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ABSTRACT

The research on call centres has attracted many researchers from different disciplines re-
cently. In this thesis, we focus on call centre modelling, analysis and design. In terms of
modelling, traditionally call centres have been modelled as single-node queueing systems.
Based on the Semiopen Queueing Network (SOQN) model proposed by Srinivasan et al.
[42], we propose and study SOQN models with balking and abandonment (both expo-
nential and general patience time distributions). In addition, we study the corresponding
single-node queueing systems and obtain new results. For each model, we study the queue
length distribution, waiting time distribution and the related performance measures. To
facilitate the computation, we express the performance measures in terms of special func-
tions. In terms of call centre design, we develop a design algorithm to determine the
minimal number of CSRs (S) and trunk lines (N) to satisfy a given set of service level

constraints.

The explicit expressions for performance measures obtained allow for theoretical analysis
of the performance measures. For example we prove monotonicity and convexity proper-
ties of performance measures for the M/M/S/N and M/M/S/N + M models. We also
study the comparison of different patience time distributions for the M /M /S/N +G model.

We provide numerical examples for each model and discuss numerical results such as mono-
tonicity properties of performance measures. In particular, we illustrate the efficacy of our
design algorithm for various models including patient, balking and abandonment models.
The impact of model parameters on the design of call centres is also discussed based on
the numerical examples. The results are computed using Matlab, where special functions

are available.
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CHAPTER 1

INTRODUCTION

The research on call centres has attracted many researchers from different disciplines.
Mandelbaum [32] provides a comprehensive research bibliography with abstracts including
disciplines such as Operations Research, Statistics, Psychology, Information Technology,
Industrial Engineering etc. The research on call centres is reviewed and extended in the
tutorial and survey paper by Gans et al. [20]. We will focus on call centre modelling,
analysis and design in this thesis. In this chapter, we first give a definition of call centres
and briefly explain the operational process of an inbound call centre. This serves as a
background introduction to our study in this thesis. Then we describe two main types of
research problems in call centres that we will address. We conclude this chapter with an

outline and the main contributions of the thesis.

1.1 Introduction to call centres

1.1.1 What is a call centre?

A call centre is a department within a company or a third-party organization that answers
incoming telephone calls from customers (often for the purposes of product support), or
that makes outgoing telephone calls to customers (for example, tele-marketing). If such a
department also responds to letters, faxes, e-mails, and similar written correspondence, it
is called a contact centre.

A call centre may only handle incoming telephone calls initiated by customers (inbound
calls) or only make outgoing telephone calls to customers (outbound calls). There are also
call centres who deal with both types of calls. In most contact centres inbound calls still
form the majority of contacts with customers. Also inbound calls are more time demanding
than other types of contacting manners (like letters or e-mails) when it comes to waiting

times or response times. Therefore in this thesis we only focus on inbound call centres,



Calls who only need service of IVRU Impatient Calls

Figure 1.1: Operational process of an inbound call centre

which only involve dealing with incoming telephone calls from customers.

An inbound call centre contains a collection of CSRs (Customer Service Represen-
tatives) who provide service through talking to customers over telephones. CSRs are
supported by quite elaborate equipment, such as a Private Automatic Branch Exchange
(PABX or PBX) , an Interactive Voice Response Unit (IVRU or VRU), an Automatic
Call Distributor (ACD), and computers, etc. [42]. For details of components and the

operational process of an inbound call centre, see Figure 1.1.

1.1.2 Operational process of an inbound call centre

Almost everyone has the experience of calling a call centre. In the following we will briefly
describe components and the operational process of an inbound call centre based on the
description in [20]. The basic process is described in Figure 1.1.

When customers want to receive service from a call centre, they dial a special number
provided by the call centre. The Public Service Telephone Network (PSTN) company
then uses the Automatic Number Identification (ANI) number (the phone number from
which the customer dials) and the customer’s Dialed Number Identification Service (DNIS)
number (the special number being dialed) to connect the customer to the PABX privately-
owned by the call centre.

There are telephone lines (often called trunk lines) connecting the PABX to PSTN. If a
trunk line is free, the customer seizes it. Otherwise the customer will receive a busy signal

and will be rejected. We will say this customer is blocked. Once the call is accepted, the



customer will be connected through the PABX to the IVRU. Usually the IVRU provides
several options for customers to choose and may also provide some automatic service for
customers. After interaction with the IVRU, those customers who complete their service
at the IVRU leave the system and release the trunk lines. For some call centres, most
customers only need service of the IVRU without requiring the service of CSRs. For
instance it is reported in [20] that about 80% of calls in banking call centres are fully

self-served using an IVRU.

If the customer requires the service of a CSR, the call will be handed from the IVRU
to the ACD. The ACD, a highly sophisticated specialized switch, is designed to route calls
to individual CSR based on the specific needs of calls. Skills-Based Routing (SBR) is one
example, in which different types of calls are routed to the best available CSR with the
appropriate skill according to preprogrammed rules. However, how to get the optimal
routing rules or policy of SBR is a complex control problem and we will not address this
problem in this thesis. If no appropriate CSRs are available, the customer is informed to
wait and join a queue at the ACD. This customer is called delayed. The ACD will decide
when the customer gets served according to a preprogrammed queueing discipline (usually
FCFS, i.e., First Come First Served). While waiting at the ACD, delayed customers may be
exposed to music and sometimes are informed of their expected delay. Delayed customers
may decide that the service is not worth the wait and may hang up before they are served.

In this case they are said to abandon or renege and they are called impatient customers.

Customers who do not abandon will eventually be connected to a CSR. While serving a
customer, the CSR works via a PC supported by Computer-Telephony Integration (CTT),
which is technology that allows interactions on a telephone and a computer to be integrated
or coordinated. CTI will help ACD to route the call, help the CSR to get the caller’s
information from the database and hence facilitate the service process. After the customer
receives the service and leaves, the CSR still needs some wrap-up time to finish the whole
service process and then may be available for the next customer. The service time is the

sum of talk time and wrap-up time.

Abandoned and blocked customers may try to call again after some time and these
calls are referred to as retrials. Those who finish talking with a CSR may also need further
help and call back again hence they become return customers or feedback customers. Note

that these two types of customers are not shown in Figure 1.1.



1.2 Main research problems in call centres

1.2.1 Call centre modelling and performance analysis problems

In order to analyze a call centre, we need to first give a mathematical model of the given
call centre. The more realistic is the model, the better, but it will be more difficult to
analyze and solve the model. How to model a call centre is a complex issue and usually
the first step of call centre research.

Customers call the call centre independently and in a random way, each with a random
required service time. Thus, the call centre is driven by random arriving calls and random
service times. Since there is uncertainty in future call arrival times and required service
times of arriving calls, it is necessary to use stochastic models. Also from the operational
process of an inbound call centre described in Section 1.1.2, a queueing model is a natu-
ral choice. Traditionally queueing theory was established from telephone circuits design
problems pioneered by A.K. Erlang, a Danish scientist who worked at the Copenhagen
Telephone Company [17].

Next, we will give an illustrated example to show how to model a call centre using
queueing theory and we will explain some concepts in the context of queueing theory as

well.

A natural queueing model

A natural queueing model for a simplified call centre is depicted in Figure 1.2, which is
adapted from [30]. The number of waiting spaces (called buffer) at the ACD is K and the
number of CSRs is . Thus there are N= K 4 S trunk lines altogether at the PABX for
this call centre. If a call finds all N trunk lines occupied upon arrival, it will receive a busy
signal and is blocked from entering the system. Otherwise it is either connected to the
system and occupies one of the free trunk lines or just does not want to enter the system
and hangs up (this is called to balk). If it enters the system and there is at least one free
CSR, the call gets service immediately. Otherwise it is delayed and has to wait in a queue
at the ACD for a CSR to become available. While waiting, calls may become impatient
and hang up, or abandon (renege) the system before being served and thus release the

trunk line. The queueing discipline is usually FCFS. After served by a CSR, the call leaves

4
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Figure 1.2: A natural queueing model

the system and it releases both the trunk line and the CSR and these resources become
available to other arriving calls. Some served calls may choose to call back (feedback) and
become returns. Some of those calls who do not get served (blocked, abandon or balk)
may call again and they become retrials. The remaining calls become lost calls. The above

model is also similarly described in [20].

If we assume that the calls arrive according to a Poisson process with rate A and that the
required service times of the calls are i.i.d. exponential with mean 1/u, then this model is
a simple M/M/S/N queueing system with features such as balking, abandonment, retrial,
and feedback, where we have used a notation similar to Kendall’s notation [24]. In this
notation, a queueing system is represented by (.)/(.)/S/N, where the first position describes
the arrival process; the second position describes the service process. Some symbols we
will use to represent arrival or service process include M for i.i.d. exponential service or
Poisson arrival, D for i.i.d. deterministic and G for i.i.d. general. In the third and fourth
position, S is the number of servers (CSRs in our case) and N is the maximum number
of calls in the system i.e., in the queue or in service (number of trunk lines in our case).

Note that Kendall’s notation only includes the first three positions.



Performance analysis of the natural queueing model

Without features such as balking, abandonment, retrial, and feedback, the M/M/S/N
queueing system has a closed-form solution for the stationary (steady-state or long-run)
queue length (number of calls in the system) distribution and waiting time distribution,
from which we can obtain average queue length, average waiting time, probability of block-
ing etc. This analyzing process of the model is called performance analysis and the outputs
are called performance measures, which reflect the performance of a call centre or a queue-
ing system. We will review the performance analysis of M/M/S/N queueing system and
give the definition of the above performance measures in Section 2.4, Chapter 2.

The performance measures are useful information in the design and management of
call centres. They can be used to determine the service levels (explained in Section 1.2.2)
of call centres. They are also the input of the call centre design problem, which will be
elaborated in Section 1.2.2.

However, not all queueing models can be analyzed exactly to obtain performance mea-
sures as M /M /S/N model. For example, if we include additional features, the model may
become impossible to solve and other techniques have to be used to analyze the model

such as numerical methods, approximations, and simulation.

Other queueing models for call centres

The natural queueing model described above only allows homogeneous calls and CSRs.
However in practice, call centres may have multi-type calls and multi-skilled CSRs which
requires SBR and this is difficult to analyze. The models of call centres can be categorized
as SBR and non-SBR types of models. Non-SBR models, as we have seen, can be thought
of as base models which do not consider multi-type calls and CSRs. There is an extensive
literature on SBR models; for example see Standford and Grassmann [43].

However, in the following we only consider non-SBR models and give a list of common

queueing models for call centres.
1. Markovian queueing models (M/M/S,M/M/S/S,M/M/S/N)
2. Balking models (state-dependent arrival rates M (n)/M/S/N).

3. Abandonment models (M/M/S + M,M/M/S/N + M and M/M/S/N + G).
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Figure 1.3: Semiopen queueing network model description and parameters

4. Retrial models.
5. Time-dependent queueing model (arriving and serving rate are time-dependent M (t) /M (t)/S).

6. Non-Markovian queueing models (general interarrival and service time G/G/S).

We will give a detailed review on the first class of queueing models in Chapter 2. The
balking and abandonment models will be reviewed in the related chapters later in the

thesis. We will not consider class 4, 5 and 6 in this thesis.

The base model in the thesis: Semiopen Queueing Network Model (SOQN)

Queueing models introduced above do not consider the role of IVRU. However, from Figure
1.1, we know that IVRU plays an important role in call centres; the calls get service from
IVRU and a large proportion of calls only need self-service with IVRU and then leave the
system without requiring the service of CSRs for some call centres. For details about the
role of IVRU, see the thesis by Khudyakov [27].

In order to capture the role of the IVRU as well as the CSRs, Srinivasan et al. [42]
proposed and analyzed a flow controlled network model. Their model is described in Figure
1.3.

The model is a semiopen queueing network with two nodes in series. The first node
(Node 1, representing IVRU) has N servers each with exponential service rate 6. The
second node (Node 2, representing CSRs) has S (< N) servers each with exponential

service rate 1 and are independent of the IVRU processing times. The maximum number



of calls in the network is N (representing the total number of trunk lines) i.e., if an arriving
call finds N calls in the system, it will be blocked. Hence there is no queue at Node 1 and
there are at most N — S calls waiting at Node 2. In [42], it is assumed that the number of
IVRU servers and the total number of trunk lines are both IV, which reflects the fact that
IVRU servers are often cheaper so that call centres can assign an IVRU server for each
trunk line.

Arriving calls come to the system according to a Poisson process with rate A. If the
call is not blocked, it is immediately processed by the IVRU. Once the call is finished with
the IVRU, it leaves the system with probability p = 1 — p and releases the trunk line, or it
proceeds to Node 2 with probability p and holds the trunk line. If a CSR is free, the call
is served, otherwise it waits for a CSR, but in either case, it always holds the trunk line.
Once the call is processed by a CSR it releases both the CSR and the trunk line. Note that
the trunk line is held by a call from the moment it enters the system until it leaves the
system and this is not the case in the usual tandem queueing network. But the semiopen
network model with maximum N calls in the system nicely characterizes this property.

Let {Q1(t), Q2(t)} represent the number of calls at time ¢ at Node 1 and 2 respectively.
Note that Q1(t) + Q2(t) < N for all t > 0. It is well-known that 7;;, the stationary distri-
bution of {Q1(t), Q2(t)}, has a product form solution [14] and in Chapter 3 we will derive
m;; using two methods. From this, Srinivasan et al. obtained the stationary distribution
mij, P(blocking) and stationary waiting time distribution of a call conditioned that it joins
Node 2 after finishing the IVRU process. We will give a detailed review of this model in
Chapter 3.

In this thesis, this SOQN model will be our base model and we will extend this model by
incorporating two more features: balking (state-dependent arrival rates) and abandonment

(both exponential and general patience time distributions).

1.2.2 Call centre design problem

Queueing design problem has a long history and is one of the main applications of queueing
theory. For example, see [23]. In the context of call centres, the queueing design problem
becomes call centre design problem. Specifically, the term call centre design problem de-
notes the problem of how to determine the minimal number of CSRs (S) and trunk lines

(N) to satisfy a given set of service level constraints (quality). Solving the call centre



design problem is the ultimate goal of modelling and performance analysis of call centres.

There are two key concepts in call centre design problem: service level and operating
costs, which will be explained later. The service level reflects the performance of call
centres and the operating costs are mainly incurred by the number of CSRs and trunk
lines. Typically, there is a trade-off between service level (quality) and operating costs
(efficiency). Higher service level (high quality) requires higher costs (low efficiency) and
lower costs (high efficiency) cause lower service level (low quality). Quantitatively, this
problem is formalized as an optimization problem, which will be elaborated later in this
section. In practice, Workforce Management (WFM) software tools try to make this trade-

off as optimal as possible [20].

Service level (quality)

Service level (SL) is a complex concept in call centre industry and involves many aspects of
service process. Customer satisfaction, CSR effectiveness, etc. are qualitative service levels,
which depend on product-related skills of CSRs. We are only concerned with quantitative
service levels, which are usually related to performance measures on delay of a call centre.
These service levels give constraints to the operation of call centres. The call centre industry
uses several forms of service levels in their operation. In Table 1.1, we list some common

service level constraints.

Typically call centres allow calls to wait for service if all CSRs are busy. Let random
variable W, denote the stationary waiting time of a call in the queue, assuming the sys-
tem is stable. The first three service levels in Table 1.1 are all related to W,. The other
three service levels are the probability of blocking (used in finite buffer models), the prob-
ability of balking (used in balking models) and the probability of abandonment (used in

abandonment models).

Note that service levels are special performance measures of call centre queueing models
chosen by call centre manager to give constraints to the operation of call centres. If the
call centre queueing model can be analyzed exactly, then the exact expressions of these
service levels can be obtained. The expressions of these service levels will involve the model

parameters and they are the output of the call centre performance analysis problem.



Service Level Constraints Explanations

ASA=E(W,y)<b ASA (Average Speed of Answer) or the average waiting time of a call

before it gets served is less than b.

TSF=P(W,<AWT)>b TSF (Telephone Service Factor) is the proportion of calls that has to wait
shorter than a specified amount of time (called the Acceptable Waiting
Time, or AWT). Typically the AWT is 20 seconds and 5=80%,

hence the famous 80-20 TSF means P(W;<20 sec)>80%.

P(delay)=P(Wq>0)<b The proportion of calls that have to wait for service is less than b.

P(blocking)<b The proportion of blocked calls is less than b. It is an important performance

measure if we model a call centre as a finite buffer system (insufficient trunk lines).

P(balking)<b The proportion of balking calls is less than b, used in balking models.

P(Ab)=P(abandonment)<b | The proportion of calls that abandon before being served is less than b.

Table 1.1: Common service level constraints

Costs (efficiency)

The operating costs of call centres are mainly incurred by the costs of CSRs. Personnel-
related operating costs (CSRs salaries) account for about 60 to 70 percent of the total
operating costs [20]. Therefore it is a common strategy for call centre managers to assign
as small as possible number of CSRs to satisfy the given SL constraints, which makes high
efficiency of CSRs.

Another cost is incurred by the cost of trunk lines which call centres may have to lease
from the telephone company. This cost is usually smaller than that of CSRs.

There are other costs associated with service levels. For example, waiting or delay cost;
a call centre which provides toll-free services has to pay for the time those calls waiting
in the queue. Also order-taking businesses can sometimes estimate the opportunity cost
of lost sales due to blocking or abandonment. We will not consider these kinds of costs in

this thesis.

Formulations of the design problem

There are different formulations of this design problem (the fundamental trade-off between

service level and operating costs) according to different economic structures and cost or
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revenue analysis.
Traditionally call centres are seen as cost centres. In this case the optimization problem

is formalized as

min f(S,N)

s.t. SL constraints,
where the objective function f(S,N) is the costs of CSRs and trunk lines and the SL
constraints are usually T'SF and P(blocking). For example, see [13, 35, 42]. Cleveland
and Mayben [16] explained the traditional design method using Erlang B and Erlang C in
isolation to solve this problem.

Another economic model considers call centres to be profit centres. There is a revenue
for completing a customer service, and the objective is to maximize its profit, defined as
revenue minus costs. G.M. Koole and A. Pot [31] studied this problem in a M /M /S/N+ M
system. By giving the cost of a trunk line, the cost of a CSR, and the profit per handled
call, they obtained a function ¢®", which is the average long-run expected revenue for S
CSRs and n additional trunk lines. They then gave an efficient optimization procedure to
find (S,n) which maximizes ¢g°". However, since this is a model for profit centre, they did
not consider the service level constraints.

Borst et al. [9] referred to this problem as ”dimensioning” and solved it for the Erlang-C
model. They considered two models. One is the so-called optimization, where they tried to
minimize the sum of CSRs cost and delay cost. There are no service level constraints since
they have considered delay cost, which is a kind of cost associated with service levels. Then
they argued that in practice, design is rarely determined through optimization in terms of
cost, since there is no standard practice for quantifying delay cost. Hence they gave the

second model with constraints called constraint satisfaction, which can be formalized as,

min S
(1.1)
s.t. TSF constraints.

This model does not require the specific costs of CSRs and delay.

In summary, the optimal trade-off problem will be formalized into an optimization
problem with or without constraints and output performance measures of the call centre
performance analysis problem will be involved in the construction of objective function
and constraints.

In chapter 7, we will give a design algorithm to find the smallest pair of (S, N) in a
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given sense to satisfy a certain set of service level constraints. Since the emphasis of this
thesis is on call centre modelling and performance analysis, we will not give the specific
costs of S and N and therefore we will not solve the design problem through optimization
in terms of costs. Our formulation of the design problem is similar to (1.1) with additional

decision variable N and more constraints. See Chapter 7 for details of our method.

1.3 Outline and contributions of the thesis

In Chapter 2, we will give a detailed review of single-node Markovian queueing models of
call centres, specifically M /M /S/S model and related Erlang B formula, M /M /S model
and related Erlang C formula and the more general M/M/S/N model. We will focus on
the computational aspects of the exact performance measures of these well-known models,
which is a little different from the standard textbook. Especially for M/M/S/N model,
based on the work of [35], we will express the performance measures in terms of Erlang B
formula, which facilitates the computation. We will also prove new monotonicity proper-
ties of performance measures with respect to N. These monotonicity properties are very
important to the call centre design algorithm we have developed in Chapter 7.

In Chapter 3, we will focus on the base model in the thesis: Semiopen Queueing Network
Model (SOQN) proposed in [42]. We use two methods to derive the product form solution
of the queue length process and the distribution of the total number of calls in the system.
We propose an algorithm to compute the blocking probability. In the derivation of the
waiting time distribution, we use a new method compared to the one used in the original
paper [42].

In Chapter 4, we will study the balking phenomenon of call centres using both single-
node Markovian models and the SOQN model. We first give a review of single-node
state-dependent balking model M(n)/M/S/N. The main work is on the SOQN model
with balking, where we prove that the queue length process still has product form solution
in equilibrium and we also derive the waiting time distribution. The analysis on SOQN
model with balking is new.

Another important feature of call centres is abandonment. In Chapter 5, we will

study the exponential abandonment models of call centres and analyze three models,

M/M/S+ M, M/M/S/N + M and SOQN+M which is SOQN model with exponential

12



abandonment. For single-node models: M /M /S + M and M/M/S/N + M, we again focus
on the computational aspects by expressing the exact performance measures in terms of
special functions and Erlang B formula. For M/M/S/N + M model, we will prove mono-
tonicity and concavity properties of performance measures using a method that simplifies
the work in [26]. For SOQN+M model, our work is a generalization and correction of [45].
Chapter 6 deals with the general abandonment models of call centres, which generalize
the exponential abandonment of models studied in Chapter 5. We will first give a review of
single-node general abandonment models including infinite buffer M/M/S + G and finite
buffer M/M/S/N + G model and then study the SOQN+G model, which is SOQN model
with general abandonment. For single-node models: M/M/S+G and M/M/S/N + G, our
work is based on several previous works and is a generalization of them. For example we will
express the performance measures of M /M /S/N+G model in terms of new building blocks.
We will also study the comparison of different patience time distributions and generalized
some previous results to M/M/S/N + G model. The work on SOQN+G model is new.
All the above chapters are about the call centre modelling and performance analysis
problems, where for each model we study the queue length distribution, waiting time distri-
bution and related performance measures. We try to express the performance measures in
terms of special functions to facilitate the computation. In Chapter 7, we will move to the
second problem of call centre research: the call centre design problem, where we develop
a design algorithm to determine the minimal number of CSRs (S) and trunk lines (V) to
satisfy a given set of service level constraints. The algorithm is based on the monotonicity
properties of some performance measures with respect to IN. We also give numerical exam-
ples in the end. Finally in Chapter 8, summary and future work for further research are

given.
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CHAPTER 2
REVIEW OF SINGLE-NODE MARKOVIAN (QUEUEING MOD-

ELS OF CALL CENTRES

2.1 Introduction

In this chapter, we will give a detailed review of single-node Markovian queueing models
of call centres. These models are Markovian, which means that the interarrival and service
times are all assumed to have i.i.d. exponential distributions. In Table 2.1, we list some
main Markovian queueing models and their performance measures. Note that these models
are standard and can be found in most queueing textbooks such as [17]. However, we will

focus on the computational aspects of the exact performance measures of these well-known

models.
Model Notation Name of Models Performance Measures(SL)
M/M/S/S Erlang B blocking/loss model P(blocking)=ps (Erlang B formula)
M/M/S Erlang C delay model P(delay)=P(W¢>0) (Erlang C formula)
TSF;ASA
M/M/S/N Blocking and delay model P(delay)=P(W4>0);P(blocking)=pn
A trade-off between blocking and delay | TSF;ASA

Table 2.1: Some Markovian queueing models

Among these three models, M/M/S/N is the most general model and the other two
models are special cases. To use M/M/S/N to model call centres, we assume arriving
calls and CSRs are homogeneous so that we do not need to consider SBR. We also assume
calls are patient and there is no balking. These two features will be studied in the later

chapters. The common features of this class of models are in the following.

1. Arriving calls. There is only one class of arriving calls (homogeneous) who arrive

14



at the call centre according to a homogeneous Poisson process with rate A. Arriving

calls are patient and there is no balking.

2. CSRs. There is only one class of S homogeneous CSRs. The service times are i.i.d.

exponentially distributed with mean z .

3. Routing. Arriving calls are served according to FCFS (first come first served) disci-

pline.

4. Number of waiting places. The number of waiting places is N—S with 0in M /M /S/S
model and oo in M /M /S model.

One desirable property of this class of models is that we have closed-form solutions of
almost all stationary performance measures, though sometimes complicated and hard to
use in terms of computation.

One type of performance measure is related to the number of calls. The Markovian
property implies that these models are memoryless so that we can use a single variable
(number of calls) to represent the system state in order to get a Continuous Time Markov
Chain (CTMC). Let Q(t) be the number of calls in the system (queue length), Q,(¢) be the
number of calls waiting in the queue at time ¢, then Q(¢) and Q,(t) are both birth-death
processes. We are mainly concerned with stationary distributions of Q(t) and Q,(¢) if they
exist, with corresponding variables denoted by @ and @, respectively. If the system is
stable, one can obtain the distribution of @, which is p; := P(Q =1i),i = 0,1,.... From
this, we can obtain performance measures such as E(Q), E(Qq) (called Q1), E(Q4|Qq > 0)
(called Q2). By the PASTA (Poisson Arrivals See Time Averages) property [48], we have
P(delay) = > 72 ¢pi (M/M/S) and P(blocking) = ps (M/M/S/S) or P(blocking) = pn
(M/M/S/N).

Another type of performance measure is related to the stationary waiting time of a call
in the queue (denoted by W) and in the system (denoted by W'). The distributions of W,
and W are harder to obtain than that of Q. From the distribution of W or W, performance
measures regarding the delay such as E(W), E(W,), E(W,|]W, > 0) = E(W,)/P(W, > 0)
(called DLYDLY), T'SF = P(W, < AWT) can be calculated.

Little’s formula relates the expectation of the number in the system and the delay; for
example F(Q) = AE(W). This is a quite general result, applicable to any ergodic queueing

models, even non-Markovian queueing models.
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Figure 2.2: M/M/S/S model stationary state transition diagram

2.2 M/M/S/S model and Erlang B formula

In this section, we will give a review of M /M /S/S model, which is the classical model for
the analysis of telephone networks with S trunk lines and no buffers. The model description
and parameters are shown in Figure 2.1. In this model, Q(%) is a finite birth-death process

with birth rate
A fo<i< S

Ai =
0 otherwise
and state-dependent death rate pu; = tu,t = 0,1,...5. The stationary state transition
diagram of Q(t) is shown in Figure 2.2.

Since this is a finite buffer model, we can always obtain the stationary distribution of
Q(t) (no stability condition) by solving the global or cut balance equations derived from
Figure 2.2. The solution is

a'/i!

= s 0SS
Zk:oak/k!

where a := \/p is called the offered load, a measure of demand made on the system. a

bi

is a dimensionless value but is given a unit called erlangs, after A.K. Erlang who laid the

foundations of queueing theory [17].
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Another important process is the number of calls an arriving call sees upon arrival,
defined as Qq(t). The distributions P(Q,(t) = i) and P(Q(t) = i) are called the arriving
customer’s distribution and the outside observer’s distribution respectively in [17]. The
following derivation comes from page 77 of [17]. Let C(t,t + h) be the event that a call
arrives in (¢,t + h). Note that this event does not imply the call will necessarily enter the

system and affect the state of Q(t). Then we have, for 0 < i < S,

P(Qu(t) =) = lim P(Q(t) = C(t,t + 1)

o P =i, Ot 4 1))

“hto P(C(tt+h)
PC(t,t+WIQ() = )PQ() =)

= lim

h=0 P(C(t,t + h))
iy QR 0(M)P(Q(E) =i
h—0 A+ o(h)
= P(Q(t) = 1),

where we have used the fact that for Poisson process, P(C(t,t+ h)|Q(t) = i) = P(C(t,t +
h)) = Ah + o(h). If we define {a;} as the stationary distribution of Q,(t), we have a; = p;,
0 < ¢ < S. The above property is called the PASTA property which is true for any queueing
systems with Poisson arrival.

P(blocking) is defined as the probability that an arriving call in equilibrium finds S calls
in the system (all CSRs are busy), i.e., P(blocking) = ag. By the above PASTA property
we have the Erlang B formula
a® /8!

ho aF/kL
Note that this is a truncated Poisson distribution. Also these results are insensitive to the

P(blocking) = ag = ps = B(S,a) = (2.1)

service distribution; it is applicable to M/G/S/S model with mean service time 1/u. See
page 83 of [17].

In practice, Erlang B formula (2.1) brings some computation problems; it involves
factorials, power functions and the denominator becomes larger and larger when S becomes
larger, resulting in overflow errors unless a and S are relatively small. There is an iterative

formula used to find B(S, a) efficiently to solve this problem, i.e., for S > 0,

~aB(S—-1,a)
"~ S+aB(S—-1,a)

where B(0,a) = 1. The above formula can be used to calculate B(1,a), B(2,a)...until
B(S,a) for any S and a.

B(S,a)

(2.2)
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Figure 2.3: M/M /S model description and parameters

Since the model is a loss model, a’ := E(Qp) = a[l — B(S,a)] is called the carried
load, where we obtain the last equality by Little’s formula applying to the number of busy
servers and () is a random variable representing the number of busy servers in equilibrium.
The wtilization

a all —B(S, a)

U:ZEZf:p[l—B(S,a)]<l

is the proportion of time that a server is busy, where p := § is called the traffic intensity.

Therefore we have an important lower bound for B(S, a), i.e.,

B(S,a) > 1— ;. (2.3)

Another important property of B(S,a) is the monotonicity property of B(S,a) with
respect to S. B(S,a) is a decreasing function of S, which is intuitively true and can be

proved using the following [35]

B(S,a) = aB(S —1,a) - aB(S —1,a)

~ ST aB(S-1a)  al-BE-La]+taBS-1a PO -bLa 24

since

all = B(S—1,a)]<S—-1<S.

Since this model does not allow calls to wait, there is no waiting time in the queue.
Waiting time in the system is just the service time. We do not need to consider the

performance measures related to waiting time.

2.3 M/M/S model and Erlang C formula

In this section, we will give a review of M/M/S model, which allows infinite number of

buffers. The model description and parameters are shown in Figure 2.3.
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Figure 2.4: M /M /S model stationary state transition diagram

2.3.1 Queue length process

In this model, Q(t) is an infinite birth-death process with birth rate A; = A and state-
dependent death rate

ip if0<i<$

Su ifi>S5

Hi =

The stationary state transition diagram of Q(t¢) is shown in Figure 2.4. The stability
condition is p = SLM = & < 1. Since the model is not a loss model, the carried load is equal
to the offered load, i.e., a’ = a so that the utilization v = p.

Under the stability condition: 0 < p < 1, the stationary distribution can be obtained
by solving the global or cut balance equations derived from Figure 2.4. The solution is

@ o ifo<i<s$

pi = (2.5)

ng%spo ifi>9S

S | -
= (Y 5+ G - 2.
Po < i!+5!1—p> (26)

=0

where

The PASTA property also holds in this model so that we have a; = p; for i« > 0. The

Erlang C formula (the probability of delay of an arriving call in equilibrium) is

S
a
CLS

= = =)
P(delay) = > ai=) pi=C(5a)= g5 = po. (2.7)
; ; Zf:ol T S!(Ois—p) S =)

Hence

(CULIEY) (238)

which is easier to calculate compared to (2.6) but involves C(S,a). The calculation of

C(S,a) is based on that of B(S,a) by the relationship

B(S,a)
B(S,a)p+1—p

C(S,a) =
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derived directly from (2.7) and (2.6) or

P
p+(1—p)/B(S—1a)

by additionally using (2.2). The above formula and (2.4) also show that C(S,a) is a

C(S,a) =

decreasing function of .S, which is intuitively true. After calculating pg, p; can be calculated
using (2.5) for any 7. This calculation method is better than using (2.5) and (2.6) directly.

Note that ps = “?S!po, therefore pg = C(S,a)(1 — p) by (2.8). Substituting pg = a%!pg
into (2.5), we have p; in terms of pg, i.e.,

pi] @ sr=S (2.9)
P %pg  ifi>S

Using our new expression for pg and the above formula for p; is even better, especially for

calculating p;, ¢ > S since this does not involve factorials.

2.3.2 Waiting time distribution

In order to find TSF = P(W, < AWT), we need to find P(W, < t): the probability of
waiting time in the queue is less than or equal to ¢ > 0 for a typical call in equilibrium. It

is easy to find P(W > t) first [24]

o
P(W >t) = Z P(W, >t | i calls in the system upon arrival) P(i calls in the system upon arrival)

=S
oo
= Z P(completion time of i — S + 1 calls > t)a,
=S

Because of the PASTA property, P(i calls in the system upon arrival) =a, = p;, the
stationary distribution of ¢ call in the system in equilibrium. Since ¢ > S, the time between
successive completions is exponential with rate Su. Therefore the completion time of ¢ —
S +1 calls Y; has an Erlang distribution Er(i — S + 1, Su) and the survival function of Y;

is

Fy.(t) = P(Y; > 1)

= P(completion time of i — S + 1 calls > t)
=S

Z S,ut Je

Q
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It turns out that, after changing the order of two sums, we have

0o i—S ;
_ (Sutye=Swt o8 —(Su-N)t _ —(Sp—A\)t
PW >1) —;jzo 7 pi = S = p)poe =C(S,a)e . (2.10)
Also
_ [T _C(5,a)
BE(W,) _/0 POV, > )t =5 ) (2.11)

and P(W = 0) =1 — C(S,a). By Little’s formula, we also have the mean number of calls
waiting in the queue
pC(S; a)

E(Qq) = /\E(Wq) = ﬁ

Hence, both TSF = P(W, < AWT), ASA = E(W,) and E(Q,) can be expressed by
C(S,a), which is very useful in computation.

One simple staffing method is to find the minimum number of S under the SL constraint:
ASA < ASA*, where ASA* is a given time, i.e., S* = min{S | ASA < ASA*}. Since
C(S,a) is a decreasing function of S we have ASA is a decreasing function of S, so that
S* is well-defined.

In practice, M /M /S is commonly used in call centres for modelling, performance anal-
ysis, and staffing because of its closed-form solutions of almost all interested performance
measures. It is usually assumed that the arrival and service rate are piece-wise constant.
Then M/M/S is applied to each time interval using the parameters belonging to that
interval. Also the stationary performance measures are used since experience shows that
this type of stochastic processes converges fast to its stationary state [29].

There are some shortcomings using the M /M /S model. First, it assumes there are
infinite number of buffers, hence no blocked calls. If blocking is not a rare event in a call
centre, M /M /S is not a good model and we may choose M/M/S/N model. Second, it
does not consider abandonment, which is shown in [21] to be a very important issue. The

simplest abandon model is M/M/S + M.

2.4 M/M/S/N model

In this section, we will give a review of M /M /S/N model. Also based on the work of [35],
we will express the performance measures in terms of Erlang B formula, which facilitates
the computation. We will also prove new monotonicity properties of some performance

measures with respect to V.
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T» N-S

Blocked Calls

Figure 2.5: M /M /S/N model description and parameters

}\.4 }\_. }\- }\_, }'u
W... IEERCIECENED
o L R_J Euu Su Su Su
Figure 2.6: M /M /S/N model stationary state transition diagram

M/M/S/N is a more realistic model for call centres, which allows both delay and
blocking. Recall that S represents the number of CSRs and N represents the number of
trunk lines (the number of buffers plus CSRs). If N = oo, it reduces to M /M /S model and
if N =S, it reduces to M/M/S/S model. Recall that in Section 1.2.1, we use M /M /S/N
as the basis of the natural queueing model of call centres. The model description and

parameters are shown in Figure 2.5.

2.4.1 Queue length process

In this model, Q(t) is a finite birth-death process with birth rate

AfO0<i<N

0 otherwise

and state-dependent death rate

ip if0<i<S$

fri = :
Su ifS<i<N

The stationary state transition diagram of Q(¢) is shown in Figure 2.6. Since this is a finite

buffer model, the stationary distribution of Q(¢) can be obtained by solving the global or
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cut balance equations derived from Figure 2.6 (no stability condition). The solution is

%:Po fo<i< 8 '
Pi=y = poy(9), (2.12)
Se—sp fS<i<N
where
—1 4t S q1_, N—S+1 1 ) 1
(Zf:ol%""%l plfp ) , if p#1 N
bo= S—1ai |, a - = Zv(z)
(ZZ:O %+L.(N—S+1)) . ifp= P
and
. o ifo<i<S
A I
Sigi-5 > 1 <i<N

In particular, we have the delay probability: P(delay) = Zf\:Sl pi, the blocking prob-
ability: P(blocking) = py and P(no-delay) = 1 — P(blocking) — P(delay) by the PASTA
property.

Since pg = %S!pg, substituting pg = %ps into (2.12), we have p; in terms of pg, i.e.,

Sops f0<i<S$

Di = , (2.13)
pps fS<i<N

where for p # 1,

S g N -1
ps = [ZCLS_ZZ' + Z PZ_S]

=0 1=5+1
[ 1 p(1—pN=5)17"
(1 —,O)B(S, a)

L—p+pB(S,a)(1 — pN=5)

and for p =1,
B(S,5)
= : 2.14
PS =17 (N—9)B(S,5) (2.14)
Then for p # 1,
P(blocking)=pn = p" ps
1— B N-S
(1—p)B(S.a)p o)

~1-p+pB(S,a)(1— pN-5)’
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Similarly

N— N-1 5 1_pN_S
pasan= Y n= 5 =

=S =S p

-V (1-p)B(S.a)

1—p 1-p+pB(S,a)(l-pN-5)
_ B(S.a)1-pV)
~ 1—p+pB(S,a)(1—pN=5)

(2.16)
Finally

P(no-delay) = 1 — P(blocking) — P(delay)

_ (1=p)1-B(S,a)
T 1—p+pB(S,a) 1 — pN-S) (2.17)

We have expressed the above performance measures in terms of B(S,a) and we can

also use (2.2) to get expressions in terms of B(S —1,a)

(1-p)B(S —1,a)pN =51

ok )= o B(S — L)L — pV—571)
. _ N-S
P(delay) pB(S —1,a)(1 —p )_ ’
1—p+pB(S—1,a)(1 - pN=5+1)
and
1—p
P(no-delay) =

1—p+pB(S—1,a)1—pN=5+1)
When p = 1, we can obtain the corresponding formulas similarly by (2.14). We can
also apply L’Hospital’s rule in the above formulas (2.15,2.16,2.17). The results are listed

in the following.

. B(S,S o B(S-1,5
P(blocking) = 1+(N—(S)B)(S,S) = 1+(N—5g+1)B(?9—1,S)‘
N-S)B(S,S N-S)B(S—1,8
2. P(delay) = 1J(F(N,3q)é(gzq) = 1+EN7511()B(S—1),S)’
1-B(S,S
3. P(no-delay) = T SE)B()SS) (N—S-&-%)B(S—LS)'

Remark 2.4.1 Note that the above formulas (2.15) and (2.17) are also given in [35].

In the following we will study the special cases of the above performance measures.

The following new result is obvious.

Theorem 2.4.1 When N = S, the model reduces to M/M/S/S model and we have
P(blocking) =B(S,a), P(delay) =0 and P(no-delay) =1 — B(S,a).
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We have the following results when N — oo.

Theorem 2.4.2 When N — oo, we have:

1 .
1_;7 lfpzl

1. limy_,o0 P(blocking) = .
0, if0<p<l1
1 ifp>1
2. limy_oo P(delay) = { 7’
C(S,a), if0<p< 1
ifp>1
3. limy 00 P(no-delay) = fr= .
C(S,a), if0<p<1

Proof. The first result is also given in [35] and the other two are new. We only give the
proof of the second result and others can be proved similarly. For 0 < p < 1, we have

B(S,a)(1 = pN ")
Pldelay) =4 RS a1 = p¥ 5

approaches to #S;()M = C(S,a) when N — oo. For p =1,

(N-$)B(S,5)  B(SS)
Pldelay) = N = §)B(5.5) ~ iy + B(S.9)

approaches to 1 when N — oo. For p > 1,

B(S,a)(1 - pV9)
Pelay) = B (S a) (1~ p75)
(S a) N*S

= S

S + B(S 0)71

approaches to % when N — oo.

Remark 2.4.2 When 0 < p < 1, performance measures in this theorem reduce to the

corresponding performance measures of M /M /S model.

Since the model is a loss model, the carried load is, for p # 1,

= E(Qy)
= a[l — P(blocking)]

_a—ap+apB(S,a)(1—pN=5)
1= p+pB(S,a)(1 - pN=5)
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The utilization

o @ _ PP HP’B(S,a) 1= p" )
S 1—p+pB(S,a)(1 — pN=9)

is the proportion of time that a server is busy.

For p=1,
1+(N-S-1)B(S,9)

@ =S N 5)B(5.9)

and

S 14+ (N-9)B(S,9)
M/M/S/N can be thought of as a M/M/S model conditioning that no more N calls

d 1+ (N-S—-1)B(S,S8)

are in the system. We can get (2.13) using (2.9) by conditional argument.

2.4.2 Waiting time distribution

We define W, as the stationary waiting time in the queue for all calls (the blocked calls
have co waiting time). Therefore W, has a mass at co and P(W, = oo) = P(blocking).
Also W, has a mass at 0 and P(W, = 0) = P(no-delay). This definition also appeared in
Stolletz [44]. We have, for ¢ > 0,

P(W, > t) = P(W, > t,non-blocking) + P(W, > t, blocking)

= P(W, > t,non-blocking) + P(blocking).
To find P(W, > t,non-blocking), we use the same idea as in M/M/S model

P(W, > t,non-blocking)

N-1
= P(W, > t,non-blocking | i calls in system upon arrival) P(i calls in system upon arrival)
=S
N-1
= Z P(completion time of ¢ — S + 1 calls > t)a,
=S
B N—-1i¢=S8 (Sut)Je Spt
= S Di-
i=S j=0 J:

Typically we are more concerned with the conditional waiting time of a call given that this
call is not blocked. Let W, be this waiting time, which has no mass at co, and we have

P(W, > t,non-blocking)
P(non—blocking)

P(W _>t) = P(W, > tlnon-blocking) =

~1i-8 N-1i-S§

B (Sut)ie=Srt S,ut Je

- ﬂ 1_pN =Yy Y P (2.18)
=S j=0 =S j=0
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Blocked Calls i

Figure 2.7: From SOQN to CQN for M /M /S/N model

_ _bi
1-pn>

Here ¢; : 0 < i < N —1 is the probability of a call finding ¢ calls in the system
given that it is not blocked, which is called the arrival-point probability in [24], page 77. ¢;
can be derived alternatively by applying the following idea, which was used to solve SOQN
model in [14]. We can think of M/M/S/N model as a SOQN model with one node and
at most N calls in the system. By introducing a fictitious node (Node 0) which has one
server with service rate
. Aaf 7>0
to(j) = )
0 «f j=0
we convert the model to an equivalent two-node CQN and they have the same stationary

distribution (2.12). See Figure 2.7 for details.

Now we can use the Arrival Theorem of CQN [7] to get an alternative derivation of g;.
The Arrival Theorem shows that for product form CQN, arrivals to Node 1 (in this case)
see the same distribution as the stationary distribution of Node 1 of the same CQN with

one less call. Therefore we have, by (2.12), for 0 <i < N —1

g; = P(arrival finds 7 calls at Node 1)

(N=1) _ (N=1)_,. 7(7)
=p; =p (i) = <31
’ DRARERIO)

poy(i)  pi

SN poy(@) 1N

(N-1)

where p; is the stationary distribution of Node 1 having i calls of the same CQN with

N — 1 calls.
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Therefore by (2.18) and (2.13) we obtain, for p # 1

N-1 i—S
Spt)ie=SKt
PW,>t) =Y 4 ( “),
i=S  j=0 J:
N-1 —Sut
ps S s 2 (Sut)yie s
- P 2: ]
L =0 T
N-S-1 i _gut N—S—1
_ _Dbs Z (Spt)ie=5nt P
_ 1]
1—pn = ! Py
N-S-1 _
_ pse S (Spt)! p’ — pN—5 (2.19)
_ 1] _ :
l-pn = 7 L=p
and for p =1,
_at N=S-1 ;
pse At)! .
P(W >t) = > ( ,,) (N—-S—3) (2.20)
l=pn =z T
N-S—1 N-S—1
Ps _ At)! _ At)?
S P DI S
PN = =
ps

_ (N = S)(1 = P(N — S, M) — At(1 = P(N — § — 1, \1))]
1—pn

where P(N — S, \t) = % is the regularized Gamma function [2] and we have used

the well-known identity,

N-S—1 j
e ™M Y Ay P(N — S, \t). (2.21)

Note that
y
v(x,y) = / t* te7tdt,x > 0,y >0
0

is the incomplete Gamma function and
oo
I'(z) = / t" e Ttdt, x>0
0

is the Gamma function.

In addition, the following performance measures can be easily obtained in terms of ¢;.
1. P(no-delay|non-blocking) = P(W, = 0) = Zf o g
2. P(delay|non-blocking) = P(W, > 0) = Zfi}l gi-

3. ASA=E(W,) = [°P(W, > t)dt = [° SN qFy,(t)dt = g qi [o° Fy; (t)dt =
Siu fvslqz(z—S—l—l).
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Note that the previous results (2.19) and (2.20) are standard and can be found in many
queueing textbooks.
Following the same idea as the last section, to facilitate the computation and analysis,

we will express the above performance measures in terms of B(S,a). For example, for

p#1,

N—1
P(delay|non-blocking) = P(W, > 0) = Z g
=S
B Nz_:l pi P(delay)
B —~1-pN 1 — P(blocking)
L= p+pBS,0)(1—p"5)  BSa)1- ")

T 1 p+pB(S.a)(1 — pN=SI) 1 — p+ pB(S,a)(1 — pN5)
B(S,a)(1 —pN_S)
1—p+ pB(S,a)(1 — pN-5-1

Similarly

P(no-delay|non-blocking) = P(W, = 0)

= 1 — P(delay|non-blocking)

_ (1 =p)[1 = B(S,a)]
1L —p+pB(S,a)(1 - pN=5-1)

and the above two formulas are also given in [35]. Finally

ASA = E(W,)
1 N-1 ‘
= 5 ;qi(z—S—i-l)
DS N-S—-1 ‘
~ Su(l=pn) ; P
N-5-1 '
_ bs i+1
Su(l _pN) ( 1=0 g )
B DS 1—(N=S+1)pN=5 4 (N - 8)pN—-5+1
~ Sp(1—-pw) (1-p)?
B 1 . B(S,a)(1—p) 1= (N=S+1)p" 5 4 (N = §)pN -5+
~ Su(l—pNn) 1—p+pB(S,a)(l—pN=9) (1-p)?
B 1 B(S,a)[1 — (N — S+ 1)pN =5 + (N — §)pN—5+]
~ Sp(l—pN) [1—p+pB(S;a)(1 = pN=5)] (1 - p)

_ B(S,a)[1 — (N = S+1)pN=5 + (N — 8)pN=5+1]
L= p+pB(S,a)(1 - pN I (1 - p)Sp

(2.22)
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When p = 1, we can obtain the corresponding formulas similarly. We can also apply

L’Hospital’s rule in the above formulas. The results are listed in the following.

L P(W ,>t) = ooy [V = S)(1 = P(N = 8,At)) = M(1 = P(N — S — 1,At))].

2. P(no-delay|non-blocking) = 1+(]\/}:§£%?(5 5

3. P(delay|non-blocking) = 1+E%:§)—ngg%f§,5)'

N-S)(N—=S+1)B(S,S
4. ASA = E(W,) = (2,\[1+2§v—s—1)39(5§,5)])'

The distribution of W, can also be expressed in terms of B(S,a) with another deriva-
tion. Note that this method has been used in [17] page 95 for M /M /S model. We have
that P(W >t) can be factorized as follows,

P(W >t) =P(Wg>t|W > 0)P(Wy> 0)
= P(W;>t|W > 0)P(delay|non-blocking),
where for p # 1,
P(W>tlW > 0) = P(W,>t|S <Q <N —1)

= Y PWtQ=5+i:S<Q<N-1)PQ=S+il[S<Q<N-1)
=0

_NZS:I ZZ: (Sut)je—Sut pi

E =0 \j=0 7! L+p+4 ...+ pN-5-1
VS (sptpemsm NS ;

- g N—-S—-1
B N-S—-1 (Slut)jefsut py o pN?S

- =0 J! 1— pN-=5

_ N—-S—-1 ()\t)jefs,ut 1— pNﬁS*j

4! 1— pN-5S

o

.

So that we have for p # 1

N-S-1

P(W >t) =P(delay|non-blocking) Z S 1
: J! —p
J:

()\t)je_S“t 1— pN—=5-7

ot > 0. (2.23)

In the above derivation, we use the fact that

7

P
L+p+ ..+ pN-5-1

PQ=S+iS<Q<N-1)= fori=0,1,..N—S—1, (2.24)
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which can be proved using the definition of conditional probability and (2.12). For p =1,

NET (atye M j
P(Wq>t) =P(delay|non-blocking) Z i [1 . S] i

J=0

(2.25)

It can be shown that (2.23), (2.25) and (2.19), (2.20) are equivalent respectively. Note that
the above formulas (2.23) and (2.25) are also given in [35] using a similar method.

Also using (2.23),

A%:EM@:/ P(W > t)dt
0

N-5-1 ;

0 (G t) —Sut
=P(delay|non-blocking) E i / (Sp )_|€
= - pY 0 J:

N-S-1 i — NS
= (1=p""%)Su
1- N1+ (1 - p)(N - 9))
(1—p)(L—pN=5)Sp
B(S,a)(1 — pN~7) 1—pN‘S(1+(1—p)(N—S))
1—p+pB(S,a)(1—pN=571)  (1—p)(1—pN=5)Su
_ B(S,a)[1 - pN 51+ (1 p)(N — )]
[1—p+pB(S,a)(1 — pN=5"1)](1 - p)Sp

which is the same as (2.22).

=P(delay|non-blocking)

=P(delay|non-blocking)

By Little’s formula, we also have the mean number of calls waiting in the queue

E(Q,) = AE(W 4, non-blocking)
= AE(W ,|non-blocking) P(non-blocking)

= AE(W,) [1 — P(blocking)] .

Therefore we have
pB(S,a)[1—(N—S+1)pN =S +(N-8)pN—-S+1] .

(1=p)[I—p+pB(S,a)1—pN=9)] , ifp#1

(N-S)(N-S+1)B(S,S)

2[I+(N-S)B(S,9)]

E(Qq) =

if p=1.
In the following we will study the special cases of the above performance measures.

The following new results are obvious.

Theorem 2.4.3 When N = S, the model reduces to M/M/S/S model and we have
P(delay|non-blocking)=0, P(no-delay|non-blocking) = 1, P(W >t) =0, E(Q) = 0 and
ASA=0.
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Theorem 2.4.4 When N — oo, we have:

L, ifp>1

1. limy_ o0 P(delay|non-blocking) = .
C(S,a), if0<p<1

0, ifp>1

2. limy_,0 P(no-delay|non-blocking) = .
1-C(S,a), if0<p<1

. L ifp>1
3. imy oo P(Wy > t) = .
C(S,a)e=Cr=Nt ifo<p<1

. ; ifp=1
4. Impy_o0 ASA = C(5.a)

S H0<p<l1

) . o0, ifp=1
5. imy 00 E(Qq) = pC(Sa) 1
T Y0ses

Remark 2.4.3 When 0 < p < 1, performance measures in this theorem reduce to the

corresponding performance measures of M/M/S model.

2.4.3 Monotonicity properties

We have studied the special cases of the performance measures when N — oo or N = §
for M/M/S/N model. However it is also important to study the monotonicity properties
of some performance measures with respect to N. We will see in Chapter 7 that these
monotonicity properties are very important to the call centre design algorithm we will

develop. Some of the following results have been proved in [35] using different methods.

Theorem 2.4.5 When S and other parameters are fized, P(blocking) is a strictly decreas-
ing function of N.

Proof. When p = 1, P(blocking) = %. The property is obviously true. For

p # 1, we have
. (L=p)B(S,a)p" "
Py (blocking) =T 4 pB(S.a) (1= )

We only need to prove that for N > S,

Jmﬂwwwmm__pp—p+m%&@u_pwﬂﬂ<1 2.26)
Py(blocking) 1 —p+ pB(S,a)(1 — pN—5+1) . )
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For p > 1, the above (2.26) is equivalent to
p[1=p+pB(S,a)1—p" )] >1—p+pB(S,a)(1—p" >t
or the well-known inequality (2.3)
B(S,a) > 1 !
,a — -
p
For 0 < p < 1, the above (2.26) is equivalent to

p[l—p+pB(S,a)1—p" "] <1-p+pB(S,a)(1 — pN =),

which is again

1
B(S,a) >1——.
(S,a) P

Remark 2.4.4 This result has been proved in [35] using a similar method.

Theorem 2.4.6 When S and other parameters are fixed, P(nodelay|non-blocking) is a
strictly decreasing function of N and P(nodelay) is a strictly decreasing function of N as

well.

Proof. We have

(1-p)[1-B(S,a)] :
1—p+pB€S,a)(1—pN*S*1)7 iftp#1
1-B(S,9)
I+(N-S-1)B(S.S)

P(nodelay|non-blocking)=

ifp=1
Therefore, the theorem holds for p =1 and 0 < p < 1. For p > 1, we have

(p— 11 — B(S,a)]
p—1+pB(S,a)(pV =51 1)

P(nodelay|non-blocking)=

Hence the theorem also holds.

Since
(1=p)[1=B(S,a)] :
P(nodelay)= 1=ptpB(S.a)(1-pN %) ifp71
1-B(S,S) o1
T+(N—5)B(5.9)" wp=
the proof is similar for P(nodelay). "

Since P(delay|non-blocking) = 1 — P(nodelay|non-blocking), we have the following

corollary, which is also proved in [35] directly.
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Corollary 2.4.1 When S and other parameters are fized, P(delay|non-blocking) is a strictly

increasing function of N.
Since
P(delay) =[1 — P(blocking)] P(delay|non-blocking),

we have, by Theorem 2.4.5 and Corollary 2.4.1, the following new result.

Theorem 2.4.7 When S and other parameters are fized, P(delay) is a strictly increasing
function of N.

For the waiting time distribution, we have the following result.

Theorem 2.4.8 When S and other parameters are fized, P(Wq>t) s a strictly increasing
function of N.

Proof. From (2.23) and (2.25), we have
P(delay|non-blocking) ZN 51 (At)jje;sm 11_f§]\f;j, iftp#1

Je—Xt

P(delay|non-blocking) ZN 51 ()‘t)j! [1 - NJ;S:| , ifp=1 .

P(W >t) =

For p = 1, since P(delay|non-blocking) is a strictly increasing function of N we only need

to prove
N-S-1

jz::O (At);!@_M [1 _ Ni S}

is a strictly increasing function of N. We have

N=S—1 /\ 1 .
B (At)T M J (A)yN=Se=A N-S
fN+D) = jzo ! [1_N+1—S}+ (N —9)! [1_N+1—S]
N-5-1 P .
> ()\t);!e [1 _ NJ_S] = f(N)

=0
since each term in the above is positive and for 0 < j < N — 5 —1,

J > J

1-—2>1- .
N+1-85"— N-S

For p # 1, since P(delay|non-blocking) is a strictly increasing function of N we only need

to prove
N-5-1 At S’,ut N S—j

S—
-3 e

j=0

.7' 1—p
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is a strictly increasing function of N. We have

(Vayo S QeI NS Ve 1 p
g = . - -
=0 7! 1 — pN+1=9 (N=8)! 1-pNt1=s
N-5-1 ()\t)je*S“t 1_ prsfj
0 j! 1—pN=5% =)
P

since each term in the above is positive and for 0 < j < N — S — 1, we can prove that

1 — pN+1=8=j N 1— pN=5-j 2.27)
1 _pN+1—S - 1= pN—S : :
We will prove (2.27) in the following. (2.27) is equivalent to
1— pN+1—S—j 1— pN—S—j
1— pN+lfS 1— prS | |
Q=Yg S (1= g )
- (1 — pNF1I=9) (1 — pN=5) -
We only need to prove
(1= pN =) (1 = pNHT) — (1= N (1 = pN ) > 0
since the denominator is positive for p # 1. The above is equivalent to
(¥ =Dp—-1)=0,
which is true for p # 1. ]

Remark 2.4.5 Note that this theorem agrees with Corollary 2.4.1, since
P(W > 0) =P(delay|non-blocking).

Remark 2.4.6 This result is also proved in [35] using a method involving stochastic or-

dering.
Corollary 2.4.2 When S and other parameters are fived, ASA =E(W,) and E(Qq,) are

both strictly increasing functions of N.

2.4.4 Numerical examples

To give some numerical illustrations of the above monotonicity properties for M /M /S/N

model, we will consider some numerical examples in the following. Let A = 8, 1 = 1 be the
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Figure 2.8: P(blocking), P(nodelay) and P(delay) of Example 2.1 for M/M/S/N model

common parameters. We consider three cases: Example 2.1 has S = 5 with p = SAH > 1

Example 2.2 has S =9 with 0 < p < 1 and Example 2.3 has § = 8 with p = 1. Let buffer

size K = N — S change from 0 to 30. We compute the results using Matlab.

We first consider three unconditional probabilities: P(blocking), P(nodelay) and P(delay).
The results are shown in Figure 2.8 for Example 2.1, in Figure 2.9 for Example 2.2 and in
Figure 2.10 for Example 2.3. We find that in all three examples, these probabilities have
the monotonicity properties we have proved. For the limiting cases when N — oo, Theo-
rem 2.4.2 can also be verified. In Example 2.1, p~! = 0.625 so that limy _.o, P(blocking) =
1—p~1 =0.375; limy o P(delay) = p~! = 0.625 and limy_.o, P(no-delay) = 0. In Exam-
ple 2.2, 0 < p < 1 so that limy_.o P(blocking) = 0; limy_. P(delay) = C(S,a) = 0.653
and limy_, P(no-delay) = 1 — C(S,a) = 0.347. In Example 2.3, p~! = 1 so that
limpy o0 P(blocking) = 0; imy_,o0 P(delay) =1 and limy_,~ P(no-delay) = 0.

Next we will consider the conditional probabilities: P(nodelay[non-blocking), P(W >t)
and P(delay|non-blocking), where ¢t = 0.5. The results are shown in Figure 2.11 for Exam-
ple 2.1, in Figure 2.12 for Example 2.2 and in Figure 2.13 for Example 2.3. We find that
in all three examples, these probabilities have the monotonicity properties we have proved.
For the limiting cases when N — oo, Theorem 2.4.4 can also be verified. In Example 2.1 and

2.3, p > 1sothat limy_, P(delay|non-blocking) = 1; limn_,o, P(nodelay|non-blocking) =
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Figure 2.9: P(blocking), P(nodelay) and P(delay) of Example 2.2 for M /M/S/N model

Probability

03F
0.2F

01F

04t

P{delay)

P{nodelay)

P{blocking)

5 10 15 20 25 30
MNumber of buffers: K

Figure 2.10: P(blocking), P(nodelay) and P(delay) of Example 2.3 for M /M /S/N model
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Figure 2.11: P(nodelay|non-blocking), P(delay|non-blocking) and P(W > 0.5) of Example
2.1 for M/M/S/N model

0 and limy_.oo P(W,> 0.5) = 1. In Example 2.2, 0 < p < 1 so that
A}im P(delay|non-blocking) = C(S,a) = 0.653;
—00

A}im P(nodelay|non-blocking) = 1 — C(S,a) = 0.347

and

lim P(W > 0.5) =C(S,a)e” #~205 = 0.396.

N—oo

2.5 Summary

In this chapter, we gave a detailed review of single-node Markovian queueing models of call
centres including M/M/S/S model with Erlang B formula, M /M /S model with Erlang
C formula and the more general M/M/S/N model. We focused on the computational
aspects of the exact performance measures of these well-known models. Especially for
M/M/S/N model, we expressed performance measures in terms of Erlang B formula,
which facilitates the computation as well as analysis. Based on this analysis, we proved

monotonicity properties for performance measures with respect to N. These properties
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Figure 2.12: P(nodelay|non-blocking), P(delay|non-blocking) and P(W > 0.5) of Example

2.2 for M/M/S/N model

have been verified using numerical examples and are important to the call centre design

algorithm we will develop in Chapter 7.
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Figure 2.13: P(nodelay|non-blocking), P(delay|non-blocking) and P(W > 0.5) of Example

2.3 for M /M/S/N model
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CHAPTER 3

SOQN MobpEL OoF CALL CENTRES

As we have mentioned in Section 1.2.1, the SOQN model proposed by Srinivasan et al.
[42] will be our base model. In this chapter we will review the work of [42] in detail and

obtain new results. The model is a natural extension of M /M /S/N model.

3.1 Modelling motivation and model description

The following modelling motivation and model description is adapted from [42]. Recall
that an inbound call centre consists of an IVRU to provide some self-service to calls and
a large proportion of calls only need self-service with IVRU and leave the system without
requiring the service of CSRs for some call centres. For example a customer may call to
a bank call centre to check the account balance, transfer money only using IVRU without
requiring the service of CSRs. However most traditional call centre models ignore this part
and model the call centre as a single-node queue, as we have seen in Chapter 2. Srinivasan
et al. [42] first proposed and analyzed a two-node network model to capture the role
of the IVRU as well as the CSRs. The thesis by Khudyakov [27] from Technion-Israel
Institute of Technology used this model. The Ph.D. research proposal by Yom-Tov [49]
also used a similar model. However their focus is on the QED (Quality and Efficiency
Driven) approximation on the performance measures of the model.

We will repeat Figure 1.3 as Figure 3.1 here to show the model description. The arriving
calls come to the system according to a Poisson process with rate A. If the arriving call
finds less than NV calls in the system (the system is not full), it is admitted into the system
and it is processed by IVRU immediately. Otherwise it is blocked and leaves the system.
There are N IVRU servers and the processing times are assumed to be i.i.d. exponential
random variables with rate #. After finishing the service with an IVRU server, the call

may leave the system with probability p = 1 — p or it proceeds to request service from a
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Blocked Calls Calls who only need service of IVRU

Figure 3.1: Semiopen queueing network model description and parameters

CSR with probability p. If a CSR is free, the call is served, otherwise it waits for a CSR
and joins a queue. There are S(< N) CSRs and the service times are assumed to be i.i.d.
exponential random variables with rate u and are independent of the arrival process and
the IVRU processing times. Once the call is processed by a CSR it releases both the CSR
and the trunk line and leaves the system.

Note that this model is a network model with two nodes in series and at most N calls
in the system. Node 1 models the IVRU with N servers and no queue since there are
at most N calls in the system. It also can be thought of as having infinite servers i.e., a
M /M /oo queue since there are no calls waiting for service at this node. Node 2 models
the CSRs with S servers and the queue in front of them. This node can be thought of as

a M/M/S queue since there is no blocking at this node.

3.2 Product form solution of the queue length process

Let Q(t) = {Q1(t), Q2(t)} represent the number of calls at time ¢ at Node 1 and 2 respec-
tively, i.e., the queue length process. Note that Q1(t) + Q2(t) < N for all t > 0. From
the description of the model, we know that Q(t) is a finite CTMC and has a stationary
distribution with corresponding variables denoted by @ = {Q1,@Q2}. The state space of @
is Q= {(i,5)|i +j < N, (i,§) € Z2}, where there are i calls at Node 1 and j calls at Node
2. In fact the system can be thought of as a flow controlled Jackson network or SOQN,
which has a product form solution for the stationary distribution m;; := P(Q1 = i, Q2 = j)

as stated in [42]. We will show how to obtain the product form solution m;; using two
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methods in the following.

3.2.1 Direct method

In this section, we will use the result for SOQN in [14] to obtain the product form solution.

The traffic equations for our SOQN model are
A=A
A2 = A1p

Hence, the unique solution is Ay = A and Ay = Ap, which give the effective arrival rates to

Node 1 and 2. The service rates are state-dependent, i.e. pij(m)=mb,0 <m < N and

mu if 0<m<S

pi2(m) = :
Su if S<m<SN

We define .
[T wilm) if n>0
m=1

1 if n=0

M;(n) = Li=1,2.

Hence, Mi(n) =n!0",0 <n < N and

nlu™ if 0<n<S§

Ms(n) = )
SP=SSIum if S<n<N

For ¢ = 1,2, we define the mutually independent random variables Y; with probability mass
function as follows
A
PY;=n)=P(Y; = O)m,n =0,1,2,...
Theorem 2.5 in [14] page 22 states that the stationary distribution of the queue length
process is:

For all (i,7) € Q,

1
= P(Y; =) P(Yy = j
ﬂ-J P(Y]_"‘YQSN) (1 'L) (2 j)

1 A N\

— P(Y; =0)-—L _P(Yy = 0)-—22

P(Y1 +Y; < N) M )Ml(i) (¥2 )Mg(j)

P(Y1 =0)P(Yo=0) X Np/
P(Y14+Y2 < N) M(i) Ma(j)
B N NI
= WOOmma

(3.1)
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where the normalizing constant is

>, PMi=1i)P(Y2 =)
1 P(Y1+Y: <N)  o0<itj<N

"0 T Py, = 0)P(Ya=0)  P(Y;=0)P(Ys=0) (32)
_ X MY
a OSZ%.:SN My (i) Ma(5)

3.2.2 Method of CQN

The SOQN model can also be viewed as an open queueing network with two nodes and
state-dependent arrival rate. For example in our case, the state-dependent arrival rate is
o A if i+j7<N

(i, j) =

0 otherwise

To find the stationary distribution of the queue length process for this open network with
state-dependent arrival rate, we introduce a fictitious node (Node 0) which has one server

with service rate
Aif m>0

0 if m=0

po(m) =

The state-dependent arrival rate is simply modeled by having only N calls circulating
in the network. In this way, our model is converted to an equivalent three-node closed
network with the same stationary distribution. See Figure 3.2 for details. Note that this
idea was used to solve SOQN model in [14] and we have converted the M /M /S/N model
to an equivalent two-node CQN model in Chapter 2 using the same idea. We just need
to find the stationary distribution for the CQN in order to find the m;;. We will use the
procedure for CQN in [14] to obtain the product form solution.

The traffic equations of the closed network are

v = U
vy = V1P : (3.3)

Vo = U1P + V2
By letting v1 = vg = A, we can easily get the solution: v; = vg = A and vo = Ap. These
are the effective arrival rates for these three nodes if we see them in isolation. The service
rates are u;(m),i = 0,1,2, as we defined before. Also My(n) = A\*,n > 0. For i =0, 1,2,

we define the mutually independent random variables Y; with probability mass function as
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follows

P(Y;=n)=P(Y;i=0)~—2  n=0,1,2,...

Ak Ak
PYo=k)=P(Yy=0 =PYy=0)—=PYy=0), 0<k<N
(0 ) (0 )Mo(k> (0 ))\k (0 )7
1
PYo=k)=PYy=0)=——, 0<E<N
ZC, (0 ) (O ) N+17

For Node 1 (M/M/N/N), the stationary distribution is

)\i

L 0<i<N.
For Node 2 (M/M/S/N), the stationary distribution is

P(Y2:j)zp(n=0)]§2§§), 0<j<N.

Hence by Theorem 2.3 in [14] page 20, we have the stationary distribution of the CQN:
For all (k,4,5) € Z23 such that i +j + k = N,

1

PYo+Y1+Y,=N)

P(Yo=0)P(Y1 =0)P(Y2=0) X Np
P(Yo+Y1+Y,=N) M (i) Ma(5)

_ M MNpd

~ "M () Ma(j)

P(Yy = k)P(Yy = i)P(Ys = j)

Mij =
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where the normalizing constant is

1 PM+Yi+Y;=N)
00 = PV, = 0)P(Y;: = 0)P(Ys = 0)

Y. PXo=k)PY1=1i)P(Y2=})
 ktitj=N
 P(Yo=0)P(Y1=0)P(Y2=0)

PYo=0) > PYi=i)P(Ya=})
k+itj=N
P(Yo = 0)P(Ys = 0)P(Y; = 0)

>, PM=1i)P(Y2 =)
0<iTI<N

T P =0)P(Ys =0)
B A Npi
B Z My (i) Ma(j5)’

0<i+j<N

which is the same as (3.2). Note that the above distribution Trij 1s actually a two dimen-
sional distribution and it is the stationary distribution of the SOQN. If we let kK = N —i—j,

the above can be written equivalently as
I A NP
Tij = TOO3N(0) Ma(5)
v(i,j) € Q,

which is the same as (3.1).

Remark 3.2.1 my;; is actually the solution of the following global balance equations

i (1o (k) 4 pa (@) + p2(5)) (3.4)
= T(kt1)(i-1);0 (D)o (k + 1) + Te_1)@i41);6(k)pa (i + 1)p
+ k(1) (-10() (@ + 1)p + T—1)i+1)0 (k) p2(j + 1)
V(k,i,j) € Z% such thatk+i+j=N
1 if i>0
where §(i) = .
0 if i=0

Remark 3.2.2 The solution of (3.3) is not unique. For example if we let vi = vg = 1, we

obtain the solution: vi = vg = 1 and va = p. However we will obtain the same my;;.

In the following we will express the solution using the notation by Srinivasan et al. [42]

and obtain the marginal distribution, which are not given in [42]. Let

J! for0<j5<8S

BI) = . ;
S187=5 for S<j< N
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a1 = §ias = 32, then My(j) = B(j)p’ and
AP N pd ai a% o
SR G R A )
where
-y ddoyy e
0<i+j<N p0) k=0 j=0 (k=)' 80)
S ko ki N S k—j_j ~J i
a; "d3 a; "ay a; "aj
=22 2 (X >
— 4l Y — i)181655-S

Applying binomial formula, the following is obtained in [42],

S k N j k=j o J
-1 (a1 + az) (a1+a2 a; "4y
TR LNy I S =

k=0 ’ k=S+1 k=S+1j=S+1
N
S SICREED DD D = (S
- S18i=S 41 )
k=0 k=S+1j= S+1

The marginal distribution for Node 1 is

Wz*:—PQl—Z Zﬂw 7TOOZ 'B O<Z<N

-1 . 1 _ N <N-id d
where 7y, has another expression my; = > .., ijo ERIOR Hence the mean number of

calls at Node 1 is

N N N-—i al ol
i=0 i=0 j=0
The marginal distribution for Node 2 is
o
CL .
Tyj = P(Q2 =j) = Zm] 7Tooz:*lﬁi <j<N
where 7100 has the third expression 7r00 = Z =0 ZN J %ﬁa—i) Hence the mean number of

calls at Node 2 is
N N—j

Z]Tr*j —WOOZJ Z C;l IBGZ

and the mean number of calls waiting in the queue at Node 2 is

N—j i j
B = 3 -8 mmn 3 69X %
j=S+ j=S+1 i=0 J
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3.3 The stationary distribution of the total number of calls

in the system

3.3.1 Direct method

The following direct method is given by [42]. The stationary distribution of the total
number of calls in the system (denoted by @ = Q1 + Q2) can be derived by the stationary

distribution of the queue length process m;; using the relationship
k
= P(Q =k) = Zﬂ'(k_
§j=0

There are two cases:

1. 0<k < S
a a a+ak
7rk—7700§ 1 ?,_Woo(lk,2)-
2. S<k<N:
S akJ] k erJ
1 )
Tk = T00 E E TTNTorai g
_ ! — )1§195—S
p= Dt L (K J)-S-S

5 o
B (a1 + az)” a; ’a} 1 1
= 700 %l _+j£§;1(k ) S187— s j!

Therefore, the probability 7 that there are exactly 0 < k < N calls in the system is

equal to
k k
B (a1 + ag)* ai 7 al 1 1
Th =00 | —p + Z k=) \S15i—5 ~ j1 I(5,00) (k) (3.6)
j=S+1
1 ifkeA _ _
where I4(k)= is the indicator function and 7wy = mpg. The mean number

0 otherwise
of total calls in the system, which is not available in [42], is

N k
::j{:kﬂk_-Ez:kEE:W —mE Qh)‘*ffﬂgﬁ
k=0 k=0 j=0

The blocking probability is given in [42] using the PASTA property,

N

P(blocking) =ty = ZW(N—J)J
=0
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In the following, we will derive the utilization for Node 1 which is not available in [42].

We can write down Little’s formula for Node 1

ay [1 — P(blocking)],

QD\F—‘

E(Q1) = A[1 — P(blocking)]

which is easy to verify since, by (3. 5)
N—i 1

B(Q1) = ai” -
== Zl =700 3 G
a1 ! 2130

; N—1N-1—¢

N—
= Z Z C;ll ﬂaz Z Z mij = 1 — P(blocking).
=0 j=0

Hence the carried load for Node 1 is E(Q1) = a1 [1 — P(blocking)]. The utilization

oy — E(@Q1) _wm [1 — P(blocking)] <1

N N
is the proportion of time that an IVRU server is busy.

3.3.2 Throughput method

In the following, we will use the throughput method in [14] to derive this distribution. By

Proposition 2.7 in [14] page 25, the stationary distribution of the total number of calls in

SOQN follows the same distribution as the number of calls in a birth-death queue with

the following specification: constant arrival rate A and state-dependent service rates that

are equal to the throughput function, TH(k), of the same network operating in a closed

fashion with 1 < k < N calls.

According to [14], the corresponding CQN of our SOQN still has two nodes and the

effective arrival rates are w; = A\;/\, i.e. w; = 1,we = p. Define

(k) = L S
O VA TS T
and
k
wk L af 0<k<S
2( ) Skfgs!uk Zf S S k S N
In [14], the throughput of this CQN with £ calls in the system is defined as TH (k) =
G(2,k—1
é(2k)) 1 <k < N, where
k
G(2,k) = g1(1)g2(3) = > _ g1k — 5)ga(4)
i+j=k =0
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Let 7,0 < k < N be the stationary distribution of the total number of calls in the

SOQN. By Proposition 2.7 in [14] page 25, 7y, is the stationary distribution of a birth-death

process with birth rate A\ and death rate TH (k) = Gg@k ;)1).

Hence, the total number of calls in the SOQN has the following distribution,

AP AP AP
Tk = T0— =T ~ T0GR0)
. G(2,j—1 ’
jl;[1 TH() ]1;[1 éé’j) | o
)\k:
= mo—1— = mA"G(2,k),0 <k < N, (3.8)
G(2,k)

N

where the normalizing constant 7q is [Z MG (2, k)] . Since Ms(j) has different expres-
k=0

sion for different interval of j, we have from (3.7) for 0 < k < S,

k ) "
G = 2 =0 1)
b 1 P 1.1 p, (ar+a)t
=2 G we T T (39)

0

J

and for § < k < N,

R I B S
(k= )10 Ma(j)
5 1 P i 1 P’
- JZ:% (k — NG+ jlpi + j;l (k — §)10k—3 Si—=S 8\
: 1y L AR 1 P
=GR j:ZSH (k= )08 +j=Z:S+1 (= J)0r=7 S7=5510
1/1 p\' & 1 N /N /1 1
- (5+2) +ZM<9) (7) (5755 3)
- ;A i (55 31 .

Substituting G(2, k) back to (3.8), we get the same expression as (3.6).

3.3.3 Calculation of the blocking probability

Assuming that the number of CSRs S is fixed, we are interested in the blocking probability

while the number of trunk lines IV is increased by one starting from S. Let K = N — 5§ =
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0, 1,2...The blocking probability is denoted by Sk := mg+x = mn. From (3.8), we have
B = 1 ONTEG (2,8 + K),

-1
where 7r0 [ > ONG(2, )] is the normalizing constant when the buffer size is K.

When K =0,

=0 =0

and

S -1 (a1+a2)s

+
8o = [Z (a1 '“2) NG (2,8) = —~ (S, a1 + as)

i—0 t Z (6L1+t12)Z

is the Erlang B formula. Note that
S+K+1 -1 S+K -1
st [ Z NG(2,1) [Z XNG(2,i) + MTEG(2,8 + K +1)
i=0

_ -1
— [(wgfﬂ) + ARG, S + K + 1)] K > 0.

We have the following algorithm to calculate 51, 82, 83...until Sx, where K > 0.

Algorithm 3.3.1 Algorithm to get blocking probabilities 51, B2, B3...until Bx for K >0

1 Initialize: By = B(S, a1 + ag); m)) = —20

(a1+a2>5 ;

2FORn=0to K —1

2.1 Compute increment = NSt"H1G(2,S +n + 1)
—1 -

2.2 Compute 7T(()n+1) = [(wén)) + increment}

2.3 Compute Bp+1 = 7r(() "+ 4 increment

ENDFOR

3.3.4 Other performance measures

In this section, we will derive new results not available in [42]. We can obtain other

performance measures from the stationary marginal distribution of Node 2. When we look
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at Node 2 only, we have

N—1 N—1
L=mn+(1=p) Y Tuj+p Y 7
j=0 j=0
N-1[N-1—j N—1[N-1—j
_7TON+(1—p)z Z 7Tij+7T(N_])] +p [ Z Tij +7T(N—])]]
7=0 =0 7=0 =0
N-1 NlNlj S—1N—-1—j —1N—-1—j
=moN + ) T(v—j); T (1 wpr Z %H?Z Z Tij
j=0 j=0 =0
N—-1N—-1—j S—1N—-1—j 1N 1—j

P(blocking) + Z Z 7rz]+pz Z 7rz]+pz Z Tij, (3.11)

where 7,; is the stationary marginal distribution of Node 2. Hence, we have:

1. P(only self-served by Node 1) = (1 — )Z ZN i

2. P(no-delay, entry) = pz ZN 1= i;, where the event entry means non-blocking

and joining Node 2.
N—-1— ]
3. P(delay, entry) = pz Z
4. P(entry) = pz EN k.

Now Little’s formula for busy CSRs at Node 2 is

N—1N—1—j

1
E(Qu) = AP(entry)— =ap » Y m,
K =0 =0
7 %
which is easy to verify since
—1N—-1—j S—1N—-1—j N—-1N—-1—j
10 SRR 35 ST b S
S—1 N—-1—j —1N—-1—j
=2.G+1 X zu+1+52 2 Tt
j=0 i=0
S  N—j N N-—j
SIDILIED o 9o
Jj=1 =0 j=5+1 i=0
:E(QQb)7

where we have used the fact that Tij = Tij+1) for 7 < S and g—ﬁwij = T(j+1) for

€ +1)
j > S. These equations can be verified by the product form solution m;; (3.1). Hence the
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carried load for Node 2 is @’ = F(Q2) = aP(entry). The utilization

v=— = pP(entry) <1

a/
S

is the proportion of time that a CSR is busy.

3.4 Waiting time distribution and mean waiting time

Another important performance measure is TSF = P(W, < AWT), which is related to
the waiting time distribution. As M /M /S/N model in Chapter 2, we only need to consider
those calls given that they are not blocked and join Node 2 (or given entry), since there is
no queue at Node 1. Let W, denote the conditional stationary waiting time of calls given
entry, which is the time spent by an entry call in the queue of Node 2 until starting to
get service. This definition comes form [42] and they derived the result using x(k, j) (refer
to Section 3.4.2). We will derive the waiting time distribution using ¢; and the Arrival
Theorem. In the end we will show that the results obtained using these two methods are

equivalent.

3.4.1 Using g,

In order to find the distribution of W, we need to find the probability of finding j calls at
Node 2 by an arriving call from Node 1 at arrival instant. Asin M/M/S/N model, we use
g¢; to denote this probability. According to the Arrival Theorem of CQN [7] mentioned in
Chapter 2, for 0 < j < N — 1, we have

P(the call finds j calls at Node 2 | Non-blocked and join Node 2)

P(j calls at Node 2 for the same network with one less call in equilibrium)
N-1-j

(N—-1)

i (3.12)
=0

h (Nfl)
wihere 7T7;j

is the stationary distribution of the queue length process of the same network
with one less call and has been obtained before.
Once we have the expression of g;, the following performance measures can be easily

obtained similar to the M/M/S/N model.

1. P(no-delay|entry) = P(W, =0) = Z; 01 = Z ZN 1=j o 1>'
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2. P(delaylentry) = P(W, > 0) = Z " a = Z ZN 1= 1>.

3. TSF = P(W, < t) =1 - YN d g 200 SM:I—Zévslq]Fy() t >0,
where Y; ~ Er(j — S +1,S5u).

4. ASA=E(W,) = f P(W, > t)dt = fo S quy( )dt = Z S q; fo Fy (t)dt =
N— .
9 2o 4G = S+ 1)
g; is actually the probability of a call finding j calls at Node 2 given entry. Using (3.11)

and conditional argument, it is easy to see that

N—-1— ] N-1-j
g = P2izo — Z . f” O0<j<N.  (313)
1 — P(blocking) — (1 — )ijo Twj Z Z s

Comparing (3.12) and (3.13), we have the relationship: 7%(] V= = s ZN = which
J

is clearly true since ﬂij{v_l) is m;; under the condition that 0 <i+j7 < N — 1.

Now Little’s formula for calls waiting in the queue at Node 2 is

E(Q2q) = AP(entry)E(W,)

N—1N-1—j

=Y. > mEW,
j=0 =0

which is easy to verify since

N—-1N-1—j N—-1N-1—j 1 N-1
)\pz Z TFijE(Wq):)\p Z 7rij5,7 Zq;g(k75+1)
j=0 =0 j=0 i=0 H k=S
\ N-1N-1-k
= S£ Flk(k — S+ 1)
H k=S i=0
N-1N-1-k
= Tk (k=S +1)
k=S =0
N N—k
= Y (k=8)) mk=E(Qa),
k=S+1 =0

where we have used the fact that Q—ka = Ti(k41) for £ > S and (3.13).

3.4.2 Using x(k,j)

In Srinivasan et al. [42], the same results have been obtained in terms of x(k,j), which

is defined as: For 0 < j < k < N, x(k,j) is the probability that the system is in state
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(k—7,7), when a call (among the k — j calls) is about to leave Node 1 and join Node 2.

Using Bayes’ theorem,

x(k,j) := P(system in state (k — j,7) | call is about to leave Node 1 and join Node 2)
P (call is about to leave Node 1 and join 2 | system in state (k — j, 7)) m1—j);
N Zl]\io Zin:() P (call is about to leave Node 1 and join 2 | system in state (I —m,m)) T_pm)m
_ (k = 5)07(—j);
Zl]\io Z'lmzﬂ(l - m)eﬂ'(lfm)m
_ (k = 3)mw—j);
le\il Ei;io(l - m)”(l—m)m

Then we have:

1. P(no-delay|entry) = P(W, =0) = Zk lzk/\s Yx(k, ) = Z Zk i1 X(k, )
2. P(delaylentry) = P(OW, > 0) = ¥ ., TAhx (k).

(s e
3. TSF=P(W, <t)=1-Y1_ S+1 ZJ “o x(k, J)Z Mi =1-0 S+1 ZJ Sx(k’j)FYj(t)7
t >0, where Y; ~ Er(j — S+ 1,S5p).

S oo le—Sut
4. ASA = B(Wy) = [° P(Wy > t)dt = S0 g, S5 x(k, ) S0y [ SEe—"dt =
Zk S+IZJ SX( NG = S+1).

We have the following new result to relate ¢; with x(k, j).

Theorem 3.4.1 For 0 < j < N, we have q; = Zi]\;_ol_j W;;-V_l) = Zg:jﬂ x(k, 7).

Proof. For 0 <j < N,leti:=k—j >0, then £k =17+ j. We have

1T 1T

x(k,j3) = x(i +j,5) = = :
> lmm > lmy,
0<l+m<N 1<I+m<N
Hence
j
N N—j . N—j ay _ay_
L N 1T . 100 i B()
§ X( a]) = z I, - 2: I al ap
— _ m T, 1L
k=j+1 =1 1<l+m<N i=1 1<Z+Zm<N 0077 B(m)
i J i—1 J
N—j 41 93 N—j 9y 93
_ LA BG) _ R G EIC)
- (ll am™ - al*l am
= Gk Sa Y ma
1<timen A0 1<t ey U1EAO)
N-1—j ai”' a}
_ E : =)' B{)
- -1 m
a a.
i—1=0 > L 2
—1)1
o<i—1im<n—1 1AM
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Now let n:=7¢—1and p:=1— 1, we have

N N-1-j Ll% N-1-j g% N-1-j
N nl B( B nlBG) A(N-1)
> ki)=Y e 3 S g =
k=j+1 n=0 Fﬁ(m) n=0 7T00 n=0
0<p+m<N-1
where Wéév_l) is the normalizing constant for the same network with one less call. [

Using this result, we can prove the equivalence of the two sets of the performance

measures in terms of ¢; and x(k, j) respectively. For example

N-1
P(delaylentry) = P(W, > 0) = Z 4
=S
NoINj o NSL N
=2 2 m = > x(kg)
j=S =0 j=S k=j+1
N k-1
= > > x(k.j).
k=S+1 =5

Other performance measures can be verified similarly.

3.5 Numerical examples

To give some numerical illustrations for the SOQN model, we will consider the following
example for P(blocking) and P(W, > t). This example is given in Srinivasan et al. [42],
which deals with a call load of 250 calls per half an hour period. The average talk time is
estimated to be 180 seconds and the average IVRU processing time is 0.01 seconds or 100
seconds representing fast and slow IVRU servers respectively. Therefore, our parameters
are A = 250/1800, u = 1/180,60 = 100 or 0.01. We let ¢ = 20 seconds. To illustrate the
effect of buffer size, we fix S = 5 and let buffer size K = N — S change from 0 to 30. We
also consider two cases: p =1 and p = 0.1.

For p = 1, the results are shown in Figure 3.3 for Example 3.1 (§ = 100) and in Figure
3.4 for Example 3.2 (# = 0.01) respectively. Since p = 1, all calls need the service of CSRs,
which makes P(blocking) and P(W, > 20) pretty high in both examples. In Example 3.1,
6 = 100, which means we have fast IVRU servers (processing time is 0.01 seconds). In
this case, the model is close to M/M/S/N model as mentioned in [42]. In Example 3.2,

6 = 0.01, which means we have slow IVRU servers (processing time is 100 seconds). In
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Figure 3.3: P(blocking) and P(W, > 20) for Example 3.1
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Figure 3.4: P(blocking) and P(W, > 20) for Example 3.2
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Figure 3.5: P(blocking) and P(W, > 20) for Example 3.3

this case, for P(blocking), the model can still be approximated by M/M/S/N model as in
[42] using new service rate i, where % =14 i Now since the service time is longer than
that in Example 3.1, we have P(blocking) is higher compared to Example 3.1. The above
discussion can be verified numerically using the result of M/M/S/N model in Chapter 2
and the approximation is also shown in Figure 3.3 and Figure 3.4. However we find that the
approximation in Example 3.2 is not as good as in Example 3.1. The limiting case when
K is large can be verified as well. For instance, in Example 3.1, we have p = S%L =5>1.
Therefore we have limy_,o P(blocking) = 1 — % = 0.8 and limy_,oo P(W, > t) =1
according to Theorem 2.4.2 and 2.4.4.

For p = 0.1, the results are shown in Figure 3.5 for Example 3.3 (# = 100) and in Figure
3.6 for Example 3.4 (6 = 0.01) respectively. Now since p = 0.1, only 10% of calls need the
service of CSRs, which makes P(blocking) and P(W, > 20) pretty low when compared to
the case p = 1. Similarly as discussed in the case p = 1, both examples can be approximated
by M/M/S/N model using new arrival rate Ap. Again we find that the approximation in

Example 3.4 is not as good as in Example 3.3 as shown in Figure 3.5 and Figure 3.6. In

Example 3.3, we have p = é\—z = 0.5 < 1. Therefore we have limy_,o, P(blocking) = 0 and
limy oo P(Wy > t) = C(S, a)e(5#=Nt = 0.0988 according to Theorem 2.4.2 and 2.4.4.

We have observed the similar monotonicity properties of P(blocking) and P(W, > t)

as in M/M/S/N model in all the above examples although we are not able to prove them.
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Figure 3.6: P(blocking) and P(W, > 20) for Example 3.4

Therefore we have the following conjecture. When S and other parameters are fixed,
P(blocking) is a strictly decreasing function of K and P(W >t) is a strictly increasing
function of K. This conjecture is intuitively correct and we will use it in Chapter 7 for the

call centre design problem.

3.6 Summary

In this chapter, we studied the SOQN model proposed in [42]. We derived the product
form solution of the queue length process and the distribution of the total number of calls
in the system using two methods. We also proposed an algorithm to compute the blocking
probability. In the derivation of the waiting time distribution, we used a new method
compared to the one used in the original paper. Finally we provided numerical examples
to illustrate the effect of buffer size to performance measures such as P(blocking) and

P(W, >t).
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CHAPTER 4

BALKING MODELS OF CALL CENTRES

In Figure 1.2, we find that if an arriving call finds all CSRs are busy and even there are
free waiting spaces the call may choose not to enter the system and leave the system upon
arrival. This is referred to as balking. Typically a monotonically decreasing function b; of
system size i (called balking function) is employed to include balking to queueing models
[24], page 123-124. b; can be explained as the probability of entering the system if there
are ¢ calls in the system upon arrival of a call and the balking probability is 1 — b;. Hence,

we assume that for a queueing model with S servers,
b¢:1,0§i<5and()<bi+1gbi<1,i25.

Now our arriving rate becomes \; = Ab;. Obviously, balking model is equivalent to the
state-dependent arrival model with arrival rates \;.
Gross and Harris [24], page 94 provided possible balking functions for single server

queueing models: e o > 0, and e /" o > 0. Note that the function

11
1032410
e/ o > 0, depending not only on ¢ but also on the service rate u, is a more realis-
tic balking function.

In this chapter we will study the balking phenomenon of call centres using both single-
node Markovian models and the SOQN model. We first give a review of single-node
state-dependent balking model M (n)/M/S/N, which is standard and appeared in many
textbook. The main work is on the SOQN model with balking, where we prove that the

product form solution of the queue length process still holds and we also derive the waiting

time distribution.

4.1 Single-node state-dependent balking model M (n)/M/S/N

In this section, we will give a review of M (n)/M/S/N model, i.e., the M/M/S/N model

with state-dependent balking. Now since the model has finite buffers, the non-balking
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Figure 4.1: M(n)/M/S/N model description and parameters
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Figure 4.2: M(n)/M/S/N model stationary state transition diagram

probability b; given ¢ in the system satisfies
bi=1,0<i< Sand 0< b1 <bh;<1,S5<i<N-—1. (41)

All other model description and assumptions are the same as M/M/S/N model. The

model description and parameters are shown in Figure 4.1.

4.1.1 Queue length process

In this model, Q(t) is a finite birth-death process with birth rate A\; = Ab; and state-
dependent death rate
i f0<i<S
Hi = :
Sp ifS<i<N
The stationary state transition diagram of Q(t) is shown in Figure 4.2. Since this is a finite

buffer model, the stationary distribution of Q(¢) can be obtained by solving the global or

cut balance equations derived from Figure 4.2 (no stability condition). The solution is

i—1 i . .

) Do ifo<i<s§
pi=poy(@) [Jo;=1¢ ", . _ ,

=0 gig=s [[i=gbjpo i S<i< N
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where pq is

S gi o5 N il ! N i1 ]!
po = Z?‘*‘g Z P%SHbj = Z'Y(i)Hbj
i=0 T i=S+1 j=8 i=0 j=0
and _
o ifo<i<s
@) =9 ° |,
s—s S <i<N

as defined in Chapter 2.

The previous results are standard and can be found in many queueing textbooks. How-
ever the following idea is new. We can obtain this distribution by using the method of
CQN as we have done for M/M/S/N model in Chapter 2 by introducing a fictitious node

(Node 0) which has one server with service rate
MO(]) = )\bN,j for0 <5 < N.

It can be proved that the solution of this CQN has product form (see the proof of the
similar SOQN case in Section 4.3). Using the same method as used in Chapter 3, we have
the stationary distribution of having ¢ calls at Node 1 and j calls at Node 0 is:
For all (i,j) € 22 such that i +j = N,
V(%) 1
003G T .
oY Hm:l bN*m

Therefore the stationary distribution of having ¢ calls at Node 1 is

7Tij =

ot
AN T b

since 7 + 7 = N. The above has the same distribution as p; since

T

i-1
» po7(2) Hobj ANp i—-1  N—i
i Jj= _ 0 .
™ Iy =y=t—— oo 110 11 b
A [[nzibn—m j=0  m=1
N-1
_ )\Npo H b,
Too a7
7=0

is a constant, not involving .
Note that the arrival process is still Poisson process, although the arriving calls enter
the system and affect the system state with probability b;. Therefore from the PASTA

property, we have for 0 < ¢ < N, a; = p; and the following results.
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1. P(blocking) = py.
2. P(no-delay) = S5t a; = S0 i
3. P(delay, entry) = Zf\:gl bia; = Zf\:; bip;.
4. P(entry) = Z Lai+ N bias = SN o
5. P(balking) = Zfi}l bia; = Zfi_sl bip;.
4.1.2 Waiting time distribution

Similar as in M/M/S/N model, if we define W, as the stationary waiting time in the
queue for all calls (the blocked and balking calls have co waiting time), then W, has a
mass at oo and P(W, = oo) = P(blocking and balking) = 1 — P(entry). We have

PW,>t)=P(W, > t,entry) + P(W, > t,blocking and balking)

= P(W, > t,entry) + P(blocking and balking).
To find P(W, > ¢, entry), we use the same idea as M/M/S model

P(W, > t,entry)

N
= Z P(W, > t,entry | i calls in the system upon entry)P(i calls in the system upon entry)
=S
N-1
= P(completion time of ¢ — S + 1 calls > t)a;b;
=S
N—-1i-8 S}Lt ]e Spt
- 'L (a
=S j=0

Usually we are more concerned with the conditional waiting time of a call given entry.

Let W, be this waiting time and we have

P(Wq>t) = P(Wq > t|6ntry) — (Wq >t1,en ’I“y)

P(entry)
B P (Spt)ieSHt NZ ZS Sut ]e
= ‘ qi-
i=S j=0 7! ZN 1 bzpz i=S
Here ¢; := m 0 < ¢ < N —1 is the probability of a call finding ¢ calls in the system

given entry, which can be derived alternatively in the following way [17].
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Let E(t,t+ h) be the event that a call arrives in (¢,¢+ h) and enters the system. Using

Bayes’ theorem it follows that for 0 <i < N — 1,

i = Jim Jim P(Q(6) = il E(t,t + 1)
_ fim lim P(Q(t) =14, E(t,t+ h))
t—00 h—0 P(E(t,t+ h))
i g PO+ R)IQ() = )P(Q() =)
t=00h=0 S5V PE(L,t+ h)[Q(E) = i) P(Q(t) = i)
Qb+ o)
h=0 35 (Absh + o(h))pi
)\b@'pi _ bip;

YN b SN b

Once we have the expression of ¢;, the following performance measures can be easily

obtained.
1. P(no-delay|entry) = P(W, =0) = Zf o Ui
P(delay|entry) = P(W, > 0) = > r & ;.

3. ASA = E(W,) = [¢° P(W, > t)dt = 573 5 aiFy,(tdt = o Yiig ai(i — S +
1),where Y; ~ Er(i — S+ 1, Su).

Note that the results in this section are also standard and appeared in many textbooks

such as Riordan [39] page 113.

4.1.3 Special cases of b,

In the literature, there are some studies of this model with special forms of balking function
b;. In an earlier paper [3], the authors studied a M /M /1 model with balking and obtained

a series of stationary performance measures. The balking function is

) 1—-¢/N if0<i<N
0 otherwise '

Here N is a measure of call’s willingness to enter the system and it is obvious that there are
at most N calls in the system. Essentially the authors used the same method as above and
the difference is they have an explicit expression for b;. After some algebraic manipulation
they managed to express the performance measures by special functions such as Gamma

and Beta functions, which facilitate the computation. This model can also be seen as a

64



machine interference problem with N machines and the individual failure rate o = A/N,
since b =1 —i/N = (N —i)/N and \b; = (N —i)o is the failure rate when i is in repair.
In a later paper [4], the authors studied a similar model with a different balking function,
for 0 < g <1,

BJi ifi>1

1 ifi=0

bi =

where [ is a measure of call’s willingness to enter the system. Now there is no limit on
system capacity (N — oo0). They obtained similar results as [3].

For multiserver case, Reynolds [38] used the balking function

1 ep
sz =S

1 ifi< S

b =

to analyze an infinite capacity queue. When S = 1, the stationary queue length @) has
a Poisson distribution with parameter a, just as a M/M /oo queue [28], page 100. For
multiserver and finite capacity case, Abou-El-Ata et al. [1] analyze a M/M/S/N queue

with a general balking function
BA-(i—-S+1)/N) . .
1 fo<i< S8

where 8 is a measure of a call’s willingness to join the queue and m is a non-negative

integer.

4.2 Two-node network model with state-dependent balking

and state-dependent service

In this section, we will look into two-node network model with state-dependent balking
coefficient b; and state-dependent service rate. Here b; satisfies conditions (4.1). We will

show that this model has a product form solution for the queue length process.

4.2.1 Model description

The model is a tandem queueing network with two nodes in series. Node ¢ has one server
with state-dependent exponential service rate p;(n), i = 1,2, where n is the number of

calls at Node 7. Arriving calls to Node 1 are Poisson with arrival rate A. After the service
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Figure 4.3: Model description and parameters for the two-node network model

with Node 1 is completed, the call leaves the network with probability Bj and it joins Node
2 with probability b; = 1—b;, where j is the number of calls at Node 2 when the call leaves
Node 1. After the service with Node 2, it leaves the network. Figure 4.3 gives a picture of
the model.

4.2.2 Product form solution of the queue length process

Let Q(t) = (Q1(t),Q2(t)) be the queue length process of our tandem queueing network,
where Q;(t) is the queue length of Node 4,7 = 1,2 at time ¢. From the description of the
model, we know that Q(¢) is a two dimensional CTMC. We assume that the stationary
distribution of Q(t) exists and let m;; = P(Q1 = i,Q2 = j) be the stationary probability
of having 4 calls at Node 1 and j calls at Node 2. In order to find m;;, we first draw the
stationary state transition diagram in Figure 4.4.

From the stationary state transition diagram, we can get the global balance equations

Tij (A + p2(d) + pa (i)

= M)A+ Tiganyt2(F + 1) + Tapn)-npa (0 4+ 1)bj—1 4 Ty (i + 1)bj, 0> 1,5 > 1
moj (A + p2(4)) = mo(j+1yke(f + 1) + myonypa (1bj—1 + mijpu(1)bj, i = 0,5 > 1

Tio(A + p1(2)) = w10 + mirp2(1) + m(y1yop (i + 1)bo, @ > 1,5 =0

mooA = mo1p2(1) + mopa(1)bo, i = 0,5 =0
(4.2)

where the last three equations are boundary cases.
It is typically hard to solve these global balance equations directly. Instead we will solve
a set of more strict balance equations: local balance equations. They are also referred to

as partial or station balance equations, which are described in [10] as

“At each state the flow out of a station due to the departure of customers is
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Figure 4.4: Stationary state transition diagram for the two-node network model

balanced by the flow into that same station due to the arrival of customers.”
For Node 1 the station balance equations are
mijh1(3) = T—1);A, 1> 1,5 > 0. (4.3)
For Node 2 the station balance equations are

Tijh2(J) = TsnG-nm (@ +1)bj—1, © > 0,5 > 1. (4.4)

For the whole network, the station balance equations are

T\ = 7Ti(j+1)ﬂ2(j +1)+ 7T(i+1)j,ul(i +1)bj, i1 > 0,5 > 0. (4.5)

It is easy to see that if m;; satisfies these station balance equations, it also satisfies
the global balance equations (4.2) since the sum of three station balance equations will
be the global balance equations. In other words the global balance equations have been
decomposed into the sum of three station balance equations, which are easier to deal with.
We can think of the station balance equations as the generalization of cut equations of

birth-death process to two dimensions.
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Theorem 4.2.1 For the above tandem queueing network model, the stationary queue

length distribution m;; has a product form
i ] J . .
mij = [[ a1(n) [] a2(n) [] bp-1m00, =0, =0
n=1 n=1 n=1

where a1(n) = X p1(n); az(n) = X/ pa(n);

-1

~ S TS [T [T s

1=0 n=1 j=0n=1
and the empty product is 1 by convention. The stability conditions are
J
ZHal <ooandZHa2 an_1<oo.
i=0 n=1 =0n=1 n=1

Proof. We need to solve station balance equations (4.3) (4.4) (4.5). From (4.4) we have

CIVES)

07 = (i 1y, e 120 20

Substituting the above to (4.5), we get

TigA = Tipnyp2(d + 1) 4 Tpry;m (i + 1)b;

. pa(g +1
= miG4yp2(i +1) + M TG+ (i + 1)b;
. p2(g + 1)b;
= (ol + 1)+ 22D
j
_ w2 +1)

. TG+ 120,57 >0.
j

Then we have

Jj+1 Jj+1
Ti(j+1) = ag(j—i—l)bjmj = ag(j—i-l)ag( )b bj 1T5(j—1) = = H CLQ H bn 17@@,1 >0 j > 0

ie.,

J J
Tij = H az(n) H bn-1mi0,1 > 0,7 > 0,

n=1

where the empty product is 1 by convention. From this we have

J J
TF()j = H CLQ(TL) H bn—lﬂ'OO, ] Z 0. (4.6)
n=1

n=1

On the other hand, from (4.3) we have

Tij = al(i)ﬂ(i_l)j H n)moj, 1 > 0,5 > 0. (4.7)
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Combining the above two formulas (4.6) and (4.7), we have

i J J
Tij = H ai(n H H bp—1m00, © > 0,7 > 0.
= n=1 n=1

Since » 24 > 72 mij = 1, we have

co oo 1 J
1:221_[@1 Ha2 an 1700
n=1 n=1

=0 j—O n=1
© J J
=S w3 [Test [T om0
=0 n=1 ]:On:l n=1
Therefore .
o] J J
— [ T e 3 [T s TT s
1=0 n=1 j=0n=1 n=1

and the stability conditions are:

o 4 0o J J
Z H a1(n) < oo and Z H as(n) H bp_1 < 00.
n=1

i=0 n=1 j=0n=1

It can be verified that this solution satisfies the boundary cases in (4.2) as well. L]

Remark 4.2.1 The solution has a product form: Node 1 is a M/M(n)/1 queue with
arrival rate \ and state-dependent service rate pi(n). Node 2 is a M(n)/M(n)/1 queue
with state-dependent arrival rate \bj and service rate po(n). This is intuitively true since

Node 1 has the Poisson in and Poisson out property in equilibrium.

Remark 4.2.2 If the service rates at two nodes are constant, then we have the special

S
case: m; = (1 — ay)alal [] bu—1m0,% > 0,5 > 0 where a1 = A\ p1; az = N pg; T =

n=1
. J
(14> ab T[] bn—1)"! is the probability of 0 customers at Node 2, when Node 2 is
n=1
thought of as an isolated queue with state-dependent arrival rate \bj and service rate pa.
. J
The stability conditions are: a1 < 1 and Z;’il a% Hl bp—1 < 00. In this case Node 1 is a
n—
M/M/1 queue and Node 2 is a M(n)/M/1 queue.

Remark 4.2.3 If yu1(n) = nuy and pa(n) = (S An)ue, then we have Node 1 is a M /M /oo
queue with arrival rate A and service rate p1. Node 2 is a M(n)/M/S queue with state-

dependent arrival rate Ab; and service rate pa. The product form solution is



where a1 = \/p1; ag = N/ po;

J! for0<j <SS
S189=5  for § <j< N

and
-1

2
T = - bn—l
= 80) 5
1s the probability of 0 customers at Node 2 when Node 2 is thought of as an isolated queue

with state-dependent arriwal rate A\bj and service rate po. The stability condition is

0o CLj ﬁ
2
- bn_]_ < 00.
=80 5
This solution still holds if we allow Node 1 has general service time with mean 1/u1, i.e.,

a M/G /oo queue since M /G /oo has the same stationary distribution as M/M /oo queue

and it has the Poisson in and Poisson out property in equilibrium as well.

Remark 4.2.4 For different form of bj, we can obtain some special models. For example,

in case of constant service rates, if

. 1 if 0<j<N
J = J

04 Jj=N
Node 2 becomes M/M/1/N, where N — 1 is the number of buffers. Our result becomes

mij = (1 — a1)abalmo, i >0,0<j <N,

where a; = \/p1; ag = A/ p2; mo = (Z;V:o ag)—l = 1;—5&1 Hence
i g l—as . .
mij = (1— al)alaQW, i>0,0<j<N.
— a)

4.2.3 Semiopen case

In this case, we have a state-dependent arrival rate to Node 1, which is

o Aif i+j<N
(i, j) =
0 otherwise

where ¢ and j are the number of calls at Node 1 and 2 respectively upon arrival. In other
words the model is a semiopen network model with state-dependent balking and state-

dependent service. The maximum number of calls in the system is N. Now the model is a
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finite state model and there always exists m;;, the stationary distribution of Q(¢). Similarly

we can show that m;; has a product form solution.

Theorem 4.2.2 For the above semiopen network model, the stationary queue length dis-
tribution m;; has a product form
i j j . . . .
mij = [ ai(n) ] a2(n) I bp-1700, @>0,5>0,i+j <N

n=1 n=1 n=1

where a1(n) = X p1(n); az(n) = X/ pa(n);
-1

i

J J
Too — Z H al(n) H CLQ(n) H bn—l
n=1

0<i+j<N n=1 n=1

and the empty product is 1 by convention.

Proof. Now the global balance equations become

g (A + p2(g) + p1(i)) = m(—1); A+

T2+ 1) + o (6 + Dbjo1 + mapnm i+ )by, i > 1,5 > 1i+j < N —1;
i (H2(3) + 11 (i) = 71 A + Twny - i+ Dbjo1, 12 1,7 > Li+j = N;

7o (A + p2(j)) = mog+ny (i + 1) + mig—ypa(1)bj—1 + mjp(1)b;, i=0,1<j<N-—1;
monp2(N) = myv—nyu1(1)by-1, i = 0,5 = N;

Tio(A + p1(8)) = ma_1yoA + mip2(1) + wpnora (i + Do, 1 <i< N —1,5 =0;

mnop(N) = mn_1)A, @ = N,j =0;

mooA = mo1a2(1) + m1op1(1)bo, i = 0,5 = 0.
(4.8)

where the last six equations are boundary cases. Basically the equations are the same as
(4.2) except that we have more boundary conditions. Again we will try to solve the station

balance equations first. For Node 1 the station balance equations are
mijpa (i) = m—1;A, > 1,5 > 0,4+ < N. (4.9)
For Node 2 the station balance equations are
Tiip2(F) = TrnG-npa (i + 1)bj—1, 1> 0,5 > 1,44 j < N. (4.10)

For the whole network, the station balance equations are

TijA = 7Ti(j+1),u2(j +1)+ W(i+1)jul(i + 1)bj, 1>0,7>0,14+75<N-—1. (4.11)
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Now the global balance equations have been decomposed into the sum of three station
balance equations, which are easier to deal with. Similarly as in the proof of Theorem
4.2.1, we can solve station equations (4.9) (4.10) (4.11) and obtain the solution

J

J
H az(n) H bn—1m00, © > 0,5 >0,i+ 35 < N.

n=1 n=1

7
iy = | [ ar(n)
n=1

Since ). m; =1, we have
0<i4+j<N

1= Z H al(n) ]:J;ag(n) ]:J;bn_lﬂ'oo.

0<i+j<N n=1

Therefore .
7

J J
Too — Z H al (n) H ag(’l’b) H bnfl
0<i+j<N n=1 n=1 n=1

and we do not need any stability conditions.

It can be verified that this solution satisfies the boundary cases in (4.8) as well. ]

Remark 4.2.5 Comparing to the open network case, the semiopen network has the same
distribution except the normalizing constant due to the finite state space. We can think of
the semiopen network as the open network conditioned that it has no larger than N calls

i the system.

Remark 4.2.6 The semiopen network model is more useful in modelling since in reality
we never have infinite buffers or trunk lines in case of call centres. In fact the semiopen
network model with state-dependent balking of call centres studied in the next section is a

special case of this model with specific service rates at two nodes.

4.3 SOQN model with state-dependent balking of call cen-

tres

In this section, we will introduce balking to our SOQN model. For the queue length process,
the SOQN model with state-dependent balking is just a special case of the model in the
last section and also has product form solution for the stationary distribution. We will
give an alternative proof as well. Waiting time distribution and mean waiting time will

also be studied.
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CSEs (Node 2)

Blocked Calls Balking Calls

Figure 4.5: SOQN model with state-dependent balking

4.3.1 Model description

The model is a semiopen network with two nodes in series. Node 1 models the IVRU with
N servers each with exponential service rate # and Node 2 models the CSRs with S ( < N)
servers each with exponential service rate p. The maximum number of calls in the network
is N, i.e., if an arriving call finds N calls in the system, it will be blocked and rejected
entering the system. Hence there is no queue at Node 1 and there are at most N — S calls
waiting at Node 2. Arriving calls can enter the network only through Node 1 according
to a Poisson process with arrival rate A. After the service with Node 1 is completed, the
call leaves the network with probability Bj and it joins Node 2 with probability b; =1 — Bj
where j is the number of calls at Node 2 when the call leaves Node 1. Here b; satisfies
conditions (4.1). If there are free CSRs at Node 2, the call is served by one of S CSRs,
otherwise it waits in the queue and leaves the network after the service with Node 2. The
original SOQN model in Chapter 3 can be thought of as a constant balking model. Figure

4.5 gives a picture of the model.

4.3.2 Product form solution of the queue length process

From the above model description, we know that it is a special case of the semiopen network
model studied in Section 4.2 with service rates pi(n) = nf and p2(n) = (S A n)p. Now

we have that Node 1 is similar to a M /M /oo queue with arrival rate A and service rate 6.
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Node 2 is similar to a M(n)/M/S queue with state-dependent arrival rate A\b; and service

rate pu. According to Theorem 4.2.2, the product form solution is
(li aj ] . .
Tij = o3 3y Ll bn—1, 0<i+j <N, (4.12)
where a1 = \/0; ag = \/p = a;
J! for0<j<S
S185=5  for S<j< N

and
1

_ o fr,
oo — Z F%H n—1

0<i+j<N n=1

4.3.3 An alternative proof

In the following we will use the similar method in Chapter 3 to prove that for this model, the
stationary distribution of queue length process has product form solution. As in Chapter
3, to solve the stationary distribution of queue length process for SOQN, we introduce a

fictitious node (Node 0) with service rate

A if m>0
0 if m=0

po(m) =

to convert our model to three-node closed network. We then prove that the converted
closed network still has product form solution. Our method is first to write down the
global balance equations and then guess the solution. Finally we will verify that the
solution satisfies the global balance equations. This solution for converted closed network
is actually the solution for the original semiopen network.

Let m;; be the stationary probability of having k calls at Node 0, ¢ calls at Node 1,
and j calls at Node 2 respectively. The global balance equations for this CQN model is

Tkig (o (k) + pa(d) + p2(4)) (4.13)
= T(k41)(i-1);0 (D) po(k + 1) + (k1) (i+1);0 (k) pa (i + 1)b,
F (1) (—1)0 (1)1 (8 + 1)bj—1 + T—1)i(j+1)0 (k) p2(j + 1)
V(k,i,j) € Z% such that k+i+j = N,
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1 ¢f >0
where §(i) = f accounts for the boundary cases. Actually the above global
0 ¢f 1=0
balance equations are equivalent to the global balance equations (4.8) for SOQN model.
Now we need to solve the above equations. According to our method, we first assume
the solution has product form and then follow the usual way to get the solution. In the

end we will verify that the solution satisfies the above global balance equations (4.13).

We can write down the traffic equations of our closed network

V1 = Vo
Vo = ’Ulbj

Vg = Ulgj + v2
By letting v1 = v9 = A, we can easily get the solution: v; = vg = A and v = Abj.
These are the arriving rates for these three nodes if we see them in isolation. For service
rates, as in Chapter 3, we have

ﬁ pi(m) if n>0
M;(n) = ¢ m=1 i=0,1,2. (4.14)

1 if n=0

If we look at these three nodes in isolation, they are all truncated birth-death process.

From the well-known stationary distribution of birth-death process:

J
H algilp()
i=1 "
] . . .
A+ 15~ if =0
=1

if 7>0
pj =

where a; @ > 0 and (§; i > 1 are state-dependent Birth and Death rate respectively, we

have: For Node 0, the stationary distribution is

Ak Ak
= P(Yy =0)=
Mo (k) (Yo =0)3;

P(Yy=k) = P(Yy =0) =PYp=0), 0<k<N;

For Node 1, the stationary distribution is

)\i
PY1=i)=PY1=0))—-, 0<1<N;
(¥i =) = P = 07 0<i< N
For Node 2, the stationary distribution is
. N
P(YQZJ):PQ@:OMQ( an 1, 0<j<N.
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Therefore, if our model has product form solution, the solution should be

Mhii = KA bn—
)= R U ' (4.15)

V(k,i,j) € Z_?; such that & +7+ j = N and & is the normalizing constant.

Lemma 4.3.1 Our closed network has the product form solution (4.15).

Proof. We need to verify that the above solution (4.15) satisfies the global balance
equations (4.13). Without loss of generality, we only check for £ > 1,4 > 1 and j > 1. The
boundary cases can be checked similarly. If we substitute the solution (4.15) to (4.13), the
left hand side of (4.13) becomes

Thij (o (k) + p () + p2 ()] (4.16)
i i J
= D+ ) + )] w5 1] B
n=1

paras par \it+J
+— ~ + ] an L.
M1( JMa(j) — Mi(i —1)Ma(j) ~ Mi(i)Ma(j —1)] -

The first term of the right hand side of (4.13) becomes

W(k+1)(i—1)j5(i),u0(k + 1)

)\i—l
bp—1A
Ml(Z - 1 M2 H !

Nt

_ b
"ML — 1) Mo 1:[1”1

The second term of the right hand side of (4.13) becomes

T (e—1)(i+1);0 (k) (i + 1)b;

/\i-i—l )\j
= bp— 1)b;
Ml(z—i-l)Mz 1;[ 101 (i + 1)b;

A\iti+L J

=k [T bnoi(1— b,
@) L0 =0

. Ni+i+1 J . i+l ﬁb
My (i) My(5) L0 P (i) M () 14T
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The third term of the right hand side of (4.13) becomes

Th(i+1)(j—1)0 (7)1 (@ + 1)bj—1

\it+l V-1 it

- m@+nmm—1r””mm+””4

i+
b
ML()Ma(j — 1) H =l

The forth term of the right hand side of (4.13) becomes

Te—1)i(j+1)0 (k)2 (j + 1)
A\ PV I

STAGITATESVE S RO

A\iti+L J

~ ML) M () b

n=0
Adding the right hand side of the last four formulas, we have
Nt parads Nitd
My(i = 1)Ma(j)  Mi(i)Ma(j) — Mi(i)Ma(j —1)] -

which equals to the right hand side of (4.16). L]
Let m;; be the stationary probabilities of having 4 calls at Node 1 and j calls at Node
2. Since
M(i) =i0",0<i< N

and Mz (j) = B(5)p’!. We can easily get the following result, which agrees with (4.12).

Theorem 4.3.1 Our semiopen network model with state-dependent balking has product

form solution

i J
mij = moo% gy Mo, 0<itj<h,
where a1 = \/0; as = N/ u;
, J! for0<j <SS
BI) =
S1Si=5 for S<j<N
and .
d dd
oo — ,Tllﬁnbn_l
0<i+j<N J n=1

Remark 4.3.1 This model is a generalization of the model studied in [42] where b; = p,
0<j<N.
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4.3.4 Blocking probability

As in [42], we can similarly get the stationary probabilities 7, for 0 < k < N that there

are exactly k calls in the system

k
e = Zﬂ(k—m
§=0
We will distinguish two cases:
1. 0<k<S:
k k—j j k
a; “ay (a1 + ag)
O
J_
2. S<k<N:
g, g
Tk = T00 0t bp—1
jz(:) (k —4)'5! j:; (k *J 'S'SJ (k —j)!S187-5 H "

k 7 1
ZWOOZ;; ]1]|H”1+Z o 2H (5!533 >

4!

Therefore, the probability m; that there are exactly 0 < k < N calls in the system is

equal to
S ak ‘a al a2 d 1 1
S DR 1 (RIS Sl = | PANY (SRS Y
_] ] 3 e ! 4!
= j= +1 1
where
oo = 7o
[ -1
S N S h—i i
(a1 + az)” a; ’a}
=12 + 2 X > an !
! — )y (k — j)1S1Si—5
_k:() k k=S+1 \ j=0 (k ]) J ( ] S Sj
Sy e 3 5 A ()]
= bn 1+ ay "% bn—l < _ >
— ) 1Gj—5 Al
| k=0 j=0 ! k=S+1 j= 1 j) =1 Slst J:

and the blocking probability is P(blocking) = mx.
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4.3.5 Other performance measures

We can get other performance measures from the stationary marginal distribution of Node

2. When we look at Node 2 only, we have

S—1 N-1 N—-1
l=mn+ ZTF*J‘ + Z bjﬂ'*j + Z Ejﬂ'*j
e i=s i=s

N-1-j N-1 [N-1-j N-1 [N-1-j
=7TON+Z Z Tij +7I'N —)j + b] [ Z T4 +7T(N —1)j + Z ' [ Z Tij +7T(N—j)j]
j=0 L i=0 =S8 i=0
N-1 S—1N—1—j N-1 N-1—j N—-1 N-1—j
:7T0N+Z7TN] +Z Z mj—i-Zb] Z mj—i-zgj Tij
§=0 =0 j=S i=0

S—1N—1—j - N-1 N-1—j

N—-1—j
P(blocking) —1—2 Z mj—i-Zb Z mij + Z Tijs (4.17)

where 7,; is the stationary marginal distribution of Node 2. Hence, we have:

1. P(no-delay, entry) = Z ZN i
N—-1— ]
P(delay, entry) = Z b > im0

P(balking) = 32375 5; 305 mij.

4.3.6 Waiting time distribution and mean waiting time

In order to find the important performance measure: T'SF = P(W, < AWT), we need to
have the waiting time distribution. As in SOQN model, we only need to consider those
calls given they are not blocked and join Node 2 without balking (or given entry), since
there is no queue at Node 1. Let W, denote the conditional stationary waiting time of calls
given entry, which is the time spent by an entry call in the queue of Node 2 until starting

to get service.

Using ¢,

To find the distribution of W, we need first to find g;, the probability of finding j calls at
Node 2 by a joining call from Node 1 at arrival instant. g; is actually the probability of

a call finding j calls at Node 2 given entry. Using (4.17) and conditional argument, it is
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easy to see that

N—-1— j
Qj = b E N_1— (418)
— P(blocking) — Z b E I
N— 1—J |
bi 2izo o L 0<j<N.

N—1— N—1—
Z 0 i U mi + Z by
Once we have the expression of g;, the following performance measures can be easily

obtained similar to the SOQN model.
1. P(no-delay|entry) = P(W, =0) = Z}g 01%
2. P(delaylentry) = P(W, > 0) = Zé\];gl q;-

3. TSF = P(W, <t)=1-3 "0 g 300 S (Sut)e M 1- Vg Fy ), t >0,
where Y; ~ Er(j — S +1,Sp).

4. ASA = E(W,) = [ P(Wy > t)dt = [7° S Nd ¢ Fy, (t)dt = S0 g5 [5° Fy, (t)dt =
S Lies 47 =S +1).

Using x(k, j)

An alternative method is to use the method of Srinivasan et al. [42], where they used
X(k, j), which can be defined here as: For 0 < j < k < N, x(k,j) is the probability that
the system is in state (k — j, 7), when a call (among the k — j calls) is about to leave Node

1 and join Node 2 without balking. Using Bayes’ theorem, we derive

x(k, j) := P(system in state (k — j,j) | call is about to leave Node 1 and join Node 2)
P (call is about to leave Node 1 and join 2 | system in state (k — 7, 7)) T(—j);

N Zl]\io Z'lm:[) P (call is about to leave Node 1 and join 2 | system in state (I —m,m)) T@_p)m
_ (k —5)0bjm(i—j);

>0 Ym0l = m)0bmT (1 mym
_ (k = 5)bj 7 (k—j);

Zl]\il Ziﬁio(l - m)bmﬂ-(lfm)m.

Then we have:

1. P(no-delay|entry) = P(W, =0) = Zk 1Zk/\s ! x(k,j) = Z Zk_]_H x(k,7)-

P(delay|entry) = P(Wy > 0) = 330 gy 5—s x(k. ).
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S (S T
3. TSF=P(W,<t)=1-Y,_ s+12] o x(k5) 315 (Mti =1-3 4 s+1zj “sx(k, ) Fy, (t),
t >0, where Y; ~ Er(j —S+1,5u).

4. ASA = BE(W,) = [° P(Wy > )t = YN gy SEbx (k) S5 [ CRe™ gt =
su Zk S+1ZJ sX( 7 —S+1).

Again we have the following result to relate ¢; with x(k, 7).
Theorem 4.3.2 For 0 < j < N, we have ¢; = Zi\;jﬂ x(k, j).

Proof. For0<j< N,leti:=k—j >0, then £k =i+ j. We have

ibaT ibaTrs
Eoi) = (547 ) — 3 Tij _ 5 Tij .
x(k,j) = x( +j,7) S by, S by,
0<l+m<N 1<l+m<N
Hence
_ —j ibjm b
= 1X yJ) = — Z lbmﬂ-lm o — b le a;ﬂ m )
=it T 1<i+m<N " 1<l+Z<N m 00T Bm) nHI .
STrms =
1—1 (L% .7
N—j albjﬂ'oo( D1 B3() Hlbn_l
n—=
- aml e B
=1 ay E bim oo (lil)l/@(?n) H bn—1
1<l+m<N n=1
-1 5 ]
N—-1-j b]7r00 (jil)!% Hl bp—1
n=
= -1 m M
i—1=0 bim oo a 1)15(%) IT bn—
0<i—1+m<N—1 n=1
Now let ¢ :=i—1 and p:=1— 1, we have
) ad dl J N-1-j ad J
N N-1-j bimoo gt 5y 11 o b Lg=o o0t sy 11 bo-t
. n= n=
Z X(k’]) = Z ap am m = al” a™ m
k=j+1 q=0 Z bmﬂ'ogpf}ﬁ(fn) H bnfl Z bm’f(‘oop%ﬁ(fn) H bnfl
0<p+m<N-1 n=1 0<p+m<N-1 n=1
bj EN - j”qj
T S-1 —N-1— N— 1
Zm:O p=0 mﬂpm‘FZ b Z T
[

Using the relationship ¢; = Ziv:j 41 X(k,j), we can prove the equivalence of the two

sets of the performance measures in terms of ¢; and x(k, j) respectively. For example
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Figure 4.6: P(blocking) and P(W, > 20) for Example 4.1

N-1 N—-1 N N k-1
P(delaylentry) =Y q;=>_ > x(kd) = > > x(kj).
=5 =S k=j+1 k=S+1j=S

Other performance measures can be verified similarly.

4.3.7 Numerical examples

To give some numerical illustrations for the SOQN model with state-dependent balking,
we will consider the following example for P(blocking) and P(W, > t). This example is
similar to the example discussed in Chapter 3 where the parameters are A = 250/1800, y =
1/180,t = 20 seconds, # = 0.01. To illustrate the effect of buffer size, we fix S =5 and let
buffer size K = N — § change from 0 to 30. In addition we assume the balking function
b; has the form

b= m if S<j<N
1 fo<j<S

)

where non-negative m is a measure of a call’s willingness to join the queue. We will consider
two cases: m = 10 representing higher balking probability and m = 0.5 representing lower
balking probability. The results are shown in Figure 4.6 for Example 4.1 (m = 10) and in
Figure 4.7 for Example 4.2 (m = 0.5) respectively.

Since we have lower balking probability in Example 4.2 compared to that in Example
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Figure 4.7: P(blocking) and P(W, > 20) for Example 4.2

4.1, both P(blocking) and P(W, > t) in Example 4.2 are higher than those in Example
4.1. Also from these two examples, we observed the similar monotonicity properties of
P(blocking) and P(W, > t) as in SOQN model. Again we have the following conjecture.
When S and other parameters are fixed, P(blocking) is a strictly decreasing function of K
and P(Wq>t) is a strictly increasing function of K. This conjecture is intuitively correct

and we will use it in Chapter 7 for the call centre design problem.

4.4 Summary

In this chapter, we studied the balking phenomenon of call centres using single-node Marko-
vian models and the SOQN model. We first gave a short review of the single-node state-
dependent balking model M (n)/M/S/N, which is standard. The main work is on the
SOQN model with balking, where we proved that the product form solution of the queue
length process still holds. We also derived the waiting time distribution and other per-
formance measures. In the end numerical examples were given to illustrate the effect of

balking.
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CHAPTER 5

EXPONENTIAL ABANDONMENT MODELS OF CALL CEN-

TRES

Another important feature of call centres is abandonment. State-dependent balking
can be thought of as the abandonment of aware calls who know or are informed of the
state of the system upon arrival and hence abandon before entering the system. Unlike
balking, abandonment (reneging) describes the phenomenon that unaware calls leave the

system after entering the system.

The following is a common approach to include the abandonment into the queueing
system. Consider a queueing system which allows for waiting in the buffer if an arriving
call finds all servers busy. To incorporate the abandonment, it is assumed that there is a
random variable X for each call that quantifies the call’s patience. There are two types
of abandonment [5]. One is patience time on waiting, which means an unaware call will
leave the system if its waiting time is longer than its patience time X while waiting for the
service in the queue. Hence once the call begins its service, it never abandon. The other is
patience time on sojourn, which means an unaware call will leave the system if its sojourn
time is longer than its patience time X irrespective of whether or not it is being served.
Since in call centres, the first type of abandonment is more realistic, we will only focus on

this one.

For different calls, patience times are assumed to be ii.d. with mean 1/, which is
natural for the invisible queues occurring in call centres [47], and they are independent of
all other model elements as well. If X is infinite, the model reduces to a model without
abandonment discussed earlier. We are interested in a call who arrives at the system
at stationary state. Let V be this call’s offered waiting time in the queue (i.e., stationary
waiting time of a call with infinite patience [33]). If V' > X the call will abandon; otherwise

the call will get served. Now W, := V' A X is the stationary waiting time in the queue of
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this call until it gets served or abandons.
One important concept in abandonment models is (stationary) abandonment rate func-

tion. For example, see [3], [6], [24], page 95, and [36]. We introduce the definition of [36],

Definition 5.0.1 Fort,e € R™ andi € N, let

VU;(t,e) := the probability that a call misses its deadline(abandon) during [t,t + ¢),

given there are i calls in the system at time t.

Define r;(t) = ;I_I% %, and assuming at stationary state, r; = tliglo ri(t) is called the

stationary abandonment rate function.

Movaghar [36] gave an explicit expression of r; for M /M /S+G model. For M /M /S+ M

model it reduces to

0 ifo<e <SS
T, = . (51)
(i—9Sa ifi>S

In this chapter, we will focus on the exponential abandonment model of call centres,
ie, X ~ exp(a). We will analyze three models, M/M/S + M, M/M/S/N + M and
SOQN+M which is SOQN model with exponential abandonment.

5.1 M/M/S + M(Erlang-A model)

M/M/S + M generalizes the M /M /S model by including exponential abandonment, i.e.,
patience time X is assumed to have exponential distribution with mean 1/«. Palm first
introduced this model and Garnett et al. [21] referred to it as Erlang-A model (A for
Abandonment, and for the fact that it interpolates between Erlang-C and Erlang-B [33]).
The model description and parameters are shown in Figure 5.1. Note that if u = «,
M/M/S + M model becomes M /M /oo model; if & = 0 (no abandonment) it becomes
M/M/S model and if o = oo it becomes M /M /S/S model.

5.1.1 Queue length process

The following discussion is mainly based on the work of [33]. Since the patience times are

assumed to be i.i.d. exponentially distributed, the queue length process Q(¢) is an infinite
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Figure 5.1: M/M/S + M model description and parameters

birth-death process with birth rate A\; = A and state-dependent death rate

i ifo<i<S$
Sp+(i—S)a ifi>S

i =

where we used the fact that for M/M/S + M model, the abandonment rate is given in

(5.1). We can also derive this result directly in the following by Definition 5.0.1.

Theorem 5.1.1 For M/M/S+ M model, we have the stationary abandonment rate func-

tion
0 if0<i<S
Ty = .
(t—S)a ifi>S
Proof. By the definition of 7; (Definition 5.0.1), we have r; = lim lim %, where

t—o0 e—0

U;(t,e) = P(a call abandon during [t,t+¢)| ¢ calls in the system at time ¢). For 0 <¢ < S,
U,;(t,e) = 0, Hence r; = 0. For ¢ > S, there are i — s calls in the queue, each with an
exponentially distributed patience time X with mean 1/«. Then ¥,(¢,¢) = (i —s)ae +o(e),
which is independent of ¢ because of the memoryless property of exponential distribution.

Hence r; = (i — S)a. "

Remark 5.1.1 It is easy to see that fori > S, r; = (i — S)a is the hazard rate of an expo-
nential distribution with mean m, which is the distribution of Y = min(Xy,...X;—g),
where X,, n = 1,2,..4 — S have exponential distribution with mean 1/c, representing

patience time of calls in the queue.

The stationary state transition diagram of Q(t) is shown in Figure 5.2. The stationary

distribution can be obtained by solving the global or cut balance equations derived from
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Figure 5.2: M/M/S + M model stationary state transition diagram

Figure 5.2 as in [33]. The solution is

<o ifo<i<S$

)\ifs
[Ti—s41[Sp+(G—S)e

pi =

]a?s!po if S <i

where pg is

S at aS 0 )\z’fS -1
p0:<z.'+5|2 3 (]—S)a]) .

i—0 v b itoin jms S+
This distribution exists if the infinite sum in py converges. In [33], it is proved that

since for 0 < a < oo,

5 gl s X i—S
a a A
ST i . (5.2)
; s i;—l Hj:S+1[SH + (4 —S)a]
i (A ( u/\oz L Mwna) .

i=0
po always converges, i.e., there always exists the stationary distribution p;.
In [33], it is also shown that p; can be expressed in terms of pg
DS if0<i<$

" . (5.3)
[lj—si1[Sn+(i S)a}ps if § <

where pg is

S a®
bs = CL]90 = -
= SP0 = =3 X
St ZZ 0 z' + ST E =5+1 H —s11[Su+(i—5)a]
) B(S,a)
1+ B(S,a) o o

i=5+1 H S+1[SN+( —S)a]
The expressions of p; have infinite sums that can cause computational problems. In

[33], special functions have been used to overcome this problem. They provided expressions
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in terms of special functions for some performance measures. In this section we will follow
their idea and provide more results.

As in Chapter 2, let
y
v(x,y) = / e ldt,z > 0,y >0
0
be the incomplete Gamma function and let
o
I(z) = / t" e tdt, x> 0
0

be the Gamma function. Define

o0
T(z + 1)y
:Z ehs £>0,y>0

Awy) = MLz +1y) =3 L

I
o
FJ
Il
;_.
"]
+
M
I
o
’1
—~

where

wa(at1)..(a+i—1)2"
Mab,2) =2 b(b+ 1)...(b+i—1)i!

is the Kummer’s hypergeometric function. It is well-known that [2]

xe¥

A(z,y) = yﬁ,v(%y) (5.4)

since

Y(z,y) = e Vy" x>0,y > 0.
Z ﬂ)

Now we will introduce the following notations: C := Su/a;n := A a;p =

. o i _ I(C+1 i
A/ S pi = H;:Y(C—Q—j) - F(((7+z‘+)1)77 . Therefore

Q=
|

Con)=> pi
i=0

Also for simplicity we will replace B(S,a) with B and A(C,n) with A. Therefore from
(5.3) we have

MS%PS if0<:<S

pi =
pi—sps it S <i
where
___ B (5.5)
PS=1v@a-1nB '

as given in [33].
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From the above, performance measures related to p; can be obtained. For example,
by the PASTA property, the probability of delay among all calls (abandon or served) is
obtained in [33],

AB
P(delay) = P(W, > 0) sz pszpz S=T7(A-1B (5.6)

where W, = VAX is the stationary waiting time in the queue of a call until it gets served or
abandons. The above formula corresponds to Erlang C formula in M /M /S model. When
a=0,p =p and A= %p under the condition 0 < p < 1. In this case the above formula
reduces to Erlang C formula.

We can also derive three kinds of mean number of calls which are not available in [33].

1. Mean number of busy servers F(Q)

E(Qb) leszS Z pi

i=S+1
S
—rs[Sigm 8 3 o
=1 i=S+1
e [a(; 1)+ S(A— 1)]
B a(l-B)+(A-1)BS

1+(A—1)B B
a(l-B)+(A-1)BS
IT(A-1B (57)
2. Mean number of calls waiting in the queue E(Q,)
E@Qg) = Y (i—S)pi=psy ipi
i—S+1 i=1
z; —i—z—i— 1)
i I(C+1)yt! i I'(C+ 1y
Ay &= T(C+i+l) ZTD(C+i+l)
d
~ps [d[ (4= 1]~ (4-1)]
d 1+A(p—1
= psn oA =psn o= 1)
n
_ BC[1+A(p—1)]
1+ (A-1)B (58)



where we have used (5.5) and the fact that

d _1+ACH)(p-1)
%A(C, n) = ; . (5.9)

3. Mean number of calls in the system E(Q)
E(Q) = E(@) + E(Qy)-

5.1.2 Waiting time distribution

Performance measures on waiting time are not available in [33]. In this section, we will
study waiting time distribution in detail and express the results in terms of special functions
and Erlang B formula. As discussed earlier, W, = V' A X is defined to be the stationary
waiting time in the queue of a call until it gets served or abandons, where V' is the offered
waiting time and X is the patience time. To find P(W, > t), as in Movaghar [36], we will
define an important random variable: conditional offered waiting time V; := The waiting
time of a call with infinite patience in the queue, given it finds ¢ calls in the system upon
arrival, for ¢ > 0. By the total probability law and the PASTA property, we have,
o
P(V>t)=> pP(V;>1), t >0. (5.10)
=S
Hence as long as we have the distribution of V;, we will get the distribution of V. Further-

more we will have the distribution of W,
PW,;>t)=PVAX>t)=PV >t)P(X >t)=e PV > 1), (5.11)

since V and X are independent. The following theorem for the distribution of V; is adapted

from a similar result in Wang [45].

Theorem 5.1.2 For0<:< S, V;=0. Fort:> S5, V; = Zf;% On, where ¢, ~ exp(Su +
na) so that for t > 0 the density function of V; is

i—S

fv,(t) = Z Apios(Sp + na)e (Sptnalt (5.12)
n=0

and the survival function of V; is

i—S
P(V;>t) =) Ay, ge (Srtnalt, (5.13)
n=0
i—S
where Ay i—s = [] %
b
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Proof. For 0 <17 < S| the call gets served immediately so that V; = 0. For ¢ > .S, the call
will be in the i —.S54 1 position of the queue upon arrival. There are i —.S calls ahead of him
and each has an abandonment rate . Also there are S calls being served and each has a
service rate p. Therefore the time for the call to go from position ¢ — 5+ 1 to position i — S
is exp(Sp + (i — S)a). Generally, the time for the call to go from position n + 1 to position
n is exp(Su + na), for 0 < n < i— S, where position 0 means the time point when the call
leaves the queue and starts to get served. Hence the total time of an infinite patience call
will wait in the queue given it finds 4 calls in the system is the sum of i — S+ 1 independent
exponential variables with rates Sy + na, ie., V; = Z;;% n, Where ¢, ~ exp(Sp + na).

The Laplace transform of V; is fi.(s) = HZ;% %, which can be expressed in partial

. * _ i—S An,ifs(sﬂ“!‘na) o i Su+ka
fraction form as fy.(s) = >, 2 Sitnats - Where Ap g = II Gimn)a- See Cox [18]
k=0

k#n
page 17. Therefore we have the density function of V; as (5.12) and the survival function of

Vi as (5.13). Since P(V; > 0) = 1 we have the identity: Zi;% Ay i—s = 1. The distribution

of V; is called hypoexponential. See Ross [40] for the proof of (5.12) using the mathematical

induction method. L]
. . . Z_S 1 (_1)'n
Remark 5.1.2 By using the identity: [] Gimm) = nli—s—m» We have
b
(=1)"  IT=o(C+ k)
Api—s = - — . 5.14
A5 nli—S—-n)! C+H+n (5.14)
Hence we obtain other expressions of (5.12) and (5.13), i.e.,
i—S
C+Ek ,
fv,(t) = W(l — e M)i=Se=Smt i > § ¢ >0, (5.15)
and
SO+ k)R fi— 8\ (~1)" s
P(V;>t) = W > ( . )Me_( prnalt > 8 >0, (5.16)

which also appeared in Riordan [39].
The following result is a special case of the result by Baccelli and Hebuterne [5].

Theorem 5.1.3 The density function of V is

psSpele (Suttne™) irg S
fv(t) = o ' , (5.17)
> ico Pi ift=0
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and the survival function of V is
P(V > t) = psCen~%~y(C,ne ), t > 0.
Proof. It is obvious that V' has a mass of Z,L-S:_Ol p; at 0 and for ¢ > 0 by using (5.3) and

(5.15), we have

0 al[5(C + k)
SZILS(C+k) (=9

"7.‘ SS:U’ (1 N efat)ifsefs,ut

(1 _ fat)ifsefs,ut

fr®) = pifu(t) =ps
i=s

= pgSpue'le (Suttne™"),

So that

P(V > t) == / fV(U)du — pSSMe"Y/ ef(S'uu+nefau)du
¢ t

ne- _ 1,z 1
:psSMe"/ e [suampr] 1 g,
0 z0

—at

ne
= psCeln=¢ / 2O le™dz
0

= psCen Yy (C,ne™)

?
where we have used the substitution ne=*" = z. [

Remark 5.1.3 By (5.5) and the relationship between A and v(C,n) (5.4), we have

AB v(C,ne~ot)
1+ (A-1)B ~(C,n)

P(V > t) = psCen~4(C,ne ) =
Remark 5.1.4 According to (5.11),

P(W, > t) = psCe'n~y(C,ne™*)e”

AB Y(C,ne™®") _ v(C,ne™®") _ oy
- et — p(W, > 0) R 1C ) p—at 5.18
[T(A-1B AC.n) Wa >0 e (5:18)

where P(W, > 0) = P(V > 0) = H(l,gijfl)B is consistent with (5.6).

Remark 5.1.5 We have P(V > t|delay) = P(g@i’ie;;w) = 5((“;;3)) = V(S{g;;t), which is

consistent with Riordan [39] page 111 but they used a different method. Also they have
efoaf,.y(c7 nefat)
v(C,m)

P(W, > t|delay) =

(5.19)
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Since the model is an abandonment model, call centre managers may only consider
the waiting time of those calls given they are served. We define “Sr” as the event that
a call is served and P(Sr) = 1 — P(Ab) denotes the probability of served calls. In [33] a
four-dimensional waiting time performance measure for the abandonment model has been

proposed, which is listed in Table 5.1.

P(W, < AWT, Sr) Fraction of well-served
(

P(W, > AWT, Sr) Fraction of served, with a potential for improvement

P(W, > e, Ab) Fraction of poorly-served abandoned calls (¢ is a very short time)

P(W, <e, Ab) Fraction of those whose service-level is undetermined

Table 5.1: Four-dimensional waiting time performance measure

To find the four-dimensional performance measure listed in Table 5.1, we first consider

P(W, >t,Sr). Using the density of V' (5.17), we have

P(Wy;>t,S7)=P(VAX >tV <X)
=PV >tV <X)

= /too Pv < X)fy(v)dv

a’u)

[e.9]
:pSSue”/ e e (SHvtne™) gy,
t

o0
pasyer [l
t

at

e — a)(—tnz)+z| 1
Y L A I
0 ZQ

—at

ne
= pgCely= ¢t / 2Ye %dz
0

= pgCeln ¢y (C +1,npe ). (5.20)

Using the fact that

at

YC +1,me) = Cy(Cyne™") — (e~ )1,
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we have that P(W, > t, Sr) can be factorized as
P(Wq > t, ST) = pscenn—C—l |:C')/(C’ ne_at) B (ne—at)ce—ne_at}

—at\C ,—ne~t
G o

7(C,ne=t)

:ng>wiP_AKﬁ;0ﬂ] (5.21)

and P(W, > t, Ab) can be factorized as

P(Wy > t, Ab) = P(W, > t) — P(W, > t,Sr)

=PWa=0) [1—p(1—,4<037>>]

From the above, we have
P(Ab) = P(W, > 0, Ab)

:Pm@>mu—1<1—i>]

p
[1+A(p—1)]B
= ) 5.22
o+ (A= D] 522
which is consistent with the result in [33]. Also
P(W,>0,8r)=P(W, >0) — P(Ab)
B AB [+ A(p-1)]B
14+ (A-1B  pll+(A-1)B]
(A-1)B
_ , 5.23
o+ (A- 1B (5:23)
which is the same as (5.21) when ¢ = 0. Therefore from (5.22) and (5.23) we have
P(Sr) =1 p(ap = LE=B £(A=DB (5.24)

pll + (A-1)B]

and

P(W,=0,8r)=P(Sr)— P(W, >0,5r)

_p(1-B)+(A-1)B (A-1)B
T+ (A-1B] i+ (A-1)B]
_ 1-B

1+ (A-1)B’

which can also be derived directly from (5.3) using P(W, =0, Sr) = Zf:_ol p;. Finally the

other two performance measures in Table 5.1 can be easily derived since
P(W, <t,Ab) = P(Ab) — P(W, > t, Ab)
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and

P(W, <t Sr)=P(Sr)— P(W,>t,5r).

We can also derive some conditional performance measures using the above results.

L P(WystAb) | P(WeStAb)  me—oty(Ce—ot)—y(C+1me—ot)
L P(Wy > t]Ab) = =t = piwesoan = m(Ca—Ciin

_ P(Wg>t,Sr)  P(Wg>t,Sr) _ ~(C+1,ne=2t)
3. P(Wy > tldelay, ST) = piay s = PW,s0.80 = * (€ 1n)

_ P(Wy>t,Ab) ot

_ P(W>t,Sr) _ y(CHlme=®t)  _ eot 1
5. P(Sr|Wq > 1) = P(‘;IVq>t) - nz‘atv(cniie‘at) o 67 [1 N A(C,ne‘at)] ’

Note that in the above, P(W, > t|Ab) and P(W, > t|delay, Sr) also appeared in [39].

5.1.3 Mean waiting time

To find the various mean waiting times, we start from the mean delay of the delayed calls

(DLYDLY). By (5.19), we have

E(W,|delay) = / P(W, > t|delay)dt
0
1

= Ooe_o‘t C,me Nt
’Y(Cﬂ?)/o (Crme™™)

1 00 ne—at
:/ et / 2 le=2dy | dat
ay(C,n) Jo 0
1 0 ne~ Y o1
= w dz | d
cw(C,n)/o ’ </0 o Z) ¢
1 n —Inz/n
= (C’)/ (/ e_“du> P P
ay\L,n) Jo 0

_ om(lcm {fy(c, n) — ;wc + Ln)}
ARIEEE

m(C,n)
364
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where (5.25) also appeared in [39]. Hence we have the mean delay for all calls

E(W,) = E(W,|delay)P(W, > 0)

1 1 1 AB
~at=5 (- )

[+ A(p-1)B
ap[l+ (A-1)B]’

(5.27)

which can also be derived directly from (5.18). By comparing with (5.8), we have Little’s
formula for calls waiting in the queue: E(Q,) = AE(W,). Note that (5.26) also appeared
in [33], where it was derived directly using Little’s formula.

From (5.20), we have
E(W,, Sr) = / P(W, > t,Sr)dt
0
—/ psCen~ 1y (C + 1,ne™)dt
0

oo
= psCen ¢! / Y(C +1,me”")dt
0

0o ne—t
= pSC’e"n01/ (/ zcezdz> dt
0 0

1 d
— n,,—C—1~ _
psCen 5 [ln(n)v(c +1,7) 7d07(0 + 1,77)]
d
ps —C-1 dC'Y(C + ]-717)
= B2 0en C+1,n) |In(n) - €T >V
- Ce'n Y(C +1,7) |In(n) VT L)

= ps(j;lp_l) [ln(n) - %IH’Y(C‘F 1777)] ;

where we have changed the order of integration to get the above result. Then
E(Wq, Ab) = E(W,) — E(W,, St).

Hence we have E(W,|Sr) = ZWeS1) ang B(W,|Ab) = ZW0e-A0)

P(Sr) P(Ab)
Since
Y(C +1,me)
P(W, > t|delay, St) = ,
(Wy > 1) ) Y(C +1,m)
we have

E(W,|delay, ST) = / P(W, > t|delay, Sr)dt
0

1 [ee]
= — C+1, e N dt
7(0+1,77)/o g ne )
= e = Ly +1,)
_a n77 dC nfy 777 )
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which also appeared in [39]. Therefore

E(Wy,delay, St) = P(W, > 0, Sr)E(W,|delay, ST)

. (A-1B 1 d
= i+ (A-DBla [ln(”) ~ao (e 1’77)]

— J’S(ip_l) [m(n) - % Iny(C + 1,77)}
= E(W,, Sr),

where we have used (5.23) and (5.5).

5.1.4 Probability of abandonment

This section is mainly based on the work of [33]. Since M/M/S + M is an abandonment
model, the probability of abandonment is an important performance measure. We already
got P(Ab) in (5.22) when considering the four-dimensional performance measure of waiting
time. Usually for abandonment model, P(Ab) can be derived in the following way as in
[33]. We first condition on the state seen by a call and then sum up all the possibilities. To
that end we define P;(Ab) = P(the call will abandon | i calls in the system upon arrival).

The following result has been given in [33].

0 0<i<sS

Ti+1
Pi(Ab) = P(V; > X) = , =— (5.28)
(i—S+1)a . S i
Shri—S+a ‘29 ¥ T
Remark 5.1.6 The result P;(Ab) = <1 — also holds for general abandonment model

Sp+ritl
M/M/S/N + G as proved in Movaghar [36].

97



In the same way as we get the distribution of V' from V;, we have, by (5.9),

P(Ab) = P(V > X) Z piP

—S+D
_ 5.29
Z:S Sp+(i—S+ 1) (5:29)
_ 77’ s (i—S+1a
stn S(C+k)Su+(i—S+1)a
=ps o it
I (CH+R)C i+
d 1+A(p—1
meM—Dzm@)
_[1+A(p-1)B
pll+(A-1)B])’

which is the same as (5.22).

From (5.29) and by using the cut balance equation between state i and i + 1

Api = [Sp+ (i — S + 1)a]pit1, for i > S,

we have
Z Z—S+1) i (i—S+Dapis1 o B(Qy)
“ Pt (i— S+ 1a - A A
Hence we obtain the following rate balance equation
AP(Ab) = a- E(Qq), (5.30)

which shows the stationary balance between the rate that calls abandon the queue and
the rate that abandoned calls (i.e., calls who eventually abandon) enter the system. The
above can also be proved by referring to (5.8) and (5.22).

Applying Little’s formula to Qp, we get E(Qyp) = /\P(Sr)i. Hence

P(Sr) = Ef?b)

(5.31)

and by (5.7), we have the same expression of P(Sr) as (5.24). In general, since 1 =
P(Ab) + P(Sr), and from (5.30) and (5.31), we have the rate conservative equation in
equilibrium

A=a-E(Qq) + pE(Q),
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Figure 5.3: M/M/S/N + M model description and parameters

which shows the rate of incoming calls equals to the sum of abandon and service rates in
equilibrium.

Comparing (5.22) with (5.27), we have found a remarkable property of Erlang-A model:
P(Ab) = o+ E(W,),

which can be easily proved by using (5.30) and Little’s formula to Qq, E(Qq) = AE(W,).
This property is also proved in [33]. In addition they demonstrated this property using
real data from a call centre.

As before, a = A\/p is called the offered load and here since the model is a loss model,

a' = E(Qp) = aP(Sr) is called the carried load. The utilization

is the proportion of time that a CSR is busy.

5.2 M/M/S/N + M model

M/M/S/N + M, a finite version of M /M /S + M model, is more general and allows delay,
blocking and abandonment. The model is the same as M/M/S + M except that it has a
finite number of buffers K = N — 5. An arriving call finding all servers busy and all buffers

occupied will be blocked. The model description and parameters are shown in Figure 5.3.

5.2.1 Queue length process

As in M/M/S + M model, the patience times are assumed to be i.i.d. exponentially

distributed and we have the similar abandonment rate

0 if0<i<S

. (5.32)
(i—Sa fS<i<N

T =
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Figure 5.4: M/M/S/N + M model stationary state transition diagram

The queue length process Q(t) is a finite birth-death process with birth rate A; = A and
state-dependent death rate

in ifo<i<s

pi = :
Spu+(i—S)a ifS<i<N

The stationary state transition diagram of Q(¢) is shown in Figure 5.4. We can conclude
from the diagram that if N = oo, it becomes M /M /S + M; if & = 0 (no abandonment) it
becomes M /M /S/N; if « = oo it becomes M /M /S/S and if & = p it becomes M /M/N/N.
Since this is a finite state model, we can always obtain the stationary distribution of Q(t)
(no stability condition) by solving the global or cut balance equations derived from Figure

5.4. The solution is

o if0<i<S

pi = B G @po if S<i<N

I [Sut+G—S)al
j=S+1

where pq is
-1
S s N i—S
a a A
Po= ﬁ+§j§: 5
=" TS T [Sp+ G- S)al
j=S+1

Performance measures in terms of special functions

The previous results are standard. For example refer to Stolletz [44]. In the following we
will define a new function D(C,n, N) to express the performance measures. First p; can

also be expressed in terms of pg

ps Hf0<i<S
pio | WP (5.33)

pi—sps it S<i<N
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where pg is
a® B
Ps = oPo=
St 1+B Zi]\;SJrl Pi—S

‘ 0 _ I(C+1)
IT,_,(C+i) r(C+i+1

use the special function A(z,y) to express it, as in M /M /S + M model. However we will
define

and p; = )ni as defined before. Since the sum in pg is finite, we cannot

N-— N1 opetn)
D) :=D(Cm, N ; T 4T +er+1
L(C +1)e"y~C[P(C,n) — P(C + N,n)]

= A — F(C—|— 1)6”7’]70P(C+ N7n)7

where P(C,n) = % is the regularized Gamma function and the above equality can be

proved by a property of P(C,n),

Now pg can be written in terms of B and D(N)

B
1+B[D(N-85+1)—1]

pbs =
In particular, by the PASTA property, we have the blocking probability

P(blocking)=pN = pspN-—s (5.34)
_ Bpn-s
1+ B[D(N - S+1)—1]
BID(N — S+ 1) — D(N — 8)]
1+B[DIN-S+1)—1] '

and the probability of delay among all calls (abandoned, served or blocked)

N-S-1

P(delay)= sz pssz s =Dps Z pi

B BD(N—S)
1+ B[D(N-S+1)—-1]

(5.35)

We can also derive three kinds of mean number of calls.
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1. Mean number of busy servers E(Q})

— S+ (5.36)

— S+

1+B[D(N—S+1)—1]
a(l1— B)+ SB[D(N - 5+1) —1]
1+B[D(N-5+1)—1]

2. Mean number of calls waiting in the queue E(Q,)

1=5+1
N-S i
=Ds v 1
i=1 Hj*l(c +])
N-S [ 1 C .
i=1 I1 11(C+J) Hj:l(c+j)
-5 7]2 N-S CT]Z
=Ps i— - i .
; Hj:ll(C+J) ; Hj:1(C+])
N-S-1 1 N-S
= nps [ pi— — Pi] (5.37)
i=0 P

nB{DN—S) DN - 5+1) - 1]}
1+ B[D(N —5+1)—1]

_ 9BD(N —S) — CB[D(N — S +1) — 1]

N 1+ B[D(N —-S+1)—1] ’

which can also be derived using the similar method as in M /M /S + M model by the
fact that

d D(N+1)—-1

—D(N+1) = D(N)—L.

dn p
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3. Mean number of calls in the system E(Q)
E(Q) = E(@s) + E(Q)-

5.2.2 Probability of abandonment

Since there are some blocking calls and only non-blocking calls can abandon, we have
P(Ab) = P(Ab,non-blocking). Asin M /M /S + M model we define P;(Ab) = P;(Ab, non-blocking) =
P(the non-blocking call will abandon | i calls in the system upon arrival). Then for

0 <i < N, similar as (5.28), we still have

rit 0 0<i<8
1% i+1 St Ta S<i<N
and
1 0<i< S
P;(Sr) = P;(Sr,non-blocking) = 5 :
SirGosta I ST<N
Now
N-1
P(Ab) = P(Ab,non-blocking) = Z P;(Ab)P(i calls in the system upon arrival)
=S
N-1 .
(i—S+1)a - S+ 1)a
_ . 5.39
;;Su+( §:Su+z—s+1)p (5:39)
where we have used the PASTA property, i.e., a; = p;. Similarly,
P(Sr) = P(Sr non—blocking)
— ;4 5.40
2h7 E:Su+ —S+1Dal (5:40)

In the following we will derive expressions in terms of functions B and D(N). By using

the cut balance equation between state ¢ and 7 + 1
Api = [Su+ (i — S+ 1)a]pit1, for S <i< N,

we have, from (5.39),

i — S+ Da = S+ Dap; a- B(Q,)
-Y 5 -y Gt Do« F(@)

(i—S+1)a’ ™ ) RS

Hence we obtain the same rate balance equation as (5.30)
AP(Ab) = a- E(Qq). (5.41)
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Now by (5.37) and the above, we have
N-S5-1 N-S
EQ 1
pay) = 20 _ Yoori—=> pi (5.42)
n =0 P
or the expression in terms of D(N — S + 1),

BD(N —8) = ;B[D(N =S +1) — 1]
1+ B[D(N —S+1) —1]

P(Ab) =

Applying Little’s formula to Qp, we get E(Qp) = )\P(Sr)i, which, combining (5.36), gives
us

1-B) -1
P(Sr) = E(aQ”) = ; + i BZ)']\ifqui (5.43)
1 - B+ ;B[D(N —S§+1)—1]
T 1+ B[D(N-S+1)—1]

In general, since 1 — py = P(Ab) + P(Sr), and from (5.42) and (5.43), we have the rate

conservative equation in equilibrium

A1 =pn) = a- E(Qq) + pE(Qb),

which shows the rate of non-blocking calls equals to the sum of abandon and service rates
in equilibrium. Again we have the carried load o' = E(Qy) = aP(Sr) and the utilization

B a’ _aP(Sr)
V=g =g = pP(Sr) <1,

which is the proportion of time that a CSR is busy.

5.2.3 Waiting time distribution

As in M/M/S/N model, we define W, as the stationary waiting time in the queue until
abandonment or starting to get service for all calls (the blocked calls have co waiting time),
then W, has a mass at oo and P(W, = o0) = P(blocking). Also W, has a mass at 0 and

P(W, =0) = P(no-delay). We have

P(W, > t) = P(W, > t,non-blocking) + P(W, > t,blocking)

= P(W, > t,non-blocking) + P(blocking).

To find P(Wq > t,non-blocking), for 0 < i < N, we define W, as the waiting time of

a non-blocking call given that it finds ¢ in the system, i.e.,
P(Wy; > t) = P(W, > t,non-blocking | i calls in the system upon arrival).
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Then by (5.12), we have for S <1i < N,

PWy>t)=P(VinX >1t) (5.44)
i—S

) _ Z A, i_Se—[Su+(n+1)a}t
n=0

=PV, >t)P(X >t)=e ™P(V; > t

and P(Wy; > t) =0 for 0 < i < S. Therefore,

N-1
P(W, > t,non-blocking) = Z P(Wg; > t)P(i calls in the system upon arrival)

i=S
N—-1i—8 N—-1i—S8
_ Z ZAn,i—Se_[SM+(n+1)a]tai _ Z ZAn,i—Se_[Su-i_(n—i_l)a}tpia
=S n=0

i=S n=0
where we have used the PASTA property, i.e., a; = p;.

Usually we are more concerned with the conditional waiting time of a call until aban-

donment or starting to get service given that this call is not blocked. Let W, be this

waiting time, which has no mass at co. We have

— . P(W, > t,non-blocking)
P(W >t) = P(W4 > t|non-blocking) = ft’l(non—blocking)

N—-1i—8 N—-1 i—S
_ Z ZA"Z se” [Su+(n+)alt_ Pi Z Gi ZA”Z Se—[S,u—l—(n-&-l)a]t (5.45)
=S n=0 1- pN =S n=0

where ¢; :=

— 1 is the probability of a call finding ¢ calls in the system
given that it is not blocked, which is the arrival-point probability in Chapter 2

In addition, the following performance measures can be easily obtained in terms of g;

1. P(no-delay|non-blocking) = P(W, = 0) = Zf o g

2. P(delay|non-blocking) = P(W, > 0) = Z,]itql q;-

Following the same idea as the last section, to facilitate the computation and analysis

we will express the above performance measures in terms of functions B(S,a) and D(N)
We have, by (5.35) and (5.34),

P(delaynon-blocking) = P(W, > 0) = Z i
=S
_ - pi P(delay)
N — 1—pN 1 — P(blocking)
BD(N - S)
= . 5.46
1+ BD(N=9)—1] (5.46)
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and

P(no-delay|non-blocking) = 1 — P(delay|non-blocking)
B 1-B
1+ B[D(N-S)—-1]

To find the waiting time distribution for served calls given non-blocking, i.e., P(W g2 Sr),
we first need to find P(W ;>t, Sr). We have for S <i < N, by (5.12),

P(Wy>t,Sr)=PVinX >t,V; < X)

=P(Vi>t,V; < X)

:/tooP(v < X) fv,(v)dv

= /00 e fy.(v)dv
t

i—S 00
= Z Api—s(Sp + na) / e~ e (Sutnav g,
— ¢

i—S

— Anﬂ;fs S:U’ + na 6—[Su+(n+1)a}t‘ (547)

and P(Wy; >t,57) =0 for 0 <i < S. Then
7N—1 'i—S Sy +na St
P(Wq>t, Sr) = ; qznz%Am S—SM Yy e~ [SuH( (5.48)

and using (5.45),

P(W,>t, Ab) = P(W >t) — P(W >t,Sr)
N-—1 -S

_ = [Sut(ntl)alt 4
ZQZZ n,i— SSM-‘r n+1) € (5 9)

When ¢t = 0 in (5.47), we obtain

Sp+ na
P(W,; > 0, A
(Wq >OS7" Z n,i— SSM+ n+1>
so that
i—S
Py(Ab) = P(Wy; > 0,4b) = 1 = P(Wy; > 0,57) = > Apis gy, (5.50)
q 5 q ) ~ s S/L—l—(n"i‘l)a,

where we have used Zf;% Ay i—s = 1. Comparing (5.50) and (5.38), we have an identity

involving A, ;_g:

nzS i—S+1
= . .51
ZS,M-F +1la Sp+(GE—-S+1)a (5.:51)
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From (5.50), we also have

N-1 i-S
a
P(W.> 0, Ab) = P(Ablnon-blocking) = S " ;S A g— 5.52
(¥, 0,40) = P(aon-bocking) = 3~ 0: 3 Ani-sigoye (99
and
N-1 =S8
o'
P(Ab) = P(Ab -blocking) P -blocki S, (5.53
(Ab) (Ab|non-blocking) P(non-blocking) ;9]97120 ni SSu—I—(n—i—l)a (5.53)
which is the same as (5.39) by referring to (5.51), but involving A, ;—s.
Similarly when ¢ = 0 in (5.48), using (5.51), we obtain,
o . N—-1 -S S,u—i—na
P(W >0,5r) = P(Wq > 0, Sr|non-blocking) = Z qi Z nz—Sm
=S n=0
N-1 -8 a
= ) An'L 1 o 7/ 1N
o [ ]
N—1
- Z g |1 - S#
= ‘ Ani- Sp+(n+1)a
B Nzl 1 (i—5+1)a
_z:s% Sp+ (i — S+ 1)
_N 1 | Sy
T 25t (i- S+ Da

where we have used Zf;% A, i—s = 1. Therefore

P(Sr[non-blocking) = P(W, > 0, Sr|n0n—blocking) + P(W, = 0, Sr|non-blocking)
N-1

Su
_i:SQiSu—i-(z—S—l—l +Zq@,

which can also be obtained from (5.40).
Now we can derive the conditional waiting, which are more useful in practice, using

the above results.

P(W, >t, Ab)

P(W, > t|Ab) =
(Wq > | 4b) P(Ab|non-blocking)

Nlg Sis a1 —[Spt(nt1)aft
i=s i Enzo A””_SSu+(n+1)ae [Sut+(n+1)a]
ZN 1 i—S+1

S S-S+ Da
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P(Wy > t,571)
P t — q )
(W > 4]57) P(Sr|non-blocking)
Zz]\;_sl 4i Z;L_:% Ap Ji— S%e [Su+(n+1)alt

N-1
> qusu+ e +3 00

P(Wy >t,5r)
P(Sr,delay|non-blocking)

N-1 <i—S Sp+na Sp+(n+1)ajt
Zi:S QZanoAnz Sme — 1Sk )e]

ZN 1 S,u
S GiSpr(i—5t)a

P(Wy > t|Sr, delay) =

5.2.4 Mean waiting time

By (5.45), we have the mean waiting time for all calls given entry
N—-1 -8
/ Z " Z Ay ge ISt Dalt gy

N-1 zS

n,i—S
_ZQZZSM+ —Ta (5.54)

=S n=0
which involves A, ;_g and makes the computation harder. We can obtain an alternative
expression by considering the mean waiting time of the non-blocking call given the call

finds 4 calls upon arrival E(W;), which is 0 for 0 <i < S and for S <i < N,
E(qu) = / P(qu > t)dt
0

:/ P(Vi > t)e “dt
0

1 1
~P(V; > X) = - Pi(Ab

i—S+1
Su+(i—S+1)a

Hence we have a new expression not involving A,, ;g for E(W,),

i—S+1
quzSu—i- (i—S+1a’ (5:55)

which can also be derived from (5.54) by using (5.51). Comparing (5.52) with (5.54), we

have found a similar property as Erlang-A model:
P(Abnon-blocking) = o - E(Wj)
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or

P(Ab) = a- E(W 4, non-blocking)
which again can be easily proved by using (5.41) and Little’s formula:

E(Qq) = A\E(W ,, non-blocking).

By (5.48), we have the mean waiting time for served calls given entry

‘ Su+ na _
E(W,,Sr) = ; Apiog—t T e~ [Spt(ntlalt gy
( q T) /0 A qz 5 SSM+(TL+1)()¢€

_ ' Anl S(Su+na)
=252 TGt (D (550

which involves A,, ;_s. In the following we will obtain an alternative expression not involv-
ing A, ;—g for E(W,, Sr) using a similar method in [45]. Consider the mean waiting time
for served calls given the non-blocking call finds i calls upon arrival E(Wg;, Sr), which is

0for 0<i< S andforS<i<N,

E(qu,ST)
= BE(V,,V; < X) = <Z¢n,V<X)
i—S

= > E(¢n,Vi<X)= ZE(%I(%,OO)(X))
n=0 =0
i

n=0 0
=5 oo 0
= / e / e U0 H=S) £ (80) fon (1) -+ fors (tims)dbo - -~ di—s
n=0"0 0
i—S

i—S
= /0 tne_atnf¢n (tn)dtn H f;m (Od)

n=0 m##n,m=0
=S oo i—S
_ _ S+ ma
— ¢ atp S (Sp+na)ty dt,
Z/O ne " (S + naje H Sp+ (m+ 1)«

=0
_§ Sp+ na [ Sp Sp+ (n+ 1 ]
“ [Sp+ ( (n+1)a)? [Su+naSu+(i—S+1)a

S,u—l— z—S—I—loznZOSu+ n+1)a (5.57)
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where ¢, ~ exp(Su + na) with the Laplace transform denoted by f5, and Iy(x) =

1 ifzeAd | . .
is the indicator function. Hence we have

0 otherwise

E(WZ ST’) 1
E ) — B Rt/ — - - .
WailSr) = —p s nzo Sp+ (n+ Da (5.58)
Now by the total probability law, we have
i—S 1
E(W,, Sr) i 5.59
0 57) quw - S+ 1) ZS;H—(n—i-l) (5:59)

=S
which is not involved A, ;_g any more.

By (5.47), we have an alternative expression for E(W,;, St),

Sp+ na
W i ST An i—S . 5.60
! Z [Sp+ (n+ 1)a)? (560
Comparing (5.57) and (5.60), we have another identity involving A, ;_g :
i—S
Apni—s(S
3 A s(Sp+na) _ Z (5.61)
n:0[5M+(n—|—1)a] SM+ Z—S+ S,u—i— n+1

Whitt [46] used a different method to derive E(W;|Sr) (5.58) for S < i < N. After the
call joins the queue, he will be in the ¢ — 5 + 1 position and will be in the ¢ — .S position
after a random time of ¢;_g11 ~ exp(Sp+ (i —S + 1)), since we are under the condition
that this call will not abandon. Generally, the time for the call to go from position n + 1
to position n is exp(Sp + (n + 1)a), for 0 < n < i — S, where position 0 means the time

point when the call leaves the queue and starts to get served. Hence,

i—S
1
(2 E n o /. 4N
E(Wg|Sr) = Z (Pn+1) 7;)5“+(n+1)a

which is the same as (5.58). This method can also be used to derive the survival function

P(Wy > t,Sr) for S <i <N,

i—S
P(Wyi > t|Sr) = P> ¢ny1 > t)
n=0
i—S
— Z Bn,i_se—[sﬁ(““)a]t
n=0

_Spt(i-S5+1a Su+na g
ZA . [Su--(n+1)alt
Sll/ n,t € il
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where

5 S._il—fS,u%—(k%—l)a_ =SS+ (k+ 1)al
e 1 (k—n)a  i=S
2 T [k~ ] [Su-+ (n-+ 1)a]
k#n
Sp+(i—S+1a Sp+ na
= Apig——"r—— 5.62
S KT (n+ 1) (562)

and we have used the argument in Cox [18] page 17 (described in the proof of Theorem
5.1.2) to derive the distribution of the sum of exponential variables with different means.
Then

P(Wy; > t,Sr) = P(Wy; > t|Sr)P, Z Apie SS,us—f : :l—al) 1St (ntn)alt

which is the same as (5.47). However Whitt [46] did not provide the above formula. He
only gave the Laplace transform and then used numerical inversion to calculate the survival
function for any t.

By (5.49), we have the mean waiting time for abandoned calls given entry,

N-1 =S
A ; —[Sp+(n+1)alt
Wq7 b / z_:qnz:o nZSS,U,—i-TL—l-) dt
N— -5 a
Z Z e (5.63)
pany- S [Sp+ (n+ 1)« ]

which also involves A, ;_s. However we can have an expression without A,;_g in the

following,

E(W,, Ab) = E(W,) — E(W,, Sr)

play i—S+1 pley 1
- L%y S Zq’s 5 Zs
— Spt(i-S+1a &S pt =S+ 1o p+(n+1a
gt e ]
S+ (i - S+ 1)a = Sp+ (n+1)a
e a SIS (5.64)
_i:SqlS,u—{—(i—S—{—l)an:OSu—l—(n—i—l)a '

where we have used (5.55) and (5.59).
Now we can derive the conditional mean waiting time, which are more useful in practice,

using the above results.
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E(W,, Ab)
P(Ablnon-blocking)

E(WW,|Ab) =

ZN*I ) 1 Z’L S n+1
i=S 5T (i—511)a £«n=0 Spt(ntTja
ZN 1 i—S+1
i=S U Suri-S+a

E(W,, Sr)
P(Sr|non-blocking)

E(Wgy|Sr) =

ZN 1 Su Zlfs 1
i=S GiguT( S+1)a n=0 Su+(n+1)
N-1
>ies L i S+1 +Zz o %

E(W,, Sr)

E =
(W,|Sr, delay) P(Sr, delay|non-blocking)

ZN 1 Z’L S 1
=5 q’S;H—(z S+1)a £«n=0 Su+(n+1)a

ZN 1 1
i=S Ui S-St )a

5.2.5 Response time

Whitt [46] considered mean response time for all calls, where the response time W is
defined as 0 for abandonment and blocked calls. For other calls, the response time W is
defined as the sojourn time (waiting time plus service time). Then the mean response time
E(W) = E(W,Sr) is derived first by considering the mean response time of the served
call given the call finds 7 calls upon arrival E(W;, Sr), which is % for 0 < ¢ < S and for
S <i < N, by (5.58)

E(W;, Sr) = E(W;|Sr)P;(Sr)
= [E(Y|Sr) + E(Wy|Sr)]P;(Sr)

S
Sp+(i—-S+1a

1 1
—+
u %Su—k(n#—l)a

where Y ~ exp(u) is the service time. Therefore, by (5.40) and (5.59)

Zpﬂr sz

*P(ST) + E(W,, Sr)[1 — P(blocking)]

1

Sp
+ZS,u+(n+ 1o

Sp+(GE—S+1)a
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and

B(W|Sr) = - ; + B(W,|Sr). (5.65)

For P(W > t), Whitt [46] first gave the Laplace transform of W : f57(s) then PW > t)

for any ¢ can be calculated by numerically inverting its Laplace transform (1 — f&-(s))/s.

In the following, we will use this method to find the analytic expression of P(W > t)
as we have done for P(Wy; > t|Sr) before. For 0 < i < S, P(W; > t,Sr) = e # and for
S <i< N,

i—S+1
P(W;>t|Sr)=P(Y + > ¢n>1)
n=1
i—S+1
= Z Cpi—gsre” Sptont
n=0
i—S+1 1-S orn=>0
where Cyi—g+1 :== I g}’:fg:, Op = ( o and we have
k=0 na, forOo<n<i—S+1

k#n
used the argument in Cox [18] page 17 to derive the distribution of the sum of exponen-

tial variables with different means. The above can be expressed in terms of B, ;_s =
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i—S
I1 Spt(kta oo shown in the following,

o (k—n)a
k#n
i—S+1
P(WZ > t‘ST’) — CO7Z_S+16_(SM+6O)t + Z Cn7i_s+1€_(sﬂ+5n)t
n=1
i—S+1
. S,u, + 50 S,u + 5]€ _
CO,Z—S"F].e + Z: 50 IR 571, H 5kz _
n= k;ﬁn
i—S+1 i—5+1
~ 1 Spt ke _(sutnay
:CO,FS 1€ ,ut_|_ € g
i—S+ nZ::l (1—S)u—na klj_l: (k—n)a
k#n
» i—S+1 u i SH(S,u—kka) S+l (St
= Cp,i—s5+1€ o+ Z i—S (T
— (1=9p—na a2 Sp+na) L+ (k—n)
k#n
iS4l —
iy " i (Sp A+ ka) (="t Y

Coimssre ™ + ; (1—-8)u—na oﬂ S(Su+mna) (n—1)Gi—S+1-n)!

i—S i—S n
— —ut [% ko [Sp+ (k+1)a]  (=1) —[Sp+(n+1)alt
Coi-sr1e" + ;_% (1= 8)u—(n+1)a a5 [Su+ (n+ a] nl(i — S —n)!°

-5

- 1 Sp+(kE+1a _

_ ‘ ut [Sp+(n+1)ajt
Cojimsre™™ + “nzo (1-S)u—(n+1a 1:[ (k=)o *

k#n

i—S+1 S+ ka

ka—(1-8)u°

i—S
1
—ut B, . 7[Sp,+(n+1)a]t.
o T S (D

Now by using the relationship between B,, ;_g and A, ;_g (5.62), we have for S <i < N,

P(WZ > t|ST‘)
S _ Sptke
Pt ka—(1—S)u
, i—S
Sp+(i—S+1a Sp+ no ~[s
N A, i ge [SrtntDalt
S 1;0[(15) —(n+ Dal[Sp+ (n+ a] "
Hence

P(W; > t,57) = P(W; > t|Sr)P,(Sr)
i—S+1

_ Sp _ Sutka
Sp+(i—S+1a 14 ka—(1-S)u
S+ na _
A [Spt(n+1)alt
+MZ (= S)u—(n+ Dal[Su+ (n+ Da] "5
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Now we have

S—1 N-1
PW >t)=P(W >t Sr) = Zpie_“t + Z piP(W; > t,Sr)
i=0 i=S

5-1 N-1 Su i*ﬁrl Sptka _,—pt

_ Zpie_“t + Z D; Spu+(i—S+1)« e ka—(1-S)u
= - i—S Sp+na ) —[Sp+(n+1)alt
=0 =S +/"LG:0 [(I—S),LL—(TL—FI)OL}[S;L+(7”L+1)Oé]An’lfse [ 12 (TL )OC]

5.2.6 A numerical approximation method

Garnett et al. [21] gave a general way to compute the performance measures of M /M /S/N+
M model numerically. They found many performance measures that are of interest can
be expressed as expectations of simple functions of V and X, where V is the conditional
offered waiting time of an infinite patient call given the call is not blocked so that V has

no mass at co. A representative list is shown in the following table [21].

F(V.X) BLF(V. X))
I(x.00)(V) P(Ab|non-blocking)
L(t,00)(V A X) P(W, > t)
Tit,00) (VA X)( x,00) (V) P(W, > t, Ab)
(VAX)I(x,00)(V) E(W,, Ab)
(VAX) 100y (VA X)(x,00)(V) | E(Wy, Wy > t, Ab)
gV AX) E(9(Wy))

Some other important performance measures may be expressed in terms of these perfor-

mance measures. For example

PVAX >tV >X) Ellie)(VAX)(xu) (V)
P(A - =t :
(Ab[Wy > ¢) P(VAX > 1) Ell 100y (V A X))

To calculate E[f(V, X)], Garnett et al. [21] considered the following decomposition

E[f(V, X)] = E[f(V, X)I(0,00)(V)] + E[f(V, X) L0} (V)]
S—1

= E[f(V,X)1(0,00)(V)] + E[f(0,X)] ) s
=0

and argue that for all functions f which seem of interest, E[f(0,X)] evaluates to 0 or 1.

Therefore only the first expression needs to be calculated so that the key is to find the
density fy(t) for t > 0. We know from Theorem 5.1.3 that for M/M/S + M,

psSpeeSutne™) it ¢~
fv(t) = . : (5.66)
Zi:o Di ift=0
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For M/M/S/N + M model, the density function of V' is given in [21] and we summarize

the result in the following,

Theorem 5.2.1 For M/M/S/N + M model, the density function of V is,

fSS“ e~ (Suttne™) [1—-P(N—=Sn—ne )] ift>0
fv(t) = o1 . ‘

Yo Qi ift=0

Proof. It is obvious that V' has a mass of Z;S;Ol ¢i at 0 and for ¢t > 0 by using (5.33) and
(5.15), we have

N-1 N-1 i—S

1 ps 7 H 3(C+E) —atyi—S —Spt
t) = i Jvi(t) = 1 — e ¥)imPePH
N-1 -8
ps n'"Su —atyi—S —Spt
= . 1—e e 7H
1—pN;9(Z—S)!( )
_gut N—S—1 a
1—pN — J!
= Me"e*(s‘mr”e_m) [1—P(N —S,n—ne "], (5.68)
1 —pN
where we have used (2.21). "

Remark 5.2.1 Another expression of fy(t) fort > 0 can be obtained by expanding (5.67)

N—S—1

psSue M 1 —at\]i
=P NN -
Jv(t) T~ 2 i [n( )]
N-S—-1 ., J .
_ psSpe” St J < > 1)ke-akt,
E i E 5.69
1—-pN = J! o (5.69)

Now by using (5.69), (5.67) and (5.68), Garnett et al. [21] listed three methods to
evaluate E[f(V, X)].

BV, X)) = 25 NS S () (05 2 [ F o, wae ] e ek,

1-pN

The advantage is the 1ntegral is easy and the disadvantage is the alternating signs
in the sum. This is actually the method we have used before in this chapter; if we
expand A, ;_g in the expressions of performance measures obtained before, we will
get the same expressions here. However we do obtain some performance measures
which do not involve A, ;g and hence easy to compute such as P(Ab) and E(W,, Sr)

etc.
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E[f(V,X)] = psi’é ZN 5= 177] P LSS f (v, @) e % dz] e 5P (1 — e7*V)Idv. This
method removes the alternatmg signs in the sum and has only one sum. However
the outer integral usually has to be solved numerically even though the inner integral

can be solved analytically.

3. E[f(V,X)] = pss“ Len [55 1o fv,z)ae™dz] e —(Spotne™*) 11— P(N — 8, n(1 — e=*))] dw.
This method has no sum at all and usually the inner integral can be solved analyti-

cally and the outer integral has to be solved numerically. For example
P(Ablnon-blocking)

oo o]
= pssue"/ [/ I(3,00)(v)ae™ *"dx e (Suvtne=e) [1—P(N = S,n(l —e )] dv
0 0

1 —pnN
_ PSSk, / (1 — emo)e=(Smtne™) [1 _ p(N — 8, (1 — e=7))] dv
1 —pN 0
N-1 g
_ Z % — 1105 H n/ e~V o= (Spvtne™?) [1 — P(N - S,n(1 — efav))] dv,
i—s — PN 0

where we have used the fact that
g oo N-1
We"/ e~ (Spvtne=") [1—P(N = S,n(1—e )] dv= Z qi
L=pnJo i=S

since fy(t) in Theorem 5.2.1 is a density function.
For M/M/S + M (5.68) reduces to (5.66) and we have

E[f(V,X)] = PSSW"/ [/ f(v,m)oze_mdx} e~ (Snvtne™) o,
0 0

which is usually integrable and the various performance measures of M /M /S + M model

have been derived using this method before in Section 5.1.

5.3 Monotonicity and concavity properties of performance

measures for M/M/S/N + M model

In this section, we will study the monotonicity and concavity properties of some perfor-
mance measures for M/M/S/N + M model. This type of study has a long history for
many types of queueing models, for example [25]. Recently Jouini et al. [26] studied the
monotonicity and concavity properties of M /M/S/N + M model. Our method here is eas-
ier than the one used in [26] and we also have more results. The monotonicity properties

are very important to the call centre design algorithm we will develop in Chapter 7.
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5.3.1 Monotonicity properties with respect to buffer size K

We will first study the monotonicity properties of some performance measures with respect
to the buffer size K, which is N — S as defined in Chapter 1, when other parameters are
fixed. Before giving the main results, we will prove a useful lower bound for B(S,a) in the
following, which is established by Sobel [41] and also appears in [25]. This result is also

obtained in Chapter 2 and here we will use a direct method to prove it.
Lemma 5.3.1 For Erlang B formula, we have B(S,a) >1—1/p, where p = §.

Proof. When 0 < p <1, it is obviously true. When p > 1, we want to prove

S/81 S
> impat/il a

We have

(1 - j) iai/i!

i=0
—<1—|—a—|—a2+...—|—as>—S<1+a+a2+...+as>

2! S! a 2! Sl
:aS—S+<1+a+a2+ +CLSI>—S(a+aQ+ +as)
Sl a 207 (S =1)! a 207 8!
<aS—S+<1+a+a2+...+aS_l )—<1a+2a2+...+sas>
- S a 2! (S—1)! a a 2! aS!
a® S ad
IR

Probability of served calls

We first consider the probability of served calls (5.43)

1 1-B-1
P(K)(Sr) = -+ —K/'O,
P 14+ B3 L pi

where as in the following, we use upper index K to denote that the performance measure

is a function of K. We have the following result.

Theorem 5.3.1 For M/M/S/N + M model, PY)(Sr) is strictly increasing in the buffer
size K. PU)(Sr) approaches to P(Sr) of M /M /S+M model while K approaches to infinity
and it approaches to P(Sr) =1— B of M/M/S/S model while K approaches to 0.
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Proof. To show that P(K)(Sr) is strictly increasing in the buffer size K, it suffices to
show that for K > 0, PE+)(Sr) — P (Sr) > 0. We have

1 1
1+BY K 1+BYE ps

PN (5r) — PE)(5r) = [(1 - B) - 1/] >0,

since (1 — B) —1/p < 0 by Lemma 5.3.1 and 1 + BZ{:{I pi>1 +BZ£1 Pi-
While K approaches to infinity, Y .2, pi = A — 1. So we have

ﬂmwm:;+fgéggg
1 (1-B)-1/p
;+]A{A—HB

(=B +(A-1)BJs

B 1+[A-1]B ’

which is P(Sr) of M/M /S + M model. While K approaches to 0, Z?:l pi = 0. So we have
PO(Sr)=1-B. n

Remark 5.3.1 Since we have E(Qp) = aP(Sr) (5.43), the above monotonicity result also

applies to E(Qyp), the expected number of busy servers in equilibrium, or the carried load.

Remark 5.3.2 In [26], the authors gave the same result but their proof is much more
complex than ours. The reason is that they express P(K)(Sr) in terms of p; for i > S
(refer to formula (3.2) in [26]). However PU)(ST) can be written in terms of p; fori < S
only since E(Qp) = aP¥)(Sr) and E(Qy) = ZZ»S:l ipi +S(1 — Zf:o Di)-

Probability of blocking

We next consider the probability of blocking (5.34),

Bpxk

P (blocking) =———— ——.
1+BY L, pi

We have the following result.

Theorem 5.3.2 For M/M/S/N + M model, PY)(blocking) is strictly decreasing in the
buffer size K. P) (blocking) approaches to 0 while K approaches to infinity and it ap-
proaches to P(blocking) = B of M/M/S/S model while K approaches to 0.
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Proof. Since PU)(blocking) > 0, to show that PU) (blocking) is strictly decreasing in

PE+D) (blocking) < 1. We have

the buffer size K, it suffices to show that for K > 0, P (blocking)

PE D (blocking)  px+1 1+ BYE pi

= 5.70
P&E) (blocking) pr 1+ BY Kty (5.70)
_ n 1+B Efil Pi
C+K+11+BZ£1M+BPK+1
o 1+ B pi )
= K
CHE+11+ B3 pi+ Bl
is equivalent to the inequality
K
nBprx > [n— (C+ K +1)] <1+szi). (5.71)
i=1

We will prove (5.71) in the following for K > 0 by induction. When K = 0, we need to
prove nB > n — (C + 1), which is true since nB > n — C by Lemma 5.3.1. Assuming that

(5.71) is true for K > 0, we will prove

n*Bpk

B _ _"OPK
MEPEAL = G 11

K
>[n—(C+K+2)] <1—|—BZM+B/)K+1>.
i=1

To simplify the expressions, we introduce the following notations: A; := C+K+1 > 0,
Ag:=n—(C+ K +2) with Ay + Ay + 1 = 7. Now noting that px41 = z-pk, the above

inequality becomes

K
7’ Bpk > A1Ay + A1 AB Y i + Ay Bnprg,
=1

which is equivalent to

K
nzBpK — A9Bnpg = (A1 4+ 1)nBpg > A1Ag + A1AQBZpZ‘.
i=1
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Using the assumption, we have
K
(A1 +1)nBpg > (A1 +1)(A2+1) (1 + BZM)
=1
K
= (A1Ag+ A1+ Ay +1) (1+szi>
=1
K
= (A1Az + 1) (1 + BZPi)
i=1
K K
= A1 + AlAzBZPz' +n (1 -I-BZM)

i—1 i=1
K

> A1Ay + A1AB Z Pis
i1

which is what we want to prove.

Since Y ;2 pi = A—1 < oo, we have Klgnoo px = 0. Hence while K approaches to
infinity, P(X )(block:z'ng) — 0. On the other hand, while K approaches to 0, we have pg = 1,
Z?:1 pi = 0. Therefore P (blocking) = B. "

Probability of abandonment

Now we consider the probability of abandonment (5.42),

K-1 K
B (Ei:O pi — %Zi:l Pi)

(K) -
P 1+ B pi

Theorem 5.3.3 For M/M/S/N + M model, PY)(Ab) is strictly increasing in the buffer
size K. PH)(Ab) approaches to 0 while K approaches to 0 and it approaches to P(Ab) of
M/M/S + M model while K approaches to infinity.

Proof. To show that PU)(Ab) is strictly increasing in the buffer size K, it suffices to
show that for K > 0, P+ (Ab) — PU)(Ab) > 0. We have

PEFD(Ap) — PE) (Ab)
B Z'K 1 EHL B Z'K_l ._lzK .
1=0 Pi p =1 Pi 1=0 Pi ) =1 Pi

1+BY K p 1+ B pi

B(1+BLE pi) (Shop = 12 ) = (14 BXI 0) (25 0 - 32K 1) |
(1 +BY pi) (1 +BYL, m) '
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Hence we need to prove that for K > 0,

1=1

= (1 + Bim) <PK - pPK+1> Bpri1 (Z pi =~ Zm)

(o) (s ) (oo (S0 0500)

K-1
(1 + BZI%) pK — *PKH Bpr 1 Z pi
1=0
1 K
i=1 P i=0
Now dividing both sides of (5.72) by px > 0 and using px 11 = k70K, it can be shown
that (5.72) is equivalent to the inequality
K
1
anK>(n—C—K—1)<1+BZpi>+n(p+B—1>. (5.73)
i=1

Since 7 (% + B - 1) > 0 by Lemma 5.3.1, the above is a stronger result than (5.71). We
will prove this inequality for K > 0 by induction in the following. When K = 0, the

inequality is
1
nB>(n—C—1)+n(p+B—1> =nB —1,

which is clearly true.

Assuming that (5.73) is true for K > 0, we will prove

or equivalently,

K

1
1’ Bpk — MgBrpx = (A1 + 1)nBpk > AjAy + A1AB Y pi + Ay (p + B - 1) :
=1
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Using the assumption (5.73), we have

K
(Ay+1) <1+szl-) +n(;+B—1>]

=1

(A1 +1)nBpg > (A1 +1)

K
1
= (A1As+ A1+ Ay +1) <1+B2pi> +(A1+1)n(p+B—1)
i=1

K
1 1
= (A1A2 + 1) (1+BZ,07;> +77<p+B—1>+A177<p+B—1>

=1
=A1A2+A1A232Pi+77 <1+BZM> +77(p+B—1> + A (p+B—1)
=1 i=1
K K 1 1
=A1Ay+ A ABY pit (BZpi—l-p) + A <p+B—1)
=1 =0

K
1
> A1A, +A1A2szi + An (,0 + B — 1) ,
i—1

which is what we want to prove.

While K approaches to 0, pg = 1, Z?:l p; = 0 and since

K—1 K K K

P (Ap) _B[l +2im1 Pi— %Ei:l pil _ Bl 452 pi — px — % i=1 /il
1"‘32521:01' 1+BZ£1P2'

we have P(O)(Ab) = 0. Since >0, pi = A—1, we have that while K approaches to infinity

Bl+A-1-4(A-1)]

P)(Ap)= 1+ B(A-1)
B+ A(p-1)
= (A- DB
which is P(Ab) of M/M/S + M model. "

Remark 5.3.3 Since we have E(Qq) = nP(Ab) (5.42), the above monotonicity result also
applies to E(Qq), the expected number of calls waiting in the queue in equilibrium. Also by
Little’s formula, E(Q,) = NE(W 4, non-blocking), the above monotonicity result applies to
E(W 4, non-blocking) as well. In addition by Remark 5.3.1, the above monotonicity result
also applies to E(Q) = E(Qy) + E(Qq), the expected number of calls in the system in

equilibrium.

The relationship between P(Ab) and P(ST)

In the following, we will study the relationship between PU)(Ab) and P (Sr). We know

that both performance measures increase with buffer size K. For K = 0, PO (A4b) =0
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and PO)(Sr) = B so that PO (Sr) >P©)(Ab). What is the relationship between these two
probabilities for general K7 We have the following result.

Theorem 5.3.4 For M/M/S/N + M model, P¥)(Sr) >P¥)(Ab) when 1 < K < C or
when 1 < K < |C| since K is an integer, where |C| = L%J is the floor function i.e., the

largest integer not greater than C.

Proof. We have

PE)(Sr)—PF) (Ab)
1 1-B-1/p B(Z@Slpz‘—% filpz)

P 1+BZ£1M_ 1+BY 5 pi

1+ BY L pi+p(l=B—1/p) = pB (ZfiBlm—% filﬂz‘)

- p <1 +B Zz[il Pz’)

B B (2 S Pi) +p(1—-2B)

- p <1 +B Zfil Pz’)

_ B(2-p) 3K pi+pBpk + p(1 - 2B)

R p (1 + B3 pi) '

Hence P (Sr) >PU)(Ab) if and only if

K
B(2—p)Y) pi+pBpx +p(1 —2B) >0
i=1
or equivalently
K-1
B|2p+(p—2) Z pi — QPK] < p. (5.74)
i=1

We will prove (5.74) for 1 < K < C by induction. When K =1 < C, (5.74) becomes

0
B |20+ (p—2)> pi —2p1]
=1
Bp
=2Bp—p) =577

since C > 1 and B < 1.
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Assuming that (5.74) holds for 1 < K < C — 1, we have

B

K

20+ (p—2)> pi— 2PK+1]
=1
K-1

204+ (p—2) > pi— 20K
=1

=B + B(ppx — 2pK+1)

< p+ Blppx — 2pK+1)
by assumption. Now we need to show that
pPK —2pk+1 <0, when 1 < K < C' —1.

We have

n
27
CrK+17K

_ 2n
TPE\PT YK 11

21 2n
= 2T )<
pK(QC C+K+1>_O

PPK — 2PK+1 = PPK —

since pg >0 and C+ K +1 < 2C.

(5.75)

This theorem shows that for all 0 < K < |C], PH)(Sr) >PU)(Ab) or equivalently

B

K-1
20+ (p—2) > _ pi 2PK] <p.
i=1

What is the behavior of PU)(Sr) and PU) (Ab) for K > [C]? We first consider the case
when K = |C] + 1. In this case, we have P(LCIHD(Sr) < PUCIHD (Ab) if and only if

LC]

B |2p+(p—2) Zpi —2p10)41| 2 p-
=1

To consider the general case K > |C| + 1, we need the following Lemma.

(5.76)

Lemma 5.3.2 Let g(K) =2p+ (p — 2) Zfil pi — 2pK+1 then g(K) strictly increases in

K when K > C — 2.

Proof. For any integer K > C' — 2, we only need to prove g(K + 1) — g(K) > 0. We have

g(K +1) —g(K)
K+1 K

=(p—=2) Y pi—20k12—(p—2) Y pi + 20K 11
=1 =1

= PPK+1 — 2pKk+2 > 0
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if and only if K > C — 2 by referring to (5.75). L]

Now for general K > [C] 4 1, we have the following result.

Theorem 5.3.5 Under the condition (5.76), we have that for K > |C| + 1, P¥)(Sr) <
PE)(Ab).

Proof. From the proof of Theorem 5.3.4, we know that PU)(Sr) < PU(Ab) if and only
if
K—1
B|2p+(p—2) > pi—2px| =Bg(K —1)>p.
i=1

Hence if condition (5.76) holds, i.e., Bg(|C]) > p, we have for K > |C| + 1, by Lemma
5.3.2 and since K — 1> |C] > C — 2,

Bg(K —1) > Bg(|C]) > p,

which means P5)(Sr) < PU)(Ab) for K > |C] + 1. n

Waiting time distribution P(W > t)

For the waiting time distribution, we will first consider the monotonicity property with

respect to buffer size K for P(W > 0) = P(delaynon-blocking) which is, by (5.46),

BD(K)

P (delay|non-blocking) = Y BDE) =1

Theorem 5.3.6 For M/M/S/N + M model, P (delay|non-blocking) is strictly increas-
ing in the buffer size K. PU (delay|non-blocking) approaches to P(delay) of M/M/S + M

model while K approaches to infinity and it approaches to 0 while K approaches to 0.

Proof. Since P¥)(delay|non-blocking) > 0, to show that PU)(blocking) is strictly
increasing in the buffer size K, it suffices to show that for K > 0,

PE+D (delay|non-blocking)
PE)(delay|non-blocking)

We have that
PUEHD) (delay|non-blocking) BD(K + 1) 14 B[D(K) —1]

P(K)(delay|non-blocking) T 1+ BID(K +1)—1] BD(K)
D(K +1) + BD(K)D(K +1) — BD(K + 1)

~ D(K)+ BD(K)D(K +1) — BD(K)

>1

126



is equivalent to

D(K +1) — BD(K +1) > D(K) — BD(K)

or

(1- B)D(K +1) > (1 — B)D(K)

which is clearly true since B < 1 and D(K) is an increasing function by its definition.

For the limiting cases, the results are obvious since D(c0) = A, D(0) = 0 and from

(5.6), we have for M /M /S + M model,

AB

P(delay) = T (A-DB

In order to prove the monotonicity property with respect to buffer size K for general
P(W > t), we need the following lemmas. The first lemma gives an alternative expression
for P(Wg; > t), the waiting time of a non-blocking call given that it finds ¢ in the system.
Substituting A,, ;—s by (5.14) in (5.44), we have

i—S i—S .

_ L=(C + k) =S\ (=D)" _ispt (1)l

PWai> 0= Z50g 20 Joeae Y 6T
n=0

However the above is the sum of terms with alternating signs and to overcome this problem,

we prove the following result.

Lemma 5.3.3 For M/M/S/N + M model,

—(Spta)t = S 1 _ e*txt)]q

P(Wy; > 1)

pr q'pg—1

and when o — 0, the above approaches to P(Wy; > t) of M/M/S/N model.

Proof. We will first prove the equality

H C+k) m\ [Tieo(C + k)
Z _<j> mi(C+ ) (5.78)
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for integers m > j > 0 by induction. When m = j, the equality is clearly true. Assuming

it holds for m = p > j, we will prove it still holds for m = p + 1. We have

p+1

Mc+k> [[i=o(C+ k) I o(C+E)
Z _Z 3l g —j)! Jlp+1—j)!
_ o€ +E) h—o(C + k)
j’(p—j)'(0+j) jlp+1—7)!

(1= 1o C+ k) | (C+J)]]i—o(C+Fk)
B J(p+1—3)(0+3) J-(p+1—3)(C+J)
 IRS(C+E) <p+1> [170(C + k)
gl +1=5)NC + ) i) e+1NC+j)

q=J q=J

which completes the proof of (5.78). Now by (5.77) and (5.78), we will get another expres-

sion for P(Wy; > t) which is better in terms of computation,

i—S i—S .
_ Ii=o(C + k) i— S\ (D" _isuttninalt
P(Wyi > 1) = 50 g YB e [Spt(n+1)a]

_ o~ (Su+a)t Z H (C + k) ( nS) (=1)" —nat

- 9)! C+n
i— S i— S
_ e*(S,qua)t Z Z C + k) ( 1)n€fnat
n= Oq n
q
_ f(S,qua)t Z Z C + k) ( 1)nefnat
q=0n=0
—(Sp+a)t Z X II6(C + R)(1 - e_at)q.
- q!
Since by definition, p, = m, we have
k=1
-1 q—1 q q
H<C+k):0n _ Gnt ot
k=0 Pg—1 NPg—1 PPg—1

where p_; := p~!. Therefore

e~ (Suta)t i—S [17(1 _ e—at)]q

P = dlpe

P(Wy >t) =
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When o — 0, we have p;—1 — p?~! so that

i— S —at\14
n(l—e @
hm P(qu >t) = e M lim >]
a—0 q'p?
q=0
[Su(lfe_"‘t):| q

=5 hma~>0 o

e

|
q=0 T
i—S
_ e—Sut (Sﬂt)q
' Y
=0 T
which is P(Wy; > t) of M/M/S/N model studied in Chapter 2. "

Remark 5.3.4 This alternative expression is given in [19] without a proof. Note that in
this expression, each term in the sum is positive, which is better in terms of computation

and is a fact that we will apply in the proof of the monotonicity property for P(Wq> t).

The second lemma is an alternative derivation of P(Wq>t) using a different method

and this method has been used in Chapter 2 for M /M /S/N model as well.

Lemma 5.3.4 For M/M/S/N + M model,

P(W >t) =P(delay|non-blocking)

e~(Suray NSTL 1 _ gaty)d {1 . D()) ]
=0 3lpj—1 DN =9)]
(5.79)

Proof. We have that P(Wq>t) can be factorized as follows,

P(W >t) =P(Wg>t|W > 0)P(Wy> 0)

= P(W;>t|W > 0)P(delay|non-blocking).
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Now

P(W>tlW > 0) = P(W;>t|S <Q < N —1)
N-S-1
= > PWQ=S5S+iS<Q<N-1)PQ=S+iS<Q<N-1)
=0
N—-S—-1

Pi
= P(Wy(s4i) > t)

1+p1+...+pNv_s5-1

=0
et N‘fl Z [1(1 — e=ot)]? pi
p =0 \ j=0 J7'pj—1 14+p1+ ...+ pN_s_1
B o—(Sutayt N-5-1 [77(1 _ e—atﬂj Ni—l ”
p = Jpi-1 “~ 1+pi+otpN-so
_ o N o1 — )’ 1 2]
P = ilpi—1 D(N —S)

where we have used Lemma 5.3.3 for P(W(g44) > t). Also we have used the fact that

PQ=S+iS<QN-1) = — piﬂw o fori=01.N-§-1,

which can be proved similarly as (2.24) in Chapter 2. Therefore,

6—(Su+a)t N-5-1 [77(1 _ e—ozt)]j [1
Jlpi—1 D(N - S)

P(W >t) =P(delay|non-blocking)
=0

Now we can prove the following result on the monotonicity property with respect to K
for P(W > t).

Theorem 5.3.7 For M/M/S/N + M model, P(K)(Wq>t) is strictly increasing in the
buffer size K. P(K)(Wq>t) approaches to P(W >t) of M/M/S + M model while K ap-

proaches to infinity and it approaches to 0 while K approaches to 0.

Proof. By (5.79), we have

—(Spta)t K=1 —at\1J D(i
P(K)(Wq>t) = P(delay|non-blocking) ¢ — )] [1 ) ]

]p] 1 _D(K)

7=0
Since P(delay|non-blocking) is strictly increasing in the buffer size K by Theorem 5.3.6,

we only need to prove



is a strictly increasing function of K. We have

K—1 at\1J . —at K
= Jlpi-1 D(K +1) Klpg 1 D(K +1)
K—1 —at\1J .
—  jlpia D(K)
J_
since each term in the above is positive and for 0 < j7 < K — 1, we can prove that
D(i .
{_ () 21—‘DUX
D(K +1) D(K)

The above is true since D(K + 1) > D(K).

For the limiting cases, the results are obvious since

1 K+5-1
Pwmmgoziqgg,gjmpm@>w
=S

5.3.2 Concavity property with respect to buffer size K

We will consider the concavity property of the probability of served calls with respect to

buffer size K. We have the following result.

Theorem 5.3.8 For M/M/S/N + M model, PU)(Sr) is a strictly concave function in
the buffer size K.

Proof. Since
1-B-1/p

1
PENSp)y =24 — = IF
(5) P 1+BYE p

we have

U = PED(Sr) — PE)(Sr)

1 1
=(1-B-1/p) - -
1+BY M g 1+BYE ps

To prove concavity, we will prove that Uy is strictly decreasing, i.e., U{]{;l <lfor K >0

since Ux > 0 by Theorem 5.3.1. Let f(K):=1+ BZfil pi, then we need to prove

11
Uk+1 _ F&E+2) ~ FE+D)
- 1 1
Uk FEFD) ~ F(K)
FIRT2)7 (KT
K+2)f(K+1
=" <b

FIEFDF(K)
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which is equivalent to pryof(K) < prx+1f(K + 2). However from (5.70) in the proof of
Theorem 5.3.2, we have pg11f(K) < prf(K + 1) for K > 0. Hence

pr+1f(K +2) > praf (K +1) > prraf(K),

since f(K 4+ 1) > f(K) for K > 0. "

Remark 5.3.5 Since we have E(Qy) = aP(Sr) (5.43), the above concavity result also

applies to E(Qy), the expected number of busy servers in equilibrium, or the carried load.

Remark 5.3.6 In [20], the authors gave the same result but their proof is much more

complex than ours.

5.3.3 Monotonicity properties with respect to S

Now we will study the monotonicity properties of performance measures with respect to
the number of CSRs S while the number of trunk lines N = S + K is fixed. Since the
Erlang B formula B(S, a) is involved with S, we will replace it with B(S) here. Also since
K = N — S, we have the probability of served calls,

PO(sry =Ly L2BE ~1p
P 1+ B(S)X 1" pi

Since B(S) is a decreasing function of S, it is easy to see that P(5)(Sr) is increasing
with respect to the number of CSRs S while the number of trunk lines N is fixed. However
similar results for other performance measures are harder to obtain and we will leave this

as a future research.

5.3.4 Numerical examples

To give some numerical illustrations of the above results, we will consider the following
two examples. Let p =1, = 2 be the common parameters. Example 5.1 has parameters
A =8 and S = 5 while Example 5.2 has parameters A = 40 and .S = 10. Let buffer size K
change from 0 to 30. We compute the results using Matlab, where special functions such
as A(z,y) etc. are available.

We first consider three probabilities: P(Sr), P(Ab) and P(blocking). The results are

shown in Figure 5.5 for Example 5.1 and in Figure 5.6 for Example 5.2.
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MNumber of buffers: K

Figure 5.5: P(Sr), P(Ab) and P(blocking) of Example 5.1 for M/M/S/N + M model

PiAb)

04

Probability

03l P{Sr)

02r
01F

P{Blocking)

0 1 1 1 1 .
0 5 10 15 20 25 30
Mumber of buffers: K

Figure 5.6: P(Sr), P(Ab) and P(blocking) of Example 5.2 for M /M /S/N + M model
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0 5 10 15 20 25 30
Mumber of buffers: K

Figure 5.7: P(W¢q > 0) and P(Wgq > t) of Example 5.1 for M/M/S/N + M model

For both examples, we find that the three probabilities have the monotonicity properties
we have proved in the corresponding theorems. For Example 5.2 the condition (5.76)
is satisfied. Therefore we have when K < [C] = 5, P5)(Sr) > P )(Ab) and when
K > |C] = 5, PE)(Sr) < P (Ab), as proved in Theorem 5.3.4 and Theorem 5.3.5.
However for Example 5.1 the condition (5.76) is not satisfied. We only have the result
that when K < |C] = 2, P¥)(Sr) > PE)(Ab) according to Theorem 5.3.4. Note that
Example 5.1 also appears in [26] for P(Sr) and our numerical results agree with that in

26].

We then consider two probabilities: P(W > 0) = P(delay|non-blocking) and P(W > t).
The results are shown in Figure 5.7 for Example 5.1, where we let ¢t = 0.1. Both P(Wq> 0)
and P(W > t) are increasing in the buffer size K as we have proved. When K = 0 both
P(W > 0) and P(W > t) are 0 and when K approaches to infinity, it can be verified that

both P(Wq> 0) and P(Wq> t) approach to the corresponding performance measures of
M/M/S + M model.
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5.4 SOQN model with exponential abandonment of call cen-

tres (SOQN+M)

In this section we will study the SOQN model with exponential abandonment of call centres
denoted by SOQN-+M, which is a generalization of M /M /S/N + M model to the two-node
SOQN case. Our work here is a generalization and correction of [45]; we have more results
and some derivations are new. We will first give a model description and then derive the

main performance measures of this model.

5.4.1 Model description

The model is a semiopen network with two nodes in series. Node 1 models the IVRU with
N servers each with exponential service rate # and Node 2 models the CSRs with S ( < N)
servers each with exponential service rate . The maximum number of calls in the network
is N, i.e., if an arriving call finds N calls in the system, it will be blocked and rejected
entering the system. Hence there is no queue at Node 1 and there are at most N — S calls
waiting at Node 2. Arriving calls can enter the network only through Node 1 according to
a Poisson process with arrival rate A. After the service with Node 1 is completed, the call
leaves the network with probability p = 1 — p and it joins Node 2 with probability p. If
there are free CSRs at Node 2, the call is served by one of S CSRs. Otherwise it waits in
the queue to get service.

We model abandonment at Node 2 and assume that upon joining the queue, calls start
the patience times which are i.i.d. exponential with rate «. If the virtual waiting time V'
for the call is longer than its patience time (denoted by X), the call will abandon, leave the
system and release the trunk line. Otherwise it gets service with a CSR. and releases both
the CSR and the trunk line and leaves the system after the service. The arrival, service
and abandonment processes are all assumed to be independent. The original SOQN model
in Chapter 3 can be thought of as this model with o = 0. Figure 5.8 gives a picture of the

model. Note that this model has been similarly described in [45].

5.4.2 Product form solution of the queue length process

Let Q(t) = (Q1(t),Q2(t)) be the queue length process, where Q;(t) is the queue length

(number of calls) of Node 7,7 = 1,2 at time ¢. From the description of the model, we find
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P
IVRU (Node 1) Exp(@| CSRs (Node 2)

Blocked calls Calls who only need Abandonment
service of IVRU calls

Figure 5.8: SOQN model with exponential abandonment

that Q(¢) is a finite two dimensional CTMC with restriction Q1 (t) + Q2(t) < N for all
t > 0. Hence the stationary distribution of Q(t) exists and let m;; = P(Q1 =1, Q2 = j) be
the stationary probability of having ¢ calls at Node 1 and j calls at Node 2 with the state
space Q = {(i,7)]i +j < N, (i,§) € Z2}.
For Node 2, as in M/M/S/N + M model, we have the abandonment rate
0 ifo<j<§$
(j—S)a ifS<j<N

Ty =

since the exponential abandonment. Following the same way as M/M/S/N + M model,
we can incorporate the abandonment rate r; into the service rate for Node 2. Then it is
easy to know that this model is a special case of the semiopen network model studied in

Section 4.2, Chapter 4 with state dependent service rates u1(j) = j6,

JH for0<j<8
Sp+(—9Sa forS<j<N

p2(j) =

and constant balking. Now we have that Node 1 is similar to a M /M /oo queue with arrival
rate A and service rate 6. Node 2 is similar to a M /M/S/N 4+ M queue with arrival rate

Ap, service rate p and abandonment rate . Hence we have the following result.

Theorem 5.4.1 For SOQN+M model, the stationary distribution of the queue length pro-

cess Q = {Q1,Q2} has product form solution,
o

T35 = Woo%ﬁ, O§Z+]§N7 (580)
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where a1 = \/0; as = pA\/u = pa;

. J! for0<j< S
BU) =19 “gui-s ;
2 for S<j<N
Pj—S
s
pj—8 =

——
[[;=7(C + k)
71
7 J
n=>Aa; C= % and moo = > f—}% is the normalizing constant.
o<itj<n " 7Y
Remark 5.4.1 m;; is actually the solution of the following global balance equations
i (A + p2(g) + pa(i)) = m—1); A+
TigG+nH2(d + 1) + TG @+ Dp + mpym(@E+1)p, i > 1,5 > 1i+ 5 <N -1
i (p2(d) + p1(2)) = T—1;A + Tp)G-nii (i +1)p, i > 1,5 > i+ j = N;
moj (A + p2(5)) = morype(d + 1) + miG—np(Dp + mp1(1)p, i=0,1<5 <N —1;
monp2(N) = myv_pp1(l)p, i =0,j = N;
Tio(A + p1(d)) = w10 + Tiap2(1) + wrom (i +1)p, 1 <i <N —1,5=0;
mnop1(N) = m(n_1)0), i = N,j=0;
7oA = mo1p2(1) + mop1(1)p, ¢ =0,5 =0.
(5.81)

Remark 5.4.2 This result has been given in [45] using different notations.

The explicit expression for 7r0_01 was also derived in [45],
-1 ai&_ S ay Lﬁ
™= 2 WEG) 2 G- AU
2 (k= )l 2 =917 " 2t T g)SlaiS
Then applying binomial formula yields

s r N ol k—j j
-1 _ (a1 + a2) al + az ay “aypj-s
=y et e I

k=0 ) k=S+1 k=S+1j=S+1

al (a1+a2 b~ an Pj 1
Syl oy e (s ﬂ),
k=0 k=S5+1j= 571 (

which will reduce to py ' of M/M/S/N + M model if we let 6 = co and p = 1. In addition

when a = 0, the above will reduce to 77601 of SOQN model.
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The marginal distribution for Node 1 is

N—i N— 1/ ]
T = P(Q1=1) = Zﬂ'w 2%5—2 <i<N
= =0
where 7y, has another expression 7y, = ZZ 0 Z;V 01 %;—i) Hence the mean number of
calls at Node 1 is '
N N N—ioio
E(@Qq) = Z i = 00 ZZ .7'17<2.) : (5.82)
i=0 i—0 j=o " PV
The marginal distribution for Node 2 is
N i gl
Txj Z—P Zﬂ-zg WOOZT}ﬁv()S]SN
—o © PV
where 7r00 has the third expression 7700 = Z =0 ZN J Lz,l ;—2 Hence the mean number of
calls at Node 2 is
N N—j j

ZJTF*j _WOOZ] Z (zll IBOQ

and the mean number of calls Waltmg in the queue at Node 2 is

N N N—j ali aj
E(Q2q) = Z (J — 8)mej = oo Z (‘7_5)2??2)
J=5+1 j=5+1 i—o PV

5.4.3 Blocking probability

In [45], the stationary probabilities 73 for 0 < k < N that there are exactly k calls in the

system has been derived similarly as in [42],

k
T = P(Q =k) = Zﬂ-(k‘—j)j

§=0
where QQ = @1 + Q2. There are two cases:
1. 0< k<8
k k—j g k
a; “ay (a1 + az)
7=0
2. S<k<N:
S k—j j k k—j _j
a a; "ayPj-8
Tk = T00 E — Al Z — 1G-S
= MLy (k= g)Sta
b
ai + ap)" ay a - 1
“mo | S 30 6T (s )
’ j=S+1 :



Therefore, the probability m; that there are exactly 0 < k < N calls in the system is

equal to

(a1 + ag) a]f ]aJZ pj-s 1
j=5+1

and the blocking probability is P(blocking) = mx. It is obvious that mg = mg.

The mean number of total calls in the system is
N N ok
= kmp =Y k> mu_j; = E(Q1) + E(Q).
k=0 k=0 j=0

For Node 1, we apply the same Little’s formula as in Chapter 3

E(Q1) = a1 [1 — P(blocking)]

which is also the carried load for Node 1. The utilization

oy = E(@Q1) _w [1 — P(blocking)] <1

N N

is the proportion of time that an IVRU server is busy.

5.4.4 Probability of abandonment and other performance measures

Since abandonment occurs only at Node 2 while calls are waiting, we need to consider
the probability of abandonment among those calls who are not blocked and join Node 2
denoted as P(Ab|entry) where the event entry means non-blocking and joining Node 2
We use the same idea as before to derive P(Ablentry); we first condition on the state seen
by an entry call and then sum up all the possibilities.

N-1
P(Ablentry) = Z P;(Ab)P(the call finds j calls at Node 2|entry)

: (5.83)

where we have used (5.38) for Pj(Ab). ¢; has been defined in Chapter 3 and determined

by the Arrival Theorem of CQN [7]: ¢; = Zi]i_ol_j 775\]71). Hence we have

N—-1N—-1—j

(N-1) (j— S+ 1o
P(Ablentry) = Z Z T
= = Sp+(—S+1a
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Furthermore, Theorem 3.4.1 in Chapter 3 shows that

N—1—j N
(N-1) .
Gg= > m = > x(kj) (5.84)
i=0 k=j+1

which also holds here since the proof of that theorem does not involve the specific form of

B(j). Therefore we have an expression in terms of x(k, 7)

. (=-S+1Da
P(Ablentry) = Z Z
= Sk]+1 Su+( -S4+ 1)a
NarPieur Su—l— j—S+1)

which is the same result as obtained in Wang [45].

Now we have

S5—1 N-1
Sp
P(Srlentry) =1 — P(Ablentry) +
(Srlentry) lentry) Z;qj Z%qjsﬂ+(j_5+l)
J J
S—1N—-1-j (v N—-1N—-1—j S
=22 M+ Z > T .
j=0 =0 =s iz SM+(j—S+1)a
S-1 N — N
Sp
=D D xki)+ Z x(k
7=0 k=j+1 =S k=j+1 SM +(—S+1Da
N kAS—1 N k-1 Sy
=2 > Xk + > D xlk,
k=1 3=0 k=S+1j=S S/'L_‘_(]_S"i'l)
According to Chapter 3, the probability of entry is
—1N-1-3
P(entry) =p Z Z Tij
so that we have
P(Ab) = P(Ab,entry) = P(Ablentry)P(entry)
N-1N—1—j N-1N—1—j
_Z Z 7r(N y -9+« ) ij-
— . y
j=5 =0 Sp+(=S+Na \" = =
N-1—
Yy s
=5 % Su—I— (j—S+1a
by the relationship
(N-1) . ﬂ-Z]
ij N—1~~N—-1—j
Z; —0 2ui=0 7 Tij
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as proved in Chapter 3. Also

P(Sr) = P(Sr,entry) = P(Sr|entry)P(entry)

S—1N-1—j . —1N-1—j (N ) Sy N—-1N-1—j
:ZZW +ZZ Py 2 i
— = Sp+(G—-95+1)a = =
S—1N—-1—j —1N—-1—j o S,u
= T, + 1]
DI IERED DBz
Now Little’s formula for busy CSRs at Node 2 is
1
E(Qw) = )\P(Sr)ﬁ
S—1N-1—3 —1N—-1—j - S,U,
— v
apZ 2 MMPZ Y. 550G -5 Ta
= =0
which is easy to verify since
S—1N—-1—j N—1N-1—j - SM
a Ti; + @ Y
R Y e e
S—1N-1—j —1N-1—j Sy
ij
—GQZ Z WZJJF“?;% ; Su+(j—8S+1)a
S—1 N—-1—j —1N-1—j
= (J+1) Z Ti(j+1) +SZ Z Ti(5+1)
§=0 i=0
S N*] N N-—j
j:1 i=0 j=S+1 i=0
:E(QQb)a
where we have used the fact that
aaTij = (] + 1)7ri(j+1) for0<j< S
and
agpmij = [Sp+ (§ — S+ Do w41y for j =5 (5.85)

which can be verified by the product form solution (5.80). Hence the carried load for Node
2is

= FE(Q) = aP(Sr).
The utilization

v=— =pP(Sr)<1

@
S
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is the proportion of time that a CSR is busy.

Similarly as in Section 3.3.4, Chapter 3, we have the following performance measures.

1. P(only self-served by Node 1) = (1 — )Z ZN g
2. P(no-delay, entry) = pz EN i

3. P(delay,entry) = pz ZN =g

4. P(no-delaylentry) = Y00 q; = S0 SN al Y = U0 S x(kg) =
Sy 3500 (ks ).

5. P(delaylentry) = EN:_Sl 5 ZN 1ZN = (N ! Z Zk—]Jrl x(k,j) =
Zk S+1 ZJ SX( )

5.4.5 Waiting time distribution

To obtain performance measures related to waiting time, such as the four-dimensional
performance measure mentioned in M/M/S + M model, we will study the stationary
waiting time distribution in the following. As SOQN model in Chapter 3, we only need
to consider those calls given they are not blocked and join Node 2 (or given entry), since
there is no queue at Node 1. Let W, denote the conditional stationary waiting time of
calls given entry, which is the time spent by an entry call in the queue of Node 2 until
abandonment or starting to get service.

We follow the same conditional argument as before and by (5.44) and (5.84), we have

N—-1
P(Wy >t) = ) P(Wy; > t)P(the call finds j calls at Node 2|entry)
j=S
N-1j-S
- Z An,j—se—[5“+(n+1)a}tqj
j=S8 n=0
N—1N—-1—j ji—S
- WE;V*I) S Ay e 1SuHmDal
j=5 =0 n=0
N-L N j—S
- Z X(khj) ZAn j7567[3ﬂ+(n+1)a]t
J=5 k=j+1 n=>0
Nkl j-S
- Z X(kaj) Z A, j_Sef[S#+(n+1)a}t’
k=S+1j=S =0
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which is the same result as obtained in Wang [45].
Similarly by (5.47) and (5.84), we have
P(W >t,Sr) = Z qu i 34&‘* nO _(Spt(nt1)alt

oy Sp+(n+1)a

N—1N—-1—j
_ Z 7TN 1) ZA gk Ene Sp+na o~ [Sut(n+1)alt
= = Sp+(n+1a
N-1 N j—S
. S,LL"‘”Q _Is 1) ]t
=3 Y Xk )Y Apjso e St le
oy = Sp+ (n+ 1o
k—1

N
S+ na _
= E § A, e~ [Sut(nt1)alt
x(k ) ™= SSu—I— n+1)

and

P(W >t, Ab) = P(W >t) — P(W >t,5Sr)

N-1 j-S
= Z a; ]E: An j—S#e_[SN‘F(n-‘rl)a}t
=5 n=0 Sp+ (n+1)a
N—1N—-1—3 i—S
- Z j Ty Jz: An,j SLe*[SHH"H)a]t
1] ]
j=5 i=0 7=0 Sp+(n+ 1)
N-1 N j—S
- Z x(k, 7) Z A, jfs#e_[sﬂ"r(n—i-l)a]t
Jj=S k=j+1 n=0 Sp+(n+1a
N k-1 i—S
= Z X(ka ]) Z An jfs#e*[sﬂ+(n+l)a]t'
k=5+1j=5 o Sp+ (n+1)a

Now we can derive the conditional waiting, which are more useful in practice, using

the above results.

1.
P(W, > t|Ab) = W
ZJ 5 4 Xn- :jfsme_[sﬂ‘f'(n-i—l)a]t
! Zjv S USG-S T '
2.
P(W, > t|Sr) = W
SN @ I A Sszﬁf(%?) —[Sp+(n+1)alt

- Si
Z] -0 +Z S 4 STl s+1)a

143



P(W, > t,Sr)
P - clay)
(Wq > t|Sr, delay) (57“7 delaylentry)
Spu+na nrl)o
Z] s 4 JZ n,j— SW e

- ZN 1 Su
j=5 4 ST 9T

5.4.6 Mean waiting time

Following the same methods as in M /M /S/N+ M model, we can obtain some mean waiting

times. The only difference is that here we have

N-1-j N
(N-1)
Gg= > m =y xk
i=0 k=j+1
Also since 7[';]1:_1) = 15}\’,‘ = we have
=0
ZN 1— kﬂ-ik
G = L (5.86)
Y Yy U

First by (5.54) and (5.55) the mean waiting time for all calls given entry is

Z ] BLRE (5.87)
Comparing (5.83) with (5.87), we have found a similar property as Erlang-A model:
P(Ablentry) = o - E(W,). (5.88)
Now Little’s formula for all calls waiting in the queue at Node 2 is

E(Qay) = AP(entry) E(W,) (5.89)
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which is easy to verify since

where we have used (5.85) and (5.86). From (5.88) and (5.89), we obtain the similar rate

balance equation as (5.41):

AP(Ab) = a - B(Qag).

Next by (5.56) and (5.59) the mean waiting time for served calls given entry

N—1 =S
Apj—s(Sp+na
B 1 = 3 03 s=s(5ps + na)
j:

¢ [Su+ (n+1)af”

ARV

S i3 1

N—
:]Z: TS+ (j— S+ 1)a ZSu—I—(n—i—l)

At last by (5.63) and (5.64) the mean waiting time for abandoned calls given entry

Nf
W,, Ab) = An,j-sa
il ; = [Sp+ (n+ 1o ]2

= B+ (G- S+ 1)a — Sp+ (n+ Do

Now we can derive the conditional mean waiting time, which are more useful in practice,

using the above results.

E(Wfb Ab)

E(W,|Ab) = "0 20)
(Wl A5) P(Ablentry)

N-1 n+1
> =5 1 ‘su+(g S+1* Zn 0 Spt(n+l)a

Z j—S5+1
S 9 St G—S+Da
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E(W, Sr)

FWalsr) = PiSeniry)
N-1
>j=8 q] Sut(j S+1)a Zn 0 Sut( n+1)

Sp
Z] 09 +Z] =5 4j Su+(5— S+1)

E(W,, Sr)
P(Sr,delay|entry)

E(W,|Sr, delay) =

Z]‘Vfl qj Zj—S 1
_ £=j=8 Sp+(j—-S+1)a £«n=0 Su+(n+1)a

N—1 4
2.j=8 Sur(-57Ta
5.4.7 Numerical examples

To give some numerical illustrations for the SOQN model with exponential abandonment,
we will consider the following example for P(blocking), P(W, > t), P(Ab) and P(ST).
This example is similar to the example discussed in Chapter 3 where the parameters are
A = 250/1800, 4 = 1/180,¢t = 20 seconds and # = 0.01. We also let p = 0.5 here. To
illustrate the effect of buffer size, we fix S = 5 and let buffer size K = N — S change from
0 to 30. In addition we will compare two cases for a : a = 0.001 and a = 0.1 representing
lower and higher abandonment rate respectively.

In Figure 5.9, we compare P(blocking) for different abandonment rate «. It is obvious
that P(blocking) is a strictly decreasing function of K and higher abandonment rate makes
lower P(blocking). In Figure 5.10, we compare P(W, > 20) for different abandonment
rate a. It is obvious that P(W, > 20) is a strictly increasing function of K and higher
abandonment rate makes much lower P(W, > 20). Note that we have observed similar
monotonicity properties with respect to buffer size K for P(blocking) and P(W, > 20) as
M/M/S/N + M model and we will use this observation in Chapter 7 for the call centre
design problem. Also when we compute P(WW, > 20), we have used the expression of
P(Wy >t) in Lemma 5.3.3, which makes the computation more stable than using (5.77),
especially for very small a.

Next we will consider the unconditional probabilities P(Ab) and P(Sr), shown in Figure
5.11 and Figure 5.12 respectively. It is clear that both P(Ab) and P(Sr) increase when the
buffer size K increases as proved in M /M /S/N + M model. Also the higher abandonment

rate makes lower P(Sr) and higher P(Ab) consistent with our intuitiveness.
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Figure 5.9: P(blocking) for different abandonment rate «

0 5 10 15 20 25 30
Mumber of buffers: K

Figure 5.10: P(W, > 20) for different abandonment rate «
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Figure 5.11: P(Ab) for different abandonment rate o
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Figure 5.12: P(Sr) for different abandonment rate «
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5.5 Summary

Abandonment phenomenon in call centres is very important as shown in the literature. In
this chapter, we studied the exponential abandonment model of call centres and analyzed
three models, M/M/S + M, M/M/S/N + M and SOQN+M. For single-node models, we
again focused on the computational aspects by expressing the exact performance measures
in terms of special functions and Erlang B formula. The analysis is new and we have pro-
vided a unified and comprehensive list of expressions for performance measures. Based on
the performance analysis of M /M /S/N + M model, we proved monotonicity and concavity
properties with respect to buffer size K for P(Sr) using a method that simplifies the work
in [26]. Monotonicity properties for P(blocking) and P(W, > t) were also proved and these
properties are important to the call centre design algorithm in Chapter 7. For SOQN+M
model, our work is a generalization and correction of [45]; we used a new approach not only
to rederive the formulas for the performance measures correctly, but also introduce new
results. In the end we provided numerical examples to illustrate the effect of abandonment

rate for SOQN+M model.
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CHAPTER 6

GENERAL ABANDONMENT MODELS OF CALL CENTRES

In this chapter we will study the general abandonment models of call centres, which
generalize the exponential abandonment models studied in Chapter 5 to the general aban-
donment. We will only consider the multiserver case in the following. Among the different
patience time distributions, deterministic distribution has been given much attention in
the earlier literature since it is relatively easier to study and has some real applications;
some physical systems will not allow calls to wait more than a fixed time and equivalently
this means that calls have a deterministic patience time on waiting if we assume that
calls will not abandon by themselves. Barrer[6] studied M /M /S + D model. He obtained
the stationary distribution of number of calls in the system p; by defining and finding
the abandonment rate function mentioned in Chapter 5 (Definition 5.0.1). Gnedenko and
Kovalenko[22] solved the same model using supplementary variable method and provided
a rigorous analysis of the model. Choi and Kim [15] analyzed the M/M/S + D model
by finding another simple Markov process using supplementary variable method. Their
method can handle priority queues with two classes of customers and impatience in the
class of higher priority. Boots and Tijms[8] gave a simple and insightful solution for P(Ab),
which is exact for M/M/S+ D and M/G/1+ D queues and provided an excellent heuristic
for the M/G/S + D queue.

Baccelli and Hebuterne [5] studied the more general M/M/S + G queue with general
patience time distribution. They obtained the stationary distribution for the actual and
virtual offered waiting time process by constructing a Markov process and solving the
Kolmogorov equations. They then gave the relevant performance measures. However the
stationary distribution of number of calls in the system p; for ¢ > S were not given.
Independently Movaghar [36] studied M (n)/M/S + G model and Brandt and Brandt [11]
analyzed M (n)/M(n)/S+G model in which arrival and service rates are allowed to depend

on the system size n. Hence these are more general model which can include balking as
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Figure 6.1: M/M/S + G model description and parameters

well as finite buffers.

Basically when the patience time distribution is not exponential, the number of calls
in the system by itself is no longer a Markov process. We have to construct an appropriate
Markov process by adding other variables. The above method is called supplementary
variable method and includes the work of [22], [15], [5] and [11]. These works differ from
each other with the choice of supplementary variables. There is another method which is
heavily dependent on the concept of the stationary abandonment rate function r; (Definition
5.0.1). They argued that once r; is found, then the system can be seen as a Markov process
and p; can be obtained using birth-death process. Hence this method is less rigorous than
supplementary variable method although they produce the same p;. The work of [6] and
[36] belong to this method.

In this chapter, we will first give a review and new generalization of single-node general
abandonment models including infinite buffer M /M /S+G and finite buffer M /M /S/N+G
model and then study the SOQN+G model, which is SOQN model with general abandon-

ment.

6.1 M/M/S + G model

This model is a generalization of M/M/S + M model with a general abandonment dis-
tribution. The patience times X are assumed to be i.i.d. and generally distributed
with mean a~! and distribution function G(t), hence the corresponding survival func-
tion G(t) = P(X > t). We assume X is positive, i.e., G(0) = 0. The model description
and parameters are shown in Figure 6.1.

This section is mainly based on the work of Baccelli and Hebuterne [5]. They assumed
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that arriving calls are aware of their offered waiting time V' (defined in Chapter 5) upon
arrival. Thus, if V' > X, calls abandon immediately and do not join the queue. However,
this model coincides with regular M /M /S + G model in terms of abandonment probability
and offered waiting time V' since the finally abandoned calls in M/M/S 4+ G model will
not influence V' and hence P(Ab); they can be discarded upon arrival as the model studied
here [5].

For single server queue, let w, be the unfinished work of the system at the n-th cus-
tomer arriving time and w,, is called the actual offered waiting time of the n-th customer.
Let V(t) be the virtual offered waiting time at time ¢ (i.e., the offered waiting time of a
hypothetical infinitely-patient call arriving at time t). Baccelli and Hebuterne gave the
stability conditions of these two processes and showed that their stationary distributions
coincide, which are actually the distribution of V' for M/G/1 4+ G model. This result also
holds for multiserver queue M/M/S + G.

Baccelli and Hebuterne [5] chose V (t) as the supplementary variable to construct the
following Markov process {(N(t),V (t)),t > 0}, where N(t) is the number of busy CSRs
and V(t) is the virtual offered waiting time at time ¢, which is strictly positive when
N(t) = S and equals zero otherwise. The state space is {0,1,2,...5 — 1,5} x RT. Then

they considered the following functions

P(N(t)=S,z<V (t)<z+dx)

o N

o) = o % o=t

pi = lim P(N(t) =i, V(t) = 0), 0<i<S—1
—00

where v(z) is the density of V for 2 > 0.

The Kolmogorov equations for (N(t),V(¢)) in equilibrium are

Apo = pp1

(A +ip)pi = Api—1 + (i + Dppita 0<i<S—1
(A+ (S = Dp)ps—1 = Aps—2 +v(0)

v(z) = Apg—1 exp(—=Spz) + A [y G(u)v(u) exp[—Sp(z — u)]du, x> 0.

The solution is

pi = %10, 0<i<S—1
v(w) = Aps—1 exp{A fox G(u)du — Spx}, x>0
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and by the normalizing condition Z,L-S:_Ol i + fooo v(z)dr =1,

S22 i aS-1
po = ZE+7(S_1)!(1+)\J)

=0

where

J:/ exp{)\/ G(u)du — Spx}d.
0 0

(6.1)

The stability condition is A\G(co0) < Sp which can be explained as the CSRs must be able

to overcome the traffic consisting of customers with infinite patience to make the system

steady.

Since Baccelli and Hebuterne did not provide p; for ¢ > S, the mean number of calls

waiting in the queue E((Q),) cannot be obtained directly using p; although it can be derived

using Little’s formula and the results for mean waiting time as in Zeltyn [50]. However the

mean number of busy servers F(Q)y) can be expressed only in terms of p; for 0 <i < .S —1,

S—1 00
b) = Zipz'-l-SZpi
i=0 ;

S5-2 CLi — z
Zapozﬁ ijo—ps 1
i=0 =0

S—2
=(a—8)) pi+S1—ps1)
i=0
Hence the utilization
oo 9 _ E(@Q)
S S
S—2

=(p-1)> pit+1l-ps
i=0

which is the proportion of time that a CSR is busy. By Little’s formula for )y, we have

E(Qp) = )\P(Sr) Therefore,




and

P(Ab) =1— P(Sr)

1 S—2
= (1= =Y p)+
P i=0

p
. S-1

=(1- ;)(1 ) pi) +psa
i=0

which is formula (5.9) in [5] and the previous derivation also appeared in [50].

Since the distribution of V' is known, the distribution of W, and its expectation, as well
as various conditional versions as studied in Chapter 5, can be obtained. Zeltyn [50] gave a
comprehensive list of exact formulas for M/M/S + G performance measures based on the
work of Baccelli and Hebuterne [5]. Define H(x) := [’ G(u)du. They gave the following
building blocks,

J= /oo 6)\H(:p)—.5',umda37
0
Ji :/ (L‘@AH(x)iSMIdLL’,
0
JH—/ H(z)eM @) =S gy
0
J(t) _/ e/\H(z)—Su:cdm7
t
Jl(t):/ pe M (@) =Suz gy
t
Tu(t) = / H(z)e @)= gy
t
1-B
=B(S—1,a) = ——p.
e=B(5—-1,a) 5P

Then it can be shown that almost all the performance measures can be expressed in terms

154



of these building blocks. For example

Z o e—1
P T
B 1
ps_l_e—i-)\J’
AJ
1+ A=5p)J
PAb) = £+>\J) ’
_e—1+SuJ
PSr) = e+
ale—1)+ SAJ
:p(e—l)—l—)\J
e+

See [50] for the complete list.
For the special case M/M/S + M model, G(u) = e~ and A\ps_1 = Spups so that

v(x) = Aps—1 exp{A /Ox G(u)du — Spux}

= Sppg exp{n(l — ") — Spx}

= pgSpuele™ (Spatne")

which agrees with the result (5.17) in Chapter 5. Also it can be shown that for M /M /S+M

model, using the notation in Chapter 5, we have

_el e A
J = o v(C,n) = S

A ~(Cope®)  _~(C,ne ")

J(t) = — =J : 6.2
() Sp y(Cyn) v(C,m) (6:2)
I I S e ( (O )

B a8 AC 4(Cy)

C1[A A-1] 1+4(p-DA 1+(A-SwJ

Ca | Sp Al Ao B Ao ’
_1[AA(Cme ™) A (C+1,me)

) =3 Su y(Cym)  AC 4(Cyn) (63)
[ —aty _ -1 —at\C ,—ne~t
1 J(t)_év(ane ) —C  (ne"*)"e '
a| A 7(C,m)

The above special building blocks for M /M /S + M model are also included in Zeltyn [50].
However they did not provide the expressions of J; and Ji(t) for M /M /S + M model. We
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have that for M /M /S + G model,

/ J(z)dx = / [ / e)‘H(“)_S”“du} dz
t t x

:/ (u—t)e)‘H(“)fs‘“‘du
¢

= Ji(t) — tJ(t)

so that
Ji(t) = / J(z)dz + I (2)

and

Hence, for M/M/S + M model, we have

A /°° _
J=— C,ne”*)dx
LTSy (Con) Jo Y(Cme™™)
677

= ~v(C,ne”**)dx
[ )

and
en

Jl(t) =

C,ne”®Ydx + ty(C,ne”
omc[/t Y(C,ne” ") Y(C,ne™ ™)

The above special building blocks for M/M/S + M model, together with the formulas
of performance measures for M /M /S + G model provided by Zeltyn [50], can be used to
derive various performance measures for M/M/S + M model, which will agree with our

results obtained in Chapter 5.

6.2 M/M/S/N + G model

The model is a generalization of finite buffer M/M/S/N 4+ M model with a general aban-
donment distribution. Again the patience times X are assumed to be i.i.d. and generally
distributed with mean a~! and distribution function G(t), hence the corresponding sur-
vival function G(t) = P(X > t). We assume X is positive, i.e., G(0) = 0. The model
description and parameters are shown in Figure 6.2.

As we have mentioned, Movaghar [36] studied M (n)/M/S + G model using abandon-
ment rate function r; and Brandt and Brandt [11] analyzed M (n)/M(n)/S + G model

using supplementary variable method. Note that the input symbol M (n) means the input
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Blocked Calls ¥ G(t)

Figure 6.2: M/M/S/N + G model description and parameters

is a general state-dependent Poisson process, i.e., the arrival rate is dependent on the num-
ber of calls n in the system. Hence this model can include both finite and infinite buffer
models. When A\, =X > 0for 0 <n < N and A\, =0 for n > N, we have M/M/S/N + G
model. The study in this section on M/M/S/N + G model is mainly based on the work
of [36]. However some results are new. For example, following the idea of building blocks
of performance measures for M /M /S + G model in Zeltyn [50], we introduce new building
blocks for M /M/S/N + G model.

6.2.1 Queue length process

In [36], Movaghar first gave the definition of the offered waiting time U, which is defined
to be oo for blocked calls. However in the finite buffer model, he actually studied V, the
conditional offered waiting time of an infinite patient call given the call is not blocked
so that V' has no mass at co. Movaghar obtained the distribution of V' using a different
method than Baccelli and Hebuterne [5]. He also obtained the stationary distribution of
queue length p; for all ¢ and other stationary performance measures such as P(AB), and
P(blocking) etc.

As we mentioned in Chapter 5 (Definition 5.0.1), the author gave a definition of aban-
donment rate function 7;, which is first introduced by Barrer [6] for M /M /S + D model.
Another important concept is the conditional offered waiting time given the non-blocked
typical call in equilibrium finds ¢ calls in the system, denoted by V; for 0 < ¢ < NN, which is
also defined in Chapter 5 (Section 5.1.2). The first result he obtained is similar to formula
(5.38) for M/M/S/N 4+ M model in Chapter 5 and is given below

Pi(Ab) = P;(Ab, non-blocking) = P(V; > X) = ﬁ S<i<N.  (64)
i+1
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By using probabilistic arguments, the author derived the density of V;

0, 0<i< S

gi—s(t) —Sut ;
PN e , S<i<N

fui(t) =

where |
i) = [ /0 t G(u)du]l — H{)

and g7 (s) = [;° e *'g;(t)dt is the Laplace transform of g;(t). Then the explicit form for

abandonment rate function can be obtained using (6.4)

0, 0<i<§

(i—S)%—SM, S<i<N

T =

(6.6)

In case of M/M/S/N + M model, we have

and

00 00 1— —at7t
gitsn) = [~ e Sgoa = [Tes N
0 0

_ i@ (;) (_1)k /OO 6—(S,u+ak)tdt
“ =0 0

1 (i o1
== P ——
at £~ (k>( ) Sp+ ak
i!

where we have used the identity:

1 ot

: 1 Nk _
’;Ok!(i_k)!( 1) Sp+ak  TTi_,(Su+ ak)

which is equivalent to 22:0 Ay =1 as shown in Chapter 5. Using the above, (6.5) and
(6.6) reduce to the corresponding formulas (5.15) and (5.32) respectively in Chapter 5 for
M/M/S + M and M/M/S/N + M models.

To obtain the stationary distribution of queue length p; for all ¢, Movaghar argued that

once 7; is found, p; will satisfy a set of difference equations similar as the global balance
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equations of a birth-death process with abandonment rate r; as additional death rate.

Therefore for M /M /S + G model p; satisfy the following equations.

0= —Apo + pp1
0= Api—1 — (A +min(S, o) + r3)pi + (min(S,n + )p + riy1)piv1, >0

The solution, in view of (6.6), is

Py ifo<i<S$ 67)
bi = (.15'71 Ni— S+ gx S L .
Po 5= (iiq?)!S( Wi
where
S—1 i—S+1
Po = Z + —1)! Z
i=0

S 1/\ & ifS

s1
a
- ; il + Zg, (i—S)

i

a S Iy p Ai— S
— e SHtET z S
S ,z/ S

=0
S=1 4 — ]

ST Ny
T

B o ai N a®=INT

T T (5!

which is the same as (6.1). Therefore

oS a® P
i
ps =p0§ =~ 51 . = S-1yg et \J
Z;) i T

Note that the stationary distribution of number of calls in the system p; for ¢ > S are

unavailable in Baccelli and Hebuterne [5]. The mean number of calls waiting in the queue

E(Qq) (not given in [36]) is

00 ‘ aS_l o) ' )\7, S-l—lgl S(SM)
EQQ:E:z—Si: o > (i 8

)\z+29 )
=ps_q Z z+1

= Aps—1 /
0

A2 Ty
e+ AJ
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which is the same as the result obtained in [50] using Little’s formula.

Similarly for the finite buffer M /M /S/N+G model, Movaghar [36] obtained the solution
P ifo<i<s$
p; = gS—1 NTSTlgr (Sp)

DPors—y Gi—9)!

(6.8)

#S<i<N

where o1 N
— a’ a1\ )\’_Sg;_S(S,u)

p5122%+(s—1) 2 ")

=0

!
i=S

Performance measures in terms of building blocks

In this section, following the idea of building blocks of performance measures for M /M /S +
G model in Zeltyn [50], here for M/M/S/N + G model, we will introduce, for N > S,

N NS gr o (Sp)

T e (6.9)

i=S
oo N-5 %
:/ DY [)\H'(t)] &t
0 i=0 v

= / e SHAM [ _ P(N — 8+ 1, \H(t))]dt
0

= / A O=Sut gy / AMO=Sutp(N — § 4+ 1, \H (t))dt

0 0

_ Jo HO=Sty (N — S+ 1, \H (t))dt
B (N —9)!

I GMH (1) —Spt [ fOAH(t) +N=So=zq2| dt
o (N - 9)!

n,.N-S_ —zx -1

T J(H 1 (z/N))dz
=J -9 : (6.10)

where H~!(z) is the inverse function of H(x) and H~!(x) exists since H(z) is an increasing

function. Then we have the following new expressions in terms of J),

S=1 4 S—1y 7(N)
-1 a a AJ
_\ e 11
pO ; ,“ + (S— 1)' ’ (6 )
S—1 oSl
a’” (5—1)! 1
= = = 6.12
b Fo (S - 1)' 51 at aS—1)\J(N) €+ )\J(N) ( )
;O T+ e
and
_ & _ .
Ps =Pog = = g (6.13)

Sfll a4 a5 A
2. 4 S-1!
=0
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Also, by the PASTA property, we have the probability of delay among all calls (abandoned,

served or blocked)

N-— aS—1 N-1 \i—S+1
9i—s(Sw)
P(delay)= Z ¢
| — |
= - 1! = (i—9)!
)\J(N—l)
= ps AN = 2 6.14
pPs—1 6+)\J(N) ( )
the probability that the call get service without delay
S—1 ,
S—1 i ) % ¢
P(no-delay) i =0 = 6.15
y Zp zzgpo —1 (ZS 1)\ J(N) 6+)\J(N) ( )
z et
and the blocking probability
, € AJN=1) 0 N (JV) — g(N=1))
P(blocking)=py =1 — P 1 R T Y I (6.16)
since P(blocking) =1 — P(no — delay) — P(delay).
We can also express three kinds of mean number of calls in terms of J&V).
1. Mean number of busy servers E(Q})
S—1 N
= Z ip; + S sz‘
S—2 S—2 ’i
= apo Z: g s 1-2;190.—175 1)
S—2 CLi
= (a—S) ;poi! +S(1 - pg_1)
S—1
= (a— 5)(2]91; —ps-1) +S(1 —ps—1)
i=0
— 1) + SAJW)
ale=1)+ : (6.17)
e+ AJWV)
where we have used (6.12) and (6.15).
2. Mean number of calls waiting in the queue E(Q)
N 5—1 N \i—S+1
. a . gz— (SIJ’)
BE(Qg) = Y (i—=S)p:i=po - > (i-9) ,
i=S+1 (S - 1) i=S+1 (Z — S)
_ o N (Sw)
=Dps-1 m
i!
=0
)\QJ(N 1)
= H___ (6.18)
e+ AJ@)
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where JI(LIN) for N > S is defined to be

N=S yi_x
(N) A'gia(Sp)
T =
i=0

o0 g S NH (1))

:/0 H(t)e " ZZ; [i!()]dt

= / h H(t)e SMMWM[1 - P(N — S+ 1, AH(t))]dt
0

_ / H(t)eM -t gy / H()MO-Stp(N — § 1+ 1, \H(8))dt
0 0

5 Jo° H(t)eMO=Suty(N — S + 1, \H (t))dt
:H—

(N —9)!
fOOO H(t)ekH(t)—S,ut [foAH(t) xN—Se—rdx dt
=Jn - (N = 9)!
an*Se*IJH(Hfl(:U/)\))dx
= Jyg — =0 5] . (6.19)

3. Mean number of calls in the system E(Q)

E(Q) = E(Qv) + E(Qq)-

6.2.2 Probability of abandonment

As in M/M/S/N + M model, since there are some blocking calls and only non-blocking
calls can abandon, we have P(Ab) = P(Ab,non-blocking). To derive P(Ab, non-blocking)
we first condition on the state seen by a non-blocking call and then sum up all the possi-
bilities. Define P;(Ab) = P;(Ab,non-blocking) = P(the non-blocking call will abandon | 4

calls in the system upon arrival). Movaghar [36] showed that

Ti4+1

PAD =PV 0=5 00 ") 10 s sl gy

and

1 0<i< S

Su gf,erl(SM) . )
i—S+1 g 4(Sn) S<i<N

P;(Sr) = P;(Sr,non-blocking) =
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Now

N-1
P(Ab) = P(Ab,non-blocking) = Z P;(Ab)P(i calls in the system upon arrival)
=S
N—
— 1 [1 Sp gi—S—i—l(S:u):|
= - = " a;
Py i—S+1 g o(Sp)
N-1 *
_ Sp 97 g41(Sp)
-3 - - ; (6.21)
P i—S+1 g o(Sw)
No1o
i+1
= Di 6.22
Z Sp+ i ( )

where we have used the PASTA property, i.e., a; = p;. Similarly,
P(Sr) = P(Sr non-blocking)

* S
= sz + Z SM+ . g; S+Eéﬂl;)pi- (6.23)

Performance measures in terms of building blocks

In the following we will derive expressions of the above performance measures in terms of
JN) using another method. By Little’s formula for Qp, we have E(Q}) = )\P(Sr)i, which,

combining (6.17), gives us

E(Qy)  e—1+SpuJW)

PSr) === = ™

(6.24)

This formula can also be obtained directly from (6.23). Therefore we have

P(Ab) = P(Ab,non-blocking) = 1 — P(blocking)—P(ST)

AW — gDy e — 14 Sp g W)
€+ AJW) €+ AJWN)
1+ AJWN=D _ 5y (V)
B €+ AJW)

(6.25)
Comparing the above with E(Q,) (6.18), we find that the rate balance equation
AP(AB) = o B(Q,)

is usually not true unless the patience time has exponential distribution (i.e., M/M/S/N + M
model). In this case, later we will show that (refer to (6.45))

Sv-1) _ L AT — 8y
i B Ao
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so that we have AP(Ab) = - E(Qg) holds for M /M /S/N + M model.
In general, for M /M/S/N + G model since 1 — P(blocking) = P(Ab) + P(Sr), we have

the rate conservative equation in equilibrium

A [1 — P(blocking)] = AP(Ab) + AP(Sr)

= AP(AD) + nE(Qy),

which shows the rate of non-blocking calls equals to the sum of total abandonment and

service rates in equilibrium. Again we have the carried load
a = E(Qp) = aP(Sr)

and the utilization

a’ aP(Sr
v=o = 59 ):pP(Sr)
_ple—1)+AJW) 1
T eram S

which is the proportion of time that a CSR is busy.

6.2.3 Waiting time distribution

As in M/M/S/N + M model, for performance measures related to waiting time, we are
mainly interested in W,: the conditional waiting time of a call until abandonment or

starting to get service given that this call is not blocked. It is obvious that
PW,>t) =PV AX>t)=P(V >1t)G(t)

where V' is the conditional offered waiting time of an infinite patient call given the call is
not blocked, which is independent of the patience time X. Movaghar [36] used the same
method as we have done in M /M/S/N + M model to obtain the distribution of V'

SN piP(Vi > t)
1—-pN

N-1
PV>t)=> gP(Vi>t)= (6.26)
=S

Di
—PN

proved the density of V; (6.5) so that for S <1i < N,

P(V;>1) :/ 79:_5@) e Sy,
v 95 g(Su)

1 /OO i—S _—S
= H(u)"Pe Py, 6.27
s S, T (6.27)

where ¢; = 7 is the arrival-point probability mentioned in Chapter 2. Movaghar [36]
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Performance measures in terms of building blocks

In the following we will express performance measures in terms of new building blocks. We

have, by (6.8), (6.12), (6.16), (6.26) and (6.27),

SN piP(Vi > t)
1—-pN
N—-1

1 Pi /OO i—S_—S
= H(u)  Pe My
Z SH) t ( )

1—pn 2 gi sl

PV >t)=

N-1
:M’Sl/me—sﬁmz
1—pn Ji

=S

MH (u)]~?
i—s)

AT V=1 (1)
= S (6.28)

where we have defined, for N > S,

o) o N MH (u i—S

= / e AW (1 _ P(N — S+ 1, \H(u))du
¢

:/ MW= gy, —/ MW=Smp(N — 6 4 1 NH (u))du
t t

= J(t) — / MW=Spup(N — § 4 1, XH (u))du (6.29)
t

J(t) Jo O aN=Semrdp + [ o aNSe I (H N (w/A))dx
=J) - (N = 5)!
f;]H(t) eN e J(H 1 (z/N\))dzx
(N —9)!
S INH ()N 78 e M@ J(2) NG (x)da
(N —9)! '

=J(t)[1 - P(N — S+ 1, AH(t))] -

(6.30)

=J(t)[1 - P(N — S+ 1LAH(t)] -

Hence
B o AG@H) TN ()
P(W,>t)=P(V >1t)G(t) = gD (6.31)

and the density of V for ¢t > 0 is, by (6.29),

A dJN=1D(¢)
e+ MO-D g
A d[J(t) — [ rHW=Smp(N — S X\H (u))du]
IPESWIGESY dt
_ — A:;(N_l) [ez\H(t)—Sut o 6)\H(t)—Swa(]V -8, /\H(i))]
)\e/\H(t)—Sut

= 77 [1— P(N — S, AH(t))]. (6.32)

fv(t) =
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We now consider the waiting time distribution for abandonment calls given non-blocking,

by (6.32) and (6.28),

P(W >t,Ab)=P(VAX >tV > X)

=P(X >tV >X)
—/OOP(V>x)dG(a:)
=PV > x)G(x)|* / G(z)dP(V > x)

M@ =Sue (1 _ p(N — 8, \H (z))] dz — P(V > t)G(t)

e ), ¢
S

e+ AJV-D
oMH (2)=Spa 11 [1— P(N — S,\H(z))] dx — J(N_l)(t)G(t)

e—l—)\J

:e+)\J [/

A7) - T ()G )
= AT ’ (6.33)

Gl
)M @50 (1 p(N — S B (@) dr — 2@
G

where similarly as (6.30) we have defined, for N > S,
J(N / G fS/m: P‘H( )] d.%'
(1 —9)!
= / G(z)eM@) =S 1 _ p(N — § + 1, \H (z))] d
t
= / G(z)eM @ =Sne gy, / Gz)eM @ =S p(N — § + 1, \H (z))dx
t t

Sy e e Ja(H™ (z/N))dz
(N =9

= Je(t)[L — P(N — S+ 1,\H(t))] —
and

Ja(t) ::/ G(:c)e’\H(I)_S“xdm
t

(A= Sp)J(t) + M (1) —Spt
= : .

The last equality comes from

/oo [/\@(x) - SM] e)\H(:L‘)—S;wcdx _ /oo de)\H(a:)—S;wc _ _eAH(t)—Sut.
t t
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Therefore by (6.30), we have

ffH(t) xN*Se*xJ(;(Hfl(:U/)\))dx
(N = 9)!

= Jo(t) [l — P(N — S+ 1, \H(t))] —

) (A — Su)J(t) + MH (t)—Sut [1 _pP(N-S+ 17/\H(t))] _

A

moaN=SemT (N — Sp)J(H Y (x/\)) + xSt @/ | gy

NH (t)

AN — 9)!
_ AH (£)—Sut

_ A S“)J(t);e [L— P(N — S+ 1,AH(t))] -

(A= Sp) [y 25 "I (H @/ A)d + [l N ~SemSm @M dg
AN = 9)!

(A= 8Sp)J M) + HMW=SHL — P(N = S+ 1,MH(1)] S gN=Se=SuH ™ (@/N) gy
B A AN — 5)!
A =S IM() £ MO-Su L P(N — S+ 1L,AH®)] ;T NH ()Y e S1 G () da
B A (N —9)!
(A= S JM(#) 4 OS] — P(N — S+ 1,\H(t))]
B A

— I (@) + TNV (@) + 350 @) - I8V @)

so that ng_l)(t) can be expressed in terms of JV=1(¢) and JM)(t)

(N=1) (4 _ (V) NH()—Spt 11 B
JéN_l)(t):)\J (t) = SpJ(t) +e : [1-P(N—-S+1,AH(t))] (6.34)

- - JIND — gy JN) 41
J((;N . J(GN D(0) = A )\M +1

We now have, from (6.33),

AT D

However by definition P(W > 0, Ab) =P(Ab[non-blocking). Therefore we have

P(Ab)= P(Ab|non-blocking)[1 — P(blocking)]

= P(W >0, Ab) [1 — P(blocking)]

R Y/ SR G e

T e+ AMN-D 4 AJ(N)
A= g g 41
e+ A ’
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which is the same as (6.25).

The waiting time distribution for served calls given non-blocking is

P(W >t,Sr) = P(W >t) — P(W >t, Ab)

Rt G IR A R O1E0)

e+ AJWN=1) e+ AJIV-1)

A TED @) - gD )]
- 5D . (6.35)

Therefore

P(W >0, Sr) =P(Sr, delay[non-blocking)

_ N—-1
Y J(N 1) _ é )
B €+ AJW-1)

Now we can derive the conditional waiting, which are more useful in practice, using

the above results.

1.
_ P(W,>t,Ab)
P(Wy > t]Ab) = P(Ab|non-blocking)
AT =D _ -0 ) ~
_ [ AT -D) ] _ Jé‘N 1)(t) — J(N_l)(t)G(t)
- IS B JN=1
Eyviney ¢
TGP - T D06 ()]
T 1A C g @)
2.
P(W, >t,87)
P t|Sr) = N
(W > t|ST) P(Sr|non-blocking)
(N=1) (py_ 7(N=1)
A[78-D () % o JON-D () — JND g
AN B G (6.36)
e—1+SuJ(N) N - (V) .
PEeviocs e
3.

P(W, >t,Sr)
(ST, delay|non-blocking)

P(Wy > t|Sr, delay) = 7

bY {J(N—l)(t),‘]g\’—l)(t)]

e I - g8V
eI V- JN
e+ AJ(N—1)
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6.2.4 Mean waiting time

In this section, we will express various mean waiting time in terms of building blocks. By

(6.31), we have the mean waiting time for all calls given entry

E(Wq)

©AG(t)JN-D(1)

e+ AJWN-1)

e+ ANJIV-1)

(6.37)

which can also be derived using Little’s formula,

and then use (6.18) and (6.16).

E(Qq) = X1 — P(blocking)] E(W,)

By (6.35) and (6.34), we have the mean waiting time for served calls given entry

E(W,, Sr)

e+ AJ(NAL
 SpgMN — @
e+ AJWN-D

&)

s A [JUV “D(t) —
/0 e+ AJWV-1)

A °°[
6+)\J(N71) 0

/°° [SMJUV) (£) — MO-Sut [ _ p(N — 541, AH(t))]] dt
0

1

€+ AJWV-1)

1

dt

JN=D 4y - J((;N’”(t)} dt

T e - [ AHO=Sut [ _ B
>[S“/o T (t)dt / W[ — P(N S—l—l,)\H(t))]dt}

0
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where we have defined, for N > S,

JN = / TN (t)dt (6.38)
0

— / [/ AMW=Si (] _ P(N — 8 + 1, \H (u))du| dt
0 t

= / ueM =S p(N — § + 1, \H (u))] du
0

J

0
J1

we N H W =S g, / ueM =S p(N — 6 4+ 1 XNH (u))du
0

o N Semr [y (H Y (z/N))da
a (N - S)! '

(6.39)
The mean waiting time for abandoned calls given entry is

E(W,, Ab) = E(W,) — E(W,, 5r)

oY s g
e+t AJOED) e A
AT g™ 4 )
e+ AJWN-1)

Now we can derive the conditional mean waiting time, which are more useful in practice,

using the above results.

1.
E(W,, Ab)
E(W,|Ab) = .
(Wq|Ab) P(AbJnon-blocking)
AJN=D _g,, 7N 4 5(N) _
) (s E+M,(LN1_1)+ B )\JI(LIN 1) _SMAN)JFJ(N)
A D AJN D '
Ve ¢
2.
E(W,, Sr)
E = -
(Wy|ST) P(Sr|non-blocking)
_ e _ SpY = g™
T e Spg™m T (N)”
v
3.
E(W,, Sr)
E(W,|Sr, delay) = "
(Wy|Sr, delay) P(Sr, delaynon-blocking)
SN _ (V)
e SpdN — g™
gy =D (v—1) _ gIN-D)
G AJ JG
e+AJ(N-1)
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Comparing the results obtained in this section with Section 6.1, it can be shown that
when N — oo, building blocks of M/M/S/N + G model will approach to building blocks
of M/M/S + G model. For example, JN) will approach to .J and J)(¢) will approach
to J(t). Therefore performance measures of M/M/S/N + G model will approach to the

corresponding performance measures of M /M /S + G model.

6.2.5 M/M/S/N + M model

We have studied M /M /S/N + M model in Chapter 5. In this section we will show that the
formulas for general abandonment will reduce to the results obtained before in Chapter 5
for exponential abandonment i.e., G(z) = e~2® and hence H(x) = o~ }(1 — e~%). We will
first derive some building blocks for M/M/S/N + M model in the following.

JWN) will reduce to an expression involved with D(N — S + 1) which is, as defined in

Chapter 5,
N-S
DIN-S+1)=>Y pi=A-T(C+ 1)l “P(C+N —S+1,7n). (6.40)
i=0
We will prove this result by first providing the following lemma.

Lemma 6.2.1 For any N > S, we have

U
/ NS¢ (O, — x)de = T(C)I'(N — S +1)P(C+ N — S +1,7).
0

Proof. By changing the order of integration we have for any N > S,

" U
/ NSy (Cn — z)dx = / 2 le (N — S + 1, — x)dz. (6.41)
0 0

We will prove the lemma by mathematical induction. For N = S, we have, by (6.41),

Il
8
Q
A
o
8
U
S
("b‘
E
3
Q
Q
A



Therefore the lemma is proved for N = S. Assuming that it is true for N = K, we will
check for N = K + 1. Again by (6.41), we have

7
/ BTS2~ (C n — z)dx
0
7
= / 29 le (K — S +2,n — z)dx
0

n
= / z e [(K —S+1)y(K-S+1,n—z)—(n— :E)K_S+1ex_"] dx
0

U U
=(K—-S+ 1)/ e et y(K - S+ 1,0 — z)ds — / 2 e (n — o) K5 ey

0 0
U U
=(K-5+ 1)/ K =Se "y (C,n — x)dx — e”/ 29 — )K" dg.
0 0

Now using integration by parts continuously, we have

n K — 1 n
[t st = EEEE [0 S
0 0

= c C+1/0 " (n —x) dx

_ . d
C C+K—SA$ v

C+1’
POT(K -S5+2) cig_sm1
= . 42
TC+K—5+2)" (642)

Hence using the above and the assumption, we obtain

7
/ eEHI=Se=0n (C iy — z)da
0

(i~ 54 pROLE =S+ 10(CH K =S +1m) e "DCOLK = S+2) oppesin

T(C+EK-S+1) T(C+EK-S+2)
NK -S4+ 2Oy C+K—-S+1,0)(C+K—-S+1)—e "T(C)I(K — S + 2)n¢TE-5+1

- I(C+K—8+2)

CT(E-=S+2T(C)[y(C+K-S+1,n)(C+K—S+1)— e Iytk-5H]

- NC+K—-S5+2)

T(C)I(K — S+ 2)y(C + K — S +2,7)

T(C+K-S5+2)

=T(O)0(K -85 +2)P(C+ K -5 +2,1),

which completes the proof.

Now we have the following result about JN) for M/M/S/N + M model.

Theorem 6.2.1 For M/M/S/N + M model,

D(N — 1
g — (SM‘M (6.43)
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Proof. By definition (6.9), the above lemma, the expression of J(t) (6.2) and the fact

that for exponential abandonment H~!(z/)\) = —a~!In(1 — 7, we have

S _ g o eN"Se  J(H (x/N\))dx
(N —S)!
g OnﬂcN*Se*‘”*y(C,n —x)dx
(N = S)(C,n)
A APC+N-S+1,pI(C)
Sp Sp v(C,m)
_A—AT(C)y(C,n)"tP(C+ N —S+1,n)
= S
_A—CemCI(C)P(C+ N —S+1,n)
= S
_ D(N-S5+1)
==

(6.44)

where we used (6.40). "

Next we will consider JJ(LIN). We have the following result for M /M/S/N + M model.

Theorem 6.2.2 For M/M/S/N + M model,

) 1+ AWM — SN+ 1 4 pD(N —S+1)— D(N — S +2)
Tn = Ao - A

. (6.45)

Proof. From the definition (6.19),

S _
Jl(qN) o o N Se Iy (H 1(30/)\))(136.
(N —9)!
For exponential abandonment we have
1+ (A—Sp)J
Jg=—"———"7"7"
A
and by (6.3),
[ ~(C,n — A~vC+1,n—
JH(H_l(.I‘/)\)): J’Y( 7 .%') 77( —+ 7] :L'):|

vCm)  AC A(Cn)
[ (Cn—x) A Cy(Cin—z)—(n- w)oex‘”}

¥(Csm) AC ¥(Csn)

_(J_é)’V(C’n—w) A (77_55)0636_77]
L A .

¥(Csm) AC y(Cim)

QlIm QI QI
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Then by Lemma 6.2.1 and (6.42)

o eN=Se Ty (H (x/\))dx

(N - 5)!
_ B [ - 96 + ] e
a(N - 9)!

(A — A) [ aN=Se "y (C,n—z)de  Ae™ [[JaN75(n — 2)%da
B (N — S)ly(C,n) AaC(N = S)y(C,n)

(A — A)L(C)P(C+ N — S +1,7) AL(C + 1)ptN =5t
- Aay(C)n) AaCely(C,n)I'(C+ N — S5 +2)

JO—SpWI(C)P(C+N—S+1,)  T(C+1)pN—5+1
- Aoy (C,n) Aal'(C+ N —S+2)
_ JA—=Sp) [SpJ — D(N = 5+1)] 4 PN-St1

AaS Ao
_ JA=8Su)—(p—1)D(N —S+1)+ pn_s+1
Ao ’

where we have used the result derived from (6.44)

T(C)P(C+N—S+1,7m)  SpJ—D(N—S+1)

v(C,n) B SpJd
Therefore
S 1+ (=50 JA=Sp) ~ (p = 1)D(N = S+1) + py-s+1
V) _
Ao Ao
_1+(p—1)D(N—-S5+1) - pn—s11
Ao

1+ (p-1)D(N-S+1)—D(N—-S+2)+ DN —-S5+1)
N Ao
_1+pD(N-S+1)— DN —-S+2)
a pYe"

L+ XJWN) — 5y gN+D
a pYe '

Using the above results for J&) (6.43) and JE{N) (6.45), we can derive performance

measures related to queue length process and the probability of abandonment as shown

above in Section 6.2.1 and Section 6.2.2 for M/M/S/N + M model. It can be shown

that these formulas (in terms of ¢, JV) and J}{N)) are the same as formulas (in terms of

functions B and D) we have obtained in chapter 5.

For performance measures related to waiting time, we find that the key building block
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is JN)(t) and for M/M/S/N + M model by (6.30)

n IN—Se—w -1 T T
TNty = J(t) [1 = P(N = S+ 1,n(1 — e )] — HERD N S)(!H Sl
—at f (1 e at) xNiseifo(Cz n—- .T)dflf
=Jt)[1-P(N-S+1n1—-e)) —J- SR

and by Lemma 6.2.1

"
/ eV e (O, n — x)dx
n(1—e=ot)

ne~ ot N_S _ o B
= /0 [y +n(1 — e )]V e ="y (o — [y + (1 — e*N)])dy
—n(l—e™* e e v N-S _ —o
= t)/ [y +n(l—e )] 7 e ¥y (Cne ™ — y)dy
—at N—S

e e —S—1 —at\1t _— —a
t/ Z z, )yN T (1 = e )] ey (Cyne " — y)dy

N—S —at
—n(l—eot) ) [n(1—e™ )] /ne N—S—i_—y —at
Z Z, N5 0 YT (e —y)dy

1=

L —e )] P(C+ N =S —i+1,pe o)

= 1= (N — $)IT(C) g

i=0
So that

TN () = J(t) [ = P(N = 8+ 1,(1 —e~°%))]

Je*n(lfe‘“*)(N — ST (C) ZN_S [n(1—e=")]' P(C+N—S—i+1,neot)

1=0 1!

(N = S)y(C,n)
= J(t)[L = P(N = S+ 1,n(1 — e )]

1 c oot [Nl —e*)]'P(C+N—S—i+1,ne )
—a n T(C)e" ZE_O f .

Other building blocks such as Jl(N) and JéNfl)(t) are all based on J)(¢) and their ex-

pressions are too complex and we will not show them here. Plugging these building blocks

to the formulas in Section 6.2.3 and Section 6.2.4, we have performance measures related

to the waiting time, which are not given explicitly in Chapter 5 since there we have used

the arrival-point probability ¢; and A, ;_g to express performance measures.

6.2.6 M/M/S/N + D model

M/M/S/N + D model (deterministic patience time) is another important special case of

M/M/S/N + G model. In this case we have that the patience time X = a~! is a constant
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and

Hence for t > 0,

and

so that

_in(i,C)  iIP(3i,C)
(St (St

for ¢ > 0, where we define P(0,C) = 1. The distribution of queue length @ is, according
to (6.8),

Po% if0<i<S$
bi = . ’
ps_1p5tP(i —S,0) ifS<i<N
where
S 4 aS-1 N
' =S S spG s o),
~ 4l (S —=-1)!
=0 i=S+1
Comparing with the general formula
_1__§§fa? a9~ I\JW)
Po = T s
we have for M/M/S/N + D model
N-S N-S
1+ > p'P(i,0) > PP, C)
J(N) _ =1 _ 1=0
Su S
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which is an alternative expression of JV) obtained in the following. To obtain all the
performance measures, we only need to give the expressions of all building blocks. Zeltyn

[50] give the expressions of building blocks for M /M /S + D model as follows.

Ifp#1lie, A#Su

_ pe=C¢ — 1
oA =Su
Jy— 1 [n(p —1) —1]er®
(A= SM)2 A=Sp? 7
np—1)—1 1 _c en—¢
J1 = e =Jg+ —,
(A — Su) (A=Su)?  (Sp)? (Sp)?
P e o<t <ot
e t>a ’
(A Sp)t_ en—C t()\fs'p)t n—C 1
{ G Sp?  ~ ase of()/e\—su)v 0<t<a
en—Sut _1 ’
Sp t>«
e(A=Sut_ n-C te(A=Sn)t P 1 —C —1
{ sz~ acsn tlapesm T (sm?] e, 0st<a
¢ 1 Sut. -1
[+ ] tza
Ifp=1lie, A=5u
1 1
J== 1+
« + A
1 1
Jg == N0
H™ 9q2 + pYet
1 1 1
Ji— — 41—
17 902 + pYeY + A2’
1,1 —1
=4+ 35—t 0<t<a
J t — (0% A
() { SRR
PN =
Lol 4 1L 0<t<a
JH(t) = @ )
e t> a1
PN =
26;152_*_)\0[_}_/\2’ 0§t<a_1
N(t) = t 17 Xt -1
[£+&]em™,  t>a

To obtain the performance measures for M/M/S/N + D model, we need further to

give other building blocks based on the above. Now we have H~1(t) =t for 0 <t < o~}
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Hence for 0 <z < n,

pen=C—eli=r" D 1
J(Hl(x/A))J(x/A){ oo s ,
—T R
at 3 p=1
e=p"Haz_gn-C _ wel=p" Dz pe" ¢
Ju(H (/) = Ju@/y) =4 Oswr s TaGesy P70
1—n—2a? 1 —1
202 +E’ p_l
e(lfp_l)’”—enfc_:I:eafp_l)m I4 1 ] n—C
B /) = Sy — 4 o St [antem Ty 0 p# L
=22
S e p=1

By the general formulas of building blocks (6.10), (6.19), (6.39) and (6.30), it can be shown
that:

If p#1ie, XA# Sy,

Sy _ pe L= P(N = S,p)] + pN S TP(N — 5,C) — 1

A—=Su ’

S0 _ 1 B pN=5+le=C N n(p—1)—1]e" [l — P(N — S +1,7)]

TN Sm? T Su(h— Su)(N - 9)! (A — 5u)?

N (N=S+1)(p—1)—1]pVNSTIP(N - S +1,0)
(A —Sp)? ’
1=C1 - P(N - S +1,n)]

J(N) - J(N) + ¢ - )

! " (Sp)?

pe’~C[1—P(N—S+1,9)] i e =St P(N—S+1,At)—1]
A—=Sp A—=Sp —1
g (t) = _}_pN*S“[P(N—S—&;\l,g)—P(N-S-&-l,SMt)} 0<t<a
— M M
[1—P(N—S5+1,n)]en— 5Kt t> o

Su ’
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Ifp=1ie, =5y,

(1 1 WS+ N-S§ 1
O 2| P(N=S5+1
! o TXT AN -9 [ X OJ (V=54 1n)
_14n—nP(N—-5mn)+(N-S)P(N—-S+1,n)
_ . 7
W _[ 1 1]y gy (N—-S+3)(N-S+2)P(N-S+1,n
1) =+ | 11— POV =54 1+ o
. (N — S + 3)’]7N_S+1€_77 + 77N—S+26—n
2A(N — 9)!
NET (N = 5 +3,7)
A )\a] L= PN =S+ L+ Zew o)
N Ny, 1—=P(N—-S+1,n)
TN = g 2 ,
[é n % )+ [At—N—o—S—l}/l\D(N—S—o—l,)\t) ey
(0%
N—S+1g=Xt _pN—5+1,— =~
I =1+ [55 —L PN — 5+ 1) + Q0T ol
[1_P(N_S>_\~_17n)]e’ﬂ*/\t7 t Z a—l

There are some common performance measures of M/M/S + D and M/M/S/N + D
models. Referring to the corresponding general formulas of M /M /S + G model and using
the results we obtained in this section, we have for M/M/S + D and M/M/S/N + D

models:
1. Abandonment rate (use (6.6))
0, 0<i< S

P(i—8—1,0)—P(i—S,C
Sp ( P(i—)&C)( !

Ty =

, 1> 8

2. The density of V; (use (6.5))

0, 0<i<S$
i—5+1 ) . _
fu(t) = ‘p(gg?c)(z':s)itz_se_sutv iz8t<al
S eSS > St > !

P(i—S,C)(i—9)!

Hence P(V; > t) =0, for 0 <i < S. For i > S, we have when t > o~ !

(Sp) =51 / * i8S
PVi> 1) = i=8) =Sy
Vi>t)=pi—sou-gn/) « ¢ du

B (Su)ifsqtlaf(iﬂ?) i _Sut

~P(i-S,0)i—8)Su°

_ CifS e—Sut
P(i— 8,C)(i—9)!
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and when ¢t < o~ 1

—1

‘ _ (Sp)' =5+ /a i—S —Spu /OO —(i—S) —Spu
P(Vl>t)_P(i—S,C)(i—S)! t u'" e du + Oé_la € du

B (Sp)i—S5+1 y(@i—S+1,C)—~(G—S+1,Sut) ci—3

= Pi-5,0)(i-9) (Spyi-Si1 T Pi=5.0)i-29)
_(i—S+1,C)—~(i— S+1,5ut) ci—s _C

- P(i— S,C)(i— 8)! Pii—8,0)(i—S)°

(i—S+1,C)— (i — S+1,5ut) + C'%e ¢
B P(i—S,C)(i —S)!
(=8 —=8,C) =i — S+ 1,Sut)
P(i—S,C)i—S)!
P(i—S+1,Sut)
~ P(i-5,0)

=1

In [36], Movaghar gave the above results for M /M /S + D model in terms of distribution

function of Erlang distribution with parameters (i, Spu) i.e.,

Fy,(z) = = /es"ttildt,
*Jo

where Y; ~ Er(i, Su). Actually

iopett ; i, Spa~!
Fy,(a7!) = éf?intll e‘&“ﬁ—ldt=:7(é§?iﬂ)::IKLCE

so that the above results agree with those obtained in [36].

6.2.7 An alternative method

Independently, in [11, 12|, Brandt and Brandt considered M (n)/M(n)/S + G queueing
system. The first M (n) means the input is a general state-dependent Poisson process, i.e.,
the arrival rate is dependent on the number of calls n in the system. The second M (n)
means the cumulative service rate is generally dependent on the number of calls n in the
system. This is a quite general model and some special cases are in the following. If A,
>0for 0 <n < N and A\, =0 for n > N, then we have M(n)/M(n)/S/N + G model.
If p, = min(n,S)u for n > 0, then we have M(n)/M/S + G model and if additionally
An = A > 0 then we have M/M/S + G model. In this section we will focus on the results
of M/M/S/N + G model and show that this alternative method produces the same result

as we obtained before.
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As we have mentioned before, using the supplementary variable method, the authors
construct a complex Markov process by including the residual and original patience times

of waiting calls. Specifically the Markov process is

(Q(#), X1 (t); -+, Xp(2y(8); Ur(t), -, Urp) (1)) (6.46)

where Q(t) is the queue length at time ¢; L(t) = (Q(t)—95)+ is the number of calls waiting in
the queue at time ¢; X;(¢) and U;(t) are the residual and original patience times of waiting
calls for the queueing position ¢ = 1...L(t) and ¢ = 1 is the first call in the queue, which

will be potentially the next call for service. The stationary distribution of this process is

Pi(z1,...x1;u1, ..up)

= tlim PQ(t) =4 X1(t) < z1,..., Xi(t) < a3 Ur(t) < ua, ..., Up(t) <)

where | = (i — S)4+ and the density is

82l
0xq...0x;0uq...0uy

pi(:l,’l, XU, ul) = Pl-(a,j, XU, ul)

The authors then derived a system of integral equations for the density p;(x1, ...x;; u1, ...u;)

of the Markov process (6.46). By solving these equations explicitly they obtained p;(x1, ...z; u1, ..

the stationary queue length distribution ), various conditional waiting time distributions
and mean waiting times. The results are summarized in the following.

Let
§/(Sp) _
F(¢) = / G(u)du,& >0
0
and the constants
1 [ ;
Fji= = / F(&)le de.

J:Jo

Then the stationary distribution of number of calls in the system is

SSy if0<i<S
p=3 7 - (6.47)
gN'Fi_g ifS<i<N
where
S-1 i N-8
-1 s s .
g =Sl Zﬁ—i_)‘ Z)‘F’
i=0 i=0
and hence pg = gS!u®.

The above results are actually the same as results obtained before (6.8) since we have
§/(Sm) __
&)= [ Gludu = H(E/sp). > 0
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and

> i€ L[ i,—€ Sp [ i,—Sut Sp
Fi=o | F)le™ds=~ [ H(E/Sp)'eds = — [ H(t)'e™"dt = —-g7(Sp).
2. Jo 2. Jo 1! 0 1.

(6.48)

After replacing F;_g in (6.47) with (6.48), we will obtain the same stationary distribution

(6.8). This fact confirms the argument of Movaghar [36] that once r; is found, p; will

satisfy a set of difference equations similar as the global balance equations of a birth-death

process with abandonment rate r; as additional death rate even though the queue length
process Q(t) itself is not a birth-death process.

For the waiting time distribution and the mean waiting time of M /M /S/N + G model,

the following formulas are obtained in [11, 12], where we also use their notation.

L.

P(W, > t|Sr) =1 — Ws(t)

NSl yj+1 oo »
~ AP(Sr, Ii)iljls;locking) ;) A;! /S MtF(f)JF (&)e~¢de.
2.
P(W, > t|Ab) = 1 — Wi (t)
N-S-14j+1 foo . ,

~ AP(Ab, fo/ﬁfilocking) ;0 AJJ, /S MtF(é)J [F (Sut) — F (g)] eEde.

3.

P(Wy > t) = P(Sr|non-blocking) P(W, > t|Sr) + P(Ab|non-blocking) P(W, > t| Ab)
N-S-1

Sups , NHL poo o
= F Je—€de.
AP (non-blocking) (Spt) jz—:o 5! /SutF(g) e ~dg
4.
Ps RV . ¢
b = EWs = = [ F(&)I(€—1)etde.
(lSr) = BV = S gy 2= 7 | ey nea
5.

N-S

pbs
AP(Ab, non-blocking)

PVANES A
B(W,|Ab) = EW; = 5[ Re - et
— J°Jo

1=
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E(W,) = P(Sr|non-blocking) EWgs + P(Ab|non-blocking) EW;

N-S : -
= Je—¢
)\P(non—blockmg g (G —1)! / F(§) e dE.

It can also be shown that the above formulas are the same as we have obtained before.

For example since

F@:;Ewwh;ﬁww»

we have
N-5-1
Sups AJ“ > S
P = J '3
(Wy > t|Sr) AP(Sr,non-blocking) Z S tF (Y F(g)ede
j=0 ®
s N-S-1 )\] 00 A
= : Z H(E/Sp) G(£/Sp)e S dE,
P(Sr,non-blocking) jz:% J! Sut[ (&/Su)P G(&/Sk) ¢
where, by (6.13) and (6.24),
ps __ps _ e+)f](N) _ P
P(Sr,non-blocking)  P(Sr) GfelJ:r/\iltl{r()N) e—1+ SuJW)
and
N-S5-1 j 0o o
© /S G/ Seéd
=0 J- JSut
N-S5-1 )\j ) L
=S Y. 5 / [H (w)) G(u)e M du
j=0 Tt

= Sp /t h G(u)eM =Sy — p(N — S, \H (u))]du

= Sp Utoo M W=Spuy _ p(N — S, AH (u))]du — /too Gu)eMW=Smu] _ p(N — S, AH (u))]du

= Su [J(N’l)(t) - JéN*”(t)] .

Hence we have

P(W, > t|Sr)
_ p (N-1) (N-1)
= SulJ t) — t
) ul (1) - J& V)
A IO @) - I8V 0]
B e— 1+ SuJW)
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which is (6.36).
In [12] the authors also gave the expression of the abandonment rate function based on

results from [11]
_ Fis

ri = —Su, S <i<N. (6.49)
Fi—s

Since F; = %g;‘(Su), the above is the same as (6.6). For conditional offered waiting
time V; considered in [36], the authors [12] presented a new proof for the density of V; for
M(n)/M(n)/S + G model by using results from [11].

A Markov approximation of M/M/S/N + G model

In [12], a Markov approximation of M /M /S/N 4 G model is proposed. The approximation
model is denoted by M/M/S/N + M(B;)N7° where M(8;)¥7° means that with each
waiting place, numbered by ¢ = 1,2,..., N — S where ¢ = 1 is the first call to be served
potentially (i.e., if not abandon), there is a position-related exponential abandonment rate
Bi. Hence a call waiting on the ith position has an exponential rate 3; to abandon the
queue. The calls behind him move up according to FCFS discipline and change their
abandonment rate according to their new positions. The total abandonment rate with j

calls in the system is
j—S

rig=» B, S<j<N.
=1

If all B; = « is a constant, then the model becomes M/M/S/N + M model.
It is obvious that the process Q(t) of this model is a birth-death process with the

stationary distribution

9SS e ifo<i<$

Di = Z_g—/\i ifS<i<N (6.50)
II (Sptrjp)
j=S+1

where
N-S

1 SS71 a' s N
-1 _ g a@
=0 =0 T (Sp+71j45s)
j=1

The key idea of the approximation is to find 3; such that two distributions (6.47) and

(6.50) are the same. Comparing the above two distributions, the authors obtained for
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1
Fis=—; .
[I (Su+r7jp)
j=5+1
Solving the above gives
Fi_g_
Tiuﬁ = }%fsl —S/L, S< ) S N,

which is actually the same as (6.49). Hence we find that when the stationary distributions
are fitted, the abandonment rate function r; and r; g are also fitted. This fact again
confirms the argument of Movaghar [36] that once r; is found, p; will satisfy a set of
difference equations similar as the global balance equations of a birth-death process with
abandonment rate r; as additional death rate even though the queue length process Q(t)
itself is not a birth-death process.

Now since it has been proved in [12] that r; is a strictly increasing positive function,

the method to find f; in [12] is,

B1 = rS+1

Bi=rsyi —Ts4i-1, 1<i <N =S

The fact that p; and abandonment rate function r; are fitted for two models if we choose
B; as above also implies the fitting of those performance measures which only involved p;
and r;, such as P(Ab), P(blocking), E(Q,) and E(W,) etc. However this is not true for the

various waiting time distributions for two models.

6.2.8 Types of patience time distributions

In M/M/S/N + G model, patience times are assumed to be i.i.d. and generally distributed
with distribution function G(t). We have mainly studied exponential and deterministic
patience time distributions before for the performance analysis of models. In this section
we will consider more types of distributions such as Erlang and uniform distributions.
However our focus is not in the performance analysis of each model. Instead we will try to
give an order relationship for some performance measures of those models with different
patience time distributions assuming that all other model parameters are the same.

In [34], the authors studied the impact of customer’s patience on delay and abandon-
ment for M/M/S + G model. They gave an order of delay and abandonment assuming

an order relationship between two different patience time distributions. Also they got
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the result that the deterministic patience time distribution minimizes P(AB), maximizes
P(W,; > 0) and E(W,). In [37], similar results have been obtained for M/M/1/N + G
model with patience time on sojourn, i.e., calls could abandon the system even they are in
service. We will generalize these results to M/M/S/N + G model in this section.

For M/M/S/N + G4 and M/M/S/N + Gp models, where we have used the lower
index A and B to distinguish two models with different patience time distributions as in
the rest of this section, we will assume that all model parameters are the same except that
the distributions of the patience time X are different with the same mean a~!. We will

assume the following order condition for distribution functions G 4(t) and Gp(t)
Ha(z) = / Ga(u)du > Hp(z) = / Gp(u)du, for z > 0. (6.51)
0 0

Note that both [34] and [37] used this order condition. We will first prove the following
lemma and then give some order relationship for some performance measures under some

conditions.
Lemma 6.2.2 Under the condition (6.51), for M/M/S/N + G model, we have:

1. g ;(Sp) = g ;(Sp) for 0 < j < N = S.
2. g4 > ggv.
Proof. These are obvious from the definition of g7 (Su) and J) e,

(S = [ e Hyar

and N
)\Z_Sg;'k_s(sﬂ)

TV =2, (i—9)!

=S

Theorem 6.2.3 Under the condition (6.51), for M/M/S/N + G model, we have:
1. For the stationary distribution of number of calls in the system,

pAi < PBsi, for 0<1<S.

2. For the probability that the call get service without delay,

P (no-delay) < Pg(no-delay).
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3. For the mean number of busy servers in the queue,

EA(Qp) > Ep(Qy).

4. For the probability of served calls,

P4(Sr) > Pp(Sr).

5. For the conditional delay,

Py(delay|non-blocking) > Pp(delay|non-blocking).

Proof. 1. By (6.11),

-1 _ Szl Gi n (IS_1>\J(N)
Poo = 251 T T — )
=0
Therefore from Lemma 6.2.2, we have
PA0 < PB0-

Also by (6.8), ‘

a
2!

Hence

PA; SPBi, 0 <1 <5 (6.52)

2. P(no-delay) is the probability that the call get service without delay. This can be
proved by (6.52) and the fact that

€
P(no—delay) = Zpl :W

3. The mean number of busy servers F((Q)) can be written in terms of p;, 0 <i < S as
S—1 N
B(Qy) =Y _ipi+S> pi
i=0 i=9

S—1 S—1
=S i+ 5013 m)
=0 1=0



Therefore by (6.52), we have

EA(Qp) > Ep(Qy).
4. This is obvious since
E
P(sr) = 2@
a
5. By (6.31),
) )\J(N—l)
P(delay|non-blocking) =P (W, > 0) = PR
Hence
Py (delay|non-blocking) — Pp(delay|non-blocking)
N—-1 N-1
_ AR
e+ A e gy
AN [e n ugv—”] —AJND [e n AJQN‘I)}
N e+ 28] e s Y]
Ae [ I - g
e+ A7) [eraa ]~
by Lemma 6.2.2. [

Theorem 6.2.4 Under the condition (6.51) and the condition
sy
JI(ANfl) = J(BNfl)’

(6.53)

for M/M/S/N + G model, we have:
1. Pa(blocking) > P g(blocking).
2. P4(Ab) < Pp(Ab).
3. Py (Sr|non-blocking) > P 5 (Sr|non-blocking).
Proof. 1. Condition (6.53) is equivalent to
JM gD > g N (N1 (6.54)

By taking away JI(LXN_I)JEN_I) from both sides we have

JI(L}N)Jl(aNfl) . JEKNfl)Jl(ngl) > JJ(BN)JiNfl) . JEXNfl)Jl(ngl)

188



or

JgN) _ JI(Llel)} J(Nfl) > [J(N) _ J(Nfl) JI(L‘NA)'

B B B
By Lemma 6.2.2, 0 < J](BN_l) < Jl(qN_l). Therefore from the above
JW = gD s g0 ), (6.55)

On the other hand, by (6.16) we have
AJWN) — J(N=1)y

P(blocking)= U™
Hence
Py (blocking) — P g(blocking)
:)\(Jj(qN) . J‘E{N—l)) - )\<J(BN) . J(BN—l))
e+ ATV e+ ATV
(57 = I8 e+ M) — () — T ) e+ ATY)

=A

(e + AT (e + ATI)

)\6 [JIEXN) _ ngv_n _ (ng) _ ng_n)] L [JIS‘N)J(BN—l) _ J](BN)JI(LXN—l)

(e + AT (e + AT
by (6.54) and (6.55).
2. We have
P(Ab) =1 — P(blocking) — P(ST).
Now since
Py(blocking) > P z(blocking),
and by Theorem 6.2.3 P4(Sr) > Pp(Sr), we have,
P4 (Ab) < Pp(Ab)
3. Since
. P(Sr)
P -block =
(Sr|non-blocking) = Plblocking)’
the result is obvious by the two previous results. [

Theorem 6.2.5 Under the condition (6.51) and the condition

J,gN) J(BN)

<
N-1) — N-1)’
gD T ey

for M/M/S/N + G model, we have

Py(delay) > Pp(delay).
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Proof. By (6.14) we have
)\J(N—l)
aPESYIl

Hence

Py(delay) — Pp(delay)

LD D
e+ MM e AT

Y e Y| =AY e Y|

[e + ,\JXV)} [e + /\J;N)]

e [TV a0 - Y] .

[e + AJXV)] [e + AJ}}V)} -

"

After providing the order relationship of some performance measures of M/M/S/N+G

model under some order conditions of patience time distribution in the above, next we will

consider the special properties of the deterministic patience time distribution. We have

the following Lemma from [34] and [37]. Both papers have this result although their proofs
are different. The proof given here is adapted from [37].

Lemma 6.2.3 For z > 0,

Hp(z) = /0 G (w)du > H(z) = /O " Glu)du,

where

_ 1, u<at

Gp(u) =
0, u>at

is the survival function of the deterministic distribution X = o~ and G(u) is the survival

function of any patience time distribution with mean a~'.

Proof. For 0 <u < a !, Gp(u) =1 > G(u). Hence for 0 < x < o™}, Hp(x) > H(x).

For z > a1



since H(x) is a non-decreasing function and H(oo) = o~ 1. "

Therefore by the above Lemma, Lemma 6.2.2 and Theorem 6.2.3 we have the following
extremal property of the deterministic patience time among all patience time distributions

with mean a~! for M/M/S/N + G model.
Theorem 6.2.6 For M/M/S/N + G model, we have:
1. gp ;(Sp) = g5 (Sp) for0 < j< N —S.
2. JGV > g,
3. pp;i < pi, for 0 < < S.
4. Pp(no-delay) < P(no-delay).
5. Ep(Qs) = E(Q).
6. Pp(Sr) > P(Sr).

7. Pp(delay|non-blocking) > P(delay|non-blocking).

We will consider Erlang patience time distribution with mean o' in the following, i.e.,

k—1

— . kau)? ka)k oo
Grr)(u) =e k E ( A ) = (]E;—)l)!/ e Rt =la uw >0
i=0 v

where éE(k) (u) is the survival function of Erlang distribution with parameters k and ka.

In [37], the following result has been proved.

Lemma 6.2.4 Forallk > 1 and x > 0,

X T
Hp 1) (z) = /0 G g(k1)(uw)du > Hpy(x) = /0 G gk (u)du.
Therefore, as in the case of deterministic patience time, we have the following theorem.

Theorem 6.2.7 For M/M/S/N + E(k) model, where E(k) means the patience time has

Erlang distribution with parameters k and ka, we have for all k > 1:

L gE(kH)J(S/“‘) Z QE(k),j(SM) for0<j<N-S.

2. g

(N)
Bk =

E(k)’
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3. Prgein)i < Prgkyi for 0 <i < 8.

4+ Pg(gy1)(no-delay) < Py, (no-delay).
5. Epgi1)(Q) > Epgy (Qp)-

6. Pp(ry1)(ST) = Pp)(ST).

7. Pg(i41)(delay|non-blocking) > Pgy)(delay|non-blocking).

Remark 6.2.1 When k =1, we have M /M /S/N+M model. The above theorem shows the

extremal property of the exponential patience time distribution among all Erlang patience

time distributions with mean 1.

Remark 6.2.2 When k — oo, we have M /M/S/N + D model. The above theorem shows
the extremal property of the deterministic patience time distribution among all Erlang pa-

tience time distributions with mean a~', which is consistent with Theorem 6.2.6.

At last we will consider the uniform patience time distribution with mean a~! and the

support (0,2a~1). In this case

1—5%, 0<u<2a?
Gu(u) =
0, u>2a!

In [37], the following result about the uniform patience time distribution has been proved.

Lemma 6.2.5 For all x > 0,

Hy / GU du>HE / GE(l

Therefore, we have the following theorem.

Theorem 6.2.8 For M/M/S/N + M and M/M/S/N + U models, where U means the

patience time has uniform distribution with mean o1 and the support (0,2a71), we have:
1. g35,;,(Sp) = g3y ;(Sp) for 0 < j <N —S.
2. g > g,
3. pui < Pmy, for 0 <1 < S.
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4. Py(no-delay) < Ppr(no-delay).

5. Ey(Qy) > En(Qy).
6. Py(Sr) > Py (Sr).

7. Py(delay|non-blocking) > Pyr(delay|non-blocking).

6.3 SOQN model with general abandonment of call centres

(SOQN+G)

In this section we will study the SOQN model with general abandonment of call centres
denoted by SOQN+G, which is a generalization of M/M/S/N + G model to the two-node
SOQN case. We will first give a model description and then derive the main performance

measures of this model.

6.3.1 Model description

The model is a semiopen network with two nodes in series. Node 1 models the IVRU with
N servers each with exponential service rate 6 and Node 2 models the CSRs with S ( < N)
servers each with exponential service rate y. The maximum number of calls in the network
is N, i.e., if an arriving call finds N calls in the system, it will be blocked and rejected
entering the system. Hence there is no queue at Node 1 and there are at most N — S calls
waiting at Node 2. Arriving calls can enter the network only through Node 1 according to
a Poisson process with arrival rate A. After the service with Node 1 is completed, the call
leaves the network with probability p = 1 — p and it joins Node 2 with probability p. If
there are free CSRs at Node 2, the call is served by one of S CSRs. Otherwise it waits in
the queue to get service.

We model abandonment at Node 2 and assume that upon joining the queue, calls start
the patience times X which have i.i.d. general distribution with mean a1 (the distribution
function is denoted by G(t)). If the waiting time for the call is longer than its patience time
X, the call will abandon, leave the system and release the trunk line. Otherwise it gets
service with a CSR and releases both the CSR and the trunk line and leaves the system
after the service. The arrival, service and abandonment processes are all assumed to be

independent. The original SOQN model in Chapter 3 can be thought of as this model with
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Figure 6.3: SOQN model with general abandonment

a = 0 and the SOQN+M model studied in Chapter 5 is a special case of this model with

exponential patience time distribution. Figure 6.3 gives a picture of the model.

6.3.2 Product form solution of the queue length process

Let Q(t) = (Q1(t),Q2(t)) be the queue length process, where Q;(t) is the queue length

(number of calls) of Node 4,7 = 1,2 at time ¢t. We assume that the stationary distribution

of Q(t) exists and let m;; = P(Q1 = ¢,Q2 = j) be the stationary probability of having i

calls at Node 1 and j calls at Node 2 with the state space Q = {(4,7)]i+j < N, (4,5) € Z3 }.
For Node 2, as in M/M/S/N + G model, we have the abandonment rate

0 ifo<j<s

Fi_s_ : .
%—Su, ifS<j<N

rj = (6.56)
where F; = %g}f(Su) as in (6.48). Following the same way as M/M/S/N + G model
in Movaghar [36], we can incorporate the abandonment rate r; into the service rate for
Node 2. We have the argument that 7;; will still satisfy the global balance equations (4.8)
in Chapter 4 with new service rates even though the queue length process Q(t) itself is
not a Markov process. Now it is easy to know that this model is a special case of the
semiopen network model studied in Section 4.2, Chapter 4 with state dependent service
rates uq (i) = i6,
Jp for0<j5< S

p2(j) =
Sp+r; for S<j<N
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and constant balking. We have that Node 1 is similar to a M /M /oo queue with arrival
rate A and service rate 6. Node 2 is similar to a M/M/S/N + G queue with arrival rate

Ap, service rate p and general abandonment. Therefore we have the following result.

Theorem 6.3.1 For SOQN+G model, the stationary distribution of the queue length pro-

cess Q = {Q1,Q2} has product form solution,

T = motady, 0<itj<N, (6.57)
where a1 = \/0; aa = pA\/u = pa;
: J! for0<j<8

BU) =90 s . ;
24— for S<j <N
Pj—S

NS
pj—s =

H{L:S—i—l (Sp+mn)

-1
i g0
and Ty = [ > 62'1668)] s the normalizing constant.
+i<N

0<s

Remark 6.3.1 Using the expression of the abandonment rate r, (6.56), we have
pi—g = Fj_gN ™% (6.58)

or
 Spgi_g(SpNE
Pims = T (= 5)!

In Section 5.3.2, Chapter 5, we already obtained some performance measures related
to m;; for SOQN-+M model. Those expressions are still valid here and the only difference
is that now we have a general expression of p;_g valid for any patience time distributions.

We repeat those results here.

1. The explicit expression for ﬂ&)l,

N k N k k—j j
-1 (a1 + az) a; ay Pj—S 1
Too = Z L T Z Z (k—j) \ Slai=5 )
k=0 k=S+1j=5+1

which will reduce to py* of M/M/S/N + G model if we let § = oo and p = 1.
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2. The marginal distribution for Node 1 and its mean,

NZZ' i
Tix = P(Q1 = 1) = ooz 1 0<1<N

N N N=iiood
B(Qu) =Y imie =7 Y i Y G5
1=0 i=0 j=0
3. The marginal distribution for Node 2 and its mean,
i = P(Qa = j) = ooz By SIS
N N-—j

Z]ﬂ'*] = 700 Z] Z C;l [;2

4. The mean number of calls waiting in the queue at Node 2,

N N N—j

E(Q2q) = Z (j — S)mej = moo Z (j—9) Z (221668,).
i=0

j=S+1 J=S+1
6.3.3 Blocking probability

In Section 5.3.3, Chapter 5, we already obtained the stationary probabilities 7 for 0 < k <
N that there are exactly k calls in the system and the blocking probability for SOQN-+M
model. Those expressions are still valid here and we summarize in the following, where

random variable Q = @1 + Q2 is the number of calls in the system.

1. The probability 73 for 0 < £ < N and the blocking probability,

—j g

a a ak a] -
= o (452 + g G (5% - 4) Tsoa®)

P(blocking) = my.

2. The mean number of total calls in the system,

N N ok
Q) =D kme=) kY muj; =E(Q1) +E(Qa).
k=0 k=0 j=0
For Node 1, we apply the same Little’s formula as in Chapter 3

E(Q1) = a1 [1 — P(blocking)]

which is also the carried load for Node 1. The utilization

oy = E(@Q1) _w [1 — P(blocking)] <1

N N

is the proportion of time that an IVRU server is busy.
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6.3.4 Probability of abandonment and other performance measures

As in Section 5.3.4, we only need to consider the probability of abandonment among those
calls who are not blocked and join Node 2 denoted as P(Ablentry) where the event entry

means non-blocking and joining Node 2. We have

N-1
P(Ablentry) = Z P;(Ab)P(the call finds j calls at Node 2|entry)

where we have used (6.4) for Pj(Ab) and as in Section 5.3.4, ¢; = ZfV;Ol*j 7Y Hence

ij
by (6.56) and (6.58), we have

N—-1N—-1—j
-1 Fj_g — Spkj_si1
P(Ablentry) = Z Z T - PEG=S+
— — Fj S
j=S =0
N—1N—-1—j
(N=1) PPj—S — Pj—5+1
= Tij . :
j=S =0 pPPj—S

We can also utilize the result in Chapter 3, as in Section 5.3.4,

N—1—j N
(N-1) .
g= >, m =y x(ki) (6.59)
i=0 k=j+1

to obtain an expression in terms of x(k, j)

> Fj_s—SpFj_s
P(A - j—S+1
(Ablentry) = Z Z x(k o
j= Sk—j+1
N
SNF] S+1
B S WL
k=S+1j=S i
Therefore we have
P(Sr|entry) =1 — P(Ablentry) = Z qj + Z q] —5+1
S—1N—-1—j N—-1N-1—j
SuF
= Z W(N 1)+Z Z TF(N DR -S+1
- i Fi_g
7=0 =0
S-1 N N-1 N
. S,U,F',S 1
B SRR IS SR SR R
- - - - j—S
J=0 k=j+1 Jj=S k=j+1
N kAS—1 N k-1
SuFj_s41
=2 D> xki)+ Y Y x(ki)=
k=1 j=0 k=S+1j=S j=5
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According to Chapter 3, the probability of entry is P(entry) = pz ZN 1= Tij SO

that we have

N-1N-1—j v Fys — SM i N—1N-1—j
] +1
-y Z t Py 2 i
j=S =0 Fj-s =0 =0
N-1N-1—j
_ ? Fjs— SuFjsi
Yy
j=S =0 J=5
by the relationship
(N-1) T4
] Z ZN 1=
as proved in Chapter 3. Also
P(Sr) = P(Sr|entry)P(entry)
S—1N—-1—j N-1) N—-1N—-1—j (v 1)S,LLF o1l N—-1N—-1—j
_ J—s+ .
(E e T s b 2

SlNl] 1Nlj

_pz Z 7ng+pz Z Trl]S:qu S+1

Now Little’s formula for busy CSRs at Node 2 is

E(Qu) = AP(ST);

S—1N—-1—j —1N—-1—j

—apz Z 7r”+apz Z mgSMFJ 5+1

which is easy to verify since

S—1N—1—j N—-1N—-1—j

apz Z 7ng+apz Z WzgSHFJ S+1
S—1N—-1—j —1N-1—- ]’]T g
_GZZ Z 7sz+a22 Z ZJ lu —5H
S—1 N—-1—j N—-1N-1—j
:Z]—i—l Z Ti(j+1) +SZ Z Ti(j+1)
=0 =0
]S N—j Z N N-—j
:Z Z 1]‘|‘S Z Zﬂ'@j
j=1 =0 j=S+1 i=0
:E(QQb)a
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where we have used the fact that
aaTij = (] + 1)7@(]4_1) for0<j< S

and
Fj_ S

——T;(; orj>=58 6.60
Fi_s11 G+1) forJ ( )

ApTij = agpmiy = [Sp+7rj1] i) =

which can be verified by the product form solution 7;; (6.57). Hence the carried load for

Node 2 is a’ = E(Q2) = aP(Sr). The utilization

P(Sr) <1

| ]

is the proportion of time that a CSR is busy.

Similarly as in Section 3.3.4, Chapter 3, we have the following performance measures.

1. P(only self-served by Node 1) = (1 — )Z ZN g

2. P(no-delay, entry) = pz ZN i
N—-1— ]
3. P(delay,entry) = pZ Z

4. P(no-delaylentry) = Y71 q; = S50 S = Y Y x(k,5) =
PMED SR

)
5. P(delay|entry) = E S o ZN 1ZN 1=j JN=D Z Zk i x(k,g) =
Zk S+1 Z] SX( J)-
6.3.5 Waiting time distribution

For waiting time distribution, as SOQN-+M model in Chapter 5, we only need to consider
those calls given they are not blocked and join Node 2 (or given entry), since there is no
queue at Node 1. Let W, denote the conditional stationary waiting time of calls given
entry, which is the time spent by an entry call in the queue of Node 2 until abandonment

or starting to get service. We have
PW,>t)=PV AX>t)=P(V >1t)G(t)

where V is the conditional offered waiting time of an infinite patient call given entry, which

is independent of the patience time X.
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To obtain the distribution of V, we follow the same conditional argument as before.

First we have, by (6.27),

OOH ji—S —Suud
by g - S0 e D
9;_s(Su)

_ Lis()
9;75(511)’

where we have defined L;_s(t) := [ H(u)?~%e~%"du and L; s(0) = g7_g(Sp). Then by
(6.59), we have

(6.61)

and

dt. (6.62)

Hence

(6.63)



The waiting time distribution for abandonment calls given entry is
P(W >t,Ab) = P(VAX >tV > X)
=P(X >tV >X)
_ / PV > 2)dG(x)
t

= P(V > 2)G(@)[° - /OO G(z)dP(V > z)

o N-1 H(z ] S g—Sux
:/t Gz ;quwdx—mv > t)G(t)
-3 IO S e N, sl g
= 95-s(Sw) = gj s(S
_ = . [2° G(z)H(z)!~Se Smde — G(t)L—s(t)
=S ! g;_s(sﬂ)
= GWLj_s(t) — [ G(x)H(x)/Se 1 dy
B =S @ g;_s(S/L) ,

where we have used (6.62) and (6.61). Then

P(W >t Sr)=P(W, >t)—P(W >t, Ab)

R GoLms) t pme; s(t) = [°G(z)H(z)/~Se S1ody
= gj, 2 g;-s(Sw)
B N-1 j;g G( )H( ) S ”xdl‘
=Yg
=S QJ s(Sw)

To facilitate the computation, using integration by parts, it can be shown that

/ Gla)H(x) e Surgy — StLizs() = e SHH (1) 5
j—S+1
so that N |
SpLj_gy1(t) — e SHH(£)I =5+
W o 6.64
" Z (J—S+1)g_s(Su) (6.64)
and

(j =S+ DG L;—s(t) = Sulj_sy1(t) + e P H ()5
(J—S+ 1)9;_5(5/‘) .

N—
P(W >t, Ab) = Z

Now we can derive the conditional waiting, which are more useful in practice, using

the above results.
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P(W, > t, Ab)
P(W, > t|Ab) = — 4= 2=
(Wq > t]Ab) P(Ablentry)
SN =S UG L s ()—SuLy sy (e~ WP =54
_ 2=5 9 (j—S+1)g;_s(Sw)
N-1 [y _ _SH9j 542051
2 j=5 4i [1 (j—sil)g;,s(su)]
2.
P(Wy > t,S7r)
P t1gpy — —\Wq > 1,57)
(Wq > ] S7) P(Sr|entry)
N—1  SuLj_gi1(t)—e SHtH(t)i—S+1
XS GG s e 5w
Sugs (Sw)
Z] 0 qJ+Z] S ]Mﬁ%
3.

P(W, > t,5r)
P(Sr,delay|entry)
ZN‘l SpLj_g41(t)—e SHEH()I S+

j=S 4J (] S+1)g* S(SM)

SN-1 g s (51
j=5 U G=5+T)g;_5(Sm)

P(Wy > t|Sr, delay) =

6.3.6 Mean waiting time

By (6.63), we have the mean waiting time for all calls given entry

N-1 Vel
> L s(t)G(t
g = S [ LB,
= "o gis(Sk)
N-1

1

Now Little’s formula for all calls waiting in the queue at Node 2 is

B(Qzq) = AP(entry) E(W,) (6.65)
N-1N-1—j

=Y. > mEW,
j=0 i=0

202



which is easy to verify since

N—-1N—-1—j N—-1N-1—j N-1 g* (S,U/)
A Y mE(W,) = Ap > omy Qk%
j=0 =0 j=0 =0 k=S J—s\PH
—1N-1-k
. Pl Gr—s5+1(Sk)
= Z APTie— 5
k=S =0 k—S( #)
N-1N-1-k
= Tik+1)(k — S +1)
k=S =0
N N—k
= Y (k=95))_ mir=E(Qay),
k=S+1 i=0

where we have used a similar result as (6.60),

(k- S+ 1)9}275(5,“)
g]tferl(SM)

APTik = agpmik = [Sp+ Thy1] Tiggg1) = Tik+1) for k=8

and a result in Chapter 5 (5.86),

N-1-k
Yico ik

Y ity

gk =

Next by (6.64) the mean waiting time for served calls given entry is

2

Sufo Lj-ssa(t)dt — [§° e SHH(t) >+t
(J—S+1)g;_s(Sn)

Sp Jo" Li—s+1(t)dt — g5 51 (Sk)
(J = S+1)g;_s(Sn)

. Sy fooo weSHUF (w)i =S+ dy — g;-‘_SH(Su)
< (1 —S+1)g5_s(Sn) '

E(W,, Sr) q;

29
Lo

[

T

Lo
2

<.
Il

At last the mean waiting time for abandoned calls given entry is

E(W,, Ab) = E(W,) — E(W,, Sr)

_ Nz: 9] S+1 SH szl Sp f? ue M H (u)i~ SHdu—g}‘_SH(S’M)
= g s(S v (G =S+ 1)g;_s(Sn)

= . (G—S+ 2)gj_s+1(3u — Sp fo ue™ H (u) =5 du
=3 ’ (J—S+ 1)9;_5(5/‘)

Now we can derive the conditional mean waiting time, which are more useful in practice,

using the above results.
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E(W,, Ab)
E(W,|Ab) = ———L——
(Wq|45) P(Ab|entry)
ZN—I (=5+2)9; _541(Sw)—Sp J5~ ue” SIUH (u) 5t du
_ 2ay=5 i (I—S+1)gj_s(Sn)
N-1 Spgi_ g1 (Sw)
2j=s 9 |1~ oSt 55w
2.
E(W,,Sr)
(WylSr) P(Sr|entry)
ZN_I Spfye uefsu“H(u)J*5+1du—g;75+1(Su)
=5 U ('—s+1>g;_s(sm
= Spgy (Sw)
S5m0 45+ 2058 UGSt (50
3.
E(WIPST)

E(W,|Sr, delay) =

P(Sr, delay|entry)
ZN 1 'Sl/f fooo ue—SuuH(u)j*SJrldu—g;isJﬁl(S/L)
j=5 4j G—S+1)g;_s(Sw)

ZN 1 SNQJ s+1(S#)
i=8 UG- S+1)g7_s(Sp)

6.3.7 Numerical examples

To give some numerical illustrations for the SOQN model with general abandonment,
we will consider the following example for P(blocking), P(W, > t), P(Ab) and P(STr).
This example is similar to the example discussed in Chapter 3 where the parameters are
A = 250/1800, u = 1/180, ¢ = 20 seconds, # = 0.01. We also let p = 0.5 here. To illustrate
the effect of buffer size, we fix S = 10 and let buffer size K = N — S change from 0 to
20. In addition we will compare three different patience time distributions (exponential,
deterministic and uniform) with the same mean a~! where a = 0.02. For the uniform
patience time distribution, we assume the support is (0,2a 1) with mean o1

In Figure 6.4, we compare P(blocking) for different patience time distributions with the
same mean. Among three patience time distributions, exponential patience has the best
performance and deterministic patience has the worst. However, we find that P(blocking)
is not sensitive to the patience time distribution, especially for smaller K. Also P(blocking)
is a strictly decreasing function of K in all cases. In Figure 6.5, we compare P(Wq > 20) for

different patience time distributions with the same mean. Again, among three patience time
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Figure 6.4: P(blocking) for different patience time distributions with the same mean
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Figure 6.5: P(W¢q > 20) for different patience time distributions with the same mean
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Figure 6.6: P(Ab) for different patience time distributions with the same mean

distributions, exponential patience has the best performance and deterministic patience has
the worst. And we find that P(Wgq > 20) is sensitive to the patience time distribution,
especially for lager K. Also P(Wq > 20) is a strictly increasing function of K in all cases.
Note that we have observed similar monotonicity properties with respect to buffer size K
for P(blocking) and P(W, > 20) in M /M /S/N + M model and we will use this observation

in Chapter 7 for the call centre design problem.

Next we will consider the unconditional probabilities P(Ab) and P(Sr), shown in Figure
6.6 and Figure 6.7 respectively. It is clear that both P(Ab) and P(Sr) increase when the
buffer size K increases as proved in M/M/S/N + M model. For both P(Ab) and P(Sr),
among three patience time distributions, deterministic patience has the best performance
and exponential patience has the worst. The fact that in terms of P(Sr), deterministic
patience has the best performance agrees with Theorem 6.2.6 for M/M/S/N + G model.
Also we find that in terms of P(Sr), uniform patience has better performance than expo-
nential patience, which agrees with Theorem 6.2.8 for M/M/S/N + G model. Note that
P(Ab) is sensitive to the patience time distribution, especially for lager K while P(Sr) is

not sensitive to the patience time distribution, especially for smaller K.
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Figure 6.7: P(Sr) for different patience time distributions with the same mean

6.4 Summary

In this chapter, exponential abandonment models were generalized to the general aban-
donment case. For single-node models, our work is based on several previous works and
is a generalization of them. For example we derived a comprehensive list of formulas for
performance measures in terms of new building blocks for M/M/S/N + G. Two special
cases were studied for the building blocks: exponential and deterministic abandonment.
Based on the performance analysis of M/M/S/N + G model, we studied the comparison
of different patience time distributions including Deterministic, Erlang and Uniform. For
network model, we proposed and studied SOQN+G model in detail. In the end, numeri-
cal examples were given to illustrate the effect of different patience time distributions for

SOQN+G model.
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CHAPTER 7

AN ALGORITHM FOR CALL CENTRE DESIGN PROBLEM

7.1 Introduction

As discussed in Chapter 1, there are two main research problems in call centres. In previ-
ous chapters, we have been focusing on the call centre modelling and performance analysis
problem. We proposed several SOQN models of call centres and gave a detailed perfor-
mance analysis for each model. We also reviewed the corresponding single-node queueing
models and obtained new results. Explicit expressions for performance measures can be
obtained after performance analysis. Given the parameters of a call centre, these perfor-
mance measures provide the call centre manager a sense of how the call centre is performing.
We can also make some “what-if’ experiment using expressions of performance measures,
which is often desirable to the call centre manager. Another use of the expressions of per-
formance measures involves theoretical analysis of the performance measures with respect
to some model parameters as we have shown in Chapter 5 for monotonicity and convexity
properties of some performance measures.

In this chapter we will focus on the call centre design problem. We will develop a design
algorithm to determine the minimal number of CSRs (S) and trunk lines (V) to satisfy a
given set of service level constraints. The algorithm is based on the monotonicity properties
of some performance measures with respect to IN. We also provide some numerical examples

to illustrate the efficacy of our algorithm.

7.2 Design algorithm

In our design algorithm, for simplicity we will not attach specific costs for S and N.
Therefore we will not solve the design problem through optimization in terms of costs.

However, we will use the definition of cost ordering among (S5, N) pairs defined in [35] and
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finding the smallest pair of (S, N) in terms of this cost ordering will be our objective. This
definition follows the fact that usually the cost of a trunk line is insignificant compared to

the cost of a CSR. The following definition is given in [35].

Definition 7.2.1 (51, Ny) is less than or equal to (Sa, N2) in terms of cost ordering, de-
noted as (S1, N1) <¢ (S2, N2) if and only if S1 < S2 or we have S1 = S2 and N1 < No.
Then our design problem can be formalized as

min (S, N) in terms of cost ordering

s.t. SL constraints.

The SL constraints can be any combination of two performance measures (SL; and SLs)

satisfying the following monotonicity properties with respect to S and N.

1. When S and other parameters are fixed, SL; is a decreasing function of V.

\V)

. When N and other parameters are fixed, SL; is a decreasing function of S.
3. When S and other parameters are fixed, SLy is an increasing function of N.

4. When N and other parameters are fixed, SLs is a decreasing function of S.

A common combination is SL; = P(blocking) and SLy =1—-TSF = P(W, > t) as in
[13, 35, 42] and we will use this combination as well. In this case, the design problem can

be formalized as
min (S, N) in terms of cost ordering

SLy = P(blocking) < b (7.1)
SLy=P(W,>1)<c

Our algorithm works for any model as long as the above monotonicity properties are
met for SL; and SLg. For example in [35], it has been proved that these monotonicity
properties hold for SL; = P(blocking) and SLy = P(W, > t) in M/M/S/N model.
Furthermore in Chapter 2 we have proved other monotonicity properties with respect to
N in M/M/S/N model. However for other models, it may be difficult to prove them in
theory although they are intuitively correct.

For the design problem (7.1), in view of the monotonicity properties of SL; and SLs
mentioned above, we have the feasible region and the optimal solution as shown in Figure

7.1.
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Figure 7.1: The feasible region and the optimal solution of the design problem (7.1)

In Figure 7.1, Region I is where (S, N) satisfies P(blocking) < b and it has this shape
because we assume the following monotonicity properties for P(blocking) : P(blocking)
is a decreasing function of N when S is fixed and a decreasing function of S when N is
fixed. Region II is where (S, N) satisfies P(W, > t) < ¢ and it has this shape because we
assume the following monotonicity properties for P(W, > t) : P(W, > t) is an increasing
function of N when S is fixed and a decreasing function of S when N is fixed. Region III
is where (S, N) satisfies both P(blocking) < b and P(W, > t) < c and it is the intersection
of Region I and II. According to the definition of cost ordering, the optimal solution is the
bottom of the most left column of Region III.

Basically our design algorithm is a searching algorithm, which can be described fol-
lowing the line in Figure 7.1. We start with N = S = 1, where P(W, > t) = 0 since no
calls can wait. Then we increase N until we reach the smallest N where P(W, > t) < c is
satisfied. This is guaranteed by the monotonicity property of P(W, > t) with respect to
N when S is fixed. At this point we check the constraint P(blocking). If P(blocking) > b,
there is no intersection of Region I and II at the current S and we will increase S by 1
and keep N unchanged. The new (S5, N) will satisfy P(W, > t) < ¢ by the monotonicity
property of P(W, > t) with respect to S when N is fixed. We then repeat the previous

procedures until P(blocking) < b for some S. Now we already obtain the right S and we

210



just need to reduce N until we reach the smallest N where P(blocking) < b is satisfied.
This is guaranteed by the monotonicity property of P(blocking) with respect to N when
S is fixed. The searching algorithm stops until we obtain the optimal solution or there is
no solution when (S, N) reaches the given maximum (S, N). From the above description,
we find that the monotonicity property of P(blocking) with respect to S is not important
except that it will guarantee that we will obtain an optimal solution faster i.e., the op-
timal S is smaller as shown in Figure 7.1. The algorithm can be written in the form of

pseudocode as follows.

Algorithm 7.2.1 Searching algorithm to get the optimal (S, N)
1 Initialize parameters (S =1, N = 1,mazxS, maxN )
2 WHILFE true
2.1 Compute delay = P(W, > t)

2.2 WHILE delay < ¢ AND N < maxzN
N=N+1
Compute delay = P(W, > t)
ENDWHILE
283 N=N-1
2.4 Compute block = P(blocking)
2.5 IF block > b THEN
S=5+1
IF S > maxS THEN OUTPUT no solution;, BREAK; ENDIF
N=N+1
ELSE
oUTPUT S
N=N-1
Compute block = P(blocking)
WHILE block < b
N=N-1
Compute block = P(blocking)
ENDWHILE
OUTPUT N +1
BREAK
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ENDIF
ENDWHILE

The above algorithm is similar to the algorithm given in [27]. However we can generalize
this algorithm to cope with the case where only the following two monotonicity properties
with respect to N are required. Note that we have proved these two monotonicity properties

with respect to N for M/M/S/N + M model in Chapter 5.

1. When S and other parameters are fixed, P(blocking) is a decreasing function of N.

2. When S and other parameters are fixed, P(W, > t) is an increasing function of N.

In this case, when we increase S by 1 and keep N unchanged, we cannot guarantee
that the new (S, N) will still satisfy P(W, > t) < ¢ since we do not have the monotonicity
property of P(W, > t) with respect to S when N is fixed. We can make some adjustment
to the algorithm to make sure that after increasing S by 1, the new (S, N) will still be
within the region P(W, > t) < ¢ by reducing N. The generalized algorithm is in the

following.

Algorithm 7.2.2 The generalized searching algorithm to get the optimal (S, N)
1 Initialize parameters (S =1, N = 1,maxS, maxN )
2 WHILE true
2.1 Compute delay = P(W, > t)

2.2 IF delay < ¢ THEN
WHILE delay < ¢ AND N < maxN
N=N+1
Compute delay = P(Wy > t)
ENDWHILE
N=N-1
ELSE
WHILE delay > c
N=N-1
Compute delay = P(W, > t)
ENDWHILE
ENDIF
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2.8 Compute block = P(blocking)
2.4 IF block > b THEN
S=5+1
IF S > maxS THEN OUTPUT no solution;, BREAK; ENDIF
N=N+1
ELSE
OoUTPUT S
N=N-1
Compute block = P(blocking)
WHILE block < b
N=N-1
Compute block = P(blocking)
ENDWHILE
OUTPUT N +1
BREAK
ENDIF
ENDWHILE

7.3 Numerical examples

In this section, we will provide some numerical examples to illustrate the efficacy of our
design algorithm for different models analyzed in this thesis. We will start with models
with patient calls, i.e., M/M/S/N and SOQN models. Then we will consider SOQN model
with different balking functions. In the end we will focus on abandonment models, i.e.,

M/M/S/N + M model, SOQN+M model and SOQN+G model.

7.3.1 M/M/S/N and SOQN models

M/M/S/N and SOQN models are models with patient calls and we have obtained per-
formance measures for these two models such as P(blocking) and P(W > t) in Chapter
2 and Chapter 3 before. Now we will apply our algorithm developed in this chapter to
solve the design problem, i.e., to determine the minimal number of CSRs (S) and trunk

lines (N) in terms of cost ordering given service level constraints on P(blocking) and

213



P(Wq> t). For SOQN model, we will focus on a call centre example given in Srinivasan
et al. [42], which deals with a call load of 250 calls per half an hour period. The average
talk time is estimated to be 180 seconds and the average IVRU processing time is 0.01
seconds or 100 seconds representing fast and slow IVRU servers respectively. Therefore,
our parameters are A = 250/1800, = 1/180,6 = 100 or 0.01. The service level con-
straints are P(blocking) < b= 0.01 and P(W >t seconds ) < ¢ = 0.2, where ¢t = 20. We
also consider four cases: p = 0.1,0.5,0.9 and 1 as in [42]. For M/M/S/N model, in order
to get reasonable comparison results with SOQN model, we will add the IVRU processing
time to the average talk time to obtain the new average talk time. Therefore we have
A = 250/1800, i = 1/(180+0.01) or 1/(180 4 100) with the same service level constraints.

We will also consider the traditional approach to determine the minimal number of
CSRs (5) and trunk lines (IV) given service level constraints on P(blocking) and P(W > t),
which is called EBC method in [42]. This method uses the M/M/S model and the
M/M/N/N model in isolation and is also described similarly in [35]. We will describe the
EBC method in [35] using the following algorithm. Similarly as in M /M /S/N model, we
consider two cases: = 1/(180+ 0.01) or 1/(180 + 100).

Algorithm 7.3.1 The traditional EBC method to get the optimal (S, N)

1 Obtain the adjusted arrival rate: \* = \(1 —b)

2 Minimize S such that P(W > t) =C(S, a*)e” =N < ¢ where a* = X /u. The
solution is S*. (Note that we use M/M/S model here and P(W > t) in M/M/S model is
a decreasing function of S).

3 Obtain the adjusted mean service time: ”—1* = i + E(Wy).

(Note that E(Wq):gﬁi’};? is the mean waiting time in M /M /S model)

4 Minimize N such that B(N,\/p*) < b.The solution is N*.

We apply the design algorithm to M/M/S/N model and SOQN model with different
p using the above example. We also implement the FBC method. For each model,
we consider two cases: # = 0.01 or 100 for SOQN model, which corresponds to pu =
1/(180+100) or 1/(180+0.01) for M /M /S/N model and the EBC method. The optimal
design parameters (S, N) after running the algorithm are shown in Figure 7.2 and Figure
7.3 for 8 = 0.01 and 6 = 100 respectively.

For both # = 0.01 and § = 100, we find that the results in £BC method and M /M/S/N
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Figure 7.2: The optimal design parameters (S, N) for models with patient calls when
0 =0.01
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Figure 7.3: The optimal design parameters (S, N) for models with patient calls when
6 =100
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model are pretty close, although the EBC method underestimates the number of trunk
lines a little bit compared to M /M /S/N model as observed in [35]. However when 6 = 0.01,
i.e., the IVRU servers are slow, the SOQN model with p = 1 requires only 29 CSRs, much
smaller than 44, which is produced both by EBC method and M/M/S/N model. When
f# = 100, i.e., the IVRU servers are fast, we have the same number of CSRs S = 29 for
all three models. In this case, we can actually ignore the role of IVRU since the IVRU
servers are so fast. For SOQN model, when p is decreased from 1 to 0.1 we find the
required (S, N) are decreased as well since less calls require the service of CSRs. Another
interesting observation for SOQN model is that we have the same optimal S for all p in
Figure 7.2 and Figure 7.3, which shows that the required number of CSRs S is not sensitive
to the IVRU processing rate 8. However the IVRU processing rate  will mainly affect the
required number of trunk lines NV as shown in these two figures; the optimal N for § = 0.01
is consistently larger than that for § = 100 for all p.

In Table 7.1, we list P(blocking) and P(W > 20) corresponding to the optimal design

parameters (S, N) for all models. We find that the performance of the optimal design

0 =0.01 0 =100
Models P(blocking) | P(W > 20) | P(blocking) | P(W > 20)
EBC 0.0120 0.1453 0.0134 0.1418
M/M/S/N 0.0092 0.1644 0.0098 0.1630
SOQN(p=1) 0.0097 0.1644 0.0098 0.1629
SOQN(p = 0.9) 0.0096 0.1197 0.0092 0.1187
SOQN(p = 0.5) 0.0098 0.1452 0.0083 0.1478
SOQN(p =0.1) 0.0084 0.0911 0.0082 0.0838

Table 7.1: P(blocking) and P(W, > 20) corresponding to the optimal design parameters
(S, N) for all models

parameters produced by EBC method misses the blocking target (P(blocking) < 0.01) for
both § = 0.01 and 6 = 100. For example, when 8 = 0.01, the optimal design parameters
produced by EBC method are S = 44 and N = 54 which make P(blocking) = 0.012 > 0.01.
However the optimal design parameters produced by M/M/S/N model are S = 44 and
N = 56 which make P(blocking) = 0.0092 < 0.01. Therefore an additional 2 trunk lines

will make the performance meet the blocking target without increasing P(Wq> 20) too
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much (from 0.1453 to 0.1644, still less than 0.2). The same can be said for § = 100. For

SOQN models, we find that the performance is under both targets.

7.3.2 SOQN model with balking

In this section, we will focus on the design problem for SOQN model with balking. We
have obtained performance measures for this model such as P(blocking) and P(W > t) in
Chapter 4. Now we will apply the design algorithm to the call centre example discussed
before, i.e., we have A = 250/1800, = 1/180, 6 = 100 or 0.01. The service level constraints
are P(blocking) < b= 0.01 and P(W >t seconds ) < c = 0.2, where ¢ = 20. In addition

we assume the balking function b; has the form,

1 . .
b= ) Gesspran HSSI<N
=

1 ifo<j<s$

i

where non-negative m is a measure of a call’s willingness to join the queue. To show the
impact of different balking functions to the optimal design parameters, we will let m be
0, %, 1,2, 3, 4 representing from lower balking probability to higher balking probability. The
optimal design parameters (.5, V) after running the algorithm are shown in Figure 7.4 and
Figure 7.5 for § = 0.01 and 6 = 100 respectively.

For both 6§ = 0.01 and # = 100, we find that the optimal design parameters (S, N)
become smaller when b; decreases more quickly i.e., when m is bigger. A similar observation
as in SOQN model is that we have the same optimal S for all m in Figure 7.4 and Figure 7.5,
which shows that the required number of CSRs S is not sensitive to the IVRU processing
rate 6. However the IVRU processing rate 6 will mainly affect the required number of trunk

lines N as shown in these two figures; the optimal N for § = 0.01 is consistently larger

than that for 8 = 100 for all m.

7.3.3 Exponential abandonment models

This section deals with the design problem for exponential abandonment models studied
in Chapter 5 and we will focus on M/M/S/N + M model and SOQN+M model. For
SOQN+M model, we will apply the design algorithm to the call centre example discussed
before, i.e., we have A = 250/1800, u = 1/180,6 = 100 or 0.01. We also fix p = 1 here.

The service level constraints are P(blocking) < b= 0.01 and P(W > t seconds) < ¢ = 0.2,
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Figure 7.4: The optimal design parameters (S, N) for SOQN models with balking when
f =0.01

@ Number of CSRs (S) m Number of trunk lines (N) ‘
30 4
27
25 | 24
204 19 -
o 16
15 14
15 1 13
12 11
10

10 ~

5 i

0 i

m=0 m=1/3 m=1 m=2 m=3 m=4

Figure 7.5: The optimal design parameters (S, N) for SOQN models with balking when
6 =100

218



where ¢ = 20. In addition, to show the impact of different abandonment rate to the opti-
mal design parameters we will assume « be 0,0.01,0.02,0.03,0.04 representing from lower
abandonment rate to higher abandonment rate, where @ = 0 corresponds to the patient
models. Similar as in the patient models, for M /M /S/N + M model, we will add the IVRU
processing time to the average talk time to obtain the new average talk time. Therefore
we have A = 250/1800, 1 = 1/(180 + 0.01) or 1/(180 + 100) with the same service level
constraints. The optimal design parameters (S, N) after running the algorithm are shown

in Table 7.2 and Table 7.3 for # = 0.01 and 6 = 100 respectively.

M/M/S/N + M SOQN+M
Abandonment rate | # of CSRs S | # of trunk lines N | # of CSRs S | # of trunk lines N
a=0 44 56 29 55
a=0.01 38 47 25 50
a = 0.02 33 41 21 46
a=0.03 27 34 18 43
a=0.04 22 29 14 39
a = 0.05 17 24 11 36

Table 7.2: The optimal design parameters (S, N') for models with exponential abandonment
when 6 = 0.01

M/M/S/N + M SOQN+M
Abandonment rate | # of CSRs S | # of trunk lines N | # of CSRs S | # of trunk lines N
a=0 29 40 29 40
a=0.01 25 34 25 34
a=0.02 21 29 21 29
a=0.03 18 25 18 25
a=0.04 14 21 14 21
a=0.05 11 18 11 18

Table 7.3: The optimal design parameters (S, N) for models with exponential abandonment
when 6 = 100

For both 6 = 0.01 and 0 = 100, it is clear that the optimal design parameters (S, NV)

become smaller when « gets bigger since more calls abandon the system. Also when
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a = 0, we have the same (S, N) as patient models since there are no abandonment. When
0 = 0.01, i.e., the IVRU servers are slow, the SOQN+M model requires less CSRs than
those required by M/M/S/N model for all a. However when § = 100, i.e., the IVRU
servers are fast, we have the same optimal design parameters (S, N) for both M /M/S/N
model and SOQN+M model. In this case, we can actually ignore the role of IVRU since
the IVRU servers are so fast. Again for SOQN+M model we observe the same optimal
S for all « in these two tables, which shows that the required number of CSRs .S is not
sensitive to the IVRU processing rate §. However the IVRU processing rate 6 will mainly
affect the required number of trunk lines N; the optimal N for 8 = 0.01 is consistently
larger than that for § = 100 for all a.

7.3.4 SOQN model with general abandonment

In this section, we will study the design problem for SOQN model with general aban-
donment, i.e., SOQN+G model discussed in Chapter 6. We will compare three different
patience time distributions (exponential SOQN+M, deterministic SOQN+D and uniform
SOQN+U) with the same mean a~! where a = 0.01. For SOQN+U model, we assume
the support is (0,2a~!) with mean a~!. The other call centre parameters are similar as
before, i.e., we have A = 250/1800, u = 1/180,6 = 100 or 0.01. We also fix p = 1 here.
The service level constraints are P(blocking) < b= 0.01 and P(W > t seconds) < ¢ = 0.2,
where ¢t = 20. The optimal design parameters (S, N) after running the algorithm are shown

in Table 7.4.

0 =0.01 6 =100
Models # of CSRs S | # of trunk lines N | # of CSRs S | # of trunk lines N
SOQN+M 25 50 25 34
SOQN+U 27 52 27 36
SOQN+D 29 55 29 40

Table 7.4: Comparison of the optimal design parameters (S, N) for SOQN models with
general abandonment when o = 0.01

From Table 7.4, one finds that there is an order relationship among three patience
time distributions in terms of the values of the optimal design parameters (S, N) for both

0 = 0.01 and # = 100. The optimal (S, N) required by deterministic patience is bigger than
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that required by uniform patience and the optimal (S, N) required by uniform patience is
bigger than that required by exponential patience. This fact is consistent with the same
order relationship in terms of P(blocking) and P(W > t) observed in Chapter 6 (Refer
to Figure 6.4 and Figure 6.5). In other words, among three patience time distributions,
exponential patience has the best performance and deterministic patience has the worst in
terms of P(blocking) and P(W > t). Also we have observed in Chapter 6 that in terms
of P(Ab), deterministic patience has the best performance and exponential patience has
the worst (Refer to Figure 6.6), which implies there are more abandonment in SOQN+M
model than other two models. This fact also explains why SOQN+M requires the least
(S, N). Again for all three models we observe the same optimal S for both cases, # = 100
or 0.01, which shows that the required number of CSRs S is not sensitive to the IVRU
processing rate 6. However the IVRU processing rate 6 will mainly affect the required
number of trunk lines N; the optimal N for # = 0.01 is consistently larger than that for
6 = 100 for all three models.

7.4 Summary

Call centre design problem was studied in this chapter. We first formalized the problem into
an optimization problem and then described the searching algorithm. Numerical examples
were given to illustrate the efficacy of our algorithm for various models including patient,

balking and abandonment models.
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CHAPTER 8

SUMMARY AND FUTURE WORK

In this last chapter, we will provide a summary of the work in this thesis and point out

some possible future work.

8.1 Summary

Our work is about call centre modelling, analysis and design. In terms of modelling,
traditionally call centres have been modelled as single-node queueing systems. Based on
the SOQN model proposed by Srinivasan et al. [42], we have studied the SOQN model with
balking and abandonment (both exponential and general patience time distributions). We
also studied the corresponding single-node queueing systems and obtained new results. In
terms of call centre design, we have developed a design algorithm to determine the minimal
number of CSRs (S) and trunk lines (V) to satisfy a given set of service level constraints.
Our main contributions are listed in the following.

1. For the single-node Markovian queueing models of call centres, especially for M /M /S/N
model, based on the work of [35], we expressed the performance measures in terms of Erlang
B formula, which facilitates the computation. We also proved new monotonicity properties
of several performance measures with respect to IV based on the expressions in terms of
Erlang B formula.

2. For SOQN model, we used two methods to derive the product form solution of
the queue length process and the distribution of the total number of calls in the system.
We proposed an algorithm to compute the blocking probability. In the derivation of the
waiting time distribution, we used a new method than the one used in the original paper
[42].

3. For SOQN model with balking, we proved that the queue length process still has

product form solution in equilibrium and we also derived the waiting time distribution.
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4. For single-node exponential abandonment models: M /M /S + M and M/M/S/N +
M, we focused on the computational aspects by expressing the exact performance mea-
sures in terms of special functions and Erlang B formula. The analysis is new and we
have provided a unified and comprehensive list of expressions for performance measures.
Especially for M /M /S/N + M model, we proved monotonicity and concavity properties
for P(Sr) using a method that simplifies the work in [26]. Monotonicity properties for
P(blocking) and P(W, > t) were also proved and these properties are important to the

call centre design algorithm in Chapter 7.

5. For SOQN-+M model, our work is a generalization and correction of [45]; we used
a new approach not only to rederive the formulas for the performance measures correctly,

but also introduce new results.

6. For single-node general abandonment models: M/M/S+G and M/M/S/N +G, our
work is based on several previous works and is a generalization of them. Again we focused
on the computational aspects of the performance measures. For example we expressed
the performance measures of M/M/S/N + G model in terms of new building blocks. We
also studied the comparison of different patience time distributions and generalized some

previous results to M /M/S/N + G model.
7. We proposed and studied SOQN+G model in detail.

8. We have developed a design algorithm to determine the minimal number of CSRs (5)
and trunk lines (V) to satisfy P(blocking) and P(W > t) constraints. We have provided
some numerical examples to illustrate the efficacy of our algorithm for some models we
have studied. There are some interesting observations based on the numerical examples.
For example the required number of CSRs S is not sensitive to the IVRU processing rate
0 in all SOQN models (patient, balking and abandonment). And 6 will mainly affect the
required number of trunk lines N. Another example is for SOQN-+G model, there is an
order relationship among three patience time distributions (Deterministic, Uniform and
Exponential) in terms of the values of the optimal design parameters (S, V). Exponential
patience requires the least (S, V) and therefore has the best performance while determin-
istic patience requires the biggest (S, N) and therefore has the worst performance. This

observation is consistent with the theoretical results proved for M/M/S/N + G model.
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8.2 Future work

In this section, we will discuss the possible future work.

1. We have used the direct algebraic method to prove monotonicity and convexity
properties of several performance measures for M/M/S/N and M/M/S/N + M model.
However it seems hard to prove the monotonicity and convexity properties for other models.
Other methods could be explored for this purpose.

2. For M/M/S/N + G model, the comparison of different patience time distributions
can be studied further and it would be nice if the results can be generalized to SOQN+G
model.

3. Retrial queues are characterized by the feature that any arriving call who finds all
servers or all waiting positions occupied may repeat its demand after a random amount
of time. Retrial is another important feature for call centres. There is a large literature
devoted to retrial queues. However only a few papers studied retrial in the context of
call centres. A possible reason is that call centres are characterized by a large number of
servers, while only retrial queues with several servers have closed-form solution. How to
incorporate retrial to the semiopen network model and how to analyze it will be a direction

of future work.
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