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Abstract 
 
Invasive crested wheatgrass in the Grasslands National Park cause biodiversity decrease and 
irreparable damage to prairie ecosystems. Controlling and managing invasive species require 
new methods to map and monitor their presence and spread. Traditional mapping techniques 
based on field observation and data collection are considered time-consuming, subjective, and 
always very limited in spatial extent and economically for relatively large areas. Remote sensing 
techniques provide a potential solution to this problem. However, previous work has been 
limited because of low spatial and spectral resolution of some data sources. The principal 
challenges in using remote sensors to detect invasive species lie in the spectral similarity across 
species and invasive species often mixing with the native species. This paper discusses how 
SPOT-5 imagery with 10-m resolution can be used to detect invasive crested wheatgrass in the 
mixed prairie. Several vegetation indices, including Normalized Difference Vegetation Index 
(NDVI), Normalized Difference Moisture Index (NDMI), Soil Adjusted Vegetation Index 
(SAVI), Modified Soil Adjusted Vegetation Index (MSAVI), Simple Ratio (SR), and 
Triangulated Vegetation Index (TVI), were initially selected and their spectral separability in 
separating crested wheatgrass and natives was examined. A new vegetation index, ExpNDMI, 
was derived from NDMI by incorporating an adjustment factor (L) to enlarge the difference 
among classes; and, further, performing a exponential transformation upon the modified index to 
suppress the variations in all classes. An artificial Neural Netwok (ANN) classifier based on 
back propagation (BP) algorithm was employed to classify crested wheatgrass and native 
grasslands in this study. The results indicated that ExpNDMI could significantly increase the 
spectral separability between crested wheatgrass and native grasslands and improve the 
classification accuracy. The highest overall accuracy of 79% was obtained. Band/VI combination 
with ExpNDMI improved the classification accuracy by more than 4% than the combination 
without ExpNDMI. The result of this study suggests that single-date SPOT 5 image with 10 m 
resolution could be useful in discriminating crested wheatgrass from natives in the mixed 
grasslands, and thus may reduce the dependence on the multitemporal data.  



Introduction 
 
Approximately one quarter of North America’s remaining mixed-grass prairie lies within the 
Canadian Provinces of Alberta and Saskatchewan. Plants fix carbon and contribute most to the 
floral diversity and net primary productivity of the region (Andrew et al., 2003). However, 
Invasive grasses, or non-native species, have threatened rare and endangered plant and animal 
species, and altered biodiversity and ecosystem function on the prairie (Bakker et al., 2003). 
Invasive species preempt native grass establishment and have been cited as the greatest obstacle 
to native grass restoration (Bakker et al., 2003). Invasive plant species result in economic and 
biologic detriment to rangeland and riparian ecosystems across the western United States and 
Canada. For instance, in the State of Idaho, the United States, $10 millions per year is spent in 
control measures alone. This estimate does not include economic impacts of invasive plants to 
regional industries such as agriculture and livestock, which cost over $137 billion per year in the 
U.S. (Lass et al., 2005).  
 
Crested wheatgrass (Agropyron cristatum) is a long-lived, cool season, introduced grass with 
extensive root systems, and is adapted to a wide variety of soils and can cope with severe 
drought stress (Hanks et al., 2005). This species can withstand weed competition and tolerates 
insect depredation. These biological and ecological Characteristics of crested wheatgrass made it 
easily established in the cold, semiarid climate of the northern Great Plains (Asay et al., 1996). 
Large areas of abandoned croplands in the western U.S. were seeded with crested wheatgrass 
during the 1930’s (Hanks et al., 2005). More than a million hectares were seeded with this 
species in both Montana and Canada prairie (Hanks et al., 2005). Some of these communities 
have remained virtual monocultures for more than 50 years without apparent successional trends 
(Asay et al., 1999). The widespread crested wheatgrass has invaded native grassland and raised 
concerns regarding its ecological impact. Crested wheatgrass invasion of mixed-grass prairie was 
associated with lower diversity within and among plant communities, and appears to simplify the 
composition of mixed-grass prairie landscapes.  
 
 

 
 

Figure 1. Crested wheatgrass (Agropyron cristatum). 



Monitoring the presence and spread of non-native species will be vital to help the Park managers 
control or remove the invasive species. Traditionally, vegetation mapping and assessment 
techniques have been based primarily on field observation and data collection. These traditional 
mapping and assessment techniques are considered time-consuming, subjective, and always very 
limited in spatial extent and economically for relatively large areas (Peterson et al., 2002). The 
use of the remotely sensed imagery has been demonstrated a cost-effective method to identify 
invasive species of grassland and their spread into the native grasslands. In contrast to 
field-based surveys, imagery can be acquired for all habitats, over a much larger spatial area, and 
in a short period of time (Underwood et al., 2003). 
 
At the early stage, large-scale aerial photographs were used to detect invasive plants (Havens et 
al., 1997; Kotschy et al., 2000; Krumscheid et al., 1998; Lathrop et al., 2003; Rice et al., 2000; 
Warren et al., 2001). The major disadvantage for using aerial photography is only feasible to 
collect data over a relatively small spatial area because of the high cost of image acquisitions 
(Lass et al., 2005). In view of the shortcomings with aerial photography, more and more 
researchers have applied satellite-based imagery, mainly the hyperspectral and multispectral 
images, to detect invasive species from the native plants. The continuous nature of spectra 
inherent to hyperspectral imagery, such as AVIRIS and CASI, can be utilized to differentiate 
vegetation species because the large number of narrow wavebands is able to capitalize on both 
the biochemical and the structural properties of the target invader (Underwood et al., 2003). 
There have been a lot of studies using hyperspectral imagery to map invasive weed species such 
as leafy spurge (O’Neill et al., 2000), Brazilian pepper (Lass et al., 2004), spotted knapweed 
(Lass et al., 2002), and yellow starthistle (Lass and Thill, 2000), and reached satisfactory 
accuracies. Mundt et al. (2005) used hyperspectral imagery to discriminate hoary cress in 
southwestern Idaho, USA, and obtained a maximum producer’s accuracy of 82%. A study 
indicated that spotted knapweed was detectable using hyperspectral data when cover densities 
were greater than 70% and populations were larger than 0.1 ha (Lass et al., 2002). Glenn et al. 
(2005) applied HyMap hyperspectral data with a resolution of 3.5 m to detect leafy spurge, and 
the study demonstrated the ability of high resolution hyperspectral imagery to locate small and 
low percent canopy cover of leafy spurge. These results showed that hyperspectral sensors, 
especially with high resolution, might improve the ability to distinguish between vegetation 
species. Numerous investigators have also worked on developing techniques for using 
multispectral data in invasive species mapping and detection (Zhang et al., 2002; Vrindts et al., 
2002). Peterson (2005) noted that B. tectorum cover was detectable from a single date of Landsat 
Thematic Mapper (TM) imagery. Lass et al. (2005) studied the potential use of SPOT imagery to 
detect an agricultural weed, Ambrosia artemisiifolia L.. The spatial resolution of the latest 
generation of satellites (e.g., IKONOS and QUICKBIRD) can greatly advance detecting and 
mapping of invasive plant populations (Fuller, 2005). Although satellite imagery with higher 
spectral and spatial resolution can be available and mixing of reflectance signals can be avoided 
at a great extent, limited success has been achieved and invasive population could also not be 
detected if it is mixed with other vegetation or too small until the invasive species has reached 



dominance (Lass et al., 2005). 
 
Vegetation in different phenologies exhibits different spectral signature. Most have utilized 
phenologically related measures (phenological differences between species) calculated from 
spectral vegetation indices to distinguish invasive species from native plants using multitemporal 
data and obtained satisfactory accuracy (Underwood et al, 2003; Egbert et al., 1997; Liu et al., 
2002). Repeat images acquired weeks to months apart provide an excellent method of exploiting 
phenological methods of discriminating species. However, combining images of multiple dates 
presents special challenges. Mis-registration or differences in illumination may limit the 
usefulness of multitemporal data sets especially if the data have only a limited number of 
spectral bands. Also, it may not be possible to collect cloud-free data during an optimal period.  
 
Vegetation index (VI) is very useful for detecting invasive plants when they senesces before 
native vegetation. The normalized difference vegetation index (NDVI) is the most recognized 
vegetation index and has been successfully used to predict potential distribution of Dyers woad 
(Isatis tinctoria L.) (Lass et al., 2005) and detect downy brome (Bromus tectorum L.) in 
rangeland (USGS, 2003). However, a fundamental problem with the VI approach for detecting 
species is its lack of generality. The debate over the optimal index of vegetation in arid lands is 
ongoing (Peterson, 2005). Due to similar cellular chemistry and architecture across species, 
vegetation reflectance is generally similar in the visible (VIS) and near-infrared (NIR) 
wavelengths (Cochrane, 2000), and absorption features for live vegetation are often overlapping 
(Schmidt et al., 2003). This situation makes it problematic to use vegetation indices to 
discriminate invasive species from native plants in a heterogeneous landscape (Lawrence et al., 
2006). Therefore, accurate classification at species level is still difficult.  
 
The principal challenges in using remote sensors to detect invasive species lie in the spectral 
similarity across species and invasive species often mixing with the native species. There does 
seem to be very little information on the spectral properties of crested wheatgrass in the scientific 
literature and little literature specifically on using single- data SPOT to map crested wheatgrass 
in mixed prairie. The objectives of this study are to assess the feasibility of discriminating 
crested wheatgrass in the mixed grass prairie using several potential vegetation indices derived 
from single date SPOT data and develop a modified version vegetation index of NDMI that is 
expected to improve the separability in separating the invasive crested wheatgrass from native 
grasses.  
 
 
 
 
 



Methods 

Description of the study area 
 
The study area, Grasslands National Park of Canada (GNP), is located in southwestern 
Saskatchewan near the international border of Canada and United States. The park serves as an 
in situ gene pool to protect part of the biodiversity of the planet. The two separate blocks that 
comprise the park and cover approximately 906.5 sq. km. lie between the villages of Val Marie 
and Killdeer (Fig. 2). This study limited its focus on west block of GNP (GNP annual report, 
1997). 
 
 

 
 
Figure 2. Location of Grassland National Park. 
 
 
The park is characterized by semi-arid climate, gently rolling hills, coulees, badlands, and 
wide-open spaces, with wide areas of grasslands. “Mixed-grass prairie” best describes the 
particular type of grassland associated with the park. The dominant vegetation species include 
needle-and-thread grass, blue grama, June grass, sagebrush, greasewood, prickly pear, cactus, 
creeping juniper, western wheat grass, rose, buckbrush, shrubby cinquefoil, thorny buffalo berry, 
willow, dry land sedges, spikemoss and lichens. However, the Park has also experienced impact 
from invasive plants. At least 24 non-native plant species have been reported in the Park, Most of 
the non-native species are either weedy species associated with surrounding agriculture, or 
species that have been seeded within the boundaries of the Park for agricultural purposes (Peniuk, 
1998). One of the major invasive species, crested wheat grass, is of concern because it is used as 
hay/pasture species and continues to dominate the areas where they were seeded. The potential 
impacts of crested wheatgrass on park resources and adjacent lands include displacement of 

 

 



native species, interference with the function of natural ecosystems, reduction of native plant 
populations, reduction of the quality of wildlife habitat and reduction of total plant cover (Peniuk, 
1998).  
 

Field data collection and remote sensing imagery 
 
Field data collection was performed in later June and early July, 2005. Two hundred sixty one 
(261) point-based field samples were obtained and each field sample was located using a GPS 
(Garmine 76). The sample points were randomly selected from crested wheatgrass and native 
grassland, respectively. Cover percentage, dominant species, and topographic data were collected 
on each point. On each point, only one land cover type was included at the extent of 60 m from 
the point location. Field data were used as training sites and accuracy assessment of 
classification. 
 
A SPOT 5 image (27 July, 2006) was used in this study, which covers the west block of GNP. 
The SPOT 5 image has 4 bands (Green, Red, NIR, and MIR) with a spatial resolution of 10 m. 
The SPOT satellite imagery was georectified to a Universal Transverse Mercator (UTM) 
projection in order to match the field data. Over 30 GPS ground control points and DEM were 
used to correct distortions in raw images with Satellite Orbital Modelling The RMS of the 
registration was controlled to be less than half pixel. The influence of the atmosphere 
degradation was removed and the digital number (DN) of the image was converted to reflectance 
by the radiometric correction. 
 

Vegetation indices selection 

 
Finding a vegetation index that discriminates the species of interest from other species has been 
the focus of many studies (Baret et al., 1989; Broge et al., 2001; Haboudane et al., 2002). Even 
in the literature, the bands and indices used vary from one study to another. However, it is not 
the purpose of the present study to evaluate the entire suite of vegetation indices reported in the 
literature; rather the focus will be on a few selected indices that have shown to be good 
candidates for the discriminating invasive species. Several broad-band vegetation indices, 
including Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture 
Index (NDMI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation 
Index (MSAVI), Simple Ratio (SR), and Triangulated Vegetation Index (TVI), were selected for 
this study based on their performance demonstrated in the previous studies (Davidson et al., 2003; 
Baret et al., 1989; Huete, 1988). These indices are based on either the combination of 
chlorophyll absorption band (Red band) and NIR band located in the high reflectance plateau of 
vegetation canopies (NDVI, SAVI, MSAVI, and SR), or NIR and MIR band located within a 
region of water absorption (NDMI), or chlorophyll reflection band (green band) and chlorophyll 
absorption red band (TVI). The calculation formulation of these proposed vegetation indices are 
listed in table 1 (L represents the soil reflectance factor; a constant of 0.5 was used for this study 



area).  
 

Table 1. Vegetation Indices Used for Discriminating Crested Wheatgrass. 
 

VI Formula 
NDVI (NIR-Red)/(NIR+Red) 
NDMI (NIR-MIR)/(NIR+MIR) 
SAVI ((1 + L)*(NIR – Red)) / (NIR + Red + L) 

MSAVI ((NIR – Red) / (NIR + Red + L))*(1+L) 
SR Red / NIR 
TVI TVI = 0.5 * (120 * (NIR – Green)) – (200 * (Red – Green)) 

 
Modifying VI for discriminating crested wheatgrass 

 
The classification of vegetation species using remote sensing data is mostly controlled by the 
spectral variation within species (intra-species) and the spectral variation between species 
(inter-species). However, the spectral separability between invasive and native species presents 
challenges for their accurate classification because the reflectance of vegetation from different 
species is usually very similar (Schmidt et al., 2003). The spectral separability is determined by 
the spectral mean differences between species and variation in the same species (Zhang et al., 
2006). Numerous factors can lead to substantial spectral variance within species, including 
reflectance, absorption, and transmission properties of leaves and canopy, dead material, 
illumination, topography, and soil moisture (Zhang et al., 2006; He, et al., 2006). Some 
researchers have examined several methods, such as wavelet transformation and derivative 
analysis, for reducing spectral variation within species (Zhang et al., 2006). Although the 
derivative of reflectance spectra has been applied to reduce background signals and enhance 
subtle spectral features in detection of vegetation species, some results suggest that it may not be 
optimal for species identification in using hyperspectral data because it does not effectively 
decrease the spectral variation within species (Zhang et al., 2006). Zhang et al. (2006) found that 
wavelet transform can be capable of reducing variation within species at coarse scale of wavelet 
coefficients and can be a very useful tool for species identification. However, wavelet 
coefficients at fine scales may not be informative for the purpose of identification of vegetation 
species, and wavelet analysis can not enlarge inter-class variability among classes. Thus, a more 
global view of reflectance may be more useful for the identification of vegetation species than 
simply observing the reflectance at finely resolved spectral bands. Also, the specific wavelet 
features and scale may vary for different species and ecosystems (Zhang et al., 2006). 
 
Examining of the spectral curves we found that the largest difference between crested wheatgrass 
and native species occurs in NIR and MIR bands. It means that NDMI, which is calculated from 
the two bands, may be a promising variable to separate the two vegetation types. NDMI has 
proven to be a better greenness measure and showed less saturation effects when the LAI /living 



biomass reaching higher level (Saltz et al., 1999). However, the difference of NDMI between the 
two vegetation types is limited and not large enough to distinctly separate crested wheatgrass and 
native grasses because of  higher variances. For the purpose of reducing intra-class variations 
and enlarging inter-class difference, an adjustment factor (L) was incorporated to enlarge the 
difference among classes; further, an exponential transformation was performed upon the 
modified index to suppress the variations within class. The exponential NDMI is formulated as 
follows (equation 1): 
 
ExpNDMI=Exp((MIR-NIR)/(MIR+NIR-L))                                      (1) 
 
The difference of ExpNDMI between classes increases with the increasing adjusting factor L, 
while the intra-variation also increases, in spite of their different increasing rates (Fig. 3). In 
order to get the optimal L value, we introduced a simple spectral separability index (SSI, 
equation 2, Bruce et al. (2002)) to assess the spectral separability. SSI takes into account both the 
inter-class and intra-class variability. A higher inter-class variability and smaller intra-class 
variability will result in a larger SSI value. The larger the SSI value, the better the spectral 
separability. In this study, we changed the value of L from 0 to 0.4 at an interval of 0.01 to 
investigate the relationship between the difference of classes and the variations in classes using 
the spectral data within training area, and found L = 0.2 to be the optimal adjustment value that 
obtained the largest SSI (Fig. 4). 
 
SSIij=(Meani-Meanj) 2 *( 1/SDi

2+1/SDj
2)                                         (2) 

SSIij -- spectral separability index between class i and class j 
SD—Standard Deviation 
 



 
Figure 3. Average ExpNDMI + 1 SD (standard deviation) for crested wheatgrass and native 
grasslands vs the change of adjustment factor L. 
 
 

 
Figure 4. Spectral separability index (SSI) vs adjusting factor L. Higher SSI value indicates the 
better separability between native grasslands and crested wheatgrass. 
 
 



Statistic feature analysis 

 
Initial analyses of the reflectance spectra, including the calculations of the mean, standard 
deviation in all bands and VIs, were done on the two classes using the extracted reflectance 
based on the training sites. Because the classification accuracy mainly depends on the spectral 
difference among classes, we focused our analysis on the spectral separability of each band or VI 
on the two classes. The aforementioned SSI was applied to assess the ability of each band or VI 
in distinguishing the vegetation species. Bands or VIs with low separability were excluded as 
input in the classification. 
 

Band selection, classification, and accuracy assessment 

 
The point-based field data were used as training area by buffering 20 meters to represent the four 
pixels of SPOT 5 imagery. Given a number of bands of remotely sensed data and their 
transformations (e.g., vegetation index), it would require a complex algorithm to identify, from 
all the possible combinations, the best band combination for classification. In this study, the 
bands or vegetation indices were selected as inputs for classification based on their spectral 
separability. Bands or VIs with larger SSI value were selected.  
 
An artificial Neural Netwok (ANN) classifier based on back propagation (BP) algorithm was 
employed to classify crested wheatgrass and native grasslands in our study. An ANN can realize 
any arbitrarily complicated, generically nonlinear functional relationship between its input and 
its outputs by superposition of the elementary node functions (Mutanga et al., 2004). The 
advantage of neural network methods is that no prior statistical information is needed about the 
input data, and makes no assumptions about the nature of the data distribution and is not, 
therefore, biased in their analysis (Kulkarni, 1998). The effectiveness of artificial neural 
networks to solve highly non-linear problems such as land-cover classification based on 
multispectral imagery has been demonstrated (Mutanga et al., 2004).  
 
In order to investigate the ability of ExpNDMI in discriminating crested wheatgrass from native 
grasslands, classifications using band combinations with ExpNDMI and without ExpoNDMI 
were tested with BP-ANNs. Also, an unsupervised automated classification method was applied 
first to generate a grasslands “mask” for further classification of crested wheatgrass and native 
grassland, which might reduce the calculation time and the uncertainty of classification caused 
by other land covers. 
 

One hundred sixty seven (167) plots were used in post-classification accuracy assessment. Three 
types of accuracies were calculated: overall accuracy, producer’s accuracy, and user’s accuracy. 
The three types of accuracy were compared for different band/VI combinations. 

 



Results and discussions  
 

Spectral separability between native grasslands and crested wheatgrass 
 
Fig. 5 shows atmospherically corrected reflectance of native grasslands and crested wheatgrass 
by four SPOT bands and different VIs. Similar spectral pattern is found for the two vegetation 
types, e.g., higher reflectance in NIR band and lower reflectance in Red band. On average, 
crested wheatgrass has lower reflectance in all bands comparing to the native grasslands, despite 
the very small difference occurring in MIR band. This may be due to the lower photosynthetic 
rates and stomata1 conductance of crested whatgrass than the native grasses in the summer 
months (Nowak et al., 1986), while it coincides with the image acquisition date of this study. 
Crested wheatgrass is a cool season plant, and it tends to go semi-dormant during midsummer 
months. The spectral reflectance features of crested wheatgrass and native grasslands may reflect 
phenological and compositional differences in the vegetation. Comparing to native species, there 
are more abundant senesced vegetation in crested wheatgrass pastures (e.g., litters. He, et al., 
2006) that probably contributes to the lower reflectance (Thomson et al., 1990). Also, crested 
wheatgrass has rougher surface than native range, which may lead to the lower reflectance. 
 
 

 
Figure 5. Reflectance mean and 1st SD (standard deviation, indicated in bold line) in SPOT 
bands and VIs for crested wheatgrass and native grasslands. 
 
 
With regard to the differences between single bands for the two class of vegetation, the greatest 
reflectance difference was found in the NIR (Fig. 6) and it showed the maximum spectral 



separability in the four SPOT bands. Green band also show better separability in comparison to 
red and MIR bands. This may be caused by the green band to be more sensitive than the red band 
in detecting leaf chlorophyll variation. Differences between the two vegetation types in the NIR 
band may be due to their differences in plant photosynthetic rates; —NIR wavelengths are more 
reflected by healthy, photosynthetically active vegetation, while crested wheatgrass has lower 
photosynthetic rates in the midsummer (Nowak et al., 1986). NDMI, which is calculated from 
NIR and MIR, showed the highest separability between native grassland and crested wheatgrass 
among the initially selected VIs. This is due to the greatest spectral difference in the NIR and 
similar reflectance in MIR for the two vegetation types. The limited success of other indices is 
related to the fact that the reflectances in all bands are similar for the two vegetation types. The 
ExpNDMI, which is modified from NDMI, exhibits largest separability among the VI group and 
all single SPOT bands. Comparing to the NDMI, ExpNDMI greatly increased the spectral 
separability because it can significantly reduce the intra-species variation and enlarge the 
inter-species variation. It would be expected to increase the classification accuracy of invasive 
crested wheatgrass. Some VIs, such as TVI, revealed significant overlap in the spectral space, 
and therefore, reached very lower separability in the discriminating of crested wheatgrass from 
natives. Separablity has helped in selecting proper bands and VIs to be included in the 
classification of crested wheatgrass. Bands or VIs with lower separability were excluded from 
the classification inputs. 
 
 

 
 
Figure 6. SSI for SPOT bands and VIs on separability of crested wheatgrass and native grasses. 
 
 
 
 



Classification and accuracy assessment 

 
Based on the spectral separability analysis, bands and vegetation indices were selected for which 
the native grasses and crested wheatgrass were spectrally different. The classification was 
performed using two combinations: one with the SSI greater than 4.0 (including Green, NIR 
NDMI, SAVI, MSAVI, and ExpNDMI) and another with the SSI greater than 8.0 (including NIR, 
NDMI, MSAVI, and ExpNDMI ). An artificial Neural Netwok (ANN) classifier based on Back 
Propagation (BP) algorithm was applied to classify crested wheatgrass and native grasslands. 
One input Layer (2 nodes for per channel), two hidden Layer (8 nodes for per layer), and one 
output Layer (2 nodes) were designed for the neural network, and sigmoid function was used as 
activation function. For the purpose of investigating the performance of ExpNDMI in the 
discriminating crested wheatgrass, another two combinations were tested. One was with 
ExpNDMI (Green, NIR, SAVI, MSAVI, and ExpNDMI ) and another was without ExpNDMI, 
while substituted by NDMI (Green, NIR, SAVI,MSAVI, and NDMI ).  
 

Table 2. Classification Accuracy for Different Combinations (ANNs Classifier). 
 

Band/VI combinations Producer's 
accuracy 

User's 
accuracy 

Overall 
Accurac

y 

Overall 
Kappa 

Natives 81.1% 85.1% Green, NIR, NDMI 
SAVI, MSAVI, 
ExpNDMI 

CW 76.6% 75.0% 
79.4% 0.568% 

Natives 86.8% 80.7% NIR, NDMI, MSAVI 
ExpNDMI CW 65.6% 71.0% 

78.8% 0.537% 

Natives 82.1% 81.3% Green, NIR, SAVI, 
MSAVI ExpNDMI CW 68.8% 69.8% 

77.1% 0.510% 

Natives 82.1% 76.3% Green, NIR, NDMI, 
SAVI MSAVI CW 57.8% 66.1% 

72.9% 0.409% 

Note: CW=crested wheatgrass 
 
An evaluation of classifications using increasing numbers of bands and VIs showed an 
improvement in overall classification accuracy and overall kappa (Table 2). Combination of 
Green, NIR, NDMI, SAVI, MSAVI, and ExpNDMI obtained the highest overall accuracy of 
79%. Due to the lack of previous research results, we could not conduct the comparison with 
other studies related to the crested wheatgrass detection. However, we may believe this is a 
higher accuracy in the case of using single date imagery. The misclassification between natives 
and crested wheatgrass could be attributed to many factors. The major cause could be the 
spectral similarity between the two vegetation types. Although SPOT 5 image with higher spatial 
resolution was applied in this study, its lower spectral resolution could not discern the subtle 
difference between the two vegetation types, especially when they are mixed with each other. 



 
The result of classification using combination with ExpNDMI layer showed that ExpNDMI 
could improve the classification accuracy by more than 4% than the combination without 
ExpNDMI. This result indicates that ExpNDMI is much better to reflect the spectral difference 
between crested wheatgrass and native grasslands than NDMI. ExpNDMI had the highest 
separability among all the bands and VIs because it can significantly suppress the intra-class 
variation and enlarge the inter-class variation. 
 
A visual inspection of the crested wheatgrass classification map (Fig. 7) indicates that the crested 
wheatgrass was over-classified, especially in the low-left of the map. The area is almost 
exclusively native prairie. This may be due to the reflectance of plants in this area to be very 
similar to that of crested wheatgrass community. This result is consistent with the previous 
studies that indicated that there is a tendency for the invasive species to be over-classified, that is, 
more pixels are identified as invasive species than actually exist (Lass et al., 2002).  
 

 

 
 
 
 
 
 
 

 
 

 
Figure 7. Crested wheatgrass classification map. 

 
 
We acquired a digital vegetation map of the GNP region from Parks Canada. This map was 
created only for lands within the GNP boundary for which the Park held title in 1993. The 
inventory was initiated to fulfill requirements of the GNP resource management program, 
particularly the formulation and implementation of a management plan for the Park. The 
resulting vegetation map was based on the interpretation of 1:12,500 scale airphotos (collected 
1982) and a subsequent intensive field survey (carried out in 1993). 

 



 
By comparing the classifying map (Fig. 7) with the previous digital vegetation map, we can find 
the striking difference between the two maps and a great expansion of crested wheatgrass since 
then, in spite of the fact that the crested wheatgrass was over-classified in this study. 
 
Conclusions 

 
In this research we assess several selected vegetation indices applied in discriminating crested 
wheatgrass from natives in mixed grass prairie. The results showed that the single-date SPOT 5 
image used in this study can classify crested wheatgrass with 79% of overall accuracy, and the 
proposed ExpNDMI can reduce intra-group variation and enlarge inter-group variation, further, 
improve the ability to discriminate invasive crested wheatgrass from natives at 4% of the overall 
accuracy. We speculate that the accuracy can be improved with a multi-temporal approach, 
especially an image from early spring. Results of this study demonstrated that previous 
vegetation indices have limitations in discriminating the two plant types and ExpNDMI obtained 
better separability than other selected VIs for the two grass types, and could increase 
classification accuracy of crested wheatgrass and native grasslands in the study area. Single date 
SPOT 5 imagery with proper acquisition season could be useful in discriminating crested 
wheatgrass from natives in the mixed grasslands, and thus may reduce the dependence on the 
multitemporal data, which may be difficult or impossible to obtain cloud-free data during an 
optimal period.  
 
Since vegetation reflectance depends on a complex interaction of several internal and external 
factors that may vary greatly in time and space and from one species to another, no universal 
spectral pattern between two vegetation species can be expected to exist. Consequently, this 
pattern will be site-, time- and species-specific, and therefore not directly applicable for 
large-scale operational use. Although higher spatial and spectral resolution is desirable in order 
to avoid mixing of reflectance signals originating from different vegetation types, the spectral 
similarity at species level is still the greatest challenge in discriminating invasive species. 
Therefore, the methods and the new developed vegetation index, ExpNDMI, in this research 
were limited to our study area. 
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