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ABSTRACT 

In most robot applications, the control of the manipulator’s end-effector along a specified 

desired trajectory is the main concern. In these applications, the end-effector (tip) of the 

manipulator is required to follow a given trajectory. Several methods have been so far proposed 

for the motion control of robot manipulators. However, most of these control methods ignore 

either joint friction or joint elasticity which can be caused by the transmission systems (e.g. belts 

and gearboxes). This study aims at development of a comprehensive control strategy for the tip-

trajectory tracking of flexible-joint robot manipulators. While the proposed control strategy takes 

into account the effect of the friction and the elasticity in the joints, it also provides a highly 

accurate motion for the manipulator’s end-effector.

During this study several approaches have been developed, implemented and verified 

experimentally/numerically for the tip trajectory tracking of robot manipulators. To compensate 

for the elasticity of the joints two methods have been proposed; they are a composite controller

whose design is based on the singular perturbation theory and integral manifold concept, and a 

swarm controller which is a novel biologically-inspired controller and its concept is inspired by 

the movement of real biological systems such as flocks of birds and schools of fishes. To 

compensate for the friction in the joints two new approaches have been also introduced. They are 

a composite compensation strategy which consists of the non-linear dynamic LuGre model and a 

Proportional-Derivative (PD) compensator, and a novel friction compensation method whose 

design is based on the Work-Energy principle. Each of these proposed controllers has some 
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advantages and drawbacks, and hence, depending on the application of the robot manipulator, 

they can be employed. For instance, the Work-Energy method has a simpler form than the 

LuGre-PD compensator and can be easily implemented in industrial applications, yet it provides 

less accuracy in friction compensation. In addition to design and develop new controllers for 

flexible-joint manipulators, another contribution of this work lays in the experimental 

verification of the proposed control strategies. For this purpose, experimental setups of a two-

rigid-link flexible-joint and a single-rigid-link flexible-joint manipulators have been employed. 

The proposed controllers have been experimentally tested for different trajectories, velocities and 

several flexibilities of the joints. This ensures that the controllers are able to perform effectively 

at different trajectories and speeds.  

Besides developing control strategies for the flexible-joint manipulators, dynamic 

modeling and vibration suppression of flexible-link manipulators are other parts of this study. To 

derive dynamic equations for the flexible-link flexible-joint manipulators, the Lagrange method 

is used. The simulation results from Lagrange method are then confirmed by the finite element 

analysis (FEA) for different trajectories.  

To suppress the vibration of flexible manipulators during the manoeuvre, a collocated 

sensor-actuator is utilized, and a proportional control method is employed to adjust the voltage 

applied to the piezoelectric actuator. Based on the controllability of the states and using FEA, the 

optimum location of the piezoelectric along the manipulator is found. The effect of the 

controller’s gain and the delay between the input and output of the controller are also analyzed 

through a stability analysis. 
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Chapter 1. Introduction 
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The first chapter of thesis provides a brief background regarding flexible robot 

manipulators, the research objectives and a summary of the papers included in this thesis. Out of 

this study eleven research papers have been submitted/published in technical journals and the 

proceedings of international conferences [1]-[11]. However, because of the need for brevity, only 

five of these papers have been included in the following Chapters 2-6. 

1.1 Background 

The concept of robotics came from “Robota”, meaning serf labour. This concept was first 

introduced by a science fiction author, Karel Capek, in his play Rosum’s Universal Robots where 

it was used to refer to autonomous capable of performing a range of human activities [12]. After 

about a century, robots are now utilized almost everywhere: oceans, factories, hospitals and even 

on Mars. An important class of robots are robot manipulators that are employed in a variety of 

tasks, from automotive industries to aerospace applications. As shown in Fig. 1, a robot 

manipulator generally includes four main components: 

i. Links: ideally links can be considered rigid for slow motion and small interacting forces. 

However, for links with a small width-length ratio, the flexibility must be considered in 

both dynamic modeling and control of these manipulators. 

ii. Actuators: the motors, hydraulic or pneumatic pistons or other elements that cause the 

links to move are called actuators [13].  

iii. Joints: transmission systems such as belts and gearboxes which connect the links to the 

actuators. 

iv. End-effector: the end part of the manipulator that interacts with the environment. For 

instance it can be a gripper, welding tool, etc. 



        

Fig. 1. Components of a two-link 

The motion of the end-effector is controlled 

to the links. Therefore, to move the end

adjust the torques applied by the motors. 

is rigid, the design of the controller will not be 
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that have links with a slender design and lightweight material, the flexib
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motion transmission/reduction systems such as

Recent studies have shown that 

performance of industrial robot
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of harmonic drives produces undesired oscillations during the performance of the manipulator. 

Therefore, for robot manipulators driven by harmonic drives, it is necessary to take into account 

the effect of the flexibility of the joints in the design procedure of the controller. On the other 

hand, considering flexibilities in the joints contributes to complexity in the dynamics and control 

of the manipulator. The main complexity is due to the fact that flexible-joint manipulators are 

under-actuated; that is, the number of actuators is lower than the degrees of freedom. Several 

controller strategies have been proposed so far to overcome the difficulty of under actuation in 

flexible-joint manipulators; however, important factors such as joint friction and inertia of the 

rotors are ignored in these control methods. This deteriorates the performance of the controller 

and affects the accuracy of the end-effector motion. Therefore, a more comprehensive method 

which considers different aspects of dynamics and control of flexible-joint manipulator is needed 

especially in robots performing high-speed high-precision tasks. 

1.2 Research objectives 

This thesis aims to develop a comprehensive control strategy for the flexible-joint 

(elastic-joint) manipulators. The controller must take into account the flexibility and friction in 

the joints, while it provides a precise motion for the manipulator’s end-effector. Besides the 

control of flexible-joint manipulators, dynamic modeling of flexible-link flexible-joint and 

vibration suppression of flexible-link manipulators are other objectives of this research. 

Therefore, the objectives of this research can be summarized as follows: 

1- Precise tip trajectory tracking of flexible-joint manipulators during and at the end of 

manoeuvre (Chapters 2, 3 and 4) 

2- Friction compensation in harmonic drives (Chapters 2 and 3) 
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3- Experimental validation of the proposed controller for flexible-joint manipulators 

(Chapters 2, 3 and 4) 

4- Vibration suppression of flexible-link manipulators using piezoelectric actuators 

(Chapter 5) 

5- Dynamic modeling of flexible-link flexible-joint manipulators (Chapter 6) 

A summary of the methodologies used to accomplish these objectives is explained in 

Section 1.3. The details of these approaches can be found in Chapters 2-6. 

Remark: Because of the manuscript nature of this thesis, equations, figures and references 

might be repeated in the thesis. 

1.3 Summary of manuscripts 

The papers published or submitted by the candidate are cited in the reference list [1]-[11]. 

For brevity, five of these papers have been selected and explained in this thesis. 

The first three papers, given in Chapters 2-4, describe different control strategies used for 

the tip trajectory tracking of the flexible-joint manipulators. In these control strategies, the 

controller had two parts: the first part was designed to compensate for the flexibility of the joints, 

and the second part was to compensate for the joints’ friction. Different combinations of these 

controllers were examined and experimentally verified. Table 1 shows the structure of the 

proposed controllers. The performance of these controllers was tested using the experimental 

setups of a single-rigid-link flexible-joint (SRLFJ), shown in Fig. 2, and a two-rigid-link 

flexible-joint manipulator (TRLFJ), shown in Fig. 3, available at the Robotics Laboratory of the 

University of Saskatchewan.  



Table 1. Different control strategies employed and experim

manipulators 

Controller components 

Composite controller based on the SPT

compensator 

Composite controller based on the SPT

based on Work-Energy method 

Swarm controller+ LuGre-PD friction compensator

*
SPT: Singular Perturbation Theory

Fig. 2. (a) Experimental module 

Robotics Laboratory of the University of Saskatchew

experimental setup showing the angles of the joint and the link (subscripts s st

  

Shoulder 

(a) 

6 

. Different control strategies employed and experimentally verified for flexible

Explained in

Composite controller based on the SPT
*
+ LuGre-PD friction Chapter 2 

Composite controller based on the SPT
*
+ friction compensator Chapter 3 

friction compensator Chapter 4 

SPT: Singular Perturbation Theory

Experimental module of the single rigid-link flexible-joint manipulator available in the 

Robotics Laboratory of the University of Saskatchewan, (b) schematic of the top

e angles of the joint and the link (subscripts s stands for shoulder)

Shoulder joint 

(b) 

entally verified for flexible-joint 

joint manipulator available in the 

an, (b) schematic of the top-view of the 

e angles of the joint and the link (subscripts s stands for shoulder)  



7 

Fig. 3. (a) Experimental module of the two-rigid-link flexible-joint manipulator available in the 

Robotics Laboratory of the University of Saskatchewan, (b) schematic of the top-view of the 

experimental setup showing the angles of the joints and the links (subscripts e and s stand for 

elbow and shoulder, respectively)

To validate the developed control strategies, approximately 120 experiments were 

performed at different temperatures, humidities, flexibilities (elasticity) of the joints, trajectories 

and velocities. It is noteworthy that the experimental verification was an indication that the 

proposed controllers can be implemented in the applications. A list of the experiments carried 

out using the experimental setup of the SRLFJ can be found in Appendix I. In total, the results of 

57 experiments were recorded for the SRLFJ, some of which are presented in Chapter 3. Three 

friction compensation strategies, the LuGre method, work-energy method, and LuGre-PD 

method, were examined at four different desired trajectories, and for low and high flexibilities of 

the joint ( mNK .93.3=  and mNK .33.10= ). Based on the experimental results, it was 

concluded that the best controller was a combination of the composite controller to compensate 

for the flexibility of the joints and the LuGre-PD method to compensate for the friction. This 

strategy was then employed to control the TRLFJ shown in Fig. 3a.  

Shoulder joint 

Elbow joint 

(b) (a) 
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For the TRLFJ, the experiments were carried out using the composite and swarm 

controllers along with the LuGre-PD method. Some of these experimental results are given in 

Chapters 2 and 4, and also in [4]. The list of these experiments is given in Appendix I. 

The paper included in Chapter 5 describes the application of a piezoelectric actuator to 

suppress the vibration of a flexible-link manipulator. This method has been used for vibration 

suppression of a cantilever beam and a single-link flexible link manipulator. The fifth paper, 

given in Chapter 6, presents the dynamic modeling of flexible-link flexible-joint manipulators. 

Lagrange’s method along with the assumed mode shapes method is employed to derive the 

dynamic equations. The simulation results are then verified by finite element analysis. The 

following sections give more details of each paper presented in Chapters 2-6.

1.3.1 Tip trajectory tracking of flexible-joint manipulators driven by harmonic drives 

In this paper, a new control strategy has been proposed for the tip trajectory tracking of 

flexible-joint manipulator [1]. The motion control of the end-effector of the manipulator is the 

main concern in most robot applications, such as spacecraft and automotive industries. In these 

applications, a desired trajectory is usually specified in the task-space and the robot tip (end-

effector) is required to follow this prescribed trajectory. A mapping is first determined between 

the location of the robot end-effector and the rotations of the joints, and based on the desired 

trajectory of the end-effector, the desired rotations of the joints are computed. A control 

approach is then designed such that the error between rotations of the joints and their desired 

trajectories are minimized. 

The proposed control strategy in [1] had two main advantages compared with other 

controllers developed for the tip trajectory tracking of robot manipulators. These advantages 

were: (a) taking into account the flexibility of the joints, (b) considering the effect of the joints’ 



9 

friction. The control strategy was a two-part controller. The first part was a composite controller 

to compensate for the flexibilities of the joints, and the second part was a friction compensation 

torque to compensate for the friction in the joints. The following describes these two parts of the 

controller. 

The first part of the controller was developed using singular perturbation theory along 

with the integral manifold concept. As discussed in Section 1.1, the main problem in the 

trajectory tracking of flexible joint manipulators was that these systems were under-actuated. A 

serial flexible joint manipulator with n links had 2n degrees of freedom, n motor rotations and n

link rotations, while it had only n actuators which were the motor torques. Employing the 

singular perturbation theory allowed for the dividing of the dynamics of flexible-joint 

manipulator into two subsystems: one corresponding to the fast dynamics (high frequency 

vibration due to flexibility) and the other to the slow dynamics (low-frequency motion). For each 

of these subsystems, a controller was then designed. 

The second part of the proposed control strategy was to compensate for the friction in the 

joints. Two methods were developed in this research for friction compensation. In the first 

method, a linear feed-forward torque was designed using the Work-Energy principle [2]. This 

method was easy to implement and did not need any feedback from the system. However, it 

could not model such friction characteristics as the Stribeck effect. To overcome the 

disadvantages of the Work-Energy method, a more general friction compensating strategy was 

proposed. This compensating torque was a combination of a torque identified based on the 

LuGre method
3
 and a PD compensator. To identify the friction in the joints based on the LuGre 

                                                

3
 The LuGre model is a comprehensive friction model developed based on the deflection of the microscopic 

asperities of the rubbing surfaces. In this thesis, a simplified form of this model was obtained for the steady-state 
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method, 57 tests were carried out to determine the friction at different velocities. By interpolating 

the data, the friction torques were obtained as functions of the velocity. The experimental data 

and the estimated functions for the shoulder and the elbow joint motors, are shown Fig. 4.   

     

Fig. 4. Experimental results obtained for steady state conditions and estimation function obtained 

based on the LuGre model for (a) shoulder joint motor, (b) elbow joint motor 

In ideal situations, the counterbalancing estimated joint friction torque shown in Fig. 4 

was equal to the real friction of the joints, and, hence, the friction of the joints would be 

compensated completely. However, practically there was always some error in the estimation of 

joint friction torque, for example due to change in the oil temperature, load, humidity and 

actuator wear. To remove this error, a PD compensator along with the friction torque based on 

the LuGre method was used. Therefore, the friction compensating torque 
fτ was 

)()( mdpmddff qqKqqK
L

−+−+= ��ττ  (1) 

where 
Lfτ  was the joint friction torque identified based on the LuGre method. Parameters +,

and +- were the gains of the PD compensator, and 
, and 
., were, respectively, the desired 

                                                                                                                                                            

conditions and employed to estimate the friction of the joints. For brevity, the simplified LuGre model obtained for 

the steady-state conditions is referred to as the LuGre model in this thesis. 

(b) (a) 



trajectory and its derivative. The first term

identified based on the LuGre model

which incorporated a PD compensator

5. It was experimentally found that 

the proposed friction compensating

manoeuvre. This steady-state error 

stability analysis carried out based on

of the steady-state error was dependent on the friction p

Fig. 5. Model based friction compensation strategy used for ex

flexible-joint manipulator 

The experimental setup used for verification is sho

the first link (shoulder link) was

joint. At the end of the shoulder link 

via the flexible elbow joint. Also, i
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he first term of the friction compensating torque in 

on the LuGre model. The schematic of the entire friction compensat

mpensator combined with the LuGre friction model is shown in 

It was experimentally found that the friction was successfully compensated for by 

proposed friction compensating, though it led to a steady-state error at the end of the 

state error in the friction compensation was bounded

based on the Lyapunov theory [4]. Also, it was shown that

was dependent on the friction parameters and gain controllers.

el based friction compensation strategy used for experimental setup of two

The experimental setup used for verification is shown in Fig. 3. As shown in 

s coupled to the first joint (shoulder joint) by mean

shoulder link a second harmonic drive was connected to the elbow link 

Also, in Fig. 3 angles  and  were rotations of the 

friction compensating torque in (1) was 

the entire friction compensation strategy 

combined with the LuGre friction model is shown in Fig. 

for by employing 

state error at the end of the 

was bounded according to a 

it was shown that the range 

arameters and gain controllers.

perimental setup of two-rigid-link 

As shown in this figure, 

coupled to the first joint (shoulder joint) by means of a flexible 

connected to the elbow link 

re rotations of the shoulder 
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and elbow motors�, and angles 
/0 and  
/1 were rotations of the shoulder and elbow links, 

respectively. Both motors and both flexible joints were instrumented with quadrature optical 

encoders whose resolutions were 0.0015 rad/count [27]. The experimental results indicated the 

superiority of the proposed control strategy compared to other typical controllers such as inverse 

dynamics torque control. For instance, as shown in Fig. 6, the tracking error between actual and 

desired rotations of the shoulder and elbow links was almost zero when the composite controller 

was used for two different types of trajectory. The desired trajectories for the shoulder and elbow 

links were ninth order and third order polynomials, respectively. 

Fig. 6. Experimental verification of the links’ rotations for ]0.1,0.1[],[ 1 radradqq
es ff =  and 

]/94.2,/93.7[],[ radmNradmNKK es ⋅⋅= using the composite controller, (a) shoulder link (b) 

elbow link trajectory. 

1.3.2 A manoeuvre control strategy for flexible joint manipulators with joint dry friction 

Chapter 3 presents another control strategy for the tip trajectory tracking of flexible-joint 

manipulators [2]. The first part of this control strategy was similar to the composite controller 

developed for the control of TRLFJ manipulator and explained in the previous section. The 

                                                

4
 Subscripts e and s stand for elbow and shoulder, respectively. 

(b) (a) 
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second part of the control strategy was a novel friction compensating torque whose design was 

based on the Work-Energy principle. Compared to the LuGre friction model described in the 

previous section, the Work-Energy method had several advantages. The LuGre friction torque 

was obtained based on the assumption of steady-state conditions. Therefore, the pre-sliding 

regime in which stick-slip motion occurred at very low velocities was not modelled in the LuGre 

model. Another disadvantage of the LuGre model was that the stiction was assumed to be the 

same at the beginning and end of the motion of the manipulator, while in practice the stiction at 

the beginning of the manoeuvre was usually greater than that of at the end. In the LuGre model, 

and most friction models developed to predict the joint friction, an experimental identification 

procedure was necessary to determine the friction model parameters. This identification 

procedure involved several experiments which needed to be carried out at different velocities and 

required a considerable amount of time. However, the friction compensating torque based on the 

Work-Energy principle could be identified in only two steps and, hence, the proposed model was 

more cost-effective in terms of the experimental time required to identify the parameters of the 

controller.  

According to the Work-Energy principle, the work done during the motion of the flexible 

joint robot manipulator included the work done by the motor torque, IW , the energies dissipated 

by the viscous damping, dW , and the Coulomb friction torque,
fdW . The total work done by the 

output controller was composed of two parts, the work of the composite controller torque cτ , 

which is 
cIW ,  and the work of the compensating torque of dry friction WE

fdτ , which was 
fIW . 

These works were written as 

fc

f f fff

II

t t t

m

WE

fdmcm

WE

fdc

t

mmI WWdtqdtqdtqdtqdqW +=+=+=== � � ��� 0 0 000
)( ���� ττττττ

θ
(2) 
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where 
fθ and 

ft were the final rotation of the joint and the time at which link reached its final 

position, respectively. The energy dissipated by the viscous damping was 

�� ==
ff t

mmmmmd dtqcdqqcW
0

2

0
��

θ
and the energy dissipated by the dry Coulomb friction, 

fcτ , 

was �� ==
ff t

mfcmfcfd dtqdqW
00

�ττ
θ

. The principle of work and energy for a general system was 

1212 KWK += � → (3) 

where � →21W  expressed the total work done by the forces (conservative and non-conservative) 

on the system from the initial position 1 to the final position 2, and 1K  and 2K  were the total 

kinetic energy of the system at the initial and final positions, respectively. Since the velocity was 

zero at the initial and final positions, 1K  and 2K  were zero and equation (3) reduced to 

021 =� →W , and thus 

021 =−−+=� → fddII WWWWW
fc

(4) 

From (4), the work done by 
WE

fdτ  was obtained as 

fddII WWWW
cf

++−= (5) 

and therefore,  

fddI

t

m

WE

fd WWWdtq
c

f

++−=�0
�τ (6) 

The friction compensating torque,
WE

fdτ , was then determined from (6). There were many 

candidates for the friction compensating torque function which satisfied (6). For convenience, 

the friction compensating torque was assumed to be linear; that is  

�
�
�

−>

−<<+
=

)/(0

)/(0

bat

batbta
WE

fdτ (7) 

Thus, equation (6) became 
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fddI

t

m WWWdtqbta
c

f

++−=+�0
)( � (8) 

Parameter a  was the torque required to overcome the stiction and initiate the motion of 

the manipulator from the rest position. This parameter, referred to as the breakaway force, was 

obtained experimentally by increasing the torque gradually, until the manipulator started to 

move. Once the parameter a  was identified, the parameter b  was computed using equation (8) 

and the friction torque was determined in (7). 

The proposed controller was verified using the experimental setup of a single rigid-link 

flexible-joint manipulator shown in Fig. 2. According to the experimental results, the controller 

was successful in the tip trajectory tracking such that the tracking error during and at the end of 

the manoeuvre was found to be small. The experimental results are given in Chapter 3. 

1.3.3 A biologically-inspired controller for tip trajectory tracking of flexible-joint 

manipulators 

In Chapter 4 a novel biologically-inspired controller is introduced for the tip trajectory 

tracking of the manipulators [3]. The main concept of this controller was inspired by real 

biological systems. Populations such as swarms of birds or schools of fish often move in 

coordinated but localized efforts toward a particular target [28]. In fact, by simply adjusting the 

trajectory of each individual toward its own best location the swarm finds its best position at 

each time step [29]. For instance, when a swarm of birds (or a school of fish) is moving towards 

a specific destination, each bird (or fish) has to follow a desired path so that the entire group 

moves towards the target. As shown in Fig. 7, the movement of a flock of birds (or a school of 

fishes) can be modelled as a group of particles that moves from an initial location (origin) 

towards a specified destination. Each bird (or fish) is symbolically modelled by a particle, and 

the center of the swarm is located at the center of the group. The swarm’s center can be easily 
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found as the average of the positions of the particles in the space; that is 2 � 3 456578 9:  and 

; � 3 �56578 9:  where �2� ;� denotes the Cartesian coordinate of the swarm’s center, �45� �5�
denotes each particle’s location and 9 is the number of particles (e.g. 9 �   for the model of Fig. 

7). The local error is defined as the error between the actual path of each particle and its desired 

path, and the global error shows the deviation of the group from its desired path.  Each particle 

has a memory and intelligence and, hence, is able to correct its position such that the local and 

global errors are minimized during the motion of the swarm. Therefore, the swarm movement 

can be resembled by an optimization problem in which the objective function constitutes the 

local and the global errors. The optimum movement is achieved when the objective function is 

minimized. 

Fig. 7.  (a) Schematic of a swarm movement; each particle is shown by a solid circle (b) an 

actual swarm of birds; the centre of the swarm is denoted by c. 

In this research study, the concept of swarm movement was applied to control the 

flexible-joint manipulators. For this purpose, each link was represented by a particle and the 

robot end-effector was represented by the swarm’s center. For the tip trajectory tracking, each 

link (particle) had to move along its desired path so that the end-effector (swarm’s center) could 

follow the swarm desired trajectory. Therefore, the local error was defined as the difference 

between the rotation of each link and its desired rotation and the global error was the difference 

(a) (b) 

c 
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between the position of the end-effector and its desired position. The block

swarm control scheme is shown in Fig. 8 which consisted of four principle parts:
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The key advantage of this control strategy was that the positions of the joints and the 

robot end-effector were controlled simultaneously. In most controllers developed for the flexible-

joint manipulators, the joints were controlled separately, and the error in the end-effector 

position was not taken into account in the control procedure. Therefore, it was possible that 

while the error in the joint rotations was kept small, the error at the end-effector position became 

very significant. This could happen for serial robot manipulators, because the end-effector 

position was a trigonometric function of the joints position, and not a linear function of the 

rotations of the joints. 

To verify the proposed approach, the experimental setup of the TRLFJ manipulator 

shown in Fig. 3 was employed. The experimental results indicated that the controller was 

successful in the tip trajectory task for different final rotations and different manipulation speeds. 

An experimental comparison between the swarm controller and a typical controller used for rigid 

robots, inverse dynamic torque control, demonstrated the superiority of the proposed swarm 

control strategy. Furthermore, to analyze the effects of the initial gains of the time-variable-gain 

controller, a sensitivity analysis was experimentally performed and it was shown that tracking 

and the steady-state errors did not change significantly for different initial gains of the controller. 

The details of the swarm control strategy and the corresponding experimental results are given in 

Chapter 4.

1.3.4 Vibration suppression of a flexible link manipulator using piezoelectric actuator 

The active vibration suppression of a flexible link manipulator using a smart structure 

(piezoelectric actuator) is presented in Chapter 5 and [8]. The control strategy was a proportional 

control scheme in which the applied voltage to the piezoelectric actuator was adjusted based on 

the deflection of the manipulator so that the vibration of the beam was suppressed. One of the 
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advantages of this control method was that in contrast to many other controllers developed for 

vibration suppression of flexible link manipulators, the proposed control strategy was a velocity-

free scheme and used only position as the feedback. It noteworthy that velocity measurement is 

generally not desirable as most flexible manipulators have only strain gauges to measure the 

deflection along the beam [30]. Also, taking the derivative from the position signal to obtain the 

velocity signal was not a good approach since it resulted in generating noise in the velocity 

signal which deteriorated the performance of the controller. 

A finite-element model was first developed for a cantilever beam with a piezoelectric 

actuator. To start the simulation, the beam was deflected one centimetre from its horizontal 

position, and then it was released from its deflected position. Since the piezoelectric actuator was 

inactive, and the effect of the material damping was not considered in modeling procedure
5
, the 

beam oscillated with a constant amplitude. The piezoelectric actuator was then activated, and the 

applied voltage to the piezoelectric actuator was adjusted proportionally to the deflection of the 

beam. The deflection of the beam was measured using a sensor placed at the location of the 

piezoelectric actuator. The actuator and sensor were located at the same location to avoid 

instability due to the non-collocation of sensor and actuators [31]. It was shown in [32] that non-

collocation of the sensor and actuator can lead to the instability of the controller. The simulation 

results for the cantilever beam indicated that the piezoelectric actuator was very successful in 

                                                

5
 The material damping was ignored so that the effect of the piezoelectric actuator in vibration suppression 

was only analyzed. Otherwise, the vibration was suppressed due to both piezoelectric actuator performance and the 

material damping, and it was not possible to determine which portion of the vibration was eliminated because of 

piezoelectric actuator.  
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vibration suppression of the cantilever beam such that the amplitude of vibration was reduced 

from one centimetre at the beginning to two millimetres after one second. 

Finding the optimum placement of the piezoelectric actuator along the cantilever beam 

was another part of this study. The best location was found based on the controllability of the 

system states and using FE analysis. To determine the optimum location in FE, two criteria were 

defined based on the deflection of the beam as given in equations (14)-(15) in Chapter 5.  The 

simulation results showed that the piezoelectric actuator had the best performance when it was 

located at 
�0�< � �	
 where �� was the distance of the piezoelectric from the base of the 

manipulator and �� was the length of the link (See Fig. 9). The optimum placement of the 

piezoelectric was then validated based on the controllability of the system states. 

The control method was then extended to suppress the vibration the flexible-link 

manipulator shown in Fig. 9. The simulation results indicated that the piezoelectric actuator was 

successful in suppressing the oscillations of the manipulator during and after the manoeuvre. For 

instance, as shown in Fig. 10, the deflection of the manipulator was reduced considerably by 

employing the piezoelectric actuator with controller’s gain += � � ) ��*, and when the 

piezoelectric actuator was located at 
�0�< � �	
.  

The effect of the controller’s gain on the performance of the piezoelectric actuator was 

also analyzed. To determine the best controller’s gain, four different evaluation criteria were 

used. Three of these criteria, >?@A, >?@8 and >8@A, were based on the deflection of the 

manipulator, and defined respectively for the total manoeuvre time (� B � C �), before the 

manipulator reached the final rotation (� B � C �), and after the manipulator reached its final 

rotation (� B � C �). The fourth criterion was defined based on the amplitude of the dominant 

frequencies contributing in the deflection response. This criterion was determined from the 
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Fig. 9. Schematic of flexible-link manipulator with piezoelectric actuator

Fig. 10. Deflection of the manipulator when 

piezoelectric actuator was activated and located at
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Power Spectrum Density (PSD) of deflection responses for different gains. According to these 

four criteria, the best performance was obtained when the controller’s gain was 

details of this approach are given in Chapter 5 and in the paper published in 

Transactions on the Built Environment: Computer Aided Optimum Design in Engineering X 
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In another research study carried out by the candidate in [5], the effect of the time delay 

between the input and output of the controller was investigated. The stability of the controller 

was analyzed for different gains and time-delays. It was concluded that by increasing the 

controller’s gain greater than a certain value the system became unstable. This value was called 

the critical gain and was proportional to the time delay of the system; that is, by increasing the 

time delay, critical gains generally became larger. This was consistent with the simulation results 

in which a flexible-link manipulator was modeled using a finite element model. The simulation 

was performed for different time delays and gains and it was shown that the vibration of the 

manipulator was successfully suppressed provided that the proper time delays and controller’s 

gains were used. 

1.3.5 Dynamic modeling of a manipulator with flexible links and flexible joints 

Dynamic modeling of the manipulators with flexibility in the joints and links is presented 

in Chapter 6 and [10]. A schematic of a manipulator consisting of two flexible links 

interconnected with flexible joints is shown in Fig. 11. In this figure, �5 is the link deflection, 

where �� C 45 B D5� and D5 is the length of the i
th

 link, the frame �2E5� ;E5� is attached to the rigid-

like links and �4F5� �F5� represents the rotating frame. To derive the dynamic equations for the 

manipulator shown in Fig. 11, two methods were employed. The first method was a combination 

of the Lagrange method and assumed mode shapes method (LAMM), and the second method 

was non-linear finite element analysis.  
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Fig. 11. Schematic of a two flexible-link flexible-joint manipulator (TFLFJ) 

In the first approach, the assumed mode shapes method was used to approximate the link 

deflection as follows 

�5�45� �� � 3 G5H�45��H78 I5H��� (10) 

where J is the number of mode shapes used for each link, and I5H is the weight of the assumed 

mode shape G5H. To obtain the equations of the motion Lagrange’s equations were used. For a 

system with 9 degrees of freedom Lagrange’s equations were 

,,K LLM. N O P LLMN O Q LLMNR � S5 ������T � ����U � 9 (11) 

where O, R and S5 were respectively the kinetic and potential energies of the system, and the 

torque applied to the i
th

 motor, and 
5 is the i
th

 generalized coordinate. By assuming two mode 

shapes for each link, two rotations for the motors and two rotations for the links, it was seen that 

eight degrees of freedom contributed to the dynamics of the TFLFJ. The kinetic energy of a 

flexible-link flexible-joint manipulator, O, was composed of the kinetic energies of the rotors,�OV, 

links, O/, hubs, OW,  and the payload mass, O-; that is, 

O � OV Q O/ Q OW Q O- (12) 
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The potential energy was the sum of the elastic energies stored in the links and the 

potential energy due the flexibility of the joints 

R � 8�3 X �>$�5/N?6578 Y,Z[N��N�,�NZ \� �4 Q 8�3 ]5�6578 5̂ P _5�� (13) 

where �>$�5 and ]5 are respectively the rigidity of the i
th

 link and stiffness of the i
th

 joint. Also, 

angles _5 and 5̂ are the motor and link angles measured with respect to the rigid frame �2E5� ;E5�
shown in Fig. 11. By substituting the values of the kinetic and potential energies from equations 

(14) and (15) into (13), the dynamic equation of system can be obtained. The details of 

derivation of dynamic equations are given in Chapter 6 and Appendix II. The simulation results 

of the developed dynamic model are shown in Fig. 12. As shown in this figure, the results 

obtained by LAMM approach were in an excellent agreement with the FEA results. 

Fig. 12.  Tip deflection of the manipulator �`a�ba��
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Abstract: In this paper a new control strategy is introduced for tip trajectory tracking of 

flexible-joint manipulators driven by harmonic drives. The proposed controller incorporates 

friction compensating torque (FCT) and composite controller torque (CCT), which compensate 

for the friction in the harmonic drives and the flexibility of the joints, respectively. The FCT is a 

new controller which includes a non-linear one-state LuGre model and a proportional-derivative 

(PD) controller. The CCT’s design is based on the singular perturbation method and integral 

manifold concept. An experimental setup of a two-rigid-link flexible-joint (TRLFJ) manipulator 

was used to verify the proposed controller. The experimental results demonstrated the 

effectiveness of the controller at slow and fast motions of the manipulator for different 

trajectories. In particular, the tracking error was reduced significantly by using the proposed 

controller compared to the results obtained using traditional methods such as the inverse 

dynamics method for the control of flexible-joint manipulators. 

Key Words: Flexible joint manipulator, harmonic drive, joint friction 
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1. Introduction 

Because of their small size and high controllability, electric motors are ideal for use in 

robot manipulators, but have the disadvantage of having high velocity and low torque. To 

overcome this drawback, electrically actuated robots use a gear transmission to decrease the 

operating speed and increase the torque [1]. Among gear transmission systems harmonic drives 

have such unique features that they have captured designers’ attention. They have zero backlash, 

high torque transmissibility and compact size [2]. On the other hand, it has been determined 

experimentally [3] that torsional elasticity in harmonic drives results in lightly damped 

oscillatory vibrations, which limit the application of the harmonic derives especially in robot 

manipulators performing high precision tasks such as those used in the manufacture of circuit 

boards.  The performance of harmonic drives also deteriorates due to the high friction between 

the teeth of flexsplines and circular splines. This friction, which is called joint friction, is one of 

the main limitations in achieving high accuracy manipulation tasks.  

Two main concerns in designing controllers for robot manipulators driven by harmonic drives 

are therefore joint friction and joint flexibility. However, most control strategies developed so far 

(e.g. [4]) for robot manipulators do not address these concerns and consequently using these 

control methods may lead to a significant trajectory tracking error which is especially crucial in 

high-precision tasks. In other works, the dynamic equations of the motion of the links and joints 

are written as two separate dynamically decoupled equations without considering the reaction of 

the joint torques on the links [5]. In these models, the equations of rotations of the links and 

motors are decoupled while the forces related to the rotations of links are assumed as zero. One 

example of this is ignoring the reaction of the elbow torque on the shoulder link for a two link 

serial manipulator. 
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In this paper, a new control strategy for the Tip Trajectory tracking (CSTT) of flexible joint 

manipulators is presented. While this controller overcomes the shortcomings of the previously 

developed controllers, it also provides high accuracy in robotic manipulation tasks.  In particular, 

it is experimentally shown that the controller is very precise in the trajectory tracking of 

manipulators driven by harmonic drives. Two main components of this controller are: A friction 

compensating torque (FCT) which is designed to compensate for the friction effect, and a 

composite controller torque (CCT) which is designed to compensate for the flexibility effect in 

the joints. The FCT is based on the LuGre model which is a dynamic model of nonlinear friction, 

and to compensate for the flexibility in the joints, the CCT is designed based on the singular 

perturbation theory and the integral manifold concept. 

The outline of this paper is as follows. An overall picture of the experimental setup and the 

developed control strategy are given in Section 2. The procedures used to obtain controller 

components, the FCT and the CCT, are described in Sections 3 and 4. Section 5 includes the 

experimental results obtained using different control strategies for different trajectories, and 

Section 6 contains the conclusions. 

2. Description of the Experimental Setup

Fig. 1 shows the schematic of the control strategy that was used in the control of the two-

rigid-link flexible-joint manipulator (TRLFJ). The desired trajectory dq and its derivatives, dq�

and dq��  were the inputs to the controller and the rotation and velocity of the motor and link were 

used as feedback to the controller. The positions of the motor and link, Lq  and mq , were 

measured using the encoders implemented in the experimental setup and the velocities were then 

obtained by taking the derivatives of the position signals using a first-order low-pass filter which 
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attenuated high-frequencies noise in the velocity signal. This filter was used which cancelled out 

high-frequency noises due to differentiation of the position signal. The applied torque τ  had two 

parts; the friction torque 
fτ  and the composite torque cτ , i.e. 

cf τττ += . The procedures of 

obtaining these torques are described in the following sections. To calculate the current required 

by the motor, the resultant torque τ  was multiplied by the inverse of the torque constant of the 

motor, tK , and the current was then fed into the D/A card. To obtain the velocity signal, The 

motor torque constants for the experimental setup were AmNK shouldert /.92.8, = and 

AmNK elbowt /.31.1, =
1
. 

The experimental setup which was used for experimentation is shown in fig. 2. As shown in 

this figure, the first link (shoulder link) was coupled to the first joint (shoulder joint) by means of 

a flexible joint. At the end of the shoulder link was a second harmonic drive which was 

connected to the elbow link via the flexible elbow joint as shown in fig. 2(b). In this figure, 

angles 
�0 and  
�1  were rotations of the shoulder and elbow motors, and angles 
/0 and  
/1
were rotations of the shoulder and elbow links, respectively. Both motors and both flexible joints 

were instrumented with quadrature optical encoders whose resolutions were 0.0015 rad/count

[6]. Other physical parameters of the manipulator are given in Table 1. 

3. Design of FCT  

The design procedure of the friction compensating torque (FCT) is explained in this 

section. The friction properties of the harmonic drives were modeled and experimentally 

                                                

1
 It is noteworthy that the DC permanent magnet motors usually have a linear relationship to motor torque. 
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identified in Sections 3.1 and 3.2, and the method used to obtain the FCT is explained in Section 

3.3. 

3.1. Friction Modeling 

A well-known friction model which describes different aspects of the friction torque is 

the LuGre model [7]. In this model, on the microscopic scale, surfaces sliding on each other are 

modeled as two rigid bodies that make contact through their elastic bristles which model the 

random asperities of the surfaces (see fig. 3). The proposed model has the mathematical form: 

,
)(

0 y
qg

q
q

dt

dy

m

m

m
�

�
� σ−=  (1) 

,10 mmf qc
dt

dy
y �++= σστ  (2) 

where y  is the average deflection of the bristles (see fig. 3), mq�  the relative velocity between 

surfaces, 0σ  the stiffness of the bristles, 1σ  the damping of the bristles, and mc  the viscous 

damping coefficient. Also, 
fτ  is the friction torque between the sliding surfaces. The function 

)( mqg �  represents the Stribeck effect. Since the average deflection of the bristles can not be 

measured directly, finding the exact solution to predict the friction behavior is not possible. 

However, (1) and (2) can be simplified for the steady-state condition (sliding regime) in which 

the deformation rate of the bristles is zero ( 0/ =dtdy ). Thus, from (1) for steady-state 

conditions: 
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� ==σ  (3) 

where ssy is the steady-state value of the bristles deformation and 1)sgn( =mq�  for 0>mq�  and 

1)sgn( −=mq�  for 0<mq� . Substituting (3) in (2) results in: 
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mmmmf qcqgq ��� += )()sgn(τ  (4) 

A typical proposed form for the function )(qg �  which describes the Stribeck effect is 

2)/(

,,, )()( sm vq

cfsfcfm eqg
�

�
−−+= τττ  where 

cf ,τ  and 
sf ,τ  are the Coulomb friction and stiction 

torques respectively, and sv is the Stribeck velocity. By replacing this function in (4), the friction 

torque based on the LuGre model is obtained as: 

mmm

vq

cfsfcff qcqe sm ��
� +−+= −

)sgn(])([
2)/(

,,, ττττ  (5) 

The first two terms of the friction torque in (5) represent the Coulomb friction and Stribeck 

effect, respectively, and the last term accounts for the viscous damping. To determine the friction 

torque as a function of the velocity in (5) four parameters ],,,[ ,, mscfsf cvττψ = must be 

identified. The experimental procedure which was designed and used to identify these 

parameters is described in the following section.  

3.2. Parameter Identification of Friction Model 

The schematic of the experiment procedure which was used to identify the friction torque in 

joints is shown in fig. 4. The dynamic equations of the motors are expressed as: 

fmqJ ττ −=��  (6) 

where J  is the matrix of mass moment of inertias of the motors. Torques τ  and 
fτ  are the 

vectors of the applied torque and the joint friction torque, respectively, and mq��  is the vector of 

accelerations of the motors. The motor position was controlled by a proportional-integrator-

derivative (PID) controller to follow a triangle wave position reference. Since the reference 

trajectory is a constant-velocity trajectory, if the motor follows the reference trajectory, the 

motor acceleration, mq�� , will become zero and as a result the applied torque will be equal to the 

friction torque in the above equation, i.e. 
fττ = . Therefore, the friction torque was determined 
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by measuring the applied torque. In total, 57 experiments were carried out at different velocities 

to estimate the friction function for the shoulder and elbow joints. The experimental data of the 

shoulder and elbow joint motors are shown in fig. 5. These data were then interpolated (curve-

fitted) using the function )( mf q�τ  given in (5), and the friction torques were obtained as functions 

of the velocity for the shoulder joint motor: 
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and for the elbow joint motor: 
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According to the functions of the friction torques given in (7) and (8), the Stribeck effect in 

the elbow joint motor is greater than in the shoulder joint motor. However, the shoulder joint has 

larger viscous damping and stiction than the elbow joint. 

3.3. Friction Compensation in Harmonic Drives

There are different ways to compensate for the friction in robot manipulators. A simple well 

known method is that of adding a high frequency dither signal to the control signal, but this 

method cannot be used in applications with high precision [8]. Another non-model-based friction 

compensating method is using a stiff PD controller which is suitable for regular tasks, however, 

it results in steady-state errors and might lead to the stick-slip oscillations at low velocities [9].

The method which was used in this investigation was a model-based friction compensation 

strategy. In this method, friction was compensated by applying an equivalent torque in the 

opposite direction of the friction torque. The equivalent torque was found based on (7) and (8). 

Ideally, the counterbalancing estimated friction torque, 
fτ , was equal to the real friction of the 
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system, 
fτ , and, hence, the friction of the system would be compensated completely. However, 

practically there was always an error between the estimated friction torque and the actual friction 

torque, because the friction torque defined in (7) and (8) was obtained based on the assumption 

of steady-state conditions. Also, the effects of the oil temperature, load, humidity and actuator 

wear were not considered in modeling joints friction [10]. To overcome these deficiencies of the 

friction torques obtained in (7) and (8), a linear PD controller was added to the LuGre model. 

Using a PD controller along with the friction compensating torque given in (7) and (8) 

guarantees that the error in friction compensation is bounded and the system remains stable 

provided that the gains are chosen properly. In this research, the gains of PD controller for 

shoulder joint were chosen as 500=pK  and 40=vK . These values for elbow joint were  

15=pK  and 8=vK . 

4. Design of Composite Controller Torque

The second part of the controller was a composite controller which was designed to compensate 

for the effect of the flexibility of the joints. The singular perturbation theory and integral 

manifold concept were used in the design procedure of the composite controller torque (CCT). 

Using singular perturbation theory allows dividing the dynamics of flexible-joint manipulator 

into two subsystems: one corresponding to the fast dynamics (high frequency vibration due to the 

flexibility) and the other to the slow dynamics (low-frequency motion). The standard governing 

equations of a singularly perturbed system are [11]: 

nRXXtXtZXfX ∈== ,)(),,,,( 0

0ε�  (9) 

mRZZtZtZXgZ ∈== ,)(),,,,( 0

0εε �  (10) 
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where ε  represents a small parameter, X and Z  are state vectors of dimensions n  and m, 

respectively, 
nRf ∈ , 

mRg ∈ , and X� and Z� represent the derivatives of X and Z  with respect 

to time, respectively. The above equations represent a two-time-scale system in which the state 

Z is the fast parameter of the system because ε  is a small parameter and Z�  is very large in (10). 

The state X  is the slow state of the system because it has a slower time derivative than state Z .  

Another useful concept which can be used in the context of the singular perturbation theory is 

the integral manifold. By means of the integral manifold, it is possible to reduce the order of the 

singular system presented in (9) and (10) from )( mn +  to n . The implementation of integral 

manifold concept for singularly perturbed systems includes the following steps: 

Step 1 (Integral manifold implementation): The fast states, Z , are approximated as a set 

of  functions  of the slow states and the singular perturbation parameter, i.e. 

),( εϕ XZZ =≈  where ϕ  is an approximation function for the fast states. 

Step 2 (Composite controller design): The composite controller, cτ , includes the slow 

and fast controllers. The slow controller, 
sc ,τ , is designed to control the reduced-order 

model and the fast controller, 
fc ,τ , guarantees that the approximation error made in 

step 1 between the fast states and the integral manifold, ϕ−Z  exponentially goes to zero 

and the fast states are on the integral manifold (see fig. 6(a)). As long as Z is on the 

integral manifold ϕ , the  slow state X  approaches the reduced-order model (see fig. 

6(b)). Thus, provided that the fast state Z  is restricted to move along the integral 
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manifold, the slow controller can only be designed for the reduced-order model to control 

the slow state X . 

In the following the application of the singular perturbation theory and the integral manifold 

concept is used to design a composite controller for flexible joint manipulators.

4.1.  Singularly Perturbed Equations of Flexible-Joint Manipulators

The dynamic equations of a serial manipulator consisting of n -rigid links connected by )1( −n

elastic joints are described by the following set of differential equations: 

)()(),()( fmLLLLlLL HqqKqqqCqqD ττ −=−++ ����  (11) 

fmLm qqKqJ ττ −=−− )(��  (12) 

where 
nn

L RqD ×∈)(  is the inertia matrix of the links and LLLl qqqC �� ),(  represents the Coriolis 

and centrifugal vectors. The diagonal matrix ),,,( 21 nkkkdiagK �=  represents the stiffness of 

the joints. 
nnRJ ×∈  is the inertia matrix of the motors, τ  is the vector of the applied torques to 

the motors, and 
fτ  is the friction joint torques. Also, 

n

L Rq ∈ and n

m Rq ∈ represent, 

respectively, the rotations of the links and the motors. The components of the matrix H are 

defined as  1−=ijH  when 1−= ji , and 0=ijH  when njiji ,,2,1,1 �=−≠ . As defined in 

Section 2, the applied torque τ  is the summation of the friction compensating torque ,
fτ , and 

the composite controller torque cτ ; i.e. 
cf τττ += . Assuming that the friction compensating 

torque 
fτ  counterbalances the real friction of the joints 

fτ  completely; that is, 
ff ττ = , the 

joints friction can be eliminated from the dynamic equations of the manipulator. Thus: 

cmLLLLlLL HqqKqqqCqqD τ=−++ )(),()( ����  (13) 

cmLm qqKqJ τ=−− )(��  (14) 
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To define the singular perturbation parameter, all the joint stiffness niki ,,2,1, �=  are 

assumed to have the same order of magnitude and they can be written as a multiple of a single 

large parameter k ; that is nikkk ii ,,1,
~

�== . The elastic joint torques are then written as: 

)(
~

)( mLmL qqKkqqK −=−=ξ  (15) 

where )
~

,,
~

(
~

1 nkkdiagK �= .Without loss of generality (by rescaling the ξ  variables if necessary), 

the matrix K
~

 is chosen as IK =
~

. The singular perturbation parameter can now be defined as 

k/1=µ , and (15) becomes mL qq −=µξ . After some mathematical manipulation, the state-

space representation of the singularly perturbed system (13) and (14), is obtained as: 

cAZAAX τ321 ++=�  (16) 

cBZBXBZ τε 321 ++=�  (17) 

where 
T

LL qqX ][ �= , 
TZ ][ ξεξ �=  , µε = , �
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and O  is 

a null matrix and I is the identity matrix. In the following section, the integral manifold concept 

is employed to obtain the composite controller cτ . The purpose of composite controller cτ  is to 

track the link rotation Lq  on the desired trajectory dq . 

4.2. Implementing Integral Manifold for FJMs

An integral manifold for a flexible joint manipulator in the space 
nR2

is: 

n

sc RXtXZM 2

, );,,,(: ∈= ετϕε  (18) 



International Journal of Robotics and Automation, Vol. 24, No. 2, 2009 

40 

If the fast states Z  move on the integral manifold (see fig. 6(a)), then Z  can be substituted by 

the integral manifold ϕ  in (17), and therefore: 

scBBXB ,321 τϕϕε ++=�  (19) 

Also, the reduced-order model of the system is obtained by substituting the integral manifold 

in (16): 

scAAAX ,321 τϕ ++=�  (20) 

The procedures used to construct the slow and fast controllers are explained in the following 

section. 

4.3. Construction of the Composite Controller Torque for Flexible-Joint Manipulators

The design of the composite controller torque (CCT) was based on the singularly-perturbed 

dynamic equations of the flexible-joint manipulators and had two parts: the slow controller,
sc ,τ , 

and the fast controller 
fc ,τ . The slow controller was designed to control the slow subsystem 

representing the low-frequency motion of the manipulator. Thus, when the joint flexibility 

approached infinity, the slow subsystem reduced to a rigid manipulator. The fast controller,
fc ,τ , 

was selected to suppress the high-frequency vibration of the manipulator. Thus the composite 

controller cτ can be written as the summation of slow and fast controller torques as: 

fcscc ,, τττ +=  (21) 

The parameter η  is the difference between Z  and the integral manifold ϕ , therefore: 

ϕη −= Z  (22) 

Taking the derivative of (22) and combining with (17), (19) and (21) results in: 

fcBBZ ,32 τηϕεεηε +=−= ���  (23) 

From (16), (22) and (23) the equations of the slow and fast subsystems in state space are: 



International Journal of Robotics and Automation, Vol. 24, No. 2, 2009 

41 

cAAAAX τηϕ 3221 +++=�  (24) 

fcBB ,32 τηηε +=�  (25) 

Equation (24) describes the low-frequency motion and (25) describes the high-frequency 

motion of the robot manipulator. It is worth noting that once the fast state, Z , meets and stays on 

the integral manifold ϕ  (that is ϕ=Z ), parameter η  and its derivative η�  will be zero according 

to (22) and (25). This results in 
fc ,τ  becoming zero in (25) since 03 ≠B , and the composite 

controller torque having only the slow part, i.e. 
scc ,ττ = . The slow controller for flexible-joint 

manipulator can be obtained as:  

1,0

1112

0,, )( ϕεττ ��
−−− −+= JHDcsc  (26) 

where 
0,cτ  is the rigid controller and it can be designed based on the conventional methods 

available for the rigid manipulators such as the inverse-dynamics approach [12]. Also 
1,0ϕ��  is the 

second time derivative of 
1,0ϕ . The vector 

1,0ϕ  includes the first n  components of the vector 

nR 2

0 ∈ϕ  where: 

)( 0,31

1

20 cBXBB τϕ +−=
−

 (27) 

The fast controller must be designed so that the deviation between the integral manifold and 

parameter Z asymptotically approaches zero. If the fast controller is chosen to have the state-

feedback format as ητ 4, Bfc = where 4B is a constant matrix and the parameter η  is the 

difference between Z  and the integral manifold ϕ , (25) becomes: 

ηηε 432 )( BBB +=�  (28) 

If the elements of matrix 4B  are chosen such that the eigenvalues of the square matrix 

)( 432 BBB +  always have negative real parts, the deviation of Z from its manifold will 

asymptotically goes to zero  and, finally, Z will be on its invariant manifold. 
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5. Experimental Verification

The two-rigid-link flexible-joint (TRLFJ) manipulator shown in fig. 2 was used to verify 

experimentally the performance of the new controller described in the previous sections. The 

physical parameters are given in Table 1.The desired link trajectory was chosen as: 

ffffffd qttttttttttq ])/(126)/(420)/(540)/(315)/(90[ 56789 +−+−=  (29) 

where dq , 
fq  and 

ft  were, respectively, the desired trajectory of the rotations of the links, the 

final rotation of the link and the time of total manoeuvre. The proposed trajectory was designed 

such that it satisfied the initial conditions of 0)0( =dq  and 
ffd qtq =)( , and its first four 

derivatives were zero at 0=t  and 
ftt = . 

5.1. Trajectory Tracking Results

Since the friction is very sensitive to the velocity, four different sets of trajectories were 

experimentally examined to determine the performance of the controller at different velocities 

and accelerations. The final positions of the shoulder and elbow links were: 

]5.1,5.1[],[],5.1,0.1[],[

]0.1,5.1[],[],0.1,0.1[],[

4,,3,,

2,,1,,

radradqqradradqq

radradqqradradqq

elbowfshoulderfelbowfshoulderf

elbowfshoulderfelbowfshoulderf

==

==
 (30) 

The manoeuvre time was the same for all sets of trajectories, i.e. .sec2=ft , hence, 

increasing the final positions resulted in more rapid motion of the manipulator.  Therefore, 

choosing different final positions enabled the performance of the controller to be determined at 

both slow and fast manoeuvres of the manipulator. The rotations of the shoulder and elbow links 

are shown and compared with the desired trajectories in Figs. 7 to 10. As shown in these figures, 

the links followed the desired trajectories accurately. The tracking error values are shown in 

Section 5.2. Also, it was experimentally found if the friction was not considered in the design 
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procedure of the controller, the manipulator was not able to start its motion because of high 

stiction in the harmonic drives. 

5.2. Comparing New Control Strategy with the Rigid Controller

To analyze the effectiveness of the proposed new control strategy for Tip Trajectory tracking 

(CSTT), the trajectory tracking results were compared with the results obtained when the rigid 

controller, 
0,cτ , was combined with the friction compensating torque 

fτ . The rigid controller was 

obtained using the inverse-dynamic approach and based on the assumption of rigid joints (i.e.

∞→K ) (see appendix II for details).  To have a reasonable measure for comparing the results, 

the tracking error percentages were normalized as: 

100]/)[( ×−= fdL qqqerror  (31) 

This error indicates the difference between experimental and the desired values of the link 

rotation. Also, the maximum of the normalized error during the manoeuvre is defined as: 

fdL qqqerror /)(maxmax −=  (32) 

The results for the four sets of trajectories given in the previous section, equation (29), are 

shown in Figs. 11 to 14. It can be observed that the tracking error was significantly reduced by 

using the CSTT compared with the results obtained using the rigid controller. For instance, 

according to the values of the maximum errors in Table 2, the performance of the controller 

improved 26% for the shoulder and 23% for the elbow by using the CSTT when the final 

rotations of the links were ]1,1[],[ 1,, radradqq elbowfshoulderf = . Also, it is shown in Figs. 12(b) and 

14(b) that by increasing the final rotation of the shoulder link from 1.0 rad to 1.5 rad, the 

rotations of the links, especially the elbow link, became unstable using the rigid controller. Also, 

the responses of the links were unstable when the final rotation of the elbow link was increased 
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to 1.5 rad in fig. 13(b). That means that the rigid controller was unable to control the rotations of 

the links for high-speed manoeuvres. In contrast to the results of the rigid controller, the results 

obtained using CSTT showed that the tracking error remained in an acceptable range of %2±

for high-speed and slow manoeuvres of the flexible-joint manipulator. Also, it can be observed in 

Figs. 13(a) to 16(a), that the elbow and shoulder links oscillated with frequencies close to their 

natural frequencies when they reached the final rotation, 
fq . The shoulder link oscillated with a 

frequency of  Hz08.1  the elbow link oscillated with a frequency of Hz21.3 . 

Furthermore, it can be seen in Figs. 13(a) and 14(a) that the response of the elbow link in the 

first part of the manoeuvre ( 10 ≤< t ) was very different than that of the second part ( 21 ≤< t  ) 

when the CSTT was used. This property can be explained based by the fact that the friction was 

different during acceleration (increasing velocities) than deceleration (decreasing velocities), due 

to frictional lag or hysteresis [7]. In the first part of the response, whereas the velocity was 

increased (acceleration), the friction was compensated effectively. However, in the second part, 

where the velocity was decreased (deceleration), one may conclude that the estimation of friction 

was not very accurate. A summary of the maximum values of errors are tabulated in Table (2) for 

the rigid and the CSTT controllers for different trajectories. 

6. Conclusions

A new control strategy was developed for the tip trajectory tracking of flexible joint 

manipulators which are driven by harmonic drives. The proposed controller included two parts, 

the friction compensating torque (FCT) to compensate for the friction effect and the composite 

controller (CCT) to compensate for the flexibility of the joints. The FCT was a combination of 

the LuGre dynamic model and a PD controller. The parameters of the dynamic model were 
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determined through constant-velocity closed-loop experiments, and the gain values of the PD 

were chosen such that the controller was stable.  

The integral manifold in the context of the singular perturbation theory was used to design a 

new composite controller, the CCT, which included two parts, slow and fast controllers. The 

performance of the proposed controller was experimentally confirmed at different manipulation 

speeds for several trajectories. Also, comparing experimental results using the developed 

controller with the results of a rigid controller demonstrated the superiority of the composite 

controller over the rigid controller which is usually used. For instance, the maximum error was 

reduced significantly using the CSTT compared to the results of the rigid controller. 

Furthermore, when the final rotations of the links were increased from rad0.1  to rad5.1 , the 

results of the rigid controller became unstable while the tracking error of the CSTT remained in 

an acceptable range. 
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. Control strategy designed for tip trajectory tracking of two-rigid-link flexible

module of two-rigid-link flexible-joint manipulator available in the Robotics 

Laboratory of the University of Saskatchewan, (b) the schematic of the top-view of the experimental setup 

showing the angles of the joints and the links

Shoulder joint

(b) 

link flexible-joint manipulator 

joint manipulator available in the Robotics 

view of the experimental setup 
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Table 2 

Physical parameters of the experimental setup of TRLFJ 

Parameter Symbol Shoulder Elbow 

Equivalent inertia of the downstream 

mechanism of the link
2
 (]c	J��  D 23000. 01070.

Mass moment of inertia of the motor�

(]c	J�� J 0110.0 0094.0

Joint stiffness �d	 �V�,�� K 30.10 930.3

Length of the link �J� l 2230.0 2230.0

Figure 3. Two surfaces sliding on each other with relative velocity of mq� ; the asperities are modeled as elastic 

bristles attached to the rigid bodies 

                                                

2
 The equivalent inertia for the shoulder includes the mass moment of inertias of the shoulder and elbow 

links, and the elbow motor with respect to the shoulder joint. Also, the equivalent inertia for the elbow includes the 

mass moment of inertia of the elbow link with respect to the elbow joint. 
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Figure 4. Schematic of the control procedure used to identify the LuGre model parameters for experimental 

setup shown in fig. 2 

Figure 5. Experimental results obtained for steady state conditions and estimation function obtained based on 

the LuGre model for (a) shoulder joint motor, (b) elbow joint motor 

Figure 6. (a) Fast state Z  approaches the integral manifold ϕ  due to the fast controller, and (b) slow state 

X is equal to the reduced-order model, as long as the fast state is on the integral manifold 

(a) (b) 

(a) (b) 
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Figure 7. Experimental verification of the links’ rotations for ]0.1,0.1[],[ 1,, radradqq elbowfshoulderf =  using 

CSTT controller, (a) shoulder link trajectory (b) elbow link trajectory 

Figure 8. Experimental verification of the links’ rotations for ]0.1,5.1[],[ 2,, radradqq elbowfshoulderf =   using 

CSTT controller, (a) shoulder link trajectory (b) elbow link trajectory 

Figure 9. Experimental verification of the links’ rotations for ]5.1,0.1[],[ 3,, radradqq elbowfshoulderf =  using 

CSTT controller, (a) shoulder link trajectory (b) elbow link trajectory 

(a) (b)

(a) (b)

(a) (b)
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Figure 10. Experimental verification of the links’ rotations for ]5.1,5.1[],[ 4,, radradqq elbowfshoulderf =

using CSTT controller, (a) shoulder link trajectory (b) elbow link trajectory 

Figure 11. Experimental results: normalized tracking error for shoulder and elbow links for final rotations of 

]0.1,0.1[],[ 1,, radradqq elbowfshoulderf = , using (a) CSTT controller, (b) rigid controller 

Figure 12. Experimental results: normalized tracking error for shoulder and elbow links for final rotations of 

]0.1,5.1[],[ 2,, radradqq elbowfshoulderf = , using (a) CSTT controller, (b) rigid controller 

(a) (b)

(a) (b)

(a) (b)
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Figure 13. Experimental results: normalized tracking error for shoulder and elbow links for final rotations of 

]5.1,0.1[],[ 3,, radradqq elbowfshoulderf = , using (a) CSTT controller, (b) rigid controller 

Figure 14. Experimental results: normalized tracking error for shoulder and elbow links for final rotations of 

]5.1,5.1[],[ 4,, radradqq elbowfshoulderf = , using (a) CSTT controller, (b) rigid controller 

  

(a) (b)

(a) (b)
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Table 3 

Experimental results: Maximum tracking error ( maxerror (32)) during the maneuver for the shoulder and 

elbow links using the CSTT and rigid controller 

Shoulder (
210−× ) Elbow (

210−× ) 

],[ ,, elbowfshoulderf qq CSTT  Rigid CSTT Rigid 

]0.1,0.1[ radrad 0. 868 1.09 1.58 1.94 

]0.1,5.1[ radrad 0.984 12.6
* 

1.68 99.6
*

]5.1,0.1[ radrad 1.21 13.1
*
 2.10 65.8

*

]5.1,5.1[ radrad 1.17 8.94
*
 1.43 67.2

*

*
The response was unstable 
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Abstract: A new control strategy based on the singular perturbation method and integral 

manifold concept is introduced for flexible joint manipulators with joint friction. In controllers 

developed so far based on the singular perturbation theory, the dynamics of actuators of flexible-

joint manipulators are partially modeled, and the coupling between actuators and links are 

ignored. This assumption leads to inaccuracy in control performance and error in trajectory 

tracking which is crucial in high-precision manipulation tasks. In this paper, a comprehensive 

dynamic model which takes into account the coupling between actuators and links is developed 

and a composite controller is then designed based on the singular perturbation theorem and 

integral manifold concept. To overcome the joint friction, a novel method is introduced in which 

a linear feed-forward torque is designed using the principle of work and energy. Finally, the 

experimental setup of a single rigid-link flexible-joint manipulator in the Robotics Laboratory at 

the University of Saskatchewan was used to verify the proposed controller. Experimental results 

employing the new controller showed that the trajectory tracking error during and at the end of 

the motion of the robot manipulator was significantly reduced. 

                                                

1
 Corresponding author 
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1. Introduction

A wide variety of robots is now employed in different areas such as spacecraft and vehicle 

manufacturing. In most of these robot manipulators, a transmission system is employed to 

increase the torque applied to the links and consequently to amplify the robot power. Most of 

controllers developed so far to control robot manipulators were based on the assumption of rigid 

joints; that is the transmission was assumed to be completely stiff and that there was no 

difference between the angular positions of the driving actuator and that of the driven link [1-6]. 

However, it was experimentally shown that the assumption of rigid joints generally limits a 

robot’s ability to perform high-speed high-precision manipulations [7-12], and flexibility of the 

joints may produce lightly damped oscillatory motions. Especially, the effect of joint flexibility 

becomes more significant in robot manipulators driven by harmonic drives. While harmonic 

drives have zero backlash, high torque transmissibility and compact size [13-14], there is high 

torsional elasticity in harmonic drives which limit their capability [15]. Therefore, a more 

accurate control strategy in which the joint flexibility is taken into account is essential, especially 

in applications such as robots used in the manufacture of precision components such as circuit 

boards. However, because of the existence of inherent nonlinearities in the dynamic equations of 

flexible manipulators, developing an accurate model is difficult.  

In addition to joint flexibility, another important factor which affects the performance of robot 

manipulators is joint friction. It has been proven that joint friction can lead to tracking errors and 

undesired stick-slip motion, and affects both the dynamic and static behaviours of a robot 

manipulator at the start, during and at the end of the motion [16-22]. Despite this, joint friction is 

usually neglected in modeling and control strategies developed for flexible joint manipulators, 

and most of the models developed for flexible joint manipulators ignore joint friction. For 

instance in [23] and [24] a control strategy is designed based on singular perturbation theory for 

tip trajectory tracking of flexible joint manipulators. However, in these works the joint friction 

was not considered in the dynamics of the manipulator. 

In this paper a novel control strategy is introduced for the tip trajectory tracking of a flexible 

joint manipulator which includes two main parts: 
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1- Friction compensating torque which is designed so as to compensate for the friction 

effect.  

2- Composite controller which is designed to compensate for the flexibility effect in the 

joints.  

To compensate for the friction effect in the joints, a new friction compensation strategy is 

introduced in this paper. The key advantage of this strategy is that the friction compensating 

torque can be identified easily in two steps. In most friction models developed to predict the joint 

friction, an experimental identification procedure is necessary to determine the friction model 

parameters. This identification procedure involves a large number of experiments which need to 

be carried out at different velocities and requires considerable amount of time. In the proposed 

model, the parameters of the compensation strategy are identified in only two steps and, hence, 

the proposed model is more cost-effective in terms of the experimental time required to identify 

the parameters of the controller. 

To compensate for the flexibility in the joints, a composite controller is designed based on the 

singular perturbation theory along with the integral manifold concept. In singular perturbation 

models developed for flexible-joint manipulators, e.g. in [9] and [24], the inertias of the rotors 

are ignored, however, ignoring any parameters in the dynamics of a system leads to inaccuracy 

in the performance of the controller since controllers whose design is based on the singular 

perturbation theory are modeled-based. This error specifically becomes more important when 

high precision in control is expected. In this paper, a more accurate dynamic model, which takes 

into account the inertias of rotors including gear reduction, is presented. While considering the 

effect of rotors’ inertias leads to a more detailed and more complex dynamic model, it improves 

the precision of the controller in trajectory tracking. 

Finally, the developed control strategy was experimentally verified by the experiment setup of a 

single rigid-link flexible-joint (SRLFJ) manipulator in the Robotics Laboratory at the University 

of Saskatchewan. Also, in order to assess the effectiveness of the work-energy principle based 
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model, experiments were performed and compared using two friction compensating strategies: a 

new method established based on the work-energy principle [25] and the LuGre method [18]. 

2. Methodology 

Figure 1 shows the schematic of the control strategy that was used in the control of flexible joint 

manipulators. The desired trajectory dq and its derivatives, dq� and dq��  were the inputs to the 

digital controller, and the rotation and velocity of the motor and link were used as feedback to 

the controller. The applied current was fed into the digital controller and the output digital signal 

to a D/A card. The analog current signal was then amplified and applied to the plant which is a 

flexible joint manipulator (FJM). The positions of the motor and link, Lq  and mq 2
, were 

measured using the encoders implemented in the experimental setup and the values of the 

velocity were then obtained by taking the derivative of the position signals using a filter. The 

applied torque
cf τττ +=  had two parts; the friction compensating torque 

fτ and the composite 

torque cτ . The procedures of designing these torques are described in following sections. To 

calculate the current required by the motor, the resultant torque τ  was multiplied by the inverse 

of the torque constant of the motor, tK , and the current was then fed into a D/A card. The value 

of the motor torque constant for the experimental setup was AmNK t /.92.8= 3
. 

                                                

2
 The angle  measures the rotor angle after gear reduction, however, for the purpose of abbreviation, it is 

referred to as the motor angle in this paper.   

3
 It is noteworthy that DC permanent magnet motors usually have a linear relationship to motor torque. 
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Figure 1. Control strategy designed for tip trajectory of FJM 

3. Friction compensation in harmonic drives

In this section two different friction models are developed for the experimental setup of single 

rigid-link flexible-joint manipulator. In the first model, joint friction, 
fτ , is approximated as a 

function of velocity based on the LuGre model, LG

fτ  [18]. For this purpose, the joint friction 

values are obtained at different velocities and the joint friction torque is then estimated as a 

function of velocity by the curve-fitting method. In the second model, the friction compensating 

torque is designed based on the work-energy principle as a feed forward linear compensating 

torque, WE

fτ . 

3.1. LuGre model 

A typical friction model which describes different aspects of friction torque is the LuGre model. 

In this model, on the microscopic scale, surfaces sliding on each other are modeled as two rigid 

bodies that make contact through elastic bristles which model the random asperities
4
 of the 

surfaces  (See Figure 2). The bristles start to deflect when one surface (upper surface) starts to 

move and the force is then applied tangentially to the bristles of the lower surface. If the 

                                                

4
 Regardless of how smooth a surface is, it has many random micro-scale irregularities which are called 

asperities. 
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deflection is sufficiently large, the surfaces will slide on each other. The proposed model has the 

mathematical form [18] 

���,
)(

0 y
qg

q
q

dt

dy

m

m

m
�

�
� σ−=

���,10 mm

LG

f qc
dt

dy
y �++= σστ     

where y  is the average deflection of the bristles and mq�  is the relative velocity between 

surfaces. 0σ , 1σ and mc are the stiffness of the bristles, damping of the bristles and viscous 

damping coefficient, respectively. Function )( mqg �  represents the Stribeck effect which 

characterizes the transition between the static friction (stiction) and viscous friction, and 
LG

fτ  is 

the friction torque modeled based on LuGre method.  Eqs. (1) and (2) are nonlinear equations 

describing the friction behavior based on the deflection of bristles. Since the average deflection 

of the bristles can not be measured directly, finding the exact solution to predict the friction 

behavior is not possible. However, Eqs. (1) and (2) can be simplified for the steady-state 

condition (sliding regime) in which the deformation rate of bristles is zero ( 0/ =dtdy ). 

Figure 2. Two surfaces are sliding on each other; the asperities are modeled as bristles attached to the 

surfaces 

Thus, from Eq. (1), 

���)()sgn()(0 mm

m

m
mss qgq

q

q
qgy ��

�

�
� ==σ

where ssy is the steady-state value of the bristles deformation and the sign function is defined as 
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For steady-state condition, 0/ =dtdy , the friction torque is obtained by substituting Eq. (3) in 

Eq. (2) 

���mmmm

LG

f qcqgq ��� += )()sgn(τ

A typical proposed form for the function )( mqg �  is [18] 

���
2)/(

)()( sm vqLG

fc

LG

fs

LG

fcm eqg
�

�
−−+= τττ

where 
LG

fcτ and 
LG

fsτ  are the Coulomb friction and stiction torque respectively, and sv is the 

Stribeck velocity. Replacing Eq. (6) in Eq. (5) leads to 

�	�mmm

vqLG

fc

LG

fs

LG

fcm

LG

f qcqeq sm ���
� +−+= −

)sgn(])([),(
2)/(τττψτ

where ψ  is a vector which includes four constant parameters of the LuGre friction model; that is, 

][ ms

LG

fc

LG

fs cvττψ = . The first and second terms of the friction torque in the above equation 

describe the Coulomb friction and Stribeck effect respectively and the last term accounts for the 

viscous damping. To characterize friction torque as a function of velocity in Eq. (7), four 

unknown parameters, ][ ms

LG

fc

LG

fs cvττψ = , must be identified. A schematic of the experimental 

procedure which was used to identify friction model parameters is shown in Figure 3. The motor 

position was controlled by a PID controller to follow a triangular wave position reference. The 

dynamic equation of motor is expressed as 

�
�
fmqJ ττ −=��

where J ,τ ,
fτ  and mq�� are the mass moment of inertia of the motor, applied torque, joint 

friction and acceleration of the motor respectively. If the motor follows the reference trajectory, 

which is a triangular trajectory with constant velocity, the motor acceleration, mq�� , will become 

zero and as a result the applied torque will be equal to the actual friction torque in the above 

equation, i.e. 
fττ = . Therefore, the friction torque can be determined by measuring the applied 

torque. 
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Figure 3. Schematic of the control procedure used to identify the LuGre model parameters 

In total, 22 experiments were carried out in different steady-state velocities to estimate the 

friction torque. The experimental data were then interpolated (curve-fitted) with the LuGre 

friction torque LG

fτ  given in Eq. (7). For this purpose, the nonlinear optimization technique 

(MATLAB function lsqcurvefit.m), was used to minimize the quadratic cost function I which 

was defined as  

���2)(

1

)( )],()([ ψττ i

m

N

i

LG

f

i

mf qqI ���
=

−=

where )( )(i

mf q�τ  represents the actual joint friction torque which is measured experimentally during 

constant motor velocity )(i

mq� . The torque ),( )( ψτ i

m

LG

f q�  is the joint friction torque which is modeled 

based on the LuGre model and is given in Eq. (7), and N is the number of the measured data-

points. The cost function I  represents the error between experimental data points, )( )(i

mf q�τ , and 

the estimation function of LuGre model, ),( )( ψτ i

m

LG

f q� . Therefore, by minimizing cost function, 

optimum values of ][ ms

LG

fc

LG

fs cvττψ =  can be found. These values were obtained as 

]26.3190.0792.057.1[ −=ψ  and ]93.2199.0847.099.1[−=ψ  for positive and negative 

velocities, respectively. By replacing the optimum values of the parameters in the LuGre model 

in the sliding regime, the friction torques can be expressed as functions of velocity 

����
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Figure 4 shows the experimental, 
fτ  , and estimated results of joint friction, LG

fτ . 
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3.2. Friction model based on work

In this section, a friction compensation strategy b

As shown in the previous section, the LuGre method,

modelling the friction, requires a time

number of experiments. Also, the friction torque de

assumption of steady-state conditions. Therefore, it cannot model the pr

the stick-slip motion occurs at very low velocities. Furtherm

temperature, load, humidity and actuator wear [21].

account in the friction model presented for the s

disadvantage of the LuGre torque given in Eq. (7) i

beginning and end of the motion of the manipulator 

the beginning of the manoeuvre is usually greater than that at the e

introduced for friction compensation which is ident

According to the work-energy principle, the work done during the motion o

robot manipulator includes the work done by the motor tor

viscous damping, dW , and the Coulomb friction torque,

10.1017/S0263574709990373), 2009. 

64 

. Comparison of experimental results with friction torque obtained in Eq. (10) based on the LuGre 

Friction model based on work-energy principle   

In this section, a friction compensation strategy based on the work-energy principle is proposed. 

As shown in the previous section, the LuGre method, which is an approximate method for 

he friction, requires a time-consuming identification procedure including a larg

number of experiments. Also, the friction torque defined in (10) is obtained based on the 

state conditions. Therefore, it cannot model the pre-sliding re

slip motion occurs at very low velocities. Furthermore, the friction can change with oil 

temperature, load, humidity and actuator wear [21]. However, these effects are not taken into 

account in the friction model presented for the shoulder joint using the LuGre method. Another 

disadvantage of the LuGre torque given in Eq. (7) is that it assumes that the stiction at the 

beginning and end of the motion of the manipulator are the same, while in practice the stiction at 

the manoeuvre is usually greater than that at the end. Here, a new approach is 

introduced for friction compensation which is identified in only two steps.

energy principle, the work done during the motion of the flexible joint 

manipulator includes the work done by the motor torque,
IW , the energies dissipated by 

, and the Coulomb friction torque,
fdW . The total work done by the output 

based on the LuGre 

energy principle is proposed. 

 which is an approximate method for 

consuming identification procedure including a large 

fined in (10) is obtained based on the 

sliding regime in which 

ore, the friction can change with oil 

 However, these effects are not taken into 

houlder joint using the LuGre method. Another 
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controller is composed of two parts, the work of the composite controller torque cτ , which is 
cIW

and the work of the compensating torque of dry friction WE

fdτ , which is 
fIW . These works can be 

written as 

����
fc

f f fff

II

t t t

m

WE

fdmcm

WE

fdc

t

mmI WWdtqdtqdtqdtqdqW +=+=+=== � � ��� 0 0 000
)( ���� ττττττ

θ

where 
fθ and 

ft are the final rotation of the joint and the time at which link reaches its final 

position, respectively, and �=
f

c

t

mcI dtqW
0

�τ  and �=
f

f

t

m

WE

fdI dtqW
0

�τ . The energy dissipated by the 

viscous damping is 

������ ==
ff t

mmmmmd dtqcdqqcW
0

2

0
��

θ

The energy dissipated by the dry Coulomb friction, 
fcτ , can be written as 

������ ==
ff t

mfcmfcfd dtqdqW
00

�ττ
θ

The principle of work and energy for a general system is 

����
1212 KWK +=� →

where � →21W  expresses the total work done by the forces (conservative and non-conservative) 

on the system from the initial position 1 to the final position 2, and 1K  and 2K  are total kinetic 

energy of the system at the initial and final positions, respectively. Since the velocity is zero at 

the initial and final positions, 1K  and 2K  are zero and Eq. (14) reduces to  

����021 =� →W

Thus 

����021 =−−+=� → fddII WWWWW
fc

and the work done by 
WE

fdτ  can be obtained as 
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The friction compensating torque, WE

fdτ , can now be obtained from Eq. (18). There are many 

candidates for the friction compensating torque function which satisfies Eq. (18). For 

convenience, the friction compensating torque was assumed to be linear form, that is  

����
�
�
�

−>

−<<+
=

)/(0

)/(0

bat

batbta
WE

fdτ

Thus, Eq. (18) becomes 

����
fddI

t

m WWWdtqbta
c

f

++−=+�0
)( �

Parameter a  is the torque required to overcome stiction and initiate motion of the manipulator 

from the rest position. The parameter b  can then be obtained using above equation. The friction 

torque obtained in Eq. (19) includes the dry friction effect. To obtain the total friction torque, the 

viscous friction effect, mmqc � , must be added to the torque in Eq. (19), and hence 

����
�
�
�

−>

−<<++
=

)/(

)/(0

batqc

batqcbta

mm

mmWE

f
�

�
τ

where WE

fτ is the joint friction torque which includes dry and viscous effects. While the friction 

torque obtained based on the work-energy principle in Eq. (21) has fewer parameters and a 

simpler form compared to the LuGre model in Eq. (10), it is more accurate in compensating for 

the friction. For instance, the experimental results in Section 5.2 for a SRLFJ show that by using

WE

fτ  the trajectory tracking error is significantly reduced in contrast to the results obtained by 

using the LuGre method. 

4. Composite controller

In this section, a composite controller is designed for tip trajectory tracking of flexible-joint 

manipulators. In the composite controllers developed so far to control of flexible joint 

manipulators, the dynamic coupling between the actuators and the links is ignored (e.g. [24] and 

[20]). This leads to the fact that the off-diagonal terms in the mass matrix in the dynamic model 

become zero and the dynamic model of flexible joint manipulator is simplified. However, 

ignoring the coupling between the actuators and the links leads to the error in the performance of 

the controller since in singular perturbation theory the controller is model-based and any error in 
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the dynamic model causes the deficiency in the control performance. To remove this error, all 

coupling effects between the actuators and the links are considered in the dynamic model 

developed in this paper and consequently it provides more accuracy in the control of flexible-

joint manipulators. 

4.1. Singularly perturbed systems  

The standard governing equations of a singularly perturbed system are [26-27] 

����nRXXtXtZXfX ∈== ,)(),,,,( 0

0ε�

����mRZZtZtZXgZ ∈== ,)(),,,,( 0

0εε �

where ε  represents a small parameter, X and Z  are state vectors of dimensions n  and m, 

respectively, 
nRf ∈ , 

mRg ∈ , and X� , Z� , 
0X and 

0Z are the time derivatives and initial 

conditions of states X and Z , respectively. State Z is called the fast state of the system because 

ε  is a small parameter and the time variation of Z  is very large (Eq. (23)). In contrast, state X

is called the slow state of the system because it has a slower time variation compared with state

Z . 

For Eqs. (22) and (23), which represent the )( mn+ dimensional state-space equations of X and 

Z , depending on the parameter ε , there is an integral manifold εM  which represents the m-

dimensional set of equations and is defined as 

����mn RZRXXZM ∈∈= ,);,(: εϕε

where ϕ  is a function of state X  and time. Since Z in Eq. (24) is the solution of Eq. (23), it has 

to satisfy the following integral manifold condition 

����)),(,()),(,( εϕεϕ
ϕ

εε XXgXXf
X

Z =
∂

∂
=�

If Eq. (25) is satisfied, fast states Z can be replaced by the integral manifold ),( εϕ X  in Eq. (22). 

This leads to  

����nRXXtXtXXfX ∈== ,)(),,),,(,( 0

0εεϕ�
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The resultant model in Eq. (26) is called the reduced-order model since it includes only the slow 

states X  and has an order of n  compared to the original system Eqs. (22) and (23) which has 

an order of )( mn+ . Thus, as long as the fast state Z  moves on the integral manifold, that is 

),( εϕ XZ = , instead of the original system Eqs. (22) and (23), the reduced-order model Eq. (26) 

can be used to describe the dynamics of the slow states. On the other hand, if Eq. (25) is not 

satisfied there will be the difference η  between Z and ϕ ,  i.e. ),( εϕη XZ −= . In the control 

approach based on the integral manifold, two controllers are designed. The first one, called the 

fast controller, is designed to remove the difference between the fast state and the integral 

manifold, and as a result  0→η  and ),( εϕ XZ = . The second controller, the slow controller, is 

designed to control the slow states in the reduced-order model (Eq.(26)). Therefore, using the 

singular perturbation theory along with the integral manifold concept allows for the decomposing 

system into fast and slow subsystems, and controllers are then designed for each subsystem 

separately. 

Fast and slow subsystems can be obtained from the singularly perturbed equations of the system, 

Eqs. (22) and (23), in terms of X  and η   

��	�
0

0 )(),),(,( XtXXXfX =+= ηεϕ�

��
�  
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0 )(),),(,(
),(

)),(,(

),(
),(

ηηηεϕ
εϕ
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=
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−=−=

tXxf
X

X
XXg

X
X

X
ZXZ �����

where 
0η  is the vector of the initial condition of the fast states η . In fact, Eq. (27) describes the 

slow variations of the state X , and Eq. (28) represents the dynamic of the fast state η . It is 

clear that if 0=η , Eq. (28) will be the same as Eq. (25), which means that the manifold 

condition is satisfied and Z moves on its manifold.
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4.2. Singularly perturbed model of flexible joint manipulators 

The dynamic equations of a serial manipulator consisting of n -rigid links connected by )1( −n

elastic joints are described by the following set of differential equations 

����)()(),()( fmLLLLlLL HqqKqqqCqqD ττ −=−++ ����

����
fmLm qqKqJ ττ −=−− )(��

where 
nn

L RqD ×∈)(  is the inertia matrix of the links, LLLl qqqC �� ),(  represents the Coriolis and 

centrifugal effects, 
nnRK ×∈ , defined as ),,( 1 nkkdiagK �= , represents the stiffness of the 

joints, 
nnRJ ×∈  is the inertia matrix of the motors, and τ  is the vector of applied torques 

through the motors, respectively. Also, 
n

L Rq ∈ and n

m Rq ∈ represent, respectively, the rotations 

of the links and the motors. The components of matrix H are defined as  1−=ijH  when 

1−= ji , and 0=ijH  when 1−≠ ji . The correctness of dynamic equations (29)-(30) has been 

verified using finite-element analysis (FEA) for the two-rigid-link flexible-joint manipulator �9 � ��. The details are given in Appendix I. 

As stated earlier, the applied torque τ  includes two parts; composite torque cτ  and friction 

compensating torque 
fτ . That is 

����
fc τττ +=  

As a result, the joint friction can be eliminated from the dynamic equations of the manipulator 

and hence, 

����cmLLLLlLL HqqKqqqCqqD τ=−++ )(),()( ����

����cmLm qqKqJ τ=−− )(��

In the following, the application of the singular perturbation theory and the integral manifold 

concept is applied to control flexible joint manipulators. Based on the singular perturbation 

approach, the system is first decomposed into two subsystems, slow and fast, and controllers are 

then designed for each subsystem. The slow subsystem represents the low-frequency motion of 

the flexible manipulator where the working frequency range depends on the flexibility of the 

joints. For instance, if the joint flexibility goes to infinity, the slow subsystem reduces to a rigid 
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manipulator in which the manipulator manoeuvre will be a rigid body motion (zero frequency). 

The fast subsystem deals with the motion of the manipulator at higher frequency vibration. 

If all the spring constants ik  are assumed to be of the same order of magnitude, they can be 

written as a multiple of a single large parameter k ,  

����nikkk ii ,,1,
~

�==

and the elastic joint torque is,  

����)(
~

mL qqKk −=ξ

where 

)
~

,,
~

(
~

1 nkkdiagK �=

Without loss of generality (by rescaling the ξ  variables if necessary), the matrix K
~

 is chosen as 

IK =
~

. The singular perturbation parameter can now be defined as k/1=µ , and Eq. (35) 

becomes 

����mL qq −=µξ

Then by using Eq. (36), Eqs. (32) and (33) become  

��	�)(1

cLlL HqCDq τξ −+−= −
���

��
�)(1

cm Jq τξ += −
��

Setting 1qx =  and subtracting Eq. (38) from (37), one obtains 

����)(1

cl HxCDx τξ −+−= −
���

����)(])([ 111 ξτξξµ +−−+−= −−− xCDIHJDJ lc
���

Eqs. (39) and (40) represent the singularly perturbed model of the flexible joint manipulators. 

These equations can be written as 

����cxaxaxxax τξ )()(),( 321 ++= ���

����
cxbxbxxxb τξξµ )()(),( 321 ++= ����

where 

xCDxxa l ��
1
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1
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lCDxxb 1

1 ),( −−=� , )()( 11
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−− +−= DJxb , 11

3 )( −− −= JHDxb

Moreover, the state-space representation of the singularly perturbed system, Eqs. (41) and (42), 

can be obtained by choosing xx =1 , xx �=2 , ξ=1z and ξε �=2z  where µε = . Thus  
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4.2.1. Recovery of the rigid robot manipulator  

In the following it will be shown that by setting 0=µ  the equation of motion of the rigid 

manipulator will be recovered. In an ideal rigid manipulator, joints stiffness must tend to infinity, 

i.e. ∞→K , and as a result 0→µ . Therefore, the flexible joint manipulator in Eqs. (41) and (42), 

must behave as a rigid manipulator when 0=µ . Setting 0=µ  in Eqs. (41) and (42), leads to  

����cxaxaxxax τξ )()(),( 321 ++= ���

����cxbxbxxxb τξ )()(),(0 321 ++= ��

Solving (46) for ξ  and substituting the result in (45), leads to 

��	�   cc xaxbxxxbxbxaxxax ττ )(])(),()[()(),( 331

1

221 ++−=
−

�����

Employing the definitions of 1a , 2a , 1b , 2b and 3b , Eq. (47) becomes 

��
�  
ccll HDHDJxCDDJDxCDx ττ 111111111 ])([)( −−−−−−−−− +−+++−= ����

and after some algebraic manipulations, Eq. (48) yields (see Appendix II for details) 
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����    ])([)( 1

cl IHxCDJx τ++−+= −
���

which are the dynamic equations of the counterpart of the flexible joint manipulator when the 

joints are rigid [28].  

4.2.2. Integral manifold implementation

According to the definition of the integral manifold in Eq. (24), an integral manifold for a 

flexible joint manipulator in the space 
nR2

is  

����  n

c RXtXZM 2);,,,(: ∈= ετϕε

If Z moves on the integral manifold, Z can be substituted by the integral manifold ϕ  in 

Eq. (44), and therefore 

����cXBXBXXB τϕϕε )()()( 321 ++=�

The reduced order model of the system is then 

����
cXAXAXAX τϕ )()()( 321 ++=�

As discussed in Section Two, as long as Z is on the integral manifoldϕ , the original governing 

equations of the system, Eqs. (43) and (44),  reduce to its reduced-order model, Eq. (52). Thus, 

provided that the fast state Z  is restricted to move on the integral manifold, the controller can be 

only designed to control the slow state X in Eq. (52). It is a very significant advantage of using 

the integral manifold concept, because the controller will be designed for the reduced-order 

model of dimension n , while the original system has a dimension of mn + . The design 

procedure of the controller is discussed in the following section. 

4.2.3. Composite controller design procedure

Here, a composite controller torque which consists of slow and fast controllers is proposed. The 

slow controller,
sc ,τ , is designed to control the slow subsystem which presents the low-frequency 

motion of the manipulator. If the joint flexibility goes to infinity, the slow subsystem reduces to a 

rigid manipulator and the slow controller will be equal to the controller torque for the rigid 

manipulator, 
0,cτ , which can be obtained by using the inverse-dynamic approach [29]. The fast 
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controller,
fc ,τ , is selected to suppress the high-frequency vibration of the manipulator. Thus the 

composite controller cτ can be written as the summation of slow and fast controller torques as  

����),,,(),,,( ,, ZXZXZXZX fcscc
���� τττ +=   

The difference between Z  and the integral manifold ϕ , is 

����),,,( , tXZ sc ετϕη −=  

and replacing Eqs. (44) and (51) in Eq. (54) results in 

����

fc

sc

c

sc

XBXB

XBXBXXB

XBZXBXXB

tXZ

,32

,321

321

,

)()(

})()()({

)()()(

),,,(

τη

τϕ

τ

ετϕεεηε

+=

++

−++=

−= ���

  

It is worth noting that once Z  is on the integral manifold, η will be zero and as a result 
fc ,τ

will be zero and the control torque has only the slow controller, i.e. ),,,(, ZXZXscc
��ττ =  .  

From Eqs. (43) and (55) the equations of the slow and fast subsystems in state space are 

����
cXAXAXAXAX τηϕ )()()()( 3221 +++=�  

��	�
fcXBXB ,32 )()( τηηε +=�  

Eq. (56) describes the low-frequency motion of the robot manipulator and Eq. (57) represents the 

high-frequency motion of the robot manipulator. 

Designing slow controller 

In this section, the slow controller 
sc ,τ is designed using perturbation method. For this purpose, 

the integral manifold ϕ and the slow controller 
sc ,τ are expanded in terms of ε   

��
��+++= 2

2

10, ϕεϕεϕϕ sc  

�����+++= 2,

2

1,0,, cccsc τετεττ  
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For a manipulator with rigid joints (i.e. 0→ε ), the slow controller reduces to 
0,cτ  which can be 

designed based on the conventional methods available for the rigid manipulators such as the 

inverse-dynamic approach [29]. In order to determine the other parts of the slow controller, (i.e. 

�,, 2,1, cc ττ ),  Eqs. (58) and (59) are substituted into integral manifold condition Eq. (51). 

Therefore, 

����
))((

))(()()(

2,

2

1,0,3

2

2

10212

2

10

�

�����

+++

+++++=+++

cccXB

XBXXB

τετετ

ϕεεϕϕϕεϕεϕε

Equating the coefficients with the same power of ε  leads to 

����
0,3021 )()()(0 cXBXBXXB τϕ ++=  

����
1,3120 )()( cXBXB τϕϕ +=�  

����
2,3221 )()( cXBXB τϕϕ +=�

����  �� ,3,2)()( 1,312 =+= ++ iXBXB icii τϕϕ  

From Eqs. (61) to (64), 0ϕ , 1ϕ  and �,3,2=iiϕ  will be found in terms of 
ic ,τ , iteratively. From 

Eq. (61)  

����])()()[( 0,31

1

20 cXBXXBXB τϕ +−=
−

  

According to the definition of matrices 1B , 2B  and 3B , the last n components of vector 

nR 2

0 ∈ϕ are zero; that is, 0ϕ can be written as 

����1211010 ])[( ×××= nnn Oϕϕ  

where 01ϕ  represents first  n components of vector nR 2

0 ∈ϕ . If the second part of integral 

manifold, 1ϕ , is written as 

��	�121121111 ])()[( ×××= nnn ϕϕϕ  

using the definition of the matrices 1B , 2B  and 3B , Eq. (65) leads to 

��
�
�
�
�

+=

=

1,3112

1201

)()(0 cXbXb τϕ

ϕϕ�
  

By setting 01, =cτ , 11ϕ  becomes zero in Eq. (68). Also, substituting 1ϕ  in Eq. (63), results in  
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����
�
�
�

+=

=

2,321212

22

)()(

0

cXbXb τϕϕ

ϕ

�
  

 where 21ϕ  and 22ϕ  represent, respectively, the first and second n components of vector 

nR 2

2 ∈ϕ . If 
2,cτ  is now chosen as 

�	��12

1

32, ϕτ �
−

= bc  

then from Eq. (69) 021 =ϕ  and consequently 02 =ϕ . Also, the terms containing �,4,3=iiϕ , 

will become zero by setting �,4,30, == iicτ , in Eq. (64). Therefore 

�	���,4,30 == iiϕ  

Consequently, from Eqs. (58) and (59), the terms of ϕ  and 
sc ,τ  are expressed in the following 

form 

�	��10 εϕϕϕ +=  

�	��12

1

3

2

0,, ϕεττ �
−

+= bcsc  

Designing fast controller 

As discussed in Section 4.1., the fast controller must be selected so that the difference between 

the integral manifold and parameter Z asymptotically goes to zero; that is 0→η . If the fast 

controller 
fc ,τ  is chosen to have the state-feedback format 

�	��ητ 4, Bfc =  

where 5B is a constant matrix, then Eq. (57) becomes 

�	��ηηε 432 )]()([ BXBXB +=�  

If the elements of matrix 4B  are chosen so that the eigenvalues of the square matrix 

])()([ 432 BXBXB +  always have negative real parts, the deviation of Z from its manifold will 

asymptotically go to zero  and, finally, Z will be on its invariant manifold. 
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5. Experimental verification  

In order to verify the design of the controller described in the previous section, the experimental 

single rigid-link flexible-joint manipulator (SRLFJ) available at Robotics Laboratory of the 

University of Saskatchewan was used. Figure 5 shows the experimental module of the SRLFJ 

that was used. 

Figure 5. Experimental module single rigid-link flexible-joint manipulator used  

5.1. Experimental setup 

The experimental module of the SRLFJ included a servo harmonic drive and a rigid link, as well 

as two parallel linear springs to represent the joint stiffness. Since the parallel springs applied a 

torque proportional to )( mL qq − , they were modeled as a torsional spring. The numerical values 

of the experimental setup parameters were 

2.0.209 mkgjL = , 2.0110.0 mkgjm = , radsmNcm /..26.3= , radmNk /.3.10= , ml 223.0=

where Lj , mj  and l are, respectively, the mass moment of inertias of the link and motor, and 

the length of the link. The moments of inertia of the link and motor were calculated using the 

CAD model, and the information provided by the manufacturer of the motor, respectively. The 

viscous damping of the motor was determined from the torque impulse test. 

Four different trajectories were chosen to verify the performance of the controller at different 

velocities and accelerations. These trajectories were 
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�	��          ffffffd ttttttttttq θ])/(126)/(420)/(540)/(315)/(70[ 56789)1( +−+−=
   

�		�fffffd ttttttttq θ])/(35)/(84)/(70)/(20[ 4567)2( +−+−=

�	
�ffffd ttttttq θ])/(10)/(15)/(6[ 345)3( +−=

�	��fffd ttttq θ])/(3)/(2[ 23)4( +−=

where the final position was radf 5.0=θ  and the time required to reach the final position was 

sec2=ft . In all of these trajectories the motion of the manipulator started from 

4,3,2,1,0)0()0( )()( === iqq i

d

i

d
�  and reached the final position where 

4,3,2,10)(,)( )()( === itqtq f

i

dff

i

d
�θ . Furthermore, the first and the second proposed trajectories 

were designed such that 4,3,2,0/)1( == idtqd i

d

i , and 3,2,0/)1( == idtqd i

d

i  at 0=t  and at 

ftt = , respectively. Also, for the third trajectory the acceleration of the manipulator was set to 

zero at 0=t  and 
ftt = . The experimental results for each of these desired trajectories are shown 

in Section 5.2.   

  

5.2. Friction compensating torque 

Based on the approach discussed in Section 3, two compensating friction torques were designed 

based on the work-energy principle and the LuGre method. To design a friction compensating 

torque based on the work-energy principle, as discussed in Section 3.2, two parameters, a  and 

b , must be identified to determine the friction compensating torque btaWE

fd +=τ  in Eq. (19). 

Parameter a , the breakaway force, was obtained experimentally by increasing the torque 

gradually, until the manipulator started to move, as shown in Figure 6. This torque was about as 

..2.1 mN  To obtain the parameter b  from Eq. (20), the work of the composite controller torque, 

and the dissipated energies by coulomb dry friction and viscous damping during motion of the 

manipulator were calculated using Eqs. (11), (12) and (13) respectively. The values of work 
cIW ,

dW and 
fdW  were obtained experimentally by calculating the areas under the curves in Figures 

7-9 as 
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W Ic
=

From Eq. (17), the work of the compensating friction torque must

Finally, by solving numerically Eq. 

Therefore, based on the work-

equation (21) the friction compensating torque includ

Also, two other friction compensating torques were 

to ensure that the parameter  was selected properly in Eq. 

was  

LG

fτ

which was obtained based on the LuGre model explain

experimental results are shown in Figure 10 for fri

principle and the LuGre friction torque for the des

desired trajectories, )2(

dq , )3(

dq and 

Figure 6. The motor velocity response corresponding to the 

a in Eq. (19) 

10.1017/S0263574709990373), 2009. 

78 

JWJWJ fdd 4975.0,6995.0,0377.1 ==

, the work of the compensating friction torque must be

JW
fI 1574.0=

by solving numerically Eq. (20), coefficient b can be obtained as  

smNb /9941.0 ⋅−=

-energy principle explained in Section 3.2 and accor

the friction compensating torque including the viscous friction became

mNqt m

WE

f ⋅++−= �26.32.1)1(τ
                                      

Also, two other friction compensating torques were selected as 

mNqt m

WE

f ⋅++−= �26.32.12.1)2(τ                                    

mNqt m

WE

f ⋅++−= �26.32.18.0)3(τ                                    

was selected properly in Eq. (82). Another compensating torque 

mNqe m

qLG m .26.3792.057.1
2)190.0/(

�
� +−= −                               

which was obtained based on the LuGre model explained in Section 3.1. The simulation and 

experimental results are shown in Figure 10 for friction torques based on the work

principle and the LuGre friction torque for the desired trajectory )1(

dq . The results for other 

and )4(

dq , are shown later in this section.  

. The motor velocity response corresponding to the applied triangle torque to obtain experimentally 

energy principle explained in Section 3.2 and according to 

ing the viscous friction became

                                      

                                   

                                   

. Another compensating torque 

                              

ed in Section 3.1. The simulation and 

ction torques based on the work-energy 

. The results for other 

applied triangle torque to obtain experimentally 
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Figure 7. The rate of the energy of the controller torque 

mIW from Eq. (11) for manoeuvre θ

Figure 8. The rate of the dissipated energy by viscous damp

radf 5.0=θ  during two seconds 

Figure 9. The rate of the dissipated energy by dry friction

radf 5.0=θ  during two seconds 
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. The rate of the energy of the controller torque cτ applied to the flexible joint manipulator to obtain

radf 5.0=  during two seconds  

. The rate of the dissipated energy by viscous damping to obtain dW  from Eq. (1

. The rate of the dissipated energy by dry friction to obtain 
fdW from Eq. (1

applied to the flexible joint manipulator to obtain 

(12) for manoeuvre 

(13) for manoeuvre 
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As shown in Figure 10a by using the friction compensating torque 
LG

fτ whose design was based 

on the LuGre model, the error was significant, especially there was a considerable steady-state 

error at the end of trajectory. This error occurred since in reality the frictions at the beginning 

and at the end of the motion were different due to hysteresis [30] (see Figure 6), while friction 

compensating torque 
LG

fτ  did not include the hysteresis effect and was the same for the 

beginning and end of the motion of the manipulator (see the corresponding torque in Figure 11a). 

There was also a significant error between desired trajectory and link rotation when friction 

torques )2(WE

fτ and )3(WE

fτ , Eqs. (84) and (85), were used. In fact, by feeding less energy into the 

system, using )2(WE

fτ , the manipulator moved behind the desired trajectory and the error remained 

as a negative value at the end of the motion of the robot manipulator. In contrast, by using )3(WE

fτ , 

the input energy into system was more than the required energy to overcome the friction and 

viscous damping of the system combined. Consequently, the link moved beyond the desired 

trajectory and the error became as a positive value at the end of the motion. The experimental 

results for torques )2(WE

fτ and )3(WE

fτ  are not shown here for brevity. The tracking error for 
)1(WE

fτ

is shown in Figure 10b, where the tracking error at the end of the manipulator manoeuvre was 

approximately zero; and during the manipulator motion this error remained in an acceptable 

range. The corresponding applied torque is shown in Figure 11b.  

Furthermore, according to the simulation results in Figure 10, the tracking error was almost zero 

for both cases, the LuGre model and the WE model. That indicates that the friction compensating 

torque was able to compensate for the joint friction almost completely, and the theoretical model 

developed for flexible-joint manipulator with joint-friction given in Eqs. (32) and (33) was 

accurate. In the experimentation, however, there were other factors which were not possible to 

model them exactly (such as the effect of position and load on the friction), and consequently, 

there were error in the friction compensation in the experiments. 
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To have a better assessment of the results, the root mean square error (RMSE) and steady-state 

error (SSE) are defined, respectively, as  

�
	�
2/1

0

2 )
1

( � ⋅=
ft

f

dte
t

RMSE

�

�100
)(

×=
f

fte
SSE

θ

where )1(

dL qqe −= . The RMSE shows the error between the link angle and the desired trajectory 

during the motion of the robot manipulator and the SSE represents the steady-state error at the 

end of the manipulator manoeuvre. A summary of the results in terms of the RMSE and values of 

SSE are illustrated in Table 1 for different friction compensating torques, and the results are then 

compared in Figure 12. It can be observed that the RMSE and SSE for 
)1(WE

fτ  have the minimum 

value of the RMSE and SSE and it can be chosen as the best candidate. 
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Figure 10. Comparing simulation and experimental results of manipulator manoeuvre using composite 

controller and different friction compensation torques, (a) 
LG

fτ  in Eq. (86), (b) 
)1(WE

fτ  in Eq. (83) (link angle 

Lq  and the first desired trajectory 
)1(

dq ) 

Figure 11. Applied torque to the flexible-joint manipulator of motions in Fig. 10 (a) LG

fsc ττ +,
, (b) )1(

,

WE

fsc ττ +

Table 1.Values of error norm RMSE and SSE for different friction compensating torques for the composite 

controller for a SRLFJ experimental setup 

Friction 

compensating 

torque (N.m) 

RMSE  

(
210−× ) 

SSE 

(%) S�ef�8�
 (Eq. 83) 2.55 0.428S�ef���
 (Eq. 84) 4.16 14.6 S�ef���
 (Eq. 85) 4.25 8.43 S��g  (Eq. 86) 3.44 9.72 

(a) 

(b) 

(b) 

(a) 



Robotica, In press, (doi: 10.1017/S0263574709990373

Figure 12. Comparison values of error norms RMSE and SSE for

the composite controller for a SRLFJ experimental s

To verify that the designed friction compensating t

trajectories, the performance of 

and )4(

dq  given in Eqs. (77) to 

figure, the manipulator follows the 

that the controller works with different trajectori

third order. 

5.3. Composite controller 

In this section the effectiveness of the composite 

results of composite controller were compared with 

rigid controller 
0,cτ was based on the assumption of a rigid joint and is

the composite controller 
sc ,τ is shown in Figure 14b. The corresponding response 

with the desired trajectory in Figure 15 for 

significant tracking error between the desired traj
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. Comparison values of error norms RMSE and SSE for different friction compensating torques for 

the composite controller for a SRLFJ experimental setup

To verify that the designed friction compensating torque,
)1(WE

fτ , acted accurately at different, 

trajectories, the performance of 
)1(WE

fτ was examined for other desired trajectories 

to (79). The results are compared in Figure 13. As shown i

figure, the manipulator follows the desired trajectories accurately. Therefore, it can 

that the controller works with different trajectories, from the smooth ninth order to less smooth 

In this section the effectiveness of the composite controller designed for SRLFJ is studied. The 

results of composite controller were compared with the results of the rigid controller 

was based on the assumption of a rigid joint and is shown in Figure 14a, and 

is shown in Figure 14b. The corresponding response 

with the desired trajectory in Figure 15 for the rigid controller. It can be seen that there is a 

significant tracking error between the desired trajectory and the link angle during the motion of 

different friction compensating torques for 

, acted accurately at different, 

was examined for other desired trajectories )2(

dq , )3(

dq

. The results are compared in Figure 13. As shown in this 

desired trajectories accurately. Therefore, it can be concluded 

es, from the smooth ninth order to less smooth 

controller designed for SRLFJ is studied. The 

the results of the rigid controller 
0,cτ . The 

 shown in Figure 14a, and 

is shown in Figure 14b. The corresponding response is compared 

can be seen that there is a 

ectory and the link angle during the motion of 
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the link (
ftt < ) and a noticeable SSE at the end of the manipulator manoeuvre (

ftt > ). 

However, by using the composite controller torque these errors were significantly reduced (see 

Figure 16). For instance, the value of SSE in Eq. (88) was computed as 0.026/0.50 = 5.2% when 

the rigid controller was used, but decreased to 0.42% when the composite controller was used. 

Furthermore, the value of RMSE, which indicates the tracking error during the motion of the 

link, decreased from rad21010.4 −×  for the rigid controller, to rad21055.2 −×   for the 

composite controller. In fact, the rigid controller was not able to reduce the tracking error during 

the manoeuvre��h B ��, to reach a small value before the end of the manoeuvre��h � ��; the SSE 

remained large after �h i �� because of the stiction. In contrast to the rigid controller, the 

composite controller had a better performance in tracking; the tracking error relatively was small 

during the manoeuvre, and the SSE remained small after �h i ��. In both approaches, the torque 

based on work-energy principle, 
)1(WE

fτ , was employed to compensate for the friction, as this 

torque provided a better result compared to the LuGre torque. 
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Figure 13. Comparing simulation and experimental results of the flexible joint manipulator manoeuvre using 

composite controller with link angle Lq  for (a) desired trajectory 
)2(

dq ,  (b) desired trajectory 
)3(

dq ,  (c) 

desired trajectory 
)4(

dq

(a) 

(b) 

(c) 
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Figure 14. (a) Rigid controller torque, 

torque 
sc ,τ  for a SRLFJ 

Figure 15. Comparing simulation and experimental results of 

torque (link angle Lq and the desired trajectory 

Figure 16. Tracking error, qe L −=

angle 
)1(

d
q , for the rigid controller torque and composite con

(a) 
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. (a) Rigid controller torque, 

0,cτ , based on the assumption of rigid joint, (b) compo

. Comparing simulation and experimental results of manipulator manoeuvre with rigid controller 

and the desired trajectory 
)1(

dq ) for a SRLFJ 

)1(

d
q− , between the actual link, Lq , and the desired trajectory of the link 

, for the rigid controller torque and composite controller for a SRLFJ experimental setup

(b) 

, based on the assumption of rigid joint, (b) composite controller 

manipulator manoeuvre with rigid controller 

, and the desired trajectory of the link 

SRLFJ experimental setup
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6. Conclusion

In this study, a general control strategy for tip trajectory tracking of flexible-joint manipulators 

with friction was presented and experimentally validated. The first part of the controller was a 

linear feed-forward torque whose design was based on the work-energy principle and it was 

developed to compensate for the friction in the joints. The design of the second part of the 

controller was based on the singular perturbation theory and the integral manifold, and it was 

developed to compensate for the joints’ flexibility. In contrast to other controllers whose designs 

were based on the singular perturbation theory, the dynamic coupling between the links and 

actuators was considered in the dynamic modeling of the manipulators in this study. As a result, 

the model presented in this paper provided more accurate dynamic modeling and control of 

flexible-joint manipulators. 

The simulation and experimental results verified the effectiveness of the designed controllers. 

The first part of experiments was performed to determine the efficiency of the friction 

compensating strategy. Comparing this strategy with other methods such as LuGre method 

confirmed the effectiveness of the proposed strategy. For instance, the steady-state error, SSE, 

was significantly reduced from 9.72% by using the LuGre method to 0.428% by using new 

proposed friction compensating torque. Also, the accuracy of the controller was verified at 

different trajectories to make sure that the controller acts precisely at different velocities and 

accelerations. 

The second part of the experiments was carried out to determine the effectiveness of the 

composite controller. In these experiments, it was found that the tracking error was considerably 

reduced during the motion of the robot arm such that the value of RMSE was decreased from 

rad21010.4 −×  for the rigid controller to rad21055.2 −×   for the composite controller. The 

maximum value of the steady-state error at the end of the manipulator was only 0.428% using 

the composite controller, while using rigid controller this figure was 5.2%. Thus, using the new 

proposed controller would be recommended for robot manipulation tasks in which high-accuracy 

in trajectory tracking is desired. 
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Appendix I. Dyamic equations of two-rigid-link flexible joint manipulator 

Equations (29) and (30) were derived using the Euler-Lagrange method. For instance, for a two-

rigid-link flexible-joint manipulator, equations (29) and (30) were written as 

j#88 #8�#�8 #��k j
l/m
l/Zk Q j � n/mn/Z � k j
./m
./Zk Q j]8 �� ]�k �Y
/m
/Z\ P Y
�m
�Z\� � jo88 o8�o�8 o��k YS8S�\ (A1) 

        jp88 �� p��k j
l�m
l�Zk P j]8 �� ]�k �Y
/m
/Z\ P Y
�m
�Z\� � YS8S�\          (A2) 

where #88 � $/m QJ/mD=m� QJ/ZD8� QJKD8� Q $WZ QJWZD8�,  #8� � J/ZD8D=Zqrs��
/Z P 
/m� Q JKD8D�qrs��
/Z P 
/m�, #�8 � #8�, #�� � $/Z QJ/ZD=Z� Q $K QJKD��n/m � PtJ/ZD8D=Z QJKD8D�usvw��
/Z P 
/m�
./Z, n/Z � tJ/ZD8D=Z QJKD8D�usvw��
/Z P 
/m�
./m, p88 � $Vm ,  p�� � $VZ, o88 � �, o8� � P�, o�8 � �, o�� � �, 

For T � ���, parameter S5 was the applied torque to joint i; J/N was the mass of link i; JK was the 

mass of the manipulator’s tip; D5 was the length of link i;  D=N was the distance of the center of 

mass of link  i from joint i axis. Parameters $/N,  $K, $WN and $VN were respectively mass moments of 

inertia of link i, manipulator’s tip, hub of joint i, and rotor of joint i. Also, in equations (A1) and 

(A2) rotations of links 
/N and rotations of joints 
�N were measured in the absolute coordinate 

frames. The frame of the first link (shoulder link) was a Cartesian coordinate fixed to the first 

joint (shoulder joint). The frame of the second link (elbow link) was also a Cartesian coordinate 

system fixed to the second joint (elbow joint), and parallel to the shoulder frame during the 

motion. 
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The numerical values used for verification were S8 � �	
�d x J,  S� � �	��d x J, D8 � D� ��	��J, D=m � D=Z � �	���J, �$Vm � $VZ � � ) ��@y�]c x J�,  $Wm � $WZ � 
 ) ��@A�]c x J�, $K � � ) ��@y�]c x J�, ]8 � ]� � 
��d x J����, J/m � J/Z � �	
z�]c, $/m � $/Z �  	� )��@y�]c x J�, JK � �	��]c, JWm � JWZ � �	��]c. The correctness of dynamic equations of 

(A1) and (A2) were validated using finite-element analysis (FEA). The results for rotations of 

shoulder link and shoulder joint are compared in Figure A.1. According to this figure, the results 

of FEA and theoretical approach confirm each other.

Figure AI.1. Comparison results of finite-element analysis and theoretical method for a two-rigid-link 

flexible-joint manipulator, (a) shoulder link rotation, and (b) shoulder joint rotation 

Appendix II. Deriving the dynamic equations of the flexible joint manipulator for 0=µ

Eq. (48) can be written as  
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Chapter 4. A biologically-inspired controller for tip 

trajectory tracking of flexible-joint manipulators 
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Abstract: This paper presents a new biologically-inspired control strategy for tip trajectory 

tracking of flexible-joint manipulators. The social behavioural pattern of swarms such as bird 

flocks and fish schools is the inspiration to develop a new controller for flexible joint 

manipulators in this study. This controller, referred to as swarm control, is a self-organized 

robust technique which is able to control the rotations of the joints and the position of the robot 

end-effector simultaneously. Therefore, in contrast to other studies in which the joints are 

individually controlled, and the performance of the controller is independent of the position of 

the end-effector, the swarm control takes into account the errors in the positions of the end-

effector and the joints at the same time.  In this control scheme, the parameters of the controller 

are updated every time-step based on their values at the previous time step and also the 

feedbacks of the positions of the links and the end-effector.  Along with the swarm control, a 

friction compensating torque which is based on the LuGre method is employed to counterbalance 

the effect of the friction in the joints.  Verification of the proposed controller is performed using 

the experimental setup of a two rigid-link flexible-joint. The experimental results show that the 

controller is successful in tip trajectory tracking at several different desired trajectories and at 

several different speeds, such that the tracking error and the steady-state errors are almost zero 
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during the manoeuvre of the manipulator and after reaching to the final desired position. 

Furthermore, experimental comparison with the computed torque scheme demonstrates the 

superiority of the swarm control strategy as the maximum end-effector error is reduced by a 

factor of three by using the swarm control scheme. 

Keywords: Flexible joint manipulators, biologically-inspired swarm control, tip trajectory 

tracking.

1. Introduction 

In most robot applications, such as spacecraft and automotive industries, the control of the end-

effector of the manipulator (e.g. welding tool) is the main concern. In these applications, a 

desired trajectory is usually specified in the task-space and the robot end-effector (the tip) is 

required to follow this prescribed trajectory. To achieve this task, a mapping is determined 

between the robot end-effector and the rotations of the joints, and based on the desired trajectory 

of the end-effector, the desired rotations of the joints are computed. A control strategy is then 

designed such that the error between rotations of the joints and their desired trajectories are 

minimized. Therefore, the position of the end-effector is indirectly controlled. This method has 

been widely employed in different control strategies. They include feedback linearization [1], 

singular perturbation techniques [2,3], integral manifold approach [4], adaptive control [5-8], 

iterative approaches [9], robust [10] and neuroadaptive methods [11]. However, the main 

drawback of these control methods is that the joints are controlled separately, and the error in the 

end-effector position is not taken into account in the control procedure. Therefore, it is possible 

that while the error in the joints rotations are kept small, the error at the end-effector position 

becomes very significant. This can happen because, for serial robot manipulators, the end-
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effector position is a trigonometric function of the joints position, and not a linear function of the 

rotations of the joints. 

The main concept of the swarm control strategy which is introduced in this paper is 

inspired by the real biological systems. Populations such as swarms of birds or schools of fishes 

often move in coordinated but localized efforts toward a particular target [12]. In fact, by simply 

adjusting the trajectory of each individual toward its own best location the swarm finds its best 

position at each time step [13]. For instance, when a swarm of birds (or a school of fish) is 

moving towards a specific destination, each bird (or fish) has to follow a desired path so that the 

entire group moves towards the target. In this paper, we employ the swarm movement concept to 

propose a new biologically-inspired control strategy for the tip trajectory tracking of flexible-

joint manipulators. In this method, the positions of the joints and the robot end-effector are 

controlled simultaneously. Several approaches have been developed so far based on the swarm 

intelligence. Kennedy and Eberhart [14] introduced the particle swarm optimization (PSO) 

technique which is a computationally efficient method of finding the optimal solution for 

continuous nonlinear functions. This method is used in [15] for reactive and power control 

considering voltage stability. In other work, PSO is employed to optimize efficiently multiple 

machining parameters simultaneously for milling operation [16]. Other applications of the swarm 

control can be found in [17]. In this study, we develop a novel swarm control strategy applicable 

to the flexible-joint manipulators. The flexibility of the joints may arise from several phenomena 

such as elasticity in the transmission system, belts and bearings [5], and it may produce lightly 

damped oscillatory motions during the manoeuvre of the manipulator. Especially, the effect of 

joint flexibility becomes more significant in robot manipulators driven by harmonic drives. 

While harmonic drives have zero backlash, high torque transmissibility and compact size [18- 
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19], there is high torsional elasticity in harmonic drives which limit their capability [20]. 

Therefore, a more accurate control strategy in which the joint flexibility is taken into account is 

essential, especially in applications such as robots used in the manufacture of precision 

components (e.g. circuit boards). Another important effect which is taken into account in the 

design of the controller is joint friction. It has been proven that joint friction can lead to tracking 

errors and undesired stick-slip motion [21-29]. Despite this, joint friction is usually neglected in 

modeling and control strategies developed for flexible joint manipulators, e.g. [30] and [31]. In 

this study, to counterbalance the effect of the friction in the joints, a compensating torque is used 

along swarm control. The design of friction compensating torque is based on the non-linear 

dynamic LuGre model and its parameters are identified through closed-loop steady-state 

experiments. 

To verify the performance of the proposed controller an experimental setup of a two 

rigid-link flexible-joint manipulator (TRLFJ) available at the Robotics Laboratory at the 

University of Saskatchewan is employed. Experiment results are presented for several 

trajectories and the performance of the swarm control is compared to the computed torque 

scheme which is usually utilized for control of the manipulator with stiff joints.  

The structure of the paper is as follows. Section 2 of the paper details the characteristics 

of the experimental setup of the TRLFJ, and gives an overall picture of the proposed control 

scheme. The dynamics of the flexible-joint manipulators are given in Section 3, and Section 4 

describes the application of the swarm control in the tip trajectory tracking of flexible-joint 

manipulators. Section 5 explains the design procedure of friction compensating torque, and 

Section 6 presents the experimental results obtained using the experimental setup of TRLFJ. 
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2. Experimental setup  

The block diagram of the control strategy which was used in this study to control a two-rigid-link 

flexible-joint manipulator (TRLFJ) is shown in Fig. 1. The desired trajectory 
, and its 

derivatives, 
., and 
l,, were the inputs to the controller. The positions of the motor, 
�, and link, 


�, were measured using encoders implemented in the experimental setup and the velocities were 

then obtained by taking the derivatives of the position signals using a low-pass filter. Employing 

the low-pass filter removed the high frequency noises which might deteriorate the controller 

performance. Also, since applying high-frequency signals to DC motors would eventually 

damage the motor brushes a band limit of ���o{ was considered for the frequency of the signals 

applied to the motors. In our experimentation, the cutting frequency of the filter was set to 

���� ��� �:  (�&�o{) which was much smaller than the band limit. 

The applied torque S had three parts; the inverse-dynamic torque S|, the friction 

compensating torque S� and the swarm torque S�; that is, S � S| Q S� Q S�. The procedures to 

obtain these torques are described in Sections 4 and 5. To calculate the current required by the 

motor, the resultant torque S was multiplied by the inverse of the torque constant of the motor, 

+K, and the current was then fed into a D/A card. The motor torque constants for the experimental 

setup were +K0 �  	z��d	J�} and +K1 � �	
��d	J�}12
 where the subscripts � and � stand for 

the shoulder and elbow, respectively. 

The experimental setup which was used is shown in Fig. 2. The manipulator included two 

rigid links, which were driven using two DC motors. In order to increase the torques applied to 

the links, two harmonic drives were used, in the shoulder and elbow joints, with gear speed 

                                                

12
 It is noteworthy that DC permanent magnet motors usually have a linear relationship to motor torque. 
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reduction ratios of 1:80 for the shoulder joint and 1:100 for the elbow joint, respectively.  As 

shown in Fig. 2, the shoulder link was coupled to the shoulder joint by means of a flexible joint. 

nd of the shoulder link a second harmonic drive was connected to the elbow link via the 

flexible elbow joint. Both motors and both flexible joints were instrumented with quadrature 

optical encoders whose resolutions were 0.0015 rad/count [32]. Other physical parameters of the 

. Swarm control strategy for tip trajectory tracking of a two-rigid-link flexible-joint man

. (a) Experimental module of a two-rigid-link flexible-joint manipulator available in the Robotics 

Laboratory of the University of Saskatchewan, (b) schematic of the top-view of the experimental setup 

showing the angles of the joints and the links (subscripts e and s stand for elbow and shoulder, respectively)

Shoulder joint

 1:100 for the elbow joint, respectively.  As 

he shoulder joint by means of a flexible joint. 

 connected to the elbow link via the 

 joints were instrumented with quadrature 

]. Other physical parameters of the 

joint manipulator 

joint manipulator available in the Robotics 

view of the experimental setup 

stand for elbow and shoulder, respectively)
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Table 1. Physical parameters of the experimental setup of TRLFJ [32] 

Parameter Symbol Shoulder Elbow

Inertia of the downstream 

mechanism of the link
13

# �	�
���]c	J� �	���(�]c	J�
Mass moment of inertia of the 

motor

p �	�����]c	J� �	��z��]c	J�
Joint stiffness + ��	
��d	J���� 
	z
��d	J����

Length of the link D �	��
��J �	��
��J
3. Dynamics of flexible-joint manipulators

The dynamic equations of a serial manipulator consisting of 9-rigid links connected by 9-elastic 

joints (e.g. 9=2 for the two-link manipulator shown in Fig. 2) are  

� ~
l� Q n�
.� Q +�
� P 
�� � otS P S��u�� (1)�
� p
l� P +�
� P 
�� � S P S�� �� (2)�
where ~ � �6)6 is the inertia matrix of the links and n�
.� represents the vectors of Coriolis and 

centrifugal torques. The diagonal matrix + � �T�c��]8� ]�� U � ]6� represents the stiffness of the 

joints. The matrix p � �6)6 is the inertia matrix of the motors, S is the vector of the applied 

torques to the motors, and S�� is the vector of the actual friction joint torques. Also, 
� � �6 and 


� � �6 represent, respectively, the rotations vectors of the links and the motors. The 

components of the matrix o are defined as  o5H � P� when T � � P �, and o5H � � when 

T � � P ����T� � � ����U � 9. 

                                                

13
 The inertia for the shoulder includes the mass moment of inertias of the shoulder and elbow links, and the 

elbow motor with respect to the shoulder joint. Also, the equivalent inertia for the elbow includes the mass moment 

of inertia of the elbow link with respect to the elbow joint. 
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In case all joints become rigid, the stiffness of the joints will approach infinity; that is 

+ � �, and the rotations of the links and the joints will be the same; that is 
� � 
� . Therefore, 

dynamic equations (1) and (2) are simplified as 

� �~ Q p�
l� Q n�
.� � �o Q $��S P S������ (3)�
where $ is the identity matrix. A proposed method for the tip trajectory tracking of the rigid 

manipulator is applying the following torque to the joints 

� S � S| Q S�|� Q S� �� (4)�
in which the applied torque S incorporates three parts. The first part is the inverse-dynamic 

torque S| which compensates for the effects of the inertial and centrifugal forces; that is 

� S| � �~ Q p�
l, Q n�
.���� (5)�
The second part is a PID controller which is  

� S�|� � ��Q ��!#�
., P 
.�� Q "�
, P 
�� Q � X�
, P 
���h%�� (6)�
where #, " and $ are, respectively, the derivative, proportional and integrative gains of the PID 

controller, and the third part is a friction compensating torque S� which is designed to 

counterbalance the effect of the friction in the joints. Assuming that the friction compensating 

torque S� counterbalances the real friction of the joints S��; that is S� � S��, the joints friction is 

eliminated from the dynamic equations of the manipulator, and combining (4)-(6) into (3) leads 

to the error equation 

� ��~ Q p���l/� Q #�./� Q "�/� Q Q�X �/��h� � ��� (7)�
where �/� � 
, P 
�. Differentiation of (7) results in a 3

rd
 order ordinary differential equation 

and since the inertia matrix cannot be zero 

� ���/� Q #�l/� Q "�./� Q Q��/� � ��� (8)�
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It can be shown provided that the gains of the PID controller are selected properly, the 

system in (8) will be asymptotically stable and the links error  �/� will exponentially approach 

zero.  

The aforementioned method has been successfully used in [33] for tip trajectory tracking 

of manipulators in which the flexibility of the joints can be ignored. However, for tip trajectory 

tracking of manipulators in which the flexibility of the joints is crucial, the flexibility of the 

joints must be taken into account, and a more complicated controller is required. Similar to the 

rigid controller torque given in (4), our proposed controller torque for flexible-joint manipulators 

has three parts (see Fig. 1) 

� S � S| Q S� Q S� �� (9)�
where the first part of the applied torque S is the inverse dynamic torque and it can be obtained 

from (5).  The second part is a new biologically-inspired controller which is designed based on 

the swarm concept and is explained in the following section, and the third part is the friction 

compensating torque S� which is based on non-linear dynamic LuGre, and is explained in 

Section 5. 

4. Swarm control

The main concept of the swarm control is based on the social behavioural pattern of organisms 

such as bird flocks and fish schools. When a flock of birds (or a school of fish) is moving 

towards a destination, each bird (or fish) has to follow a desired path so that the entire group 

moves towards the target. This is shown in Fig. 3. Each bird (or fish) is symbolically modelled 

by a particle, and the center of the swarm is shown at the center of the group. The swarm’s center 

can be easily found as the average of the positions of the particles in the space; that is 2 �
3 456578 9:  and ; � 3 �56578 9:  where �2� ;� denotes the Cartesian coordinate of the swarm’s 
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center, �45� �5� denotes each particle’s location and 9 is the number of particles (e.g. 9 �   for 

the model of Fig. 3). The local error is defined as the error between the actual path of each 

particle and its desired path, and the global error shows the deviation of the group from its 

desired path.  Each particle has a memory and intelligence and, hence, is able to correct its 

position such that the local and global errors are minimized during the motion of the swarm. 

Therefore, the swarm movement can be resembled by an optimization problem in which the 

objective function constitutes the local and the global errors. The optimum movement is 

achieved when the objective function is minimized. 

Fig. 3.  (a) Schematic of a swarm movement; each particle is shown by a solid circle (b) An actual swarm of 

birds; the center of the swarm is denoted by c 

To apply swarm control to the flexible-joint manipulators, each link is represented by a 

particle and the robot end-effector is represented by the swarm’s center. For tip trajectory 

tracking, each link (particle) should move along its desired path so that the end-effector (swarm’s 

center) can follow the desired trajectory of the swarm. Therefore, for flexible-joint manipulators, 

the local error is defined as the difference between the rotation of each link and its desired 

rotation 

� �/� � 
, P 
���� �10��

c 

(a) (b) 
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and the global error is the difference between the position of the end-effector and its desired 

position; that is 

� �K5- � �t4K5- P 4,'�u� Q t�K5- P �,'�u��� (11)�
where 4K5- and �K5- (shown in Fig. 2b) are the coordinates of the tip of the manipulator in the 

coordinate system shown in Fig. 2(b), and, 4,'� and �,'� are the coordinates of the desired 

position of the manipulator’s tip. The block-diagram of the swarm control scheme is shown in 

Fig. 3 which constitutes four principal parts: 

1. Variable-gain PID controller: in this component, the applied torques to motors are 

evaluated using the following equation S� � "�/� Q #�./� Q $ X �/���,���� (12)�
where #, " and $ are, respectively, the derivative, proportional and integrative gains 

of the PID controller. These gains are updated every time-step in the gain generator. 

The main reason to choose the PID controller to compute torque lies in its simplicity 

and clear physical meaning. Specially, in industrial applications, simple controllers 

are preferred to complex controllers, if the performance enhancement by employing 

complicated control methods are not significant enough [34]. 

2. Gain generator: this component produces proportional, derivative and integrative 

gains every time-step. These gains are then used in the PID controller, equation (12). 

Updating of the gains are based on the local and global errors and also their values at 

the previous time-step; that  is 

"�� Q ��� � "��� Q _��/� Q ���K5-,� (13)�

� #�� Q ��� � #��� Q _��/� Q ���K5-6� (14)�

� $�� Q ��� � $��� Q _|�/� Q �|�K5-6� (15)�
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where _� and �� are updating coefficients for the proportional part of the controller 

in (13). Coefficients  _� and �� are for the derivative part, equation (14), and 

coefficients  _| and �� are used to update the integrative part in (15). Variable �� is 

the time step that is used to update the gains. Updating gains make the swarm 

controller similar to an adaptive gain scheduling control scheme in which the 

parameters of the controller are modified depending on local and global errors, and 

the controller adjusts its parameters based on behaviour of the system. 

To start computing the gains in (13)-(15), they must be initialized; that is, the initial 

values of ", #, and $ must be specified at � � �. The initial starting values can be 

determined from the 3
rd

 order differential equation (8) such that all roots of the 

characteristic equation of (8) are negative, and, hence, the stability of the controller is 

guaranteed. Although equation (8) has been obtained with the assumption that the 

joints are rigid, however, it can be used as a good starting point to estimate the gains. 

The values of the gains are then adjusted based on the local and global errors using 

(13)-(15) during the manoeuvre of the manipulator. 

3. Memory: After computing gains in the gain generator, they are stored in a memory. 

These values are then employed in the gain generator in the next time-step to evaluate 

proportional, derivative and integrative gains. 

4. Error evaluator: in this component, local errors (links’ errors) and global error (end-

effector-error) are calculated based on the feedback signals of links rotations using 

equations (10) and (11). 

Therefore, generally speaking the swarm control strategy is a self-organized robust 

technique in which the applied torques are regulated every time-step based on the local and 
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global errors observed in the links’ rotations and 

swarm torque obtained in (12) is then added to the inverse dynamic torque 

compensating torque , and the resultant torque is applied to the motors

Fig. 4. Block diagram of the swarm torque controller for 

manipulators�

5. Friction compensation

The design procedure of the friction compensating t

main principles of the LuGre model and identificati

harmonic drives are explained in Sections 5.1. Deta

torque are given in Section 5.2. 

5.1. Experimental estimation of the friction parame

A friction model which describes different aspects 

the LuGre model [35]. In this model, the proposed friction torque for s

the mathematical form 

�
where  is the joint friction torque. Terms 

torques, respectively, and  and 
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global errors observed in the links’ rotations and the end-effector’s position. The value of the 

is then added to the inverse dynamic torque 

, and the resultant torque is applied to the motors (see Fig. 1).

. Block diagram of the swarm torque controller for the tip-trajectory tracking of flexible

The design procedure of the friction compensating torque (FCT) is explained in this section. The 

main principles of the LuGre model and identification procedure of the friction properties of 

harmonic drives are explained in Sections 5.1. Details of the design of the friction compensating 

5.1. Experimental estimation of the friction parameters

A friction model which describes different aspects of the friction torques in harmonic drives is 

. In this model, the proposed friction torque for steady-state conditions has 

��
is the joint friction torque. Terms  and  are the Coulomb and stiction friction 

and  are the Stribeck velocity and viscous damping coefficient, 

effector’s position. The value of the 

 and the friction 

 (see Fig. 1).

�
trajectory tracking of flexible-joint 

orque (FCT) is explained in this section. The 

on procedure of the friction properties of 

ils of the design of the friction compensating 

of the friction torques in harmonic drives is 

state conditions has 

(16)�
are the Coulomb and stiction friction 

damping coefficient, 
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respectively. The first two terms of the friction torque in (16) represent the Coulomb friction and 

Stribeck effect, respectively, and the last term accounts for the viscous damping. To determine 

the friction torque as a function of the velocity four parameters must be identified. These 

parameters are S�=, S��, �� and mc  which for each motor must be determined experimentally.  

An experimental procedure which was designed and used to identify these parameters is 

discussed in detail in [4]. In total, 54 experiments were performed for the shoulder and elbow 

motors to estimate the friction torque as a function of velocity.  The experimental data of the 

shoulder and elbow joint motors were then interpolated (curve-fitted) using the function of S��
given in (16). Using the experimentally identified parameters, the friction torques were expressed 

as functions of the velocity for the shoulder joint motor as 

S���g � Y�	�(
 P �	(z�z�@�M.� ?	8�??�: Z\ s�w�
.�� Q 
	��z
.������
.� i �,� (17) 

S���g � YP�	z  Q �	 �&��@�M.� ?	8��8�: Z\ s�w�
.�� Q �	z


.�� ���
.� B �,� (18)�
and for the elbow joint motor as 

S���g � Y�	&(&� P �	�zz��@�M.� ?	�?*?�: Z\ s�w�
.�� Q �	��
�
.�� 
.� i �,�� (19)�
� S���g � YP�	& �& Q �	� ���@�M.� ?	A��A�: Z\ s�w�
.�� Q �	
��(
.�� 
.� B �� (20) 

The experimental data and the estimated functions given in (17)-(20) for the shoulder and the 

elbow joint motors are shown in Fig. 5. As can be seen in this figure, for the shoulder joint, the 

overall friction torque varied from -4 to 4 N.m., when the range of the velocity was P�	( to �	(
(rad/s). For the elbow joint, the change was much smaller from -0.7 N.m. to 0.7 N.m. for the 

same range of velocity. Also, according to the functions of the friction torques, the Stribeck 

velocity in the elbow joint motor was greater than in the shoulder joint motor. However, the 

shoulder joint had larger viscous damping and stiction than the elbow joint. 



Submitted to International Journal of Robotics and Automation, July 2009. 

108 

          

Fig. 5. Experimental results obtained for steady state conditions and estimation function obtained based on 

the LuGre model for a TRLFJ (a) shoulder joint motor, (b) elbow joint motor�

5.2. Friction compensation strategy 

Ideally, the counterbalancing estimated joint friction torque found in (17)-(20), is equal to the 

real friction of the joints, and, hence, the friction of the joints will be compensated completely. 

However, practically there is always an error between the estimated joint friction torque and the 

actual friction torque. Some of these error sources were as follows: 

1. The friction torques were obtained based on the assumption of steady-state conditions, 

and the pre-sliding regime in which stick-slip motion occurs at very low velocities was 

not considered. 

2. Although the friction can change with oil temperature, load, humidity and actuator wear 

[36], the effects of these parameters were not taken into account in the friction model 

presented for the shoulder and elbow joints. 

To remove the aforementioned errors a PD controller along with friction torque based on (17)-

(20) was used. Therefore, the friction compensating torque was 

S� � S���g Q "��
, P 
�� Q #��
., P 
.��,� (21)�

(a) (b) 
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in which the first term was identified based on (17)-(20), and constants "� and #� were 

proportional and derivative gains of the friction compensating torque. The stability analysis 

using the Lyapunov theory of this friction compensating strategy has been discussed in [37]. 

According to this analysis, the controller was stable provided that the appropriate parameters "�
and #� were selected. Also, it has been shown in [37] while employing the proposed method in 

(21) could avoid hunting
14

, it led to a steady-state error in friction compensation. The range of 

this error was a function of friction parameters, values of parameters "� and #�, and inertias of 

motors. 

6. Experimental results

To verify the performance of the new controller described in the previous sections, the two-rigid-

link flexible-joint (TRLFJ) manipulator, shown in Fig. 2, was used. The physical parameters of 

the experimental setup are given in Table 1 in Section 2. The desired trajectory for rotations of 

links was considered to be the ninth-order polynomial 

� 
, � !z� � KK��� P 
�� � KK��� Q ��� � KK��� P ��� � KK��� Q ��& � KK��*%
��� (22)�
where 
,, 
� and �� were, respectively, the desired trajectory of the rotation of both shoulder and 

elbow links, the final rotation of the link and the time of total manoeuvre. This trajectory was 

designed such that it satisfied the initial conditions of 
,��� � �, 
,t��u � 
� and 

�5
, ��5�K7?�K� �  T � ����
��. Thus, since the trajectory had to satisfy ten initial conditions, it was 

                                                

14
 Stick-slip oscillations around target position caused by the difference between Coulomb friction and 

Stiction is referred to as hunting [38].  
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chosen as a polynomial of ninth order. Experiments were also carried out for other lower-order 

desired trajectories, however, for briefness they are not included in this paper.  

6.1. Trajectory tracking

Several desired trajectories were tested to ensure that the controller was able to perform 

effectively at different trajectories and velocities. According to the technical manual of the 

experimental setup, the maximum rotations both links could reach was 
����. Therefore, the 

experiments were performed for final rotations less than 
���� with steps of �	�����; that is, 

final rotations 
� were chosen as �	�� �� �	�� � and �	������ in different experiments. The shape 

of the trajectory was the ninth-order polynomial given in (22), and the manoeuvre time was 

�� � �����	 The initial values of the gains chosen were !"�� #�� $�% � !
��� ��� �% for the shoulder 

and !"' � #' � $'% � !&�� �� �% for the elbow. As discussed in Section 4, the initial values of the 

gains were selected such that the stability of system given in (8) for rigid manipulator was 

guaranteed. While these initial values were found based on the assumption of the rigid-joints, 

yet, they were  good starting points for our controller. This was proven through a sensitivity 

analysis that was performed to investigate the effect of initial values of the gains on the 

performance of the controller. Details of this analysis are given in Section 6.4.  

The updating coefficients _ and � used in the gain generator, equations (13)-(15), to 

update the gains of the swarm control were ¡_�0 � _�0 � _|0¢ � !
��  � �% and  ¡��0 � ��0 � �|0¢ �!��� �� �	�% for the shoulder. For the elbow link these parameters were selected as 

¡_�1 � _�1 � _|1¢ � !&�� �� �% and  ¡��1 � ��1 � �|1¢ � !�� �	�� �	�%. Experiments were performed for 

several trajectories with different final rotations, however, for briefness, only the trajectory 

tracking results for the final rotations �	�����, �	����� and 2	 ����� are shown in Figs. (6)-(8). 

As shown in these figures, the links followed the desired trajectory precisely such that the 
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tracking error between the actual and desired trajectories was almost zero for different final 

rotations of the manipulator. This indicated that the swarm controller was able to perform 

successfully at different trajectories. 
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Fig. 6. Experimental results of swarm control for two-rigid-link flexible-joint manipulator: Links rotations 

for ninth-order trajectory with final rotation £¤ � ¥	 ¦�§¨©; (a) shoulder link angle, (b) elbow link angle 

�
Fig. 7. Experimental results of swarm control for two-rigid-link flexible-joint manipulator: Links rotations 

for ninth-order trajectory with final rotation £¤ � ª	 ¦�§¨©; (a) shoulder link angle, (b) elbow link angle 

�
Fig. 8. Experimental results of swarm control for two-rigid-link flexible-joint manipulator: Links rotations 

for ninth-order trajectory with final rotation £¤ � a	 ¦�§¨©; (a) shoulder link angle, (b) elbow link angle 

(a) (b) 

(a) (b) 

(a) (b) 
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To have a better understanding of the experimental data, several error measures were 

considered: normalized tracking error percentage, steady-state error, maximum normalized error 

and the tip error. The percentage of normalized tracking error was defined as 

���«� � �M¬@M­M� � ) ���,� (23)�
where 
,, 
� and 
� were, respectively, the desired trajectory of the rotation,  the final rotation of 

the link and the position of the link. The normalized tracking error showed the difference 

between the experimental and desired values of the links rotation during the manoeuvre of the 

manipulator. The maximum normalized error was   

���«���� � ®¯°��±M¬@M­M� ±� ) ���,� (24)�
and the tip-trajectory-tracking error was obtained based on the distance difference between the 

actual and the desired positions of the manipulator’s tip. The tip position was measured during 

the maneuver of the manipulator using the rotations of the links as follows 

� 4K5- ���� qrst
�0u Q�' qrst
�0 Q 
�1u��
� ��K5- ���� svwt
�0u Q�' svwt
�0 Q 
�1u��������� (25)�
where  4K5- and �K5- were respectively the coordinates of the tip of the manipulator in the 

coordinate system shown in Fig. 2(b). Parameter  � was the length of each link, and 
� was the 

rotation of the links. Also, as mentioned before subscripts s and e denoted the shoulder and 

elbow respectively. Once the actual position of the tip was found from (25), the tip-trajectory-

tracking error was computed using (11). Steady-state error was measured as the difference 

between the actual and desired trajectories when the response of the system became stable, and 

the normalized steady state error was equal to the steady state error divided by the final rotation 


�. A summary of the error values are tabulated in Table 2 for different desired trajectories. 
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According to these values, for all cases the normalized maximum tracking error was less than 

�	�² while the steady-state error was less than �	�². The end-effector error was at most 


	&�JJ when the final rotations of the links were 
� � ��	����������
³�.  This error was 

�	��JJ for 
� � ��	�������� &³�, and �	
��JJ when 
� � ��	���������z³�. Therefore, based on 

these values, one may conclude that the controller acted very successfully in trajectory tracking 

task.  

The time variation of the controller gains for the shoulder link is shown in Fig. 9, when 

the final rotation of the manipulator was  
� � ��	������. It can be observed that the gains were 

kept constant after a manoeuvre time of �� � �����. The reason for doing this was that because 

of the steady-state (constant) error at the end of the manoeuvre, the gains of the controller were 

linearly increased in equations (13)-(15). Therefore, according to (12) the applied swarm torque 

was increasing constantly and after a while the system became unstable. To avoid this, a switch 

was utilized in the controller so that the gains were kept constant as the manipulator reached its 

final position, and hence, the controller tuned into a typical PID controller with constant gains at 

the end of the manoeuvre (� i ��).  

Table 2. Experimental results of the swarm control for two-rigid-link flexible-joint manipulator: comparison 

of error values for different final rotations £¤

  


� � �	����� 
� � �	����� 
� � �	�����
 Shoulder Elbow Shoulder Elbow Shoulder Elbow 

Max. error (rad) 0.0034 0.0070 0.0058 0.015 0.015 0.019 

Steady-state error (rad) 0.0031 0.0046 0.0044 0.0077 0.0092 0.0097 

Normalized max. error (%) 0.68 1.4 0.39 1.02 0.60 0.77 

Normalized Steady-state error (%) 0.63 0.91 0.29 0.51 0.37 0.39 

Max. end-effector error (m) 0.00034 0.0020 0.0036 



Submitted to International Journal of Robotics and Automation, July 2009. 

115 

Fig. 9. Experimental results of swarm control for two-rigid-link flexible-joint manipulator: variation of the 

gains for the shoulder link; (a) proportional gains, (b) derivative gain, (c) integral gain, variation of the gains 

for the elbow link; (d) proportional gains, (e) derivative gain, (f) integral gain. 

  

(a) (d) 

(e) (b) 

(c) (f) 
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6.2. Rigid controller versus swarm controller 

In this section, the performance of the swarm controller is experimentally compared to the rigid 

controller. The rigid controller torque, given in (4), was obtained using the inverse-dynamic 

approach which was a typical control method for robots with the rigid joints (i.e. + � �).  In 

these experiments the desired trajectory of the links was the ninth-order trajectory given in (22). 

Final rotations of both links were 
� � ��	������ , and the manoeuvre time was �� � �����	 The 

normalized tracking error percentage, given in equation (23), is compared for the rigid and 

swarm controls in Fig. 10. It can be observed that the tracking error was significantly reduced, 

for both shoulder and elbow links, by using the swarm controller compared to the results 

obtained using the rigid controller. For instance, according to the values of the maximum 

tracking errors in Table 3, the performance of the swarm controller was five times (
	� �	&�: ´
�) better than the rigid controller for the shoulder, and about three times (�	� �	&
: ´ 
) better 

for the elbow link. The steady-state errors were also decreased by applying the swarm control; 

especially for the elbow, this error was reduced from �	��² for the rigid controller to �	� �² for 

the swarm controller. Furtheremore, as shown in Fig. 11 the end-effector error was considerably 

decreased by employing the swarm control as the maximum error was reduced from �(�®® for 

the rigid controller to 3.6�®® for the swarm controller.  
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Fig. 10. Experimental results: normalized tracking error for swarm and rigid controllers (a) shoulder link, 

(b) elbow link  

Fig. 11. Experimental results: comparison of the end-effector error for swarm and rigid controllers 

Table 3. Summary of experimental results for swarm and rigid controllers

 Rigid controller Swarm control 

 Shoulder Elbow Shoulder Elbow 

Max. error (rad) 0.035 0.020 0.0065 0.0063

Steady-state error (rad) 0.0067 0.011 0.0060 0.0048

Normalized max. error (%) 3.5 2.0 0.65 0.63

Normalized Steady-state error (%) 0.67 1.1 0.60 0.48

Max. end-effector error (m) 0.017 0.0036

(a) (b) 
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6.3. Effect of the speed of the manipulator 

In this section the performance of the controller is experimentally analyzed for different 

manipulation speeds. The desired trajectory of the links was the ninth-order polynomial given in 

(22) with the final rotation of 
� � �	�����. In the experiments presented in Section 6.1 for 


� � �	����� (see Fig. 7), the maneuver time was �� � �����	, the maximum speed of the links 

reached �	z�������, and the maximum speed of the end-effector was �	� �J �: . To test the 

controller at a higher speed, the maneuver time of the manipulator was decreased to 
����	 while 

the final rotation of the manipulator was kept constant as before; that is 
� � �	�����.  In this 

experiment, the maximum speed of the links was recorded �	�
������, and the maximum speed 

of the end-effector was �	���J �: . The corresponding experimental results are shown in Fig. 12 

for the shoulder and elbow links. As shown in this figure and as indicated in Table 4, the tracking 

error was very small for both links and the maximum error at the end-effector was approximately 

�	��JJ. The experiments were then repeated for more rapid motion of the manipulator as the 

maneuver time was decreased to 2.5����	 for the final rotation of 
� � �	�����. For this case, the 

maximum speed of each link reached �	�&� ��� �: �� � ��c �: �, and the maximum speed of the 

end-effector was about �	���J �:  which was relatively high
15

. The experimental results are 

shown in Fig. 13 where the tracking error between the rotations of the links and the desired 

trajectories was remained very small. As indicated in Table 4, for this case the maximum error at 

the end-effector position reached �	��JJ. Therefore, according to the results presented in this 

section, the controller was able to work successfully in tracking task at different speeds while 

                                                

15
 Note that for typical similar size robot manipulators the maximum end-effector speed is �	���J �:  [27] 
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both tracking error for the links and the end effector remained very small during the maneuver of 

the manipulator.  

�
Fig. 12. Experimental results of swarm control for the two-rigid-link flexible-joint manipulator: (a) shoulder 

link angle, (b) elbow link angle. (£¤ � ª	 ¦�§¨©� µ¤ � ¶�·¸¹� £. bº¨» � ª	 a¶� §¨© ·: ) 

�
Fig. 13. Experimental results of swarm control for the two-rigid-link flexible-joint manipulator: (a) shoulder 

link angle, (b) elbow link angle. (£¤ � ª	 ¦�§¨©� µ¤ � a	 ¦�·¸¹� £. bº¨» � ª	 ¼½� §¨© ·: )�

Table 4. Experimental results of swarm control for the two-rigid-link flexible-joint manipulator: comparison 

of error values for different manipulation speeds for £¤ � ª	 ¦�§¨©
 Max speed 0.92 

(�� � �����	, Fig. 7) 

Max speed 1.23 rad/s 

(�� � 
����	, Fig. 12) 

Max speed 1.46 rad/s 

(�� � �	�����	, Fig. 13) 

 Shoulder Elbow Shoulder Elbow Shoulder Elbow 

Max. error (rad) 0.0058 0.015 0.015 0.011 0.024 0.011 

Steady-state error (rad) 0.0044 0.0077 0.0072 0.0077 0.011 0.0060 

Normalized max. error (%) 0.39 1.02 0.99 0.77 1.6 0.75 

Normalized Steady-state error (%) 0.29 0.51 0.48 0.51 0.77 0.40 

Max. end-effector error (m) 0.0020 0.0015 0.0015 

(a) (b) 

(a) (b) 
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6.4. Sensitivity analysis 

In this section, the influence of the initial values of the gains on the behaviour of the time-

variable-gain controller is investigated. Ideally, the controller should be completely robust and 

insensitive to the initial values. This means that for an ideal controller the response of the system 

did not change by assigning different initial gains. However, in practice, it is acceptable if the 

controller can work successfully for a limited range of the initial gains. In the experimental 

results presented in the previous sections the initial values of the gains were selected as 

!"�� #�� $�% � !
��� ��� �% for the shoulder and !"' � #' � $'% � !&�� �� �% for the elbow. These 

initial values were selected such that the system given in (8) for a rigid manipulator was stable.  

For sensitivity analysis, the initial values of the gains were increased by 20%. Therefore, new 

initial values were !"�� #�� $�% � !
&�� � � �	�% for the shoulder and !"' � #' � $'% � !(�� &� �	�% for 

the elbow. The variable gains are shown in Fig. 15. Similar to Fig. 7, the tracking errors were 

still small and the links followed the desired trajectories accurately in this experiment.  

The initial values of gains were decreased by 20% with respect to the original values; that 

is, the new initial values were !"�� #�� $�% � !���� 
�� �	 % for the shoulder and !"' � #' � $'% �
!� � �� �	 % for the elbow. The corresponding experimental results for the variable gains are 

shown in Fig. 16. According to Table 5, the tracking errors still remained very small, and it can 

be observed even if the initial values of the gains were changed by ¾��², the errors did not 

change considerably. In particular, the end-effector error was very small for all cases. This error 

was between �	 �JJ to �	
�JJ as shown in Table 5. Therefore, according to the experimental 

results one can conclude that the controller was robust to the initial conditions and the 

performance of the controller was almost insensitive to the changes in initial conditions of the 

controller parameters. It is noteworthy to mention that while the experimental results presented 
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here indicated the robustness of the controller for ¾��² of the initial gains, however, the 

controller was stable for a wider range of initial gains. For example, it was experimentally 

proven that the controller was stable for initial gains from !"�� #�� $�% � !��� ��� �	�% to 

!"�� #�� $�% � !z�z� ����  	��% for the shoulder, and !"' � #' � $'% � !��� �� �	�% to and !"' � #' �
$'% � !�z�� ��	�� �	��% for the elbow.   

� �
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�

Fig. 14. Experimental results of swarm control for the two-rigid-link flexible-joint manipulator: variation of 

the gains for the shoulder link; (a) proportional gains, (b) derivative gain, (c) integral gain; variation of the 

gains for the elbow link; (d) proportional gains, (e) derivative gain, (f) integral gain. (£¤ � ª	 ¦�§¨©� µ¤ �¼�·¸¹	, initial gains for the shoulder !¿·� À·� Á·% � !¶Â¥� ¼½� ª	 a% and the elbow !¿¸� À¸� Á¸% � !Ãa� Â� ª	 a%) 

(a) 

(e) (b) 

(d) 

(f) (c) 
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�
�

Fig. 15. Experimental results of swarm control for the two-rigid-link flexible-joint manipulator: variation of 

the gains for the shoulder link; (a) proportional gains, (b) derivative gain, (c) integral gain; variation of the 

gains for the elbow link; (d) proportional gains, (e) derivative gain, (f) integral gain. (£¤ � ª	 ¦�§¨©� µ¤ �¼�·¸¹	, initial gains for the shoulder !¿·�À·�Á·% � !a¼¥� ¶a� ¥	 ½%, and the elbow !¿¸�À¸�Á¸% � !¼½� ¼� ¥	 ½%)  
  

(a) 

(e) (b) 

(d) 

(f) (c) 
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Table 5. Experimental results of swarm controller for the two-rigid-link flexible-joint manipulator: 

comparison of error values for different initial values of the gains (£¤ � ª	 ¦�§¨©� µ¤ � a	 ¦�·¸¹	, original 

initial gains !¿·� À·� Á·% � !¶¥¥� ¼¥� ª%, !¿¸� À¸� Á¸% � !Â¥� ¦� ª%)
 Original initial gains 20% increase of 

initial gains 

20% decrease of 

initial gains 

 Shoulder Elbow Shoulder Elbow Shoulder Elbow 

Max. error (rad) 0.0058 0.015 0.0068 0.017 0.0084 0.013 

Steady-state error (rad) 0.0044 0.0077 0.0055 0.0082 0.0060 0.0096 

Normalized max. error (%) 0.39 1.02 0.45 1.2 0.56 0.90 

Normalized Steady-state error (%) 0.29 0.51 0.37 0.55 0.40 0.64 

Max. end-efftor error (m) 0.0020� 0.0023 0.0018 

7. Conclusions

In this paper, a novel biologically-inspired swarm controller was proposed for the tip trajectory 

tracking of flexible-joint manipulators. The main concept of the controller was inspired by the 

social behaviour pattern of swarms in which every particle corrected its position toward its best 

location so that the entire swarm found its best position. This idea was adopted for the control of 

a set of flexible-joint manipulators. The local error was defined as the difference between the 

rotations of links and their desired positions, and the global error was defined as the difference 

between the end-effector position and its desired one. The main objective of the swarm control 

was to minimize the local and global errors simultaneously. For this purpose, the parameters of 

the controller were updated every time step based on their previous values, restored from the 

memory embedded in the controller, and the local and global errors. To verify the proposed 

approach, the experimental setup of two-rigid-link flexible-joint manipulator was employed. The 

experimental results indicated that the controller was successful in the tip trajectory task for 

different final rotations and different manipulation speeds. An experimental comparison between 

swarm control and a typical controller used for rigid robots, inverse dynamic torque control, 
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demonstrated the superiority of the proposed swarm control strategy. Furthermore, to analyze the 

effects of initial gains of the time-variable-gain controller, a sensitivity analysis was 

experimentally performed and it was shown that the tracking and the steady-state errors did not 

change significantly for different initial gains of the controller.   

8. References 

1. M. W. Spong, Modeling and control of elastic joint robots, Journal of Dynamic Systems, 

Measurement and Control, 109(4), 1987, 310-319. 

2. A. Konno, &  L. Deman, A singularly perturbed method for pole assignment control of a 

flexible manipulator, Robotica, 20(6), 2002, 637-651. 

3. Y. R. Hu, & G. Vukovich, Position and force control of flexible joint robots during 

constrained motion tasks, Mechanism and Machine Theory, 36(7), 2001, 853-871. 

4. H. Salmasi, R. Fotouhi, & P. N. Nikiforuk, Tip trajectory tracking of flexible-joint 

manipulators driven by harmonic drives, International Journal of Robotics and 

Automation, 24(2), 2009. 

5. A. Benallegue, Adaptive control for flexible joint robots using a passive systems 

approach, Control Engineering Practice, 3(10), 1995, 1393-1400. 

6. F. Ghorbel, J. Y. Hung, & M. W. Spong, Adaptive control of flexible-joint manipulators, 

IEEE Control Systems Magazine, 9(7), 1989, 9-13. 

7. S. S. Ge, Adaptive controller design for flexible joint manipulators, Automatica, 32(2), 

1996, 273-278. 

8. J. H. Oh, & J. S. Lee, Control of flexible joint robot system by backstepping design 

approach, Proceedings of IEEE International Conference on Robotics and Automation, 

Albuquerque, NM, 1997, 3435-3440.  

9. D. Wang, A simple iterative learning controller for manipulators with flexible joints, 

Automatica, 31(9), 1995, 1341-1344. 

10. S. Jain, & F. Khorrami, Robust adaptive control of flexible joint manipulators, 

Automatica, 34(5), 1998, 609-615. 



Submitted to International Journal of Robotics and Automation, July 2009. 

126 

11. C. J. B. Macnab, & G. M. T. D'Eleuterio, Neuroadaptive control of elastic-joint robots 

using robust performance enhancement, Robotica, 19(6), 2001, 619-629. 

12. D. S. Morgan, & I. B. Schwartz, Dynamic coordinated control laws in multiple agent 

models, Physics Letters A, 340, 2005, 121-131.  

13. A. Ratnaweera, S. K. Halgamuge, & H. C. Watson, Self-organizing hierarchical particle 

swarm optimizer with time-varying acceleration coefficients, IEEE Transactions on 

Evolutionary Computation, 8(3), 2004, 240-255. 

14. J. Kennedy, & R. Eberhart, Particle swarm optimization, Conference Proceedings of 

IEEE International Conference on Neural Networks, Perth, Western Australia, 4, 1995, 

1942-1948. 

15. H. Yoshida, Y. Fukuyama, S. Takayama, & Y. Nakanishi, A particle swarm optimization 

for reactive power and voltage control in electric power systems considering voltage 

security assessment, Conference Proceedings of IEEE International Conference on 

Systems, Man, and Cybernetics, Rio de Janeiro, Brazil, 6, 1995, 497-502. 

16. V. Tandon, H. El-Mounayri, & H. Kishawy, NC end milling optimization using 

evolutionary computation, International Journal of Machine Tools and Manufacture, 

42(5), 2002, 595-605. 

17. R. C. Eberhart, & Y. Shi, Particle swarm optimization: developments, applications and 

resources, Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2001), 

Seoul, Korea, 1, 2001, 81-86. 

18. A. Albu-Schaffer, C. Ott, & G. Hirzinger, A unified passivity-based control framework 

for position, torque and impedance control of flexible joint robots, International Journal 

of Robotics Research, 26(1), 2007, 23-39. 

19. M. Spong, K. Khorasani , & P. Kokotovic, An integral manifold approach to the feedback 

control of flexible joint robots, IEEE Journal of Robotics and Automation, 3(4), 1987, 

291-300. 

20. L. Sweet, & M. Good, Redefinition of the robot motion-control problem, IEEE Control 

Systems Magazine, 5(3), 1985, 18-25. 

21. H. Abdellatif, & B. Heimann, On compensation of passive joint friction in robotic 

manipulators: modeling, detection and identification, IEEE International Conference on

Control Applications, Munich, 2006, 2510-2515.  



Submitted to International Journal of Robotics and Automation, July 2009. 

127 

22. A. Lotfazar , & M. Eghtesad, Application and comparison of passivity-based and 

integrator backstepping control methods for trajectory tracking of rigid-link robot 

manipulators incorporating motor dynamics, International Journal of Robotics and 

Automation, 22(3), 2007, 196-205. 

23. G. Liu, A. A. Goldenberg, & Y. Zhang, Precise slow motion control of a direct-drive 

robot arm with velocity estimation and friction compensation, Mechatronics, 14(7), 2004, 

821-834. 

24. C. Canudas de Wit, H. Olsson, K. J. Astrom, & P. Lischinsky, A new model for control 

of systems with friction, IEEE Transactions on Automatic Control, 40(3), 1995, 419-425. 

25. R. A. Al-Ashoor, Robust adaptive Cartesian control of robot manipulators using bounded 

uncertainties approach, International Journal of Robotics and Automation, 10(1), 1995, 

1-10.  

26. M. K. Ciliz, Adaptive control of robot manipulators with neural network based 

compensation of frictional uncertainties, Robotica, 23(2), 2005, 159-167. 

27. P. Tomei, Robust adaptive friction compensation for tracking control of robot 

manipulators, IEEE Transactions on Automatic Control, 45(11), 2000, 2164-9. 

28. J. C. Piedboeuf, J. de Carufel , & R. Harteau, Friction and stick-slip in robots: simulation 

and experimentation, Multibody System Dynamics, 4(4), 2000, 341-354. 

29. M. Grotjahn, M. Daemi, & B. Heimann, Friction and rigid body identification of robot 

dynamics, International Journal of Solids and Structures, 38(10), 2001, 1889-1902. 

30. B. Subudhi , & A. S.  Morris, Singular perturbation based neuro-H
 control scheme for a 

manipulator with flexible links and joints, Robotica, 24(2), 2006, 151-161. 

31. F. Ghorbel, & M. W. Spong , Integral manifolds of singularity perturbed systems with 

application to rigid-link flexible-joint multibody systems, International Journal of Non-

Linear Mechanics, 35(1), 2000, 133-155. 

32. Reference manual of serial flexible joint manipulator, Quanser company, Document 

No:619, Toronto (2005). 

33. M. W. Spong, & R. Ortega, On adaptive inverse dynamics control of rigid robots 

automatic control, IEEE Transactions on Automatic Control, 35(1), 1990, 92-95. 

34. B. Siciliano, & O. Khatib, Springer Handbook of Robotics, Springer (2008) 



Submitted to International Journal of Robotics and Automation, July 2009. 

128 

35. C. Canudas de Wit, H. Olsson H., K. J. Astrom, & P. Lischinsky, A new model for 

control of systems with friction, IEEE Transactions on Automatic Control, 40(3), 1995, 

419-425.  

36. P. Lischinsky, C. Canudas-de-Wit , & G. Morel, Friction compensation of a Schilling 

hydraulic robot, Proceedings of IEEE International Conference on Control Applications, 

Hartford, CT, USA, 1997, 294-299.  

37. H. Salmasi, R. Fotouhi , & P. N. Nikiforuk, On the stability of a friction compensation 

strategy for flexible-joint manipulators, Submitted to Advanced Robotics, March 2009. 

38. R. H. A. Hensen, M. J. G. van de Molengraft , & M. Steinbuch, Friction induced hunting 

limit cycles: A comparison between the LuGre and switch friction model, Automatica, 

39(12), 2003, 2131-2137. 

� �



Submitted to International Journal of Robotics and Automation, July 2009. 

129 

�
Biographies��
Hamid Salmasi received the B.Sc. and M.Sc. in Mechanical Engineering from the Sharif 

University of Technology, Tehran, Iran, in 2003 and 2005, respectively. He is currently 

working toward the Ph.D. degree in the Mechanical Engineering at the University of 

Saskatchewan, Saskatoon, Canada. His research interests include Robotics and Vibration 

Control. 

Reza Fotouhi obtained his PhD in Mechanical Engineering from the University of 

Saskatchewan in Canada. He is currently a professor of Mechanical Engineering at 

University of Saskatchewan in Canada. His research interests include Robotics 

(dynamics and control), Structural Dynamics and Vibrations, Computational Mechanics, 

and Biomechanics. 

Peter N. Nikiforuk is Dean Emeritus, College of Engineering, at the University of 

Saskatchewan, Canada. Previously, he was Dean of Engineering for 23 years, Head of 

Mechanical Engineering for 7 years and Chair of the Division of Control Engineering for 

5 years. He holds the B.Sc. degree in engineering physics from Queen’s University in 

Canada and Ph.D. degree in electrical engineering from Manchester University in 

England. He received the D.Sc. degree, also from Manchester University, in 1970 for 

research in control systems. He served as chair or member of five Councils in Canada, 

was recipient of seven Fellowships in Canada and England and seven other honors, and 

member of several Boards. His fields of research are Adaptive and Control Systems. �



130 

Chapter 5. Vibration Control of a Flexible Link 

Manipulator Using Smart Structure 



Proceedings of 17th World Congress of  Int. Federation of Automatic Control (IFAC), Seoul, Korea, July 2008,  

p 11787-11792��

�

131 

�

Vibration Control of a Flexible Link Manipulator Using Smart 

Structures 

H. Salmasi*. R. Fotouhi**, P. N. Nikiforuk *** 

* , ** , *** Mechanical Engineering Department, University of Saskatchewan, Saskatoon, Canada; 

email:hamid.salmasi@usask.ca, reza.fotouhi@usask.ca, peter.nikiforuk@usask.ca 

Abstract: The active vibration suppression of a flexible link manipulator using a smart structure 

(piezoelectric actuator) is investigated. For this purpose, a Finite Element (FE) model is developed 

for the modal and transient analysis of a cantilever beam and a flexible link manipulator. The 

novelty of this work is in the development of an accurate finite element model of a piezoelectric and 

beam/manipulator. Also, the effect of the placement of the piezoelectric actuator along the beam, 

based on the controllability of the system states and using FE analysis, is investigated. To avoid 

system instability, a collocated sensor-actuator pair is used and a proportional control strategy is 

employed to adjust the voltage applied to the piezoelectric actuator so as to control vibrations. For 

the flexible link manipulator, it is shown that the vibration is well suppressed during and at the end 

of a maneuver by locating the piezoelectric actuator at the optimum location. The effect of the 

controller gain on the vibration behavior of the system is investigated and the optimum controller 

gain is found using two main evaluation criteria; these are the contribution of the dominant 

frequencies in the response and the error norms of the vibration amplitudes. 

1. INTRODUCTION 

Designing and utilizing robot manipulators having higher load capacities is always 

desired. However, vibration is an important factor that restricts the performance of such devices 

especially in applications where accurate positioning is very important. In the past decade 
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different approaches have been used for vibration suppression. Active vibration control is one of 

the best approaches to suppress vibration. One of the methods of active control is using 

piezeoelectrics as actuators (Lewis and Inman, 2001). 

Piezoelectric actuators have been successfully used for vibration suppression in some 

works. Khajehpour and Golnaraghi (1997) developed a nonlinear controller for vibration control 

of a cantilever beam using piezoelectric actuators. The optimum placement of the actuators for a 

cantilevered plate was proposed in (Peng et al., 2005). Effect of the placement of the 

piezoelectric actuator on the modal and spatial controllability of a structure was analysed in 

(Moheimani and Ryall, 1999) based on a performance index 
2H . This index represents the norm 

of the input-output characteristics of a dynamical system and can be used to find the optimal 

placement of the actuator/sensor for plates. 

However, in most of the models developed for the control of flexible structures, the 

controller is designed for a particular range of frequency, and it is common practice to remove 

the higher modes of vibration which are lying out of the desired range of frequency (Clark, 

1997). This approach leads to truncation errors and the closed-loop performance will be 

considerably different from the predicted theoretical model. In fact, by ignoring the higher 

modes in the assumed mode shapes method, the zeros of the system are located far from where 

they should be and as a result the developed model will be different from the original one. One 

of the methods used to reduce the truncation error is finite element analysis (FEA) (Theodore 

and Ghosal, 1995). Since a large number of the mode shapes of the system are considered in 

FEA, the truncation of the error, due to ignoring the higher modes, is minimized in finite element 

models provided that a reasonably enough number of elements are used.  

The main contribution of this paper is in the development of an accurate model of a 

piezoelectric and beam/manipulator using the finite element (FE) method and finding the optimal 

placement of the piezoelectric actuator along the flexible structure. Verifying the FE model by 

analytical calculations and error analysis can be considered as other less important contributions 

of this paper. It is believed that in the FE model, if the time integration and iterative solver 

provide accurate solutions, the computer simulations of the manoeuvre of the manipulators, even 

very flexible ones, will be quite reliable and closer to the experimental measurements. To check 

the accuracy of the FE model, the natural frequencies of the FE model are calculated and verified 
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using the theoretical approach. The optimal placement of the piezoelectric is then found for the 

cantilevered beam, based on the controllability of the system, and is then compared with the 

results of the FEA. In the following, the piezoelectric is utilized for the vibration suppression of 

the flexible manipulator during the manoeuvre and after reaching the desired position. The effect 

of the gain on the controller performance is also investigated.  

2. MATHEMATICAL FORMULATION

2.1 Piezoelectric Actuator 

A cantilever beam with a piezoelectric actuator, shown in Fig. 1, was used in the study 

described in this paper. For perfectly bonded piezoelectric actuators and assuming an Euler-

Bernoulli beam, the moment induced by the applied voltage on the piezoelectric actuator is given 

as

~- � >-�y8¡�Ä8��� P Ä����u��� �: Q �- �: �% (1) 

where ÅÆ is the module of elasticity of the piezoelectric element, Çy8 the piezoelectric actuator 

constant, hÈ the thickness of the beam and hÆ the thickness of the piezoelectric actuator.�É8�h�
and É��h� are respectively the applied voltage to the top and bottom surfaces of the piezoelectric 

actuator, and �Æ is the effective bending moment applied to the beam with an equivalent area 

moment of inertia �ÊË. By letting ÌÍ � �� �: �ÅÆÇy8�hÈ Q hÆ�, equation (1) becomes  

~- � +��Ä8��� P Ä����� (2) 

If the applied voltage to the bottom surface of the piezoelectric actuator is zero (É��h� ��), then from equation (2) �Æ will be proportional to the applied voltage on the top surface, �Æ � ÌÍÉ8�h�. If the beam is modeled as a Euler-Bernoulli beam with deflection Î�°� h�, where °
is measured from the fixed end of the beam and h is time, the partial differential equation of the 

system becomes  

>�$'M LÏ[���K�L�Ï Q Ð�}� LZ[���K�L�Z � ~- LL� !It4 P �� P �-u P I�4 P ���% (3) 

where ÅÈ and ÑÈ are the module of elasticity and density of the beam respectively. ÒÈ, ÒÆ and ÒÍ, 
as shown in Fig. 1, are the length of the beam, length of the piezoelectric actuator, and distance 

of the piezoelectric actuator from the fixed end respectively, and Ó�°� is the Dirac function. The 
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deflection of the beam can be expressed using assumed mode shapes

��4� �� � 3 G5�4�
5���Ô578 ������T � ����U �d (4) 

where G5 is the T’th normalized mode shape, 
5 is the amplitude of the i’th normalized mode 

shape, and d is the number of the assumed mode shapes. Substituting equation (4) into equation 

(3), multiplying by G5 and integrating, equation (3) becomes  

>�$'M
5��� X LÏÕN���L�Ï�<? GH�4��4 Q Ð�}�
l5��� X G5�4��<? GH�4��4 � +�Ä8¡G5Öt4 P �� P �-u PGT×4P�������T��������U��d   (5)  

where the dot indicates the time derivative and ��Ö represents the derivation with respect to °. 

Using the orthogonality property of mode shapes and inclusion the modal damping ratio ØÙ for 

the i’th normal mode, equation (5) is written as  


l5��� Q �Ú5
.5��� Q Û5�
5��� � Ü5Ä8�������T � ����U �d (6) 

where

ÝÙ� � Þß�àáâßãß X äÏåæ�ç�äçÏèß? x éÙ�°��°����v � ����U � ê (7) 

ëÙ � ìíâßãß ¡éÙÖt° P ÒÍ P ÒÆu P éÙÖ�° P ÒÍ�¢����v � ����U � ê (8) 

Equation (6) can be written in the state-space form

î. �h� � ïî�h� Q ëÉ8�h� (9)

where

î�h� �
ðññ
ññò
ó8�h�ôóõ�h�ó. 8�h�ôó. õ�h�ö÷

÷÷÷
ø
����ï � jùõ)õ �õPú� P�Øúk � ë � ûùõ)8ë8ôëõ ü (10) 

and ú � �v¯��Ý8� Ý�� U � Ýõ�,  Ø � �v¯��Ø8� Ø�� U � Øõ�,  ùõ)õ is a zero matrix of size  ê, and �õ
is an identity matrix of size ê ) ê. Note that as shown in equation (8) the matrix ë depends on 

the location of the piezoelectric, ÒÍ. 
The optimum placement of the piezoelectric can be obtained by minimizing the energy of 
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the control force. In fact, it is desired in minimizing the energy required to steer the initial stateî�h?� to the final state î�h8�. It means that at the final state all modes are well suppressed; that is óÙ�h� � � and ó. Ù�h� � � for v � ����U � ê. Therefore the final state , î�h8�, must be zero. The 

value of the minimum energy functional � of the control voltage É8�h�, which steers the initial 

state î�h?� to zero, can be written as (Klamka, 1991) 

�th?� h8ý î�h?�u � î�h?�þÿ@8î�h?� (11)

where � is a controllability Grammian matrix which is the solution of the following Lyapunov 

equation 

ÿïþ Q ïÿQ ëëþ � � (12)

The controllability measure µ can be introduced as the reciprocal of the maximum value 

of the control energy �th?� h8ý î�h?�u for all initial states taken from the unit sphere, that is, 

�î�h?����� �î�h?�� � ��; thus

� 	: � ®¯°�
�����78 �th?� h8ý î�h?�u � 
��çtÿ@8�h?� h8�u � ��
�Ù�tÿ�h?� h8�u (13) 

where 
��çtÿ@8�h?� h8�u denotes the maximum eigenvalue of ÿ@8 which is the inverse of the 

minimum eigenvalue of ÿ, 
�Ù�tÿ�h?� h8�u. To find the optimal placement of the piezoelectric 

actuator, the control energy in equation (13), must be minimized for different locations of the 

piezoelectric actuator. In other words, most controllability can be obtained when 	 has its 

maximum value. Based on this approach, the optimal placement of a piezoelectric actuator will 

be found in Section 4.1 for a cantilevered beam.

2.2  Dynamics of Manipulator 

The manipulator shown in Fig. 2 has a hub at the base with a mass moment of inertia ��, a 

beam of length ÒÈ, a payload with mass ®Æ and a mass moment of inertia �Æ. The coordinate 

system �î��� is the global coordinate system and �°� Î� rotates with angular velocity �.  where the 

angle � is the rotation of the base. A torque � is applied by the hub (motor) and the arm rotates 

around its base during the interval time of �� B � C h��. After reaching the desired angle ��, the 

torque is reduced to zero and the arm behaves as a cantilever beam �h i h��. Thus, the simulation 

procedure must be performed in two steps for a rotating flexible manipulator �� B � C h��  and a 
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cantilever beam �h i h��. A piezoelectric actuator is used for vibration suppression of the 

manipulator during the rotation of the arm and after reaching its desired position. 

2.3  Controller Design 

A proportional controller was used in which the applied voltage to the piezoelectric 

actuator was proportional to the axial strain. A block diagram of the controller is shown in the 

Fig. 3 where Ì�, �, É and É� are the gain, strain at the midpoint of the piezoelectric actuator,  

potentiometer output voltage and applied voltage to the piezoelectric actuator, respectively. To 

avoid instability due to the non-collocation of sensor and actuators, the actuator and sensor were 

located at the same location; that is the strain ε  was measured at the location of the piezoelectric 

actuator. The set point (for error) was selected as zero. An important issue in vibration control of 

flexible structures is the collocation of sensor and actuator. In this study, a collocated sensor-

actuator pair is used. The collocation of sensor and actuator guarantees that the system is positive 

real at least for lower frequency modes. However, this guarantee does not apply to higher 

frequency modes, because the collocation principle does not apply to modes of wavelength 

comparable to the size of piezoelectric actuator. In addition, computational delays at high 

frequencies can drive some higher frequency modes unstable (Falangas, 1994). Therefore, the 

collocation of the sensor and actuator does not necessarily lead to the stability of the controller. 

Another factor affecting the stability criteria is the proper location of the piezoelectric which is 

discussed later in this paper.

3. FINITE ELEMENT MODEL 

Three types of elements from the ANSYS Software elements library were used to model 

the beam/manipulator. The beam was constructed using ten “PLANE 82” elements spaced 

equally along the beam. This element had eight nodes with two degrees-of-freedom (DOF), and 

translations in the x and y directions at each node. Since “PLANE 82” did not have a rotational 

degree of freedom, two “BEAM 3” elements having three degrees of freedom, translations in the 

nodal x and y directions as well as rotation in the z-direction, were used for the base rotation. 

The element “PLANE 223”, which models the piezoelectric actuator, was used as an actuator to 

suppress the vibration. The physical properties of the beam and piezoelectric actuator shown in 

Figs. 1 and 2, are given as follows



Proceedings of 17th World Congress of  Int. Federation of Automatic Control (IFAC), Seoul, Korea, July 2008,  

p 11787-11792��

�

137 

�� � �	�
��J� �� � �	����J� �� � �	����J��$� �  	

 ) ��@88�JA� �- � �	����J��
� � �	
��� Ð� � (	 � ) ��y�]c	J@y�p� � ��]c	J�� p- � ��]c	J�� J- � ��]c�>� � ��� ) ����d	J@�� �- � �	����J
where ��, �- and �� are, respectively, the length of the beam, length of the piezoelectric actuator, 

and distance of the piezoelectric actuator from the fixed end, and b
t  and �- are respectively the 

thicknesses of the beam and piezoelectric actuator. >�, $�, � and Ð� are the modulus of elasticity, 

area moment of inertia, Poisson ratio and density of the beam respectively, and J-, p� and p- are 

the payload mass, mass moment of inertia of the hub and mass moment of inertia of the payload. 

4. SIMULATION RESULTS 

In the simulation study, both modal and transient analyses were carried out for the 

cantilever beam and for the robot flexible link manipulator. The simulation was performed in 

three steps. In the first step, the free vibration and modal analysis of the cantilever beam was 

studied. The natural frequencies of the manipulator which were determined theoretically and 

using finite element analysis (FEA) are illustrated in table 1. The results obtained from the 

theoretical approach and FEA are in good agreement. In the next step, the effect of placement of 

the piezoelectric actuator on the vibration was studied and the optimal location of the 

piezoelectric actuator along the beam was determined. Finally, the active vibration suppression 

of the robot flexible link manipulator during and at the end the manoeuvre was successfully 

accomplished, and the effect of the gain on the vibration behaviour of the system was 

determined. In this study, it was assumed that the base was fixed and the beam behaved as a 

cantilever.  

4.1  Optimum location of the Piezoelectric Actuator  

Based on the approach described in Section 2.1, the optimum placement of the 

piezoelectric was found for the cantilevered beam. For this purpose, the first two mode shapes 

were considered and the eigenvalues of the controllability Grammian matrix, ÿ, were found for 

different locations of the piezoelectric actuator using the Lyapunov equation  (12). Values of 	
versus ÒÍ ÒÈ: , are plotted in Fig. 4.  It can be seen that the location ÒÍ ÒÈ: � �	
 had the 
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maximum value and provided the most controllability. 

To verify the optimal placement of the piezoelectric actuator,�ÒÍ ÒÈ: � �	
 the simulation 

was performed using the finite element model for different values of ÒÍ ÒÈ: . To find the best 

location of the actuator, the following evaluation criteria were used 

>?@y � � 8Ô�@83 � [N�1[����1��57Ô�57?  (14)

Å�@y � � 8õ�@õZ3 � �æ�à�� !�à��Ù7õ�Ù7õZ  (15) 

where the norms Å?@y and Å�@y  represent the values of the normalized tip deflections for the 

time intervals of �� C h C 
� and �� C h C 
�, respectively. The ÎÙ�Ê  is the tip deflection of the 

beam at the time step i, êy is the number of time steps at h � 
 and ê� is the number of 

time steps at h � �. Table 2 illustrates the values of these norms for the different cases 

investigated. The values of Å?@y and Å�@y are plotted versus ÒÍ ÒÈ:  in Fig. 5. According to this 

figure, ÒÍ ÒÈ: � �	
 corresponds to the best location of the piezoelectric actuator. This finding is 

also consistent with the findings of (Peng, 2005) for a similar beam. 

4.2  Flexible link robot manipulator 

To verify the effectiveness of the piezoelectric actuator in suppressing the vibration of a 

robot manipulator, a single flexible manipulator was analyzed. In this case, the manipulator 

could rotate about its base. The physical properties and the dimensions were the same as those of 

the cantilever beam, except the values of the mass moment of inertia of the hub and the tip-mass 

which were selected as �� � �	� ) ��@y�"�	®� and ®Æ � �	��"� respectively. The torque 

applied to the hub was of a bang-bang nature causing, as shown in Fig. 6.a, the manipulator 

initially to accelerate, then decelerate and finally to lock at its desired final position, where it 

continued to vibrate as a cantilever beam. As shown in Fig. 6.b, the hub rotated approximately 

0.8 rad in one second and it was locked then at 0.8 rad. The natural frequencies of the 

manipulator and cantilever beam were obtained theoretically and compared in table 1 against the 

FEA results. Fig. 7.a illustrates the tip deflection with respect to the shadow beam (see Fig. 2) 

without the controller being active (Ì� � �). To find the dominant frequencies of the system, the 
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FFT of the tip deflections in time was evaluated. This is illustrated in Fig. 7.b which indicates 

three dominant frequencies. The first was the main excitation frequency which was 1.0 Hz . The 

second frequency was approximately 17 Hz  which corresponded to the first natural frequency of 

the cantilever beam and the third frequency, which was approximately 60 Hz , corresponded to 

the first non-zero natural frequency of the flexible link manipulator. To suppress the vibration a 

piezoelectric actuator was placed at the optimum location, ÒÍ ÒÈ: � �	
, as reported in Section 

4.1. The simulation was carried out for three different values of the controller gain, Ì� ��	��Ç�� �	��Ç� and &	��Ç�, and these are referred to as Cases 2, 3 and 4 respectively. The 

vibration was well suppressed during and at the end of the manoeuvre as shown in Fig. 8.a for 

Case 3 (Ì� � �	��Ç�). The FFT of the tip deflection in time is shown in Fig. 8.b for this case. 

According to this figure, the peak values of the dominant frequencies, especially the main 

excitation frequency and the first natural frequency of the cantilever beam, were significantly 

reduced for Case 3 in comparison with Case 1 (Fig. 7).  

Three evaluation criteria, Å?@8 for � C h C � (during the manoeuvre), Å8@A for � C h B �
(at the end of the manoeuvre) and Å?@A for � C h B � (the total response), were defined so as to 

compare the results. The values of these norms were the normalized tip deflections of the 

manipulator arm and were calculated using equations similar to those reported for the cantilever 

beam (equations (14) and (15)).  These norms are compared in Fig. 9.a for different gain values.  

As shown in Fig. 9.a, the gain value of Case 3 (Ì� � �	��Ç�) had the smallest values of norms Å8@A and  Å?@A in comparison with other gain values. Thus the amplitude of vibration was 

smaller for Case 3 than other cases, after the manipulator reached its desired rotation during � C h B �, as well as during the total response (0C h B �). 

Another index which was used to compare the results was the values of the PSD peaks at 

the dominant frequencies. This index is shown in Fig. 9.b for four different cases. Also, for the 

three dominant frequencies, overall Case 3 shows the best result in suppressing the vibration. 

5. CONCLUSIONS 

Finite element analysis (FEA) was used in this paper for modeling a cantilever beam and 

a flexible robot manipulator. The optimum values for the controller gain were found and the 

optimum location of the piezoelectric actuator was determined for the cantilever beam based on 
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minimizing the energy of the control force and was verified by FEA. The controller was stable 

because of using a collocated sensor-actuator pair in the optimum position and because of using 

full non-linear transient dynamic analysis using FEA. Also, it was concluded that Case 3 with a 

controller gain of Kc= 4.00e5 and the location of the piezoelectric actuator 30% of the beam 

length from the base, produced the best results as far as suppressing the vibration was concerned. 

These findings were verified by analytical calculations and will be verified experimentally in 

near future. 
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. The natural frequencies of the flexible manipulator and cantilever beam

Flexible link manipulator Cantilever beam 

Theoretical (Hz) FEA (Hz) Theoretical (Hz) FEA (Hz)
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Fig. 5. Norms of normalized tip deflection of cantilever 

Fig. 6.(a) Applied bang-bang controller torque, and (b) hub rotation.

Fig. 7. Case 1 (Kc= 0): Single-link flexible manipulator, (a) tip deflection w.r.t

spectrum of tip deflection 
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. Norms of normalized tip deflection of cantilever beam for optimum location of piezoelectric actuator

bang controller torque, and (b) hub rotation.

link flexible manipulator, (a) tip deflection w.r.t. shadow beam, and (b) FFT 

(b) 
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Federation of Automatic Control (IFAC), Seoul, Korea, July 2008,  
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Fig. 8. Case 3 (Kc=¼ ) ª¥¦): Single-link flexible manipulator, (a) tip deflection w.r.t. shadow beam, and (b) 

FFT spectrum of tip deflection. 

   

Fig. 9. Single-link flexible manipulator, evaluation criteria for different gain values, (a) norms of vibration 

amplitudes, and (b) peak values of FFT spectrums at dominant frequencies. 
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Chapter 6. Dynamic modeling of a manipulator with 

flexible links and flexible joints 
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1. Introduction 

A wide variety of robots is now employed in different areas such as spacecraft and vehicle 

manufacturing. However, designing and utilizing lighter robots with flexible arms has always 

been desired. Flexible manipulators have a number of advantages: they require less material, 

weigh less, consume less energy, are more transportable and maneuverable, cost less and have a 

higher payload to robot weight ratio [1]. In this paper, the combination of the Lagrange method 

and assumed mode shapes method (LAMM), has been used for the dynamic modeling of flexible 

manipulators considering flexibility in the joints and links. The model is then verified by full 

non-linear finite element analysis (FEA). 

2. Mathematical Model 

2.1 Kinematics of flexible manipulator 

A manipulator consisting of 9 flexible links interconnected with flexible joints was considered. 

The model of the i
th

 flexible-link flexible-joint manipulator is shown in Figure 1. The frame 
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�2E5� ;E5� is attached to the rigid-like links and �4F5� �F5� represents the rotating frame. Angles _5 and 

5̂ are the motor and link angles respectively measured with respect to the rigid frame. The 

velocity of an arbitrary point along the beam, Ä-, can be written as 

Ä#-5 � Ä#�5 Q Û$5 ) �� Q Ä#V'/5  (1) 

where Ä#�5 is the absolute velocity of the coordinate system �45� �5�, Ä#V'/5  is the relative velocity of 

point %�45� �5� with respect to the coordinate system �45 � �5�, Û$5 is the absolute angular velocity 

of the coordinate system �2E5� ;E5�, �� is the position vector of the point %�45� �5�, and �5 is the link 

deflection, where �� C 45 B D5� and D5 is the  length of the i
th

 link.

The assumed mode shapes method can be used to approximate the link deflection as follows 

  �5�45� � 3 G5H�45��H78 I5H��� (2) 

where J is the number of mode shapes used for each link, and I5H is the weight of the assumed 

mode shape G5H. 

Figure 1. Model of the i
th

 flexible-link flexible-joint manipulator 
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2.2 Dynamics of flexible manipulator 

The equations of motion of a system can often be expressed in terms of generalized coordinates, 


5, using Lagrange’s equations. In general, Lagrange’s equation for a system with 9 degrees of 

freedom can be expressed as 

,,K LLM. N O P LLMN O Q LLMNR � S5 ������T � ����U � 9 (3) 

where O, R and S5 are the kinetic and potential energies of the system, and the torque applied to 

the i
th

 motor respectively.  

The kinetic energy of a flexible-link flexible-joint manipulator is composed of the kinetic 

energies of the rotors,�OV, links, O/, hubs, OW,  and the payload mass, O-,  

O � OV Q O/ Q OW Q O- (4) 

where 

OV � 8�3 $V56578 _. 5� (5) 

OW � 8�3 $W56578 .̂5� Q 8�3 JW56578 tÄ#?5u� (6) 

O- � 8� $- .̂6� Q 8�J-�Ä#?6�� (7) 

O/ � 8�3 X Ð5/N?6578 tÄ-5 x Ä-5u�4 (8) 

where $V, $W and $- are respectively the mass moment of inertias of the rotor, hub, and tip, and 

J-, JW and Ð are respectively the payload mass, hub mass and mass per unit length of each link. 

The potential energy is the sum of the elastic energies stored in the links and the potential energy 

due to joints flexibility. 

R � 8�3 X �>$�5/N?6578 Y,Z[N��N�,�NZ \� �4 Q 8�3 ]5�6578 5̂ P _5�� (9) 
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where �>$�5 and ]5 are respectively the rigidity of the i
th

 link and stiffness of the i
th

 joint. By 

substituting the values of the kinetic and potential energies into equation 3, the dynamic equation 

of system can be described in matrix form as 

~�
�
l Q n�
� 
. � Q +
 � S (10) 

where ~, n, + and S are the mass matrix, vector of Coriolis and centrifugal forces, stiffness 

matrix, and vector of applied torques to motors respectively.  

3. Simulation 

In order to test above procedure, a two flexible-link flexible-joint manipulator (TFLFJ), shown in 

Figure 2, was considered with the following physical properties 

were D8 � D� � �	��J, �>$�8 � �>$�8 � �	 ) ��88�d x J�, �$Vm � $VZ � � ) ��@��]c x J�,  

�Ð8 � �Ð� � �	
z�]c�J, $- � � ) ��@A�]c x J�, ]8 � ]� � �	��d x J����, JWm � JWZ �
�	���]c, J- � �	���]c.  

Figure 2. Two flexible-link flexible-joint manipulator (TFLFJ) 



Proceedings of the 21st  Canadian Congress of Applied Mechanics, Toronto, Canada, June 2007��

151 

By assuming two mode shapes for each link, two rotations for the motors and two rotations for 

the links, it is seen that eight degrees of freedom contribute to the dynamics of the TFLFJ.  

The simulation was carried out using two approaches including full nonlinear finite element 

analysis (FEA-ANSYS) and LAMM. The time step in both simulations was 1e-4s. For finite 

element analysis, ten BEAM3 elements were used to model each link. This element had three 

degrees of freedom, translations in nodal x and y directions and rotation in the z-direction at each 

of its two nodes. 

Figure 3 shows the applied torques to the shoulder and elbow motors. Tip deflections of the 

manipulator are shown in Figure 4 for FEA and LAMM. As shown in this figure, the simulation 

results of the FEA confirm the results of the LAMM.

Figure 3. Applied torques to shoulder and elbow motors 

Figure 4. Tip deflection of the manipulator �`a�ba��
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4. Conclusions 

The dynamic modeling of a flexible-link flexible-joint manipulator was studied in this paper. A 

combination of the Lagrange method and the assumed mode shape method (LAMM) was 

employed for the dynamic modeling. The simulation was carried out for a TFLFJ using LAMM 

and ANSYS full non-linear finite element analysis. It was shown that the results of the dynamic 

model are in an excellent agreement with the FEA results. 

5. References

[1] Vakil M., Fotouhi R., Nikiforuk P. N., 2006, “Systematic dynamic modeling of flexible link 
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Chapter 7. Conclusions, Contributions, and Future 

Works   
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In this dissertation, the dynamics and control of flexible-joint robot manipulators were 

studied, and new controllers for the trajectory tracking were developed. In addition, the dynamics 

of flexible-link flexible-joint robot manipulators were modelled, and a piezoelectric actuator was 

utilized to suppress the vibrations during the manoeuvre of the manipulator. Out of this research, 

eleven research papers were submitted/published in technical journals and international 

conferences. Five of these papers were selected and presented in Chapters 2-6. A summary of 

these papers is given in the following Section 7.1. Also, the novelties and contributions of this 

study are discussed in Section 7.2. The potential future work which can be done in the 

continuation of this work is presented in Section 7.3. 

7.1 Summary and conclusions 

New control strategies have been proposed for the tip-trajectory tracking of 

flexible (elastic) joint robot manipulators in this research work. The control method presented in 

Chapter 2 was a combination of a composite controller and a LuGre-PD compensator. The 

composite controller, which was developed using the singular perturbation theory and integral 

manifold concept, had two parts: slow and fast controllers. To compensate for the friction effect 

in the joints, a combination of the LuGre model, which was a dynamic non-linear friction model, 

and a PD compensator was used. The proposed approach was verified experimentally using 

experimental setups of a single-rigid-link flexible-joint (SRLFJ) and a two-rigid-link flexible-

joint (TRLFJ) manipulators. According to the experimental results obtained by these SRLFJ and 

TRLFJ manipulators, the proposed control strategy was successful in trajectory tracking such 

that the error between the actual and desired rotations of the links remained very small during 

and at the end of the manoeuvre of the manipulator.



155 

A novel friction compensation strategy was introduced in Chapter 3 to compensate for 

the friction in the joints. This strategy was developed using the Work-Energy (WE) principle, 

and it was a linear forward compensating torque which could be identified in only two steps. The 

friction method was then employed along with the composite controller for the tip trajectory 

tracking of flexible joint manipulators. The effectiveness of the Work-Energy method was 

experimentally verified using an experimental setup of the SRLFJ manipulator. For this purpose, 

the performance of the friction compensation strategy was tested for different trajectory shapes. 

To analyze the experimental data, two evaluation criteria were defined based on the tracking 

errors during and at the end of the manoeuvre of the manipulator. According to these criteria, the 

WE method was superior to the traditional LuGre method used to compensate for the friction. 

Chapter 4 presents a novel biologically-inspired controller, which is referred to as the 

swarm controller, for the tip trajectory tracking of flexible-joint manipulators. This method was 

inspired by real biological systems such as swarm of birds or school of fishes, and it was a self-

organized robust technique in which the applied torques were regulated based on the local and 

global errors observed in the links’ rotations and the end-effector’s position. Combination of the 

swarm controller and the LuGre-PD method was experimentally examined using a TRLFJ 

manipulator. The experimental results which were obtained for different trajectories and different 

speeds indicated that the method was effective such that the tracking error was almost zero 

during the performance of the manipulator. 

In Chapter 5, the application of a piezoelectric actuator for the vibration suppression of a 

single flexible-link manipulator was studied. The optimum placement of the piezoelectric 

actuator was found based on the controllability of the system states and using finite element 

analysis. To avoid system instability, a collocated sensor-actuator pair was implemented and a 
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proportional control strategy was employed to adjust the voltage applied to the piezoelectric 

actuator. Investigation of the effect of the time delay between the input and output of the 

controller and the stability analysis of the approach were other parts of this study presented in a 

technical journal paper and is currently under review. 

Chapter 6 describes the dynamic modeling of flexible-link flexible-joint manipulators. 

The Lagrange method, in combination with the assumed modes shapes method, was used to 

derive the dynamic equations. The kinetic and potential energies for a two flexible-link flexible-

joint manipulator were obtained and substituted in the Lagrange’s equations to derive dynamic 

equations. The method was then verified using the finite-element analysis. 

7.2 Contributions of the study 

The contributions of this research are as follows: 

7.2.1 Developing a new composite controller for flexible-joint manipulators  

In singular perturbation models developed for flexible-joint manipulators, the inertias of 

the rotors are usually ignored. This assumption may deteriorate the performance of the controller 

and leads to error in trajectory tracking which is crucial in high-precision manipulation tasks 

such as producing circuit boards. In this study, a more accurate dynamic model which took into 

account the inertias of rotors was developed. The correctness of the dynamic model was 

validated using finite-element analysis (FEA). For this purpose, an accurate finite element model 

of a two-rigid-link flexible-joint manipulator was developed. Simulations were then performed 

for the finite element and singular perturbation models. The comparison between these models 

indicated that the simulation results were in very good agreement. Results are given in Chapters 

2, 3 and 4. 
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7.2.2 Constructing a new biologically-inspired controller (swarm controller) for the tip 

trajectory tracking of manipulators  

Based on the movement of real biological systems, a new control strategy was proposed 

and developed for the flexible-joint manipulators. This approach was successfully implemented 

to control a two rigid-link flexible-joint manipulator. Experimental results showed the success of 

this controller in tip trajectory tracking for the TRLFJ. The simplicity and accuracy of the swarm 

controller were among its advantages. Results are given in Chapter 4. 

7.2.3 Designing the LuGre-PD friction compensation strategy 

This novel strategy was developed to compensate for the friction effect in harmonic 

drives. The second method of Lyapunov was utilized to find sufficient conditions for the global 

asymptotic stability of the LuGre-PD friction compensating torque. The effectiveness of the 

proposed method was also experimentally proven for different trajectories and manipulation 

speeds. Results are in Chapter 2. 

7.2.4 Developing a friction compensating torque based on the Work-Energy principle 

This new approach was a linear forward torque and had only two parameters to be 

identified. Therefore, compared to other friction compensation approaches, it was easier to 

implement and simpler to identify. The performance of this friction compensation strategy was 

verified using experimental setup of the SRLFJ. Results are in Chapter 3. 

7.2.5 Application of a piezoelectric actuator for vibration suppression  

An accurate finite element model of a piezoelectric and beam/manipulator was derived. 

Finding the optimal placement of the piezoelectric actuator and the stability analysis of the 

approach were other novelties of this work. Results are in Chapter 5. 
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7.2.6 Deriving a comprehensive dynamic model for flexible-link flexible-joint 

manipulators 

Dynamic equations of flexible-link flexible-joint manipulators were derived using 

Lagrange’s equations and assumed mode shapes method. The developed model was validated 

with FEA. Compared to other dynamic models this method was more accurate since it took into 

account both flexibilities in the joint and links. Results are in Chapter 6 and Appendix II. 

7.3 Future work 

The results of this study provide a strong foundation for further research in the dynamic 

modelling and control of robot manipulators. Some of the potential future work in this area are as 

follows: 

1- Improving the swarm control strategy: In this study, the swarm control strategy was 

developed for the tip trajectory tracking of flexible-joint manipulators and its performance was 

experimentally validated. A stability analysis of this approach can ensure that the controller will 

be stable in different working conditions. For this purpose, the stability analysis approaches 

developed for the non-linear systems such as Lyapunov’s theorem may be applied. 

2- Employing the swarm control strategy for flexible-link flexible-joint manipulators: 

Swarm control strategy was used for the tip trajectory tracking of flexible-joint manipulators in 

this study. As a possible extension, this controller can be altered for manipulators with flexibility 

in both joints and links. 

3- Finding the optimal placement of a piezoelectric actuator experimentally: The optimal 

location of a piezoelectric actuator was found using the controllability of the states and FEA in 

this thesis. While the results obtained using finite-element models are reliable, experiments can 

verify the correctness of the optimal position of the piezoelectric actuator found using FEA. 
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Therefore, finding the optimimim location of a piezoelectric actuator through the experiments is 

recommended as an extension for this study. 

4- Investigating the effect of joints’ damping on the performance of the controllers: The 

performance of the developed controllers in this thesis can be examined for different joints’ 

damping. This can be experimentally carried out using experimental modules of SRLFJ and 

TRLFJ. Also, analyzing the effect of the damping on the stability of the developed controllers 

can be another future work. 
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Appendix I: List of experiments carried out to verify the proposed control 

strategies 

The experiments performed to verify the developed control strategies in Chapters 2-4 are 

listed in this Section. Table AI.1 lists the experiments carried out using different friction 

compensation strategies for different trajectory shapes, joint stiffness and final rotations. In these 

experiments, the experimental module of the single rigid-link flexible-joint manipulator, shown 

in Fig. 2 (Chapter 1), was employed.  

The lists of the experiments performed using two-rigid-link flexible-joint manipulator, 

shown in Fig. 3 (Chapter 1), are given in Tables AI.2 and AI.3. Table AI.2 lists the experiments 

carried out to compare the performance of composite and rigid controllers for different working 

conditions, and Table AI.3 lists the experiments carried out using the swarm controller. In these 

experiments, the friction compensation strategy was the LuGre-PD method.  The results of these 

experiments have been explained and discussed in Chapters 2-4.   
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Table AI.1. List of the experiments carried out using the single rigid-link flexible-joint 

manipulator 

Friction  

compensation  

method 

Trajectory shape Joint stiffness Controller type 
Final rotation 

(rad) 
No 

3rd- 

order 

5th- 

order 

7th- 

order 

9th- 

order 
Low High Composite Rigid 0.5 1 1.5 

LuGre           4 

           2 

           2 

           2 

           2 

           2 

Work-Energy           6 

           9 

           3 

           4 

           2 

LuGre+PD           3 

           3 

           3 

           4 

           3 

           3 

Table AI.2. List of the experiments carried out using the TRLFJ manipulator  

Trajectory shape 

Shoulder 

Trajectory shape 

Elbow 
Joint stiffness Controller type 

Final rotation 

Shoulder (rad)

Final rotation 

Elbow (rad) 
No.

3rd- 

Order 

9th- 

order 

3rd- 

order 

9th- 

Order 
Low High Composite Rigid 1 1.5 1 1.5 

           4 

           3 

         3 

          2 

          2 

          3 

          2 

         4 

          2 

          3 

           3 

          3 

          3 

         3 

          3 
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Table AI.3. List of the experiments carried out using the swarm controller and LuGre-PD friction 

compensation method for the TRLFJ manipulator 

Speed Controller type 
Final rotations of both 

Shoulder and Elbow (rad) No. 

Slow Moderate Fast Swarm Rigid 0.5 1.0 1.5 2.0 2.5 

        2 

        2 

        2 

       2 

        2 

      3 

        2 

       3 
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Appendix II: Dynamic modelling of TRLFJ and TFLFJ 

The dynamic modelling of a two rigid-link flexible link manipulator (TRLFL) and a two 

flexible-link flexible-joint manipulator (TFLFL) are presented in this Section. The approach used 

to develop dynamic models for flexible manipulators was Lagrange’s method. Based on this 

method, the kinetic and potential energies of the system were first obtained, and using 

Lagrange’s equations the dynamic equations were then derived. The correctness of the dynamic 

models was verified using finite-element analysis (FEA) for both TRLFJ and TFLFJ. 

AII.1. Dynamic modelling of TRLFJ: 

As shown in Fig. 3 (Chapter 1) TRLFJ had two flexible joints and two rigid links. Thus, 

it had four degrees of freedom (DOF). Two DOF’s ( 1θ , 2θ ) were related to the rotations of the 

links, and the other two DOF’s ( 3θ , 4θ ) represented the rotations of motors. The Lagrange’s 

equations were used to extract the dynamic equations in terms of generalized coordinates. In 

general, Lagrange’s equation for a system with n degrees of freedom was 

niUTT
dt

d
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iii
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where T  and U were the total kinetic and potential energy, respectively, and iθ  was the i’th 

generalized coordinate. Also, iτ  was the generalized applied torque corresponding to the i’th 

generalized coordinate iθ , and n  is the number of the generalized coordinates. Since the 

flexibilities of the joints were modeled as linear springs, the potential energy of the system due to 

the joint flexibilities became  
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θθθθ −+−= kkU  (AII.2) 

where 1k  and 2k represented the joint flexibilities. The kinetic energy of the system was the 

summation of the kinetic energy of links, lT , the kinetic energy of payload mass, 
pT , the kinetic 
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energy of rotors, rT  and the kinetic energy of hubs, hT . Therefore,  

hrpl TTTTT +++=  (AII.3) 
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  In equations (AII.4)-(AII.7), for T � ���, J/N is the mass of link i; J- is the mass of the 

manipulator’s tip; JWN is  the mass of the hub i; �5 is the length of link i;  �=N is the distance of 

the center of mass of link  i from joint i axis. Parameters $/N,  $-, $WN and $VN are respectively mass 

moments of inertia of link i, manipulator’s tip, hub of joint i, and rotor of joint i. Derivatives of 

the kinetic and potential energies of TRLFJ were determined as 
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Combining equations (AII.8)-(AII.19) and (AII.1) led to the Lagrange’s equations of the 

system 
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0)( 42242 =−− θθθ kI r
��  (AII.23) 

Equations (AII.20)-(AII.23) were then rewritten in the matrix form as 

τ=++ KCM
!!!!!!!!!!!!!!!!!!!!
���� ),()(  (AII.24) 

where M , C  and K represented the mass matrix, the centripetal and centrifugal matrix and the 

stiffness matrix, respectively. The � ) � square matrices M , C  and K  matrices and � ) �
vector of applied torques S  were  

~ � û~88 ~8� � �~�8 ~�� � �� � $V8 �� � � $V�ü, n � û � n8� � �n�8 � � �� � � �� � � �ü, + � û ]8 � P]8 �� ]� � P]�P]8 � ]8 �� P]� � ]� ü, S � ûPS��S8S� ü
where components of these matrices were 

~88 � $/m QJ/m�=m� QJ/Z�8� QJ-�8� Q $WZ QJWZ�8�, (AII.25) 

�8� � ®&ZÒ8Ò�Zqrs���� P �8� Q ®ÆÒ8Ò�qrs���� P �8�,  (AII.26) 

~�8 � ~8�, (AII.27) 

��� � �&Z Q®&ZÒ�Z� Q �Æ Q®ÆÒ��  (AII.28) 

n8� � PtJ/Z�8�=Z QJ-�8��usvw��^� P 8̂� .̂� (AII.29) 

n�8 � tJ/Z�8�=Z QJ-�8��usvw��^� P 8̂� .̂8 (AII.30) 

Some properties were noted about the dynamic equation of the system. First, the matrices 

M  and C  were functions of generalized coordinates 8̂ and ^�, and their derivatives .̂8 and .̂�. 

Second, the matrices M  and K  were symmetric; that is ~5H � ~H5 and +5H � +H5 where T �
����
��.  
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AII.2. Simulation results for dynamic equations of TRLFJ 

Exact dynamic modeling of the system was carried out using Matlab software. The 

dynamic equations of the system were solved using the Rung-Kutta method. The time step was 

fixed as 0001.0=∆t sec. and the simulation was performed during two seconds and the constant 

torques were mN.3.01 =τ  and mN.1.02 =τ . Both links similarly had m5.0  length, cross section 

201.001.0 m×  and density 
3/7800 mkg . The payload mass and the payload inertia were kg2.0

and 
2.001.0 mkg . The inertias of the rotors of both motors were 

2.001.0 mkg and inertias of the 

stators of both motors were 
2.0003.0 mkg . Also, the spring constants were selected as 

radmNkk /.3021 == . 

The developed dynamic model based on the Lagrage’s method (LM model) was verified 

using ANSYS finite element analysis software. Links were modeled by 3-DOF element 

“Beam3”. The mass and inertias were modeled using 6-DOF element “Mass21”. To model the 

torsional springs, 1-DOF element “Combin14” was used. The elasticity module was set to 

PaE 1210210 ×= (1000 times stiffer than steel) in order to have the rigid links. The rotations of 

links as well as rotations of motors are shown in Figs. AII.1-AII.4. According to these figures, 

the results obtained using Lagrange’s method (LM) were found to be in good agreements with 

the results of FEA.   
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Figure AII.1. Rotation of the shoulder link of TRLFJ 

Figure AII.2. Rotation of the shoulder motor of TRLFJ 

Figure AII.3. Rotation of the elbow link of TRLFJ 
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Figure AII.4. Rotation of the elbow joint of TRLFJ 

AII.3. Dynamic modelling of TFLFJ

For the dynamic modeling of two-flexible-link flexible-joint (TFLFJ), a combination of 

the Lagrange’s method and assumed mode shapes method (LAMM) was employed. The 

modeling procedure was similar to the one that was used in the previous section for the TRLFJ. 

However, for TFLFJ, eight degrees of freedom contributed to the dynamics of the system. Based 

on the assumed mode shapes method, the deflection of each link was modeled using two 

clamped-free mode shapes. Therefore, four DOF represented the flexibility of two links. Also, 

two DOF’s ( 1θ , 2θ ) were related to the rotations of the links, and other two DOF’s ( 3θ , 4θ ) 

represented the rotations of rotors.  

To employ the Lagrange’s equations, the kinetic and potential energies were first derived 

for the links, payload mass, hubs and rotors. According to equation (1) in Chapter 6, the velocity 

of an arbitrary point along the first link of the manipulator, Ä#-�8�, was written as 

Ä#-�8� � Ä#��8� Q Û$8 ) ��8 Q Ä#V'/�8� (AII.31) 

For the first link, velocity of the coordinate system��48� �8��was zero (See Fig. AII.5); that 

is�Ä#��8� � ���and the angular velocity of �48� �8� was Û$8 � .̂8]E . The vector ��8, which indicated the 
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coordinates of point %8, was ��8 � 4-8'( Q �-8)(, and the relative velocity of point %8 with respect 

to the coordinate system� �48� �8�� ���� � Ä#V'/�8� � �.-8)(�� ��	
�� substituting these parameters in 

(AII.31), the velocity of point %8 was determined as 

Ä#-�8� � t�.-8 Q 4-8 .̂8u)(Q tP�-8 .̂8u'( (AII.32) 

Figure AII.5. Schematic of TFLFJ 

The velocity of an arbitrary point %� along the second link of the manipulator was 

similarly identified as 

Ä#-��� � Ä#���� Q Û$� ) ��� Q Ä#V'/��� (AII.33) 

The terms in the right-hand side of (AII.33) were  

� Ä#���� � * � P�-8Ö �D8��-8Ö �D8� � + j�«� ^� P�T9 ^��T9 ^� �«� ^� k * �-8 .̂8�.-8�D8� Q D8 .̂8+� (AII.34)�

� Û$� � j .̂8 Q ,L[.-mL� .�m7/m Q .̂�k ]E � (AII.35)�

� ��� � 4-�'(Q �-�)(� (AII.36)�
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� Ä#V'/��� � �.-�)(� (AII.37)

where �-8Ö �D8� is the derivative of the deflection of first link with respect to 48, and is measured 

at  48 � D8. Substituting (AII.34)-(AII.37) into (AII.33) led to 

Ä#-��� � Ä#-����'( Q Ä#-/���)( (AII.38)

where 

Ä#-���� � �-8�D8� .̂8¡�-8Ö �08��svw ^� P qrs ^�� P �svw ^� Q qrs ^��¢ Q �.-8�D8�¡P�-8Ö �D8� qrs ^� P
svw ^�% P �-�¡ .̂8 Q �.-8�D8� Q .̂�¢                             (AII.39) 

Ä#-/��� � P�-8�D8� .̂8¡P�-8Ö �D8��svw^� Q qrs ^�� P �svw ^� P qrs ^��¢ Q �.-8�D8�¡P�-8Ö �D8� qrs ^� Q
svw ^�% Q �.-� Q 4-�¡ .̂8 Q �.-8�D8� Q .̂�¢                  (AII.40)

The kinetic energy of the links was obtained by substituting velocity of the second link, 

equations (AII.39) and (AII.40), and velocity of the first link, equation (AII.37)  into equation (8) 

in Chapter 6. That is, 

O/ � 8�X Ð8/m? 1¡P�-8 .̂8¢� Q ¡�.-8 Q 4-8 .̂8¢�2��� �4 Q 8�X Ð�/Z? 3j�%��D�� .̂ � Y�%�× �0���svw ^� P
qrs ^�� P �svw ^� Q qrs ^��¢ Q �. %��D�� YP�%�× �D�� qrs ^� P svw ^�\ P �%� Y .̂ � Q �. %��D�� Q .̂ �\k� Q
jP�%��D�� .̂ � YP�%�× �D���svw ^� Q qrs ^�� P �svw ^� P qrs ^��\ Q �. %��D�� YP�%�× �D�� qrs ^� Q
svw ^�¢ Q �. %� Q 4%� Y .̂ � Q �. %��D�� Q .̂ �\k�4��� �4               (AII.41) 

Other terms of the kinetics energy were determined from equations (5)-(7) in Chapter 6. 

Also, the potential energy was found using equation (9) in Chapter 6; that is, 

R � 8�X �>$�8/m? j,Z[-m��-m�,�-mZ k� �4 Q 8�X �>$��/Z? j,Z[-Z��-Z�,�-ZZ k� �4 Q 8� ]8� 8̂ P _8�� Q 8� ]��^� P _���
 (AII.42)
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where _8 and _� are the rotations of shoulder and elbow joints, respectively. The Lagrange’s 

equations were then used to obtain the general form of the dynamic equations for TFLFJ. The 

components of matrices ~, n, and + are given in the following in the MATLAB code written by 

the candidate. In this program, the physical properties of the shoulder and elbow links, tip-mass 

and the joints were identified in the first part, and the components of the matrices were defined in 

the next part of the code. This code was employed in a Simulink file for the simulation of the 

dynamics of TFLFJ manipulator. The schematic of the Simulink file is shown in Figs. AII.5 and 

AII.6. 
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%This program solves the dynamics of two flexible link-flexible joint
%two mode shapes are considered for each link and Lagrange method was used,
% this system has 8 degrees of freedom: q(1):first link rotation,
% q(2):second link rotation, q(3),q(4) represent the deflection of the
% first link (two mode shapes) and q(5),q(6) represent the deflection of the
% second link (two mode shapes),q(7) and q(8) represent the rotation of the
% motors.

function y=two_FLFJ_sym(q);
clc

% Physical properties of the shoulder link
l(1)=0.5;
ru(1)=8000;
thick(1)=2e-3;
width(1)=2.5e-2;
mh(1)=0;
Ir(1)=0.01;
% Physical properties of the elbow link
l(2)=0.5;
ru(2)=8000;
thick(2)=2e-3;
width(2)=2.5e-2;
mh(2)=0.5;
Ih(2)=0;
Ir(2)=0.01;
% Specifications of the tip-mass
mp=0.1;
Ip=5e-4;

d=0.5*l;
A=width.*thick;
I=(1/12).*width.*thick.^3;
ml=l.*ru.*A;
Il=(1/3).*ml.*l.^2;
ro=ru.*A;

% Specifications of the joint flexibities
k(1)=20;
k(2)=20;

freqs_link=[1.2220 4.5214;3.6762 24.8624];
v=[0.0259 0.0413;0.0840 0.1186];
w=[0.0096 0.0138;0.0307 0.0323];
Phi=[0.3695 0.2971;1.1366 -0.2776];
Phi_d=[1.2476 -1.4762;3.3582 -12.8776];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assembling of matrices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% t components
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t11=Phi(1,1)-l(1)*Phi_d(1,1);
t12=Phi(1,2)-l(1)*Phi_d(1,2);
t21=v(2,1)+mp*Phi(2,1);
t22=v(2,2)+mp*Phi(2,2);
t31=Phi_d(1,1);
t32=Phi_d(1,2);

t1=t11*q(3)+t12*q(4);
t2=t21*q(5)+t22*q(6);
t3=t31*q(3)+t32*q(4);

% b components
b111=Ih(2)+Ir(2)+Il(1)+Il(2)+mh(2)*l(1)^2+ml(2)*l(1)^2+Ip+mp*(l(1)^2+l(2)^2);
b112=2*(ml(2)*d(2)+mp*l(2))*l(1);
b113=2*(ml(2)*d(2)+mp*l(2));
b114=-2*l(1);

b121=Il(2)+Ip+mp*l(2)^2;
b122=(ml(2)*d(2)+mp*l(2))*l(1);
b123=ml(2)*d(2)+mp*l(2);
b124=-l(1);

b131=w(1,1)+(Ih(2)+Ir(2)+Il(2)+Ip+mp*l(2)^2)*Phi_d(1,1)+(mh(2)+ml(2)+mp)*l(1)*Phi(1,1);
b132=(ml(2)*d(2)+mp*l(2))*(Phi(1,1)+l(1)*Phi_d(1,1));
b133=-(Phi(1,1)+l(1)*Phi_d(1,1));
b134=-(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)-Phi(1,2)*Phi_d(1,1));

b141=w(1,2)+(Ih(2)+Ir(2)+Il(2)+Ip+mp*l(2)^2)*Phi_d(1,2)+(mh(2)+ml(2)+mp)*l(1)*Phi(1,2);
b142=(ml(2)*d(2)+mp*l(2))*(Phi(1,2)+l(1)*Phi_d(1,2));
b143=-(Phi(1,2)+l(1)*Phi_d(1,2));
b144=-(ml(2)*d(2)+mp*l(2))*(Phi(1,2)*Phi_d(1,1)-Phi(1,1)*Phi_d(1,2));

b151=w(2,1)+Ip*Phi_d(2,1)+mp*l(2)*Phi(2,1);
b152=(v(2,1)+mp*Phi(2,1))*l(1);
b153=v(2,1)+mp*Phi(2,1);

b161=w(2,2)+Ip*Phi_d(2,2)+mp*l(2)*Phi(2,2);
b162=(v(2,2)+mp*Phi(2,2))*l(1);
b163=v(2,2)+mp*Phi(2,2);

b181=Ir(2);

b221=Il(2)+Ip+mp*l(2)^2;
b231=(Il(2)+Ip+mp*l(2)^2)*Phi_d(1,1);
b232=(ml(2)*d(2)+mp*l(2))*Phi(1,1);
b233=-Phi(1,1);
b234=-(ml(2)*d(2)+mp*l(2))*Phi(1,1);

b241=(Il(2)+Ip+mp*l(2)^2)*Phi_d(1,2);
b242=(ml(2)*d(2)+mp*l(2))*Phi(1,2);
b243=-Phi(1,2);
b244=-(ml(2)*d(2)+mp*l(2))*Phi(1,2);

b251=w(2,1)+Ip*Phi_d(2,1)+mp*l(2)*Phi(2,1);
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b261=w(2,2)+Ip*Phi_d(2,2)+mp*l(2)*Phi(2,2);

b331=ml(1);
b332=2*(ml(2)*d(2)+mp*l(2))*Phi(1,1)*Phi_d(1,1);
b333=-2*Phi(1,1)*Phi_d(1,1);
b341=0;
b342=(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)+Phi(1,2)*Phi_d(1,1));
b343=-(Phi(1,1)*Phi_d(1,2)+Phi(1,2)*Phi_d(1,1));
b351=(w(2,1)+Ip*Phi_d(2,1)+mp*l(2)*Phi(2,1))*Phi_d(1,1);
b352=(v(2,1)+mp*Phi(2,1))*Phi(1,1);
b353=-(v(2,1)+mp*Phi(2,1))*Phi(1,1);
b361=(w(2,2)+Ip*Phi_d(2,2)+mp*l(2)*Phi(2,2))*Phi_d(1,1);
b362=(v(2,2)+mp*Phi(2,2))*Phi(1,1);
b363=-(v(2,2)+mp*Phi(2,2))*Phi(1,1);
b381=Ir(2)*Phi_d(1,1);                  % Added terms

b441=ml(1);
b442=2*(ml(2)*d(2)+mp*l(2))*Phi(1,2)*Phi_d(1,2);
b443=-2*Phi(1,2)*Phi_d(1,2);
b451=(w(2,1)+Ip*Phi_d(2,1)+mp*l(2)*Phi(2,1))*Phi_d(1,2);
b452=(v(2,1)+mp*Phi(2,1))*Phi(1,2);
b453=-(v(2,1)+mp*Phi(2,1))*Phi(1,2);
b461=(w(2,2)+Ip*Phi_d(2,2)+mp*l(2)*Phi(2,2))*Phi_d(1,2);
b462=(v(2,2)+mp*Phi(2,2))*Phi(1,2);
b463=-(v(2,2)+mp*Phi(2,2))*Phi(1,2);
b481=Ir(2)*Phi_d(1,2);                  % Added terms

b551=ml(2);
b561=0;
b661=ml(2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
% h components
h101=-2*(ml(2)*d(2)+mp*l(2))*l(1);
h102=2*(ml(2)*d(2)+mp*l(2))*(Phi(1,1)-l(1)*Phi_d(1,1));
h103=2*(ml(2)*d(2)+mp*l(2))*(Phi(1,2)-l(1)*Phi_d(1,2));
h104=-2*(v(2,1)+mp*Phi(2,1))*l(1);
h105=-2*(v(2,2)+mp*Phi(2,2))*l(1);
h106=-(ml(2)*d(2)+mp*l(2))*l(1);
h107=-(ml(2)*d(2)+mp*l(2))*l(1)*Phi_d(1,1);  %%%My comment
h108=-2*(ml(2)*d(2)+mp*l(2))*l(1)*Phi_d(1,2);
h109=-2*(v(2,1)+mp*Phi(2,1))*l(1);
h110=-2*(v(2,2)+mp*Phi(2,2))*l(1);
h111=-2*(v(2,1)+mp*Phi(2,1))*l(1)*Phi_d(1,1);
h112=-2*(v(2,2)+mp*Phi(2,2))*l(1)*Phi_d(1,1);
h113=-2*(v(2,1)+mp*Phi(2,1))*l(1)*Phi_d(1,2);
h114=-2*(v(2,2)+mp*Phi(2,2))*l(1)*Phi_d(1,2);
h115=2*(ml(2)*d(2)+mp*l(2));
h116=ml(2)*d(2)+mp*l(2);
h117=-(v(2,1)+mp*Phi(2,1));
h118=-(v(2,2)+mp*Phi(2,2));
h119=-2*l(1);
h120=-l(1);
h121=-(Phi(1,1)+l(1)*Phi_d(1,1));
h122=-(Phi(1,2)+l(1)*Phi_d(1,2));
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h123=-(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)-Phi(1,2)*Phi_d(1,1));
h124=-(ml(2)*d(2)+mp*l(2))*(Phi(1,2)*Phi_d(1,1)-Phi(1,1)*Phi_d(1,2));

h201=(ml(2)*d(2)+mp*l(2))*l(1);
h202=2*(ml(2)*d(2)+mp*l(2))*Phi(1,1);
h203=2*(ml(2)*d(2)+mp*l(2))*Phi(1,2);
h204=-(ml(2)*d(2)+mp*l(2));
h205=-(v(2,1)+mp*Phi(2,1));
h206=-(v(2,2)+mp*Phi(2,2));
h207=l(1);
h208=Phi(1,1)+l(1)*Phi_d(1,1);
h209=Phi(1,2)+l(1)*Phi_d(1,2);
h210=(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)-Phi(1,2)*Phi_d(1,1));
h211=(ml(2)*d(2)+mp*l(2))*(Phi(1,2)*Phi_d(1,1)-Phi(1,1)*Phi_d(1,2));
h212=Phi(1,1)*Phi_d(1,1);
h213=Phi(1,1)*Phi_d(1,2)+Phi(1,2)*Phi_d(1,1);
h214=(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h215=(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h216=Phi(1,2)*Phi_d(1,2);
h217=(v(2,1)+mp*Phi(2,1))*Phi(1,2);
h218=(v(2,2)+mp*Phi(2,2))*Phi(1,2);

h301=-(ml(2)*d(2)+mp*l(2))*(Phi(1,1)-l(1)*Phi_d(1,1));
h302=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,1);
h303=2*(ml(2)*d(2)+mp*l(2))*(Phi(1,2)*Phi_d(1,1)-Phi(1,1)*Phi_d(1,2));
h304=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h305=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h306=-(ml(2)*d(2)+mp*l(2))*Phi(1,1);
h307=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,1)*Phi_d(1,1);
h308=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,1)*Phi_d(1,2);
h309=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h310=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h311=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,1)*Phi_d(1,1);
h312=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,1)*Phi_d(1,1);
h313=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,1)*Phi_d(1,2);
h314=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,1)*Phi_d(1,2);
h315=-(Phi(1,1)+l(1)*Phi_d(1,1));
h316=-Phi(1,1);
h317=-2*Phi(1,1)*Phi_d(1,1);
h318=-(Phi(1,1)*Phi_d(1,2)+Phi(1,2)*Phi_d(1,1));
h319=-(ml(2)*d(2)+mp*l(2))*Phi(1,1);
h320=-(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h321=-(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h322=-(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)-Phi(1,2)*Phi_d(1,1));

h401=-(ml(2)*d(2)+mp*l(2))*(Phi(1,2)-l(1)*Phi_d(1,2));
h402=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,2);
h403=2*(ml(2)*d(2)+mp*l(2))*(Phi(1,1)*Phi_d(1,2)-Phi(1,2)*Phi_d(1,1));
h404=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,2);
h405=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,2);
h406=-(ml(2)*d(2)+mp*l(2))*Phi(1,2);
h407=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,2)*Phi_d(1,1);
h408=-2*(ml(2)*d(2)+mp*l(2))*Phi(1,2)*Phi_d(1,2);
h409=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,2);
h410=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,2);
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h411=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,2)*Phi_d(1,1);
h412=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,2)*Phi_d(1,2);
h413=-2*(v(2,1)+mp*Phi(2,1))*Phi(1,2)*Phi_d(1,1);
h414=-2*(v(2,2)+mp*Phi(2,2))*Phi(1,2)*Phi_d(1,2);
h415=-(Phi(1,2)+l(1)*Phi_d(1,2));
h416=-Phi(1,2);
h417=-(Phi(1,1)*Phi_d(1,2)+Phi(1,2)*Phi_d(1,1));
h418=-2*Phi(1,2)*Phi_d(1,2);
h419=-(ml(2)*d(2)+mp*l(2))*Phi(1,2);
h420=-(v(2,1)+mp*Phi(2,1))*Phi(1,2);
h421=-(v(2,2)+mp*Phi(2,2))*Phi(1,2);
h422=-(ml(2)*d(2)+mp*l(2))*(Phi(1,2)*Phi_d(1,1)-Phi(1,1)*Phi_d(1,2));

h501=(v(2,1)+mp*Phi(2,1))*l(1);
h502=2*(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h503=2*(v(2,1)+mp*Phi(2,1))*Phi(1,2);
h504=v(2,1)+mp*Phi(2,1);
h505=-(v(2,1)+mp*Phi(2,1))*Phi(1,1);
h506=-(v(2,1)+mp*Phi(2,1))*Phi(1,2);

h601=(v(2,2)+mp*Phi(2,2))*l(1);
h602=2*(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h603=2*(v(2,2)+mp*Phi(2,2))*Phi(1,2);
h604=v(2,2)+mp*Phi(2,2);
h605=-(v(2,2)+mp*Phi(2,2))*Phi(1,1);
h606=-(v(2,2)+mp*Phi(2,2))*Phi(1,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
% Mass matrix
c=cos(q(2));
s=sin(q(2));

M=zeros(8,8);
M(1,1)=b111+b112*c+(b113*t1+b114*t2)*s;
M(1,2)=b121+b122*c+(b123*t1+b124*t2)*s;
M(1,3)=b131+b132*c+(b133*t2+b134*q(4))*s;
M(1,4)=b141+b142*c+(b143*t2+b144*q(3))*s;
M(1,5)=b151+b152*c+b153*t1*s;
M(1,6)=b161+b162*c+b163*t1*s;
M(1,8)=b181;

M(2,2)=b221;
M(2,3)=b231+b232*c+(b233*t2+b234*t3)*s;
M(2,4)=b241+b242*c+(b243*t2+b244*t3)*s;
M(2,5)=b251;
M(2,6)=b261;

M(3,3)=b331+b332*c+b333*t2*s;
M(3,4)=b341+b342*c+b343*t2*s;
M(3,5)=b351+b352*c+b353*t3*s;
M(3,6)=b361+b362*c+b363*t3*s;
M(3,8)=b381;
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M(4,4)=b441+b442*c+b443*t2*s;
M(4,5)=b451+b452*c+b453*t3*s;
M(4,6)=b461+b462*c+b463*t3*s;
M(4,8)=b481;

M(5,5)=b551;
M(5,6)=b561;

M(6,6)=b661;
M(7,7)=Ir(1);    %1st Rotor

M(8,8)=Ir(2);    %2nd Rotor
for j=8:-1:1
    for i=1:8
        M(j,i)=M(i,j);
    end
end

% H matrix

H(1)=((h101*q(10)+h102*q(11)+h103*q(12)+h104*q(13)+h105*q(14))*q(9)+...
      (h106*q(10)+h107*q(11)+h108*q(12)+h109*q(13)+h110*q(14))*q(10)+...  
      (h111*q(13)+h112*q(14))*q(11)+(h113*q(13)+h114*q(14))*q(12))*s+...
      ((h115*q(9)+h116*q(10)+h117*q(13)+h118*q(14))*t1+...
       (h119*q(9)+h120*q(10)+h121*q(11)+h122*q(12))*t2+...
       h123*q(4)*q(11)+h124*q(3)*q(12))*q(10)*c;
H(2)=(h201*q(9)+h202*q(11)+h203*q(12))*q(9)*s+...
     (((h204*q(9)+h205*q(13)+h206*q(14))*t1+...
       (h207*q(9)+h208*q(11)+h209*q(12))*t2+...
        h210*q(4)*q(11)+h211*q(3)*q(12))*q(9)+...
       ((h212*q(11)+h213*q(12))*t2+(h214*q(13)+h215*q(14))*t3)*q(11)+...
        (h216*q(12)*t2+(h217*q(13)+h218*q(14))*t3)*q(12))*c;
H(3)=((h301*q(9)+h302*q(10)+h303*q(12)+h304*q(13)+h305*q(14))*q(9)+...
      (h306*q(10)+h307*q(11)+h308*q(12)+h309*q(13)+h310*q(14))*q(10)+...  
      (h311*q(13)+h312*q(14))*q(11)+(h313*q(13)+h314*q(14))*q(12))*s+...
      ((h315*q(9)+h316*q(10)+h317*q(11)+h318*q(12))*t2+...
       (h319*q(10)+h320*q(13)+h321*q(14))*t3+...
       h322*q(4)*q(9))*q(10)*c;
H(4)=((h401*q(9)+h402*q(10)+h403*q(11)+h404*q(13)+h405*q(14))*q(9)+...
      (h406*q(10)+h407*q(11)+h408*q(12)+h409*q(13)+h410*q(14))*q(10)+...  
      (h411*q(13)+h412*q(14))*q(11)+(h413*q(13)+h414*q(14))*q(12))*s+...
      ((h415*q(9)+h416*q(10)+h417*q(11)+h418*q(12))*t2+...
       (h419*q(10)+h420*q(13)+h421*q(14))*t3+...
       h422*q(3)*q(9))*q(10)*c;
H(5)=(h501*q(9)+h502*q(11)+h503*q(12))*q(9)*s+...
     (h504*t1*q(9)+(h505*q(11)+h506*q(12))*t3)*q(10)*c;
H(6)=(h601*q(9)+h602*q(11)+h603*q(12))*q(9)*s+...
     (h604*t1*q(9)+(h605*q(11)+h606*q(12))*t3)*q(10)*c; 
H(7)=0;
H(8)=0;

K=zeros(8,8);
Wn=2*pi*freqs_link;
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K(1,1)=k(1);
K(1,7)=-k(1);
K(2,2)=k(2);
K(2,8)=-k(2);
K(3,3)=Wn(1,1)^2*ml(1);
K(4,4)=Wn(1,2)^2*ml(1);
K(5,5)=Wn(2,1)^2*ml(2);
K(6,6)=Wn(2,2)^2*ml(2);
K(7,1)=-k(1);
K(7,7)=k(1);
K(8,2)=-k(2);
K(8,8)=k(2);

U=zeros(8,1);
U(7,1)=q(17);
U(8,1)=q(18);
%H;
%M;
%Eig=eig(M);
H=H';
y=inv(M)*(U-H-K*[q(1);q(2);q(3);q(4);q(5);q(6);q(7);q(8)]);



Figure AII.6. Schematic of the Simulink file used for 
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chematic of the Simulink file used for the dynamic modeling of TFLFJ dynamic modeling of TFLFJ 



Figure AII.7. 

The developed dynamic model for TFLFJ was 

(FEA). Figures AII.8-AII.11 compare 

rotations of the joints and links.

compared in Fig. AII.12. According to these figures, the results obtained us

LAMM approach. 
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. Details of the subsystem shown in Fig. AII.6 

The developed dynamic model for TFLFJ was then verified with finite element 

compare the simulation results of LAMM with

. The deflection observed at the end of the shoulder link

According to these figures, the results obtained using FEA confirm 

verified with finite element analysis 

with FEA for the 

deflection observed at the end of the shoulder link is also 

According to these figures, the results obtained using FEA confirm 
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Figure AII.8. Rotation of the shoulder joint of TFLFJ 

Figure AII.9. Rotation of the elbow joint of TFLFJ 
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Figure AII.10. Slope of the shoulder link at shoulder joint for TFLFJ 

Figure AII.11. Slope of the elbow link at elbow joint for TFLFJ 
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Figure AII.12. Deflection of the end of shoulder link (�8 � �-8��8� in Fig. AII.5) for TRLFJ 

Figure AII.13. Deflection of the end of shoulder link (�� � �-����� in Fig. AII.5) for TRLFJ 


