corrosive 

environment 

Corrosion 

current density 

/ µA/cm2 

Constant 𝜆 Constant ℎ 

Value 
Standard 

error 
Value 

Standard 

error 

SPS + 0.6 M Cl 0.26 0.017 0.004 -0.732 0.108 

0.6 M Cl 242.68 0.218 0.074 -0.586 0.096 

0.1 M H3PO4 1570.00 0.743 0.110 -0.092 0.009 

1.0 M H3PO4 5047.50 1.076 0.113 -0.025 0.005 
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Figure 6.40. λ and h vs corrosion current density fitting in the crack growth curves. 

Therefore, the CF model could be generated provided that the corrosion current density 𝑖𝑐𝑜𝑟𝑟 is 

known. Finally, the obtained CF model could reversely estimate the fatigue cycles during the crack 

propagation in a rebar as indicated in the direct approach. 
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7 Corrosion-fatigue in RC beams and the prediction of their 

service lives by both S-N approach and fracture mechanics 

approach 

Chapter 5 and Chapter 6 have introduced two approaches to evaluate fatigue life of reinforced 

concrete (RC) structures under corrosion-fatigue (CF) – the S-N approach and the fracture 

mechanics approach. However, these two methods have not yet been verified.  

In this chapter, the corrosion-fatigue behavior of RC beams is studied first. Four RC beams were 

tested under a cyclic loading with varied electrochemical corrosion current densities: 0 µA/cm2, 

0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2. The maximum load amplitude was set to be half the 

capacity of the designed RC beams at a stress ratio of 0.1. Then, the corresponding fatigue lives at 

each of the corrosion rates were recorded and compared, and the cracking maps of each face of the 

RC beam were collected and analyzed.  

Furthermore, both S-N method and fracture mechanics method were applied to predict the fatigue 

cycles of the tested RC beams at the same CF conditions. Then, the predicted cycles were 

compared with the actually tested values in order to determine the accuracy of each approach.  

7.1 RC beams fatigue life under different corrosion degrees  

Table 7.1 presents the fatigue cycles of the four RC beams that have been tested with a combination 

of an applied stress and a corrosion rate. The results show that the fatigue life declined with an 

increase of corrosion rate with the applied load range of 0.9 – 9 kN. This observation is consistent 

with many studies performed with an uncoupled corrosion and fatigue (Rteil, 2007; Song & Yu, 

2015; Yi et al., 2011). For instance, Song and Yu (Song & Yu, 2015) reported the number of 

fatigue cycles to be 968,000 and 537,000 at a pre-corroded corrosion degree of 4.7 % and 8.1%, 

respectively. These results are in good agreement with those acquired in the corrosion degrees of 

4.71% and of 7.72% in Table 7.1. At 4.71% of corrosion in this study, fatigue cycles with a coupled 

corrosion-fatigue effect reached 601,779, significantly lower than 968,000 cycles with an 

uncoupled corrosion-fatigue effect. These measured results indicate that a more severe damage 
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could occur under a combined corrosion and fatigue than that with an individual corrosion and 

fatigue.  

Table 7.1 reflects great consistency between the theoretical mass losses and the measured mass 

losses. Nevertheless, a negative mass loss in the non-corroded RC beam indicated that the rebar 

actually gained weight after the test. This behavior might be attributed to experimental error caused 

by the evaluation method of mass loss, or due to the sticking of concrete on the rebar.  

Figure 7.1 (a) presents a typical mode of rebar fracture, while Figure 7.1 (b) shows that a crack 

could initiate from the bottom and propagate upward until the final rupture. During the CF test of 

an RC beam, the bottom side of rebar tended to corrode first because of the easy access to reaction. 

Moreover, the bottom edge of the rebar undertakes higher tensile loading during the bending of 

RC beams. As a result, stress concentrated on the corroded spots, which usually nucleated a crack 

and further propagated until fracture failure. The fracture surface in Figure 7.1 (b) agreed well with 

this explanation of pitting-induced fracture failure.   

Table 7.1. Fatigue cycles of the five beams tested at the combination of applied stress and 

corrosion rate 

Beam No. 

Applied 

load range 

/ kN 

Designed 

corrosion 

rate / 

µA/cm2 

Theoretical 

mass loss 

percentage/

% 

Actual 

mass loss 

percentage/

% 

Fatigue life 

/ cycles 

Failure 

mode 

L0 0.9 – 9 0 0 -0.17 > 2 million N/A 

L1 0.9 – 9 0.05 2.90 2.58 1,017,605 
Steel 

rupture 

L2 0.9 – 9 0.15 4.71 5.71 601,779 
Steel 

rupture 

L3 0.9 – 9 0.32 7.72 8.74 569,840 
Steel 

rupture 
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Figure 7.1. RC beam failure: (a), central crack side view; (b), fracture view. 

7.2 Crack mapping and cross section loss of rebar in RC beams under corrosion-

fatigue  

7.2.1 Crack mapping analysis 

Figure 7.2 gives the crack mapping of specimens under a non-corrosive environment with a cyclic 

loading ranging from 0.9 kN to 9.0 kN. The mapping shows that only two continuous cracks were 

observed in the center. Both cracks vertically crossed the tension zone in the beam and propagate 

until the compression zone at the top of the beam. This behavior meant that the applied load could 

result in concrete fracture due to tensile failure. Moreover, the RC beam bends in the center of the 

beam after the test, which agreed with the designed failure mode in this study – the yielding of 

reinforcement.  

 

Figure 7.2. RC beam cracks mapping at non-corrosion fatigue test, load range 0.9 – 9.0 kN. 
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Figure 7.3 demonstrates the crack mapping of an RC beam tested in an accelerated corrosion 

current density of 0.32 µA/cm2 with the load range of 0.9 – 9.0 kN. Although the beam tested in a 

corrosion environment had the similar front and back crack mappings when compared to that tested 

in air, their mapping was completely different at the tensile face. The in-air beam only had tensile 

failure cracks across the beam. By contrast, the beam tested under CF had massive cracks. Since 

the rebar had a concrete cover thickness of 1.5 cm from the bottom (tensile face) and 4.5 cm from 

the side (front or back face), corrosion product should have fractured the bottom concrete cover 

prior to the side cover. This explains the similarity in crack mappings at the front and back, as 

shown in Figure 7.2 and Figure 7.3. Besides the cracks across the tension zone in the corroded 

portion of the beam in Figure 7.3, multiple cracks also appeared along the rebar, which suggests 

that the corrosion of rebar could have generated sufficient pressure to overcome the tensile strength 

of the concrete cover and lead to the occurrence of cracks.  

 

Figure 7.3. RC beam crack mapping under CF, 0.32 µA/cm2, load range 0.9 – 9.0 kN 

7.2.2 Cross section loss of rebar 

Figure 7.4 gives the distribution of cross section loss along 20 cm of the corroded rebar. The 

maximum cross section loss in a rebar is mainly occurred near the center of a beam. This 

phenomenon could result from two reasons. On the one hand, the central part of an RC beam 

experiences the maximum bending moment, which produces the maximum tensile stress in the 

rebar. On the other hand, from the fracture mechanics point of view, the tensile load greatly 

facilitates pit nucleation of a crack, that probably further develops to a fracture failure.   
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In the three beams tested from 0.9 – 9.0 kN with the corrosion current densities of 0.05 µA/cm2, 

0.15 µA/cm2, and 0.32 µA/cm2, respectively, the data demonstrated that specimens under higher 

corrosion rates failed at a shorter service life with a higher cross section reduction in rebar.  

 

Figure 7.4. Rebar cross section loss at the specific locations in rebar.  

7.3 Rebar fracture surface examination  

Figure 7.5 presents a typical fracture surface of the tested rebar in RC under CF. Figure 7.5 (a) 

gives the final fracture failure of rebar that stems from multiple pits on the edge of spot A. The 

radial lines along the white arrows signify that at least two pits initiated cracks appeared during 

the fatigue process. This behavior was further confirmed by the existence of two ratchet marks 

demonstrated by the black arrows, and their presence denoted the junction of two adjacent crack 

origins. Figure 7.5 (b) displays three main origins initiating the fracture. As the crack initiated and 

propagated, it grew at an accelerated rate, and then transited from the critical crack to the final 

ductile failure of rebar as shown in Figure 7.5 (c). Figure 7.5 (d) exhibits that Spot C was filled 

with micro-voids – known as dimples. They imply that the rebar failed because of ductile rupture, 

which is consistent with the ductile property of reinforcing steel.  
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Figure 7.5. Stereo microscope and SEM graphs of rebar fracture surface: (a), entire rebar fracture 

surface examined by stereo microscope; (b), two main pits in spot A (40X); (c), crack to fracture 

transition at spot B (100X); (d), final ductile fracture at spot C (1000X). 

 

7.4 The service life prediction of the RC beams under corrosion-fatigue by the S-N 

curve approach 

Service life prediction by the S-N approach has been introduced in Chapter 5, however, the 

validation of this approach in RC beams has not been introduced. Since corrosion-fatigue test in 

RC beams has been conducted, the S-N approach can be validated by the obtained fatigue cycles 

of RC beams in various CF environments.  
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The RC beams in a CF environment were initially designed with the maximum fatigue cycles of 2 

million; thus, the S-N curves in Figure 5.3 (a) can be used for the prediction. As both RC beams 

CF tests and S-N curves share the same three corrosion levels, 0.05 µA/cm2, 0.15 µA/cm2, and 

0.32 µA/cm2, the three S-N curves could be used for the data correction at the CF condition in the 

RC beam test. In the fatigue testing of RC beams, the applied load ranged from 0.9 kN to 9.0 kN 

with a mean load of 4.95 kN, which suggested a positive tensile stress existed during the test. 

However, the mean stress equaled zero in the S-N curves, thus the data transformation required a 

correction of mean stress effect. Moreover, RC beams tested in a chloride environment are very 

likely to cause an effect on the reduction of fatigue life because of chloride-induced pitting. The 

presence of pits on rebar in RC might act as tiny notches; thus, the resultant notch effect should be 

taken into account in the correction of fatigue life.  

Correction of mean stress effect  

Mean stress effect was modified by two empirical equations, Goodman line and Gerber parabola, 

which are cited from Chapter 3 and listed below:   

 Goodman relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 −
𝜎𝑚

𝜎𝑡𝑠
) (3.9) 

 Gerber relation: 𝜎𝑎 = 𝜎𝑓𝑎𝑡 (1 − (
𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.10) 

In Section 3.4.1, the ultimate tensile strength 𝜎𝑡𝑠 of rebar was 666 MPa in both the RC beam CF 

test and the rotating bending test. Provided that the load range in RC beam testing was 0.9 – 9.0 

kN and the beam dimensions in Section 3.4.5, structural analysis gave a calculated mean stress 𝜎𝑚 

of 121 MPa applied on the rebar. Given the ultimate tensile strength and the mean stress, the 

corrected fatigue stresses were calculated by substituting 𝜎𝑓𝑎𝑡  in Eq. (3.9) and (3.10) with the 

fatigue stress levels in Figure 5.3 (a). Figure 7.6 plots these corrected stresses with the fatigue 

cycles obtained from Figure 5.3 (a). Figure 7.6 (a), (b), and (c) clearly demonstrate that a positive 

mean stress reduced the required stress amplitude and generated the same amount of failure cycles. 
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Moreover, the Goodman line was more conservative than the Gerber parabola since specimens 

survived longer in Gerber correction than Goodman line at the same stress amplitude.  

 

Figure 7.6. Mean stress correction of S-N curves through Goodman and Gerber relations: (a), 

0.05 µA/cm2, 0.9 – 9.0 kN; (b), 0.15 µA/cm2, 0.9 – 9.0 kN; (c), 0.32 µA/cm2, 0.9 – 9.0 kN.  

Correction of pitting  

As discussed before, the notch effect should be corrected as the pits serve as notches on the 

specimen surface. To introduce the notch effect, the most common approach is to add a notch 

factor for the correction of mean stress. A notch factor represents the ratio of smooth to notched 

fatigue strengths; the equation format proposed by Peterson (Stephens et al., 2000) is shown in Eq. 

(3.7):  
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 𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + 𝑎/𝑟
 (3.7) 

 𝑎 = 0.0254 (
2070

𝑆𝑢
)1.8  with 𝑆𝑢 in MPa and 𝑎 in mm (3.8) 

The parameters in Eq. (3.7) could be input as below: the elastic stress concentration factor = 3 

MPa√m for steel, and the ultimate tensile strength of rebar = 666 MPa. In terms of the radium of 

notch root, it can be calculated by the stress intensity factor equation shown in Eq. (3.13), and a/2c 

in the equation is defined as 1.25 for the geometrical discontinuity on rebar surface.  

Substituting the calculated Kf to Eq. (3.9) and (3.10), the final corrected mean stress were plotted 

as a function of the examined fatigue cycles in the rotating bending test. Figure 7.7 gives the final 

correction of S-N curves and the actually tested fatigue cycles of RC beams under CF:   

 Corrected Goodman relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
 (1 −

𝜎𝑚

𝜎𝑡𝑠
) (3.9) 

 Corrected Gerber relation: 𝜎𝑎 =
𝜎𝑓𝑎𝑡

𝐾𝑓
(1 − (

𝜎𝑚

𝜎𝑡𝑠
)

2

) (3.10) 
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Figure 7.7. Notch effect correction of S-N curves and the comparison between the predicted 

cycle range and the actual tested life of RC beams: (a), 0.05 µA/cm2, 0.9 – 9.0 kN; (b), 0.15 

µA/cm2, 0.9 – 9.0 kN; (c), 0.32 µA/cm2, 0.9 – 9.0 kN.  

Instead of providing a specific number of cycles at a stress amplitude, the S-N curve approach 

predicts the fatigue life of an RC beam in a range between the Goodman line and the Gerber 

relation. In Figure 7.7, the actual tested fatigue cycles mostly fit the Goodman line rather than fall 

between the two relations. Due to the fact that corrosion in this project only accounted for the 

notch effect regardless of many other effects, such as surface roughness and synergetic effects, the 

prediction of RC CF was more compatible with the conservative relation (Goodman line). 

According to the Goodman relation, the estimated numbers of fatigue cycles were 1,124,892, 

655,865, and 438,822 correspondent to the CF environments of the applied stress at 121 MPa and 

three corrosion current densities of 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2.  
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In the reference test, the examination steps were slightly different in the prediction of service life. 

In Figure 5.2 (a), the fatigue limit of rebar for this project was 326.2 MPa and the mean stress 

corrected by Eq. (3.9) was 266.9 MPa. Without corrosion, no correction was required for notch 

effect. Hence, the fatigue limit of reinforcing steel beyond the modified mean stress was 266.9 

MPa, significantly higher than the tested stress amplitude – 198 MPa at a load range of 0.9 – 9.0 

kN. In other words, the fatigue life of an RC beam tested in the non-corrosion environment was 

infinite (> 2 million cycles of the design limit).  

7.5 The service life prediction of RC beam under corrosion-fatigue by Fracture 

Mechanics approach 

The procedures of the fracture mechanics approach has been introduced in Chapter 6 to estimate 

the fatigue life of an RC beam under corrosion fatigue. Nevertheless, this method has not been 

verified yet. After the service life of RC beams under CF has been obtained and the fracture 

mechanics approach is fully introduced, the validation is performed in this section.  

To perform the CF prediction of reinforcement by fracture mechanics, service life estimation in 

all four stages are required, including pit growth examination, pit-to-crack transition, crack 

propagation, and fracture failure, as proposed in Section 6.3.  

7.5.1 Pit growth in RC under corrosion-fatigue 

The development of maximum pit depth 𝑑 with time 𝑡 can be estimated by the empirical power 

equation as shown in Eq. (6.1). The relationship between the constants (𝐴 and 𝐵) of the equation 

and corrosion current densities are presented in Figure 6.35 and Figure 6.36. Based on the linear 

fitting parameters of both constants and corrosion current densities in Table 6.10, Table 7.2 lists 

the calculated values of A and B in the three designed corrosion rates in the CF testing of RC 

beams, 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2.  
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Table 7.2. Constant A and B in the empirical pit growth equation at three corrosion rates during 

RC CF testing.  

Corrosion current density in 

RC CF test / µA/cm2 
Constant A Constant B 

0.05 0.0387 0.602 

0.15 0.438 0.646 

0.32 0.0526 0.720 

 

The threshold stress concentration factor range was 6.00 MPa√m that was obtained from the crack 

growth curves of acidic solutions in Figure 6.29 within the measured ΔKth range 5.70 ± 0.34 

MPa√m. Hence, a value of 6.00 MPa√m was used to calculate the critical pit size in crack initiation.  

 

Figure 7.8. Crack shape (a) and pit shape (b) occurring on rebar.  

Prior to the calculation of critical pit depth, it was critical to determine the aspect ratio a/c. The 

crack propagation in a cylindrical rod is usually considered as an elliptical shape as shown in 

Figure 7.8 (a). While a pit in rebar normally has a longer axis along the pit depth than along the 

pit mouth as presented in Figure 7.8 (b). By trial and error, the aspect ratio a/c was valued to be 

2.5 for the calculations of stress intensity factor range and for the prediction of fatigue cycles.  

Substituting ΔKth = 6.00 MPa√m and the a/c=2.5 into the stress intensity factor equations, Eq. 

(3.13) to Eq. (3.15), the critical pit depth was calculated to be 1.61 mm for the load range of 0.9-
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9.0 kN, and the required time to create such a pit is listed in Table 7.3 for different aggressiveness 

of the corrosives. Provided that the RC beams in the CF test were initially designed to serve a 

lifespan of 75 years in field, the required time in field to nucleate the critical pit depth could be 

estimated by the empirical pit growth equation with the constants listed in Table 7.2.  Moreover, 

because the RC beams were designed to survive 2 million cycles in the 75-year lifespan, the 

required cycles to create such a critical pit depth could be estimated as listed in Table 7.3. The 

results illustrate that a high corrosion rate in pitting could greatly reduce the necessary fatigue 

cycles to nucleate the critical pit depth.  

Table 7.3. Time to develop the critical pit depth and the correspondent fatigue cycles.  

Combination of corrosion 

current density and load 

range in RC CF test 

Time to create the critical pit 

depth / month 

Total cycles during the pit 

nucleation period 

0.05 µA/cm2, 0.9-9.0 kN 630.2 1,400,304 

0.15 µA/cm2, 0.9-9.0 kN 337.8 750,592 

0.32 µA/cm2, 0.9-9.0 kN 150.2 333,744 

 

7.5.2 Crack propagation of rebar in RC 

The direct approach and the indirect approach were used to evaluate the crack propagation of rebar 

in RC. Using the relations between the constants of the fitted ΔK vs da/dN curves in Figure 6.29 

and the corrosion current densities, the direct approach predicted the values of these constants 

according to the aggressiveness of corrosion in the CF testing of RC beams. While the indirect 

approach estimated the crack propagation by applying a CF propagation model, which combined 

the two extreme crack growth curves (significantly low and rather high corrosion rates) in Figure 

6.29.  
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Direct approach 

This approach fits the crack propagation curves in Figure 6.29 with the ΔK vs da/dN equation:  

 𝑑𝑎/𝑑𝑁 = 𝐴(∆𝐾 − ∆𝐾𝑡ℎ)𝐵 (6.5) 

The relations of the constants (A and B) and the corrosion current densities 𝑖𝑐𝑜𝑟𝑟 in the acidic 

solutions were fitted in Figure 6.38 and Figure 6.39, respectively. The regressed equations are 

provided below:  

 𝐴 = −2.39 ln (0.104 ln (𝑖𝑐𝑜𝑟𝑟)) (7.1) 

 𝐵 = 0.0000027 + 0.000000074 𝑖𝑐𝑜𝑟𝑟 + 0.0000000000116 (𝑖𝑐𝑜𝑟𝑟)2 (7.2) 

Since the loading frequency of a beam undertaking 2 million cycles in 75 years is 0.000846 Hz in 

field and the loading frequency of RC beams in the CF test is 1 Hz, all three designed corrosion 

levels, 0.05 µA/cm2, 0.15 µA/cm2, and 0.32 µA/cm2, could be converted to the laboratory current 

densities with the values of 59.13 µA/cm2, 177.39 µA/cm2, and 378.43 µA/cm2, respectively. 

Substituting 𝑖𝑐𝑜𝑟𝑟  in Eq. (7.1) and (7.2) with the converted corrosion current densities, the 

corresponding A and B in Eq. (6.5) were obtained as shown in Table 7.4. The error of the fitted A 

values in the power equation was 9.0E-4; however, the predicted A values for all three corrosion 

levels in Table 7.4 were less than 1.62E-05. In other words, the predicted cycles in crack 

propagation would introduce tremendous errors.  

Table 7.4. Constants A and B of the crack growth curve fitting at a designed corrosion rate in RC 

beam test.  

Constants 
Corrosion current density / µA/cm2 

0.05 0.15 0.32 

A 7.12E-06 1.62E-05 3.24E-05 

B 2.05 1.48 1.16 
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Based on these constants A and B listed in Table 7.4 and the crack propagation step of 0.02 mm, 

Table 7.5 presents the fatigue life estimation steps of an RC beam in 0.32 µA/cm2. Table 7.6 

displays the estimated fatigue cycles in two stages (pit growth and crack propagation) and the 

summed fatigue life of the three RC beams by fracture mechanics.  

Table 7.5. The fatigue life evaluation of RC beam in an accelerated corrosion rate of 0.32 

µA/cm2 

Crack length / 

m 
ΔK/MPa√m 

(da/dN) / 

mm/cycle 
ΔN Total cycles 

0.00171 6.453 3.92E-06   

0.00173 6.498 5.47E-06 4,499 4,499 

0.00175 6.543 1.62E-05 1,846 6,790 

0.00177 6.588 2.47E-05 978 7,768 

⁞ ⁞ ⁞ ⁞ ⁞ 

0.00699 29.021 9.45E-03 21 25,421 

0.00701 29.179 9.52E-03 21 25,442 

0.00703 29.238 9.60E-03 20 25,462 

 

Table 7.6 implies that the fatigue life in both pit growth and crack propagation stage was lower in 

a highly aggressive corrosion. Moreover, the overall fatigue cycles decreased with the increase of 

corrosion rate. Furthermore, the pit growth stage contributed over 95% of the total fatigue cycles. 

As indicated in the constants estimation of crack propagation, the evaluation error in the constants 

of the power equation was far higher than the constants themselves; therefore, this would trigger 

huge errors in the estimation of fatigue cycles at the crack propagation stage. Such tremendous 

errors can be attributed to the uncertainty of the direct approach.  
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Figure 6.39 shows that the predicted B value was much larger than the original data at a corrosion 

current density below 500 µA/cm2. Referring to Eq. (6.5), at the same A value, an elevated B 

would increase the crack propagation rate that reduces the integrated cycles at a fixed crack length. 

Therefore, in the direct approach, the predicted cycles in the crack propagation stage would be less 

than the real value. Therefore, this explains why the estimated cycles in the crack propagation 

stage represented such a small proportion.  

In the non-corrosive condition, because of the infinite time demanded in the pit growth, the fatigue 

life could easily exceed the designed limit of two million cycles for an RC beam under CF. 

However, without a reasonable corrosion prediction at low corrosion current densities, the 

application of this approach in life estimation was limited.  

Table 7.6. Predicted fatigue cycles of RC beams by the direct approach. 

Fatigue cycles 
Corrosion current density / µA/cm2 

0 0.05 0.15 0.32 

Pit growth >2,000,000 1,400,304 750,592 333,744 

Crack propagation N/A 39,356 36,717 25,462 

Total  >2,000,000 1,439,660 787,309 359,206 

 

Indirect approach  

In Table 6.11, the constants in the power equation of the ΔK vs da/dN curves were obtained for 

the specimens tested in high pH SPS + 0.6 M Cl and in 1.0 M H3PO4. The key parameters, λ and 

ℎ, controlling the crack growth curve in a combined environment of corrosion and fatigue, have 

been plotted as a function of the corrosion current densities in all acidic solutions, as shown in 

Figure 6.40. Given the converted corrosion rates of RC beam testing at 59.13 µA/cm2, 177.39 

µA/cm2, and 378.43 µA/cm2, respectively, Eq. (6.9) and (6.10) were used to calculate the 

correspondent values of λ and ℎ as shown in Table 7.7.  
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Table 7.7. The predicted λ and ℎ for the three corrosion levels in RC CF.  

Parameters 

Designed corrosion current density / µA/cm2 

0.05 0.15 0.32 

λ 0.158 0.251 0.345 

ℎ -0.699 -0.619 -0.490 

 

With the parameters - λ and ℎ, stress ratio R=0.1, and the modelled crack growth curves in high 

pH SPS + 0.6 M Cl and in 1.0 M H3PO4, the crack propagation curves in the three corrosion 

environments of tested RC beams could be generated, and the fatigue cycles of rebar could be 

reversely integrated as in the direct approach.  

Table 7.8 gives the predicted cycles in both pit growth and crack propagation. Compared to the 

direct approach, the indirect approach similarly exhibited a decreasing fatigue life with an 

increasing corrosion rate. Likewise, the two approaches had the same mechanisms in the non-

corrosion conditions – requiring infinite time to generate a critical pit. However, the crack 

propagation stage in the indirect approach served a longer life in comparison with that in the direct 

approach, which indicated that the indirect approach was more accurate than the direct approach.  

Table 7.8. Predicted fatigue cycles of RC beams by the indirect approach. 

Fatigue cycles 

Corrosion current density / µA/cm2 

0 0.05 0.15 0.32 

Pit growth >2,000,000 1,400,304 750,592 333,744 

Crack propagation N/A 168,700 146,902 84,107 

Total  >2,000,000 1,569,004 897,494 417,851 
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Moreover, Table 7.8 exhibits that pit nucleation and growth consumed most of the service life in 

corrosion-fatigue, from 79.9 % to 89.2% in a decrease of corrosion current densities. In other 

words, the service life of a structure approaches the end once a crack is nucleated. This indicates 

that it would be difficult to monitor fatigue since the crack propagation phase is relatively short. 

Therefore, routine maintenance, especially corrosion prevention, is essential to reinforced concrete 

structures that are under corrosion-fatigue. Moreover, special attention must be paid if the 

appearance of fracture on rebar is detected.  

7.6 Comparison of the S-N curve approach and the fracture mechanics methods 

Table 7.9 lists the tested fatigue cycles in RC beams and the predicted numbers, which are 

estimated using the Goodman line approach and the fracture mechanics method. Without corrosion, 

all models performed the same and gave a fatigue life over two million cycles.  

Compared with the tested cycles of RC beams, S-N curves produced a close prediction in all three 

corrosion levels. The predicted errors were 10.5% in 0.05 µA/cm2, 9.0% in 0.15 µA/cm2, 23.0% 

in 0.32 µA/cm2, which were rather small in contrast to the errors typical in a common fatigue 

prediction. These two fracture mechanics methods, direct approach and indirect approach, had 

errors ranging from 30.8% to 41.5% and from 26.7% to 54.2%, respectively. The error in either 

case was much higher than that in the S-N method, ranging from 9.0% to 23.0%.  

Theoretically, the direct approach in fracture mechanics is supposed to produce a precise 

prediction since the crack growth curve is directly governed by the power equation. Even though 

the total cycles in Table 7.9 suggest that the direct approach overall produced a more accurate 

estimation than the indirect approach at the corrosion levels of 0.05 µA/cm2 and 0.15 µA/cm2, the 

predicted cycles at the crack propagation stage remained unreliable because of the significant error 

in the estimated parameters at low current densities in the fitting formula.  

In comparison with the tested cycles, the indirect approach of fracture mechanics had the errors of 

54.2%, 49.1%, and 26.7% corresponding to corrosion levels of 0.05 µA/cm2, 0.15 µA/cm2, and 

0.32 µA/cm2, respectively. Compared to the S-N curves, the indirect method of fracture mechanics 

had larger errors than the tested cycles in all corrosion levels. Therefore, it could be concluded that 
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the S-N curve approach can offer a more precise approximation on the corrosion-fatigue of RC 

beams than the fracture mechanics method. The reason might be attributed to the fact that the S-N 

curves approach evaluates CF based on the relationships between the applied stress and the 

resulting cycles. Besides, life prediction by the S-N approach involves a general relation rather 

than tracking the possibly detailed development from the crack origin to final failure. However, 

the fracture mechanics divides the CF process into stages that could introduce larger errors. 

Moreover, the accumulated error of all stages could be large even if each stage induces only a 

small error.   

Table 7.9. Comparison of the predicted cycles and the actually tested fatigue life. 

Approach 
Corrosion current density / µA/cm2 

0 0.05 0.15 0.32 

Actual tested cycles >2,000,000 1,017,605 601,779 569,840 

S-N curves >2,000,000 1,124,892 655,865 438,822 

Fracture Mechanics – 

direct approach 
>2,000,000 1,439,660 787,309 359,206 

Fracture Mechanics – 

indirect approach 
>2,000,000 1,569,004 897,494 417,851 
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Figure 7.9. The examined and predicted service cycles at corrosion current densities. 

Figure 7.9 shows that the fatigue cycles decreased with the increase of corrosion current densities. 

From non-corrosion to 0.32 µA/cm2, the decreasing rate of cycles was declining, indicating that 

the synergetic effect of corrosion and fatigue had a high influence at a low corrosion current density. 

In other words, from non-corrosion to light corrosion, the effect of CF could cause great damage 

to the service life loss. As the corrosion current density increased, the contribution of CF to the 

loss of fatigue cycles rose even though the corresponding driving force was declining. In terms of 

RC structures in field, corrosion prevention is essential in non-corroded structures involved with 

cyclic loadings because a slight CF effect tremendously reduces the service life of a structure.  

Errors introduced in the prediction were analyzed. In terms of S-N curves, this project accounts 

for two types of corrections: mean stress and notch effect. As mentioned before, other factors may 

also contribute to fatigue life reduction in the stress-life relationships, such as the change in surface 

roughness during the corrosion period, the diameter reduction during testing, and the synergetic 

effects of all influences.  

The sources of errors in fracture mechanics may refer to different stages in the model. The data in 

pit growth were collected at surface roughness of 1 µm and 15 µm, however, the surface of actual 

used rebar is usually rougher and that might trigger distinct pit nucleation and propagation. 

Moreover, crack initiation might not occur in the deepest pit in the field. Furthermore, at a ΔK 
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near ΔKth, researchers (Lee, Nishikawa, Oda, & Noguchi, 2012; Newman Jr, 1983; Tokaji, Ogawa, 

& Aoki, 1990) observed small crack behavior in metals, whereas this observation is beyond the 

consideration of this project.  

The direct prediction of fracture mechanics significantly depends on the fitting of the constants A 

and B, and a small difference in the fitting could introduce a huge error in the forecasted constant 

A of low corrosion rates. Although different models were tried in order to improve the fit, the 

improvement was negligible.  

The fracture mechanics are irrelevant with the corrosion effect of threshold stress intensity factor 

ΔKth, which may cause an error in the estimation of fatigue cycles at the early stage of a crack. 

Some studies (Hertzberg, 2012; Milella, 2013) noted that, in the presence of corrosion, ΔKth often 

shifts to a lower value as corrosion facilitates the initiation of cracks; besides the ΔKth, the slope 

of the ΔK vs da/dN curve changes as well. The modification of the corrosion effect on ΔKth reduces 

the pitting period and increases the crack propagation at a smaller ΔK. This could further reduce 

the service life; hence, more precise predictions could be expected in 0.05 µA/cm2 and 0.15 

µA/cm2.  
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8 Conclusions and future work 

8.1 General Summary 

The study presented in this thesis was carried out to provide a better understanding of the corrosion 

fatigue of carbon steel reinforcement in concrete and to develop constitutive laws that can be used 

for predicting the long-term performance of RC structures under corrosion fatigue without 

favoring one degradation mechanism (corrosion or fatigue) over the other. The novelty of the 

proposed constitutive models resides in their ability to mimic realistic field conditions because 

they were developed for wide ranges of corrosion rates and fatigue loadings. 

In order to achieve these goals, a three-stage approach was carried out. In the first stage a novel 

testing procedure was developed for accelerating corrosion in such a way that CF tests can be 

carried out in reasonable periods of time without distortion of the relative importance of corrosion 

and fatigue.  In the second stage, the accelerated testing procedure that was developed in Stage 1, 

was used to study the corrosion fatigue of a carbon steel rebar in a synthetic concrete pore solution. 

Finally, in the third stage, the constitutive models developed in Stage 2 (for a rebar inside a 

synthetic pore solution) were used to predict the response of RC beams under corrosion-fatigue. 

The present study considered developing models using two well-established frameworks – the 

stress-life method and the fracture mechanics method – to assess the corrosion-fatigue life of RC 

structures. This chapter summarizes the most important conclusions of the research carried out in 

this study, and proposes potential future study in this field of research. 

8.2 Conclusions 

In accordance with the objectives in this project, the following conclusions can be drawn:  

1. A novel Corrosion-Fatigue testing procedure, capable of achieving reliable highly 

accelerated corrosion rates through a combination of pore solution chemistry and 

electrochemical corrosion means, was developed. Potentiostatic and Galvanostatic modes 

of control were investigated and compared. Although both electrochemical approaches can 
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rapidly accelerate corrosion, the use of the Galvanostatic mode of control was shown to be 

the preferred method in the laboratory: 

 The Potentiostatic method is unable to control the output current and requires an 

output current recording system to precisely collect the total corrosion current.  

 The Galvanostatic method can control the output current and a given accelerated 

corrosion rate can be easily achieved through this feature.  

 

2. A versatile constitutive model, that can accommodate relatively wide ranges of corrosion 

fatigue field conditions, was developed in this study based on stress-life approach (S-N 

curve). The model works equally well in situations where the corrosion rate is low enough 

that a fatigue limit is observed as well as in situations where the corrosion rate is high 

enough to cause a significant departure from the pure fatigue case (for a non-corroding 

rebar). The generated S-N curves are dependent on the corrosion rate and can capture the 

loss of the fatigue limit under severe corrosion rates or moderate corrosion under extended 

periods of time. Also, a higher corrosion rate generates a lower fatigue life at the same 

applied stress amplitude.  

 

3. A Fracture-Mechanics based constitutive model, that can accommodate relatively wide 

ranges of corrosion fatigue field conditions, was also developed in this study. The key idea 

behind the development of this second model was mainly related to the inherent inability 

of all S-N models to give enough insight into the evolution of damage in the reinforcement, 

as a function of time or number of cycles. This model was able to account for the four main 

stages of the metal degradation process: pit nucleation and growth, pit-to-crack transition, 

crack growth state, and ultimate fracture failure. More specifically, this model can capture 

the effect of corrosion on the shape of the ΔK vs da/dN curves used to represent this type 

of model. An increase in the corrosion rate promotes a faster increase of the crack length, 

as a function of time or the equivalent number of cycles, and hence, reduces the fatigue life 

of a specimen. Corrosion alone could dominate the coupled effect of corrosion-fatigue 

provided that the service environment is “highly aggressive”. Under such conditions, the 

crack growth rate, da/dN, becomes independent of the growth of stress intensity factor 

range ΔK.  
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4.  The service life of RC beams, tested under CF in the laboratory, was successfully 

estimated by both the S-N approach and the fracture mechanics approach developed in this 

study.  

 The S-N approach was able to exhibit a higher precision in the prediction of RC 

beams under CF than the fracture mechanics approach. The error ranges of the S-

N curves and the fracture mechanics were from 9.0% to 23.0% and from 26.7% to 

54.2%, respectively. However, it is important to keep in mind that those errors are 

rather reasonable compared to errors typically encountered in CF life estimations.  

 Both approaches predict that the higher the corrosion rate, the lower the service life 

of an RC structure. Comparing the predicted fatigue lives at different corrosion 

rates, the results suggest that even a relatively light corrosion could result in a great 

reduction of the service life of an RC structure under fluctuating loads.  

 The four main stages of damage development in the steel reinforcement (chloride-

induced pit nucleation and growth, pit-to-crack transition, crack propagation, and 

fracture failure) were evaluated using the fracture mechanics model. The fraction 

of the service life that covers the pit nucleation and growth stage ranges from 79.9% 

to 89.2%. This result suggests that most of the service life of the rebar is governed 

by the formation and growth of corrosion-induced pits rather than by the 

propagation of cracks right from the start.  

 

5. A failure analysis of the specimens used in the corrosion-fatigue tests for the stress-life 

method, Fracture Mechanics, and reinforced concrete beams was carried out. Scanning 

Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) were used 

to examine the nature of the fracture surfaces. This analysis was particularly helpful for 

identifying the origin of pitting-induced fractures. The fracture analysis of the specimens 

tested in the rotating bending machine and RC beams show that multiple pits initiate a 

crack, the growth of which results in the fracture failure. Different stages of the fracturing 

process have been clearly identified. The constitutive equations were constructed based on 

pit growth, pit-to-crack transition, and crack propagation. Moreover, the fracture toughness 

of the rebar was also identified.  
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8.3 Contributions  

• S-N relationships for reinforcing steel were used to characterize the CF behavior and to 

estimate the service life of rebars in RC beams.  

• A Fracture Mechanics approach was thoroughly examined and used to predict a carbon 

steel rebar fatigue life in RC.  

• Specialized CF procedures and tools were developed to perform CF testing for both the S-

N curves and the Fracture Mechanics approaches.  

• An efficient electrochemical approach was developed in this study to accelerate corrosion 

of rebar in both simulated concrete pore solution and concrete.  

8.4 Future work 

1. The S-N curves developed in this research for predicting the Corrosion-Fatigue of RC 

beams accounts for the mean stress effect and the notch effect. However, other important 

factors, such as temperature, load type, and surface roughness, etc, were not taken into 

consideration. Hence, future improved models may consider these factors in the stress-life 

method to improve the domain of applicability.  

2. Short cracks are studied by many scientists. With the recommendation, the short crack 

model could be further studied to predict the service life of a metal structure. Therefore, 

this model can be combined with the current fracture mechanics models for a more precise 

prediction.  

3. The threshold stress intensity factor range is reported to decrease with an increase of the 

severity of the corrosive environment. Adding this threshold dependency to the fracture 

mechanics model developed in this study would further improve its prediction accuracy.  
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