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Abstract 
Geomembranes are one of the most widely used geosynthetics in various civil engineering 

applications. Their primary function is as a barrier to liquid or vapour flow. Smooth 

Geomembranes are frequently used in combination with different soils, and due to their low 

surface roughness, are challenging to design to ensure adequate shear strength along the smooth 

geomembrane-soil interface. It is important to use the appropriate values of interface shear 

strength parameters in the design of slopes incorporating one or more geomembranes in contact 

with soils. The parameters are determined by conducting direct shear test on the geomembrane-

soil interface. Laboratory tests of interface shear strength for geomembranes and soil are typically 

carried out with no provision for measurement of pore pressures at the soil/geomembrane 

interface.   

This thesis deals with study of smooth geomembrane-soil interfaces, particularly under 

unsaturated conditions. The various factors that affect the interface shear behaviour are also 

studied. The tests were conducted using a modified direct shear box with a miniature pore 

pressure transducer installed adjacent to the surface of the geomembrane. Geomembrane–soil 

interface shear tests were carried out with continuous measurement of suction in close proximity 

to the interface during the shearing process thus making it possible to analyze test results in terms 

of effective stresses.  The method was found to be suitable for unsaturated soils at low values of 

matric suction.   

Results of interface shear tests conducted using this method show that it is quite effective 

in evaluating interface shear behaviour between a geomembrane and an unsaturated soil.  The 

results suggest that soil suction contributes to shearing resistance at low normal stress values.  At 

lower normal stress values, the interface shear behaviour appears to be governed only by the 

magnitude of total normal stress.  

At high normal stresses, the failure mechanism changed from soil particles sliding at the 

surface of geomembrane to soil particles getting embedded into the geomembrane and plowing 

trenches along the direction of shear. A plowing failure mechanism resulted in the mobilization 
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of significantly higher shear strength at the geomembrane soil interface. It was found that 

placement water contents near saturated conditions results in lower effective stresses, a shallower 

plowing mechanism and lower values of mobilized interface shear strength.  
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Chapter 1 Introduction 

1.1 General 

Geomembranes are commonly used as barriers in waste containment facilities and landfills due to 

various benefits associated with their use and because of regulatory requirements. Geomembrane 

are also increasingly being used in reservoirs, ponds, lined canals and other geotechnical projects. 

Geotechnical engineers often characterize the shearing resistance along interface between 

geomembranes and soils using results from interface direct shear tests. The results of these tests 

are used in an analysis of stability against sliding along the given interface. Interface shear testing 

between soil and geosynthetics has now become an essential part of the design process in 

geotechnical and geo-environmental engineering.  

1.2  Geomembranes and their applications 

Geomembranes are “impervious” thin sheets of rubber or polymeric material used primarily for 

linings and covers of liquid or solid waste containment facilities (Figure 1.1). Geomembranes 

represent the largest category (by cost), of geosynthetics products used in civil engineering 

applications. The growth in the use of geomembranes can be attributed to the various benefits 

associated with their application, their relative economy and increasingly stringent environmental 

regulations.  

The mechanism of diffusion in geomembrane is on molecular scale which is different 

from other porous media. Water molecules diffuse through narrow spaces between polymer 

molecular chains. Geomembranes cannot be regarded as totally impermeable as some amount of 

diffusion permeation is observed in geomembranes. A typical thermoplastic geomembrane will 

have diffusion permeability of the order of 10-11 to 10-13 cm/s. Because of their extremely low 

permeability, their primary function is as a liquid or vapour barriers. The range of applications is 

great and at least 30 individual civil engineering applications have been developed (Koerner, 

1995).  
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1.2.1 Landfill side slopes 

Contamination of groundwater can be minimized by providing a liner system at the base and 

sides of a landfill. Landfills side slopes consist of different geosynthetic and soil components 

(Figure 1.1). A key design element in these systems is the geomembrane in contact with a natural 

or processed soil. The consolidation of the waste mass in landfills induces movement of the waste 

relative to the geomembrane. If the geomembrane is restrained, deformation between the 

geomembrane and the soil may take place. As the deformation progresses, increased shear stress 

is mobilized at the interface between geomembrane and soil. The waste itself can be quite strong 

when properly compacted; and hence the stability of waste landfill slope is a function of the 

interface shear strength along the geomembrane surfaces. 

To maximize the containment volumes, landfills are increasingly being designed and 

constructed with steeper side slopes. However, as the side slope becomes steeper, there is greater 

potential for failure along one of many interfaces. The failure potential for a particular interface is 

governed by shear strength between the two individual components of the interface.  

 

 

Figure 1.1 Cross-section of a domestic waste landfill showing the use of geomembranes in both the liner and 

the cover systems (Koerner, 1995) 
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1.2.2 Landfill Covers 

Geomembrane landfill covers are used when it is absolutely necessary to minimize downward 

infiltration into the waste mass.  Further soil cover is placed over the geomembrane to provide a 

substrate for vegetation which will release moisture back into the atmosphere through 

evapotranspiration.  In landfill covers, the stability is largely governed by the interface friction 

properties between this surficial soil cover layer and the relatively thin non-woven geotextiles 

separating the vegetative cover layer from a synthetic drainage layer or sand drainage layer. If a 

geomembrane is used in a cover system, the interface friction between geomembrane and the 

adjacent component may govern stability.  

The shear strength of the interfaces in each one of these applications governs the overall 

stability of the structure. The interfaces and their associated failure mechanisms have long been 

identified as being critical to the overall performance of the geotechnical structures. A significant 

number of landfills have failed in past due to interface failure.  These are discussed by Seed et al. 

(1990), Mitchell et al. (1990), Stark et al. (2000) and Koerner and Soong (2000).  With each new 

project failure and with ongoing difficulties of siting new landfills (Koerner and Soong 2000), 

stability is becoming a key issue. Due to this reason a significant amount of research work has 

focused on the factors that affect the interface shear mechanism. The design of the liner and cover 

system shown in Figure 1.1 requires the evaluation of slope stability which in turn requires 

knowledge of interface shear behaviour of geomembrane and soils.  

1.3 Past Research Work Related to Soil-Geomembrane Interface 

In March 1988, a slope stability failure occurred at the Kettleman Hills Class 1 hazardous waste 

treatment and storage landfill at Kettleman Hills, California (Byrne et al. 1992). This failure 

developed by sliding along the interfaces within the composite multilayer liner system beneath 

the waste fill. The landfill failures given in Table 1.1 are attributed to low friction resistance at 

the interface between the geosynthetic and soil. These and other similar landfill failures have led 

to research into the interface friction behaviour for various interfaces at the liner and cap of the 

landfill. Many researchers have conducted research work on the interface shear behaviour of 

geomembranes and soils over the last 20 years. Interface shear strength of non-textured 

geomembrane and soil represents a significant portion of the research work conducted related to 

geosynthetics.  
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Table 1.1 Summary of Recent Landfill Failures 

Year Location Quantity involved References 

1988 N. America 490,000 m3 Mitchell, et al. (1990) 

1994 Europe 60,000 m3 Koerner and Soong, (2000) 

1997 N. America 100,000 m3 Evans, et al. (1998) & Stark et. al, (2000) 

1997 Africa 300,000 m3 Koerner and Soong, (2000) 

1997 S. America 1,200,000 m3 Koerner and Soong, (2000) 

 

1.4 Need for Further Research 

Although considerable research has been conducted into interface shear strength, there is a 

general lack of sufficient knowledge or control over the primary factors that affect the measured 

values of interface shear strength parameters. Consensus has yet to be reached regarding the 

relative importance of various factors that control the interface shear behaviour. Even the 

standard testing method, ASTM D5321-02 (ASTM 2002), is not adequate since it does not 

address the existence and effect of initial capillary suction on test results (Bemben and Schulze 

1995). 

It is worth noting that all the researchers (e.g. Ling et al. 2001, Mitchell et al. 1990) have 

expressed interface shear strength parameters in terms of total normal stresses instead of effective 

normal stresses at the interfaces. The soil component of a composite liner system is usually 

unsaturated, particularly beneath side slopes where the interface shear strength is mobilized. 

Therefore, there is uncertainty regarding the conditions of the interface in the field and a need for 

a study that focuses on the behaviour of interfaces between geomembranes and unsaturated soils, 

with the measurement of negative pore pressures on the geomembrane surface during shearing.  

Typically, geomembrane-soil interface shear tests are conducted at several different 

normal stresses. For each normal stress, the shear stress increases with increasing shear 

displacement and reaches a peak value. As shearing is continued, there is a reduction in shear 

stress until a constant or residual value is reached. These peak and residual shear stresses are then 

plotted against relevant normal stresses to obtain a failure envelope. Curved failure envelopes are 

obtained for both the drained and the undrained interface shear tests, (e.g. Jones and Dixon, 1998; 
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Esterhuizen et al., (2001). For the undrained interface shear tests, the failure envelope is more 

non-linear at low normal stresses as shown in Figure 1.2. 

The failure envelope flattens and approaches a limiting value of shear strength as normal 

stress increases (Figure 1.2). Usually, for the range of normal stresses expected in the field, a 

linear Coulomb-type failure envelope is drawn through the data points. This failure envelope is 

defined in terms of two interface shear strength parameters: friction angle (δ) representing its 

inclination in the shear stress-normal stress space, and adhesion (α) representing the intercept of 

the failure envelope with the shear stress axis (Figure 1.2). The stability of any slope containing a 

geomembrane can be assessed using these interface shear strength parameters.  
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Figure 1.2 Typical undrained failure envelopes for geomembrane-soil interface 

 

While it is possible to simulate a fully drained response by selecting a sufficiently slow shearing 

rate, it is often difficult to ensure a fully undrained response merely by selecting a very fast 

shearing rate. Pore-water pressure fluctuates during shearing at the geomembrane-soil interface. 

Jones and Dixon (1998) have pointed out that such fluctuations could be positive or negative (i.e. 

suction), depending on the degree of saturation of the soil. In case of an unsaturated soil, negative 

pore-water pressures are likely to be present at the geomembrane-soil interface. Thus, the 

measurement of pore-water pressures during shearing is crucial to a correct interpretation of the 

interface shear strength. Without these measurements, it is quite difficult to establish the 

magnitude of normal effective stress acting on the geomembrane-soil interface. 
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A detailed review of published literature on geomembrane-soil interface shear testing has 

revealed that there have been no previous attempts to measure the pore-water pressure at or near 

the geomembrane-soil interface. It is, therefore, not surprising to see interface shear strength 

interpreted in terms of total stresses instead of effective stresses. This is also true for interface 

shear tests involving smooth geomembranes and unsaturated cohesive soils (Seed and Boulanger, 

1991; Fishman and Pal, 1994; Ling et al., 2001). Fishman and Pal (1994), using interface shear 

strength envelopes plotted in terms of total normal stresses, concluded that higher interface shear 

strength is mobilized in tests involving unsaturated clays than those involving saturated clays. For 

the interface shear strength envelopes reported by Fishman and Pal (1994), it is likely that the 

presence of negative pore-water pressures at the geomembrane-soil interface resulted in a higher 

effective stress (and therefore, higher shear strength) at the interface. Fisherman and Pal (1994) 

did not measure pore-water pressures at the interface, and therefore, were unable interpret 

interface shear strength in terms of effective stresses. Clearly, there is a need to examine 

geomembrane-soil interface shear behaviour using effective stresses and on the basis of 

unsaturated soil mechanics principles. 

1.5 Objectives of the Research 

The main objectives of the research are given below: 

1. To develop an apparatus/method to evaluate the effect of soil suction on interface shear 

behaviour. 

2. To analyze the test results in terms of total stress space and effective stress space. 

3. To analyze the test results using principles of unsaturated soil mechanics and the 

feasibility of applying these principles for analysis. 

4. To study various other mechanisms controlling the interface shear behaviour of smooth 

geomembranes and soils. This includes study of interface shear behaviour from 

Tribological (the science of the mechanisms of friction, and wear of interacting surfaces) 

point of view 

1.6 Scope of the Research 

Interface shear strength of geomembrane and soils involves many aspects which include 

equipments and experimental set up, factors affecting interface shear behaviour, analysis of the 
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data and the interpretation of the results. Each one of these topics covers many aspects. The 

presence of geomembrane in contact with soil makes the study even more complicated and it 

demands study of the interfaces from the point-of-view of tribology (the science of the 

mechanisms of friction, and wear of interacting surfaces).  

However, the scope of this thesis shall be limited to developing a new method for testing 

interface of geomembrane and soil under unsaturated conditions and preliminary analysis of the 

test data. The thesis attempts to evaluate feasibility of applying effective stress and Unsaturated 

Soil Mechanics principles for analysis of interface shear study. It also briefly covers other 

possible mechanisms that may govern interface shear behaviour of geomembrane and soil.  

1.7 Organization of the Thesis 

The thesis is divided into six chapters. Chapter 2 provides literature review and basic theory that 

is related to this research. Chapter 3 outlines the laboratory testing program along with the 

materials and equipments used for this research work. Chapter 4 presents the experimental results 

while Chapter 5 presents a detailed analysis of these results. Finally chapter 6 presents 

conclusions that can be drawn from this study and the recommendations that can be made based 

on this study. This chapter also discusses future research programs that may be undertaken based 

on this work.  
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Chapter 2 Background and Previous Work 

2.1 Introduction 

This chapter presents background information related to interface shear strength of smooth 

geomembrtanes and soils. This chapter also presents a comprehensive review of the published 

literature work related to the geomembrane-soil interface shear behaviour. This also includes the 

study of various factors that may influence the interface shear behaviour of geomembrane soil 

interfaces. Further some basic theory related to interface shear strength of unsaturated soils is 

described.  

2.2 Soil-Geomembrane Interface Shear Strength 

The shear strength of a smooth geomembrane and soil interface is measured in terms of limiting 

resistance to sliding deformations and all other mechanisms offered by the soil and geomembrane 

when the plane of failure passes through the interface. Until the 1990s, there was no generally 

accepted standard for measuring interface shear strength. Common methods included tilt table, 

small shear boxes and pull out boxes—all in various sizes and different levels of sophistication. 

The direct shear box is considered most reliable among the available methods for interface shear 

testing (Bachus et al., 1993). In 1992, the Geosynthetic Research Institute at Drexel University in 

Philadelphia, USA adopted the first standard method for measuring interface shear strength 

(Smith and Criley, 1995).  

There are two types of stresses considered in interface shear testing.  

1. Normal stress, which act in a direction normal to the plane of cross section being 

considered. They are referred to as normal stresses or direct stresses. A normal stress in a 

body resists the tendency either to compress or elongate.  

2. Shear stress which act parallel to the plane being considered and are initialized when 

applied forces tend to cause the successive soil layers to slide over the surface of 

geomembrane.   
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2.3 Shear Testing of Interface using Direct Shear Box 

The direct shear box is a traditional device used to determine the shear strength of soils in the 

laboratory. The direct shear box consists of two square or rectangular boxes placed one above the 

other. The principle of direct shear box is very simple. A normal load N is applied to the top box 

to produce a vertical normal stress σ = N/A, where A is the cross-sectional area of the direct shear 

box.  A steadily increasing displacement, which causes an increasing shear force F, is applied to 

one half of the direct shear box, while the other half is restrained and equipped with a load 

measuring device. 

Similar to direct shear testing, if a mass of soil is made to slide on the surface of a 

geosynthetic while a load is applied normal to the sliding surface, a test similar to that described 

above can be carried out to determine the frictional characteristics of a geosynthetic- soil 

interface. This forms the basis of interface shear test which can be used to measure the angle of 

interface shearing resistance. 

The horizontal displacement of soil in the bottom half of the box relative to that in top half takes 

place gradually while the force F is increasing. Eventually a maximum shear stress (point B in 

Figure 2.1) is reached, which is termed the peak shear stress. After the peak, the shear resistance 

falls off as shown by region BC, at this stage it is considered that the failure of the interface has 

occurred.  
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Figure 2.1 Typical plot of shear stress vs. shear displacement obtained using a direct shear box 
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Generally, several tests can be carried out on the same soil-geosynthetic interface combination by 

varying the normal load and repeating the test, giving different values of normal stresses.  For 

each normal load, the maximum shear stress can be read off and plotted against the 

corresponding value of σn as shown in Figure 2.2. This graph generally approximates a straight 

line, with its inclination to the normal stress axis interpreted as the angle of interface shearing 

resistance (δ) and its intercept with the shear stress axis interpreted as the apparent adhesion (α). 
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Figure 2.2 Typical plot of shear stress vs. normal stress obtained from direct shear testing of geomembrane-

soil interface 

 

The interface relationship between interface shearing resistance, τ and normal stress σn can be 

represented as a linear Mohr- Coulomb type failure envelope:  

)tan(δσατ n+=           [Eq. 2.1] 

For interface shear testing, the above mentioned relationship is quite useful for most practical 

purposes and is most widely accepted failure criterion for the interface. The graph which it 

represents is known as the ‘failure envelope’ for the geomembrane-soil interface. 
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2.4 Peak and Residual Interface Shear Strength 

2.4.1 Peak Interface Shear Strength  

As explained earlier the peak interface shear strength is the maximum resistance offered by the 

interface that can be sustained on the surface of sliding. The angle of interface shearing resistance 

obtained by consideration of peak interface shear stresses is called the peak angle of interface 

shearing resistance. 

2.4.2 Residual Interface Shear Strength 

If shearing is continued after point ‘B’ as shown in Figure 2.2, the shear strength decreases 

rapidly from the peak value to eventually reach a steady state (ultimate) value (Point ‘C’ in 

Figure 2.2), which is maintained as the displacement increases. This shear strength which the 

interface ultimately reaches is known as the residual interface shear strength. The angle of 

interface shearing resistance obtained by consideration of residual interface shear stresses is 

called the residual angle of interface shearing resistance. 

2.4.3 Use of Peak and Residual Shear Strength in Design 

Gilbert and Byrne (1996) have mentioned that the peak interface strengths are mobilized at 1 to 

15 mm of displacements and post peak strengths can be as small as 30 % of peak strength. 

According to Leschinsky (2001), the logic of using the residual values in design is quite 

compelling because progressive failure is likely in geosynthetic reinforced structures due to the 

following reasons:  

• Strain levels developing in geosynthetics layers are non-uniform thus allowing non 

uniform deformations within the soil mass.  

• Strains can develop to significant values in ductile geosynthetics thus potentially allowing 

for large plastic strains in soil to exceed local values required to mobilize soil residual 

strength.  

• Geosynthetics are time-dependent materials and thus if a layer is overstressed relative to 

other layers, its creep strain rate will be larger than other layers allowing for non uniform 

mobilization of soil shear strength along the potential slip surfaces.  
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This means that while the soil is approaching its peak strength along portions of the potential slip 

surface, it would have exceeded its peak along other portions, potentially reaching its residual 

strength. If a ductile and time dependent reinforcement is used, such a situation is more likely to 

result. Hence, in such situations, it is recommended that residual values be used in design. 

Koerner (2003) summarized the following suggestions given by various researchers for use of 

peak or residual strength in design. These are listed from most conservative to least conservative 

approaches.  

1. Use of residual strength for all conditions (Stark and Peoppel, 1994). 

2. Use of residual strength of the interface having the lowest peak strength. This concept 

applies to multiple geosynthetic interfaces (after Koerner, 2003).  

3. Use of peak strength at the base and residual strength throughout the steeper side 

slope. (Jones et al. 2000). 

4. Use of peak strength at the top of slope and residual strength at the base of the slope 

(after Koerner, 2003).  

5. Use of peak strengths for all non-seismic conditions (Koerner, 2003).  

 

Koerner (2003) suggests that when using residual strength in design there is no likelihood at all 

of failure and so while such an approach is undoubtedly extremely conservative, it is 

unnecessarily so.   

2.5 Standards for the Determination of Interface Shear Strength 

Currently there are three standards in common use for interface shear testing procedures for 

geomembranes. Table 2.1 shows a detailed comparison of these three standards.  

 

• ASTM D 5321-92 (American standard) 

• BS 6906:1991 (British standard) 

• GDA E 3-8 1998 (German recommendation for landfill design). 

 

In North America, ASTM D 5321-92 is commonly used to determine interface shear resistance of 

geosynthetic and soils.  Under ASTM D 5321 square or rectangular boxes are recommended and 

they should have a minimum dimension that is the greater of 300 mm (12 inches) or 15 times the 
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d85  of the coarser soil used in the test. This box allows the user to test larger gradation of soils 

such as gravels for leachate collection systems or similar applications. It also enables the user to 

evaluate the mode of shear failure over a larger specimen area. The minimum depth of the box 

containing soil is recommended to be 50 mm or six times the maximum particle of the coarser 

soil tested, whichever is greater. However it is also mentioned that containers smaller than those 

specified earlier can be used if it can be shown that data generated by smaller devices contain no 

bias when compared to the minimum size devices specified earlier.  

 

Table 2.1 Comparison of British, North American and German standards for the determination of 

geomembrane-soil interface shear strength 

Standard BS6906:1991 
(British standard) 

ASTM D5321:2002 
(North American standard ) 

GDA E3-8 1998 
(German standard) 

Test apparatus  Direct shear box about 300 
mm square 

Direct shear box minimum 
300 mm square 

Direct shear box minimum 
300 mm square for 
geosynthetics without surface 
structure and 100 mm for fine 
grained soils 

Number of 
tests 
conducted 

9 tests in total (3 tests for 
each normal stress of 50, 
100 and 200 kPa) 

Minimum 3 tests at 3 different 
normal stresses (user defined) 

3 tests with3 different normal 
stresses and 2 repeating tests 
with the mean valuewhih 
should match expected normal 
stress insitu.  

Method of 
fixing 
geosynthetics 

Clamped or glued to rigid 
substratum 

Clamping outside shear area 
or gluing to a rigid substratum 

Recommendation about 
support and fixation depends 
on individual test case 

Shearing rate Geosynthetic/geosynthetic 
and geosynthetic/non 
cohesive soil, 2 mm/min 
Geotextile/ soil, variable 
rate depending upon 
drainage 

Geosynthetic/geosynthetic, 5 
mm/min if no material 
specification 
Geosynthetic / soil slow 
enough to dissipate excess 
pore pressures 
If no excess pore pressures 
expected 1mm/min 

Geosynthetic/geosynthetic and 
geosynthetic/non cohesive 
soil, 0.167 to 1 mm/min 
Geotextile/cohesive soil, 0.167 
mm/min 
Geosynthetic liner /cohesive 
soil 0.005 mm/min 

Location of 
materials in 
shear box 

Geosynthetic/ geosynthetic, 
rigid substratum 
Geosynthetic/soil , either 
rigid substratum, soil in top 
or bottom box 
Depth of soil layer not 
specified 

Geosynthetic/ geosynthetic, 
rigid substratum 
Geosynthetic/soil , 
geosynthetic supported by 
rigid substratum and soil in 
top or bottom box 
Depth of sand layer not 
specified 

Geosynthetic/ geosynthetic, 
rigid substratum 
Geosynthetic/soil , 
geosynthetic supported by 
rigid substratum  
Soil either in top or bottom 
box 
Depth of soil layer not 
specified 

Specific 
reporting 
requirements 

All plots and calculations 
Describe failure mode 

All plots and calculations Detailed report about test 
equipment, procedures and 
observations during testing 
about measured data and 
further evaluation 



 - 14 - 

Some researchers have used a 100 x 100 mm shear box for interface shear testing of smooth 

geomembranes and soils (Ling et al., 2001). The use of a 100 x 100 mm shear box can be 

justified because smooth geomembranes have a uniform surface structure as compared to other 

geosynthetic materials. Issues related to the effects of aperture and rib size, that are to be 

considered for geogrids, do not exist in a geomembrane.  The geomembrane can be placed in 

various ways depending on how well it represents field conditions. This usually involves 

clamping the geosynthetic specimen from one or both ends or gluing it to a rigid surface.  

2.6 Shear Strength Theory for Unsaturated Soils 

2.6.1 Shear Strength of Unsaturated Soils 

The shear strength theory of unsaturated soils is described here to provide an idea about how 

various factors contribute to shear strength under unsaturated condition. According to Fredlund 

and Rahardjo (1993) the shear strength of unsaturated soil can be formulated in terms of three 

independent stress state variables and any two of the three possible stress state variables can be 

used for the shear strength equation. The stress state variables (σ-ua) and (ua-uw) have been shown 

to be the most advantageous combination for practice. Using these stress variables, the shear 

strength equation for unsaturated soil is written as follows:  

b
waa uuuc φφστ tan)('tan)('' −+−+=        [Eq. 2.2] 

where σ = total stress; c’ = effective cohesion; ua= pore air pressure (normally zero as was 

assumed in this study for the reasons discussed  later); uw = pore water pressure; φ’ = the 

effective friction angle;  φb is the parameter indicating increase in shear strength, Δτ, per 

increment of suction, Δψ.   

The shear strength equation for saturated soil is a special case of the above equation. For 

an unsaturated soil, two stress state variables are used to describe its shear strength while only 

one stress state variable [i.e., effective normal stress (σ-uw)] is required for a saturated soil. 

 The shear strength equation for an unsaturated soil exhibits a smooth transition to the 

shear strength equation for a saturated soil. As the soil approaches saturation, the pore water 

pressure, uw approaches the pore-air pressure ua and the matric suction goes to zero. The matric 

suction component vanishes and the shear strength equation for unsaturated soil reverts to 

equation for a saturated soil.  
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The relative magnitudes of tanφ’ and tanφ b in the equation for shear strength of an unsaturated 

soil can be described by parameter β (Bishop, 1959):   

'tan
tan

φ
φβ

b

=              [Eq. 2.3] 

where β takes a value between 0 and 1 depending on the degree of saturation of the soil (β = 1 for 

fully saturated soil and β = 0 for dry soil). 

2.6.2 Extended Mohr-Coulomb Failure Envelope for Unsaturated Soils 

The Mohr’s circle corresponding to a failure condition for unsaturated soils, can be plotted in a 

three dimensional manner as shown in Figure 2.3. The three dimensional plot has the shear stress 

τ, as the ordinate and the two stress state variables (ua-uw) and (σ-uw) as abscissas. The frontal 

plane represents saturated soil where matric suction is zero.  

                                       

  

Figure 2.3 Extended Mohr-Coulomb failure envelope for unsaturated soils (Fredlund and Rahardjo, 1993) 

 

The Mohr’s stress circle for an unsaturated soil is plotted with respect to net normal stress axis 

(σ-ua), in the same manner as Mohr’s stress circles are plotted for saturated soils with respect to 

effective stress axis (σ-uw). However, the location of Mohr’s stress circle plot in the third 



 - 16 - 

dimension is a function of matric suction. The surface tangent to the Mohr’s stress circle at 

failure is referred to as the extended Mohr failure envelope for unsaturated soils (Fredlund and 

Rahardjo, 1993).  

The strength of unsaturated soils is affected differently by changes in normal stress than 

by changes in matric suction. The increase in shear strength due to an increase in net normal 

stress is characterized by the friction angle φ’ while the increase in shear strength caused by 

increase in matric suction is describe by angle φb. The value of φb is consistently equal to or less 

thanφ’ depending on the soil.   Fredlund and Rahardjo (1993) have described various soils from 

different locations that have value of φb that is consistently equal to or less than φ’. 

2.7 Factors/Mechanisms affecting Interface Shear Properties 

The total shear resistance along a geomembrane soil interface may be a result of one or a 

combination of following mechanisms: 

• Sliding 

• Adhesion 

• Rolling of soil particles 

• Interlocking of soil particles and geomembrane surface 

• Embedment of soil particles in geomembrane surface (plowing) 

• Suction 

 

The manner in which these mechanisms contribute to the interface shear strength of 

geomembrane-soil depends upon several factors described later. The identification of the mode of 

failure and understanding the relationship between test parameters selected and mode of failure is 

very important in predicting the behaviour of geomembrane soil interaction in field. Following 

are the factors that influence geomembrane soil interface shear behaviour.  

2.7.1 Normal Stress 

It has been observed that the strength envelope for many soils and geosynthetics is curved over a 

wide range of normal stresses (Figure 2.4). Even if the tests are conducted over a wide range of 

normal stress, the selection of design parameters is critical. For the data presented in Figure 

2.4(a), the test results indicate a non linear response of shear stress versus normal stress. 



 - 17 - 

Selection of different failure envelopes will result in different values of friction angles. For 

instance selection of no (1) provides a reasonable fit to the data at high pressures but severely 

overestimates the low-pressure response. Selection of No (2) provides a reasonable fit to the data 

at low pressures but severely overestimates high pressure response. For these data a bilinear 

envelope using No (1) and No (2) would reasonably approximate the actual laboratory response. 

If the designer dos not recognize the bilinear fit or the curved envelope, a best fit straight line 

through all data points may be justified.  Hence data obtained for one specific application using a 

selected range of normal stresses can not be reliably used for a different application. For instance 

if data used for the design of a cap or landfill cover were used in design of base liner an 

unconservative design might result.  

Dilation or contraction of soil particles takes place depending on the magnitude of normal 

stress. Koutsourais et al. (1991) reported that the dilation of soil under low normal stresses results 

in an increase in interface friction between the layers. Hence, geosynthetics that promote dilation 

at the interface exhibit greater interface friction under low normal stresses. Williams and 

Houlihan (1986) suggested that dilation is the primary component of interface friction and that 

highest interface friction angles are developed between layers where a significant amount of 

dilation occurs. Jones and Dixon (1998) mentioned that in general for an interface test, the test 

parameters define the failure envelope only for the range of normal stress tested and extrapolation 

of friction angle and adhesion outside the range may not be a good design practice. Furthermore 

the designer should recognize that the strength parameters ‘a’ and ‘φ’ are only mathematical 

expression of test results. These must not be viewed out of the context of the tested normal stress 

range.  

  

(a) Linear approximations (b) p-order hyperbolic curve 
Figure 2.4 Non-Linear shear strength response and various fitting methods (after Giroud et al. 1992) 
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2.7.2 Soil Compaction Conditions 

Soil compaction conditions involve the compaction moisture content and density. For a given 

compactive effort and dry density, clay tends to be more flocculated for compaction   when 

compacted dry of optimum moisture content  as compared to compaction at higher moisture 

content on wet side (Lambe and Whitman, 1969). Increasing moisture content tends to increase 

interparticle repulsion permitting a more orderly arrangement of soil particles to be obtained. The 

permeability of cohesive soils that are used in landfills is controlled mainly by moisture content 

and dry unit weight at the time of compaction. According to Swan et al (1991), since 

permeability and shear strength of cohesive soils are affected by compaction conditions, it should 

be expected that the shear strength at the interface involving cohesive soils and geomembranes 

will also be affected by compaction conditions.  

Seed and Boulanger (1991) conducted interface shear testing on various HDPE 

geomembrane- clay combinations. They found that as compacted friction angles for those 

interface combinations can change by a factor of two as a result of minor variations in density 

and water content. Ellithy and Gabr (2000) have observed that for as-compacted interfaces the 

increase in moisture content leads to a decrease in shear strength. Swan et al. (1991) conducted 

testing on soil and geomembranes by varying the water content and dry unit weight in each test. 

They found that the peak shear stresses increased with the increase in water content and increase 

in dry unit weight.  

Mitchell et al. (1990) tested various interface combinations and found that presence of 

water affects the behaviour of interfaces considerably.  They classified the interfaces as wet and 

dry. The wet interface consisted of soil compacted at optimum moisture content and then placed 

in water and allow to swelling for 24 hours prior to testing. The dry interfaces consisted of soil 

which was compacted at optimum moisture content and without soaking. They observed a 

considerable decrease in interface shear strength in the case of wet interfaces. Simpson (2000) 

suggests that no assurance can be made that the interface will remain dry, and therefore tests 

should be conducted in saturated conditions. Many researchers as mentioned above have reported 

a significant influence of compaction conditions on interface shear strength and hence the 

interface testing program should be selected such that it covers an appropriate range of 

compaction conditions in addition to all other important test variables. 
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2.7.3 Rate of Shear Displacement 

There are different views regarding the selection of the appropriate rate of shear displacement 

and its effect on the interface shear strength. Bemben and Schulze (1993) stated that the effect of 

the displacement rate is significant. They found that high rates of displacement (60 mm/hr) 

together with flooded conditions produces large peak shear stresses for the glacial till and smooth 

HDPE interface. However they did not give any opinion regarding the effect of the displacement 

rate in the case of residual stress. 

Fisherman and Pal (1994) tested the interface for smooth geomembrane and compacted 

clay (glacial till). They found that the interface shear behaviour within a range of rate of 

displacement of 0.3 mm/hr to 0.9 mm/hr does not change appreciably. However this was not the 

case for a textured geomembrane interface. Fisherman and Pal (1994) recommended that 

extremely low rates of shear displacement, in the order of 10-3 mm/hr, or the use of thin clay 

samples in contact with the smooth HDPE interface, should be employed to achieve drained 

conditions.  

      ASTM D 5321-92 specifies the rate of displacement for interface shear testing as 0.016 

mm/hr (1mm/min.). This rate is intended for inter laboratory comparison purposes. However a 

displacement rate that best matches the anticipated field conditions should be selected. For 

interface shear testing when truly drained conditions are desired a considerably slower rate may 

be required. Bove (1990) stated that for applications where geomembranes are used, 

geomembranes may prevent soil drainage and hence the tests should be conducted in undrained 

conditions.  For the reasons listed above, the interface shear testing involving a cohesive soil is 

generally performed under undrained conditions. Selecting the appropriate rate of displacement 

can make it possible to conduct the smooth HDPE/clay interface shear testing in either drained or 

undrained conditions. Due to this it is expected that variation in rate of displacement may 

produce different shearing response especially for smooth geomembrane-cohesive soil interfaces.  

2.7.4 Consolidation 

In many cases the critical interface is the one involving the soil (i.e. compacted clay). According 

to Gomez and Filz (1999), a significant increase in the interface strength may take place during 

the consolidation of clay layer in a composite liner. In the field, the consolidation of liner may 

take place under the imposed loads and this may substantially increase the interface shear 
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strength. Gomez and Filz (1999) further stated that during interface shear testing, the thixotropy 

of clay may induce a significant increase in the interface shear strength with time and this effect 

is more pronounced at higher compaction water contents. This thixotropic strength gain 

(comparative increase in the shear strength of clay geomembrane interface that is shared some 

time after compaction and application of normal load compared to the interface sheared 

immediately after compaction) may be important for interpretation of the results of testing 

programs in which interface shear tests are performed at different times after compaction of the 

clay specimens.  

Swan (1999) reported that the effect of consolidation is more for the residual shear 

strength compared to the peak shear strength of the smooth geomembrane-clay interface. 

Fisherman and Pal (1994) stated that the shear displacement required to reach peak shear stresses 

is extremely small for clay-smooth HDPE interfaces and is of the order of 0.25 mm. Due to this 

reason, it is difficult to attain drained conditions during shear for interfaces involving clay having 

low coefficients of consolidation.  

Conducting an interface direct shear test immediately after applying the normal stress 

(unconsolidated loading) would potentially simulate the relatively rapid placement of waste 

during landfilling operations. Allowing the clay to consolidate under the imposed normal load 

before conducting the interface test can model the long term response of the liner.  It should be 

noted that it is not possible to guarantee and control whether the specimen is fully consolidated or 

not during interface shear testing.  

2.7.5 Type of Geomembrane 

The interface shear strength is obviously influenced by the type and essentially roughness of 

geomembranes with rough surfaced geomembranes having higher values of interface friction as 

compared to geomembranes having smooth surface. The overall stability of a given structure is 

governed by the strength of the weakest interface. In order to avoid the situation in which the 

geosmembrane interface represents a preferential failure surface, it would ideally be desirable 

that interface friction angle would be equal to or greater than the friction angle for soil itself. In 

order to approach such a condition, geomembrane manufacturers have developed textured 

geomembranes (geomembranes having sprayed or extruded textured surfaces) so that failure 

surface is moved slightly away from the polymer interface and passes through the soil. Dove et 

al. (1997) studied granular soil-geomembrane interface by quantifying the geomembrane 
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roughness in terms of RS, a three dimensional surface roughness parameter   defined as ratio of 

actual surface area to the nominal surface area. They defined a parameter called ‘interface 

efficiency’ as the ratio of peak interface friction angle to the peak soil friction angle. An 

‘interface efficiency’ of 1 indicated interface strength being equal to the internal friction angle of 

the soil. They found that as the roughness of geomembrane is increased the strength increased up 

to a limiting value of roughness corresponding to roughness required to achieve full efficiency.  

Textured geomembranes comes in various types such as textured–one-side and textured-

both -sides. The frictional resistance for a textured geomembrane having textures on both sides is 

highest. While such textured products are useful in this regard, they have a number of 

disadvantages, particularly during construction and installation like difficulty in seaming the 

geomembranes particularly at a location different than edge of original roll, less puncture 

resistance etc. Further, in many cases the tensile strength and puncture resistance of a blown film 

geomembrane is 50% or less than that of a smooth geomembrane (Von Pein and Lewis 1991). 

This reduction is less compared to a geomembrane having texture only on one side. Because of 

this, smooth geomembranes continue to be more widely used.  

There are also disadvantages in using textured geomembranes in construction due to the 

increased difficulty of working with textured products and the necessity to grind the textures 

when seaming is to be carried out at locations other than the edges of the original roll. All of 

these conditions continue to increase the installation cost of a textured geomembrane by $ 0.50 to 

$ 1.00 per m2 compared with a smooth geomembrane.  

2.7.6 Effect of Hardness of Geosynthetic Polymer 

O’Rourke et al. (1990) conducted the interface shear tests on sand and geomembranes with the 

aim of investigating the effect of the hardness of the polymer on interface friction. They tested 

HDPE, polyvinyl chloride (PVC) geomembranes and pipes. From observation of the surfaces 

using Scanning Electron Microscope (SEM) before and after shearing, they found that hardness 

plays a very important role in development of interface shear strength. They concluded that the 

interface shear strength decreases as the hardness of the polymer increases.  

The critical stress is the minimum amount of normal stress after which plowing occurs on 

the surface of geomembrane. The magnitude of critical stress is governed by the hardness of 

geomembrane and the nature of particles of the soil. The mechanism of particle movement at the 

interface is directly determined by the magnitude of normal stress relative to the critical stress, 
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which, in turn, is determined by the hardness of the surface. When the normal stress is less than 

the critical stress, sliding without damage to the surface is the primary mode of failure. When the 

stresses at the particle contacts are greater than the critical stress, particle motion along the 

surface involves both sliding and plowing. Plowing occurs when the normal stresses at the 

surface exceeds the critical stress. This forces the particles to penetrate the surface and remove 

material from the surface during translation. When plowing occurs in addition to sliding, an 

increased force is required to displace the soil relative to the surface, resulting in an increased 

interface friction. The amount of plowing or abrasive wear is a function of both surface hardness 

and shearing distance (Dove and Frost 1999).  

2.7.7 Effect of Shape of Soil Particles 

Vaid and Rinne (1995) conducted research on geomembrane and sand interfaces using a ring 

shear apparatus. They studied the influence of particle shape, confining pressure and relative 

displacement on the interfaces.  They used smooth, textured HDPE and PVC geomembranes and 

did a quantitative assessment of surface texture using a profilometer. They found that the friction 

mobilized at sand-geomembrane interface is governed by the angularity of the sand and it is 

comparatively more for sand with higher particle angularity. 

According to O’Rourke et al. (1990) the tendency of soil particles to induce wear on a 

surface is governed by the applied normal load and the physical and mechanical properties of the 

interface materials. Further angular particle exhibit large contact stresses resulting in greater 

interface friction angle. It seems obvious that the interface shear strength will be greater in the 

case of rough particles as compared to smooth ones. Zettler et al. (2000) mentioned that as 

particle angularity increases the interface shear strength along geomembrane interfaces also 

increases. This may be due to plowing of the particles in the surface of the geomembrane.  

2.7.8 Plasticity Index of Soil 

Ling et al. (2001) conducted some interface testing on PVC geomembranes using clays with 

different plasticity indices ranging from 35 to 100 %. They found that with increase in plasticity 

index up to a value of 70 %, the interface friction angle increases and beyond the plasticity index 

value of 70% the interface friction angle decreases. The soil surface may have a good interaction 

with smooth geomembrane depending upon the plasticity of soil and this may influence the shear 

behaviour of smooth geomembrane-soil interfaces.  
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2.7.9 Effect of Test Set-up 

The test set up is also found to influence the results obtained by an interface shear test. Blumel 

and Stoewahse (1998) analyzed test results obtained using different types of shear devices 

including devices with a completely fixed upper box (with vertical and horizontal support) and 

devices with only a horizontally supported upper box. Figure 2.5 shows a direct shear test set up 

having horizontally supported upper box. In this type of test set up, tilting of the load plate or the 

tilting of the upper box may occur as shown in the Figure 2.5. The type of direct shear test set-up 

shown in Figure 2.6 has a completely fixed upper box.  In this type of test set-up, the tilting of 

upper box may not take place but the tilting of loading plate may occur. Further vertical friction 

stresses can occur along the inner walls of the upper box which can lead to a reduction of the 

average vertical stress in friction interface.  

 

 

Figure 2.5 Interaction forces, stresses and deformations occurring in case of shear device with horizontally 

supported upper box. (Blumel and Stoewahse 1998) 

 

Blumel and Stoewahse (1998) found, based on limited data for shear devices with horizontally 

supported upper box, that the friction stresses measured in tests with a fixed upper box are higher 

than those obtained from tests in devices with only horizontally supported upper box. 

Another important aspect of test set up is the anchoring method of geomembrane. The 

geomembrane can be anchored to one side of box or it can be allowed to free float. Both of these 

methods are common. The free floating method, however, can introduce some non conservative 
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errors. As one box slides relative to geomembrane, portions of geomembrane can be compressed. 

Under these circumstances the stress state of the interface is unknown and the data is difficult to 

interpret. This stress state is rare in field, especially under slopes and this phenomenon can lead 

to serious scale effects in the laboratory (Smith and Criley, 1995). For interface shear tests 

involving smooth geomembranes, gluing of geomembrane to a rigid substratum is widely used 

practice (Ling et al., 2001, Mitchell et al., 1990, Gomez and Filz, 1999).  

 

 

Figure 2.6 Interaction forces, stresses and deformations occurring in case of shear device with fixed upper 

box. (Blumel and Stoewahse 1998) 

 

In general, the test equipment and set up affect the characteristic of stress versus displacement 

curves, and the magnitude of peak stresses. Hence it is recommended that the test set up and 

equipment should be in accordance with the expected situations at the site as well as possible. 

The method of load application and its effect should always be considered when carrying out 

interface shear tests.  

2.8 Pore-water Pressure Aspects of Interface Shear Testing 

Jones and Dixon (1998) mentioned that the testing of interface is complicated due to the presence 

of pore pressures at the interface during shearing. These pore pressures may be positive or 
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negative (suction) and they can increase or decrease effective stress at interface thus making the 

assessment of interface shear strength more difficult. 

According to Fisherman and Pal (1994), the failure plane must pass through the soil 

material at or near the interface. They mentioned that the effective stress in the soil depends on 

the drainage conditions. During the drained test, the pore water pressure remain close to zero 

during the shear and deformations are compressive similar to those for the clay alone. During 

undrained shear testing of a textured geomembrane and clay a dilative response is observed. Due 

to lack of drainage and the tendency for dilation, a reduction in pore pressure occurs near the 

interface.  This results in a tendency to increase the effective confining pressure which in turn 

results in increase in interface shear strength. 

 According to Bemben and Schulze (1995), initial suction can develop with in a wet clay 

specimen (at low water contents) either at the end of setup (set up includes fabrication actions, 

consolidation and shearing actions) or at the end of consolidation and can be maintained during 

shearing.  The creation of suction (negative pore pressures) is accompanied by the formation of 

menisci at the air boundary surface of soil specimen due to absence of free water at the interface. 

The form of this suction is same as self created capillary state in a fine grained soil located above 

water table. Bemben and Schulze (1995) further predicted that for the tests that are conducted 

under unsaturated conditions, absence of free water at the boundaries promotes initial suction 

prior to and during shearing. They warned that initial capillary suction may affect the values of 

failure stresses obtained by such tests.  Further if proper judgement is not used, interpretation of 

test results may lead to unconservative design.   

The effect of this suction can be offset by using a sufficiently slow rate of displacement. 

Bemben and Schulze (1995) did not measure this suction and suggested that suction effects can 

be offset by making sure that the test is conducted under flooded boundary conditions and with a 

high degree of saturation. They further suggest that ASTM D5321-92 as it applies to fine grained 

soil/geomembrane testing is not adequate as it does not addresses the existence and effects of  

initial suction and suction observed during sliding on test results. 

It is noteworthy that no attempt was made to measure the pore pressures that may be 

developed during interface shear testing. The pore pressure controls the magnitude of effective 

normal stress and they may play an important role in mobilization of interface shear strength.  
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2.9 Summary 

A significant amount of research work has been carried out on direct shear testing of soil-

geomembrane interfaces during past 15 years. The interface shear strength of geomembrane and 

soils is controlled by the factors discussed above. The interface friction angle is more sensitive to 

some of these factors compared to others. Many researchers have conducted the interface shear 

testing under as compacted (unsaturated) conditions. However they have used principles of 

saturated soil mechanics to interpret the results of these tests. Most of the researchers have 

emphasized the importance of conducting the interface shear testing to represent the field 

conditions as close as possible. However a detailed review of published literature on 

geomembrane-soil interface shear testing has revealed that there has been no previous attempt to 

measure pore water pressure at or near the geomembrane-soil interface. It is therefore not 

surprising to see that interface shear test results are interpreted in terms of total stress space 

instead of effective stress space.  

With this in mind the thesis attempts to find the role of pore pressures developed on 

interface shear strength of smooth geomembrane and soils. Further a comparison of the results 

interpreted in terms of total stress space and effective stress space and using unsaturated soil 

mechanics principles is also made. Because the interface involves geomembrane and this might 

introduce many complications in application of soil mechanics principles.  Hence the possibility 

of additional mechanisms that may control the interface shear behaviour of geomembrane-soil 

interfaces is also taken into consideration.  
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Chapter 3 Materials and Laboratory Testing Program 

3.1 Introduction 

Chapter 3 presents the details about the materials that were used for this study. It also describes 

the testing program carried out. The testing program includes the tests carried out on soil, soil 

geomembrane interface including the tests conducted with and without pore pressure 

measurements. The tests conducted without pore pressure measurements were used for 

determining the effects of various factors on shear behaviour of geomembrane-soil interface. A 

portion of chapter 3 is devoted to the equipments used in the testing program and the 

modification of these equipments to suit the testing requirements. The experimental set up is also 

described.   

3.2 Scope of the Testing Program 

In the present study the interface shear testing was carried out for various interfaces shown in 

table. The tests were conducted with and without measurement of pore pressures. The tests with 

pore pressure measurement were conducted using a modified direct shear box with a miniature 

pore pressure transducer (called as PPT hereafter) installed adjacent to the surface of the 

geomembrane. The working principle of the PPT and its usage is described later in this chapter. 

The interface shear tests were carried on smooth geomembrane and various types of soils.  The 

soils used in the testing program included sand bentonite mixture having 3 % and 6 % bentonite 

(in combination with Ottawa sand), sand and artificial sandy silt mixture (described in detail later 

in this chapter). Tests were conducted without pore pressure measurements. This was to 

determine the effects of various parameters on interface shear behaviour. Total of 8 tests were 

conducted on silty sand interface with pore pressure measurement and a number of tests were 

conducted on sand bentonite mixture- geomembrane interface. In addition to this dry and 

saturated tests on each type of soil were also carried out. 
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3.3 Materials Used 

3.3.1 Sand-Bentonite Mixture 

A sand bentonite mixture was used having 3 % and 6 % bentonite in combination with Ottawa 

sand.  The grain size distribution for these materials is as shown in the Figure 3.1. 
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Figure 3.1 Grain size distribution for 3% sand bentonite mixture and 6% sand bentonite mixture 

3.3.2 Artifical Silty Sand Mixture 

A common requirement for the soil component of liner is that it should have a hydraulic 

conductivity of 1 x 10 -7 cm/sec. or less. According to Ellithy and Gabr (2000), this requirement 

is usually met by soils that have at least 20 % fines (fine silt and clay sized particles).  It is well 

known that the variation of properties in natural soils is very large and thus artificial soils were 

used in this study. In order to effectively vary suction by varying the moisture content during 

compaction, it was necessary to select a soil for which the suction-moisture content relationship 

(i.e. the Soil Water Characteristic Curve or SWCC) exhibits a gradual increase in suction with a 

decrease in moisture content, thus avoiding any sharp changes across the range of suctions of 

interest (0 to 50 kPa). Therefore, the grain-size distribution of the soil was adjusted using the 

procedure suggested by Fredlund et al. (2002) until a soil that exhibited the SWCC described 

above was obtained.  
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The grain-size distribution of the selected soil is shown in Figure 3.2. The final silty sand mixture 

is a mixture of seven different soils. All soils were taken in appropriate proportions and mixed 

thoroughly in order to get a uniform soil mass of 10 kg. Table 3.1 shows the percentage of each 

soil used in the final soil mixture. It can be seen from Figure 3.2 that the soil contained 

approximately 65% sand-sized particles and approximately 35% silt-sized particles. 

 

Table 3.1 Percentage of various soils used to make the silty sand mixture 

No. SOIL % by 

weight

1 Ottawa Sand 10 

2 Natural Sand 15 

3 Silica Sand 14 

4 Marshal Blender 14 

5 98102 Binder 17 

6 Silt 20 

7 Indian Head Till 10 
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Figure 3.2 Grain size distribution curve for the silty sand mixture and sand 
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Based on the grain size distribution, the proposed soil it is classified as silty sand. The index 

properties of the silty sand are as shown in the Table 3.2. The maximum dry density for the silty 

sand mixture was found to be 2022 kg/m3 at optimum moisture content of 11 % (using Standard 

Proctor test in accordance with ASTM D698-00ae1, 2000). 

 

Table 3.2 Grain size distribution curve for the silty sand mixture and sand 

Liquid limit (LL) 16.54 % 

Plastic limit (PL) 12.04 % 

Plasticity index (PI) 4.5 % 

3.3.3 Geomembrane 

The geomembrane used in the present study was a 60 mil (1.5 mm thick) non-textured, high-

density polyethylene (HDPE) geomembrane   manufactured by GSE Inc., Houston TX, USA. 

3.4 Measurement of Soil Suction 

One of the purposes of this study was to investigate the role of soil suction on interface shear 

behaviour. There are various soil suction measurement devices, which have been broadly 

categorized into two methods: direct and indirect. Some examples of the direct method of 

measuring soil suction are tensiometer and the null type pressure plate. Examples of indirect 

measurement devices are the filter paper technique and the thermal conductivity sensor (Fredlund 

and Rahardjo, 1993).  Two of the most common devices for direct measurement of soil suction 

are tensiometers and miniature pore pressure transducers (PPT). The direct measurement of soil 

suction is usually preferred as measured pore water pressures are more rapidly reflected (Meilani 

et al., 2002). The response time for a brand new tensiometer under favourable soil conditions can 

be about 30 minutes (Taber, 2003). Further it was not practical to employ filter paper technique 

for measuring suction changes inside a direct shear box closer to the interface.   

3.4.1 Tensiometers 

It is possible to measure suction near the interface using a tensiometer. However, the use of a 

tensiometer has several drawbacks. The tensiometer holds a large amount of water that needs to 

be exchanged between soil and tensiometer in order to reach equilibrium and several hours may 
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be required for stable pore pressure measurements. The amount of water exchanged between the 

soil and the tensiometer can affect soil sample moisture content in the vicinity of the porous cup 

of the tensiometer. Preliminary trials were made using a tensiometer and this equipment was not 

found to yield a sufficiently rapid response.  

3.4.2 Miniature Pore-pressure Transducer (PPT) 

Miniature PPTs are commonly used in geotechnical applications for the measurement of positive 

pore pressure and soil suction.  Figure 3.3 shows a longitudinal cross section of the miniature 

PPT (Type PDCR81 manufactured by Druck Corporation, USA).  It consists of a 0.09 mm thick 

single crystal silicon diaphragm that has a fully active strain gauge bridge diffused into its 

surface. A high air-entry porous stone is placed at the tip of the transducer just overlying the 

diaphragm. One side of diaphragm is exposed to atmosphere via the transducer cabling while the 

other side is exposed to the pore water via the porous stone at the tip of transducer.  The space 

between the porous stone and the diaphragm forms a water compartment. The deformation of the 

diaphragm causes a change in voltage measured across the strain gauge that is equated to 

pressure. 

Miniature PPTs are frequently used in various geotechnical applications particularly in 

centrifuge modelling for measuring the positive pore pressures in saturated soils (e.g. Sharma and 

Bolton, 1996). They are also used in triaxial testing of unsaturated soils to measure matric suction 

along the height of soil specimen (Meilani et al. 2002). They have also been successfully used to 

measure matric suction in silts (Murleetharan and Granger, 1999).   

 

 

Figure 3.3 Miniature Pore Pressure Transducer PDCR 81 (Murleetharan and Granger 1999). 
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The small size of the PPT is ideal for this application.  It has a quick response time since a very 

small amount of fluid is required to be exchanged between the water compartment of PPT and the 

surrounding soil. Considering the disadvantages associated with tensiometers, it was decided to 

use a miniature pore pressure transducer to measure soil suction close to the geomembrane soil 

interface. 

3.4.3 Working Principle of Suction Measurement using a PPT 

The principle of making suction measurements using a PPT is based on the equilibrium between 

the pore pressure in the soil and the pore water pressure in the water compartment of the PPT.  In 

a saturated soil specimen, the positive pressure causes the flow of water from the soil into the 

water compartment of the PPT, which in turn causes the diaphragm to deform (Figure 3.4). In an 

unsaturated soil specimen, before the equilibrium is attained, negative pressure causes the water 

from water compartment in the PPT to flow into the soil (Figure 3.4). 
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Figure 3.4 Use of PPT in Saturated/Unsaturated soil 

 

The PPT must be saturated and calibrated prior to use to measure soil suction. It is critical to keep 

the water compartment of the PPT completely filled and the ceramic disc fully saturated for 

accurate measurements. The method of saturation and calibration of the PPT is described in later 

sections.  One of the main limitations of a miniature PPT used is that it can only be used for fairly 

low suction ranges (typically < 50 kPa).  It loses accuracy and response time as pore-water 

pressure approaches –100 kPa because of the cavitation of pore water.  
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3.5 Details of Testing Program 

3.5.1 Direct Shear Box 

The interface shear tests were conducted at the Geotechnical Engineering Laboratory of the 

University of Saskatchewan using a conventional direct shear apparatus (Clockhouse Engineering 

Ltd. England, Type-K12).  A square base direct shear box (100 mm x 100 mm) split horizontally 

at mid-height was used. The total height of the box was 79 mm. Normal stress is applied by 

placing dead weights on a hanger.  Vertical and horizontal displacements are monitored using 

two Linear Variable Differential Transformers (LVDTs).  The rate of shear displacement can be 

accurately controlled between 0.32 and 48.5 mm per hour. The direct shear box is capable of a 

maximum shear displacement of 14 mm. 

Although ASTM D5321-02 (ASTM, 2002) recommends a shear box having base 

dimensions of 300 mm x 300 mm, the use of the box described above can be justified based on 

the fact that only a non-textured, smooth, geomembrane was used in the present study.  Non-

textured geomembrane has a homogenous surface structure compared to other geosynthetic 

materials such as geogrids or geonets. Therefore, it is reasonable to assume that the scale effect of 

using a smaller direct shear box is likely to be negligible as the effects of aperture rib and size do 

not apply to smooth geomembranes. Further a 100 mm X 100 mm box is adequate for testing fine 

grained soils in contact with non textured geomembranes (Ellithy and Gabr, 2000, Fisherman and 

Pal, 1994). Most importantly, the purpose of the study was to investigate the pore pressures that 

are developed at the interface rather than to carry out “standard” testing.  

Prior to its use in interface shear testing, the direct shear box was calibrated to measure 

the friction between the upper and the lower boxes. Such calibration was necessary because of 

the low values of shear stress expected for the geomembrane–soil interface.  The shear stress 

value corresponding to the friction between the upper and the lower boxes was subtracted from 

the measured interface shear stress values to obtain the correct interface shear stress values.  

3.5.2 Modifications to the Direct Shear Box 

The direct shear apparatus was modified in order to make it suitable for geomembrane-soil 

interface shear testing as well as to include a miniature pore pressure transducer for the 

measurement of pore-water pressures in close proximity to the geomembrane-soil interface 

during testing. A schematic cross-section of the modified direct shear box is shown in Figure 3.5.  
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Figure 3.5 Set-up for the interface shear testing with PPT in place 

 

An acrylic (Plexiglas®) block was used to hold the upper surface of the geomembrane at the 

elevation of the shearing surface.  The geomembrane specimens were cut to 100 mm x 100 mm 

and glued to the top of the acrylic block.  The height of the acrylic block-geomembrane assembly 

was 38 mm.   

Various methods have been suggested for keeping geosynthetics in place during shearing 

including clamping (Fox et al., 1997) and gluing (Ling et al., 2001).  Clamping was avoided as 

clamping may increase the likelihood of a progressive failure and thus reduce the measured peak 

interface shear strength (Fox et al., 1997).  In the present study, for simplicity and in order to 

minimize the potential for any movement of the geomembrane during shearing, the geomembrane 

specimen was glued to the acrylic block.  Contact cement (LePage Prestite®) was used and based 

on the recommendations of Stark and Poeppel (1994), the acrylic block with glued geomembrane 

was kept under compressive stress for 24 hours to ensure proper bonding.  Application of 

compressive stress for 24 hours also helps to reduce elongation of the geomembrane during 

shearing and encourages a sliding type of failure (Bove, 1990).  The acrylic block-geomembrane 

assembly was stored away from sunlight and dust prior to testing.   

The acrylic block-geomembrane assembly was mounted in the lower half of the shear box 

and oriented so that the shear displacement was applied along the roll direction.  The soil to be 

used in the testing was placed at the desired moisture content into the upper half of the shear box 

immediately over the geomembrane surface.  A 40 mm x 40 mm square tamper was used to 

compact the soil to the desired density. Samples were examined for the presence of surface 



 - 35 - 

irregularities and those samples that exhibited visible defects or irregular surface features were 

discarded.   

Again, it should be noted that, while the approach taken in this study may not perfectly 

replicate the stress conditions in the field, the purpose of the study was to investigate the role of 

soil suction rather than to carry out “standard” testing. Figure 3.6 shows step by step illustration 

of the interface direct shear test setup.  

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 3.6 Step-by-step illustration of the interface shear test set-up: (A) Empty lower box in place; (B) Lower 

box with geomembrane glued on a plexiglass block; (C) Upper box in placed properly over the lower box; (D) 

Upper box with soil compacted on surface of geomembrane 

3.5.3 Placement of PPT in the Direct Shear Box 

In order to accurately measure the pore pressure at the interface, the transducer should be kept 

inside the direct shear box as close to the interface as possible.  For this purpose, a new load plate 

was fabricated that was similar to the load plate of the direct shear box.  A 6 mm diameter hole 

was drilled through the load plate as close as possible to the centre, to facilitate insertion of the 

transducer (Figure 3.7). 
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Figure 3.7 Modifications done to the load plate for the insertion of PPT 

 

Once the soil was compacted to the desired density, a hole was made through the soil to the 

surface of geomembrane (with a small layer of soil left just above the surface of geomembrane) 

and the miniature PPT was inserted through this hole.  The hole was backfilled with soil and 

recompacted once the PPT was installed at the interface as shown earlier in Figure 3.5. The data 

obtained from PPT was recorded by a data acquisition system. The values were recorded at 10 

seconds interval. The PPT was found to be quite sensitive to the changes in pore pressure.  

3.5.4 Saturation of the PPT 

The PPT tip was saturated using a procedure suggested by Take and Bolton (2003). The PPT is 

saturated in a small steel pressure cell.  The pressure cell is connected to a vacuum pump and 

filled with deionised, de-aired water up to 75% of its volume.  The PPT is air-dried and inserted 

into the cell, sealed and a vacuum of 90 kPa is applied. The transducer takes about 30 minutes to 

be in equilibrium with the vacuum. Once the transducer is in equilibrium with the cell, the cell is 

rotated through 90º slowly introducing water to the porous stone while still under vacuum. The 

transducer was kept in this position for about 2 hours at 90 kPa vacuum (Figure 3.8).   
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Figure 3.8 Saturation of the PPT. (a) de-airing of water and evacuation of chamber; (b) saturation (After 

Take and Bolton, 2003) 

3.5.5 Calibration of the PPT 

The PPT was calibrated prior to its use using the same pressure cell in which the PPT was 

saturated. The pressure was applied with 10 kPa increments and the corresponding voltage 

change was noted. Both positive and negative pressures were applied. The calibration curve was 

found to be linear and repeatable, confirming that the PPT was in a good working condition.  

3.5.6 Establishing Equilibrium Time of the PPT 

Equilibrium is considered when the saturated PPT placed inside soil gives a fairly constant 

reading that is equal to the pore pressure of the soil. The response of the miniature PPT was 

tested for soil at various water contents and densities. This included the time for which it stays at 
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equilibrium, once it is kept in soil or at the interface.  It was found that the PPT had a different 

equilibrium time when placed in soil samples of different moisture contents.  The time required 

to reach equilibrium was a function of volume and velocity of flow. In general, with less moisture 

content, the time to equilibrium was also less. This may be because at higher water contents there 

is decrease in pressure gradient across the porous tip and a corresponding decrease in flow 

volume. This results in corresponding increase in time to reach equilibrium.  For water contents 

of 6 % and 13 %, the time at equilibrium was found to be 440 minutes and 1400 minutes, 

respectively. 

3.6 Testing Procedure 

Direct shear testing was carried out on the various soils used (soils only) as well as on the several 

soil/geomembrane interface combinations. Each test series was performed under 4 normal 

stresses of 5, 12, 20 and 30 kPa. This range of normal stresses is representative of the range of 

normal stresses commonly encountered in landfill cover systems, lagoon liners and other 

common applications.  

3.6.1 Selection of Geomembrane Specimen 

It was very important to carefully select the geomembrane specimen to be as uniform as possible 

and representative of the geomembrane material to be tested. This reduces the potential for biased 

test results caused by significant differences in the properties of the specimens. The general 

condition of the geomembrane specimen should be carefully noted and recorded before and after 

direct shear testing (Bove, 1990).  The following items, as suggested by Bove (1990), were 

checked and recorded for geomembrane specimen before and after the test: 

• Inspection of geomembrane surface for abrasion and any pattern of abrasion 

• Sign of elongation or other damage 

• Development of wrinkles 

• Embedment of soil particles 

• Differential movement between geomembrane and contact surface 

• Excessive deformation at edges 
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The geomembrane specimen was stored away from sunlight and was protected from dust. Each 

geomembrane specimen was sheared in the roll direction. This takes into account the variation in 

the friction values associated with manufacturing.  

3.6.2 Interface Shear Testing under Saturated Conditions 

For testing under saturated conditions, the soil at given moisture content was compacted over the 

geomembrane specimen to a specified density. A 4 cm X 4 cm square tamper was used to 

compact the soil. Water was then slowly poured into the water holder surrounding the direct 

shear box.  This was considered an effective procedure for saturating the soil. After this, the PPT 

was installed (as described in section) and shearing was started once the equilibrium between the 

miniature PPT and the surrounding soil was established. The equilibrium was considered to be 

established when the PPT started reading same value of suction over a long period of time. 

3.6.3 Interface Shear Testing under Unsaturated Conditions 

For testing under unsaturated conditions, the soil was compacted over the geomembrane 

specimen using same method to achieve the specified density and moisture content. For each of 

these tests, the PPT was installed (as described in section) immediately after compaction of the 

soil. Shearing was started only after establishing equilibrium between the miniature PPT and the 

surrounding soil.  

3.6.4 Tests conducted without pore pressure measurement 

In addition to all the above-mentioned tests, some additional tests were conducted in which the 

miniature PPT was not installed. The purpose of conducting these tests was to examine the effect 

of including the miniature PPT on the interface shear strength.  It was observed that the set up for 

pore pressure measurement had negligible effect on the performance of the interface shear tests. 

3.7 Soil-Water Characteristic Curve (SWCC) 

The soil-water characteristic curve defines the relationship between the amount of water in the 

soil and soil suction (Fredlund and Rahardjo, 1993). The amount of water can be gravimetric 

water content, w, volumetric water content,θ or degree of saturations, S.  The relationship 

encompasses both desorption or drying and absorption or wetting process. Volumetric water 
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content,θ, can be defined as the ratio of volume of water to the total volume of soil. The 

relationship between volumetric water content and gravimetric water content can be written as  

dw ρθ .=          [Eq. 3.1] 

where, ρd  is the dry density of the soil.  

The SWCC may also be defined as storage function. That is, the SWCC gives an 

indication of the water holding capacity of the soil structure over a range of suctions. The water 

content defines the volume of water contained in the pores of the soil.  Figure 3.9 shows a typical 

SWCC for a silty soil along with some of its key characteristics. The main curve shown is a 

desorption curve. The adsorption curve differs from the desorption curve as a result of hysteresis. 

The end point of adsorption curve differs from the starting point of desorption curve because of 

the air entrapment in the soil. Both curves have almost similar form.  

 

Figure 3.9 Typical SWCC for a silty soil (Fredlund and Rahardjo, 1993) 

 

The saturated water content is the water content at which all the voids in soil are filled with 

water. The saturated water content and the air entry value, or bubbling pressure, for the soil 

generally increases with plasticity of the soil. Other factors such as stress history also affect the 

shape of soil-water characteristic curve of the soil. The soil-water characteristic curve can be 
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divided into three stages as shown in figure 3.9. The first point of importance on soil-water 

characteristic curve is air entry value. During the pre air entry stage, the material des not drain 

and water content remains constant. The soil starts to desaturate in the transition stage. The water 

content reduces significantly with increase in suction in this stage.  The air entry value of the soil 

is the matric suction at which air starts to enter the largest pores in the soil. The amount of water 

at soil particle or aggregate contact reduces as desaturation continues. Eventually a large increase 

in suction leads to a relatively small change in water content 9or degree of saturation). This stage 

is referred to residual stage of unsaturation.  The water content in soil at the commencement of 

this stage is generally referred to as residual water content. The amount of water present in soil is 

very small in this stage.  

3.7.1 Obtaining the SWCC from the grain size distribution of the soil 

Fredlund et al. (2002) presented a procedure for estimating the SWCC from information on the 

grain size distribution and the volume-mass properties of a soil. In this method they considered 

grain-size distribution curve as incremental particle sizes from the smallest to the largest. The 

grain size distribution curve is a continuous curve representing the mass of particles of various 

sizes present in soil. The SWCC is primarily a representation of the pore sizes present in soil. The 

basis of the SWCC estimation from the grain size distribution of the soil involves translation of 

particle size distribution into pore size distribution.  

This method does not address the effect of stress history, fabric, confinement and 

hysteresis.  This method can be reliably used to predict SWCC for sands and silts. It is difficult to 

predict SWCC for clays, tills and loams using this method (Fredlund et al., 2002). The details of 

the grain size distribution model are described in a paper by Fredlund et al., 2000. Fredlund and 

Xing (1994) gave an empirical equation to represent SWCC. This equation is used as the basis 

for the estimation of SWCC.    The Fredlund and Xing equation has the following form, 
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where  

ws - Saturated gravimetric water content 

ww - gravimetric water content 

af - a fitting parameter corresponding to the soil suction at the inflection point and is     

related to air entry value of the soil 

nf - a fitting parameter related to rate of desaturation of the soil                                                        

mf - a fitting soil parameter related to the curvature of the function in high suction range. 

ψ – matric suction (kPa) 

hr - a constant parameter used to represent the soil suction at the residual water content and 

is selected  to be 3000 kPa generally.  

 

The Fredlund and Xing equation gives relationship between water content and suction due to its 

ability to fit entire range of soil suctions. However for low suctions the method is not as good as 

Van Genuchten method.  

An estimation of each parameter of Fredlund-Xing equation is required for each interval 

of particle sizes. Further it is assumed that smooth transition (on logarithmic scale) exists for the 

representation of SWCC when moving from coarse sized particles to fine sized particles. The 

Fredlund-Xing equation was used in this study for the computer program used to obtain SWCC 

as described later.   

3.7.2 Determination of SWCC for Soil using VADOSE/W 

The software VADOSE/W (Geo-Slope International 2004) is equipped with an automated option 

for estimating the SWCC on the basis of grain size distribution. The software can determine the 

SWCC by using any one of the different equations like Fredlund and Xing Equation (Fredlund 

and Xing, 1994), Van Genuchten Equation (Van Genuchten, 1980), Arya and Paris Equation 

(Aryan ad Paris, 1981) etc. depending upon the preference of the user.  For determining the 

SWCC for a soil, the grain size distribution of the soil is provided as input for the grain size 

distribution function for that soil. In addition to this, values of parameters like coefficient of 

volume compressibility, af, mf and nf along with water content at saturation are to be used for 

estimation of SWCC. It then readily gives the SWCC for that soil.  
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3.7.3 Determination of SWCC using Tempe Cell 

Tempe cells (modified pressure plate cell) can be used effectively to measure the SWCC for a 

soil at the particular density (Figure 3.10).  The apparatus is designed to apply the matric suction 

to a soil specimen. The apparatus is based on axis translation technique such that matric suction 

greater than 100 kPa can be applied to the soil sample without causing cavitation of the water in 

the apparatus. A single soil specimen can be used to obtain the numerous points on the SWCC. 

This is due to the fact that the soil specimen is not required to be removed at each suction value.  

The major drawback of a Tempe cell is that air bubbles may form in the water filled 

grooves below the air entry stone. The air is produced by air diffusing through the high air entry 

stone. These air bubbles will displace water from system causing an inaccurate assessment of 

water lost from soil from one suction stage to another. To overcome this water below the porous 

stone is flushed at regular intervals to remove any excess air bubbles. The results obtained by 

pressure Tempe cell are quite reliable. The SWCC obtained by Tempe cell was used for 

comparison with SWCCs obtained using other methods. 

 

 

Figure 3.10 Tempe Cell and its components (Stoicescue 1997) 
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The procedure for a Tempe cell set-up (Stoicescue, 1997) is as follows: 

1. The air entry stone was saturated in de-aired water for 24 hours prior to setup of the 

Tempe cell apparatus for use in measuring SWCC of soil.  

2. The saturated air entry stone was positioned into the apparatus with O-rings in place 

to prevent leakage around the corner 

3. The mass of Tempe cell apparatus including O-rings, stones, loading cap springs, 

screws and tubing was recorded prior t inserting the soil specimen into the apparatus. 

The area below the air entry stone including the connecting tubing was completely 

filled with de-aired, distilled water prior to weighing.  

4. The soil specimen was prepared in consolidation ring at desired density and water 

content (bulk density of 2132 kg/m3, dry density of 1920 kg/m3 and w/c = 11%).  

5. This specimen was saturated and weighed. It was then placed in the middle of the air 

entry stone as shown in Figure 3.10. 

6. The top stone, loading cap and spring were placed on top of the soil specimen.  

7. The top of cell was gently placed onto the loading spring.  

8. To ensure that soil specimen was under 0 kPa suction, the port on top of apparatus 

was opened to atmospheric pressure. The mass of discharge into the vial was recorded 

over time. The condition of equilibrium or 0 kPa was assumed when there was zero 

discharge into the vial.  

9. Any air bubbles accumulated in the tubing or below the air-entry stone were flushed 

using de-aired, distilled water.    

10. After 0 kPa conditions were achieved, mass of apparatus + soil+ specimen ring was 

measured and recorded. Based on this mass of soil specimen at 0 kPa could be 

calculated.  

11. Based on above recordings, the saturated volumetric water content of the specimen at 

0 kPa was obtained. 

3.7.4 Comparison of SWCCs for Silty Sand Obtained using Different Methods 

The SWCC as estimated with VADOSE/ W using Fredlund and Xing Equation (Fredlund and 

Xing, 1994) and Tempe cell for the sandy silt is shown in Figure 3.11. For the silty sand sample 

tested the SWCCs were also measured using tensiometer and miniature PPT. However using 

miniature PPT and tensiometer the suctions could not be accurately measured beyond 30 kPa. As 
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can be seen from Figure 3.13, the SWCC obtained using various methods matched well between 

0.2 to 30 kPa. The exception to this was SWCC using tensiometer which was matched well upto 

25 kPa and SWCC obtained using PPT were matched upto 30 kPa only. The point on SWCCs 

(obtained using tensiometer and PPT) that fall below the range of all other SWCCs indicates this 

deviation due to limitations of tensiometer and PPT. This was probably due the fact that PPT and 

tensiometer were capable of measuring suction values accurately up to 25 to 30 kPa only. Figure 

3.13 also shows the SWCC obtained for sand using Fredlund and Xing equation (Fredlund and 

Xing, 1994).  
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Figure 3.11 SWCC for the silty sand mixture using different methods 

3.8 Summary 

The experimental set up was planned according to the requirements of the study to be undertaken. 

The equipment used was properly calibrated. The details of testing under saturated as well as 

unsaturated conditions were discussed. The procedure followed to carry out the interface shear 

testing with and without pore pressure measurement was also outlined. Chapter 4 presents the 

details of the test results obtained. In addition to this the soil-water characteristic curve that was 

obtained using various methods is also explained.  
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Chapter 4 Presentation of Results 

4.1 Introduction 

Chapter 4 presents the results of the test program carried out in Chapter 3. The data obtained for 

the various tests is presented. This includes data obtained for tests conducted to determine the 

effect of various test parameters on interface shear behaviour (these tests were conducted without 

pore pressure measurement) as well as data for all other tests conducted with pore pressure 

measurement.   

4.2 Effect of Various Test Parameters on Interface Shear Behaviour 

It is a beneficial to have some basic knowledge of the effect of various test parameters on the 

interface shear test. Keeping this in mind and to determine the significance of the various 

parameters, interface shear testing was carried out on several sand bentonite mixtures, under 

varying test conditions. These conditions included rate of displacement, water content and 

density. Following this, some observations were made regarding the effect of various parameters 

on the interface shear strength. The sand bentonite mixture was compacted on top of the 

geomembrane using varying density, water content and bentonite content for the sand bentonite 

mixture. The rate of displacement was also varied in some of the tests. 

4.2.1 Effect of Placement Density 

The density of compacted soil can play an important role in interface friction behaviour of 

sand/bentonite and geomembrane. Figure 4.1 shows the variation of friction angle with density of 

the compacted sand/bentonite mixture. Over the range of densities tested the friction angle was 

found to increase with increase in density of compacted soil bentonite provided all other testing 

conditions remained same. Interface friction angle was found to vary between 15 ° to 19 °.  It can 

also be seen that the variation of interface friction angle with bulk density is linear when the 

interface is sheared very slowly (i.e. drained response). For faster rates this variation becomes 

non-linear, especially at higher placement densities. 
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A - 3% sand bentonite, w/c = 12.6%, displacement rate = 12 mm/h 

B - 6% sand bentonite, w/c = 11%, displacement rate = 42.5 mm/h 

C - 3% sand bentonite, w/c = 8.2%, displacement rate = 2.5 mm/h 

Figure 4.1 Effect of density on sand bentonite mixture and geomembrane interface 

 

It should be noted that to achieve a higher density greater compactive effort is needed. This 

results in more number of soil particle contacts with the geomembrane which in turn results in 

higher friction coefficients. The tests are conducted at relatively low normal stresses. At those 

stresses there is a possibility of dilation of the compacted soil. Te amount of dilation is more at 

higher densities of the compacted soil. This dilation may also have contributed to the higher 

friction resistance of the interfaces at higher densities. In general for the three sets of test 

combinations, the friction angle increased with increase in density of compacted soil.  

4.2.2 Effect of the Rate of Displacement 

The interface shear tests that are carried out at a slower displacement rate run for a longer time 

than the tests carried out at a faster displacement rate.  According to Gomez and Filz (1999), after 

the compaction the clay structure tends to accommodate the lower energy level. During this 

process, a more flocculated soil structure and lower (more negative) pore pressures are generated 

with curing time after compaction. For a test with slow rate of displacement, the soil sample gets 

more curing time after compaction due to longer duration of the test. Hence the results for a 

slower test may be different than those results obtained for a faster test with similar testing 

conditions.   
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Figure 4.2 shows the variation of the friction angle with the rate of displacement. For the range of 

the different rates of displacement tested, the friction angle was found to increase with the 

increase in rate of displacement. It should be noted that all of these tests were conducted under 

unsaturated conditions and suctions were present at the interface due to absence of free water at 

the boundaries. Therefore, it is likely that at slow shearing rates the test conditions were drained 

and there was ample time available for suctions to dissipate. At higher displacement the suction 

was not getting dissipated which may have contributed to increase in friction angle. 
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D - 3% sand bentonite, dry density = 1685 kg/m3, w/c = 13% 

E - 3% sand bentonite, dry density = 1760 kg/m3, w/c = 8.2% 

F - 6% sand bentonite, dry density = 1799 kg/m3, w/c = 8.8% 

Figure 4.2 Effect of rate of displacement on sand bentonite mixture and geomembrane interface 

 

At intermediate shearing rates, the suctions were changing with time and so was the interface 

shear strength. Selecting a shearing rate faster than 24 mm/h did not seem to affect the interface 

friction angle. It is likely that at shearing rates faster than 24 mm/h, pore pressures do not get 

dissipated, resulting in constant interface shear strength. For test combination A and for the rate 

of displacement range 0.3 to 24 mm/h the effect was pronounced however it was comparatively 

less beyond that rate of displacement which included the range 24 to 48 mm/h. 

Interface friction angle was found to vary between 16 º to 19 º for the test combination D. 

For other two test combinations, the friction angle varied from 18 ° to 21 º for the rate of 
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displacement range 3 to 42.5 mm/h. In general interface friction angle increased with increase in 

rate of displacement.  

4.2.3 Effect of Placement Water Content 

As described in chapter 2, the water content can have a considerable effect on the interface shear 

behaviour of soil-geomembrane interface. In this study, the water content was varied by keeping 

the other parameters like density, rate of displacement constant. The density used in this 

particular analysis was bulk density which is different from the analysis carried out to determine 

the effect of rate of displacement and the dry density. This made it difficult to analyse the isolated 

effect of water content on interface shear behaviour. The results reported for this particular 

analysis are based on bulk density of the compacted soil.  

Figure 4.3 shows the variation of interface friction angle with the water content of the 

sand bentonite mixture. Based on the range of water content combinations tested and by keeping 

all other test parameters same, it can be seen that the friction angle decreases significantly with 

increases in water content from 6 to 8 %. The change in friction angle is comparatively less when 

the water content was increased from 8 % to 13 %. The friction angle varied from 17 ° to 22 °. 
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A - 3% sand bentonite, bulk density = 1904 kg/m3, displacement rate = 12 mm/h 

B - 3% sand bentonite, bulk density = 1904 kg/m3, displacement rate = 2.5 mm/h 

C - 6% sand bentonite, bulk density = 1760 kg/m3, displacement rate = 42.5 mm/h 

Figure 4.3 Effect of water content on sand bentonite mixture and geomembrane interface 
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Based on the three set of test combinations A, B and C, it can be concluded that the friction angle 

decreases with increases in water content of the compacted soil, provided all other conditions 

remain same.  This was because at higher moisture contents there is more water at the interface 

which provides a lubricated geomembrane surface for the soil particles to slide on. 

It should be noted that the density used in this particular case was bulk density and hence 

it is quite difficult to quantify the effect of water content based on the bulk density of compacted 

sand bentonite mixture. However based on the published literature on interface shear testing of 

smooth geomembrane and soils it is predicted that the friction angle will decrease with increase 

in water content of soil bentonite mixture if same dry density were used for the all of the tests 

included in Figure 4.3. 

4.2.4 Importance of Various Test Parameters for Interface Shear Testing 

It can be seen from Figure 4.1, Figure 4.2 and Figure 4.3, rate of displacement has comparatively 

less influence on interface shear behaviour of geomembrane soil interface. For those tests where 

use of PPT is made to measure suction at the interface, it is very crucial to control the duration of 

test in order to ensure that the PPT is able to respond to the suctions effectively. This is because 

the PPT may not stay saturated for longer durations (beyond 7 hours) in soils with low water 

contents. If a very slow rate of displacement is used, this may result in a test with very long 

duration for which the PPT may not stay saturated. Further if a fast rate of displacement is used, 

it was predicted that the PPT may not be able to effectively record the changes in suction during 

shearing (as PPT may not have a sufficiently rapid response time). Meilani et al., (2002) reported 

a response time of less than 3 seconds for a sudden application of pressure of 500 kPa. However 

to be on conservative side it was decided not use a faster rate of displacement.  Because of this 

reason, most of the tests were conducted at a rate of displacement of 12 mm/h and 3 mm/h.  

4.3 Interface Shear Tests under Saturated and Bone Dry Conditions 

4.3.1 Silty Sand Mixture under Saturated Conditions (No Geomembrane Present) 

Direct shear testing was conducted on silty sand mixture and sand (without geomembrane) under 

saturated conditions.  These tests were conducted to establish whether inclusion of the miniature 

PPT had any influence on the results of direct shear test. The silty sand was compacted at bulk 

density of 2132 kg/m3 (w/c = 11%) and sand was compacted at the density of 1733 kg/m3.  For 
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the tests involving saturated silty sand mixture as well as saturated uniform sand, the pore-water 

pressure was found to be almost equal to zero during the shearing process as indicated by the 

miniature PPT readings. The results of the direct shear tests done using saturated soils are 

presented in Table 4.1. The PPT has a relatively small area compared to the area of the direct 

shear box and hence presence of PPT caused minimal interference.  For both the silty sand 

mixture and the sand, tests carried out without the miniature PPT gave exactly the same results as 

those tests that had the miniature PPT installed. Therefore it can be inferred that the presence of 

the miniature PPT inside the direct shear box does not affect the test results. 

 

Table 4.1 Results of direct shear testing on sand and silty sand (no geomembrane) under saturated conditions 

 
Test 
no 

soil  
type 

Ф’p 
(degrees) 

c’p 
(kPa) 

Ф’r 
(degrees) 

c'r 
(kPa) 

1 
 

Sand  

no GM 

35.4 0 29.5 0 

15 
 

Silty sand 

 no GM 

32.2 0 28.6 0 

4.3.2 Sand and Sand-Geomembrane Interfaces under Bone Dry Conditions 

Direct shear testing was carried out on sand and sand/geomembrane interface under dry 

conditions. The purpose of doing these tests was to compare the results obtained under saturated 

and dry conditions.  

The values of friction angles for sand under saturated as well as dry conditions were 

found to be the same.  The results and comparisons are shown in Figure 4.4. A trial test was 

conducted by using the PPT to measure pore pressures. However when the saturated PPT was 

inserted inside the shear box through the compacted dry sand, the porous stone tip of the PPT 

desaturated rapidly and the water from water compartment inside the PPT was quickly lost to the 

surrounding sand. As mentioned in section 3.4.1 it is critical to keep the water compartment of 

the PPT completely filled and the ceramic stone tip fully saturated for accurate measurements. In 

this test the PPT did not stay saturated and was not able to measure pore pressure effectively. 

Based on this it was decided not use the PPT under dry conditions.  
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Figure 4.4 Failure envelopes for saturated and dry sand (without Geomembrane) 

4.3.3 Saturated Silty Sand-Geomembrane and Sand-Geomembrane Interfaces 

Interface direct shear testing was conducted on the silty sand mixture and sand (both with 

geomembrane) under saturated conditions. The major purpose of carrying out these tests was to 

obtain the values of values of effective friction angle (φ’) and effective adhesion (a’). These 

values were to be used for analysis of the interface shear test results using unsaturated soil 

mechanics principles. This is discussed in detail later. 

 

(A) Saturated Interface direct shear test on sand-geomembrane interface  

The sand was compacted at the density of 1733 kg/m3 on the surface of geomembrane (similar to 

the procedure discussed in Chapter 3).  The results of this test are shown in Table 4.2.   

 

Table 4.2 Results of interface direct shear testing on sand under saturated conditions 

 
Test 
no 

soil  
type 

Ф’Gp 
(degrees) 

a’p 
(kPa) 

Ф’Gr 
(degrees) 

a'r 
(kPa) 

3 
 

Sand 

interface 

21.0 2.5 18.4 2.8 

 

(B) Saturated Interface direct shear test on sand-geomembrane interface  

The silty sand was compacted at bulk density of 2132 kg/m3 (w/c = 10%).  As mentioned before, 

saturated conditions were obtained by soaking the compacted soil for 24 hours prior to interface 

Dry Sand Interface 

Ф’Gp = 22.7°
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kPa 
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TS space 
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shear testing. The results for this test (and similar test for which the PPT was used) are reported 

in terms of the regular plots of shear stress versus displacement. In addition to this the suction 

was plotted as ordinate with time as abscissa (Figure 4.5). The displacement axis and time axis 

are plotted to the same scale in that the increment in displacement axis corresponded to the 

increment in time required for the same displacement. This test was conducted at a rate of 

displacement of 3 mm/hr and it takes 20 minutes for a displacement of 1mm. Consequently in 

presenting the test results for this test, the increment on displacement axis is 1mm and the 

increment on the time axis is 20 minutes which is also the time taken for a displacement of 1 mm 

considering the rate of displacement of 3mm/h. This method helps with easy comparison of data 

and is followed for reporting the results for all tests with pore pressure measurement.  

 As seen from Figure 4.5, pore-water pressures are close to zero for the entire test except at 

the beginning of shearing when up to 2 kPa of pore-water pressure could be measured. The 

increase in pore-water pressure could be caused by contraction of soil pores in the vicinity of the 

PPT. After some shear displacement, pore-water pressure values are generally stable and very 

close to zero. The presence of free water at geomembrane-soil interface appears encourage 

dissipation of pore pressures. Hence pore-water pressures dissipate almost as quickly as they are 

generated. 
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Figure 4.5 Typical interface shear test results for saturated silty sand-geomembrane interface: (a) Plots of 

time versus pore pressure for the interface test; (b) Plots of   Displacement versus shear stress for the interface 

shear test [Test specifications: 10% moisture content; bulk density of silty sand 2132 kg/m3]. 
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Figure 4.6 shows typical interface shear strength envelopes for geomembrane-soil interface under 

saturated conditions. These envelopes were obtained by fitting linear regression lines through 

each set of interface shear stress vs. normal stress data. For all regression lines, R2 was between 

0.98 and 1.00.  For each regression line, the following Mohr-Coulomb type equation was used to 

obtain values of interface friction angle (φG) and adhesion (a) 

( )Gna φστ tan+=         [Eq. 4.1] 

where τ is the interface shear strength and nσ is the total normal stress. Eq. 4.1 can be written in 

terms of effective normal stress as: 

( )'tan Gna φστ ′+=         [Eq. 4.2] 

where nσ ′  is the effective normal stress,’ a’ is the adhesion and φG '  is the interface friction angle 

in terms of effective stress. Table 4.3 gives a summary of results for all the interface shear tests 

conducted under saturated conditions. Effective normal stress values for the interface shear 

strength envelopes were obtained by using Terzaghi’s effective stress equation: 

wnn u−=′ σσ          [Eq. 4.3] 

where uw is the pore-water pressure. Since pore-water pressures during shearing are close to zero, 

both the total stress (TS) and effective stress (ES) envelopes give nearly identical values of both 

interface friction angle as well as adhesion.  Values of peak interface shear strength parameters 

were found to be only marginally higher than those of residual shear strength parameters. It is 

likely that true residual state was not reached in any of these tests and the end-of-the-test shear 

stress values are used to obtain residual shear strength parameters given in Table 4.3. Esterhuizen 

et al. (2001) point out that shear strains of the order of 50 % may be needed for a geomembrane-

soil interface to reach residual conditions. It was not possible to apply such large shear strains 

using the modified direct shear apparatus used in the present study. 
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Figure 4.6 Interface shear strength envelopes under saturated condition [silty sand mixture, bulk density of 

soil = 2132 kg/m3, w = 10 %, rate of shearing = 3 mm/h]. 

Table 4.3 Results of interface direct shear testing on silty sand under saturated conditions 

 
Test 
no 

soil  
type 

Ф’Gp 
(degrees) 

a’p 
(kPa) 

Ф’Gr 
(degrees) 

a'r 
(kPa) 

6 
 

Silty sand 

interface 

14.1 2.0 13.4 1.6 

4.4 Interface Shear Tests under Unsaturated Conditions 

A number of tests were conducted on silty sand with measurement of pore pressures throughout 

the course of test. The procedure for conducting these tests was as mentioned in Chapter 3. Rate 

of displacement used for these tests was 12 mm/h and 3 mm/h for faster and slower test 

respectively.  

4.4.1 Tests at 8% Water Content 

Figure 4.7 shows the results for sandy silt/geomembrane interface at 8% water content. This can 

be considered as a typical test results for geomembrane-soil interface under unsaturated 

conditions.  The test results are reported in similar manner as explained for the saturated test 

(silty sand-geomembrane interface under saturated conditions) with pore pressure measurement. 

The zero on the time axis presents the start of the shearing process. The suction at this stage can 

be considered as the suction of the as compacted soil.  
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Figure 4.7 Typical interface shear test results for unsaturated sandy silt interface :(a) Plots of time versus pore 

pressure for the interface test; (b) Plots of   Displacement versus shear stress for the interface shear test [Test 

specifications: 8% moisture content; bulk density of soil 2132 kg/m3.] 
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The suction is different for each of the normal stresses applied. It should be noted that change in 

matric suction takes place when normal stress is applied to the soil. It can be assumed that 

volume change takes place due o increase in normal stress. It is further assumed that this volume 

change is due to compression of air in the voids and dissolution of air in the water. 

It can be seen from Figure 4.7 that the peak shear strength is reached at very small 

displacement. Throughout the course of shearing, negative pore pressures were recorded by the 

PPT installed in close proximity of the geomembrane soil interface. In this test, at the instant 

when shearing process began, the magnitude of soil suction present at the interface was not lower 

for lower normal stresses. Once the shearing was started the pore pressures decreased for some 

displacement. After this pore pressures were kept oscillating near a fairly constant reading. 

During the shearing process, changes in soil suction were observed. These can be attributed to 

lack of free water at the interface. 

Figure 4.8 shows typical interface shear strength envelopes for geomembrane-soil 

interface tests conducted under unsaturated conditions. These envelopes were obtained by fitting 

linear regression lines through each set of interface shear stress vs. normal stress data. For all 

regression lines, R2 was between 0.95 and 1.00. For each regression line, values of interface 

friction angle and adhesion were obtained using equation (4.1) or (4.2). It can be seen that for the 

failure envelopes using total stress space, peak and residual shear stresses plot on straight lines 

with slopes of 23.3 0 and 21.8 0 and y-intercepts (“adhesion”) of 3.1 kPa and 3.1 kPa, respectively 

in terms of total stress space.  The pore pressure, uw was negative. Therefore, equation (3) gave 

effective normal stresses that were greater than total normal stresses. The failure envelopes 

obtained in effective stress space gives negative adhesions and steep slopes. Table 4.4 shows the 

results obtained from various combinations of interface shear test on soil / geomembrane 

interface under unsaturated conditions. Detailed analysis of these results is shown in later 

sections.  
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Figure 4.8 Interface shear strength envelopes under unsaturated condition [silty sand mixture, w = 8 %, rate 

of shearing = 3 mm/h]. 

 

Table 4.4 Summary of results for various interface tests under unsaturated conditions 

 
Test 
no 

soil  
type 

Bulk 
Density 
(kg/m3) 

w/c  
% 

speed  
mm/h 

ФGp 
(deg) 

ap 
(kPa) 

Ф'’Gp 
(deg) 

a''p 
(kPa) 

ФGr 
(deg) 

ar 
(kPa) 

Ф’'Gr 
(deg) 

a''r 
(kPa) 

4 6 % 

s/b 

1904 8 12 21.1 2.4 21.5 -5.6 16.6 3.6 17.6 -4 

5 6 % 

s/b 

1904 8 3 19.8 2.8 21.7 -5.6 19.2 2.3 21.3 -7.2 

8 Silty 

sand  

2132 13 12 21.2 1.9 23 -0.3 21.3 1.4 21.8 -0.58 

9 Silty 

sand  

2132 8.9 12 23.7 1.8 30 -12.1 20 2.3 17.2 -3.6 

10 Silty 

sand  

2132 10 3 21.4 2.4 23.6 -3.1 20.3 1.8 22.2 -3.9 

11 Silty 

sand  

2132 10 12 22.4 3.0 25.1 -2.4 20.9 2.3 25.9 -6.0 

12 Silty 

sand  

2132 13 3 20.6 1.7 23.7 -0.1 20 1.1 21.2 -0.4 

13 Silty 

sand  

2132 8.9 3 23.2 3.1 24.3 -3.8 21.9 3.1 25.2 -6.3 
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It can be seen from Figure 4.8 and Table 4.4 that negative values of adhesion were obtained for 

both the peak and the residual interface shear strength envelopes plotted in terms of effective 

stress (ES). In this test the peak and residual failure envelopes in terms of effective normal 

stresses do not make sense, as can seen from Figure 4.8. They have negative y-intercepts and 

steep slopes. This is not surprising given that equation (4.3) is applicable only for saturated soils. 

It is more appropriate to examine the results in the light of unsaturated soil mechanics concepts. 

 

Analysis using unsaturated soil mechanics principles 

Based on the shear strength equation for an unsaturated soil (Fredlund and Rahardjo, 1993), an 

equation for the unsaturated interface shear strength can be written as: 

( ) b
GwaGan uuua φφστ tan)('tan' −+−+=      [Eq. 4.4] 

where ua is the pore-air pressure, and φG 
b is a parameter relating the change in interface shear 

strength with the change in matric suction. The values of adhesion ’a’’and interface friction 

angleφG’ in Eq. 4.4 should be obtained using saturated interface shear tests (i.e. zero matric 

suction at the interface). In the present study, the PPT was vented to the atmosphere at the back. 

herefore, ua can be assumed to be zero. Eliminating ua from equation (4), we obtain: 

b
GwGn ua φφστ tan'tan' −+=        [Eq. 4.5] 

Eq. 4.5 can be rearranged as 

( ) 'tan' Gwn ua φβστ ⋅−+=        [Eq. 4.6] 

where ( )'tantan G
b

G φφβ = . 

Using Eq. 4.6, values of interface shear strength were calculated for unsaturated interface 

shear tests involving the silty sand mixture. For each suite of interface shear tests (5 kPa, 12 kPa, 

20 kPa and 30 kPa normal stress), it was decided to choose the same β (obtained by trial and 

error) value for all normal stress values.  

Figure 4.9 shows failure envelopes obtained for this interface shear test using concepts of 

total stress space, effective stress space and unsaturated soil mechanics principles (as explained 

above). Figure 4.9(a) and (b) shows the failure envelopes in total stress space and effective stress 

space same as those shown in Figure 4.8.  It should be noted that failure envelope in effective 
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stress space is obtained using a β value of 1.  However it can be seen that when β  value  of 1 is 

used the failure envelopes do not make sense and are steep with negative adhesion values. 

Further when β  values of 0.44 and 0.35 are used, the failure envelopes pass through origin and 

show a slope of 23.7 0 and 23.3 0 for peak and residual respectively as shown in Figure 4.9(c). 

Based on this it can be predicted that magnitude of shear strength parameters is influenced by 

β value.  
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Figure 4.9 Typical failure envelopes for unsaturated sandy silt interface: (a) Failure envelopes in total stress 

space; (b) Failure envelopes in effective stress space calculate by assuming β = 1; (c) Failure envelopes in 

effective stress space calculate by assuming β values of 0.44 and 0.35. [Test specifications: 8% moisture 

content; bulk density of soil 2132 kg/m3] 
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4.4.2  Tests at 10 % Water Content 

Similar to the results reported for previous test, the results for sandy silt/geomembrane interface 

test at 10 % water content are shown in Figure 4.10. The variation in the soil suction for this test 

was quite similar to variation in the soil suction for the previous test.  Beyond the peak shear 

stress, the soil suction increased continuously for tests with lower normal stress, reaching a 

steady value at large shear displacements (residual condition).  For the tests with higher normal 

stress (e.g. 30 kPa), the soil suction decreased to a steady value at large shear displacements. It is 

likely that the tendency of the soil particles to dilate is suppressed at higher normal stress, 

resulting in lower soil suction values. The failure envelopes for this test in terms of total and 

effective normal stress are shown in Figure 4.11.  

Figure 4.11(a) shows the variation of peak and residual shear stresses with total normal 

stress acting on the soil-geomembrane interface. The peak and the residual shear stresses plot on 

straight lines with slopes of 22.4° and 20.9° and y-intercepts (“adhesion”) of 3.0 kPa and 2.3 kPa, 

respectively. Figure 4.11(b) shows the variation of peak and residual shear stresses with effective 

normal stress at the interface, calculated by assuming β = 1. Again it is clear from Figure 4.11(b) 

that both the peak and the residual failure envelopes in terms of effective stress do not make 

sense. Their slopes are too steep and their y-intercepts are negative. 

If, however, β values of 0.59 and 0.49 are used for the peak and residual conditions, 

respectively, both the failure envelopes pass through the origin and show slopes of 24° and 22.1° 

(for peak and residual, respectively) as shown in Figure 4.11(c).  
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Figure 4.10 Typical interface shear test results for unsaturated sandy silt interface: (a) Plots of time versus 

pore pressure for the interface test; (b) Plots of   Displacement versus shear stress for the interface shear test 
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Figure 4.11 Typical failure envelopes for unsaturated sandy silt interface: (a) Failure envelopes in total stress 

space; (b) Failure envelopes in effective stress space calculate by assuming β = 1; (c) Failure envelopes in 

effective stress space calculate by assuming β values of 0.49 and 0.59. [Test specifications: 10% moisture 

content; bulk density of soil 2132 kg/m3] 
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4.4.3 Testing at 13 % Water Content 

Similar to previous tests, Figure 4.12 shows a typical variation of pore pressure with time before 

and during the shearing process with silty sand at 13 % water content. Also included in this figure 

is the variation of shear stress with shear displacement. It can be seen from the Figure 4.12 that, 

prior to beginning of shear, the soil suction kept increasing (more negative).  This can be due to 

continuous loss of moisture (evaporation) from soil into the atmospheric air. As soon as the 

shearing was started the magnitude of soil suction present at the interface was generally lower for 

higher normal stress values. This can be attributed to greater compression of void spaces at high 

normal stresses, resulting in slight increase in the degree of saturation of the soil. Because air is 

continuously diffusing through the porous tip of the transducer, the transducer response does not 

stay at a constant value but oscillates slightly around it. 

 

During the shearing process, changes in soil suction were observed. Throughout the course of 

shearing, the soil suction showed a decreasing trend that is less negative (except for 30 kPa 

normal stress after some time). This may be attributed to compression of soil particles in response 

to application of shear stress. The suction kept changing between 0 and 6 kPa for most of the 

duration of the test.  

 

From the results presented in Figure 4.12, variations of shear stress with total as well as effective 

normal stress can be obtained as shown in Figure 4.13. The peak and the residual shear stresses 

plot on straight lines with slopes of 20.8° and 19.8° and y-intercepts (“adhesion”) of 1.7 kPa and 

1.1kPa, respectively. 
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Figure 4.12 Typical interface shear test results for unsaturated sandy silt interface: (a) Plots of time versus 

pore pressure for the interface test; (b) Plots of   Displacement versus shear stress for the interface shear test 

[Test specifications: 13% moisture content; bulk density of soil 2132 kg/m3.] 
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Figure 4.13 Typical failure envelopes for unsaturated sandy silt interface: (a) Failure envelopes in total stress 

space; (b) Failure envelopes in effective stress space calculate by assuming β = 1; (c) Failure envelopes in 

effective stress space calculate by assuming β values of 0.94 and 0.73.   [Test specifications: 13% moisture 

content; bulk density of soil 2132 kg/m3] 

 

Figure 4.13(b) shows the variation of peak and residual shear stresses with effective normal stress 

at the interface, calculated by assuming β = 1. Although straight-line relationships could be 

observed for both the peak and the residual shear stresses, both the peak and the residual failure 

envelopes have negative y-intercepts. . If, however, β values of 0.94 and 0.73 are used for the 



 - 68 - 

peak and residual cases, respectively, both the failure envelopes pass through the origin and show 

slopes of 23.7° and 20.8° (for peak and residual, respectively) as shown in Figure 4.13(c). 

A summary of this analysis for peak and residual failure envelopes is shown in Table 4.5 

and Table 4.6, respectively. Based on the data for all tests it seems that the magnitude of effective 

normal stress (and therefore shear strength parameters) is influenced by β values.  

 

Table 4.5 Analysis of the test results using different values of β  ( peak failure envelopes) 

Test 
specification 

Type of 
Normal 
stress 

 β -
value 

 
R2 slope 

(degrees) 
y-intercept 

(kPa) 

Degree of 
saturation  

S 

 
S2 

Total σn -- 0.987 23.3 3.08   
Effective σn 1 0.988 24.2 -3.89 0.56 0.32 

Silty sand 
interface with 
8 % w/c Effective σn 0.45 0.998 23.7 -0.0002   

Total σn -- 0.990 20.4 3.0   
Effective σn 1 0.978 24.7 -2.38 0.69 0.47 

Silty sand 
interface with 
10 % w/c Effective σn 0.59 0.984 24 -0.006   

Total σn -- 0.995 20.8 1.7   
Effective σn 1 0.981 23.7 -0.11 0.87 0.76 

Silty sand 
interface with 
13 % w/c Effective σn 0.94 0.983 23.2 0.0069   

Total σn -- -- -- --   
Effective σn 1 0.981 14 2 1 1 

Silty sand 
interface with 
15 % w/c Effective σn -- -- -- --   

 

Table 4.6 Analysis of the test results using different values of β  ( residual failure envelopes) 

Test 
specification 

Type of 
Normal 
stress 

β -
value 

 
R2 slope 

(degrees) 
y-intercept 

(kPa) 

Degree of 
saturation  

S 

 
S2 

Total σn -- 0.98 21.8 3.1   
Effective σn 1 0.96 25.1 -6.3 0.56 0.32 

Silty sand 
interface with 
8 % w/c Effective σn 0.35 0.98 23.3 0.008   

Total σn -- 0.99 20.9 2.3   
Effective σn 1 0.99 26.1 -6.0 0.69 0.47 

Silty sand 
interface with 
10 % w/c Effective σn 0.49 0.98 22.1 0.004   

Total σn -- 0.99 19.8 1.1   
Effective σn 1 0.99 21.3 -0.4 0.87 0.76 

Silty sand 
interface with 
13 % w/c Effective σn 0.73 0.99 20.8 0.004   

Total σn -- -- -- --   
Effective σn 1 0.981 13.4 1.6 1 1 

Silty sand 
interface with 
15 % w/c Effective σn -- -- -- --   
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4.5 Relationship between degree of saturation and parameter ’β’ for 
silty sand and geomembrane interface shear tests 

According to Fredlund and Rahardjo (1993) at saturation, the value of angle φG
b is same as value 

of angle φG
’. Due to this the value of β is 1 at saturation and it decreases with decrease in water 

content. Fredlund et al, (1996) described a parameter ‘k’ whose value ranges from 1.0 to 3.0. 

They predicted values of shear strength function based on value of parameter ‘k’. They observed 

that value of ‘k’ affects the rate at which angle varies with the variation in matric suction.  

According to Fredlund et al, (1996) it can be considered that kS∝β  , where S is the degree of 

saturation. If  k=2  we get, 2S∝β . Based on this it was decided to observe the variation of 

parameter β with degree of saturation. Figure 4.14 shows variation of β with square of the degree 

of saturation ‘S’. 
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Figure 4.14 Variation of the values of β  (values needed to achieve a perfect matching between measured and 

calculated shear stresses) with degree of saturation.   

 

For the limited amount of tests carried out in this study, it was observed that the value of 

parameter β    decreased with decrease in degree of saturation.  The value of angle φG
b decreases 
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compared to the friction angle φG
’ as the soil desaturates. Beyond residual degree of saturation the 

increase in suction produces a very little increase in shear strength. Thus the value of angle φG
b is 

fairly constant beyond residual water content. Thus it can be assumed that the value of parameter 

β will be fairly constant beyond a residual degree of saturation. Fredlund and Rahardjo (1993) 

pointed out that relationship of β in equation 4.7 is only applicable to evaluation of shear strength 

of soil. From practical engineering standpoint, it would appear to be better to use the (σ-ua) and 

(ua-uw) stress state variables in an independent manner for designating the shear strength of 

unsaturated soil. 

4.6 Shear Strength and Matric Suction 

For the range of suctions studied, the shear strength was found to increase with an increase in 

suction. This behaviour was similar to observations made by Fredlund et al, (1996) which was 

true particularly at low normal stresses. According to Vanapalli et al, (1996) rate at which shear 

strength changes in unsaturated soil is related to area of water (water menisci are in contact with 

soil or aggregate). At saturation stage there is no reduction in area of water. Under this condition 

single stress state variable (σ -uw) describes behaviour of soil. When the soil desaturates, the 

water content reduces significantly with increase in suction. The amount of water at the soil 

particle or aggregate contacts reduces as desaturation continues.  

There is linear increase in shear strength with increase in matric suction of soil up to air 

entry value. The rate of desaturation with respect to matric suction is greatest between air entry 

value and suction corresponding to residual water content conditions. There is a non linear 

increase in shear strength in this region. The non linearity of shear strength envelope with matric 

suction is result of diminishing contribution of matric suction to shear strength as the water 

content of soil approaches residual water content. In present study the soil used is silty sand and it 

desaturates faster compared to clay and hence the shear strength will decrease at matric suctions 

higher than the residual matric suctions. This is due to the fact that at residual suctions, very little 

water is left in the soil pores and hence large increase in suction will not result in large increase in 

shear strength. Hence for the present set of tests it is predicted that there will be very little 

increase in shear strength at higher matric suctions.   
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Gan and Fredlund, (1996) mentioned that the shear strength is function of two area variables, A0 

and Au , where A0 is total area contribution from soil and water in saturated soil and Au is total 

area contribution from soil and water in unsaturated soil. Low normal stresses were used in this 

study and it is possible that dilation of soil may have taken place. On one hand dilation increases 

shear strength due to interlocking effects and on the other hand dilation during shear tends to 

decrease the contribution of matric suction to shear strength because of disruption of water phase. 

Hence it is predicted that in present study, dilation of soil particularly for tests conducted at low 

water contents (high dry densities) may have contributed to increase in shear strength. 

4.7 Summary 

This chapter presented the results for the test conducted as discussed in Chapter 3. it was 

observed that the results obtained in terms of effective stress did not make sense. Due to this 

unsaturated soil mechanics principles were used to analyse these results. Further the role of 

degree of saturation was also addressed. Finally the effect of matric suction on shear strength was 

discussed. 
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Chapter 5 Analysis of Results 

5.1 Introduction 

This chapter presents a detailed analysis of the test results. As mentioned in Chapter 1, the study 

of interfaces is complicated due to presence of geomembrane (a polymer material other than soil) 

hence there is need to study the interface shear behaviour from Tribology (the science of the 

mechanisms of friction, and wear of interacting surfaces, geomembrane in this case) point of 

view. This chapter investigates the possibility of other controlling mechanisms for the interface 

shear behaviour of smooth geomembrane and soil and studies the interface from Tribology point 

of view. 

5.2 Detailed Analysis of Test Results 

As noted in Chapter 4, the interface shear strength is influenced by value of parameter β. Because 

of this it was decided to calculate interface shear strength values using equation 4.6 and different 

values of β.  The value of β was adjusted so that the root mean square error between measured 

and calculated interface shear strength was minimum. Spreadsheets were used to do this analysis 

and to obtain the optimum value of β. For a given test, same value of β was used for all normal 

stresses.  

Figure 5.1 shows the variation in measured and calculated shear stress values for the silty 

sand–geomembrane interface shear test at 8 % water content. Different values of β  are chosen by 

trial and error and corresponding root mean square (RMS) error is obtained between calculated 

and measured shear stress and the value corresponding to smallest RMS error was selected to 

calculate the interface shear strength. In this particular example smallest value of RMS error 

which is 1.84 is obtained for a β  value of 1.11.  

Using the same approach as discussed above, values of β were obtained for all the tests.  

The resulting β values ranged from 0.4 to 2.1 for the various test series. Figure 5.2 shows a plot 

of measured versus calculated shear stresses for various tests using the values of β selected as 

described earlier.  
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Figure 5.1 Measured versus calculated shear stress for unsaturated sandy silt interface [Test specifications: 

8% moisture content; bulk density of soil 2132 kg/m3]. 
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Figure 5.2 Measured vs. Calculated Shear Stresses [All tests using Silty Sand Mixture]. 
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It is evident from Figure 5.2 that despite adjusting the β value (even to greater than 1) to obtain a 

calculated shear stress value close to the measured shear stress value, equation 4.6 can not 

adequately predict the measured shear stresses.  At low normal stress (≤ 12 kPa), Equation 4.6 

overestimates the shear stress relative to the measured values whereas the reverse is true for high 

normal stresses (≥ 20 kPa).  Clearly, a constant β value for the entire range of normal stresses is 

not appropriate.   

At low normal stresses, the soil exhibited slightly larger suction in most of the tests. 

Therefore, β values are likely to be lower at low normal stress.  As the normal stress increases, 

soil suction decreases somewhat, likely reflecting some compression of the soil or accumulation 

of moisture at the interface; the effect is essentially to move the material upwards along the 

SWCC.  It is therefore reasonable that β values should increase with increasing normal stress. If 

lower β values are used for low normal stresses and higher β values for the higher normal 

stresses, it is possible to achieve a perfect match between calculated and measured shear stress; 

i.e. calculating β   for each stress increment (individual test) rather than minimising RMS error 

for an entire series of tests.  This approach was taken and the results obtained are presented in 

Figure 5.3. 
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Figure 5.3 Values of β needed to achieve perfect matching between measured and calculated shear stresses 

[All tests using Silty Sand Mixture]. 
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This procedure, however, results in unrealistically high β values greater than 2 at normal stresses 

≥20 kPa as shown in Figure 5.3.  For example, a β value between 2 and 90 was needed for tests 

conducted at 30 kPa normal stress. It is therefore inferred that the shear strength model 

represented by equation 4.6 is appropriate only for low normal stresses. Fredlund and Rahardjo 

(1993) mentioned that β  relationship (in equation 4.7) is only applicable to evaluation of shear 

strength of soil. From practical engineering standpoint, it would appear to be better to use the (σ-

ua) and (ua-uw) stress state variables in an independent manner for designating the shear strength 

of unsaturated soil. At high normal stresses, it is likely that a different mechanism of failure 

occurs. The possibility of a different failure mechanism is investigated in next section.  

5.3 Possibility of a Different Failure Mechanism 

As mentioned in earlier section, it is difficult to analyse the test results using unsaturated soil 

mechanics principles. It is suspected that at high normal stresses, the shear failure may not take 

place at the soil-geomembrane interface but within the geomembrane itself.  For a sandy soil, it is 

easy to imagine soil particles embedding themselves in the geomembrane when a normal stress is 

applied at the interface. If such embedding occurred, the particles would have to “plough” 

through the geomembrane material during the shearing process.  Zettler et al. (2000) reported the 

occurrence of such a failure mechanism at the soil-geomembrane interface.  Deatherage et al, 

(1987) has also mentioned that at high normal stresses there is increase in particle embedment in 

geomembrane surface resulting in higher friction angle values. Indeed, if “ploughing” is the 

dominant mechanism at the soil-geomembrane interface, soil suction would have little if any role 

in the interpretation of test results.  This is described in detail in later sections of this chapter.  

5.3.1 Profile of a Typical Soil Particle in case of Soil Only and Soil-Geomembrane Interface 

Figure 5.4 shows the typical profile of soil particles in case of normal soil and in contact with the 

surface of geomembrane. In case of normal soil the particle ‘c’ is surrounded by other soil 

particles and typical elements of a soil matrix like water air, capillaries, etc. the same type of 

forces act on this particle in all directions. However, in case of the soil particle in contact with a 

geomembrane the particle is in contact with geomembrane on one side. Due to this the manner in 

which different forces act on this soil particle is non-uniform. In general, the profile of a soil 

particle in normal condition and in case of interface that is in contact with a geomembrane is 
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quite different (Figure 5.4) and hence the analysis gets more complex. Further the failure is 

combinations of plowing of soil particles into geomembrane surface, sliding, clay particle 

reorientation and other different mechanisms. It is quite difficult to account for all of those 

mechanisms using the principles of unsaturated soil mechanics. 

 

 
 

(a) (b) 

Figure 5.4 Profile of a typical soil particle in case of (a) soil only and (b) soil-geomembrane interface 

5.3.2 Necessity for Surface Roughness Measurement 

Williams and Houlihan (1987) studied the various soil geomembrane interface properties using a 

modified direct shear apparatus. They found that the magnitude of interface friction depends 

upon the surface roughness, tensile strength and modulus of geomembrane; the type composition, 

particle size and water content of the soil. The surface topography of geomembrane affects the 

interface shear strength and hence a change in surface topography will directly influence the 

shear strength of the interface. Dove and Frost (1996) mentioned that the surface topography of a 

geomembrane is potentially damaged by the plowing of soil particles, and this may result in 

surface wear.  

The value of friction angle for silty sand as obtained from the direct shear test was about 

310.  Based on those values, it can be seen that the value of efficiency of the interface (ratio of 

friction angle of interface to the friction angle of soil only without geomembrane) was less than 1. 

This indicated that the failure was not taking place inside the soil but was occurring at the 

geomembrane surface. A relative movement (slip) between the soil and the geomembrane likely 

occurred at the surface of geomembrane. Such movement of soil particles at the geomembrane 

would result in some damage to the surface of geomembrane. Because of this it was decided to 



 - 77 - 

study the extent of damage to the geomembrane samples after the failure. For this additional 

interface shear tests were carried out. For these particular tests surface roughness measurements 

of geomembrane samples was done before and after the interface shear test. Surface roughness 

measurements were carried out in machine direction and cross machine direction of the 

geomembrane. 

5.3.3 Method for Geomembrane Surface Roughness Measurement 

Development of a viable profiling method and a quantitative roughness measure are necessary 

first steps toward using surface characteristics for describing and predicting interface behaviour, 

and designing interfaces for specific purposes (Dove and Frost, 1996). It is also reported that 

non-textured geomembranes have a significant surface topography when observed to a correct 

scale. The surface roughness measurement in this study was conducted using a surface 

profilometer. The parameter ‘Ra’ (unit microns) was used to report the surface roughness. Surface 

roughness measurements were carried out on the geomembrane samples before and after the 

interface shear testing. The change in surface roughness ΔR (in %), was calculated as  
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5.3.4 Details of Geomembrane Surface Topography Changes 

As mentioned by Dove and Frost (2000) the surface roughness change in case of geomembrane is 

primarily a function of sliding and plowing of the soil particles. Further the tendency of soil 

particles to induce wear on geomembrane surface depends upon applied normal load and 

properties of the interface materials which may include the shape of particles and hardness of the 

geomembrane into consideration.  If the geomembrane is hard by nature the particle will take 

more energy to plow into the surface of geomembrane and vice versa. However most of the soil 

particles encountered are harder than the relatively soft non-textured HDPE geomembrane.  

Figure 5.5 shows the variation in ΔR with normal stress for various geomembrane-soil 

interfaces. It can be seen that surface roughness increases significantly with increase in 

magnitude of normal stress applied. The rate of increase of surface roughness is higher for higher 

normal stresses. For interface shear testing using dry sand, this increase is more than 30 % at 30 
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kPa normal stress. It is likely that at low normal stresses, the soil particles “slide and scratch” the 

geomembrane surface during shear whereas at high normal stresses, these particles embed 

themselves within the geomembrane surface and “plow” it during shear. The change in surface 

roughness is less at higher water content as compared to the lower water content. The effect of 

water content on change in surface roughness is described later in this section. The result of 

surface roughness tests shows that the failure of geomembrane is taking place.  
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Figure 5.5 Change in surface roughness of geomembrane at various normal stress values 

 

The depth of the trenches being plowed by soil particles depends on the shape and the angularity 

of soil particles, the density of soil and the normal stress at the points of contact between soil 

particles and the geomembrane surface. At higher normal stresses, the depth of embedment of 

soil particles is greater, resulting in deeper trenches being plowed during shear. The deeper the 

trench, the greater is the change in surface roughness of the geomembrane surface and vice versa. 

Also, plowing of deeper trenches would require higher shear stresses at the interface. This could 

be the reason for high interface shear strengths at high normal stresses.  

Less work is needed to be done by the particles due to larger contact stresses at higher 

normal stresses. The geomembrane was glued to the plexiglass block and hence the work 
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required by the soil particles might be less compared with the anchored geomembrane. In case of 

anchored geomembrane the geomembrane has scope for movement relative to the plowing soil 

particles. For a fixed geomembrane, as was in this study there is neligible movement of 

geomembrane with respect to the plowing particles. After shearing the surface of geomembrane 

was no longer smooth. The surface of geomembrane was found to be visibly damaged at the end 

of test. Sliding and plowing was found to be the primary mechanism for geomembrane failure as 

mentioned by Dove and Frost, (1999).  

5.3.5 Effect of Water Content on Geomembrane Surface Roughness Change  

Figure 5.6 shows the variation of ΔR with water content. It can be observed that in general the 

change in surface roughness decreases with increase in water content. At lower water content the 

change in surface roughness is comparatively more than change in surface roughness in case of 

saturated interfaces or at high water contents.   
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Figure 5.6 Variation of change in surface roughness of geomembrane with water content (For Silty sand 

interfaces at various water contents) 
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The placement water content, w, also appears to affect the change in surface roughness of the 

geomembrane as shown in Figure 5.6. At lower values of w, there is greater suction within the 

soil, resulting in higher effective normal stresses at the geomembrane-soil interface. This, in turn, 

results in deeper embedment of soil particles and plowing of deeper trenches, thereby increasing 

the surface roughness considerably. At higher values of w, nearly saturated conditions prevail at 

the geomembrane-soil interface, resulting in lower effective normal stresses, lower depth of 

embedment of soil particles, and therefore, lower change in surface roughness and lower 

mobilized interface shear strength. 

For the saturated interfaces the presence of water film on surface of geomembrane 

prevents the plowing of soil particles slightly by providing a more smooth and lubricated 

geomembrane surface in addition to this it prevents the direct contact of soil particles with 

surface of geomembrane. This results in decrease in change in surface roughness with increase in 

moisture content of the compacted soil. This behaviour was observed for most of the tests (Figure 

5.6). For the test conducted at 12 kPa, value of ΔR under dry conditions is comparatively less. 

This may be due to possible error in surface roughness measurement.  

5.4 Summary 

A detailed analysis of all the test results was done in this chapter. The limitations of the 

unsaturated soil mechanics principles at higher normal stresses were discussed. Further the 

interface shear behaviour of geomembrane-soil interfaces was analysed from the point-of-view of 

tribology. Chapter 6 presents the conclusions that can be drawn based on this study and various 

recommendations that can be made to the industry and designers based on this study.  
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Chapter 6 Conclusions and Recommendations 

6.1 Summary 

The objectives of this study are mentioned in section. The study was done in order to evaluate the 

effect of the suctions on interface shear behaviour and investigation of possible other mechanisms 

that may play an important role in the shear strength of smooth geomembrane-soil interface. To 

achieve these objectives, the study was divided into four parts.  

• Development of an apparatus/method to evaluate the effect of soil suction on interface 

shear behaviour.  

• Analysis of the test results in terms of total stress space and effective stress space.  

• Analysis of test results using principles of unsaturated soil mechanics and the feasibility 

of applying these principles for analysis. 

• Study of interface shear behaviour from the point of view of tribology. 

 

In Chapter 2 a comprehensive literature review was presented along with some fundamental 

principles related to shear strength of unsaturated soil mechanics. Chapter 3 provided the details 

of the test set up and the materials used. Chapter 4 presented the results obtained from the various 

tests carried out. A detailed analysis of the test results was carried out in Chapter 5. Role of other 

possible mechanisms contributing to interface shear behaviour of geomembrane-soils was also 

discussed in Chapter 5.  

6.2 Conclusions 

6.2.1 Development of Interface Shear Testing Method 

A method has been developed to evaluate the effect of soil suction on the soil-geomembrane 

interface shear strength parameters particularly under unsaturated conditions. The method utilizes 

a miniature pore pressure transducer installed at the soil-geomembrane interface to record soil 

suction during shearing process, thus making it possible to analyze the test results in terms of 
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effective stresses. The method is simple, economical and requires only a few simple 

modifications to a standard direct shear box. The method was tested using different soils (sand, 

sand/bentonite mixture and silty sand mixture) and it was found to give reliable results at low soil 

suction values. 

6.2.2 Effects of Various Parameters on Interface Shear Behaviour 

For the various sand bentonite mixture- geomembrane interface combinations tested it was 

observed that the interface friction behaviour is governed by the dry density of the compacted soil 

bentonite mixture and to a lesser extent by the rate of displacement. For the range of densities 

tested it was observed that the interface friction angle increases with increase in density of the 

soil. Over the range of rates of displacement used, it was found that the interface friction angle 

increases slightly with increases in the rate of displacement, although this effect was less 

prominent than the effect of density. The interface friction angle was found to be relatively more 

sensitive to the compaction water content as compared to density of compacted soil or the rate of 

displacement. It was difficult to isolate the effect of compaction water content as the tests carried 

out for this particular set of data were done using bulk density of compacted soil. However based 

on the published literature and some of the tests it is predicted that interface friction angle 

decreases with increase in moisture content of the compacted soil.  

6.2.3 Analysis of Test Results in terms of Total and Effective Stresses 

It was found that plotting the interface shear strength values against applied total normal stress 

values gives interface shear strength envelopes that are consistent with those published in 

literature. However, a similar plotting in terms of effective normal stress values as obtained from 

applied total normal stress and measured pore-water pressure values, proved to be difficult. For 

failure envelopes in effective stress space negative adhesions and steep slopes were obtained. 

6.2.4 Analysis of Test Results using Unsaturated Soil Mechanics Principles 

At low normal effective stresses, it was possible to predict interface shear strength values using 

unsaturated soil mechanics concepts and matric suctions measured in the vicinity of 

geomembrane soil interface during the shearing process. At high normal stresses, the use of 

unsaturated soil mechanics concept resulted in calculated shear strength values that were 

significantly lower than the measured values. Based on interface shear tests carried out, it was 
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found that at low normal stresses the soil suction affects the mobilization of shear stresses at the 

soil-geomembrane interface; however it is not straightforward to incorporate measured soil 

suction values in the interpretation of interface shear test results. Due to complex nature of the 

interfaces involving smooth geomembranes and  soils under unsaturated conditions and the 

various factors involved , principles of unsaturated soil mechanics an not be easily applied in 

analyzing this type of interfaces.  

6.2.5 The β Parameter 

For the limited amount of tests carried out in this study, it was observed that the value of 

parameter β  is proportional to the degree of saturation. It was 1 for the saturated interface 

conditions and it decreased with decrease in degree of saturation.  For a series of tests carried out 

at near-constant moisture content and bulk density, it was found that in order to match the 

observed shear stress values, a constant value of parameter β (i.e. constant value of φb) is not 

satisfactory; the apparent variation of β with total normal stress must be taken into account.  It 

would not, therefore, be typically possible to establish the magnitude of effective normal stress at 

the interface and test results could only be interpreted in terms of total normal stress. At normal 

stress greater than 20 kPa, test results could not be interpreted using the shear strength equation 

for unsaturated soils.  Application of the equation to calculate shear strength at the interface 

resulted in unusually high values of β.  

6.2.6 Other Possible Mechanisms 

An examination of the change in surface roughness of the geomembrane surface confirmed that 

the failure mechanism changed from a sliding mechanism (sliding of soil mass on geomembrane 

surface) to plowing mechanism (formation of trenches along the shearing direction) at high 

normal stresses. Soil particles were getting embedded into geomembrane surface. As a result, 

additional shear strength was getting mobilized at the interface over and above the one mobilized 

by standard frictional sliding. Sliding and plowing was found to be the dominant mechanism for 

the failure of the geomembrane surface.  

6.2.7 Factors Controlling the Changes in Surface Roughness of Geomembrane  

The magnitude of the failure of the geomembrane is controlled by the size and shape of particle, 

normal stress. The effect of other parameters like density and rate of displacement could not be 
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determined due to limited amount of testing carried out. However it is speculated that at for same 

conditions the magnitude of surface roughness failure is greater at higher densities due to the fact 

that large number of particles are in contact with geomembrane at higher normal stresses. The 

normal load does have a significant impact on the surface damage of the geomembrane. This is 

because at higher normal stresses particle can easily plow into the geomembrane surface. Less 

work is needed for plowing, to be done by the particles due to larger contact stresses at higher 

normal stresses. The water content also influences the failure of geomembrane surfaces. At 

higher water content the film of water provides a lubricated surface for the soil particles to slide 

easily. Further presence of water helps in providing smooth and lubricated surface of the 

geomembrane which results in somehow reduced plowing.  

6.3 Limitations 

1. The pore pressures were measured close to the centre of soil specimen. Due to this the pore 

pressure profile at edge of soil specimen was not known. There is possibility of large pore 

pressure accumulation at the edge of soil specimen compared to the centre of soil specimen 

and pore pressure may be different at the edge of soil specimen than at the centre of soil 

specimen.  

2. The shearing takes place over a predetermined shear plane. This forced plane may not 

necessarily the weakest one especially in actual field conditions. 

3. The testing was carried out at relatively low normal stresses and hence the results can not be 

generalised for the high normal stresses.  

4. The PPT has to be saturated in order to measure the pore pressures effectively and hence the 

PPT can not be used at very low water contents.  

5. The stone at the tip of PPT tends to get desaturated with time and depending on surrounding 

soil conditions and hence prior testing should be conducted in similar environments in order 

to determine the response of the PPT for a particular set of conditions. 

6. The PPT can not be used for very long durations and hence slow rates (resulting in longer 

run time for a test) of displacement can not be used in the interface shear testing.  

7. The repeatability in this type of testing using a PPT to measure the pore pressures is less 

compared to traditional interface shear testing (except in case of saturated interfaces). This 

is because the way PPT responds depends on several factors which are difficult to control.   
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6.4 Recommendations 

6.4.1 Recommendations for Low Normal Stress Applications 

Based on limited tests carried out it was observed that suction contributes to shearing resistance 

especially at low normal stresses. For low normal stress applications such as landfill covers, if a 

high friction coefficient is required for a smooth geomembrane it is recommended that soils with 

angular particles should be used. This is due to the fact that less work is needed by the angular 

particles to plow geomembrane surface and plowing can be possible at relatively low normal 

stresses which also helps to achieve additional interface shear strength.  

6.4.2 Recommendations for High Normal Stress Applications 

At higher normal stresses soil particles gets embedded into surface of geomembrane and plow 

trenches along the geomembrane surface. Hence at higher normal stresses additional shear 

strength gets mobilized at the interface over and above the one mobilized by standard frictional 

sliding. Hence use of classic sliding failure mechanism for geomembrane soil interface at high 

normal stress may be conservative.  

The shear mechanisms and resulting friction coefficients of smooth geomembrane-soil 

interfaces depend considerably upon combination of normal load and material characteristics. At 

very high normal stress applications such as reservoirs, landfills of high capacity landfills and 

with use of coarse and angular material, it is strongly recommended that thick geomembranes 

should be used to reduce the influence of damage due to particle plowing or indentation on the 

system. This will also help in taking the advantage of additional interface shear strength available 

de to the effect of plowing.     

6.4.3 Other Recommendations 

Based on the findings of this work, it is suggested that a smooth geomembrane should be 

designed (may be using a special composite material) having a special surface and thickness 

which will encourage plowing of soil particles resulting in increased interface friction angle.  

 Most of the geosynthetic engineers are geotechnical engineers and hence they obviously make 

use of geotechnical principles in design with geosynthetics. However it is suggested that proper 

design values that are supported by testing carried out at site specific conditions should always 
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used and caution should be exerted when using the principles of soil mechanics in designing with 

geomembranes.   

6.5 Suggestions for Future Research 

Further research is needed in this area to better understand what happens at the interface and how 

this is influenced by various factors. In addition to laboratory data it will be useful to obtain 

relevant field data involving pore pressure distribution etc. 

Future research should focus on how various parameters can influence the surface 

topography of geomembrane, the extent of this influence, and how these factors influence the 

behaviour of the interface in actual field.  

It is also recommended that PPT should be installed at edges of specimen in addition to 

the one at the centre of specimen. This will give a better idea about the pore pressure profile. The 

efficiency of PPT can be improved with development of new techniques and this should be taken 

into account and best methods should be adopted to keep the PPT saturated for longer time and 

capable of measuring suction of higher magnitudes. Different methods should be tried to make 

the use of PPT as efficient as possible.  

Hardness of geomembranes play an important role in geomembrane surface topography 

changes and hence research should also involve the characterization of hardness of the 

geomembrane in relation to interface friction behaviour.  
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