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ABSTRACT 

Pleistocene to Recent calcretes, which are common in the semi-arid parts of the Kenya 

Rift Valley, provide clues to interpret regional paleoclimate and paleohydrology. A summary of 

the calcrete occurrences in or near the southern Kenya Rift Valley is provided to give regional 

context. 

At Lake Magadi and Olorgesailie, calcretes mantle the land surface, inhibiting erosion of 

the Pleistocene lake and lake-marginal sediments. The calcretes represent a period of no net 

sedimentation and form an important land surface throughout the basin.  

The several calcretes in the area have not been studied in detail to determine their 

relationship to other sediments in the basin though attempts have been made at calcrete 

differentiation based on underlying sediments. Several whole-rock samples were taken around 

the basin predominantly at the south of Lake Magadi to compare the calcretes with each other 

and their surrounding sediments. At Lake Magadi an extensive calcrete up to 50 cm thick lies at 

the interface between the Oloronga Beds (780 to 300 ka) and the overlying High Magadi Beds 

(~23000 to 9000 y BP). The relationship of this calcrete, called the Oloronga-capping calcrete, 

with the Green Beds (100 to 23 ka) is not obvious in the field but the calcretes are assumed to be 

older. Based on its chemistry and field relationships, the commonly pisolitic calcrete was formed 

within the Oloronga Beds though is likely much younger. Chondrite-normalized REE patterns 

for the calcrete and underlying sediments are consistent with sediment derivation from the 

Magadi Trachytes, indicating drainage patterns similar to those at present. Based on calcrete 

microfabrics and stable isotope data the dominant process of formation was through periodic 

calcite precipitation at or near the groundwater table under dry conditions following a wetter 

period. Pisoids formed through cycles of circumgranular cracking around reworked calcrete, and 

around calcite-rimmed lithic or monocrystalline clasts, induced partly due to pressure of calcite 

crystallization and root growth. Evidence for biotic activity during formation is scarce; rare 

fungal hyphae and spores were detected under SEM and root-related microfabrics are rare. The 

data indicate dominantly groundwater calcrete that was overprinted by and possible overprinted 

upon pedogenic calcrete. The groundwater table during calcrete formation was higher than at 

present; however, the lake was constricted and low and the calcrete developed marginal to the 

lake.  Laminar calcrete that developed on local trachytic horsts is difficult to date, but is 

predominantly abiogenic and may have taken many thousands of years to form. Samples from 
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elsewhere in the basin as well as an in-depth study of the Oloronga Beds would help clarify these 

possible interpretations.  

Olorgesailie is a fossil rich area and an important site for the study of human origins.  

Understanding the paleoenvironmental context of the hominin fossils and archeology is 

important for evolutionary studies. The Olorgesailie Formation (1.2-0.5 Ma) has yielded several 

archaeological finds and is composed of lacustrine, lake marginal and fluvial sediments, and 

paleosols. It is overlain by the post-Olorgesailie Formation sediments, which are the focus of this 

study. At the time of this study the stratigraphy of the post-Olorgesailie Formation sediments had 

not been presented. Part of this thesis provides some details for the calcretes within the sequence 

and presents a model for their formation. Three calcretes in a stratigraphic section were sampled 

as well as the intervening sediments. Using several types of analytical data, a model is presented 

to explain their origin. The three calcretes are distinct, predominantly pedogenic, and reflect 

fluctuating hydrological conditions, as implied by silica cementation in the middle calcrete. The 

upper capping calcrete may reflect a very shallow water table.   

The last study site targets calcite and silica-cemented conglomerate along the southeast 

shoreline of Nasikie Engida, a small lake to the north of Lake Magadi. Initially thought to be a 

calcrete, the deposit at Nasikie Engida, which overlies the High Magadi Beds, is inferred to be a 

beachrock, which is unusual since Nasikie Engida is not prone to high-energy conditions implied 

by the conglomerate. This study was undertaken to determine how the deposit formed. Bulk rock 

samples were taken parallel to shoreline and analysed using geochemistry and microscopy. The 

conglomerate is likely an alluvial fan deposited reworked locally along the shoreline. The 

conglomerate lies west of a col at the lowest point between Nasikie Engida and Lake Magadi, 

suggesting that connection of the lakes and associated hydrological and hydrochemical changes 

might have been important in forming the deposit. Much of the conglomerate is composed of 

authigenic components like silica clasts and laminar carbonate clasts. These laminar carbonate 

clasts are potentially stromatolitic. The silica clasts, which have an internal spherulitic fabric, and 

silica cement warrant further study.  
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1. INTRODUCTION 

1.1. Overview 

Calcrete, also termed caliche or kunkar, is a terrestrial accumulation of calcium carbonate 

(limestone) that forms either at or below the contemporary land surface, where CaCO3 is 

precipitated from surface runoff and pore fluids, or from groundwater near the vadose-phreatic 

fluid contact. Calcrete forms either biogenically, associated with CO2 loss resulting from plant 

root transpiration or microbial processes, or abiotically from evaporation or degassing of CO2 

from groundwater within sediments or soils, or from surface flow across exposed bedrock 

(Goudie, 1973, 1983; Reeves, 1975; Esteban and Klappa, 1983; Wright and Tucker, 1991; 

Watson and Nash, 1997; Alonso-Zarza, 2003; Wright, 2007; Alonso-Zarza and Wright, 2010; 

Brasier, 2011). Calcrete formation has often been thought an indicator of contemporary semi-arid 

conditions, but can also form in other climatic settings (Alonso-Zarza and Wright, 2010).  

Calcretes are common in East Africa, in both present and formerly drier regions, 

particularly in the semi-arid regions of Kenya, Tanzania and Ethiopia. They are also common in 

the Neogene continental sediments and, in many places, mantle the land surface as resistant 

erosional remnants. Although widespread, calcretes have rarely been a focus of study in East 

Africa so little is known about their origins and paleoenvironmental significance.  Hay and 

Reeder (1978) studied their origin in Pleistocene sediments of Olduvai Gorge in Tanzania. 

Renaut (1993) examined late Pleistocene calcretes on the northern margin of Lake Bogoria.  In 

most examples, however, calcretes are interpreted as representing a relatively ‘dry interval’ 

during periods of little net sedimentation, preserved in stratigraphic successions of fluviatile and 

lacustrine sediments. 

Calcrete, locally up to at least 50 cm thick, is exposed in many locations in the southern 

Kenya Rift, including the greater Magadi basin, which contains modern saline, alkaline Lake 

Magadi, and the Olorgesailie basin, which contains a thick succession of mid- to late Pleistocene 

fluvial and lacustrine deposits, and paleosols. These carbonates have been largely ignored. Baker 

(1958, 1963) gave brief descriptions when geologically mapping the region. Eugster (1980) 

interpreted the calcrete layers as having formed at the interface between dilute runoff and brine. 

Using geochemical criteria, he argued that mixing dilute runoff and saline, alkaline waters would 

lead to supersaturation of calcium carbonate allowing calcite to precipitate, with CaCO3 
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nucleation occurring on detrital chert fragments, and with further carbonate coatings producing 

pisoliths. Eugster’s (1980) work, however, did not consider the various laterally-equivalent 

expressions of the calcretes found at Magadi, which can be pisolitic, massive, or laminar. He also 

considered there to be only one main calcrete horizon, which capped mid-Pleistocene fluvio-

lacustrine sedimentary rocks (the ‘Oloronga Beds’). Several calcrete horizons are also present in 

the Pleistocene sediments of the neighbouring Olorgesailie basin to the northeast. The latter have 

never been studied in detail, but some may be of similar age to those of the neighbouring Magadi 

basin. 

1.2.  Objectives  

The main aim of this research is to interpret the origins and paleoenvironmental 

significance of the several types of calcrete in the Magadi and Olorgesailie basins, based on 

fieldwork (mainly stratigraphic), and petrographic and geochemical analyses of samples 

collected. A secondary aim is to provide more general criteria that can be used to interpret the 

many other modern and ancient calcretes in East Africa, including those in Neogene sequences. 

Previous research on the sediments of the Magadi basin has focused on understanding: 

(1) the origin of the Lake Magadi basin waters and their associated sodium-carbonate 

evaporites -- mainly trona [Na3(CO3)(HCO3)•2H2O] and nahcolite (NaHCO3) (Baker, 

1958, 1963; Eugster, 1970; 1980, 1986; Jones et al., 1977); 

(2) the origin of the abundant cherts, some of which recrystallized from magadiite and 

sodium-aluminium silicate gel precursors (Eugster, 1967; Eugster and Jones, 1968; Hay, 

1968). Many of these cherts contain biological structures (microbialites) now composed 

of quartz, some of which might have precipitated from a non-crystalline (opal-A) 

precursor (Behr and Röhricht, 2000; Behr, 2002); and  

(3) the many diagenetic minerals (especially zeolites, fluorite and villiaumite) that 

precipitated in lake- and groundwaters of variable compositions.  Some of these minerals 

precipitated directly from lake or pore fluids to form cements; others formed by reactions 

between the lake- and pore-fluids with other minerals -- especially detrital volcanic glass 

(Surdam and Eugster, 1976). 
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Calcretes and thin carbonate rock coatings cover extensive areas of the land surface in the 

Magadi-Olorgesailie region, and calcretes are common stratigraphic units in the Quaternary 

fluvio-lacustrine strata. The calcretes of the southern Kenya Rift have never been studied in 

detail.  This research is the first attempt to examine their stratigraphic context, petrology and 

geochemistry, and to determine whether they are pedogenic calcretes, influenced mainly by soil 

and plant processes, or groundwater calcretes, precipitated mainly by abiotic processes at or near 

the water table. This study also aims to provide new information to help to interpret the long 

timespan represented by only a thin (~50 cm thick) calcrete at Lake Magadi, and to explain the 

origin of the calcretes in the sediments that overlie much of the Pleistocene Olorgesailie 

Formation. 

 

In summary, the aims of this research are to: 

1. Determine how the calcretes formed at Magadi and Olorgesailie; 

2. Develop a general model for calcrete development in the southern Kenya Rift Valley 

that can be used to understand the paleoenvironments of their formation, both there and 

elsewhere in the East African Rift;  

3. Determine the origin of unusual carbonate-silica cemented conglomerates along the 

southern shoreline of Nasikie Engida; and 

4. Consider the paleoclimatic conditions during formation of the calcretes.  

 

1.3.  Geological and environmental setting 

Lake Magadi (Fig. 1-1; 1°53’19.10”S, 36°17’44.85” E: elevation: ~ 600 m) and 

Olorgesailie (Fig. 1-2; 1°34’40.13”S, 36°26’41.52” E: elevation: ~ 970 m) lie in the southern 

Kenya Rift, 60 km (Olorgesailie) to 100 km (Magadi) southwest of Nairobi. The Kenya Rift is 

part of the eastern branch of the East African Rift system (EAR), which extends southwards from 

the Afar triple junction in Ethiopia through Kenya into Tanzania and further south (Fig. 1-1.). 

Rifting began in the Paleogene, ~ 30 million years ago, after a mantle plume rose from 

below the continental crust and led to domal uplift in central Kenya and Ethiopia (Baker and 

Wohlenberg, 1971; Chorowicz, 2005; Nyblade, 2011; Halldórsson et al., 2014). Rifting was 

influenced by old tectonic lineaments inherited from Precambrian basement rocks (McConnell, 
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1972; Ebinger et al., 1997; Le Turdu et al., 1995), though this interpretation has been questioned 

because geophysical data imply that the boundary between the Tanzanian Craton and the 

Mozambique (mobile) Belt lies farther to the east than originally proposed and that a thin layer 

of Mozambique Belt rocks overlies the Tanzanian Craton (Dawson, 2008). The rift propagated 

southwards from the Afar triple-junction into Tanzania, which has experienced active rifting 

only since 1.2 Ma (Dawson, 1992). Southward extension of the eastern arm of the rift was 

limited by the Tanzanian Craton (Ebinger et al., 1997), as shown by the differences in crustal 

structure at ~ 2°S (Albaric et al., 2009; Dawson, 1992). At the land surface this is resolved as a 

diffusion of the relatively narrow rift zone (50 km wide) into a broad plain in northern Tanzania 

(200 km wide), where the rift zone divides. This is termed the North Tanzanian Divergence 

(LeGall et al., 2008). The development of the northern Tanzania basins, which include the 

Natron basin, occurred from ~ 5 to 3.5 Ma (Tiercelin and Lezzar, 2002). 

The Kenya Rift is seismically active (Mulwa et al., 2014), experiencing lithospheric 

thinning due to a rising body of hot mantle (Prodehl et al., 1997). Most recent seismic activity in 

the Kenya Rift has been recorded just north of Lake Magadi. The recent earthquakes, however, 

are minor (scale: M < 4; Ibs-von Seht et al., 2001). At Lake Magadi, the rift is a structurally 

complex graben–half-graben depression, trending NNE-SSW parallel to the main border fault, 

the Nguruman Escarpment, which lies 15–25 km west of the lake (Fig. 1-1). A secondary 

tectonic direction (NNW-SEE) inherited from the underlying Mozambique Belt basement rocks, 

termed the Asua-Nandi-Loita shear zone, intersects the main N-S Tertiary rift fault-zone. Faults 

following this pattern have produced the western arm of Lake Magadi (Dawson, 2008). At the 

junction between these fracture zones, located near the southern end of the lake, an increase in 

microcrack porosity may explain the paucity of earthquake events south of the lake, while the 

north of the lake experiences much more seismicity (Ibs-von Seht et al., 2008). Earthquake 

swarms recorded to the north, along with anomalies related to a rise of the brittle-ductile 

transition zone and a gravity anomaly implying mafic material within the crust, indicate the 

presence of a mid-crustal mafic magma body (Ibs-von Seht et al., 2008). A possible trigger for 

these swarms is a change in pore pressure from fluid flow or magma degassing (Naujoks et al., 

2007).  
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Figure 1-1. Map of Lake Magadi Area. A) Regional location, square boxes indicate map areas shown in 1-1.B and 1-2. 

B) Geological map of Lake Magadi showing sample locations. Modified from Scott (2010) and Guth and Wood (2013). 
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Figure 1-2. Map of Olorgesailie geology. Modified from Owen et al., (2009)  

 

The tectonic record, preserved in the Oloronga Beds of Magadi, the Olorgesailie 

Formation and the Middle Pleistocene volcanics of Ol Doinyo Nyokie to the NE of Magadi 

shows that major grid faulting occurred from 0.8 to 0.4 Ma in the Magadi-Natron basin (Fairhead 

et al. 1972), with episodic faulting continuing until the mid-Pleistocene at Olorgesailie (Isaac 

1978) and from 2.25 to 0.36 Ma at Magadi (Dunningham, 2005, cited in Dawson, 2008). Behr 

(2002) also reported phases of faulting in the Magadi basin during the last 800,000 years, 
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recorded in the lake sediments. The extensive faulting in the area hinders stratigraphic 

correlation of the sediments, which are preserved only in discontinuous outcrops.  

Many types of volcanic rocks are present in the Kenya Rift, including flood basalt, 

trachyte and phonolite, and central volcanoes that erupted basalt, trachyte, carbonatite and 

natrocarbonatite lavas and tephra. Widespread extrusive volcanism in the southern Kenya Rift 

ceased in the mid-Pleistocene with the Magadi Trachytes, also called ‘Plateau Trachytes’, which 

formed from ~ 1 Ma until 0.78 Ma (Fairhead et al., 1972).  Flood volcanism in the Kenya Rift 

ended some time between ~ 0.8 and 0.3 Ma (Baker, 1988), but caldera volcanoes continued to 

develop in the axial rift. Suswa caldera, ~ 45 km north of Olorgesailie, was active from ~ 240 to 

< 100 ka (White et al., 2012). Ol Doinyo Lengai, a natrocarbonatite volcano about 100 km to the 

south of Magadi in northern Tanzania, has been active since ~ 22 ka (Dawson, 2008). 

A variety of lakes fill the half-graben depressions of the Kenya Rift. Most of the rift lakes 

are saline and alkaline with high pH (> 9), reflecting the mineralogy of the rift volcanics, the lack 

of outlets, and the high evaporation rates that characterize the semi-arid climate. Lake Bogoria, 

for example, is a shallow (< 10 m), saline, alkaline lake that is fed by ~ 200 hot springs, with 

TDS (Total Dissolved Salts) values up to 50 g/L for the surface waters and 100 g/L for bottom 

waters (Renaut et al., 1986; Renaut and Tiercelin, 1994; De Cort et al., 2013). Lake Turkana in 

northern Kenya, the largest of the Kenya rift lakes, is fed by the Omo River, and has an average 

of 2500 ppm TDS and pH of 9.2 (Yuretich and Cerling, 1983; Cerling, 1994; Yan et al. 2002). 

However, freshwater lakes are also present: Lake Baringo, only 22 km from hot-spring-fed 

saline, alkaline Lake Bogoria, remains fresh (0.9 ±0.3 g/L TDS) despite high rates of 

evaporation, probably because of subsurface seepage through the underlying faulted volcanic 

rocks (Tarits et al., 2006). Such differences in salinity between neighbouring lakes within the 

same geographical area highlight the highly variable nature of the Kenya Rift Valley in terms of 

climate, hydrology, and tectonics. 

 

1.4.  Methods 

In total, 37 large samples of calcrete and the associated (host) sediments were collected 

from the Lake Magadi area and at Olorgesailie during the July-August 2011 field season. R. 

Renaut had previously collected calcrete samples from the same sites at Magadi in November 

1991 and July 1996, several of which were included in this study.   
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Although widely distributed, calcrete samples were chosen from four areas at Magadi-

Olorgesailie, where they are well exposed and their stratigraphic context is clear.   

1: Samples were taken and sections measured at the ‘Dry Lagoon’ of Eugster (1980, 

1986, his Fig. 2), where a well-developed calcrete separates greenish silts of the mid-Pleistocene 

Oloronga Beds from the overlying pale-brown tuffaceous silts of the late Pleistocene High 

Magadi Beds.  This calcrete was also sampled upslope along a 250 m traverse ending at ~ 639 m 

elevation. 

2:  Thin carbonates (interpreted as laminar calcrete) that coat Magadi Trachyte ~ 150 m 

above the fan-delta at Graham’s Lagoon were sampled. This limestone coats trachyte ~ 34 m 

above modern lake level. 

3. A calcite-cemented lake-marginal conglomerate was sampled along a ~125 m transect 

parallel to the southeast shoreline of Nasikie Engida, the small saline lake north of Lake Magadi. 

The conglomerate overlies High Magadi Beds. When collected, the conglomerate was 

considered a possible type of calcrete, but this interpretation has been revised based on the 

results of this study. 

4. At Olorgesailie, ~3.3 km NEE from the main Olorgesailie Prehistoric site, a 3.5 m 

stratigraphic section of downcut post-Olorgesailie deposits was recorded and the three calcrete 

intervals it contained were sampled as well as the sediments between and below the calcretes.  

Large thin sections were prepared of 47 samples and their microfabrics determined using 

a petrographic microscope.  The classification of microfabrics proposed by Wright (1991) was 

used to make preliminary interpretations.  

Scanning electron microscopy (SEM) of 4 samples was undertaken using a JEOL JSM-

840A at 20.0 kV on gold-coated, freshly fractured surfaces at the University of Saskatchewan.  

Samples were analysed for chemistry by ACTLABS, Ancaster, Ontario, using the 

following methods: FUS-ICP for major oxides, Be, Sr, V, Zr, and Y; INAA for Au, Ag, As, Ba, 

Br, Co, Cs, Hf, Hg, Ir, Rb, Sb, Sc, Se, Ta, Th, U, W, and the lanthanides; TD-ICP for Bi, Cd, Cu, 

Mo, Ni, Pb, S, and Zn.  

For stable isotope analysis, calcrete and other sediment samples were heated under 

vacuum at 200°C for 1 hour to remove volatiles and organic components. Stable isotope values 

were obtained using a Finnigan Kiel-IV carbonate preparation device directly coupled to the dual 

inlet of a Finnigan MAT 253 isotope ratio mass spectrometer. Approximately 20–50 micrograms 
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of sample was reacted at 70°C with 3 drops of anhydrous phosphoric acid for 420 seconds. The 

CO2 evolved was then cryogenically purified before being passed to the mass spectrometer for 

analysis.  Isotope ratios were corrected for acid fractionation and 
17

O contribution using the 

Craig correction (Craig, 1957), and reported in per mil notation relative to the VPDB scale. Data 

was calibrated against the international standard NBS-19 (δ
13

C = 1.95‰ and δ
18

O = -2.2‰ 

VPDB) with a precision of 0.05‰ and 0.11‰ for δ
13

C and δ
18

O, respectively (n = 25).   

Backscattered electron imagery and EDS (energy-dispersive X-ray spectroscopy) 

analyses were obtained using a JEOL JXA-8600 Superprobe electron microprobe analyser with a 

setting of 15kV at the University of Saskatchewan using appropriate standards. 

X-ray diffraction was accomplished using CuKα radiation with a range of 5 to 81° at the 

University of Saskatchewan using acetone smears on a Rigaku RU 200 X-ray diffractometer. 

 

1.5.  Thesis structure 

This thesis contains six chapters including this introductory chapter. Chapter Two 

reviews the calcrete literature and summarizes calcretes in the East African Rift. The remaining 

chapters are denoted by study area. Chapter Three describes the calcrete capping the Oloronga 

Beds at Magadi and an example of the widespread laminar calcrete that coats trachyte bedrock in 

the Magadi basin. Chapter Four focuses on the post-Olorgesailie Formation calcretes at western 

Olorgesailie. Chapter Five discusses the unusual Holocene carbonate-cemented conglomerates at 

Nasikie Engida. The final chapter considers the results of this work and their broader 

implications, and gives a summary and the main conclusions.  
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2. CALCRETES IN EAST AFRICA 

2.1.  Overview of calcretes 

2.1.1. Definition and occurrence  

Calcretes are terrestrial accumulations of carbonate produced biogenically by root 

transpiration (e.g. Wright et al., 1995) or microbial processes (e.g. Wright, 1986), or abiotically 

by the evaporation of shallow groundwater or surface flow within sediments, soils, or on rock 

surfaces (e.g. Nash and Smith, 2003), both calcareous and non-calcareous, producing at its most 

evolved state a layer of pervasively calcite-replaced reworked, then re-cemented, material (Stage 

VI of Machette, 1985). Many terms have been used to describe calcretes, such as “caliche”, 

“kunkar”, “cornstone”, “croûte calcaire” and others (Goudie, 1983).  Calcrete is the preferred 

term.  

Calcretes are found worldwide. An estimated 13% of the current land surface hosts 

calcrete (Yaalon, 1988). They are present mainly in sediments younger than Silurian, supporting 

the importance of vascular plants in their formation; however, they may be under-represented in 

older deposits due to the obfuscation of alteration (Brasier, 2011).  

 

2.1.2. Classification 

Calcretes have many morphologies and commonly show vertical variation within a single 

profile. The carbonate is typically low-Mg calcite although dolomite may also occur (e.g. Hay 

and Reeder 1978; Colson and Cojan, 1996; Khalaf, 2007). The carbonate is present as diffuse 

powder, nodules, laminations, cements and grain coatings, pisoids and as massive cemented 

horizons. The boundaries of the calcrete may cross bedding planes of the host deposits. Where 

the calcrete is denuded or exhumed and resistant to erosion, it can form an important 

discontinuity surface of local or regional extent. 

Classification of calcretes is difficult because of their wide variety in morphology and 

occurrence. The most common classification, which is genetic, separates calcretes into 

‘pedogenic’ and groundwater-related (‘non-pedogenic’) varieties, but these are frequently 

difficult to distinguish, and individual profiles may have multiple origins. Several methods to 
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characterize the two have been proposed. Groundwater calcretes, for example, are thought to 

have a sharp top and a sharp base, whereas pedogenic calcretes may have a gradational base. 

Another method to determine the realm of genesis is to inspect clast coatings in thin section for 

pendant cements: typically water in the vadose (aerated, soil) zone above the water table will 

concentrate at the bases of clasts under gravity, forming a thicker cement. Conversely, 

groundwater (phreatic) cements are commonly isopachous because they form where water fills 

all accessible pore spaces.  

Calcretes are also classified based on micromorphology viewed in thin section.  Textures 

visible at light-microscopy scale were classified by Wright (1990) as either alpha (abiogenic) or 

beta (biogenic) microfabrics (Fig. 2-1).   

Beta microfabrics include alveolar septal structures, produced by fungi frequently 

associated with plant roots; needle-fibre calcite, which is also associated, though not exclusively, 

with fungal and bacterial activity; and a specific fabric termed Microcodium. The origin of 

Microcodium is debatable. It is commonly thought to be the product of root calcification (Košir 

2004); however, Singh et al. (2007) and Kabanov et al. (2008), among others, attribute 

Microcodium to the activity of fungi (possibly mycorrhizal) and bacteria in the rhizosphere. The 

fabric is usually considered biogenic even if the producer(s) is uncertain. Alpha microfabrics 

include carbonate nodules, in which biotic indicators are not observed; circumgranular cracks; 

complex crack networks; and grains floating in a matrix.  

Alpha microfabrics, which imply diminished biotic processes or their absence, typify 

groundwater calcretes, whereas beta microfabrics typify pedogenic calcretes. However, these 

microfabrics are end-members of a spectrum. All factors must be considered before assigning a 

genetic classification.  

Calcretes are part of a terrestrial carbonate continuum and as such they may grade into or 

be found alongside palustrine carbonates or spring carbonates depending on environmental 

setting (Alonso-Zarza, 2003; Brasier, 2011). There are some major differences: palustrine 

carbonates are typically more fenestral and frequently bear charophyte-related fabrics, while 

spring carbonates have dendritic calcite and encrustations.  
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Figure 2-1. Alpha and beta Microfabrics. Alpha: A) Nodule formation. B) Complex cracks. C) Corona rims around 

grains. D) Floating euhedral calcite crystals. E) Floating grains. F) Intra-nodular cracks. G) Pore-filling calcite cements; 

bladed, palisade, botryoidal and mosaic types. Beta: A) Calcified root cells. B) Ooids. C) Calcified filaments. D) 

Alveolar-septal fabrics. E) Peloids. F) Microcodium. G) Microbial coatings. H) Spheroids. I) Wavy-laminar 

stromatolitic fabric. J) Needle fibre calcite, inferred to be related to microbes. Modified after Wright et al. (1991) and 

Zhou and Chafetz (2009).  

 

2.1.3. Mechanisms and models of formation 

The mechanisms by which calcium carbonate is precipitated include supersaturation 

induced by evaporation or water removal by plants (evapotranspiration); CO2 degassing to 

equilibrate with atmospheric CO2; the common ion effect, through the addition of chemically 

different meteoric water and (or) groundwater; root transpiration that decreases soil pCO₂; 

conversion by fungi of oxalic acid to calcium oxalate, which is then transformed into calcium 

carbonate through bacterial bio-oxidation (Verrecchia and Dumont, 1996); and direct 

precipitation by microbial mediation (Monger et al., 1991).  

Calcium availability is commonly the limiting factor in carbonate mineral formation. Ca 

may be sourced from the soil or sediment by chemical alteration, from biotic material (skeletal), 

from calcium-enriched groundwater or percolating runoff, or from rain and windblown dust. In 

the East African Rift, calcium may also be supplied from carbonatite ash, although globally this 
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is a rare source (Hay and Reeder, 1978; Alonso-Zarza and Wright, 2010). The carbonate is 

supplied by meteoric water, percolating from above (‘per descensum’ model of Goudie, 1973). 

For calcretes formed at or near the water table, however, bicarbonate can be supplied by 

groundwater, with carbonate species (HCO3
-
 and CO3

2-
) sourced from below, travelling as ions 

in the capillary zone above the groundwater table (‘per ascensum’ model of Goudie, 1973, and 

Wright and Tucker, 1991). 

 

2.1.3.1. Pedogenic calcretes 

Pedogenic models of calcrete formation are better developed than those for non-

pedogenic calcretes. These include, for example, the well-known model of Machette (1985), 

building on earlier work by Bachman and Machette (1977) and Gile et al. (1966), who 

established stages of calcrete formation on non-calcareous deposits (Fig. 2-2 A). They proposed 

six stages of calcrete formation, which take into account the grain size of the host material. For 

deposits with high gravel content (> 50%), stage I is the least developed, consisting of thin, 

discontinuous coatings on the bases of grains. Stage II has continuous coatings which range from 

thin to thick on the tops and bottoms of grains.  At stage III, a calcrete with coarse clasts 

becomes progressively more indurated, with much precipitated carbonate amassed between 

clasts proceeding towards full cementation. For deposits that initially had less gravel (< 20%), 

stage I consists of carbonate-encrusted filaments in the soil or paleosol, and thin coatings on ped 

surfaces. Small (0.5–4 cm), soft carbonate nodules have developed by stage II, and by stage III, 

those nodules have grown together and the matrix has been cemented. 

For the first three stages (I to III), the soil is still morphologically a soil; from stages IV 

to VI, however, the soil is firmly indurated and the morphology of the calcrete no longer differs 

between coarse and fine-grained host material. Laminae up to 1 cm thick develop in stage IV, 

covering the earlier cemented horizon (s) and coating fracture surfaces, forming a calcrete from 

0.5–1 m thick. Stage V includes thicker calcite laminae (> 1 cm) which coat vertical surfaces as 

well as fractures, and pisolites (pisoids). Stage V calcretes are typically 1–2 m thick. Calcretes at 

stage VI consist of an indurated horizon that has undergone brecciation and re-cementation 

several times, leading to multiple generations of pisolites and laminae that often build from older 

generations of lithified carbonate. Such calcretes are commonly more than 2 m thick.  
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Though the stages of this model are successive, the time it takes for each stage to develop 

is highly variable. Two calcareous soils that formed during the same time interval can have 

different profile characteristics that, in turn, represent different stages of calcrete formation.  

Another common model for pedogenic calcretes (Esteban and Klappa, 1983), describes a 

profile of calcrete ranging from host material to hardpan at the top and is essentially equivalent 

to a stacked VI stage model (Fig. 2-2 B). Calcretes have also been categorized based on 

morphology for geotechnical use (Netterberg and Caiger, 1983). 

The American soil classification uses soil-profile terms to indicate a calcrete, which in 

their parlance is a ‘K horizon’, as well as ‘calcic horizon’ (for less developed forms), and a 

‘petrocalcic horizon’ (for indurated horizons). K horizons denote discrete accumulations of 

calcium carbonate within a soil profile with a ‘K-fabric’—the coating of grains with carbonate. 

K horizons are usually found within B horizons, which are zones of illuviation, and are also 

termed Bk horizons, though CaCO3 accumulations are also found in C horizons. Soils in which 

calcretes form are typically aridisols, vertisols, mollisols and alfisols (Soil Survey Staff, 1999; 

Wright and Tucker, 1991), and calcisols, and durisols (IUSS Working Group WRB, 2015). In the 

Canadian soil classification system, zones of secondary carbonate accumulation are referred to as 

‘Cca’, for mineral zones of calcium carbonate accumulation, and ‘Cc’ or ‘Ccc’ for cemented 

horizons  (Soil Classification Working Group, 1998).  
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Figure 2-2. Previous page. Models of pedogenic calcrete formation. A) The VI-Stage model of Machette (1985) built 

upon work by Gile et al. (1966). See text for explanation.. B) Idealized pedogenic calcrete profile of Esteban and 

Klappa (1983). 

 

2.1.3.2. Non-pedogenic calcretes 

Carbonate cementation in non-pedogenic calcretes occurs at, or slightly above, the 

contemporary groundwater table and results from CO2 degassing, precipitation from saturated 

groundwater, or from the ‘common-ion effect’ (Goudie, 1983). If the groundwater table is 

shallow (i.e. less than ~ 1 m), calcite precipitation can also be accomplished by evaporation, 

evapotranspiration, or other biotic processes.  

Carlisle (1983) classified non-pedogenic calcretes into four genetic types: superficial 

calcretes, gravitational-zone calcretes, groundwater calcretes, and detrital and reconstituted 

calcretes.  

Superficial calcretes, also termed laminar calcrete and gully-bed cementation, involve the 

surficial transport of carbonate in runoff. Laminar calcretes can also form from cyanobacterial 

activity (Verrecchia et al., 1995), from root activity (Alonso-Zarza, 1999, Alonso-Zarza and 

Jones, 2007), or from physicochemical processes (Carlisle, 1983).  

Groundwater calcretes are further subdivided using geomorphic constraints: lake 

marginal calcretes (Renaut, 1993; Sakai et al., 2010), deltaic calcretes (Carlisle, 1983), channel 

calcretes (Nash and Smith 1998; Nash and McLaren, 2003; Nash and Smith, 2003; McLaren, 

2004), valley calcretes (Pimentel et al., 1996; Jutras et al., 2007), and alluvial fan calcretes 

(Stokes et al., 2007). Groundwater calcretes are typically composed of mostly alpha microfabrics 

that often preserve the original sediment texture, and can be up to several meters thick (Carlisle, 

1983). Carbonate cementation happens at or a few cm above the capillary fringe, at, or just 

below the water table. Instead of a predominantly vertical transport of calcium and carbonate, 

these ions are transported laterally which can lead to extensive deposits.  

Lake marginal calcretes and deltaic calcretes can be produced when and where waters of 

different salinities mix, or the water table becomes sufficiently high for evaporation to proceed.  

Change in water table depth is accomplished by a change in topographic gradient, as with a delta, 

or by lacustrine clays forming a semi-impermeable barrier which aids in keeping the water table 

high. Lake margin calcretes may grade into palustrine carbonates, which are the lacustrine 
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equivalent of peritidal deposits. Differences in water table level, plus mixing waters, are 

mechanisms by which the other types of groundwater calcrete are formed (Jutras et al., 2007).  

Channel calcretes are lensoid carbonate-cemented channel sediments containing mostly 

alpha microfabrics, commonly with a gradation in cement crystal size —from coarse spar in the 

bottom of the channel where water remains longest, to micrite at the periphery (McLaren, 2004). 

Valley calcretes are similar in morphology but are more laterally extensive.    

Alluvial-fan calcretes occur when the rate of sedimentation producing the fan decreases, 

and the groundwater table is sufficiently high for evaporation to take effect (Stokes et al., 2007). 

As sedimentation ceases, fan-surface sediment stabilization occurs, usually by plant colonization, 

so pedogenic calcretes can sometimes develop. Stokes et al. (2007) noticed that the distal end of 

the fan showed more pedogenic features, whereas the proximal fan had groundwater features, 

mirroring the lesser soil development in the proximal fan compared to the distal portion.   

Calcretes commonly show composite fabrics in which inferred vadose and phreatic 

indicators overlap (Renaut, 1993; Bustillo and Alonso-Zarza, 2007; Khalaf, 2007). This is 

expected: in lake marginal sediments, calcretes may form during prolonged periods of low-water 

levels but remain within the influence of shallow fluctuating groundwater; if that area then 

undergoes a rise in lake level, older calcretes may be partly overprinted by the rising 

groundwater.   

 

2.1.4. Climatic and other paleoenvironmental inferences 

Calcretes form predominantly in semi-arid climates. If the rainfall is too high, the 

carbonate is leached from the profile; if too low, it becomes immobile.  Optimal conditions are 

generally thought to occur where there is distinct seasonality – a wet season to move the 

carbonate, and a drier season where some carbonate can precipitate in the profile (Goudie, 1973; 

Wang et al., 1994; Passey et al., 2010). There are, however, exceptions. Strong et al. (1992), for 

example, studied a Holocene calcrete from northern Yorkshire, UK, and inferred that it 

represented accumulation in a cool temperate climate. Though many hot semi-arid regions have 

calcrete occurrences, cold semi-arid regions also yield calcretes, because precipitation (i.e. rain, 

snow) is the main factor: a calcrete in the Chinese Loess Plateau was found to form during 

colder, drier periods that post-dated pedogenesis (Rowe and Maher, 2000). Calcretes have been 
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found on all continents including Antarctica (McPherson, 1979; Retallack et al., 2007) and are 

indicative of mean annual precipitation of about ~ 100-–500 mm, though estimates range from 

50 to > 1,000 mm/year (Goudie, 1973; Alonso-Zarza, 2003).  

Calcretes may provide paleoenvironmental clues to the water source, temperature, 

amount of rainfall, and types of vegetation present during their formation. Pedogenic carbonates 

have been widely researched in terms of their C and O isotopes (Talma and Netterberg, 1983; 

Cerling, 1984; Quade et al., 1989; Cerling, 1992; Quade and Cerling 1995; Nordt et al., 1998; 

Robinson et al., 2002; Levin et al., 2004; Wynn, 2007). C isotopes are influenced predominantly 

by CO2 from plant respiration as well as soil pCO2, which is correlated with atmospheric pCO2, 

and some have used calcretes to determine ancient pCO2 levels (Robinson et al., 2002). C 

isotopes of soil carbonate are in equilibrium with the soil environment (Cerling, 1984; Quade et 

al., 1989). Soil carbonate δ
18

O is related to the meteoric water from which the carbonate 

precipitates and is also a function of temperature (Cerling, 1984; Dworkin et al., 2005). Plant 

respiration has no effect on isotope fractionation of oxygen. For example, stable isotopes from 

stage II calcretes indicated drought conditions in New Mexico at ~ 9 ka (Deutz et al., 2001). 

Budd et al. (2002) used stable isotopes to determine the overprinting of a pedogenic calcrete by 

groundwater diagenesis. Using a clumped isotope thermometer, Passey et al. (2010) found a 

seasonal bias in carbonate formation in Neogene deposits near Lake Turkana using paleosol 

carbonates from the Nachukui and Shungura Formations. Because of the surficial nature of 

calcretes, care must be taken to interpret the paleoenvironmental conditions throughout the 

formation of the calcrete and its diagenetic history to have an accurate stable isotope 

interpretation (Kraus, 1999; Budd et al., 2002). Little research has been done on the stable 

isotopes of groundwater calcretes, though some studies suggest that δ
18

O may be used to 

determine the sources of groundwater (Raidla et al., 2012). One study of Mississipian 

groundwater and pedogenic calcretes showed a positive correlation between δ
13

C and δ
18

O in the 

groundwater calcretes while the pedogenic calcretes did not show such a pattern (Jutras et al., 

2007).  

By determining the δ
13

C value from calcretes, it is possible to state whether C3, C4, or 

CAM vegetation was dominant during calcrete formation (Cerling, 1984; Quade and Cerling, 

1995; Alam et al., 1997; Levin et al., 2004; Behrensmeyer et al., 2007). The vegetation that uses 

the C4 metabolic pathway is more enriched in the heavier isotope (
13

C) than the vegetation using 
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the C3 pathway, which preferentially uses the lighter 
12

C atom. These values are reflected in both 

the soil organic matter stable isotopes and the soil carbonate stable isotopes. C isotopes for C4 in 

carbonate are -11 to -13‰, whereas for C3 they are -24 to -30‰ (Tanner, 2010). Plants which 

use the Crassulacean acid metabolism (CAM) pathway, such as succulents, have values that 

overlap both C3 and C4 vegetation, and are adapted to arid environments. The true values may 

vary from region to region but, in general, C3 vegetation has much lower δ
13

C values than C4 

vegetation.  

Other paleoclimate information from calcretes is gleaned by measuring depth to 

carbonate (DTC) in a vertical profile; DTC is shallower in arid regions than more humid regions 

(Retallack, 2004). In studies of vertisols, Nordt et al. (2006) inferred that if the carbonates had 

not undergone diagenesis, DTC could be used to estimate paleoprecipitation. This method, 

however, cannot always be used: erosion of sediments overlying the calcrete, for example, can 

produce erroneous interpretations. 

Ichnofossils can also help when interpreting the settings of calcrete formation. Fossil bee 

nests and other insect traces linked to the Celliforma ichnofacies have been found in calcretes in 

Spain (Alonso-Zarza and Silva, 2002), Uruguay (Alonso-Zarza et al., 2011), and the Canary 

Islands (Genise et al., 2013). In the Ogallala Formation (Miocene-Pliocene) in Kansas, for 

example, ant nests were found to be a major structural element in calcrete, perhaps even 

promoting calcrete development (Smith et al., 2011). Ants and termites typically live in well-

drained soils in semi-arid environments and may be expected in certain calcrete deposits. 

 

2.1.5. Timing of formation 

Calcretes can form in timespans from 1000s to 100,000s of years (Machette, 1985; 

Wright and Tucker, 1991; Alonso-Zarza and Wright, 2010). Hay and Reeder (1978) found that 

due to the high calcium content and easy weatherability of natrocarbonatite ash, calcretes near 

Oldoinyo Lengai volcano in Tanzania, 90 km south of Magadi, formed in only about 1000 years. 

Additionally, Wynn and Retallack (2001), who studied paleosols that had developed on 

carbonatite host material of the Nyakach Formation in SW Kenya, stated that calcareous 

hardpans on carbonatite may form in less than 600 years. They also gave an age estimate for Bk 

horizons forming in similar conditions as 2–30 ka.  



19 

Groundwater calcretes generally form more quickly than pedogenic calcretes; for 

example, channel calcretes of Wadi Dana in southern Jordan, which are up to 5 m thick, were 

estimated to have formed in 2000 to 3000 years (McLaren, 2004).  

However, because multiple phases of calcrete development might be represented in a 

single complex profile, caution is needed when using calcretes for dating unless the stratigraphy 

is clear (Candy et al., 2003). For young calcretes, absolute age dating may be attempted using 

14
C, ESR, and U-series disequilibrium methods (Candy et al., 2003; Rowe and Maher, 2000). 
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2.2. Calcretes in East Africa 

 

Figure 2-3 Locations of calcretes reported in the Kenya Rift Valley and northern Tanzania. 

 

2.2.1. Association with archeological sites 

Most archeological sites in East Africa are associated with present or former land-

surfaces so some sediment sequences with artefacts and terrestrial faunal remains contain 

calcretes.  Calcretes form a hard surface resistant to erosion that may protect underlying, less 

lithified sediments and any fossils or artefacts that they contain. Calcification is also effective in 
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preserving fossil bones (Bishop, 1966; Pickford, 1986).  Pedogenic calcretes form near land 

surfaces that are used by animals and can sometimes incorporate a wide range of terrestrial 

faunal and floral debris. If all necessary parameters are met, calcretes may be radiometrically 

dated creating a temporal framework for sites of archeological importance.  

That artifacts and vertebrate fossils are associated with, or lithified within, calcretes and 

other deposits that imply dry climates is not surprising. In relatively humid times, lakes might 

have filled the relatively narrow rift valley with its steep margins, leaving little room for 

habitation. During wetter periods, fresh water was available: animals and hominins would not 

have had to live near lakes, and ephemeral streams would often have been perennial, so 

vertebrates roamed farther from shorelines. In contrast, sites near more reliable sources of fresh 

water, including dilute springs, would have been more frequently occupied during drier times.  

 

 2.2.1.1. Olorgesailie, Kenya 

The Pleistocene Olorgesailie Formation is a series of lacustrine, fluviatile and 

volcaniclastic sediments, and paleosols in the Kenya Rift Valley, ~ 35 km northeast of Magadi 

(Fig. 2-3). Many calcrete intervals are found within the formation, which contains abundant 

stones tools and vertebrate fossils including Homo erectus. Olorgesailie has long been a site of 

archeological exploration (Isaac, 1977, 1978), and determining how adaptation to the 

paleoenvironment affected early hominin behaviour and evolution has been part of this ongoing 

effort. A detailed record of changing environmental conditions during sedimentation has been 

developed for the 14 members of the formation (Owen et al., 2011, 2012, 2014). Calcretes in the 

post-Olorgesailie Formation sediments are discussed in Chapter 4. 

Paleosols punctuate the Olorgesailie Formation, with the best developed paleosols 

occurring in Members 1, 7, and 11. These paleosols indicate relatively lower lake levels and the 

dominance of terrestrial environments during those times (Owen et al., 2008b). Calcretes are 

found mainly in Member 2, though carbonate nodules of uncertain origin are present at other 

stratigraphic intervals. Paleosols that contain abundant stone tools and vertebrate fossil bones 

and tracks, named UM1p and UM7p (for Upper Member 1 or 7 paleosol), commonly contain 

local pedogenic carbonate nodules (Deocampo et al., 2010). In Member 2, a marker horizon 

(‘EC’) contains crack-filling carbonate cement and casts of salt crystals, indicating a period of 
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increased aridity, possibly during a phase of seismic activity (Owen et al., 2012). Generally, the 

calcretes are considered horizons linked to periods of lake desiccation (Owen et al., 2008b) 

because they are associated with lake sediments containing fossil diatoms that imply increasing 

salinity and pH. Potts et al. (1999), however, described a nodular carbonate layer in upper 

Member 1 that resulted from a rise in the water table, and suggested that hominins would have 

found the contemporary climate and environment habitable. These carbonate nodules, however, 

might have formed by precipitation from groundwater, possibly linked to mixing of concentrated 

alkaline groundwater (because the preceding period was inferred to have been drier) with later 

dilute Ca-bearing meteoric water, leading to supersaturation of CaCO3. Carbonate nodules in the 

UM7p paleosol, in contrast, are associated with pedogenic features.  

Once fresh water resources had dried up or had become too saline or alkaline to drink, 

animals, including hominins, would have been be forced to move on, as might have been the 

case for example at UM7p at Olorgesailie. The latter may represent up to 190,000 years as a land 

surface, but has few fossils and artifacts (Deocampo et al., 2010). There remains a potential 

‘sweet spot’ where conditions are just right, not only for preservation of artifacts and fossils, but 

also for formation of calcrete and carbonate-rich soils.  

 

2.2.1.2. Lainyamok, Kenya 

Lainyamok is a fossil-bearing locality about 8 km west of Lake Magadi that was studied 

by Potts et al. (1988) and Shipman et al. (1983). The mid-Pleistocene sediments there consist of 

mainly mudflow and lacustrine silts with three “khaki layers” as well as three carbonate 

horizons. Two of these limestones have ‘boxwork’ and ‘honeycomb’ structures—the carbonate 

forms around silt clasts as well as through cracks—and are interpreted to have formed at a lake 

margin from evaporative processes (Fig. 2-4). The third limestone, probably of lacustrine origin, 

caps the sediments, which are similar to the mid-Pleistocene Oloronga Beds of the main Magadi 

basin (Baker 1958), implying that the Lainyamok sediments are an outlying extension of the 

Oloronga Beds (Shipman et al., 1983). Age estimates of the fossil-bearing horizons in the 

sediments at Lainyamok are 0.70–0.56 Ma, which overlaps with the Oloronga Beds. 

Fossils and artifacts found within the khaki-coloured sediments consist of a hominin 

maxilla fragment, a hominin femur and teeth, bones of several types of bovids and other large 
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animals, and a scattering of stone tools. However, due to lack of evidence for a butchery site, 

Potts et al. (1988) concluded that the accumulation of bones was due to hyena activity. Fossils 

were also found in the calcrete: the capping limestone contains fossil Suidae (Shipman et al., 

1983).   

 

Figure 2-4. - Calcrete profile from Lainyamok. First photo shows outcrops in the graben; calcrete is the resistant unit. 

Second photo shows the honeycomb calcrete. Photos from R. Renaut. 

 

2.2.1.3. Olduvai, Laetoli, and Peninj, northern Tanzania 

 

Calcretes and lacustrine carbonates, including stromatolites (Hillaire-Marcel and 

Casanova, 1987), are present in the northern Tanzania rift. Ol Doinyo Lengai, an active 

carbonatite volcano, and other older carbonatite centers in the area provided a source of abundant 

easily-dissolved calcium.  

At Olduvai Gorge, Tanzania, carbonatite tuffs provided the material for calcretes, which 

formed at several levels within the Olduvai Beds, and range from 2000 y BP to 2.0 Ma (Hay and 

Reeder, 1978). Most of the calcretes are in sediments less than 600,000 years old. The host 

sediments are nephelinitic eolian tuffs from Kerimasi (older) and Ol Doinyo Lengai (younger) 

volcanic centers to the NEE. Calcretes are typically structured as a massive calcrete, possibly 

oolitic or pisolitic, overlain by a discontinuous laminar calcrete up to 4 cm thick (Fig. 2-5). 

Typically the calcretes are at and possibly controlled by disconformities in the underlying 

sediments. Hay and Reeder (1978) interpreted the Olduvai calcretes to be pedogenic but for one 

in the lower Masek Beds (calcrete dated at 0.5–0.6 Ma) interpreted to have resulted from 
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groundwater processes because of very thick coatings on the large pisoliths. These calcretes 

formed in a shorter time frame than most, which seems incongruent with their stage of formation 

(IV of Gile et al., 1966)—only a few thousand years as opposed to the general 100,000 years for 

that stage—because carbonatite ash is abundant in the area, providing abundant Ca and CO3 for 

the carbonates to form (Hay and Reeder, 1978). 

 

 

Figure 2-5. - Calcrete profile from Olduvai showing ~2 cm thick laminar carbonate coating massive calcrete. Photo 

from R. Renaut. 

 

Calcretes and calcrete features are common at the Laetoli site, about 50 km SE of 

Olduvai Gorge, with many localities showing one or more calcrete horizons in section. The 

calcretes are concentrated in the Upper Laetolil Beds (3.63–3.85 Ma) and Upper Ndolanya Beds 

(2.66 Ma) (Harrison, 2011), with calcretes also occurring in the most recent sediments, the 

Ngaloba Beds (Late Pleistocene, Silal Artum site). A capping calcrete is present above the Lower 

Laetolil Beds in the Lobileita site (Harrison and Kweka, 2011). These calcretes appear to be 

largely pedogenic, as they are associated with predominantly pedogenically-modified sediments, 
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though some are described as “calcretised tuffs” and “diagenetic calcretes” (Ditchfield and 

Harrison, 2011) indicating that physicochemical processes were involved in forming them. The 

chemical composition of the carbonatite tuffs is such that modification through meteoric 

weathering would lead to carbonate cement (Hay and Reeder, 1978). Pedogenic calcretes appear 

to be correlated with topographic position; such calcretes are typically not found at the valley 

floor at Laetoli.  

At Localities 9 and 10W at the Laetoli site, calcretes preserve termite hives probably 

made by Macrotermes (Darlington, 2011). These local calcretes occur as stacked horizontal 

layers 3–5 cm thick separated by narrow horizontal cracks and take on the form of termite 

galleries. Additionally, poorly preserved termite hives have a distinct “vermiform calcrete” 

structure occurring in soft matrix. 

Calcretes in the Upper Ndolanya Beds are pedogenic and may have blocked drainage of a 

plain similar to the modern situation of the Serengeti, where local calcretes just below the land 

surface hinder drainage (Anderson and Talbot, 1965). 

West of Lake Natron is the Peninj area (Fig. 2-3). Like Olduvai, Peninj has produced 

many archeological discoveries since the 1960s, including a mandible from Paranthropus boisei 

(e.g. Isaac, 1965; Torre et al., 2008; Diez Martín et al., 2009).  The archeological sites were 

found within the Pleistocene Peninj Group and are interpreted as butchery sites located near 

where animals were killed (Dominiguez-Rodrigo et al., 2002). Dominiguez-Rodrigo et al. (2002) 

found that fossils and artifacts above a paleosol developed on carbonatite tuff had become 

cemented to the tuff by a bio-precipitated laminar carbonate within a river channel, preserving 

the original positions of the bones and tools. These occur within the dominantly deltaic Humbu 

Formation of the Peninj Group (Isaac, 1967). 

 

2.2.1.4. Koobi Fora, Kenya 

On the northeastern shoreline of Lake Turkana is the archeological site of Koobi Fora. 

Found in the 1960s, it has since yielded important Pliocene and Pleistocene fossils and artifacts 

of several species of hominins, in particular the genera Homo and Australopithecus (Spoor et al., 

2007). The Koobi Fora Formation, part of the Omo Group, is located around the northeast of the 

lake and includes eight members. Pedogenic carbonates are common in all members (Gathogo 

and Brown, 2006). Pedogenic carbonates and calcretes are less well developed in the Turkana 
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region than those farther south. Cerling et al. (1988) surmised that the relative lack of calcretes 

compared to those of southern Kenya and northern Tanzania results from differing parent 

material and from basin dynamics—higher subsidence rates have meant less time for soils and 

calcretes to mature.  

Carbonate nodules and other forms of pedogenic carbonate are found in many locations 

throughout the Koobi Fora Formation in the Ileret area. For example, the first interval of the 

fluvio-lacustrine Lonyumun Member has clay-rich mudstones at its top with rhizoliths and 

carbonate concretions, indicating a pedogenic calcrete (Gathogo and Brown, 2006). Another 

calcrete forms part of an important discontinuity surface between the Lonyomun Member and 

the overlying Lokochot/Tulu Bor Member representing a time interval of 0.46 Ma (Kidney, 

2012). Within the Chari Member, a pedogenic calcrete overlies lacustrine fossiliferous 

sandstones and mudstones. This calcrete is associated with rhizoliths as well as sparse fossil 

termite nests of Termitichnus (Gathogo and Brown, 2006). These calcretes are associated with 

fluvial floodplain deposits. The Nachukui and Shungura Formations, which lie west and north (in 

Ethiopia) of the lake respectively, are correlatable with the Koobi Fora Formation (Tiercelin et 

al., 2010), and also contain pedogenic carbonates that record an increase in C4 vegetation since 4 

Ma (Levin et al., 2011). Using a clumped isotope thermometer, Passey et al. (2010) showed a 

seasonal bias in carbonate formation taking place in these soils that formed at temperatures 

greater than 30°C.  

At Ileret, located near the northeastern shoreline of Lake Turkana in northern Kenya, a 

calcrete layer (Main Ileret Caliche) overlying the KBS member of the Koobi Fora Formation was 

estimated to have formed at 1.54 Ma based on supra- and subjacent tuffs, providing a minimum 

age for a fossil Homo erectus skull found in the sediments beneath it (Spoor et al., 2007).  

 Calcretes are used to help determine paleoenvironmental conditions in early hominin 

times. Cerling et al. (1988) used the stable isotope record of paleosol carbonates (calcretes) in the 

Koobi Fora Formation to determine a shift from predominantly C3 vegetation to C4 vegetation 

(grasses) at about 1.8 Ma, noting that the present conditions are the most arid since then. The 

expansion of grasslands has been widely discussed in the context of hominin evolution. Quinn et 

al. (2013) analysed stable isotopes of pedogenic carbonates near lithic archeological sites in the 

Nachukui and Koobi Fora Formations and found that those sites had a higher proportion of C3 

vegetation, indicating a preference of hominins for wooded areas.  
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2.2.1.5. Nyanza Rift Valley, southwest Kenya 

The Miocene Nyakach Formation consists of fluvial deposits, lahars and paleosols 

(Saggerson, 1952), and is located in the Nyanza Rift Valley at Kaimogool. The paleosols have 

yielded many vertebrate fossils, including Kenyapithecus (Pickford, 1985). Calcretes there 

consist of Bk horizons, with carbonate nodules of varying sizes, carbonate rhizoliths, and diffuse 

carbonate (Wynn and Retallack, 2001), which would be classified a Stage II pedogenic calcrete, 

or possibly stage III (Gile et al., 1966). These horizons are thought to have developed fairly 

rapidly (<600 years for the best developed) as they formed within carbonatite sediments. The Bk 

horizons and depth to carbonate were used to interpret the past climate as arid to very arid.  

Also part of the Nyanza Rift Valley, several paleosols in the Miocene Maboko Formation 

at Maboko Island in Lake Victoria in SW Kenya contain carbonate nodules (Retallack et al., 

2002). A hardpan calcrete occurs within a carbonatite ash paleosol which formed within 600 

years. The carbonate horizons, or Bk horizons in soil terminology, are mostly shallow and 

precipitation amounts were calculated to be 300–500 mm mean annual precipitation, using a 

modified depth to carbonate equation of Retallack (1994), indicating a dry climate when they 

were forming (Retallack et al., 2002).  

 

2.2.2. Southern Lake Turkana, Kenya 

At Baragoi in the rift valley about 50 km south of Turkana, superficial deposits show 

incipient calcrete features. Small carbonate nodules were found in soil near ephemeral streams 

(Baker, 1963). These soils, composed of fine sand and clay, were contrasted with more eroded 

soils that had the finer grained element winnowed away. Two modes of formation seem possible. 

The first is by seasonal drying of the stream, which would cause the dissolved carbonate to 

precipitate by evaporative concentration. The second is by mixing of comparatively dilute 

meteoric water from the stream with more concentrated shallow groundwater. 

Several calcrete horizons are found throughout a 160 m-thick sequence of the Kajong 

Formation in the south Turkana region at Loiyangalani. Within the calcite-cemented mudstones, 

silts, sands, and conglomerates of the Kajong Formation the calcretes are pedogenic and up to 
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1.5 m thick (Williamson and Savage, 1986). The calcrete-bearing units are playa deposits that 

also include stromatolites. The Kajong Formation is overlain by olivine basalts and pyroclastics 

of the Loiyangalani Basalts that were dated to roughly 18–19 Ma (Williamson and Savage, 

1986). 

At Loperot and Kajong at the southwestern and southeastern margins of Lake Turkana, a 

heavily calcretised basement surface up to 5 m thick outcrops underlies the Kajong Formation. 

This substrate is likely the mid-Cenozoic erosion surface widely recognized throughout East 

Africa (Williamson and Savage, 1986). 

 

2.2.3. Other calcrete occurrences in the East African Rift 

Calcretes also occur elsewhere in the rift valley related to a variety of deposits. In western 

Tanzania calcrete nodules are present in alluvial fan deposits of the Permian Ndeke Group, part 

of the Karoo Supergroup (Dypvik et al., 2001; Dypvik and Nilsen, 2002). These calcrete nodules 

are associated with hematite, are early diagenetic, and show stages of recrystallization from 

original micrite to poikilotopic calcite (Dypvik and Nilsen, 2002).  

Towards the south of Tanzania in the Kilombero Rift Valley, overlying the Karoo 

Supergroup, the Red Sandstone Group, which includes the Galula Formation and the Nsungwe 

Formation, contains pedogenic calcretes (Roberts et al., 2004, 2010).  In the mid-Cretaceous 

Galula Formation are soil carbonates (Stage I–III of Gile et al., 1966) occurring in mudstone 

paleosols with termite trace fossils, root traces, and backfilled burrows. Together with channel 

fills, crevasse splays, and other floodplain deposits these suggest a large braidplain system 

(Roberts et al., 2010). Clasts of pedogenic carbonate are also found in debris flows of the Galula 

Formation (Roberts et al., 2010). Within the overlying Nsungwe Formation (Oligocene), 

pedogenic carbonate nodules occur in sandstones and conglomerates of alluvial fans that likely 

were deposited following a phase of rapid uplift of the rift walls in the late Paleogene (Roberts et 

al., 2010).  

Near Lake Nakuru, the Upper Pleistocene sediments in the Nderit drift and Makalia River 

contain calcrete (kunkar) at their top. The sediments are diatomite at the base, grading up into 

reddish sands, silts and gravels (McCall et al., 1967). 

Towards the northern extension of the rift valley in Ethiopia, calcretes and terrestrial 

carbonate deposits are also found. The Pliocene Hadar Formation of the Afar depression in 
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Ethiopia contains a ‘calcareous slab facies’ that is 5–10 cm thick (Tiercelin, 1986). It is a facies 

within the Sidi Hakoma Member, which is interpreted to represent a lacustrine/palustrine/fluvial 

regime with rapid lake level fluctuations and much hydrological imbalance (Tiercelin, 1986). 

Abundant carbonate nodules (up to Stage II) in the paleosols (mainly vertisols) of the Hadar 

Formation indicate periods of emergence or seasonal drying (Hailemichael et al., 2002; Wynn et 

al., 2008; Behrensmeyer, 2008). Stable carbon isotopes from this paleosol give an estimation of 

30–34% C4 grasses, indicating much more humid conditions than at present, which explains why 

calcrete development only proceeded to stage II. A paleosol with stage II calcrete development 

in the Busidima Formation, which overlies the Hadar Formation, is associated with sediments 

that indicate saline and highly evaporative conditions (Wynn et al., 2008). Also at Afar are 

carbonate horizons that include carbonate nodules associated with roots within the clayey silt 

facies of the Hadar Formation located at the Middle Awash valley (Tiercelin, 1986).  

A calcrete lies at the top of member K3 of the Middle-Pleistocene Kapthurin Formation, 

a succession of alluvial and lacustrine sediments and volcanic beds southwest of Lake Baringo 

(Fig. 2-6) (Tallon, 1978; Renaut et al., 1999). Hominin remains were found just above this 

calcrete, and the calcrete was likely a surface upon which the hominins travelled (Tallon, 1978). 

Also in member K3 a calcrete/calcareous paleosol is interlayered with tufa deposits representing 

subaerial exposure of a wetland area (Johnson et al., 2009). 
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Figure 2-6. – (Previous page) Calcrete from Kapthurin Fm (Middle Silts and Gravels Member of Tallon, 1978). Photo 

from R. Renaut. 

 

2.2.4. Association with lakes 

Some calcretes are closely linked with paleolakes and former lake margins. The Miocene 

Aka Aiteputh Formation in the Samburu Hills near Baragoi, Kenya, contains red paleosols with 

calcrete horizons up to 1 m thick (Sakai et al., 2010). The calcretes are laminated and contain 

root moulds up to 5 mm in diameter. The formation consists mainly of basaltic lavas and 

derivative red soils, with paleosols increasing in abundance towards the top of the formation. 

Also in the formation is a basal layer of conglomerate and coarse sandstone that is interbedded 

with the paleosols.  The formation represents a change in ‘lake type’ from overfilled or balanced-

filled (terminology of Bohacs et al., 2000) to underfilled in a semi-arid to arid climate, with the 

calcrete layers indicating seasonal precipitation and subsequent evaporation of shallow 

groundwater (Sakai et al., 2010).  

Renaut (1993) described a late Pleistocene calcrete horizon on the Sandai Plain between 

Lakes Baringo and Bogoria in the central Kenya Rift. The calcrete, up to 20 cm thick, lies at the 

disconformity between the underlying fluvio-lacustrine Loboi Silts (zeolitized) and the overlying 

lacustrine and deltaic Bogoria Silts. This complex calcrete shows textures of both pedogenic and 

groundwater formation with three distinct phases: first a pedogenic phase which formed the bulk 

of the hardpan calcrete, then a groundwater phase when root pores and fissures were filled with 

coarser carbonate cement, and a later pedogenic phase that reworked the calcrete. Interestingly, 

the Ca source was likely not windblown Ca because the dust is low in Ca—the source is more 

likely from weathering but remains uncertain (Renaut, 1993).  
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Figure 2-7. - Calcrete from Sandai Plain. Calcite cements subrounded gravel. Photo from R. Renaut. 

 

Also located between the Baringo and Bogoria basins is the Pleistocene Ilosowuani 

Formation. Within the formation a calcrete caps lake marginal zeolitized volcaniclastic silts (Fig. 

2-8). The calcrete is presumed to be pedogenic and contains rhizoliths and concretions (Renaut, 

pers. comm.). The calcrete represents a period of aridity and a lack of sediment deposition. 
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Figure 2-8. - Calcrete from the Ilosowuani Formation. The calcrete is well cemented and has an upper layer rich in Mn-

oxides. Photo from R. Renaut. 

 

 

North of Kalacha in the Chalbi basin a calcrete 5–10 m thick covers an area up to 6 km 

wide, and overlies basalt dated to 2.5 ± 0.3 Ma (Nyamweru, 1986). A lake is postulated for the 

area at about ~2 Ma. The calcrete is presumed to result from weathering of the basalt, though 

some of the carbonate is pisoidal and possibly palustrine (Nyamweru, 1986). 

 

2.2.5. Association with volcanic rocks 

Volcanic activity is plentiful in the rift, and much of the bedrock is igneous. Calcretes 

may form on lavas and ash beds as they weather, particularly during dry climate regimes. At 

Lodwar, west of Lake Turkana, a small volcanic cone is covered in pea-sized carbonate nodules 

formed from the lava by surface chemical weathering. These nodules were later washed down 

the cone to amass at the foot to make a wide expanse of superficial limestone (Walsh and 

Dodson, 1969). In the South Horr area, to the south of Lake Turkana, rare secondary limestone 

precipitates in soils (kunkar) are exposed in river courses cut through solid lava (Dodson, 1963).  
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2.2.6. Non-rift East African calcrete occurrences 

Calcrete occurrences are not limited to the rift valley. Thick calcretes (40–60 cm) 

underlie the eastern Serengeti Plain of Tanzania. During the rainy season the calcretes prevent 

free drainage, and due to the alkalinity of the soil, only alkali-tolerant short-rooted plants can 

survive there. Interestingly, the calcretes determine the vegetation of the plain: where calcretes 

are absent, woodland communities thrive (Anderson and Talbot, 1965). 

Although climatic conditions are typically wetter and general geology is different in the 

western branch of the East Africa Rift, it is worth mentioning that calcretes occur there also. The 

Semliki Beds in the Semliki Valley (DRC) are capped by a major unconformity and complex 

carbonate paleosol, indicating a depositional hiatus (Brooks, 1995). The overlying Katanda beds 

contain three pedogenic carbonate paleosols, plus a sharply bounded calcrete implying high 

water tables during formation (Brooks, 1995).  

 

2.3 Conclusions 

This brief survey, which is not intended to be comprehensive, shows that calcretes in a 

variety of stages of formation are widespread in East Africa in Neogene to Holocene deposits. 

Many mantle the land surface, incorporating vertebrate fossils and artifacts and forming 

important discontinuity surfaces, some of regional extent. Typically they evince semi-arid 

conditions where precipitation is minimal and probably strongly seasonal. Because of the 

carbonatite volcanism in parts of the East African Rift, some calcretes form more quickly than 

they would elsewhere due to the abundant calcium carbonate in the tephra. Away from the semi-

arid and alkaline conditions that characterize the Eastern Rift, the calcretes are less well 

developed and form in a variety of sediments.  
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3. PLEISTOCENE CALCRETES OF THE LAKE MAGADI AREA 

3.1. Geological background 

Lake Magadi, at the southern end of the Kenya Rift, occupies the deepest part of a half-

graben, ~70 km wide, and is bordered on its western margin by the steep Nguruman Escarpment, 

which rises 1300 m above the valley floor. Magadi is a closed underfilled lake in a region of high 

evaporation potential and little rainfall, which has led to the lake becoming hypersaline and 

precipitating trona annually (Eugster, 1980). Several Quaternary volcanic centers lie within a few 

hundred kilometres of the lake, ranging from nephelinitic, phonolitic, trachytic and carbonatitic, 

to basaltic (Baker, 1975; Baker and Mitchell 1988; Baker et al., 1988; Peterson, 1989; Dawson 

1992; le Roex et al., 2001; White et al., 2012). Tectonics and volcanic activity have strongly 

influenced the lake development during the Quaternary (Eugster, 1980; Yuretich, 1982; Behr and 

Röhricht, 2000) with climate often playing a key role in its sedimentary history.  

 

3.1.1. Quaternary stratigraphy 

The stratigraphy of the Magadi basin is complex because of limited exposure and the 

unusual lithology of many of the sedimentary rocks. The Quaternary sediments include 

lacustrine siltstone and mudstone, several types of chert, and evaporites. Relationships between 

the different chert-bearing units are especially difficult to decipher because some cherts are 

bedded within lacustrine sequences, whereas others intrude younger deposits (Behr and Röhricht, 

2000). One consequence is that interpretations of the order of deposition have changed many 

times (Baker, 1958, 1963; Eugster, 1980; Behr, 2002). Four stratigraphic units are currently 

recognized (Behr, 2002): The Oloronga Beds, the Green Beds, the High Magadi Beds, and the 

Evaporite Series (Figure 3-1).  
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Figure 3-1. Stratigraphy of the Magadi basin (after Behr, 2002). Sources: a) Butzer et al. (1972); b) Williamson et al. 

(1993); c) Tichy and Seegers (1999); d) Goetz and Hillaire-Marcel (1992); e) Williamson et al. (1993); f) Fairhead et 

al. (1972); g) Röhricht (1999); h) Baker and Mitchell (1976). The proposed age for the onset of the Evaporite Series 

(Butzer et al., 1972) is incompatible with evidence from elsewhere in East Africa. Most evidence shows that the 

climate in East Africa was more humid than today at ~10,000 y BP. Trona precipitation at Magadi probably began in 

the mid-Holocene, but the timing remains uncertain. 

3.1.1.1. Oloronga Beds 

The Oloronga Beds are mainly lacustrine volcaniclastic silts, carbonates -- including 

gastropod coquinas -- and beds of chert, some of which are diatomaceous (Baker, 1958, 1963; 

Eugster, 1980; Behr, 2002). In outcrops at the southwestern margin of Lake Magadi, these 

lacustrine sediments are underlain by fluvial trough-cross bedded sandstones that imply 

northward flowing perennial channels several metres deep (Renaut, pers. comm., 2015). The 

Oloronga sediments crop out discontinuously across the basin, with the best exposed sequences 

at the southern and northern ends of the two Magadi lakes. At these locations, they are up to 5 m 

thick in outcrop, but are thicker below the axis of the Magadi trough. North of Nasikie Engida, 

Oloronga sediments have been tilted westwards, implying that a phase of Pleistocene faulting 

and tilting occurred after sedimentation before deposition of the High Magadi Beds. 
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Paleolake Oloronga was the first lake to occupy the Magadi basin, both during and after 

the late-stage eruptions of the Pleistocene (Magadi) trachytes. The paleolake probably evolved 

during volcanism rather than after it had ceased. Lake sediments were being deposited during the 

mid-Pleistocene (a K-Ar age of 0.78 Ma was obtained from a glassy trachyte flow that 

interstratifies with the Oloronga Beds: Fairhead et al., 1972), and continued until about 300 ka 

(radiometric age from a hippopotamus tooth: Behr, 2002) or later.  

During its highstands, Paleolake Oloronga was likely part of a larger lake that 

encompassed much of the modern Magadi-Natron basin. A group of lithologically similar 

sediments equivalent in age to part of the Oloronga Beds is preserved in a small graben at 

Lainyamok, 9.3 km west of Nasikie Engida (Shipman et al., 1983; Potts et al., 1988; Fig. 2-4). 

Three generations of Pleistocene and Holocene stromatolites that formed along 

paleoshorelines of lake highstands were found at elevations of 698 m, 655 m, and 656 m, and 

dated to >200,000 y BP, 130,000-140,000 y BP, and 12,000-10,000 y BP, respectively (Hillaire-

Marcel and Casanova, 1987). The third generation represents the highstand of the lake during 

High Magadi Beds time. The youngest stromatolites imply that lake level at those times was up 

to 50 m higher than at present, but the most prominent High Magadi Beds paleoshoreline lies at 

only + 13 m (~ 613 m elevation) (Eugster, 1980). 

3.1.1.2. Green Beds 

The Green Beds, proposed and discussed by Röhricht (1999), Behr and Röhricht (2000) 

and Behr (2002), were initially included in the Oloronga Beds (the ‘Chert Series’ of Baker, 

1958). Eugster (1969, 1980) assigned them to the lower unit of the High Magadi Beds. However, 

the Green Beds are much older than the High Magadi Beds and were later dated at between 

98,000 y BP (Goetz and Hillaire-Marcel, 1992) and 40,000 y BP (Williamson et al., 1993). 

Behr and Röhricht (2000) recognized a lower massive chert and an upper bedded chert. 

Microbial textures such as stromatolitic laminae and silicified microbial mats are present in both 

cherts, as well as lenses of erionite silt. Some cherts may be bioherms. They are exposed along 

the southern and northeastern margins of Lake Magadi (Fig. 3-2 A) and the exposed bedded 

sediments are up to several meters thick. Behr (2002) proposed that precipitation of silica was 

accomplished through alteration of precursor colloidal silica sols and silica gel from the change 

of pH induced by microbial respiration. Preserved structures imply that the cherts were 

precipitated in shallow, evaporative, silica-rich alkaline brine pools in flat depressions that were 
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colonized by cyanobacteria and other microbes. Lake levels fluctuated during this period but 

probably did not reach those of the Oloronga and High Magadi paleolakes.  

  

Figure 3-2. Photos of Lake Magadi sediments. A: Laminated chert facies of the Green Beds at the south lagoon. Broken 

pieces of the cherts frequently bear salt moulds, possibly from trona, calcite and gaylussite, along bedding planes. B: 

Photo of the High Magadi Beds at the Dry Lagoon. Section is approximately 3 m high. 

3.1.1.3. High Magadi Beds 

The High Magadi beds are exposed along the modern lake margin and overlie the 

Oloronga Beds and the Green Beds (Fig. 3-2 B). The High Magadi Beds, which are up to 9 m 

thick in outcrop, consist of finely bedded to laminated lacustrine volcaniclastic silts and clays. 

The upper unit is composed mainly of coarsely bedded, pale brown tuffaceous silts, the lower 

unit of dark brown to dark green, discontinuous laminites. In a study of the laminae, Damnati et 

al. (1992) identified a light layer consisting of detrital silicates, calcite, and authigenic magadiite 

(sodium silicate which alters to chert) alternating with a dark organic-rich layer containing 

diatom frustules, ostracods, and microspherules probably related to bacteria. These alternating 

laminae were interpreted to result from a 2–3 year variation in length of the rainy season.   

Fish scales (Tilapia sp.) are found in the lower unit of the High Magadi Beds, and a 

prominent layer consisting of fish remains was 
14

C dated to 9120 ± 170 y BP (Butzer et al., 

1972). This coincides with lake records throughout East Africa indicating a wet climate starting 

in the late Pleistocene (Grove et al., 1975; Gasse, 1977; Gillespie et al., 1983; Roberts et al., 

1993; Barker et al., 2002; Bergner et al., 2003). These conditions persisted until approximately 

5000 years ago, coincident with the end of the African Humid Period that affected most of East 

Africa (Jolly et al., 1998; deMenocal et al., 2000; Berke et al. 2012; Garcin et al., 2012), when 

the climate became more arid and Lake Magadi produced primarily evaporites.  

A B 
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3.1.1.4. Evaporite Series 

The Evaporite Series, up to at least 40 m thick, consists of alternating layers of trona and 

volcaniclastic silt and mud, representing ‘cycles’ of changing lake salinity with evaporite 

precipitation during the drier phases. Though trona is the dominant evaporite, the trona layers 

include minor nahcolite (Eugster 1980; Ogola and Behr, 2000; Darling, 2001). Other authigenic 

minerals appear as impurities in the trona, such as villiaumite, fluorite, gaylussite, calcite, 

zeolites, and sodium silicates (Ogola and Behr, 2000). Windborne impurities such as quartz, 

garnet, sillimanite, and actinolite from the Mozambique Belt are also present. Evaporites began 

forming after the last major wet period in Lake Magadi, some time after 9,120 y BP 

(questionable 
14

C date from Nasikie Engida evaporites: Behr, 2002). 

3.1.1.5. Calcretes 

In his regional survey, Baker (1958) described a pisoidal calcrete overlying the Oloronga 

Beds (Fig. 3-3). He then used the calcrete layer as a stratigraphic boundary in determining extent 

of the Oloronga Beds. Subsequent researchers, including Eugster (1980), also used the easily 

identifiable calcrete to recognize the underlying Oloronga sediments. However, Behr and 

Röhricht (2000) later showed that the calcrete should not be used as a stratigraphic boundary unit 

because there are several calcretes in the basin; some are younger than the calcrete that overlies 

the Oloronga Beds. While Baker (1958) assigned the calcrete to the top of the Oloronga Beds, 

Behr and Röhricht (2000) assigned another, local calcrete to the base of the High Magadi Beds, 

capping the Green Beds. The most complete Magadi stratigraphy to date (Behr, 2002) includes at 

least two major calcretes: one above the Oloronga Beds that formed some time between ~ 

300,000 y BP and ~ 98, 000 y BP, and one within the High Magadi Beds, that was dated to 

14,515 y BP.  
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Figure 3-3 – Photo of the sampled calcrete north of Nasikie Engida. It shows a calcrete (center) overlying Oloronga 

Beds (greenish sediments, below). Calcrete layer (generally) is approximately 25–50 cm thick.   

3.1.2. Basin hydrology 

Lake Magadi is a hydrologically and topographically closed saline (up to 300 g/L TDS; 

Eugster, 1980), alkaline lake (pH range of 9.13–10.05 in lagoons: Wilson et al., 2004) with a Na-

CO3-Cl brine that currently precipitates trona (Na2CO3·NaHCO3·2H2O). At ~600 m elevation, 

the lake occupies the axial depression of a half-graben bordered to the west by the steep north-

south trending Nguruman Escarpment and to the east by a series of step faults. Together with 

Lake Natron in Tanzania it forms the Magadi-Natron basin. The two lakes were united 

periodically during the Quaternary. The lake is fed mainly by several groups of hot (~ 35–45°C) 

springs located along its faulted margins, and a few ephemeral streams that flow briefly during 

the rainy seasons. Most hot springs are recharged along the rift flanks; the springs to the west 

have solute concentrations similar to rainwater (Becht et al., 2006). However, the isotopic 

signature of the northern springs varies and may reflect groundwater input from freshwater Lake 

Naivasha 100 km to the north, though this theory remains controversial (Allen et al., 1989; 

Darling, 2001; Becht et al., 2006). 

During the driest months (on average June to October) the lake is a saline pan with 

several perennial lagoons at its margins where the hot springs discharge. Seasonal rains flood the 

entire lake to depths up to ~1 m. Nasikie Engida (Little Magadi), which lies north of Lake 

Magadi, is a small separate saline lake with a similar ionic composition to Magadi but much 
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lower salinity. Nasikie Engida is perennial and is fed almost entirely by hot (up to 86°C) alkaline 

springs. It is probable that the two lakes were united at different times during the late Pleistocene 

and early Holocene.  

The origin of the Magadi brines has been a focus of several studies (Eugster, 1970; Jones 

et al., 1977; Hillaire-Marcel and Casanova, 1987; Allen et al., 1989). Jones et al. (1977), using 

chloride as a conservative tracer ion, traced the fluids from their potential source in rainfall and 

runoff, through groundwater, to hot springs that feed the dense.  They suggested that dense 

brines sink and mix with inflowing groundwater in complex fluid pathways that include 

recycling of evaporated fluids (Fig. 3-4). 

 

Figure 3-4: Fluid pathway, solute evolution, and stable isotope ranges for the Magadi basin. Based on Jones et al. 

(1977), and Eugster (1980). Isotope data from Hillaire-Marcel and Casanova (1987).  

 

Meteoric water (runoff and shallow groundwater) weathers the trachytes mainly by 

silicate hydrolysis reactions, acquiring solutes including Ca, Mg, Na, K and Si, with bicarbonate 
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produced as a product of the reaction (Jones et al., 1977). Some of the silica and all of the SO4 is 

lost from solution at an early stage, before the dilute surface water reaches the groundwater 

reservoir (Jones et al., 1977). The bedrock is relatively low in S and the SO4 produced by 

oxidation is readily reduced by microorganisms. Ca and Mg are also removed early in the 

hydrological cycle, between the dilute and saline groundwater stages, either in sediments as 

cements or at the land surface where they form thin crusts by evaporative concentration. Ca 

forms carbonates, while Mg most likely forms sepiolite or other Mg-clays (Deocampo, 2004; 

Deocampo et al., 2010). Some K is lost by adsorption on volcanic glass. This leaves Na
+
, HCO3, 

CO3
2-

, and Cl
-
 as major ions when the water enters the lake. Thus the modern lake has negligible 

concentrations of Mg and Ca (Jones et al. 1977; Surdam and Eugster, 1976) but very high 

alkalinity and chloride. 

Waters in the region have a very high F
-
 content: a spring at Lake Magadi contained 73 

mg/L fluoride, far exceeding the 1.5 mg/L F
-
 value for safe consumption (Gikunju et al. 1992; 

Neilsen, 1999). Due to the lack of Ca in the waters, fluorite is an uncommon mineral except 

where dilute groundwater enters the lake towards the NE quadrant; however, F combines 

elsewhere with Na to create villiaumite. In core samples, fluorite and calcite are mutually 

exclusive (Surdam and Eugster, 1976). Other authigenic minerals in the lake sediments include 

the zeolite erionite, easily produced from trachyte with the addition of alkaline water (Surdam 

and Eugster, 1976), and other zeolites such as chabazite, phillipsite, and analcime. At different 

times, chert, magadiite and kenyaite have formed from the silica-rich fluids (Eugster, 1969, 

1980; Behr, 2002). 

 

3.1.3. Biota 

Few aquatic organisms can thrive in the hot, briny, highly alkaline waters of Lake 

Magadi. A highly adapted species of tilapia fish (Alcolapia grahami; Seegers and Tichy, 1999) 

lives in the perennial lagoons. High concentrations of haloalkaliphilic archaea colour the 

brines—they produce C50 carotenoids which give a red colour (Mwatha and Grant, 1993; Fig. 3-

5). Lesser flamingos, among other varieties of birds, feed on seasonal cyanobacterial blooms 

(mostly Arthrospira fusiformis) from the lagoons. Other species of cyanobacteria and green algae 

are also present, as well as bacteria (e.g. Davis, 2012). Tuite (1981) noted the importance of 
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benthic fauna in the primary production community, as cyanobacteria are comparatively 

diminished in number. Some actinomycetes are also in the present-day lake (Jones et al., 1998). 

Fossil ‘tilapia’ much larger than the current species were found in the High Magadi Beds 

(Butzer et al., 1972). Behr (2002) reported fossil cyanobacteria of the morphotypes Pleurocapsa 

Gloeocapsa, Entophysalis, Chroococcus, and Synechococcus, as well as actinomycetes, within 

the Green Beds. Lake Oloronga had carbonate-secreting organisms that left gastropod shells 

(Viviparus sp.) (Baker, 1958) in limestone, some of which are silicified. 

Diatoms were present during Oloronga and High Magadi times (Damnati et al. 1992; 

Barker et al. 1990). Mpawenayo and Mathooko (2005) reported several types of modern diatoms 

for the Magadi area but their sampling sites are unknown.  

The vegetation around the lake is mainly dry, open semi-desert grassland and shrubland, 

with small Commiphora and Acacia trees (Trump, 1967; Vincens and Casanova, 1987). The 

local Maasai community uses the patchy grassland around Nasikie Engida for grazing by goats 

and cattle. Local wildlife includes gazelles, zebra, wildebeest, giraffe and occasional predators.  

Soils are generally thin (< 15 cm thick), calcareous and stony except in valley floors 

containing sandy alluvium and silts.  

 

Figure 3-5 - Brine pool at L. Magadi showing trona formation; red coloration is from Archaea. Note lack of vegetation 

at the shore. Typical regional vegetation and fault scarp are in the background.  
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3.1.4. Climate 

Lake Magadi lies in a semi-arid tropical region (average annual temperature: 29.0°C; 

Climate Data, 2011) with high evaporation potential (>3,500 mm/year) and low annual 

precipitation (~ 500 mm/year). Monsoonal air masses from the Indian Ocean during March and 

April provide most of the precipitation, though the valley lies in the rain shadow of the eastern 

rift wall (Olaka et al., 2010). A secondary period of precipitation happens during December, 

resulting from the migration of the Inter-Tropical Convergence Zone (ITCZ), which causes moist 

air to flow northwards along the rift valley. 

East African climate during the Neogene has been complex and has fluctuated from wet 

to dry, and hot to cool, due to a variety of influences (Gasse, 2000; Bobe, 2006). During the 

Quaternary, although the dominant trend has been aridification, the climate has been wetter for 

periods. Records from lacustrine stromatolites dated at some 100,000 years ago show a 

fluctuating wet/dry climate gradually becoming more arid to the present day (Hillaire-Marcel and 

Casanova, 1987). Palynological studies indicate vegetation corresponding to a humid 

environment at Magadi around 12–10 ka and ~17 ka (Vincens et al., 1990). The last major 

pluvial episode ended about 5000 years ago, about the time of the onset of Saharan 

desertification. Lakes elsewhere in the rift valley such as Turkana, Nakuru and Naivasha also 

show this trend (Roberts et al., 1993; Berke et al., 2012; Garcin et al., 2012).  

 

3.2  Field observations at Lake Magadi 

3.2.1. The Dry Lagoon 

At the Dry Lagoon at the southeastern end of Lake Magadi, the High Magadi Beds and 

Oloronga Beds crop out together in vertical sections separated by a calcrete layer from 25 to 50 

cm thick (Section C in Fig. 15-20 of Eugster, 1980; Site 1 in Fig. 3-6; Fig. 3-10 C). The calcrete 

can be traced discontinuously in sections along the northern margin of the Dry Lagoon over a 

lateral distance of ~ 250 m (Figs. 3-7 and 3-8). The calcrete unit rises eastwards with topography 
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by ~ 10 m in elevation over that distance, but maintains the same relative stratigraphic position.  

 

Figure 3-6. Geological map of the Lake Magadi area modified after (Scott, 2010 and Guth and Wood, 2013). Sample 

sites are denoted by a star, the number indicating site number. Sample site 1 is the Dry Lagoon. Sample site 2 is just 

above Graham’s Lagoon. Sample sites 3 and 4 are discussed as south and north Nasikie Engida, respectively. 
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Figure 3-7 - Map of Dry Lagoon and sample locations. Line of sampling transect proceeds from the section location 

(Fig. 3.8, arrow) east to where calcrete is absent, following the best available exposure. Approximate photo locations 

for figures 3-10 and 3-11 are provided. The alluvium-filled valley slopes toward the lake. Top left image is from 

Google Earth©.  
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Figure 3-8. Photograph of the Dry Lagoon, looking east towards Lake Magadi. Arrow indicates the location of the 

stratigraphic section, which is at the same location as Figure 2 in Eugster (1986) . Discontinuous layer of calcrete in the 

foreground. 
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Figure 3-9. Stratigraphic section measured at the Dry Lagoon. See Figure 3-7 for location of section. 

The Oloronga Beds at the Dry Lagoon consist mainly of faintly laminated green 

volcaniclastic silts and claystone containing the zeolite erionite (Fig. 3-9). The top of the 

Oloronga Beds, which are locally up to 2 m thick in outcrop, displays networks of cracks that are 
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1 mm to 2 cm wide by up to 30 cm deep (Fig. 3-10, A, D and E). The contact between the 

calcrete and the underlying Oloronga Beds is abrupt where these crack systems are present. 

Locally the cracks have a honeycomb framework (Fig. 3-10, C). Elsewhere, the top of the 

Oloronga Beds does not have these crack networks, but instead consists of green rounded 

zeolitized claystone pebbles surrounded by loose silt, which grade upwards into the calcrete layer 

(Fig. 3-10 C). These green pebbles, which are 0.5 to 10 cm long, are weakly lithified and are 

embedded in the uppermost sediments of the Oloronga Beds that display crack networks (e.g. 

mud intraclasts in the honeycomb cracks) and in the calcrete. The mud pebbles in the honeycomb 

cracks are 0.5 to ~2 cm in diameter.  

The overlying High Magadi Beds, which are up to 2.5 m thick, are massive, bedded or 

laminated to weakly laminated, medium beige volcaniclastic siltstone. At the present land 

surface near the top of the section, vertical root moulds ~1 cm in diameter and horizontal pores 

~1 mm diameter are present. The siltstones do not vary much in character throughout the 

stratigraphic section. The High Magadi Beds are in sharp contact with the underlying calcrete 

(Fig. 3-10 E).  

Two types of calcrete are present in the Dry Lagoon: pisoidal calcrete, which overlies the 

Oloronga Beds, and laminar calcrete which caps the pisoidal calcrete and lies directly on 

unconsolidated silts with green clayey nodules, and trachytes at higher elevations (Fig. 3-11). 

Above the cracked surface the calcrete is pisoidal. Clasts of the Oloronga Beds are located in the 

lower portion of the calcrete and decrease in abundance upwards through the profile. Those 

clasts are commonly found as pisoid nuclei along with clasts of earlier calcrete and chert. Pisoids 

are ~ 0.5 to 1.5 cm in diameter and are spherical to subrounded. Pisoid laminae are 

discontinuous; some show thicker laminae towards one side of a pisoid that could be pendant 

laminae, but these are unaligned with other pisoids. Pisoid abundance increases upwards in the 

calcrete profile. Horizontal round tubules, up to 10 mm long and 2 mm wide, are present in lower 

parts of the calcrete. Above the poorly lithified sediments the calcrete is more vermiform with 

point-contact cemented smaller pisoids (~ 0.5 cm diameter) with a transitional boundary (Fig. 3-

10 B and C). Where in contact with Magadi Trachyte, the calcrete is laminar and fracture-filling. 

The laminar calcrete is ~ 1 cm thick and includes detrital chert. The calcrete in the Dry Lagoon 

becomes very thin at ~ 639 m elevation.  
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Figure 3-11. Photo of Oloronga-capping calcrete. Laminar calcrete (beige) overlies massive calcrete (dark grey). Lens 

cap is 7 cm in diameter. Approximate location given in Figure 3-9. 

3.2.2. Laminar carbonates at Graham’s Lagoon 

Thin laminar calcretes coating volcanic rock surfaces are common near Lake Magadi. 

One area was chosen for study (Fig. 3-6, Site 2). At the SE corner of the lake at an elevation of ~ 

640 m a (Fig. 3-12), up the hill north of the location of the magadiite type-section described by 

Eugster (1967), laminar carbonate coating up to 3 cm thick with detrital chert and volcaniclastic 

fragments directly overlies trachyte (Fig. 3-13). This laminar carbonate is similar to the laminar 
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carbonate which coats both the trachytes and the pisoidal calcretes at the aforementioned Dry 

Lagoon.  

The calcrete is exposed in a 1 to 1.5 m wide very shallow ephemeral channel and is 

covered laterally by Holocene gravels (Fig. 3-13 B). Fine detrital material and pebble-sized chert 

fragments are present in the laminae. Rounded vesicular volcanic pebbles in the carbonate-

cemented transitional zone are all trachyte. Two generations of carbonate cement are seen in 

outcrop: an early, yellowish, sparry, vesicle-filling cement, and a later patchy, powdery white 

cement, which has coated root tubules and other possibly biogenic structures. The white cement 

coats brecciated rocks that overlap the laminar calcrete. Cracks (shrinkage?) are present on the 

top surface of the laminar calcrete. The laminar calcrete is thickest (2–3 cm) in depressions and 

is thin or absent over sharp protrusions in the underlying trachyte.  The carbonate fills cracks and 

vesicles within the volcanics, and also coats large volcanic clasts. Some gravel clasts are fully 

coated by carbonate up to 1 cm thick that contains discontinuous laminae.  
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Figure 3-12. General view of the laminar calcrete above Graham’s Lagoon. Lake Magadi and Shombole volcano in the 

background. Calcrete lies on the floor of a small ephemeral channel (arrowed).   
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3.2.3. Nasikie Engida 

Carbonate rocks are present north of Nasikie Engida and along its southeastern shoreline. 

These predate, and are separate from, the conglomerates described in Chapter 5. A pisoidal 

calcrete overlies Oloronga Beds in a N-S striking graben 1.4 km north of the eastern margin of 

the lake (Fig. 3-6, Site 4). The contact is sharp though irregular such that the calcrete appears to 

have locally filled depressions, possibly displacively, on the eroded Oloronga Beds surface (Fig. 

3-3). The calcrete is ~ 30 cm thick where lying on a flat Oloronga surface. The calcrete is 

vermiform, medium green-grey, and well cemented at the top, but less cemented below. It lies on 

khaki porous siltstone with calcite crystal clasts. One sample was taken from this location and is 

included in the description and analysis of the Oloronga-capping calcretes at south Magadi.  

At the southeast margin of Nasikie Engida (Site 3 in Fig. 3-6) a dark grey pisoidal 

carbonate is exposed at the land surface in a low area. It is adjacent to, and presumably overlain 

by, buff High Magadi Beds containing Magadi-type chert (Fig. 3-14).  
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Figure 3-14. Grey massive to pisoidal calcrete exposure to the south of Nasikie Engida (location 3 in Figure 3-7). Photo 

encompasses entire exposure. Hammer is 32 cm in length. This calcrete underlies the Magadi-type chert-bearing High 

Magadi Beds to the right of the photo.  

3.3 Petrography 

3.3.1. Oloronga calcretes 

Oloronga calcretes consist of those at the boundary between the Oloronga Beds and the 

High Magadi Beds. Included in this analysis are samples from south Magadi and samples from 

north and south Nasikie Engida, respectively. 

3.3.1.1. Microfabrics 

Detailed petrographic analysis shows that both alpha and beta microfabrics (as in Wright, 

1990) are present in the Oloronga calcretes with alpha textures dominant. The most common 

alpha microfabrics in the calcretes are circumgranular cracking (Figs. 3-15 B, 3-16 D), floating 

grain fabric (Fig. 3-15 B, D, F), dense microfabric (Fig. 3-15 B, D), and complex cracks (Fig. 3-
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15 D). Others include nodular fabric (Fig. 3-15 A), crystal mosaic fabric (Fig. 3-15 B), and the 

presence of relatively rare rhombohedral calcite crystals (Fig. 3-15 E). Alpha textures also 

predominate within the laminar carbonates that formed on top of above mentioned calcrete and 

directly on the volcanic substrates, consisting mainly of dense microfabric and floating grain 

textures (Fig. 3-15 F).  

Beta microfabrics are less abundant, commonly with only one example in any thin 

section. The most common beta microfabrics in the calcretes are microbial coatings (Fig. 3-16 B, 

top) and alveolar septal fabrics (Fig. 3-17 A, B). Needle fiber calcite is rare, but possibly 

overlooked or under-represented due to its fragile nature (Wright, 1986).  

Much of the calcrete is formed of irregular micrite clumps ranging from 0.5 to 1 mm in 

size that are surrounded by sparite (Fig. 3-17 F). This clumped texture also forms pisoid cores. 

 Some of the larger calcite crystals have a columnar habit. They appear stacked and are 

usually associated with variably calcified and cemented clays (Fig. 3-15 D). In addition, calcite 

also rarely has a radiating fan shape (Fig. 3-16 E). 

Volcaniclastic grains, clay particles, and solitary mineral grains are often coated by 

tabular calcite (Fig. 3-16 D). The coatings vary in thicknesses from 0.01 to 0.05 mm and are 

usually isopachous. Corroded and cracked grains, microspar haloes around grains, and extensive 

supplantation of trachyte grains indicate pervasive replacement by calcite (Fig. 3-15 B, C). 

Aggrading neomorphism is evident in some samples where patches of microspar are 

replacing the micrite in nodules and matrix, but is not common. 

The Dry Lagoon calcretes are composed of varying amounts of pisoids, each from 0.5 to 

2.5 cm in diameter with micritic to microsparitic laminae.  The pisoid cores vary in the amount 

of calcification, but are generally consolidated fragments of the underlying sediment, including 

claystone, volcaniclastic fragments, or pieces of older, highly calcified, reworked calcrete. Many 

pisoids show evidence of autobrecciation around their concentric rims to form circumgranular 

cracks (Goudie, 1983). These cracks do not necessarily encompass the entire pisoid but create 

‘pockets’ where potentially younger spar cement grows closer to the core than older cement.  

 Former and open root-hair pores and cracks are cemented by successive layers of micrite 

and/or sparite, filled with fine detrital matter, or lined with clays. Those cracks not associated 

with roots are commonly filled with sparite, micrite, or detritus.  
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Examination under SEM revealed the presence of organic filaments. While most samples 

showed micritic calcite cement and detrital K-feldspar grains with replacement textures, rare 

bundles of microbial filaments and/or fibres are also present. These correspond with root-related 

microfabrics found in thin section. However, based on their lengths and diameters, the filaments 

likely represent both root hairs (Fig. 3-18 B, E) and fungi (Fig. 3-18 D, F) (fungi: 0.5–10 μm; 

actinoymycetes: 0.1–2 μm; root hairs: 5–17 μm; Klappa, 1979). A few deflated fungal spores of 

indeterminate genera and their associated hyphae (Fig. 3-18 D, F) are in one sample.  

Rare spherulites that resemble those described by Wright (1989) and Verrecchia et al. 

(1995) were seen in thin section. These are typically seen in laminar calcretes and are thought to 

be related to cyanobacterial mats. Conversely, in the Oloronga-capping calcrete samples they 

occur in the massive calcrete and not in the late laminar sections. 
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Figure 3-15 – Photomicrographs of alpha microfabrics in the Oloronga-capping calcrete. A) Prismatic calcite 

associated with clays. B) Photomicrograph in plane polarized light (PPL) of a thin section from the Dry Lagoon 

calcrete showing alpha textures such as crystal mosaic fabric and nodularization. C) Carbonate subhedral grains in an 

open fracture in a calcrete. D) Complex cracks filled with sparite in micrite-replaced sediment. E) Insular replacement 

by calcite of a trachyte grain. F) Cross polarized light (XPL) photomicrograph showing calcite replacing K-feldspar 
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(sanidine). Former borders of the crystal, and some surrounding fragments, are visible in variations in micrite. Note 

floating grain fabric.  

 

Figure 3-16. Photomicrographs of Oloronga-capping calcrete. (A) Massive calcrete below laminar calcrete. The 

laminar calcrete has fenestral voids thought to result from roots and root hairs. PPL. (B) Similar to A. The laminar 

calcrete overlies an irregular, jagged surface. PPL. (C) Tabular calcite surrounds fractured and displaced grains as well 

as filling other fractures. XPL. (D) A circumgranular crack occurring within the pisoid boundary. PPL. (E) Radial 

calcite replaces former erionite. XPL. (F) Silica cements a void potentially left by a root or root hair. Two phases of 

silica are present: early botryoids are in contact with equant silica crystals. XPL. 
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Figure 3-17. Beta microfabrics in the Oloronga-capping calcretes. A) The darker grey micrite septae surround clay-

filled chambers in alveolar-septal microfabric. B) Another example of alveolar-septal microfabric. C) Micrite 

envelopes around mineral and micrite grains. D) Micritic peloids cemented by spar. E) Laminar calcrete shows some 

fenestral microfabric indicative of root mats. F) Clays and micrite make up peloids to create clotted texture. 
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Figure 3-18. Scanning electron microscopy images of fresh fractured surfaces of the Oloronga-capping calcrete. A) A 

feldspar grain surrounded by micrite. Similar textures to this make up most (>80%) of the observed samples. B) 

Organic linear formation in micritic matrix (arrow). C) Desiccated organic material. D) Deformed smooth, globular 

fungal spores. These do not appear cemented into the calcrete and likely post-date calcrete formation. E) Calcified 

tubules (arrow) that may represent either root hairs or fungal hyphae. Compare with structure in F. F) Close-up of (D). 

Fungal hyphae net around the spores. All white scale bars are 10 µm.  
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3.3.1.2. Mineralogy 

Calcium carbonate is present as micrite, spar, and euhedral fine sand sized grains. 

Subhedral to euhedral calcite crystals, 0.25–0.5 mm in size, are interspersed in the micritic 

matrix and differ in character from the authigenic cement. These crystals are light under 

backscattered electron (BSE) imagery (Fig. 3-19) unlike the normal micrite; this implies a higher 

concentration of atoms of a high atomic number, possibly Ba or Sr. These disaggregated calcites 

are present in the youngest, partially cemented, matrix material and have been recrystallized to 

micrite at the rims. They are associated with clinopyroxenes and K-feldspars (mostly sanidine).  

 

Figure 3-19. Back-scattered electron image of calcrete with calcite replacing a chalcedony vein. Within the micritic 

matrix is a solitary calcite crystal.  

Clays are present as cutans around pores as a secondary mineral, acting as a cement in 

some samples. Clays are otherwise restricted to small linear fragments often associated with 

columnar calcite growth. 

Barite was identified using BSE imagery with an energy-dispersive X-ray spectroscopy 

(EDS) sensor. Barite crystals within the transition zone where silica is being replaced by calcite 
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range from 1 to ~ 25 µm, and are subhedral to anhedral (Fig. 3-20). These crystals form 

aggregates up to 50 µm in diameter.  

Detrital volcanic fragments are interspersed in the pisoid rim cements and the overall 

matrix cement. These fragments are typically trachytic with felted sodium-rich feldspar crystals 

in a glassy groundmass with porphyritic clinopyroxenes. Other detrital minerals in the matrix 

include clinopyroxene (aegerine-augite type), Na-amphibole, and minor plagioclase. Minor 

ilmenite, magnetite, titanite, and apatite are also present, mostly associated with clinopyroxenes 

or amphiboles. 

  

 

Figure 3-20. Back-scattered electron image of Oloronga-capping calcrete from the south shoreline of Nasikie Engida. 

Silica (Q) in the form of opaline spherules is being replaced by the lighter grey calcite (Ca), which adopts spherule 

shape. Barite (B) occurs in the zone of replacement. Note that calcite replacement occurs near voids and fractures 

(black). 

Also noted in the matrix material are opaque laths and tabular isotropic minerals about 

0.05 to 0.1 mm long. For the most part, all minerals in the matrix are subhedral to euhedral and 

are being replaced by micrite or have a tabular calcite corona. 

Some of the calcrete contains clasts with irregular fibrous, chalcedony spherules. These 

are variably replaced by calcite which adopts the initial spherulitic texture. Replacement varies 

from very little to complete. In some samples it is only possible to determine that there was 
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precursor silica from the spherulitic pseudomorphs seen in the calcite. The silica has an alteration 

rim of opaque white material in thin section. Additionally, silica cements oval to spherical voids, 

potentially former root holes, as well as former circumgranular fractures in some samples, 

though overall this is rare (Fig. 3-16 F). Most samples have calcite pseudomorphs of erionite 

(e.g. Fig. 3-16 E). 

3.3.1.4. Host sediments 

A sample taken of the contact between the calcrete and the Oloronga Beds shows a clear 

delineation with calcrete overlying an erosive surface. Calcite is a minor cement in the 

sediments, filling only the still-open voids. Chalcedony spherules post-date the calcite. Erionite 

seems to be the principal cement (as determined petrographically), with amorphous silica. The 

zeolitic sediment was cemented prior to calcrete development, since calcite is present only in the 

most recent set of fractures that open from the contact boundary. Directly below the interface is a 

horizon with horizontal tubiform structures infilled with zeolite (likely erionite) (Fig. 3-21 B, G).  

These structures appear uniform in diameter and are possibly a trace fossil or representative of a 

root mat; because such a small sample was taken, it is hard to say with certainty what they 

represent. Below this horizon are horizontal laminated lacustrine deposits that include two 

distinct layers of radial calcitic ooids 0.5–1.5 mm in size (Fig. 3-21 A and C).  
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Figure 3-21 (previous page). Photomicrographs of some of the sediments underlying the calcretes. A) XPL 

photomicrograph of layer of ooids about 3-4 mm thick. B) Complex cracks partially filled with calcite spar, silica and 

amorphous silica cements. C) Close-up of ooids. Most are radial. D) Non-ooid layers. Note plant fragment fossil in 

upper left. E) XPL and F) PPL of the succession of cements: first amorphous silica, next spar to microspar, and finally 

chalcedonic spheres in the open pore. G) Photomicrographs using the white-card technique (Folk, 1987) showing 

tubules in cross-section and longitudinal section. H) Same technique as (G) showing a large crack partially infilled with 

acicular calcite cement. 

 

3.3.2. Laminar calcretes 

Laminar calcretes at Graham’s Lagoon consist of a 0.01 to 2 cm thick layer of laminated 

micrite directly overlying the Magadi trachyte. Laminae are discontinuous and contain many 

micro-unconformities (Fig. 3-22 A, B). Laminae are typically of submillimeter thickness and are 

parallel to the substrate. Silt-sized detrital particles, mostly K-feldspars derived from the 

trachytes, are scattered within the laminae. Towards the top of the laminae layer, horizontal 

cracks present along lamina planes are open or filled with sparite. The laminae thicken in cm-

scale depressions and thin over higher microtopography. Laminae are generally horizontal but 

some are subvertical following the trachyte surface. The micrite appears dense and light brown 

in plain polarized light (PPL), though alternates from lighter to darker. Some of these 

alternations reflect subtle changes in grain size (larger = lighter). Recognizable biologic 

microfabrics are absent. At hand sample scale many minute (sub-millimeter) round pores cross 

through the laminae.  

Carbonate also replaces and fills the voids in the underlying trachytes (Fig. 3-22 F). 

Micritic pellet-sized particles within large pores are cemented by spar to create a pelletal 

microfabric (Fig. 3-22 F). In places the laminae resemble stromatolitic laminae; these sections 

are not laterally traceable and are no more than 0.5 cm in length (Fig. 3-22 C, E). 

Floating grain microfabric dominates, though there are few instances of replacement by 

calcite or of calcite growth around a nucleus. Where a visible band of calcite surrounds a grain, it 

is thicker towards the bottom, indicative of vadose cementation (Fig. 3-22 D).  

Detritus is derived from the host trachyte as well as rare chert fragments from older 

sediments. The source of the chert grains is unknown. 
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Figure 3-22. Photomicrographs of the laminar calcrete at Graham’s Lagoon. A). General view of laminae. Note erosive 

surfaces and lack of light/dark laminae. Also note profusion of fine debris. There are a few instances of alveolar texture 

towards the top of the picture. B) Shows a micro-unconformity with two different laminae sets. C) Contrasted with A, 

slightly wavy laminae with fewer inclusions. D) Vadose cementation of calcite around a trachyte clast. E) Wavy 

laminae showing pseudo-stromatolitic texture. F) Spar cementation of fine grains collected gravitationally in a dip. 
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3.4  XRD analysis 

XRD analysis of three calcrete samples determined they consisted predominantly of low-

Mg calcite, with minor feldspars (albite, anorthoclase, and minor anorthite) and zeolites 

(including erionite and analcime). Analysis of the green clayey sediment underlying some of the 

calcrete in the Oloronga Beds yielded a predominance of erionite, opal C-T, quartz and calcite. A 

sample of the Oloronga Beds was analysed and its composition includes a variety of feldspars 

(anorthoclase, albite, and anorthite), clinopyroxene and minor orthopyroxene, low quartz, 

feldspathoid, and magnetite. The minerals detected in a sample from the High Magadi Beds are 

slightly different with albite as the dominant mineral with anorthoclase, clinopyroxene, 

zeolite(s), and quartz. 

Analysis of two samples of Oloronga-capping calcrete near Nasikie Engida (one to the 

north, one to the south) indicates a dominance of low-Mg calcite. The southern sample also 

includes sanidine, quartz, and orthopyroxene. The northern sample contains albite, anorthoclase, 

feldspathoid, and zeolites. 

The SE Magadi laminar calcrete sample analysed gives a dominance of low-Mg calcite 

with minor albite and zeolites. 

 

3.5  Bulk rock geochemistry 

The results of bulk rock geochemical analyses can be helpful in determining sediment 

source and diagenetic history (e.g. Lentz, 2003; Fralick, 2003; Owen et al., 2011).  Sixteen 

samples of the Magadi calcrete and surrounding sediments were analysed for major and trace 

elements. Most of the samples came from the Dry Lagoon with two calcrete samples from south 

and north of Nasikie Engida. Additionally, two samples of the laminar calcretes above Graham’s 

Lagoon were analysed.  

 SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total 

Average 
Calcrete 

22 ± 
7.6 

4.6 ± 
1.3 

2.6 ± 
0.59 

0.11 
± 
0.033 

0.81 
± 
0.16 

35.8 
± 
5.6 

1.7 ± 
0.69 

1.7 
± 
0.51 

0.30 
± 
0.076 

0.11 
± 
0.055 

30.2 
± 
4.3 

99.892 

 

Table 3-1. Composition of average Magadi calcrete (n=8) in wt. %. LOI = Loss on ignition.  
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3.5.1. Major elements 

The calcretes of Magadi have similar element distributions to the underlying Oloronga 

Beds but not the overlying High Magadi beds. As expected, most of the major elements show an 

inverse relationship with Ca, including Mg and P. For most samples, Mg becomes less abundant 

with calcrete formation (Fig. 3-23). 

  

 

Figure 3-23. - XY Plot of CaO vs. Mg2O wt.% in calcretes and associated sediments. While Ca increases, Mg 

decreases, indicating that Mg is taken up with Ca into the calcite. The two MAG samples with low concentrations of 

both species are from the upper High Magadi Beds and post-date calcrete formation. OLO: Olorgesailie (see Ch. 4); 

MAG: Magadi; NAS: Nasikie Engida (see Ch. 5).  

The compositions lie within the range of calcrete samples analysed from near the Magadi 

town site by Baker (1958), as well as with calcrete samples from Tanzania (Hay and Reeder 

1978) (Fig. 3-24). The calcretes of Baker (1958) have calculated calcite values of 70–72 wt % 

while samples from this study have a greater range (50–76 wt. %). Calcrete samples in the lower 

end of this range are more porous and less of the sediment has been replaced by calcite.  
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Figure 3-24. XY plot of major oxides comparing samples from this study and those of previous studies. Data from 

Baker (1958), Hay and Reeder (1978), and Behr (2002).  

Two samples, one from the south of the Nasikie area and one from the Dry Lagoon, do 

not plot along the same trends as the rest of the samples. Their silica content is much greater 

while Ti and Al are much less, indicating secondary silica growth and not addition of detrital 

silica. Silica content varies from 12 to 32 wt. %.  

There was a high loss on ignition (LOI) in all samples. This correlates well with Ca 

content and is likely the CO2 from calcite (Fig. 3-25 f).  

Calcretes range from 28 to 43 wt. % CaO. The highest values are in the most indurated 

calcretes. Calcretes have a calculated calcite concentration, assuming all or most Ca is from 

calcite, of 50–76 wt%. In general the trachytic sediments are calcium-poor; in thin section, Ca-

bearing minerals are rare. The calculation was done under the assumption that if Ca is present in 
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minerals other than calcite, its contribution to the overall value is negligible. Calcium oxide 

concentration in the associated sediments varies from 1.14 to 15 wt%, with the higher percent 

probably indicative of secondary calcite cementation. The laminar calcretes average 66% calcite 

and are fairly low in silica (13–30 wt. % SiO2). They also have slightly lower Na2O wt. % than 

the average Oloronga-capping calcrete. 

Figure 3-25. (Next page) Harker-type diagrams for whole-rock analyses of sediments and calcretes. Silica is not 

conservative so Al2O3 and TiO2 are used instead. Note the separation of source areas using Ba. 
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3.5.2. Rare Earth Elements 

 

Figure 3-26. Regional REE distributions for a variety of rock types. The Magadi Trachytes have a significant Eu 

anomaly. The average Magadi calcrete plots very similarly to the Magadi trachytes. Magadi Trachyte data (black) is 

from leRoex et al. (2001). The Average Magadi Trachyte was collected beneath Ol Doinyo Nyokie ignimbrites, from 

Baker (1975). Data is from Baker (1975); Peterson (1989); Macdonald et al. (1993); and le Roex et al. (2001). C1 

Chondrite data is from Sun and McDonough (1989). 

Compared to regional host rocks, samples from Magadi show similar elemental 

distribution trends to the Magadi Trachytes. Normalized to C1 chondrite (Sun and McDonough, 

1989), they show enrichment in REEs with a negative Eu anomaly as compared to the local 

basalts and nephelinites. Figure 3-26 shows local potential source rocks with the trachytes 

showing the pattern seen in the Magadi sediments.  

Calcrete REE diagrams normalized to continental crust (Taylor and McLennan, 1985) 

show uneven enrichment, having a higher concentration of HREEs, while maintaining a negative 

europium anomaly (Fig. 3-27). Compared to their source sediments, however, the calcretes are 

less enriched overall. Sediments from below the calcretes (the Oloronga Beds) show a nearly 

identical pattern to the overlying sediments of the High Magadi Beds (Fig. 3-27 C).  
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Several differences in REE composition are noticeable between the sediments and the 

calcretes. In the laminar calcretes, it appears that while LREE are less concentrated than those in 

the sediments, Ce appears to be even less concentrated. In the Oloronga-capping calcretes, the 

LREE distribution aside from La is nearly flat, suggesting that more Sm, or perhaps less Nd, is 

lost from the sediments upon calcretization. The Eu-Tb join has a much shallower slope in the 

calcretes than in the sediments. Additionally, it appears that while the LREE and MREE have 

decreased in concentration in the calcretes, the HREE have increased beyond proportionally.  
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Figure 3-27. REE distribution in Magadi samples relative to continental crust (Taylor and McLennan, 1985). A) 

Laminar calcrete samples showing enrichment in HREE. B) Oloronga-capping calcrete. One sample shows an 

anomalous concentration of Tb. C) Sediment samples of the High Magadi Beds (in red) and the Oloronga Beds (in 

blue).  
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Europium and cerium anomalies were calculated using the formulas (Sm
2
Tb)

1/3
, and 

(La
2
Nd)

1/3
, respectively, where data for Pr and Gd is unavailable (McLennan et al., 2003). When 

plotted against each other there is a clear separation of source areas (Fig. 3-28). Suswa and 

Magadi Trachytes show negative anomalies for Eu, while the rift basalts, Shombole, and 

Oldoinyo Lengai all show minor positive deflections in Eu. Europium partitions into plagioclase; 

the Magadi and Suswa trachytes are plagioclase-poor and thus have less Eu. Similarly, sediments 

from Magadi show negative Eu anomalies, indicating their trachyte source. The sediments at 

Magadi also generally show an increased Eu/Eu* with decreasing Ce/Ce* as compared to the 

trachytes. The calcretes plot similarly to the trachytes, though in comparison to the sediments, 

are lower in Eu/Eu* and higher in Ce/Ce*. 

   

Figure 3-28. Europium anomaly vs. cerium anomaly for Magadi calcretes, sediments and volcanic rocks. While the 

basalts and nephelinites plot closely, the Magadi Trachytes are more scattered. Suswa Trachytes and the Ol Doinyo 

Nyokie Ignimbrite plot similar to the Magadi Trachytes. The Magadi sediments generally have a higher Ce/Ce* than 
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both the trachytes and the calcretes. Data from: Baker (1975); Peterson (1989); Macdonald et al. (1993); and leRoex et 

al. (2001). 

 

Figure 3-29. Graph of CaO wt % vs. Yb/Lu normalized ratio for calcretes and associated sediments. Almost all samples 

of calcrete had greater Yb amounts relative to Lu as compared to the sediments. The anomalous calcrete contains a 

large amount of sediment. The anomalous sediment sample has been highly altered and consists of zeolites, opaline 

silica, and calcite.  

When normalized to continental crust the laminar calcretes show negative cerium and 

europium anomalies, and are enriched in HREEs, the latter being typical of calcretes 

(Ramakrishnan and Tiwari, 1998; Compton, 2003; Prudêncio et al., 2003, 2011).  

An association between Ca content and Yb/Lu content was noted (Fig. 3-29) for all 

samples of calcrete and sediments studied, including the Olorgesailie site (see Chapter 4).  

Calcrete samples show increased HREE compared to the sediments. In the stratigraphic 

section from Dry Lagoon, the sediments showed a greater concentration of REE than the 

associated calcrete, though their respective HREE remained at about the same concentration. The 

increase in the HREE may be due to carbonate formation from alkaline concentrated water. 

Weathering of the sediments to produce the Ca for the carbonate would also release the REEs, 

explaining their less enriched values in the calcrete. Because the HREEs are have high affinity 

for carbonates (Johannesson and Lyons, 1994), their concentration would stay the same, or 

nearly so, and the LREEs would be slightly lower as they are more likely to be removed in 

solution. 
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3.5.3. Trace elements 

One sample of the laminar calcrete from Graham’s Lagoon showed twice the sulfur 

content as the average Magadi calcretes (Table 3-1), and much lower vanadium. Both samples of 

the laminar calcrete have a higher Ba/Sr ratio than the Oloronga-capping calcrete (two points at 

0.5 Ba/Sr, Fig. 3-39).  

Based on element ratio diagrams, all sediment samples are enriched in Sr compared to 

their parent rocks. Strontium is mobile and is preferentially incorporated into calcite, substituting 

for Ca
2+

. There is no good statistical relationship between amount of Ca and Sr in the Magadi 

calcretes or sediments, though there may be for those from Olorgesailie (Figure 3-30).  

 

 

Figure 3-30 - Graph comparing calcium concentrations to strontium in Magadi calcretes and related rocks.  

The laminar calcretes on volcanic rocks (indicated in Fig. 3-30) do not have the same Sr 

trend as the other calcretes and show that Sr enrichment is weaker in the laminar calcretes than 

the pisoidal calcretes.  

The ratio of Ba/Sr is used as an indicator of amount of weathering in surficial deposits 

(Bestland and Retallack, 1993; Retallack 1994) because Sr is more soluble than Ba in a typical 

surface environment. Barium ranges from ~ 200–500 ppm in all Magadi samples, apart from two 

at SE Nasikie Engida which have Ba > 1000 ppm matched by an increase in Sr. There is little 

difference in Ba content between calcretes and sediments, whereas Sr varies considerably in all 
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samples. In Figure 3-31, Ba/Sr is plotted against CaO to show that non-calcrete sediments (i.e. 

those with low CaO wt. %) have higher Ba/Sr ratios, which implies more weathering.  The High 

Magadi Beds have the highest values of Ba/Sr while the Oloronga Beds have lower values. The 

calcretes have extremely low values because of the uptake of Sr during calcite precipitation. 

Most calcretes are enriched in Br compared to the sediments. A high Br/Sc ratio has been 

reported in biological precipitation of calcite (Prudêncio et al., 2011). Calcretes at Magadi range 

from 1.9 to 5.8 Br/Sc.  

 

Figure 3-31. CaO wt % vs. Ba/Sr ratio for sediments, Oloronga-capping calcretes and laminar calcretes at Magadi.  

3.5.4. Observed trends in the stratigraphic section at Dry Lagoon 

The sampled section at Dry Lagoon (Fig. 3-7) shows an upward increase in calcite 

concentration, culminating in the calcrete at 68 mol% CaCO3. The overlying High Magadi Beds 

sediments are very calcium poor, with concentrations of 1.5 and 2 mol% CaO. Mn, P, Ba, S, Sr, 

and Mg increase in the calcrete, though there is internal variation (Fig. 3-32).  
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Figure 3-32. Depth plots depicting relative abundances of certain major and trace elements in the section measured in 

the Dry Lagoon (Fig. 3-9). All elements are relative to TiO2 to mitigate detrital component influence. Colored horizon 

is the calcrete layer. Depth is in cm below the land surface. 

3.6 Stable isotope geochemistry 

Carbon and oxygen isotopes show covariance (R-
2 

= 0.5195) in the Magadi calcretes, and 

show a slight inverse relationship in the host sediments (Fig. 3-33). Both δ
 13

C and δ
 18

O values 

are enriched in the calcretes with respect to the underlying or overlying sediment – more so for 

13
C.  Possible contamination from carbonatite ash (δ

13
C: -6 to -8‰; δ

18
O: +5.5 to +7.5‰SMOW) 

would cause the values to be more depleted in 
13

C (Keller and Zaitsev, 2006). As the values are 

significantly higher, it is unlikely that there is much contamination from this source. 

For the Oloronga-capping calcretes, δ
 13

C ranges from -2.01 to +2.82‰ VPDB: +0.74 to 

+2.82‰ in calcretes and -2.01 to +1.64‰ in sediments. The range for δ
 18

O is -3.16 to +3.69‰ 

VPDB, with values of -1.32 to +3.69‰ in calcretes and -3.16 to +1.46‰ in sediments.  

 

Figure 3-33 (previous page). C and O isotope values of Magadi samples, showing enrichment in δ 13C of calcretes over 

sediments and, similarly, an increase of δ 18O. The two sediment samples with high δ 18O (>0‰) are from the High 
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Magadi Beds, which overlie the calcretes. Calcretes in the figure refers to the Oloronga-capping calcretes. Laminar 

calcretes are those above Graham’s Lagoon. 

At the Dry Lagoon the δ 
18

O profile shows an upward increase in 
18

O content—the 

calcrete is not enriched relative to the High Magadi Beds above (Fig. 3-34). δ 
13

C increases in the 

calcrete with a typically positive ‰ value compared to the related sediments which have 

negative ‰ values The High Magadi Beds have a decreased δ 
13

C compared to the calcretes.  

The laminar calcretes above Graham’s Lagoon range from +0.94 to 1.93 ‰ δ
 13

C and -

1.22 to +0.17 ‰ δ
 18

O, with averages of +1.57‰ δ
 13

C and -0.75‰ δ
 18

O.  

 

 

Figure 3-34. δ18O and δ13C of the sampled stratigraphic column of the Dry Lagoon. In the calcrete there is a marked 

decrease inδ18O and an increase inδ13C. C and O isotopes are reciprocally covariant in this stratigraphic section but 

isotopes for all calcretes show a positive covariant relationship. Ranges for the isotope values are given with the red 

box, which indicates the range of δ18O, and the blue box, which shows the range of δ13C. Because the sample from 

the stratigraphic section showsδ13C at the very lowest end of the range of all samples, the result for the calcrete 

sample from the section may be erroneous.  
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3.7 Processes of calcrete formation 

3.7.1. Water source 

In the Kenya Rift Valley, the carbonate-bearing water can be lake water, spring water, 

groundwater, circulating geothermal fluids, or surface runoff including rainwater. Since the 

calcite shows no evidence of deposition from a large body of water, it is not of lacustrine origin. 

The underlying sediments contain layers of ooids, though the calcrete clearly post-dates these. 

While there may be a few textures possibly related to springs within the calcrete, these are rare 

and the overall abundance, stratigraphic position, and widespread distribution preclude subaerial 

spring water as a major source. Thus, the calcrete has been supplied with either regional 

groundwater or percolating runoff for its formation.  

One potential indicator of water source is the presence or absence, and abundance of 

alpha microfabrics, as well as indicators of vadose or phreatic precipitation, such as pendant and 

meniscus carbonate cements. Typically, calcretes that formed in the vadose realm are more 

micritic, with pendent and meniscus cements, and textures that imply near-surface processes and 

rapid crystallization. Crystal size commonly varies within a single calcrete (McLaren 2004; 

Stokes et al., 2006). Additionally, fine micritic calcite mosaics may recrystallize to microsparite 

or sparite over time (e.g. Carozzi, 1993), and may destroy primary microfabrics. Differences in 

primary crystal sizes and their relative crystallinity are related to the parent fluids. Micrite 

usually indicates precipitation in a rapidly evaporating (or diminishing) fluid, while coarser 

sparite indicates precipitation from an enduring fluid replenished in Ca
2+

 and CO3
2-

, though 

crystal size can be influenced by other factors, such as impurities (Braithwaite, 1983). Changes 

in crystal size can reflect whether the calcrete was formed during periodic inundation (in the 

vadose realm) or from groundwater. For example, Stokes et al. (2006) studied a calcrete that 

showed two phases of growth: first, pedogenic formation, with grain-coating and glaebular 

micrite, followed by groundwater cementation, evinced by pore- and void-filling microsparite 

and sparite. 

Micrite, microspar and sparite are present in the Oloronga-capping calcrete. Dense 

micrite is present as nodules, peloids, matrix, and laminated layers. Drusy sparite fills cracks and 

voids; tabular sparite forms circumgranular rims around volcaniclasts and solitary feldspar 

crystals. Much of the micrite is replacive and preserves relict textures from the host material. 
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Pendent and meniscus cements are rare and not present in most samples; instead, sparite cements 

multiple generations of cracks and pores. One sample showed build up of micrite on the tops of 

nodules (Figure 3-35), similar to the thickened laminae on pisoids towards the top of the Olduvai 

calcretes (Hay and Reeder, 1978), and may be related to temperature and gravitational flow of 

water. This may indicate a fluctuation in groundwater or calcite precipitation within descending 

meteoric fluids.  These nodules are small and indicate that rotation of grains did not occur during 

their formation.Textural evidence points towards a predominant groundwater source of water 

(and thus carbonate) with cementation occurring at or near the groundwater table with periods of 

dryness.  

 

Figure 3-35. Oriented photomicrograph of the Oloronga-capping calcretes showing dense micrite at the tops of nodules 

(arrowed). XPL.  

Additionally, silica precipitated as cement in fractures and voids of the calcrete. Detrital 

chert clasts are also common in the calcrete. Silica has precipitated at Magadi several times as 

Al-Si gels and as Magadi- and other types of chert (Eugster, 1967, 1969, 1980; Eugster and 

Jones, 1968). Locally, opaline cements in the calcretes were precipitated following chemical 

corrosion of detrital silicate grains. Silica could not remain in solution when the pH was lowered, 

or when Ca-depleted, Si-rich spring fluids at the surface or feeding subsurface waters underwent 

cooling. Silica precipitation occurred in the green waxy claystone in the Oloronga Beds; 
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elsewhere the silica remained in solution as monosilicic acid or as ions, and flowed towards the 

lake. High aqueous silica implies a pH > 9, which is compatible with most lake and ground- 

waters in the basin. 

Tandon and Andrews (2001) showed that it might be possible to infer the source of the 

waters using stable isotopes, but care must be taken to assess the impact of diagenesis. 

Covariance in isotopes can result from a pedogenic environment (Cerling, 1984; Cerling and Hay 

1986) or a hydrologically-closed lake environment (Talbot, 1990). However, pedogenic 

carbonates are typically less enriched than the closed-lake carbonates, which experience more 

evaporative concentration (Cerling and Hay, 1986). The isotopes measured for the Magadi 

calcretes increase in both δ
18

O and δ
13

C when compared to the host sediments, indicating  

evaporative concentration (Fig. 3-32), and the calcretes show textures that imply precipitation 

from groundwater, as discussed above. 

Modern springs at Lake Magadi have δ
 18

O values of -4.4 to -1.3 ‰VSMOW (Hillaire-

Marcel and Casanova, 1987) and the spring-fed lagoons have slightly more enriched values of  -

3.1 to -0.1 ‰VSMOW  (Darling et al., 1996; Darling, 2001) The average Kenyan meteoric water, 

regardless of elevation, is -2.5 ± 2.4 ‰ for δ
 18

OVSMOW (Levin et al., 2009). Theoretical isotope 

values calculated using 1000lnαcalcite-water=29.08 (Coplen, 2007) for calcite precipitated from 

modern meteoric water at typical East African temperatures (~25°C) do not yield values 

compatible with those for the analysed calcretes. Those values, from meteoric water values of -

3.8 ‰ (Hillaire-Marcel and Casanova, 1987) and -2.5± 2.4 ‰ (Levin et al., 2009) are +24 and a 

range of +23.4 to +28.4 ‰SMOW, respectively. Calcite precipitated in modern lake water would 

give a value of +33‰ and modern brines a value of +38‰ (Hillaire-Marcel and Casanova, 

1987). The measured values of the calcrete give an equivalent range of +28 to +35 ‰SMOW using 

the conversion calculation of Friedmann and O’Neil (1977). This implies that the calcite 

precipitated from a solution within the range between meteoric and lake water, which agrees 

with the hydrochemical model of Jones et al. (1977).  

Isotopic evidence for the Magadi carbonates does not support calcite precipitation from 

dilute meteoric water, but rather from concentrated fluids. Although there might be problems 

with the alpha values used in the calculations (e.g. Coplen, 2007), these values imply that the 

calcite precipitated from waters more concentrated than meteoric water.  
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Temperature and pH both have a significant impact on the fractionation factor of the 

calcite-carbonate-water equilibrium. The temperature estimate might not be appropriate. In a 

study of modern soil temperatures in Kenya, Mace (2012) showed that grasslands and bushlands 

had soil temperatures at 0.25 m depth that were 2–6 °C higher than the air temperature.  At 

Magadi, the pH of the lake waters is typically high (pH > 9: Jones et al., 1977), which reflects 

evaporative concentration and the alkaline trachytic bedrock, which would decrease the 

fractionation factor (Dietzel et al., 2009). The fractionation factor is also affected by the rate of 

precipitation (Dietzel et al., 2009; Gabitov et al., 2012), which in turn influences crystal size and 

shape. Calcite crystals in the calcrete vary from micrite to sparite, and thus rates of precipitation 

likely varied during calcrete formation. The bulk samples analysed give only an average value 

for the precipitation rate, lessening its impact as a factor controlling the crystal size. Many 

processes control precipitation of the calcite. 

The relationships between the carbonate and water oxygen isotopes of the calcretes are 

uncertain because the fractionation factor changes with temporal changes in temperature, pH and 

precipitation rate. Calculations between water and calcite δ
 18

O using fractionation factors 

calibrated for equilibrium in another setting may not yield useful results (Dietzel et al., 2009). It 

may therefore be better to compare isotope values qualitatively with values obtained from 

calcretes in similar environments (e.g. Talma and Netterberg, 1983; Cerling, 1984).   

Studies have shown that evaporation has little to no effect on isotopic composition in soil 

water below about 50 cm depth (Retallack, 2004). As mentioned, the Magadi calcretes are 

inferred to have precipitated from fluids that underwent significant evaporation from fluids at 

depths < 50 cm below the contemporary land surface. Potentially, those fluids were not in 

equilibrium with contemporary atmospheric CO2, or the carbonate-bearing solutions were 

isotopically enriched groundwater. 

The δ
18

O values for the Oloronga-capping calcretes are variable with values from -3.16 to 

+3.69 ‰ VPDB. This might be explained by spatial differences, reflecting differences in water 

source because the calcretes with the highest δ
18

O values were sampled in more northern 

locations than those to the south. Cerling and Hay (1984), Hillaire-Marcel and Casanova (1987), 

and Nehza et al. (2009), however, note that wide variations in isotope values are common in 

closed-lake environments, especially where separate lagoons (i.e. very local groundwater 

sources) develop. Although the calcrete values are variable, calcrete samples from the Dry 
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Lagoon stratigraphic-profile follow the same trend as the profile sediments, using higher δ
18

O 

values as an indicator of increasing aridity (Cerling and Hay, 1984; Nehza et al., 2009). Thus, 

from the time of the Oloronga Beds to the present, the δ
18

O values imply increasing aridity (Fig. 

3-33). The enriched δ
 18

O values of the calcretes, when compared to those of the host sediments, 

imply that the dominant mechanism of calcite formation was evaporation from evaporatively 

concentrated water.  

Subhedral to anhedral clusters of barite were found in some samples using BSE and an 

EDS sensor. Without an in-depth study it is difficult to determine the source of the barite in the 

studied calcretes. The barite is not derived from the host material, nor does it seem to be detrital. 

It is located both in zones of replacement and in calcite-filled microfractures, implying that it is 

authigenic. Two possibilities are that 1) barite precipitation is physicochemical, or 2) barite 

precipitation is biomediated. Barite has been linked to precipitation as a response to biological 

processes (biomediated) including adsorption onto microbial surfaces and extracellular 

polymeric substances (EPS: Bonny and Jones, 2008a, 2008b; Brock-Hon et al., 2012). Because 

the barite was found primarily at sites of calcite replacement of silica, it is likely the chemical 

conditions caused barite formation. Though unusual, barite has been found in other calcretes 

(Brock-Hon et al., 2012). Barite may also form from saline groundwater in some calcretes 

(Khalaf, 2007).  

Given the evidence, a shallow-groundwater origin for most of the calcrete is likely, with 

cementation taking place at or near the water table under a drying climate. 

 

3.7.2. Source of Ca 

When CO2-charged rainwater weathers and erodes the trachytes it gains Ca and Mg as 

well as other solutes. Although they have low wt.% Ca, the trachytes contain Ca-bearing 

minerals (augite, aenigmatite, Na-Ca amphibole, and minor amounts of apatite). Water from the 

Ewaso Ngiro River and dilute groundwater contains up to 24 mg/L Ca (Jones et al., 1977), which 

at present is the most concentrated fluid with respect to calcium. After the groundwater is further 

concentrated by evaporation in a semi-arid environment, Ca and Mg are the first cations to 

precipitate as carbonates. As the water moves from meteoric precipitation to groundwater to lake 

water, it follows a chemical evolution path that leads to Na, CO3
2-

, and Cl
-
 as the dominant ions 

in the lake brine (Jones et al., 1977).  The high evaporation and low rainfall retard the movement 
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of runoff and rainwater into the lake, and Ca and Mg are often depleted before the evolved 

groundwater enters the lake or is discharged as spring water. Under a moister climate regime and 

during the rainy season, some calcium may enter the lake; oncoids dated at 5000 y BP (Seegers 

and Tichy, 1999), which is coincident with the onset of aridification of the Sahara and broadly 

north-east Africa and the end of the African Humid Period (deMenocal et al., 2000; Berke et al., 

2012), formed at the south end of Magadi and may still be forming today (Casanova and 

Tiercelin, 1982). Additionally, layers of ooids are present in the sediments (Oloronga Beds) that 

underlie the calcretes, indicating times when Ca was, at least locally, present in the lake water. 

 

Sampled 
Rock 

SiO2,  Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total 

Magadi 
Trachyte 

61.38 13.66 8.53 0.31 0.63 1.95 5.46 4.66 0.92 0.14 1.17 98.80 

Kirikiti 
Basalt 

47.12 14.36 12.98 0.20 6.89 11.31 2.82 0.74 2.01 0.36 0.88 100.09 

Ol Tepesi 
Basalt 

46.90 14.69 12.73 0.20 6.49 11.84 3.11 0.67 1.94 0.32 0.71 99.86 

Ol Esayeti 
Basanite 

44.22 9.46 12.77 0.19 9.98 13.52 3.89 0.98 2.89 0.44 1.51 100.20 

Singaraini 
Basalt 

47.18 15.34 11.93 0.19 6.60 12.86 3.04 0.57 1.85 0.32 0.37 100.45 

Lenderut 
Mugearite 

49.97 15.38 12.18 0.17 3.86 7.04 4.61 2.10 2.54 0.51 0.31 99.09 

Table 3-2. Average wt. % values (n=3) of Magadi Trachyte, Kirikiti Basalt (n=6), Ol Tepesi Basalt (n=3), Ol Esayeti 

Basanite (n=2), Singaraini Basalt (n=3), and Lenderut Mugearite (n=4). LOI = Loss on ignition. Data from Le Roex et 

al., 2001. 

The surficial zone of relative Ca-enrichment (Carlisle, 1983) is seen in the form of the 

laminar calcretes that cover the trachytes. Rain falls on the trachytes, chemical weathering 

(silicate hydrolysis) takes place, and a thin layer of calcite forms as the water evaporates. 

Efflorescent crusts, of both calcite and, towards the lake, trona, thermonatrite and/or nahcolite, 

are common results of precipitation and subsequent evaporation and are seen throughout the 

Magadi area.  

Calcium for replacement of the amphiboles, pyroxenes, and feldspars may come from the 

breakdown of the volcanic rock fragments (VRFs) with the addition of high pH waters, which is 

possible if the groundwater is alkaline. However, high values of Sr and Ba within the calcretes 
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may indicate a natro-carbonatite source of the Ca (Dawson, 1964). Ba, which is the more soluble 

of the pair, is still more concentrated in the calcretes than the associated sediments.  

 Redistribution of Ca in dust is thought to play a large role in calcrete development in 

many places (Goudie, 1983; Chiquet et al., 1999; Capo and Chadwick, 1999; Naiman et al., 

2000), though Hay and Reeder (1978) found that for the calcretes in Tanzania, wind-blown dust 

was a minor Ca source when compared to locally abundant carbonatite ash. However, dust-devils 

are common in the dry southern Kenyan rift valley and likely bring and redistribute much 

detritus, which may have provided a significant Ca input for the Magadi calcretes. The amount 

of calcium within the trachytes is much lower than the calcium in the rift-flanking basalts across 

the region, and although the shallow regional drainage passes only through the trachytes, wind 

may distribute basaltic detritus within the rift. 

 

3.7.3. Role of biota 

Alveolar septal texture (Wright, 1986) from fungal presence in root voids indicates a 

rhizosphere community. This does not necessarily indicate a pedogenic origin for calcrete 

because roots may penetrate to shallow groundwater tables. Root-related microfabrics are 

dominantly horizontal to sub-horizontal indicating a high or perched water table, which can 

signify that these are groundwater-based calcretes instead of pedogenic. Elsewhere in the rift 

valley, root systems are vertical from the paucity of accessible water; near rivers, root systems 

are mainly horizontal (Cohen, 1982; Mount and Cohen, 1984). Horizontal root structures also 

indicate horizontal flow of water, such as would occur near the top of the calcrete once it became 

too cemented for water to easily pass through, which can create laminar calcrete (Esteban and 

Klappa, 1983). However, the root textures throughout are sub-horizontal, not just at the top of 

the calcrete. 

It is common for there to be a microbial presence along roots. Given the paucity of 

preserved filaments, roots were possibly a major biological agent in forming these calcretes, but 

root-related textures are not pervasive and most of the calcrete formation is probably due to 

physicochemical processes. However, given the estimated age of the calcretes, forming any time 

between 300,000 and 98,000 years, fragile components such as micobial filaments and root hairs 

may not have been preserved because of the frequent recrystallization of calcite, and their record 

might have been lost (Wright, 1986).  
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It is difficult to distinguish primary calcite crystallization from calcite recrystallization 

particularly in calcretes that have a wide range of microfabrics and crystal sizes. In most 

samples, small micritic nodules are surrounded by microsparite and sparite. Because micrite 

recrystallizes to sparite over time (Carozzi, 1993), it is unlikely that there has been a significant 

amount of recrystallization, but it cannot be discounted. A few examples of microspar to sparry 

calcite patches within micrite nodules were observed, implying recrystallization, but these are 

uncommon. The role of microbes in the calcrete development is unclear because of the lack of 

preserved evidence.  

In pedogenic calcretes, the δ
13

C content of soil carbonate is related to soil-respirated CO2, 

and in turn, the metabolic pathway of the adjacent vegetation, be it the C3, C4, or CAM pathway 

(Cerling, 1984). Estimation of percent of C4 vegetation (arid-environment adapted pathway) for 

Kenya today is ~98% (Cerling, 1977, 1992). The end-member for 100% C4 plants at 25°C is 

about +2‰ δ 
13

C VPDB. Although the calcretes at Magadi are not fully pedogenic, the δ
13

C 

analysis may yield pertinent results. The δ
13

C range for calcretes is from -0.22 to 2.82 ‰, which 

broadly indicates a dominance of C4 vegetation. This implies a climate similar to today, with 

mostly C4 grasses with few C3 Acacia trees. However, some workers suggest 
13

C values may also 

be related to changes in groundwater (Raidla et al., 2012). Instead of being related to soil 

carbonate and soil-respirated CO2, groundwater C is related to the carbonate-bicarbonate-carbon 

dioxide chemistry. Groundwater-sourced C isotope values do not affect the interpretation of the 

laminar calcretes, but they may be relevant for the Oloronga-capping calcrete. The disparate 

values could reflect local differences in groundwater composition instead of reflecting type of 

vegetation then present. Including the 
18

O values, the isotopes are generally coeval; both values 

may be explained by evaporative concentration. Because most textures can be attributed to 

precipitation from groundwater, it is more likely that the isotope values reflect physical, rather 

than the biological, processes. Some calcrete formation might have occurred in the rhizophere, as 

shown by examples of alveolar-septal microfabric and rare fenestral fabric, but these were not 

the dominant mechanisms of carbonate precipitation.  
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3.7.4. Pisoid formation 

Pisoids in calcretes have been attributed to growth within a soil on a slope (Wright, 

1989), and growth within calm, shallow open waters (Nash and McLaren, 2003), as well as 

forming from pedoturbation or microbial coating (Brasier, 2011). Hay and Reeder (1978) 

suggested that pisoids of Olduvai Gorge calcretes formed where older clay coatings on grains 

were replaced by calcite, but explaining the concentricity of the calcite laminae around the 

pisoids remains difficult (Braithwaite, 1983).  

Growth of pisoids in open water is unlikely because there are no contemporary aqueous 

sediments near the pisoids, and most pisoids retain an irregular shape, which over the long-term 

(tens to hundreds of years), is unlikely in calm water. Pisoid rotation through pedoturbation is 

feasible, but clear indicators of fabrics and diagenetic processes linked to roots are rare or absent 

in the calcretes.  Calcrete development on a shallow slope is possible and the pisoidal nature of 

the calcrete varies topographically in the Dry Lagoon, where the more pisoidal calcrete occurs 

nearer the lake than the more massive calcrete, which is several hundred metres higher and distal 

from the main section; however, the post-Oloronga calcrete is widespread and all evidence of an 

overlying soil is gone. Nonetheless, the calcrete was studied in small area so the basin-wide 

variations are unknown.  

It is unlikely that the pisoids formed through microbial processes. The calcite laminae are 

discontinuous and irregular, similar to microbially attributed oncoids. However, for many pisoids 

an important genetic process seems to have been  the mechanical rotation of grains, possibly 

from pedoturbation from repetitive wetting and drying of the clays and zeolites, with micritic 

laminae precipitating from near-surface evaporating fluids during periods of shrinkage and 

drying.  The observed differences in the laminae appear to reflect staining of grains, whereas 

microbial influences in laminae often produce a light (organic poor)/dark (organic rich) pattern 

representative of cycles of microbial growth and die-off. Moreover, microbial filaments and 

needle fiber calcite, which is thought to be the result of microbial activities, were not seen in the 

pisoid laminae. 

The pisoids in the calcrete are randomly oriented. Although in some pisoids laminae 

seem to thicken downwards, indicating vadose drip cements, closer inspection shows that those 

laminae only appear thicker because the pisoid has a core (nucleus) of laminar calcrete. Many 

laminae do not enclose the entire pisoid but are the infilled remnants of lunate (in two 
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dimensions) cracks—the circumgranular cracks of alpha microfabrics. These cracks appear to be 

related to the formation of nodules in that, under pressure, the matrix will crack preferentially 

before the more compact nodule. These cracks fill with fluid and are occluded by the growth of 

isopachous microsparite. Cracks occur both outside and within former laminae, which may 

explain the origin of some of the micritic laminae. A microprobe line-scan through one of the 

pisoids revealed no symmetry in the contents of Mg, Mn, Fe or Sr: elements that, if sourced from 

the same fluid, should precipitate in similar concentrations if the laminae are truly concentric. 

Additionally, because of the high seismicity of the area in the late Pleistocene (Ibs-von Seht et 

al., 2001; Behr, 2000), evidenced by the extensive grid-faulting after deposition of the Oloronga 

Beds (Baker, 1958), the possibility that the cracks and partial rotation of the pisoids occured due 

to seismic jostling of the sediments cannot be discounted. Owen et al. (2012) found evidence for 

contemporary seismic disturbance in sediments of the Olorgesailie Formation, and Behr and 

Röhricht (2000) showed that the formation of some of the intrusive cherts at Lake Magadi was 

linked to seismotectonics. 

In some samples the pisoid nuclei are internally fractured. These fractures do not extend 

into the outer laminae or the matrix yet are not completely cemented. This may be because the 

dense cementation of the pisoid cortical laminae has completely blocked the pisoid core 

(nucleus) from fluids. Fracturing within pisoid cores implies repeated wetting and drying 

(Tucker and Wright, 2009).  

Pisoid formation might also be related to underlying substrate.  Two significantly 

different sediments were identified directly below the Oloronga-capping calcrete using both field 

observations and chemical analyses. At the measured section in the Dry Lagoon (Figure 3-10), 

infilled mudcracked beds and zeolitized nodular silica-rich sediments are present. The zeolitized 

nodular sediments vary in induration. Calcretes that overlie the mudcracked beds and the hardest 

zeolitized sediments have a sharp contact, whereas the contact between the calcretes and the less-

cemented sediments is transitional. The basal boundary of the calcrete depends on the substrate. 

Where the host beds are more cemented, the delineation is clearer. Moreover there is a difference 

in the character of the calcrete: calcrete that overlies tightly-cemented horizons contains more 

pisoids than calcrete  that formed on, or in, loosely cemented sediments. Movement in a softer 

substrate would be less pronounced than movement on a hard surface, as the forces would not be 

diffused through/absorbed by the sediment, hence the greater degree of pisoid development in 
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calcretes directly overlying well cemented sediments. This indicates that pisoids were formed 

abiotically and not through calcite accumulation by microbes. Possible reasons for movement are 

root action, gravity, earthquakes or repeated wetting and drying. The latter process is the only 

one with direct evidence (pisoid cores) and it almost certainly played a role, though seismicity is 

also possible. 

 

3.8. Discussion and implications of calcrete formation at Magadi 

3.8.1. Stratigraphic context and age estimation of the Oloronga-capping calcretes 

The Oloronga-capping calcretes formed during the interval between deposition of the 

lacustrine Oloronga Beds and the High Magadi Beds. Two different calcretes, however, have 

been placed at the top of the Oloronga Beds (Baker, 1958) and at the bottom of the High Magadi 

beds (Behr, 2000). A local calcrete overlies the Green Beds SE of the lake. Fairhead et al. (1972) 

dated a trachytic obsidian flow that covered the Oloronga Beds, which were capped by about 10 

cm of calcrete (Eugster, 1980), to 780,000 y BP, so some calcrete had formed by then. This age 

is improbable for all of the Oloronga-capping calcrete, and this thin calcrete is probably part of 

the Oloronga Beds.  As discussed, there are several stages of calcrete formation and not all 

calcretes discussed are necessarily of the same age (Eugster, 1980; Behr, 2002). 

Pisoids with cores of reworked calcrete indicate there have been many stages of calcrete 

formation, indicating a long period of calcrete-forming conditions. Machete (1985) suggested 

that stage VI pedogenic calcretes (those that include reworked older calcrete) can take up to 

100,000 years to form. Since the Oloronga-capping calcretes did not form as part of a soil 

profile, the timing of formation is likely different than Machete’s idealized sequence. 

Groundwater calcretes form faster than pedogenic calcretes (Nash and Smith, 1998; Kaemmerer 

and Revel, 1999; Nash and McLaren, 2003; McLaren, 2004). It is likely the calcrete formed 

within a period of 1000s of years, similar to groundwater calcretes and the Olduvai Gorge 

calcretes, which formed relatively quickly due to bountiful Ca from nearby carbonatite 

volcanism (Hay and Reeder, 1978).  

As the location of the chert fragments within the laminar and underlying calcrete is 

higher in elevation (639 m) than any other known chert occurrences in the basin from the High 
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Magadi Beds (Eugster, 1980), the chert must be from an older source, such as the Green Beds or 

Oloronga Beds (Behr and Röhricht, 2000). Cherts were not found in situ within the High Magadi 

Beds in the Dry Lagoon, but chert gravel locally forms a residual lag on the floor of the Dry 

Lagoon. The chert is unlikely to be from the Green Beds due to its elevation. Behr (2002) 

suggested that the Green Beds paleolake could have extended beyond the present outcrops and 

have been higher, but this is unlikely. The Green Beds cherts are confined mainly to low lake-

marginal areas, but intrusive cherts injected along faults lie several metres above the height of 

most outcrops (e.g. margins of Magadi townsite horst). The Oloronga Beds contained chert, 

reached higher than the studied elevations, and so the chert within the calcrete is likely from the 

Oloronga Beds. This suggests that the laminar calcretes above Graham’s Lagoon, and possibly 

calcretes elsewhere in the basin, have preserved Oloronga cherts while the Oloronga Beds have 

worn away. While the cherts are likely from the Oloronga Beds, they may have been deposited 

during any post-Oloronga flooding phase. 

The Oloronga-capping calcrete, though probably a composite, marks an unconformity 

and can be used to identify a time range throughout the basin, though care must be taken to 

ensure the sediments below are the Oloronga Beds. Previously, Baker (1958) suggested using it 

to help identify the Oloronga Beds but, because it is not present everywhere and calcretes in the 

basin are superficially very similar, this is discouraged. The laminar calcretes SE of the lake are 

of indeterminate age, though they must have formed a) after the trachytes and b) after major 

block faulting, based on location. It may be possible to match the types of chert embedded in the 

laminar calcretes with cherts of different ages to allow for an accurate measure of age. The 

laminar calcrete associated with the Oloronga-capping calcrete is potentially much younger than 

the underlying pisoidal calcrete. There is an erosional surface between the two noticeable in the 

field and in thin section. Depending on the type of chert present in the laminar calcrete, it could 

be as young as High Magadi Beds time. 

 

3.8.2. Sediment source and basin dynamics 

Due to the active tectonism and volcanism of the area, changes in basin hydrology and 

drainage patterns are not unexpected. Identifying the sediment source through geochemical 

methods within a stratigraphic column will provide details of changing drainage patterns, which 

may be linked to specific events. Similarly, climate may be inferred from sediment source 
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identification; the more humid Western rift valley drains predominantly axially whereas the 

semi-arid Kenya Rift drains, for the most part, perpendicular to the axis into several closed 

basins (Fordham et al., 2010). Axial drainage under a humid climate can bring sediments from 

farther away whereas under drier conditions the sediments will be more local. Heavy erosion 

along the rift scarps will provide the chemical signature of the older basalts and Precambrian 

rocks. Outcrops of the dominant source rock for the sediments, the Magadi Trachytes, are 

elongated N-S along the rift valley. This could mean that axial versus lateral drainage may not be 

easily identified and compared in the sediments. 

Rare earth element (REE) spider diagrams are used as the signature of a specific rock 

(Kerrich et al., 2002; McLennan et al., 2003). As well, each rock type has specific patterns of 

immobile major and trace elements. The source rocks will be chemically modified during 

weathering, but this happens in a predictable way and the geochemical composition of sediments 

is still useful though they may have undergone leaching. For example, it is difficult to decipher 

the REE pattern for the calcretes, as calcretes tend to incorporate more of the HREEs than the 

LREEs (Fig. 3-27); this leads to questioning whether the sediments are truly from the Magadi 

Trachytes or whether the calcretes are displaying misleadingly high HREE concentrations from a 

different source. When taken with the major and other trace element data, and with mineralogy, 

however, it becomes clear that the main source is indeed the Magadi Trachytes (Figs. 3-24, 3-

28).  

The proximity of Shombole, a phonolitic volcano to the southwest in the catchment area, 

to the Magadi area makes it a potential sediment source. This is unlikely, as the lake sediments 

show a clear negative Eu anomaly, and the Shombole phonolites and nephelinites instead show a 

positive anomaly. The evidence that it is not a sediment source indicates that basin hydrology 

during Lakes Oloronga and High Magadi time has remained similar to present day, in that 

Shombole runoff drains into Ewaso Ngiro, which enters Lake Natron. Unfortunately REE data 

for Pleistocene sediments of Lake Natron are unavailable. 

Additionally, the mineralogy of the Oloronga Beds and the High Magadi Beds sediments 

is very similar but the High Magadi beds in the Dry Lagoon show less concentrated trace 

elements, indicating that the source is the same, but the degree of weathering is greater in the 

youngest deposits. This makes sense, since the High Magadi Beds are likely reworked Oloronga 

Beds. The calcrete samples from the northern area, however, are slightly different; they contain 
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some feldspathoid minerals, which possibly come from the nephelinitic and phonolitic volcanic 

centers to the north.  

The stable isotopes are of interest. In the north, the δ 
18

O values are much higher than for 

all other calcretes, and equivalent to the much younger Nasikie Engida conglomerate (see 

Chapter 5). Two samples of Oloronga calcrete from north and south Nasikie Engida show high δ 

18
O values (+3.69 and +2.89 respectively). This suggests that, if time equivalent, the water 

towards the north was more 
18

O rich than the south, indicating more fresh water input towards 

the south. This could be because of different drainage patterns during deposition. Alternatively 

the difference could reflect poor mixing of groundwater from different sources (springs, streams, 

etc.). Because there is little evidence for fresher water input at the south (aside from potential 

mixing with fresher Natron lake waters during high lake levels), discrete groundwater inputs 

seems more likely as an explanation. 

Calcretes are generally made up of low-Mg calcite, and XRD analyses confirm that the 

calcretes from Magadi are no different. Although Mg is lost at the same brine evolution stage as 

Ca, Mg uptake by clays becomes greater in alkaline, saline conditions (Hay and Kyser, 2001; 

Deocampo, 2004). So while Ca is precipitated as calcite, most of the Mg is incorporated in clay 

minerals. While dolomite formation is possible, and occurs in similar deposits such as the 

Olduvai calcretes (Hay and Reeder, 1978), dolomite was not detected in the Magadi calcretes. 

Because of the calcium-poor nature of the Magadi trachytes (1.72–2.09 wt%; le Roex et 

al., 2001), it is unlikely that the calcium deficiency in the High Magadi Beds as compared to the 

Oloronga Beds is due to leaching, and is simply a reflection of the sediment source and 

hydrochemistry. This implies that during the latter part of High Magadi Beds time, there was 

very little calcium in the lake, as at present.  

The gradual decrease in calcite downward through the sampled Oloronga sediments 

indicates that the calcrete does not have a truly sharp boundary as indicated in outcrop. This may 

result from downward percolation of Ca-bearing fluids from calcium input prior to calcrete 

formation. This seems likely, as the boundary between the calcrete and sediments is for the most 

part sharp. 

Normalized to the average Magadi Trachyte of Behr (2000), most of the major elements 

are depleted, as one would expect from weathering. Slight increases in SiO2 and Fe2O3 in both 

Oloronga Beds and High Magadi Beds sediments are explained by the minor silica cements and 
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iron oxide staining from weathering, respectively. These increases were recorded at higher 

concentrations only in the most recent sediments (i.e. the most weathered). Because the High 

Magadi Beds analysed in this study have lower concentrations of CaO than all other sediments of 

the area except for tuffs, perhaps most High Magadi Beds in this study are tuffs, or a tuff-derived 

portion of the High Magadi Beds. When compared with previous analyses, , the laminar calcretes 

are the most chemically similar to laminar calcretes tested in Tanzania by Hay and Reeder 

(1978). The sediments underlying the calcrete are similar to the Oloronga Beds and Green Beds 

of Behr (2000), but have less SiO2, which is possibly a dilutory effect from an increase in CaO 

content from carbonate. 

That the sediments between Oloronga and High Magadi times in the Dry Lagoon do not 

have differing sediment sources is important; at both times this area of the lake would have had 

similar, predominantly local drainage patterns and little influx from the north. The sediments 

studied are a small sample of a complex area; more samples are needed to have a more definitive 

result. 

 

3.9. Paleoenvironment and models of calcrete formation 

3.9.1. Oloronga-capping calcrete 

In determining a model for formation of the calcrete one must look at the evidence for 

each of the end members: groundwater and pedogenic. Because the Oloronga calcrete is neither 

thick nor lens-shaped, and includes a variety of microfabrics not of the alpha type, it is unlikely 

that the Oloronga calcrete is a ‘valley calcrete’ as defined by Carlisle (1983). Likewise, the 

scarcity of soil features, ped structures, beta microfabrics, and horizonation indicates that it is not 

purely a pedogenic calcrete either. The calcrete contains characteristics of both groundwater and 

pedogenic calcretes and during formation was influenced by both phreatic and vadose processes. 

It could be considered a groundwater calcrete because of its sharp boundaries between the supra- 

and subjacent sediments, the presence of isopachous void-filling spar cement, and its consistent 

presence throughout the basin. It could also be considered a pedogenic calcrete because of the 

presence of many root textures (though these can also be present in groundwater calcretes where 

the water table is high), clay textures related to pedogenesis (e.g. cutans), and its moderate 

variability in texture across small distances.  
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In support of the idea that it is a groundwater variety, the calcrete is present both in the 

south and north of Lake Magadi. Samples of calcrete from both areas are chemically, texturally 

and stratigraphically very similar and differ only in the minor mineral components of the detrital 

fragments in the calcrete, indicating the differing drainage patterns of their source areas. (In the 

north there is more feldspathoid in the calcrete than the south.) From the analyses done in this 

study it is not possible to prove that these two calcretes are truly time-equivalent but the 

chemical data implies that they are similar and might be contemporary.  

No calcrete was found in any recent core samples taken from the lake (Lowenstein et al., 

2015; Rabideaux et al., 2015); though there are calcite cements, these are probably not related. It 

may be that the lake has always been present and has never fully dried. The calcrete is then lake-

marginal, developing when the lake levels are very low. The presence of a contemporary lake in 

the depocenter is supported by the groundwater cement signatures and microfabrics in the 

calcrete.  

Because the calcrete shows textures of both groundwater and pedogenic origin, it is 

probably polygenic, similar to the calcretes discussed by Renaut (1993), Bustillo and Alonso-

Zarza (2007), and Khalaf (2007). After the Oloronga Beds were deposited, they underwent 

zeolitization, which can occur in trachytic glass with the addition of alkaline water (Surdam and 

Eugster, 1976). Some zeolitization took place while the Oloronga Beds were exposed 

periodically, judging by the abundant root textures in the layer directly underlying the calcrete. 

The Oloronga Beds had also experienced alternating periods of wetting and drying, as seen by 

the several generations of infilled crack networks below the calcrete. The calcrete formed within 

the Oloronga Beds: it is chemically similar to them and includes clasts of the Oloronga Beds, but 

none of later deposits. It is possible that the calcrete formed under somewhat wetter conditions 

than the cracked beds underneath; the δ 
18

O values in the stratigraphic profile suggest a 

somewhat wetter environment than the over- and underlying sediments. Thus it is most likely 

that the calcrete was at first produced through pedogenesis and, after the water table rose, 

became a shallow groundwater calcrete. The later calcite from the groundwater cement provides 

the dominant chemical signature and overprinted the pedogenic beginnings. The majority of 

calcrete formation took place under shallow groundwater conditions at or near the water table 

with the minor influence of plant roots. After the horizon became plugged, the laminar cap began 

to form (as discussed by Wright, 1989).    
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The calcrete must have been influenced by groundwater at some time. It was developed 

before the High Magadi Beds were deposited in a lake that covered most, if not all, of the 

Oloronga calcrete occurrences. Additionally, other high lake level events are thought to have 

occurred since Oloronga time (Hillaire-Marcel and Casanova, 1987; Behr 2002). Up until the 

formation of the Green Beds, no sediments have been recognized from these intermediate 

highstands because the basin is sediment-poor (subsidence from the rifting outpaces 

sedimentation) and past deposits are cannibalized.  The calcrete, along with zeolitisation, helped 

to protect some of the Oloronga sediments from these periods of erosion. The time period 

between the latest recorded deposition of the Oloronga Beds at 300,000 y BP (Röhricht, 1999) 

and the next recorded highstand at ~130,000–140,000 y BP (Hillaire-Marcel and Casanova, 

1986) makes the most sense as the period of formation for the Oloronga-capping calcrete. Lake 

Naivasha to the north also records a high lake period at ~130,000 y BP (Trauth et al., 2010). 

Other calcretes in the basin formed during other lowstands or when the sediments became 

subaerially exposed. It is unlikely the calcrete took the entire intervening 150,000 years to form, 

though the brecciation and recementation of the calcrete suggests calcrete-forming conditions 

were maintained for a long period. As a corollary, a long period of semi-arid climate may, in a 

rift valley setting, imply minimal regional volcanic and tectonic events during this time. 

 

Once the calcrete had formed, any Oloronga Beds that had been on top of the calcrete 

were stripped. This happened any time after calcrete formation due to erosion, or perhaps due to 

sediment reworking during the next lake highstand. Additionally the calcretes were subject to 

erosion themselves as they are absent from many places despite their being widespread. The 

laminar calcrete may have acquired some chert clasts from younger deposits including the 

earliest High Magadi Beds and could have remained forming until their deposition.  

 

 

3.9.2. Laminar calcrete 

Laminar calcretes are widely discussed in the literature, with formation resulting from 

rhizogenic activity (Alonso-Zarza, 1999; Alonso-Zarza, 2003; Wright et al., 1988), microbial 
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influence (Krumbein and Giele, 1979; Wright et al., 1988; Verrecchia, 1996), or abiogenic 

processes (Wright 1989). 

In the laminar calcretes from SE Magadi, the laminae are discontinuous and irregular, 

showing micro-unconformities as would be expected of non-stromatolitic laminar calcretes. The 

surface is often smooth with irregular crack networks indicating shrinking during desiccation or 

perhaps movement of the substrate. This is indicative of abiogenic precipitation resulting from 

periodic runoff and subsequent evaporation, probably at the rock/air interface. While plants may 

have sporadically inhabited this laminar carbonate surface, indicated by the few instances of 

horizontal spar-filled root tubules in the laminae (fenestral texture), the majority of the carbonate 

was precipitated directly from meteoric runoff under the influence of evaporative concentration, 

as shown by the high relative ‰ of the δ
 18

O values as compared to the meteoric water from 

which the carbonate would have precipitated (albeit not likely in equilibrium). Carbonate-

encrusting microbes, which would thrive briefly in the runoff, especially in micro-ponds, might 

have also played a role in calcrete development, and there is some evidence for hemispheric 

stromatolite-like laminae, though these are rare and minute.  

The laminar calcrete was preceded by carbonate cementation of the underlying trachyte. 

Most of this cement is spar though shows meniscus and pendant cements and was probably 

related to surface water infiltrating the vesicular trachytes. Carbonate formed as the trachyte was 

weathered by meteoric water, converting some of the trachyte to zeolites and releasing Ca. Once 

cementation made the surface impermeable, the laminar calcrete began to form. Large pieces of 

chert washed in during the ephemeral rainfall and became cemented into the calcrete.  

It is difficult to ascertain the origin of these chert clasts. It is possible they are from the 

Oloronga Beds cherts but they could also be from the Green Beds cherts, which are locally 

abundant. A High Magadi Beds origin is unlikely due to the high elevation of the laminar 

calcrete relative to present High Magadi Beds outcrops. However, the horst that hosts the laminar 

calcrete was developed by Green Beds time: Green Beds silica was injected along the marginal 

faults due to tectonic activity (Behr and Rohricht, 2000; Behr, 2002). The Green Beds paleolake 

was unlikely to have been that high (Behr, 2002). Lake Oloronga, which may have existed before 

the faulting, certainly was deep enough to encompass the horst and may have deposited cherts 

nearby, though there is no evidence. Another possibility, though less likely, is that the cherts are 

not lacustrine but from silica spring deposits that have been eroded.  
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Determining the source of the cherts would help to determine the age of the laminar 

calcrete; for now it is assumed that they have formed some time after uplift due to faulting and 

the present.  

 

3.10. Summary 

The Lake Magadi area has at least three distinct calcretes: a pisoidal variety that overlies 

the Oloronga Beds; a local grain-coating calcrete that overlies the Green Beds; and a laminar 

calcrete that coats the Magadi Trachytes. There are likely more, but basinwide stratigraphy is 

difficult to discern and not all areas are accessible. The predominant calcrete, the Oloronga-

capping calcrete, has been used as stratigraphic marker to recognize the underlying Oloronga 

Beds. Because calcretes can look similar, they should be used as a stratigraphic marker only 

when the identity of the underlying beds has been confirmed. The Oloronga-capping calcrete is 

>100,000 years old, and probably formed within the range 300–200 ka, though it likely took 

much less than 100,000 years to form. This calcrete marks a time when the Oloronga Beds were 

exposed during low lake levels.  The calcrete was formed from both pedogenesis and 

groundwater cementation and diagenesis, making it a polygenic. The laminar calcrete at the SE 

of Lake Magadi was formed predominantly by physicochemical processes, particularly high 

evaporation. Its age is unclear; it could be up to 300,000 years old but is likely much younger. 
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4. CALCRETES OF THE POST-OLORGESAILIE FORMATION 

SEDIMENTS 

4.1. Geological setting and paleoenvironment 

About 30 km to the northwest of Lake Magadi, the Olorgesailie basin is bounded by N-S 

trending horsts of flood trachytes and basalts to the east and west, and to the south by Mt. 

Olorgesailie, a Pliocene phonolitic volcanic center. Quaternary volcanic centers include Ol 

Doinyo Nyokie and Suswa. Ol Doinyo Nyokie, a trachyte ignimbrite complex about 20 km to the 

south-west, formed at 0.66 Ma and contains thick layers of obsidian (Baker, 1975). Suswa is 30 

km north of Olorgesailie and includes trachytes, nephelinites, and phonolites, and was active 

between 240 and <100 Ka (Baker et al., 1988; White et al., 2012). 

The Olorgesailie sediments were deposited on an eroded surface of Magadi Trachytes, 

which were extruded from 1.4–0.8 Ma, and the older Ol Tepesi (1.6–1.4 Ma) and Ol Keju Nero 

flood basalts (Baker and Mitchell, 1976). After deposition of the Olorgesailie Formation the 

region was grid-faulted and locally uplifted to make the Legemunge and Ol Tepesi Plains. 

Present drainage is dominated by the Ol Keju Nyiro River and tributaries, which have downcut 

and exposed the Olorgesailie Formation (Fig. 1-2).  

The Pleistocene Olorgesailie Formation consists of up to 80 m of mainly lacustrine and 

wetland sediments interlayered with volcaniclastic deposits, calcretes and other paleosol 

deposits, representing a series of paleolakes of early to mid-Pleistocene age (1.2 to 0.5 my ago; 

Deino and Potts, 1992).  

The Olorgesailie Formation records the repeated expansion and contraction of many 

former lakes (Owen et al., 2008, 2011), fed mainly by rivers and groundwater discharge, though 

springs might also have contributed during the later parts of the basin history (Owen et al., 2011; 

Lee et al., 2013). During phases of regression, the lacustrine sediments were subaerially exposed 

and variably modified by pedogenesis, which, during the later stages of basin history, included 

formation of cherty, opaline, and carbonate rhizoliths in wetland sediments. Some sediments 

were incised and eroded. The reworked sediments were then transported ~ 20–25 km southwards 

along the Ol Kejo Nero paleodrainage system and some were possibly deposited in the Koora 
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Graben. Studies of these sediments have provided a mid-Pleistocene climate record for the basin, 

but interpretation has been complicated by syndepositional tectonics (Owen et al., 2008, 2011).   

Unlike many paleolakes in the rift valley, Olorgesailie has little evidence of zeolitic 

alteration, although Owen and Renaut (1981) reported minor analcime. The paucity of zeolites 

implies low salinity during most of the lake sediment deposition (Isaac, 1978) and minimal 

alteration during early diagenesis. In constrast, a zeolitic interval is present in a core recovered 

from Koora Graben in 2012 that spans the mid Pleistocene (Rabideaux et al., 2016). 

 

 

4.2. Stratigraphy 

The Olorgesailie Formation, as defined by Isaac (1977), has 14 members comprising 

about 80 m of sediments in outcrop. Member 1 contains a fossil-bearing paleosol 10–30 cm thick 

named UM1p. This paleosol is a smectitic vertisol (Deocampo et al., 2010), which consists of 

pedogenically altered lacustrine silts and sands interbedded with diatomite and reworked 

tuffaceous sands (Potts et al., 1999). The presence of rootmarks, burrows and footprints indicate 

a stable land surface that formed over about 1 kyr (Potts et al., 1999). Also in Member 1 are ash 

beds which were dated to 0.992 Ma (Potts et al., 1999). Member 2 is mostly lacustrine silty 

diatomite with some calcrete and includes the Evaporative/Carbonate (EC) marker horizon, 

interpreted as a secondary replacement of a salt crust during lake contraction, used in 

lithostratigraphic correlation across the basin (Potts et al., 1999). Owen et al. (2011) suggest that 

this unusual horizon with carbonate-filled crack networks is linked to a paleoseismic event. 

Description of the following members is summarized from Owen et al. (2008). Member 3 

is mostly tuffaceous diatomite. Members 4 and 10 are primarily pumiceous sands and gravels of 

fluvial origin. Members 5–8 are mostly diatomaceous silts and clays which have been 

pedogenically modified. Within Member 7 is another paleosol of archeological interest, termed 

UM7p (Potts et al., 1999). This paleosol, up to 1 m thick, consists of a waxy dark green 

claystone (Owen et al., 2008), including carbonate nodules with MnO2 staining. About 190,000 

years was proposed for formation of UM7p, but this is likely an overestimation (Potts et al., 

1999). Though excavation of UM7p produced artefacts, the highest concentration of 

archeological finds came from paleosol UM1p.  
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 Member 9 includes fluvial sands with layers of tuff, diatomaceous silt and clay, and 

diatomite with carbonate nodules of uncertain origin. Member 11 is similar to Member 9 though 

lacks tuffaceous layers and the sediments have undergone pedogenesis. Member 13 contains 

local red beds that resulted from spontaneous combustion metamorphism during extreme drought 

(Melson and Potts, 2002). These red beds are also present in Member 12 but combustion 

metamorphism occured some time after Member 13 deposition. Member 14 is composed of 

reworked diatomaceous silts and contains calcrete not included in this study.  

A disconformity produced by a period of fluvial incision separates the Olorgesailie 

Formation from the overlying sediments, called “Steppe Limestone” by Isaac (1978).  These 

sediments have recently been examined in detail and include several calcrete layers, one of 

which currently mantles part of the land surface of the Legemunge and Ol Tepesi Plains as a 

resistant unit. The three uppermost calcretes were chosen for study. The stratigraphic position 

and age of these sediments, which are younger than Member 14, is under review.  In this thesis, 

they are referred to as “post-Olorgesailie Formation sediments”.    

The period after the Olorgesailie Formation is marked by recurring fluvial incision and 

deposition (Behrensmeyer et al., 2002), including wetland, shallow lake, and terrestrial deposits. 

These deposits are the post-Olorgesailie Formation sediments, which span the time from ~350 ka 

to 50 ka (Deino and Potts, 1990). These sediments are mostly volcanic silts, sands and gravels, 

but also have layers of volcaniclastics, tufa/travertine and calcrete, and some have experienced 

pedogenesis (Owen et al., 2014). Of note, CaO content increases upwards through the post-

Olorgesailie Formation sediments, an indication of increasing evaporative conditions (Owen et 

al., 2014).  

 

4.3. Paleontological and archeological significance 

Paleontological excavations began at Olorgesailie in 1942 by L. and M. Leakey, 

continued by G. Ll. Isaac (1960s), and have been ongoing since 1985 by R. Potts. The formation 

has yielded Acheulean artifacts, such as handaxes, as well as mammal and hominin bones, in 

particular a partial cranium attributed to Homo erectus that is about ~900,000 years old (Potts et 

al., 2004). Though there are many Acheulian handaxes and other bifacial tools in the 

Olorgesailie Formation, hominin bones are rare. Potts et al. (1999) suggested this paucity is due 

to a tendency for the hominins to spend most of their time in the uplands, and going into the 
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lowlands only for food gathering. The area has been used by hominins for the past million years. 

There are many other fossil vertebrates within the formation (Isaac, 1977, 1978), including a 

species of baboon (Jablownski et al., 1982).  

 

4.4.  Field description 

The studied area is an exposure on an east-facing downcut surface of an incised channel 

in the Olorgesailie Formation at (1°34’24.0”S, 36°25’14.30” E; sample site indicated in Figure 

1-2). Layers of calcrete are apparent, with one forming the upper land surface (Fig. 4-1). The 

calcretes form resistant units that form shelves on the steep hillsides.  

Three distinct calcrete layers are present in the sediments that overlie the Olorgesailie 

Formation (Post-Olorgesailie Formation sediments; Fig. 4-2). The lower two calcretes are 

pisoidal (refered to as Pisoidal A and Pisoidal B calcretes) whereas the calcrete forming the 

present land surface is laminar to massive (referred to as Capping calcrete). The entire section 

has a thickness of about 3.6 m. The bottom of the section is midway up the hillside; the 

Olorgesailie Formation is below.  

A dark blue-grey, well-lithified siltstone unit with white vertical rhizoliths is overlain by 

a buff, poorly-lithified, bedded indurated silt with pebble-sized calcite crystal clasts. The upper 

surface passes transitionally vertically into the lowest calcrete, the Pisoidal A calcrete, which is 

25 cm thick (Fig. 4-3 B, D). Another buff indurated silty unit 50 cm thick separates Pisoidal A 

from Pisoidal B calcrete. This silt has continuous root moulds 5 to 6 mm in diameter and several 

cm long. Pisoidal B calcrete, which is 10–15 cm thick, has a more transitional lower boundary 

into the underlying silt (Fig. 4-3 E). Overlying this calcrete is another beige indurated silt unit up 

to 60 cm thick, with coated grains and fewer detrital feldspar grains than lower silt units. This, in 

turn, is capped by a laminar to massive calcrete up to 10 cm thick (Fig. 4-4).  
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Figure 4-1. Photo of the stratigraphic context of the calcretes discussed in this chapter. Dashed line follows each 

calcrete. The capping calcrete is not prominent and the flat land surface that is mantled with calcrete begins where the 

arrow indicates. 
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Figure 4-2. Stratigraphic profile of the Post-Olorgesailie Formation sediments and calcretes. Lithology and features are 

shown as well as the stable isotope profile, the CaO wt% and the SiO2/TiO2 wt%. Si has been normalized to Ti to 

mitigate detrital influence. An increase in Pisoidal B for authigenic SiO2 is corroborated by the presence of silica 

cement.  

The pisoidal calcretes are not fully cemented, and cementation is strongest at the top and 

weakest at the base of Pisoidal A, where the coated grains are surrounded by the lower silts (Fig. 

4-3 B and C). The exposed ledge of Pisoidal A is covered in loose pisoids (Fig. 4-3 C), and in 

places is coated by a laminar carbonate no more than 1 cm thick. This laminar carbonate is 
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undulose, ‘stromatolitic’ in appearance, and has discontinuous layers. Pisoidal A is more 

compact than B, has an undulose lower contact, and consists mainly of carbonate, with little 

detrital material. Rare clasts include chert fragments and large feldspar grains. Horizontal pores 1 

to 3 mm in diameter are present. The Pisoidal A calcrete, which consists of tightly cemented 

pisoids, is the thickest calcrete (25 cm), though its thickness is laterally variable. Uncemented 

pisoids are also located in the overlying sediments. Pisoids in Unit A range from 0.5 to 4 cm in 

diameter. The basal contact of this calcrete is sharp and irregular, as is the top contact with its 

thin (<0.5 cm) laminar coating. 

Pisoidal B calcrete grades into the silty unit downwards, but is cemented only on pisoid 

contacts as opposed to Pisoidal A calcrete in which cement also fills the interstices. Vertical and 

horizontal round pores ~ 0. 5 mm in diameter are present together with minor detrital material. 

The pisoids are smaller than Pisoidal A calcrete with a range of 0.5 to 2 cm diameter. 

Cementation becomes weaker downwards (Fig. 4-4 E). A thin (0.5 cm) laminar carbonate coats 

the top of the pisoidal section of Pisoidal B.  

The laminar capping calcrete that forms the land surface weathers white but has a dark 

grey interior, and is locally pisoidal. Its thickness ranges from ~ 1 to 5 cm. This calcrete is 

composed mostly of calcite, with rare feldspar grains, volcaniclastic grains and chert fragments. 

Horizontal 1 mm-diameter pores are present, and possible root moulds occur on the underside of 

the calcrete. Roots of modern and recent vegetation have penetrated the laminar calcrete (Fig. 4-

4 C), which is present at the land surface in most places in the study area; faulting and erosion 

account for its absence elsewhere.   

Loose detrital gravels on the capping calcrete surface are composed mainly of large 

angular pieces of carbonate and minor volcanic gravels; below the capping calcrete are pisoidal 

coated grains either reworked from previous calcretes or as part of the capping calcrete (Fig. 3-5 

D and E).   
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Figure 4-3. Field photos of the two lower calcretes at Olorgesailie, Pisoidal A and Pisoidal B. A) View of the Pisoidal 

A calcrete (exposed shelf) looking towards the south. B) A closeup showing the average thickness of the Pisoidal A 

calcrete. C) A photo of the Post-Olorgesailie sediments looking north. Pen is on top of the Pisoidal A calcrete, which 
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can be traced laterally in the photo. D) A closeup of the Pisoidal A calcrete showing the transition from calcrete down 

into sediment. E) A photo showing general appearance of the thinner Pisoidal B calcrete.  F) A photo of the Pisoidal A 

calcrete showing undulations. Lens cap for scale is 7 cm in diameter. 

 

Figure 4-4. Field photographs of the capping calcrete of the Post-Olorgesailie sediments. A) A linear feature (crack-fill) 

at the top of the capping calcrete. B) A sample of the capping calcrete showing its general thickness. C) Plants grow 

through the capping calcrete. D) The capping calcrete has debris and scattered carbonate pieces on the surface. E) 

Photo shows platy character of the calcrete at the surface. Pen for scale is 14 cm long. 
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4.5. Petrography 

4.5.1. Pisoidal A 

Beta microfabrics predominate in the Olorgesailie calcretes, as well as root and root hair 

textures (Fig. 4-5). Dense micrite prevails in both the massive and laminar forms of this calcrete. 

The calcite is both replacive, mainly of easily weathered grains, and displacive, where a more 

stable form is present (e.g. varieties of quartz; Fig. 4-5 E, F, H). Clumped microfabric (see Ch. 2) 

is common with rounded micrite or clay clumps varying from ~ 0.1 to 0.5 mm in size. These 

clumps are cemented by sparite in the youngest matrix material or by microsparite where present 

in pisoid cores or massive calcrete. Within the pisoid cores are unfilled fractures, which do not 

pass into the cement (Fig. 4-6 A, B). These fractures were noted in all three calcretes, but not all 

pisoids. A gradation occurs between rounded clay masses (Fig. 4-5 D) and micritized clumped 

microfabric; clays have micrite envelopes with variable thickness (Fig. 4-5 D). There are 

incidences of alveolar-septal microfabric (Fig. 4-5 A and B) as well as fossil root hairs (Fig. 4-5 

D) and filled root voids (Fig. 4-5 C).  

 

4.5.2. Pisoidal B 

Massive micrite microfabric predominates in the Pisoidal B calcrete. Small (0.5–1 cm) 

pisoids are common and have cores of reworked calcrete clasts (Fig. 4-6 A, C). Replacive 

textures are also common; monocrystalline clasts of K-feldspar and volcanic fragments provide a 

spectrum of stages of mineral etching and replacement. Instead of calcite sparite, however, 

microcrystalline quartz in the form of botryoidal chalcedony cements many voids (Fig. 4-6 B, G, 

H). Clays cement the youngest detrital material. The denser micrite-replaced areas have been 

cemented by chalcedony, whereas the poorly-cemented (in terms of micrite) lower and fracture-

filling parts are mostly lined/cemented by clays (Fig. 4-6 E, F). Detrital chert fragments are 

angular and of coarse-sand size (Fig. 4-6 C). 

 

4.5.3. Capping calcrete 

The thin (15–20 cm) calcrete at the top of the section is predominantly massive (Fig. 4-7) 

though is laminar in the upper surface and is pisoidal in places (Fig. 4-7 F). Nearly all material 
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has been replaced by micrite grading into spar in the pore spaces (Fig. 4-7 A, D, G, H). Chert 

fragments are rare; most of the detrital component consists of K-feldspar and plagioclase. Root 

structures are predominantly horizontal and are original moulds infilled with volcaniclastic 

detritus and clays (Fig. 4-7 A, B, D), or are successively lined by undulating layers of micrite 

(Fig. 4-7 E). The dominant crystal shape of the void-filling sparite is acicular and drusy (Fig. 4-7 

C) though in some voids in less-cemented areas the calcite has a needle-fibre sheaflike 

appearance. Microbial staining is common within pisoid laminae and other laminar features (Fig. 

4-7 G and H)  
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Figure 4-5. Photomicrographs of the Pisoidal A calcrete. A) A large root mould showing alveolar-septal microfabric. 

PPL. B) XPL closeup of (A). C) A root mould infilled with micrite cement and detritus. The pore space is lined with 
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sparite. PPL. D) Calcified plant material. Clay masses to the left. PPL. E) A chert clast with at least three generations of 

isopachous circumgranular calcite. PPL. F) Same as in (E) but under XPL, the chert shows complexity, possibly 

resulting from the silicification of volcanic grains. G) Sparite growing into pore space. XPL. H) A small pisoid with a 

fractured chert core. The laminae are uneven and are thicker on top. PPL.  

 

Figure 4-6 (next page). Photomicrographs of the Pisoidal B calcrete. A) A partial view of a pisoid showing 

circumgranular cracking within the pisoid boundary. PPL. B) The irregular and non-continuous laminae of a pisoid. 

Some silica cement occurs close to the central part of the pisoid (lower center left). The crack in the center, micritic 

portion of the pisoid does not pass through the pisoid laminae. PPL. C) A fractured, angular chert clast surrounded by 

micrite. PPL. D) Silica pseudomorph of euhedral gypsum or titanite (?). Micrite forms a similar shape below. This was 

the only instance of this pseudomorph. XPL. E) Clays surround clasts.  The majority of cementation is accomplished by 

clays. The calcite is confined to the nodules. PPL.  F) XPL of (E) showing clay thickness and presence only at grain 

boundaries. G) Chalcedonic cement in elongate voids. XPL. H) Chalcedonic cements voids in microsparite matrix. 

XPL. 
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Figure 4-7. Photomicrographs of the capping calcrete at Olorgesailie. A) Dense micrite with spar-filled cracks. PPL. B) 

Similar to (A), though two circular pores are of interest. The fractures between (A), (B) and (D) are all similar in size 
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and perhaps related to root hairs. PPL. C) Small nodules surrounded by isopachous sparite. Black indicates an open 

pore. XPL. D) Massive dense micrite with several spar-filled or open cracks. PPL. E) Calcite cement within a large 

(several mm) subhorizontal structure. The cement is stained and regular. PPL. F) Pisoids in the capping calcrete. The 

laminae are thin and uneven. PPL. G) White-card technique (Folk, 1987) showing the spar cement (white) with two 

generations of micrite. Note the linear organic staining in lower left. H) Similar to (G), showing the different calcite 

generations and the mottled appearance from denser to less dense micrite.  

4.6. Geochemistry  

4.6.1. Major elements 

Bulk rock geochemistry revealed a difference between the calcretes and the sediments. 

The Olorgesailie calcretes have SiO2 wt.% ranging from 10.2–38.4% while the interlayered 

sediments have a narrower range of 44.7–52.9%. The calcretes typically have a smaller 

proportion of all the major oxides aside from CaO, which is roughly twice that of the sediments 

with ranges of 25.2–46.8 wt.% for the calcretes and 12.6–17.2 wt.% for the sediments. The other 

oxides are halved from the sediments to the calcretes (Table 4-1). These relationships are also 

apparent in Figure 3-25. 

Sample SiO2 Al2O3 
Fe2O3

(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total 

Pisoidal A calcrete 17.8 3.87 2.15 0.09 1.28 38.05 1.18 1.56 0.22 0.05 33.59 99.84 

Pisoidal B calcrete 38.42 4.79 2.33 0.07 1.26 25.19 1.32 1.89 0.26 0.08 24.75 100.4 

Capping calcrete 10.25 2.143 1.14 0.03 1.05 46.75 0.81 0.73 0.16 0.04 37.54 100.6 

Sediment underlying 
Pisoidal A 

44.69 6.61 4.02 0.12 2.54 17.19 2.14 2.4 0.36 0.09 18.61 99.06 

Sediment underlying 
Pisoidal B 

49.2 7.87 4.38 0.13 1.92 14.23 2.55 2.71 0.46 0.12 16.33 99.91 

Sediment underlying 
capping calcrete 

52.93 7.84 4.51 0.13 2.00 12.57 2.72 2.64 0.48 0.12 14.19 100.1 

 

Table 4-1. Bulk rock geochemistry for the Olorgesailie samples. 

   

4.6.2. REEs 

The calcretes are enriched in the HREEs (Fig. 4-8) and show a more strongly negative Eu 

anomaly than the super- or subjacent sediments that may be indicative of oxidizing conditions. 

Compared to the adjacent sediments, there is a greater concentration of REEs in calcretes, 

HREEs in particular. The calcretes become slightly more enriched with respect to all REEs from 

the base of the profile to the top. Other elements showing a higher concentration in the calcretes 
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than sediments are: Sr, Cu, Ba, S, Br, V, Pb, Ni, Cs, Hf, Rb, Sc and U in all; and Sb in Pisoidal 

B. 

Figure 4-9 compares rare earth data for Olorgesailie calcrete samples with possible 

regional source rocks. The sediments sampled (OLO-4, -5, and -6) are less enriched in HREEs 

than the Magadi Trachytes (KR015, KR040, and KR042) (le Roex et al., 2001), but otherwise 

show a similar pattern.  

 

 

Figure 4-8. Chart of REE distribution for all Olorgesailie samples normalized to continental crust (Taylor and 

McLennan, 1986). Calcretes are OLO-1, 2, and 3. The sediments are OLO-4, 5 and 6. The calcretes are enriched in the 

HREEs, as represented by Yb, compared to the sediments. 
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Figure 4-9. Comparison of REEs for the Olorgesailie sediments and the Magadi Trachytes. For patterns of other source 

rocks see Figure 3-26.  

Though most of the post-Olorgesailie sediments are derived from the Magadi Trachytes, 

the later volcanic rocks such as the Suswa volcanics, may also be represented (Owen et al., 

2014). REE patterns for the post-Olorgesailie Formation sediments are similar to those of the 

Olrogesailie Formation (Owen et al., 2014), but show overall depletion relative to the Magadi 

Trachytes, particularly in the HREEs. 

 

4.6.3. Stable isotopes  

As expected, the stratigraphic profile at Olorgesailie shows significant increase in both δ 

18
O and δ 

13
C in the calcretes compared to the adjacent sediments (Fig. 4-2). The δ 

13
C profile 

shows an upward increase in 
13

C content, and the δ 
18

O profile shows an upward decrease in 
18

O. 

The B calcrete is less enriched in 
18

O than the A calcrete or the capping calcrete. Significantly, 

both isotope values show correlation, an indicator of evaporative enrichment (Figs. 4-2, 4-10). 
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Figure 4-10. Plot of δ 18O and δ 13C for the Olorgesailie calcretes and their associated sediments. The calcretes plot 

with increasing δ 13C and mostly increasing δ 18O compared to the sediments and altogether have a coeval relationship.  

 

4.7. Mineralogy 

XRD analyses of each of the three calcretes at Olorgesailie revealed a mostly low-Mg 

calcite composition with minor amounts of feldspathoid, quartz, and anorthite. Analysis of the 

sediments showed a composition high in low-Mg calcite with feldspathoid, orthopyroxene and 

quartz. 

Chert fragments are present in all these calcretes throughout and range from 0.5 mm to 

several millimeters. These cherts differ from those at Magadi in that they are mostly subrounded, 

highly fractured, non-spherulitic, and appear to show relict textures, possibly from trachyte 

volcaniclasts (Fig. 4-5 E and F). One silica clast found in Pisoidal Calcrete B may be a 

pseudomorph of titanite or gypsum (Fig. 4-6 D).  

 

4.8. Paleoenvironment  

The stratigraphy of the Olorgesailie Formation is well understood due to the presence of 

artifacts and anthropological fossils, and so intensive research has been done, backed up by many 

radiometric dates (e.g. Deino and Potts, 1990, 1992). The calcretes studied are in the post-
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Olorgesailie Formation sediments which are up to ~500,000 years old but more likely formed 

within the range of 350,000 to 50,000 years ago (Owen et al., 2008b).  

Most of the Olorgesailie Formation consists of lacustrine sediments interspersed with 

wetland and fluvial deposits. The sequence post-dating the Olorgesailie Formation is similar, 

consisting of interlayered fluvial, wetlands, shallow lake, and colluvial sediments, any of which 

possibly including pedogenesis (Owen et al., 2014). The calcretes mark dry periods when 

wetland or shallow lacustrine sediments were subaerially exposed. The calcretes studied in this 

thesis have been given stratigraphic context in Owen et al. (2014). The measured stratigraphic 

section is equivalent to their D10/B1 section.   

The Pisoidal A calcrete appears to be predominantly pedogenic with possible 

overprinting by groundwater diagenesis. It is the most well developed calcrete in the profile and 

has a laminar top, indicating a relatively long depositional hiatus. Root casts/moulds are 

prevalent in the vertically adjacent sediments, indicating the environment at the time of 

deposition was accessible to plants, i.e. subaerial.  

The middle calcrete, Pisoidal B calcrete, is similar though the diagenetic environment 

provided for the precipitation of silica cements that plug the majority of pore spaces. This is a 

clear indication of groundwater processes overprinting pedogenic processes. Calcite cements are 

predominantly vadose while the silica cements occurred during submersion. It is not clear what 

caused the influx of silica, but changing hydrochemistry has been indicated throughout the post-

Olorgesailie Formation sediments, which include alternating and coincident carbonate, opaline, 

and chert rhizoliths.  

The capping calcrete differs from the pisoidal calcretes in that it is massive micrite with 

spar-filled fractures that has little variation. Pisoids are rare and have few laminae. Microbial 

staining within laminae is common in both pisoids and the general micrite, but particularly where 

bands of cement have had a hiatus in growth. Fragments of volcaniclastics are very rare if not 

absent, and there is a lack of host material. Either the uppermost sediments have been completely 

replaced by calcite or this calcrete represents a primary depositional carbonate that has been 

altered by calcretisation. Chemical analyses suggest leaching of most elements of the capping 

calcrete. Stable isotope analyses indicate concentration of heavy isotopes as in 

evapoconcentration, and the values do not reflect modern meteoric values. Many of the fractures 

seem to be from roots; that is, they bifurcate and narrow downward. The majority of the micrite 
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is cemented by isopachous acicular to drusy sparite that indicates precipitation from a fluid. This 

thin deposit may result from carbonate sedimentation in shallow wetlands where plants 

flourished, and upon exposure was calcretized with the aid of microbes, and then eroded to the 

thickness found today.  
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5. BEACH CARBONATES AT NASIKIE ENGIDA, KENYA 

5.1. Geologic background 

Nasikie Engida, formerly called “Little Magadi”, is a small saline, alkaline lake just to 

the north of Lake Magadi. Like Magadi, Nasikie Engida is fed mainly by hot springs. The lake is 

bound by a high fault scarp to the west exposing thick trachyte flows. A small narrow horst 

separates Nasikie Engida from the Northeast Lagoon, an extensive plain where ephemeral 

streams and hot spring runoff empty into Lake Magadi. The lake has a strong chemical gradient: 

in the north, where the springs feed the lake, the lake is more dilute (i.e. TDS < 50,000 mg/L; 

Renaut et al., 2013). Along the northern shoreline Na-Si-Al gels are forming where alkaline 

brine reacts with trachytic detritus (Eugster and Jones, 1968; Eugster, 1986). Near the springs are 

many cyanobacterial mats and efflorescent crusts. The lake is of low energy during summer. As 

the water moves towards the south it becomes progressively more saline, reaching a TDS of up 

to 272,000 mg/L (Renaut et al., 2013) and attaining saturation with respect to nahcolite and 

trona. The lake has the same general basin hydrology as Magadi, discussed in Chapter 3 of this 

thesis. The climate is semi-arid with evaporation potential of  >3,500 mm/year and rainfall at (~ 

500 mm/year.  

Nasikie Engida was likely connected to Lake Magadi during former highstands, most 

recently at ~10,000 y BP, and small deposits of the High Magadi Beds and Oloronga Beds are 

preserved to the north of the lake (Baker, 1958). Behr (2002) reported a 
14

C age of 9100 y BP for 

trona at Nasikie Engida, but this age is suspect because this was generally a humid period in East 

Africa (Butzer et al., 1972; Grove et al., 1975; Gasse, 1977; Gillespie et al., 1983; Roberts et al., 

1993; Barker et al., 2002; Bergner et al., 2003).  
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Figure 5-1. Map showing the location of the carbonate cemented gravels and sample locations. Top left image, from 

Google Earth©, shows regional location. Potential spillover channel is denoted by black dashed lines. Channel 

boundaries are derived from topography as well as traced by a small ephemeral channel. Black arrow indicates sample 

sites chosen for bulk-rock geochemical testing. Orange arrows indicate sample locations chosen for stable isotope 

testing. The site farthest to the east represents the calcrete underlying the High Magadi Beds.  

5.2. Field observations 

The deposits of interest are located at the southeastern shoreline of Nasikie Engida, near 

the horst separating Nasikie Engida from Lake Magadi (Fig. 5-1). The sediments are confined to 

a shallow wide valley abutting the lake and appear to be locally derived alluvial fan gravels that 

have been reworked along the shoreline. An ephemeral stream channel network, about 500 m 

long, lies directly south of the fan. 

Two types of carbonate-cemented deposits occur at the southeastern end of Nasikie 

Engida. The first type is similar to the calcrete that overlies the Oloronga Beds elsewhere in the 

Magadi basin: a dark grey, pisoidal, well cemented calcrete, but containing many pebble-sized 

chert clasts (Fig. 5-2 B).  This calcrete is a small outcrop, a few m
2
 in area, continuing under an 

adjacent outcrop of High Magadi Beds (Fig. 5-3). The calcrete crops out < 1 m above lake level 

(in July 2011) and is submerged during higher lake levels (Fig. 5-4).  The Oloronga Beds are 
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absent here, since the trachytes are at or very near the land surface. The host material for the 

lowermost calcrete is a thin layer of very fine sand with coarse volcaniclastic grains.  
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The second carbonate-cemented horizon overlies a thin exposure of the High Magadi 

Beds and consists of bedded angular pebbles with layers of laminar carbonate on top and within 

it (Fig. 5-2 A and C). Most pebbles are opaline chert with others being volcanic detritus and thin 

(1–2 mm) rip-up clasts of laminar carbonate or stromatolites. Calcite stromatolites are present in 

places along the SE shoreline where they coat gravel and conglomerates, so their presence in the 

sediments is not unexpected. The carbonate and chert clasts are angular; the volcanic pebbles are 

angular to subangular. In the central, thickest part of the deposit the angular clasts are imbricated, 

showing that they were deposited in flowing water. A thin (0.5 mm) laminar carbonate coats the 

upper surface of the cemented gravels. A grey to white, uniform thin (0.5 mm) cement coats 

vertical cracks in the gravels (Fig. 5-2 D). 

The conglomerate bed thickens to ~1 m in the middle of the deposit at the southeastern 

end of the lake, and thins completely towards the edges of the valley. At the thickest part of the 

conglomerate, the sediments are trough cross-bedded, with 10–20 cm thick cross-beds that 

appear to fine upwards (Fig. 5-2 C).  

Laminated carbonate layers, where present, lie at the top of the fining-upward sequences 

and locally display several generations of shallow (~1 mm) vertical (polygonal) cracks producing 

sub-mm size clasts. These overlie similarly cracked fine sediment. Other laminar carbonate 

layers are less cracked, with the cracks having random orientation and appearing to postdate the 

laminar cementation. All laminar carbonate layers have little, if any, detritus cemented to the top 

(Fig. 5-5), despite being layered within the conglomerate.  
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Figure 5-3. Small outcrop of High Magadi Beds at the SE corner of Nasikie Engida. White clasts are Magadi-type 

chert. Broken block of darker brown, calcite-cemented conglomerate and breccia disconformably overlie the High 

Magadi beds with a minor erosional contact. Photograph taken looking SW, when standing on the older calcrete shown 

in Figure 5-2 B. 
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Figure 5-4. View westwards from the southeast corner of Nasikie Engida. Blocks of cemented gravel in foreground lie 

adjacent to evaporites (trona and nahcolite). The cemented gravels originate from a small drainage network south of the 

lake (to the left in the photograph). 
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Figure 5-5. Laminar carbonate coating the cemented gravels. A more solid expression of the coating lies underneath the 

hammer. The laminar carbonate to the lower right of the hammer is cracked and shedding small pieces. The coating is 

1–2 mm thick. Hammer is 32 cm long. 

 

 

5.3. Petrographic results 

The low-Mg calcium-carbonate cemented conglomerates at southern Nasikie Engida 

consist of carbonate-coated clasts, 0.01 to 3 cm in length, within a clast-supported porous 

framework that is variably cemented by calcite. Many of the tabular clasts of laminated 

carbonate might be reworked stromatolite fragments (Fig. 5-6). These laminated carbonate clasts 

have mm-scale doming and some show ‘budding’ fabrics (Fig. 5-6 A, B) though there is no 

conclusive evidence for a microbial origin. The internal laminae do not exceed a thickness of 1 
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cm. Similar laminar structures can form through seasonal variations and changes in water 

chemistry (Grotzinger and Rothman, 1996). 

Clasts of silica are present; some show replacement by calcite. Under reflected light, 

these silica clasts show a difference between center and rim in crystallinity and/or composition 

(Fig. 5-7 D). The silica is in the form of spherules 10 to 25 μm in diameter and some clasts show 

partial replacement by calcite (Fig. 5-8 A, B). Some silica clasts have laminar carbonate crusts 

on them, though many do not. Other clasts in the conglomerate are trachyte. 

Two distinct cements are present: the youngest, void-filling cement is calcite, with an 

earlier cement composed amorphous silica that surrounds clasts. The silica cement covers clasts 

with an equal thickness (isopachous) and cements clasts together at point contacts (Fig. 5-8 C, 

E). The rocks are porous with many partially filled voids. 

 Some clusters of carbonate crystals, 300 to 500 μm in size (sparite), resemble 

Microcodium (Fig. 5-7 A, B, C). These predate the earlier amorphous silica cement and some 

show textures that imply recrystallization (e.g., pores, maybe are calcite pseudomorphs of other 

crystals [barite?]). A few clasts are composed of spar-sized euhedral hexagonal crystals of calcite 

(Fig. 5-8 D). These are possibly pseudomorphs of analcime, a common alteration product of 

silicate minerals in the area (Surdam and Eugster, 1976; Rabideaux et al., 2016). These 

pseudomorphs predate stromatolite/laminar carbonate development. 
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Figure 5-6. Photomicrographs of laminar features in the conglomerate. Plane polarized light. A and B) Domal fabric 

overlying laminar fabric. C) Laminar coating on a volcaniclast. Two horizontal cracks possibly result from shrinkage. 

D) Laminar carbonate clasts among clasts of silica spherules. E and F) White-card technique of (Folk, 1965) of 

detritus-free and continuous laminae. Note organic residue and/or oxides (Fe-Mn?) in F.  
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Figure 5-7. Photomicrographs of clasts in the conglomerate. All in PPL. A, B, and C) Calcite rosettes. D) Clasts of 

spherulitic silica. The darker parts of the clasts are composed of spherules 10-25 μm in diameter. The lighter colored 

material is amorphous silica. E) A calcified plant fragment. F) Dissolution fabric. A mass of calcite is outlined by a ~20 

μm thick border of acicular silica cement. The calcite seems to be smaller than its original size. 
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Figure 5-8. Photomicrographs of the conglomerate. A) Partially calcified silica-spherules. PPL. B) Close-up of A, PPL. 

C) Bladed silica cement around a micrite clast. Micritic cement (arrowed) rims the silica cement and fills voids. XPL. 

D) Polygonal crystals (analcime?) replaced by calcite, coated by laminar carbonate (at lower left). XPL. E) Typical 

appearance of silica and micrite clasts cemented together at point contacts. PPL. F) Spar crystals (arrowed) in a clast 

resembling the silica spherules indicating possible replacement. PPL.  
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5.4. Geochemical data 

Only one sample of the carbonate-cemented conglomerate was analysed for bulk rock 

geochemistry (Table 5-1; see Fig. 5-1 for location). Although a single sample is not necessarily 

representative, it can be compared with the Oloronga-capping calcretes (Chapter 3), the nearby 

calcrete underlying the High Magadi Beds, and a calcrete sample from north of Nasikie Engida 

that disconformably overlies Oloronga Beds (sample location 4 in Fig. 3-6).  

 

Sample SiO2 Al2O3 Fe2O3(T) MnO MgO CaO Na2O K2O TiO2 P2O5 LOI Total 

SE Nasikie 
Engida 
Conglomerate 

49.0 1.71 0.96 0.14 0.53 22.39 2.26 0.64 0.094 0.1 22.55 100.4 

 

Table 5-1. Bulk rock geochemistry for the carbonate-cemented conglomerate at southern Nasikie Engida. 

As shown in Figure 3-25, the Nasikie Engida conglomerate contains more silica than 

most other carbonates sampled from Lake Magadi (see Chapter 3), and the silica concentration is 

higher than would be expected from the detrital grain content alone. Petrographic analyses 

confirm the presence of authigenic silica. The conglomerate sample also has much higher P 

content than was measured in other samples, and has more Na, which is not explained by higher 

amounts of silicate detritus, as implied by deviations from the general Na/Ti ratios for the 

Magadi sediments. The higher Na content likely comes from evaporative concentration of the 

lake water. The phosphorus might come from the organic matter in the stromatolitic clasts. 

The calcrete at SE Nasikie Engida underlying the conglomerate is similar chemically to 

the calcrete capping the Oloronga Beds and the laminar calcrete discussed in Chapter 3. The only 

difference between the calcrete below the conglomerate and the carbonate-cemented 

conglomerate is a slight increase in silica compared to other Oloronga-capping calcretes, and the 

high Ba content of both the calcrete and conglomerate.  
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5.4.1. Stable isotopes 

 

Sample Location δ13C (‰, V-PDB) δ 18O (‰, V-PDB) 

West margin 3.89 3.89 

Intermediate 3.55 3.76 

Center of deposit 1.10 2.27 

Older calcrete 1.79 2.98 

   
Average value of 
conglomerate (n=3) 

2.85 3.31 

 

Table 5-2 - Isotope data for the Nasikie Engida carbonates. V-PDB is the Vienna Pee Dee Belemnite standard. 

The stable isotopes of the conglomerate show enriched values relative to the spring water 

values of +0.4‰PDB δ
13

C and -1.3‰SMOW  δ
18

O  (Hillaire-Marcel and Casanova, 1987). The most 

enriched sample comes from the western margin of the conglomerate, while the least enriched 

sample is from the thickest part of the deposit, near the middle of the conglomerate outcrop. This 

may indicate lower evaporative concentration in the middle of the small drainage basin. The C 

and O isotopes are coeval, implying evaporation in a closed basin (Talbot, 1990). The carbonates 

within the conglomerate have higher stable isotope values than the underlying calcrete and the 

other Oloronga-capping calcretes of the Magadi area.  

It is difficult to differentiate different carbonates in only one sample. In a bulk-rock 

sample, it is hard to differentiate which components the isotope values represent, but all values 

are reasonable for the area and types of deposit. The abundant stromatolitic carbonate clasts are 

probably the main source of calcite recorded by these isotopic measurements. Those values fall 

within the reported range of Magadi-Natron Basin stromatolites (the most recent generation 

formed at ~ 12,000–10,000 y BP), which have values ranging from +1-4‰ δ
18

O and +2–5‰ 

δ
13

C (Hillaire-Marcel and Casanova, 1987). The values of the laminar carbonates at SE Lake 

Magadi near Graham’s Lagoon have average values of -0.75‰ δ
18

O and +1.57‰ δ
13

C. 
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5.5. Discussion 

5.5.1.Origins of the conglomerates at southeastern Nasikie Engida 

The cross bedding, grain size and sorting show deposition in a high energy environment, 

with fluctuation in energy levels seen in the fine/coarse sequences. At present the lake does not 

seem to have high enough energy to produce such a deposit from wave action though this was a 

possibility in the past. Nonetheless coarse gravel is moderately sorted along the present eastern 

shoreline, so high energy conditions may develop occasionally during storms. The trough cross 

beds are oriented perpendicular to the shoreline indicating a N-S or S-N current. Since the 

conglomerate is restricted to the shallow ephemeral stream valley at the SE of the lake and is 

absent from other shorelines, processes in the immediate area must have caused sedimentation 

and the local cementation by calcite and silica.  

The cross bedded gravels are locally capped by a laminar carbonate layer. This carbonate 

layer is largely free of siliciclastic grains and can be smooth or cracked, suggesting a lack of 

clastic sedimentation during its formation. These carbonate layers imply calm hiatuses between 

periods of higher energy sedimentation.  

Initially this deposit was viewed as a possible calcrete but more detailed analysis has 

shown that it lacks calcrete features such as pervasive replacement of original minerals or 

displacive cement. Additionally, the deposit is largely cemented by amorphous silica as well as a 

late calcite cement. The deposit consists of trough and planar cross-bedded gravels that dip 

lakewards (north) at a shallow angle (<10°) which interfinger with bedded gravels that dip more 

gently landwards (south). These contrasting dips, and the cementation of the conglomerate by 

carbonate and silica, is characteristic of beach rock (Vousdoukas et al., 2007). Lacustrine 

beachrock, though uncommon, has been described from many locations, and is composed of 

calcite (Binkley et al., 1980; Cohen and Thouin, 1987; Erginal et al., 2012), aragonite (Burke and 

Gerhard, 2000; Erginal et al., 2012), dolomite (Last and De Deckker, 1990) and less commonly, 

silica (Jones et al., 1997).    

The imbricated conglomerate could represent lakeward-dipping beach gravels and 

landward-dipping beach-berm sediments (Renaut and Owen, 1991), deposited when the lake had 

higher littoral energy. The conglomerate was later cemented into a Si-Ca beachrock. 
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5.5.2. Clast and cement origins 

The conglomerate is composed of clasts of laminar carbonate, volcanic rock fragments, 

and pebble-sized grains of authigenic calcite and silica. The trachyte clasts derive from the 

underlying Magadi Trachyte. The clasts composed of calcite or silica, however, could have 

several origins.  

5.5.2.1. Laminar carbonate clasts 

Laminar and stromatolitic carbonates can form abiotically (e.g. Read, 1976; Grotzinger 

and Rothman, 1996), including from evaporation of thin water films and precipitation from high-

temperature fluids. Given the regularity and conformity of the laminae, the alternation of light 

and dark laminae, and the ‘budding’ microfabric on several clasts, calcite precipitation in some 

of the laminae in carbonate clasts might have been related to biomediation in microbial mats or 

biofilms. 

Stromatolite-forming microbial mats are common in saline lakes (e.g. Casanova, 1986; 

McCall, 2010; Last et al., 2010; Awramik and Buchheim, 2015), and have formed at Nasikie 

Engida and Magadi in the past (Hillaire-Marcel and Casanova, 1987; Behr, 2002; Brenna et al., 

2014). Modern microbial mats are forming along the northern shoreline of Nasikie Engida at the 

local hot springs, but stromatolites are not forming there today because the spring and lake 

waters are calcium poor, and the hot spring waters are undersaturated with respect to amorphous 

silica at the points of discharge (R. Renaut, pers. comm.). 

Given the possible stromatolitic laminated calcite clasts present in the conglomerates, it 

would be tempting to compare their isotope values with those of the stromatolites in the Magadi 

basin studied by Hillaire-Marcel and Casanova (1987). However, the new isotope values 

obtained were from whole-rock samples; microsampling would have to be undertaken to 

determine the values of the stromatolitic clasts in the conglomerate. Their inclusion as detrital 

clasts in post-High Magadi Beds sediments implies that the youngest calcite stromatolites might 

have formed about 10,000 years ago during the African Humid Period, which is the age of the 

“third generation” of those reported by Hillaire-Marcel and Casanova (1987). The Nasikie 

Engida stromatolitic clasts, however, might be unrelated to the stromatolites discussed by 
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Hillaire-Marcel and Casanova (1987). The clasts could be related to the in situ stromatolite 

coatings on trachyte along the SE shore, ~150 m north of the study site, whose age is unknown.  

An alternative possibility is that the stromatolitic clasts formed as encrustations on older 

carbonate-cemented gravel that were broken and re-deposited in almost the same location. 

Because little gravel became cemented into these laminated carbonates, it is unlikely that they 

formed diagenetically after burial, and more likely formed during depositional hiatuses when 

microbial mats could form in relatively quiet water. These mats would form the thin layers of 

stromatolites, which would then be covered by successive layers of gravels during wetter times 

(Alonso-Zarza, 1999). Some of the stromatolites would be fractured and be incorporated into the 

gravel deposit.  

 

5.5.1.2. Silica  

Opaline chert clasts are common in the conglomerate. Currently, Na-Si-Al gels are 

forming in low-energy settings at the north end of Nasikie Engida upon older muds (Eugster and 

Jones, 1968). The eponymous magadiite has formed in the past in the lake; the silica spherules in 

the cherts might be evidence of magadiite formation—the spherules in the opaline silica are the 

same size as the 10–20 µm spherules in magadiite-type chert (Figure 5-8 A, B). The character of 

the silica clasts, however, differs from typical occurrences of Magadi-type chert in that they are 

small discrete clasts without the typical reticulated shrinkage cracks that form by alteration of a 

proven magadiite precursor.  

While not the focus of this thesis, the origin of the silica is not readily apparent and has 

multiple possibilities. The authigenic silica may have precipitated from an alkaline Si-rich lake, 

as Nasikie Engida is today, as a result of many factors including:  the lowering of pH from 

microbial activity or by injection of geothermal CO2 into the lake water, pH alteration by silicate 

hydrolysis, or evapoconcentration of pore fluids.  

5.5.1.3. Cements 

The amorphous silica cement predates calcite cements in the beach deposits, indicating a 

change in lake water chemistry. The calcite is then followed by localized chalcedony cement. 

Based on petrography, calcite is a minor cement in the conglomerates, but the overall calcite 

content of the rock is inflated because of stromatolitic clasts.  
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The amorphous silica cement formed first after the conglomerate had been deposited, 

which included authigenic silica clasts. A supply of calcium from either dissolved stromatolite or 

laminar carbonate clasts, as is implied in thin section, or from external meteoric water, provided 

Ca
2+ 

for calcite to form. Calcite dissolution could have resulted from a decrease in pH, either by 

organic processes or mixing of saline and fresh waters, which also may have contributed to 

formation of the silica cement. The botryoidal texture of the second phase of silica cement 

indicates another change in water chemistry and slower rates of precipitation.  

   

5.5.3. Hydrochemistry of Nasikie Engida 

Nasikie Engida receives most of its annual recharge from hot springs at the northern end. 

A north-south salinity gradient is present in summer months, from ~ 35 g/l Total Dissolved 

Solids (TDS) at the northern end of the lake to almost 300 g/l at the southern shoreline (Renaut et 

al., 2013), where nahcolite and trona often precipitate in calm water. Mixing likely occurs at 

other times of the year when energy levels are higher. 

The Si-Ca cemented gravels are found only along the southeastern shoreline of Nasikie 

Engida, implying that the waters involved in their formation were limited to, or only effective 

along that part of the shoreline, and are probably related to dilute influx from the southeast along 

the gravel fan axis. The stable isotope analyses of the carbonate-cemented gravels support this 

interpretation; the high oxygen values likely reflect enrichment related to evaporative 

concentration in a closed lake. However, the presence of older stromatolite clasts could have 

masked the carbonate cement signal in that analysis. More analyses will be needed to resolve 

this.  

The stable isotope analysis shows that the deposit is enriched in heavy C and O isotopes..  

The influence of calcification related to microenvironmental changes induced by microbes could 

have played a role if the laminar carbonates are microbialites; however, the 
13

C values for the 

deposits are within the same range (~2–5‰ PDB) as those of the Magadi and Natron 

stromatolites studied by Hillaire-Marcel and Casanova (1987), which is only slightly higher than 

other local carbonates (see Chapter 3). Stable isotope values increase towards the margin of the 

deposit; the central, thickest portion has lower values. This may indicate fresher water towards 

the center of the deposit. More samples are needed to test this, but this relationship might 
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indicate that a main feeder channel on the alluvial fan or fan-delta that received more dilute 

inflow than the lateral margins. 

 

5.5.4. Paleoenvironmental interpretation  

The cemented gravels along the southern shoreline of Nasikie Engida are linked 

geographically with two valleys that played important roles in its formation. One, a wide shallow 

drainage basin, provided the alluvial gravels. The other, a small dry valley, cuts the horst 

between Lake Magadi and the southeastern corner of Nasikie Engida and is the lowest point 

between the two sub-basins (Fig. 5-9). This valley is the topographic sill between the two lakes, 

and the most likely site where the two lakes were last united. The chronology of former 

connections between Nasikie Engida and Lake Magadi remains unknown. It seems clear, 

however, that they were probably connected during the late Quaternary, and probably during 

earlier humid phases in the mid-to-late Pleistocene when they formed a single lake. With present 

data, however, it is not possible to determine the chronology of the links, and to assess if and 

when Lake Magadi flowed into Nasikie Engida or vice versa. It seems probable, however, that 

the formation of the beachrock at SE Nasikie Engida is in some way linked to the proximity of 

the inferred overflow and linkage.  



 

140 

 

Figure 5-9. Photo showing narrow valley between lakes. Blue shaded area denotes the extent of the conglomerate. Note 

erosion of horst towards Lake Magadi. Photo from R. Renaut. 

The conglomerates, derived partly from local alluvial-fan drainage, are located in the 

drainage basin that is next to an overwash channel, perhaps active when a paleolake Magadi was 

high and overflowing into Nasikie Engida. Though Nasikie Engida is at a slightly higher 

elevation today (about 3–4 m higher than Magadi based on GPS estimates), it has a small 

catchment. During deposition of the gravels, Nasikie Engida might have been only ~ 2 m above 

its present level. Lake Magadi, in contrast, would have been 10–16 m higher than today for 

spillover to occur. These relative elevations assume that tectonics has not modified them, which 

is likely the case since there have been no major tectonic episodes during the last 10,000 years 

when these deposits were forming. 

No sediments record former flow from Nasikie Engida into Lake Magadi. The possibility 

for spillover is based on topographic data that assumes that, during rains, Nasikie Engida filled 

more quickly than Lake Magadi, which has a larger catchment. While Nasikie Engida may have 

periodically spilled into Magadi through the same area, the relationship of spillover to the 

sediments is unclear. It is difficult to speculate without further data, but it seems more logical 

that the deposits formed during a period when Lake Magadi flowed into Nasikie Engida, and not 
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the other way around. This overflow phase may have contributed to the reworking of the gravels 

along the beach. 

Based on the amount of authigenic silica present, with both stromatolitic (laminar or truly 

microbial) and micrite clasts, and alternating siliceous and carbonate cements, conditions clearly 

changed often during deposition and cementation. Carbonate cement is minor and the most 

recent phase of development and probably represents modern conditions of semi-aridity and 

precipitates as efflorescent crust.  

The trough cross-bedded gravels indicate a flow perpendicular to the shoreline. 

Fluctuations in lake level can be seen by the laminar carbonate layers capping the discrete cross-

beds indicating times of stability and, possibly, microbial mat growth during which little 

sedimentation occurred. These laminae were in turn broken during flooding or weakened by 

periodic desiccation and/or shrinkage, accounting for some of the laminar clasts in the deposit. 

Carbonate cement was produced by the mixing and subsequent evaporation of relatively fresh 

Ca-bearing meteoric or shallow groundwater and the saline water of Nasikie Engida and 

cemented the gravels to form an unusual beachrock (Schmalz, 1971).   

Stratigraphic relationships show that the conglomerate and the laminar carbonate layers 

formed after the deposition of the High Magadi Beds, about 10,000 to 5000 years b.p. Climate 

studies from various places in East Africa show fluctuation conditions during this time with 

increasing aridity since 5000 y BP (Roberts et al., 1993; Berke et al., 2012; Garcin et al., 2012). 

While the drier conditions since the Late Pleistocene led to a Ca deficit in the lake and 

groundwater, calcium carbonates formed in Lake Magadi as recently as 5000 y BP (Casanova 

and Tiercelin, 1982). Some of the laminar carbonate, particularly that filling and encrusting the 

most recent beachrock surfaces, may be 5000 years old or younger though the previous laminar 

carbonate and gravel portions are older.  

 

 

5.6. Summary 

These deposits are difficult to fully explain without more data. The sorted gravels that 

make up the conglomerate were deposited under high energy conditions. The sediment is 

composed primarily of trachyte debris and clasts of authigenic silica, both of which may be 
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coated by laminar carbonate, which also forms individual clasts. This laminar carbonate has 

stromatolitic features and indicates the presence of dilute, Ca-bearing waters during their 

formation. During dry phases with periodic influx of dilute water, laminar carbonate also 

encrusted the gravels. The gravels and the laminar carbonate are interlayered suggesting a 

marked fluctuation in conditions from high to low energy. This may reflect seasonality or a 

small-scale climate cycle during which forceful spillover from Lake Magadi would deposit and 

rework the gravels, after which the conditions would be calm and dry for laminar carbonate to 

form. After sediment deposition the gravels were cemented alternately by silica and minor 

amounts of calcite. Calcite also variably replaced trachyte and silica clasts. 
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6. CONCLUSIONS 

6.1. Lake Magadi 

There are several calcretes at Lake Magadi, the major one of which is the Oloronga-

capping calcrete. This calcrete is polygenic, having been produced by both pedogenic and 

groundwater precipitation processes. There may have been multiple phases of overlap, but it 

appears that some pedogenesis took place before the groundwater cementation, with some later 

pedogenesis occurring after the bulk of the calcrete had been formed. It is likely the calcrete was 

lake-marginal during a time when the lake level was low, and formed after the majority of the 

Oloronga Beds had been deposited and subsequently exposed. The Oloronga-capping calcrete is 

>100,000 years old, predating the Green Beds, and probably formed within the range 300–200 

ka, though it likely took much less than 100,000 years to form.  

The laminar calcrete at the SE of Lake Magadi was formed chiefly by physicochemical 

processes, particularly high evaporation. Its age is unclear; it could be up to 300,000 years old 

but is likely much younger. 

Because they are quite common in the area, a basin-wide survey of calcretes with a many 

more samples would be ideal to determine the chemical signatures of the different calcretes, 

which may also help in stratigraphic correlation of the basin.  

 

6.2. Olorgesailie 

 

Three calcretes in succession in the Post-Olorgesailie Formation Sediments are part of a 

sequence of shallow wetlands and terrestrial deposits. Analysis of the microfabrics indicates a 

predominance of pedogenic calcrete with groundwater diagenetic alteration and intervening 

lacustrine silts. This corroborates other evidence in the basin of shallow lacustrine, wetlands, and 

dry land paleoenvironments during the deposition of the Post-Olorgesailie Formation Sediments. 

There are many other calcretes within the Post-Olorgesailie Sediments as well as in the 

Olorgesailie Formation that have not been studied in detail. These may provide further resolution 

of local climate data.  
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6.3. Nasikie Engida 

The beachrock at Nasikie Engida represents a time of about 5000 years during which the 

climate fluctuated facilitating the deposition of both gravels and calm water deposits in a 

typically calm lake. Spillover from and to Lake Magadi was likely and the location of the 

beachrock in abrupt juxtaposition with the spillover channel is an unlikely coincidence, leading 

to the idea that the spillover contributed to the formation of the beachrock. It is difficult to 

reconcile the high energy needed to form gravel beds with the low energy required for laminar 

carbonate formation but these two types of deposits are interlayered. More work is needed to 

ascertain whether the laminar carbonate is truly microbial, and if so, is it derived from the 

stromatolites from the shoreline crusts to the NE or were they formed at the site of the deposit. 

Additionally, study of the spherulitic silica clasts may provide some clues to the history of the 

lake in terms of water chemistry.  

 



 

145 

 

REFERENCES 

Albaric, J., Déverchère, J., Petit, C., Perrot, J., Le Gall, B., 2009. Crustal rheology and depth 

distribution of earthquakes: Insights from the central and southern East African Rift 

System. Tectonophysics 468, 28-41. 

Allen, D.J., Darling, W.G., Burgess, W.G., 1989. Geothermics and hydrogeology of the southern 

part of the Kenya Rift Valley with emphasis on the Magadi-Nakuru area. British 

Geological Survey, Research Report (Hydrogeology Series) SD/89/1. 

Alonso-Zarza, A.M., 1999. Initial stages of laminar calcrete formation by roots: examples from 

the Neogene of central Spain. Sedimentary Geology 126, 177-191. 

Alonso-Zarza, A.M., 2003. Palaeoenvironmental significance of palustrine carbonates and 

calcretes in the geological record. Earth-Science Reviews 60, 261-298 

Alonso-Zarza, A.M., Genise, J.F., Verde, M., 2011. Sedimentology, diagenesis and ichnology of 

Cretaceous and Palaeogene calcretes and palustrine carbonates from Uruguay. 

Sedimentary Geology 236, 45-61. 

Alonso-Zarza, A.M., Jones, B., 2007. Root calcrete formation on Quaternary karstic surfaces of 

Grand Cayman. Geologica Acta 5, 77-88. 

Alonso-Zarza, A.M., Silva, P.G., 2002. Quaternary laminar calcretes with bee nests: evidences of 

small-scale climatic fluctuations, Eastern Canary Islands, Spain. Palaeogeography, 

Palaeoclimatology, Palaeoecology 178, 119-135. 

Alonso-Zarza, A. Wright, V.P., 2010. Calcretes, pp. 225-267. In A.M. Alonso-Zarza and L. 

Tanner (Eds.), Carbonates in Continental Settings: Facies, Environments and Processes. 

Developments in Sedimentology 61, Elsevier. Oxford. 226-257. 

Anderson, G.D. Talbot, L.M., 1965. Soil factors affecting the distribution of the grassland types 

and their utilization by wild animals on the Serengeti plains, Tanganyika. J. Ecol. 53:33-

56. 

Awramik, S.M., Buchheim, H.P., 2015. Giant stromatolites of the Eocene Green River 

Formation (Colorado, USA). Geology 43, 691-694. 

Bachman, G.O., Machette, M.N., 1977. Calcic soils and calcretes in the southwestern United 

States. U.S. Geological Survey Open-file Report 77-794, 163 pp. 

Baker, B.H., 1958. Government of Kenya; Ministry of Commerce and Industry, Geological 

Survey of Kenya; Geology of the Magadi Area, Degree Sheet 51, SW Quarter. Report 

No. 42, 1958.  



 

146 

 

Baker, B.H., 1963. Government of Kenya; Ministry of Commerce and Industry, Geological 

Survey of Kenya; Geology of the Baragoi Area, Degree Sheet 27, NE. Quarter. Report 

No. 53, 1963. 

Baker, B.H., 1975. Geology and geochemistry of the Ol Doinyo Nyokie trachyte ignimbrite vent 

complex, south Kenya Rift Valley. Bulletin of Volcanology 39, 420-440. 

Baker, B.H., Mitchell, J.G., Williams, L.A.J., 1988. Stratigraphy, geochronology and volcano-

tectonic evolution of the Kedong-Naivasha-Kinangop region, Gregory Rift Valley, 

Kenya. Journal of the Geological Society 145, 107-116. 

Baker, B.H., Mitchell, J.G., 1976. Volcanic stratigraphy and geochronology of the Kedong-

Olorgesailie area and the evolution of the South Kenya rift valley. Journal of the 

Geological Society, London 132, 467-484. 

Baker, B.H., Wohlenberg, J., 1971. Structure and evolution of the Kenya Rift Valley. Nature 

299, 538-542. 

Barker, P., Telford, R., Gasse, F., Thevenon, F., 2002. Late Pleistocene and Holocene 

palaeohydrology of Lake Rukwa, Tanzania, inferred from diatom analysis. 

Palaeogeography, Palaeoclimatology, Palaeoecology 187, 295-305. 

Becht, R., Mwango, F., Muno, F.A., 2006. Groundwater links between Kenyan Rift Valley lakes. 

In: Proceedings of the 11th world lakes conference, 31 October - 4 November 2005. 

International Lake Environment Committee (ILEC), 2006. Vol. II. pp. 7-14. 

Behr, H.-J., Röhricht, C., 2000. Record of seismotectonic events in siliceous cyanobacterial 

sediments (Magadi cherts), Lake Magadi, Kenya. International Journal of Earth Science 

89, 268-283. 

Behr, H.-J., 2002. Magadiite and Magadi chert: a critical analysis of the silica sediments in the 

Lake Magadi basin, Kenya. In Renaut, R.W., and Ashley, G.M., (Eds.), Sedimentation in 

Continental Rifts, SEPM Special Publication No. 73, p 257-273.  

Behrensmeyer, A.K., 2008. Paleoenvironmental context of the Pliocene A.L. 333 “First Family” 

hominin locality, Hadar Formation, Ethiopia. Geological Society of America Special 

Paper 446, 203-214. 

Behrensmeyer, A.K., Quade, J., Cerling, T.E., Kappelman, J., Khan, I.A., Copeland, P., Roe, L., 

Hicks, J., Stubblefield, P., Willis, B.J., Latorre, C., 2007. The structure and rate of late 

Miocene expansion of C4 plants: Evidence from lateral variation in stable isotopes in 

paleosols of the Siwalik Group, northern Pakistan. GSA Bulletin 119, 1486-1505. 

Berke, M.A., Johnson, T.C., Werne, J.P., Schouten, S., Sinninghe Damsté, J.P., 2012. A mid-

Holocene thermal maximum at the end of the African Humid Period. Earth and Planetary 

Science Letters 351-352, 95-104 



 

147 

 

Bergner, A.G.N., Trauth, M.H., Bookhagen, B., 2003. Paleoprecipitation estimates for the Lake 

Naivasha basin (Kenya) during the last 175 k.y. using a lake-balance model. Global and 

Planetary Change 36, 117-136. 

Bestland, E.A., Retallack, G.J., 1993. Volcanically influenced calcareous palaeosols, from the 

Miocene Kiahera Formation, Rusinga Island, Kenya. Journal of the Geological Society, 

London 150: 293-310. 

Binkley, K.L., Wilkinson, B.H., Owen, R.M., 1980. Vadose beachrock cementation along a 

Southeastern Michigan marl lake. Journal of Sedimentary Petrology 50, 953-962. 

Bishop, W.W., 1966. Stratigraphical geomorphology. A review of some East African landforms. 

In: G.H. Dury (Ed.), Essays in Geomorphology, American Elsevier Pub. Co., London, pp. 

139–176.  

Bobe, R., 2006. The evolution of arid ecosystems in eastern Africa. Journal of Arid 

Environments 66, 564-584. 

Bonny, S.M., Jones, B.,2008a. Controls on the precipitation of barite (BaSO4) crystals in calcite 

travertine at Twitya Spring, a warm sulphur spring in Canada’s Northwest Territories. 

Sedimentary Geology 203, 36-53. 

Bonny, S.M., Jones, B., 2008b. Experimental precipitation of barite (BaSO4) among streamers of 

sulfur-oxidizing bacteria. Journal of Sedimentary Research 78, 357-365. 

Brasier, A.T., 2011. Searching for travertines, calcretes and speleothems in deep time: Processes, 

appearances, predictions and the impact of plants. Earth-Science Reviews 104, 213-239. 

Brock-Hon, A.L., Robins, C.R., Buck, B.J., 2012. Micromorphological investigation of 

pedogenic barite in Mormon Mesa petrocalcic horizons, Nevada USA: Implications for 

genesis. Geoderma 179-180, 1-8.  

Brooks, A.S., Helgren, D.M., Cramer, J.S., Franklin, A., Hornyak, W., Keating, J.M., Klein, 

R.G., Rink, W.J,. Schwarcz, H., Leith Smith, J.N., Stewart, K., Todd, B.E., Verniers, J., 

and Yellen, J.E., 1995. Dating and context of three Middle Stone Age Sites with bone 

points in the Upper Semliki Valley, Zaire. Science 268, 548-553. 

Budd, D.A., Pack, S.M., Fogel, M.L., 2002. The destruction of paleoclimatic isotopic signals in 

Pleistocene carbonate soil nodules of Western Australia. Palaeogeography, 

Palaeoclimatology, Palaeoecology 188, 249-273. 

Bustillo, M.A., Alonso-Zarza, A.M., 2007. Overlapping of pedogenesis and meteoric diagenesis 

in distal alluvial and shallow lacustrine deposits in the Madrid Miocene Basin, Spain. 

Sedimentary Geology 198, 255-271. 



 

148 

 

Brenna, B.L, Renaut, R.W., Owen, R.B., 2014. The chemical, physical and microbial origins of 

Pleistocene cherts at Lake Magadi, Kenya Rift Valley. Abstracts with Programs, 

Geological Society of America, 46, 747 

Burke, R.B., Gerhard, L.C., 2000. Aragonite cementation and related sedimentary structures in 

Quaternary lacustrine deposits, Great Salt Lake, Utah. In King, J.K., Willis, G.C. (Eds.) 

The Geology of Antelope Island, Davis County, Utah. Utah Geological Survey 

Miscellaneous Publication 00-1. pp 99-115. 

Butzer, K.W., Isaac, G.L., Richardson, J.L., Washbourn-Kamau, C., 1972. Radiocarbon dating of 

East African Lake Levels. Science 175 (4026), 1069-1076. 

Candy, I., Black, S., Sellwood, B.W., Rowan, J.S., 2003. Calcrete profile development in 

Quaternary alluvial sequences, southeast Spain: Implications for using calcretes as a basis 

for landform chronologies. Earth Surface Processes and Landforms 28, 169-185. 

Capo, R.C., Chadwick, O.A., 1999. Sources of strontium and calcium in desert soil and calcrete. 

Earth and Planetary Science Letters 170, 61-72.  

Carlisle, D., 1983. Concentration of uranium and vanadium in calcretes and gypcretes. 

Geological Society, London, Special Publications 11, 185-195. 

Carozzi, A.V., 1993. Sedimentary petrology. Prentice Hall, New Jersey. 263 p. 

Casanova, J., Tiercelin, J-J., 1982. Constructions stromatolitiques en milieu carbonate sodique: 

les oncolites des plaines inondables du lac Magadi (Kenya). C.R. Acad. Sc. Paris 295, 

1139-1144. 

Cerling, T.H., 1984. The stable isotopic composition of modern soil carbonate and its 

relationship to climate. Earth and Planetary Science Letters 71, 229-240. 

Cerling, T.E., 1992. Development of grasslands and savannas in East Africa during the Neogene. 

Palaeogeography, Palaeoclimatology, Palaeoecology 97, 241-247. 

Cerling, T.E., 1994. Lake Turkana and its precursors in the Turkana Basin, East Africa (Kenya 

and Ethiopia). . In Gierlowski-Kordesch, E., Kelts, K., (Eds.), Global Geological Record 

of Lake Basins; Volume 1. Cambridge University Press, Cambridge, UK. pp. 341-344.  

Cerling, T.E. Hay, R.L., 1986. An isotopic study of paleosol carbonates from Olduvai Gorge. 

Quaternary Research 25, 63-78. 

Cerling, T.E., Hay, R.L., O’Neil, J.R., 1977. Isotopic evidence for dramatic climatic changes in 

East Africa during the Pleistocene. Nature 267, 137-138. 



 

149 

 

Cerling, T.E., Bowman, J.R., and O`Neil, J.R., 1988. An isotopic study of a fluvial-lacustrine 

sequence: The Plio-Pleistocene Koobi Fora Sequence, East Africa. Palaeogeography, 

Palaeoclimatology, Palaeoecology 63, 335-356. 

Chiquet, A., Michard, A., Nahon, D., Hamelin, B., 1990. Atmospheric input vs in situ 

weathering in the genesis of calcretes: an Sr isotope study at Galvez (Central Spain). 

Geochimica et Cosmochimica Acta 63, 311-323. 

Chorowicz, J., 2005. The East African rift system. Journal of African Earth Sciences 43, 379-

410.  

Climate Data. <http://www.climatedata.eu > accessed 14 Jun 2011.  

Cohen, A.S., 1982. Palaeoenvironments of root casts from the Koobi Fora Formation, Kenya. 

Journal of Sedimentary Petrology 52, 401-414. 

Cohen, A.S., Thouin, C., 1987. Nearshore carbonate deposits in Lake Tanganyika. Geology 15, 

414-418. 

Colson, J., Cojan, I., 1996. Groundwater dolocretes in a lake-marginal environment: an 

alternative model for dolocrete formation in continental settings (Danian of the Provence 

Basin, France). Sedimentology 43, 175-188. 

Compton, J.S., White, R.A., Smith, M., 2003. Rare earth element behavior in soils and salt pan 

sediments of a semi-arid granitic terrain in the Western Cape, South Africa. Chemical 

Geology 201, 239-255. 

Coplen, T.B., 2007. Calibration of the calcite – water oxygen-isotope geothermometer at Devils 

Hole, Nevada, a natural laboratory. Geochimica et Cosmochimica Acta 71, 3948-3957. 

Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-

spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133-

149.  

Damnati, B., Taieb, M., Williamson, D., 1992. Laminated deposits from Lake Magadi (Kenya). 

Climatic contrast effect during the maximum wet period between 12,000-10,000 yrs B.P. 

Bull. Soc. géol. France 163, 407-414. 

Darling, W.G., 2001. Magadi and Suguta: the contrasting hydrogeochemistry of two soda lake 

areas in the Kenya Rift Valley. Water-Rock interaction : proceedings of the tenth 

international symposium on water-rock interaction : WRI-10, Villasimius, Italy, 10.-15. 

July 2001, pp. 95-98. 

Darlington, J.P.E.C., 2011. Trace fossils interpreted in relation to the extant termite fauna at 

Laetoli, Tanzania in T. Harrison (Ed.), Palaeontology and Geology of Laetoli: Human 



 

150 

 

Evolution in Context. Volume 2: Fossil Hominins and the Associated Fauna, Vertebrate 

Paleobiology and Palaeoanthropology, Springer, pp 555-565. 

Davis, L.E., 2012. An astrobiological study of an alkaline-saline hydrothermal environment, 

relevant to understanding the habitability of Mars. PhD Thesis, University College 

London. 

Dawson, J.B., 1964. Carbonatitic volcanic ashes in Northern Tanganyika. Bulletin 

Volcanologique 27, 81-91.  

Dawson, J.B., 1992. Neogene tectonics and volcanicity in the North Tanzania sector of the 

Gregory Rift Valley: contrasts with the Kenya sector. Tectonophysics 204, 81-92. 

Dawson, J.B., 2008. The Gregory Rift Valley and Neogene‒Recent Volcanoes of Northern 

Tanzania. Geological Society, London, Memoirs 33, 91 p. 

de Cort, G., Bessems, I., Keppens, E., Mees, F., Cumming, B., Verschuren, D., 2013. Late-

Holocene and recent hydroclimatic variability in the central Kenya Rift Valley: The 

sediment record of hypersaline lakes Bogoria, Nakuru and Elementeita. Palaeogeography, 

Palaeoclimatology, Palaeoecology 388, 69-80. 

Deino, A., Potts, R., 1992. Age-Probability spectra for examination of single-crystal 
40

Ar/
39

Ar 

dating results: examples from Olorgesailie, southern Kenya rift. Quaternary International 

13/14, 47-53. 

de la Torre, I., Mora, R., Martinez-Moreno, J., 2008, The early Acheulean in Peninj (Lake 

Natron, Tanzania). Journal of Anthropological Archaeology 27, 244-264. 

de Menocal, P., Ortiz, J., Guilderson, T., Sarnthein, M., 2000. Coherent high- and low-latitude 

climate variability during the Holocene warm period. Science 288, 2198-2202. 

Deocampo, D.M., 2004. Authigenic clays in East Africa: Regional trends and paleolimnology at 

the Plio-Pleistocene boundary, Olduvai Gorge, Tanzania. Journal of Paleolimnology 31, 

1-9. 

Deocampo, D.M., Behrensmeyer, A.K., Potts, R., 2010. Ultrafine clay minerals of the 

Pleistocene Olorgesailie Formation, Southern Kenya Rift: Diagenesis and 

paleoenvironments of early hominins. Clays and Clay Minerals 58, 294-310. 

Deutz, P., Montañez, Monger, H.C., Morrison, J., 2001. Morphology and isotope heterogeneity 

of Late Quaternary pedogenic carbonates: Implications for paleosol carbonates as 

paleoenvironmental proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 166, 

293-317. 



 

151 

 

Dietzel, M., Tang, J., Leis, A., Köhler, S.J., 2009. Oxygen isotope fractionation during inorganic 

calcite precipitation—Effects of temperature, precipitation rate and pH. Chemical 

Geology 268, 107-115. 

Diez Martín, F., Luque, L., Domínguez-Rodrigo, M., 2009. ST-69: an Acheulean assemblage in 

the Moinik Formation of Type Section of Peninj (Lake Natron, Tanzania). In: 

Domínguez-Rodrigo, M., Alcalá, L., Luque, L. (Eds.), Peninj. A research project on the 

archaeology of human origins (1995-2005). Oxbow, Cambridge, pp. 193–206. 

Ditchfield, P., Harrison, T., 2011. Sedimentology, lithostratigraphy and depositional history of 

the Laetoli Area, in Harrison, T., (Ed.), Paleontology and Geology of Laetoli: Human 

Evolution in Context, Volume 1: Geology, Geochronology, Paleoecology and 

Paleoenvironment, Vertebrate Paleobiology and Paleoanthropology, pp 47-76. 

Dodson, R. G., 1963. Geology of the South Horr area: degree sheet 19, south-east quarter (with 

two coloured geological maps) (No. 60). Geological Survey of Kenya. 

Dominiguez-Rodrigo, M., de la Torre, I., de Luque, L., Alcala, L., Mora, R., Serrallonga, J., & 

Medina, V., 2002. The ST site complex at Peninj, West Lake Natron, Tanzania: 

Implications for early hominid behavioural models, Journal of Archaeological Science 

29, 639-665. 

Dunningham, J.P., 2005. Long-term Evolution of Normal Fault Systems: Controls on the 

Development and Evolution of Extensional Structures in the Neotectonic Kenyan Rift, 

East Africa. PhD thesis, University of Edinburgh. 

Dworkin, S.I., Nordt, L., Atchley, S., 2005. Determining terrestrial paleotemperatures using the 

oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters 

237, 56-68. 

Dypvik, H., Hankel, O., Nilsen, O., Kaaya, C., Kilembe, E., 2001. The lithostratigraphy of the 

Karoo Supergroup in the Kilombero Rift Valley, Tanzania. Journal of African Earth 

Sciences 32, 451-470. 

Dypvik, H., Nilsen, O., 2002. Rift valley sedimentation and diagenesis, Tanzanian Examples – A 

review. South African Journal of Geology 105, 93-106. 

Ebinger, C., Poudjom Djomani, Y., Mbede, E., Foster, A., Dawson, J.B., 1997. Rifting Archaean 

lithosphere: the Eyasi-Manyara-Natron rifts, East Africa. Journal of the Geological 

Society, London 154, 947-960. 

Erginal, A.E., Kiyak, N.G., Ӧztürk, M.Z., Avcioğlu, M., Bozcu, M., Yiğitbaş, E., 2012. 

Cementation characteristics and age of beachrocks in a fresh-water environment, Lake 

İznik, NW Turkey. Sedimentary Geology 243-244, 148-154. 



 

152 

 

Esteban, M. Klappa, C.F., 1983. Subaerial exposure environments. In Scholle, P.A., Bebout, 

D.G., Moore, C.H. (Eds.), Carbonate depositional environments. AAPG Memoir 33, 1-

54.  

Eugster, H.P., 1967. Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded 

chert. Science 157( 3793), 1177-1180. 

Eugster, H.P., Jones, B.F., 1968. Gels composed of sodium-aluminum silicate, Lake Magadi, 

Kenya. Science 161(3837), 160-163. 

Eugster, H.P., 1970. Chemistry and origin of the brines of Lake Magadi, Kenya. Special Paper – 

Mineralogical Society of America, 3, 213-235. 

Eugster, H.P., 1980. Lake Magadi, Kenya, and its precursors. in Nissenbaum, A (Ed.), 

Hypersaline Brines and Evaporitic Environments, Proceedings of the Bat Sheva Seminar 

on Saline Lakes and Natural Brines. Elsevier, Developments in Sedimentology 28, 195-

232. 

Eugster, H.P., 1986. Lake Magadi, Kenya: a model for rift valley hydrochemistry and 

sedimentation? In Frostick, L.E. et al. (Eds) Sedimentation in the African Rifts, 

Geological Society Special Publication No. 25, 177-189.  

Fairhead, J.D., Mitchell, J.G., Williams, L.A.J., 1972. New K/Ar determinations on rift volcanics 

of S. Kenya and their bearing on age of rift faulting. Nature 238, 66-69. 

Fordham, A.M., North, C.P., Hartley, A.J., Archer, S.G., Warwick, G.L., 2010. Dominance of 

lateral over axial sedimentary fill in dryland rift basins. Petroleum Geoscience 16, 299-

304. 

Fralick, P., 2003. Geochemistry of clastic sedimentary rocks: ratio techniques. In Lentz, D.R., 

(Ed.), Inorganic Geochemistry of Sediments and Sedimentary Rocks: Evolutionary 

Considerations to Mineral Deposit-Forming Environments. Geological Association of 

Canada, Geotext 4, p. 85-103. 

 Friedman, I. O’Neil, J,R., 1977. Compilation of stable isotope fractionation factors of 

geochemical interest. U.S. Geological Survey Professional Paper. 12pp. 

Gabitov, R.I., Watson, E.B., Sadekov, A., 2012. Oxygen isotope fractionation between calcite 

and fluid as a function of growth rate and temperature: An in situ study. Chemical 

Geology 306-307, 92-102. 

Garcin, Y., Melnick, D., Strecker, M.R., Olago, D., Tiercelin, J-J., 2012. East African mid-

Holocene wet-dry transition recorded in paleo-shorelines of Lake Turkana, northern 

Kenya Rift. Earth and Planetary Science Letters 331-332, 322-334. 



 

153 

 

Gasse, F., 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. 

Quaternary Science Reviews 19, 189-211. 

Gasse, F. 1977., Evolution of Lake Abhé (Ethiopia and TFAI), from 70,000 b.p. Nature 265, 42-

45. 

Gathogo, P.N., Brown, F.H., 2006. Stratigraphy of the Koobi Fora Formation (Pliocene and 

Pleistocene) in the Ileret region of northern Kenya. Journal of African Earth Sciences 45, 

369-390 

Genise, J.F., Alonso-Zarza, A.M., Verde, M, Meléndez, A., 2013. Insect trace fossils in aeolian 

deposits and calcretes from the Canary Islands: Their ichnotaxonomy, producers, and 

palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 

377, 110-124. 

Gikunju, J.K., Maitho, T.E., Birkeland, J.M., and Lokken, P., 1992. Fluoride levels in water and 

fish from Lake Magadi (Kenya). Hydrobiologia 234, 123-127. 

Gile, L.H., Peterson, F.F., Grossman, R.B., 1966. Morphological and genetic sequences of 

carbonate accumulation in desert soils. Soil Science 101, 347-360. 

Gillespie, R., Street-Perrott, F.A., Switsur, R., 1983. Post-glacial arid episodes in Ethiopia have 

implications for climate prediction. Nature 306, 680-683. 

Goetz, C., Hillaire-Marcel, C., 1992. U-series disequilibria in early diagenetic minerals from 

Lake Magadi sediments, Kenya: Dating potential. Geochimica et Cosmochimica Acta 56, 

1331-1341. 

Goudie, A., 1973. Duricrusts in Tropical and Subtropical Landscapes. Clarendon Press; Oxford 

Research Studies in Geography. 174 p.  

Goudie, A. 1983. Calcrete. In: Goudie, A.S., Pye, K., (Eds.), Chemical Sediments and 

Geomorphology. London, Academic Press. pp93-131. 

Grove, A.T., Alayne, Street, F., Goudie, A.S., 1975. Former lake levels and climatic change in 

the rift valley of southern Ethiopia. The Geographical Journal 141(2), 177-194. 

Grotzinger, J.P., Rothman, D.H., 1996. An abiotic model for stromatolite morphogenesis, Nature 

383, 423-425. 

Guth, A., Wood, J., 2013. Geological Map of the Southern Kenya Rift. The Geological Society 

of America, Map DMCH016. 

Hailemichael , M., Aronson, J.L., Savin, S., Tevesz, M.J.S., Carter, J.G., 2002. D
18

O in mollusk 

shells from Pliocene Lake Hadar and modern Ethiopian lakes: implications for history of 

the Ethiopian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 81-99. 



 

154 

 

Halldórsson, S.A., Hilton, D.R., Scarsi, P., Abebe, T., Hopp, J., 2014. A common mantle plume 

source beneath the entire East African Rift System revealed by coupled helium-neon 

systematic. Geophysical Research Letters, 41, 2304-2311. 

Harrison, T., 2011. Laetoli Revisited: Renewed paleontological and geological investigations at 

localities on the Eyasi Plateau in Northern Tanzania, in Harrison, T., (Ed.), Paleontology 

and Geology of Laetoli: Human Evolution in Context, Volume 1: Geology, 

Geochronology, Paleoecology and Paleoenvironment, Vertebrate Paleobiology and 

Paleoanthropology, pp 1-15. 

Harrison, T., Kweka, A., 2011, Paleontological Localities on the Eyasi Plateau, Including 

Laetoli, in Harrison, T., (Ed.), Paleontology and Geology of Laetoli: Human Evolution in 

Context, Volume 1: Geology, Geochronology, Paleoecology and Paleoenvironment, 

Vertebrate Paleobiology and Paleoanthropology, pp 17-45. 

Hay, R.L., 1968. Chert and its sodium-silicate precursors in sodium-carbonate lakes of East 

Africa. Contributions to Mineralogy and Petrology 17, 255-274. 

Hay, R.L., Kyser, T.K., 2001, Chemical sedimentology and paleoenvironmental history of Lake 

Olduvai, a Pliocene lake in northern Tanzania. GSA Bulletin 112, 1505-1521. 

Hay, R.L., Reeder, R.J., 1978, Calcretes of Olduvai Gorge and the Ndolanya Beds of northern 

Tanzania. Sedimentology 25, 649-673. 

Hillaire-Marcel, C., Casanova, J., 1987. Isotopic hydrology and paleohydrology of the Magadi 

(Kenya)-Natron (Tanzania) Basin during the Late Quaternary, Palaeogeography, 

Palaeoclimatology, Palaeoecology 58, 155-181. 

Ibs-von Seht, M., Blumenstein, S., Wagner, R., Hollnack, D., Wohlenberg, J., 2001. Seismicity, 

seismotectonics and crustal structure of the southern Kenya Rift—new data from the 

Lake Magadi area. Geophysical Journal International 146, 439-453. 

Isaac, G.Ll.,1965. An annotated list of the most important palaeontological (mammalian) and 

archaeological assemblages associated with the rift valleys of Kenya. Report on the 

Geology and Geophysics of the East African Rift System, pp. 44-49.  

Isaac, G.Ll., 1967. The stratigraphy of the Peninj group; early middle Pleistocene formations 

west of Lake Natron, Tanzania. In: Bishop, W.W. and Clarke, J.D., (Eds.), Background to 

Evolution in Africa, University of Chicago Press, pp. 229-257. 

Isaac, G.Ll., 1977. Olorgesailie: Archeological Studies of a Middle Pleistocene Lake Basin in 

Kenya. Chicago: University of Chicago Press. 272 p. 

Isaac, G.Ll., 1978. The Olorgesailie Formation: Stratigraphy, tectonics and the palaeogeographic 

context of the Middle Pleistocene archaeological sites. In Bishop, W.W. (Ed.), 



 

155 

 

Geological Background to Fossil Man: Recent Research in the Gregory Rift Valley, East 

Africa, Geological Society, London, Special Publications v.6, 173-206.  

IUSS Working Group WRB, 2015, World Reference Base for Soil Resources 2014, update 2015 

International soil classification system for naming soils and creating legends for soil 

maps. World Soil Resources Reports No. 106. FAO, Rome. 

Johannesson, K.H., Lyons, W.B., 1994. The rare earth element geochemistry of Mono Lake 

Water and the importance of carbonate complexing. Limnology and Oceanography 39, 

1141-1154. 

Johnson, C.R., Ashley, G.M., De Wet, C.B., Dvoretsky, R., Park, L., Hover, V.C., Owen, R.B., 

McBrearty, S., 2009. Tufa as a record of perennial fresh water in a semi-arid rift basin, 

Kapthurin Formation, Kenya. Sedimentology 56, 1115-1137. 

Jolly, D., Harrison, S.P., Damnati, B., Bonnefille, R., 1998. Simulated climate and biomes of 

Africa during the Late Quaternary: Comparison with pollen and lake status data. 

Quaternary Science Reviews 17, 629-657. 

Jones, B.F., Rettig, S.L., Eugster, H.P., 1967. Silica in alkaline brines. Science 158, 1310-1314. 

Jones, B.F., Eugster, H.P., Rettig, S.L., 1977. Hydrochemistry of the Lake Magadi Basin, Kenya. 

Geochimica et Cosmochimica Acta 41, 53-72. 

Jones, B., Rosen, M.R., Renaut, R.W., 1997. Silica-cemented beachrock from Lake Taupo, 

North Island, New Zealand. Journal of Sedimentary Research 67, 805-814. 

Jones, B.E., Grant, W.D., Duckworth, A.W., Owenson, G.G., 1998. Microbial diversity of soda 

lakes. Extremophiles 2, 191-200. 

Jutras, P, Utting, J., McLeod, J., 2007. Link between long-lasting evaporitic basins and the 

development of thick and massive phreatic calcrete hardpans in the Mississippian 

Windsor and Percé groups of eastern Canada. Sedimentary Geology 201, 75-92. 

Kabanov, P. Anadón, P., Krumbein, W.E., 2008. Microcodium: An extensive review and a 

proposed non-rhizogenic biologically induced origin for its formation. Sedimentary 

Geology 205, 79-99. 

Kaemmerer, M., Revel, J.C., 1999. New data on the laminar horizon genesis of calcrete 

developed on Morocco coarse quaternary alluvium: Consequences on the desertification 

process. Arid Soil Research and Rehabilitation 10, 107-123. 

Keller, J. Zaitsev, A.N., 2006. Calciocarbonatite dykes at Oldoinyo Lengai, Tanzania: the fate of 

natrocarbonatite. Canadian Mineralogist 44, 857-876. 



 

156 

 

Kerrich, R., Renaut, R.W., Bonli, T., 2002. Trace-element composition of cherts from alkaline 

lakes in the East African Rift: A probe for ancient counterparts. In Renaut, R.W., and 

Ashley, G.M., (Eds.), Sedimentation in Continental Rifts, SEPM Special Publication No. 

73, 275-294. 

Klappa, C.F., 1979. Calcified filaments in Quaternary calcretes: Organo-mineral interactions in 

the subaerial vadose environment. Journal of Sedimentary Petrology 49, 955-968. 

Khalaf, F.I., 2007. Occurrences and genesis of calcrete and dolocrete in the Mio-Pleistocene 

fluviatile sequence in Kuwait, northeast Arabian Peninsula. Sedimentary Geology 199, 

129-139. 

Kidney, C.L., 2012. Pliocene Stratigraphy and Geology of the Northeastern Ileret Region, 

Kenya. MSc Thesis. University of Utah.  

Košir, A., 2004. Microcodium revisited: root calcification products of terrestrial plants on 

carbonate-rich subsrates. Journal of Sedimentary Research 74, 845-857. 

Kraus, M.J., 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-

Science Reviews 47, 41-70. 

Krumbein, W.E., Giele, C., 1979. Calcification in a coccoid cyanobacterium associated with the 

formation of desert stromatolites. Sedimentology 26, 593-604. 

Last, F.M., Last, W.M., Halden, N.M., 2010. Carbonate microbialites and hardgrounds from 

Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada. 

Sedimentary Geology 225, 34-49. 

Last, W.M., De Deckker, P., 1990. Modern and Holocene carbonate sedimentology of two saline 

volcanic maar lakes, southern Australia. Sedimentology 37, 967-981. 

Leakey, L.S.B., Leakey, M.D., 1964. Recent discoveries of fossil hominids in Tanganyika: At 

Olduvai and near Lake Natron. Nature 202, 5-7. 

Lee, R.K.L., Owen, R.B., Renaut, R.W., Behrensmeyer, A.K., Potts, R., Sharp, W.D., 2013. 

Facies, geochemistry and diatoms of late Pleistocene Olorgesailie tufas, southern Kenya 

Rift. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 197-217. 

Le Gall, B., Nonnotte, P., Rolet, J., Benoit, M., Guillou, H., Mousseau-Nonnotte, Albaric, J., 

Deverchère, J., 2008. Rift propagation at craton margin. Distributions of faulting and 

volcanism in the North Tanzanian Divergence (East Africa) during Neogene times. 

Tectonophysics 448, 1-19. 

Lentz, D.R., 2003. Geochemistry of sediments and sedimentary rocks: historical to research 

perspectives, in Lentz, D.R., (Ed.), Inorganic Geochemistry of Sediments and 



 

157 

 

Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming 

Environments: Geological Association of Canada, Geotext 4, p. 1-6 

Le Roex, A.P., Späth, A., Zartman, R.E., 2001. Lithospheric thickness beneath the southern 

Kenya Rift: implications from basalt geochemistry. Contributions to Mineralogy and 

Petrology 142, 89-106. 

Le Turdu, C., Tiercelin, J.J., Coussement, C., Rolet, J., Renaut, R.W., Richert, J.P., Xavier, J.P., 

Coquelet, D. 1995. Basin structure and depositional pattern interpreted using a 3D remote 

sensing approach: the Baringo-Bogoria basins, central Kenya Rift, East Africa. Bulletin 

des Centre de Recherche Exploration-Production Elf-Aquitaine, 19, 1-37. 

Levin, N.E., Quade, J., Simpson, S.W., Semaw, S., Rogers, M., 2004. Isotopic evidence for Plio-

Pleistocene environmental change at Gona, Ethiopia. Earth and Planetary Science Letters 

219, 93-110. 

Levin, N.E., Zipser, E.J., Cerling, T.E., 2009. Isotopic composition of waters from Ethiopia and 

Kenya: Insights into moisture sources for eastern Africa. Journal of Geophysical 

Research 114, D23306, 13 p. 

Levin, N.E., Brown, F.H., Behrensmeyer, A.K., Bobe, R., Cerling, T.E., 2011. Paleosol 

carbonates from the Omo Group: Isotopic records of local and regional environmental 

change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 75-89.  

Mace, W.D., 2012. Environmental differences in tropical soil temperatures in Kenya. 

Unpublished MSc thesis. University of Utah. 116 pp. 

Machette, M.N., 1985. Calcic soils of the southwestern United States. In Weide, D.L. (Ed.), Soils 

and Quaternary geology of the southwestern United States: Geological Society of 

American Special Paper 203, 1-2.1 

Melson, W.G. Potts, R., 2002, Origin of reddened and melted zones in Pleistocene sediments of 

the Olorgesailie Basin, Southern Kenya Rift. Journal of Archaeological Science 29, 307-

316. 

McCall, J., 2010. Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene 

stromatolites. Earth-Science Reviews 103, 71-79. 

McCall, G.J.H., Baker, B.H., and Walsh, J., 1967. Late Tertiary and Quaternary sediments of the 

Kenya Rift Valley. In Bishop, W.W., Clark, J.D., (Eds.), Background to evolution in 

Africa. University of Chicago Press, Chicago. pp. 191-220. 

McConnell, R.B., 1972. Geological Development of the Rift System of Eastern Africa. 

Geological Society of America Bulletin 83, 2549-2572. 



 

158 

 

McLaren, S., 2004. Characteristics, evolution and distribution of Quaternary channel calcretes, 

southern Jordan. Earth Surface Processes and Landforms 29, 1487-1507. 

McLennan, S.M., Bock, B., Hemming, S.R., Hurowitz, J.A., Lev, S.M., McDaniel, D.K., 2003, 

The roles of provenance and sedimentary processes in the geochemistry of sedimentary 

rocks, in Lentz, D.R., (Ed.), Inorganic Geochemistry of Sediments and Sedimentary 

Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments: 

Geological Association of Canada, Geotext 4, 7-38. 

McPherson, J.G., 1979. Calcrete (caliche) palaeosols in fluvial redbeds of the Aztec Siltstone 

(Upper Devonian), southern Victoria Land, Antarctica. Sedimentary Geology 22, 267-

285. 

Monger, H.C., Daugherty, L.A., Lindemann, W.C., Liddell, C.M., 1991. Microbial precipitation 

of pedogenic calcite. Geology 19, 997-1000. 

Mount, J.F. Cohen, A.S., 1984. Petrology and geochemistry of rhizoliths from Plio-Pleistocene 

fluvial and marginal lacustrine deposits, east Lake Turkana, Kenya. Journal of 

Sedimentary Petrology 54, 263-275. 

Mpawenayo, B. Mathooko, J.M., 2005. The structure of diatom assembleges associated with 

Cladophora and sediments in a highland stream in Kenya. Hydrobiologia 544, 55-67. 

Mulwa, J.K., Kimata, F., Suzuki, S., Kuria, Z.N., 2014. The seismicity in Kenya (East Africa) for 

the period 1906-2010; a review. Journal of African Earth Sciences 89, 72-78. 

Mwatha, W.E., Grant, W.D., 1993. Natronobacterium vacuolata sp. nov., a Haloalkaliphilic 

Archaeon Isolated from Lake Magadi, Kenya. International Journal of Systematic 

Bacteriology 43, 401-404. 

Naiman, Z., Quade, J., Patchett, P.J., 2000. Isotopic evidence for eolian recycling of pedogenic 

carbonate and variations in carbonate dust sources throughout the Southwest United 

States. Geochimica et Cosmochimica Acta 64, 3099-3109. 

Nash, D.J., Smith, R.F., 1998. Multiple calcrete profiles in the Tabernas Basin, southeast Spain: 

their origins and geomorphic implications. Earth Surface Processes and Landforms 23, 

1009-1029. 

Nash, D.J., McLaren, S.J., 2003. Kalahari valley calcretes: their nature, origins, and 

environmental significance. Quaternary International 111, 3-22. 

Nash, D.J., Smith, R.F., 2003. Properties and development of channel calcretes in a mountain 

catchment, Tabernas Basin, southeast Spain. Geomorphology 50, 227-250. 

Naujoks, M., Jahr, T., Jentzsch, Kurz, J.H., Hofman, Y., 2007. Investigations about earthquake 

swarm areas and processes, in Tregoning, P., Rizos, C. (Eds.), Dynamic Planet: 



 

159 

 

Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic 

Tools, IAG Symposium, Cairns, Australia, Springer, p 528-535.  

Nehza, O., Woo, K.S., Lee, K.C., 2009. Combined textural and stable isotopic data as proxies for 

the mid-Cretaceous paleoclimate: A case study of lacustrine stromatolites in the 

Gyeongsang Basin, SE Korea. Sedimentary Geology 214, 85-99. 

Nielsen, J.M., 1999. East African magadi (trona): fluoride concentration and mineralogical 

composition. Journal of African Earth Sciences 29, 423-428. 

Neumeier, U., 1999. Experimental modelling of beachrock cementation under microbial 

influence. Sedimentary Geology 126, 35-46. 

Nordt, L.C., Hallmark, C.T., Wilding, L.P., Boutton, T.W., 1998. Quantifying pedogenic 

carbonate accumulations using stable carbon isotopes. Geoderma 82, 115-136.  

Nordt, L., Orosz, M., Driese, S., Tubbs, J., 2006. Vertisol carbonate properties in relation to 

mean annual precipitation: implications for paleoprecipitation estimates. Journal of 

Geology 114, 501-510.  

Nyamweru, C.K., 1986. Quaternary environments of the Chalbi basin, Kenya: sedimentary and 

geomorphological evidence. In Frostick, L.E. et al. (Eds.) 1986, Sedimentation in the 

African Rifts, Geological Society Special Publication No. 25, 297-310. 

Nyblade, A.A., 2011. The upper-mantle low-velocity anomaly beneath Ethiopia, Kenya, and 

Tanzania: Constraints on the origin of the African superswell in eastern Africa and plate 

versus plume models of mantle dynamics. Geological Society of America Special Papers 

478, 37-50. 

Ogola, J.S., Behr, H.J., 2000. Mineralogy and trona formation in Lake Magadi, Kenya. In 

Rammlmair, D. et al. (Eds.), Applied Mineralogy in Research, Economy, Technology, 

Ecology and Culture: Proceedings of the Sixth International Congress on Applied 

Mineralogy : Göttingen, Germany, 17-19 July 2000, A.A. Balkema, Rotterdam, 383-386. 

Olaka, L.A., Odada, E.O., Trauth, M.H., Olago, D.O., 2010. The sensitivity of East African rift 

lakes to climate fluctuations. Journal of Paleolimnology 44,  629-644. 

Owen, R.B., Renaut, R.W., 1981. Palaeoenvironments and sedimentology of the middle 

Pleistocene Olorgesailie Formation, southern Kenya Rift valley. Palaeoecology of Africa 

and of the Surrounding Islands and Antarctica 13, 147-174. 

Owen, R.A. Owen, R.B., Renaut, R.W., Scott, J.J., Jones, B., Ashley, G.M., 2008a. Mineralogy 

and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift 

Valley. Sedimentary Geology 203, 143-163.  



 

160 

 

Owen, R.B., Potts, R., Behrensmeyer, A.K., Ditchfield, P., 2008b. Diatomaceous sediments and 

environmental change in the Pleistocene Olorgesailie Formation, southern Kenya Rift 

Valley. Palaeogeography, Palaeoclimatology, Palaeoecology 269, 17-37. 

Owen, R.B., Renaut, R.W., Scott, J.J., Potts, R., Behrensmeyer, A.K., 2009. Wetland 

sedimentation and associated diatoms in the Pleistocene Olorgesailie Basin, southern 

Kenya Rift Valley. Sedimentary Geology 222, 124-137.  

Owen R.B., Renaut, R.W., Potts, R., Behrensmeyer, A.K., 2011. Geochemical trends through 

time and lateral variability of diatom floras in the Pleistocene Olorgesailie Formation, 

southern Kenya Rift Valley. Quaternary Research 76, 167-179. 

Owen, R.B., Renaut, R.W., Behrensmeyer, A.K., Potts, R., 2014. Quaternary geochemical 

stratigraphy of the Kedong-Olorgesailie section of the southern Kenya Rift valley. 

Palaeogeography, Palaeoclimatology, Palaeoecology 396, 194-212. 

Passey, B.H., Levin, N.E., Cerling, T.E., Brown, F.H. Eiler, J.M., 2010. High-temperature 

environments of human evolution in East Africa based on bond ordering in paleosol 

carbonates. PNAS 107 11245-11249. 

Peterson, T.D., 1989. Peralkaline nephelinites. I. Comparative petrology of Shombole and 

Oldoinyo L’Engai, East Africa. Contributions to Mineralogy and Petrology 101, 458-478. 

Pickford, M., 1986. Sedimentation and fossil preservation in the Nyanza Rift System, Kenya. In 

Frostick, L.E. et al. (Eds.) 1986, Sedimentation in the African Rifts, Geological Society 

Special Publication No. 25, 345-362.  

Pickford, M., 1985. A New Look at Kenyapithecus based on recent discoveries in Western 

Kenya. Journal of Human Evolution 14, 113-143. 

Pimentel, N.L., Wright, V.P., Azevedo, T.M., 1996. Distinguishing early groundwater alteration 

effects from pedogenesis in ancient alluvial basins: examples from the Palaeogene of 

southern Portugal. Sedimentary Geology 105, 1-10. 

Potts, R., Shipman, P., Ingall, E., 1988. Taphonomy, paleoecology, and hominids of Lainyamok, 

Kenya. Journal of Human Evolution 17, 597-614. 

Potts, R., Behrensmeyer, A.K., Ditchfield, P., 1999. Paleolandscape variation and Early 

Pleistocene hominid activities: Members 1 and 7, Olorgesailie Formation, Kenya. Journal 

of Human Evolution 37, 747-788. 

Potts, R., Behrensmeyer, A.K., Deino, A., Ditchfield, P., Clark, J., 2004. Small Mid-Pleistocene 

Hominin Associated with East African Acheulean Technology. Science 305 (5680), 75-

78. 



 

161 

 

Prodehl, C., Ritter, J.R.R., Mechie, J., Keller, G.R., Khan, M.A., Jacob, B., Fuchs, K., Nyambok, 

I.O., Obel, J.D., Riaroh, D., 1997. The KRISP 94 lithospheric investigation of southern 

Kenya – the experiments and their main results. Tectonophysics 278, 121-147. 

Prudêncio, M.I., Dias, M.I., Waerenborgh, J.C., Ruiz, F., Trindade, M.J., Abad, M., Marques, R., 

Gouveia, M.A., 2011. Rare earth and other trace and major elemental distribution in a 

pedogenic calcrete profile (Slimene, NE Tunisia). Catena 87, 147-156. 

Quade, J., Cerling, T.E., Bowman, J.R., 1989. Systematic variations in the carbon and oxygen 

isotopic composition of pedogenic carbonate along elevation transects in the southern 

Great Basin, United States. Geological Society of America Bulletin 101, 464-475. 

Quade, J., Cerling, T.E., 1995. Expansion of C4 grasses in the Late Miocene of Northern 

Pakistan: evidence from stable isotopes in paleosols. Palaeogeography, 

Palaeoclimatolgoy, Palaeoecology 112, 91-116. 

Quinn, R.L., Lepre, C.J., Feibel, C.S., Wright, J.D., Mortlock, R.A., Harmand, S., Brugal, J-P., 

Roche, H., 2013. Pedogenic carbonate stable isotopic evidence for wooded habitat 

preference of early Pleistocene tool makers in the Turkana Basin. Journal of Human 

Evolution 65, 65-78. 

Rabideaux, N.M., Deocampo, D.M., Potts, R., Behrensmeyer, A., Lowenstein, T.K., Renaut, 

R.W., Owen, R.B., Cohen, A.S., 2015. Zeolitic Alteration in saline, alkaline paleolake 

basins in the Southern Kenya Rift based on analysis of minerals from Koora Plain (ODP) 

and Lake Magadi (HSPDP) Core Samples. In Rosen, M.R., et al., (Eds.), Sixth 

International Limnogeology Congress—Abstract Volume, Reno, Nevada, June 15-19, 

2015: U.S. Geological Survey Open-File Report 2015-1092, pp. 173-174. 

Raidla, V., Kirismäe, K., Vaikmäe, R., Kaup, E., Martma, T., 2012. Carbon isotope systematics 

of the Cambrian-Vendian aquifer system in the northern Baltic Basin: Implications to the 

age and evolution of groundwater. Applied Geochemistry 27, 2042-2052. 

Ramakrishnan, D., Tiwari, K.C., 1998. REE Chemistry of Arid zone calcrete profiles—A case 

study from the Thar desert, India. Tubitak: T. Jour. of Earth Sciences 7(2), 97-103. 

Read, J.F., 1976. Calcretes and their distinction from stromatolites. In: Walter, M.R. (ed.) 

Stromatolites (Developments in Sedimentology 20). Elsevier, Amsterdam, pp. 55-72. 

Reeves, C.C.Jr., 1975. Calcrete (caliche); its origin, morphology, and developmental history. 

AAPG Bulletin 59, 920-921. 

Renaut, R.W., 1982. Late Quaternary geology of the Lake Bogoria fault-trough, Kenya Rift 

Valley. Unpublished PhD thesis, University of London, 498pp. 

Renaut, R.W. Tiercelin, J-J., 1994. Lake Bogoria, Kenya Rift valley; a sedimentological 

overview. Special Publication – Society for Sedimentary Geology 50, 101-123.  



 

162 

 

Renaut, R.W., 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and 

associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. 

Sedimentology 40, 271-301. 

Renaut, R.W., Owen, R.B., Lowenstein, T.K., 2013. The recent sediments and hydrochemistry of 

Nasikie Engida; a perennial lake fed by hot springs in the semi-arid Magadi Basin, 

southern Kenya Rift valley. Abstracts – Colloquium of African Geology [CAG] 24, 111. 

Renaut, R.W., Ego, J., Tiercelin, J.-J., Le Turdu, C., Owen, R.B. 1999. Saline, alkaline 

palaeolakes of the Tugen Hills-Kerio Valley region, Kenya Rift Valley. In: Banham, P. 

and Andrews, P. (Eds.) Late Cenozoic Environments and Hominid Evolution: A Tribute 

to Bill Bishop. Geological Society, London, p. 41-58. 

Renaut, R.W., Tiercelin, J.J. Owen, R.B., 1986. Mineral precipitation and diagenesis in the 

sediments of the Lake Bogoria basin, Kenya Rift Valley. In Frostick, L.E. et al. (Eds.) 

1986, Sedimentation in the African Rifts, Geological Society, London, Special 

Publications 25, 159-175 

Retallack, G.J., Greaver, T., Jahren, A.H., 2007. Return to Coalsack Bluff and the Permian-

Triassic boundary in Antarctica. Global and Planetary Change 55, 90-108. 

Retallack, G.J., 2004. Pedogenic carbonate proxies for amount and seasonality of precipitation in 

paleosols. Geology 33, 333-336. 

Retallack, G.J.,Wynn, J.G., Benefit, B.R., McCrossin, M.L., 2002. Palaeosols and 

palaeoenvironments of the middle Miocene, Maboko Formation, Kenya. Journal of 

Human Evolution 42, 659-703. 

Retallack, G.J., 1994. The environmental factor approach to the interpretation of paleosols. In R. 

Amundson, J. Harden and M. Singer (Eds.), Factors in soil formation – a fiftieth 

anniversary perspective. Special Publication of the Soil Science Society of America, 

Madison, 33, 31-64. 

Roberts, N., Taieb, M., Barker, P., Damnati, B., Icole, M., Williamson, D., 1993. Timing of the 

Younger Dryas event in East Africa from lake-level changes. Nature 366, 146-148. 

Roberts, E.M., O’Connor, P.M., Stevens, N.J., Gottfried, M.D., Jinnah, Z.A., Choh, A.M., 

Armstrong, R.A., 2010. Sedimentology and depositional environments of the Red 

Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into 

Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. 

Journal of African Earth Sciences 57, 179-212. 

Roberts, E.M., O’Connor, P.M., Gottfried, M.D., Stevens, N., Kapalima, S., Ngasala, S., 2004. 

Revised stratigraphy and age of the Red Sandstone Group in the Rukwa Rift Basin, 

Tanzania. Cretaceous Research 25, 749-759. 



 

163 

 

Robinson, S.A., Andrews, J.E., Hesselbo, S.P., Radley, J.D., Dennis, P.F., Hardin, I.C., Allen, P., 

2002. Atmospheric pCO2 and depositional environment from stable-isotope geochemistry 

of calcrete nodules (Barremian, Lower Cretaceous, Wealden Beds, England). Journal of 

the Geological Society, London 159, 215-224. 

Röhricht, C., 1999. Lithologie und Genese der Chertserien des Magadibeckens, Kenya. 

Dissertation, Univ Göttingen. 

Rowe, P.J., Maher, B.A., 2000. ‘Cold’ stage formation of calcrete nodules in the Chinese Loess 

Plateau: evidence from U-series dating and stable isotope analysis. Palaeogeography, 

Palaeoclimatology, Palaeoecology 157, 109-125. 

Saggerson, E.P., 1952. Government of Kenya; Ministry of Commerce and Industry, Geological 

Survey of Kenya; Geology of the Kisumu District, Degree Sheet 41, NE Quarter. Report 

No. 21, 1952. 

Sakai, T., Saneyoshi, M., Tanaka, S., Sawada, Y., Nakatsukasa, M., Mbua, E., and Ishida, M., 

2010. Climate shift recorded at around 10 Ma in Miocene succession of Samburu Hills, 

northern Kenya Rift, and its significance. Geological Society, London, Special 

Publications, 342, 109-127.  

Schmalz, R.F., 1971. Formations of beachrock at Eniwetok Atoll. In, Bricker, O.P., (Ed.), 

Carbonate Cements. Johns Hopkins Press, Baltimore, pp. 17-24. 

Scott, J.J., 2010. Saline lake ichnology: Composition and distribution of Cenozoic traces in the 

saline, alkaline lakes of the Kenya Rift Valley and Eocene Green River Formation, 

U.S.A. Unpublished PhD Thesis. University of Saskatchewan, Saskatoon, Saskatchewan. 

526 pp. 

Seegers, L. Tichy, H., 1999. The Oreochromis alcalicus flock (Teleostei: Cichlidae) from lakes 

Natron and Magadi, Tanzania and Kenya, with descriptions of two new species. 

Ichthyological Exploration of Freshwaters 10, 97–146. 

Shipman, P., Potts, R., Pickford, M., 1983. Lainyamok, a new middle Pleistocene hominid site. 

Nature 306, 365-368. 

Singh, B.P., Lee, Y.I., Pawar, J.S.,  Charak, R.S., 2007. Biogenic features in calcretes developed 

on mudstone: Examples from Paleogene sequences of the Himalaya, India. Sedimentary 

Geology 201, 149-156. 

Smith, J.J., Platt, B.F., Ludvigson, G.A., Thomasson, J.R., 2011. Ant-nest ichnofossils in 

honeycomb calcretes, Neogene Ogallala Formation, High Plains region of western 

Kansas, U.S.A. Palaeogeography, Palaeoclimatoloy, Palaeoecology 308, 383-394.. 

 



 

164 

 

Soil Classification Working Group, 1998. The Canadian System of Soil Classification, 3rd ed. 

Agriculture and Agri-Food Canada Publication 1646, 187 pp. 

Soil Survey Staff, 1999. Soil taxonomy: A basic system of soil classification for making and 

interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. 

Department of Agriculture Handbook 436. 

Spoor, F., Leakey, M.G., Gathogo, P.N., Brown, F.H., Anton, S.C., McDougall, I., Kiarie, C., 

Manthi, F.K., Leakey, L.N., 2007. Implications of new early Homo fossils from Ileret, 

east of Lake Turkana, Kenya. Nature 448, 688-691. 

Stokes, M., Nash, D.J., Harvey, A.M., 2007. Calcrete ‘fossilisation’ of alluvial fans in SE Spain: 

The roles of groundwater, pedogenic processes and fan dynamics in calcrete 

development. Geomorphology 85, 63-84. 

Strong, G.E., Giles, J.R.A., Wright ,V.P., 1992. A Holocene calcrete from North Yorkshire, 

England: implications for interpreting palaeoclimates using calcretes. Sedimentology 39, 

333-347. 

Sun, S.-s., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: 

implications for mantle composition and processes. Geological Society, London, Special 

Publications 42, 313-345. 

Surdam, R.C., Eugster, H.P., 1976. Mineral reactions in the sedimentary deposits of the Lake 

Magadi region, Kenya. Geological Society of America Bulletin 87, 1739-1752. 

Talbot, M.R., 1990. A review of the palaeohydrological interpretation of carbon and oxygen 

isotopic ratios in primary lacustrine carbonates. Chemical Geology (Isotope Geoscience 

Section) 80, 261-279. 

Tallon, P.W., 1978.  Geological setting of the hominid fossils and Acheulian artifacts from the 

Kapthurin Formation, Baringo District, Kenya. In Bishop, W.W. (Ed.), Geological 

background to fossil man; recent research in the Gregory Rift valley, East Africa. Scott. 

Acad. Press: Edinburgh, United Kingdom. pp 361-373. 

Talma, A.S., Netterberg, F., 1983. Stable isotope abundances in calcretes. Geological Society, 

London, Special Publications 11, 221-233. 

Tandon, S.K., Andrews, J.E., 2001. Lithofacies associations and stable isotopes of palustrine and 

calcrete carbonates: examples from an Indian Maastrichtian regolith. Sedimentology 48, 

339-355. 

Tanner, L.H., 2010. Continental carbonates as indicators of paleoclimate. In A.M. Alonso-Zarza 

and L. Tanner (Eds.), Carbonates in Continental Settings: Facies, Environments and 

Processes. Developments in Sedimentology 61, Elsevier. Oxford. 180-206. 



 

165 

 

Tarits, C., Renaut, R.W., Tiercelin, J-J. Hérissé, Cotton, J., Cabon, J-Y., 2006. Geochemical 

evidence of hydrothermal recharge in Lake Baringo, central Kenya Rift Valley. 

Hydrological Processes 20, 2027-2055. 

Taylor, S.R. McLennan, S.M., 1986. The chemical composition of the Archaean crust. In 

Dawson et al. (Eds.) The Nature of the Lower Continental Crust, Geological Society 

Special Publication No. 24, pp. 173-178. 

Tichy H., Seegers L., 1999, The Oreochromis alcalicus flock (Teleostei: Cichlidae) from Lakes 

Natron and Magadi, Tanzania and Kenya, a model for the evolution pf "new" species 

flocks in historical times? Ichthyological Exploration of Freshwaters 10: 147-174 

Tiercelin, J-J., 1986. The Pliocene Hadar Formation, Afar depression of Ethiopia. In Frostick, 

L.E. et al. (Eds.) 1986, Sedimentation in the African Rifts, Geological Society, London, 

Special Publications, 25. p. 221-240. 

Tiercelin, J.-J., Lezzar, K.E., 2002. A 300 million years history of rift lakes in Central and East 

Africa: an updated broad review. In: Odada, E.O., Olago, D.O., (Eds.), The East African 

Great Lakes: Limnology, Paleolimnology and Biodiversity 12. Advances in Global 

Change Research, pp. 3-60. 

Tiercelin, J.-J., Schuster, M., Roche, H., Brugal, J.-P., Thuo, P., Prat, S., Harmand, S., Davtian, 

G., Barrat, J.-A., Bohn, M., 2010. New considerations on the stratigraphy and 

environmental context of the oldest (2.34 Ma) Lokalalei archaeological site complex of 

the Nachukui Formation, West Turkana, northern Kenya Rift. Journal of African Earth 

Sciences 58, 157-184. 

Trauth, M.H., Maslin, M.A., Deino, A.L., Junginger, A., Lesoloyia, M., Odada, E.O., Olago, 

D.O., Olaka, L.A., Strecker, M.R., Tiedemann, R., 2010. Human evolution in a variable 

environment: The amplifier lakes of Eastern Africa. Quaternary Science Reviews, 29, 

2981-2988. 

Trump, E.C., 1967. Vegetation. In Morgan, W.T.W., Ed., Nairobi: City and Region. Oxford 

University Press, pp. 39-47. 

Tuite, C.H., 1981. Standing crop densities and distribution of Spirulina and benthic diatoms in 

East African alkaline saline lakes. Freshwater Biology 11, 345-360. 

Verrecchia, E.P., 1996. Morphometry of microstromatolites in calcrete laminar crusts and a 

fractal model of their growth. Mathematical Geology 28, 87-109 

Verrecchia, E.P., Freytet, P., Verrecchia, K.E., Dumont, J-L., 1995. Spherulites in calcrete 

laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation. 

Journal of Sedimentary Research, A65: 690-700.  



 

166 

 

Verrecchia, E.P., Dumont, J-L., 1996. A Biogeochemical Model for Chalk Alteration by Fungi in 

Semiarid Environments. Biogeochemistry 35, 447-470.  

Vincens, A., Casanova, J., 1987. Modern background of Natron-Magadi basin (Tanzania-

Kenya): physiography, climate, hydrology and vegetation. Sciences Géologiques Bulletin 

40, 9-21. 

Vincens, A., Bonnefille, R., Buchet, G., 1990. Étude palynologique du sondage Magadi NF1 

(Kenya). Implications paléoclimatiques. Geobios 24, 549-558. 

Vousdoukas, M.I., Velegrakis, A.F., Plomaritis, T.A., 2007. Beachrock occurrence, 

characteristics, formation mechanisms and impacts. Earth-Science Reviews 85, 23-46. 

Wang, Y., Nahon, D., Merino, E., 1994. Dynamic model of the genesis of calcretes replacing 

silicate rocks in semi-arid regions. Geochimica et Cosmochimica Acta 58, 5131-5145. 

Watson, A. Nash, D., 1997. Desert crusts and varnishes, In: Thomas, D.S.G. (Ed.) Arid Zone 

Geomorphology: Process, Form and Change in Drylands. Chichester: John Wiley & 

Sons, pp. 69–107. 

Walsh, J., Dodson, R. G., 1969. Geology of Northern Turkana, degree sheets 1, 2, 9, and 10 (No. 

82). Geological Survey of Kenya. 

White, J.C., Espejel-García, V.V., Anthony, E.Y., Omenda, P., 2012. Open system evolution of 

peralkaline trachyte and phonolite from the Suswa volcano, Kenya rift. Lithos 152, 84-

104.. 

Williamson, P.G., Savage, R.J.G., 1986. Early rift sedimentation in the Turkana basin, northern 

Kenya. In Frostick, L.E. et al. (Eds.) 1986, Sedimentation in the African Rifts, Geological 

Society Special Publication No. 25, pp. 267-283. 

Williamson, D., Taieb, M., Damnati, B., Icole, M., Thouveny, N., 1993. Equatorial extension of 

the younger Dryas event: rock magnetic evidence from Lake Magadi (Kenya). Global 

and Planetary Change 7, 235-242. 

Wilson, P.J., Wood, C.M., Walsh, P.J., Bergman, A.N., Bergman, H.I., Laurent, P., White, B.N., 

2004. Discordance between genetic structure and morphological, ecological, and 

physiological adaptation in Lake Magadi Tilapia. Physiological and Biochemical 

Zoology 77, 537-555.  

Wright, V.P., 1986. The role of fungal biomineralization in the formation of Early Carboniferous 

soil fabrics. Sedimentology 33, 831-838.  

Wright, V.P., Platt, N.H., Wimbledon, W.A., 1988. Biogenic laminar calcretes: evidence of 

calcified root-mat horizons in paleosols. Sedimentology 35, 603-620. 



 

167 

 

Wright, V.P., 1989. Terrestrial stromatolites and laminar calcretes: a review. Sedimentary 

Geology 65, 1-13. 

Wright, V.P., 2007. Calcrete. In: Nash, D.J., McLaren, S.J., (Eds.), Geochemical Sediments and 

Landscapes. Blackwell, Oxford, p. 10-45. 

Wright, V.P., 1990. A micromorphological classification of fossil and Recent calcic and 

petrocalcic microstructures. Developments in Soil Science 19, 401-407. 

Wright, V.P., and Tucker, M.E., 1991. Calcretes: An introduction. In: Wright, V.P., and Tucker, 

M.E., (Eds.) Calcretes. Reprint Series Volume 2 of the International Association of 

Sedimentologists. Blackwell, Oxford, p. 1-22. 

Wright, V.P., Platt, N.H., Marriott, S.B., Beck, V.H., 1995. A classification of rhizogenic (root-

formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain 

and Upper Cretaceous of southern France. Sedimentary Geology 100, 143-158. 

Wynn, J.G., 2007. Carbon isotope fractionation during decomposition of organic matter in soils 

and paleosols; impliucations for paleoecological interpretations of paleosols. 

Palaeogeography, Palaeoclimatology, Palaeoecology 251, 437-448. 

Wynn, J.G., Roman, D.C., Alemseged, Z., Reed, D., Geraads, D., Munro, S., 2008. Stratigraphy, 

depositional environments, and basin structure of the Hadar and Busidima Formations at 

Dikika, Ethiopia. Geological Society of America Special Papers, 446, 87-118. 

Wynn, J.G., Retallack, G.J., 2001. Paleoenvironmental reconstruction of middle Miocene 

paleosols bearing Kenyapithecus and Victoriapithecus, Nyakach Formation, southwestern 

Kenya. Journal of Human Evolution 40, 263-288. 

Yaalon, D.H., 1988. Saharan dust and desert loess; effect on surrounding soils. In Petit-Maire, N. 

(Ed.), Deserts; past and future evolution; First annual meeting of the International 

Geological Correlation Program. CNRS, Lab. Geol. Quaternaire, Marseilles, France, p. 

199-201. 

Yan, J.P., Hinderer, M., Einsele, G., 2002, Geochemical evolution of closed-basin lakes: general 

model and application to Lakes Qinghai and Turkana. Sedimentary Geology 148, 105-

122. 

Yuretich, R.F., 1982. Possible Influences upon Lake Development in the East African Rift 

Valleys, Journal of Geology 90, 329-337. 

Yuretich, R.F., Cerling, T.E., 1983. Hydrogeochemistry of Lake Turkana, Kenya: Mass balance 

and mineral reactions in an alkaline lake. Geochimica et Cosmochimica Acta 47, 1099-

1109.   



 

168 

 

Zhou, J., Chafetz, H.S., 2009. Biogenic caliches in Texas: The role of organisms and effect of 

climate. Sedimentary Geology 222, 207-225. 


