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ABSTRACT

There are three distinct processes that are predominant in models of flowing media with inter-
acting components: advection, reaction, and diffusion. Collectively, these processes are typically
modelled with partial differential equations (PDEs) known as advection-reaction-diffusion (ARD)
equations.

To solve most PDEs in practice, approximation methods known as numerical methods are
used. The method of lines is used to approximate PDEs with systems of ordinary differential
equations (ODEs) by a process known as semi-discretization. ODEs are more readily analysed
and benefit from well-developed numerical methods and software. FEach term of an ODE that
corresponds to one of the processes of an ARD equation benefits from particular mathematical
properties in a numerical method. These properties are often mutually exclusive for many basic
numerical methods.

A limitation to the widespread use of more complex numerical methods is that the development
of the appropriate software to provide comparisons to existing numerical methods is not straight-
forward. Scientific and numerical software is often inflexible, motivating the development of a class
of software known as problem-solving environments (PSEs). Many existing PSEs such as MATLAB
have solvers for ODEs and PDEs but lack specific features, beyond a scripting language, to readily
experiment with novel or existing solution methods. The PSE developed during the course of this
thesis solves ODEs known as initial-value problems, where only the initial state is fully known.
The PSE is used to assess the performance of new numerical methods for ODEs that integrate
each term of a semi-discretized ARD equation. This PSE is part of the PSE pythODE that uses
object-oriented and software-engineering techniques to allow implementations of many existing and
novel solution methods for ODEs with minimal effort spent on code modification and integration.

The new numerical methods use a commutator-free exponential Runge-Kutta (CFERK) method
to solve the advection term of an ARD equation. A matrix exponential is used as the exponential
function, but CFERK methods can use other numerical methods that model the flowing medium.
The reaction term is solved separately using an explicit Runge-Kutta method because solving it
along with the diffusion term can result in stepsize restrictions and hence inefficiency. The diffusion
term is solved using a Runge-Kutta—Chebyshev method that takes advantage of the spatially
symmetric nature of the diffusion process to avoid stepsize restrictions from a property known
as stiffness. The resulting methods, known as integrating-factor-based 2-additive-Runge-Kutta
methods, are shown to be able to find higher-accuracy solutions in less computational time than
competing methods for certain challenging semi-discretized ARD equations. This demonstrates the

practical viability both of using CFERK methods for advection and a 3-splitting in general.
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CHAPTER 1

INTRODUCTION

Many physical processes are modelled in terms of differential equations, i.e., equations for an
unknown function in terms of its derivatives. Examples of differential equations are found in many
of the mathematical models that are derived from fields such as physics, engineering, chemistry,
biology, and the earth sciences [51, p.1]. Many specific physical processes in these fields are modelled
as a flowing medium consisting of several interacting components. Examples include combustion
in a flame [3, p.33], relevant to chemistry and engineering applications, oceanic and atmospheric
models [79], relevant to current environmental issues such as climate change, and models of tumour

angiogenesis, relevant to medical research [51, p.134].

There are three distinct physical processes that are predominant in many models of flowing
media with interacting components: the motion of the flowing medium itself is a process known as
advection, the interactions of the different species is a process known as reaction, and the change
of concentrations due to gradients in the solution is a process known as diffusion. Collectively,
models that use these three processes are known as advection-reaction-diffusion models and are
expressed mathematically using differential equations [51, p.1]. The type of differential equations
used are known as partial differential equations, i.e., differential equations for an unknown function
of multiple independent variables in terms of its partial derivatives with respect to those variables.
In most applications, an analytical solution to the partial differential equation describing a partic-
ular model is unavailable; therefore approximation methods known as numerical methods are used
instead. Numerical methods discretize the variables of a differential equation; i.e., each variable
is approximated at only a finite number of points within its domain in space and time. A com-
mon methodology used to solve partial differential equations is the process known as the method
of lines, which approximates the partial differential equation by a system of ordinary differential
equations, i.e., a differential equation with derivatives in terms of only one independent variable,
typically time. Compared to partial differential equations, ordinary differential equations are more
readily analysed and benefit from well-developed algorithms and software. This thesis is concerned
with numerical methods for solving ordinary differential equations, mainly those derived from the

semi-discretization of advection-reaction-diffusion equations by the method of lines.

A significant barrier to solving many advection-reaction-diffusion equations efficiently is that



each distinct process often requires a numerical method with different mathematical properties, and
those properties are often mutually exclusive among many basic numerical methods. For example,
one methodology for developing more complex numerical methods is known as splitting, where a
different numerical method is used for each distinct process and the results are periodically merged.
The three-component process of advection, reaction, and diffusion usually combines additively in
the expression of the differential equation that describes a particular model or the corresponding
terms of the ordinary differential equation after semi-discretization [51]. This motivates the de-
velopment of complex numerical methods that additively combine more basic numerical methods.
Crank—Nicolson-Leapfrog [51, p.387] is an example of a numerical method that is commonly used
for advection-reaction-diffusion models and splits the vector field into two parts for an efficient
solution. Because advection-reaction-diffusion equations model three processes, at least one of the
two components of a numerical method that splits the vector field into two parts must be used for
two physical processes at once. A potentially better solution is to use a distinct numerical method
for all three physical processes of an advection-reaction-diffusion, an example of which is given

in [8].

Mathematical analysis can typically give the general properties of a numerical method, such
as order of convergence or limits on stability. However, empirical experimentation is required to
determine which numerical methods are most practical and efficient for particular classes of ordinary
differential equations. A major barrier to the widespread use of more complex numerical algorithms
is the effort required to develop software that implements new numerical methods and compares

them with existing methods.

To overcome the limitations of using traditional scientific software, software known as problem-
solving environments are used [31]; well-known examples of problem-solving environments are
MATLAB, MAPLE, and MATHEMATICA. These problem-solving environments implement numer-
ical methods for solving partial differential equations and ordinary differential equations, often
with uniform interfaces to allow the user to easily experiment with the various solvers. However,
except for the embedded scripting languages, existing problem-solving environments do not have
specific features to allow detailed experimentation with the wide range of ordinary differential
equation methods that have been proposed and developed. In particular, the scripting language
within MATLAB is used extensively in the literature to perform numerical experiments. However,
a problem-solving environment that allows the user to design algorithms without extensive code
modification is desirable in order to easily experiment with specific algorithms for specific classes of

ordinary differential equations, including semi-discretized advection-reaction-diffusion equations.

The problem-solving environment pythODE has been developed specifically to experiment with
a wide variety of numerical methods for ordinary differential equations, including novel solution

methods. Modern object-oriented and software-engineering techniques are used to create a modular



framework that allows the components of an ordinary differential equation solver to be added or
interchanged with minimal code modification. Additional features allow for the design of experi-
ments involving many different solver components and their parameters, as well as detailed analysis
of those experiments. The part of pythODE developed specifically for this thesis solves initial-value
problems, which are ordinary differential equations where the state, typically at the initial time, is
fully known. The typical solution method for an initial-value problem is to take a finite number
of timesteps from the initial time until the final time where a solution is desired. The initial-value
problems considered in this thesis are advection-reaction-diffusion equations semi-discretized by the

method of lines.

The class of advection-reaction-diffusion equations of interest are advection-dominated; i.e.,
where the behaviour of the advection process is dominant over the diffusion and reaction processes.
The problem-solving environment pythODE is used to test a composite numerical method that treats
the three terms of an advection-reaction-diffusion equation with separate methods. Many numerical
methods have stepsize restrictions due to stability or accuracy, as a result of properties such as
stiffness and the Courant—Friedrichs—Lewy condition, when solving the initial-value problems from
the semi-discretization of advection-reaction-diffusion equations. When present, these restrictions
potentially require a computational cost many orders of magnitude higher for some classes of
numerical methods than for others. Although a general-purpose implicit initial-value problem
method typically solves most semi-discretized advection-reaction-diffusion equations accurately,
there exist specialized methods considered in this thesis to overcome stepsize restrictions due to

stiffness and the Courant—Friedrichs—Lewy condition more efficiently.

All three processes of an advection-reaction-diffusion equation can cause numerical methods to
have some form of stepsize restriction after semi-discretization. The advection term is generally not
considered stiff; however, stepsize restrictions due to the Courant—Friedrichs-Lewy condition are
important. The diffusion term is generally considered stiff because, with most practical spatial grids,
the corresponding initial-value problem term is stiff. The reaction term can either be stiff or non-
stiff, depending on the specific advection-reaction-diffusion problem. However, the stiffness of the
reaction term of the semi-discretized advection-reaction-diffusion is typically problem dependent. In
the case of a stiff reaction term, typically there are no specialized methods to solve it more efficiently
than a general-purpose implicit initial-value problem method. However, because the reaction term
is not typically spatially coupled, i.e., it does not have partial derivatives with respect to the spatial
variable, using splitting to solve it with a separate initial-value problem method from the advection
and diffusion terms results in many smaller systems of equations. These can often be solved more
efficiently than the large coupled system of equations that would result from solving the entire
initial-value problem with an implicit initial-value problem method [89]. Even for the non-stiff

case, solving the reaction term along with the other terms can interfere with finding the solution



of a semi-discretized advection-reaction-diffusion.

In general, numerical methods known as Fulerian methods, which observe the flowing medium
from a fixed spatial grid, have many unsatisfactory characteristics when used to solve the ad-
vection term, including stepsize restrictions and poor qualitative behaviour. More suitable are
semi-Lagrangian methods, which follow the fluid particles in the flowing medium and map the
solution back to the fixed grid periodically. Semi-Lagrangian methods have enhanced stability and
can exhibit superior qualitative behaviour to Eulerian methods [96, p.2207]. A connection has been
made between semi-Lagrangian methods and exponential maps, such as the matrix exponential, by
using Lie group theory [18, 22]. This theory gives a mathematical framework to construct numeri-
cal methods for advection-reaction-diffusion equations that incorporate semi-Lagrangian methods,
which are specific only to the advection term, along with numerical methods suitable for the semi-
discretized reaction and diffusion terms. The numerical methods of interest in this thesis are known
as Runge-Kutta methods. High accuracy is achieved by approximating the solution at intermediate
times and using these approximations to find the numerical solution at the end of the timestep.
Numerical methods known as additive Runge—Kutta methods [7, 89] combine Runge-Kutta meth-
ods, typically two, for different terms of an additive vector field and have commonly been used for

semi-discretized advection-reaction-diffusion equations.

A class of numerical methods that use exponential maps for the advection term are known as
commutator-free erponential Runge—Kutta methods and can be viewed as generalizations of the
well-known classic Runge—Kutta methods. When the diffusion process occurs isotropically, i.e., it
occurs symmetrically with respect to each spatial dimension, this structure can be exploited by
specific Runge-Kutta methods to overcome stiffness in the diffusion term. In the case of many
advection-dominated advection-reaction-diffusion problems, the stiff diffusion term can be solved
efficiently without requiring the solution of systems of implicit equations by using a class of Runge—

Kutta methods known as Runge—Kutta—Chebyshev methods.

A simplified advection-dominated advection-reaction-diffusion equation is proposed and is shown
to cause numerical difficulties with some existing initial-value problem methods. It is constructed as
a combination of the well-studied Burgers equation (4.5), which has advection and diffusion, along
with the well-studied Brusselator equation (4.24), which has diffusion and a nonstiff oscillatory
reaction. This makes for an ideal initial-value problem to test 3-additive splitting methods. A
new class of methods that we call integrating-factor-based 2-additive-Runge-Kutta methods is
developed that combines a commutator-free exponential Runge-Kutta method for advection, a
Runge-Kutta—Chebyshev method for diffusion, and a classic explicit Runge-Kutta method for the
non-stiff reaction term. Although a semi-Lagrangian integrator could in principle be used for the
exponential map of the commutator-free exponential Runge-Kutta method, a method based on the

matrix exponential to approximate the exact flow is used instead as a proof of concept.



It is shown through numerical experiments with pythODE that integrating-factor-based 2-additive-
Runge-Kutta methods can have lower computational cost than other methods such as Runge—
Kutta—Chebyshev or 2-additive Runge—Kutta, which are known to solve some advection-reaction-
diffusion equations more efficiently than fully implicit numerical methods. The integrating-factor-
based 2-additive-Runge—Kutta methods are also shown to find numerical solutions with smaller

errors than is feasible with the other methods tested.

1.1 Structure of the thesis

The remainder of the thesis is divided into the following chapters. The theory of numerical meth-
ods for the classic Runge—Kutta and additive Runge—Kutta methods, advection-reaction-diffusion
equations, and the method of lines is covered in Chapter 2. A survey of existing software for
solving semi-discretized advection-reaction-diffusion equations and an overview of the design of
the problem-solving environment pyth0DE is covered in Chapter 3. Commutator-free exponential
Runge-Kutta methods, Runge-Kutta—Chebyshev methods, and the new integrating-factor-based
2-additive-Runge—Kutta methods that treat each process of an advection-reaction-diffusion equa-
tion separately are covered in Chapter 4, with experiments to show that for specific semi-discretized
advection-reaction-diffusion equations, these methods can outperform existing methods in terms of
both efficiency and accuracy. The contributions and proposed future work based on the results from
testing the new integrating-factor-based 2-additive-Runge-Kutta methods as well as additional de-

tail on the current state of development of pythODE are covered in Chapter 5.



CHAPTER 2

BACKGROUND

2.1 ODE theory

The material in this section is largely adapted from [15] and [43].

An equation for an unknown function y in terms of its derivatives is known as a differential
equation. If the unknown function y depends on only one independent variable ¢, i.e., y = y(t),

then the equation is known as an ordinary differential equation (ODE) and has the general form

d d? aM

A solution of (2.1) is a function y = y(t) that satisfies (2.1). This thesis is primarily concerned
with ODEs of the form

Sv(0) = £ty (1), (222

where y(t) : R — R™ is a function with independent variable time ¢ € R and f : R x R™ — R™ is
typically called the right-hand side (RHS) of the ODE. Under suitable assumptions, ODEs of the
form (2.1) can be converted to a system of first-order equations of the form (2.2a) for convenience
in the use of software and analysis. An initial-value problem (IVP) is an ODE (2.2a) together with

additional information about the solution known as the initial condition

y(to) = yo, (2.2b)

where £y € R is known as the initial time and yg € R™ is known as the initial value.

In order to further simplify the analysis of (2.2a), the RHS can be converted into autonomous

form by defining a new dependent variable, t = Y,,,41(¢),

t Ym+1 (t)

where Y (t) represents the first m components of Y (t). The autonomous form allows the RHS to



be considered without the explicit dependence on t, i.e.,

d
S (1) = F(Y (1),

where

Without loss of generality, the autonomous form of an ODE (2.2a) can be stated as

LY =Ey(), (23)

which is the notation used for the autonomous form of an ODE in this thesis with initial condition
(2.2b) in the case of an IVP.
A function f(y(t)) is said to be Lipschitz continuous [15, p.5] on D C R™ if for some R > 0, a

constant L can be chosen such that
[[f(u) —f(V)[[ < Lllu—v|| V [[u—-v|] <R, (2.4)

for any u,v € D. If f(y) is Lipschitz continuous, then if a solution to (2.2) exists at some time, it
is guaranteed to be unique [61, p.5]. Lipschitz continuity does not necessarily guarantee a solution

exists on all of D [87, p.7].

2.1.1 Numerical methods for ODEs

Analytical methods exist for solving particular classes of ODEs, but these classes do not encompass
many problems in practice, specifically large, complex, or nonlinear problems. Problems for which
an analytical solution does not exist or is infeasible to use can generally be approximated using
numerical methods.

Numerical methods for IVPs typically compute a solution sequentially by taking one or more
steps in time ¢ from the initial time ¢y to the final time ¢;. In order to apply numerical methods
effectively in general, it is necessary to estimate the accuracy of the solution that is computed.

The global error of the numerical solution of an IVP at time ¢, is defined as

€global,n+1 = y(tn-i-l) —Yn+1,

where y(t,41) is the exact solution at t,41 and y,+1 is the numerical solution at step n + 1 with
a corresponding time of ¢, 1. The global error is the net error accumulated during the solution,

and in practice it cannot be calculated exactly because the exact solution is not generally known.



However, even in the case where an analytical solution is not known, the exact solution can be

shown to exist and be unique [61, p.5].

An alternative to finding global error is to use the concept of local error or local truncation error,
which in fact can be estimated in practice. The local solution y(t) is the exact solution of (2.2a)
over one timestep At, given the numerical solution y, as the initial condition. The numerical

solution can be stated in terms of the local solution as

€local = y(tn—&-l) —Yn+1, (25)

where ¥(t,+1) : R = R™ is the local solution at t,,11, yn+1 € R™ is the numerical solution at ¢,,41,
and At,, = t,41 — t, is the stepsize. The asymptotic behaviour of the local error is O(Atnp+1),

where p is known as the order of convergence of the numerical method. The asymptotic behaviour

of the global error is O(At,?) because a numerical method takes O (tf;tto) steps in total over the

solution interval and under the assumption t; —to = O(1) [36].

The most basic method for finding the numerical solution of an IVP is Euler’s method, also

known as Forward Euler (FE). One step of FE is given by

Ynt+1 =¥n + Atnf(tna yn)7 (26)

representing a constant approximation of f in (2.2a) over one timestep. The approximate solution
given by FE is the union of these approximations over the entire solution interval. Although in
theory as At,, — 0%, FE approaches the exact solution, in practice the accuracy is limited by the
finite amount of precision associated with computer arithmetic. The asymptotic behaviour of the
local truncation error of FE after one step is O(At2), and the order of convergence is one. This
is generally too low to solve problems efficiently in practice; obtaining a highly accurate solution

requires a considerable computational effort because stepsizes must be made small.

FE is also an example of an explicit method. A numerical method is said to be explicit if all
quantities involved in taking a step are given in terms of known (past) quantities. Otherwise, the
method is said to be implicit; i.e., there is at least one quantity given in terms of itself or unknown
(future) quantities. The most basic implicit method is known as Backward Euler (BE), with one
step given by

Yot1 = Yn + Atof(tny1, Yni1). (2.7)

Finding a solution using this method requires the solution of m simultaneous equations and hence
for a given stepsize is more computationally expensive than FE. The asymptotic behaviour of the
local truncation error of BE after one step is O(At2), and the order of convergence is one. This

is the same order of convergence as FE, but in the next subsection we show why this method can



take much larger steps than FE for some problems, making it a useful method in practice.

2.1.2 Stiffness and stability

The material in this subsection is largely adapted from [15, 44, G1].

For some stepsizes that are small enough for a desired accuracy, FE is unstable for some IVPs;
i.e., the numerical solution exponentially accumulates error. When a numerical method is con-
strained to use a stepsize that is excessively small relative to the accuracy required, it is said that
the problem is stiff in the interval where this occurs. Stiff regions have large Lipschitz constants
(2.4) that cause some numerical methods to become unstable, therefore resulting in an exponen-
tial accumulation of error and hence a “blow up” of the solution. The stepsize needed to yield
a sufficiently accurate solution of stiff problems can be so small that solving the IVP becomes
prohibitively expensive.

In order to study the stability of numerical methods, we first consider the linearization of (2.2a)

at t,, as a system of linear constant-coefficient ODEs [44, p.15] given by
d . .
D9(0) = e (y()9 1), (28)

where y(t) is the solution to the linearized system of ODEs and Jg € R™*™ is known as the

Jacobian matriz, given by

of . on
oy OYm

Je=1 - (2.9)
ayl 8ym

For the purposes of stability analysis, J¢ is assumed to be diagonalizable; i.e., there exists an
invertible matrix P such that A = diag(A1, A2,..., \m) = P7LJ¢P. The case where J¢ is not
diagonalizable is covered in [46] but is beyond the scope of this thesis. A change of variables

u(t) = P~ly(t) results in
d

Zu(t) = Au(), (2.10)

which is equivalent to (2.8). This change of variables decouples the ODEs and allows (2.3) to be
considered as m scalar test problems of the form

Lu(t) = Aut), (2.11)

where A € C is the eigenvalue associated with a particular component of the ODE in (2.10).

Decoupling the variables in (2.2a) allows the stability of a numerical method to be studied

using (2.11). If ®(A) < 0, then the exact solution of the scalar test problem remains bounded as



t — +oo. It is therefore desirable that any numerical method applied to (2.11) also produces a
bounded solution. Applying FE (2.6) to (2.11) yields

Upt1 = Up + AAL, Uy, (2.12)

It is easily seen that (2.12) remains bounded if and only if |1 + AAt,| < 1. The values for AA¢,
for which a numerical method remains bounded when solving (2.11) define the region of absolute
stability. Letting z = AAt, there exists a function R(z) such that the region of absolute stability in
the complex plane is given as |R(z)| < 1. In the case of FE, this region is defined by R(z) =1+ z,
a region that is a circle of radius 1 centred at (—1,0) as shown in Figure 2.1. Applying BE (2.7) to
(2.11) yields

Upt1 = Up + AAE Upgq- (2.13)

It is seen that (2.13) remains bounded if and only if R(z) = L. In this case, the region of

absolute stability is the whole complex plane excluding a circle of radius 1 centred at (1,0) as

shown in Figure 2.2. BE has an unbounded region of stability, and it is stable when solving stiff

IVPs [44, p.3].

| | v

Figure 2.1: The region (shaded) of abso- Figure 2.2: The region (shaded) of abso-
lute stability for FE. lute stability for BE.

Several types of stability are defined based on the geometry of the stability region. Any method
for which |R(z)] < 1V R(2) < 0 is said to be absolutely stable; this property is also known as
A-stability. A less restrictive form of stability is A(«)-stability, which is the region defined by
IR(z)] <1if —a <7 —arg(z) < a, a € (0,7/2]. When o = 7/2 this corresponds to A-stability.
A stronger form of stability is L-stability, which implies A-stability with the additional condition
that |R(z)] — 0 as R(z) — —oo [61, p.225]. Although L-stability is effective for many types
of IVPs because it rapidly dampens stiff components of the ODE, this property is not always
desirable [11, p.44; 61, p.227-231].

Bounded stability regions constrain many numerical methods to a small stepsize when solving

stiff problems. If this relatively small step size occurs because the solution is not smooth, this is to
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be expected due to accuracy considerations, so the problem is not considered stiff in that interval.
In general, numerical methods with unbounded stability regions are able to solve stiff problems
more efficiently than those with bounded stability regions [61, p.220].

A good working definition of stiffness is that an IVP is stiff in an interval if it can be solved
more efficiently in that interval with an implicit method designed for stiff problems, i.e., a stiff
method, than with a method not suitable for stiff problems, i.e., a non-stiff method, such as an
explicit method. There are specific explicit methods that can solve particular classes of stiff IVPs
efficiently, but in general many practical problems are stiff and require the development of implicit

methods for their efficient solution.

2.2 Runge—Kutta methods

The material in this section is largely adapted from [15] and [43].
Runge-Kutta (RK) methods are a generalization of FE and BE that use multiple function

evaluations to obtain higher orders of convergence. The general form of an RK method is

k; =f tn—l—Atnci,yn—l—Athaijkj . i=1,2,...,s, (2.14a)
j=1
Yot1 = Yn + AL, > bik;, (2.14D)
=1

where a;; are the elements of a matrix A € R**%, b;, and ¢; are elements of the vectors b,c € R*
respectively, with A, b, c forming the Butcher tableau that characterizes a specific RK method.
The k; are the s intermediate stages produced by the RK method and represent approximations

to the derivative of y(¢,, + At,c;). The Butcher tableau is often displayed graphically as follows

1| a1 aiz ... Qais
C2 | G21 Q22 ... Q24
Cs | Gs1 Qg2 ... Qss
b1 bo bs
or
cl| A
(2.15)
bT

If A is a strictly lower-triangular matrix, then the method is known as an ezplicit Runge—Kutta

(ERK) method; i.e., each stage can be found sequentially without the need to solve systems of
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simultaneous equations. The general form of an ERK method is given by

i—1
ki =f | tn+ Atciyn + Aty Y agk; |, i=1,2,...5, (2.16a)
j=1
S
Ynt1 =Yn + Aty Z bik;. (2.16b)

i=1

An example of an ERK method that is presented in many textbooks, is “the” RK method [43, p.138],

which has a Butcher tableau of

0
1/2 | 1/2
121 0 1/2 (2.17)

110 o 1
1/6 2/6 2/6 1/6

This method is fourth-order accurate and requires four evaluations of the RHS per step.

If A is not strictly lower triangular then the method is called an implicit Runge—Kutta (IRK)
method. TRK methods require the solution of systems of simultaneous equations because in principle
the stages cannot be found explicitly. An example of an IRK method is the 3-stage Radau ITA
method of fifth order, commonly known as RADAUS5, that has a Butcher tableau of

4—+/6 88—7v6 296—169v6 —2+3V6
10 360 1800 225
446 | 296+169v6 884716 —2-36
10 1800 360 360 (2.18)
1 16—6 16+/6 1 '
36 36 9
16—/6 16+v6 1
36 36 9

RADAUS requires the solution of 3m simultaneous equations for each step, making the implemen-

tation significantly more complicated than for an ERK method. RADAUS5 has a stability function

R(z) = 1= ;Eﬁéi;;?} 23 760° which implies L-stability and gives the unbounded stability region that

is shown in Figure 2.3. In general, R(z) for IRK methods is a rational function [43, p.41]. General
IRK methods like the Radau ITA family can have arbitrarily high orders of convergence and still

possess properties such as L-stability.

IRK methods that have a lower-triangular matrix A are known as diagonally implicit Runge—
Kutta (DIRK) methods. These methods allow the stages to be evaluated sequentially and require

the solution of only m simultaneous equations for each stage. Therefore their implementation is

12



Figure 2.3: The region (shaded) of absolute stability for RADAUS5.

simplified over a general IRK method with a full A matrix. Furthermore, if all of the a;; are equal,
the same iteration matrix can be used for each stage when using Newton’s method, an algorithm
that requires the Jacobian (2.9) to solve the systems of simultaneous equations. The resulting
methods are known as singly diagonally implicit Runge—Kutta (SDIRK) methods. An example of
an SDIRK method is the L-stable SDIRK of fourth order [44, p.100], which has a Butcher tableau
of

11

4 4

3 1 1

4 2 4

o1 11

20 50 25 4 (219)

1| 371 137 15 1

2 1360 2720 544 4

1] 2 _49 125 _8 1
24 48 16 12 4
25 _49 125 _85 1
24 48 16 12 4

RK methods applied to extremely stiff problems exhibit order reduction: they behave as though
they have a lower order of convergence than that implied by the asymptotic behaviour of the local
error (2.5). For stiff problems, all RK methods exhibit order reduction, ultimately being reduced to
their stage order in the case of extremely stiff problems. The stage order is the minimum order of
convergence of the method and its constituent stages. The constituent stages of an ERK or SDIRK
method have an order of convergence of one, whereas general IRK methods can have higher stage
orders. For example, s stage IRK methods of the Radau family have stage order s; hence RADAUS
(2.18) has a stage order of three [44, p.237; 61, p.282].

2.2.1 Additive Runge—Kutta methods

The material in this subsection is largely adapted from [7], [51], and [55].

Some ODEs have a RHS that can be decomposed additively. An N-additive ODE has an RHS

13



of the form

N
f(t,y) =Y _ f(t,y). (2.20)

In many cases, each f[] (t,y) has unique characteristics, often arising from distinct physical pro-
cesses, such as in the case of semi-discretized advection-reaction-diffusion equations that are further

described in Section 2.7, that can be more efficiently solved using distinct numerical methods [55].

ARK methods treat the N terms (2.20) with N separate RK methods, allowing the use of an
optimal method for each term. The general form of an additive Runge-Kutta (ARK) method is

given by

N s
k= £ |t Aty + A DD el =12,

v=1j=1

N s
Yn+1 = Yn + Atn Z Z bgy] kr[iu]y

v=1j=1

where the variables are defined as for standard RK methods (2.14), except that there are N Butcher
tableaux and N's stage values. The Butcher tableaux for ARK methods then consist of N individual

tableaux
cll | Al 2| Al2Z clV] ‘ AN
‘ p? ‘ p2? ‘ pNT
In practical implementations, there are often simplifying assumptions, e.g., bl = bl vl =
" p#v, p, v=1,2,...,N. These assumptions reduce the number of remaining order conditions

to be satisfied by the remaining free method coefficients required for the method to have a given

order; this topic is discussed in Section 2.4.

The ARK methods most commonly used in practice are 2-ARK methods. Methods that are
composed of an ERK method and an IRK method are known as implicit-explicit (IMEX) Runge—
Kutta methods. These methods are commonly designed for 2-additive ODEs, where one term fl!l

is nonlinear or non-stiff and the other term £ is linear or stiff [7]. The general form of a linearly
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implicit IMEX method that uses an SDIRK method to solve f[2! is

kM = e, + Aty + AL, i (ag.]kg.” + ag]kf]) Ci=1,2,...,s,
p
J (2.21a)
(T- Atalla) kP = £ (4, + At,cy, + AL, i (B )= 120,
j=1
(2.21b)
Yot1 = Yo + Aty Z (bl 4 oK) (2.21c)

=1

where a system of linear equations (2.21b) must be solved for each k?]. An advantage of IMEX

methods based on SDIRK is that for additive ODEs with a (stiff) linear term, each of the stages
can be found sequentially with only one solution of a linear system, whereas a non-additive IRK

method would generally require the solution of a nonlinear system.

An example of an IMEX method is IMEX(4,4,3) [7], which is third-order accurate with an
L-stable SDIRK method, given by

o,o o0 O O O O0jO0O O O O0 O
11 0 0 0 0 Ljo L 0 00
3l s 0 0 0 30§ 3 00
ils —8 3 0 0 3]0 -3 3 30
g § 4§ -10 1jo § -3 35 3
111 -fo 0 3 -3 3 3

2.3 Other IVP methods

Multistep methods are a class of IVP methods that use information from multiple previous steps to
obtain a high order of convergence. Explicit multistep methods are generally more efficient for high-
accuracy solutions when function evaluations are expensive because they only require one function
evaluation per step for any order, in contrast to the multiple function evaluations per step required
by ERK methods [13, p.427]. Implicit multistep methods have the disadvantage of not being A-
stable at orders of convergence higher than two, a consequence known as the second Dalhquist

barrier. The highest known order of convergence for A(a)-stable implicit multistep methods is
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six using BDF-based methods [44, p.247], but in practice the order is limited to five. General
linear methods are a generalization of both multistep and RK methods, including ARK methods.
They use both past values and multiple function evaluations per step to achieve a high order of

convergence; they are further described in [15, 16, 43, 44, 53].

2.4 Order conditions

The material in this section is largely adapted from [15, 43, 61].

Numerical methods with high orders of convergence can reduce the computational cost of solving
an IVP compared with low-order methods by many orders of magnitude, especially when high
accuracy is desired [43, p.130]. High-order methods require careful choices for the values of A, b,
and c in the Butcher tableaux. The relationships between these coefficients that determine the

order of a method are known as the order conditions.

The Taylor series [43, p.46] of y(t, + At) satisfying (2.2a) at t,, is given by

e At i d(i*l)
it +20 =y(t) + Y S L

1=

(y(tn))- (2.22)

The Taylor series of a numerical method at y,, is defined as the Taylor series of the function that
results when the local solution ¥, (¢) is substituted into the numerical method. The truncation
error (2.5) of a numerical method is equivalent to the terms of (2.22) that have ¢ > p+1, where p is
the order of convergence. Thus for a method to have an order of convergence of p, the Taylor series
of the numerical method must match the Taylor series of the local solution up to and including
term p+ 1. The order conditions required for an order of convergence of p are derived by matching
the derivatives up to and including those of order p of the numerical solution with those of the local
solution. Therefore if a numerical method satisfies all order conditions up to order p, then it has

an order of convergence of p [43, p.144].

To describe the structure of higher derivatives of y(t), constructs known as elementary differ-
entials are used, a term first introduced by John Butcher [13, 41]. The first derivative of y(¢) is

associated with an elementary differential given by

G (f(y(1)) = £(y(1)). (2.23a)

The elementary differentials associated with higher-order derivatives form a set of expressions,

where the set of elementary differentials associated with derivative ¢ of y(t) is the set GI(y(t))
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that contains a representative of each equivalent expression in the set G4(y(t)) given by

Gi(f(y(?))) :=

gl:=>, <Z;Zh2 9" ily ()

o1 b2 do
- 8 )hi 8 )hy -8 )h, | €
ot G (5, (g (&, )

q:1+51+52++50‘

ce1,2,...q—1 , (2:23b)

6]‘ €el,2,...,q—1
g% € GY(y(t))

where g? = g?(f(y(t))) : R™ — R™ is an elementary differential of order ¢, yj, is component h; of
y(t), (g%)n, is component h; of the elementary differential g%, and e; € R™,i € 1,2,...,m, are

the standard basis vectors [13, 145-150; 61, p.157-162].

Derivative g of y(t) is given in terms of elementary differentials by

d4

%Y(t) = Z o(g?)g’, (2.24)
g1€GI(f(y(t)))

where a(g?) is a factor expressing the number of times each elementary differential g? appears in

the expression of the derivative. This representation corresponds to a special case of Fad di Bruno’s

formula for the Taylor series of the exact solution y(¢) from (2.2a) [13, p.150].

The increasing complexity of these expressions and the requirement to derive values such as
a(g?) from (2.24) make it advantageous to use a graphical representation in the form of rooted
trees. A rooted tree has one vertex that is known as the root. The vertices are connected via
branches, and a vertex that does not have branches extending away from the root is a leaf. Let the
mapping ¥ (v) take the vertex v to the next vertex closer to the root of the tree. The number of

vertices of a rooted tree is known as its order.

The first-order elementary differential G!(f(y(¢))) ~  is represented as a single vertex. The
elementary differential of g% € GI(f(y(t))) is represented as a rooted tree with o branches ex-
tending from the root and constructed recursively by joining the roots of the trees representing
gd g% ... gl from (2.23b). When g% = G!(f(y(t))), the branch terminates in a leaf. Any

rooted tree 7 ~ g? has a(7) = a(g?), which corresponds to the number of topologically unique

labellings of the non-root vertices of 7. For example, the rooted tree K/ has three topologically

unique labellings of the non-root vertices, given by

ha h3 hs
I{“/hs I{B/’m Ifz/’“
70 70 7
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An example of a rooted tree and the corresponding elementary differential is

ha
hihs|hs
.- - P fi(y(t) T fn ((1)
i ™ ; (hh}gs_l mfhl(Y(t))fhz(Y(t)) <h42_1 %fm(Y(t)))) e,

that has 0 = 3, 61,02 = 1, and 63 = 2. The elementary differential represented by g’ has ¢ = 1 and
01 = 1. The first four derivatives of the exact solution of (2.2a) in terms of elementary differentials

and rooted trees are as follows

o~ L) = 1y (1), (225
¢ N (N Ofily(®)
[ ~ Yt = ; (; 8%J”h(s'(t))) ei, (2.25b)

( me(y(t))fhz(y(t)))

Oyp, 0
hi,ha=1 Yh,0Yhy

. Z ( 3 afé(yi(f)) 3fzg ;Z(t)) s (y(t))) e, (2.25¢)

Vst ]+

d
~ @Y(t)

- ( > mfhl<y<t>>fh2<y<t>>fh3<y(t>>)

1=1 \hi,h2,h
m m 9
P ( 2 O e <y<t>>)

*Z( > af;jy’;ft”aa;”’;(ayyfj)fM(y(t))fhs(y(t)))

. Z ( Z Ofi(y(t)) 0fn, (y(t) Ofns (y(t))fh3 (y(t))) e;, (2.25d)

By ha e OYn, OYn, OYn,

The expression corresponding to the tree 7 = K/ in (2.25d) has a coeflicient of 3 because there
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are three topologically unique labellings of the non-root vertices of 7, therefore in (2.24) a(7) = 3.
Higher derivatives result in a combinatorial explosion of the number of trees needed for a
representation of a particular derivative. Table 2.1 gives the number of topologically unique trees

associated with each order of derivative q.

q
number of unique trees

— =

23 45 6 7 8 9 10
1 2 4 9 20 48 115 286 719

Table 2.1: Total number of trees associated with derivatives of up to tenth order.

2.4.1 Order conditions for Runge—Kutta methods

The derivatives of the numerical solution from an RK method can be represented in terms of rooted

trees in a similar manner to the exact solution. In this thesis it is assumed that the following holds

Zaij = ¢, (2.26)
j=1

allowing the autonomous form of an ODE (2.3) to be used in the analysis of RK methods [13, p.143].

The derivatives of the numerical solution of an RK method satisfy

S

(I)Ul (T) = Z a’éb(’liz);vz aw(US)"US e a"‘[’(vq)’vq’
V2,V3,...,Vg=1
d? _ -
%Yn(t) = Z a(7)y(7) Zbiq)i(T)ggv (2.27)
T€T =1
where v1,v2,...,v, are the g vertices of the rooted tree 7 with vy representing the root, y(7) is

the product of the number of vertices of 7 with the number of vertices of the resulting rooted trees
when the roots are removed one by one from 7, T'? is the set of rooted trees of order ¢, and ay ).
is the value at row ¥ (v) and column v in the matrix A from the Butcher tableau where the vertices
are labelled with the set {1,2,...,s} based on the summations in (2.27) [43, p.151], and g2 is the

elementary differential from G?(f(y,)) equivalent to the tree 7.

hy
1ha|hg

h
For example, the fifth order tree 7 = \I), gives ®;(7) from (2.27) as

S

S
2
(I)i(T) = E Qi hy Qi hy @i, hy Qhg,hy = E Ci Qi,h3Chs,
hi,h2,h3,hs=1 i,hg=1
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This procedure is then repeated for all rooted trees of fifth order to form the fifth-order derivative
of the numerical solution from (2.27).

The order conditions for order p are constructed by ensuring the expressions for the derivative
and the numerical solution match up to order p. The number of order conditions that need to be
satisfied for an order of convergence of p is the same as the number of rooted trees corresponding
to that order. The total number of order conditions for an RK method to be of up to tenth order

are given in Table 2.2.

P 123 4 5 6 7 8 9 10
conditions fororder p | 1 2 4 8 17 37 85 200 486 1205

Table 2.2: Total number of order conditions for RK methods up to tenth order.

Derivative ¢ of (2.27) can be made equal to (2.24) if the additional terms in (2.27) are made

equal to one by satisfying the expression
Y(r)> bi®i(r) = 1. (2.28)
i=1

The expressions (2.28) derived from derivative ¢ constitute the order conditions for order g.

The order conditions up to an order of convergence of four follow, where (2.26) is used to simplify
them where necessary [13, p.137,145]. The order condition that ensures a RK method has an order

of convergence of one is

> bi=1. (2.29)

The additional order condition that ensures an RK method has an order of convergence of two is
S

23 bic; =1. (2.30)
i=1

The two additional order conditions that ensure an RK method has an order of convergence of

three are
3 bl =1, (2.31a)
=1
6> biagc; = 1. (2.31b)
i,j=1

The four additional order conditions that ensure an RK method has an order of convergence of four
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are
s
4Zbicf =1,
i=1
s
8 Z biciaijcj = 1,

1,j=1
12 Z biaijcl =1,
,j=1
24 > biaijajre, = 1. (2.32)
i,5,k=1

The maximum attainable order for an RK method is p = 2s using the implicit Gaussian meth-

ods [14, p.71]. An ERK method requires sy, (p) < 22=22+4 stages to achieve an order of convergence
of p. Table 2.3 shows the bounds for the minimum number of stages for ERK methods of various

orders [14, 27, 37, 40].

p<4 p=25,6 p="7T p=2_8
Smin(p) =P Smin(P) =P + Smin(p) =9 Smin(p) = 11
p=9 p=10 p=11,12 p=1314
12 < Smin(p) <17 [ 13 < 5min(P) <17 [ p+3 < smin(p) <25 [ p+ 3 < smin(p) < 35

Table 2.3: Minimum number of stages syin(p) required for ERK Methods of order p.

2.4.2 Order conditions for additive Runge—Kutta methods

The material in this subsection is largely adapted from [7, 51, 55].

The order conditions for an ARK method include the order conditions for the constituent RK
methods as well as coupling conditions, which are order conditions that involve more than one of the
constituent RK methods. They are represented by IN-colourings of the rooted trees corresponding
to the elementary differentials.

Each of the N colours corresponds to one of the constituent methods. The derivatives of the
numerical solution of an ARK method satisfy

s

_ Iy (3] gl
@y, (1) = Z 5(2112)112@5(13)%“ i(vq)vq (2.33a)

V2,V3,...,Ug=1

yn = > > o Z S bra(r)gl, (2.33b)

TcETI TET, i=1 €M

where v1, v, ...,v4 are the g vertices of the coloured rooted tree 7 with £1; the colour of the root v;
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and pi2, 3, . . ., ptp the corresponding colours of the rest of the vertices, M is the set of N colours, 7,
is a set of N-coloured trees of the same topology, T is the set of all rooted coloured trees of order
q, and QEZL(]v),v is the value at row ¥ (v) and column v in the matrix A from the Butcher tableau of
the method corresponding to the colour p.

It is often assumed that
bl = pll clwil = ¢lwil -y fi, jtj € N, (2.34)

because then only coupling conditions based on colourings of the internal vertices of the rooted
trees need to be considered, i.e., those that are not a root or leaf [55]. These coupling conditions
are the expressions from the order conditions for standard RK methods (2.28) with a;; in ®(7)

replaced by ag‘;j] as in (2.33a).

h3
hipho
For example, the fourth-order coloured tree

7

gives a coupling condition of

S

12 > el 6l e, =12 3 olal Pl =1,

1 1,hy ™
i,h1,ho,h3=1 i,h1=1

where N = 2 with ¢ and © corresponding to the colours 1 and 2 respectively.

The total number of conditions, both order and coupling, for N-ARK methods up to N = 4
and fifth order are given in Table 2.4. The number of order and coupling conditions increases very
rapidly with increasing p and N due to the combinatorial explosion in the number of colourings of

the associated rooted trees [55].

p |1 2 3 4 5
N=2[2 4 18 60 230
N=3[3 12 51 258 1509
N=4[4 20 112 768 6028

Table 2.4: Total number of order and coupling conditions for N-ARK methods of up to
N =4 and fifth order.

2.5 Error control

The material in this section is largely adapted from [15] and [43].

Although the global error reflects the accuracy of the solution to (2.2), in general, it is only
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possible to control the local error directly. In practice, the global error can be indirectly controlled
by limiting the local error at each step. The solution of an IVP generally requires different stepsizes
at various times to limit the error to a certain level. To minimize computational cost, an IVP solver
must have a method of estimating the error and predicting the optimal stepsize. Ideally, the estimate

should be done with minimal extra cost over that needed to find the numerical solution.

2.5.1 Step-doubling error estimation

Step-doubling error estimation is a method to estimate the local error based on Richardson extrap-
olation [13, p.156]. It can be used with any numerical method for which the order of convergence
is known. It requires three steps to be taken from the current time t,,, two regular steps of size
At,, and one double step of size 2 At,, for the purposes of error estimation. The error in the first
regular step is

enty = Y(tn + Aly) = yuyy = CALT + O(AT?),

where y(t, + At,) is the local solution at t, + At,, y, +1 s the numerical solution at the first
regular step, and p is the order of convergence of the numerical method. The error after the second

regular step, taking into account the error after the first regular step, is

eni1 =Y(tn +2A%,) — yni1 = 2C(APTY) + O(AET2),
The error after the double step is

éni1 = y(tn +2AL,) — Jnr1 = C(2AL)PH + O(ARF?),

where ¥, is the numerical solution of the double step. If the constants C' and C' are taken to be

equal, the estimate to the local error is

Y(tn +2At,) = yop = PEIEL L oA+, (2.35)

which has an order of convergence of p 4+ 1 [13, p.164].
A disadvantage of step-doubling error estimation is that it incurs the expense of 3 steps in order
for the numerical solution to advance 2 steps. However, one step used in step-doubling is indepen-

dent of the other two; therefore parallel computing can be used to mitigate this disadvantage.

2.5.2 Error estimation via embedded methods

Because finding the stage values is the most expensive part of an RK method, the computational

cost of finding an error estimate can be minimized by reusing the stage values. Embedded methods
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use the stage values with additional sets of quadrature weights to produce numerical solutions with

differing orders of accuracy. The local error estimate for embedded RK methods is
en1 =Y (tn + Atn) — Yni1 = Ynt1 — Yni1 + O(Atﬁ+2)> (2.36)

where y(t, + At,) is the local solution, y, 11 is the numerical solution generated by the lower-
order method, y,,+1 is the numerical solution generated by the higher-order method, e, 41 is the
local error estimate, and p is the order of convergence of the numerical solution of the higher-order

method. The Butcher tableau for an embedded RK method is written as

where b contains the quadrature weights of the embedded method. An RK method can contain
more than one embedded method. An example is DOPRI853, an eighth-order method plus third-
order and fifth-order embedded methods. Desirable properties cannot be found in a sixth-order
embedded method without additional function evaluations, so the fifth-order embedded method
estimates the error, and the third-order method is used to correct overestimation of the error; this

is described in [13, p.243].

Although embedded methods often have more stage values than regular RK methods for a
particular order of convergence, this approach is less costly than step-doubling. When the higher-
order method is used to advance the integration, this is known as local extrapolation. When the
coefficients of the truncation error (2.5) are too large for the higher-order method, using local
extrapolation results in the estimated error becoming much smaller than the true error [43, p.178].
When local extrapolation is used and the error coefficients of the higher-order method are optimized,
the estimate does not make sense in terms of a local error estimate but still produces a useful stepsize
selection scheme [43, p.171]. This is because the local error generally has little in common with the

global error, and the value produced is adequate for stepsize selection [13, p.168].

An example of an embedded RK method is Dormand—Prince 5(4) pair, which uses local extrap-
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olation with methods of fifth and fourth order. The Butcher tableau is given by

0

1/5 1/5

3/10 | 3/40 9,/40

4/5 | 44/45 —56/15 32/9

8/9 | 19372/6561 —25360/2187 64448/6561 —212/729

1 | 9017/3168  —355/33  46732/5247  49/176  —5103/18686

1 35/384 0 500/1113  125/192  —2187/6784 11/84
35,/384 0 500/1113  125/192  —1287/6784 11/84 0
5179/57600 0 7591/16695 393/640 —92097/339200 187/2100 1/40

(2.37)

A concept known as First Same As Last (FSAL) is used to further reduce the number of func-
tion evaluations. The sixth stage of (2.37) at t,,41 is the fifth-order method used to advance the
integration. The fourth-order method is a seven-stage method using the fifth-order method as
its final stage. However, because the final stage is an RHS evaluation at ¢,,;1, it can be used as
the first stage for the following step. In practice the seven stages of Dormand—Prince 5(4) now
have no additional RHS evaluations over the minimum six stages necessary for a fifth-order ERK
method [13, p.178]. Dormand-Prince 5(4) has proven to be extremely successful and is used in the

MATLAB ode45 code [$8] and the FORTRAN software package DOPRI5 [43, p.475].

2.5.3 Stepsize selection

Stepsize selection is used to estimate the optimal stepsize during the integration such that the
estimated local error remains below a user specified tolerance. The acceptable tolerances for the

local error estimate for a numerical method are given by

Tnt1,i = Trel,i MAX(Yn,is Yn+1,i) + Tabs,is (2.38)

where Tye1; and Tps,; are relative and absolute tolerances respectively for each component ¢ of y.

The overall measure of the error is given by

m i— Tn-i—l,i

m 2
1 n 7
€nt+1 = — E <e+L> ; (239)
1

where e,,41,; is component ¢ of e, 41 from (2.36). If €,11 > 1, the estimated value of the local error
is deemed to be unacceptably large, the step is rejected, and a new step is attempted from t¢,. If

€nt1 < 1, the estimated value of the local error is deemed to be acceptable, the step is accepted,

25



and a new step is attempted from ¢, 1.

The new optimal stepsize is estimated by
At-:)pt = Atn(1/6n+1)(1/p+1)7 (240)

where p is the minimum order of convergence of the methods used. Heuristics are often applied to
the optimal stepsize to minimize the probability the next step will be rejected. A common way of
doing this is

Atpew = amin(amaxAty, max(Atopt, GminAty)),

where amax and api, are values representing the maximum amount the stepsize can increase and
decrease respectively, and « is a safety factor. These values are generally different based on whether
the step has been accepted or rejected, for example, to avoid a stepsize increase after a step is
rejected. Typical values are @ = 0.9, api, = 0.2, and apmax = 5.0 for an accepted step and

amax = 1.0 for a rejected step.

Control-theoretic stepsize selection

Principles from control theory can be used for stepsize selection; an example is the proportional-
integral (PI) stepsize controller of [39]. This error controller is designed specifically for the stepsize
changes that occur when stiff problems are solved with IRK methods. Changes in stepsize that are
too large can result in large numbers of rejected steps; this stepsize controller uses control-theoretic
techniques to avoid this situation. The estimate for the optimal stepsize after an accepted step,

other than the first accepted step, is
1

At € piT
A = 2 [ & ’
AL, (6%4—1

where At,,_; is the stepsize of most recent accepted step and e, is the measure of the error (2.39)

calculated from that step. After a rejected step, the optimal stepsize is calculated from (2.40).

2.6 Dense output

Strictly speaking, the numerical solution of (2.2) only exists at discrete points on the solution
interval [to,t;]. For many applications it is desirable to estimate the solution at arbitrary points;
this is accomplished using dense output formulae. The estimates are often of a lower order of

accuracy than the main numerical method.
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A dense output formula for an RK method takes the form

*

Ya(0) = yn + Aty > bi(0)k
i=1
where there are s* — s additional stages over the regular RK method, the k; are the stages from the
regular RK method plus any additional stages, 6 = % € [0,1] indicates the relative time when a
solution is desired, and b;(#) are the quadrature weights. The order conditions for the dense output

satisfy

that uses the notation of (2.28) and must satisfy the order conditions associated with all trees 7 up
to order p* for the dense output to have an order of convergence of p*.

An example of a fourth-order dense output formula for Dormand-Prince 5(4) (2.37) is

=60%(3-20)b +60(0 —1)% — 6% — 1) 5(2558722523 — 31403016 6) /11282082432,

—1)2100 (88272551 — 15701508 §) /32700410799,

0—-1

)

— 1)% 25 (443332067 — 3143016 0) /1880347072,
)2 32805 (23143187 — 3489224 6) /199316789632,
)°5

—1)%55 (29972135 — 707673 ) /822651844,

=02 (0 — 1)+ 6%(6 — 1)? 10 (741447 — 829305 0) /29380423.

This method is designed to minimize the coefficients of the truncation error of the dense output esti-
mate. The coefficients of the truncation error (2.5) are found by evaluating the derivatives greater
than p or p* for the main method and dense output formula respectively, using the elementary

differentials (2.23), and comparing them to those of the exact solution.

2.7 Advection-reaction-diffusion equations

The material in this section is adapted largely from [51].

A partial differential equation (PDE) is an equation for an unknown function of at least two
independent variables involving the partial derivatives with respect to those variables. This thesis
is primarily concerned with IVP methods that are part of the integration process for a class of
PDEs known as advection-reaction-diffusion (ARD) equations. ARD equations typically represent
a physical process that models the time evolution of a chemical or biological system in a flowing

medium. The distinct chemical or biological components within the model are known as the species.
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These systems are often modelled by looking at the behaviour of a small cell within a larger system.

The advection term of the PDE models the mass balance of the cell due to a flowing medium.
The conservation of mass requires that the net change in concentration in a cell to be the sum of

the net inflow and outflow. Thus, the advection term satisfies

%u(t,x) + % (A(t,x,u(t,x)) u(t,x)) = 0, (2.41)

where u(t,x) € R x R? — R is the vector of concentrations of the g species at time ¢ and a spatial

position of x € R? and A(t,x,u(t,x)) € R x R? x R? — R? is known as the advection coefficient.

The diffusion term of the PDE models the change in u(¢,x) due to gradients in the solution

and the fluxes across cell boundaries. The diffusion term satisfies

0 0 0
au(t,x) = (D(t,x7u(t7x)) axu(t,x)> , (2.42)
where D(t,x,u(t,x)) € R x R x R? — R? is the diffusion coefficient.

The reaction term of the PDE models the change in u(t¢,x) due to sources, sinks, and chemical

reactions. The reaction term satisfies

au(t, x) =r (t,x,u(t,x)), (2.43)

where r(t,x,u(t,x)) € R x RY x R? — R? models the reaction terms in one cell.

The general form of ARD equations modelling the net effect of the three processes is therefore

given by

%u(t,X)Jr% (A(t,x,u(t,x)) u(t,x)) = % (D(t,x,u(t,x)) i{u(t,x)) +r(t,x,u(t,x)). (2.44)

The boundary conditions are given by

Bo(t,x(t),u(t,x)) u(t,x) + By (t, x(t), u(t,x)) aixu(t, x) =v(t,x), xeT,

where By(t,x(t),u(t,x)), Bi(t,x(t),u(t,x)) € R x R x R? — R? are coefficients, I is a set rep-
resenting the spatial boundary, and «(¢,x) is an arbitrary function of the spatial variables. The
initial condition is given by

u(0,x) = up(x).
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2.8 The method of lines

The method of lines (MOL) is the process of semi-discretizing PDEs and leaving a single continuous
dependent variable, typically time, resulting in a coupled system of ODEs (2.2a) of dimension
m = q X Ngra With y(t) = {u;(t)}[#* € R™, where u;(t) € u(t,x;),i = 1,2,...,ngiq are the
concentrations at time ¢ for the spatial locations x; corresponding to the ngiq grid points. Fully

discrete approximations can now be obtained by integrating in time with a suitable timestepping

method.

In the case of a semi-discretized system of ARD equations, the advection terms tend to have
predominantly imaginary eigenvalues, whereas the reaction and diffusion terms tend to have pre-
dominantly real eigenvalues, with those from the diffusion terms tending to be relatively large and
those from the reaction terms tending to be problem dependent. In this application, different

numerical methods can be optimal for integrating each term of (2.44) [51].

The methods used for semi-discretization in this thesis are finite-difference methods on a grid
that is uniform in each spatial dimension with a spacing given by Ax. The methods in the following
examples use only one spatial dimension, one species, and periodic boundary conditions, i.e., in

calculations ug and u,,,,,+1 are identified with u,, and u; respectively.

An example of central differences being used to semi-discretize the second-order partial deriva-

tive associated with a constant coefficient diffusion term (2.42) is given by

0 1o} Ui— t) — 2’[1,1 t) + Uj t D
o (Daxu(t,x)) ~ pli=ilt) (A;)g n®) _ (Ax)QDgy(t), (2.45a)
2 1 1]
1 -2 1
DY = R , (2.45b)
1 -2 1
1 1 2]

where w;(t) corresponds to spatial point ¢ and time ¢, y(¢) : R — R™ is the solution of the system
of ODEs (2.2a) at time ¢ from the semi-discretization, D € R is the constant diffusion coefficient,

and there is an order of convergence of two with respect to Ax.

An example of central differences being used to semi-discretize the first-order spatial derivative
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associated with a constant coefficient advection term (2.41) is given by

0 o i) —uina(t) A
A%U(t,l'z) ~ A 2 Ax - 2A$D1y(t)7
[0 -1 1]
1 0 -1
DY = o 7
1 0 -1
1 10|

where 0 > A € R is the constant advection coefficient and there is an order of convergence of two
with respect to Az. Central differencing introduces artificial dispersion from the different Fourier
modes traveling at different speeds, leading to oscillations not present in the exact solution of the
underlying PDE.

Finite differences for the advection term benefits from upwind-biasing for stabilization [77]. A
first-order upwind discretization can also be used for the first-order spatial derivative associated
with the advection term. An example of first-order upwind discretization with constant advection
coefficients is given by

A2t 3 m At il A

. (2.47a)

(2.47D)

which has an order of convergence of one with respect to Ax. Despite the lower order of conver-
gence, upwind-biased schemes are often more satisfactory in practice because they do not introduce
dispersion; however they can introduce artificial diffusion [51, p.56].

To illustrate the MOL applied to an ARD equation, consider the constant-coefficient ARD

equation with one spatial dimension and one species given by

2

@u(t, x) + r(u(t, x)),

d 0
%u(t, x) + A%u(t, z)=D

where A,D € R are the constant advection and diffusion coefficients. The advection and diffu-

sion term are semi-discretized with upwind (2.47) and central (2.45) discretizations respectively,
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therefore obtaining

Y0 = 2DIY() = DY)+ x(y(),

where y(t) : R — R™ is the spatial discretization of u(z,t), r(y(t)) = {r(u;)} = : R™ — R™ is
the reaction term, and the resulting system can be trivially converted into a system of ODEs of the

form (2.2a).
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CHAPTER 3

A PROBLEM-SOLVING ENVIRONMENT FOR THE NUMERI-

CAL SOLUTION OF IVPs

Numerical integration of IVPs using FE (2.6) dates back to the foundation of differential calcu-
lus. The first numerical methods with an order of convergence higher than one were the multistep
methods published in 1883 by Adams [43, p.356]. RK methods were developed at the beginning
of the twentieth century by Runge, Heun, and Kutta [43, p.134]. The development of computers
allowed these calculations to take place electronically, with FORTRAN becoming the first dominant

language for numerical computing.

The methods most commonly used for solving IVPs are FE (2.6) and “the” fourth-order ERK
method (2.17). These methods are so ubiquitous that they are often the only RK methods known
to many practitioners [61, p.183]. Although FE is commonly used because of its simple imple-
mentation, it is generally inefficient due to its low order of convergence; therefore fourth-order
ERK methods are more suitable for non-stiff problems. Because the size of the stability region
generally scales sublinearly with increasing order of convergence, the low cost of each step using
FE generally means less computational cost overall in comparison to ERK methods when solving
stiff problems [44, p.58; 61, p.221]. ERK methods are often used to solve stiff problems by many
practitioners due to their simplified implementation even if the computational cost is greatly in-
creased. An exception where a fourth-order ERK can be more efficient for stiff problems is when
eigenvalues from (2.9) have significant imaginary parts, such as for the semi-discretized advection
equation (2.41). This is because four-stage, fourth-order ERK methods have stability regions that
cover a significant portion of the imaginary axis, unlike methods with s € {1,2} stages [51, p.170]
and p = s.

When used alone, RK methods lack error control such as that described in Section 2.5. Although
any integration method of known order can use step-doubling error control from Section 2.5.1, if
no error control is provided then a constant stepsize might as well be used. However, the efficient
solution of IVPs requires different stepsizes at different times to limit local error; use of a constant
stepsize restricts the stepsize to the smallest value required in the solution interval. Sophisticated

non-stiff IVP solvers use error control. The FORTRAN software package DOPRI5 [43, p.475] and
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the MATLAB function ode45 [38] both use the explicit Dormand-Prince 5(4) scheme (2.37). The
FORTRAN software package DOPRI853 uses the eighth-order DOPRI853 ERK method described in
Section 2.5.2; and it is used extensively for high-precision computations due to its high order of
convergence [43, p.243]. Multistep methods are popular for non-stiff problems with costly evalua-
tions of the RHS. The MATLAB solver ode113 is a representative example of a non-stiff multistep

solver and uses methods of orders 1 to 13 [38].

When the MOL is applied to ARD equations, the resulting IVP is often stiff due to fine grid
sizes and the inherent properties of the reaction and diffusion terms [51, p.64, 144]. Stiff solvers
are implicit in most cases and therefore require the solution of systems of simultaneous equations.
This makes them expensive to execute, but the stable steps are generally much larger than for
an explicit method when solving a stiff problem [61, p.189]. Due to the larger stepsizes, a stiff
solver can solve stiff problems with many orders of magnitude less computational cost than a
non-stiff solver [44, p.143]. For moderately stiff problems, it is still practical to use explicit meth-
ods [33, p.36-39] when computational cost is not of utmost importance because non-stiff methods
are less costly per step. Runge-Kutta—Chebyshev methods are an example of explicit methods
designed for moderately stiff problems. They have an extended stability region for problems when
the eigenvalues from (2.10) are mostly large, real, and negative such as the semi-discretized diffu-
sion equation (2.42) [44, p.31; 51, p.419]. Runge-Kutta—Chebyshev methods are further discussed
in Chapter 4. Even relatively small ODE systems can be extremely stiff and require a stiff solver

in practice [35].

Multistep methods have commonly been used for stiff IVP solvers, with variable-order BDFs
(Backwards Differentiation Formulae) being popular [88]. These methods are A(a)-stable, with
higher-order methods having smaller stability regions. Methods with orders of convergence be-
tween 1 and 5 are used, with the lower-order methods being used to start the integration and
accommodate IVPs that need a larger stability region. Commonly used software packages im-
plementing BDF methods include LSODE [80] and VODE [12]. LSODE can detect if a problem is
stiff and apply BDF methods rather than high-order explicit multistep methods when appropriate.
The MATLAB function odel5s [38] implements an extension of BDF methods, known as NDFs

(Numerical Differentiation Formulae).

General IRK methods can have many desirable properties such as A-stability and often retain
these properties at arbitrarily high orders. Stability when the eigenvalues of (2.9) are imaginary
is important for ARD equations; therefore stiff solvers using IRK methods are often preferred over
other stiff solvers such as the A(«a)-stable multistep solvers. The FORTRAN package RADAU5 uses the
Radau ITA method of order five (2.18) [14, p.568]. The FORTRAN package RADAUP [14, p.574], which
allows the user to select an order of five, nine, or thirteen, provides higher-order methods while still

allowing lower-order methods because they are more efficient at crude tolerances. The FORTRAN
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package SDIRK4 implements the fourth-order SDIRK method (2.19). The software package RODAS
and the ode23s [38] function from MATLAB implement Rosenbrock methods [14, p.102], i.e., linearly
implicit Runge—Kutta methods, which only require the solution of a linear system of equations, even
for problems with a nonlinear RHS [44, p.102]. The FORTRAN package IRKC is designed for stiff
reaction-diffusion problems. It uses an IMEX method with a Runge-Kutta—Chebyshev method
as the explicit method for the diffusion term and an implicit method for the reaction term. The
software package odeToJava uses the IMEX methods of [55] for solving stiff problems and Dormand-—
Prince 5(4) (2.37) for solving non-stiff problems. The MATLAB functions ode23t and ode23tb are

also used for stiff problems and are described in [38].

3.1 IVP software implementation

The material in this section is largely adapted from [87].
This section outlines how the methods from Chapter 2 are used to construct IVP software. A
flowchart showing the sequence of the components from a linearly implicit RK IVP solver is shown

in Figure 3.1.

Figure 3.1: Flowchart of a linearly implicit Runge—Kutta solver.

IVP solvers are initialized with user-supplied initial time and initial values. In the case of

a constant-stepsize solver, the initial stepsize is used for the whole integration, often requiring
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considerable experimentation to ensure the solution is reliable. Although an initial stepsize is often
provided for variable-stepsize solvers, there are algorithms to estimate an optimal value [43, p.169].
An improper estimate is not generally costly in this case because in practice the number of rejected

or undersized steps at the start is small compared to the total number of steps.

One-step methods can start the integration immediately, but multistep methods require simpler
methods to build up enough past solution values. This can be done by repeatedly using a one-step
method or by using a variable-order multistep method. As the first-order method in variable-order
multistep software, either FE (2.6) is used for non-stiff solvers or a one-step implicit method such
as BE (2.7) is used for stiff solvers. The second step can now be computed with a two-step method
if the solver finds this appropriate. This is continued until the solver has enough past steps for
all of its methods, after which time it can choose whichever method it deems appropriate. Other
methods that require past quantities, such as the PI stepsize controller described in Section 2.5.3,

have their own methods of handling the beginning of the solution.

RK methods require the evaluation of the stages (2.14a) before finding the solution at the
end of the step using the quadrature weights (2.14b). ERK methods and DIRK methods do this
sequentially, with DIRK methods requiring the solution of simultaneous equations for each stage.
General IRK methods such as RADAUS5 (2.18) require the evaluation of all of the stages at once.
Solving the systems of simultaneous nonlinear equations requires Newton’s method because many
other methods such as functional iteration are not robust enough for this application; this is because
achieving convergence with functional iteration requires a restriction on the stepsize that is similar
to the one for stability [44, p.119]. If the Jacobian (2.9) is evaluated at each step and stage, this
maximizes the stability of the numerical method. Due to the expense of Jacobian evaluations,
however, the Jacobian is often frozen; i.e., it is used beyond the time and solution values for which
it was evaluated. This is an effective tradeoff when the computational savings from the reduction
in stability from a frozen Jacobian offsets the computational cost of repeatedly evaluating and
factoring it. Additional information on the solution of systems of simultaneous equations can be

found in [54, 97].

Error estimation for each step, as described in Section 2.5, takes place after the integration has
been attempted for that step. This estimate is then used in conjunction with stepsize selection
like that from Section 2.5.3 to estimate the optimal stepsize. Additional information on stepsize
selection for multistep methods can be found in [43]. If a step is rejected due to a level of error
higher than the specified tolerances, the next step then proceeds using the same initial time and

solution values used in the current step with the estimated optimal stepsize.

If the estimated error is within the specified tolerances, then the step is accepted, and the next
step uses the time and solution values from the current step as its initial solution values. After a

step has been accepted, dense output formulae may be applied in order to estimate the solution at
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off-step times contained within the current step. At this point the solution values may be written
to a data structure or file, if desired.

At the beginning of each new step, a check is made to see if that step is expected to reach the
final time. Accordingly, the last step in the solution may be adjusted if appropriate. It is safely
assumed that shortening the last step decreases the estimated error, as can easily be seen from the
asymptotic behaviour of the truncation error (2.5). In many implementations, the last step may

also be stretched by a small factor in order to reach the final time, thus avoiding an extra step.

3.2 Problem-solving environments

Many methods for solving IVPs (2.2) are implemented only in certain software packages and in a
particular language. Some of the software packages described in this chapter are the only available
implementations of the constituent methods. Porting each IVP to a different software package can
can make experimenting with a wide range of solution methods a substantial development effort.
An example of where methods are compared can be found in [33, p.37], where a comparison is made
of the computational cost of various software packages on a target set of problems. Experimentation
with a method unavailable in existing software packages is done in [93], where the RADAU5 method
was modified to use a digital filter, one that is more sophisticated than the control-theoretic method
described in Section 2.5.3, for stepsize control. Typically this type of modification requires a
significant development effort, limiting the type and scope of experimentation that has been done.

The FORTRAN solvers described in this chapter are used as library functions and require the
user to write a driver for a particular IVP. Many of these software packages have been in wide use
for a substantial amount of time; for instance, a common version of LSODE dates back to 1981. A
reason for this is because the exact solutions to scientific computing problems are not generally
known, even if the methods used are theoretically sound, and incorrect solutions due to bugs or
poor implementation are not always obvious. Therefore it can take a substantial amount of time
for a software package to become trusted within the community. Reasons for the popularity of
FORTRAN are the suitability when computational cost is important, domain-specific syntax for
manipulating floating-point arrays, an extensive selection of high-performance numerical libraries,
and the most commonly available implementations of many scientific problems, e.g., the code
FUNWAVE for simulating shallow water equations using the fully nonlinear Boussinesq model that
is further described in [59].

These types of issues with numerical software have led to development of problem-solving envi-
ronments (PSEs). Rice and Boisvert have given the following description of a PSE [81]:

A PSE is a computer system that provides all the computational facilities necessary

to solve a target class of problems efficiently. The facilities include advanced solution
methods, automatic or semi-automatic selection of solution methods, and ways to easily
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incorporate novel solution methods. They also include facilities to check the formula-
tion of the problem posed, to automatically (or semi-automatically) select computing
devices, to view or assess the correctness of solutions, and to manage the overall com-
putational process. Moreover, PSEs use the terminology of the target class of problems,
therefore users can solve them without specialized knowledge of the underlying com-
puter hardware, software, or algorithms. In principle, PSEs provide a framework that
is all things to all people; they solve simple or complex problems, support both rapid
prototyping and detailed analysis, and can be used both in introductory education or
at the frontiers of science.

MATLAB is an example of a PSE for scientific computing problems. It has a scripting language
with special features for matrix operations and includes an extensive library of mathematical func-
tions, an interactive command prompt for easy prototyping, graphical user interfaces (GUIs) for
tasks such as plotting data, and toolboxes for special functionality such as signal processing. The
MATLAB IVP solvers described in this chapter can be interchanged easily, a significant advantage
given that many problems are more amenable to certain integration methods [61, p.226-231]. De-
spite the ease of scripting MATLAB, it is still not straightforward to experiment with substantially
different IVP methods beyond those that are already implemented.

Other PSE-like approaches include odeToJava, which has a similar interfaces for each of its
different IVP solvers, allows arbitrary Butcher tableaux, and includes several options for error
control and input/output. VFGEN is a front end that allows a common input file to be used for
for 11 different ODE solvers, including the FORTRAN ones mentioned in this chapter, as well as
other applications such as automatic differentiation or generating TEX code [104]. These PSE-
like approaches make it easier to experiment with different methods, but they still tie the user to

existing solvers and methodologies.

Due to the restrictions on available software, it can be necessary to compare across different
software packages and programming languages, as is done in [33, p.37]. Although this type of
comparison is useful for finding the best software package for a target problem class, it only indi-
rectly compares the underlying methods. Many published comparisons between numerical methods
are not rigorous but rather are a “mathematical demonstration” [93, p.245] to show the theoret-
ical properties and practical viability of the methods being tested. Code comparisons such as
those in [33, p.37] are not performed ceteris paribus, i.e., testing only one aspect of a method at
a time with all other things being equal. Differences in implementation and non-uniformities in
performance across programming environments mean that testing across software packages intro-
duces many additional variables and therefore cannot be performed ceteris paribus. To rigorously
evaluate numerical methods empirically requires a large number of precisely controlled experi-
ments [93, p.245], a requirement that is often impractical within existing software packages. A PSE

is the ideal environment for this type of experimentation between different numerical methods.
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3.3 Architecture and design of pythODE

The pyth0ODE PSE is designed to be modular and based on accepted software engineering principles
rather than being optimized for performance. The component of pythODE developed specifically
for this thesis solves IVPs, another component solves boundary-value problems, where information
about the solution is given at times other than the initial time. In order to facilitate experimentation
with IVP methods, pythODE allows the different components of an IVP solver to be integrated
without modifying the numerical code, therefore easily allowing a user to perform a wide range
of experimentation. The object-oriented architecture of pythODE offers an abstraction of common
algorithms for IVPs that include Runge—Kutta methods as well as the multistep and general linear
methods from Section 2.3, which together constitute a large family of methods that have been the
subject of active research for over 100 years [43, p.134]. Additional numerical methods for IVPs
have been be identified that fit within the general architecture of pythODE. If a front end such as
a graphical user interface were developed, no programming would be strictly required to construct

new solvers from existing components.

The pythODE PSE is also a platform to facilitate computational experimentation. For example,
pythODE could be used to compare stepsize selection methods, such as the control-theoretic method
described in Section 2.5.3 and the more sophisticated digital filter methods described in [92, 93].
In [93], a more sophisticated digital filter method was only used with the integration methods in
RADAU5S and those in another package, DASPK. Despite using only two integration methods, this
experiment likely required a substantial development effort on the part of the authors. In a mod-
ular software environment, these digital filter methods could be compared rigorously with another
stepsize selection method using a wider range of integration methods. Each constituent method
would only have to be written once but then could be reused in many combinations. The only
component that would change within the solver would be the integration module, therefore exper-
imentation can easily be performed ceteris paribus. In the case where the user is only interested
in the solution to an IVP, computational experimentation is still necessary because even well-used
methods can exhibit unexpected behaviour [17, 91]. To have confidence in the solution to an IVP,
it is generally necessary to solve it with various solver parameters such as stepsize when constant

or error tolerance (2.38).

The pythODE PSE could also be used as a classroom tool due to the ease of comparing and
demonstrating different methods for solving IVPs. This would provide more flexibility than other
PSEs commonly used for this purpose such as MATLAB, MAPLE, and MATHEMATICA. An example
of this usage is changing a Butcher tableau to easily demonstrate the differences between the

members of a family of methods.

The pythODE PSE provides testing and statistics components to facilitate the development of
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new modules. An important component is a test suite that can help to verify the functionality of
the whole package. It can detect abnormal behaviour by verifying standard methods against a test
suite of IVPs, allowing continued development while keeping pyth0ODE trustworthy. Furthermore,
although existing software packages provide statistics on the solution process, they tend to be basic
and differ between software packages. An important feature of pythODE is that it provides extensive
statistics about all IVP methods and incorporates them without code modification.

PYTHON is the language of choice for the pythODE PSE. It provides access to a wide variety
of language paradigms including imperative, object-oriented, and functional programming. The
overhead from the modularity and the relative slowness of PYTHON compared to languages such as
FORTRAN and C [32] make pythODE unsuitable if performance is of utmost importance. Despite
this, the ease with which it allows testing of new methods means it can provide information for
the development of high-performance IVP solvers. PYTHON includes features such as operator
overloading, which allows the programmer to use a more domain-specific notation when coding
mathematical expressions [382]. It also includes a large standard library, giving access to a large
amount of functionality. C and FORTRAN code can be easily called from PYTHON, thus allowing
access to a large amount of existing software. However, mixing languages may interfere with
performing tests ceteris paribus because C and FORTRAN generally execute the same operations
significantly faster than does PYTHON.

The main numerical libraries used in pythODE are NUMPY and SciPy. NUMPY provides mul-
tidimensional arrays of arbitrary data types, including real and complex floating-point numbers as
well as basic linear algebra operations. SCIPY uses NUMPY for fundamental operations and adds
functionality such as sparse linear algebra, special functions, and statistics. The library SYmMPYy
allows symbolic manipulation of mathematical expressions. Symbolic manipulation is generally too
inefficient to be used during the numerical solution process, but it is used to derive the coeffi-
cients of some numerical methods. The MATPLOTLIB library provides plotting and visualization of
data in NUMPY arrays. Together these libraries add a domain-specific functionality for PYTHON

comparable to commercial PSEs such as MATLAB, MAPLE, and MATHEMATICA.

3.3.1 The Solution object

Distributing the behaviour of software amongst objects results in many connections between those
objects. This can reduce the re-usability of those objects because in the worst case, every object
knows about every other object. With so many interconnections, these objects cannot act without
the support of other objects, making the system behave as if it were monolithic. The degree to which
components of a system rely on other components is known as coupling. A high degree of coupling
can make it difficult to change the behaviour of the system in any significant way [38, p.273]. The

IVP software packages described in this chapter are generally monolithic and have a high degree of
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coupling amongst the various components; therefore they are not readily modified.

A mediator pattern is an object that encapsulates how a set of other objects interact, keeping
them from referring to each other explicitly. Rather than interact directly with each other, the
objects now interact indirectly through the mediator. When the objects no longer have to refer to
each other explicitly, the system is known as loosely coupled. A loosely coupled system allows the

interaction of an object to be varied independently without affecting the other objects [38, p.273].

In pythODE, an object known as Solution, an example of which is shown in Figure 3.2, acts
as a mediator between the different components of an IVP solver. This type of abstraction is less
common in scientific computing than other types of computing. Solution holds all current and past
solution points, their stage values, as well as any other information required, for example, stepsize,
or information from the error controller. The numerical solution is stored in NUMPY arrays on a
per-step basis, but other types of information, such as strings to record information such as errors or
reasons for step rejections or integers are also accommodated. This allows single-step methods such
as RK, as well as multistep methods and general linear methods [15, 16, 43, 53], to be implemented
in the same framework. Past solution values may still be required for single-step methods because
error control such as the PI error controller from Section 2.5.3 or FSAL use past information. If
applicable, higher derivatives can be stored in order to allow the implementation of methods such
as Runge-Kutta—Nystrom [43, p.284] and Taylor-series methods [28]. When each component can
be modified completely independently of the others, this readily allows changing the behaviour of
the solver. Easy modification allows the large number of carefully controlled experiments needed
to make empirical claims [93]. Even components that are functionally dependent, such as error

estimation and stepsize selection, still integrate well into this framework.

A new construct called subsolutions are provided for the Solution objects in order to accom-
modate composite methods such as step-doubling and extrapolation methods [43, p.129; 44, p.131].
These are IVP solutions that branch off from the main solution at a particular step but use solution
values from the main solution prior to this step. This behaviour is transparent to solver compo-
nents and allows the same modules to operate on both the main solution and its subsolutions. An
example of where subsolutions are applied is in the context of step-doubling error control. The
regular steps operate on the main solution because they are used to advance the solution, and a
subsolution is created for the double-sized step. In this case the module used for integration does

not have to know about step-doubling error control.
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Figure 3.2: Solution object with Solver object and two SolverModule objects

Solution has a compact and intuitive syntax that allows its interface to resemble mathematical
notation. To extend the dynamic language paradigm used in PYTHON, stage and solution points do
not have to be explicitly allocated. They are allocated by referencing; therefore no prior knowledge
of the structure of a particular Solution object is necessary.

The following is an example of accessing the current value of Solution and storing it in the
variable z1: the first zero indicates that this is the current step, the second zero indicates that this

is derivative zero, i.e., the solution itself.
z1 = example_solution [0][0]

The following is an example of setting the second derivative of the solution point two steps prior
to the current solution point to the variable z2.
example_solution [ —2][2] = 2z2

The following is an example of accessing the first derivative of stage four of the solution point
prior to the current solution point and storing it in the variable z3.
z3 = example_solution[—1][ ’stage’]|[1][4]

The use of the key ’stage’ gives an example of how metadata can be stored and accessed on a
per-step and per-stage basis. Arbitrary keys can be used to store data without prior declaration.
The method step for Solution objects shifts the solution points so the current solution point

becomes the previous solution point to the current solution point, the previous solution point to the
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current solution point is shifted to a point two points previous to the current solution point, etc.
This accomplishes stepping in time of the IVP solver, and step can be called with an argument to
step more than one solution point. The following is an example of stepping the Solution object

example_solution two points forward.

example_solution.step (2)

This keeps the previously computed values but allows them to be referenced differently as each
subsequent timesteps requires. In the general case this is stateful, i.e., information about what has
previously occurred is maintained.

For IVPs that require many steps or are of a significant size, it is generally not desirable to
store all past solution points due to memory limitations. Therefore Solution includes methods to
remove old values. It is unknown how many previous solution points each solver module may need;
therefore this must be declared for each module. The method keep is called at the initialization of
each solver module, then the maximum value from all calls to keep is used as the number of steps
to save. After each step, the unneeded solution values are removed, thus saving resources. If more
past values than are required for the integration are needed, it is advisable to use a module to write

the solution values to a data structure or a file.

3.3.2 The Solver class and control flow

The class in pythODE that coordinates program flow and stepping is Solver. Solver is subclassed
for different types of stepping such as with constant stepsize (no error estimation), with step-
doubling error estimation (2.35), and with embedded error estimation (2.36). In this case, these
subclasses can be behavioural subtypes and avoid violating the Liskov substitution principle, which
states that any property true for a type (or class) must also be true for its subtypes (or sub-
classes) [63]. The Liskov substitution principle can easily be violated when using object-oriented
techniques in the design of mathematical software because there exist many analogous cases of the
classic circle-ellipse problem from [67] when implementing mathematical structures using object-
oriented design. The circle-ellipse problem is used to show that although a circle is a type of ellipse,
in general, a circle that is represented as a subtype of an ellipse may not be a behavioural sub-
type; i.e., a property provable for a type of objects should be true for its subtypes. For example,
an ellipse type may contain a method to stretch one of the principle axes but not the other. A
circle subtype would therefore not be able to satisfy both its own invariant, that both axes are
equal, and at the same time satisfy the behavioural requirements of the method to stretch one
axis inherited from the ellipse type. Failure to respect the Liskov substitution principle is known
to cause difficulty in the overall implementation, interoperability, and maintainability of complex

object-oriented systems [(7], such as pythODE.
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Solver is divided into three main parts, which do not consist of any numerical code but rather

coordinate the other parts of the program. The interface for Solver is shown in Listing 3.1 and

includes the following methods.

The initialize method runs prior to the first step of the IVP solver.

The step method runs for the first step and every subsequent step of the solution of the IVP.

The finalize method runs when the solver is finished solving the IVP.

The reset method returns the solver to its initial state.

The run method starts the integration after all objects have been initialized.

Solver also coordinates information that must be passed between different components of an IVP

solver but is not supported using Solution. An example of where information must be shared

between different components is when the error controller requires the order of convergence of

the integration method. A more complex example is when a component wants to force a rejected

timestep, for instance, in the case of an error. This is done by communicating directly with Solver.

Ambiguity is avoided by developing standard nomenclature and interfaces for these types of data

and actions.

Listing 3.1: The interface for Solver objects.

class Solver:

def initialize (self ,solver ,solution):
# code that runs before solving the IVP
pass

def step(self ,solver ,solution):
# code that rumns for each timestep
pass

def finalize (self ,solver,solution):
# code that runs after solving the IVP
pass

def reset(self):
# reset the solver back to the initial state
pass

def run(self):

# run the solver to start the timestepping
pass
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3.3.3 SolverModule objects

The primary location of the numerical code of an IVP solver in pythODE is within SolverModule
objects. These objects interact with each other through the Solution object and are coordinated
with the Solver object. SolverModule objects have the same initialize, step, and finalize
methods from Solver, as shown in Listing 3.2. The particular method from a SolverModule object
is run from the analogous methods in Solver. An example of a Solver object coordinating two
SolverModule objects is shown in Figure 3.2.

The interface for a SolverModule is shown in Listing 3.2. An example of functionality appropri-
ate for the initialize method is pre-processing applied to the initial values or writing the header
of an output file. Examples of functionality appropriate for the step method are the integration
itself, error control, and output to a file or data structure. Examples of functionality appropriate
for the finalize method are post-processing of the final solution and closing output files.

In general, each of the methods in a SolverModule includes code to read from the Solution
object at the beginning of its execution and to write to the Solution object when it is finished

executing.

Listing 3.2: The interface for SolverModule objects.

class SolverModule:
def initialize (self ,solver ,solution):
# code that runs before solving the IVP
# e.g., opening files for output, inputting data from a file , etc.
pass

def step(self ,solver ,solution):
# code that runs for each step
# e.g., integration , error control, etc.
pass

def finalize (self ,solver ,hsolution):
# code that runs after solving the IVP
# e.g., closing files, output final values, etc.
pass

3.3.4 Statistics and error checking

Decorator patterns are used to dynamically and transparently attach additional responsibilities
to objects without inheritance or code modification. Inheritance requires a new class for each
combination of extensions and can become complex. Decorators add responsibilities by enclosing
an object and performing operations before and after forwarding requests to the decorated object,

therefore depending only on the interface rather than the implementation of the object. This allows
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code reuse because functionality can be in a single place when it would not be otherwise possible

when using behavioural subtyping [38, p.175].

Decorators are also the name of a feature in the core functionality of PYTHON that can be used to
implement decorator patterns. In pythODE, decorators are used for tasks such as gathering statistics
and error checking. As an example, an important metric to determine the relative performance of
IVP methods is the total number of RHS evaluations during the solution. Unlike computational
time, the number of RHS evaluations is independent of many low-level implementational details or
the programming platform. IVP software often allows counting the number of RHS evaluations.
The counters for RHS evaluations are typically scattered throughout the program; for instance
in the RADAUP solver there are six calls to incrementing the global RHS evaluation counter. In
pythODE, a decorator can be added to the RHS itself to count the number of evaluations without
any code modification of the solver components themselves. An example of a decorator being used

for this is shown in Listing 3.3.

Listing 3.3: Applying a decorator to count evaluations of an already existing function.

# the global wvariable for counting
count = 0

def count_rhs_evaluations(f):
# add the decorator to the new function
def count_f(f):
return f(t,f)
# this function is not seen externally
def decorator (xargs ,xxkwds):

# operations before forwarding the arguments
# i.e., counting the function calls with a global wvariable
count 4= 1

# call the decorated function
result = f(xargs,**xkwds)

# operations after forwarding the arguments

# return the result from the decorated function
return result

# return the mew function

return decorator

# decoratoring the RHS
@count-rhs_evaluations
def f(t,y):
# define the RHS here and return
pass

Using decorators to implement this functionality means the numerical code is less cluttered and
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the function counter only needs to be in one location. If modules are added or code is modified
so RHS evaluations occur in additional locations, no additional development is required to record
this statistic accurately. An example of where this may occur is that some dense output formulae
require additional RHS evaluations for each evaluation of the solution at off-step times.

Another example of the usage of decorators is checking for exceptional floating point values such
as infinity (Inf) or not a number (NaN). These can interfere with many floating point operations
and need to be identified and handled. If they are not properly handled the solver may be forced to
terminate when appropriate corrective action could be taken instead. Using decorators, the solver
can perform and respond to these checks from only one location. Sometimes there is also problem-
specific error checking that needs to be performed. For instance, some ARD equations should not
produce negative values in the numerical solution because such values are non-physical and may
result in instability. A decorator could check for negative values and take an appropriate action
such as rejecting the current step, even if the local error (2.5) itself is within tolerances (2.38).

Other examples of where decorators could be used include counting accepted and rejected steps
and recording the optimal parameters of heuristics that could have been used to avoid a rejected
step. The eigenvalues of the Jacobian matrix could be determined at arbitrary solution or stage
values in order to help diagnose problematic IVPs [61, p.224]. This is a computationally expensive

statistic to record, but using decorators allows it to be added or removed easily.

3.3.5 Testing

Testing is a critical part of developing any software package. PSEs like pythODE are under constant
development as new numerical methods are proposed and analyzed. Therefore verification must
occur on a regular basis to ensure errors are not introduced. A standard method for testing IVPs is
to compare the numerical solution from a particular software package to a reference solution, which
is a numerical solution to a particular IVP that has been solved to high accuracy with proven
numerical software. Sets of test problems and software for generating reference solutions can be
found in [35, 50, 68]. The pythODE PSE has an automatic test suite to check against a large number
of problems with reference solutions. This test suite is run periodically to find errors that may have
been introduced, allowing both continued development and trust in the solver.

Another method of testing IVP software is to ensure the integration methods match the theoret-
ical order of convergence from the asymptotic behaviour of (2.5). This is necessary because with a
small enough stepsize, an “incorrect” method can still produce an accurate solution. An empirical
method of calculating the order of convergence is to find the error with a constant-stepsize solver.
The stepsize is then halved, and the integration is then repeated until the asymptotic behaviour
can be observed. Testing the order of convergence can find errors in the implementation, such as

incorrect coefficients in the Butcher tableau, that may be missed with accuracy tests alone.

46



The testing code includes methods to generate reference solutions and compare different pa-
rameters for solvers and IVPs. Typically a reference solution is found by solving the IVP with
decreasing error tolerances (2.38) until successive solutions change by less than a desired amount.
The solution with the smallest tolerances is then taken to be the reference solution. The code
to compare sets of parameters includes methods for extracting the dependent variables for each
experiment and comparing them against the independent variables. This allows the testing code

to be used for computational experiments as well.
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CHAPTER 4

INTEGRATING-FACTOR-BASED 2-ADDITIVE-RUNGE-KUTTA

METHODS FOR ARD EQUATIONS

Optimal methods for solving the ODE systems (2.2a) from the semi-discretization of ARD
equations (2.44) are dependent on the properties of the underlying ARD system. This can be

1llustrate examining the error bound orf a uniformly semi-discretize equation, given
ill ted by ining th bound of iformly semi-discretized ARD equation, given by
[[uax(tn) = ynll < [uax(tn) =y (@)l + [y (tn) — yall < Cax [Ax[P@0 + Car AtPao, (4.1)

where uax(t,) is the exact solution of the PDE (2.44) restricted to the grid used for semi-
discretization, y(t,) is the exact solution of the semi-discretized ARD system, y,, is the numerical
solution of the semi-discretized ARD system, pax) is the order of convergence in space with an
associated constant Cax, and p(a¢) is the order of convergence in time with an associated constant
Ch¢. The semi-discrete system forms a family of ODE systems parametrized by Ax; therefore it
requires additional analysis in comparison to the non-parametrized ODE system (2.2a). The overall
order of convergence in time of the IVP (2.2a) resulting from semi-discretization of the ARD sys-
tem as At — 0 with Ax fixed is different from the case when At — 0, |[Ax| — 0 simultaneously

because the constant Ca¢ in (4.1) is generally dependent on the choice of Ax [51, p.95].

The behaviour of the error bound (4.1) motivates the development of ODE solution methods
based on knowledge of the underlying ARD equations (2.44) as well as the semi-discretization
methods used for them. In this chapter we introduce IVP methods that are optimal for each of the

three terms of a semi-discretized ARD equation,

%y(t) —A(t,y(t) -y(t) =Dty () -y(t) +rt,y(t), (4.2)

A(t,y(t)) : RxR™ — R™*™ is the advection operator, D(t,y(t)) : RxR™ — R™*™ is the diffusion
operator, and r(t,y(t)) : R x R™ — R™ is the reaction term composed of ngq decoupled vector
functions of size ¢ each. The size of the ODE system is m where m = g X ngyiq, ¢ is the number of

species, and ngyq is the number of spatial grid points.

The dependence of the error terms of the semi-discretized system (4.1) on Ax leads to stepsize
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restrictions based on the size of the spatial grid when using an explicit method to solve (4.2). For
certain problems, the stepsize restrictions are not severe enough to require stiff methods for the
semi-discretized system, but this is problem dependent [51, p.149].

ARD equations are often solved to only moderate accuracy in time because the primary source of
error is due to the relatively coarse accuracy in space. Therefore higher-order ODE methods do not
always give higher accuracy; i.e., the extra computational work to achieve high order does not give
a more accurate solution to the underlying PDE. Higher-order ODE methods for semi-discretized
PDEs are advantageous for transient phenomena and fluid mechanics applications [51, p.440]. Im-
provements in modelling physical phenomena by ARD systems also make finding high-accuracy
solutions more important. The increase in computational resources due to Moore’s law makes high

accuracy more practical and thus higher-order algorithms more important [15, 84].

4.1 Semi-Lagrangian exponential integrators for advection

A well-known condition that restricts At due to stability for explicit methods when solving the semi-
discretized advection equation (2.41) is the Courant—Friedrichs—Lewy (CFL) condition [29, 30], with
the one-dimensional constant-coefficient case given by

At |al
vV =
Ax

<G,

where v is known as the Courant number, a is the advection coefficient, and C' is a positive constant
dependent on the particular advection problem but independent of At and Ax.

The mathematical domain of dependence of a solution point u(t,x) of a PDE is the set of all
points (¢,x) such that u(¢,x) is dependent on the data at those points. The numerical domain
of dependence of a numerical solution point uax(tn,x;) is the set of all points (¢;,xy) such that
uax(tn,x;) is dependent on the data at those points. The CFL condition reflects that the mathe-
matical domain of dependence must lie within the numerical domain of dependence as a necessary
condition for stability. Otherwise points of the numerical solution do not have the necessary knowl-
edge of previous solution points for a stable solution [34, p.422; 51, p.102,149].

Methods such as finite differences that model advection by using a fixed grid to observe the
flowing medium are known as Fulerian methods. Eulerian methods typically suffer from numerical
issues such as artificial diffusion, artificial dispersion, and stepsize restrictions on explicit methods
due to the CFL condition. Lagrangian methods model advection as fluid particles that are followed
through space rather than being observed from a fixed grid as with Eulerian methods. They do not
have stability restrictions, such as the CFL condition, when using explicit timestepping methods
and have reduced artificial dispersion. A disadvantage of Lagrangian methods is that the grid

typically becomes highly irregular during timestepping [32, p.936; 96, p.2207].
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Semi-Lagrangian methods, also known as Fulerian—Lagrangian methods, observe the flowing
medium from a Lagrangian perspective but model different fluid particles at each timestep. This
approach achieves the stability of Lagrangian schemes but maintains the regular grid of Eulerian
schemes [96, p.2207]. The first-order upwind scheme (2.47) is in fact equivalent to the simplest semi-
Lagrangian methods in one dimension [96, p.2212]; this explains the excellent qualitative behaviour
in comparison to the second-order central difference scheme as shown in [51, p.54].

Characteristics are curves along which the solution of a PDE reduces to the solution of an ODE.
In the case of the advection equation (2.41) characteristics satisfy IVPs of the form

dX(T)
dr

= A1, X(7)), X(tn+1) =X, (4.3)

where X(7) : R — R? is the characteristic that maps spatial positions to time 7 € R [22, p.141;

, p-86]. Semi-Lagrangian methods follow characteristics from a grid point x; at ¢, to a spatial
location at t,, generally an off-grid point. Interpolation between grid points is used to find the
concentration at the spatial location for ¢,, corresponding to the characteristic [105, p.660]. This
interpolated value is then used to find numerical solution for the grid point x; at ¢,+1. Char-
acteristic equations (4.3) do not generally have analytical solutions, especially for problems with
multiple spatial dimensions and variable coefficients. Instead, characteristics are found by interpo-
lation, e.g., using finite elements [3, 9, 77], or solved using IVP methods such as RK [6, 22, ].
Semi-Lagrangian methods can nearly eliminate artificial dispersion [22, p.157] but exhibit artificial
diffusion, have difficulty with boundary conditions, have a high computational cost relative to other
methods, and do not conserve mass [0, , . Semi-Lagrangian localized adjoint methods are
an improvement of semi-Lagrangian methods that conserve mass and are able to handle general
boundary conditions [36, ]. Solving for each characteristic and performing the associated inter-
polation can be done independently; therefore semi-Lagrangian methods are suitable for parallel

computing [66].

4.1.1 Exponential Lie group methods

Exponential methods for solving ODEs use an exponential map, such as the matrix exponential of
the Jacobian (2.9), to advance the integration. Certain exponential integrators are formally explicit
but avoid stepsize restrictions due to stability when solving stiff IVPs because exponential maps can
follow rapidly changing solution curves better than linear approximations can [76]. In practice, al-
though exponential methods are not a new idea [62, 78], they are not mainstream methods because
they have been considered to be less efficient than IRK and BDF methods due to the high cost of
computing the required functions such as matrix exponentials. The development of lower-cost algo-

rithms to compute, in particular, matrix exponentials, such as the Krylov subspace approximations
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described in Section 4.1.4 below, has brought renewed interest to exponential methods [71, p.1].

A family of exponential methods known as exponential Lie group methods can preserve the
qualitative behaviour of an ODE system, such as conserving energy or angular momentum when
simulating rigid bodies or other problems from classical mechanics [24; 42, p.127,169; 74]. A Lie
group G is a smooth differentiable manifold M that is closed under a group operation G x G — G.
A Lie algebra g is the tangent space at the identity of G and is closed under an operation known as
the Lie bracket [-,-] : g X g — g. Lie groups that are known as matriz Lie groups, where the group
elements are finite-dimensional vector spaces, are a common class. The Lie algebra of a matrix Lie
group is a vector space, with a Lie bracket that is the matrix commutator [A, B] := AB — BA. An
exponential map exp : g — G, that is a matrix exponential in the case of matrix Lie groups, takes
the members of the Lie algebra to the members of the Lie group [76]. Matrix Lie group differential

equations that remain on M have the form

Y@t =3(Y ()Y@, (4.4a)

Y(0) = Yo, (4.4D)

where Y (t) € G and J(Y (t)) € g are locally Lipschitz continuous to ensure existence and unique-
ness [42, p.118]. In the context of differential equations defined on Lie groups, G is the space of

solutions and the group operation x maps the whole solution space to itself [52, p.15].

One of the simplest equations containing a nonlinear advection term is the Burgers equation.
When coupled with diffusion, it is used to simulate fluid flow containing shocks, which are sharp

transitions in a fluid flow. The one-dimensional Burgers equation with diffusion is given by

ou ou 0%u

where u = u(t,z) : R x R — R is a concentration and € € R is the diffusion coefficient. The Lie

group operation for the Burgers equation can be defined from the following transformations:

Spatial translation Gy : (z,t,u) — (x + K1, t,u), (4.6a)
Time translation Gs : (x,t,u) — (x,t + K2, u), (4.6b)
t
Projection Gg : (z,t,u) — <1 j?ﬁgt, T’ (1 — kagt)u + Iisl') , (4.6¢)
Scale transformation Gy : (,t,u) — (ze™, te?™ ue "), (4.6d)
Galilean boost Gs : (x,t,u) — (z + kst t,u + K5), (4.6e)
where K1, Ko, ..., ks are parameters for the transformations and M ~ R3. Most classical numerical

schemes, which include Eulerian methods, respect (4.6a), (4.6b), and (4.6d). In general (4.6¢) and
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(4.6¢) are not respected [25]. Many aspects of qualitative behaviour are generally not preserved by
the IVP methods or the finite difference methods of Chapter 2 because the only possible action of
these methods is to evolve using linear approximations, which generally do not reflect these types
of properties of the exact solution [60].

This motivates a search for numerical methods that better preserve qualitative behaviour such as
the Lie group structure. Numerical methods for (4.4) can preserve qualitative behaviour by ensuring
the numerical solution stays on M. This is usually accomplished by solving (4.4) in the context of
g, then mapping the result back to G by using the exponential map in the solution formula [20].
For many practical problems such as the Burgers equation (4.5), the manifold is M ~ R™, but Lie

group methods are still useful because they can evolve in the same qualitative manner as the exact

solution [60]. The most basic exponential Lie group method for (4.4), considered analogous to FE,
is given by

Y1 =exp(J(Yn)) - Yo, (4.7)
where Y,11,Y, € G and J(y,) € g. In [18, 22] it is shown that by taking the exact flow of the

of the advection term (2.41) from Y, using characteristics (4.3) and solving with (4.7), a semi-
Lagrangian integrator is obtained. However, although there does not yet appear to be a rigorous
justification for the connection to Lie group theory, published results show excellent qualitative
behaviour of high-order exponential Lie group methods that use the exact flow of the advection
term (2.41) of the underlying PDE compared to the corresponding Eulerian methods, which use
the matrix exponential of A(t,y(¢)) from (4.2), in [18, 22].

4.1.2 Commutator-free Lie group exponential methods

Higher-order exponential Lie group methods typically require a relatively large number of exponen-
tial calculations, e.g., fifteen exponentials in the case of a fourth-order Crouch—Grossman method,
each taking approximately 25m? floating-point operations when solving an ODE on a matrix Lie
group and the exponential calculation used is a matrix exponential [24, 31]. The formula for explicit

Crouch-Grossman methods for ODEs with the form (4.4) is given by

Yi = exp (Atnam-,lKi) ‘...t eXP (Atnai’gKi) + eXp (Atnai,lKi) . Yn, Z = ]., 2, ey S,
KZ:J(YZ), i:1,2,...,5,

Y1 = exp (At bsKs) - ... - exp (At b2 Ka) - exp (At b1Kq) - Yo,

where a; ; and b; correspond to the A and b values of a classic RK Butcher tableau (2.15) re-

spectively, and Y; is the solution at stage K; [24]. To obtain an order of convergence greater
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than three, additional order conditions are required for Crouch—Grossman methods in comparison
to the classic RK methods [24, 31, 76]. To reduce the number of matrix exponentials required,
Munthe-Kaas methods use commutators, each taking approximately 4m? floating-point operations

when solving an ODE on a matrix Lie Group and the commutator operation used is a matrix

commutator [24, 73]. The formula for explicit Munthe-Kaas methods for ODEs with the form (4.4)
is given by
B i—1
Y; =exp (Yz) Y, Y; —Atnzaz]Kza 1=1,2, » Sy
j=1
B B B B B B B B i—1
K, = m(Ki) = Ki + m[Yi, Ki] + mo[Y5, [Vi, K] + ..., Ki=) J(Y:), i=12,...,s,
j=1

Y, 11 =exp (Atn Z szs> Yo,

i=1

where a; ; and b; correspond to the A and b values of a classic RK Butcher tableau (2.15) respec-
tively, Y; is the solution at stage K;, and 7(Z) is a sufficiently high-order polynomial approximation
to Z/(exp(Z) — 1) with coefficients 71, 7o, ... [24]. If m(Z) is a sufficiently high-order approxima-
tion, then explicit Munthe-Kaas methods will have the same order of convergence as the classic RK
method with the same A and b coefficients, with no additional order conditions [24, 73]. Lie group
methods that use commutators have stepsize restrictions due to stability when solving stiff differen-
tial equations [24]. This motivates the search for commutator-free Lie group methods that reduce

the numbers of exponentials compared to Crouch—Grossman methods or similar methods [24, 75].

Commutator-free exponential Runge-Kutta (CFERK) methods, which can be configured to use

a minimal number of exponentials, take the form

i—1 i—1 i—1
Y; =exp | At, Z aE‘,]j]Kj -...-exp | At, Z ag?;Kj -exp | At, Z aEJ]VKj -Y,, (4.8a)
Jj=1 j=1 j=1
Y11 =exp (Atn Z BEK]Kz) <...-exp <Atn Z BZ[Q]KZ) - exp (Atn Z 52[1]K1> Y., (4.8¢)
i=1 i=1 i=1

where Zgzl agkj] = a;; and Zszl Bz[j P =, correspond to the A and b values of the classic RK
Butcher tableau (2.15) respectively, and Y; is the solution at stage K; [18, p.9; 22, p.141; 24, 75].

The Crouch—Grossman methods from are a special case of (4.8) with J = s and aEkJ] = 0;1a;; Where
a;j are the A values for Crouch-Grossman methods and d;; is the Kronecker delta [24]. Crouch—
Grossman, Munthe-Kaas, and CFERK methods in principle could use an implicit Butcher tableau,
which would require the solution of systems of implicit equations to find the stage values [24]. Tt

can easily be seen that the exponential methods described in this section can be reduced to classic
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RK methods if the matrix exponential is approximated by the translation exp(tY)z =~ tY + z [75].

4.1.3 Order conditions for CFERK methods

The classic RK order conditions from Section 2.4.1 form a subset of the order conditions for CFERK
methods. Additional order conditions arise because of more method coefficients, and when finding
higher derivatives of (4.4), the evaluation of elementary differentials (2.23) involves matrix multi-
plication, which is not commutative. Evaluating higher derivatives involves more Lie group theory

than that which is presented here, but it can be found in [19, 22, 24, 75, 76].

Similar to the classic RK methods, visualizing the order conditions of CFERK methods can be
accomplished using rooted trees. This is done by visualizing methods of order p using rooted trees
of order p+1, but there is no precise analogy with the use of rooted trees to derive the methods from
Chapter 2. In addition, the rooted trees for CFERK are known as ordered; i.e., the specific branch
to which a subtree is attached while constructing the rooted tree is important [75, 76]. For example,

two rooted trees that correspond to different elementary differentials for CFERK methods, but not

h2 hg
hl h3 hl h3
7 70 (49)

where the ordering is because the subtree I that terminates with the vertex labelled hy can be

to classic RK methods, are given by

attached to either of the vertices labelled with h; or hs on the subtree v

There are no additional order conditions for second-order CFERK methods (4.8) compared
to classic RK methods, and thus any second-order classic RK Butcher tableau (2.15) can be used.
Beginning with third-order CFERK methods, additional order conditions and at least one additional
exponential evaluation are required. The augmented Butcher tableau for a third-order explicit

CFERK method is given by

ca| O o .- 0 0

Co | Q2,1 0 0 0

c3|as1 aza - 0 0
c| A - . . : 210
bT = . . . . . ( )

Cs | g1 As2 - Qs s—1 0

1 1 1 1

AT A, A

2 2 2 2

Pl g, Bl
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where the parameters from (4.8) are J = 1, K = 2. The additional order condition is given by

zi;ﬁz[”ci + %ﬂ?] = % (4.11)
that is derived from the two different ordered trees given in (4.9) [24]. To obtain fourth order, at
least one additional exponential is required over third order [24], the augmented Butcher tableau
for a fourth-order CFERK method is given by

ca| 0 o - 0 0 @l O 0o - 0 0
oo |ahh 0 0 0 eldl 0 - 0 0
c3 agl]l agl,]g 0 0 c3 ag]l a?]z 0 0
LA s s s am
bT

¢ lam ey - el 0 elad el - al, 0

- LT P G L

R S N O T P

where the parameters from (4.8) are J = 2, K = 2. It appears (4.12) requires s additional
exponentials in comparison to a classic non-augmented Butcher tableau; however practical methods
are constructed so the exponentials are reused wherever possible. Four additional order conditions

are given by

1 1 1
Z 6 52[1101‘ + N 52[2] = o (4.13a)
=1
1 1 1
Zzﬂz[ ]C’LZ + ﬁﬁz[ I = GYE (4.13b)
Z Bl +—B[2] ! (4.13¢)
igCi 247 .

which result from different orderings of the subtrees for the set of fifth-order rooted trees. A further

order condition

2 s

1 1

5 E biCZ‘ OéEj]ij + E biamcj O[f;c = 7247 (413d)
,j=1 i,J,k=1

is required because of the coupling between the two tableaux of a for this method [24, 76].
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4.1.4 Krylov subspace approximations to the matrix exponential

Krylov subspace approximations to the matrix exponential are iterative methods that approximate

the action of the matrix exponential as
exp(tA) -v=p,_1(t-A)-v, (4.14)

where t € R, A € R™*™, v € R™, and p,—1(t - A) is a matrix polynomial of degree n — 1. The

approximation (4.14) is an element of the Krylov subspace K, of dimension n [83] defined by
K, :=span(v,A v, A% v, . ATy,

Krylov subspace approximations of a matrix function p(A) use successive evaluations of p(-)
on smaller matrices than A [33]. The iterations resulting from Krylov subspace approximations
exhibit superlinear convergence under appropriate conditions and have been shown for some stiff
IVPs to be a viable alternative to solving the same IVP with IRK methods that use Newton’s
method to solve the systems of simultaneous nonlinear equations at each step [47, 48].

The stopping criterion for the iterations of the Krylov subspace approximations is given by

[|d||to1 < 1, with the same norm used by the integrator

where d is an estimation of the residual internal to the Krylov approximation method and 7, ; are
the tolerances for the local error estimate given in (2.38). This stopping criterion avoids excessive
computational cost for approximating the action of the matrix exponential. More details on the

algorithm for Krylov subspace approximations can be found in [17].

4.1.5 FError control for CFERK methods

In [24], CFERK methods are used to solve a PDE derived from heat conduction using the step-
doubling error estimation from Section 2.5.1 and the stepsize control from Section 2.5.3. We are
unaware of embedded error estimation being used for CFERK methods or how many additional
exponential or RHS evaluations would be required. The MATLAB software package EXP4 described
in [47] uses embedded error estimation with a fourth-order exponential main method and a third-
order exponential embedded method; however it is not a Lie group method, despite its use of the
matrix exponential of the Jacobian. The stepsize controller in EXP4 uses the predictive stepsize
controller described in Section 2.5.3. Krylov subspace methods, for example, use a variable number

of iterations to evaluate the matrix exponential. Therefore the cost and accuracy of evaluating the

56



matrix exponential should be taken into account when selecting stepsize for error control. EXP4 is

an example of a software package that uses this type of stepsize selection strategy [17].

4.2 Stabilized ERK methods for the diffusion term

The semi-discretized diffusion operator D(t,y(t)) of an ARD equation (4.2) typically gives a Ja-
cobian (2.9) that is negative semi-definite and symmetric; therefore the eigenvalues are real and
non-positive [51, p.64]. ODEs with these types of eigenvalues normally require a stiff solver. Sta-
bilized ERK methods have an extended stability region to accommodate the eigenvalues from an
ODE system that is moderately stiff. Stabilized ERK methods can achieve better computational
efficiency on some large systems compared to an IRK solver such as RADAUS [3]. Their implemen-
tation is simplified over an IRK method because it is not necessary to evaluate the Jacobian or
solve systems of equations when using an ERK method. The large stability regions are achieved by
additional stages relative to the number required to achieve the order of convergence of the method.
Stabilized ERK methods designed for the diffusion term have stability regions that contain a rela-
tively large interval of the negative real axis [94, p.317; , p-2].

When solving semi-discretized diffusion problems with explicit methods, there are stepsize re-
strictions due to the CFL condition. Diffusion problems have a mathematical domain of dependence
encompassing the whole problem domain; in the one-dimensional constant-coefficient case this leads

to stepsize restrictions of the form

<c, (4.15)

where € is the diffusion coefficient, C' is a positive constant that is problem dependent but inde-
pendent of At and Az. Conditions such as (4.15) can lead to complications in advection-diffusion
equations because each term may impose significantly different timestep restrictions.

Runge-Kutta—Chebyshev (RKC) methods, named because the stability polynomial of the pro-
totypical method is based on Chebyshev polynomials, are an example of stabilized ERK methods.
The Chebyshev polynomials of the first kind are given recursively by

To(z) = 1,

Ti(z) = 2,

Tj(z) = 22Tj-1(z) — Tj-2(2),
T;(z) = cos(j arccos(z)),

where Tj(z) is the Chebyshev polynomial of the first kind of degree j. Optimal first-order RKC
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methods use a shifted Chebyshev polynomial as the stability polynomial, which is given by
Ro(2) = Ts(1 + 2/5%), (4.16)

where the method has a stability interval of [, = [~0.821842s%, 0] along the negative real axis when

using s stages.

The stability polynomials of RKC methods with maximal stability interval I3 have a stability
region of width zero at some points within I5. The stability polynomials of practical methods
are dampened; i.e., a dampening parameter 7 is introduced such that |Rs(z)| < n < 1 instead of
|Rs(z)| < 1in the case of the undampened stability polynomials. This reduces I slightly but ensures
eigenvalues that lie a relatively small distance from the negative real axis fall within the stability
region [14]. Stabilized ERK methods such as RKC methods must ensure the large number of stages
do not excessively accumulate round-off error [94, p.317]. It can be seen from Section 2.7 that the
dimension of the ODE system (4.2) can become extremely large in the case of fine meshes, multiple
spatial dimensions, and many species; therefore another requirement for practical stabilized ERK

methods is to use a minimal amount of storage.

The methods from the FORTRAN codes ROCK2 [4] and ROCK4 [2] have an order of convergence
of two and four, respectively, and possess embedded methods. The stability polynomials of these
methods approximate closely the optimal stability polynomials with the maximum possible [;. The

stability polynomials do not have an analytical form [2, 4] but can be stated as
Rs(z) = wp(Z)Ps—p(Z)v (417)

where wpy(z) is a polynomial of degree p having only complex zeros, Ps_,(z) is a polynomial of
degree s — p, and p is the order of convergence of the resulting method. The stability polynomials

are orthogonal polynomials satisfying

wp (2)

where R;(z), Rj(z) are two orthogonal stability polynomials and W(z) = \/é is a weighting

function. A well-known result is that orthogonal polynomials possess a three-term recursion rela-

tion [4, p.13]; the recursion for (4.17) is

PZ(Z) = (/.L,Z - Vi)Pi_l(Z) - 1437;1:)1'_2(2), (418)

where p;, v;, k; are recursion parameters [2]. The recursion parameters of (4.18) are found by solving

a system of nonlinear equations as described in [1, 2, 4]. These types of stability polynomials exist
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for an arbitrarily large even order of convergence [1]. The three-term recursion leads to a recursive

formula for methods based on stability polynomials of (4.17) with p = 2 given by

YO =¥Yn, (419&)
Y1 = YO + At ,ulf(Yo), (419b)
Yj = Atﬂjf(Yj_l) - Vij_l - K)ij_Q, j = 2,3, ey S — 2, (419C)

and is followed by a finishing procedure derived from w,(z) for the final values given by

Ys—l = YS_Q + Atof(Ys_Q), (420&)
Y=Y, 1+ Atof(Y. 1), (4.20D)

* T
Y, =Y! - Ato (1 - ﬁ) (F(Yo1) — £(Yos)), (4.20¢)

where Y is the result y, 41 and Y7 is a first-order embedded method that can be used to produce
an estimate for y,,41 in the error controllers described in Section 2.5. A damping factor represented
by n = 0.95 shortens the stability interval only marginally from the near optimal I, ~ 0.82s2 to
ls ~ 0.81s? in the case of p = 2 and a moderately sized s [1]. The stability region for ROCK2 with

10 stages is shown in Figure 4.1.

- -3i

Figure 4.1: Stability region of 10-stage ROCK2 (dark shading) and the embedded method
(light shading and dashed boundary).

In [2] the coefficients for ROCK4 with p = 4 and a different finishing procedure are derived by
composing RK methods with stability polynomials of Ps_4 and wy(z) respectively. The stability
region for ROCK4 is shown in Figure 4.2. Methods that use a three-term recursion (4.19) can

be converted to a conventional Butcher tableau (2.15) for the purposes of analysis; in practical
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Figure 4.2: Stability region of 14-stage ROCK4 (dark shading) and the embedded method
(light shading and dashed boundary).

implementations these representations have increased computational and storage requirements.

4.3 Integrating-factor-based 2-ARK methods

In this section the general form of integrating-factor-based 2-ARK (IF-2-ARK) methods based on
those from [18, 22] are derived. These new methods use a CFERK method for advection and RK

methods for reaction and diffusion.

4.3.1 Operator integrating factor splitting

ARK methods are a type of splitting method where the vector field of an ODE system is additively
decomposed, then each part of the vector field is integrated separately. These individual solutions
are then combined to give an integration of the complete system. Splitting is mainly used to improve
the feasibility of integrating a system compared to a single integration method for the entire system.
For example, this situation occurs in the context of semi-discretized ARD equations (4.2) if the
reaction term is extremely stiff but the diffusion term is only modestly stiff. A single stiff integration
method applied to (4.2) generally leads to extremely large systems of simultaneous equations that
must be solved using Newton’s method. The cost of solving large systems of equations is extremely
high; however, using a splitting method to solve the reaction terms separately avoids spatial coupling
and results in many relatively small systems of equations that are generally not as costly to solve
[69, 89, 101].

Operator splitting is a type of splitting where the operators applied to the vector field, such as

the advection, reaction, and diffusion operators from (4.2), are isolated so they can be integrated
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in time separately [51, 69]. Operator integrating factor (OIF) splitting [65] is a type of operator
splitting that is used to generate numerical methods for systems of ODEs by finding an integrating
factor, a function that is chosen to facilitate the solution of an ODE [5]. In [18, 22] OIF splitting,
using integrating factors based on A(t,y(t)) from (4.2), generate CFERK-based matrix-matrix

multiplications, and matrix-vector multiplications. OIF splitting reformulates (4.2) in the form

y(t) = W(t) - z(t), (4.21a)
D) = A W) - 2(0) - W), (4.21D)
%z(t) =WHt) - D, W(L) - 2(t)) - W(t) - z(t) + W) - e(t, W(t) - z(1)), (4.21c)
W(to) =1,  z(to) = yo, (4.21d)

where W(t) € R™*™ is the integrating factor, z(¢t) € R™ is an auxiliary variable, and I is the
identity matrix [18, 22, 65]. A full derivation of (4.21) is given in Appendix C. The splitting (4.21)
effectively decouples the advection term from the reaction and diffusion terms of (4.2). Numerical
schemes known as transport-diffusion schemes [77], where advection of the flowing medium is mod-
eled before applying diffusion, can be viewed in the context of OIF splitting [65]. The CFERK-based
methods presented in this section, as well as those in [18, 19, 22], can be viewed as higher-order

generalizations of the transport-diffusion algorithm.

4.4 Format of IF-2-ARK methods

The integrating factor W(t) from (4.21) corresponds to exp(A(y(t))) when .A() is not explicitly
dependent on time [65], thus providing motivation to use a CFERK method to integrate W(t). The
variable z(t), corresponding to a reaction-diffusion problem, is integrated with a 2-ARK method
such as the IMEX methods (2.21) in [7, 55, 101]. Timestep restrictions from the diffusion term
(4.15) are still present in advection-dominated problems where ||D(y (¢))|| < ||A(y(t))]| [22]. Using
a stabilized ERK method from Section 4.2 for a moderately stiff diffusion term requires only that

the solution of small systems of non-spatially coupled equations for the reaction term.

The formula for IF-2-ARK methods up to fourth order used to solve (4.2), when the coefficients

are not explicitly dependent on ¢, is derived in Appendix C by eliminating the auxiliary variables
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and given by

pi = exp | At, Z am A(Y -exp | At, Z oz£1]] A(Y;) ], i=1,2,...,s, (4.22a)
Pig = pi Py (4.22b)
S S
Yi=pi-yn+ Aty Y (Ap)ijpij DY) Y+ Aty Y (Ap)ijpij-r(Y;), i=1,2,...,s,
Jj=1 j=1
(4.22¢)
Pl = €Xp (Atn > A(Yi)> - exp (Atn S A(YQ) , (4.22d)
=1 =1
Prtli = Pni1 - p; (4.22¢)
Y41 = Pot1 - Yn + Dty > (bp)i pugri - Dt Y:) - Y+ Aty Y (br)ipnrri-1(Ys),  (4.22f)
i=1 i=1

[ ] (2]

where s is the number of stages, (A4);; = i+, (ba); = ﬁlm + ﬁ?], and c4 correspond to
the tableau of the CFERK (4.8) used to integrate the advection term. Ap, bp, and cp correspond
to the tableau of the RK method (2.14) used to integrate the diffusion term, and A,, b,, and
¢, correspond to the tableau of the RK method (2.14) used to integrate the reaction term. If a

non-additive RK method is used to solve for z(t), the formula (4.22) corresponds to the methods

given in [18, 19, 22]. The tableau of (4.22) is given by
c ‘ A c ‘ A cr | A
A A 7 D D , r r (423)
L

Eigenvalues of the reaction terms of semi-discretized ARD equations (4.2) do not in general
follow the regular patterns of those from the advection and diffusion terms. Therefore the stability
requirements for the reaction term may be different from those of the other terms. For instance,
a general-purpose method for the reaction term may require a stability region that contains eigen-
values with both significant complex and negative real parts.

In other cases, a method that has significant stability along the imaginary axis may be most
suitable, especially if extra stages are available because of the RKC method for the diffusion term.

) i i }

Optimization of enhanced stability ERK methods is discussed in |

4.4.1 Order conditions

In addition to the order conditions (2.28), (4.11), and (4.13), the constituent methods must sat-
isfy coupling conditions similar to those of the ARK methods from Section 2.4.2. The coupling
conditions for classic ARK methods from Section 2.4.2 form a subset of those for the IF-2-ARK
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methods derived in this chapter. Up to third order, no additional coupling conditions are required
for integrating-factor-based methods. Exponential ARK methods of fourth order and above require
additional coupling conditions [18, 21, 22].

If the RKC methods from Section 4.2 are used for the diffusion term of (4.2) and condition (2.34)
holds, the values of b and c of (4.23) as well as the number of stages s are fixed. The number of
stages for the RKC method is typically higher than necessary for the other constituent methods of
(4.22); however, as a proof of concept, the other methods are constructed to have the same number
of stages as in the RKC method.

For production software that incorporates exponential ARK methods, it would be advantageous
to use a recursive form (4.18) like in [101] to reduce the storage requirements and computational
cost. Further analysis is required to determine if it is possible to find higher-order methods that
minimize RHS evaluations and computational work for the matrix exponentials while using the

recursive formula (4.18).

4.5 The Burgers equation with Brusselator reaction terms

The simplicity and the well-studied, but complex behaviour make the Burgers equation (4.5) im-
portant for testing numerical methods for a flowing medium [19]. When e < 1 the shocks become
more prominant as can be seen in Figure B.1 and spatial discretization results in a more difficult
IVP to solve. The spatially discretized Burgers equation is commonly used to test IVP solvers
2,7, 101, 102).

The Brusselator equation [98, 99] describes an oscillatory chemical system coupled with diffu-

sion. The Brusselator equation is the only known chemical scheme with just two reactants that can

possess self-sustaining oscillations [98]. Many of the nonlinear oscillations exhibited by chemical
systems can be readily studied using the Brusselator equation [99]. There is no known analytical
solution to the Brusselator equation [90], making it interesting for numerical studies. The one-

dimensional form of the Brusselator reaction with a diffusion term for spatial coupling is given by

ou  0%u 5
Ov 0%v 9

where u = u(t,z),v = v(t,z) : R x R — R are the concentrations of the two chemical species,
a, B € R are reaction coefficients, and € € R is the diffusion coefficient. Like the Burgers equation
(4.5), the spatially discretized Brusselator equation (4.24) is commonly used to test IVP solvers

[4, 10, 39; 44, p.148].
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The IVP used to test the new IF-2-ARK methods that are introduced in Section 4.6 is a semi-
discretized ARD equation combining the terms of the Brusselator and Burgers equations. We have
not found any instances of this equation in the literature, but combining a basic nonlinear advection
term and a basic oscillatory reaction term with diffusion is a logical method to construct a model

problem for studying numerical methods for ARD equations. The Burgers—Brusselator equation is

thus defined by

ou ou 0%u 9
a—&—u%—eﬁ—l—a—l—uv—(ﬁ—i—l)u, (4.25a)

ov Ov 0% 9
E—FU% —eﬁ—i—ﬂu—u v, (4.25b)

where the variables are defined as in the Brusselator equation (4.24). The Burgers equation can
be semi-discretized with the upwind operator (2.47) in the one-dimensional case because, if the
initial condition is positive, the solution and therefore the advection coefficient remains positive.

The central differencing operator (2.45) is used to semi-discretize the diffusion term.

The diffusion-free Brusselator equation is the Brusselator equation (4.24) with the spatial cou-
pling from diffusion removed by setting ¢ = 0. The Jacobian of the scalar diffusion-free Brusselator

reaction is given by

2Quv—B+1  wu?

B — 2uv —u?

)

where u,v € R correspond to the values of one of the spatially decoupled reaction systems. The

diffusion-free Brusselator equation contains a steady state found by solving the linear system that
ou v

results from setting oo 0. The steady state of the diffusion-free Brusselator is then given

ot
by

limu=qa, Ilmov=-—.
t—ro0 t—o0 (&%

The Jacobian of the diffusion-free Brusselator at the steady state is

-1 o
-3 —a?|’
with a characteristic polynomial of A2 + (1 — 8 + a?)A + o238 = 0 [98]. A set of coefficients for

the diffusion-free Brusselator, each of which has eigenvalues at the the steady state belonging to
different regions of the complex plane, is given in Table 4.1. These coefficients each represent a
particular type of dynamical behaviour of the diffusion-free Brusselator reaction and are further

described in [98]. When the eigenvalues at the steady state have positive real components, the steady
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state is unstable and self-sustaining oscillations exist for the diffusion-free Brusselator. When the

eigenvalues at the steady state have negative real components, the steady state is stable [98].

a B A Steady state stable?
0.5 02| -2l 4 vil yes

11| —05+Y3 yes

2 5 +27 yes

1 3 ]05++0.5i no

1 5| 15+ 1o

Table 4.1: Coeflicients used for the Brusselator and their steady state eigenvalues.

The eigenvalues of the one-dimensional first-order upwind finite-difference operator ﬁD;

from (2.47) are A\, = COS(Q”Akfm)_l — iSin(ZZkAI),k = 1,2,...,nga [01, p.56], the eigenvalues
for ngia = 100 in a spatial domain of & € [0,1] are depicted in Figure 4.3. The eigenval-

ues of the one-dimensional second-order central finite-difference operator <1>DJ from (2.45) are

.2
A = —%, k=1,...,ngiq [0, p.63]; the eigenvalues for ngiq = 100 in the complex plane

are shown in Figure 4.4. In practical problems, the magnitude of the advection coefficient A(y(¢))
and diffusion coefficient D(y(t)) are not generally constant with respect to the spatial variable.
In this case, the structure of the eigenvalues does not follow the patterns in Figures 4.3 and 4.4,
but the assumption that the eigenvalues from advection have large imaginary parts and that the
eigenvalues from diffusion remain close to the real axis still holds in general. An example of an
advection-diffusion equation where the advection coefficient is not constant with respect to the spa-

tial variable is the Burgers equation (4.5), and an example of an ARD equation where the diffusion

coefficient is not constant with respect to the spatial variable is found in [55].

............. 100i | 100i
501 501
-22.]0 ‘ -150 ‘ -160 ‘ -50 ‘ ‘ ‘ -40000 -30600 N -20600 : -10600
'-_5'(;i’ -50i
........... ' -100i | -100i |
Figure 4.3: Eigenvalues of the first-order Figure 4.4: Eigenvalues of the second-
upwind finite-difference operator (2.47) order central finite-difference operator
with ngiq = 100,z € [0, 1]. (2.45) with ngiq = 100,z € [0, 1].
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4.6 Proposed second-order IF-2-ARK methods

In this section IF-2-ARK methods with an order of convergence of two are proposed. The proposed

methods are based on the general form of IF-2-ARK methods in Section 4.3.

4.6.1 Constituent methods

For the purposes of analysis and ease of implementation, the ROCK2 methods from Section 4.2
have been converted into a conventional Butcher tableau. The number of stages is fixed at 10, with
the Butcher tableau given in (C.3) and the stability region shown in Figure 4.1.

ROCK2 is an ERK method (2.16) with a large but bounded stability region; therefore fine
enough spatial grids lead to stepsize restrictions. Using the second-order central difference operator
(2.45), the maximum eigenvalues and maximum stable stepsize for ngq = 100 with the 10-stage
ROCK2 method are shown in Table 4.2. The Jacobian of the diffusion operator is constant; therefore

the stepsize restrictions for (4.5), (4.24), and (4.25) can be estimated in this manner.

€ max(|A|) | max(At)
0.005 200 2
0.002 80 &
0.001 40 o
0.0005 20 &

Table 4.2: Maximum eigenvalues and stable stepsizes for grid size ngiq = 100 and diffusion
values € using the 10-stage ROCK2.

The eigenvalues of the reaction term are harder to analyse, and for the Brusselator coefficients
(4.29b), the eigenvalues are generally close to the imaginary axis. It can be seen from Figure 4.1
that ROCK2 does not have good stability near the imaginary axis. Therefore an ERK method
(2.16) with a stability region that captures a large interval of the imaginary axis but shares the
b and c values with the 10-stage ROCK2 (C.3) method is derived. The stability polynomial of
R(z)=14+2z+ § + % + g—; + % and a stability region shown in Figure 4.5 is chosen; this is
the stability polynomial with the largest stability interval for the imaginary axis for a five-stage
second-order ERK method with free b and c coefficients [100]. To find the A, that gives the chosen
stability polynomial, a tableau with 8 free coefficients is constructed. The terms of the stability
polynomial as a function of the Butcher tableau are given in [44, p.16], and the resulting nonlinear
system is solved for the free coefficients. The tableau of this enhanced stability ERK method is
given in (C.2). Further analysis may yield a larger stability region or a smaller leading error term

for the method (C.2).
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5i

-5i

Figure 4.5: The region of absolute stability region for the 10-stage ERK method sharing b
and ¢ with the ROCK2 method (C.2).

4.6.2 10-Stage IF-2-ARK methods

An TF-2-ARK method (4.22) that uses the tableaux (4.23) to efficiently solve specific advection-
dominated semi-discretized ARD problems is proposed. The ROCK2 tableau (C.3) is used for
both the CFERK method (4.8) for the advection operator A 4 and the ERK method (2.16) for
the diffusion operator Ap. Using the ROCK2 tableau (C.3) for a CFERK method does not take
advantage of the extended stability region but is used because it is second order and has the same
b and c coefficients. The ERK method (C.2) with enhanced imaginary stability is used as the
tableau A, for the reaction terms. The combination of methods is referred to by a triple of Butcher
tableaux with advection first, reaction second, and diffusion third. The method just described is
referred to as (C.3,C.2,C.3) in this notation.

Th method (C.3,C.2,C.3) is inefficient because all methods have 10 stages, and that is more than

the minimum necessary for a second-order CFERK method or an ERK method with the stability
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region in Figure 4.5. A practical IF-2-ARK method should take full advantage of the extra stages
or use a strategy to save computational cost for the constituent methods where the extra stages

are unnecessary.

A strategy to reduce the cost of the exponentials is to not enforce the condition (2.34) but still
achieve second order by satisfying the coupling conditions. The tableaux (C.1) satisfy the second-
order coupling conditions when used for the CFERK method along with the 10-stage ERK method
(C.2) for reaction and ROCK2 (C.3) for diffusion. The resulting method (C.1,C.2,C.3) reduces the
number of exponential evaluations per step from 31 to 5 by introducing stages that are redundant.
The redundant stages occur because exponential evaluations are only required for the first and last
stage of the CFERK. The intermediate expression p; - pj_1 from (4.22) evaluates to the identity
matrix for stages s = 1,2,...,9 for a 10-stage method; therefore these quantities do not have to
be computed. Likewise, p; evaluates to the identity matrix for these stages because the matrix

exponential of the zero matrix is the identity matrix and does not have to be computed.

4.7 Experimental results

In order to measure the accuracy of numerical solutions generated from the numerical methods
being tested, an approximation to the error is made from a comparison to a reference solution.
The measure used is the root-mean-sequare (RMS) error egms of each numerical solution point

generated by the method being tested with respect to the reference solution and given by

Nsteps M

1
erms = | ——— > > (Uni — Yreri(tn))?, (4.26)
nstcpsm n=1 i=1

where m is the size of the ODE system, y,, ; is component ¢ of the solution at step n of the numerical
solution of the method being tested, ngteps is the number of steps taken by that numerical solution,

and Yrer;(tn) is component 4 of the reference solution at step n corresponding to time ¢,,.

The reference solutions are generated using the ARK5(4) method from [55], which is an eight-
stage IMEX method with third-order dense output. The reference solutions are stored in files
that include the stage values at each step. Therefore a dense reference solution that is third-order
accurate can be produced for any time in the domain; this is sufficient to test second-order methods.
ARK5(4) is used as a linearly implicit RK method by using a splitting of the RHS into linear and

nonlinear parts f = £} + 12 where

f1(y(1) = £y (1) - £y (1)), (4.27a)
2y (1)) = Te(y (1)) - ¥ (8), (4.27b)



where f(y(¢)) is the RHS of the ODE (2.2a), J¢(y(¢)) is the Jacobian (2.9) of the ODE, and
f0(y(t)), £l (y(t)) correspond to those in an IMEX method (2.21) [26]. The ideal IVP method
for generating reference solutions for stiff problems is a fully implicit RK method, such as the
Radau ITA methods, due to the excellent behaviour on most stiff problems, low long-term storage
requirements for the reference solution from taking large steps and having a relatively low number

of stages, and dense output with an order of convergence equal to that of the main method.

The spatial and temporal domains, initial condition, boundary conditions, final time, and dif-
fusion parameters used experimentally for the Burgers (4.5), Brusselator (4.24), and Burgers—

Brusselator (4.25) equations are given by

x € [0,1], (4.28a)
t €10,10], (4.28b)
u(0,z) = v(0,x) = 1 4 sin(27x), (4.28¢)
u(t,0) = u(t, 1), v(t,0) = v(t, 1), (4.28d)
e = {0.005, 0.002,0.001, 0.0005}, (4.28e)

which correspond to the same spatial domain (4.28a), and time domain (4.28b), but an initial
condition (4.28¢) that is a modification of the Brusselator (4.24) IVP in [14, p.6]. Periodic bound-
ary conditions (4.28d) are used because this generated interesting behaviour with the Burgers—
Brusselator equation (4.25). The sets of reaction coefficients for the Brusselator equation (4.24)

and Burgers—Brusselator equation (4.25) used are

a=0.26=0.5, (4.29a)
a=28=5, (4.29b)
T, (4.290)

We are unaware of any analytical solutions to the Burgers—Brusselator equation (4.25). As
an alternative to an analytical solution, the reference solutions to the semi-discretized Burgers
(4.5), Brusselator (4.24), and Burgers-Brusselator (4.25) equations are found with ng.q = 100 grid
points. A reference solution to the IVP is generated by solving it numerically with successively
finer error tolerances until the difference between successive solutions falls below a chosen level.
The tolerances (2.38) used by the step controller for generating reference solutions are T,ps = Trol =
{1077,1078,1072,107 1%}, with 107!° being taken as the tolerance for the reference solution and
the other tolerances used to judge the accuracy of the reference solution. The digits of accuracy

of the solutions with respect to Taps = Trel = 10710 for various diffusion and Brusselator reaction
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coefficients are shown in Figure 4.6. It can be seen that the Brusselator reaction coefficients (4.29b)
are more difficult to find high-accuracy solutions for than the other reaction coefficients, with a
mean number of digits of accuracy of approximately 7 compared to 9 to 10 for the other Brusselator
reaction parameters (4.29a) (4.29c¢).

Sharp transitions that are characteristic of the Burgers equation (4.5) are shown in Figure B.1
at t = 2.0. The Brusselator reaction coefficients (4.29a) have negative real eigenvalues at the steady
state, causing any oscillations to rapidly decay, as shown in Figure B.2. The Brusselator reaction
coefficients (4.29b) have complex eigenvalues at the steady state that tend to cause any oscillations
to be self-sustaining, as can be seen in Figure B.3. The Brusselator reaction coefficients (4.29¢)
have eigenvalues with positive real parts at the steady state that tend to amplify oscillations. When
used for the Brusselator equation (4.24) the amplifying effect of the Brusselator reaction coefficients
(4.29¢) can offset the dampening effect of diffusion, leading to long-term oscillations, as shown in
Figure B.4 and the example in [44, p.6].

The Brusselator reaction coefficients (4.29b) produce long-term oscillations and include sharp
transitions, which are characteristic of the Burgers equation (4.5) but not of the Brusselator equa-
tion (4.24), when used with the Burgers—Brusselator equation (4.25), as shown in Figure B.6.
Conversely, the coefficients (4.29¢) that produce long-term oscillations in the Brusselator equation
(4.24) do not produce these oscillations when used in the Burgers—Brusselator equation (4.25), as
also shown in Figure B.7. The strong dampening effect of the negative real eigenvalues of the reac-
tion term with Brusselator reaction coefficients (4.29a) can be seen in Figure B.5. The Brusselator
reaction coefficients (4.29b) are most interesting when used with the Burgers—Brusselator equation
(4.25) because they give a stepsize restriction despite being non-stiff. Moreover, there is a lack of
a stepsize restriction of similar magnitude in the Burgers equation (4.5) or Brusselator equation

(4.24) with the corresponding set of Brusselator reaction or diffusion coefficients.

4.7.1 Performance comparisons

To show that new numerical methods perform well in practice, the most effective measure is a
comparison of computational work, such as the time to perform a computation for a given measure
of the accuracy, such as the RMS error (4.26), relative to a reference solution.

We are unaware of any studies comparing the computational cost of the CFERK methods [24]
or the integrating-factor-based methods that incorporate CFERK methods [18, 22] to mainstream
IVP methods. The matrix exponential using Krylov subspace methods has a computational cost
of O(ngiq?) for a grid size of ngiq, in comparison to a cost of O(ngq®) for semi-Lagrangian
methods, when used for the advection flow calculation [24]. Therefore the IF-2-ARK methods
(C.3,C.2,C.3) and (C.1,C.2,C.3) are used with the matrix exponential of A(t, y(¢)) for the advection
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Figure 4.6: Convergence of the trial reference solutions in number of digits of accuracy as
compared to the reference solution with a tolerance of 10719 for a = 0.2,3 = 0.5 (4.29a)
(top), & = 2,8 =5 (4.29b) (middle), and oo = 1,5 = 3 (4.29¢) (bottom). € = 0.002 (— —),
€ =0.001 (—-—), e = 0.0005 (—).
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flow calculation as an initial experiment in order to find if CFERK-based methods can have a lower

computational cost than mainstream IVP methods.

The IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are compared to IMEX(2,3,2) (C.4),
that is used as a linearly implicit RK method with the splitting (4.27). They are also compared to
the 10-stage ROCK2 method (C.3), which is an optimal ERK method (2.16) in the sense that the
main source of stiffness for the advection-dominated Burgers-Brusselator equation (4.25) with the
nonstiff Brusselator reaction coefficients (4.29) is the diffusion term. The IF-2-ARK method with
a reduced number of exponentials (C.1,C.2,C.3) described in Section 4.6 is also used a comparison.
Both IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are tested with the PI stepsize controller
from Section 2.5.3 because this strategy was found to be successful with EXP4 from [47, p.1565].

The tolerances (2.38) used are 7ol = Taps = 100-272) i = {0,1,2,...,10}. The maximum num-
ber of steps allowed to find a solution is 300000; any computations requiring more steps are deemed
infeasible. Step-doubling error estimation from Section 2.5.1 in conjunction with the conventional
stepsize control (2.40) from Section 2.5.3 is used for all methods to ensure a uniform comparison.
Where indicated, the methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are also tested using PI instead of
the conventional stepsize control (2.40) from Section 2.5.3. Other ERK methods including (C.2)
were tried individually, but they all took a much greater number of steps than the 10-stage ROCK?2

method (C.3) and were not able to reasonably find a solution for most sets of parameters.

It can be seen from Figure 4.7 that when solving the Burgers equation (4.5), as € decreases from
0.005 to 0.001, the advantage of IMEX(2,3,2) (C.4) over ROCK2 (C.3) increases. The Burgers
equation (4.5) generally becomes more difficult numerically as advection dominates [19], and this
favours a method with a stability region covering the imaginary axis such as the explicit method

from IMEX(2,3,2) (C.4) [7].

It can be seen from Figure 4.8 that IMEX(2,3,2) (C.4) generally has a slight advantage over
ROCK2 (C.3) when solving the Brusselator equation (4.24). The Brusselator reaction coefficients
(4.29b) and (4.29¢) that have complex eigenvalues at the steady state result in these methods
finding a less-accurate solution than for the case of the reaction coefficients with only negative
real eigenvalues (4.29a). IMEX(2,3,2) (C.4) and ROCK2 (C.3) perform equally well for these

parameters.

It can be seen from Figure 4.9 that the Burgers—Brusselator equation (4.25) is a more difficult
problem numerically, and that IMEX(2,3,2) (C.4) is the most efficient in nearly all cases, showing
the smoothest graph and the most stable behaviour. ROCK2 (C.3) is no longer competitive with
IMEX(2,3,2) (C.4) in terms of computational cost and has more difficulty giving a high-accuracy
solution. For this problem, the IF-2-ARK methods (C.3,C.2,C.3) and (C.1,C.2,C.3) are not com-
petitive to either ROCK2 or IMEX (C.4) in terms of computational cost. However, the IF-2-ARK
method (C.3,C.2,C.3) easily gives high-accuracy solutions. The IF-2-ARK methods (C.1,C.2,C.3)
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with only 5 exponential evaluations per step has a poor performance in comparison to the one with
31 exponential evaluations per step (C.3,C.2,C.3) when finding high-accuracy solutions, but it has
a reduced computational cost for moderate accuracies. The PI step controller performs no better
than conventional step control (2.40) for the IF-2-ARK methods in all cases.

It can be further seen from Figure 4.9 that the Brusselator reaction coefficients (4.29b) are
the most costly of the tested Brusselator reaction coefficients (4.29) when finding a solution of a
given accuracy. These reaction coefficients (4.29b) are the ones that have complex eigenvalues at the
Brusselator steady state and self-sustaining oscillations for the Burgers—Brusselator equation (4.25).
In this case, the computational cost is most similar between the IF-2-ARK and non-exponential
methods. This motivates a comparison of the IF-2-ARK methods (C.3,C.2,C.3) to IMEX(2,3,2)
(C.4) at higher precisions. The 10-stage ROCK2 (C.3) method is not included because it has
difficulty producing high-accuracy solutions.

A comparison of the IF-2-ARK method (C.3,C.2,C.3) and IMEX(2,3,2) (C.4) is shown in Fig-
ures 4.10, 4.11, and 4.12 for the three sets of Brusselator reaction coefficients tested. The diffusion
coefficients used are ¢ = 0.002,0.001, 0.0005 and the error tolerances are Tyo] = Tabs = 10(’4*%)7 1=
{0,1,2,...,12}. It can be seen from Figure 4.11 that the IF-2-ARK method (C.3,C.2,C.3) outper-
forms IMEX(2,3,2) (C.4) for e = 0.0005 and the Brusselator reaction coefficients (4.29b). It can
also be seen that with fine tolerances and all of the Brusselator reaction coefficients tested, the
IF-2-ARK method (C.3,C.2,C.3) is able to give solutions with accuracies that are not feasible with
IMEX(2,3,2) (C.4).

In summary, the Burgers—Brusselator (4.25) is introduced as a simple test problem with a
non-constant advection coefficient and an oscillatory reaction term. It is a combination of two
classical equations, the Burgers equation (4.5) and the Brusselator equation (4.24). The combined
coefficients create behaviour not observed in the constituent equations. The combined system is an
ARD equation that is usually solved efficiently by implicit-explicit splitting. Two new 3-additive
splittings are proposed, combining 2-ARK methods with CFERK methods to handle advection, and
it is found that when finding high-accuracy solutions in the regime where the problem is hardest
to solve, one of the new 3-additive splittings (C.3,C.2,C.3) outperforms standard solvers. This
is a promising result in that high-accuracy solutions are expected to become more important as
the demand for increased model fidelity rises. This is the first study that we know of that shows
CFERK methods can be computationally efficient in comparison to existing methods. It also gives

definite future directions for research into improved time-integration methods for ARD equations.
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Figure 4.11: Computational time compared to the RMS error of the solution with e = 0.002
(top), € = 0.001 (middle), and e = 0.0005 (bottom) for the Burgers—Brusselator equation
(4.25) with Brusselator reaction coefficients o = 2,8 = 5 (4.29b) and ngiq = 100. IMEX
(2,3,2) (C.4) %, IF-2-ARK (C.3,C.2,C.3) ®.
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Figure 4.12: Computational time compared to the RMS error of the solution with e = 0.002
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(4.25) with Brusselator reaction coefficients o = 1,8 = 3 (4.29¢) and ngiq = 100. IMEX
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CHAPTER 5

CONTRIBUTIONS AND FUTURE WORK

5.1 Contributions

The Burgers—Brusselator equation (4.25) is introduced as a simple test problem with non-constant
advection coefficients. This is a contribution because many problems used to test CFERK and other
exponential methods generally have constant advection coefficients, e.g., [18, 48]. The Burgers—
Brusselator equation (4.25) also has an oscillatory reaction term. The combined coefficients create
behaviour not in the constituent equations that leads to interesting behaviour and numerical diffi-
culties with certain values of coefficients, as shown in Figures B.6 and 4.9, respectively.

The results presented in this thesis are the first known study of the performance of the integrating-
factor-based methods incorporating CFERK methods such as those in [18, 22] and CFERK methods
in general [24]. This is also the first study to show the practicality of CFERK methods. The meth-
ods introduced, called IF-2-ARK methods, show the potential viability of 3-additive splitting for
certain ARD systems that cause difficulty with more conventional methods when high-accuracy so-
lutions are desired. Further study is required to refine these types of methods to determine whether
they can be competitive with existing methods for IVPs in practice.

Figure 4.11 shows that the IF-2-ARK method (C.3,C.2,C.3) introduced in Section 4.6 can have
a lower computational cost than other second-order methods for a certain combination of diffusion
and reaction parameters when solving the Burgers—Brusselator equation (4.25). The particular
coefficients are e = 0.0005, leading to dominance of the advection term, and the Brusselator reaction
coefficients (4.29b) that are more costly to solve than the other tested reaction coefficients in
(4.29). The high cost to solve the Burgers—Brusselator equation (4.25) with the Brusselator reaction
coefficients (4.29b) is shown in Figure 4.9. Figure 4.11 shows that (C.3,C.2,C.3) can solve the
Burgers—Brusselator equation (4.25) with a lower computational cost than IMEX (2,3,2) (C.4) as
advection becomes increasingly dominant and high accuracy is desired.

The IF-2-ARK method can provide solutions with accuracies that are infeasible with the other
methods tested. In addition, the IF-2-ARK methods proposed (C.3,C.2,C.3) and (C.1,C.2,C.3) use
an RKC method for the diffusion term; therefore they can easily be used to solve problems with

nonlinear diffusion.
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5.2 The pythODE PSE

The IVP component of the pythODE PSE developed during the course of this thesis allows the
construction of many numerical methods including RK, multistep, and general linear methods
as well as the exponential and additive variants of these methods. The particular abstraction
using object-oriented programming with the Solution objects, Solver objects, and SolverModule
objects described in Chapter 3 can also incorporate other families of numerical methods. This allows
experimentation with many different numerical methods in a single software package. Examples in
this thesis include using a number of RK methods, along with additive and exponential variants,
that share code for the definition of the IVP and step control strategies, and to perform and analyse
the numerical experiments.

The development work on the part of the pythODE PSE for solving IVPs is currently at an
advanced stage. The general architecture and feature set described in Chapter 3 have been imple-
mented in pythODE. However, many features are incomplete, and further testing of the software for
stability and usability is required.

The features for large-scale testing and experimentation described in Section 3.3.5 are used to
create an extensive test suite that includes IVPs published in [14] and [68] as well as the Luo—Rudy
cardiac cell model from [64]. The test suite is executed regularly, and the report generated is stored
in a version-control system. The same testing and experimental features were used for many of
the preliminary experiments that led up to the results in Chapter 4; those results required many
independent aspects from many of the components of an IVP solver to be tested against each other
in order to obtain an overview of the behaviour of the new IF-2-ARK methods in comparison to

other methods.

The PSE pythODE has a large selection of RK and ARK methods with which to solve IVPs.
A hindrance is that at present the stiff IVP solvers used in pythODE are linearly implicit. If
efficiency measurements are not important, the nonlinear systems of equations required by fully
implicit numerical methods can be solved through the PSE pythNon [95]. In the case of methods
such as RADAUS5 (2.18) or SDIRK4 (2.19), an efficient implementation suitable for comparing CPU
times between fully implicit numerical methods requires special treatment of the resulting nonlinear
systems of equations. For example, RADAUS5 (2.18) makes use of complex arithmetic, which is well
supported by PYTHON, NUMPY, and SciPy using operator overloading. The methods used as
comparisons in the experiments in Chapter 4 are considered the most effective that exist in the
current implementation in pythODE.

It is possible to perform experiments with large numbers of controlled parameters using pyth0ODE;
however, a significant limitation is the lack of more advanced features to record the observed values

in long-term storage, perform analysis, and visualize the results. An example of some of the more
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advanced features is that the figures of the stability regions of RK methods in this thesis, such as
Figures 2.3, 4.1, and 4.2, were generated with pythODE. In general, for observed values other than
stepsize, CPU time, and accuracy, it is necessary to do a significant amount of development to
record a particular observed value of interest and to manually analyse the results from the report
generated. This process will be automated in the future with formats such as XML [11] or software
such as a relational database used to record experimental results for future analysis. This will
make conducting numerical experiments more efficient and enhance reproducibility, which has been

increasingly identified as a limitation to progress in scientific computing [70].

5.3 Future work

5.3.1 Improvements to the IF-2-ARK methods

The IF-2-ARK method (C.3,C.2,C.3) has a high computational cost for each time step due to the
large number of exponential calculations, i.e., 31 in the case of the 10-stage method presented. The
primary source of computational cost for the IF-2-ARK methods (4.22) is the need to compute
pij - D(Y;) and p;; - r(Y;), which transport the derivative of the constituent methods for diffusion
and reaction. The method (C.3,C.2,C.3) derived by not enforcing the condition (2.34) to introduce
redundant stages and reduce the number of exponential calculations to 5 per step did not produce
enough of a reduction in computational cost at moderate accuracies and was not suitable for high-
accuracy solutions.

Another strategy that may reduce the cost of the exponentials is to use a constant advection
coefficient when evaluating the stages of a CFERK method. It is shown in [18] that with a constant
Jacobian matrix there are savings of up to 80-90% in computational cost from reusing information
from previous matrix exponential evaluations (4.14) for multiple but similar vectors v. It is also
possible to use a linearly implicit or fully implicit method for the diffusion term rather than an
RKC method, thus avoiding the high number of stages assoicated with using an RKC method as a
constituent of a IF-2-ARK method. Further study may identify other potential strategies to reduce
the cost of the exponentials.

A variable number of stages for the RKC constituent method of a IF-2-ARK method can ensure
the method is optimal for the characteristics of the diffusion term at each step. This strategy is
used in the RKC, IRKC, and ROCK2 codes where the spectral radius of the Jacobian is estimated at
each step. This type of adaptive strategy is essential for nonlinear diffusion, where the spectral
radius of the Jacobian of the diffusion term is unlikely to be predictable in advance. It is essential
to ensure the variable number of stages RKC method does not incur excessive computational cost
for the additional exponential evaluations that is required.

A further strategy to reduce computational cost is to develop an embedded method for the
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IF-2-ARK methods. We do not know of any CFERK methods that have embeddded methods. It
is therefore unknown if this is a viable strategy in comparison to step-doubling error control. For
instance, it was found that the PI step controller was suitable for the non-exponential methods but
not for the CFERK methods. An embedded method would likely reduce computational cost of the
methods by 33% by eliminating the error control step. With an embedded method, more promising
step controllers such as a variant of PI step control could be studied.

Once optimal IF-2-ARK methods have been developed, they should be compared to fully implicit
RK methods for the purpose of generating high-accuracy solutions. Fully implicit RK methods
typically have an extremely high cost per step; however, the problem-specific nature of IF-2-ARK
methods may offer some savings.

The reaction terms of an ARD equation are spatially decoupled; therefore, they are suitable
for parallelism. The independent nature of the computations for each grid point makes this type
of computation suitable for accelerated platforms such as graphics processing units, which are

becoming more common for high-performance computing.

5.3.2 More complex ARD systems

Many ARD systems of interest are more complex than the Burgers—Brusselator system (4.25).
It is possible that the IF-2-ARK methods may be more suitable on these more complex ARD
systems than the Burgers—Brusselator system (4.25), which was used for this proof-of-concept study.
The Burgers—Brusselator system (4.25) is suitable for this type of study because it is one of the
simplest ARD systems with nonlinear advection and an oscillatory reaction term. FExamples of
more complex ARD systems are found in [8, p.33; 51, p.18-22,134; 79]. Further study may identify

the characteristics of ARD systems where 3-additive splitting is advantageous.

5.3.3 High-order variants

Satisfactorily solving the sets of simultaneous nonlinear algebraic equations derived from order
conditions and coupling conditions has proven to be a hindrance in the design of practical RK and
ARK methods [43, p.175; 55]. Most methods of sufficient complexity, such the high-order ARK
methods in [55], DOPR54 (2.37), or SDIRK4 (2.19), use simplifying assumptions similar to (2.34)
to reduce the complexity of the simultaneous nonlinear algebraic equations that must be solved.
The simplifying assumptions do not necessarily imply the numerical method is not optimal because
in many cases it is not necessary to use the full number of degrees of freedom provided by the order
conditions and coupling conditions to achieve the desired properties in a numerical method.

Table 2.4 shows that for second-order IF-2-ARK methods, the coupling conditions are still rela-
tively small in number even if (2.34) is not satisfied, with six coupling conditions for a second-order

method. A third-order TF-2-ARK method is required to satisfy 12 standard RK order conditions
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in total for the three constituent methods, 39 standard ARK coupling conditions, and the addi-
tional order condition (4.11) for a third-order CFERK method. A fourth-order IF-2-ARK method
is required to satisfy 24 standard RK order conditions in total for the three methods, 234 standard
ARK coupling conditions, the four additional order conditions (4.13) for the fourth-order CFERK
method, and a minimum of four additional coupling conditions given in [21].

High-order IRK methods are commonly used to find high-accuracy solutions to difficult stiff
IVPs. Therefore, it is essential to develop high-order IF-2-ARK methods and compare the efficiency
with existing high-order methods such as the IMEX methods ARK5(4) [55] and fully implicit RK
such as RADAUS5 (2.18).

5.3.4 Semi-Lagrangian methods

The feasibility of using a matrix exponential in a CFERK method (4.8) for advection flow calcula-
tions has been shown in this thesis. However, semi-Lagrangian methods have a computational cost
of O(ngria®) for grid size ngiq, compared to O(ngia?) for Krylov subspace methods [24]. Semi-
Lagrangian methods better capture the qualitative behaviour of the underlying model. Therefore,
due to improvements in physical models, they may be better suited for finding high-accuracy solu-
tions. It may also be possible to use a coarser grid with higher-order semi-Lagrangian methods to
achieve high accuracy. Semi-Lagrangian methods can capture the behaviour of the underlying PDE
on coarser grids better than Eulerian methods can, as can be seen in [22]. Memory usage can be a
significant limitation to the accuracy of simulations in a high-performance computing environment,
coarse grids can reduce memory usage in some cases.

There are various methodologies of developing semi-Lagrangian methods [96]. However, the
method of characteristics described in Section 4.1 is suitable for parallelism because it converts
the advection term into many non-stiff IVPs, and the interpolation is done independently as well.
Therefore, even if the overall computational cost of the semi-Lagrangian methods is higher, they
may be may yield a solution in less time on parallel computers.

In [23] semi-Lagrangian methods are implemented using integrating-factor-based multistep meth-
ods that solve differential-algebraic equations (DAEs), which are generally more complex to solve
than ODEs. DAEs arise from the semi-discretization of problems similar to ARD equations that in-
corporate conditions such as incompressibility for the flowing medium. These methods are suitable

for study in pythODE, and it remains to be seen if they are suitable for practical problems.

5.3.5 Further development of pythODE

The experimental capabilities of pythODE allow the design of experiments to determine the optimal
values of the independent aspects of the solution process such as the numerical methods, heuristics,

and method parameters, all of which may have complex interactions with each other. The mea-
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sured CPU time using pythODE does not correspond exactly with an eventual high-performance
implementation using a language such as FORTRAN. However, these comparisons give a reasonable
estimate to motivate future development. An example of this type of comparison is in [18], where
methods are compared in MATLAB, which has many of the same non-uniformities relative to a
high-performance computing environment as PYTHON does.

Many other numerical studies other than those performed in this thesis are suitable for pythODE.
With further use, the applicability of results from the PSE to an HPC environment will become
apparent. In particular, numerical experiments such as those in [43] and [44] can be easily replicated.
Ultimately a PSE like pythODE could generate code for a high-performance computing environment
as well.

High-priority development tasks for pythODE are to further automate and reduce the develop-
ment cost of conducting numerical experiments through improvements in the test suite. Expansion
of the number of IVPs in the test suite and automating checking will help guard against code regres-
sions as development proceeds. Finally, development of a GUI interface for pythODE will eventually
allow many of the potential numerical experiments to be conducted with little to no programming

on the part of the user.
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APPENDIX A
EXAMPLES RELATED TO THE DERIVATION OF ORDER

CONDITIONS

The rooted trees and corresponding elementary differentials corresponding to the fifth derivative
of the RHS of an ODE (2.2a) are given by

< fy)= > )))a(gs)g5~V+6\I}+6\>/+4V+3\)+4\Y+3\R+Y+

dt®
2GR (E(y(t

See Section 2.4 for description of the notion and theory. The expansion of the elementary differen-
tials for certain trees with m = 2 are given below.
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APPENDIX B
REPRESENTATIVE BEHAVIOUR OF THE BURGERS, BRUS-

SELATOR, AND BURGERS-BRUSSELATOR EQUATIONS

The following figures are representative of the time evolution of the Burgers (4.5), Brusse-
lator (4.24), and Burgers-Brusselator (4.25) equations with some parameters of interest for this
thesis.
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Figure B.1: Solutions to the Burgers equation (4.5) with the initial condition (4.28c),
boundary conditions (4.28d), e = {0.005,0.002,0.001} (left to right), and ng.q = 100.
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Figure B.2: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c¢),
boundary conditions (4.28d), ¢ = {0.002,0.001,0.0005} (left to right), @ = 0.5, 8 =
0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free Brusselator
steady state, and ngq = 100.
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Figure B.3: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c¢),
boundary conditions (4.28d), ¢ = {0.002,0.001,0.0005} (left to right), @ = 2.0, 8 =
5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady state,
and ngrig = 100.
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Figure B.4: Solutions to the Brusselator equation (4.24) with the initial condition (4.28c¢),
boundary conditions (4.28d), ¢ = {0.002,0.001,0.0005} (left to right), a = 1.0, 8 =
3.0 (4.29¢) that are unstable at the diffusion-free Brusselator steady state, and ngiq = 100.
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Figure B.5: Solutions to the Burgers—Brusselator equation (4.25) with the initial condition
(4.28¢), boundary conditions (4.28d), e = {0.002,0.001,0.0005} (left to right), a = 0.5,
B8 = 0.2 (4.29a) that have asymptotically decaying behaviour at the diffusion-free Brusselator
steady state, and ngq = 100.
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Figure B.6: Solutions to the Burgers—Brusselator equation (4.25) with the initial condition
(4.28¢), boundary conditions (4.28d), e = {0.002,0.001,0.0005} (left to right), a = 2.0,
B = 5.0 (4.29b) that are stable and oscillatory at the diffusion-free Brusselator steady state,
and ngrig = 100.
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Figure B.7: Solutions to the Burgers—Brusselator equation (4.25) with the initial condition
(4.28¢), boundary conditions (4.28d), e = {0.002,0.001,0.0005} (left to right), a = 1.0, 8 =
3.0 (4.29¢) that are unstable at the diffusion-free Brusselator steady state, and ngiq = 100.
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APPENDIX C

DETAILS ON THE IF-2-ARK METHODS

C.1 Derivation of IF-2-ARK methods

The full derivation of the method (4.22) based on the OIF splitting of Section 4.3.1 is covered in
this section. Substitute the auxiliary variables into (4.2) based on OIF splitting:

d d d
Sy(t) = SW() - a(t) + W(E) - L),
SW(E) = AOV(E) - 2(8) - W), W) =T

72 = W) - DIW(E) - 2(t)) - W(E) - () + W (1) - x(W(E) - 2(2)),

with further details given in Section 4.3.1 and [22]. Applying a CFERK method to W(t) and a
2-ARK method to z(t) yields

Q; = exp (AtZamA Z; ) exp (AtZamA ) W, i1 =1,2,...,5,

Jj=1

Zi =Z, + AtZ(AD)”QII D(Qj . ZJ) . Qj T Zy + AtZ(Ar)ijQ;1 'I‘(Qj . Zj), L= 172, ey S

Jj=1 Jj=1

Wit1 = exp (AtZﬂ?A(Qi : zi>> exp (AtZﬂE”A(@ : z») W, i=1,2,...,

=1 =1

Znt+1 = Zn + AtZ(bD)iQ;I "D(Q;-Zi)- Qi -z + AtZ(br)iQi_l r(Qi-Z;), i=1,2,...,s,
1=1 i=1

[1] (2]

;T

where (A4)i; = o; (ba)i = BF] + 51[2] and the rest of the variables are given in the

definition of (4.22).

Some further variable substitutions yield

Yii =09 Zi, pi=0Qi W, Vai1:=Wai1 Zut1, Pni1 i =Wepr W, i=1,2,... 5,
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which results in a method free of the auxiliary variables and given by

pi - Wi = exp (AtZa” YJ)) - exp (AtZa[l]A ) Wi, 1=1,2,...,8,
j=1
i—1
pi = exp AtZag}A(Y]) - exp AtZa[l]A i=1,2,...,s,

j=1

pig = pi Py

QY =W,y ALY (Ap)iy QDY) Y+ ALY (Ar)iy; Q5 -x(Yy), i=12
j=1 j=1
Yi=Qi- W, -yat Atz (Ap)i; Qi- Q7 -D(Y,) - Y;+AtY (Ar)i; Q bor(Y;),
j=1 j=1
1=1,2,...,s,
YL:plyTL+AtZ(A'D)1,JpL] ( Y +Atz ,jpl,_] I'Y), i:172a"'757
j=1
Prs1 - Wi = exp (Atz ﬁZ[Q]A(Yi)> - exp (Atz 61[1]A(Yi)> W,
i=1 i=1
Pnt1 = €Xp (AtZBFA(Y,;)) - exp <AtZﬂz[l]A(Yi)> )
i=1 i=1
,7 ~1
pn—i—l,i = P41t pi )
Wikt Vo1 = Wit yn + At (bp); Q71 D(Y,) Y+ AtY (b Y)).
i=1 i=1
Vi1 = Wapr - Wy oy + AtY (bp)i Wi- Q7" -D(Y,)- Y+ AtY (b r(Y,).
i=1 1=1

S
Yn+1 = Pn+l Yn + At Z(bD)z Pn+1,i°

Y +Atz

i=1
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C.2 Tableaux of constituent methods used to propose IF-2-
ARK methods
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The linearly implicit IMEX (2,3, 2) from [7], used in the experiments in Section 4.7, is given by

ojlo 0
Yy O
116
0

| 2 o

0
v
1 1-§ (C4)

1—»v

l—v
L=~

oo oo
2R oo
QLo oo

where v = (2—+/2)/2, § = —2v/2/3. These parameters give the explicit method the stability region
of a three-stage, third-order method, and an L-stable implicit method.
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