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ABSTRACT 

 Since caloric restriction (CR) can modify multiple pathways central to the 

ischemic cascade and enhance neuroplasticity mechanisms, we hypothesized that CR 

should exert protective effects following brain ischemia.  Previous studies have suggested 

benefit when CR was administered prior to ischemia.  This study investigated whether 

prolonged CR beginning after global ischemia would result in lasting protection as 

assessed by performance in the open field, as a measure of functional outcome, and 

hippocampal CA1 neuronal counts.  Adult male Mongolian gerbils were subjected to five 

minute bilateral carotid artery occlusion (I) or sham surgery (S) with tympanic 

temperature maintained at 36.5 ± 0.2ºC during the intra-ischemic period.  After screening 

out gerbils with incomplete ischemia, each of the two surgical groups were randomly 

assigned to control diet (CON) or 30% CR for the duration of the study (60d).  Gerbils 

were tested in the open field on d3, 7, 10, 30 and 60.  Ischemic animals on control diet 

showed a significantly higher level of activity in the open field (impaired habituation) 

compared to SCON gerbils on all test days (p<0.001).  Open field activity was decreased 

9% in the ICR group versus ICON gerbils on d7 (p=0.024), suggesting a transient 

neuroprotective effect.  Open field activity of the SCR gerbils began increasing relative to 

that of SCON gerbils during the last 30 days of the study (p=0.055 on d60), raising the 

question of suitability of the open field test for long-term studies of CR and ischemia.  

Brain sections obtained at d60 were stained with hematoxylin & eosin.  Hippocampal 

CA1 neuron counts were reduced 88% by ischemia (p<0.001), and there was no sparing 

effect of CR.  These findings suggest that prolonged CR administered beginning after 

global ischemia cannot diminish brain injury or enhance long-term recovery. 
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CHAPTER 1 

INTRODUCTION 

1.1 Rationale 

 Stroke is the third leading cause of death in developed countries and is a major 

cause of serious long-term disability (Rosamond et al., 2007).  Attempts to develop 

neuroprotective agents with lasting benefit for stroke-induced brain injury have been 

unsuccessful (Ginsberg, 2009; Gladstone et al., 2002).  Mechanisms responsible for the 

cell death cascade following brain ischemia include adenosine triphosphate depletion, 

glutamate excitotoxicity, membrane depolarization, increased intracellular calcium, 

oxidative stress, and inflammation (Harukuni and Bhardwaj, 2006; Dirnagl et al., 1999; 

Juurlink and Sweeney, 1997).  The targeting of neuroprotectants to a single component of 

the complex ischemic cascade is believed to be one major reason for their failure in 

clinical trials (Ginsberg, 2009; Savitz and Fisher, 2007; Fisher and Brott, 2003). Novel 

methods of neuroprotection are needed and should involve combination therapy (Fisher 

and Brott, 2003; Fisher, 2003; Stroke Therapy Academic Industry Roundtable, 1999).  

 Caloric restriction (CR), in which energy intake is reduced by 30-40% while 

sufficient intake of other nutrients is maintained, has been extensively studied for its 

remarkable capacity to extend the average and maximum life span of a number of animal 

species (Young and Kirkland, 2007; Martin et al., 2006; Bordone and Guarente, 2005).  

Caloric restriction can slow age-related alterations in the brain, reduce the incidence of 

age-associated cardiovascular and neurodegenerative diseases, and exert beneficial
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 effects in a variety of neurodegenerative disorders (Ingram et al., 2007; Mattson, 2005; 

Mattson and Wan, 2005; Heilbronn and Ravussin, 2003). 

 We hypothesized that CR should protect against stroke-induced brain damage 

because of its potential for disrupting multiple interrelated pathophysiological events in 

the ischemic cascade.  Caloric restriction is believed to act as a mild stressor that 

increases subsequent stress resistance (de Cabo et al., 2003; Heydari et al., 1996), 

reducing neuronal death due to excitotoxic, oxidative, or metabolic insults (Mattson, 

2005; Mattson and Wan, 2005).  Stress and cell survival proteins, such as heat shock 

protein-70 and sirtuin proteins, are induced by CR (Lin et al., 2000; Yu and Mattson, 

1999).  Caloric restriction can also dampen oxidative damage and the inflammatory 

response (Pamplona et al., 2002; Chandrasekar et al., 2001; Forster et al., 2000; 

Spaulding et al., 1997; Sohal et al., 1994).  Core body temperature is lowered by CR 

(Ferguson et al., 2007; Heilbronn et al., 2006; Lane et al., 1996), which is significant 

because of the marked protective effects of hypothermia against ischemic brain injury 

(van der Worp et al., 2007; Colbourne et al., 1997).  Caloric restriction may also improve 

outcome from stroke by enhancing neuroplasticity mechanisms important to recovery.  

Increased neurogenesis has been reported in response to CR (Lee et al., 2000; Lee et al., 

2002) as has increased production of growth factors, such as brain-derived neurotrophic 

factor, that support structural plasticity (Lee et al., 2000; Lee et al., 2002; Duan et al., 

2003; Duan et al., 2001). 

 There are few studies of CR in experimental stroke models. Decreased brain 

infarct volume and improved neurological deficit score at 24 hours following middle 

cerebral artery occlusion have been reported in rats exposed previously to a three-month 
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intermittent fasting regimen as an alternate method of inducing CR (Yu and Mattson, 

1999). Although this study suggests that a lifestyle incorporating CR might improve 

outcome after stroke, it has some critical limitations when assessed against experimental 

stroke research standards (Stroke Therapy Academic Industry Roundtable, 1999).  To 

demonstrate true efficacy, evidence would need to be obtained with longer-term 

endpoints to establish that CR was not just postponing neuronal death and with the 

addition of functional tasks that are sensitive for detecting persistent disability after focal 

ischemia (Corbett and Nurse, 1998).  Caloric restriction (40%) administered before and 

continuing after global ischemia has also been suggested to improve ischemia-induced 

memory impairments (Roberge et al., 2008a; Roberge et al., 2008b), but these studies 

also acknowledge some methodological limitations.  The clinical relevance of testing CR 

provided prior to stroke can also be questioned, since a chronic energy restriction of 30-

40% is not likely an attainable goal for the human population (Ingram et al., 2006).  

Therefore, we studied CR following bilateral carotid artery occlusion in the gerbil, a 

well-validated model of global ischemia, assessing both hippocampal CA1 (cornu-

ammonis 1) cell death and habituation in the open field. 

1.2 Hypothesis 

 Caloric restriction provided immediately following brain ischemia will result in a 

lasting decrease in brain damage as assessed by performance in the open field, as a 

measure of functional outcome, and hippocampal CA1 neuronal counts.  

1.3 Objectives 

1.  Assess the long-term (60d) effects of post-ischemic CR on functional outcome, as 

measured by the open field test. 
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2.  Assess the long-term (60d) effects of post-ischemic CR on hippocampal CA1 neuronal 

counts.



CHAPTER 2 

LITERATURE REVIEW 

2.1 Stroke as a health issue 

 Stroke, a reduction in blood flow to the brain, is a major cause of death and 

chronic disability in North America.  Ischemic strokes account for about 80% of all 

strokes and are caused when a blood clot causes disruption of blood flow to the brain.  

Approximately 20% are hemorrhagic strokes, and are caused by bleeding into the brain 

when a blood vessel bursts (Heart and Stroke Foundation of Canada, 2006).  There are 

currently more than 50 000 strokes in Canada each year and incidence is anticipated to 

increase as the population ages (Heart and Stroke Foundation of Canada, 2006).  

The effects of a stroke will vary depending on what regions of the brain are 

damaged and the severity of damage.  Stroke survivors can experience weakness and 

paralysis on one or both sides of the body, ataxia, learning impairments, memory loss, 

agnosia, aphasia, and depression, as well as difficulties with breathing, chewing, and 

swallowing.  These statistics illustrate the serious morbidity and mortality of stroke with 

40% of stroke victims being moderately to severely impaired following stroke, and 10% 

of stroke victims being severely disabled and requiring long-term care (Heart and Stroke 

Foundation of Canada, 2006).  Despite the demand for forms of treatment that will reduce 

stroke-induced brain injury, so far attempts to improve stroke outcome have been largely 

unsuccessful (Ginsberg, 2009; Gladstone et al., 2002).
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Intravenous tissue plasminogen activator (tPA) is currently the only validated 

therapy for acute ischemic stroke (Ginsberg, 2009; Savitz and Fisher, 2007; Besancon et 

al., 2008).  Tissue plasminogen activator is injected into the bloodstream where it can 

travel to the site of the clot and start to break it up.  Unfortunately, tPA cannot be given to 

stroke patients more than three hours after the onset of their symptoms because it is no 

longer effective and can increase the risk of bleeding in the brain.  Multiple tests are also 

required to verify the occurrence of ischemic rather than hemorrhagic stroke and the 

majority of patients are not able to receive this treatment in time.  Depending on the 

location of the blood clot, tPA may be injected intra-arterially directly at the site of the 

clot as long as six hours after the onset of symptoms, although this treatment requires 

special equipment and technical expertise that is only available in a small number of 

hospitals.  Other approaches being investigated to establish more rapid reperfusion 

include mechanical clot retrievers and intra-cranial ultrasound (Fisher and Brott, 2003).  

Neuroprotective therapies are developed with the goal of impeding the cell death 

cascade occurring post-ischemia.  These therapies are targeted at specific mechanisms 

involved in ischemic brain damage.  Categories of neuroprotective drugs include 

glutamate receptor antagonists, modulators of the inhibitory transmitter gamma-

aminobutyric acid, sodium and calcium channel blockers, antioxidants, anti-inflammatory 

and anti-apoptotic drugs, and neurotrophins (Thornhill and Corbett, 2001).  Despite the 

success of several of these drugs in animal studies, the results have been negative in 

clinical trials.  One of the reasons suggested for the failure of neuroprotectants in clinical 

trials is that the majority of therapies tested target only one part of the ischemic cascade 

(Ginsberg, 2009; Savitz and Fisher, 2007; Fisher and Brott, 2003).  Alternate methods of 
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neuroprotection are needed and should involve combination therapies, such as the use of 

multiple drugs, to target multiple sites in the ischemic cascade, along with some form of 

reperfusion (Fisher, 2003).  Other forms of treatment need to be investigated in addition 

to targeted drug therapy.  Nutritional status is a modifiable factor that can influence 

stroke outcome (Gariballa, 2000).  However, the majority of nutrition-related stroke 

research to date has focused on reducing risk for developing stroke.  Our laboratory has 

been investigating how nutritional factors can also play a role in determining the extent of 

disability that results from stroke.  

Poor nutritional status is common in stroke patients and has been related to 

increased mortality and reduced functional outcome (Smithard et al., 2007; Gariballa and 

Sinclair, 1998; Gariballa et al., 1998b; Gariballa et al., 1998a).  Protein energy 

malnutrition (PEM), in which protein and energy status are suboptimal, exists in 

approximately 16% of the elderly upon admission for stroke (Davalos et al., 1996; 

Axelsson et al., 1988).  Correlations have been made between PEM at stroke admission 

and increased risk of morbidity and mortality in clinical studies (Gariballa et al., 1998b; 

Gariballa et al., 1998a; Davalos et al., 1996).  Unfortunately these studies are limited by 

study design and small sample size, and a causal link is more difficult to establish in 

clinical studies.  A major international, multi-centre study that had the potential to 

establish causality between PEM and stroke outcome was the FOOD (Feed or Ordinary 

Food) Collaboration Trial.  Preliminary data suggested that compromised baseline 

nutritional status of acute stroke patients was associated with decreased chance of 

survival and increased functional dependency after six months (The FOOD Trial 

Collaboration, 2003).  However, the completed trials failed in one of the study goals, 
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which was to establish that poor nutritional status worsens stroke outcome, due to the 

lack of standardized nutritional assessments (Prosser-Loose and Paterson, 2006; Dennis 

et al., 2005a; Dennis et al., 2005b).  Results from a study in our laboratory were the first 

to show that PEM impairs functional outcome in an animal model of brain ischemia as 

measured by the open field behavioural test (Bobyn et al., 2005).  While poor nutritional 

status appears to negatively affect stroke outcome, little is known about nutritional 

factors that could exert a positive influence on stroke.  This research aims to further our 

knowledge on the effects of nutritional status on long-term stroke outcome by 

investigating the impact of caloric restriction initiated after brain ischemia.   

2.2 Mechanisms of ischemic brain damage and recovery 

2.2.1 Mechanisms of acute brain injury 

While the brain makes up only 2% of the body weight, it receives 20% of the total 

cardiac output and accounts for 20% of total oxygen consumption (Juurlink and 

Sweeney, 1997).  Anoxic conditions within the centre of the infarction (ischemic core) 

cause necrotic cell death to occur within minutes.  While the ischemic core is not 

salvageable, the penumbra, lying between the ischemic core and the unaffected parts of 

the brain, suffers milder injury that may be salvageable or that may progress to infarction; 

this is due to ongoing excitotoxicity and secondary processes such as spreading 

depression, inflammation and apoptosis (Barber et al., 2001).  Thus, neuroprotective 

therapy is aimed at salvaging the penumbral tissue. 

The cell death cascade involved in ischemic brain damage is complex and 

includes adenosine triphosphate (ATP) depletion, glutamate excitotoxicity, membrane 

depolarization, increased intracellular calcium, production of free radicals and 
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inflammation (Harukuni and Bhardwaj, 2006; Juurlink and Sweeney, 1997).  The 

decrease in cerebral blood flow deprives the brain of both glucose and oxygen and leads 

to decreased production of ATP, resulting in anaerobic glycolysis and acidification.  

Energy depletion also results in the depolarization of neuronal and glial membranes, 

releasing glutamate into the extracellular space. Diffusion of glutamate can create 

spreading waves of depolarization in the penumbra, further increasing energy 

consumption.  Excess extracellular glutamate causes overstimulation of N-methyl-D-

aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), 

and kainate-type glutamate receptors causing a dramatic increase in intracellular calcium, 

sodium and chloride (Hazell, 2007; Lee et al., 2000).  Water passively follows the sodium 

and chloride resulting in edema (Lee et al., 2000).  

Increased intracellular calcium concentrations are thought to be a major factor in 

the development of tissue damage following ischemia.  Calcium accumulation causes 

activation of calcium dependent hydrolytic enzymes which break down membrane 

phospholipids, resulting in the production of reactive oxygen and nitrogen species 

(Hazell, 2007).  Increased production of free radicals can overwhelm endogenous 

antioxidants and lead to oxidative stress and inflammation.  The latter are important 

mediators in brain damage following stroke (Block, 1999).  

The brain is especially susceptible to oxidative damage because it is rich in 

polyunsaturated fatty acids, susceptible to lipid peroxidation, and neurons have relatively 

low levels of antioxidants (Coyle and Puttfarcken, 1993).  Reactive oxygen species 

(ROS) promote destruction of cellular macromolecules and initiate a number of 

signalling pathways that can result in cell death.  Oxidative stress is particularly 
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pronounced during the reperfusion period.  The re-establishment of blood flow brings 

oxygen to the site of the injury, producing superoxide, nitric oxide and peroxynitrite, that 

along with secondary messengers induced by calcium, can cause activation of 

transcription factors such as nuclear factor kappa B (NFκB).  NFκB activation leads to 

the synthesis of a number of other pro-inflammatory cytokines (Bordone and Guarente, 

2005). 

Cytokines and other pro-inflammatory molecules are responsible for the 

accumulation of inflammatory cells in the brain following ischemia.  Activated cytokines 

such as tumor necrosis factor-α and interleukin-1β can lead to tissue damage (Block, 

1999).  Activated microglia, astrocytes, leukocytes and endothelial cells can exacerbate 

tissue damage by producing cytotoxic molecules.  Neutrophils are the first inflammatory 

cells to accumulate in the brain as soon as 30 minutes after ischemia.  Neutrophils can 

cause tissue damage by adhering to the microvasculature and releasing ROS and 

proteolytic enzymes, increasing blood brain barrier permeability and leading to further 

infiltration of inflammatory cells, edema and hemorrhage (Barber et al., 2001; Doyle et 

al., 2008).  

Under ischemic conditions, energy failure and disruption of cellular ion 

homeostasis lead to the death of neurons.  Exactly how neurons die following ischemia is 

controversial (Colbourne et al., 1999).  Cell death can exhibit features of both necrosis 

(plasma membrane failure and cell swelling) and apoptosis (chromatin condensation, loss 

of cell volume, apoptotic bodies and DNA fragmentation).  This may be due to the fact 

that both excitotoxicity and programmed cell death are triggered by ischemia.  

Excitotoxic necrosis is considered the predominant mechanism of ischemic cell death in 
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most cases, but apoptosis may also occur.  Necrosis is thought to predominate in the core 

acutely following ischemia, while apoptosis may predominate in the penumbra at later 

time intervals (Lee et al., 1999).  Whether a cell undergoes apoptosis or necrosis may 

depend on a number of factors such as the severity of injury, neuronal maturity, the 

availability of trophic support and the concentration of intracellular free calcium (Lee et 

al., 1999).  It is important to recognize that therapies designed to attenuate only necrosis 

may result in the promotion of apoptosis (Gladstone et al., 2002). 

2.2.2 Mechanisms of recovery (brain plasticity)  

While ischemia leads to tissue damage and cell death, it also results in the 

activation of endogenous neuroprotective mechanisms (Lee et al., 2000).  Acute 

responses to ischemia include the release of the inhibitory neurotransmitter gamma-

aminobutyric acid and a decrease in NMDA receptor function which act to reduce the 

excitability of circuits and deplete extracellular calcium and sodium.  This results in 

decreased calcium entry into vulnerable neurons (Lee et al., 2000).  

The inflammatory process evolved to fight infection and to aid in tissue repair.  In 

the normal brain, the blood brain barrier blocks the infiltration of inflammatory cells from 

the bloodstream preventing an inflammatory response.  In the ischemic brain, the blood 

brain barrier becomes compromised, allowing inflammatory cells to enter the brain.  

Despite the detrimental effects of excessive inflammation in the ischemic brain, some 

inflammation following stroke may be beneficial (Danton and Dietrich, 2003).  Ischemia-

induced activation of pro-inflammatory molecules and the subsequent inflammatory 

response may aid in repair and the scavenging of necrotic tissue (Danton and Dietrich, 

2003).  As necrotic tissue is resorbed, edema subsides, and circulation to the penumbra 
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can be re-established allowing for functional recovery for some neurons (Lee and van 

Donkelaar, 1995).  

Stroke survivors typically show some degree of functional recovery although the 

extent of recovery is highly variable (Lee and van Donkelaar, 1995; Chen et al., 2002).  

Recovery in the first few days following ischemia may be due to resolution of edema 

and/or reperfusion of the ischemic penumbra (Chen et al., 2002).  Recovery occurring in 

the weeks to months following ischemia is attributed to neuroplasticity (Lee and van 

Donkelaar, 1995; Chen et al., 2002; Bayona et al., 2005; Teasell et al., 2005).  

Neuroplasticity refers to the ability of the brain to reorganize itself, changing its structure 

following tissue damage (Di Filippo et al., 2008).  Neuroplasticity is also required for the 

normal functioning of the central nervous system and occurs during maturation and when 

learning from environmental challenges.  Plasticity occurring post-ischemia has been 

documented in both animal models and human stroke survivors (Di Filippo et al., 2008).  

Neuroplastic changes can occur through a number of mechanisms including the 

unmasking of latent synapses, the formation of new synapses as a result of neuronal 

sprouting, and circuit redundancy where some functions previously performed by 

damaged regions can be taken over by intact regions (Lee and van Donkelaar, 1995; 

Teasell et al., 2005).  Ischemia-induced changes in neurotransmitters, neurotrophins, 

growth factors, and hormones also contribute to neuroplasticity (Johansson, 2000).  

Neurotrophins are thought to be involved in numerous functions within the 

nervous system including aspects of cell proliferation, differentiation, death, survival, and 

plasticity (Johansson, 2000; Arevalo and Wu, 2006).  Brain-derived neurotrophic factor 

(BDNF) plays an important role as a neuronal survival factor, during both development 
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and in neuronal plasticity after brain injury (Bolton et al., 2000; Nawa et al., 1997).  

Increased BDNF following ischemia is believed to promote dendritic sprouting and 

synaptic remodelling which may lead to improved recovery (Lee et al., 2002; Larsson et 

al., 1999; Kiprianova et al., 1999; Ferrer et al., 1998; Tsukahara et al., 1994).  Stem cells 

located in the dentate gyrus can migrate and differentiate into neurons in the 

hippocampus.  Brain derived neurotrophic factor has been shown to enhance 

neurogenesis and survival of newly generated neurons (Lee et al., 2002).  This provides 

another potential therapeutic approach to investigate for aiding in recovery following 

ischemic damage (Johansson, 2000; Schmidt and Reymann, 2002; Abe, 2000). 

2.3 Caloric restriction (CR) 

Caloric restriction (CR) is a nutritional intervention in which energy intake is 

reduced by 30-40% while sufficient intake of other nutrients is maintained (Young and 

Kirkland, 2007).  There are two basic CR paradigms: 1) controlled CR in which animals 

are provided a daily allotment of food that is 30-40% less than the ad libitum 

consumption of a control population, and 2) intermittent fasting (IF) in which animals are 

deprived of food for a full day and are fed ad libitum on intervening days (Anson et al., 

2003; Mattson et al., 2004).  Both methods usually result in a decrease in body weight 

over time although the decrease is often much more pronounced in controlled CR.  Both 

paradigms have reported similar effects including dramatic increases in lifespan and it is 

assumed that both CR and IF act through similar mechanisms (Anson et al., 2003).  

 Energy restriction has been shown to be one of the most efficient and 

reproducible ways to extend average and maximum life span.  In the 1930’s, McCay and 

colleagues showed that a diet that was reduced in energy was able to extend life span in 
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rats (McCay et al., 1935).  Since that time, CR has been shown to extend life span in 

yeast, worms, fruitflies, waterfleas, spiders, and fish (Martin et al., 2006; Bordone and 

Guarente, 2005).  Studies are currently underway to investigate the effects of CR in 

primates and humans.  One study in rhesus monkeys initiated in 1987 found improved 

health and increased life span in monkeys on a 30% CR diet compared to monkeys on 

control diet (Mattison et al., 2003).  Lifespan extension appears to increase progressively 

as energy is reduced up to approximately 50%, beyond which further CR may be 

detrimental and can result in mortality (Mattson, 2005).  The time of onset and duration 

of the CR regimen will also determine the amount by which life span is extended (Martin 

et al., 2006).  

 Although some researchers argue that increases in life span observed in rodents 

on CR are not likely to be observed in humans (Phelan and Rose, 2005), many studies in 

humans suggest a relationship between caloric restriction and good health.  Energy 

restriction occurs naturally in some human populations although most of these 

populations are lacking in protein and micronutrients as well as energy, which does not 

meet the formal definition of CR (Heilbronn and Ravussin, 2003).  One interesting case 

of naturally occurring CR is the centenarians of Okinawa, Japan.  Studies of Okinawan 

centenarians have revealed that while adult Okinawans have the same protein and lipid 

intake as the mainland Japanese, their energy intake is approximately 20% less.  

Interestingly, mortality rates due to cerebrovascular disease, cancer, and heart disease on 

Okinawa were 59%, 69%, and 59% respectively of those for the rest of Japan (Kagawa, 

1978).  However, it is likely there are differences in genetics and environmental factors 

between these populations as well.   
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 The Biosphere 2 in Oracle, Arizona was designed as a man-made ecosystem, 

containing five areas based on natural biomes, to study the natural ecosystems of the 

Earth and the effects of humans within them.  A crew of eight people lived inside 

Biosphere 2 from 1991 to 1993 during which time the Biosphere was sealed off from the 

outside world.  The air, water and food supporting the crew inside Biosphere 2 was 

generated and recycled within the Biosphere.  The crew from Biosphere 2, underwent CR 

when food production inside the enclosed biosphere habitat was less than expected 

(Weyer et al., 2000).  Findings from the Biosphere 2 volunteers confirmed that 30% CR 

imposed for two years could produce many of the expected physiological, hormonal, and 

morphological effects expected from animal studies (Walford et al., 2002).  

 While clinical studies have recently been initiated and some individuals have 

begun to voluntarily restrict themselves in the hope of extending their lives (Speakman 

and Hambly, 2007), CR may be a questionable long-term diet strategy.  In practice, it 

may be very difficult to implement long-term CR in humans, as individuals who overeat 

are often unable to voluntarily limit their food intake despite knowledge of the 

considerable health hazards (Mattson, 2005).  More research also needs to be done on the 

degree of CR necessary for the health benefits seen in rodents as this degree of restriction 

may not be attainable for all people.  

 Most animal research on CR has been done in comparison with a control group 

fed ad libitum.  Under standard laboratory conditions, ad libitum food intake is excessive 

and exercise is limited due to the small cage size (Young and Kirkland, 2007).  Thus, the 

control animals are more likely to represent obese individuals than non-obese individuals.  

This creates difficulties in interpreting the effects of CR, as it is difficult to separate the 
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beneficial effects of weight loss in obese individuals from potentially beneficial effects of 

CR in a normal weight population (Ramsey et al., 2000).  More research is needed to 

determine the effects of CR on non-obese subjects (Bordone and Guarente, 2005).  

 To address these potential problems, research efforts are aimed at developing CR 

mimetics, compounds that can mimic the beneficial effects of CR without actually 

reducing caloric intake (Ingram et al., 2006; Fontan-Lozano et al., 2008).  Some CR 

mimetics currently being studied include 2-deoxyglucose which inhibits glycolysis, 

metformin which enhances the action of insulin, and resveratrol which affects stress 

signalling pathways (Ingram et al., 2006).  

2.3.1 Caloric restriction and protective mechanisms against disease 

Rodents, monkeys and humans exposed to CR have decreased body temperature, 

heart rate, blood pressure, serum glucose and insulin levels (Anson et al., 2003; Fontana 

et al., 2004; Wan et al., 2003; Young et al., 1978), which have been shown to decrease 

the risk of diabetes and cardiovascular disease (Mattson and Wan, 2005).  Caloric 

restriction also decreases lipid accumulation and can decrease low-density lipoprotein 

cholesterol levels while increasing high-density lipoprotein cholesterol levels (Roky et 

al., 2004).  Caloric restriction also reduces the incidence of spontaneous tumors and 

suppresses the development and growth of cancers (Ingram et al., 2007; Mattson, 2005; 

Mattson and Wan, 2005; Heilbronn and Ravussin, 2003).  

 Caloric restriction can also impact the health of the nervous system. Caloric 

restriction has been shown in a number of behavioural tests to prevent age-related 

declines in learning, memory, and motor coordination, thus helping to maintain function 

later into life (Mattson, 2005; Takahashi et al., 2006; Gould et al., 1995).  Caloric 
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restriction can decrease risk and improve existing symptoms for a number of 

neurodegenerative diseases including Alzheimer’s Disease, Parkinson’s Disease, and 

Huntington’s Disease (Duan et al., 2003; Halagappa et al., 2007; Qin et al., 2006; 

Maswood et al., 2004; Duan and Mattson, 1999; Zhu et al., 1999).  Animal models of 

Alzheimer’s Disease have shown that animals maintained on CR exhibit reduced 

neuropathology and reduced learning and memory deficits (Halagappa et al., 2007; Qin et 

al., 2006; Wang et al., 2005).  In animal models of Parkinson’s Disease, IF and CR have 

shown protection against dysfunction and degeneration of mid-brain dopaminergic 

neurons (Duan and Mattson, 1999) and a reduction in behavioural deficits (Maswood et 

al., 2004).  Intermittent fasting has also been shown to delay neurodegeneration and 

motor dysfunction in a mouse model of Huntington’s disease, resulting in increased 

survival (Duan et al., 2003).  

 Two major mechanisms of action have been proposed for CR: 1) increased 

cellular stress resistance and 2) decreased free radical production and oxidative damage 

(Martin et al., 2006; Mattson and Wan, 2005).  Organisms have evolved to respond to 

stressors or challenges in their environment.  Mild or transient exposure to ischemia, 

hypoxia, or other environmental stressors inflicts stress on brain cells which respond by 

enhancing their ability to resist more severe stress.  Preconditioning/ischemic tolerance 

refers to an acquired resistance to ischemia that can result from previous exposure to 

conditioning episodes of mild ischemia (Obrenovitch, 2008; Dirnagl et al., 2003; Farrell 

et al., 2001).  The stress response evoked following ischemic preconditioning involves 

the production of heat shock proteins, antioxidant enzymes, anti-apoptotic factors, and 

growth factors which help to prevent tissue damage during subsequent ischemic attacks 
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(Corbett et al., 2006).  Preconditioning is thought to be a major mechanism whereby CR 

can increase lifespan.  Caloric restriction is thought to act as a mild stressor (Heydari et 

al., 1996; de Cabo et al., 2004) and results in the activation of a number of compensating 

mechanisms.  Evidence that CR increases basal levels of glucocorticoids supports this 

theory (Wan et al., 2003; Patel and Finch, 2002).  Increased levels of stress proteins, such 

as heat shock protein-70 (Yu and Mattson, 1999), neurotrophic factors such as BDNF 

(Lee et al., 2000; Lee et al., 2002; Duan et al., 2003; Duan et al., 2001), and increased 

neurogenesis in the brain (Lee et al., 2000; Lee et al., 2002) have also been reported in 

response to CR. 

 Sirtuin proteins are a type of histone deacetylase that can also increase stress 

resistance.  The induction of sirtuins by CR is thought to be an important mechanism in 

life span extension (Bordone and Guarente, 2005).  In yeast, life span extension by CR 

depends on the upregulation of the silent information regulator 2 (SIR2) gene (Lin et al., 

2000; Kaeberlein et al., 1999).  Caloric restriction also results in the induction of sirtuin 1 

(SIRT1), the mammalian homologue of SIR2, which increases cellular stress resistance, 

thereby protecting against stress-induced cell death (Cohen et al., 2004; Nemoto et al., 

2004).  Sirtuin 1 has also been shown to downregulate NFκB, an important mediator of 

inflammation following ischemia (Yeung et al., 2004). 

 Decreased oxidative damage and inflammatory response have also been 

demonstrated in CR models (Pamplona et al., 2002; Chandrasekar et al., 2001; Forster et 

al., 2000; Spaulding et al., 1997; Sohal et al., 1994).  While overeating increases 

oxidative stress in cells and results in oxidative damage to cellular macromolecules, CR 

reduces the production of ROS, resulting in decreased oxidative damage.  Caloric 
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restriction may suppress oxidative stress through a number of mechanisms including 

reducing the amount of superoxide radicals produced in the mitochondria and by 

increasing the production of chaperone proteins and antioxidant enzymes (Mattson, 

2005).  

2.3.2 Caloric restriction and ischemic brain damage 

 Caloric restriction could be expected to exert marked protective effects in stroke 

because of its ability to modify multiple pathways in the ischemic cascade, as well as 

neuroplasticity mechanisms important to recovery.  These include increasing production 

of stress and cell survival proteins (Lin et al., 2000; Yu and Mattson, 1999), reducing 

oxidative damage and the inflammatory response (Pamplona et al., 2002; Chandrasekar et 

al., 2001; Forster et al., 2000; Spaulding et al., 1997; Sohal et al., 1994), lowering core 

body temperature (Ferguson et al., 2007; Heilbronn et al., 2006; Lane et al., 1996) and 

increasing neurogenesis (Lee et al., 2000; Lee et al., 2002) and production of growth 

factors (Lee et al., 2000; Lee et al., 2002; Duan et al., 2003; Duan et al., 2001). 

 One previous study has examined whether IF was protective when administered 

for three months prior to focal ischemia, a model in which blood flow is reduced to a 

specific brain region.  Yu and Mattson (1999) reported that rats on an IF regimen had 

reduced brain infarct volume and improved functional outcome following middle cerebral 

artery occlusion, a model of focal ischemia in the rat (Yu and Mattson, 1999).  Increased 

levels of the stress protein heat shock protein-70 in striatal cells of CR animals suggest 

the neuroprotective action of CR might be due, in part, to preconditioning.  Although a 

cursory assessment of these data suggest that CR may be a valuable approach for 

improving outcome following stroke, this study has major flaws when assessed against 
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the standards recommended for experimental stroke research (Stroke Therapy Academic 

Industry Roundtable, 1999) (see section 2.4.3.1 below).  One limitation is that outcome 

was only assessed at 24 hours so it is not known if the decrease in brain damage was 

transient or permanent.  In addition, brain function was assessed by a crude neurological 

score (Hunter et al., 2000) instead of the more sensitive tests of functional outcome 

available for focal ischemia models such as a skilled reaching task (Gharbawie et al., 

2005; Farr and Whishaw, 2002).  For example, the staircase test, in which animals reach 

to retrieve a food pellet from a set of stairs, shows great sensitivity in detecting persistent 

disability months after focal ischemia, unlike simpler sensorimotor tasks (Gladstone et 

al., 2002; Corbett and Nurse, 1998).  Caloric restriction (40%) administered before and 

continued after global ischemia has also been suggested to improve ischemia-induced 

memory impairments (Roberge et al., 2008a; Roberge et al., 2008b), however no studies 

have yet examined the effects of CR provided solely during the post-ischemic period.   

 The clinical relevance of testing CR provided prior to stroke can also be 

questioned since the chronic energy restriction of 30-40% that is beneficial in 

experimental animals is not likely an attainable goal for the human population (Ingram et 

al., 2006).  It is of clinical interest, however, to investigate whether CR administered after 

the stroke could form part of a neuroprotective strategy to diminish brain damage and 

disability.   

2.4 Animal models of stroke 

 Appropriate animal models are necessary for the study and treatment of human 

cerebral ischemia.  Cerebral ischemia has been studied in large and small animal species.  

Small animal species (especially rodents) present a number of advantages over large 
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animal species including the lower cost of obtaining and maintaining animals, lower cost 

of procedures due to smaller size, relative genetic homogeneity, close resemblance of the 

cerebrovascular anatomy and physiology to that of higher species and greater 

acceptability (Ginsberg and Busto, 1989).  Procedures in small animals can also be 

controlled so that injury is more reproducible and less variable than in larger species.    

2.4.1 Focal ischemia 

 In focal ischemia, blood flow is reduced to a very specific brain region producing 

an ischemic core of unsalvageable tissue and the surrounding penumbra which has the 

potential to be saved (Traystman, 2003).  Focal ischemia models are often used because 

of their relevance to human stroke.  Focal models can involve either permanent or 

transient artery occlusion.  The most common focal ischemia model involves occlusion of 

the middle cerebral artery.  Middle cerebral artery occlusion (MCAO) results in a 

reduction in blood flow in the striatum and cortex.  Focal ischemia models are more 

technically demanding than global ischemia models.  Vessel occlusion is most often 

accomplished with the use of clips, but can also be accomplished by electrocoagulation 

and photochemical irradiation.  Other focal ischemia models include blood clot embolism 

and intraluminal filament placement within the carotid artery and ligature snare 

placement around the middle cerebral artery (Traystman, 2003).  Occlusion of the 

common carotid artery in conjunction with that of the middle cerebral artery aids in 

further reducing blood flow to the area.  Injection of the vasoconstrictor endothelin into 

the cortex and striatum and adjacent to the middle cerebral artery, into the forelimb 

region of the motor cortex, has also been used to reduce blood flow (Windle et al., 2006).  
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2.4.2 Global ischemia 

Global ischemia occurs when cerebral blood flow is reduced throughout the brain 

causing neuronal injury to selectively vulnerable areas.  Global ischemia models involve 

a brief termination of cerebral blood flow (5-15 minutes) followed by reperfusion.  While 

global ischemia models have been criticized for mimicking human cardiac arrest rather 

than focal stroke, they share many of the same pathophysiological mechanisms (Harukuni 

and Bhardwaj, 2006) and provide more consistent injury (McBean and Kelly, 1998).  

Thus, global stroke models are useful for understanding mechanisms of tissue damage 

and evaluating the efficacy of interventions before advancing to focal models where more 

variables must be controlled (Ginsberg and Busto, 1989; Small and Buchan, 2000).  The 

three most common models of global ischemia are the four-vessel occlusion (4-VO) and 

two-vessel occlusion (2-VO) models in the rat and bilateral common carotid artery 

occlusion (BCCAO) in the gerbil. 

Pulsinelli and Brierley (1979) developed the 4-VO model of reversible forebrain 

ischemia in rats.  The 4-VO model is highly technically demanding and involves a two-

step process to produce ischemia.  Anterior vertebral arteries are cauterized, followed the 

next day by occlusion of the common carotid arteries.  The 4-VO model results in 

extensive brain injury including damage in the striatum, hippocampus, and neocortex and 

commonly results in increased mortality.  

The 2-VO model of ischemia developed by Eklof and Siesjo (1972) involves 

bilateral common carotid artery occlusion coupled with systemic hypotension to produce 

ischemia.  Two-vessel occlusion in the rat is a much simpler surgery and produces 

consistent and reliable damage.  Inducing hypotension during occlusion is a critical part 
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of the technique.  The 2-VO model produces injury that is similar to the 4-VO model 

with damage occuring within the hippocampus, neocortex and caudoputamen as a 

function of occlusion time.  

2.4.3 Bilateral common carotid artery occlusion in Mongolian gerbils 

 Until recently, the gerbil model of global ischemia, in which global forebrain 

ischemia is produced by BCCAO, was used extensively in stroke research.  Bilateral 

common carotid artery occlusion requires minimal surgical intervention and has 

historically produced very consistent, reproducible injury to the hippocampal CA1 region 

(Corbett and Nurse, 1998; Small and Buchan, 2000).  Consistency of the injury had been 

attributed to the gerbil’s unique vascular anatomy as they lacked posterior 

communicating arteries, and therefore had an incomplete Circle of Willis (Ginsberg and 

Busto, 1989). 

 Unfortunately, recent work has discovered that cerebral vasculature in the North 

American commercial supply of gerbils is changing.  Experiments in our laboratory 

(Bobyn et al., 2005; Ji et al., 2008) and others (Laidley et al., 2005; Wang et al., 2002; 

Breuer and Mayevsky, 1992) have shown increased variability in hippocampal damage 

and functional effects following BCCAO.  In 2005, Laidley and colleagues compared the 

vasculature of gerbils from Charles River Canada (our current supplier) with those from 

High Oak Farms (ON, Canada).  Approximately 61% of animals from Charles River 

were found to have a complete (22.7%) or partial (38.6%) Circle of Willis due to the 

presence of significant posterior communicating arteries.  These animals had less severe 

CA1 loss as well as attenuated behavioural deficits in the open field after undergoing 

BCCAO compared to those with no posterior communicating arteries.  Posterior 

23 
 



communicating arteries were also found in gerbils from High Oak Farms although to a 

lesser extent (2.6% with bilateral and 13.2% with unilateral); High Oak Farms is no 

longer a reliable commercial source of gerbils.  Similar results have since been reported 

in gerbils from other major North American suppliers (Seal et al., 2006). 

 A screening technique based on activity monitoring was developed in our 

laboratory as a temporary solution to this problem, and this approach was used for the 

current study to ensure consistent forebrain ischemia.  Following ischemia, animals 

exhibit transient locomotor hyperactivity for up to 30 hours (Corbett and Nurse, 1998).  

This hyperactivity is a reliable indicator of ischemic severity (Corbett et al., 1997; 

Mileson and Schwartz, 1991).  Considering the possibility for both false positive and 

false negative results, a previous study in our laboratory demonstrated that the monitoring 

method correctly categorizes 85% of animals tested (M.I. Harmon et al., unpublished 

observations) although this estimate is limited by a small sample size.  Although 

screening greatly reduces experimental variability, the disadvantage is that a much larger 

sample size is required in order to replace those that fail to meet the criteria.   

2.4.3.1 Endpoints and standards for assessing hippocampal damage in the bilateral 

common carotid artery occlusion model 

 As with the other global ischemia models mentioned above, BCCAO in the gerbil 

results in neuronal cell death in several vulnerable brain structures, including the 

hippocampal CA1 region, the neocortex, and striatum.  Cell death does not occur 

immediately but is delayed with most cell death occurring 3-7 days following ischemia.  

Delayed cell death provides a window of opportunity when intervention may reduce cell 

loss and associated learning and memory deficits (Colbourne and Corbett, 1994).  This 
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delayed and selective cell death has been well characterized and is similar among all 

global ischemia models (Small and Buchan, 2000).  The extent of brain injury is usually 

assessed histologically by counting viable hippocampal CA1 neurons since these neurons 

are highly susceptible to global ischemic injury.  

Five minutes of global ischemia results in extensive loss of CA1 neurons in the 

hippocampus by seven days after surgery (Corbett and Nurse, 1998; Colbourne and 

Corbett, 1994; Nurse and Corbett, 1994).  Cell death in the CA1 region following global 

ischemia is highly reliable and damage is more consistent than in other brain regions.  

The distinctive distribution and large size of CA1 neurons also makes them relatively 

easy to quantify (Corbett and Nurse, 1998).  Histological and behavioural endpoints for 

the gerbil BCCAO model have been developed and are well established.  Studies have 

shown a relationship between damage in the CA1 region of the hippocampus and deficits 

in spatial learning.   

The results obtained with rodent models of stroke are only reliable when 

experiments are carried out according to the current recommendations for quality 

preclinical stroke research (Gladstone et al., 2002; Stroke Therapy Academic Industry 

Roundtable, 1999).  While histological endpoints, such as cell counts and infarct volume, 

are frequently used to assess the efficacy of potential therapeutic interventions, it is 

important that functional endpoints are also assessed (Stroke Therapy Academic Industry 

Roundtable, 1999; Corbett and Nurse, 1998; Colbourne and Corbett, 1995).  Neurons that 

have a normal histological appearance can be functionally abnormal (Corbett and Nurse, 

1998), and lesion size does not always correlate with functional impairment (Stroke 

Therapy Academic Industry Roundtable, 1999).  Functional recovery is the major 
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endpoint in clinical trials and can persist for months after ischemia.  Therefore it is 

important that functional endpoints be assessed in combination with histological 

endpoints (Gladstone et al., 2002; Corbett and Nurse, 1998).   

Behavioural tests such as the open field test, T-maze and radial arm maze have 

demonstrated that gerbils exposed to global ischemia show profound learning deficits 

(habituation and working memory impairments) similar to humans (Mileson and 

Schwartz, 1991; Colbourne and Corbett, 1995).  These behavioural tests are used to 

assess functional outcome and have been shown to be reliably sensitive to ischemia 

(Colbourne and Corbett, 1994; Colbourne and Corbett, 1995; Colbourne et al., 1998a).   

The open field test is a useful functional test for global ischemia research because it is 

sensitive to differences in CA1 injury and can differentiate groups treated with beneficial 

therapies from non-treated ischemic controls.  Other benefits of the open field test are 

that test sessions are relatively short, it is not labour intensive, and functional deficits can 

persist for months (Corbett and Nurse, 1998).  

Immediately following stroke surgery, gerbils progress through a series of 

changes in their activity patterns.  As the gerbils recover consciousness they enter a quiet 

period during which they often exhibit a characteristic hunching (Corbett and Nurse, 

1998).  This quiet period is followed by a period of heightened locomotor activity, which 

as indicated above, can be used as an indicator of ischemic severity (Mileson and 

Schwartz, 1991). This period lasts for 24-48 hours after surgery, after which activity 

levels return to normal.  

Following the initial hyperactivity phase, a more chronic form of heightened 

locomotion occurs that can only be detected when animals are placed in a novel 
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environment.  When placed in an open field, ischemic gerbils display significantly 

elevated locomotion compared to sham-operated gerbils, which has been interpreted as an 

inability to habituate to a novel environment (Corbett and Nurse, 1998).  Sham-operated 

animals will gradually habituate to the novel environment, resulting in a decrease in 

activity, while animals exposed to global ischemia will continue to exhibit high activity 

levels.  This is believed to be due to a spatial learning deficit (Colbourne et al., 1998b; 

Wang and Corbett, 1990).  If testing is repeated regularly, ischemic animals will 

gradually habituate and activity levels will decrease; differences in activity levels can be 

seen for months if testing is intermittent (Corbett and Nurse, 1998).  Ischemia-induced 

hyperactivity in novel environments has been found to correlate with CA1 cell death in 

the hippocampus (Corbett and Nurse, 1998; Mileson and Schwartz, 1991; Nurse and 

Corbett, 1994).   

 Some investigators suggest that anxiety also influences open field activity 

following ischemia (Plamondon and Khan, 2005).  An unfamiliar environment may be 

mildly anxiogenic as animals may consider it potentially dangerous.  Upon exposure to a 

novel environment animals may initially exhibit decreased exploratory behaviour, 

increased heart rate, urination, defecation, and plasma corticosterone levels (Palanza, 

2001).  It has been suggested that ischemia results in increased activity because it causes 

disinhibition to explore novel environments (Plamondon and Khan, 2005).  Rodents are 

known to prefer the periphery of the open field to the centre, a behaviour known as 

thigmotaxis.  Increased time spent in the periphery of the open field may indicate 

increased anxiety while increased time spent in the centre of the open field is considered 

anxiolytic (Calabrese, 2008; Prut and Belzung, 2003).  Thus, it is possible that measuring 
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activity in the centre relative to that in the periphery of the open field might yield 

additional information about functional outcome after global ischemia.  This approach 

has, however, never been validated in a global ischemia model. 

 The T-maze is another useful behavioural test that can be used to detect deficits in 

working memory following global ischemia in the gerbil (Corbett and Nurse, 1998).  

Animals are tested in two trials.  Information learned in the first trial must be 

remembered in the second trial in order for the animal to be successful.  The Win-Shift 

strategy is the most commonly used application of the T-maze.  On the first trial, the 

animal is allowed access to one arm of the maze to receive a food reward.  On the second 

trial, both arms of the maze are accessible, but the animal will only receive a reward if it 

enters the opposite arm. In the Win-Stay strategy, the animal has to choose the same arm 

that it entered on the previous trial in order to receive the reward.  This strategy is much 

more difficult for the gerbil to learn as revisiting of the same arm is contrary to the 

gerbil’s normal foraging behaviour (Babcock and Graham-Goodwin, 1997).  Delaying 

the time between trials also increases the difficulty of the test (Corbett and Nurse, 1998).  

Following ischemia, impairments in working memory are indicated by decreased choice 

accuracy and increased time to reach criterion (Corbett and Nurse, 1998; Farrell et al., 

2001; Babcock and Graham-Goodwin, 1997).  One disadvantage of this test is that the 

use of food rewards may confound results in nutritional studies (Prosser-Loose et al., 

2007). 

 The radial arm maze has also been used to detect reference and working memory 

deficits in the gerbil following global ischemia although it has been noted that these 

deficits recover over time (Corbett and Nurse, 1998; Block, 1999).  The radial arm maze 
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presents the same disadvantage as the T-maze for nutritional studies as it also involves 

the use of food rewards.  A second major disadvantage of both the T-maze and radial arm 

maze is that they are highly time consuming and labour intensive compared to the open 

field test (Corbett and Nurse, 1998).  Because the open field test does not require 

extensive training and test sessions are short, it is a valuable tool for studies with multiple 

groups or large numbers of animals.  Thus the open field test was chosen for use in this 

study. 

 In addition to the need discussed above of employing functional testing as well as 

histological assessment, animal studies should include long-term endpoints, as some 

treatments have been found to only postpone cell death (Corbett and Nurse, 1998).  

Neuroprotection observed in many animal studies have, for the most part, been based on 

experiments that used short survival times (1-7 days) with histology (cells counts or 

infarct volumes) as the only endpoint.  Studies with longer survival times should be better 

indicators of whether the effects of interventions are truly neuroprotective (Stroke 

Therapy Academic Industry Roundtable, 1999).   

 Specific physiological variables must also be carefully controlled to ensure that 

the model induces consistent brain damage.  In particular, brain temperature is a critically 

important variable and should be maintained in a constant normothermic range as it can 

have striking effects on stroke outcome (Small and Buchan, 2000).  Hyperthermia can 

exacerbate ischemic damage while hypothermia can provide robust protection against 

ischemic damage (van der Worp et al., 2007; Colbourne et al., 1997).  Ignoring this key 

information is one of the reasons thought to account for the failure of neuroprotective 

treatments in clinical studies.  
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2.5 Summary  

 Based on evidence that CR could modify pathways in the ischemic cascade as 

well as enhance neuroplasticity mechanisms important to recovery, we investigated 

whether CR provided solely after brain ischemia could decrease brain injury and improve 

functional recovery.  Previous studies have suggested some benefit when a CR regimen 

was initiated prior to ischemia, but to date no studies have examined the effects of CR 

solely after ischemia.  The gerbil BCCAO model was used to address this question as it is 

very well-characterized.  Histological and behavioural endpoints have been well 

established for the gerbil BCCAO model and studies have shown a relationship between 

damage in the CA1 region of the hippocampus and deficits in spatial learning.  Due to the 

emerging problem of changing brain vasculature in the gerbil that has threatened the 

reliability of this model, we have utilized a method of hyperactivity screening to ensure 

consistent forebrain ischemia. 

 



CHAPTER 3 

MATERIALS AND METHODS 

3.1. Acclimation 

 Adult male Mongolian gerbils (Meriones unguiculates, Charles River Canada, 

QC, Canada), age 11 to 12 weeks, were acclimated for ten days at 22ºC with a 12 hour 

light/dark cycle in shoebox cages with free access to food and water.  Animals were 

group housed for three days and were then separated into individual cages for the 

remaining acclimation and experimental period.  Regular rat chow was provided for the 

first three days while the animals were group housed, and purified control diet (see 

section 3.1.4) was provided for the remaining seven days.  All animal care and 

procedures adhered to the Canadian Council on Animal Care guidelines and were 

approved by the University of Saskatchewan Committee on Animal Care and Supply.  

Following acclimation, animals were assigned to sham surgery or global ischemia, 

induced by BCCAO.  

3.2 Bilateral common carotid artery occlusion 

 Anaesthesia was induced with 4.0% isoflurane and 1L/min oxygen and was then 

reduced down to 2.5-3.0% isoflurane and 1L/min oxygen for the duration of the surgery.  

Both common carotid arteries were isolated through a ventral midline incision.  A 

surgical silk thread was passed under both arteries allowing them to be gently lifted and 

isolated.  Once the arteries were isolated, they were occluded for five minutes with
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 microaneurysm clips.  Occlusion and reperfusion were visually verified, as this is an 

ischemia-reperfusion model.  During occlusion, brain temperature was estimated via a 

tympanic probe (Barnant Type T Digi-Sense Thermometer) and maintained at 

36.5±0.2ºC  by wrapping a Mul-T-Pad® water heated blanket (Global Medical Products, 

Inc., Burlington, ON , Canada) around the gerbil’s head.  A rectal probe was used to 

monitor body temperature, which was maintained with a homeothermic blanket (Harvard 

Apparatus Canada, St. Laurent, QC, Canada).  The incision was then closed and local 

anaesthetic (Xylocaine) applied.  Sham surgery was identical to ischemia surgery with 

the exception of artery occlusion.  Following surgery, gerbils were placed in individual 

cages and observed for two hours.  A heat lamp was placed over part of the cage to keep 

the gerbil warm but with the opportunity for them to move away from the heat when 

mobile.  Animals were then returned to cages to be monitored for activity.  Any animals 

showing seizures (n=1) were excluded from the study. 

3.3 Screening for complete ischemia 

 After a two hour recovery period, gerbils were monitored for a 20 hour period to 

determine the success of ischemia surgery. Five grams of purified control diet (see 

section 3.1.4) and water ad libitum were provided during this period.  Ischemic animals 

are known to exhibit heightened activity for up to 30 hr post-ischemia (Corbett and 

Nurse, 1998) and this hyperactivity can be used as a tool to screen out incomplete 

forebrain ischemia.   

 Gerbils were monitored by an Opto-M3 Activity Meter (Columbus Instruments, 

Columbus, OH, USA) using infrared beam interruption in two-dimensions.  The 

accumulated interruption counts were recorded every 15 minutes.  The following criteria 
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were used to identify animals with severe forebrain ischemia: 1) an activity level greater 

than three standard deviations above the mean activity level of a pool of laboratory sham 

animals (n=30) and 2) hyperactivity had to be sustained for the entire 20 hour monitoring 

period (M.I. Harmon et al., unpublished observations).   

3.4 Experimental diets 

 Following activity monitoring, each of the two surgical groups were randomly 

divided into control (CON) or caloric restriction (CR) groups, generating four 

experimental groups; 1) sham - control diet (SCON), 2) sham - caloric restriction (SCR), 

3) ischemia - control diet (ICON) and 4)  ischemia - caloric restriction (ICR).  The 

experimental design is shown in Figure 3.1.  Control and CR diets (Dyets Inc. Bethlehem, 

PA, USA ) were based on the AIN-93M rodent diet (Reeves et al., 1993), but did not 

contain the antioxidant tert-butylhydroquinone because of its potential to confound 

studies involving oxidative stress and inflammation (Table 3.1).  The two diets were 

isocaloric, but CR groups were fed 30% less food each day than their respective CON 

groups to create 30% energy restriction.  The diet fed to the CR groups was formulated to 

ensure that intake of essential nutrients (protein, fat, vitamins and minerals), considering 

the 30% reduction in food intake, was the same as that of the CON group.   

 The CON group had free access to the control diet.  The amount of CR diet to be 

supplied to the SCR and ICR groups was calculated separately throughout the experiment 

since food intake can differ between ischemic and sham gerbils following their respective 

surgeries (Bobyn et al., 2005).  For the first three days following surgery, SCR and ICR 

animals were fed 30% less than the average food intake observed in a previous 

experiment of group-housed SCON and ICON gerbils, respectively.  Beginning on day 
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four following surgery, SCR and ICR gerbils were fed 30% less than the actual average 

intake consumed in the current study by the respective control group during the previous 

day.  Because of the experimental design in which animals were continually added to the 

experiment, these estimates of food intake were based on an increasing sample size as the 

study progressed.  Daily food intake and weekly body weight were recorded over the 60 

day study period. 

 

 

Open field 
testing 

d3,7,10,30,60 

Histological 
analysis of 

hippocampal 
CA1 neurons 

d60 

Figure 3.1 Experimental design showing time intervals for all experimental procedures. 
BCCAO: bilateral common carotid artery occlusion.  SCON: sham animals with control 
diet; SCR: sham animals with CR; ICON: ischemic animals with control diet; ICR: 
ischemic animals with CR. 
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Table 3.1 Experimental diets 
Component Control (CON) 

g/kg 

Caloric Restriction (CR) 

g/kg 

Vitamin Free Casein 140 199 

L-Cystine 1.8 2.6 

Sucrose 100 142 

Cornstarch 465.7 341.8 

DYETROSE 155 119 

Soybean Oil a 40 57 

Cellulose 50 71 

Mineral Mix b  35 50 

Vitamin Mix c 10 14 

Choline Bitartrate 2.5 3.6 
a Soybean oil without tert-butylhydroquinone. 
b AIN-93M mineral mix (Reeves et al., 1993). 
c AIN-93M vitamin mix (Reeves et al., 1993). 
 

3.4.1 Dietary and euthanasia interventions 

 Following surgery, it was noticed that some CR animals (both sham and 

ischemic) were losing weight too rapidly, were losing an excessive amount of weight or 

were showing signs of weakness.  This concern was discussed with one of the University 

veterinarians.  A humane endpoint for euthanasia was identified as well as an 

experimental intervention strategy to be used if needed.  Animals were monitored daily, 

and gerbils were humanely killed if they showed weakness, poor grooming or other signs 

of poor health.  A decision was made that if 10% of the calorically restricted animals 

(7/72) had to be euthanized, the following intervention strategy was to be invoked: any 

animal that lost >35% of body weight, showed a period of excessive rate of weight loss 
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(>16% in one week) or showed signs of poor grooming or weakness was to be fed 5% 

more diet each day until the end of the study. 

3.5 Behavioural testing 

To test for chronic habituation impairments, gerbils were placed in an open field 

(75 X 75 X 75 cm) on d3, 7, 10, 30 and 60 post-ischemia (Colbourne and Corbett, 1995).  

The open field was located in a secluded room, and environmental cues (e.g. 

experimenter, shelving, lighting) were kept constant during testing.  Once in the open 

field, gerbils were monitored by video tape and analyzed (EthoVision Basic, Noldus 

Information Technology) to determine total distance travelled and preferred location of 

activity (i.e. periphery vs. centre).  The periphery or outer zone was designated as the 

outside 12 cm of the open field. Each test session lasted 10 minutes.   

3.6 Histology 

 Following open field testing on day 60, gerbils were anaesthetized and perfused 

transcardially with heparinized saline (4 min at 12 mL/min), followed by 10% neutral 

buffered formalin (8 min at 12 mL/min).  To minimize the occurrence of dark neuron 

artifact (Cammermeyer, 1962), intact heads were fixed in formalin for 24 hours. Brains 

were then gently removed and stored in formalin for at least 24 hours prior to paraffin 

embedding.  Brains were cut into 6 μm sections and stained with hematoxylin and eosin 

(H&E).  Slides were blinded to prevent assessment bias, and brain damage was assessed 

histologically by counting hippocampal CA1 neurons.  Cells were counted if they looked 

viable, were non-eosinophilic, and had a defined cell membrane and nucleus.  Neurons 

were counted bilaterally at 400x magnification in three sections representing the entire 

anterior-posterior axis of the hippocampus.  Neurons were counted in medial, middle, and 
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lateral sectors (sector length = 0.2mm) of the hippocampal CA1 region at -1.7 and -2.2 

mm relative to bregma and in a single sector (middle CA1) at -2.7 mm from bregma 

using a 200µm square (10X10) microscope grid using a method modified slightly from 

that of (Colbourne and Corbett, 1995) (Figure 3.2).  Neuron counts were summed over 

left and right hemispheres.  Treatment effects were analyzed for each of the 3 

hippocampal regions and for the total neuron counts summed for all 3 sectors. 

3.7 Statistical analysis 

 All data are presented as mean ± SEM.  Food intake for each week (or portion of 

a week) and hippocampal CA1 cell counts were analyzed by two-factor ANOVA.  Body 

weight and open field data were analyzed by three-factor repeated measures ANOVA.  

Two factor ANOVA followed by a posthoc test (least significant difference) was used for 

body weight and open field analysis on individual days when appropriate.  A probability 

value of ≤0.05 was considered to be statistically significant. The SPSS 16 for Windows 

(SPSS Inc., Chicago IL) version was used for all analysis.   

 To determine if the 5% extra diet that was fed to 3/17 SCR gerbils and 4/14 ICR 

gerbils confounded the experimental results, all data (with exception of food intake) were 

analyzed twice: 1) One analysis included all animals for as long as data could be obtained 

(option a) and 2) the second analysis included only animals that completed the study as 

planned (excluding animals that required intervention or died prematurely) (option b).   

 Open field data were analyzed by three-factor repeated measures ANOVA to 

identify any treatment by diet by day interactions.  This analysis cannot be applied to any 

animals with missing data, that is, those gerbils that did not complete all five open field 

test sessions (those that had to be euthanized or simply missed a test) therefore, these 
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animals were excluded from the analysis.  Sample sizes for the three-factor repeated 

measures ANOVA are as follows: option a: SCON, n=12, SCR, n=13, ICON, n=13, ICR, 

n=12; option b: SCON, n=12, SCR, n=10, ICON, n=13, ICR, n=8.  Because of the 

importance of testing whether the intervention influenced results, these animals were 

included in a subsequent 2-factor ANOVA used to evaluate effects on individual days.  

This larger sample size is presented in Figure 4.3 and Figure C.1. Since the results from 

statistical analysis did not differ between the two options for any endpoint, only the 

results from option a are presented in the main body of the thesis.  Note that option a has 

a higher sample size, therefore increasing statistical power.  The exception is for food 

intake, for which data presented are from option b analysis.  It was not possible to use 

option a for food intake data due to incomplete data from the time intervals analyzed.  All 

data analysis from option b are available in appendices B-D.   
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Figure 3.2 Hippocampal CA1 regions selected for histological assessment.  Level A,      
~-1.7mm relative to bregma; Level B, ~-2.2mm relative to bregma; Level C, ~-2.7mm 
relative to bregma.  Permission was obtained from The Journal of Neuroscience to reprint 
this figure.  
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CHAPTER 4 

RESULTS 

4.1 Surgical outcome 

 All animals met criteria set for brain temperature during the ischemic period.  One 

animal was excluded from the study because of subsequent seizures.  Three animals died 

during surgery, two due to ruptured arteries, and one due to cessation of breathing.  

Thirty-two out of a total of 66 (48.5%) animals that underwent bilateral carotid artery 

occlusion did not meet the criteria for complete forebrain ischemia based on activity 

monitoring and were excluded from the study.  Figure 4.1 shows representative activity 

patterns for 20 hr following ischemia or sham surgery.  Activity patterns observed in 

ischemic animals can be divided into three categories 1) complete ischemia, in which the 

pattern of persistent hyperactivity exhibited met the established criteria, 2) incomplete 

ischemia in which low activity was observed, and 3) incomplete ischemia, in which 

gerbils exhibited initial hyperactivity that was not sustained over the monitoring period.   

4.2 Dietary and euthanasia interventions 

 After 10% of the calorically restricted animals had to be euthanized due to 

weakness, poor grooming or other signs of poor health, the planned dietary intervention 

became necessary.  As noted in section 3.14, any gerbil that showed excessive weight 

loss (>35%), a period of excessive rate of weight loss with poor grooming or weakness, 

or only the clinical signs were fed 5% more diet than calculated for each day until the end 
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of the study.  This intervention strategy was required in 3/17 SCR gerbils and 4/14 ICR 

gerbils.  This prevented any further deaths or abnormal clinical signs, with the exception 

of one animal (ICR) for which intervention was likely too late.   

 

Figure 4.1 Patterns of activity identified in the period following ischemia or sham 
surgery.  Representative patterns of activity are shown for:  sham surgery;  
complete forebrain ischemia identified by persistent hyperactivity;  incomplete 
forebrain ischemia identified by low activity;  incomplete forebrain ischemia 
identified by initial hyperactivity that was not sustained throughout the 20 hr testing 
period.  

 
4.3 Food intake and body weight  

 Food intake following surgery was divided into the following time periods: d1, 

d2, d3, d4-7, d8-14, d15-21, d22-28, d29-35, d36-42, d42-49, d50-56, and d57-60.  Days
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 1, 2 and 3 were analyzed separately because food allotment for the SCR and ICR groups 

was calculated differently on d1-3 than for the rest of the study (see section 3.1.4). and 

because the pattern of food intake varied within this time interval.   

 Throughout the 60 day study, and as expected according to treatment, the food 

intake of CR gerbils was significantly less than that of animals fed the CON diet 

(p<0.001) (Table 4.1).  Ischemia significantly depressed food intake on d1 (p=0.023) and 

significantly increased food intake over d4-7 (p=0.017), d8-14 (p<0.001) and d15-21 

(p=0.003).  The effect of ischemia on food intake disappeared by d22-28 (p > 0.05).  

There was no significant interaction between surgery and diet at any of the timepoints 

tested (p>0.05).  Table 4.1 also shows that CR gerbils were underfed during the first three 

days of the study when their food allotment was being based on data from a previous 

study.  Average energy reduction during the first three days of the study was 41%, 56%, 

and 40% for SCR animals and 71%, 55% and 55% for ICR animals.  Between d4 and the 

end of the study, when food allotment in the CR groups was calculated relative to actual 

intake of the respective CON group, average energy reduction was at the desired level, 

being 31.3% for the SCR group and 29.9% for the ICR group.   

 Figure 4.2 presents the mean (±SEM) body weight for each group throughout the 

experiment.  Three-factor repeated measures ANOVA revealed a significant effect of diet 

(p<0.001, between subject effects) and week, (p<0.001, within-subject effects) as well as 

a significant diet by week interaction (p<0.001, within subject effects).  The interactions 

of surgery by week (p=0.606) and diet by surgery by week (p=0.677) were not 

significant.  Mean initial body weight (±SEM) was not statistically different among 

groups upon entry into the study, but from d7 until perfusion (d60), mean body weight of 
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CR gerbils was significantly lower than that of gerbils on the CON diet (p<0.001, 

between-subject effects).  Body weight data from option b are shown in Appendix A (Fig. 

A.1). 

Table 4.1 Food intake throughout the post-surgical period 

 Food intake (g) 

Days following surgery  SCON SCR* ICON ICR* 

1   4.2±0.3 2.4±0.1 3.8±0.5# 1.0±0.1# 

2   4.3±0.2 1.9±0.0 4.4±0.4 2.0±0.0 

3   4.9±0.3 2.9±0.0 5.4±0.6 2.4±0.0 

4-7   17.5±0.8 12.2±0.1 20.3±1.1# 13.7±0.5# 

8-14   30.8±1.0 20.6±0.1 34.6±1.0# 24.2±0.7# 

15-21   30.9±1.0 20.0±0.3 33.2±1.1# 23.4±0.2# 

22-28   31.6±1.0 20.8±0.3 31.4±1.0 21.6±0.1 

29-35   31.3±0.9 20.9±0.3 30.8±1.0 20.2±0.2 

36-42   31.3±1.1 21.3±0.1 32.2±0.9 23.5±0.3 

43-49    32.1±1.2 22.0±0.1 32.2±0.8 22.5±0.1 

50-56   32.5±1.5 22.4±0.2 31.9±1.1 21.5±0.2 

57-60   13.9±0.6 10.0±0.1 13.7±0.5 9.7±0.1 

Data are expressed as mean ±SEM; SCON, n=14; SCR, n=10; ICON, 
n=15; ICR, n=10.  Data were analyzed by two-factor ANOVA.  *Food 
intake was significantly decreased at all timepoints in CR animals as 
compared to CON animals (p<0.001).  #Ischemia independently 
decreased food intake on d1 (p=0.023) and increased food intake 
during d4-7 (p = 0.017), d8-14 (p<0.001) and d15-21 (p=0.003).  
SCON: sham animals with control diet; SCR: sham animals with CR; 
ICON: ischemic animals with control diet; ICR: ischemic animals 
with CR. 
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Figure 4.2 Mean (±SEM) body weight throughout the post-surgical period: Analysis by 
option a.  Initial body weight on the day of surgery (shown as d0) was not significantly 
different among groups, but from d7 onwards, CR gerbils weighed significantly less than 
gerbils on the CON diet (p<0.001), as determined by two-factor ANOVA and LSD post 
hoc tests.  SCON: sham surgery with control diet; SCR: sham surgery with CR; ICON: 
ischemic surgery with control diet; ICR: ischemic surgery with CR.  
 
4.4 Open field activity 

 Appendix B shows the pattern of activity in the open field on each test day.  Data 

analysis from the open field is presented in Figure 4.3.  Three-factor repeated measures 

ANOVA revealed a significant effect of surgery (p<0.001, between-subject effects) and 

day (p<0.001, within-subject effects), as well as a significant surgery by day interaction 

(p<0.001, within-subjects effects).  Diet (p=0.984), interactions of diet by day (p=0.138) 

and surgery by diet by day (p=0.924) were not significant.  
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Figure 4.3 Total distance (mean ± SEM) travelled in the open field on d3, 7, 10, 30, and 
60.  Three-factor repeated measures ANOVA demonstrated a significant effect of surgery 
(p<0.001, between-subject effects) and day (p<0.001, within-subject effects), as well as a 
significant surgery by day interaction (p<0.001, within-subjects effects).  Diet (p=0.984), 
interactions of diet by day (p=0.138) and surgery by diet by day (p=0.924) were not 
significant.  Different letters indicate significant differences among groups within a day 
by two-factor ANOVA followed by LSD post-hoc tests (p<0.05).  Sample size varied 
within a group by day because of death, euthanasia or a missed test.  SCON: sham 
surgery with control diet; SCR: sham surgery with CR; ICON: ischemic surgery with 
control diet; ICR: ischemic surgery with CR.  
 

 Sham animals showed habituation on all test days. Although both ischemic groups 

showed some habituation over time, ICON animals showed a significantly higher level of 

activity (impaired habituation) as compared to SCON animals on all test days (p<0.001). 

ICR and SCR animals were significantly different on d3, d7, and d10 (p<0.001) but not 

on d30 and d60 (p>0.05).  This was partly due to an increase in total distance traveled by 
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the SCR gerbils on these days.  There was a trend for SCR activity to increase relative to 

that of the SCON group by d60 (p=0.055).  Open field activity was significantly lower in 

the ICR group as compared to ICON gerbils on d7 only (p=0.024). 

 Figure 4.4 shows the percent of the total distance spent in the outer zone of the 

open field.  Ischemic groups spent significantly more time in the outer zone than sham 

groups as indicated by three-factor repeated measures ANOVA (p<0.001, between-

subjects effects).  Percent distance spent in the outer zone was unaffected by dietary 

treatment (p=0.664, between-subject effects). There were no significant effects of day 

(p=0.159), or the interactions diet by day (p=0.309), surgery by day (p=0.177) or surgery 

by diet by day (p=0.845).  Open field data from option b are presented in Appendix C. 

4.5 Hippocampal CA1 cell counts 

 Table 4.2 shows the effects of diet and ischemia on hippocampal CA1 neuronal 

cell counts at day 60.  Gerbils exposed to global ischemia had significantly fewer 

hippocampal CA1 neurons at each level and totalled than sham gerbils, irrespective of 

diet (p<0.001).  There was no significant independent effect of diet on histological 

outcome nor was there an interaction between surgery and diet.  Five minutes of global 

ischemia resulted in a mean (± SEM) total loss of 87.1±0.9% and 89.2±1.1 % of CA1 

neurons in gerbils fed control diet and exposed to CR respectively.  Hippocampal CA1 

neuronal cell count data for option b are presented in Appendix D.  Table 4.3 shows the 

extent of hippocampal neuron loss in individual gerbils exposed to global ischemia as 

well as the extent to which neuronal damage is consistent across both sides of the 

hippocampus.  Percent CA1 neuronal loss was calculated relative to the mean neuronal 

number of the combined sham groups.  Sham groups were combined as there was no 
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effect of diet on their CA1 neuronal counts.  All animals exposed to global ischemia 

which were included in the study on the basis of hyperactivity monitoring had extensive 

neuronal loss (77-96%) on both sides of the hippocampus with no evidence of unilateral 

damage.  The pattern of neuronal damage for option b data is shown in Appendix D. 

 

 

Figure 4.4 Percent of distance travelled spent in the outer zone of the open field on d3, 7, 
10, 30, and 60.  Ischemic groups spent significantly more time in the outer zone than 
sham groups as indicated by three-factor repeated measures ANOVA (p<0.001).  Diet 
(p=0.664), day (p=0.159), interactions of diet by day (p=0.309), surgery by day (p=0.177) 
or surgery by diet by day (p=0.845) were not significant.  SCON: sham animals with 
control diet; SCR: sham animals with CR; ICON: ischemic animals with control diet; 
ICR: ischemic animals with CR. 
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Table 4.2 Caloric restriction does not alter ischemia-induced death of hippocampal CA1 
neurons at d60: Analysis by option a. 
 SCON SCR ICON* ICR* 
Level A 261.1±5.6 264.2±3.0 31.6±2.8 26.5±3.3 
Level B 260.3±5.6 269.8±4.4 33.4±2.5 27.6±2.8 
Level C 90.8±1.9 90.0±2.0 14.9±1.1 12.7±1.2 
Total 612.1±12.0 623.9±7.7 79.9±5.4 66.8±6.5 
Mean (±SEM) cell counts were taken across the anterior-posterior axis of the hippocampus 
(Level A, ~ -1.7mm relative to bregma; level B, ~-2.2mm relative to bregma; level C, ~-
2.7mm relative to bregma); SCON, n=14; SCR, n=13; ICON, n=15; ICR, n=15.  Data were 
analyzed by two-factor ANOVA.  *Ischemia independently decreased the number of 
surviving cells at all hippocampal levels (p<0.001). SCON: sham animals with control diet; 
SCR: sham animals with CR; ICON: ischemic animals with control diet; ICR: ischemic 
animals with CR.



Table 4.3 Extent and reliability of hippocampal CA1 neuron 
loss between left and right hemispheres following five min 
of global ischemia: Analysis by option a. 
Experimental Group 

 
Left hemisphere 

 
Right hemisphere

 
(gerbil #) [neuron counts (% loss)] 

ICON  (1) 52 (83) 26 (92) 
(2) 29 (91) 36 (88) 
(3) 37 (88) 34 (89) 
(4) 34 (89) 25 (92) 
(5) 37 (88) 33 (89) 
(6) 31 (90) 31 (90) 
(7) 51 (84) 56 (82) 
(8) 44 (86) 44 (86) 
(9) 34 (89) 24 (92) 
(10) 81 (74) 52 (83) 
(11) 36 (88) 35 (89) 
(12) 53 (83) 55 (82) 
(13) 42 (87) 36 (88) 
(14) 42 (87) 32 (90) 
(15) 39 (87) 38 (88) 

ICR     (1) 58 (81) 70 (77) 
(2) 12 (96) 21 (93) 
(3) 24 (92) 21 (93) 
(4) 24 (92) 26 (92) 
(5) 29 (91) 28 (91) 
(6) 23 (93) 36 (88) 
(7) 41 (87) 42 (86) 
(8) 49 (84) 37 (88) 
(9) 34 (89) 26 (92) 
(10) 30 (90) 42 (86) 
(11) 25 (92) 44 (86) 
(12) 32 (90) 24 (92) 
(13) 38 (88) 32 (90) 

Percent neuronal loss was calculated relative to mean 
neuronal number in combined sham groups (SCON and 
SCR).  ICON: ischemic animals with control diet; ICR: 
ischemic animals with CR.
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CHAPTER 5 

DISCUSSION 

This study is the first to assess whether CR provided solely after brain ischemia 

can provide a lasting decrease in brain damage.  Using BCCAO in the gerbil, I 

demonstrated that CR did not alter long-term activity in the open field test or 

hippocampal CA1 neuron cell counts, which are two commonly used and well-validated 

measures of brain damage in this model.  Exposure to brain ischemia caused a significant 

increase in the distance travelled in the open field on all test days indicative of a spatial 

learning deficit.  CR did not ameliorate this deficit on days 3, 10, 30 or 60.  Open field 

activity was significantly lower in the ICR group as compared to ICON gerbils on d7, 

which might indicate a transient protective effect.  An interesting trend toward increased 

activity in the calorically restricted sham group relative to that of the control diet fed 

sham group by d60 suggests that the open field may have limitations for chronic studies 

of CR.  There was also no protective effect of CR on hippocampal CA1 neuron death.   

In order to undertake this study, it was necessary to employ a screening method to 

identify animals with severe forebrain ischemia as it has been shown that commercially 

available gerbils now show a high incidence of posterior communicating arteries that 

increase variability of ischemic damage (Laidley et al., 2005; Seal et al., 2006).  

Hippocampal CA1 neuron cell counts at day 60 revealed that hyperactivity screening 

correctly identified severe ischemia in 100% of cases.  Animals that underwent global 

ischemia and were included in the study on the basis of hyperactivity monitoring had
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 extensive neuronal loss (77-96%) on both sides of the hippocampus with no evidence of 

unilateral damage.  This level of damage is much less variable than that of similar recent 

studies completed without a screening procedure (Bobyn et al., 2005) and more similar to 

the extent of damage seen in studies prior to the problem of changing brain vasculature in 

the gerbil (Colbourne and Corbett, 1995)  While no animals that were included in the 

study on the basis of screening were identified by histology as having incomplete damage 

(false positive results), histology was not completed on animals removed from the study 

based on screening.  Therefore, it is not possible to report on the number of false negative 

results.  The screening accuracy and the extent and consistency of damage observed in 

the ischemic animals yields confidence in the screening process, although the large 

number of unusable animals (48.5%) makes the gerbil model of global ischemia 

undesirable, especially for large scale studies.   

 It appears that 60 days of post-ischemic CR had no protective effect on CA1 

neuronal death.  As neurons can appear viable on simple histological assessment but be 

functionally abnormal (Corbett and Nurse, 1998), open field testing was also employed to 

assess hippocampal function.  Damage to the hippocampal CA1 region is associated with 

spatial learning and memory impairments, which can be accurately detected in this model 

of global ischemia by the open field test (Corbett and Nurse, 1998; Corbett et al., 1997; 

Colbourne et al., 1998a; Colbourne et al., 1998b).   

Gerbils exposed to sham surgery showed the expected decline in total activity, 

indicative of habituation, whereas ischemic animals exhibited persistently elevated 

activity, indicating learning impairment (Colbourne and Corbett, 1995; Colbourne et al., 

1998a ; Colbourne et al., 1998b).  Although habituation improved with time after global 

51 
 



ischemia, as previously reported (Corbett and Nurse, 1998; Colbourne and Corbett, 

1995), the activity of gerbils exposed to ischemia and control diet did remain 

significantly elevated over that of the matched sham group throughout the testing period.  

The functional assessment was in agreement with the histological findings in that CR did 

not ameliorate the ischemia-induced spatial learning deficit exhibited in the open field on 

days 3, 10, 30 or 60.  The significantly lower activity of the ICR group relative to that of 

ICON gerbils on day 7 may suggest a transitory protective effect of CR.  If this 

interpretation is correct, it would illustrate the importance of long-term testing in 

experimental stroke models to identify treatments that have only transient beneficial 

effects.  Many promising therapeutic interventions that appear to be neuroprotective 

when assessed at early timepoints (1-7 days) following ischemia do not provide lasting 

benefit but only postpone cell death (Corbett and Nurse, 1998).  Although the possibility 

cannot be excluded, it is thought that the additional 5% diet required in a small number of 

CR animals to address the problem of post-surgical morbidity and mortality did not 

confound the results of this study.  This interpretation is based on the fact that excluding 

these gerbils from behavioural and histological analysis yielded the same results.  The 

limitation of this conclusion, however is that this is not an exact comparison because of 

differences in statistical power between options a and b.  

 The timing of CR is likely a key explanation for the findings of this study.  

Although CR administered beginning one day following brain ischemia might have been 

too late to affect the ischemic cascade, it was predicted that this dietary treatment would 

be able to moderate ongoing secondary processes such as inflammation and apoptosis.  

The capacity of CR to increase stress resistance pathways (de Cabo et al., 2003; Heydari 
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et al., 1996) prior to the ischemic cascade may have been essential for CR to exert 

neuroprotection, and this mechanism was precluded by the study design.  Such 

mechanisms are reminiscent of those described for ischemic preconditioning 

(Obrenovitch, 2008).  Chronic CR has previously been shown capable of inducing heat 

shock protein-70 in the striatum (Yu and Mattson, 1999).   

While post-ischemic CR may be too late to influence early events accounting for CA1 

neuronal death, 30% CR was continued up until day 60, providing ample opportunity to 

improve functional recovery by enhancing neuroplasticity mechanisms.  Considerable 

functional recovery can take place in both animal models of ischemia and in human 

stroke patients (Corbett and Nurse, 1998; Lee and van Donkelaar, 1995).  Despite this, no 

long-term benefit from CR was observed in open field performance.  No direct 

measurements of neural plasticity mechanisms were investigated, which would have 

aided interpretation of the behavioural data.   

The increased distance travelled by CR sham animals on day 60, relative to sham 

animals fed control diet, raises the possibility that interpretation of open field results have 

been confounded by the presence of CR.  The open field test has been used extensively in 

the gerbil model of global ischemia because of its sensitivity to detect differences in CA1 

injury and identify beneficial treatments (Corbett et al., 1997; Colbourne and Corbett, 

1994; Colbourne and Corbett, 1995; Colbourne et al., 1998b).  Increased open field 

activity in this model of global ischemia generally reflects decreased habituation (Wang 

and Corbett, 1990; Babcock et al., 1993).  However, this does not exclude the possibility 

of other influences on the test (Plamondon and Khan, 2005).   
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It is possible that hunger from chronic CR interfered with interpretation by increasing 

motivation to forage.  However, the post-ischemic pattern of open field activity in both 

control and CR gerbils is very similar to that previously reported in other long-term 

studies with this global ischemia model (Farrell et al., 2001; Corbett et al., 1997; 

Colbourne and Corbett, 1995), suggesting that the open field test results are valid even in 

the presence of CR.  Ideally, multiple behavioural tests should be used for more accurate 

assessment of memory deficits.  While the T-maze and radial arm maze are very sensitive 

for detecting impaired reference memory and working memory following global ischemia 

in the gerbil (Corbett and Nurse, 1998; Mileson and Schwartz, 1991; Colbourne and 

Corbett, 1995), these tests require the use of food rewards and might also be confounded 

by increased motivation in chronically hungry animals.  Future research on CR may 

benefit from the use of behavioural tests that do not require the use of food rewards such 

as the Morris water maze (Corbett and Nurse, 1998; Langdon et al., 2008), object 

recognition testing (Plamondon et al., 2008; Plamondon et al., 2006; Yukie et al., 2006) 

and operant conditioning (Spencer et al., 2008; Jing et al., 2008; Maia et al., 2004).  The 

Morris water maze has been shown to detect impairments in reference memory and 

working memory following global ischemia, but is not suitable for the gerbil, a desert 

species unsuited to swimming (Corbett and Nurse, 1998; Langdon et al., 2008).  The 

latter two other possibilities show promise in global ischemia studies although they have 

not been as well-characterized.   

 While total activity measured as distance travelled is the most commonly used 

validated endpoint for the open field test in global ischemia studies (Corbett and Nurse, 

1998), it is also possible to examine time spent in the periphery of the open field versus 
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the centre.  This is an endpoint more commonly used for assessing anxiety (Palanza, 

2001; Prut and Belzung, 2003).  Ischemic groups spent significantly more time in the 

periphery of the open field than sham groups, which could indicate increased anxiety 

(Calabrese, 2008).  Percent distance spent in the outer zone was not affected by dietary 

treatment.  Analyzing zone data for the open field did not appear to provide any 

additional information than the standard measure of activity in this study.  In fact, more 

subtle changes were detected analyzing distance travelled in the entire open field, such as 

the difference between SCON and SCR gerbils on day 60, which was not apparent from 

examining travel in the periphery. 

Another limitation of this study was the unexpected underfeeding during the first 3 

days following ischemia (40-74% energy restriction) that resulted from extrapolating 

food intake data obtained previously from group-housed gerbils to the current study with 

singly-housed gerbils.  Imposing 40-74% CR at the same time as the neuroendocrine and 

cytokine-mediated stress response to surgery (Lowry and Perez, 2005) may have been a 

factor in the morbidity and mortality observed in a small proportion of calorically 

restricted gerbils.  This severe underfeeding would have occurred in parallel with the 

elevations in resting metabolic rate, energy requirement, gluconeogenesis, and lean body 

mass breakdown that typically occur as part of the classic metabolic response to surgery 

(Lowry and Perez, 2005).  No adverse effects were reported in a recent study of energy 

restriction administered immediately following surgical induction of spinal cord injury in 

the rat (Plunet et al., 2008).  These investigators employed an IF regimen, an alternate 

form of CR in which animals are fasted and fed ad libitum on alternating days.  As this 

form of energy restriction causes less weight loss than the 30-40% CR regimens (Anson 
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et al., 2003; Goodrick et al., 1983), it may be a better way to study CR in the surgical 

models needed to invoke brain ischemia.   

 In contrast to our results with post-ischemic CR, previous studies indicate that CR 

started prior to brain ischemia might be beneficial (Yu and Mattson, 1999; Roberge et al., 

2008a; Roberge et al., 2008b).  The decrease in infarct volume induced by CR after focal 

ischemia has not yet been shown to extend beyond 24 hours (Yu and Mattson, 1999).  

This timepoint is too early following ischemia to know whether the treatment is truly 

neuroprotective or is only postponing cell death (Corbett and Nurse, 1998).  However, 

two studies in which 40% CR was provided for 30 days before and either 30 (Roberge et 

al., 2008a) or 70 days (Roberge et al., 2008b) after global ischemia demonstrated 

improvements in working memory in the radial arm maze.  Although the potential 

confounding influence of hunger was acknowledged, the comparable performance 

between CR and control-fed sham rats suggests that the radial arm maze results are valid 

(Roberge et al., 2008a; Roberge et al., 2008b).  The mechanisms responsible for the 

improved recovery remain to be identified.  Although CR may have exerted beneficial 

effects both before and after ischemia in these studies, the interpretation is somewhat 

confounded as CR was postponed for five days after ischemia.  Presumably the latter was 

done to avoid complications with the combination of CR and surgical stress, such as was 

encountered in the present study.  Although potential effects of CR on intra- and/or post-

ischemic brain temperature were not ruled out in these studies (Roberge et al., 2008a; 

Roberge et al., 2008b), any hypothermia that may have occurred was not of sufficient 

magnitude to reduce hippocampal neuron death.  While intra-ischemic brain temperature 

was strictly controlled in our study, post-ischemic brain temperature was not and is a 
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limitation of this study as well.  The finding that CR did not affect neuron survival 

suggests that the CR-induced reduction in memory deficit was caused by enhanced 

function of either the remaining hippocampal neurons or those in other brain regions. 

Further studies linking functional outcome with cell death and neural plasticity 

mechanisms with different paradigms and timing of CR will be insightful for 

understanding neuronal death and recovery processes following brain ischemia.  For 

example, although there are few studies in which CR and IF have been directly 

compared, some data indicate that results may vary with the caloric restriction paradigm; 

it has been suggested that cellular stress resistance pathways may be activated to different 

degrees (Mattson and Wan, 2005).  Whether or not CR can permanently decrease 

neuronal death after brain ischemia, there is increasing evidence that CR can positively 

influence hippocampal plasticity (Stranahan and Mattson, 2008; Gillette-Guyonnet and 

Vellas, 2008), which suggests that the study of these mechanisms after brain ischemia is 

warranted.   

 In conclusion, 30% CR provided after global ischemia does not improve long-

term functional outcome in the open field test or hippocampal CA1 neuronal 

degeneration.  Thus, within the confines of this CR paradigm, CR did not prove to be an 

effective means of improving outcome following global ischemia.  Evidence from other 

studies of functional improvement with combined pre- and post-ischemic CR, however, 

suggests that it remains a valuable tool to elucidate mechanisms by which the brain 

protects itself against ischemic injury.  Future research should examine other paradigms 

of CR.  Few studies have directly compared CR and IF (Anson et al., 2003).  While both 

paradigms produce similar results, they may act through different mechanisms.  
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Intermittent fasting may be a better way to study CR in models of brain ischemia as it 

results in less dramatic weight loss than controlled CR, possibly reducing the risk for 

morbidity and mortality.  It is also important that future studies attempt to employ 

multiple behavioural tests.  The use of multiple behavioural tests can provide a more 

accurate assessment of functional deficits following stroke and the effects of potential 

therapeutic treatments.  It may be especially valuable to characterize functional tests that 

do not require the use of food rewards as it is possible that these rewards may confound 

nutritional studies.  Due to the considerable functional recovery that can occur following 

stroke it would also be beneficial to examine The effects of CR on neuroplasticity 

mechanisms such as synaptic reorganization (e.g. dendritic morphology) or neurogenesis.  

A better understanding of the effects and mechanisms of CR could lead to new 

approaches for improving brain damage following stroke including the development of 

CR mimetics.   
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APPENDIX A 

 

Figure A.1 Mean (±SEM) body weight throughout the post-surgical period: Analysis by 
option b.  Initial body weight on the day of surgery (shown as d0) was not significantly 
different among groups, but from d7 onwards, CR gerbils weighed significantly less than 
gerbils on the CON diet (p<0.001), as determined by two-factor ANOVA and LSD post 
hoc tests.  SCON: sham surgery with control diet; SCR: sham surgery with CR; ICON: 
ischemic surgery with control diet; ICR: ischemic surgery with CR.  
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APPENDIX B 

Figure B.1 

 

Figure B.2 
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Figure B.3 

 

Figure B.4 
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Figure B.5 

 

Figure B Pattern of habituation in the open field by the four experimental groups (option 
a).  Figures B1-B5 show mean (±SEM) total distance travelled on d 3, 7, 10, 30, and 60, 
respectively.  SCON: sham surgery with control diet; SCR: sham surgery with CR; 
ICON: ischemic surgery with control diet; ICR: ischemic surgery with CR. 
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APPENDIX C 

 

Figure C.1 Total distance (mean ± SEM) travelled in the open field on d3, 7, 10, 30, and 
60: Analysis by option b.  Three-factor repeated measures ANOVA demonstrated a 
significant effect of surgery (p<0.001, between-subject effects) and day (p<0.001, within-
subject effects), as well as a significant surgery by day interaction (p<0.001, within-
subjects effects).  Diet (p=0.767), interactions of diet by day (p=0.209) and surgery by 
diet by day (p=0.477) were not significant.  Different letters indicate significant 
differences among groups within a day by two-factor ANOVA followed by LSD post-hoc 
tests (p<0.05).  Sample size varied within a group by day because of missed tests. SCON: 
sham surgery with control diet; SCR: sham surgery with CR; ICON: ischemic surgery 
with control diet; ICR: ischemic surgery with CR. 
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Figure C.2 Percent of distance travelled spent in the outer zone of the open field on d3, 7, 
10, 30, and 60: Analysis by option b.  Ischemic groups spent significantly more time in 
the outer zone than sham groups as indicated by three-factor repeated measures ANOVA 
(p<0.001).  Diet (p=0.839), day (p=0.230), interactions of diet by day (p=0.489), surgery 
by day (p=0.471) or surgery by diet by day (p=0.777) were not significant.  SCON: sham 
animals with control diet; SCR: sham animals with CR; ICON: ischemic animals with 
control diet; ICR: ischemic animals with CR.  
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APPENDIX D 

Table D.1 Caloric restriction does not alter ischemia-induced death of hippocampal CA1 
neurons at d60: Analysis by option b 
 SCON SCR ICON* ICR* 
Level A 261.1±5.6 263.3±3.0 31.6±2.8 27.0±4.2 
Level B 260.3±5.6 267.1±5.2 33.4±2.5 29.0±3.5 
Level C 90.8±1.9 89.7±2.7 14.9±1.1 13.6±1.4 
Total 612.1±12.0 620.1±8.9 79.9±5.4 69.6±8.4 
Mean (±SEM) cell counts were taken across the anterior-posterior axis of the 
hippocampus (Level A, ~ -1.7mm relative to bregma; level B, ~-2.2mm relative to 
bregma; level C, ~-2.7mm relative to bregma); SCON, n=14; SCR, n=10; ICON, n=15; 
ICR, n=10.  Data were analyzed by two-factor ANOVA.  *Ischemia independently 
decreased the number of surviving cells at all hippocampal levels (p<0.001). SCON: 
sham animals with control diet; SCR: sham animals with CR; ICON: ischemic animals 
with control diet; ICR: ischemic animals with CR.   
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Table D.2 Extent and reliability of hippocampal CA1 
neuron loss between left and right hemispheres following 
five min of global ischemia: Analysis by option b. 
Experimental Group 
 

Left hemisphere 
 

Right hemisphere
 

(gerbil #) [neuron counts (% loss)] 
ICON  (1) 52 (83) 26 (91) 

(2) 29 (91) 36 (88) 
(3) 37 (88) 34 (89) 
(4) 34 (89) 25 (92) 
(5) 37 (88) 33 (89) 
(6) 31 (90) 31 (90) 
(7) 51 (84) 56 (82) 
(8) 44 (86) 44 (86) 
(9) 34 (89) 24 (92) 
(10) 81 (74) 52 (83) 
(11) 36 (88) 35 (89) 
(12) 53 (83) 55 (82) 
(13) 42 (87) 36 (88) 
(14) 42 (87) 32 (90) 
(15) 39 (87) 38 (88) 

ICR     (1) 58 (81) 70(77) 
(2) 12 (96) 21 (93) 
(3) 24 (92) 21 (93) 
(4) 24 (92) 26 (91) 
(5) 41 (87) 42 (86) 
(6) 49 (84) 37 (88) 
(7) 34 (89) 26 (91) 
(8) 30 (90) 42 (86) 
(9) 25 (92) 44 (86) 
(10) 38 (88) 32 (89) 

Percent neuronal loss was calculated relative to mean 
neuronal number in combined sham groups (SCON and 
SCR).  
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