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Abstract

Modeling of natural phenomena has been of particular interest in the graphics community in recent

years. This thesis will explore a method for creating and animating orb webs using a coupled spring-

mass system. Using a spring-mass system for creating the orb web is ideal as we can represent each

web strand using coupled spring-mass pairs. This allows the orb web simulator to be physically

based, i.e., the simulation follows the laws that act on objects in the real world. This in turn

simplifies the process of animating the web, as the animation emerges from the simulator without

anyone having to set it up explicitly. Since this model is physically based, it would allow for realistic

visualization of effects such as observing an orb web under a wind.

In the children’s book “Charlotte’s Web”, the spider creates orb webs with words inscribed on

them. Charlotte’s web is used as an inspiration, in this thesis, to create webs which no real world

spider could possibly create, while keeping the model physically based. This involves modifying

the orb web such that the target text shows up on the orb web while keeping the web looking as

natural as possible.
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Chapter 1

Introduction

Computer Graphics is one the most exciting areas of growth and research in mod-

ern technologies. Starting with early applications such as the use of an oscilloscope

to display waveforms, this field has grown at an astounding pace. The three main

areas of Computer Graphics are modeling, rendering and animation. Modeling in-

volves creating a description of the objects in a scene, and is the focus of this thesis.

While rendering is the process of using the defined model to create an image on the

screen, animation involves assembling a sequence of rendered images.

Nature offers us a limitless source of inspiration and challenge in modeling of

natural phenomena such as feathers, water, smoke, fire, clouds, trees, animals and

countless others. Some key applications of the created models of a natural phe-

nomenon include the following: Computer Animation in movies and multimedia

applications, Virtual Environments for flight simulators and war gaming, Rapid Pro-

totyping of scientific models, Computer Games, Medical Simulation and Analysis,

Archaeological Reconstruction, Chemistry to create realistic models of molecules and

their interaction, and in Meteorology to create accurate representations of quickly

developing weather conditions. Further, some of the created models might be useful

in conducting scientific research.
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Figure 1.1: Skin patterns in a Zebra[37]

The key focus in modeling is to be able to represent the natural phenomenon un-

der study with enough accuracy to convince most humans of its fidelity. The whole

process of creating believable visual representations of natural phenomena incorpo-

rates the work of people in different disciplines. As an example, the skin patterns

of animals (figure 1.1) can be created by reacting and diffusing morphogens [37].

This requires some understanding of the underlying biological process, some math,

computer graphics and programming knowledge. Another example of modeling of a

natural phenomenon is given in Figure 1.2, which shows an image created using a

model for snow generation, accumulation and stability [8].

Simple modeling techniques using polygons, patches, points and lines are insuf-

ficient to represent the complexities of nature. Modeling techniques in Computer

Graphics have advanced significantly in the last few years. Most advanced modeling

techniques are procedural modeling techniques: code segments or algorithms are used

to abstract and encode the details of the model, instead of explicitly storing vast
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Figure 1.2: A frame from the short animation “Santa’s Suitcase”[8]

numbers of low-level primitives. For example, a procedural texture for a marble sur-

face does not use a scanned image to define color values. Instead it uses algorithms

and mathematical functions to define color. We can use parameters to control the

output of a procedural model. For example, we could have a number that can make

the mountains rougher or smoother. Another advantage of procedural models is that

the procedural models offer flexibility. We can capture the essentials of the object,

phenomenon or motion without being constrained by the complex laws of physics.

We can incorporate the desired amount of physical accuracy into the model or we

can accurately simulate physical laws or create purely artistic effects. Some proce-

dural techniques include: fractal-based models, grammar-based models, volumetric

models, implicit surfaces and particle systems. The work in this thesis is based on

the last mentioned technique, the particle systems.

Physically-based modeling attempts to map a natural phenomenon to a computer

simulation. Figure 1.3 shows an example of a synthesized gold ring with an in-
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Figure 1.3: A physically-based inscription on a synthetic ring[5]

scription. This image is created using a physically-based model which simulates the

process of scratch formation on a metallic surface [5]. Figure 1.4 shows the picture

of a night sky created using a physically-based model of the night sky [39]. Mathe-

matical modeling and numerical solution to the model are two basic processes in this

mapping. Mathematical modeling concerns itself with the description of the natural

phenomena by mathematical equations. Differential equations that govern the dy-

namics and the geometric representation of the objects are the typical ingredients of

the mathematical model. The numerical solution of the mathematical equations is

required to be both accurate and efficient, and in the implementation of this thesis

we have used the fourth order Runge-Kutta method (see chapter 4).

Physically-based techniques facilitate the creation of models capable of automat-

ically synthesizing complex shapes and realistic motions that were, until recently,

attainable only by skilled animators, if at all. Physically-based modeling adds new

levels of representation to virtual objects. In addition to geometry, other physical

quantities such as forces, torques, velocities, accelerations, kinetic and potential en-

4



Figure 1.4: A physically-based model of the night sky[39]

ergies and heat are used to control the creation and evolution of models. Simulated

physical laws govern model behavior, and animators can guide their models using

physically-based control systems. Physically-based models are responsive to one an-

other and to the simulated physical worlds that they inhabit. This thesis focuses on

creating a physically-based model of a particular type of spider web called an orb

web.

Spider webs are beautiful to look at and intricately made. There are more than

35,000 known spider species, and different spider species make webs which vary in

their shapes, sizes and construction. Spiders can, very broadly, be divided into two

groups: the web-building spiders and the wandering spiders. Wandering spiders are

much more active than web builders, seeking out prey and creating webs for shelters

or to hold their eggs. Web-building spiders are usually less active, building their

webs and patiently waiting for the prey to come to them. Within this category,

there are several types of recognized web patterns. Some of the well known patterns

are:
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Figure 1.5: Sheet Web[17] Figure 1.6: Funnel Web[17]

• Orb webs : These webs woven by certain spider species are suspended, sticky and

wheel-shaped. They are usually placed in openings between trees and shrubs

where insects are likely to fly.

• Sheet webs: These are relatively flat mats of silk, usually with a funnel-shaped

retreat at one end (figure 1.5). The spider hides in this funnel until prey stum-

bles and becomes entangled in the matting.

• Cob webs: A framework of threads supports the trap threads that adhere to a

horizontal surface. Prey will trip the trap threads and become entangled.

• Funnel webs: These webs are in the shape of a funnel (figure 1.6). The spider

hides in wait at the narrow end and leaps out at passing prey, dragging it back

into its lair.

We chose to model orb webs in this thesis as they look the most like the archetypal

spider webs, as perceived by the majority of people.

The orb web is modeled and animated using a spring-mass system. A spring-mass

6



Figure 1.7: A spring-mass fish model[36]

system is an extension to the concept of a particle system in which the particles are

inter-connected by springs (figure 1.7 and figure 1.8). The work in this thesis in mod-

eling and animating orb webs draws upon the concepts of procedural modeling and

physically-based modeling. The initial model is set up using a procedural approach.

Algorithms based on observed biological facts are used to create the orb web model.

Once the model is set up it is acted upon by various forces and its behavior observed

under an external force (wind).

An animator requires control over physics-based models in order to produce useful

animations. We can categorize physics-based control techniques into two approaches:

the constraint-based approach and the motion synthesis approach. The constraint-

based approach involves the imposition of kinematic constraints on the motions of

an animated object [19]. For example, one may constrain the motion trajectories of

certain parts of a model to conform to user specified paths. The animation of an orb

web subject to a wind does not require a complex control mechanism. The beauty

of the approach used is that once the model is set up and subjected to a wind, the
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Figure 1.8: A spring-mass chest model[45]

animation flows out of the model.

Considerable success has been obtained in modeling and animating phenomena

such as fire and smoke using particle systems [23]. Building on the basic concepts

of particle systems, the spring-mass systems have been used to model both passive

objects such as cloth [22], and active objects such as snakes and worms [13]. Passive

objects have no internal sources of energy and active objects have an internal energy

source . We construct our orb web model using a deformable spring-mass system.

There are several reasons for this choice:

• A spring-mass model is a simple discrete mechanical structure capable of non-

linear, nonrigid dynamics; this is well suited to creating a model of an orb web

using a mesh of interconnected spring-mass pairs.

• The spring-mass units with damping in the model are viscoelastic units that

serve both as geometric and deformation control primitives.

• Both passive and active deformable objects have been successfully animated
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Figure 1.9: Two styles of painterly rendered fruit[45]

using similar spring-mass models.

• As each strand of the artificial orb web can be represented using multiple spring-

mass pairs, the spring-mass model appears well suited for modeling orb webs.

Although the automatic creation of the orb web model was a major contribu-

tion of this thesis, this model has further been used to create a very interesting

non-photorealistic effect. In Computer Graphics photorealistic rendering attempts

to make artificial images of simulated 3D environments that look like the real world.

Non-photorealistic rendering (NPR) is any technique that produces images of simu-

lated 3D world, in a style other than realism. NPR techniques combine the expres-

sivity of artistic media with the flexibility of computer graphics. Often these NPR

styles are reminiscent of paintings [11]. An example would be the painterly rendering

of fruits shown in figure 1.9. Charlotte’s Web [41] is a children’s book in which the

spider weaves webs with text inscribed on them to save a pig from being butchered.

These spider webs, which are illustrated in the book, are used an an inspiration

to modify the physically-based orb webs such that they are inscribed with text or
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symbols. This produces a very intriguing non-photorealistic effect of a spider web

inscribed with humanly understandable text or symbols.

The work done in this thesis can be best summarized by dividing it into four

distinct phases, as is described below.

• First Phase:

The first phase involves the creation of the physical model of the orb web.

In this phase the primary goal was to create a model of an orb web taking

into account the characteristics of real orb webs. For this purpose the work of

Samuel Zschokke [46] is used as a primary source of information. The model

which is made of spring-mass pairs is subjected to Newtonian forces and the

resulting Ordinary Differential Equation’s (ODE’s) are then solved using the

Runge-Kutta method to arrive at the new state of the system. The challenge

here is to arrive at a stable state of the system, in a short amount of time (a few

seconds), without causing instability. Another challenge is to keep the orb web

model as close as possible to a real orb web. Since there are a large number of

widely varying orb web structures, orb webs made by two particular species of

spider are used as a basis for evaluating the results of the work of this phase.

• Second Phase:

In the second phase we aim to inscribe our webs with text, while striving to

keep the same overall appearance of the web and not altering its physically-

based nature. In order to accomplish this we first create an artificial orb web

using the model developed in phase one. The text to be inscribed is then

superimposed on this web (for details see section 6).
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• Third Phase:

In the third phase, the orb web model is animated by subjecting it to a wind

force. Various wind models have been proposed in literature. These models

often create a wind field using complex techniques, but much of the complexity

can be avoided in the case of this simulation. The orb web in this simulation

can be considered as a two dimensional structure with a maximum diameter of

around one meter. The dominant forces on the artificial web are gravity and

the spring-forces. Since the effect of the wind force is limited in comparison to

other forces in the simulation, the need for developing complex flow fields does

not arise. The wind animation is created by collating the images of the orb web

swaying in the wind.

• Fourth Phase:

The fourth phase involves placing the orb web in natural surroundings so as to

enhance the realism and the aesthetic beauty of the web. The idea here is to

place the model in a skybox, with the web being hung outdoors in between the

branches of a tree. A digital image is texture mapped onto the screen and the

orb web constructed in between the branches of the texture mapped tree.

Although an attempt has been made to use the information available on orb

webs to create a visually accurate model of an orb web, the orb web model is not

an accurate physical model of a real orb web. The created model can be used in

applications such as a computer game where the emphasis is on creating a believable

visual representation and not the physical accuracy of the model.

The work done in this thesis draws on the concepts and principles developed for
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modeling phenomena using particle and spring-mass systems; chapter 2 talks about

related work using these concepts. This is followed by chapter 3, which describes

the features of the orb web which were taken into consideration while creating the

web. Chapter 4 contains a discussion on particle and spring-mass systems. Chapter

5 details the algorithms used in the web construction and animation process. It also

presents the results of the work done in this thesis and carries out a discussion of the

presented results. The process of creating the non-photorealistic Charlotte’s web is

described in chapter 6. Finally, conclusions are drawn from this work and areas for

future work are suggested in chapter 7.
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1.1 Implementation Note

To provide easy access to computer graphics hardware and to ease the development

of computer graphics software, a number of application programmer interfaces are

available. The API used in implementing this thesis is OpenGL. Apart from being in

widespread use, it has the advantage of being a cross-language, cross-platform API.

Efficient implementations of OpenGL, which leverage graphics acceleration hardware

to a greater or lesser extent, exist for Windows, many Unix platforms, and Mac OS.

Mesa, a 3-D graphics library with an API which is very similar to that of OpenGL,

is used in this thesis implementation. The language used is C and the development

platform is Mandrake Linux.
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Chapter 2

Related Work

The work in this thesis draws on the work done in both biology and computer

graphics. In this thesis, a system of particles coupled using springs is used to create

a model of an orb web. The particles which constitute the orb web are subjected to

a gravitational force, air friction and spring forces. This spring-mass system is then

solved numerically to arrive at each subsequent state of the system.

Orb webs have been studied in detail by biologists. This thesis draws on this

pool of work as a basis for arriving at an orb web model. In particular, the work

done by Samuel Zschokke [46] on orb web construction by spiders is used as a guide

for creating the orb web model in this thesis. His dissertation focuses on the web

construction behavior of the orb web weaving spider Araneus Diadematus [48]. His

thesis work features descriptive, pictorial accounts of the way Araneus Diadematus

starts the construction of a new web, the effect of the environment on the orb web

construction, the planarity of the orb webs, the construction speed of spiders and

the factors affecting the size of an orb web. It also describes pictorially the web con-

struction behavior of 14 other orb web weavers. Since there exists a large collection

of orb web weaving spiders with markedly different web construction patterns (e.g.

see figures 2.1 and 2.2), the focus of our work has been restricted to the orb webs
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Figure 2.1: Finished Orb-Web of H. Paradoxus[48] Figure 2.2: Web Construction Tracks[48]

of spiders Araneus Diadematus and Zilla Diodia. The physical structures of the orb

webs of these two types of spiders, along with the other characteristics of these orb

webs such as spatial web density, placement of orb web strands and web size are

used to guide the construction of our orb web model (see chapter 3 for details).

In Computer Graphics, particles are considered to be objects that have mass,

position, and velocity, and respond to forces, but have no spatial extent [43]. One

of the earliest publications about particle systems was by Reeves in 1983 [23], who

used a “cloud” of particles. These particles were first generated, then moved and

finally at the end of their lifetimes they died. This seminal work has since then been

extended and applied to numerous phenomena such as forests and grass [24], ocean

waves [25] and waterfalls [30]. Reynolds [27] used coupled particles that interact

with each other and he used simple rules to model complex behavior. Miller and

Pearce [12], Terzopoulos, Platt and Fleischer [34], and Tonnensen [35], used coupled

particle systems to model liquid like and melting behaviour. Miller et al. [15],

Szeliski and Tonnensen [33], and van Wijk [38], propose particle interactions that
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Figure 2.3: Three painting of one image[11]

are a function of direction, producing deformable sheets and surfaces of particles.

Spring-mass systems have been used to model the dynamics of snakes and worms

[14], to animate facial expressions [20] and to animate cloth [2]. In this thesis, the

orb web model is created using a number of spring-mass pairs connected in a series

to model a single strand of the orb web. These web strands are then connected using

algorithms inspired by the study of the biological model of an orb web.

This physically based orb web model is later used as a basis to create a Charlotte’s

Web [41]. Although much of the work in Computer Graphics is focused on creating

synthetic images that resemble the real-world, non-photorealistic rendering (NPR) is

a subset of Computer Graphics that focuses on creating images which do not resemble

objects in the real-world. One of the earliest papers in NPR was by Paul Haeberli [11]

who used an ordered list of brush strokes to convert a synthetic or natural scene into

an impressionist image (see figure 2.3). NPR brings closer together the disciplines

of art and science. The illustrations in Charlotte’s Web serve as an inspiration in

this thesis for creating non-photorealistic images of orb webs with text inscribed on
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them. The attempt here was not to re-create the Charlotte’s Web as described in

the book but to use it as an inspiration for creating an intriguing spider web, a web

which no real spider could possibly create.

The next phase of the thesis involves subjecting the orb web to a wind. Wejchert

et al. [40] used simplified aerodynamic equations to model wind and demonstrated

their application to a particle system. Shinya et al. [29] developed a general stochas-

tic model which could be applied most of the existing trees and grass models, in-

cluding structural models, particle systems, impressionist models, and 3D texture.

In 1993 Stam and Fiume [32] applied a similar technique to model winds for gaseous

phenomena. Jos Stam [31] used a stochastic method based on modal analysis to

animate the motion of trees in a wind. In this thesis a simplified wind model is used

as a need for using complicated wind models does not arise.

To the best of our knowledge there is no published work which has used the

knowledge gained from the biological studies on the orb web to create a physically

based model of an orb web, as is done here.
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Chapter 3

Orb Web

Spiders are fascinating creatures. Spiders produce spider silk, which on an equal

weight basis is twice as strong as steel. Not only is spider silk strong but it is very

elastic and it can be stretched up to 40 percent of its length before it breaks. It may

require more than 80g of stress to break a thread of silk only 0.1mm in diameter.

Different spiders construct webs whose structures vary vastly [18] [47]. The focus of

this thesis is a kind of spider web known as an Orb Web, which is a round spider web

with a pattern of lines spiraling outward from the center. Such webs are build by a

large number of spider species and they differ in their orientation, size and strength.

We have chosen this type of web as orb webs look the most like the archetypal

spider webs, as perceived by the majority of people. Further, they have geometrical

properties that make them easier to model than some of the other types of spider

webs. Two particular species of orb web weaving spiders, Araneus Diadematus and

Zilla Diodia, pictures of whose webs are given in figure 3.2 and figure 3.4 respectively,

are used as reference webs which guide the orb web construction in this thesis. The

figures 3.1 and figure 3.3, obtained from the work of Samuel Zschokke [49], show

the show the tracks of the spider during web construction. The tracks have been

colored to emphasize the different phases of web construction. These tracks were
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Figure 3.1: Construction tracks of Orb Web
of Araneus Diadematus[47]

Figure 3.2: Orb Web of
Araneus Diadematus[47]

Figure 3.3: Construction tracks of Orb Web
of Zilla Diodia[47]

Figure 3.4: Orb Web of
Zilla Diodia[47]
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Figure 3.5: Structure of an Orb Web[7]

captured with a video camera connected to an image scanning device [3]. Although

these tracks are of great interest to ethologists and taxonomists, who study the web

building behavior of spiders, they also provide interesting and relevant information

regarding the attachment positions and thickness of spider threads [49]. The spider

initially creates and strengthens the outer frame and the hub of the orb web. Then

the spider lays out the initial radii, which completes the main support structure of

the orb web. The final shape of the orb web is arrived at when the spider creates

more attachment points, adds more radii, and finally adds the spiral.

As can be seen from the orb web pictures, the web of Zilla Diodia is very finely

meshed and more circular than the web of Araneus Diadematus. In general such

webs are up to a meter or two in diameter and are usually built a meter or two

above the ground. As shown in figure 3.5, the spider web itself is made up of various

sub-structures. These sub-structures can be used to decompose the complex web

into its components, which can then be used as a basis for modeling the web. A list
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of the sub-structures of an orb web is as follows:

• Bridge Thread: This thread is the starting point in the web construction process.

The spider makes it strong by the spider by repeatedly going back and forth

over the thread and laying more silk in each such pass. This thread should be

able to support the entire weight of the thread.

• Anchor Thread: This is the next thread that is woven by the spider and is

used to support the web. The anchor threads are attached to the supporting

structure at the anchor points.

• Frame Thread: The frame thread, when present, is attached to the both sides

of the anchor thread. Together with the anchor thread, it forms the outer frame

of the spider web.

• Radius Threads: These threads are the connectors from the web center to the

frame. They provide further support to the web structure.

• Auxiliary Spiral: The auxiliary spiral is used as reference for laying the capture

spiral, the sticky silk. The auxiliary spiral spiral is laid by the spider starting

at the hub and then moving outwards towards the frame. Most spiders remove

the auxiliary spiral when they lay the capture spiral.

• Capture Spiral: The capture spiral is constructed by the spider by starting

the construction on the periphery of the web frame, and then winding inwards

towards the hub. It is the only sticky silk in the web and it is used to capture

prey.
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Some important characteristics of the spider web and the spider silk that have

been used to guide the development of the orb web model are:

1. The combined length of silk in a spider’s web is about 20-60m [26].

2. Tensile Strength of spider web silk is around 5 denier[4]. A denier is equivalent

to the weight in grams of 9000 meters of continuous filament fiber.

3. Diameter of a single spider silk strand is around 1µm [16].

4. Spider silk used in the radii of the web can be extended up to 40% before

breaking, and the tensile strength of the radial thread is around 1100 MPa [9].

Using the first two of the above listed facts and taking into account the fact that

spiders have multiple fibers between connected points, the weight of a spider web

can be roughly estimated to be about 50 mg. With an expected 5000-7000 masses

in the web, a mass of 10µg is chosen for each particle.

The orb web is modeled using the concepts of particle and spring-mass systems,

which are described in detail in the next chapter. The orb web model is made up of a

number of particles and the motion of a particle is governed by Newton’s second law

of motion, f = ma. Here f is the force on a particle, m is the mass of the particle,

and a is the acceleration of the particle 1. We use the above calculated value of the

mass of a particle to calculate the acceleration of a particle under the influence of

various forces such as gravity and air friction. This acceleration in turn is used to

calculate the motion of a particle under the influence of a set of forces.

1Note: Boldface is used to represent vector quantities.
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Chapter 4

Particle and Spring-Mass Systems

In this section we describe in detail the particle and the spring-mass systems

and their dynamics. Apart from detailing the mathematical and the physical theory

behind the systems, we also describe our spring-mass simulator.

4.1 Particle System

A particle system is a collection of many minute particles that model some object

[23]. The main use of particle systems is as a method of modeling fuzzy objects

with no well-defined surfaces, such as fire, clouds, smoke and water. In a particle

system, in each new frame of an animation, new particles are generated and as-

signed attributes. The particles that have outlived their predetermined life are then

destroyed. The remaining particles are transformed and moved according to their

dynamic attributes. Finally, an image of the remaining particles is rendered. Since

the creation and the attributes of the particles are procedural, these can be the re-

sults of other computations based on particular algorithms. For example, the color

and size of a fire particle can be set algorithmically, based on the results desired and

the algorithm used to achieve these results.

Particle behavior can be specified in terms of differential equations. Differential
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Figure 4.1: Example Of A Fire Created Using A Particle System[28]

equations describe a relationship between an unknown function and its derivatives

[42]. In our system we are concerned with a class of differential equations called

initial value problems, where the system behavior is described by a system of ordinary

differential equations of the form

ẋ = f(x, t), 1 (4.1)

where f is a known function, x is the state of the system and ẋ is the derivative of

x and t. Also we are given x(t0) = x0 at some starting time t0.

The motion of a particle is governed by Newton’s second law of motion, f = ma.

Here f is the force on a particle, m is the mass of the particle and a is the acceleration

of the particle. We can write this as a second order ODE,

ẍ = f/m, (4.2)

where ẍ is the acceleration. We can convert this second order ODE to a first order

1Note: boldface is used to represent vector quantities and t is the time.
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ODE by introducing a variable v, which is the velocity of the particle, such that

ẋ = v (4.3)

and

v̇ = f/m. (4.4)

Now we can use a numerical method to solve the system.

Numerical solutions of an initial value problem can be obtained using a variety of

methods. The basic idea in all these methods is to take discrete time steps starting

with an initial value x(t0). We use the value of the derivative of x to calculate an

approximate change in x over a time interval and then increment x by this amount

to get the new value. The simplest numerical method is the explicit Euler method. It

computes an approximate solution by calculating the new value of x at the beginning

of of each step, as follows:

x(t0 + h) = x0 + hẋ(t0). (4.5)

Since this method assumes a single constant value of the derivative over the time

interval, the step size h is limited. If we take large steps then we risk moving away

from the actual solution by an amount that renders our solution unusable. We can

reduce the error size by taking smaller steps at the cost of increasing the overall

computation time. This increase in computation time might not be an acceptable

trade-off for the system under consideration. Further discussion of this problem is

provided in the next section.
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Figure 4.2: Example Of A Snake Made Using A Spring-Mass System[14]

4.2 Spring-Mass System

A spring-mass system is an extension to the particle system that consists of a system

of particles interconnected by springs. Such systems have been successfully used to

represent a wide range of deformable objects such as fire [23], trees [25], snakes and

worms [12] and fluids [34].

The particles in a spring-mass system are acted on by various forces. The whole

spring-mass system is implemented such that it is easy to introduce new types of

forces. The forces in our system can be grouped into two main categories as unary

forces and n-ary forces [43].

The unary forces act independently on each particle and can be constant or might

depend on the particle position, velocity or time. In our system there are two unary
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forces acting on the particles. The first is a constant gravitational force given by

f = mg, (4.6)

where g is a constant vector with a magnitude equal to the gravitational constant

and m is the particle mass. The second unary force in our system is the viscous drag

given by the equation

f = −kdv, (4.7)

where kd is a constant called the coefficient of drag and v is the particle velocity.

This force resists motion, therefore it causes the system to settle down more quickly

than it would have if this force was not present. If too much of this force is applied

it makes the system of particles seem like they are immersed in a thick fluid, thus

making the system look less realistic.

The n-ary forces act on a fixed set of particles. Consider a simple spring-mass

system in which a mass is attached to the end of a linear spring and hung under the

force of gravity (figure 4.3). According to Hooke’s Law, the restoring force due to

a spring is proportional to the length that the spring is stretched, and acts in the

opposite direction:

f = −ksx, (4.8)

where ks is the spring constant and x is the displacement of the mass from its

equilibrium position. The above described spring-mass system is in an equilibrium

state when the weight of the mass, mg, is balanced by the restoring force of the

spring as given by Hooke’s Law, −ksx. Here m is the mass, g is gravity, and x is

the displacement of the mass from the rest position. This can be written as

mg = −ksx. (4.9)
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Figure 4.3: A Simple Spring-Mass System

Since g is acceleration due to gravity, we can write the above equation as

mẍ = −ksx, (4.10)

where ẍ is the acceleration of the mass. This can be written as an ODE as

mẍ + ksx = 0. (4.11)

If the mass is displaced from its equilibrium position there is a net restoring force

on the mass which tends to bring it back to equilibrium. However, in moving the

mass back to the equilibrium position the mass acquires inertia, which keeps the

mass moving beyond that position establishing a new restoring force, now in the

opposite direction. This leads to oscillation of the mass about the mean position.

In order to remove some energy from this system and to restore the system to its

equilibrium we add a damping force kdẋ to the system. Here ẋ is the velocity of the

mass. With this damping force, equation 4.11 can be written as

mẍ + kdẋ + ksx = 0. (4.12)
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Figure 4.4: A Coupled Spring-Mass System

The above equation can be reduced to a system of first order equations of the form

given by equation 4.1 by introducing additional variables, as was done for equation

4.2. Equation 4.12 can be re-written as, mẍ = −[kdẋ + ksx] or further as,

f = −[kdẋ + ksx]. (4.13)

For a coupled spring-mass system with a pair of particles at positions a and b,

the above equation leads to the forces acting on the particles being given by the

equations:

fa = −

[

ks(|l| − r) + kd

l̇ · l

|l|

]

l

|l|
(4.14)

and

fb = −fa. (4.15)

Here fa and fb are the forces on the particles a and b respectively and l is the

difference in position of a and b. Rest length is represented by r, ks is the spring

constant and kd is the damping constant. Finally, l̇ is the difference in velocities of
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the two particles. Thus it can be seen that equal and opposite forces are acting on

the two particles along the line joining them (figure 4.4).

In our system, each orb web strand consists of a number of coupled spring-mass

pairs. As can be observed from figures 3.2 and 3.4, the strands of a real orb web are

very taut. One way to match this tautness of the web strands is to make the springs

in our system stiffer by increasing their spring constants. However, the explicit

Euler scheme that was discussed in section 4.1 requires an integration time step dt

which must be inversely proportional to the square root of the spring stiffness. This

criterion is known as the Courant condition [44]. This is the general problem of stiff

sets of equations: stability can be achieved only at very small time scale with explicit

schemes [21]. Thus, if we reduce the time step we will increase the overall time taken

by the system to reach its equilibrium. We devised another solution to this problem

that involved creating over-extended springs, by placing the masses at the ends of

a spring at a distance more than the springs rest length. More details are given in

section 5.1.

Another well known method of dealing with the stiff system of equations is the use

of implicit numerical methods. An example of such a method is the implicit Euler

integration. Unlike the explicit Euler method, which is based solely on conditions

at the starting of a particular time step, the implicit Euler calculates the solution in

terms of conditions at the end of the time step [2]. The implementation of such a

solution is non-trivial and not recommended unless there is no alternative [1] .

Among the alternatives available in the literature are a wide range of more sophis-

ticated explicit methods to solve an ODE with lesser error and using larger time-steps
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typedef struct {

vector position;

vector velocity;

vector sum-forces;

double mass;

} a_mass;

Figure 4.5: Structure of a particle

typedef struct {

double rest_length;

double spring_constant;

masstype *mass_on_end1;

masstype *mass_on_end2;

} a_spring;

Figure 4.6: Structure of a spring

[6]. Perhaps the method most used is the Runge-Kutta fourth order method. In the

Runge-Kutta method we replace the derivative of x at time t0 by a weighed average

of the derivative evaluated at four different points during the step interval h. Since

the Runge-Kutta method of order four requires four evaluations per step, it gives a

more accurate solution than the Euler method. The formula for the Runge-Kutta

method of order 4 is given below.

k1 = hf(x0, t0) (4.16)

k2 = hf(x0 + k1/2, t0 + h/2) (4.17)

k3 = hf(x0 + k2/2, t0 + h/2) (4.18)

k4 = hf(x0 + k3, t0 + h) x(t0 + h) = x0 + 1/6k1 + 1/3k2 + 1/3k3 + 1/6k4 (4.19)

In the implementation of this thesis, the numerical integration method used is the

Runge-Kutta method of order four.

4.2.1 The Simulator

The simulator for the system consists of the system itself and an ODE solver. Care

must be taken such that the system or the model on which the solver operates is

independent of the solver. This makes it easy to change the solver if we so desire

later and also makes it possible for us to reuse the solver code for another model.
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The solver needs to be able to generate the new state of the system at each iteration

by evaluating the ODE.

Our spring-mass system has three main parts: the masses, the springs and the

forces acting on these masses. Since a mass has a position, a velocity, and is subject

to various forces, the structure of the mass can be defined in C as is given in figure

4.5. Similarly, a spring which has a rest length, a spring constant and is connected

to up to two other masses can be defined as shown in figure 4.6.

In order to determine the new state of the system, we first have to clear all the force

accumulators to zero in each mass at the start of each iteration. Next we calculate

the various forces acting on a particle: the spring force, the spring damping force,

the gravitational force, air friction and any external force such as wind. Once we

have summed all the forces acting on a particle, we use the numerical Runge-Kutta

method to move the state of the system forward by a small amount of time, as given

by the chosen time step.

However, before we start the simulation, the first step in the process of creating

the complete orb web system is to lay out the various orb web strands as per the orb

web modeling algorithm, which is detailed in the next section. Once we have created

the orb web model we can then start the simulation process to arrive at successive

stages of the state of the system. The creation of the orb web model is described in

the next chapter.
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Chapter 5

Web Construction And Animation

This chapter describes in detail the algorithms used to construct the orb web.

It also presents the results of the orb web construction process and carries out a

discussion of the presented results.

5.1 A Strand of Spider Web

One of the most important components of the orb web model is the single strand

of the orb web. The orb web strand consists of a series of particles connected by

Hookean springs. The success of the entire spring-mass orb web model depends on

the stability of this structure.

In order to create an orb web strand we first need to arrive at the mass of a single

particle. A denier is the weight, in grams, of 9000 meters of a single fiber strand.

Spider silk has a tensile strength of about 5 denier [4], i.e., 9000 meters of spider

silk weighs about 5 grams. For an estimated total length of 50 meters for an orb

web, the weight of an orb web can be estimated to be about 25mg. With about 5000

particles in our system, we can arrive at an estimate for the mass of the particle as

10µg. Values for the spring constant, the air friction constant and the time step were

chosen empirically and are given in section 5.2.1.
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Figure 5.1: A spider web strand with springs at their rest lengths

To create a single strand of spider web, the spring-mass pairs were laid out in

series, with each spring placed such that its length was equal to its rest length. This

produced a system which was stable while at the same time the system settled down

to its final state quickly (in about 5-10 seconds). A single strand of such a system

is shown in figure 5.1. As can be observed from this figure, the strand shows a

noticeable curvature when placed under gravity. This is not the case in a typical orb

web strand, which is very taut.

Despite efforts directed at empirically finding a set of values for the system which

would make the web strand as taut as a real spider web strand, such a set of values

could not be found. Invariably, such efforts would run up against the stiff properties

of a spring-mass system. Since it is desirable for the system to settle down as soon as

possible it is not feasible to decrease the time step below a threshold value. Applying

an implicit integration method to solve a system involving a large number of spring-

mass pairs is a very complex task and not recommended [1] unless there is no other

option and even then the desired performance might not be achieved.
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Figure 5.2: Same strand, but now constrained using the Provot method

One solution to this problem is laid out by Provot [22] and allows for very large

time steps to be used. The Provot method involves applying a series of constraints

to the springs after the integration has occurred. The key idea in these constraints

is to consider the direction that the springs are moving to be correct, but to limit

the deformation of each spring to a value consistent with empirical observations.

Therefore in this method we iterate over all the springs in the model and if any of

them have exceeded the maximum deformation we move the nodes at the ends of

the springs closer together.

This method is not without disadvantages. First of all, by stepping away from the

strictly physics-based simulation the solutions will only be qualitatively correct. In

addition, the procedure is not proven to work in all cases; worse yet, it is dependent

on the order the springs are examined and correcting one spring may overextend

another, and there is never guaranteed to be a correct traversal order. The procedure

works in most cases because often the result of shortening one spring and lengthening

another is to propagate deformations throughout the spring-mass structure, but
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nevertheless over-extended springs can still manifest, as is evident in figure 5.2. The

results are better when the procedure is run multiple times in a row, but despite the

assertions of the author of the method, the process was not found to always converge

to a completely non-extended state, even in common situations.

In this thesis we have employed another simple solution in practice after having

studied the feasibility of and testing some of the published solutions. Our solution

simply involves laying the springs out at length which is 75% to 250% more than their

rest lengths. The whole idea behind this approach is that instead of trying to create

super stiff springs out of the current highly elastic ones by somehow increasing the

spring constant, while keeping the simulation fast enough, the springs are initially

placed in an highly over-extended state instead of rest lengths. When these spring-

mass pairs with highly extended springs are subjected to gravity they do not extend

by a large amount. This enables us to get a web strand out of such a system of spring-

mass pairs with the ability to make the strand as taut as required. Surprisingly, such

a system of spring-mass pairs is quite stable. We were able to achieve desired tautness

of the strand of spider web with a settling time for the system being around 5 to 10

seconds.

5.2 Web Construction

This section describes the process used to develop the overall structure of the orb

web. The whole process of orb web creation is divided into a number of stages. First,

the outer frame and the inner frame are created. This is followed by the creation of

the hub and the radial spokes. Finally, on this structure is overlayed the spiral. To
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assist in understanding the orb web construction process we have presented images

and pseudo-code to supplement the explanatory text. Pseudo-code is a generic way

of describing an algorithm without the use of any specific programming language

syntax.

As a first step in the orb web creation process, the user chooses the attachment

points for the orb web. Currently the user can choose up to ten attachment points.

These user-chosen attachment points serve as the outer most periphery of the orb

web. In nature, these points would have represented the points where the spider

would attach its web to a tree or a bush. Spiders tend to place their webs so that the

air current would pass quickly through the web; this would increase the likelihood

of airborne prey being caught in the web.

The first section of web developed was the inner frame. Once the attachment

points have been chosen by the user, a point is chosen such that this point is roughly

in the center of the web. Figure 5.3 shows the center point, marked C. This center

point is used as a reference point to create the inner frame and inside this inner

frame the web is constructed. Figure 5.5 gives the pseudo-code for the construction

of the inner frame. To get the points for the inner frame, we start with the locations

of the user chosen attachment points and move them towards the center reference

point by a fixed amount. These inner frame points are shown in the figure 5.4, and

marked I. Next we create the strands between the inner frame points so as to create

the outer shape and structure of the web.

The next section of the web to be constructed is the outer frame. The outer frame

is defined as the set of strands connecting the user chosen attachment points to the
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Figure 5.3: The “center” point (marked with a “C”)

Figure 5.4: The “inner frame”(marked with “I”)
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1. frame_attach_locations[] <-- get attachment points from user

2. xmin, ymin <-- find smallest co-ordinates in frame_attach_locations[]

3. xmax, ymax <-- find largest co-ordinates in frame_attach_locations[]

4. find center: x_center = (xmin + xmax)/2

y_center = (ymin + ymax)/2

5. get inner frame points,

frame_inner[] = move frame_attach_locations[] points towards

x_center, y_center by a fixed amount, MOVE_OUTER.

6. calculate distance between corresponding outer and inner frame points

7. - create strands by laying spring-mass pairs from outer to

inner frame points

- each mass is laid at a distance of 5 units from other

/* first create the masses */

frame_mass[frame_mass_count].position.x = mass x position

frame_mass[frame_mass_count].position.y = mass y position

/* set initial velocity to zero */

frame_mass[frame_mass_count].velocity.x = 0

frame_mass[frame_mass_count].velocity.y = 0

frame_mass[frame_mass_count].mass = 0.00000001

frame_mass_count = frame_mass_count + 1

/* now create the springs between the masses */

frame_spring[frame_spring_count].rest_length = 2

frame_spring[frame_spring_count].spring_constant = 0.001

frame_spring[frame_spring_count].end1 = 1st mass

frame_spring[frame_spring_count].end2 = 2nd mass

8. mark the outer most masses in the outer frame as fixed

9. calculate distance between consecutive inner frame points

10. - create strands by laying spring-mass pairs between

inner frame points

- each mass is laid at a distance of 20 units from other

- spring rest length = 15 units

- spring constant = 0.001 N/m

Figure 5.5: Inner and Outer Frame Construction

39



Figure 5.6: The User Chosen Attachment Points Figure 5.7: The Orb Web Frame

Figure 5.8: The Constrained Orb Web Frame Figure 5.9: The Primary Orb Web Spokes
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inner frame and is created by attaching the user chosen attachment points to the

inner frame by means of short stiff strands. Figure 5.5 gives the pseudo-code for the

construction of the outer frame. The orb web is constrained such that the masses at

the user chosen attachment points are fixed and do not change their position when

the simulation is started. The length and stiffness of these strands from the inner

frame to the user attachment points can be altered independently of the rest of the

orb web.

Once we have the initial inner frame for the orb web constructed (figure 5.7), we

can see that the curvature of the frame does not resemble the curvature of the frame

of a real orb web (figure 3.2 or figure 3.4). Also it might be expected that the radial

spokes of the web when created would exert a force that would pull the inner frame

inwards. This does happen, but to further aid and to tailor the curvature, the inner

frame of the web is constrained by inward radial forces. The result of this process is

shown in figure 5.8. As can be seen, the frame now resembles the natural curvature

of a spider web frame more closely.

This is followed by the creation of primary radial spokes (figure 5.9). These initial

few spokes serve as reference points for the rest of the orb web creation process,

provide structural support to the orb web and also serve as the attachment points

for the hub. The primary radial spokes are created by drawing a strand from a

section of the orb web’s inner frame to a section of the inner frame opposite it. The

pseudo code for this process is given in figure 5.5. To create a radial spoke, we start

with the first inner frame segment and find the mass which lies in its center, say

frame middle mass (see figure 5.10). Next we iterate through the rest of the inner
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frame segments and find the mass which is farthest from frame middle mass, which

is farthest mass. Finally, we draw a web strand between frame middle mass and

farthest mass. This process is then repeated for the other inner frame segments.

Once the primary radial spokes have been created, the hub is then created at

the intersection of the primary radial spokes. To create the hub we first choose a

mass in the first primary radial spoke which is close to the intersection point of

the primary radial spokes, mass close intersection. Now in the second radial spoke

choose a mass closest to mass close intersection, closest next mass. Then we lay

a strand of the web from mass close intersection to closest next mass. Repeat the

above process for other primary radial spokes to get the complete hub.

The hub can now be used to attach the secondary radial spokes (see figure 5.12).

To create the secondary radial spokes we start with the first mass in the inner frame,

inner frame first mass, and find the mass in the hub which lies closest to this inner

frame mass, hub mass. Next we create a strand between inner frame first mass and

hub mass. This process is then repeated for all the masses in the inner frame, leading

to the construction of the secondary radial spokes which are connected randomly to

the masses in the hub.

The most important and probably the most complex problem is to devise an

algorithm for the spiral. The spiral has to have a small amount of randomness in

it and also the spiral should fill in the available web area such that the whole web

does not look overly symmetric. The next paragraph presents the naive algorithm

which was used at first to achieve the spiral construction and the paragraph after

it presents an evolved version of this naive algorithm which was used in the thesis
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/* first create the primary radial spokes */

1. frame_middle_mass[] <-- get middle masses of all inner frame segments

2. farthest_mass[] <-- masses farthest from each corresponding

middle mass in frame_middle_mass[]

3. - create strands by laying spring-mass pairs between frame_middle_mass[]

and corresponding mass in farthest_mass[]

- each mass is laid at a distance of 7 units from other

- spring rest length = 3 units

- spring constant = 0.01 N/m

/* now create the hub */

4. mass_close_intersection <-- mass in first radial spoke close to

intersection of primary radial spokes

5. closest_next_mass <-- mass in second radial spoke closest

to mass_close_intersection

6. create strand between: mass_close_intersection and closest_next_mass

7. - repeat steps 4, 5 and 6 for other radial spokes

- stop when you reach back at the first radial spoke

/* improve the orb web shape */

8. apply inward radial force on inner frame segments

/* create the secondary radial spokes */

9. inner_frame_first_mass <-- first mass of inner frame

10. hub_mass <-- mass closest to inner_frame_first_mass, in the hub

11. create strand between: inner_frame_first_mass and hub_mass

12. repeat steps 9, 10 and 11 for all inner frame masses

Figure 5.10: Hub and Radial Spokes Construction
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Figure 5.11: The Hub Figure 5.12: The Orb Web Spokes

Figure 5.13: The Initial Spiral Figure 5.14: The Final Spiral (After Processing)
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/* create the initial spiral */

for all masses in first spoke

(start with mass closest to inner frame)

{

initial_mass <-- get current mass

for all spokes

{

next_mass <-- mass closest to initial_mass on next spoke

create strand between: initial_mass and next_mass

initial_mass <-- next_mass

}

}

Figure 5.15: Initial Spiral Construction

implementation.

One particular process by which we might create the spiral involves connecting

a mass on one spoke to the mass on the following spoke, starting with the masses

closest to the hub. At the end of each spiral we choose a mass closer to the outer

frame (i.e., we take a step outwards). This process is then repeated until we reach

near the inner frame. The algorithm described above, although simple, has the

drawback that it is too uniform. Further, the stopping condition for the spiral (i.e.,

stop the spiral when you are close to the frame) did not produce desirable results.

Usually the spiral stopped too soon and there were large gaps in the orb web near the

inner frame. In order to improve the results of this process we evolved the algorithm

described below. It has the advantages of being simple and of producing excellent

results.

The algorithm for the creation of initial spiral is given in figure 5.15. The creation

of the initial spiral is done by starting with the mass on the first spoke which is closest

to the inner frame, initial mass. Then we find the mass on the second radial spoke
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/* create the processed spiral */

1. max_spoke <-- spoke with maximum number of masses

not covered by a spiral

2. for all uncovered masses in max_spoke

(start with mass closest to inner frame)

{

initial_mass <-- get current mass

for all spokes

{

next_mass <-- mass closest to initial_mass on next spoke

create strand between: initial_mass and next_mass

initial_mass <-- next_mass

}

}

3. repeat steps 3 if number of uncovered masses

in any spiral > SPIRAL_DENSITY (preset value:5)

Figure 5.16: Processed Spiral Construction

which is closest to initial mass, next mass and create a web strand between these two

masses. This process is repeated for all the spokes in the web. In the next iteration

we start with the next mass down the first spoke (i.e., initial mass + 1) and repeat

the above process. We end this process a little distance away from the hub of the

web so that a distinct hub is still visible when the process for creating the spiral is

over. The result of this process can be seen in figure 5.13.

We follow the creation of the primary spiral by a processed spiral so as to cover

the area of the web where there is still space for the spiral to be drawn without

necessarily covering the whole web with the spiral. The algorithm for this process

is given in figure 5.16 and is essentially the same as that used to create the initial

spiral, but now instead of starting with the first spoke in each iteration we start

with the spoke that has the greatest number of masses not covered by the spiral,

max spoke. The result of this process can be seen in figure 5.14. The amount of web
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to be covered can be controlled with ease by altering the selection of the starting

and/or ending masses. The density of the spiral can also be controlled by altering

the number of masses in the radial spokes. A larger number of masses in the radial

spokes would lead to a denser spiral and vice-versa.
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5.2.1 Implementation Details

Given below is the list of parameters used in modeling the orb web and the values

assigned to them.

Mass of a particle 10µg

Number of particles 2000

Diameter of the orb web up to 1 meter

Total mass of the orb web 25mg

Spring Constant 0.01 N/m

Air Friction Constant 0.00000001 Ns/m

Time Step 0.02 seconds

Rest Length 3mm
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5.3 Results and Discussion of the Results

In this section the various results from this thesis work are presented and a discussion

of the results is carried out.

5.3.1 Orb Webs of Varying Sizes

The four images in figure 5.17 show orb webs of varying sizes. The standard canvas

size in all these images was kept constant at 600 by 600 pixels and all other param-

eters are kept constant. There are some interesting observations that can be made

from these images. As the size of the orb web is decreased, the number of radial

spokes in the orb web decreases. Also evident is the decrease in density of the orb

web spiral with the decrease in orb web size. Finally, it is observed that the empty

space around the spiral increases with the decrease in size. All these observations

can be attributed to the fact that the parameters governing the number of spokes

and spiral density are initially optimized to an orb web which occupies the whole

canvas. With the decrease in size of the orb web the space available for creating the

orb web decreases but the parameters are still optimized for a bigger canvas.
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Figure 5.17: Orb Webs of Varying Sizes
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5.3.2 Orb Webs of Varying Shapes

The four images in figure 5.18 show orb webs of various shapes. Although we had

concentrated on creating an orb web model which would produce images resembling

the commonly observed orb web shapes, the images in figure 5.18 show the rich set

of results that can be obtained. The first two images show a triangular shaped orb

web. The next two images show orb webs shapes which might be more commonly

observed. While creating an orb web shape, we can tailor the images by altering the

number and location of the attachment points. For instance, if a particular section of

the orb web is found to be sagging too much under gravity, we can add an additional

attachment point and thus provide further support to the orb web structure. These

images can be further tuned to the desired look by altering the parameters that

control the spiral density and the number of spokes.
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Figure 5.18: Orb Webs of Varying Shapes
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5.3.3 Orb Webs With Varying Spring Constants

The images in figure 5.23 show orb webs in which the spring constant is varied while

all other parameters are kept constant. The first image (figure 5.19) shows the orb

web with all the original values of the three spring constants (i.e., the outer frame

spring constant set to 0.001 N/m, the inner frame spring constant set to 0.001 N/m

and the radial spokes spring constant set to 0.01 N/m).

In figure 5.20, the spring constant of the outer frame springs is reduced by a factor

of 10 to 0.0001 N/m. The effect of this lower spring constant value is very evident

in this image. The outer frame, which connects the user chosen attachment points

to the inner frame, is highly elongated compared to the frame seen in figure 5.19.

The next image (figure 5.21) captures the effect of reducing the spring constant

value for the inner frame by a factor of 10 to 0.0001 N/m. It can be observed that

the inner frame is no longer as taut as in figure 5.19. Further, this elongation of the

inner frame is much less as compared to the elongation of the outer frame in figure

5.20. This can be attributed to the better distribution of the weight of the orb web

in the case of the inner frame.

The final image (figure 5.22) shows the effect of reducing the spring constant value

of the radial spokes by a factor of ten to 0.001 N/m. Although the radial spokes

are more curved than the radial spokes in figure 5.19, they are the least affected by

reduction of the spring constant. This can be attributed to better distribution of

the stress among the numerous radial spokes as compared to the inner or the outer

frame.
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Figure 5.19: Original Spring Constants Figure 5.20: Outer Frame Spring Constant Reduced

Figure 5.21: Inner Frame
Spring Constant Reduced

Figure 5.22: Radial Spokes
Spring Constant Reduced

Figure 5.23: Effect of Changing Spring Constant Values
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5.3.4 Orb Webs With Varying Spirals

The four images in figure 5.28 are examples of structurally similar orb webs whose

spirals have been created using different parameters. The two parameters used to

control the density of the spiral are: the rest length of the springs in the radial spokes

and the placement length of the springs in the radial spokes. The placement length

of the springs gives the distance between two consecutive masses on a radial spoke.

As a result, if we increase the placement length of the springs , i.e., the distance

between two consecutive masses on a radial spoke, this will result in fewer masses in

the radial spokes. Since the spiral is made by connecting a mass in a radial spoke to

a mass in the following radial spoke, fewer masses would result in a spiral which is

less dense. The rest length of the springs has to be changed along with the placement

length in order to keep the coupled spring-mass system stable.

The image in figure 5.24 shows an orb web with the preset spiral parameters.

Its spirals are quite symmetric with the spirals covering a large portion of the web

structure. The image in figure 5.25 shows a similar orb web with a spiral that is

less dense and does not cover as much of the web area as does the spiral in figure

5.24. The orb web in figure 5.26 not only has a spiral which is less dense, but has a

much bigger gap in the hub or the central portion of the web. Finally, the orb web

in figure 5.27 has a very sparse spiral.

The table below shows the parameters and their values, which were used to gen-

erate the images shown in figure 5.28. The rest length and the placement length are

of the springs in the radial orb web strands.
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Image Rest Length Placement Length

figure 5.24 3mm 7mm

figure 5.25 3mm 9mm

figure 5.26 5mm 11mm

figure 5.27 7mm 15mm
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Figure 5.24: Spiral With Preset Parameters Figure 5.25: Less Dense Spiral

Figure 5.26: Less Dense Spiral With
Less Web Coverage

Figure 5.27: Least Dense Spiral With
Least Web Coverage

Figure 5.28: Varying Spirals
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5.3.5 Orb Webs With Varying Radial Spokes

In the next four images, shown in figure 5.33, the number of radial spokes that form

the structure on which the spiral is overlayed is varied. The two parameters used

to control the number of radial spokes are: the rest length of the springs in the

frame and the placement length of the springs in the frame. The placement length

of the springs gives the distance between two consecutive masses on a frame strand

segment. As a result, if we increase the placement length of the springs, i.e., the

distance between two consecutive masses on a frame strand segment, this will result

in fewer masses in the frame strand segment. Since the radial spokes are made by

connecting the masses on the frame to the hub, fewer masses in the frame will result

in fewer radial spokes. The rest length of the springs has to be changed along with

the placement length in order to keep the coupled spring-mass system stable.

As usual, the first image in figure 5.29 shows an orb web created with the preset

parameters. In the next image in figure 5.30, the number of radial spokes is reduced

while keeping all the other parameters the same. In comparison to the image in

figure 5.29, the second image in figure 5.30 has a larger spacing between the radial

spokes. This space between consecutive radial spokes is further increased in figures

5.31 and 5.32.

The table below shows the parameters and their values, which were used to gen-

erate the images shown in figure 5.33. The rest length and the placement length are

of the springs in the orb web frame strands.
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Image Rest Length Placement Length

figure 5.29 15mm 20mm

figure 5.30 25mm 30mm

figure 5.31 35mm 40mm

figure 5.32 50mm 57mm
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Figure 5.29: Spokes Created With Preset Parameters Figure 5.30: Lesser Number of Spokes 1

Figure 5.31: Lesser Number of Spokes 2 Figure 5.32: Least Number of Spokes

Figure 5.33: Varying the Number of Radial Spokes
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5.3.6 Orb Webs With Varying Radial Spokes and Varying Spirals

In the next four images, shown in figure 5.38, the effect of varying both the spiral

density and the number of radial spokes is shown. In other words these images

combine the effects demonstrated separately in section 5.3.4 and in section 5.3.5. In

the images shown, the density of spiral and the number of spokes are both decreased

in each successive image.

The table below shows the parameters and their values, which were used to gen-

erate the images shown in figure 5.33.

Image Rest Length Placement Length Rest Length Placement Length

Number (Spoke) (Spoke) (Frame) (Frame)

figure 5.34 3mm 7mm 15mm 20mm

figure 5.35 3mm 9mm 25mm 30mm

figure 5.36 5mm 11mm 35mm 40mm

figure 5.37 7mm 12mm 40mm 45mm
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Figure 5.34: Image with Preset ParametersFigure 5.35: 1: Fewer Spokes and Less Dense Spiral

Figure 5.36: 2: Fewer Spokes and
Less Dense Spiral

Figure 5.37: Least Spokes and
Least Dense Spiral

Figure 5.38: Varying the Number of Radial Spokes and Spirals
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5.3.7 The Orb Web Against Different Backgrounds

The next few images show the orb web against different backgrounds. The back-

ground image has been texture mapped to a polygon which covers the entire screen.

The orb web itself is created a little distance ahead of the background image and

thus is superimposed on the background image. In order to increase the visibility

of the orb web against the background, the orb web has been shaded with uniform

black color.
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Figure 5.39: Orb Web Against Different Backgrounds
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5.3.8 Effect of Shading and Alpha Blending

To further improve the quality of the results shown in figure 5.39, in which the orb

web was shaded black, the orb web is shaded using different shades of grey. From

the images of real orb webs it was observed that the strands of the web exhibit, in

general, different shades of gray. Figure 5.44 shows an orb web against the same

background but with different shading schemes for the orb web. The figures on the

left have been created using different shades of grey but no alpha blending. The

corresponding images on the right have the same shading scheme as the image on

its left, but has alpha blending enabled. The shading and alpha values for each

image are given in the table below. The shade value is described by three color

components, red, green and blue, and each color component can range from 0.0 to

1.0 where 0.0 is no color and 1.0 is maximum color. The background image chosen

has a lighter background to increase visibility and to help demonstrate the above

effects with clarity.

Image Shade (Red, Green, Blue) Alpha

figure 5.40 (0.86,0.88,0.87) 0

figure 5.41 (0.86,0.88,0.87) 0.7

figure 5.42 (0.69,0.71,0.73) 0

figure 5.43 (0.69,0.71,0.73) 0.7
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Figure 5.40: No Alpha Blending Figure 5.41: With Alpha Blending

Figure 5.42: No Alpha Blending Figure 5.43: With Alpha Blending

Figure 5.44: Effect of Shading and Alpha Blending
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5.3.9 Animation: Wind

A wind model that fits in well with the spring-mass system is used. This model

introduces wind as an external force into the system and provides controls for the

wind velocity and direction. The algorithm for wind generation is given in figure

5.45 and is divided into two segments. First segment of the algorithm is the windgen

function, which is used to give the wind its velocity and direction. In this function

we generate a new random number between +3 and -3 every 50 degrees and this

random number, along with the sine term, is used to modulate the value of the wind

vector, wind vector. This wind vector, which is a force term, gives the wind direction

and velocity. The sine term helps to add a predictable pattern to orb web animation

and provides control of the orb web movement under the wind.

In the second segment of the algorithm, first the windgen function is called to

obtain the new wind vector value, wind vector. Then we calculate the distance,

distance, of each mass in the web from a chosen center mass in the hub. This

distance is then scaled and raised to an exponent to get the final value of distance.

This gives us a value for distance which is very small for masses close to the hub

and relatively large for masses away from the hub. Thus, when we use this distance

value to modulate the wind vector and calculate the mass force, the masses close to

the hub will have a smaller force acting on them as compared to the masses farther

away from the hub. This in turn generates an animation where the orb web near the

hub, which is most sensitive to the applied external forces, billows out in proportion

to the rest of the orb web.

The set of images given below have been obtained from a short 20 second anima-
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tion of the orb web moving under a wind force. By altering the wind force direction

and or the magnitude we can obtain any desired animation of the orb web moving

in the wind.
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/* wind generation function */

/* initialize the variables */

MASS = 0.00000001

GRAVITY = 9.8

WIND = MASS*GRAVITY*10

degree = 0

random = 1

wind_vector_x = 0, wind_vector_y = 0, wind_vector_z = 0

windgen

{

if degree%50 = 0

random = new random number between -3 and + 3

wind_vector_x = random*WIND*sin(degree)

wind_vector_y = random*WIND*sin(degree)

wind_vector_z = - WIND*sin(degree)

degree = degree + 1

}

/* generate the wind */

call the windgen function to get new value for wind_vector

for all masses

distance = calculate distance of this mass from the center mass

(a mass in the hub is used as the center mass)

alpha = orb web radius*50

distance = distance/alpha

distance = exponent(distance)

mass_force_x = mass_force_x + distance*wind_vector_x

mass_force_y = mass_force_y + distance*wind_vector_y

mass_force_z = mass_force_z + distance*wind_vector_z

Figure 5.45: Wind Generation
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Figure 5.46: Wind Animation
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Figure 5.47: Wind Animation
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Chapter 6

Charlotte’s Web

This phase of the work derives its inspiration from the children’s book “Charlotte’s

Web” [41]. In this book, Charlotte the spider spins webs with messages inscribed

on them in order to save her friend Wilbur the pig (see figure 6.5 for an image from

the book). It is highly unlikely that a real spider could weave such webs. We aim

to inscribe our artificial webs with messages/symbols in them, while still keeping

the same overall appearance of the web as much as possible and not altering its

physically-based nature.

For this purpose, the first step is to create an orb web using the modeling pro-

cedure described earlier and then to allow the web simulation to settle down. The

message which is to be inscribed on this web, called the target image, is then created

using a simple image editor. The target image can either be text containing a few

letters or a simple bi-level image (a black and white image) containing mainly low

frequency content. Two such images are shown in figure 6.1 and 6.6. To inscribe the

target image on the artificial web, we remove the spiral strands from the orb web

spiral in the region where the image is to be superimposed on the web. This process

is described next.

The orb web spiral is composed of short line segments which run from a mass in
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Figure 6.1: The Target Image Figure 6.2: A Source Image Section (Enlarged)

Figure 6.3: The Overlayed Images Figure 6.4: The Resultant Image
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Figure 6.5: Charlotte’s Web [41] Figure 6.6: Toyota Logo Target Image

Figure 6.7: The Original Orb Web Figure 6.8: The Dilated Orb Web
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a particular radial spoke to another mass in the next radial spoke. Two such spiral

segments are shown in figure 6.2, which shows an enlarged section of an artificial

orb web. These short orb web spiral segments are compared, segment by segment,

with the target image. This comparison is done by taking a segment of the orb

web spiral and comparing the small region in and around this segment with the

corresponding region from the target image. This small region consists of the pixels

in the neighbourhood of a particular line segment and one such region is depicted in

image 6.2. More specifically, the neighbourhood of a spiral line segment consists of

a rectangular region, five pixels wide (including the single pixel width of the spiral

segment itself), running along the length of the spiral line segment. Figure 6.3 shows

the target image from figure 6.1 overlayed over the source image. The large dark dot

like shape clearly shows the region where the target image would lie on the orb web

spiral when the images are overlayed.

A score which indicates the degree of matching between the target image region

and the corresponding orb web segment is then computed. To compute the score

we first capture the current orb web image from the screen to obtain the source

image. The obtained source image and the target image are then dilated. Dilation is

a morphological operator. Morphological operators take an image and a structuring

element as input and combine them using a set operator, such as intersection, union,

inclusion and complement [10]. In our implementation, we used a 7 × 7 structuring

element. The basic effect of dilation is to enlarge the boundaries of orb web strands

and of the dark region in the target image. This effect is shown in figures 6.7 and 6.8.

The corresponding regions of the source and the target image can now be compared
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/* first calculate the intensity ratio */

1. intensity_ratio = total_source_intensity/total_target_intensity

/* calculate the score */

2. thescore = floor(10 * intensity_ratio)

Figure 6.9: Calculating The Score

over a larger intensity range and a score, indicating the degree of intensity match,

ranging between 1 to 10 can be computed.

Next, the cumulative pixel intensity, called total source intensity, of the small

region in the neighbourhood of the strand segment is computed by summing the

individual pixel intensities of each pixel in the neighbourhood. Similarly we com-

pute the cumulative pixel intensity, called total target intensity, of the corresponding

region in the target image. Next a ratio of the intensities is computed by dividing

the total source intensity by the total target intensity. This ratio is then used to

calculate the score, which ranges from 1 to 10. The score calculation algorithm is

shown in figure 6.9.

Once a score has been calculated for each strand segment in the spiral, the seg-

ments with a score above a certain threshold score (set to 8 in our trials) are removed

from the final image. By altering this threshold we can control the number of spiral

segments that are removed from the final result. The final result of this process is

shown in figure 6.4. It can be seen from this image that in the region where there

was an overlap of the target and the source images (overlap is shown in figure 6.3)

spiral strand segments have been removed, while at the same time the rest of the orb

web has been left intact. Figure 6.11 shows another result obtained using the above

process. Here the letters P,I and G are inscribed on the orb web. Figure 6.10 shows
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the target image, used to generate figure 6.11, overlayed over the source image. As

can be seen, the result of this process is an orb web which is still physically based

but has the intriguing look of a web with text inscribed on it.

The text in figure 6.11, although visible with a little effort, is not easily readable.

The viewer has to make some effort to decipher the inscribed letters. In order to

further emphasize the inscribed text and to increase its readability, several possible

solutions were investigated. The results of three such efforts are displayed in fig-

ures 6.12, 6.13 and 6.14. The underlying idea behind all three methods is to make

the region where the text is inscribed stand out, while leaving the rest of the web

unaltered.

To arrive at the first image (see figure 6.12), the orb web was modified by intro-

ducing additional strand segments between masses along the spiral. These additional

segments connect a particular mass to two more masses, in addition to the one mass

that to which it is currently connected. Now, in addition to the earlier segment’s,

these additional strand segments are compared against the target image and a score

is computed. In the region where there is an intensity match, these additional strand

segments are not removed from the final model and the result is the cross-hatch pat-

tern as seen in the image. This resultant cross-hatch pattern increases the visibility

of the inscribed letters, not only due to the fact that the cross-hatch pattern is at

variance with the rest of the spiral but also due to the increase in spiral segment

density in the region.

It can be observed from the initial image, shown in figure 6.11, that there exist

large gaps in the regions inside the letters. In these gaps there are no spiral seg-

77



Figure 6.10: The Overlayed Images

Figure 6.11: Web With Letters P, I, G Inscribed
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Figure 6.12
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Figure 6.13
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Figure 6.14
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Figure 6.15: The Overlayed Images

Figure 6.16: The Toyota Logo
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Figure 6.17: The Overlayed Images

Figure 6.18: Spiral with random gaps
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ments and only the underlying spokes are visible. For the second image, shown in

figure 6.13, we have modified the initial image by introducing random attachments

between the masses within the letters. These random spiral segments provide further

emphasis to the inscribed letters. Moreover, these random spiral segments have been

shaded darker than the rest of the orb web spiral segments to further augment the

visibility of the inscribed letters. Although we might not be able to find an orb web

in nature which has meaningful text inscribed on it, the St Andrews Cross spider

(Argiope Keyserlingi) is an example of a spider whose webs have a region with a

noticeable pattern, a cross, inscribed on the web. The cross is created by the spi-

der by repeated laying of more silk in the region of the cross, and thus the cross is

highly visible by virtue of its higher intensity than the rest of the orb web, similar

to the technique used to create image 6.13. The final image, shown in figure 6.14,

is an effort to strengthen the outline of the letters by increasing the intensity of the

strands surrounding the letters.

The various methods to emphasize the letters produce results which conform to

the original goal of inscribing text on the web, while trying to preserve as much of

its natural look as possible. Perhaps figure 6.11 has the most natural look but the

text in it lacks the clarity of the other figures.

The above process can be also be used to impress the web with simple images

such as the Toyota logo shown in figure 6.16. Another interesting application of

this process is that we can use it to alter the spiral to our purposes without having

to resort to changing the underlying code. As an example, in the image in figure

6.18 we have introduced random gaps in the spiral. Although these gaps have been
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darkened in the image to increase visibility, a more natural look can be obtained by

not darkening these spots.

In this phase of the thesis we aimed to inscribe our artificial orb webs with mes-

sages/symbols, in a non-photorealistic style, inspired by a children’s book. The

attempt here was not to create webs similar to those illustrated in the book, but

to adapt the concept to our physically-based orb web model. It was observed that

our initial method to inscribe the web, while conforming to the original goals of

keeping the natural look of the web and not altering its physically-based nature,

produced images with hard to read inscriptions. Therefore, to further emphasize the

inscriptions we investigated three other methods. The results of these three meth-

ods generate images with inscriptions that are easier to read, but at the loss of the

natural look of the orb web.
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Chapter 7

Conclusions and Future Work

The work done in this thesis was guided by the following goals:

• The creation of a model of an orb web, based on observed orb web characteris-

tics.

• The animation of the created orb web when subjected to a wind force.

• The creation of the non-photorealistic orb web, which could be inscribed with

text or symbols.

• The placement of the orb web in appropriate surroundings to enhance the appeal

of the orb web.

• The creation of the additional effect of an orb web being covered with dew

drops.

The first four of the above goals were achieved and the results of that work

have been presented in this thesis. We have made an effort to incorporate the

various characteristics of orb webs, such as their spatial density, size and weight, in

a physically-based model. This model of the orb web is then modified to incorporate

an interesting effect; using the children’s book Charlotte’s Web as an inspiration, we

have inscribed the orb web with text/symbols, while keeping the physically based
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nature of the model. Perhaps, this is the most important contribution of this work.

The orb web model has various parameters that can be altered to control attributes

such as spiral density, radial strand density, hub placement and hub density. Since a

real orb web is not easy to observe and photograph, we have emphasized the orb web

in the images by rendering it in a darker shade than a real orb web under similar

lighting conditions.

There are a number of possible improvements and extensions that can be made

to the work done in this thesis. While the created orb web model provides results

that demonstrate the applicability of the spring-mass model to modeling orb webs,

this model can be further enhanced and tailored to the specific needs or purposes at

hand. For instance, if performance is a major concern then the model can be further

optimized or if a more accurate representation of an orb web is required then the orb

web construction algorithms can be altered. While in this thesis the rendering of the

web was not a major concern, if desired more sophisticated rendering and shading

techniques can be used. The effect of an orb web covered with dew drops was not

pursued in this thesis as a result of the limited time available. The initial study into

water droplets and their modeling suggests that this is an excellent area for future

research, both in the context of this thesis and also as a stand-alone problem.
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