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ABSTRACT 

 

The studies presented in this thesis were designed to develop efficient protocols for collecting 

competent oocytes and to produce disease-free wood bison embryos by in vitro fertilization and 

culture. In Chapter 3, the in vivo and in vitro maturational characteristics of cumulus-oocyte 

complexes (COC) collected from live wood bison during the anovulatory and ovulatory seasons 

were compared. The stages of nuclear maturation: germinal vesicle (GV), germinal vesicle break 

down (GVBD), metaphase I (MI) and metaphase II (MII) were determined in wood bison oocytes 

using anti-Lamin AC/DAPI staining. Additionally, the optimal interval of time after human 

chorionic gonadotrophin (hCG) treatment required for in vivo oocyte maturation in wood bison 

was determined. Nuclear maturation occurred more rapidly during in vitro versus in vivo 

maturation, but was associated with less cumulus cell expansion than with in vivo maturation. In 

vitro oocyte maturation was maximal after 24 h of in vitro maturation. In vivo oocyte maturation 

was more complete at 30 than 24 h after hCG treatment. Season had no effect on the maturational 

capacity of wood bison oocytes. Competence of the in vitro (Chapter 4) or in vivo (Chapter 5) 

matured oocytes to develop to the blastocyst stage in culture was evaluated in subsequent studies. 

In Chapter 4, the hypothesis that the morphological characteristics of wood bison cumulus-oocyte 

complexes (COC) affect the ability of the immature oocyte to develop in vitro following in vitro 

fertilization was tested. The effect of extending from 48 h to 72 h the FSH starvation period after 

superstimulation (FSH diluted in 0.5% hyaluronan) on number and size of the follicles at the time 

of collection by transvaginal ultrasound-guided follicular aspiration, on COC morphological 

characteristic, and on blastocyst development rate, was also investigated. Compact COC classified 

as good (>3 layers of cumulus cells) resulted in the highest blastocyst rate following in vitro 



iv 
 

maturation, fertilization and culture. There was no effect of extending the FSH starvation period 

by 24 h on the number of follicles ≥ 5 mm at the time of collection, the morphology of the COC 

or blastocyst rate on Day 7 or 8 after fertilization. The morphological characteristics of immature 

wood bison COC affect oocyte in vitro developmental potential to the blastocyst stage. In Chapter 

5, the effect of an additional 4 h of in vitro maturation of in vivo matured oocytes collected 30 h 

after hCG treatment on subsequent embryo development was evaluated. In addition, the effects of 

extending the interval between hCG treatment and COC collection from 30 to 34 h on in vitro embryo 

production was evaluated. Results confirmed that an additional short period of in vitro maturation, 

or an extended period of in vivo maturation increased in vitro embryo production rates in wood bison. 

In the final chapter (Chapter 6), the effectiveness of the IETS washing procedures with or without 

antibiotics for removing Brucella abortus from in vitro-produced embryos infected in vitro with 

the pathogen was determined. Brucella abortus was removed from 100% of in vitro-exposed 

embryos following 10 washes of 100 fold dilution, with or without antibiotics. Results validated 

the embryo washing procedures for producing Brucella-free in vitro-produced wood bison 

embryos. 
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CHAPTER 1. GENERAL INTRODUCTION 
 

The following literature review provides general information about the conservation status of 

the wood bison, reproductive physiology of female bison, the biological aspects of oogenesis and 

folliculogenesis, oocyte maturation and superstimulation in cattle, and an overview of the 

reproductive technologies that have been applied in bison. Of particular interest, the technique of 

producing embryos in vitro is reviewed. 

1.1. Conservation status of the wood bison 

Wood bison (Bison bison athabascae) is the largest terrestrial mammal in North America 

(Reynolds et al., 2003) and one of the most emblematic species in Canada (Harper et al., 2000). 

However, its population has suffered several challenges over the past two centuries (Gates et al., 

2001). The historical range of the wood bison comprised the western part of northern North 

America (van Zyll de Jong, 1986). This area included the provinces of Saskatchewan, Alberta, 

British Columbia, the Northwest Territories, Yukon, and Alaska (van Zyll de Jong, 1986; 

Stephenson et al., 2001).  During the late 1800s, approximately 168,000 wood bison were roaming 

freely throughout this area (Soper, 1941). Unfortunately, this number decreased dramatically until 

approximately 250 individuals remained at the beginning of the 1900s (Soper, 1941). Overhunting 

associated with the fur trade was considered the main factor for the near extermination of the wood 

bison during this period (Soper, 1941; Harper et al., 2000; Gates et al., 2001). By 1914, the 

population of wood bison had increased to approximately 500 individuals associated with 

conservation efforts (e.g. hunting ban) of the Canadian government (Banfield and Novakowski, 

1960). Later, in 1922, Wood Buffalo National Park was created to protect and maintain the 

growing wood bison population (~1,500 individuals) in a natural habitat (Environmental 

Assessment Panel, 1990; Gates et al., 2001). 
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Wood Buffalo National Park (WBNP) is situated in northern Alberta and southern Northwest 

Territories (Soper, 1941). The park not only contains the largest population of wood bison in 

Canada, but also most genetically diverse herd of wood bison in the region (McFarlane et al., 

2006). However, for the past eight decades, the population of wood bison has been threatened by 

cattle diseases that came from an external source (Shury et al., 2015).  After the creation of WBNP, 

the wood bison population increased steadily to reach approximately 12,000 individuals by the 

end of the 1940s (Environmental Assessment Panel, 1990). Nevertheless, the population of wood 

bison declined to around 2,300 individuals by the late 1990s (Mitchell and Gates, 2002). Studies 

have supported the hypothesis that the presence of bovine tuberculosis and brucellosis may have 

played a major role in the decrease of the wood bison population from the 1970s to the 1990s 

(Tessaro, 1986; Tessaro et al., 1990). These cattle diseases were introduced into the park during 

the translocation of 6,673 plains bison from the Wainwright Buffalo Park in Alberta to the WBNP 

between 1925 and 1928 (Soper, 1941; Environmental Assessment Panel, 1990). Tuberculosis and 

brucellosis affect the population dynamics of wood bison in the park and are thought to be involved 

in the population decline of this species (Joly and Messier, 2005). Eradication of cattle diseases in 

the park will not only help with the reclamation of the wood bison population in the region, but 

will also prevent the spread of these diseases to healthy wood bison and livestock in and around 

this area. 

Currently, the International Union for Conservation of Nature and Natural Resources (IUCN) 

considers the wood bison as a near threatened species (Gates and Aune, 2008) whereas the 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC) lists the wood bison as 

a species of special concern (COSEWIC, 2013). Likewise, the Convention on the International 

Trade of Endangered Species of Fauna and Flora (CITES) places the wood bison into Appendix II 

of the CITES regulations (CITES, 2016). According to CITES, international trade of wood bison 



3 
 

is not prohibited but regulated. In any case, it is clear that there is still some concern on the fate of 

the wood bison population in Canada. Serious actions have been taken to deal with cattle diseases 

and eliminate these diseases in this species.  

1.2. Reproductive physiology of the female bison 

Mammals can be classified as seasonal or non-seasonal breeding species. Seasonal breeders 

(e.g., bison, sheep, goat, horse) exhibit regular estrous cyclicity and active breeding during a 

specific time of the year (Vasantha, 2016) that is followed by an anestrus period. They restrict their 

reproductive efforts to ensure their offspring are born and weaned during a period with the most 

favourable temperature conditions and plentiful energy resources (Bronson, 1989). Non-seasonal 

breeders (e.g. pig, domestic cattle) undergo estrous cyclicity and breeding throughout the year 

irrespective of the season or time of the year (Vasantha, 2016). Changes in day length (i.e., 

photoperiod) regulates cyclicity in seasonal breeders, and melatonin plays a major role in 

controlling such events (Tamarkin et al., 1985).  

Female wood bison are considered seasonal breeders; the ovulatory season (i.e., breeding 

season) in western Canada occurs between August and February, and the anovulatory season (i.e., 

non-breeding season) occurs between March and July (McCorkell et al., 2013; Palomino et al., 

2013; Palomino et al., 2014b). Ovarian function in bison females differs between these seasons; 

as described in following sections. 

1.2.1 Ovulatory Season 

In wood bison, follicular and luteal activities are observed during the ovulatory season 

characterized by ovulation and subsequent formation of the corpus luteum (CL) (Goodrowe et al., 

2007). 
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The lifespan of the CL following the first ovulation is short (averaged, 4 days), resulting in a 

short first interovulatory interval (averaged, 8 days [McCorkell et al., unpublished data] or 10 days 

[Rutley and Rajamahendran, 1995]). This initial interovulatory interval is composed of only one 

follicular wave, while the interval of a normal estrous cycle in bison is composed of two follicular 

waves (Adams, 2007) resulting in an estrous cycle length of 20 to 23 days (Matsuda et al., 1996; 

Kirkpatrick et al., 1991; McCorkell et al., unpublished data).  

In the second follicular wave, the ovulatory size of the dominant follicle has been shown to 

be 14 mm in diameter while the maximum size of the CL is 18 mm in diameter (McCorkell et al., 

unpublished data). The last ovulation occurs in early spring (March-April) ending the ovulatory 

season in bison (Rutley and Rajamahendran, 1995). As in other seasonal breeding species (e.g. 

wapiti [McCorkell et al., 2007]), a period of transition from the ovulatory season to the anovulatory 

season has been speculated to occur in bison (Palomino, 2015).  

1.2.2. Anovulatory season 

In contrast, only follicular activity is observed during the anovulatory season in wood bison. 

During this time, follicle development occurs in waves characterized by regular and synchronous 

development of a group of follicles associated with a surge in serum FSH concentration 

(McCorkell et al., 2013). A dominant follicle is selected 3 days after wave emergence and reaches 

a maximum diameter of 10 mm, whereas subordinate follicles regress. However, ovulation does 

not occur and progesterone levels remain below 1 ng/mL. After an interval of seven days, a new 

wave emerges, and the wave pattern of anovulatory follicles is repeated (McCorkell et al., 2013). 

The transition period from the anovulatory to the ovulatory season has been investigated in wood 

bison (McCorkell et al., unpublished), and photoperiod and melatonin secretion are speculated to 



5 
 

be involved in the resumption of the LH surge and ovulation in wood bison during the ovulatory 

season (Palomino, 2015). 

1.3. Oogenesis and folliculogenesis 

Oogenesis includes the formation, growth and maturation of the oocyte (Dunbar et al., 2012). 

Folliculogenesis is the process involving growth and development of ovarian follicles from  

primordial to  preovulatory  stages (Malgorzata et al., 2016), and includes the differentiation of 

somatic cells associated with the oocyte to form a follicular unit (Dunbar et al., 2012). The 

processes involved in growth and differentiation of the oocyte  and  its  surrounding  granulosa 

cells are highly coordinated (Salustri et al., 2003) highlighting the link between oogenesis and 

folliculogenesis in mammals (McGinnis et al., 2012). In cattle, the time required to complete 

folliculogenesis has been estimated to be 80 to 100 days (Britt, 1991). 

Oogenesis and folliculogenesis in cattle begin in fetal life, when the primary oocyte (diploid), 

becomes surrounded by squamous granulosa cells to form the primordial follicle (Haston and Pera, 

2007). The primary oocyte enters meiosis and arrests at prophase of meiosis I while the granulosa 

cells of the follicle transform to cuboidal cells forming a primary follicle (Haston and Pera, 2007). 

During puberty, the primary oocyte increases in size and a membrane, the zona pellucida, forms 

around it as the follicle matures (Pansky, 1982). The primary oocyte remains arrested whereas the 

primary follicle develops into the secondary follicle that includes multiple layers of granulosa cells 

surrounded by an outer layer of theca cells and a basement membrane (Haston and Pera, 2007). 

Under the influence of gonadotrophins (i.e., FSH), the secondary follicle develops into the tertiary 

follicle or antral follicle (Ergüven et al., 2012) characterized by the formation of the follicular 

antrum (Salustri et al., 2003). In large antral follicles, there are mural granulosa cells that line the 

wall of the follicle, and cumulus cells that surround the oocyte (Ergüven et al., 2012). The oocyte 
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grows but still remains in meiotic arrest until triggered by a follicular response to a preovulatory 

surge of LH (Ergüven et al., 2012). During each estrous cycle, several follicles may develop to the 

antral stage, but only one follicle, the dominant follicle, reaches full maturity and is selected for 

ovulation, while most of the others undergo atresia (Ginther et al., 1989). A few hours before the 

antral follicle ovulates, the oocyte completes meiosis I and becomes a secondary oocyte, which is 

arrested at metaphase of meiosis II (Haston and Pera, 2007). At ovulation, the released secondary 

oocyte is surrounded by the zona pellucida and a follicular cell layer, the corona radiate (Pansky, 

1982). After ovulation, the granulosa cells and theca cells within the preovulatory follicle 

differentiate into luteal cells to form the corpus luteum (CL), which secretes progesterone 

(Channing et al., 1980). If fertilization occurs (penetration of spermatozoa), the oocyte completes 

meiosis II and becomes a fully competent oocyte, or mature ovum (haploid), which is able to 

support early embryonic growth (Haston and Pera, 2007). Approximately 1 h after fertilization, 

the nuclei of the sperm and ovum fuse, forming a diploid zygote (Jorde et al., 2009). 

Oocytes acquire the competence for resumption of meiosis at ~100 μm in diameter, and for 

completion of meiotic maturation to metaphase II at ~110 μm in diameter (Fair et al., 1995). When 

the oocyte has reached 120-130 μm in diameter, its diameter does not change further, whereas the 

follicle continues to grow to reach its preovulatory size of 15–20 mm in diameter (Fair, 2003). 

Additionally, the oocyte within a dominant follicle undergoes ultrastructural modifications before 

the preovulatory LH peak, permitting the oocyte to attain full competence to develop into an 

embryo (Hyttel et al., 1997). In other words, oocyte developmental competence (i.e., the ability to 

mature, grow and develop, be fertilized and give rise to normal, healthy offspring [Duranthon and 

Renard, 2001]) is acquired gradually in vivo. However, oocytes for maturation in vitro, are usually 

obtained from follicles of different sizes and stages of development. In this case, oocytes obtained 
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from follicles greater than 6 mm in diameter have a greater competence to reach the blastocyst 

stage than those obtained from follicles of 2-6 mm (Lonergan et al., 1994). 

1.4. Oocyte maturation 

Oocyte maturation is the physiological process that is required for successful fertilization and 

subsequent embryo development (Lonergan and Fair, 2016). This process involves complex and 

distinct events of nuclear and cytoplasmic maturation within the oocyte (Ferreira et al 2009). The 

oocytes grow and undergo remodelling on cellular and molecular levels to meet all requirements 

for subsequent development (Sirard et al., 2006). 

1.4.1. Nuclear Maturation 

Nuclear maturation corresponds to the process of resumption of meiosis that results in a 

haploid oocyte (Voronina and Wessel, 2003). In response to the LH surge (Sirard et al., 2006), the 

arrested oocyte progresses from germinal vesicle (GV) stage, through germinal vesicle breakdown 

(GVBD), Metaphase I (MI), Anaphase I, Telophase I and rearrests at Metaphase II (MII) (Krisher 

2013). 

Immature oocytes are arrested in prophase I of meiosis I and are characterized by the presence 

of a nuclear envelope that contains a large GV with a large nucleolus, and decondensed, dispersed 

chromosomes (Wasserman and Albertini, 1994; Lonergan and Fair, 2016). Once maturation starts, 

the chromosomes begin to condense, the GV breaks down (i.e., nuclear envelope dissolves), and 

the nucleolus disperses (Masui and Clarke, 1979). Following GVBD, condensed chromosomes 

line up forming the MI plate with a visible spindle (Fulka and Fulka, 2007). This stage is followed 

by a short Anaphase I to Telophase I transition. During this transition, paired homologous 

chromosomes separate and move towards opposing spindle poles. Separation of chromosomes is 
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complete when they are arranged forming the MII plate (Fulka and Fulka, 2007) and half of the 

chromosomes are then extruded in the first polar body during cytokinesis (Maddox et al., 2012). 

Parallel to those changes, intracellular connections between mural granulosa cells and cumulus 

cells disappear (Berisha et al., 2009), so that the cumulus cells together with the enclosed oocyte 

detach from the follicular wall and float freely in the follicular fluid that increases markedly before 

ovulation (Hunter, 2003). 

Shortly before ovulation, the follicular wall becomes thin and stretched, and gonadotropins 

stimulate the digestion of collagen of the follicular wall by proteolytic enzymes such as plasmin 

and collagenase (Speroff and Fritz, 2005). Subsequently, mature oocytes surrounded by the corona 

radiata are ovulated at MII stage of meiosis II and remain arrested at that stage until fertilization 

occurs. Meiosis is completed following successful fertilization visualized as the presence of the 

second polar body (Grondahl 2008). 

1.4.2. Cytoplasmic Maturation 

Cytoplasmic maturation involves the group of processes that modify the cytoplasm of the 

oocyte and are essential for fertilization and embryonic developmental competence (Grondahl 

2008). Cytoplasmic maturation can be divided into three main events: redistribution of cytoplasmic 

organelles, dynamics of the cytoskeletal filaments, and molecular maturation (Ferreira et al., 

2009). 

Mitochondria, ribosomes, endoplasmic reticulum, cortical granules and Golgi complex 

reorganize and assume different positions in MII oocytes compared to GV oocytes (Ferreira et al., 

2009). Organelles (except for cortical granules) move to the central area of the oocyte during 

maturation, forming an ‘organelle-free zone’ at the cortex of a mature oocyte (Sun and Schatten, 

2006). The cytoskeletal filaments (i.e., microfilaments and microtubules) promote these 



9 
 

movements and are responsible for chromosome segregation (Ferreira et al., 2009), and cell 

division during cytokinesis (Li et al., 2005). Molecular maturation involves the transcription, 

storage and processing of maternal mRNA, and is responsible for the regulation of the cytoskeleton 

(Ferreira et al., 2009).  Proteins derived from these mRNAs and transcription factors are required 

for oocyte maturation, fertilization, pronucleus formation and early embryogenesis (Watson, 

2007).  

Correct changes in the localization, morphology and biochemical properties of organelles and 

cytoskeleton must occur for the oocyte to acquire developmental competence (Mao et al 2014). To 

date, no method exists to measure completion of cytoplasmic maturation other than successful 

fertilization and embryonic and fetal development that results in healthy offspring (Krisher 2013). 

1.5. Ovarian superstimulation  

Ovarian superstimulation refers to stimulating the growth of multiple antral follicles. In cattle, 

superstimulation is commonly accomplished by administration of exogenous gonadotropins, e.g. 

follicle-stimulating hormone (FSH; Mapletoft et al., 2002) and equine chorionic gonadotropin 

(eCG; Ongaratto et al., 2015). Traditionally, the superstimulatory treatments consist of twice daily 

injections of FSH over a period of 4 or 5 days or a single administration of eCG (Mapletoft et al., 

2002). Ovarian superstimulation is induced in donor cows to increase the number of follicles 

available for aspiration. Therefore, superstimulatory treatments enable the collection of a greater 

number of oocytes per donor per attempt (Chaubal et al. 2007; De Roovera et al. 2005) and increase 

the efficiency of in vitro embryo production (Vieira et al. 2014). 

The variability of superstimulatory response in cattle, investigated by ultrasonography, was 

found to be associated with the status of follicular wave development at the time treatment is 

initiated, and the intrinsic number of follicles present at wave emergence within individuals (Singh 



10 
 

et al., 2004). More follicles develop when the superstimulatory treatment is initiated at the time of 

wave emergence than after (presence of follicles ≥5 mm in diameter; Nasser et al., 1993), and the 

superstimulatory response can be predicted by the number of follicles ≥2 mm at wave emergence 

(Singh et al., 2004). As a result of these findings, methods to synchronize follicular wave 

emergence before superstimulation are now used. The most common methods of synchronization 

are the administration of estradiol and progesterone (Bo et al., 1995) and transvaginal ultrasound-

guided follicle aspiration (Bergfelt et al., 1994).  

Evidence suggests that FSH starvation (i.e., also known as coasting period or FSH withdrawal) 

between gonadotropin stimulation and oocyte collection seem to have a positive effect on in vitro 

developmental potential of the oocytes in cattle (Blondin et al., 2002, Nivet et al., 2012). 

Nevertheless, contradictory results were reported by other researchers (Durocher et al., 2006; 

Monteiro et al., 2010) and therefore more studies are needed to investigate the effect of coasting 

on oocyte competence. 

Unlike traditional superstimulatory protocols in cattle, methods recently developed in bison 

consist of a reduced number of treatment/handling events for the purpose of reducing stress in the 

animals. These superstimulatory protocols in bison were based on simplified protocols recently 

reported in cattle consisting in one or two doses of  NIH-FSH-P1 (Tríbulo et al., 2011; 2012). 

Studies to date have shown that the most effective protocol to induce ovarian superstimulation in 

wood bison consists of two doses of 300 mg and 100 mg NIH-FSH-P1 (diluted in 0.5% 

hyaluronan) administered 2 days apart, with the first dose administered on the day of wave 

emergence (i.e. one day after follicular ablation). By using this superstimulatory protocol, an 

average of 6 and 7 oocytes were collected during the ovulatory and anovulatory seasons, 

respectively. (Palomino et al., 2013; Palomino et al., 2014). 



11 
 

1.6. In vitro production of embryos 

In vitro production of embryos (IVP) is commonly interchangeable with the general term of 

in vitro fertilization and is referred to as the process of generating embryos in the laboratory or 

outside the body (Hasler and Barfield, 2014). This process includes three main steps, i.e. oocyte 

maturation, fertilization and zygote/embryo culture. All the steps will be described below.  

An important prerequisite for IVP is the oocyte. Oocytes can be obtained from immediately 

deceased (slaughterhouse-derived ovaries) or living animals (by transvaginal follicular aspiration). 

Each of these sources have advantages and disadvantages that need to be evaluated for the study 

in question.  

Oocytes from slaughterhouse-derived ovaries are an excellent source of material without 

animal welfare constraints and provide a larger number of oocytes for IVP. Furthermore, the 

scarcity of oocytes makes IVP in wild species challenging (Fernandez-Gonzalez et al 2015), thus 

ovaries from post mortem or convalescent animals are valuable sources of oocytes and female 

genetic material (Silva et al 2004). In commercial cattle IVP, slaughterhouse-derived ovaries are 

utilized extensively as they are a reliable and an inexpensive source of oocytes (Hasler and 

Barfield, 2014). Nevertheless, there are disadvantages of using such source of oocytes. For 

instance, usually the identity and health status of the donors are unknown, and there is possibility 

for cross-contamination as ovaries from different individuals come in contact with each other 

(Hansen, 2007). Moreover, collected oocytes are immature and require in vitro maturation that 

does not support high blastocyst rates. Researchers have determined that the potential of in vitro 

matured oocytes to develop to blastocysts is lower than that of in vivo matured oocytes (van de 

Leemput et al., 1999; Rizos et al., 2002; Alcoba et al., 2015).   
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Alternatively, collection of oocytes from live animals by transvaginal ultrasound-guided 

follicular aspiration offers some advantages compared to the collection of oocytes from 

slaughtered animals. The identity of the animal is known (Hansen, 2007), aspirated oocytes have 

greater developmental competence than slaughterhouse-derived oocytes (Neglia et al., 2003), 

oocytes can be collected repeatedly from the same animal (Fuquay et al., 2011), oocytes can be 

collected not only from cyclic animals but even from pregnant, post-partum or prepubertal animals 

(Gordon, 2004), and oocytes can be collected after inducing partial or complete maturation in vivo 

(Bordignon et al., 1997; Rizos et al., 2002). Moreover, current equipment developed to perform 

follicular aspiration are practical for routine use without affecting ovarian structure or function 

(Gordon, 2004). Importantly, the use of FSH treatments before follicular aspiration has been 

shown to increase the total number of oocytes collected from an animal per attempt (Garcia and 

Salaheddine, 1998; Ball and Peters, 2008; Presicce et al., 2011), as well as the blastocyst 

production rates (Vieira et al., 2015). However, when oocytes are collected from live animals there 

are some factors that have to be taken into consideration: technical challenges because of 

requirement of trained personnel and adequate equipment (Hansen, 2007), vacuum pressure 

affecting the oocyte yield from an individual per collection session (Bols et al., 1996), increased 

cost (Hansen, 2007) and animal welfare concerns (Chastant-Maillard et al., 2003). 

1.6.1. In vitro maturation  

In vitro maturation (IVM) corresponds to the culture of immature oocytes collected from 

antral follicles (Chang et al., 2014). The step of IVM is considered one of the most critical steps 

for the production of embryos in the laboratory (Mermillod, 2011). The most widely used medium 

for IVM is tissue culture medium 199 (TCM-199) with Earle’s salts which contains bicarbonate 

buffer, minerals, glucose, glutamine, vitamins and amino acids (Gordon, 2004). This medium is 
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generally supplemented with LH, FSH, and bovine serum albumin or fetal calf serum (Sirard et 

al., 1988; Dell'Aquila et al., 2004; Sprícigo et al., 2015), which provide hormones and growth 

factors (Burgener and Butler, 2005). 

Bovine oocytes are matured at 38.5-39.0°C, 5% CO2 in air and high humidity for 22-24 h 

(Sirard et al., 1988; Prentice-Biensch et al., 2012). The presence of cumulus cells is required for 

oocyte maturation (Zhang et al., 1995, Shirazia et al., 2007), as intercellular communication 

between oocyte and cumulus cells is important for the acquisition of developmental competence 

(Kidder and Vanderhyden, 2010). For this reason, oocytes surrounded by several layers of compact 

cumulus cells are selected for IVM. During culture, expansion of the cumulus cells is a visible sign 

of oocyte maturation (Mermillod, 2011) and is used as a predictor of the developmental 

competence of oocytes matured in vitro (Furnus et al., 1998). 

Oocyte maturation in vitro is still a limiting factor for IVP in mammals (Banwell and 

Thompson, 2008). In cattle, only about 35% of oocytes submitted to IVM become blastocysts 

(Rizos et al., 2002). The in vitro developmental potential to the blastocyst stage of in vitro-matured 

oocytes is generally lower than that of in vivo-matured oocytes (van de Leemput et al., 1999; Rizos 

et al., 2002; Alcoba et al., 2015), and this may be related to differences in protein synthesis 

(Kastrop et al., 1991) and in rearrangement of cortical granules (Hyttel et al., 1986) between 

oocytes matured in vitro vs. in vivo. 

For many years, studies in several species have been oriented to improve the success of oocyte 

maturation in vitro, by investigating different media systems in an effort to increase the 

developmental competence of oocytes following fertilization. 

1.6.2. In vivo maturation 
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Maturation in vivo corresponds to the maturation of immature oocytes within follicles in the 

ovaries of live animals. This process requires exposure of the COC within the follicle to the 

gonadotropin surge (i.e., preovulatory LH surge), which triggers breakdown of the germinal 

vesicle and progression to metaphase II (Krisher, 2013), and the expansion of the cumulus cells 

(Russell and Robker, 2007). 

Because the quality of oocyte is crucial in determining the proportion of immature oocytes 

that form blastocysts (Rizos et al., 2002), researchers have worked on increasing oocyte 

competence before removing them from the follicle (Krisher, 2013). For this reason, several 

authors have developed protocols aimed at the collection of oocytes at metaphase II stage for the 

purpose of IVP. 

In cattle, the administration of gonadotropin-releasing hormone (GnRH) 26 h before 

transvaginal follicular aspiration resulted in the collection of in vivo-matured oocytes (i.e. COC 

with expanded cumulus cells and oocytes at metaphase II) and following immediate in vitro 

fertilization resulted in a higher percentage of blastocysts than COC collected from non-GnRH-

treated animals (Bordignon et al., 1997). Similarly, in vivo matured oocytes collected 20 h after 

administration of GnRH and followed by immediate fertilization, resulted in higher percentage of 

blastocysts than oocytes matured in vitro (Rizos et al., 2002). Moreover, higher blastocyst rates 

were obtained from immediately fertilized in vivo matured oocytes collected 24 h after the LH 

surge than from those matured in vitro after being collected 2 h before the LH surge (Dielemann 

et al., 2002). In addition, treatment with LH 24 h before COC collection resulted in in vivo matured 

bovine oocytes (Dadarwal et al., 2015).  

In wood bison, COC with expanded cumulus cells were reported to be collected 24 h after 

administration of pLH in superstimulated animals (Palomino et al., 2013, 2014b). However, when 

nuclear maturation of those oocytes was evaluated, none had yet reached metaphase II 
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(unpublished data). This finding suggested that an in vivo maturation period longer than 24 h is 

required for bison oocytes to reach the MII stage. Therefore, more studies are needed to determine 

the most appropriate time interval between pLH treatment and COC collection in order to collect 

in vivo matured oocytes for IVP in bison. 

1.6.3. In vitro fertilization 

In vitro fertilization (IVF) consists on the co-incubation of mature oocytes with sperm in a 

suitable fertilization medium. In cattle, the co-incubation is commonly done in Brackett-Oliphant 

(BO) fertilization medium (Brackett and Oliphant, 1975) or Tyrode’s albumin lactate pyruvate 

(TALP; Parrish et al., 1986) at 38.5-39.0°C, 5% CO2 in air and high humidity for 18 h in a 4-well 

dish or in a microdrop under oil (Hasler and Barfield, 2014).  

The availability of motile sperm for IVF is important to achieve success in IVP. The step of 

IVF can be performed using fresh or frozen semen and only after preparation for fertilization. A 

common method for isolating motile spermatozoa for fertilization is by centrifugation (Hasler and 

Barfield, 2014) through a Percoll density gradient (Parrish et al., 1995). The Percoll method is 

largely adopted (Parrish, 2014) because of the higher recovery rate of motile sperm from frozen 

thawed semen compared to the swim-up method (40% vs. 9%, respectively [Parrish et al., 1995]). 

The fertilization medium contains capacitation agents to support sperm capacitation in vitro 

(Parrish, 2014), and to stimulate and maintain motility (Kang et al., 2015). Capacitated sperm 

undergo the acrosome reaction after binding to the zona pellucida of in vitro matured oocytes, a 

process which enables sperm to penetrate into the oocyte and fertilize it (Breitbart et al., 2005). 

The ability of sperm to be capacitated has been shown to vary among bulls (Sirard et al., 1984) 

and researchers indicate that bull to bull variation is an important factor affecting fertilization rates 
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in vitro (Sirard and Lambert, 1985; Hillery et al., 1990; Saeki et al., 1995; Lua and Seidel, 2004). 

Metabolic characteristics of sperm (Brackett and Oliphant, 1975), time required for sperm to 

capacitate, male age (Sirard and Lambert, 1985), quality of the ejaculate, among other factors may 

be responsible for male variations in fertilization rates. Therefore, it is recommended to test the 

fertilizing ability of sperm before performing IVP (Molnarova et al., 2006), especially when 

valuable oocyte are used. Moreover, a common practice in cattle IVP is the use of pooled semen as 

a method of limiting male variability (Demyda-Peyrás et al., 2015). 

Several substances such as heparin (Parish et al., 1988), caffeine (Niwa and Oghoda, 1988), 

D-penicillamine, hypotaurine, epinephrine (Hasler and Stokes, 2013), and theophylline (Kang et 

al., 2015) have been used to enhance fertilization rates in vitro. To date, heparin is  preferentially 

used in cattle IVF to stimulate sperm capacitation and improve IVP production (Parrish et al., 

1988; Mendes et al., 2003; Parrish, 2014). The efficiency of heparin used to enhance the ability of 

sperm to fertilize oocytes depends on the dose used and synergistic effects with other substances. 

For instance, heparin levels added to the fertilization medium range from 0.2 to 5 µg/mL (Parrish 

et al., 1988), and bicarbonate and bovine serum albumin (BSA) are generally used in combination 

with heparin in the capacitation and fertilization media (Parrish, 2014). 

1.6.4. In vitro culture 

In vitro culture (IVC) refers to the process involving the culture of embryos for approximately 

5 to 7 days after fertilization to the blastocyst stage in other species (Hasler and Barfield, 2014). 

Therefore, IVC is the last and longest step of IVP and is intended to support the development of 

the zygote during an specific period of time until it reaches the desired stage of development to be 

transferred to a recipient, cryopreserved and/or used for research. In cattle, the embryo is usually 
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cultured at 38.5°C in 5% CO2, 5% O2 and 90% N2 and high humidity for 7-9 days (Prentice-

Biensch et al., 2012, Hasler and Barfield, 2014). 

There are several media available for embryo culture in vitro and the most commonly used 

media for bovine IVC (Sagirkaya et al., 2006; Kocyigit, 2016) are SOF (synthetic oviduct fluid), 

KSOM (potassium simplex optimization medium), and CR1aa (Charles Rosenkran’s aminoacid). 

In general, IVC media require a combination of various components such as minerals, energy 

sources, amino acids, pH buffer systems, growth factors, antioxidants, vitamins, hormones, and 

antibiotics (Kim et al., 2007; Kocyigit, 2016). The composition of IVC media is critical for embryo 

development (Gordon, 2004) and also has been shown to affect embryo cryotolerance (Rizos et al, 

2003; Nedambale et al., 2004). 

According to the formulation of the media, the culture systems can be classified as undefined, 

semi-defined and fully defined (Bavister, 2013). Undefined includes the use of serum (fetal bovine 

serum, bovine calf serum) and/or co-culture (epithelial cells from oviducts, cumulus and granulosa 

cells, etc); semi-defined includes the use of albumin (bovine serum albumin [BSA]) to replace 

serum and co-culture is omitted; fully defined or chemically defined includes the use of synthetic 

macromolecules (polyvinyl alcohol [PVA], polyvinyl pyrrolidone [PVP]) to replace albumin and 

is a protein-free system where all components are well characterized (Vanroose et al., 2001; 

Bavister, 2013). 

The embryo may be cultured in either a single medium for the duration of IVC or in two or 

three sequential media of different composition and/or concentration which are changed at certain 

points during IVC (Hasler and Barfield, 2014). There is no agreement among researchers about 

the benefits of one type of culture system over the other on embryo development (Reed et al., 

2009; Hennings et al., 2016; Werner et al., 2016), thus IVC conditions continue to be studied.  
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1.6.5. Experiences of IVP in bison 

In cattle IVP, slaughtered-derived ovaries are routinely used with blastocyst development 

rates of approximately 35% (Rizos et al., 2002). In bison, there are few reports of IVP attempts, 

but in all cases, in vitro matured slaughterhouse-derived oocytes were used and the resulting 

blastocyst production was not comparable to that obtained in cattle. In the first study conducted in 

wood bison (Thundathil et al., 2007), the oocytes were fertilized with either frozen-thawed or 

chilled epididymal spermatozoa, and were obtained 7.5% and 10.0% blastocyst rates, respectively. 

Six wood bison blastocysts were produced in total in that study. In plains bison, 8% blastocyst 

development was reported in another study using similarly prepared semen (Aurini et al., 2009). 

In a subsequent study (Barfield and Seidel, 2011), improved development of plain bison oocytes 

fertilized with frozen-thawed epididymal sperm was demonstrated in zygotes cultured in medium 

supplemented with or without 5% fetal calf serum; 16% blastocyst rates. In the same study, the 

percentage of blastocysts increased to 20% when embryos were cultured in the medium 

supplemented with 5% calf serum after they reached the 8-cell stage. The low blastocyst 

production rates in bison IVP studies has led researchers to produce bison hybrid embryos (cattle 

x bison) in order to conduct further analysis of the IVP embryos (Seaby et al., 2012). However, 

wood bison and plains bison hybrid (x cattle) blastocysts had significantly lower cell numbers than 

cattle blastocysts, and wood bison hybrid blastocysts had a greater incidence of apoptosis than 

cattle blastocysts (Seaby et al., 2012). Not surprisingly, no pregnancies or live calves have been 

reported after transfer of in vitro-produced bison embryos. Unfortunately, improvement in IVP 

efficiency in bison is limited not only by the availability of the biological material needed to 

perform this technology but also by the lack of basic knowledge about the reproductive biology of 

this species. Therefore, further investigation is required to achieve an efficient production of in 

vitro-produced embryos in wood bison. 
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1.7. Alternatives for wood bison conservation 

Reclamation of the wood bison population at Wood Buffalo National Park has been very 

complicated due to the on-going presence of cattle diseases (Gates et al., 2001; Shury et al., 2015). 

Some efforts to mitigate this problem were initiated in the 1960s and 1970s with the introduction 

of disease-free wood bison to the Mackenzie Bison Sanctuary in the Northwest Territories and the 

establishment of a disease-free herd at the Elk Island National Park (EINP) in Alberta (Gates et 

al., 2001; McFarlane et al., 2006). Since then, only the EINP has been a source of healthy wood 

bison to repopulate different areas in Canada, the United States, and even Russia (Environmental 

Assessment Panel, 1990, Gates et al., 2001). However, translocation of wood bison from the EINP 

to other herds has resulted in the spread of its less variable genetic diversity (Gates et al., 2001; 

Nishi et al., 2002). Therefore, it is important to rescue the genetic diversity of wood bison 

population at the Wood Buffalo National Park to avoid the founder effect that is occurring with 

the dissemination of the EINP genetics (McFarlane et al., 2006). 

Vaccines against brucellosis have been developed with encouraging results in bison (Olsen et 

al., 2002, Clapps et al., 2011). However, there are no studies describing vaccines that have 

demonstrated efficacy for tuberculosis in bison. In any event, the success of these vaccines will 

depend on the efficacy of the method of delivery of the vaccine to protect the animals against cattle 

diseases (Olsen et al., 2002). Likewise, the number of doses, booster vaccinations, and adverse 

effects of the vaccines constitute additional challenges that any vaccination program will face in 

the eradication of cattle diseases in Canada (Shury et al., 2015).  

Reproductive technologies are being developed in wood bison as a means for the salvage of 

their genetics (Shury et al., 2015). These technologies have been used successfully to preserve 

endangered wild species (Loskutoff et al., 1995; Comizzoli et al., 2000; Solti et al., 2000). 

Artificial insemination (AI) is currently the most extensively applied reproductive technology in 
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non-domestic species around the world (Comizzoli, 2015) due to the increased potential for 

success compared to other techniques. In wood bison, AI has been applied successfully to produce 

pregnancies and live calves (Adams et al., 2010; Adams et al., 2016; Mastromonaco, personal 

communication). Likewise, in vitro and in vivo embryo production along with gamete/embryo 

cryopreservation have allowed the establishment of genetic resource banks to store and maintain 

the genetic diversity of a variety of endangered species around the world (Wild, 1992; Holt et al., 

1999; Comizzoli and Holt, 2014). In wood bison, superovulation and embryo collection have been 

developed recently resulting in an increased number of freezable embryos (a total of 11 

transferable embryos from 20 bison: Palomino et al., 2016) in comparison with previous reports 

(a total of 6 transferable embryos from 20 bison: Toosi et al., 2013). Successful pregnancy has also 

been obtained by transfer of in vivo-derived embryos resulting in live birth of two calves (Toosi et 

al., 2013). Other technologies such as interspecies somatic cell nuclear transfer (iSCNT) have been 

attempted in wood bison, and researchers suggest that iSCNT may provide a possible alternative 

for embryo production and genetic preservation in wood bison (Kumar et al., 2009; Seaby et al., 

2013; González-Grajales et al., 2015). Additionally, a limited number of studies involving the use 

of IVP have been reported and all have resulted in low embryo production rates (Thundathil et al., 

2007; Seaby et al., 2012) as summarized previously in this thesis.  
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CHAPTER 2. GENERAL HYPOTHESIS AND OBJECTIVES 

 

 

General Hypothesis 

The developmental competence of wood bison oocytes is influenced by maturational 

environment and time (in vivo vs in vitro) and morphologic characteristics of the cumulus-oocyte 

complex.  

 

General Objective 

To develop efficient protocols for the collection of competent oocytes and the production of 

disease-free wood bison embryos by in vitro fertilization and culture.  

 

 

Specific objectives 

 

1. To determine the optimal interval of time after treatment of superstimulated wood bison with 

human chorionic gonadotrophin (hCG) required for in vivo maturation of COC  

2. To determine the developmental competence of oocytes after maturation in vitro vs. in vivo. 

3. To improve cleavage and blastocyst production rates for oocytes collected from 

superstimulated bison. 

4. To evaluate the efficacy of embryo washing procedures to remove Brucella abortus from in 

vitro-produced wood bison embryos following in vitro exposure to the pathogen. 
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CHAPTER 3 

 

IN VIVO AND IN VITRO MATURATION OF OOCYTES COLLECTED FROM 

SUPERSTIMULATED WOOD BISON (Bison bison athabascae) DURING THE 

ANOVULATORY AND OVULATORY SEASONS 

 

This chapter was published in the journal Animal Reproduction Science and is reproduced      

with permission (Appendix B). 
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3.1. Abstract  

Experiments were done to compare the in vivo and in vitro maturational characteristics of 

cumulus-oocyte complexes (COC) collected from live wood bison. In Experiment 1 (anovulatory 

season), follicular ablation was done to synchronize follicle wave emergence among bison on Day 

-1, and FSH diluted in hyaluronan was given on Days 0 (300 mg) and 2 (100 mg). Bison were then 

assigned to 5 groups (n=5/group) in which COC were collected by transvaginal follicle aspiration 

on Day 4 and either fixed immediately with no maturation (control), matured in vitro for 24 or 30 

h, or collected by follicle aspiration on Day 5 after in vivo maturation for 24 or 30 h (i.e., after 

hCG treatment). In Experiment 2 (ovulatory season), bison were treated as described for 

Experiment 1, but PGF2α (cloprostenol) was given to control the luteal phase on Days -9 and 3. 

In both experiments, cumulus cell expansion was more extensive following in vivo than in vitro 

maturation, and the percentage of fully expanded COC was highest in the in vivo 30 h groups. 

Nuclear maturation occurred more rapidly in vitro; 60-70% of oocytes were at the MII stage after 

24 h of in vitro maturation while only 25-27% of oocytes had reached the MII stage after 24 h of 

in vivo maturation. In conclusion, nuclear maturation occurred more rapidly during in vitro vs. in 

vivo maturation, but was associated with less cumulus expansion than in vivo maturation. In vivo 

oocyte nuclear maturation was more complete at 30 vs. 24 h after hCG treatment. Season had no 

effect on the maturational capacity of wood bison oocytes. 

3.2. Introduction 

The free-ranging wood bison (Bison bison athabascae) population in Wood Buffalo National 

Park (WBNP) in northern Alberta, Canada, is threatened by endemic disease (Joly and Messier, 

2004). Brucellosis and tuberculosis hamper population growth and there is a risk of losing 
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sufficient genetic diversity to sustain this native species. The WBNP population, Canada’s largest 

and most diverse, has declined by nearly 70% since 1971, from 16,000 bison (Mitchell and Gates, 

2002) to approximately 5,000 bison today (Rosano, 2013). Reproductive technologies have 

previously been used in the conservation of genetic diversity of similarly threatened and 

endangered animals (Wildt et al., 1993; Holt and Pickard, 1999), and have been proposed recently 

as a strategy specifically for Canadian wood bison (MacPhee et al., 2016).     

In vitro embryo production has some advantages over in vivo embryo production in that it 

circumvents the need to control and induce ovulation in the donor animal, it has the potential for 

producing a greater number of embryos, and it enables the salvage of genetic material from dead 

or dying animals (Loskutoff et al., 1995; Rao et al., 2010; Stoops et al., 2011). In the only report 

on in vitro maturation and embryo production in wood bison to-date, less than10% of oocytes that 

were fertilized and cultured in vitro developed into blastocysts (Thundathil et al., 2007). 

Technical development of in vitro embryo production in bison is limited by the lack of 

biological material and a dearth of information about oocyte maturation in this species. Abattoir-

derived bison ovaries are scarce and availability is inconsistent, but in other wild species, oocytes 

have been collected from live donors in both captive (Wildt et al., 1993; Hermes et al., 2009) and 

wild settings (Berlinguer et al., 2008). Recently, we have collected cumulus-oocyte complexes 

(COC) from live donors in a captive herd of wood bison by transvaginal ultrasound-guided follicle 

aspiration (Palomino et al., 2013, 2014b). Oocyte collections were done after ovarian 

superstimulation, during both the ovulatory and anovulatory seasons. Collection rates (COC 

collected/follicles aspirated)  were 50 - 60% with 6 to 7 COC per bison per attempt.  

Oocyte maturation is a complex process that is necessary for attainment of developmental 

competence (Ferreira et al., 2009). Final maturation of the oocyte is triggered by a preovulatory 

LH surge which causes the expansion of the cumulus cells and resumption of meiosis in the oocyte 
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(Russell and Robker, 2007). Cumulus cell expansion is part of the process whereby the COC 

separates from the follicle wall prior to ovulation (Gordon, 2003). An immature oocyte arrested at 

prophase I of the first meiotic division contains a nucleus of mostly decondensed chromosomes, a 

large nucleolus, and an intact nuclear membrane (germinal vesicle; GV). During the final stages 

of maturation, the chromosomes begin to condense, the nucleolus disperses, and the nuclear 

envelope disappears (GV breakdown; Masui and Clarke, 1979). In most mammals, a mature 

oocyte is characterized by the presence of a first polar body and chromosomes arranged on a 

meiotic spindle at metaphase of the second meiotic division. Oocytes in this stage are expected to 

have the capacity for fertilization and embryonic development (Cha and Chian, 1998). There is 

evidence that in vivo-matured oocytes have greater developmental competence than oocytes 

matured in vitro (Leibfried-Rutledge et al., 1987; van de Leemput et al., 1999; Dieleman et al., 

2002), but the characteristics of oocyte maturation in bison (in vivo or in vitro) have not been 

critically examined. 

Treatment with GnRH or LH 24 h before COC collection has been reported to induce in vivo 

maturation of bovine oocytes (Laurincik et al., 1993; Bordignon et al., 1997; Dadarwal et al., 

2015). A similar effect was observed in superstimulated wood bison where more than 70% COC 

were expanded when collected 24 h after LH treatment (Palomino et al., 2013, 2014b). Whether 

the expanded COC were developmentally competent to permit immediate in vitro fertilization was 

not tested. Using anti-lamin AC/DAPI staining, we examined the nuclear status of oocytes of 

expanded COC collected from wood bison the day after LH treatment and found that none had yet 

reached metaphase II. Even after an additional 8 h of in vitro maturation, the oocytes had not 

reached metaphase II (unpublished data), suggesting that bison oocytes require an extended period 

(i.e., >24 h) to reach a mature stage.  
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The objectives of the present study were to 1) determine the optimal interval of time after hCG 

treatment required for in vivo oocyte maturation in wood bison, 2) compare the maturational 

characteristics of COC after in vitro vs. in vivo maturation, and 3) compare the maturational 

capacity of bison oocytes collected during the anovulatory vs. ovulatory seasons. 

3.3. Materials and methods 

3.3.1. Animals 

Twenty-five adult female wood bison, 6 to 11years of age, were used in two experiments. 

Experiment 1 was done during the anovulatory season (May - June) and Experiment 2 was done 

during the ovulatory season (October - November), using the same individuals (n = 25) in both 

seasons. In both experiments, the bison were confined to corrals at the Native Hoofstock Centre, 

University of Saskatchewan, with free access to fresh water and hay to maintain an average body 

condition score of 3.5 (scale of 1 to 5; Vervaecke et al., 2005). The experimental protocol was 

approved by the University of Saskatchewan’s Animal Research Ethics Board, and done in 

accordance with the guidelines of the Canadian Council on Animal Care. 

3.3.2. Experiment 1 - Anovulatory season 

Follicular wave emergence was induced among bison (n = 25) by transvaginal ultrasound-

guided aspiration of all follicles ≥ 5 mm in diameter (follicular ablation), as previously described 

(Bergfelt et al., 1994; Palomino et al., 2014a). The procedure was performed using a 5 MHz 

transvaginal probe (ALOKA SSD-900, Tokyo, Japan) equipped with a disposable 18-ga x 1 ½” 

vacutainer needle (BD, Mississauga, Ontario, Canada) attached to a 6 mL syringe by silicon tubing 

60 cm long x 1.14 mm internal diameter (Cole-Palmer, Montreal, Quebec, Canada). Follicular 

wave emergence (Day 0) was expected to occur the day after follicular ablation. 
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Ovarian superstimulation was induced with a total dose of 400 mg NIH-FSH-P1 (Folltropin-

V, Vetoquinol Canada Inc., Lavaltrie, QC, Canada) im diluted in 10 mL of hyaluronan (5 mg/ml, 

MAP-5, Vetoquinol Canada Inc.) given on Day 0 (300 mg) and Day 2 (100 mg), as previously 

described in wood bison (Palomino et al., 2013). The bison were assigned randomly (lottery 

method) to 5 groups (n=5 bison per group) in which COC were collected by transvaginal 

ultrasound-guided follicle aspiration on Day 4 and fixed and stained immediately (no maturation, 

control) or after in vitro maturation for 24 h or 30 h, or collected on Day 5 after in vivo maturation 

for 24 h or 30 h (Table 1). In vivo maturation was induced by a single dose of 2000 IU of hCG 

(Chorulon, Merck Animal Health, Kirkland, Quebec, Canada) im on Day 4 in the in vivo 

maturation groups. 

3.3.3. Experiment 2 - Ovulatory season 

Synchronization of the follicular wave emergence and ovarian superstimulation was 

performed as described for Experiment 1. However, since the bison were ovulatory and all had a 

corpus luteum, a luteolytic dose of 500 µg cloprostenol (Estrumate, Merck Animal Health, 

Kirkland, Quebec, Canada) was given im on Day -9 and Day 3 (Day 0 = day of wave emergence, 

one day after follicular ablation). The bison were assigned randomly to 5 groups (n=5 per group), 

as described for Experiment 1 (Table 1). 

3.3.4. COC collection 

Collection of COC was done by transvaginal ultrasound-guided aspiration of all follicles ≥5 

mm in diameter, as previously described (Palomino et al., 2013, 2014b). Collection was performed 

using a custom-made disposable 18-ga x 2” short-bevel needle (Misawa Medical Industry Ltd., 

Edogawa-Ku, Tokyo, Japan) connected to a 50mL conical Falcon tube via silastic tubing (length 
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50 cm; internal diameter 1.14 mm; Cole Palmer, Montreal, Quebec, Canada). Follicular contents 

were aspirated using a regulated vacuum pump set at a flow rate of 20 mL/min (Brogliatti et al., 

1996). The collection medium consisted of Dulbecco’s phosphate-buffered saline (DPBS, Gibco, 

Grand Island, NY, USA), 0.15% ET Surfactant (Vetoquinol Canada Inc.), and 200 IU/L of heparin 

(heparin sodium injection USP, Sandoz, Boucherville, Quebec, Canada). Follicular aspirates were 

poured from the Falcon tube into an ova/embryo filter (Emcon filter; Agtech, Manhattan, Kansas, 

USA). The COC were rinsed from the filter using collection medium without surfactant, and 

poured into a 90 mm Petri dish for searching procedures. The temperatures in the collection area, 

surrounding the Falcon tube and silastic tubing, was maintained at 22- 25°C using a portable liquid 

propane forced-air heater (Dyna-Glo Pro; GHP Group Inc, Morton Grove, IL, USA), while the 

temperature of the COC searching room was maintained at 25 - 30°C. 

At the time of collection, COC were classified by stereomicroscopy according to the 

appearance of the cumulus cell layers and the appearance of the oocyte cytoplasm (ooplasm). The 

cumulus layer was classified as compact (at least one complete layer of granulosa cells tightly 

surrounding the oocyte), expanded (cumulus cells expanded or partially dissociated), or denuded 

(oocyte without cumulus cells). Oocytes with pyknotic granulosa cells and vacuolated ooplasm 

were classified as degenerate (Ratto et al., 2007) and discarded from further processing. For 

assessment of nuclear status, compact COC were used in the in vitro maturation groups, expanded 

COC in the in vivo maturation groups, and all COC categories were used in the control group. 

3.3.5. In vitro maturation 

The medium used for in vitro maturation was TCM-199 with Earle's salts (Gibco, Grand 

Island, NY, USA) supplemented with 5% (vol/vol) bovine calf serum (Sigma-Aldrich; Oakville, 

ON, Canada) heat inactivated, 5 μg/mL LH (Lutropin-V; Vetoquinol Canada Inc.), 0.5 μg/mL FSH 
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(Folltropin-V; Vetoquinol Canada Inc.), and 0.05 μg/mL gentamicin sulfate (Sigma-Aldrich; 

Oakville, ON, Canada). Compact COC were washed three times in maturation medium and were 

placed in four-well dishes (NUNC, Thermo Fisher Scientific, Rochester, NY, USA) containing 1 

mL/well of maturation medium (4 to 6 COC/well), within 4 h of collection. The COC were 

maintained in maturation medium at 38.5°C, 5% CO2 in air and high humidity for 24 h or 30 h. 

3.3.6. Evaluation of cumulus cell expansion and nuclear maturation 

After maturation (in vitro or in vivo), cumulus expansion was assessed subjectively under a 

stereomicroscope as partially expanded or fully expanded (Fig. 1). After assessment of cumulus 

cell expansion, the COC were denuded by pipetting with 0.3% hyaluronidase (wt/vol) in Ca++ and 

Mg+ free DPBS (Invitrogen, Burlington, ON, Canada), and the oocytes were fixed in 4% 

paraformaldehyde in DPBS for 30 min at room temperature. All types of COC (expanded, compact 

and partially denuded) in the control group were also completely denuded and fixed as described. 

After fixation, oocytes were washed three times with 0.2% Polyvinyl alcohol (PVA) in DPBS 

(wt/vol), permeabilized with 0.5% Triton X-100 (BIO-RAD, Hercules, CA, USA) in DPBS 

(vol/vol) for 30 min and with 0.05% Tween-20 (BIO-RAD, Hercules, CA, USA) in DPBS 

(vol/vol) for 30 min, followed by blocking with 2% bovine serum albumin in DPBS (wt/vol) for 

60 minutes. Oocytes were then incubated with primary antibody (mouse anti-Lamin AC, Santa 

Cruz Biotechnology, Santa Cruz, CA, USA) 1:300 in blocking buffer for 60 min, followed by 3 

washes in DPBS and incubation with secondary antibody (Alexa Fluor 488 labeled anti-mouse 

IgG, Invitrogen) 1:200 in blocking buffer for 60 min (Prentice-Biench et al., 2012). Oocytes were 

mounted onto glass microscope slides (n=1 to 2 oocytes per slide) in Vectashield Mounting 

Medium containing DAPI (H-1200; Vector Laboratories Inc., Burlington, ON, Canada), protected 

with a coverslip (using paraffin-vaseline on each corner of the coverslip), sealed with nail polish 



30 
 

(NYC New York Color, Coty US LLC, Sanford, NC, USA) and examined using an 

epifluorescence laser microscope (Zeiss Axioskop 5 Carl Zeiss Ltd., Toronto, ON, Canada). The 

stage of nuclear maturation was classified as germinal vesicle (GV), germinal vesicle breakdown 

(GVBD), metaphase I (MI), or metaphase II (MII) (Fig. 2). 

3.3.7 Statistical analyses 

The number of COC in each category were compared among groups by one-way analysis of 

variance and Tukey’s post hoc tests. Proportional data (collection rate, cumulus cell expansion rate 

and proportion at each stage of nuclear maturation) were compared by 2-tailed Chi-square or 2-

tailed Fisher’s exact test using Proc Frequency procedure (SAS, Enterprise Guide 4.2, Statistical 

Analysis System Institute Inc., Cary, NC, USA). Values are expressed as mean ± SEM, and P 

values of < 0.05 were considered significant.  

Notwithstanding a 5-month separation in time between Experiments 1 and 2, end points were 

compared between experiments to determine the effects of season. The same 25 bison were used 

in both experiments, but were assigned randomly (i.e., lottery method) to treatment groups in each 

experiment; i.e., no attempt was made to assign bison to the same group, and observations were 

considered independent from one experiment to the next. Data (COC collection, nuclear 

maturation stages) were analyzed with season (anovulatory vs. ovulatory) and maturation type (in 

vitro vs. in vivo) as fixed factors using the generalized linear model procedure in SAS with a 

binomial error distribution and a logit link function. The effects of maturation type (in vivo vs. in 

vitro) and season (anovulatory vs. ovulatory) on COC morphology were compared by two-way 

analysis of variance. 
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3.4. Results 

3.4.1. Experiment 1 – Anovulatory season  

A mean (±SEM) of 7.6 ± 0.6 COC were collected per bison, with no differences among 

groups. The overall COC collection rate (COC collected/follicles aspirated) was 60.4% (189/313) 

and did not differ among groups. At the time of collection, more COC were classified as expanded 

in the hCG-treated groups than in the non-treated groups [5.9 ± 1.5(n=10) vs. 0.8± 0.2 (n=15); 

P<0.05; Table 2], with a greater proportion of expanded COC in the 30-h vs. 24-h post-hCG groups 

(86% [42/49] vs. 50% [17/34], respectively; P=0.001). A greater proportion of COC were fully 

expanded in the in vivo vs. in vitro maturation group (92% vs. 74%, respectively; P<0.05), and the 

proportion of fully expanded COC was greatest in the in vivo 30 h group (98%; P<0.05; Table 3). 

A total of 16 COC (n=1 to 9 per group) were lost during the fixation and staining procedures; 

data on the remaining oocytes were used for statistical comparison of nuclear maturation among 

groups (Table 4). None of the COC in the control (0 h) group was at the MII stage. The proportion 

of MII stage oocytes was greater in the in vitro maturation groups than in the in vivo groups, but 

did not differ between 24 h vs. 30 h.  

3.4.2. Experiment 2 – Ovulatory season 

One animal in the control group was excluded because she did not respond to superstimulatory 

treatment and COC collection was not attempted. A mean (±SEM) of 7.6 ± 1.1 COC were collected 

per bison, with no differences among groups. The overall COC collection rate was 68.2% (182 

COC/267 follicles aspirated) and did not differ among groups. As in Experiment 1, treatment with 
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hCG (vs. no hCG) resulted in a greater number (P<0.05) of expanded COC per bison at the time 

of collection (6.1 ± 1.8 vs. 0.5± 0.2, respectively; Table 5). Similarly, a greater proportion of 

expanded COC was collected at 30 vs. 24 h after hCG treatment (88% [35/40] vs. 53% [10/19], 

respectively; P<0.05). Cumulus cell expansion was more extensive following in vivo than in vitro 

maturation, and the proportion of fully expanded COC was greatest in the in vivo 30 h group (88%; 

P<0.05; Table 6). 

A total of 18 COC (n=1 to 8 per group) were lost during the fixation and staining procedures; 

data on nuclear maturation of the remaining oocytes were analyzed and are summarized in Table 

7. As in Experiment 1, no COC in the control group (0 h) reached the MII stage. Likewise, maximal 

nuclear maturation was achieved in vitro by 24 h, with no difference in the proportion of MII-stage 

COC at 24 vs. 30 h. However, there tended to be a greater proportion of MII-stage COC in the 30- 

vs. 24-h in vivo maturation groups (P = 0.06).  

3.4.3. Seasonal comparison (anovulatory season vs. ovulatory season) 

The number of follicles ≥5 mm on the day of COC collection was similar in bison during the 

anovulatory versus ovulatory season (15.4 ± 0.9 vs. 13.3 ± 1.2, respectively; P=0.17), and the 

number of COC collected (all morphological categories) did not differ between seasons (7.6 ± 0.6 

vs. 7.6 ± 1.1, respectively; P=0.99). Results for COC collection rate, COC morphological 

characteristics after maturation (in vitro and in vivo) and nuclear maturation stages during the 

anovulatory versus ovulatory season are summarized in Tables 8 and 9. No  effect of season was 

found for any endpoint. When data from the two seasons were combined, the number of fully 

expanded COC per bison tended to be greater (P=0.06) in the in vivo vs. the in vitro maturation 

groups, whereas the proportion of MII-stage oocytes was greater (P<0.01) in the in vitro vs. in vivo 
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maturation groups. The collection efficiency (COC collected/follicle aspirated) tended to be 

greater in the hCG-treated groups (P=0.07; Table 8). 

 

3.5.  Discussion  

Canadian wood bison are threatened by a lack of genetic diversity and reproductive strategies 

have been proposed to address the issue (MacPhee et al., 2016). Experiments in the present study 

were done as an initial step in answering the question: Can oocytes be collected from live wood 

bison as a tool for retaining genetic diversity through in vitro embryo production? Results were 

affirmative. We collected an average of 7.6 COC per bison, 3.9 (50.2%) of which were fully 

expanded after either in vitro or in vivo maturation. Furthermore, results demonstrate that oocytes 

can be collected by transvaginal ultrasound-guided follicular aspiration from live bison throughout 

the year, i.e., during both the anovulatory and ovulatory seasons.  

Importantly, results document the capability of bison oocytes to undergo maturation in vitro 

as well as in vivo. At 0 h, in both the anovulatory and ovulatory seasons, all COC collected were 

at either the GV or GVBD stage. Following maturation, in vitro or in vivo, more than 80% of the 

oocytes were at the MI or MII stage. Results also demonstrated that whereas nuclear maturation 

was maximal after 24 h of in vitro culture, the majority (≥50%) of oocytes matured in vivo did not 

reach the MII stage until 30 h after hCG treatment. In a previous study in wood bison (unpublished 

data), none of the oocytes collected at 24 h after LH treatment had reached the MII stage even after 

incubation in vitro in maturation medium for an additional 8 h. The reason for the lack of oocyte 

maturation in the initial study is not clear, but may be associated with the use of LH rather than 

hCG to induce maturation. Recently, we found hCG treatment more effective than LH at the doses 

used for inducing ovulation in both unstimulated (Palomino et al., 2015a) and superstimulated 
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wood bison (Palomino et al., 2016). The greater ovulatory effect was attributed to the longer half-

life of hCG compared to LH (Matzuk et al., 1990). The same characteristic may be responsible for 

the greater maturational effect observed in the present study compared to the previous study in 

which LH was used for in vivo maturation prior to oocyte aspiration. 

In the present study, delaying collection from 24 to 30 h after hCG treatment resulted in more 

than a 20% increase in the proportion of expanded COC and more than a 25% increase in the 

proportion of fully expanded COC. Although the absolute number of MII-stage oocytes was 

greater at 30 h than at 24 h after hCG treatment, the difference was not as marked as that of cumulus 

expansion. Developmentally, nuclear maturation (i.e., resumption of meiosis and attainment of 

metaphase II) occurs after cumulus cell expansion (Bézard et al., 1997; Chen et al., 2001). We 

suspect that additional maturational time would enable completion of nuclear maturation in COC 

that had expanded but not yet achieved metaphase II, similar to that reported in monkeys and 

humans where additional in vitro incubation for 2 to 11 h resulted in an increase in the proportion 

of MI-stage oocytes that reached the MII stage (Lanzendorf et al., 1990, Vanhoutte et al., 2005). 

An increase in the dose of hCG or an extended period of in vivo maturation may increase the 

proportion of fully mature oocytes collected from wood bison, as observed in humans (Hourvitz 

et al., 2010). 

The degree of expansion of the cumulus oophorous is thought to be a reflection of physiologic 

normality (Gordon, 2003), and optimal expansion of the cumulus is essential for ovulation and 

embryo development (Chen et al., 1993). Hence, cumulus expansion was the goal in the different 

maturation groups in the present study, but the high degree of expansion, particularly in the in vivo 

maturation groups, was surprising. The highest percentage of fully expanded COC was found in 

the in vivo 30-h groups in Experiments 1 and 2 (combined, 76/82; 93%). Our finding that cumulus 

cell expansion was more extensive in vivo than in vitro is consistent with reports in horses 
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(Grondahl and Hyttel, 1996) and hamsters (Kito and Bavister, 1997). Presumably, full cumulus 

cell expansion that occurs in vivo is triggered by factors present in the follicular environment (Kito 

and Bavister, 1997). In cattle, cumulus cell expansion was a predictor of the developmental 

competence of oocytes matured in vitro (Furnus et al., 1998) and in vivo (Aardema et al., 2013). 

Only COC with full cumulus cell expansion at the time of collection developed into blastocysts 

after immediate in vitro fertilization (Aardema et al., 2013). If the degree of cumulus cell expansion 

observed in wood bison COC is associated with developmental competence, then results provide 

rationale for the hypothesis that in vivo matured wood bison COC collected 30 h after hCG 

treatment are more capable of developing into blastocysts, following in vitro fertilization, than 

those matured in vitro or in vivo for a lesser period of time.  

Nuclear maturation of bison oocytes occurred more rapidly during in vitro than in vivo 

maturation in the present study. In both experiments (anovulatory and ovulatory seasons), the 

proportion of oocytes that reached the MII stage was maximal after 24 h of in vitro maturation, 

and was greater than in either the 24- and 30-h in vivo maturation groups. Similar results were 

reported in nonhuman primates; nuclear status of in vitro matured oocytes was more advanced 

than in in vivo matured oocytes within 24 h (Nyholt de Prada et al., 2009). The time to complete 

nuclear maturation in vitro varies according to culture conditions (Roberts et al., 2002) and among 

species (i.e., pig oocytes within 36 to 42 h [Song and Lee, 2007] and bovine oocytes within 20 to 

24 h [Critser et al., 1986]). Cytoplasmic maturation has been described as a gradual capacitation 

that corresponds to the acquisition of critical cellular functions by the oocyte which are important 

for fertilization and early embryonic development (Ferreira et al., 2009). The cytoplasmic 

implications of more rapid resumption of meiosis in vitro than in vivo on later embryonic 

development in wood bison remain unknown. In cattle, the in vitro developmental potential of in 

vivo matured oocytes was twice as high as that of in vitro matured oocytes (Van der Leemput et 



36 
 

al., 1999), and may be related to differences in protein synthesis (Kastrop et al., 1991) and in 

rearrangement of cortical granules (Hyttel et al., 1986) between oocytes matured in vivo vs in vitro. 

Season had no effect on the number of follicles ≥5 mm in the ovaries at the time of COC 

collection or the number of COC collected per superstimulated bison. Likewise, no effect of season 

was evident on the morphological characteristics of matured COC or on the dynamics of nuclear 

maturation. Results are in agreement with previous studies in wood bison where the number of 

COC collected per superstimulated bison was 7.4 during both the anovulatory and ovulatory 

seasons (Palomino et al., 2013; 2014b), and support the notion that oocytes may be obtained from 

wood bison for the purpose of in vitro embryo production at any time of the year. 

In summary, the ovarian superstimulatory response in wood bison was similar in the 

anovulatory and ovulatory seasons, as was the COC collection efficiency (65% of follicles 

aspirated), number of COC collected (7.6 per collection attempt), and the number of fully 

expanded COC after maturation in vitro (2.9 per bison) or in vivo (5.0 per bison). Treatment with 

hCG effectively induced in vivo maturation, unlike previous attempts using LH, and tended to 

increase COC collection efficiency. In vivo maturation was associated with more extensive 

cumulus cell expansion and a slower onset of the resumption of oocyte meiosis than in vitro 

maturation. The implications of these nuclear maturational characteristics on oocyte competence 

to develop into embryos remains to be investigated, but results support the feasibility of developing 

a year-around in vitro embryo production system for wood bison. 
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Table 3.1. Experimental design to compare characteristics of the cumulus-oocyte complexes 

(COC) after in vitro vs. in vivo maturation in wood bison (n = 5bison per group) during the 

anovulatory and ovulatory seasons (Experiments 1 and 2, respectively). The only difference in 

treatment between experiments was that a luteolytic dose of PGF2α given on Day -9 and Day 3 in 

the ovulatory season to control the corpus luteum. 

 Control In vitro maturation  In vivo maturation 

Day 0hour 24 h 30 h 24 h 30 h 

-1 Transvaginal ultrasound-guided follicle ablation 

0 Day of follicular wave emergence and first administration of FSH (300 mg) 

2 Second administration of FSH (100 mg) 

4 
COC collected, 

fixed &stained 

COC collected, 

IVM 

COC collected, 

IVM 

hCG 

(2000 IU) 

hCG 

(2000 IU) 

5  
Fixed & stained 

at 24 h 

Fixed & stained 

at 30 h 

COC collected 

24 h after hCG, 

fixed &stained 

COC collected 

30 h after hCG, 

fixed & stained 

IVM: in vitro maturation 
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Table 3.2. Morphologic characteristics (mean ± SEM per bison) of cumulus-oocyte complexes 

(COC) at the time of collection from superstimulated wood bison before maturation(i.e., control 

and in vitro maturation groups combined) vs. after in vivo maturation (anovulatory season, 

Experiment 1).  

1 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 

abcWithin rows, values with no common superscripts are different (P<0.05) 

 

 

Table 3.3. Status of expansion of cumulus-oocyte complexes (COC) collected from 

superstimulated wood bison (n=5 bison per group) after in vitro vs. in vivo maturation (anovulatory 

season, Experiment 1). 

1 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 

ab Within rows, values with no common superscripts are different (P<0.05) 

xyWithin rows, values with no common superscripts are different (P<0.05) 

 
No maturation In vivo maturation1 

  
24 h 30 h 

Number of bison 15 5 5 

COC collected per bison 7.1±0.6a 6.8±1.3a 9.8±1.9a 

Compact COC 4.9±0.5a 2.4±1.0b 1.2±0.4b 

Expanded COC 0.8±0.2a 3.4±1.5ab 8.4±2.1b 

Denuded COC 1.0±0.2a 0.4±0.2a 0.2±0.2a 

Degenerated COC 0.3±0.1a 0.6±0.2a 0.2±0.2a 

 

In vitro maturation In vivo maturation1 

 
24 h 30 h subtotal 24 h 30 h subtotal 

Total expanded COC  18 24 42 17 42 59 

Partially expanded 6/18a 

(33%) 

5/24a 

(21%) 

11/42x 

(26%) 

4/17a 

(24%) 

1/42b 

(2%) 

5/59y 

(8%) 

Fully expanded 12/18 a 

(67%) 

19/24a 

(79%) 

31/42x 

(74%) 

13/17a 

(76%) 

41/42b 

(98%) 

54/59y 

(92%) 
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Table 3.4. Nuclear status of oocytes collected from superstimulated wood bison (n=5 bison per 

group) after no maturation (Control), or after in vitro vs. in vivo maturation (anovulatory season, 

Experiment 1). 

COC: Cumulus-oocyte complexes, GV: Germinal vesicle, GVBD: Germinal vesicle breakdown, 

MI: Metaphase I, MII: Metaphase II 

1A total of 16 COC (n=1 to 7 per group) were lost during the fixation and staining procedures 

abcWithin rows, values with no common superscripts are different (P<0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Control In vitro maturation In vivo maturation 

 
0 h 24 h 30 h 24 h 30 h 

Total COC collected 34 32 40 34 49 

Expanded COC 3 18 24 17 42 

Stained oocytes1 25 17 23 15 33 

GV 21/25a (84%) 0/17b (0%) 0/23b (0%) 0/15c (0%) 0/33c (0%) 

GVBD 4/25a (16%) 0/17b (0%) 0/23b (0%) 3/15a (20%) 2/33ab (6%) 

MI 0/25a (0%) 5/17b (29%) 6/23b (26%) 6/15b (40%) 15/33b (45%) 

MII 0/25a (0%) 12/17b (71%) 17/23b (74%) 6/15c (40%) 16/33c (48%) 
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Table 3.5. Morphologic characteristics (mean ± SEM per bison) of cumulus-oocyte complexes 

(COC) at the time of collection from superstimulated wood bison before maturation (i.e., control 

and in vitro maturation groups combined) vs. after in vivo maturation (ovulatory season, 

Experiment 2). 

1 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 

abcWithin rows, values with no common superscripts are different (P<0.05) 

 

 

Table 3.6. Status of expansion of cumulus-oocyte complexes (COC) collected from 

superstimulated wood bison (n=5 bison per group) after in vitro vs. in vivo maturation (ovulatory 

season, Experiment 2). 

1 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 

ab Within rows, values with no common superscripts are different (P<0.05) 

 

 
No maturation In vivo maturation1 

  
24 h 30 h 

Number of bison 14 5 5 

COC collected per bison 6.5±1.0a 8.0±3.0a 10.2±3.4a 

Compact COC 5.2±0.8a 2.8±1.0ab 1.8±0.8b 

Expanded COC 0.5±0.2a 4.2±1.8ab 8.0±2.5b 

Denuded COC 0.6±0.3a 1.0±0.6a 0.2±0.2a 

Degenerated COC 0.2±0.1a 0.0±0.0a 0.2±0.2a 

 
In vitro maturation In vivo maturation1 

 
24 h 30 h subtotal 24 h 30 h subtotal 

No. of expanded COC 16 25 41 19 40 58 

Partially expanded  6/16a  

(37%) 

9/25a     

(36%) 

15/41 

(37%) 

9/19a    

(47%) 

5/40b    

(12%) 

14/58 

(24%) 

Fully expanded  10/16a  

(63%) 

16/25a 

(64%) 

26/41 

(63%) 

10/19a  

(53%) 

35/40b  

(88%) 

45/58 

(78%) 
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Table 3.7. Nuclear status of oocytes collected from superstimulated wood bison (n=5 bison per 

group) with no maturation (Control), or after in vitro vs. in vivo maturation (ovulatory season, 

Experiment 2). 

COC: cumulus-oocyte complexes, GV: Germinal vesicle, GVBD: Germinal vesicle breakdown, 

MI: Metaphase I, MII: Metaphase II 

1 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 

2 A total of 18 COC (n=1 to 8 per group) were lost during the fixation and staining procedures 

abcdWithin rows, values with no common superscripts are different (P<0.05) 

 

 

 

 

 

 

 

 

 
Control In vitro maturation In vivo maturation1 

 
0 h 24 h 30 h 24 h 30 h 

Total COC collected 26 29 36 40 51 

Expanded COC 0 16 25 19 40 

Stained oocytes2 20 15 24 16 31 

GV 19/20a (95%) 0/15b (0%) 0/24b (0%) 0/16b (0%) 0/31b (0%) 

GVBD 1/20a (5%) 0/15a (0%) 0/24a (0%) 0/16a (0%) 0/31a (0%) 

MI 0/25a (0%) 6/15b (40%) 9/24b (37%) 12/16b (75%) 13/31b (42%) 

MII 0/25a (0%) 9/15b (60%) 15/24bc (63%) 4/16bd (25%) 18/31b (58%) 
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Table 3.8. Effect of season (anovulatory vs. ovulatory) and maturation type (in vitro vs. in vivo) 

on morphologic characteristics of wood bison cumulus-oocyte complexes (COC) collected from 

superstimulated wood bison (n=20 bison per season). 

 Anovulatory season Ovulatory season Total 

COC collection rate (COC collected/follicles aspirated)1   

in vitro 72/129 (56%) 65/105 (62%) 137/234 (59%) 

in vivo3 83/124 (67%) 91/120 (76%) 174/244 (71%) 

Total 155/253 (61%) 156/225 (69%) 311/478 (65%) 

Fully expanded COC/bison (mean ±SEM)2   

in vitro 3.1±0.6 2.6±0.6 2.9±0.4 

in vivo 3 5.4±1.5 4.5±1.3 5.0±1.0 

Total 4.3±0.8 3.6±0.7 3.9±0.5 

1Anovulatory vs. Ovulatory (P = 0.91), in vitro vs. in vivo (P = 0.07), Interaction(P = 0.63). 

2Anovulatory vs. Ovulatory (P = 0.51), in vitro vs. in vivo (P = 0.06), Interaction(P = 0.85). 

3 COC collected 24 hours or 30 hours after treating bison with 2000 IU hCG 
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Table 3.9. Effect of season (anovulatory vs. ovulatory) and maturation type (in vitro vs. in vivo) 

on nuclear maturation of wood bison oocytes collected from superstimulated wood bison (n=20 

bison per season). 

 Anovulatory season Ovulatory season Total 

Germinal vesicle1    

in vitro 0/40 (0%) 0/39 (0%) 0/79 (0%) 

in vivo 5 0/48 (0%) 0/47 (0%) 0/95 (0%) 

Total 0/88 (0%) 0/86 (0%) 0/174 (0%) 

Germinal vesicle breakdown2    

in vitro 0/40 (0%) 0/39 (0%) 0/79 (0%) 

in vivo 5 5/48 (10%) 0/47 (0%) 5/95 (5%) 

Total 5/88 (6%) 0/86 (0%) 5/174 (3%) 

Metaphase I3     

in vitro 11/40 (27%) 15/39 (38%) 26/79 (33%) 

in vivo 5 21/48 (44%) 25/47 (53%) 46/95 (48%) 

Total 32/88 (36%) 40/86 (46%) 72/174 (41%) 

Metaphase II4    

in vitro 29/40 (73%) 24/39 (62%) 53/79a(67%) 

in vivo 5 22/48 (46%) 22/47 (47%) 44/95b(46%) 

Total 51/88 (58%) 46/86 (54%) 97/174 (56%) 

1Anovulatory vs. Ovulatory (P = 0.99), in vitro vs. in vivo (P = 0.99), Interaction (P = 0.99). 
2Anovulatory vs. Ovulatory (P = 0.99), in vitro vs. in vivo (P = 0.99), Interaction (P = 0.99). 
3Anovulatory vs. Ovulatory (P = 0.56), in vitro vs. in vivo (P = 0.12), Interaction (P = 0.85). 
4Anovulatory vs. Ovulatory (P = 0.32), in vitro vs. in vivo (P = 0.01), Interaction (P = 0.40). 
5 COC collected 24 h or 30 h after treating bison with 2000 IU hCG 
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Fig. 3.1.Wood bison cumulus-oocyte complexes (COC) collected by transvaginal ultrasound-

guided follicle aspiration. Compact (A)and fully expanded COC (B). Scale bar represents 100 μm. 

 

 

 

Fig. 3.2.Wood bison oocytes at different stages of nuclear maturation: germinal vesicle (GV), 

germinal vesicle break down (GVBD), metaphase I (MI) and metaphase II (MII). Oocytes were 

stained with anti-Lamin AC/DAPI. Note that the nuclear envelope (only seen in GV and GVBD 

stages) is visualized with green fluorescence after staining with Anti-Lamin AC, while DNA is 

visualized with blue fluorescence after staining with DAPI (Diaminophenylindole). Scale bar 

represents 50 μm. 
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CHAPTER 4 

 

IN VITRO EMBRYO PRODUCTION IN WOOD BISON (Bison bison athabascae) USING 

IN VITRO MATURED CUMULUS-OOCYTE COMPLEXES 
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4.1 Abstract  

Two experiments were done to test the hypothesis that morphologic characteristics of wood 

bison cumulus-oocyte complexes (COC) are reflective of the ability of the oocyte to develop to an 

advanced embryonic stage after in vitro maturation, fertilization and culture, and to determine the 

effect of prolonging the interval from the end of superstimulation treatment to oocyte collection 

(FSH starvation period). Experiments were done during the anovulatory season. Follicular wave 

synchronization was induced by follicular aspiration prior to ovarian superstimulation with two 

doses of FSH given at 48 h intervals during the anovulatory season. In Experiment 1, COC were 

collected 3 days (72 h) after the last dose of FSH by follicular aspiration from 10 bison, and 

classified as compact, expanded or denuded. The COC were matured in vitro for 24 h before 

fertilization in vitro (Day 0). Embryo development was assessed on Days 3, 7 and 8. The blastocyst 

rate was 7/34, 2/10 and 0/3 in COC classified as compact, expanded and denuded, respectively 

(P>0.05); however, only compact COC resulted in embryos that reached the expanded blastocyst 

stage. In Experiment 2, COC were collected at either 3 or 4 days (72 or 96 h) after the last dose of 

FSH (n=16 bison/group) to determine the effect of the duration of FSH starvation on oocyte 

competence. The COC were classified as compact good (>3 layers of cumulus cells), compact 

regular (1-3 layers of cumulus cells), expanded or denuded, and oocytes were matured, fertilized 

and cultured in vitro. Although follicles were larger (P<0.05) in the 4-day FSH starvation group, 

there was no effect of starvation period on the distribution of COC morphology; overall, 112/194 

(57.7%) were compact, 29/194 (26.3%) were expanded, 39/194 (20.1%) were denuded, and 14/194 

(7.2%) were degenerated (P<0.05). Similarly, there was no effect of starvation period on embryo 

development. Compact good COC had the highest cleavage (88%) and blastocyst rate (54%; 

P<0.05). Compact regular COC tended to have a higher blastocyst rate (25%, P=0.08) than 

expanded COC and had a higher blastocyst rate than denuded COC. Expanded and denuded COC 
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had similarly low cleavage (40% vs. 59%, respectively) and blastocyst rates (5% vs. 8%, 

respectively). In conclusion, morphologic characteristics of wood bison COC are reflective of the 

ability of the oocyte to develop into an embryo in vitro. Importantly, oocytes collected from 

superstimulated bison cows were competent to develop to the blastocyst stage following in vitro 

maturation, fertilization and culture. 

4.2. Introduction 

  Wood bison (bison bison athabascae) are the largest terrestrial mammal in North America. 

This species is listed as Threatened under Schedule I of the Canadian Species at Risk Act (SARA; 

Environment and Climate Change Canada, 2016). The population in Wood Buffalo National Park 

in Canada represents the largest, most genetically diverse reserve of wood bison in the world 

(McCormack, 1992; McFarlane et al., 2006), but has an on-going disease prevalence of 30-40% 

for brucellosis and tuberculosis (10 of the 12 free-ranging herds of wood bison in Canada are 

endemically infected; Environment and Climate Change Canada, 2016). To retain the genetic 

diversity of wood bison and to mitigate the effects of endemic disease, the use of reproductive 

technologies was recommended in a recent report as an effective strategy to preserve the genetic 

material (gametes and embryos) of wood bison (MacPhee et al., 2016).  

In vitro production of embryos (IVP) is used worldwide in a variety of species (e.g. cattle 

[Sirard and Blondin, 1996], llamas [Trasorras et al., 2014], deer [Comizzoli et al., 2001]) and has 

been proposed as a means of rescuing the genetics of wood bison (reviewed in Cervantes et al., 

2016a). Collection of potentially competent oocytes is the first step for successful in vitro embryo 

production (Merton et al., 2003). Immature oocytes are matured in vitro after collection as a 

standard procedure in various species (e.g, cattle [Goodhand et al., 1999], human [Smith et al. 
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2000], river buffalo [Manjunatha et al., 2008]). Importantly, immature oocytes may be obtained 

from a variety of donors including those that are pregnant [Meintjes et al., 1995], prepubertal 

[Bernal et al., 2015], or that have recently died [Sambasiva Rao et al., 2010]). While the use of 

immature oocytes for in vitro embryo production provides an opportunity to rescue biological 

material for conservation purposes, fewer than 10% of immature oocytes derived bison ovaries 

obtained following slaughter developed into blastocysts in the only study reported to-date 

(Thundathil et al., 2007). Because slaughterhouse-derived ovaries are not readily available for 

bison, and because ovarian status may influence oocyte competence, we developed a practical and 

effective method of collecting cumulus oocyte complexes (COC) from live wood bison by 

transvaginal ultrasound-guided follicle aspiration (Palomino et al., 2013, 2014). By using this 

approach, results of a recent study revealed that the proportion of wood bison oocytes that reached 

the MII stage of development was maximal after 24 h of in vitro maturation (Cervantes et al., 

2016a). 

Results of several other studies support the notion that morphology of the COC is related to the in 

vitro developmental potential of immature oocytes in different species (e.g., cattle [Shioya et al., 

1988; Hazeleger et al., 1995; Boni et al., 2002; Madison et al., 1992; Bakri et al., 2016]; goat 

[Katska-Ksiazkiewicz et al., 2007]; sheep [Kelly et al. 2007; Dadashpour Davachia et al., 2012]; 

water buffalo [Singh et al., 2012]). In cattle, immature oocytes are routinely selected for IVP on 

the basis of the appearance of the ooplasm and the characteristics of cumulus cells surrounding the 

oocyte (i.e., compactness and number of cell layers; Gordon, 2004). In bison, the morphologic 

characteristics of immature oocytes and their relationship to in vitro embryo development have not 

been reported.  
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Aside from the in vitro environment itself, the ability of oocytes to develop into viable embryos 

(oocyte competence) has been reported to be associated with the physiologic status of the follicle 

from which it came (reviewed in Dias et al., 2014). For instance, the period of FSH starvation 

between the end of superstimulatory treatment and the time of oocyte collection in cattle (i.e. also 

referred to as the FSH withdrawal or coasting period) impacts the follicle diameter and maturity, 

and in turn, the in vitro developmental potential of the oocytes (Blondin et al. 2002, 2012). During 

FSH starvation, granulosa cells undergo transcriptomic changes related to post-LH surge 

maturation and, depending on the duration of FSH starvation, these changes may increase oocyte 

competence (reviewed in Dias et al., 2014; Sirard et al., 2006). A 48-h period of FSH starvation, 

compared to 24 and 72 h, resulted in increased production of bovine embryos in vitro (Blondin et 

al., 1997). In another study in cattle, oocyte competence was highest after an FSH starvation period 

of between 44 and 68 h, and was lower after 92 h of starvation (Nivet et al., 2012). The effects of 

FSH starvation on the competence of wood bison oocytes has not been reported.  

The objectives of the present study were to test the hypothesis that morphologic characteristics 

of wood bison cumulus-oocyte complexes (COC) are reflective of the ability of the oocyte to 

develop to an advanced embryonic stage after in vitro maturation, fertilization and culture 

(Experiments 1 and 2), and to determine the effect of prolonging the interval from the end of 

superstimulation treatment involving two doses of FSH diluted in hyaluronan given 48 h apart to 

oocyte collection (FSH starvation period) on follicular response, oocyte morphologic indicators, 

and blastocyst development (Experiment 2).   

4.3. Materials and methods 

4.3.1. Animals 
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The experiments were done in March (Experiment 1) and May to June (Experiment 2); i.e., 

both during the anovulatory season in wood bison. Mature (6 to 11 years old) non-lactating female 

wood bison (n = 32), with an average body condition score of 3.5 (scale of 1 to 5; Vervaecke et 

al., 2005), were confined to corrals with free access to fresh water and alfalfa-brome grass hay at 

the Native Hoofstock Centre, University of Saskatchewan. The experimental protocol was 

approved by the University of Saskatchewan’s Animal Research Ethics Board, and done in 

accordance with the guidelines of the Canadian Council on Animal Care. 

4.3.2. Experiment 1: In vitro embryo production (pilot study) 

Follicular wave emergence was induced among bison (n=10; 5 bison per day on 2 separate 

days) by transvaginal ultrasound-guided aspiration of all follicles ≥5 mm in diameter (follicular 

ablation) as reported previously (Palomino et al., 2014a). Briefly, follicles were aspirated using a 

5-MHz transvaginal probe (ALOKA SSD-900, Tokyo, Japan) equipped with a disposable 18-ga x 

1 ½” vacutainer needle attached to a 6 mL syringe by silicon tubing 60 cm long x 1.14 mm internal 

diameter. On the day after follicle ablation (i.e., day of a new wave emergence; Bergfelt et al., 

1994, Palomino et al., 2014a), bison were treated with 300 mg of NIH-FSH-P1 (Folltropin-V, 

Vetoquinol Canada Inc., Lavaltrie, QC, Canada) i.m. diluted in 0.5% hyaluronan (5 mg/mL, MAP-

5, Vetoquinol Canada Inc.) and again 2 days later with 100 mg of NIH-FSH-P1 to induce ovarian 

superstimulation, as previously described (Palomino et al., 2013).  

Three days (72 h) after the second dose of FSH (Fig. 1), COC were collected by transvaginal 

ultrasound-guided aspiration of all follicles ≥5 mm in diameter, as previously described (Palomino 

et al., 2013, 2014b). In brief, a short-beveled 18-ga x 2” disposable needle (Misawa Medical 

Industry Ltd., Edogawa-Ku, Tokyo, Japan) connected to a 50 mL conical Falcon tube by silastic 

tubing (internal diameter 1.14 mm; Cole Palmer, Montreal, Quebec, Canada) was used for COC 
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collection. Follicular contents were aspirated using a regulated vacuum pump set at a flow-rate of 

20 mL/min. The temperature in the collection area, surrounding the Falcon tube and silastic tubing, 

was kept at 22-25°C using a portable liquid propane forced-air heater (Dyna-Glo Pro; GHP Group 

Inc, Morton Grove, IL, USA). 

The collection medium consisted of Dulbecco’s phosphate-buffered saline (DPBS, Gibco, 

Grand Island, NY, USA), supplemented with 0.15% ET Surfactant (Vetoquinol Canada Inc.) and 

200 IU/L of heparin (heparin sodium injection USP, Sandoz, Boucherville, Quebec, Canada). The 

contents of the Falcon tube were poured through an ova/embryo filter with a 75 µm mesh (Emcon 

filter; Agtech, Manhattan, Kansas, USA), and the filter was rinsed using D-PBS medium without 

surfactant, and gently poured into a 90 mm Petri dish to search for COC using a stereomicroscope 

(SMZ 1000, Nikon Instrument Inc., Melville, NY, USA) at 10x magnification. The temperature of 

the COC searching room was maintained at 25 to 30°C. 

The isolated COC were washed three times with holding medium (D-PBS + 5% calf serum) 

and morphologically classified according to the number of cumulus cell layers and the appearance 

of the cumulus cells and ooplasm. Compact COC were those with two or more layers of granulosa 

cells tightly surrounding the oocyte, expanded COC were those with expanded or partially 

dissociated cumulus cells, denuded COC were those with no cumulus cells or an incomplete layer 

of cumulus cells, and degenerated COC were those with pyknotic cumulus cells and vacuolated 

ooplasm (adapted from Ratto et al., 2007). Degenerated COC were discarded from further 

processing. 

The number of follicles ≥5 mm was determined on the day of COC collection by transrectal 

ultrasonography using a 7.5-MHz probe (MyLab 5 VET, Esaote NA, IN, USA). Treatments were 

scheduled so that collection of COC was done in two replicates (n=5 bison/replicate).  
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4.3.3. In vitro maturation, fertilization, and culture 

All chemicals and reagents used for maturation, fertilization and embryo culture were 

purchased from Sigma-Aldrich (Oakville, ON, Canada) unless otherwise stated. Maturation 

medium consisted of TCM-199 (Gibco, Grand Island, NY, USA) supplemented with 5% (v/v) calf 

serum (CS), 5 μg/mL pLH (Lutropin-V, Vetoquinol Canada Inc.), 0.5 μg/mL pFSH (Folltropin-V, 

Vetoquinol Canada Inc.) and 0.05 μg/mL gentamicin. The COC from each morphologic category 

were washed three times in maturation medium, then incubated in four-well dishes (NUNC, 

Thermo Fisher Scientific, Rochester, NY, USA) containing 1 mL/well of maturation medium at 

38.5°C, 5% CO2 in air and high humidity. 

After 24 h of in vitro maturation, semen from two wood bison bulls, frozen in Triladyl 

extender (Hussain et al., 2011), was thawed, pooled and used for in vitro fertilization. Motile sperm 

were selected using the Percoll density gradient method (45% and 90%), as described previously 

(Parrish et al., 1995). Progressive motility (i.e., the percentage of spermatozoa that had directional 

movement), as assessed by conventional light microscopy at 400x magnification was 60 to 75% 

for all replicates. Sperm were re-suspended to a final concentration of 5 x 106 sperm⁄mL in 

Brackett-Oliphant fertilization medium (Brackett and Oliphant, 1975). Oocytes were washed three 

times in fertilization medium supplemented with 10% BSA and transferred to four-well dishes 

containing 500 uL/well of the sperm suspension. Oocytes and sperm were co-incubated at 38.5°C 

in 5% CO2 in air and high humidity. 

After 18 h co-incubation, the presumptive zygotes were mechanically denuded of cumulus cells 

by gentle pipetting, then washed three times in in vitro culture medium (Charles Rosenkran’s 

aminoacid [CR1aa] medium with 5% calf serum containing amino acids, L-Glutamic acid, BSA 
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and gentamicin, Prentice et al., 2011) and cultured in four-well dishes (n=3 to 13 zygotes/well) 

containing 500  μL/well of in vitro culture medium in a humidified atmosphere of 5% CO2, 5% O2 

and 90% N2 at 38.5°C, as reported (Cervantes et al., 2016b).  

Cleavage was evaluated after 56 h in culture. Embryos with ≥2 cells were separated from the 

unfertilized oocytes, washed and transferred to fresh in vitro culture medium. Embryo 

development was assessed on Days 7 and 8 (Day 0 = day of in vitro fertilization), and classified 

according to guidelines established by the International Embryo Transfer Society (IETS Manual, 

2010) for in vivo-derived embryos as compact morula (embryo undergoing the compaction process 

where individual blastomeres are difficult to discern from one another), early blastocyst (embryo 

has formed a fluid-filled blastocele occupying ≤50% of the volume of the embryo), blastocyst 

(blastocele occupies >50% of the volume of the embryo, visual differentiation between the 

trophoblast and the compact inner cell mass), expanded blastocyst (overall diameter of embryo 

increases, zona pellucida becomes thinner), hatching-hatched blastocyst (embryo partially or 

completely free of the zona pellucida).  

4.3.4. Experiment 2: Effect of FSH starvation period on in vitro embryo production from in vitro 

matured oocytes in wood bison 

Ovarian follicular synchronization and superstimulation treatments were done in female wood 

bison (n = 32, 6 to 10 years old) as described in Experiment 1 (Fig. 1). Treatments were scheduled 

so that collection of COC was done in four replicates (n=8 bison/replicate). The COC were 

collected transvaginally, as described in Experiment 1, but at either 3 days (72 h)  or 4 days (96 h) 

after the second dose of FSH (n=16 bison/group). The COC were located under a stereomicroscopy 

at 10x magnification, washed three times in holding medium (D-PBS + 5% calf serum), and 

classified morphologically according to the characteristics and the number of cumulus cell layers 
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and the appearance of the oocyte cytoplasm (adapted from Seneda et al., 2001) as follows: compact 

good (more than three layers of unexpanded cumulus cells, and with homogeneous ooplasm), 

compact regular (one to three layers of unexpanded cumulus cells, and with homogeneous 

ooplasm), denuded (partially or not covered by cumulus cells), expanded (expanded cumulus 

cells), and atretic/degenerated (dark cumulus oophorus and signs of cytoplasmic degeneration such 

as irregular/heterogeneous cytoplasm). The COC from the latter category were discarded from 

further processing. 

As in Experiment 1, the COC were placed in maturation medium for 24 h and then co-incubated 

(in vitro fertilized) with bison sperm for 18 h. Presumptive zygotes were placed in culture medium 

and evaluated after 56 h for cleavage. Cleaved zygotes were transferred to fresh culture medium, 

and development was evaluated on Days 7 and 8, as described in Experiment 1. In this experiment, 

blastocysts were also graded morphologically according to the grading system established by the 

IETS for in vivo-derived embryos as Grade 1 (symmetrical and spherical cell mass, individual 

blastomeres uniform in size, color and density, and minor irregularities), Grade 2 (moderate 

irregularities in the overall shape of the embryonic mass, or in size, color, and density of individual 

cells), Grade 3 (major irregularities in shape of the embryonic mass, or in size, color, and density) 

and Grade 4 (degenerated/dead), as described (IETS Manual, 2010).  

4.3.5. Statistical analyses 

In both experiments, cleavage and blastocyst rates (based on the total number of COC 

submitted to in vitro maturation) were compared by 2-tailed Chi-square or 2-tailed Fisher’s exact 

test using Proc Frequency procedure (SAS, Enterprise Guide 4.2, Statistical Analysis System 

Institute Inc., Cary, North Carolina, USA). In Experiment 2, cleavage, morula and blastocyst rates 

were compared using the generalized linear model procedure in SAS with a binomial error 
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distribution and a logit link function to determine the effects of FSH starvation (3-day vs. 4-day) 

and COC morphological category (compact good, compact regular, expanded, denuded). The 

number and size of follicles available for aspiration (i.e., ≥5 mm) and the number of COC collected 

were compared between the 3-day and 4-day FSH starvation groups by Student's t-test, and COC 

collection rate was compared by 2-tailed Chi-square. Values are expressed as a proportion or a 

mean ± SEM; P-values of <0.05 were considered significant. 

4.4. Results 

4.4.1. Experiment 1: In vitro embryo production (pilot study) 

The number of follicles ≥5 mm per bison on the day of COC collection was 10.8 ± 1.3. A total 

of 50 COC were collected from 108 follicles aspirated (46% collection rate) in 10 superstimulated 

wood bison. Of the COC collected, 34 (68%) had compact cumulus cells, 12 (24%) had expanded 

cumulus, 3 (6%) were partially or completed denuded of cumulus cells, and 1 (2%) was 

degenerated. The degenerated COC was discarded from further processing, and two expanded 

COC were lost during washing and handling.  

No effect of replicate was detected for any end point; therefore, data from the two replicates 

were combined for further analyses. The proportion of oocytes undergoing cleavage by 56 h, and 

the proportion that developed to the blastocyst stage on Day 7 and Day 8 did not differ among 

morphologic categories (Table 4.1). However, none of the denuded COC developed into a 

blastocyst. Three embryos derived from compact COC reached the expanded blastocyst stage, but 

none from expanded COC. 

4.4.2. Experiment 2:  Effect of FSH starvation period on in vitro embryo production using in vitro 

matured oocytes in wood bison   
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The ovarian response and results of COC collection are summarized in Table 4.2. In the 4-day 

FSH starvation group, the number of follicles ≥10 mm tended to be greater (P = 0.09) and the mean 

diameter of follicles ≥5 mm was greater than in the 3-day group. The COC collection rate was 

higher in the 3-day vs. 4-day FSH starvation groups, but the total number of COC collected per 

bison did not differ between groups.  

A total of 98 and 96 COC were collected from superstimulated wood bison in the 3-day vs. 4-

day FSH starvation groups, respectively. From these COC, 55 (56.1%) and 57 (59.4%) had 

compact cumulus in each group, respectively, and did not differ between groups. The number of 

COC in other morphologic categories was also similar between the groups (Table 4.3). Twelve 

compact COC and nine expanded COC were lost during handling, washing and transport.  

Extending the FSH starvation period from 3 to 4 days was not associated with an increase in 

cleavage rate or blastocyst rate (including all COC morphologic categories; Table 4.4, Fig. 4.2).    

Cleavage and blastocyst rates were highest for compact good COC (Table 4, Fig. 4.3). No effect 

of FSH starvation period was detected for morphological grading of blastocysts; therefore, data 

from the two starvation groups were combined for further analyses. The proportion of blastocysts 

classified as Grade 1 and 3 differed between compact good COC and compact regular COC (Table 

4.5). Although embryo development beyond Day 8 was not examined critically, six 

hatching/hatched blastocysts and one hatching/hatched blastocyst were detected between Days 9 

and 11 (Fig. 4.3), from the compact good COC and compact regular COC, respectively.  

4.5. Discussion  

Results of the present study support the hypothesis that the morphologic characteristics of wood 

bison COC at the time of collection are reflective of oocyte developmental competence. A greater 

proportion of bison oocytes with compact cumulus cells than partially denuded or completely 
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denuded oocytes developed to the blastocyst stage. This is in agreement with previous studies in 

cattle (Hazeleger et al., 1995) and water buffalo (Warriach and Chohan, 2004) where morphologic 

criteria were used to select COC with a higher potential for blastocyst development. Results of the 

present study also demonstrate a developmental advantage of oocytes with more than three layers 

of cumulus cells (i.e. good compact) over those with fewer cumulus cells (i.e., regular compact), 

consistent with findings in other species (e.g. cat [Wood and Wildt, 1997]; cattle [Kelly et al., 

2007]; sheep [Kelly et al., 2007; Dadashpour Davachia et al., 2012]).  

The present study is the first to demonstrate that immature COC collected by follicle aspiration 

from live bison are competent to develop to the blastocyst stage following in vitro maturation, 

fertilization and culture. In an earlier study of the characteristics of in vitro maturation of bison 

oocytes (Cervantes et al., 2016a), 60-70% of the oocytes were at the metaphase-II stage after 24 h 

of in vitro culture. In the present study, 20% of compact COC developed to the blastocyst stage in 

Experiment 1, and about 40% in Experiment 2. Improved blastocyst production in Experiment 2 

may be attributed to a greater number of compact COC with more than three layers of cumulus 

cells collected in this experiment, and which is consistent with the concept that the number of 

cumulus cell layers surrounding the oocyte is related to subsequent embryo development. 

Interestingly, wood bison oocytes matured in vivo were found to be surrounded by multiple layers 

of fully expanded cumulus cells (Cervantes et al., 2016a), and were competent to develop to the 

blastocyst stage after immediate in vitro fertilization (Cervantes et al., 2016b). Importantly, over 

50% of blastocyst produced from compact good COC in the present study were Grade 1 (excellent 

or good), which was higher than the 16% from compact regular COC. In cattle, Grade 1 embryos 

at the blastocyst stage were shown to yield the highest pregnancy rates when transferred either 

fresh or frozen-thawed (in vitro-produced embryos: [Hasler et al., 1987; Hasler et al., 1995]; in 

vivo-derived embryos: [Scenna et al., 2008]). 
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The percentage of compact COC that developed to the blastocyst stage in the present study was 

similar to that reported in FSH-treated cows (53%, Vieira et al., 2014) and FSH-treated goats and 

ewes (50% and 62%, respectively; Cox and Alfaro, 2007). This represents a remarkable 

improvement in blastocyst production compared to previous reports in bison involving the use of 

ovaries from slaughtered animals (i.e., 8 to 16% blastocyst production; Thundathil et al., 2007; 

Aurini et al., 2009; Barfield and Siedel, 2011). A similar difference was reported in water buffalo 

where oocytes collected by follicular aspiration from live animals had greater developmental 

competence than slaughterhouse-derived oocytes (Neglia et al., 2003). Oocytes collected from 

excised ovaries often include those aspirated from small follicles (≤3 mm) which have been shown 

to produce the lowest proportion of blastocysts in cattle (Karami Shabankareh et al., 2014). These 

findings highlight the advantage of being able to differentially collect oocytes from follicles of a 

particular size (i.e., ≥5 mm) by transvaginal follicular aspiration, resulting in a greater proportion 

of competent oocytes. In addition, oocytes collected from FSH superstimulated cows were shown 

to result in  higher  number of high-quality blastocysts in comparison with those collected from 

non-superstimulated animals (Chaubal et al., 2006). In FSH superstimulated cows, follicles of 

medium size (6-10 mm) increase and those may contain oocytes with improved developmental 

competence in vitro (Goodhand et al., 2000). 

The period of FSH starvation evaluated in the present study resulted in larger follicles at the 

time of COC collection, similar to studies in cattle (Blondin et al., 2002; Nivet et al., 2012), but 

had no effect on the total number and types of COC collected. Furthermore, the proportion of 

oocytes developing to the blastocyst stage was unaffected by extending the FSH starvation period 

by 24 h. This is in contrast to previous results in cattle (Blondin et al., 2002) where 48 h compared 

to 33 h of FSH starvation following multiple injections of FSH (diluted in saline), increased 

blastocyst production. Further experiments are needed to determine the effect of duration of the 
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FSH starvation period and/or FSH dosing schedule on in vitro embryo production in bison, as was 

reported in cattle.  

In summary, morphologic characteristics of wood bison COC were associated with the potential 

of oocytes to develop to advanced embryo stages after in vitro maturation, fertilization and culture. 

Compact COC with >3 layers of cumulus cells collected by transvaginal ultrasound-guided follicle 

aspiration from superstimulated wood bison had the highest competence to develop to the 

blastocyst stage following in vitro maturation, fertilization and culture. Extending the FSH 

starvation period from 3 to 4 days did not increase blastocyst production in wood bison. The 

blastocyst production rate of 20-30% of all COC collected offers promise for efficient propagation 

of genetically valuable bison for both conservation and production purposes, but further studies 

are needed to evaluate techniques to preserve the embryos for future use, as well as evaluate the 

potential of these embryos to complete full-term pregnancy after transfer to recipients. 
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Table 4.1. In vitro development of wood bison embryos produced from different morphologic 

categories of cumulus-oocyte complexes (COC) collected from superstimulated wood bison 

(n=10) by transvaginal ultrasound-guided follicular aspiration. Oocytes were matured, fertilized 

and cultured in vitro (Day 0 = day of in vitro fertilization, IVF; Experiment 1). 

 

Morphologic category 

End point1 Compact COC Expanded COC Denuded COC 

COC submitted to IVF (n) 34 10 3 

Cleaved oocytes 19/34 (56.0%) 6/10 (60.0%) 1/3 (33.0%) 

Blastocysts on Day 7 6/34 (17.6%) 1/10 (10.0%) 0/3 (0%) 

Blastocysts on Day 8 7/34 (20.6%) 2/10 (20.0%) 0/3 (0%) 

1No significant differences among COC morphologic categories for any end point. 

 

Table 4.2. Ovarian response and collection of cumulus-oocyte complexes (COC) in 

superstimulated wood bison after FSH starvation (collection 3 vs. 4 days after the last treatment 

of FSH; mean ±SEM; Experiment 2). 

End point 3-day FSH starvation 4-day FSH starvation 

Number of bison 16 16 

Number of follicles ≥5 mm of day of 

COC collection 

12.4 ± 1.0 13.3 ± 1.2 

Number of follicles ≥10 mm on day of 

COC collection 

4.8 ± 0.7x 6.9 ± 1.0y 

Mean diameter of all follicles ≥5 mm 

(day of COC collection) 
9.3 ± 0.21a 10.0 ± 0.22b 

Number of follicles aspirated per bison 9.4 ± 0.8 11.4 ± 1.1 

COC collection rate (COC 

collected/follicle aspirated) 
98/151a (64.9%)  96/182b (52.7%)  

Number of COC collected per bison 6.1 ± 0.9  6.0 ± 1.0  

ab Within rows, values with different superscripts are different (P<0.05) 

xy Within rows, values with different superscripts tended to differ (P≤0.09) 
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Table 4.3. Distribution of morphologies of cumulus-oocyte complexes (COC) collected from 

superstimulated wood bison after FSH starvation (3 vs. 4 days after the last treatment of FSH; n = 

16 bison per group). The COC were classified as compact good (> 3 layers of unexpanded cumulus 

cells and homogeneous ooplasm), compact regular (1 to 3 layers of unexpanded cumulus cells and 

homogeneous ooplasm), expanded, or denuded (Experiment 2). 

End point 

3-day FSH 

starvation1 

4-day FSH 

starvation1 

Total 

Compact COC  55/98 (56.1%) 57/96 (59.4%) 112/194a (57.7%) 

Compact good COC  29/98 (29.6%) 32/96 (33.3%) 61/194b (31.4%) 

Compact regular COC  26/98 (26.5%) 25/96 (26.0%) 51/194bd (26.3%) 

Expanded COC  17/98 (17.3%) 12/96 (12.5%) 29/194c (14.9%) 

Denuded COC  20/98 (20.4%) 19/96 (19.8%) 39/194cd (20.1%) 

Degenerated COC  6/98 (6.1%) 8/96 (8.3%) 14/194e (7.2%) 

1 No significant differences between groups for any end point. 

abcde In the last column (total), values with different superscripts are different (P<0.05). 
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Table 4.4. In vitro development of wood bison embryos produced from cumulus-oocyte 

complexes (COC) collected from superstimulated bison by transvaginal ultrasound-guided 

follicular aspiration after FSH starvation (3 vs. 4 days after the last treatment of FSH; n=16 bison 

per group). At the time of collection, COC were categorized as compact good (> 3 layers of 

unexpanded cumulus cells and homogeneous ooplasm), compact regular (1 to 3 layers of 

unexpanded cumulus cells and homogeneous ooplasm), expanded, or denuded. Oocytes were 

matured, fertilized and cultured in vitro (Day 0 = day of in vitro fertilization, IVF; Experiment 2).  

End point 3-day FSH starvation 4-day FSH starvation Total 

Cleaved oocytes1    

Compact good COC 24/29 (82.8%) 22/23 (95.7%) 46/52a (88.5%) 

Compact regular COC 19/25 (76.0%) 16/23 (69.6%) 35/48ac (72.9%) 

Expanded COC 6/13 (46.2%) 2/7 (28.6%) 8/20b (40.0%) 

Denuded COC 12/20 (60.0%) 11/19 (57.9%) 23/39bc (59.0%) 

Total 61/87 (70.1%) 51/72 (70.8%) 112/159 (70.4%) 

Morulas on Day 72    

Compact good COC 6/29 (20.7%) 5/23 (21.7%) 11/52 (21.2%) 

Compact regular COC 3/25 (12.0%) 7/23 (30.4%) 10/48 (20.8%) 

Expanded COC 1/13 (7.7%) 0/7 (0%) 1/20 (5.0%) 

Denuded COC 2/20 (10.0%) 4/19 (21.1%) 6/39 (15.4%) 

Total 12/87 (13.8%) 16/72 (22.2%) 28/159 (17.6%) 

Blastocysts on Day 73     

Compact good COC 13/29 (44.8%) 11/23 (47.8%) 24/52a (46.2%) 

Compact regular COC 6/25 (24.0%) 8/23 (34.8%) 14/48ab (29.2%) 

Expanded COC 1/13 (7.7%) 0/7 (0%) 1/20bc (5.0%) 

Denuded COC 2/20 (10.0%) 2/19 (10.5%) 4/39c (10.3%) 

Total 22/87 (25.3%) 21/72 (29.2%) 43/159 (27.0%) 

Blastocysts on Day 84    

Compact good COC 14/29 (48.3%) 14/23 (60.9%) 28/52a (53.8%) 

Compact regular COC 5/25 (20.0%)  7/23 (30.4%) 12/48b (25.0%) 

Expanded COC 1/13 (7.7%) 0/7 (0%) 1/20bc (5.0%) 

Denuded COC 2/20 (10.0%) 1/19 (5.3%) 3/39c (7.7%) 

Total 22/87 (25.3%) 22/72 (30.6%) 44/159 (27.7%) 
1 FSH starvation group (P = 0.46), COC morphology (P = 0.03), Interaction (P = 0.46). 
2 FSH starvation group (P = 0.90), COC morphology (P = 0.25), Interaction (P = 0.55). 
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3 FSH starvation group (P = 0.57), COC morphology (P = 0.004), Interaction (P = 0.84). 
4 FSH starvation group (P = 0.15), COC morphology (P = 0.003), Interaction (P = 0.27). 
abc For each embryonic stage, values with no common superscript in the final column are different 

(P<0.05).  

 
 

Table 4.5. Morphological grading of wood bison blastocysts produced in vitro from compact 

cumulus-oocyte complexes (COC) collected from superstimulated bison by transvaginal 

ultrasound-guided follicular aspiration (n=32 bison). The compact COC were categorized as 

compact good (> 3 layers of unexpanded cumulus cells and homogeneous ooplasm) or compact 

regular (1 to 3 layers of unexpanded cumulus cells and homogeneous ooplasm) at the time of 

collection. Oocytes were matured, fertilized and cultured in vitro (Day 0 = day of in vitro 

fertilization, IVF; Experiment 2). 

Grade 1: embryos with symmetrical and spherical cell mass, uniform blastomeres 

Grade 2: embryos with moderate irregularities in size, shape, color and density of cell mass 

Grade 3: embryos with major irregularities in size, shape, color and density of cell mass 

ab Within rows, values with different superscripts are different (P<0.05) 

xy Within rows, values with different superscripts tended to differ (P≤0.06) 

 

End point Compact good COC Compact regular COC 

Blastocysts on Day 7 (n) 24 14 

Grade 1 14/24 (58.3%)a 3/14 (21.4%)b 

Grade 2 6/24 (25.0%) 4/14 (28.6%) 

Grade 3 4/24 (16.7%)x 7/14 (50.0%)y 

Blastocysts on Day 8 (n) 28 12 

Grade 1  16/28 (57.1%)a 2/12 (16.7%)b 

Grade 2  6/28 (21.4%) 3/12 (25.0%) 

Grade 3  6/28 (21.4%)a 7/12 (58.3%)b 
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Fig. 4.1. Experimental design including the superstimulation protocol for the purpose of in vitro 

embryo production in wood bison to determine the developmental competence of cumulus-oocyte 

complexes (COC) of different morphologic categories collected by transvaginal ultrasound-guided 

follicular aspiration. In Experiment 2, COC collection was performed either 3 days or 4 days after 

the last dose of follicle stimulating hormone (FSH).  
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Fig. 4.2. In vitro-produced wood bison embryos from in vitro matured oocytes at cleavage stages 

(56 h after in vitro fertilization). The oocytes were collected from superstimulated bison after a 3-

day (A) or 4-day (B) FSH starvation period (Experiment 2).  
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Fig. 4.3. In vitro-produced wood bison embryos from in vitro matured oocytes at A) the early 

blastocyst stage on Day 7, and B) the blastocyst (arrowhead) and expanded blastocyst (arrow) 

stages on Day 8, C) the hatching and D) hatched blastocysts between Days 9 and 11 of in vitro 

culture in Charles Rosenkran’s aminoacid (CR1aa) medium with 5% calf serum containing amino 

acids, L-Glutamic acid, BSA and gentamicin (Day 0=day of in vitro fertilization). 
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CHAPTER 5 

 

IN VITRO EMBRYO PRODUCTION IN WOOD BISON (Bison bison athabascae) USING 

IN VIVO MATURED CUMULUS-OOCYTE COMPLEXES 

This chapter was published in the journal Theriogenology and is reproduced       

with permission (Appendix C). 
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5.1. Abstract  

Experiments were conducted in wood bison to determine the effect of additional 4 h of maturation 

time on embryo development of in vivo matured oocytes. In Experiment 1, cumulus-oocyte 

complexes (COC) were collected 30 h after hCG treatment in superstimulated wood bison, and 

expanded COC were fertilized immediately or after 4 h of additional in vitro maturation. Embryo 

development was assessed on Days 3, 7 and 8 (Day 0= day of fertilization). No difference in 

cleavage rate was detected (55.3 vs. 60.5%, P= 0.82), but the Day 8 blastocyst rate was higher 

after an additional 4 h of in vitro maturation time (44.7 vs. 18.4 %, P=0.03). In Experiment 2, COC 

were collected at either 30 h or 34 h after hCG treatment. Expanded COC from the 30 h group were 

fertilized after 4 h of in vitro maturation, while those from the 34 h group were fertilized immediately. 

A higher cleavage rate (74.3 vs. 57.0%) and blastocyst rate (54.1 vs. 37.2%) was found in the 34 

h group vs. the 30 h group (P<0.05). In conclusion, an additional short period of in vitro maturation, 

or an extended period of in vivo maturation are beneficial for in vitro embryo production in wood 

bison. 

5.2. Introduction 

Endemic diseases (i.e., brucellosis and tuberculosis) have infected wild wood bison (Bison 

bison athabascae) herds in Canada, and represent a risk to remaining healthy wood bison 

populations and neighbouring domestic livestock (Mitchell et al., 2000). Eradication of infected 

bison has been suggested (Environment Assessment Panel, 1990), but carries with it the risk of 

non-compensable loss of genetic diversity in this threatened population. In a recent report on the 

threat posed by the loss of genetic diversity, the use of reproductive technologies was 
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recommended as an effective strategy to preserve the genetic material (gametes and embryos) of 

wood bison (MacPhee et al., 2016).  

In vitro production of embryos is one such technique for rescuing the genetics of wood bison. 

The technique has been developed successfully in cattle largely through the use of abattoir-derived 

ovaries (Sirard and Blondin, 1996). However, bison oocytes available for research are scarce, 

consequently few studies on in vitro embryo production using abattoir-derived ovaries have been 

reported, and have resulted in low blastocyst production (Thundathil et al., 2007; Aurini et al., 

2009; Barfield and Seidel 2011). In cattle, collection of cumulus-oocyte complexes (COC) in live 

animals by transvaginal follicular aspiration has become an important source of genetic material 

for in vitro embryo production (Pieterse et al., 1991). Since in vitro culture conditions do not yet 

faithfully mimic the intrafollicular environment (Hunter, 1998), we developed a transvaginal 

collection technique in live wood bison as a method of harvesting oocytes for in vitro embryo 

production (Palomino et al., 2013, 2014a, 2014b). By using live wood bison as a source of oocytes, 

we now have an opportunity to optimize oocyte competence by inducing maturation in vivo.  

In a recent study (Cervantes et al., 2016a), we found that nuclear maturation occurred more 

rapidly in vitro vs. in vivo, as has been reported in pigs (Motlik and Fulka, 1976), but was 

associated with lesser cumulus expansion than in vivo maturation. In vivo oocyte maturation was 

more complete at 30 h than 24 h after treatment of superstimulated wood bison with hCG; more 

than one-third of oocytes collected 30 h post-hCG were at the MII stage and had fully expanded 

cumulus cells. Another third of the oocytes had fully expanded cumulus cells suggesting that 

nuclear maturation to the MII stage was imminent. The results provided rationale for the 

hypothesis that additional maturation time is required for expanded wood bison COC at the MI 

stage to complete maturation. Whether expanded COC collected 30 h after hCG administration 



70 
 

can be used for immediate in vitro fertilization (IVF), or whether an additional period of maturation 

is beneficial for fertilization and embryo development, has not been investigated in wood bison. 

The objectives of the present study were to determine the effect of an additional 4 h of in vitro 

maturation on embryo development of in vivo matured oocytes collected 30 h after hCG treatment 

(Experiment 1), and to determine if extending the interval between hCG treatment and COC collection 

from 30 to 34 h will improve in vitro embryo production (Experiment 2). The study also provided the 

opportunity to compare the effect of season (ovulatory vs. anovulatory) on the number of follicles 

≥ 5 mm available for aspiration at the time of COC collection, the number of expanded COC 

collected after inducing in vivo maturation, and on the production of wood bison embryos in vitro. 

5.3. Materials and methods 

5.3.1. Animals 

The study was performed with mature (6 to 11 years old) non-lactating female wood bison 

during the ovulatory season (September to November, Experiment 1; n = 24) and anovulatory 

season (April to May, Experiment 2; n = 28). The bison were part of the research herd maintained 

on pasture at the Native Hoofstock Centre, University of Saskatchewan. For the period extending 

from 10 days before the experiments to the end of the experiments, the bison were confined to 

corrals with free access to fresh water and alfalfa-brome grass hay to maintain an average body 

condition score of 3.5 (scale of 1 to 5; Vervaecke et al., 2005). The experimental protocol was 

approved by the University of Saskatchewan’s Animal Research Ethics Board, and done in 

accordance with the guidelines of the Canadian Council on Animal Care. 

5.3.2. Experiment 1: Additional in vitro maturation 
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Ovarian synchronization was induced among bison (n = 24) using an intramuscular dose of 

500 µg cloprostenol (Estrumate, Merck Animal Health, Kirkland, Quebec, Canada) followed 8 

days later by transvaginal ultrasound-guided aspiration of all follicles ≥5 mm in diameter 

(follicular ablation),as described previously (Palomino et al., 2014a). Briefly, for follicular 

aspiration, bison were restrained in a squeeze chute and caudal epidural anesthesia was induced 

by administration of 3–5mL of 2% lignocaine hydrochloride (Bimeda-MTC, Animal Health Inc., 

Cambridge, Ontario, Canada) between the first intercoccygeal joint. The vulva was washed with 

detergent and disinfectant before the transvaginal probe was introduced into the vagina and placed 

in the fornix. Follicular ablation was performed using a 5-MHz transvaginal probe (ALOKA SSD-

900, Tokyo, Japan) equipped with a disposable 18-ga x 1 ½” needle (Vacutainer, BD, Mississauga, 

Ontario, Canada) attached to a 6 mL syringe by silicon tubing 60 cm long x 1.14 mm internal 

diameter. On the day after ablation (i.e., expected day of follicular wave emergence; Day 0), bison 

were treated intramuscularly with 300 mg of pFSH (Folltropin-V, Vetoquinol NA Inc., Lavaltrie, 

Québec, Canada) diluted in 0.5% hyaluronan (5 mg/ml, MAP-5, Vetoquinol NA Inc.) and an 

additional 100 mg pFSH in hyaluronan 2 days later, as described previously (Palomino et al., 

2013). A luteolytic dose of 500 µg cloprostenol (Estrumate, Merck Animal Health, Kirkland, 

Quebec, Canada) was given on Day 3 and an intramuscular dose of 2500 IU of hCG (Chorulon, 

Merck Animal Health, Summit, NJ, USA) was administered on Day 4 to induce oocyte maturation 

in vivo (Fig. 1). 

At 30 h after hCG treatment, COC were collected by transvaginal ultrasound-guided aspiration 

of all follicles ≥5 mm in diameter, as described (Palomino et al., 2013, 2014b). The COC were 

collected using a disposable 18-gax 2” short-bevel needle (Misawa Medical Industry Ltd., 

Edogawa-Ku, Tokyo, Japan) connected to a 50 ml conical Falcon tube via silastic tubing (internal 

diameter 1.14 mm; Cole Palmer, Montreal, Quebec, Canada), and a regulated vacuum pump set at 
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a flow-rate of 20 mL/min. The collection medium consisted of Dulbecco’s phosphate buffered 

saline (D-PBS), 0.15% (vol/vol) ET Surfactant (Vetoquinol NA Inc.), and 200 IU/L of heparin 

(heparin sodium injection USP, Sandoz, Boucherville, Quebec, Canada). The follicular aspirate 

was poured through an embryo filter (Emcon filter; Agtech, Manhattan, Kansas, USA), and the 

COC were rinsed from the filter into a 90 mm Petri dish using collection medium without 

surfactant. The COC were located under a stereomicroscopy at 10x magnification, washed three 

times in holding medium (D-PBS + 5% calf serum), and morphologically classified according to 

the number of cumulus cell layers and the appearance of the oocyte cytoplasm. Compact COC 

were those with three or more layers of granulosa cells tightly surrounding the oocyte, expanded 

COC were those with expanded or partially dissociated cumulus cells, and denuded or degenerated 

oocytes were those without cumulus cells or with pyknotic cumulus cells and vacuolated ooplasm 

(Ratto et al., 2007). 

The number of follicles ≥5 mm was determined on the day of COC collection by transrectal 

ultrasonography using a 7.5-MHz probe (MyLab5; Esaote, Ajax, Ontario, Canada). Treatments 

were scheduled so that collection of COC was done in four replicates (n=6 bison/replicate). Only 

expanded COC were used for the purposes of this experiment, and were pooled among bison in a 

given replicate. The pooled COC were divided randomly into two groups for either immediate 

fertilization or for additional in vitro maturation before fertilization. 

5.3.3. In vitro maturation, fertilization & culture 

All chemicals and reagents used for maturation, fertilization and embryo culture were 

purchased from Sigma-Aldrich (Oakville, ON, Canada) unless otherwise stated below. Maturation 

medium consisted of TCM-199 (Gibco, Grand Island, NY, USA) supplemented with 5% (vol/vol) 

calf serum, 5μg/mL pLH (Lutropin-V; Vetoquinol NA Inc.), 0.5μg/mL (Folltropin-V; Vetoquinol 
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NA Inc.), and 0.05μg/mL gentamicin. In the additional in vitro maturation group, the expanded 

COC (n = 38) were washed three times in maturation medium, and incubated in four-well dishes 

(NUNC, Thermo Fisher Scientific, Rochester, NY, USA) containing 1 mL/well of maturation 

medium for 4 h at 38.5°C, 5% CO2 in air and high humidity. After 4 h of maturation, the COC 

were submitted to the in vitro fertilization procedure. 

Semen from two wood bison bulls, already frozen in Triladyl extender (Hussain et al., 2011), 

was thawed, pooled and used for in vitro fertilization of COC. Motile sperm were selected by 

placing pooled semen on a Percoll gradient (45% and 90%), as described previously (Parrish et 

al., 1995). Progressive motility (i.e, the percentage of spermatozoa that had directional movement) 

was 60 to 75% for all replicates, as assessed by conventional light microscopy at 400x 

magnification. Sperm were re-suspended to a final concentration of 5 x 106 sperm⁄mL in Brackett-

Oliphant (BO) fertilization medium (Brackett and Oliphant, 1975). The COC were washed three 

times in BO medium supplemented with 10% BSA and transferred to 4-well dishes containing 500 

uL/well of sperm suspension. The COC and sperm were co-incubated for 18 h at 38.5°C in 5% 

CO2 in air and high humidity. 

The presumptive zygotes were mechanically denuded of cumulus cells by gentle pipetting, 

then washed three times in in vitro culture medium (Charles Rosenkran’s aminoacid [CR1aa] 

medium with 5% calf serum containing amino acids, L-glutamic acid, BSA and gentamicin; 

Prentice et al., 2011) and cultured in four-well dishes (n=8 to 11 zygotes/well) containing 

500 μL/well of in vitro culture medium at 38.5°C in 5% CO2, 5% O2 and 90% N2 and high 

humidity. The cleavage rate was recorded after 56 h of culture (Fig. 2). Embryos with ≥2 cells 

were separated from the unfertilized oocytes, placed in fresh in vitro culture medium and cultured 

to Day 8 (Day 0 = day of fertilization). Blastocyst formation was assessed on Days 7 and 8 (Fig. 

5.3). Blastocysts were graded morphologically according to the grading system established by the 
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IETS for in vivo-derived embryos as Grade 1 (symmetrical and spherical cell mass, individual 

blastomeres uniform in size, color and density, and minor irregularities), Grade 2 (moderate 

irregularities in the overall shape of the embryonic mass, or in size, color, and density of individual 

cells), Grade 3 (major irregularities in shape of the embryonic mass, or in size, color, and density) 

and Grade 4 (degenerated/dead), as described (International Embryo transfer Society, 2010).  

5.3.4. Experiment 2: Extending the in vivo maturation period 

Ovarian follicular synchronization, superstimulation and hCG treatments were done in female 

wood bison (n = 28, 6 to 10 years old) as described in Experiment 1 (Fig. 5.1). The COC were 

collected transvaginally, as described in Experiment 1, but at either 30 h or 34 h after hCG 

treatment (n=14 bison per group). Expanded COC in the 30 h-group were fertilized after 4 h of in 

vitro maturation, while expanded COC in the 34 h-group were fertilized immediately. The number 

and size of follicles were determined on the day of hCG treatment and on the day of COC collection 

by transrectal ultrasonography. The experiment was done in four replicates (n = 7 bison per 

replicate), and expanded COC from the 30- and 34-h groups were pooled respectively. 

Presumptive zygotes were cultured in vitro, and embryos were assessed morphologically on Days 

3, 7 and 8, as described in Experiment 1. 

5.3.5. Statistical analyses 

In both experiments, cleavage and blastocyst rates (based on the total number of COC used in 

each treatment group) were compared by Fisher’s exact test or Chi-square test using Proc 

Frequency procedure (SAS, Enterprise Guide 4.2, Statistical Analysis System Institute Inc., Cary, 

North Carolina, USA). 
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In Experiment 2, the number and size of follicles available for aspiration (i.e., ≥5 mm) was 

compared between the 30 h and 34 h group by Student's t-test. Binomial data (COC collection rate 

and ovulation rate) were compared by 2-tailed Chi-square test, and the proportion of bison that 

ovulated was compared using Fisher's exact test. The occurrence of pre-collection ovulation was 

detected on the day of COC collection by the disappearance of follicles ≥10 mm that had been 

present in the ovaries on the day of hCG treatment. Values are expressed as a proportion or a mean 

± SEM. 

Notwithstanding a 5-month separation in time between Experiments 1 and 2, end points were 

compared between experiments to determine the effects of season. The 24 bison used in 

Experiment 1 were used in Experiment 2, but were assigned randomly (i.e., lottery method) to 

treatment groups in each experiment; i.e., no attempt was made to assign bison to the same group, 

and observations were considered independent from one experiment to the next. Data  regarding 

the number of follicles ≥5 mm on the day of COC collection, total number of COC collected, 

number of expanded COC collected from the 30 h post-hCG groups were combined within season 

for seasonal comparison (ovulatory vs. anovulatory season) using Student's t-tests. Only data from 

the 30 h in vivo + 4 h in vitro groups in each experiment were used for seasonal comparisons of 

cleavage, morula, and blastocyst rates of embryo development, using Chi-square tests.  

5.4. Results 

5.4.1. Experiment 1: Additional in vitro maturation 

One bison did not respond to superstimulatory treatment (i.e., no follicles ≥5 mm) and COC 

collection was not attempted; her data were not included in any of the statistical analyses. On the 

day of COC collection, the number of follicles ≥5 mm (i.e., aspiratable) was 10.9 ± 1.3 per bison, 

with a mean diameter of 8.6 ± 0.18 mm. The pre-collection ovulation rate (number of ovulations 
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detected on the day of collection/number of follicles≥10 mm on the day of hCG treatment) was 

23/97 (23.7%). A total of 128 COC were collected from 228 follicular aspirations in 23 bison 

(56.1% collection rate, 5.6 COC per bison). Of the COC collected, 82 (64.1%) had an expanded 

cumulus layer and were used in the study. Six expanded COC were lost during washing and 

handling; therefore, 38 expanded COC were assigned to each group (30 h in vivo maturation, and 

30 h in vivo + 4 h in vitro maturation) and submitted to in vitro fertilization. No effect of replicate 

was detected for any end point; therefore, data from the four replicates were combined for further 

analyses. The proportion of oocytes that underwent cell cleavage by 56 hours, and the proportion 

that developed to the morula and blastocyst stages on Day 7 did not differ between groups (Table 

1). However, the proportion of COC that reached the blastocyst stage on Day 8 was greater in 

those exposed to 4 h of additional in vitro maturation than in those with no additional maturation 

time (Table 1). 

On Days 7 and 8, the proportion of blastocysts at each developmental stage (early, mid-, 

expanded) was similar between the 30 h in vivo vs. 30 h in vivo + 4 h in vitro groups (Table 2). 

When data were combined between groups, no statistical difference was detected between Days 7 

and 8 in the proportion of blastocysts at each stage (early, 12/14 [85.7%] vs. 14/24 [58.3%], 

P=0.15; mid-, 2/12 [16.7%] vs. 6/18 [33.3%], P=0.68; expanded, 0/14 [0%] vs. 4/20 [20%], 

P=0.27). Similarly, the proportion of blastocysts classified as Grade 1, 2 or 3 did not differ between 

groups; the majority of blastocysts were Grade 1 (Table 3). 

5.4.2. Experiment 2: Extending the in vivo maturation period 

The number of follicles ≥5 mm and ≥10 mm at the time of COC collection was numerically 

higher in the 30 h vs. 34 h group (19.0 ± 1.4 vs. 17.4 ± 2.4, and 9.5 ± 1.2 vs. 7.7 ± 1.8), and the 

average size of follicles ≥5 mm did not differ (9.9 ± 0.2 vs. 9.8 ± 0.2 mm). Similarly, the number 
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of follicles aspirated was numerically higher in the 30 h vs. 34 h group (16.4 ± 1.4 vs. 13.4 ± 2.1). 

The numerical difference between groups in the number of large follicles and the number of 

follicles aspirated was the result of a lower pre-collection ovulation rate (number of ovulations 

detected on the day of collection/number of follicles ≥10 mm on the day of hCG treatment) in the 

30 h vs. 34 h group (12/89 [13.5%] vs. 47/147, [32.0%]; P = 0.003). Accordingly, the proportion 

of bison in which ovulation was detected was lower in the 30 h vs. 34 h group (3/14 vs. 10/14, P 

= 0.02). The COC collection rate was lower in the 30 h vs. 34 h group (64.3% vs. 78.2%; P = 

0.003), but the total number of COC collected per bison was similar (10.6 ± 1.7 vs. 10.5 ± 1.5). 

Of the total number of COC collected, the proportion that were expanded at the time of 

collection was similar between the 30 h and 34 h groups (104/147 [70.7%] and 92/148 [62.2%]. 

Eight expanded COC had a degenerated oocyte and were discarded, and 28 expanded COC were 

lost during searching, washing and handling. Therefore, the number of expanded COC submitted 

to in vitro fertilization was 86 and 74 in the 30 h- and 34 h-groups, respectively. Extending the in 

vivo maturation period from 30 h to 34 h was associated with an increase in the percentage of 

oocytes that cleaved, and that developed into blastocysts on Day 7 and Day 8 (P<0.05; Table 4), 

as well as the proportion that reached the expanded blastocyst stage on Day 8 ( P<0.05; Table 5). 

The proportion of blastocysts classified as Grade 1, 2, or 3 did not differ between the two groups 

(Table 6). Although blastocyst development was not assessed critically after Day 8, hatching was 

detected on Day 9 in both groups (30 h, n=3 and 34 h, n=5; Fig. 4). 

5.4.3. Seasonal comparison (ovulatory season vs. anovulatory season) 

The number of follicles ≥5 mm on the day of COC collection was higher in bison during the 

anovulatory versus ovulatory season (P=0.0004), as was the total number of COC collected 

(P=0.001), the number of expanded COC collected (P=0.006), and the collection efficiency (P 
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=0.0003; Table 7). No effect of season was detected for any end point related to in vitro 

developmental capacity (Table 8). The mean number of blastocysts (total number of blastocysts at 

Day 8/number of bison) was 1.0 during the ovulatory season and 2.3 during the anovulatory season. 

5.5. Discussion 

In the present study, the developmental competence of in vivo matured COC collected 30 h after 

hCG treatment from superstimulated wood bison improved after an additional 4 h of in vitro 

maturation. Importantly, oocyte competence improved even further when the interval between 

hCG treatment and COC collection (in vivo maturation time) was extended from 30 to 34 h. To 

our knowledge, this is the first study to report the in vitro production of blastocysts from in vivo 

matured oocytes collected from live wood bison. 

In Experiment 1, an additional 4 h of in vitro maturation beyond the 30 h of in vivo maturation 

had a positive effect on embryo development suggesting that a significant number of COC 

collected 30 h after hCG had not become developmentally competent. Similar findings have been 

reported in monkeys where 8 h of additional in vitro maturation allowed COC in MI stage to reach 

the mature MII stage (Lanzendorf et al., 1990), and in humans where an additional 2 to 11 h of in 

vitro maturation for COC in the MI stage increased their capacity to be fertilized and to develop 

to embryos (Vanhoutte et al., 2005; De Vos et al., 1999). In Experiment 2, extending the interval 

between hCG treatment and COC collection from 30 to 34 h (extending the period of in vivo 

maturation) was associated with a greater capacity to develop to the blastocyst stage following in 

vitro fertilization and culture. These findings agree with results in women where prolonging the 

interval between hCG and oocyte collection resulted in a greater number of fertilized oocytes and 

embryos (Bokal et al., 2005). Likewise, a greater cleavage rate was observed in oocytes collected 

from women when the interval between hCG treatment and oocyte collection was extended by 4 
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h (De Vits et al., 1994). A developmental advantage conferred by in vivo maturation vs. in vitro 

maturation has been reported previously in cattle (Rizos et al., 2002; Dieleman et al., 2002), and 

results of Experiment 2 in the current study in bison corroborates these findings; an extra 4 h of in 

vivo maturation was associated with a significant increase in embryo production compared to an 

extra 4 h of in vitro maturation. 

The percentage of blastocyst development in the present study represents a notable 

advancement in in vitro embryo production in wood bison. The blastocyst rate (i.e., number of 

blastocysts/number of oocytes submitted to IVF) was 54% in the present study, in comparison to 

8 to 16% in previous reports in bison (Thundathil et al., 2007; Aurini et al., 2009; Barfield and 

Seidel 2011). Differences may be attributed to the source of oocytes (live bison vs. abattoir-derived 

ovaries) and differences in culture conditions. The blastocyst rate from in vivo-matured oocytes in 

the present study is comparable to that reported in cattle (70%, Rizos et al., 2002; 41%, Dieleman 

et al., 2002; 52%, Hendriksen et al., 2000). 

The success of pregnancy in other species has been related to the overall quality of the 

transferred embryo; i.e., chances of successful pregnancy are greater after transfer of high-quality 

embryos  (Hasler et al., 1995; Scenna et al., 2008). Over 70% of blastocysts produced in the present 

study were Grade 1 (excellent or good). In cattle, embryos at the blastocyst stage graded as 

excellent and good (Grade 1) have yielded the highest pregnancy rates when transferred either 

fresh or even frozen-thawed (in vitro-produced embryos: Hasler et al., 1987; Hasler et al.,1995; in 

vivo-derived embryos: Scenna et al., 2008). Moreover, only Grade 1 embryos are selected for 

cryopreservation in most studies (Massip et al., 1995a; Nicacio et al., 2012; Romão et al., 2013) 

because of their greater cryo-tolerance (Han et al., 1994; Massip et al., 1995b; Gustafsoon et al., 

2001). Embryo culture conditions have a critical effect on blastocyst quality (Negrin Pereira et al., 

1997; Rizos et al., 2002; Lonergan et al., 2003a; Lonergan et al., 2003b). In particular, culture 
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media used for presumptive zygotes from Day 3 onwards affects blastocyst quality (Negrin Pereira 

et al., 1997). 

The highest cleavage rate in the current study (60%) was similar to that reported for a study in 

plains bison  (63%) involving the use of abattoir-derived ovaries (Barfield and Siedel, 2011), but 

was lower than that reported for other studies in wood bison (95%, Thundathil et al., 2007), plains 

bison (73%, Aurini et al., 2009; 72%; Barfield and Siedel 2011), and cattle (83%, Bordingon et 

al., 1997). Factors such as sperm preparation, sperm concentration, COC origin, oocyte maturation 

and culture media may account for the differences in cleavage rate among the studies. For instance, 

serum was not added to the in vitro culture media used in two previous studies (Thundathil et al., 

2007; Aurini et al., 2009). It appears that the cleavage rate is a limiting factor for in vitro embryo 

production in wood bison, and future attempts to improve production efficiency may focus not 

only on maturational status, but on specific effects of culture conditions during fertilization. 

There was no seasonal effect on the developmental capacity of oocytes in the present study; 

i.e., a similar percentage of COC developed into blastocysts during both the ovulatory and 

anovulatory seasons. However, the absolute number of embryos produced during the anovulatory 

season was more than double that of the ovulatory season. The numerical difference was attributed 

to a nearly two-fold increase in the number of follicles ≥5 mm at the time of COC collection and 

in the number of COC collected during the anovulatory season. The reason for a greater 

superstimulatory response during the anovulatory season is unknown, but may be related to a 

greater number of small follicles at the beginning of FSH treatment, as previously reported in bison 

(Palomino, 2015). In ewes, the number of follicles at wave emergence was significantly greater 

during the anovulatory season, and the total number of follicles present after progesterone sponge 

removal in superstimulated animals was nearly twice as high in anestrous compared to cyclic ewes 

(Barret et al., 2004). The mean number of COC collected per bison in the present study is consistent 
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with that of previous studies in superstimulated wood bison (Palomino et al., 2013; 2014b). The 

positive relationship between the number of follicles available for aspiration and the number of 

COC collected is well documented in cattle (Goodhand et al., 2000; Durocher et al., 2006). 

In summary, mature oocytes collected 34 h after hCG treatment in superstimulated wood bison 

were more competent to develop into blastocysts following in vitro fertilization and culture than 

those collected 30 h after hCG treatment. An additional 4 h of in vitro maturation of oocytes 

collected 30 h after hCG treatment resulted in improved competence of oocytes to develop to the 

blastocyst stage, but to a lesser extent than an additional 4 h of in vivo maturation. In vivo matured 

oocytes are a valuable source of genetic material for in vitro production of wood bison embryos 

and offer an interesting alternative for the conservation of this species. 
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Table 5.1. In vitro development of wood bison embryos produced from expanded cumulus-oocyte 

complexes collected at 30 h after hCG treatment and immediate fertilization (30 h in vivo) or 

following additional 4 h of in vitro maturation before fertilization (30 h in vivo + 4 h in vitro). Day 

0= day of in vitro fertilization (Experiment 1, n=24 bison). 

 

abWithin rows, values with no common superscripts are different (P<0.05, Chi-square test) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End point 
30 h in vivo 

maturation 

30 h in vivo + 4 h in 

vitro maturation 

Oocytes submitted to in vitro fertilization (n) 38 38 

Cleaved oocytes 21/38 (55.3%) 23/38 (60.5%)  

Morulas on Day 7 15/38 (39.5%) 12/38 (31.6%)  

Blastocysts on Day 7 5/38 (13.2%)  9/38 (23.7%) 

Blastocysts on Day 8 7/38a (18.4%)  17/38b (44.7%) 

Blastocysts on Day 8/cleaved embryos 7/21a (33.3%)  17/23b (73.9%)  
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Table 5.2. Blastocyst development of cultured wood bison zygotes produced from expanded 

cumulus-oocyte complexes collected at 30 h after hCG treatment and immediate fertilization (30 

h in vivo) or following additional 4 h of in vitro maturation before fertilization (30 h in vivo + 4 h 

in vitro). Day 0= day of in vitro fertilization (Experiment 1, n=24 bison).  

Percentages based on the number of cumulus-oocyte complexes submitted to in vitro fertilization 

No significant differences were found between groups for any end point 

 

 

 

 

 

 

 

 

 

 

 

 

 

End point 
30 h in vivo 

maturation 

30 h in vivo + 4 h in 

vitro maturation 

Blastocyst stage at Day 7   

 Early blastocyst 5/38 (13.2%) 7/38 (18.4%) 

Blastocyst 0/38 (0%) 2/38 (5.3%) 

 Expanded blastocyst 0/38 (0%) 0/38 (0%) 

Blastocyst stage at Day 8   

 Early blastocyst  4/38 (10.5%) 10/38 (26.3%) 

Blastocyst 2/38 (5.3%) 4/38 (10.5%) 

 Expanded blastocyst  1/38 (2.6%) 3/38 (7.9%) 
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Table 5.3. Morphological grading of wood bison blastocysts produced in vitro from expanded 

cumulus-oocyte complexes collected at 30 h after hCG treatment and immediate fertilization (30 

h in vivo) or following additional 4 h of in vitro maturation before fertilization (30 h in vivo + 4 h 

in vitro). Day 0= day of in vitro fertilization (Experiment 1, n = 24 bison). 

Grade 1: embryos with symmetrical and spherical cell mass, uniform blastomeres 

Grade 2: embryos with moderate irregularities in size, shape, color and density of cell mass 

Grade 3: embryos with major irregularities in size, shape, color and density of cell mass 

No significant differences were found between groups for any end point 

 

 

 

 

 

 

 

 

 

 

 

End point 

30 h in vivo 

maturation 

30 h in vivo + 4 h in 

vitro maturation 

Blastocysts on Day 7 (n) 5 9 

Grade 1 4/5 (80.0%) 8/9 (88.9%) 

Grade 2 --- 1/9 (11.1%) 

Grade 3 1/5 (20.0%) --- 

Blastocysts on Day 8 (n) 7 17 

Grade 1  5/7 (71.4%) 12/17 (70.6%) 

Grade 2  1/7 (14.3%) 3/17 (17.6%) 

Grade 3  1/7 (14.3%) 2/17 (11.8%) 
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Table 5.4. In vitro development of expanded wood bison cumulus-oocyte complexes (COC) 

collected at 30 h after hCG treatment and matured for additional 4 h in vitro before fertilization 

(30 h in vivo + 4 h in vitro), or 34 h after hCG treatment and fertilized immediately (34 h in vivo). 

Day 0= day of in vitro fertilization (Experiment 2, n = 14 bison per group). 

abWithin rows, values with different superscripts are different (P<0.005) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End point 

30 h in vivo + 4 h in 

vitro maturation 

34 h in vivo 

maturation 

COC submitted to in vitro fertilization (n) 86 74 

Cleavage 49/86a (57.0%) 55/74 b (74.3%) 

Morulas on Day 7 23/86 (26.7%) 18/74 (24.3%) 

Blastocysts on Day 7 9/86 a (10.5%) 25/74 b (33.8%) 

Blastocysts on Day 8 32/86 a (37.2%) 40/74 b (54.1%) 

Blastocysts on Day 8/cleaved embryos 32/49 (65.3%) 40/55 (72.7%) 
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Table 5.5. Blastocyst development of cultured wood bison zygotes produced from expanded 

cumulus-oocyte complexes collected at 30 h after hCG treatment and matured for additional 4 h 

in vitro before fertilization (30 h in vivo + 4 h in vitro), or 34 h after hCG treatment and fertilized 

immediately (34 h in vivo). Day 0= day of in vitro fertilization (Experiment 2, n = 14 bison per 

group). 

Percentages based on the number of cumulus-oocyte complexes submitted to in vitro fertilization 

abWithin rows, values with different superscripts are different (P<0.005) 

 

 

 

 

 

 

 

 

 

 

End point 
30 h in vivo + 4 h in vitro 

maturation 

34 h in vivo 

maturation 

Blastocyst stage at Day 7   

 Early blastocyst 9/86a (10.5%) 19/74b (25.7%) 

Blastocyst 0/86 (0%) 3/74 (4.1%) 

 Expanded blastocyst 0/86 (0%) 3/74 (4.1%) 

Blastocyst stage at Day 8   

 Early blastocyst  14/86 (16.3%) 21/74 (28.4%) 

Blastocyst 13/86 (15.1%) 5/74 (6.8%) 

 Expanded blastocyst  4/86a (4.7%) 14/74b (18.9%) 

 Hatched blastocyst 1/86 (1.2%) 0/74 (0%) 



87 
 

Table 5.6. Morphological grading of wood bison embryos produced in vitro from expanded 

cumulus-oocyte complexes collected at 30 h after hCG treatment and matured for additional 4 h 

in vitro before fertilization (30 h in vivo + 4 h in vitro), or 34 h after hCG treatment and fertilized 

immediately (34 h in vivo). Day 0= day of in vitro fertilization (Experiment 2, n = 14 bison per 

group). 

Grade 1:embryos with symmetrical and spherical cell mass, uniform blastomeres 

Grade 2: embryos with moderate irregularities in size, shape, color and density of cell mass 

Grade 3: embryos with major irregularities in size, shape, color and density of cell mass 

No significant differences were found between groups for any end point. 

 

 

 

 

 

 

 

 

 

 

 

 

End point 

30 h in vivo + 4 h in vitro 

maturation 

34 h in vivo 

maturation 

Blastocysts on Day 7 (n) 9 25 

Grade 1  6/9 (66.7%) 22/25 (88.0%) 

Grade 2 3/9 (33.3%) 3/25 (12.0%) 

Blastocysts on Day 8 (n) 32 40 

Grade 1  22/32 (68.8%) 27/40 (67.5%) 

Grade 2  7/32 (21.9%) 9/40 (22.5%) 

Grade 3  3/32 (9.4%) 4/40 (10.0%) 
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Table 5.7. Effect of season (ovulatory vs. anovulatory) on the ovarian response and collection 

efficiency of cumulus-oocyte complexes (COC) in superstimulated wood bison (mean ± SEM; 

Experiments 1 and 2). 

End point Ovulatory season Anovulatory season 

Bison (n) 24 28 

Follicles ≥5 mm on day of COC collection (n) 10.8 ± 1.1 a 17.5 ± 1.3 b 

Total COC collected (n) 5.6 ± 0.8 a 10.5 ± 1.3 b 

Expanded COC collected (n) 3.6 ± 0.7 a 7.0 ± 0.9 b 

Collection efficiency (COC/follicles aspirated) 128/228a (56.1%) 295/418b (70.6%) 

abWithin rows, values with different superscripts are different (P<0.01) 

 

 

 

Table 5.8. Effect of season (ovulatory vs. anovulatory) on in vitro developmental capacity of wood 

bison embryos. The embryos were produced from oocytes collected from superstimulated bison 

30 h after treatment with hCG and matured for an additional 4 h in vitro (30 h in vivo + 4 h in vitro 

maturation; Experiments 1 and 2). 

End point Ovulatory season Anovulatory season Total 

Bison (n) 12 14 26 

Cleavage rate 23/38 (60.5%) 49/86(57.0%) 72/124 (58.1%) 

Morula rate at Day  12/38 (31.6%) 23/86 (26.7%) 35/124 (28.2%) 

Blastocyst rate at Day 7 9/38 (23.7%) 9/86 (10.5%) 18/124 (14.5%) 

Blastocyst rate at Day 8 17/38 (44.7%) 32/86(37.2%) 49/124 (39.5%) 

No significant differences were found between seasons for any end point 
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Fig. 5.1. Experimental design including the superstimulation protocol for the purpose of in vitro 

embryo production in wood bison to compare the developmental competence of the cumulus-

oocyte complexes (COC) collected after inducing in vivo oocyte maturation with hCG (COC 

collected 30 h or 34 h after treating bison with 2500 IU hCG). The main difference in treatment of 

bison between Experiment 1 (ovulatory season) and 2 (anovulatory season) was a luteolytic dose 

of prostaglandin F2α given on Day -9 and Day 3 to control the corpus luteum on the ovulatory 

season. 
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Fig. 5.2. In vitro-produced wood bison embryos after 56 h of in vitro culture. A) COC were 

collected 30 h after hCG treatment in superstimulated bison, and matured for an additional 4 h in 

vitro before fertilization (30 h in vivo+ 4 h in vitro),B) COC collected 34 h after hCG and 

immediate fertilization (34 h in vivo). 

 

 

 

Fig. 5.3. Day 8 in vitro-produced wood bison embryos from in vivo matured oocytes at the A) 

blastocyst stage, B) expanded blastocyst stage, and C) hatching blastocyst stage (Day 0=day of in 

vitro fertilization).  
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Fig. 5.4. In vitro-produced wood bison embryos at blastocyst stage that had collapsed (A), re-

expanded (B),and hatched (C) on Day 9 of in vitro culture (D0=day of in vitro fertilization). The 

arrow points to an opening in the zona pellucida (B) and the empty zona pellucida (C). 
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CHAPTER 6 

 

EFFICACY OF WASHING PROCEDURES FOR REMOVING BRUCELLA 

ORGANISMS FROM IN VITRO-PRODUCED WOOD BISON (BISON BISON 

ATHABASCAE) EMBRYOS 
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6.1. Abstract  

 The primary objective was to determine the effectiveness of washing procedures for 

removing Brucella bacteria from in vitro-produced wood bison embryos; a secondary objective 

was to compare the ovarian response to two superstimulation protocols. Follicle wave emergence 

among bison was synchronized during the anovulatory season by follicular ablation. One day later, 

bison were assigned randomly to groups (14 bison/group) and given either a constant or decreasing 

two-dose regimen of FSH. Bison were given hCG one day after the last FSH treatment to induce 

in vivo maturation of oocytes. The ovarian response was evaluated by ultrasonography on the day 

of collection of cumulus-oocyte complexes (COC), 34 h after hCG treatment. Expanded COC were 

fertilized in vitro immediately (Day 0) and cultured in vitro for 7 days. Zona pellucida-intact 

embryos were transported in holding medium to a biocontainment Level 3 laboratory and placed 

in a minimum of two 30 mm Petri dishes (≤ 10 embryos/dish) containing 2.7 mL of holding 

medium. Brucella abortus biovar 1 (approximately 1x109 CFU/mL in 0.3 mL) was added to each 

dish and incubated for 2 h at 37ºC in 8% CO2. In each replicate, a sample of the holding medium 

was cultured for bacterial growth before (negative control) and after incubation (positive control). 

After incubation, embryos were subjected to a 10-step washing procedure using medium (PBS + 

0.4% BSA) without antibiotics or with antibiotics (100 IU/mL penicillin and 100 mg/mL 

streptomycin). A sample of medium was cultured at wash steps 1, 3, 6, and 9. After the tenth wash, 

embryos were cultured individually after breaking the zona pellucida. No differences were 

detected between the constant vs. decreasing superstimulatory treatment protocols in the number 

of follicles ≥5 mm at the time of COC collection (17.1±1.7 vs 15.1±1.6) or the number of COC 

collected per bison (10.1±1.9 vs 7.6±1.0). A total of 128 expanded COC were submitted to in vitro 

fertilization and culture, and 84 embryos were used to test the effectiveness of washing procedures 

with or without antibiotics (n=42/wash group). Brucella abortus was not detected in media after 
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the third wash in either wash group. All embryos were culture-negative (0/84). In summary, the 

constant and decreasing two-dose treatment regimens of FSH induced a similar ovarian response 

and COC collection rate, and Brucella abortus was removed from 100% of in vitro-produced 

embryos washed either with or without antibiotics.  

6.2. Introduction 

Brucella abortus is a facultative, intracellular, gram-negative bacteria with marked affinity 

for reproductive organs in domestic animals (Poester et al., 2013). Brucella abortus causes 

brucellosis in cattle, but other species, including humans and wildlife, can also contract the disease 

and play a role in brucellosis persistence and transmission (Diaz Aparicio, 2013). Bison and elk 

are considered reservoirs for the disease in North America (Rhyan et al., 2013). Brucellosis is 

typically associated with reproductive losses (abortions, stillbirths, calf mortality) and reduced 

fertility, resulting in potentially devastating economic effects on livestock producers (McDermott 

et al 2013). Brucella is transmitted from animal to animal by contact following an abortion, or 

through contaminated pastures by ingestion, inhalation, skin contamination or conjunctival 

inoculation (Corbel 2006). 

Wood bison (Bison bison athabascae) are a species listed as Threatened under Schedule I of 

the Canadian Species at Risk Act (SARA; Environment and Climate Change Canada, 2016), and 

10 of the 12 free-ranging herds of wood bison in Canada are endemically infected with bovine 

brucellosis. The population in Wood Buffalo National Park in Canada represents the largest, most 

genetically diverse reserve of wood bison in the world (McCormack, 1992; McFarlane et al., 

2006), but has an on-going disease prevalence of 30-40% for brucellosis and tuberculosis 

(Environment and Climate Change Canada, 2016). Diseased herds in the Park are a reservoir for 
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infection of healthy bison and other species of animals in and around the park (McFarlane et al., 

2006; Government of Alberta, 2013).  

Reproductive technologies are being investigated as a method to preserve the genetic material 

of the threatened Canadian wood bison population and to mitigate disease transmission. Proposed 

techniques for rescuing the genetics of wood bison include the production of embryos after in vivo 

or in vitro fertilization (Toosi et al. 2013; Palomino et al., 2016; Cervantes et al. 2016b). Embryos 

produced using reproductive technologies may become a valuable source of genetic diversity for 

the purposes of conservation and restoration of threatened populations. For instance, disease-free 

in vitro-produced embryos transferred to healthy bison recipients may produce healthy individuals 

to be reintroduced into the wild.  

The International Embryo Transfer Society (IETS) has described procedures for handling and 

disinfecting potentially infected embryos to reduce the risk of disease transmission when using the 

embryo transfer technology (Stringfellow and Givens, 2010). In vivo-derived embryos with intact 

ZP collected from infected donors, were transferred safely after proper washing procedures in 

cattle (Hare et al., 1985; Acree et al., 1993) and sheep (Venter et al., 2011). There is, however, 

evidence that some pathogens are not removed with the washing procedures from infected embryos 

of pigs (Bielanski et al., 2004) and goats (Oseikria et al., 2016). Furthermore, the washing 

procedures may not be as effective in disinfection of in vitro-produced embryos (Bielanski, 2007). 

For instance, certain pathogens (e.g., bovine viral diarrhea virus) have persisted on in vitro-

produced bovine embryos despite washing (Stringfellow and Givens, 2000). Hence, the efficacy 

of washing procedures involving a specific pathogen or a particular species may not be 

extrapolated to different pathogens or species (Stringfellow and Wrathall, 1995).  

Effective disinfection of in vivo-produced embryos exposed in vitro to Brucella abortus has 

been reported in cattle (Stringfellow et al., 1986) and more recently in wood bison (Palomino et 
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al., 2015b). In the latter study where embryos were exposed in vitro to Brucella abortus biovar 1, 

washing procedures removed Brucella from 89% vs. 100% of embryos using medium without vs. 

with antibiotics. Whether these procedures are effective in disinfecting in vitro-produced wood 

bison embryos has not been investigated.  

The objective of the present study was to test the hypothesis that embryo washing procedures 

are effective for removing Brucella bacteria from in vitro-produced wood bison embryos. The 

study was designed to determine the effectiveness of washing procedures with vs. without 

antibiotics for removing Brucella abortus from zona pellucida-intact, in vitro-produced wood 

bison embryos previously exposed in vitro to the bacteria. The experiment also provided the 

opportunity to compare the ovarian superstimulatory response to two different FSH treatment 

protocols. 

6.3. Materials and methods 

6.3.1. Ovarian superstimulation  

The study was performed with healthy wood bison cows (n = 28) from the Native Hoofstock 

Centre, University of Saskatchewan, Saskatoon, during May to June (anovulatory season). Ovarian 

follicular wave emergence was synchronized among bison by transvaginal ultrasound-guided 

aspiration of all follicles ≥5 mm in diameter (follicular ablation), as described previously 

(Palomino et al., 2014a). On the day after ablation (i.e., day of follicular wave emergence), bison 

were assigned randomly (lottery method) to 2 superstimulatory groups (n=14 bison per group). 

Superstimulatory treatment involved intramuscularly administration of two doses of NIH-FSH-P1 

(Folltropin-V, Vetoquinol Canada Inc., Lavaltrie, QC, Canada) diluted in 10 mL of 0.5% 

hyaluronan (5 mg/mL, MAP-5, Vetoquinol Canada Inc.) given at an interval of 48 h beginning on 

the day after ablation. Bison in the respective groups were given either a constant dose (200 mg 
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and 200 mg) or a decreasing dose (300 mg and 100 mg). A single dose of 2500 IU of hCG 

(Chorulon, Merck Animal Health, Summit, NJ, USA) was given intramuscularly 48 h after the last 

dose of FSH to induce oocyte maturation in vivo. (Fig. 6.1). The number of follicles ≥5 mm was 

determined on the day of oocyte collection by transrectal ultrasonography using a 7.5-MHz probe 

(MyLab 5 VET, Esaote NA, IN, USA). The experimental protocol was approved by the University 

of Saskatchewan’s Animal Research Ethics Board, and done in accordance with the guidelines of 

the Canadian Council on Animal Care. 

6.3.2. Oocyte collection and handling 

 Cumulus-oocyte complexes (COC) were collected 34 h after hCG treatment in 4 replicates 

(n=7 bison/replicate) by transvaginal follicular aspiration, as reported previously (Cervantes et al., 

2016b). Follicular fluid was collected in 50 mL conical Falcon tubes via silastic tubing (internal 

diameter 1.14 mm; Cole Palmer, Montreal, Quebec, Canada) connected to a regulated vacuum 

pump set at a flow-rate of 20 mL/min. The aspiration medium consisted of Dulbecco’s phosphate 

buffered saline (D-PBS) supplemented with 0.15% ET Surfactant (Vetoquinol NA Inc.), and 200 

IU/L of heparin (heparin sodium injection USP, Sandoz, Boucherville, Quebec, Canada). The 

follicular aspirate was poured through an ova/embryo filter (Emcon filter; Agtech, Manhattan, 

Kansas, USA), and the COC were rinsed from the filter into a 90 mm Petri dish using aspiration 

medium without surfactant. The COC were identified and classified under stereomicroscopy at 

10X magnification according to the characteristics of cumulus cell layers and the appearance of 

the oocyte cytoplasm, as previously described (Ratto et al. 2007). Only expanded COC (those with 

expanded or partially dissociated cumulus cells) were used for further processing. 

6.3.3. In vitro fertilization and culture 
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Procedures for in vitro fertilization and embryo culture were as previously described 

(Cervantes et al., 2016b). Briefly, expanded COC were fertilized with motile sperm from two bulls 

(pooled semen) selected through Percoll gradient (45% and 90%, Parrish et al. 1995) and 

resuspended at a final concentration of 5 x 106 sperm⁄mL in Brackett-Oliphant (BO) fertilization 

medium (Brackett and Oliphant, 1975). Oocytes and sperm were co-incubated for 18 h at 38.5°C 

in 5% CO2 in air and high humidity. The presumptive zygotes were mechanically denuded of 

cumulus cells by gentle pipetting, then washed three times in in vitro culture medium (CR1aa with 

5% calf serum containing amino acids, L-Glutamic acid, BSA and gentamicin; Prentice et al. 2011) 

and cultured in four-well dishes (n=8 to 11 zygotes/well) containing 500 μL/well of IVC medium 

at 38.5°C in 5% CO2, 5% O2 and 90% N2 and high humidity.  

After seven days in culture, zona pelucida (ZP)-intact embryos (from the 8-cell stage to 

blastocyst stage) were pooled, then divided as equally as possible into two groups and transported 

from the IVF laboratory to the biocontainment Level 3 laboratory in 2 mL graduated plastic cryo-

vials containing holding medium (D-PBS + 2% calf serum). 

6..3.4. Preparation of Brucella suspension and embryo exposure 

All procedures involving Brucella were performed in a biocontainment Level 3 laboratory 

facility (Intervac/VIDO, University of Saskatchewan) and, unless otherwise stated, sample 

preparation was performed within a class II biosafety cabinet. Brucella abortus biovar 1 (most 

common strain of Brucella abortus isolated from bison found dead in and around WBNP [Tessaro 

et al., 1990]) was obtained from the Canada Food Inspection Agency (Ottawa Fallowfield 

Laboratory) and processed, as previously described (Palomino, 2015). Briefly, the bacteria were 

streaked on a 5% sheep blood agar plate (Fisher Scientific, #OXMP0105) and incubated at 37ºC 

in 8% CO2 for at least 48 h. Growth from the Brucella agar plate was transferred a sterile 50 mL 
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tube with 5 mL of embryo holding medium. The Brucella suspension was diluted with holding 

medium to a concentration of approximately 1x109 CFU/mL in 0.3mL. 

For each of 4 replicates, embryos (n= 12 to 30/replicate) were transferred from the cryo-vials 

into a minimum of two 30 mm Petri dishes (≤10 embryos per dish) containing 2.7 mL of holding 

medium. The Brucella suspension (approximately 1x109 CFU/mL in 0.3mL) was added to each 

dish and incubated with the embryos for 2 h at 37ºC in 8% CO2. In each replicate, a sample of 

embryo holding medium was taken before and after incubation with Brucella for bacterial culture 

as negative and positive controls . 

6.3.5. Embryo washing and bacterial culturing procedures 

 After incubation, embryos from the two Petri dishes were subjected to a 10-step washing 

procedure under stereomicroscopy according to the IETS guidelines (Stringfellow and Givens, 

2010) using wash medium (PBS + 0.4% BSA) without antibiotics or with antibiotics (100 IU/mL 

penicillin and 100 mg/mL streptomycin, as reported previously (Palomino et al., 2015b). In brief, 

embryos (≤10/wash) were gently drawn from the Petri dish in a total volume of 15 µL of medium 

using a 20 µL pipette and placed into the first well of a 6-well dish (Partnar Animal Health, 

Ilderton, Ontario, Canada) containing 1.5 mL/well of holding (wash) medium (Dilution 1:100). 

Embryos and wash medium were gently drawn in and out of the pipette several times over a period 

of 10 seconds. Using a new pipette containing 5 µL of fresh wash medium from the second well, 

the embryos were transferred to the second well and washed as described in the first well. The 

process was repeated to the 10th well in a second 6-well dish. A sample (100 µL) of wash medium 

from wash-steps 1, 3, 6, and 9 were submitted for bacterial culture. After the 10th and final wash, 

each embryo was cultured individually for Brucella organisms after ZP breakage, as reported 

previously (Palomino et al., 2015b). In a 100 µL drop of wash medium, the ZP of each embryo 
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was physically ruptured using a glass pipette with a narrow tip, and the entire drop (100 µL) 

containing the broken ZP and embryo was cultured. 

 Brucella growth was determined by culturing the samples in a commercial Brucella agar plate 

with 5% sheep blood (Fisher Scientific #OXMP0105), as described (Palomino, 2015). Briefly, by 

using a sterile loop carrying the sample (i.e. holding medium, wash medium, embryos), the first 

third of the plate was streaked. The other two thirds were streaked in the conventional manner by 

dragging the loop once through the previous streak and across the surface of the non-streaked agar 

back and forth in a zigzag motion. Plates were incubated at 37ºC in 8% CO2 for 5 days and 

examined. Brucella colonies visible as punctuate, non-pigmentated and non-hemolytic colonies 

(Dahouk et al., 2009) were determined and counted.  

6.3.6. Statistical analyses 

The number of follicles ≥5 mm at the time of COC collection, number of COC collected, and 

number of COC of different morphological characteristics were compared between the two 

superstimulatory treatment groups by Student's t-test. The proportion of Brucella-positive samples 

from bacterial culture of wash medium and embryos was compared between wash treatment 

groups (with or without antibiotics) by 2-tailed Fisher’s exact test using Proc Frequency procedure 

(SAS, Enterprise Guide 4.2, Statistical Analysis System Institute Inc., Cary, North Carolina, USA). 

Values are expressed as a proportion or mean ± SEM, and P-values of <0.05 were considered 

significant. 
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6.4. Results 

The number of follicles ≥5 mm at the time of COC collection, and the number of COC collected 

per bison were similar between the two superstimulatory FSH treatments groups (constant dose, 

200 mg-200 mg vs. decreasing dose, 300 mg-100 mg), as was the number of COC in each 

morphological category (Table 6.1). A total of 249 COC, of which 139 were expanded, were 

collected from 28 superstimulated wood bison cows. Of the expanded COC, 76 (54.7%) were fully 

expanded and the remainder were partially expanded. Fully and partially expanded COC were used 

for in vitro production of embryos. Eleven of the COC were lost during transport and processing, 

thus, 128 COC were submitted to in vitro fertilization and culture. 

A total of 84 ZP-intact in vitro-produced embryos were used for Brucella infection and 

washing procedures. The stage of embryo development and their distribution in each group (wash 

medium with and without antibiotics) are presented in Table 6.2.  

Results of Brucella culture are shown in Table 6.3. No bacterial colony-forming units (CFU) 

grew in the negative control samples from either treatment group (wash medium with or without 

antibiotics), and all positive control samples in both treatment groups were positive for Brucella. 

All wash media samples up to and including the third wash were positive for Brucella in both 

treatment groups (with or without antibiotics), while wash samples four to ten were negative for 

the pathogen. Following 10 washes and ZP breakage, none of the embryos (0/84) were positive 

for Brucella. No differences were found between treatment groups for any endpoint. 

6.5. Discussion  

Results of the present study support the hypothesis that embryo washing procedures are 

effective for removing Brucella bacteria from in vitro-produced wood bison embryos exposed in 
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vitro to the pathogen. Brucella was not isolated from any of the embryos (0/84) after washing with 

medium with or without antibiotics. Others have reported similar findings for in vivo-derived wood 

bison (Palomino, 2015), pigs (Jacques et al., 2004) and cattle (Stringfellow et al., 1984) embryos. 

In the present study, Brucella was not isolated from the wash medium after the third wash, and the 

successive washing steps may have eliminated the bacteria or reduced the bacterial numbers to 

undetectable levels, as suggested previously (Bielanski, 2007). 

Although Canada is considered free of brucellosis in domestic animals (Diaz Aparicio, 2013), 

bison herds in the Wood Buffalo National Park area are infected endemically with the disease 

(Mitchell and Gates, 2002). Evidence exists for the ability of Brucella abortus biovar 1 to be 

transmitted to healthy Bos taurus cattle (Forbes and Tessaro, 1996); hence, there is a risk of the 

spread of brucellosis from infected bison to cattle as well as other healthy bison herds in Canada 

(Tessaro et al., 1990). Transmission of brucellosis from captive bison to cattle was reported in 

North Dakota, USA (Flagg 1983 cited by National Research Council, 1998), but no reports yet on  

direct transmissions of brucellosis from wild bison to cattle (Kamath et al., 2016). There are, 

however, evidence of transmission of brucellosis from elk to cattle (Rhyan et al., 2013; The 

Western Producer, 2014) and bison (Rhyan et al., 2013), as well as from bison to elk (Kamath et 

al., 2016 ). 

Producing disease-free embryos in the laboratory is an important advancement for future 

control of disease transmission in this species primarily because processing procedures for in vitro-

produced embryos in an established laboratory with competent personnel provides biosecurity 

measures appropriate for embryo production (Thibier, 2010). However, whether offspring 

resulting from transfer of in vitro-produced, disinfected wood bison embryos are free of 

Brucellosis remains to be tested. 
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These findings are important, as other researchers have demonstrated that washing procedures 

do not compromise survival and development of embryos from human and farm animals 

(Bielanski, 2007). For instance, when in vivo-produced bovine embryos contaminated with bovine 

viral diarrhea virus (BVDV) were washed according to the recommendation of the IETS, and then 

transferred to disease-free recipients, the resulting calves and recipients were free of BVDV and 

did not seroconvert after 2 years (Bielanski et al., 2013). Nevertheless, disinfection procedures are 

considered less effective in removing viruses from in vitro- vs. in vivo-derived embryos in cattle 

(Bielanski et al., 1997; Bielanski et al., 1998; D'angelo et al., 2009). One suggested reason for the 

lower washing efficiency is that viruses may adhere more readily to the ZP of in vitro-produced 

embryos (Bielanski et al., 2003) because of the differences in ZP ultrastructure in in vitro compared 

to in vivo-derived embryos (Vanroose et al., 2000). In a recent study in wood bison (Roberts et al., 

unpublished data), the ultrastructure of wood bison embryos produced by in vitro maturation and 

fertilization was associated with a significant increase in porosity and surface complexity 

compared to in vivo-derived embryos. It appears, however, that Brucella abortus does not adhere 

to the ZP of bovine embryos (reviewed in Stringfellow and Wright, 1989), although the number 

of studies using bacterial pathogens and in vitro-produced embryos is very limited (Perry et al., 

2006).  

In the present study, penicillin (100 IU/mL) and streptomycin sulfate (100 mg/mL) were used 

in the washing medium as recommended by the IETS guidelines (Stringfellow and Givens, 2010), 

and the washing medium with antibiotics disinfected 100% of in vitro-produced embryos exposed 

to Brucella abortus. Similar results were reported previously for in vivo-derived embryos from 

wood bison (Palomino, 2015) and cattle (Stringfellow et al., 1984). These findings confirm that 

the addition of antibiotics in the washing medium assures that embryos will be bacterial pathogen-

free (Bielanski, 2007; Stringfellow and Givens, 2000). 
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In the present study, the ovarian response in supertimulated wood bison cows was similar for 

both FSH superstimulatory protocols. The constant-dose regimen of 200 mg or decreasing-dose 

regimen of 300 mg and 100 mg of pFSH did not affect the number of ovarian follicles ≥5 mm 

available for aspiration or the number of COC collected, nor did it influence the number of COC 

in each morphological category. Whether administration of a higher or lower total dose of FSH 

would be beneficial in wood bison for increasing the follicular response and the number of COC 

collected remains to be investigated. 

We conclude that embryo washing procedures are effective in removing Brucella from in 

vitro-produced bison embryos exposed in vitro to the pathogen. Results suggest that washing 

procedures may be an effective strategy for preventing Brucella transmission by wood bison 

embryos produced in vitro and will reduce the disease risks associated with the transfer of in vitro-

produced bison embryos. Whether the transfer of disinfected in vitro-produced bison embryos to 

healthy recipients will result in the birth of disease-free wood bison calves remains to be 

determined. 
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Table 6.1. Morphologic characteristics (mean ± SEM per bison) of cumulus-oocyte complexes 

(COC) at the time of collection after inducing in vivo maturation (i.e., collected 34 h after hCG 

treatment) from wood bison superstimulated with two different protocols (constant and decreasing 

doses of FSH). 

1 No differences were detected for any endpoint. 

2 On day of COC collection 

 

 

 

 

 

 

 

 

 

 

 

 

End point1 

Constant 

(200 mg-200 mg) 

Decreasing 

(300 mg-100 mg) 

Number of bison 14 14 

Number of follicles ≥ 5 mm2 17.1±1.7 15.1±1.6 

COC collected per bison 10.1±1.9 7.6±1.0 

Compact COC 2.0±0.6 1.3±0.4 

Expanded COC 5.3±0.9 4.6±0.9 

Denuded COC 1.9±1.0 0.9±0.3 

Degenerated COC 0.7±0.4 0.6±0.3 
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Table 6.2. In vitro-produced embryos from in vivo-matured cumulus-oocyte complexes (COC) 

collected from superstimulated wood bison and their distribution based on experimental replicate 

(I to IV), developmental stage, and wash group (with vs without antibiotics). Each replicate 

involved COC collection and in vitro embryo production from 7 superstimulated wood bison (n=28 

bison). Embryos were used on Day 7 (Day 0 = day of in vitro fertilization).  
 

 Zona pellucida-intact embryos 

 Washed without antibiotics Washed with antibiotics 

Replicate Early1 Morula Blastocyst Total Early1 Morula Blastocyst Total 

I 2 4 4 10 1 5 4 10 

II 1 5  6 1 5  6 

III 4 7 4 15 4 6 5 15 

IV 1 6 4 11 2 5 4 11 

Total 8 22 12 42 8 21 13 42 

1Early stage: 8 - 16 cells 
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Table 6.3. Brucella abortus biovar 1 isolation from wash media and in vitro-produced wood bison 

embryos exposed to the bacteria in vitro. Each replicate involved COC collection and in vitro 

embryo production from 7 superstimulated wood bison (n=28 bison). Embryos were used on Day 

7 (Day 0 = day of in vitro fertilization). 

 

Replicate 

Exposure dose 

of Brucella 

(CFU/mL) 

Wash 

1  

Wash 

3  

Wash 

6  

Wash 

9  

Washed  

embryos  

Number of 

culture-positive 

embryos  

Wash medium without antibiotics 

I 6.1 x 106 P P N N 10 0 

II  2.1 x 107 P P N N 6 0 

III 2.7 x 107 P P N N 15 0 

IV  2.5 x 107 P P N N 11 0 

Total  42 0 

Wash medium with antibiotics1 

I 6.5 x 106 P P N N 10 0 

II  2.6 x 107 P P N N 6 0 

III 2.8 x 107 P P N N 15 0 

IV  3.0 x 107 P P N N 11 0 

Total  42 0 

CFU = Colony-forming units 

P = Sample positive for Brucella bacteria after culturing.  
N = Sample negative for Brucella bacteria after culturing.  
1Antibiotics: 100 IU/mL penicillin and 100 μg/mL streptomycin sulfate 
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Fig. 6.1. Experimental design including the two superstimulatory protocols used for the purpose 

of in vitro embryo production in wood bison. The superstimulatory protocols differ in that the total 

dose of 400 mg FSH was administered in either two constant doses of 200 mg each or two 

decreasing doses of 300 mg and 100 mg in 0.5% hyaluronan. 
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CHAPTER 7. GENERAL DICUSSION 

The main objective of this thesis was to develop efficient protocols for the collection of 

competent oocytes to produce wood bison embryos following in vitro fertilization and culture, and 

for the disinfection of these embryos from Brucella abortus. Few researchers have reported on 

successful in vitro production of embryos (IVP) in bison, and the blastocyst development rates 

have been low. Likewise, there are no data related to the factors influencing the development of in 

vitro-produced bison embryos. Therefore, investigation of each of the steps involved in bison IVP 

will importantly contribute to improve the efficiency of this technology, and subsequently make 

IVP a reliable tool for bison conservation. In other species, maturation of oocytes under in vitro 

conditions has been shown to have limitations. Further, these studies have indicated that oocytes 

matured in vivo have higher developmental competence than those matured in vitro (Rizos et al., 

2002; Dieleman et al., 2002). Therefore, the capacity of wood bison oocytes to mature under in 

vitro or in vivo conditions and their subsequent developmental potential, were investigated. The 

objective of this work was to generate information to assess the potential for IVP in bison 

conservation efforts. In addition, washing techniques to disinfect diseased in vitro-produced bison 

embryos were investigated to provide evidence about the utility of these techniques in the 

prevention of disease transmission via embryo transfer. 

Four studies were conducted in the present thesis to test whether the improvement of the 

competence of oocytes collected from superstimulated bison will enhance the production of in 

vitro-produced wood bison embryos. The studies of the present thesis were performed using 

cumulus-oocyte complexes (COC) collected by transvaginal ultrasound guided follicular 

aspiration from live wood bison. Bison were superstimulated with two doses of follicle stimulating 

hormone (FSH) in hyaluronan after synchronizing the emergence of a new follicular wave by 

follicular ablation. The synchronization, superstimulation and COC collection procedures were 
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based on protocols described in previous studies in wood bison (Palomino et al., 2013; Palomino 

et al., 2014a) and allowed us to obtain the oocytes from the wood bison captive herd maintained 

at the Western College of Veterinary Medicine's Native Hoofstock Centre. Results of the four 

studies (Chapters 3 to 6) of this thesis will be summarized and discussed in this Chapter (Chapter 

7). 

The experiments described in Chapter 3 were performed to: 1) determine the optimal interval 

of time after human chorionic gonadotropin (hCG) treatment required for in vivo oocyte maturation 

in wood bison, 2) compare the maturational characteristics of COC after in vitro vs. in vivo 

maturation, and 3) compare the maturational capacity of bison oocytes collected during the 

anovulatory vs. ovulatory seasons. In cattle, several studies suggest differences between oocytes 

matured in vivo vs. those matured in vitro (Kastrop et al., 1991; Hyttel et al., 1986; Hendriksen et 

al., 2000).  Additionally, researchers have investigated the effect of the timing of oocyte collection 

following superstimulation and have adjusted their protocols to optimize oocyte competence 

before removing them from the follicle (Krisher, 2013). Specifically, a higher number of expanded 

COC collected from preovulatory follicles 24 h after the luteinizing hormone (LH) surge reached 

the blastocyst stage after in vitro fertilization than those collected 2 h before the LH surge 

(Dielemann et al., 2002). Likewise, oocytes collected 20 to 26 h after GnRH or LH treatments had 

greater developmental competence than those collected from un-treated control cows (Bordignon 

et al., 1997; Rizos et al., 2002; Dadarwal et al., 2015). Nevertheless, basic data in bison such as 

the time required for an oocyte to achieve the mature stage (metaphase II) under in vitro and/or in 

vivo conditions have not been reported. Moreover, protocols designed to increase the competence 

of the oocytes had not been investigated in bison. Furthermore, knowing that wood bison is a 

seasonal breeding species, it was important to investigate the effect of seasonality on oocyte 

maturation. We performed two experiments to compare the in vivo and in vitro maturational 
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characteristics of wood bison COC. Experiment 1 was conducted during the anovulatory season 

(May–June), while Experiment 2 was conducted during the ovulatory season (October–

November). The results from this study showed that 60–70% of oocytes reached the MII stage 24 

h after in vitro maturation while only 25–27% of oocytes reached the MII stage 24 h after in vivo 

maturation. Findings indicated that nuclear maturation occurred more rapidly during in vitro vs. in 

vivo maturation, but nuclear maturation in vitro was associated with a lower degree of cumulus 

expansion than with in vivo maturation. It is important to note that the degree of cumulus expansion 

has been reported to be a valuable predictor of developmental competence of bovine oocytes 

(Furnus et al., 1998). Additionally, in vivo oocyte maturation was more complete at 30 vs. 24 h 

after hCG treatment, and season had no effect on the maturational capacity of wood bison oocytes. 

Therefore, implementation of these findings was important for designing subsequent studies. 

Implications of the differences between oocyte maturation in vitro vs. in vivo in wood bison on in 

vitro embryo development remained to be investigated. Likewise, whether in vitro fertilization of 

mature oocytes from different seasons will affect in vitro embryo production outcomes also require 

further investigation. 

The experiments described in Chapter 4 were performed to investigate the developmental 

competence of bison oocytes matured in vitro. Wood bison oocytes underwent 24 h of in vitro 

maturation before fertilization. This was based on the previous study (Chapter 3), where in vitro 

oocyte maturation was maximal after 24 h. Furthermore, numerous studies have supported the 

notion that morphology of the COC is related to the in vitro developmental potential of oocytes of 

different species (e.g., cattle [Shioya et al., 1988; Hazeleger et al., 1995; Boni et al., 2002; Madison 

et al., 1992; Bakri et al. 2016]; goat [Katska-Ksiazkiewicz et al., 2007]; sheep [Kelly et al. 2007; 

Dadashpour Davachia et al., 2012]; buffalo [Singh et al., 2012]). Consequently, cattle oocytes are 

routinely selected for IVP on the basis of the appearance of the ooplasm and the characteristics of 
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cumulus cells surrounding the oocyte (i.e., compactness and number of cell layers) (Gordon, 

2004). Researchers have shown that immature bovine oocytes with more than three layers of 

cumulus cells have a higher maturation rate (Kakkassery et al., 2010) and cleavage rate (Shioya et 

al., 1988) than oocytes with partial cumulus cell layers or denuded oocytes. Furthermore, 

blastocyst rates were higher for bovine oocytes surrounded by multiple layers of compact cumulus 

cells than for those with less compact and fewer layers of cumulus cells (Madison et al., 1992). 

Therefore, we hypothesized that morphologic characteristics of wood bison COC are reflective of 

the ability of the immature oocyte to develop to an advanced embryonic stage after in vitro 

maturation, fertilization and culture. The results of these experiments showed that oocytes with 

compact cumulus cell layers had the greatest competence to develop to the blastocyst stage in 

wood bison. Findings also demonstrate a higher blastocyst rate (54.0% vs. 25.0%, respectively) 

for oocytes with more than three layers of cumulus cells (i.e., good compact) vs. those with fewer 

layers of cumulus cells (i.e., regular compact). These results supported the hypothesis that 

morphologic characteristics of wood bison COC were associated with the potential of immature 

oocytes to develop to an advanced embryo stage after in vitro maturation, fertilization and culture. 

This finding is in accordance with previous reports in other species (e.g., cat [Wood and Wildt, 

1997]; catlle [Kelly et al., 2007]; sheep [Kelly et al., 2007; Dadashpour Davachia et al., 2012]). 

To our knowledge, this is the first report of in vitro maturation and fertilization and development 

to the blastocyst stage of immature COC collected from live wood bison. A remarkable 

improvement in the blastocyst production rate (overall 28%) was achieved in comparison to 

previous studies in which oocytes were collected from slaughtered ovaries (i.e., no more than 16% 

of blastocyst production; Thundathil et al., 2007; Aurini et al., 2009; Barfield and Siedel, 2011). 

Differences in the competence of oocytes collected from live vs. slaughtered bison may account, 

in part, for the differences in in vitro embryo production between studies. In water buffalo, oocytes 
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collected by follicular aspiration from live animals had greater developmental competence 

compared to slaughterhouse-derived oocytes (Neglia et al., 2003). 

With the purpose of increasing the developmental competence of the wood bison oocytes 

matured in vitro (Chapter 4), we also investigated the effect of FSH starvation (i.e., time interval 

between FSH stimulation and oocyte collection, also known as FSH withdrawal, or coasting before 

oocyte collection [Blondin et al., 2002]) on blastocyst production. In cattle, duration of the FSH 

starvation period was shown to have an effect on the proportion of medium-to-large size follicles 

produced and oocyte developmental competence (Blondin et al., 2012; Nivet et al., 2012). A 48-h 

period of FSH starvation compared to 24 and 72 h (Blondin et al., 1997) was associated with larger 

follicles and higher developmental competence. The effect of extending the FSH starvation period 

after treatment of wood bison with FSH (in a slow-release formulation, 0.5% hyaluronan) by 24 h 

on the number and size of the follicles at the time of collection, oocyte morphological 

characteristics, and blastocyst development rate was studied. In contrast to reports in cattle, under 

the conditions of our study, there was no effect of extending the FSH starvation period on the 

parameters investigated. There was no clear explanation as to why results differed from those 

reported in cattle. One possibility may be related to species differences between wood bison and 

cattle. Future studies on the effects of different FSH doses and FSH starvation periods are required 

to elucidate whether there is an optimal period of coasting for the acquisition of oocyte competence 

in wood bison. 

In a previous study (Chapter 3), in vivo oocyte maturation was more complete at 30 h than at 

24 h after treatment of superstimulated wood bison with hCG. Oocytes collected 30 h after hCG 

treatment were used for subsequent studies reported in this thesis (Chapter 5). Also, while more 

than one-third of oocytes collected at 30 h post-hCG treatment were at the MII (i.e., mature) stage 

and had fully expanded cumulus cell layers, another third of the oocytes were at MI stage despite 
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having fully expanded cumulus cells. These findings provided rationale for the hypothesis that 

additional maturation time was required for the expanded wood bison COC at the MI stage to reach 

the MII stage. Thus, the experiments described in Chapter 5 were performed to determine the effect 

of an additional 4 h of in vitro maturation on embryo development of in vivo matured oocytes 

collected 30 h after hCG treatment (Experiment 1), and to determine if extending the interval 

between hCG treatment and COC collection from 30 to 34 h would improve in vitro embryo production 

(Experiment 2). The results showed that developmental competence of expanded COC collected 

30 h after hCG treatment from superstimulated wood bison was greater after an additional 4 h 

(total 34 h) of in vitro maturation. Competence was further increased when the interval between 

hCG treatment and COC collection (i.e., in vivo maturation time) was extended from 30 to 34 h. 

Collectively, these findings supported the hypothesis that additional maturation time was required 

for expanded wood bison COC at the MI stage to reach the MII stage. These results are in 

agreement with those reported in similar studies of other species (e.g., monkeys [Lanzendorf  et 

al., 1990], humans [De Vos et al., 1999; Vanhoutte et al., 2005]). To our knowledge, this is the 

first report of the in vitro production of blastocysts from in vivo matured oocytes collected from 

live wood bison. The percentage of oocytes that reached the blastocyst stage was 54% in the 

present study, in comparison to 8 to 16% in previous studies in bison (Thundathil et al., 2007; 

Aurini et al., 2009; Barfield and Siedel, 2011). The source of oocytes (i.e., live bison vs. 

slaughterhouse-derived ovaries) and the in vitro embryo production conditions (i.e., in vivo 

maturation vs. in vitro maturation, different in vitro culture media) may explain the differences in 

results between studies. In this study (Chapter 5), 40 blastocysts were produced from 74 in vivo-

matured oocytes that were fertilized immediately after collection (oocytes were collected from 14 

superstimulated bison, 34 h after hCG treatment), while in the previous study (Chapter 4), 44 

blastocysts were produced from 159 oocytes fertilized 24 h after in vitro maturation (oocytes were 
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collected from 32 superstimulated bison). No statistical comparison between the two studies was 

performed, because the studies were not conducted simultaneously. However, we can infer that 

inducing in vivo maturation of oocytes before collection from live wood bison appears to be a 

reasonable protocol for producing competent oocytes for the purpose of IVP in this species. 

Additionally, in Chapter 5, the effect of season (ovulatory vs. anovulatory) on the number of 

follicles ≥5 mm available for aspiration at the time of COC collection, the number of expanded 

COC collected after inducing in vivo maturation, and the in vitro production of wood bison 

embryos was examined. Results indicated that there was no seasonal effect on the developmental 

capacity of oocytes in the present study, as a similar percentage of COC developed into blastocysts 

during both the ovulatory and anovulatory seasons. Nevertheless, the absolute number of embryos 

produced during the anovulatory season was more than double than that of the ovulatory as a result 

of a nearly two-fold increase in the number of follicles aspirated and number of COC collected 

during the anovulatory season. A greater superstimulatory response during the anovulatory season 

has been reported previously in bison (Palomino, 2015), but the reason is unknown. Collectively, 

the results demonstrated that high quality in vitro-produced embryos (Grade 1) were produced 

during both the anovulatory and ovulatory season in wood bison. This is an important finding, as 

IVP could be effectively accomplished in wood bison during any time of the year. Therefore, IVP 

may have advantages over other reproductive technologies that have shown to be effective only 

during the ovulatory season in this wild species (i.e., production of in vivo-derived embryos 

[Palomino, 2015]).  

Obtaining healthy offspring after transfer of an in vitro-produced embryo depends on existing 

knowledge of the reproductive physiology of each particular species, and usually little is known 

about the physiology of most wild animals (Comizzoli, 2015). With the knowledge generated on 

female bison, from earlier studies (Adams et al., 2009; McCorkell et al., 2010; McCorkell et al., 
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2013a; Toosi et al., 2013; Palomino et al., 2013; Palomino et al., 2014a; 2014b; Palomino, 2015) 

and the present thesis (Chapter 3, 4 and 5), a pilot embryo transfer study of in vitro-produced wood 

bison embryos was conducted. Three healthy wood bison offspring were born following the 

transfer of ten in vitro-produced wood bison embryos to synchronized wood bison recipients. This 

is a reproductive first for this species (IVF wood bison calves, Appendix I) and is an important 

contribution for future conservation efforts of threatened wildlife species. 

Based on the previous studies (Chapters 4 and 5), in vitro-produced embryos were produced 

for the final study (Chapter 6) using in vivo-matured wood bison oocytes collected 34 h post-hCG 

treatment. In this study, the hypothesis that the IETS standardized embryo washing procedure was 

an effective technique for removing Brucella bacteria from in vitro-produced wood bison embryos 

was tested. The primary objective was to determine the effectiveness of washing procedures with 

or without antibiotics for removing Brucella abortus from Brucella-infected in vitro-produced 

embryos. The process involves a 10-step transfer of embryos from one wash medium to another 

containing clean medium, and continued for 10 washes at 100 fold dilution. By the 10th wash, 

bacterial loads are expected to decrease to undetectable levels (Bielanski, 2007; Stringfellow and 

Givens, 2010). In earlier studies, the IETS washing procedures were shown to be effective in 

disinfecting in vivo-derived embryos exposed in vitro to Brucella in cattle (Stringfellow et al., 

1986) and wood bison (Palomino et al., 2015b). However, the findings of other studies indicated 

that the washing procedures are less effective in removing pathogens from in vitro- vs. in vivo-

derived embryos in cattle (Bielanski, 2007). Some pathogens (e.g., bovine viral diarrhea virus) 

persisted on in vitro-produced bovine embryos despite being subjected to appropriate washing 

procedures (Stringfellow and Givens, 2000). However, results of the current study revealed that 

the IETS washing procedures were effective in removing Brucella from in vitro-produced bison 

embryos following in vitro exposure to the pathogen. Although there were no differences in 
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embryo disinfection following the use of a wash medium with or without antibiotics, antibiotics 

should be added to the wash medium to ensure bacteria-free embryos. Studies in other species 

(e.g., human) have shown that washing procedures did not compromise survival and development 

of embryos (Bielanski, 2007). This is valuable information, as future studies in wood bison should 

determine whether the transfer of disinfected in vitro-produced embryos to disease-free recipients 

will result in Brucella-free calves. The last study in this thesis (Chapter 6) is fundamental in 

determining if the combination of the current IVP system and the IETS washing procedures can 

be used to produce disease-free in vitro-produced embryos for the reclamation of threatened wood 

bison in the WBNP. 

In addition, in the last study (Chapter 6), the ovarian superstimulatory response in wood bison 

cows following implementation of two different FSH treatment protocols was compared. In 

previous studies in wood bison, constant and decreasing doses of FSH for the purpose of 

superstimulation have been compared (Palomino et al., 2013; Palomino et al., 2014b). The constant 

doses of FSH in saline were administered subcutaneously, while in the current study, FSH in 0.5% 

hyaluronan was administered intramuscularly. The effect of the administration regimen (i.e., 

constant-dose regimen of 200 mg or decreasing-dose regimen of 300 mg and 100 mg) of 

exogenous pFSH in 0.5% hyaluronan for a total dose of 400 mg NIH-FSH-P1 on the number of 

follicles ≥ 5 mm at the time of COC collection, the number of COC collected per bison, and the 

number of COC in each morphological category was examined. No effect of treatment regimen on 

any parameter investigated was found. In cattle, the limited number of studies conducted in this 

area are not sufficient to make conclusions regarding the efficacy of such regimens (Seidel and 

Moore Seidel, 1991). Future work should address whether there is a particular regimen that result 

in a greater number of follicles ≥ 5 mm for COC collection, and subsequently in a greater number 



118 
 

of COC collected per bison for the purpose of IVP. Further, the effect of dose of FSH on oocyte 

production and competence is needed in wood bison. 

Overall, an efficient procedure to produce wood bison embryos in vitro throughout the 

ovulatory and anovulatory seasons was developed. The results reported in this thesis indicate that 

IVP is a technique that may be suitable for implementation in future conservation programs and 

potentially for production purposes in wood bison. Additionally, the effectiveness of embryo 

washing procedures for producing Brucella-free embryos under in vitro conditions was 

demonstrated. Washing procedures are recommended for the removal of bacteria from in vitro-

produced wood bison embryos. 
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CHAPTER 8. GENERAL CONCLUSIONS 
 

Overall, the results of this doctoral dissertation support the hypothesis that in vitro embryo 

production technologies can be utilized efficiently in wood bison by improving the competence of 

oocytes collected from live wood bison. 

Based on these results, it can be concluded that: 

 Oocyte collected from superstimulated wood bison can mature to the MII stage in vitro or 

in vivo. 

 Reproductive season had no effect on the maturational capacity of wood bison oocytes. 

 In vivo oocyte maturation was more complete at 30 vs. 24 h after hCG treatment.  

 Immature oocytes with compact cumulus cells had higher in vitro blastocyst development 

rates than immature oocytes with expanded cumulus cells or denuded oocytes. 

 Immature wood bison oocytes did not have greater in vitro blastocyst production rates after 

being exposed to an extended FSH starvation between FSH treatment and oocyte collection 

(FSH coasting period or FSH withdrawal). 

 Developmental competence, in terms of blastocyst development, of expanded COC collected 

30 h after hCG treatment (i.e., in vivo matured oocytes) from superstimulated wood bison 

was greater after an additional maturation period of 4 h, either in vitro or in vivo. The greatest 

improvement was achieved when the in vivo maturation time was increased from 30 to 34 h. 

 There was no effect of reproductive season on the developmental competence of in vivo 

matured oocytes in wood bison. Similar percentages of expanded COC developed into 

blastocysts during both the ovulatory and anovulatory seasons. 

 The IETS washing procedures were effective to remove Brucella bacteria from in vitro- 

derived wood bison embryos following in vitro exposure to the pathogen. 
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CHAPTER 9. FUTURE STUDIES 

 Determine the effect of reproductive season on the developmental competence of bison 

oocytes matured in vitro. 

 Investigate the effect of different FSH starvation periods on the developmental competence 

of immature oocytes collected from superstimulated bison during the ovulatory and 

anovulatory seasons. 

 Evaluate protocols for the cryopreservation of bison oocytes and in vitro-produced bison 

embryos. 

 Evaluate the pregnancy and live birth rates following transference of fresh and 

frozen/thawed in vitro-produced wood bison embryos produced from disease-free bison to 

recipient bison. 

 Investigate whether transfer of washed in vitro-produced embryos exposed in vitro to 

Brucella to disease-free recipients  will result in disease-free calves and disease-free wood 

bison recipients. 

 Evaluate the production of in vitro-produced wood bison embryos from individuals or 

germplasm from in and around WBNP and/or from isolated wild wood bison herds. 
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APPENDIX A. 

 

 

 

 

World’s first bison calves produced by in vitro fertilization (July 2016; Native Hoofstock Centre, 

University of Saskatchewan). A) Healthy calves running together with their surrogate mothers. B) 

Few-weeks old calf suckling her surrogate mother. 
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