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ABSTRACT 

Impact of odour emissions from livestock operation sites on the air quality of neighboring areas 

has raised public concerns. A practical means to solve this problem is to set adequate setback 

distance. Air dispersion modeling was proved to be a promising method in predicting proper 

odour setback distance. Although a lot of air dispersion models have been used to predict odour 

concentrations downwind agricultural odour sources, not so much information regarding the 

capability of these models in odour dispersion modeling simulation could be found because very 

limited field odour data are available to be applied to evaluate the modeling result. A main 

purpose of this project was evaluating AERMOD and CALPUFF air dispersion models for odour 

dispersion simulation using field odour data. 

Before evaluating and calibrating AERMOD and CALPUFF, sensitivity analysis of these two 

models to five major climatic parameters, i.e., mixing height, ambient temperature, stability class, 

wind speed, and wind direction, was conducted under both steady-state and variable 

meteorological conditions. It was found under steady-state weather condition, stability class and 

wind speed had great impact on the odour dispersion; while, ambient temperature and wind 

direction had limited impact on it; and mixing height had no impact on the odour dispersion at all. 

Under variable weather condition, maximum odour travel distance with odour concentrations of 

1, 2, 5 and 10 OU/m3 were examined using annual hourly meteorological data of year 2003 of 

the simulated area and the simulation result showed odour traveled longer distance under the 

prevailing wind direction. 

Evaluation outcomes of these two models using field odour data from University of Minnesota 

and University of Alberta showed capability of these two models in odour dispersion simulation 

was close in terms of agreement of modeled and field measured odour occurrences. Using 

Minnesota odour plume data, the difference of overall agreement of all field odour measurements 

and model predictions was 3.6% applying conversion equation from University of Minnesota 
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and 3.1% applying conversion equation from University of Alberta between two models. 

However, if field odour intensity 0 was not considered in Minnesota measured odour data, the 

difference of overall agreement of all field odour measurements and model predictions was 3.1% 

applying conversion equation from University of Minnesota and 1.6% applying conversion 

equation from University of Alberta between two models. Using Alberta odour plume data, the 

difference of overall agreement of all field odour measurements and model predictions was 0.7% 

applying conversion equation from University of Alberta and 1.2% applying conversion equation 

from University of Minnesota between two models. However, if field odour intensity 0 was not 

considered in Alberta measured odour data, the difference of overall agreement of all field odour 

measurements and model predictions was 0.4% applying conversion equation from University of 

Alberta and 0.7% applying conversion equation from University of Minnesota between two 

models. Application of scaling factors can improve agreement of modeled and measured odour 

intensities (including all field odour measurements and field odour measurements without 

intensity 0) when conversion equation from University of Minnesota was used.  

Both models were used in determining odour setback distance based on their close performance 

in odour dispersion simulation. Application of two models in predicting odour setback distance 

using warm season (from May to October) historical annul hourly meteorological data (from 

1999 to 2002) for a swine farm in Saskatchewan showed some differences existed between 

models predicted and Prairie Provinces odour control guidelines recommended setbacks. 

Accurately measured field odour data and development of an air dispersion model for 

agricultural odour dispersion simulation purpose as well as acceptable odour criteria could be 

considered in the future studies. 
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1. INTRODUCTION 

Construction of new livestock facilities or expansion of existing ones has become increasingly 

difficult due to the concerns of residents surrounding Intensive Livestock Operations (ILOs). 

Such concerns often include the impact of nuisance odour on peoples’ lives and on the 

environment (Jacobson et al., 2002). Among all the currently used odour control technologies, 

e.g., diet modification, manure treatment, capture and treatment of emitted gases, etc., keeping 

adequate buffer distance (setback distance) between odour sources and neighboring residential 

areas seems to be an effective and economical approach (Sweeten et al., 2001). Generally, 

determination of setback distance can be accomplished by two methods: use of established 

agricultural odour control guidelines or air dispersion models. The guideline approach primarily 

utilizes empirical personal judgment and/or simple distance calculating equations, while air 

dispersion models approach considers every factor that may affect odour dispersion in the 

vicinity of odour source, making it more scientific and promising (Jacobson et al., 2002). 

A lot of researchers have employed air dispersion models in agricultural odour dispersion 

simulation to predict concentrations of odour and other air contaminants downwind animal 

production sites since the early 1980s (Janni, 1982; Mejer and Krause, 1985; Carnry and Dodd, 

1989; Ormerod, 1991; Chen et al., 1998; Diosey et al., 2000; Zhu et al., 2000; Koppolu et al., 

2002; Guo et al., 2004a; Jacobson et al., 2005; Zhou et al., 2005). These models varied from 

pretty simple to quite complicated, including the theories used to explain the process of odour 

dispersion, input parameters of the models and equations involved in calculation. With 

accessibility to original field odour data obtained by odour observers during the last few years, 

evaluation of these models became possible through comparing models predicted odours with 

corresponding field measured ones, making the simulation results of these models more 

convictive. 
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An advanced United States Environmental Protection Agency (USEPA) guideline model, 

CALPUFF, has drawn attention because of its good performance in agricultural odour dispersion 

simulation compared with other models (USEPA, 1998; Allwine et al., 1998; Walker et al., 2002; 

Wang et al., 2005; Xing, 2006; Curran et al., 2007; Henry et al., 2007; Thomas et al., 2007). 

Application of AERMOD, a newly introduced regulatory model of EPA, to simulate odour 

dispersion may be found in literatures; however, justification of some algorithms in AERMOD is 

still necessary. Accuracy of this model in predicting odour concentration is still needed to be 

clarified and validated (USEPA, 2002). By comparing this model with CALPUFF, we may find 

its capability in simulating odour dispersion. This project is intended to evaluate AERMOD and 

CALPUFF air dispersion models by comparing model predictions with field measurements and 

to use the better one in these two models to predict odour setback distances for a typical sized 

swim farm. 
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2. LITERATURE REVIEW 

Concentrated Animal Feeding Operations (CAFOs), including swine and poultry operations, 

dairies and cattle feedlots, and the associated animal waste storages may produce emissions of 

odour, particulate matter, and greenhouse gases (Sweeten et al., 2001). This project only focuses 

on odour. After being released, odour will transport and disperse in atmosphere. It may reach 

residential area located in the vicinity of the CAFOs thus incurring complaints from residents 

living there. 

 

2.1 Measurement of Odour 

Odour is humans’ olfactory response to the odourous gases, indicating it is a subjective sensation 

and may vary for different people. The main characteristics of odour-caused nuisance conditions 

are concentration, intensity, persistence, frequency, and hedonic tone (Jones, 1992). The 

concentration and intensity are two most important characteristics among them because they are 

frequently used by researchers to deal with odour related issues and besides they are the only two 

parameters involved in the work of model evaluation. 

 

2.1.1 Measurement of Odour Concentration 

Odour concentration is widely measured through the method of olfactometry. In this technique, 

the odour sample is diluted using odour-free air until the odour sample has a 50 percent 

probability of being detected by a group of human panelists for sniffing odour, i.e., 50 percent of 

the odour sniffers can discriminate the odour sample from the odour-free sample. Odour 

concentration is the dilution ratio corresponding to 50% of the correct responses (CEN, 1999).  
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Odour concentration measured by olfactometry is expressed as “odour units” (OU) or “odour 

units per cubic meter” (OU/m3). OU is defined as the volume of diluents required to dilute a unit 

volume of odour until the odour detection threshold (ODT) of the odour is obtained (Sweeten, et 

al., 2001) while OU/m3 is the concentration of odour in one cubic meter of air at the ODT of the 

odour (NCMAWM, 2001). Most of the models including AERMOD and CALPUFF require 

input of odour emission rate(s) from odour source(s) in the dimension of mass/time (e.g., g/s, 

kg/hr, etc.) and output of odour concentration of mass/m3 (e.g., g/m3, mg/m3, etc.), however, 

odour emission rate(s) measured at odour source(s) takes unit of OU/s. Researchers employed 

OU/s instead of g/s as the input emission rate dimension and OU/m3 instead of g/m3 as the output 

dimension of models (Williams, 1986; Caeney and Dodd, 1989; Ormerod, 1991; Smith, 1993; 

Zhu et al., 1998; Guo et al., 2001a). Zhu et al. (2000) proposed that use of OU/s not mass/time 

may be one of reasons for the low concentrations predicted by the model INFUFF-2 and scaling 

factor(s) could be employed to reduce the errors caused by it. In this project, OU/s will be used 

as the dimension of model input, which corresponds to the mass concentration unit of g/s. Odour 

concentration at the receptor’s location, i.e., the output of the model, has the unit of OU/m3.  

 

2.1.2 Measurement of Odour Intensity 

Odour intensity is defined as the relative perceived psychological strength of an odour that is 

above the ODT (Sweeten et al., 2001). Intensity can be assessed via either category or 

referencing scales. Commonly, the latter one is preferred by researchers because it allows direct 

comparisons between research studies thus improving reproducibility and work efficiency. 

However, barriers will be encountered due to different odourant concentrations and category 

scales are used by different researchers if category scales approach is applied (Harssema, 1991).  

Intensity assessed through referencing scales is evaluated by either dynamic or static scale 

method (ASTM, 1988). The dynamic odour intensity referencing scales are based on the ppm 
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(part per million) of n-butanol in air while the static odour intensity referencing scales are based 

on the ppm of n-butanol in water. Commonly, odour inspecting activities, including laboratory 

odour testing, field odour monitoring, etc., utilize the static odour intensity referencing scales 

(Sweeten et al., 2001). Field odour intensities are observed by a group of panelist sniffers 

standing in the field downwind odour sources. Training of odour sniffers in laboratory to sniff 

odour intensities is called nasal ranger training, which is a fundamental activity before field 

odour monitoring (McGinley et al., 2002).  

Two kinds of widely used referencing scales by odour study researchers are 5-point (0 - 5) and 

8-point (0 - 8) scales. Use of 5-point scales could be found in Jacobson et al. (1999); Zhu et al. 

(2000); Guo et al. (2001a), and 8-point scales in Zhang et al. (2002, 2005) and Feddes and 

Segura, (2005), etc. Comparison of the two kinds of scales showed the 5-point scales will 

achieve higher odour concentration than 8-point scales for the same n-butanol concentration in 

water. For example, for the n-butanol concentration of around 240 ppm, the odour concentration 

is 25 OU/m3 in 5-point scales and 5 OU/m3 in 8-point scales. This will result in the different 

relationship between odour concentration and intensity (Guo et al., 2006). 

 

2.1.3 Relationship between Odour Concentration and Intensity 

The relationship between odour concentration and intensity is the bridge linking odour intensity 

data measured in the field with odour concentration predicted by air dispersion models. Two 

options can be used to compare field measured and model predicted odour. One is to convert 

field measured odour intensities to concentrations and the alternative is to convert model 

predicted concentrations to intensities. Both of these two options involve the 

concentration-intensity conversion equation. The relationship between these two variables is not 

linear, and varies for different odour and odourants. Steven’s Law, a power function equation, is 

usually used to express relationship between them (US National Research Council, 1979). 
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Although odour study researchers have created different equations to describe the relationship 

between these two variables, they all followed this format. 

In Guo et al. (2001a), a total of 179 odour samples were collected from buildings and earthen 

manure storages (EMS) from swine and dairy farms and measured for both intensity and 

concentration by trained panelists in the olfactometry laboratory in University of Minnesota 

during 1998 and 1999. 5-point intensity scales were used by them. The relationships between 

odour intensity and concentration created by the researcher using datasheet developed by the 

panelists were:  

Swine odour: I = 0.93ln (C) – 1.986 (R2 = 0.69)                                   (2.1) 

Dairy odour: I = 0.92ln (C) – 2.075 (R2 = 0.89)                                   (2.2) 

Where I is the odour intensity on 0 - 5 scales, C is the odour concentration (OU/m3), R is the 

sample coefficient of determination 

In Feddes and Segura, (2005), the relationship between the perceived odour intensity and 

concentration was developed using standard 60-mL training jars containing different n-butanol 

concentrations. The 8-point odour intensity referencing scales measured by odour sniffers and 

the corresponding n-butanol concentration (OU/m3) determined by an olfactometer in that 

laboratory was: 

I = 1.245ln(C) − 0.046 (R2 = 0.79)                                              (2.3) 

Where I is the odour intensity on 0 - 8 scales, C is the odour concentration (OU/m3), R is the 

sample coefficient of determination. 

According to Zhang et al. (2002), the relationship between odour intensity of bagged samples 

assessed by nasal rangers in the laboratory in the University of Manitoba and the corresponding  



 

7 
 

odour concentration measured with an olfactometer for short distances can be expressed as: 

I = ln(C) + 0.36 (R2 = 0.61)                                                    (2.4) 

Where I is the odour intensity on 0 - 8 scales, C is the odour concentration (OU/m3), R is the 

sample coefficient of determination. 

The details of relationship between odour intensity and concentration used in these two 

referencing scales are shown in Tables 2.1 and 2.2. 

 
Table 2.1 Odour intensity referencing scale of 0 - 5 scale (Guo et al., 2001a) 

Odour 

referencing 

scale 

Odour 

intensity 

Odour 

strength 

n–Butanol 

in Water 

(ppm) 

Odour 

concentration 

(OU/m3) 

Odour 

concentration 

range (OU/m3) 

0 to 5 

0 No odour 0 0 < 14 

1 Very faint 250 25 14 - 42 

2 Faint 750 72 42 - 124 

3 Moderate 2250 212 124 - 364 

4 Strong 6750 624 364 - 1070 

5 Very strong 20250 1834 > 1070 

           

 

Table 2.2 Odour intensity referencing scale of 0 - 8 scale (Xing, 2006) 

Odour 

referencing 

scale 

Odour 

intensity 

Odour 

strength 

n–Butanol 

in Water (ppm) 

Odour concentration 

(OU/m3) by Feddes 

and Segura, (2005) 

Odour 

concentration 

range (OU/m3) 

0 to 8 

0 No odour 0 1 < 2 

1 Not annoying 120 2 2 - 3 

2 A little annoying 240 5 3 - 8 

3 A little annoying 480 12 8 - 17 

4 Annoying 960 26 17 - 39 

5 Annoying 1940 58 39 - 86 

6 Very annoying 3880 128 86 - 192 

7 Very annoying 7750 287 192 - 429 

8 Extremely Annoying 15500 640 > 429 
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2.2 Odour Dispersion Modeling 

Before using of air dispersion models to simulate odour dispersion, we should consider issues 

related to odour dispersion modeling, such as the characteristics of the odour, what factors may 

influence the dispersion of the odour in atmosphere, and detailed information of the models that 

used to conduct odour dispersion simulation. Knowing these gives us the sense how the models 

work and whether what we have done are correct. 

 

2.2.1 Factors Affecting Odour Dispersion 

Dispersion of odours is mainly impacted by topography around the odour source and 

atmospheric condition (Jacobson et al., 2005). When Jacques Whitford Environment Ltd. (2003) 

employed CALPUFF to predict Minimum Separation Distance (MSD) from agricultural odour 

sources in Alberta, it was found topography and screening (windbreak or shelterbelt) had great 

influence on MSD. The effect of vegetation screening on dispersion was very dependent on the 

dimensions of the screen and its location relative to the odour emission sources. Kelly, (1995) 

proposed that a sound selection of CAFOs for good odour dispersion should be gently sloped 

topography without confining valley walls. Because atmospheric condition is changeable and an 

important input of air dispersion models, it always attracted researchers’ attention when carrying 

out researches related to odour issues (Zhu, 1999; Jacobson et al., 2000; Guo et al., 2001b; etc.). 

Ouellette et al. (2006) concluded that atmospheric condition was a very important factor 

involved when using a window-based air dispersion model to carry out odour dispersion 

simulation. The major parameters used to describe atmospheric condition are ambient 

temperature, mixing height, atmospheric stability class, wind speed, wind direction, relative 

humidity, and solar radiation (Guo et al., 2001b).  
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According to Jacobson et al. (2000), atmospheric stability class has substantial impact on odour 

dispersion. Atmospheric stability is generally described using Pasquill atmospheric stability class 

categories A - G (A: strongly unstable, B: moderately unstable, C: slightly unstable, D: neutral, E: 

slightly stable, F: moderately stable, and G: strongly stable), which are widely used in most 

dispersion models (USEPA, 1999). According to Guo et al. (2001b), the most unstable weather 

occurs under strongly unstable stability class A with high wind speed, while the most stable 

weather occurs when stability class is G and the wind speed is relatively low. Stable atmospheric 

conditions that usually occur at night favor odour transport thus producing a lot of complaints 

from residents; however, unstable atmosphere happens at most of the time during daytime 

disfavor odour transport thus relieving people from odour nuisance. Xing, (2007) conducted the 

sensitivity analysis of four models, i.e., ISCST3, AUSPLUME, CALPUFF, and INPUFF-2 to 

find the wind speed had potential impact on odour dispersion followed by atmospheric stability 

class. It was also found that ambient temperature had very limited impact on odour dispersion, 

while mixing height had no influence at odour dispersion at all. 

 

2.2.2 Models Used in Odour Dispersion Modeling 

Air dispersion models were broadly divided into Gaussian plume models (steady-state models) 

and advanced models (unsteady-state models) (New Zealand National Institute of Water and 

Atmospheric Research, 2004). Gaussian plume models, which have been applied in practical use 

for a long time, are well understood and have received wide approval. Although been created 

some years later than Gaussian-plume models, advanced models have been in use for scientific 

research for decades, and now are getting more and more good appraisement based on their 

performances in odour dispersion simulation (New Zealand National Institute of Water and 

Atmospheric Research, 2004). 
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2.2.2.1 Gaussian Plume Models 

The Gaussian plume model (e.g., AUSPLUME, ISCST3) is the most commonly developed air 

dispersion model. It is the base of developing most dispersion calculations for the continuous 

pollution source in the uniform dispersion field (Arya, 1999). Figure 2.1 shows the approach of a 

typical point source pollution dispersion in the Gaussian plume modeling. It can be observed 

from the figure the bell-shaped distribution of the pollution plume is the same in every direction 

in the three dimensional space.  

 

Figure 2.1 A typical plume from an elevated point source in the Gaussian plume modeling 
(adapted from New Zealand National Institute of Water and Atmospheric Research, 2004) 

The Gaussian plume formula can be expressed as (Arya, 1999):  

C(x, y, z) = ொ
ଶగఋ೤ఋ೥௎

 exp [-0.5(  ௬
ఋ೤

) 2] {exp [-0.5( ௭ିு
ఋ೥
 ) 2] + exp [-0.5( ௭ାு

ఋ೥
 ) 2]}       (2.5) 

Where: C is steady-state concentration at a specific point (g/m3); Q is emission rate of pollutant 

(g/s); δy and δz are horizontal and vertical standard deviations of plume concentration, which is 

the function of x; U is average wind speed at stack height (m/s); y is horizontal distances from 
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plume centerline (m); z is vertical distance from ground level (m); H is effective stack height 

(m).  

For the centerline concentration of ground-level odour source (e.g., agricultural odour source), 

the value of z = H = y = 0, so we get: 

C(x) = ொ
ଶగఋ೤ఋ೥௎

                                                              (2.6) 

Formula used in Gaussian plume models was derived from the assumption that the whole field 

where the pollutant disperses is in ‘steady-state’ condition. Some limitations originally existed 

because of this assumption (New Zealand National Institute of Water and Atmospheric Research, 

2004). For example, when calculating each hour’s concentration (most of the Gaussian models 

calculate concentration for each single hour), it excludes the effect of contaminants of previous 

hours. Due to limitations, this kind of model can be used under situations where the topography 

is relatively flat without complicated terrain as hills, rivers, or bumps; the meteorology is 

“simple”, i.e., pretty uniform in spatiality, and without many calm conditions (New Zealand 

National Institute of Water and Atmospheric Research, 2004).  

 

2.2.2.2 Lagrangian Puff Models 

Advanced models were grouped into three categories: Particles, Puff, and Grid points depending 

on the way the air pollutants are represented. Puff model (e.g., INPUFF-2, RIMPUFF) is the 

most widely used advanced model because it can under most circumstances effectively consider 

the real meteorological condition to be simulated (New Zealand National Institute of Water and 

Atmospheric Research, 2004). Although puff model requires three-dimensional meteorological 

data, it can also use the measurements from a weather observation tower as used in other models 
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as ISCST3. Figure 2.2 illustrates the approach puffs travel in atmosphere from a point source 

adopted by puff models. 

 

Figure 2.2 A typical plume from an elevated point source in the Lagrangian puff modeling 
(adapted from New Zealand National Institute of Water and Atmospheric Research, 2004) 

The Lagrangian puff formula can be expressed as (Arya, 1999): 

C(x, y, z) = ொ೔೛
ሺଶ஠ሻభ.ఱఋೣఋ೤ఋ೥௎

 exp [-0.5(  ௫
ఋೣ
 ) 2 - 0.5(  ௬

ఋ೤
 ) 2] {exp [-0.5( ௭ିு

ఋ೥
 ) 2] + exp [-0.5( ௭ାு

ఋ೥
 ) 2] 

(2.7) 

Where: Qip is the instantaneous point source emission rate; the other variables have the same 

meaning as in equation 2.5.  

For centerline concentration of ground-level odour source (e.g., agricultural odour source), the 

value of y = z = H = 0, so we get: 

C(x, y) = ଶொ೔೛
ሺଶగሻభ.ఱఋೣఋ೤ఋ೥௎

 exp [-0.5(  ௫
ఋೣ
 ) 2]                                          (2.8) 

From equations 2.5 and 2.8 we can see the theoretical basis of two models for ground-level 

pollution sources is the same; however, puff models consider time-dependent and longitudinal 

dispersion. 

H
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Although puff dispersion model is more sophisticated and can better represent actual weather 

condition, it still has some demerits compared with plume models. For example, it is more 

difficult to handle the weather data in Puff models. Puff model is suggested to be used in some 

circumstances as when the meteorological condition or terrain is very complicated or the period 

of low wind speed happens frequently (New Zealand National Institute of Water and 

Atmospheric Research, 2004).  

 

2.2.3 Review of Models Involved in This Project 

AERMOD and CALPUFF will be used in this project. This part will provide some descriptions 

of these two models found in the literature. 

 

2.2.3.1 AERMOD 

AERMOD was adopted by U.S. EPA as its regulatory model from December 9th of 2005 

(USEPA, 2005). There are three regulatory modules of the AERMOD modeling system: 

AERMET, AERMAP, and AERMOD*. AERMET is a meteorological data preprocessor that 

prepares meteorological data to be used in AERMOD; AERMAP is a terrain data preprocessor 

that prepares topographical data to be used in AERMOD; and AERMOD* is a postprocessor that 

combines meteorological and topographical data and information of odour receptors and odour 

emissions to yield the odour concentrations downwind odour source (USEPA, 2004b). 

AERMOD is a Gaussian plume model that updated from the Industrial Source Complex Short 

Term version 3 (ISCST3) model. It incorporates air dispersion that based on planetary boundary 

layer (PBL) turbulence structure and scaling concepts, including treatment of both surface and 

elevated sources for both simple and complex terrain (USEPA, 2003). Compared with ISCST3, 
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some new or improved algorithms were applied in AERMOD. For example, it can handle 

elevated, near-surface, and surface level sources; it can treat receptors on complex terrain, etc. It 

showed good performance in dealing with point, volume, area, and area-polygon and area-circle 

source types for short distance odour dispersion simulation by Iowa Department of Natural 

Resources Animal Feeding Operations Technical Workgroup (2004). 

Meteorological data used in AERMOD* are the final output of AERMET, which is a kind of 

software prepared to yield Surface File and Profile File to be accepted by AERMOD*. So, 

AERMET and AERMOD* must be run in sequence in order to get the final desired odour 

concentration. A whole run of AERMET contains three stages (Figure 2.3) and it needs three 

types of data, i.e., National Weather Service (NWS) hourly surface observations, NWS 

twice-daily upper air soundings, and data collected from an on-site weather data measurement 

tower (USEPA, 2004a). The first stage in AERMET is to extract data from the stored compact 

format by NWS; the second stage is to combine data extracted from stage one for 24-hour period 

of time; and the final stage merges the data from stage two to develop surface and profile file to 

be used in AERMOD* (USEPA, 2004a). Normally, if raw surface data contains enough 

information needed to run AERMET then it together with upper air data will be enough to get 

final desired output if on-site data are not available. The upper air and surface data are available 

from the U.S. National Climatic Data Center (NCDC). The data prepared by NCDC are stored in 

some specific formats, including the upper air sounding data in TD-6201 format, hourly surface 

weather observations in CD-144 format (time-based format) or TD-3280 format (element-based 

format) (USEPA, 2004a).  

A notable difference between AERMOD and other used models is it adopted three parameters, 

i.e., albedo, Bowen ratio, and surface roughness length, to characterize the weather condition 

instead of commonly used variable, Pasquill stability class, in other models. The albedo is the 

fraction of total solar radiation reflected by the earth surface back to atmosphere. The Bowen 
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ratio is the ratio of the sensible heat flux to the latent heat flux. And the roughness length is the 

height at which the mean horizontal wind speed is zero (USEPA, 2004a).  

 

Figure 2.3 AERMET processing stages (adapted from USEPA, 2004a) 

 

2.2.3.2 CALPUFF 

CALPUFF has been accepted by the U.S. EPA as a preferred model for regulatory applications 

from April, 2003 (New Zealand National Institute of Water and Atmospheric Research, 2004). It 

consists of three main components: CALMET, CALPUFF*, and CALPOST. CALMET is a 

meteorological processor that develops hourly wind and temperature fields in the 

three-dimensional gridded modeling domain; CALPUFF* is a transport and dispersion processor 

that simulates dispersion and transformation processes of pollutant(s) along the dispersion way; 

CALPOST is a postprocessor used to process the files from CALPUFF to produce a summary of 

the simulation results (USEPA, 1998).  
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CALPUFF is a Lagrangian puff dispersion model that is able to simulate the effects of complex 

meteorological condition in the process of pollutant transport (Scire, 2000). This model can 

handle emissions from any types of sources including point, line, area, and volume sources. Both 

gridded receptors and discrete receptors can be accepted in one run time. It could be driven by 

either complicated three-dimensional meteorological data provided by CALMET for a full run or 

simple meteorological data from a single weather observation tower just as used by AUSPLUME 

or ISCST3 for a simple simulation purpose. The model contains algorithms for near-source 

effects such as building downwash, partial plume penetration, sub-grid scale interactions as well 

as longer-range effects as pollutant removal, chemical transformation. Best performance of 

CALPUFF usually depends on high quality of meteorological data (USEPA, 1998).  

To run the CALPUFF dispersion model, software CALPUFF* and CALPOST must be run in 

sequence. CALPUFF* is a Graphical User Interface (GUI) used to yield a binary file to be used 

in CALPOST. Inputs of CALPUFF* includes nine parts: Run information, Grid setting, Species, 

Chemical Transformation Method, Deposition, Model Options, Sources, Receptors, and Output. 

All these nine parts above must be filled before a successful run. CALPOST can refine and 

prepare the output of CALPUFF* in certain formats for some specific purposes, e.g., it can 

produce odour concentration data in the format ready for drawing graphics or list four top 

concentration values at each odour receptor. Meteorological data involved in the part “Model 

Option” in CALPUFF* could be prepared by CALMET or ISC ASCII file. The method how 

meteorological data were produced by CALMET has been addressed previously in the chapter of 

AERMOD description. Meteorological data yielded by ISC ASCII file were produced by filling 

meteorological parameters in a text editor in a specific format. 

Odour emissions were originally treated as integrated puffs by CALPUFF* when it was 

developed; however, it was realized later that use of the integrated puff approach was inefficient 

as new features were added to the model for handling local-scale applications. Subsequently, a 

more efficient approach of treating the emissions as slugs was developed. It was proposed to use 
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when local conditions like local meteorological condition and/or terrain situation were 

complicated (USEPA, 1998). 

 

2.2.4 Sensitivity Analysis and Evaluation of Air Dispersion Models 

Sensitivity analysis of the models is used to find out the impact of input parameters on the output 

of the models. Literature review results showed most of the sensitivity analysis were conducted 

to find out the impact of climatic parameters on the odour dispersion. Evaluation of models 

aimed at giving the models users the confidence when using these models. Evaluation was 

conducted by comparing modeled and field measured odour occurrences to find the agreement of 

them.  

 

2.2.4.1 Sensitivity Analysis of Air Dispersion Models 

Sensitivity analysis of air dispersion models is the analysis conducted to find out the output 

variation of air dispersion models following the change of input parameters. Air dispersion 

models contain a lot of input parameters, e.g., odour emission rate, climatic condition, 

topography. Climatic condition is a very important one among these parameters, because it is 

changeable and has great impact on odour dispersion in atmosphere. The input climatic data of 

air dispersion models consists of mixing height, ambient temperature, atmospheric stability class, 

wind speed, and wind direction. Climatic parameter sensitivity analysis is an useful tool not only 

in identifying important parameters of their impact on downwind odour concentration value but 

also in identifying areas where further research will be most productive (Ould-Dada, 2008). 

Smith (1993) carried out the sensitivity analysis of the STINK model to meteorological condition 

when predicting downwind odour concentrations from a ground-level agricultural odour source. 
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It was found that wind speed was a very important factor that affects odour dispersion and, the 

change of the atmospheric stability class by one class interval to the next more stable class 

involved the increase in concentration of between 40 and 90%. However, wind direction was just 

moderately important. Chastain and Wolak (1999) used a windows-based computer program 

based on Gaussian plume dispersion equations to conduct the climatic sensitivity analysis in 

modeling livestock odour dispersion. Results showed that the odour plume was wider and longer 

under stable weather conditions during the day, presenting the most critical period for odour 

problems. It was also found that for the atmospheric stability condition, which could be generally 

determined by Pasquill stability classes, odour would travel shorter distance under relatively 

unstable atmospheric stability conditions (A and B), and longer distance under stable 

atmospheric conditions (F and G). Jacobson et al. (2000) and Guo et al. (2001a) validated 

INPUFF-2 and found weather condition had a substantial impact on odour dispersion. For the 

same wind speed, the maximum odour travel distance decreased sharply if stability classes 

changed from unstable to stable. For the same stability class, the maximum odour travel distance 

decreased greatly if wind speed increased. Unfortunately, the effect of other parameters on this 

model was not analyzed. Ferenczi (2005) conducted sensitivity analysis of RIMPUFF model (a 

kind of mesoscale puff model) before using it to conduct actual odour dispersion simulation. It 

was found in that article for more stable atmosphere and lower wind speed the odour plume 

covered smaller area but the concentration of contamination over this area was much higher 

compared with the unstable atmosphere and high wind. It was also found decreasing values of 

mixing height made the concentration values higher and higher in every stability class from A to 

F and the difference between the maximum and minimum concentration was the largest in 

stability class F, and smallest in stability class A. Xing et al. (2007) conducted sensitivity of 

ISCST3, AUSPLUME, CALPUFF, and INPUFF-2 under steady-state weather conditions. It was 

concluded wind speed had great impact on all four models. Under stability class E, when the 

wind speed increased from 1 to 5 m/s, the maximum odour travel distance (distance where odour 

concentration was 10 OU/m3) decrement range was 70 to 79% for four models. This trend 
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happened under all other stability classes. It was also found the influence of atmospheric stability 

class at models was huge. As the stability class changed from F to E under wind speed of 3 m/s, 

the change range of maximum odour travel distance for four models was 32 to 57%. For the 

same wind speed, the difference of models’ output increased if stability class interval increased. 

It was also detected ambient temperature had some impact on INPUFF-2 but its impact was very 

limited on other models; however, wind direction had some impact on all four models near the 

swine farm, and this impact faded away when the distance increased.  

 

2.2.4.2 Evaluation of Air Dispersion Models 

Air dispersion models should be evaluated in prior to application in a practical odour dispersion 

simulation. Only after verifying them, can we have the confidence to use them. Evaluation was 

carried out through comparing models predictions with field measurements. Field measurements 

were deemed as standard values and, modeled results are then compared with corresponding 

standard values to check if they agree with each other.  

Capability of various air dispersion models in terms of predicting odour concentration downwind 

agricultural odour sources has been studied by many researchers. Zhu et al. (1999) evaluated 

INPUFF-2 in predicting downwind odours from several animal production facilities. According 

to the Wilcoxon Signed Rank Test, the model was able to predict the downwind odour levels at 

distances of 100, 200, and 300 m from odour sources with confidence of 95, 92, and 81%, 

respectively. At farther distances, such as 400 and 500 m, the accuracy of prediction of this 

model was significantly reduced. Guo et al. (2001a) calibrated the same model for long-distance 

odour dispersion estimation. This research was carried out on a 4.8 by 4.8 km grid of farmland 

containing 20 livestock/poultry farms. The comparison between the modeled and measured 

odour intensities indicated that the model could successfully estimate odour intensity 1 (faint 

odour) traveling up to 3.2 km under stable atmospheric conditions (P > 0.05). However, the 
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model underestimated moderate to strong or very strong odours and odours that occurred during 

neutral or unstable weather as compared with the field measured data (P < 0.05). The overall 

percentage of agreement was 81.8%. Walker et al. (2002) compared the outputs of models 

ISCST3, CALPUFF, and AERMOD as applied in gas concentrations prediction in 48-hour 

period of time around a plant located in Nova Scotia, Canada and found CALPUFF yielded the 

best outcome for large simulation domain of 400 by 600 km followed by AERMOD, however, 

AERMOD behaved better than CALPUFF in small area of 25 by 25 km. ISCST3 did not 

produce good results as AERMOD or CALPUFF. Koppolu et al. (2002) assessed AERMOD and 

STINK in predicting odour concentrations downwind a ground-level area source in two 

experiments. Both of the experiments showed both models performed quite well generally. In the 

worst case, the average of predicted concentrations was 24 percent greater than the measured 

ones. Different averaging times of meteorological data were also tested for AERMOD. It was 

concluded that short time interval (15 and 30 minutes) instead of 1-hr as the standard averaging 

time was more suitable for AERMOD if the wind direction and wind speed were in great 

variation. Zhou et al. (2005) evaluated three dispersion models for livestock odour dispersion, 

i.e., ISCST3, INPUFF-2, and AUSPLUME, and the results showed they all can predict 

downwind odour concentrations with good agreement for distances of 500 and 1000 m but pretty 

poor at 100 m. Xing, (2006) evaluated four models, i.e., AUSPLUME, ISCST3, CALPUFF, and 

INPUFF-2 using field measured odour plume data from University of Minnesota, University of 

Saskatchewan and University of Manitoba. It was found for the overall agreement level, 

INPUFF-2 achieved the best agreement (60%) of model predicted and field measured odour 

concentration for the odour data from University of Manitoba followed by CALPUFF (56%). For 

odour measurement data from University of Minnesota, CALPUFF achieved the best agreement 

(44%) followed by INPUFF-2 (31%) for the overall agreement. When it came to using the odour 

measurement from University of Saskatchewan, again INPUFF-2 and CALPUFF got top two 

places of the agreement of predicted and measured odour intensities in four models with the 

agreement was 52 and 81%, respectively. Schmidt and Jacobson (2006) used AERMOD and 
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CALPUFF to predict ambient hydrogen sulfide concentrations near a 2000 head finishing site in 

Minnesota over five consecutive years. The results indicated predicted property line setback 

distances using AERMOD were greater than those distances predicted by CALPUFF; however, 

there was also variability between geographic locations, and different simulation times. Curran et 

al. (2007) presented an evaluation of ISC3 and CALPUFF for the prediction of odour 

concentrations at a commercial pig unit. The results turned out that the predicted odour 

concentrations of both models were pretty close. The ratio of the average predicted to mean 

measured concentration changed from 1.40 to 9.37. Over 80 percent of the predictions were 

greater than the corresponding measured values, indicating that these two models yielded 

over-predicted estimates of downwind odour concentration. The huge variation between model 

predicted and measured odour concentrations may direct the need of “scaling factor”, which will 

be addressed in details in chapter 5.3.3. 

 

2.2.5  Application  of  Air Dispersion Models  in Determining Odour 

Setback Distance 

As stated previously, determination of odour setback distance from animal production sites can 

be achieved by established odour control guidelines or air dispersion models. The guideline 

approach primarily uses empirical formulae and/or equations to calculate appropriate setbacks. 

However, the second method uses mathematical air dispersion models to predict odour 

concentrations downwind odour sources. With the predicted odour concentrations and 

pre-determined acceptable odour criteria, the acceptable setback distance could then be 

determined.  

The guideline method can be categorized into two groups: land use/zoning guideline and 

parametrically determined guideline. Land use/zoning guideline recommend the use of 
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fixed-distance setbacks that are primarily based on land use or zoning criteria. This method could 

be found in “Control of Manure Odours” in ASAE, (1994); Miner and Barth, (1988) and 

Sweeten, (1998). This kind of guideline has been applied in US, Australia and, Canada (Jacobson 

et al., 2002). The second guideline approach first accesses the information of the odour source 

and then calculates the setbacks using an empirical model and finally modifies the setback 

distance according to the land use categories. The currently used parametrically determined 

guidelines are: MDS-П model (Fraser, 2001; OMAFRA, 1995), Warren Spring model (Williams 

and Thompson, 1986), Austrian model (Schauberger and Piringer, 1997), and Purdue model 

(Lim et al., 2000). Parametrically determined guidelines are used in Austria, Germany, The 

Netherlands, Switzerland, and the U.K. (Jacobson et al., 2002). 

Right now the only used air dispersion model in predicting odour setback distance is the 

Minnesota Odour from Feedlots Setback Estimation Tool (OFFSET) model. The OFFSET model 

has been developed based on numerous odour emission measurements, a dispersion model 

(INPUFF-2), and historical Minnesota weather data. The setback distances are determined by 

different odour concentration levels together with the desired odour “annoyance free” frequency 

(91 to 99%). This model has been validated by Jacobson, et al. (2000), Zhu et al. (1999 and 

2000), and Guo et al. (2001a).  

 

2.3 Summary 

Factors influence agricultural odour dispersion should be carefully considered when studying 

odours related issues. For those researchers who use air dispersion models to predict odour 

concentrations around the odour source, being familiar the relationship between the model output 

and these factors can make the researchers know if the modeled results are right or not compared 

with the other results. Sensitivity analysis can provide us an opportunity to know how and the 

extent of model’s input affects the output, and whether the model’s output makes sense following 
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the change of the inputs. Limited information could be found in literatures regarding analysis of 

models’ sensitivity to their inputs, especially climatic parameters, of CALPUFF and AERMOD; 

however, it will be conducted in this project.  

Evaluation of models is a necessary step before putting them into odour concentration prediction. 

A lot of researches have been carried out to evaluate the performance of widely used air 

dispersion models; however, model evaluation outcomes for different researchers presented very 

different results. There are no an agreement among these researchers that a certain model is a 

better than the others in all situations. Furthermore, although evaluation of CALPUFF and 

AERMOD could be found in literature, not so much work of comparison between them can be 

observed. CALPUFF’s performance in odour dispersion simulation has been proved to be good 

by a lot of researchers as stated previously, so comparison between CALPUFF and AERMOD 

could provide a chance to know AERMOD’s performance in odour dispersion simulation. With 

accessibility to original field measured odour data from University of Minnesota and University 

of Alberta during the past few years, we can evaluate and compare AERMOD and CALPUFF 

more confidently.  

Almost all of the odour setback distance was determined by odour control guidelines. These 

guidelines were followed by governments in Canada to make decisions involved in construction 

and expanding of the animal production sites. Using of air dispersion models, which are based on 

scientific calculation, is a promising way in predicting odour setback distance. Science-based 

odour setback distance predicted by air dispersion models will be provided in this project to 

compare with odour control guidelines, making the setbacks more convictive.  
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3. OBJECTIVES 

The overall goals of this project are to conduct sensitivity analysis of AERMOD and CALPUFF 

to major climatic parameter, to evaluate the performance of these two air dispersion models for 

livestock odour prediction, and to evaluate the validity of setback guidelines set by Canadian 

Prairie Provinces against the predictions of air dispersion models. To achieve these goals, the 

following objectives will be needed to be fulfilled: 

1. To conduct sensitivity analysis of these two models to major climatic parameters to reveal 

the impact of these climatic parameters on odour dispersion; 

2. To evaluate the performance of these two models with available odour plume data 

measured by trained odour sniffers or resident-odour-observers of University of 

Minnesota and University of Alberta; 

3. To make predictions of science-based setback distance with acceptable odour 

concentration utilizing a better model in these two and hourly historical weather data for 

typical sized swine farms in Saskatchewan, Canada; 

4. To compare the setback distance predicted by the selected model with guidelines/models 

recommended setback distance of Prairie Provinces in Canada.  

Chapter 4 is to be served to fulfill objective 1 of model sensitivity analysis. Chapter 5 and 6 will 

be involved in performance evaluation of these two models using field odour measurement data 

from University of Minnesota and University of Alberta, respectively. Chapter 7 aims at fulfill 

objectives of 3 and 4. Finally, a summary of conclusions and recommendations for future studies 

will be given at chapter 8. 
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4. SENSITIVITY ANALYSIS OF AERMOD AND CALPUFF TO 

MAJOR CLIMATIC PARAMETERS FOR SWINE ODOUR 

DISPERSION 

 

4.1 Introduction 

Sensitivity analysis of air dispersion models to input parameters, especially climatic parameters, 

was carried out to find the variation of models output, i.e., variation of maximum odour travel 

distance and odour concentrations within 5 km from the odour source, to input parameters. 

Climatic parameters as input of air dispersion models generally include mixing height, ambient 

temperature, atmospheric stability class, wind speed, wind direction, solar radiation, and relative 

humidity. However, five major climatic parameters, i.e., mixing height, ambient temperature, 

atmospheric stability class, wind speed, and wind direction were the involved meteorological 

parameters in two models, CALPUFF and AERMOD, for this project purpose.  

Sensitivity analysis of air dispersion models was conducted under both steady-state and variable 

weather conditions by researchers. Under steady-state weather condition, it was carried out by 

changing the value of one climatic parameter while keep other climatic parameters constant to 

find out how the models’ output changes following the change of this parameter. Under variable 

weather conditions, all the climatic parameters changed at the same time, the output changed 

following the change of these parameters. In this part of the project, the author will analyze the 

sensitivity of CALPUFF and AERMOD to the input meteorological parameters and then 

compare the predicted values between them. 
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4.2 Materials and Methods 

Sensitivity analysis of models was also conducted under both steady-state and variable weather 

conditions in this part of the project. Under steady-state weather condition, influence of five 

major climatic premasters, i.e., mixing height, ambient temperature, stability class, wind speed, 

and wind direction, at maximum odour travel distance and odour concentrations within 5 km 

from the source as predicted by models were analyzed. Under variable weather condition, year of 

2003 annual hourly meteorological data were employed to get maximum odour travel distance 

for odour concentrations of 1, 2, 5 and 10 OU/m3.  

 

4.2.1 Site Description and Odour Emissions 

For the purpose of conducting model sensitivity to some major climatic parameters, a swine farm 

with location of 113.82W (Longitude), 53.31N (Latitude) and elevation of 715 m above mean 

sea level (MSL) in Calmar, Alberta, Canada was selected to get the odour emission rates. This 

farm consisted of one barn and two uncovered EMS cells. The relative position of the barn and 

the manure cells is sketched in Figure 4.1. The farm was surrounded by flat rural crop field. The 

odour emissions from the barn and the EMS cells used in this part are listed in Table 4.1. 

Table 4.1 Odour emission rate from barn and manure storages 

Source 
Total odour  

emissions (OU/s) 
Area (m2) Odour emission 

rate (OU/s-m2) 

Barn 437,928 32* 13685.25** 

Cell 1 270,537 5625 48.1 

Cell 2 325,944 9801 33.26 

*The barn is treated as 32 separated points representing the whole area of the barn;  
**The odour emission rate from the barn represents the emission rate of each point. 
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Figure 4.1 Layout of the swine barn for the purpose of conducting sensitivity analysis 

 

4.2.2 Meteorological Conditions 

Both steady-state and variable meteorological conditions were used to evaluate the sensitivities 

of these two models as impacted by five major climatic parameters and the predicted differences 

between them under the same weather condition will also be revealed. As steady-state 

meteorological condition which is in favor of odour transportation can bring in high odour 

concentrations downwind odour sources, this kind of weather condition is always in researchers’ 

minds to carry out model sensitivity analysis. Steady-state climatic weather condition involved in 

this part can be divided into following categories grouped by several atmospheric stability 

classes together with different wind speeds: 

F3 and F2: Atmospheric stability F (moderately stable) with wind speed of 3 and 2 m/s; 
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E5, E4, E3 and E2: Atmospheric stability E (slightly stable) with wind speed of 5, 4, 3 and 

2 m/s; 

D15, D8, D6, D5, D4, D3, D2 and D1: Atmospheric stability D (neutral) with wind speed 

of 15, 8, 6, 5, 4, 3, 2 and 1 m/s; and 

C5: Atmospheric stability C (slightly unstable) with wind speed of 5 m/s. 

It needs to be pointed out that though Pasquill stability class is used by most of the models to 

express the weather condition; it is not one of the input climatic parameters of AERMOD. 

However, Pasquill stability class can be determined by solar radiation (R) and wind speed at 

daytime, or cloudiness (n) and wind speed at nighttime (Table 4.2). Cloudiness is an input 

parameter of AERMOD. Relationship between n, R, and R0 (clear sky solar radiation) is shown 

as following (Allen et al., 2006): 

R = R0 (1 - 0.75n3.4)                                                          (4.1) 

The value of R0 is constant for one place on the earth if the date and time and location are 

specified. For the selected date and time (12:00 AM, June, 21st, 2003) of the study area, the value 

of R0 was 845.22 W/m2. The value of R can be calculated out according to equation 4.1 if the 

value of n is given. 

Table 4.2 Turner’s method for estimating stability class (Turner, 1970) 

Wind speed(m/s) 

Day time solar  

radiation (R) (W/m2) 

Night time 

Cloudiness(n) 

≥ 925 925 - 675 675 - 175 < 175 >= 4/8 <= 3/8 

< 2 A A B D — — 

2 - 3 A B C D E F 

3 - 5 B B C D D E 

5 - 6 C C D D D D 

>= 6 C D D D D D 
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As stated previously, Albedo, Bowen ratio, and surface roughness length were used to in 

AERMOD to characterize the meteorological condition of atmosphere. The values of these three 

parameters proposed by the US EPA for use of AERMOD are presented in Tables 4.3 to 4.5.  

Table 4.3 Albedo of ground covers by land-use and season (USEPA, 2000) 

Land-use Spring Summer Autumn Winter 

Water (fresh and sea) 0.12 0.10 0.14 0.20 

Deciduous Forest 0.12 0.12 0.12 0.50 

Coniferous Forest 0.12 0.12 0.12 0.35 

Swamp 0.12 0.14 0.16 0.30 

Cultivated Land 0.14 0.20 0.18 0.60 

Grassland 0.18 0.18 0.20 0.60 

Urban 0.14 0.16 0.18 0.35 

Desert Shrub land 0.30 0.28 0.28 0.45 

 
Table 4.4 Bowen ratio by land-use and season (average moisture conditions) (USEPA, 2000) 

Land-use Spring Summer Autumn Winter 

Water (fresh and sea) 0.1 0.1 0.1 1.5 

Deciduous Forest 0.7 0.3 1.0 1.5 

Coniferous Forest 0.7 0.3 0.8 1.5 

Swamp 0.1 0.1 0.1 1.5 

Cultivated Land 0.3 0.5 0.7 1.5 

Grassland 0.4 0.8 1.0 1.5 

Urban 1.0 2.0 2.0 1.5 

Desert Shrub land 3.0 4.0 6.0 6.0 

 
Table 4.5 Surface roughness length by land-use and season (in meters) (USEPA, 2000) 

Land-use Spring Summer Autumn Winter 

Water (fresh and sea) 0.0001 0.0001 0.0001 0.0001 

Deciduous Forest 1.00 1.30 0.80 0.50 

Coniferous Forest 1.30 1.30 1.30 1.30 

Swamp 0.20 0.20 0.20 0.20 

Cultivated Land 0.03 0.20 0.05 0.01 

Grassland 0.05 0.10 0.01 0.001 

Urban 1.00 1.00 1.00 1.00 

Desert Shrub land 0.30 0.30 0.30 0.15 
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To conduct sensitivity analysis under variable meteorological condition, 2003 annual hourly 

meteorological data of the study area were used to get the annual average odour concentrations 

in the vicinity of the selected farm. As it was stated previously, both of surface and upper air 

meteorological data are needed to run AERMOD, the surface meteorological data could be 

obtained easily for the modeled place while the upper air data could only be acquired from the 

nearest upper air station, Stony Plain Upper Air Station, Edmonton, which is 32.6 km away from 

the farm site.  

 

4.2.3 Computation Assumptions 

Because actual meteorological condition is changeable and complicated, we only consider the 

most common situations. Some computation assumptions were assumed during the process of 

using the models under steady-state meteorological conditions:  

1. For usage of these two models, the barn was deemed as 32 point sources to represent the 

shape of the barn, and the emitting rate of every point is the same. The cells were treated 

as area sources. The odour emitting height of the barn and the earthen manure storage 

cells was 1.5 and 0 m, respectively;  

2. Odour emission rates from the barn and the earthen manure storage cells listed in Table 

4.1 were treated as constant as we only considered the effect of climatic weather 

conditions on the models prediction not the odour emission rate; 

3. Odour exit velocity from the barn was set to be 0.05 m/s because it was treated as a batch 

of point sources instead of fans, and the exit velocity from the earthen manure storage 

cells was set to be 0.05 m/s, too; 

4. For the barn, the exhaust air temperature was assumed to be 20 oC when ambient 

temperature ranged from -30 to 20 oC and 3 oC above the ambient temperature when the 
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ambient temperature was higher than 20 oC. The odour exit temperature of earthen 

manure storage cells was set to be the same as ambient air temperature; 

5. The model simulation time was set up to allow the odour travel the farthest distance 

before the centerline odour concentration reduced to 10 OU/m3; 

6. Odour receptors’ detection height was considered as 1.5 m above the ground because the 

height of field odour sniffers’ noses was approximately 1.5 m high; 

7. Wind speed and direction were deemed to be both horizontally homogeneous in the scope 

of the field selected to carry out the study; 

8. The prevailing wind direction of the examined area of NNW (north-northwest) was 

chosen as the wind blowing direction when conducting simulation except for the analysis 

of various wind directions; 

9. Only odour concentration was tested in the study which means deposition and chemical 

transformation were not considered during all the simulations. 

Under steady-state weather condition, the critical odour detection distance (CDD) and odour 

concentrations within 5 km from the odour source predicted by the two models were examined 

and predictions between two models were also compared. Critical odour detection distance was 

defined as the maximum odour travel distance from the odour source to the location of the odour 

receptor where centerline odour concentration was reduced to 10 OU m−3. Because the distance 

of interest for setback determination was within 5 km from the odour source (Guo et al., 2004b), 

odour concentrations within this range were examined. Odour concentrations were also 

compared at different distances to the odour source within 5 km between two models. Under 

variable weather condition, maximum odour travel distance with odour concentrations of 1, 2, 5 

and 10 OU/m3 were examined in this area. 

 



 

32 
 

4.2.4 Model Configuration 

CALPUFF of version 5.7 and AERMOD of version 02222 were used in this part. 

Variables/parameters were specified according to the sensitivity analysis simulation conditions in 

this part.  

 

4.2.4.1 CALPUFF Configuration 

Inputs of CALPUFF were broadly divided to odour emission rates, meteorological data, terrain 

condition, location of receptors, some other dispersion simulation options, as well as output 

specifications. 

As stated previously, the barn was divided to 32-point odour sources to represent the shape of the 

barn. These 32 points covered the whole area of the barn except for the aisle. The two manure 

storage cells were treated as area sources. Odour emission rates from these point and area 

sources were listed in Table 4.1. The dimension of three odour sources was sketched in Figure 

4.1. 

Sensitivity analysis of models were conducted under both steady-state and variable weather 

conditions. Under steady-state weather condition, values of parameters of mixing height, ambient 

temperature, atmospheric stability, wind speed, and wind direction were addressed in details in 

chapter 4.3 at the beginning of each subchapter. Under variable weather condition, 2003 hourly 

meteorological data from the first hour to the last hour of this year were employed. 

Meteorological data were stored in the certain format in a text editor (ASCII file) that 

CALPUFF* can accept. 

The main parameters used in CALPUFF* to specify the terrain condition were landuse type, and 

surface roughness length. The landuse type of the simulated area was deemed as unirrigated 
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agricultural land based on the land condition in this area and the surface roughness length 

corresponding to this kind of land was set to 0.20 according to Table 4.4 at the simulated time 

period.  

Odour receptors were located in the field of 20 by 20 km with the centroid of all three odour 

sources approximately in the center. The location of the centroid was calculated out based on the 

location of the center of each odour source and the corresponding odour emission rate. The 

gridded spacing of neighbouring receptors was 50 m, i.e., a total of 160,000 receptors. 

Some other dispersion simulation options were specified as the following:  

a) The ODOUR is the only simulated species in this project, and other species like SOX, NOX, 

etc. were not considered here; 

b) No chemical transformation was considered here because it was too complicated to take in 

account of chemical transformation of these species; 

c) Neither dry deposition nor wet deposition was considered in this part; 

d) Regarding the plume rise method, only transitional plume rise was considered, others like 

stack downwash, vertical wind shear above stack top etc. were not considered based on the 

characteristics of the agricultural odour dispersion process; 

e) Treating odour plume as puff not slug; 

f) Because this area was pretty flat, no effect of terrain was considered when considering effect 

of terrain on odour dispersion. 

When running CALPUFF*, the output was a binary file. This file was used as the input of 

CALPOST to get the final desired output, i.e., an ASCII file containing odour concentration 

(OU/m3) at each odour receptor. The detailed information of run-stream screen of CALPUFF 

version 5.7 was presented in Appendix A. 
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4.2.4.2 AERMOD Configuration 

AERMOD employed a totally different approach to type in inputs of this model compared with 

CALPUFF. It used text editor not GUI screen to edit the run-stream file. However, the AERMOD 

run-stream file also contained approximately the same information as CALPUFF to yield the 

final output, which included odour emission rates, meteorological data, location of receptors, as 

well as output specifications. The effect of terrain on odour dispersion had already been 

considered in AERMET, the preprocessor of AERMOD to produce meteorological data to be 

used in AERMOD. 

The information of odour emission rates were the same as those described in the chapter of 

CALPUFF configuration above.  

Both steady-state and variable weather data were used by AERMOD to carry out sensitivity 

analysis as that in CALPUFF. The weather condition parameters described in details in chapter 

4.3 Results and Discussion, equation 4.1 and Table 4.2 were applied to relate the wind speed, 

solar radiation, and atmospheric stability class. Values of albedo, Bowen ratio, and surface 

roughness length used in AERMET were chosen according to Tables 4.3 to 4.5 Based on the 

simulated season in the year. According to those tables, Albedo, Bowen ratio, and surface 

roughness was set to 0.14, 0.3, and 0.03 in spring; 0.20, 0.5, and 0.20 in summer; 0.18, 0.7, and 

0.05 in fall; and 0.60, 1.5, and 0.01 in winter, respectively.  

Detailed information of the odour receptors was the same as that addressed in CALPUFF 

configuration above.  

When running AERMET, the outputs were surface and profile file. These files were used as the 

input of AERMOD to get the final desired output, i.e., an ASCII file containing odour 

concentration (OU/m3) at each odour receptor. The detailed information of run-stream files of 

AERMOD Version 02222 was presented in Appendix B. 
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4.3 Results and Discussion 

Sensitivity analysis results of AERMOD and CALPUFF to five major climatic parameters under 

steady-state weather conditions and maximum odour travel distance with odour concentrations of 

1, 2, 5, and 10 OU/m3 under variable weather conditions were addressed in details in this part. At 

the same time, discussions of the simulated results were also made.  

 

4.3.1 Mixing Height 

The mixing height or mixing depth is the height from ground to space where turbulent mixing of 

vertical and horizontal air happens. When conducting model’s sensitivity to this factor, other 

factors were not changed. Mixing height was set to values of 100, 200, 500, 1500, 3000 and 5000 

m based on the statistical result of year 2003 hourly weather data of this area that the minimum 

and maximum mixing was around 80 and 4700 m respectively. The combinations of stability 

class and wind speed were: C5, D1, D8, E1, E3 and F3. Ambient temperature was set to 20 oC, 

and prevailing wind direction of NNW was selected.  

The simulation results showed under all weather conditions, mixing height had no impact on 

model predictions for both AERMOD and CALPUFF when the mixing height was set to 100, 

200, 500, 1500, 3000 and 5000 m. We may find the reason in the “fact” that the agricultural 

odours normally transport just a few meters above ground, hence the name ground-level odours. 

Because mixing height has no impact on simulation results, a value of 1500 m was used when 

conducting sensitivity analysis of other parameters. 
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4.3.2 Ambient Temperature 

The impact of different ambient temperatures on odour dispersion was simulated when ambient 

temperature was in the range of -20 oC to 30 oC (temperature range of the involved area was -37 

to 34 oC of year 2003) with constant of 5 oC. Prevailing wind direction of NNW as well as 

mixing height of 1500 m was chosen. The combinations of stability class and wind speed were: 

C5, D3, E5 and F3.  

 

4.3.2.1 Impact on Critical Odour Detection Distance 

Figure 4.2 shows the CDD as simulated by two models under C5, D3, E5 and F3. It shows 

ambient temperature has no effect on CDD for both AERMOD and CALPUFF when the weather 

conditions were C5 and D3. However, it has some influences at CALPUFF’s predictions under 

weather conditions E5 and F3. Under E5 and F3, the CDD increased from 2.4 to 2.7 km and 7 to 

7.5 km, or say increased by 11 and 7%, respectively. Ambient temperature still had no or very 

limited impact on AERMOD under these two weather conditions. Based on this result, 

AERMOD was not sensitive to the normal ambient temperature in terms of the CDD; while for 

CALPUFF, the effect was also very limited. The difference of CDD under C5, D3, E5 and F3 

between two models (with AERMOD the base) was -13, 60, 200 - 238 and 204 - 257%. It can be 

observed difference increased following the change of stability class to the next more stable one. 
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Figure 4.2 Impact of ambient temperature on CDD 
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4.3.2.2 Impact on Odour Concentrations within 5 km 

The predicted centerline concentrations of odour plume in 5 km from the odour source under C5, 

D3, E5 and F3 are given in Tables 4.3 to 4.6. From these tables a trend can be observed the 

odour concentration increased with the increases of ambient temperature at the same distance for 

CALPUFF. For example, when temperature increased from -20 to 30 oC under C5, odour 

concentration increment was 51.5 and 46.2% at distance of 0.2 km, and 34.5 and 17.9% at 

distance of 0.3 km for CALPUFF and AERMOD, respectively. The reason of odour traveled 

longer distance when temperature increased was that with increase of temperature, more odour 

molecules moved into the odour transporting direction, bringing higher odour concentration. It 

could also be observed the differences are significant at close distance to the source for both 

models under all weather conditions, but the differences faded away with the increase of distance 

and disappeared or were very limited under all selected weather conditions at distance of 5 km. 

This could tell us impact of temperature was evident at close distance to the odour source. 

Table 4.3 Centerline concentrations of odour plume under C5 (OU/m3) 

Model Temperature (℃) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

-20 33 29 15 13 7 4 3 2 1 1 1 1 1 

-10 33 32 15 13 7 4 3 2 1 1 1 1 1 

0 37 34 15 13 7 4 3 2 1 1 1 1 1 

10 42 37 15 13 7 4 3 2 1 1 1 1 1 

20 48 39 15 13 7 4 3 2 1 1 1 1 1 

30 50 39 15 13 7 4 3 2 1 1 1 1 1 

AERMOD 

-20 39 28 20 17 8 5 3 2 2 2 1 1 1 

-10 44 28 20 17 8 5 3 2 2 2 1 1 1 

0 53 28 20 16 8 5 3 2 2 1 1 1 1 

10 54 29 20 18 8 5 3 2 2 1 1 1 1 

20 57 30 21 18 8 5 3 3 2 2 1 1 1 

30 57 33 22 19 8 5 4 3 2 2 1 1 1 
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Table 4.4 Centerline concentrations of odour plume under D3 (OU/m3) 

Model Temperature (℃) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

-20 87 64 43 36 23 17 12 10 8 6 5 4 4 

-10 87 64 44 36 23 17 13 10 8 6 5 4 4 

0 87 64 44 37 23 17 13 10 8 6 5 4 4 

10 87 86 44 37 24 17 13 10 8 6 5 4 4 

20 114 120 44 37 24 18 13 10 8 6 5 4 4 

30 123 126 44 37 24 18 13 10 8 6 5 4 4 

AERMOD 

-20 74 43 31 27 16 10 7 5 4 3 3 2 2 

-10 74 43 32 28 16 10 7 5 4 3 3 2 2 

0 75 44 34 30 16 10 7 5 4 3 3 2 2 

10 79 46 36 32 16 10 7 5 4 3 3 2 2 

20 97 49 38 32 16 10 7 5 4 3 3 2 2 

30 104 64 42 36 16 10 7 6 4 4 3 3 2 

 

Table 4.5 Centerline concentrations of odour plume under E5 (OU/m3) 

Model Temperature (℃) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

-20 71 56 40 33 19 15 12 10 8 7 6 5 5 

-10 71 56 40 33 19 15 12 10 8 7 6 5 5 

0 71 56 40 33 19 15 12 10 8 7 6 5 5 

10 71 56 40 33 20 16 13 10 9 7 6 5 5 

20 71 61 40 33 20 16 13 11 9 7 6 5 5 

30 98 110 40 33 21 17 13 11 9 7 6 5 5 

AERMOD 

-20 39 28 21 17 9 5 4 3 2 2 1 1 1 

-10 44 28 21 17 8 5 3 3 2 2 1 1 1 

0 51 29 21 17 8 5 3 3 2 2 1 1 1 

10 55 29 22 18 8 5 3 3 2 2 1 1 1 

20 58 31 23 19 8 5 4 3 2 2 1 1 1 

30 58 34 25 21 8 5 4 3 2 2 2 1 1 
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Table 4.6 Centerline concentrations of odour plume under F3 (OU/m3) 

Model Temperature (℃) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

-20 173 144 109 91 50 37 31 27 24 21 19 17 15 

-10 173 144 109 91 50 37 32 28 24 22 19 17 16 

0 173 144 109 91 50 38 32 28 25 22 20 18 16 

10 173 144 109 91 51 39 33 29 26 23 20 18 16 

20 173 144 109 91 51 40 35 31 27 24 21 19 17 

30 230 275 109 91 52 42 36 32 28 25 22 19 17 

AERMOD 

-20 110 67 47 41 26 15 11 8 6 6 5 4 3 

-10 110 67 48 42 26 17 12 9 7 6 5 4 3 

0 113 68 48 43 26 17 12 9 7 6 5 4 3 

10 113 69 51 45 26 18 12 9 7 5 5 4 3 

20 118 71 57 49 27 18 13 9 7 5 5 4 3 

30 138 94 60 49 28 19 13 9 7 6 5 4 4 

 

4.3.3 Atmospheric Stability Class 

Impact of atmospheric stability class was analyzed under three different wind speeds, i.e., 2, 3 

and 5 m/s. With wind speeds of 2 and 3 m/s, stability classes analyzed were D, E and F; with 

wind speed of 5 m/s, stability classes were C, D and E. The selection of combination of 

atmospheric stability class and wind speed was based on the relationship between wind speed 

and atmospheric stability class in Table 4.2. Wind direction of NNW as well as mixing height of 

1500 m was chosen. Ambient temperature of 20 oC was selected. 

 

4.3.3.1 Impact on Critical Odour Detection Distance 

Impact of atmospheric stability class on the CDD for these two models is shown as Figure 4.3. 

The figure shows that odour can travel longer distance under more stable stability classes for 

both models. For example, when wind speed was 2 m/s, the CDD increased 203 and 100% from 
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stability class D to E for CALPUFF and AERMOD, respectively. Guo et al. (2003) also reported 

that the majority of odour events were reported during either moderately or slightly stable 

atmospheric conditions. The discrimination of CDD between two models increased following the 

change of stability class to next more stable level. Again, when wind speed was 2 m/s, the CDD 

discrimination was 0.3, 0.5 and 4 km. This trend happened when wind speed were 3 and 5 m/s 

too. Although influence of stability class at CALPUFF was significant, its influence at 

AERMOD was not that huge compared with CALPUFF, which can be seen from the change of 

CDD of AERMOD in Figure 4.3. There may be mainly two reasons: One is AERMOD itself is 

not sensitive to change of stability class, and the other is AERMOD did not use Pasquill stability 

class as other models to specify weather conditions so that the discrete Pasquill stability class can 

not reveal the effects of stability on AERMOD prediction.  
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Figure 4.3 Impact of atmospheric stability class on CDD 

 

4.3.3.2 Impact on Odour Concentrations within 5 km 

Two models predictions of centerline odour plume concentrations within 5 km are presented in 

Tables 4.7 to 4.9. For both models, the odour concentration increased following the change of 

stability class to next more stable level. For example, when stability class changed from D to F 

under wind speed of 2 m/s, odour concentration increased 51.5 and 126.9% at distance of 0.2 km, 

140 and 164% at distance of 1.5 km for CALPUFF and AERMOD, respectively.  

Table 4.7 Centerline concentrations of odour plume under wind speed 2 m/s (OU/m3) 

Model Stability class 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 
D 171 139 66 56 36 26 19 15 11 9 8 6 6 
E 175 157 99 82 50 39 32 26 21 18 15 13 11 
F 259 215 163 135 76 60 51 45 39 38 31 27 24 

AERMOD 
D 160 114 87 77 41 25 17 13 10 8 7 6 5 
E 356 228 173 157 98 65 46 35 27 22 19 16 14 
F 363 232 176 159 100 66 47 35 28 23 19 16 14 
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Table 4.8 Centerline concentrations of odour plume under wind speed 3 m/s (OU/m3) 

Model Stability class 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 
D 114 93 44 37 24 18 13 10 8 6 5 4 4 
E 120 117 66 55 34 27 21 17 14 12 10 9 8 
F 173 144 109 91 51 40 35 31 27 24 21 19 17 

AERMOD 
D 97 49 38 32 16 9 7 5 4 3 3 2 2 
E 113 64 52 44 22 13 9 7 5 4 4 3 3 
F 118 71 57 49 25 15 10 8 6 5 4 4 3 

 

Table 4.9 Centerline concentrations of odour plume under wind speed 5 m/s (OU/m3) 

Model Stability class 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 
C 48 39 15 13 7 4 3 2 1 1 1 1 0 
D 74 42 27 23 15 11 8 6 5 4 3 3 2 
E 71 61 40 33 20 16 13 11 9 7 6 5 5 

AERMOD 
C 54 28 17 16 8 5 3 3 2 2 1 1 1 
D 57 30 19 17 9 6 4 3 2 2 1 1 1 
E 58 31 22 18 11 7 4 3 2 2 1 1 1 

 

4.3.4 Wind Speed 

Impact of wind speed on the models’ prediction was simulated under atmospheric stability class 

D and E. When the stability class was D, wind speed was set to 1, 2, 3, 4, 5, 6, 8 and 15 m/s; 

when the stability class was E, wind speed was set to 2, 3, 4 and 5 m/s. Wind direction of NNW 

as well as mixing height of 1500 m was chosen. Ambient temperature of 20 oC was selected. 

 

4.3.4.1 Impact on Critical Odour Detection Distance   

As shown in Figure 4.4, when wind speed increased, the CDD decreased sharply under the same 

stability class. For example, when wind speed increased from 2 to 5 m/s, the CDD decreased by 
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54 and 76.7% under D, 48 and 86.7% under E for CALPUFF and AERMOD, respectively. Guo 

et al., (2003) stated that the high turbulence associated with wind speed enhanced air mixing and 

therefore increased the vertical odour dispersion, causing the odour transportation distance 

decreasing. The figure also indicates that AERMOD was more sensitive to wind speed compared 

with CALPUFF. For example, when wind speed increases from 1 to 2 m/s under D, the CDD 

decreased by 48 and 64.7% for CALPUFF and AERMOD, respectively.  

  

Figure 4.4 Impact of wind speed on CDD under different stability classes 

 

4.3.4.2 Impact on Odour Concentrations within 5 km 

As shown in Tables 4.10 to 4.11, the odour concentration decreased with the increase of wind 

speed at various distances within 5 km under both stability classes D and E. These results agree 

with the observation of Guo et al. (2003) that high odour concentration occurred when wind 

speed was low. For example, the odour concentration decreased by 90 and 97.7% when wind 

speed changed from 1 to 15 m/s under stability class D at distance of 0.2 km, and 59.4 and 

83.7% when wind speed changed from 2 to 5 m/s under stability class E at the same distance for 
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CALPUFF and AERMOD, respectively. It could also be observed that when the wind speed was 

low, odour concentration are higher as predicted by AERMOD than that of CALPUFF, but lower 

when wind speed was high. 

Table 4.10 Centerline concentrations of odour plume under stability class D (OU/m3) 

Model Wind speed (m/s) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

1 259 258 130 110 70 51 37 28 22 17 12 12 10 
2 157 171 66 56 36 26 19 15 11 10 8 7 6 
3 114 120 44 37 24 18 13 10 8 6 5 4 4 
4 88 92 33 28 18 13 10 8 6 5 4 3 3 
5 72 74 27 23 15 11 8 6 5 4 3 3 2 
6 60 62 22 19 12 9 7 5 4 3 3 2 2 
8 46 47 17 14 9 7 5 4 3 2 2 1 1 

15 25 25 9 7 5 4 3 2 2 1 1 1 1 

AERMOD 

1 763 459 322 269 143 93 66 51 40 33 28 24 21 
2 160 114 87 77 41 25 17 13 10 8 7 6 5 
3 97 49 38 32 16 9 7 5 4 3 3 2 2 
4 70 35 24 20 10 6 4 3 2 2 2 1 1 
5 54 28 17 14 7 4 3 2 2 1 1 1 1 
6 43 24 12 10 5 3 2 2 1 1 1 1 1 
8 32 17 9 7 4 2 1 1 1 1 1 0 0 

15 16 9 4 4 2 1 1 0 0 0 0 0 0 

 

Table 4.11 Centerline concentrations of odour plume under stability class E (OU/m3) 

Model Wind speed (m/s) 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

2 175 139 99 82 50 39 32 26 21 18 15 13 11 
3 117 93 66 55 34 27 21 17 14 12 10 9 8 
4 88 70 50 41 25 20 16 13 11 10 8 7 6 
5 71 61 40 33 20 16 13 11 9 7 6 5 5 

AERMOD 

2 356 228 173 157 98 65 46 35 27 22 19 16 14 
3 113 64 52 44 22 13 9 7 5 4 4 3 3 
4 78 41 29 24 12 8 5 4 3 2 2 2 2 
5 58 31 19 16 8 5 4 3 2 2 1 1 1 
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4.3.5 Wind Direction 

Wind directions of S (south), SW (southwest), W (west), and NNW (north-northwest) were 

chosen. Combination of atmospheric stability class as well as wind speed selected was: C3, D5, 

E3 and F2. Mixing height of 1500 m as well as ambient temperature of 20 oC was selected. 

4.3.5.1 Impact on Critical Odour Detection Distance   

As shown in Figure 4.5, the longest CDD was under the wind direction of SW and shortest under 

NNW and the CDD was almost the same under other two wind directions for both CALPUFF 

and AERMOD. The reason may be found in the relative position of odour sources. It can be 

observed in Figure 4.1, downwind odour emissions from three odour sources overlapped under 

wind direction of SW; however, odour emissions were almost parallel under wind direction of 

NNW. It also could be noticed from the figure under unstable weather condition, the CDD 

predicted by AERMOD was longer than that of CALPUFF; however, the results was the opposite 

when the weather conditions was stable. For example, the difference of CDD was -0.3 and 1 km, 

i.e., 25 and 59%, under C5 and D3 if AERMOD predicted CDD was used as the base. 
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Figure 4.5 Impact of wind direction on CDD under varies weather conditions 
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0

2

4

6

8

10

12

14

S SW W NNW

C
D

D
 (k

m
)

Wind direction

E3
AERMOD
CALPUFF

0

2

4

6

8

10

12

14

S SW W NNW

C
D

D
 (k

m
)

Wind direction

F2
AERMOD
CALPUFF



 

48 
 

Table 4.12 Centerline concentrations of odour plume at different wind directions under C5 (OU/m3) 

Model Wind direction 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

S 93 28 23 19 8 4 3 3 2 1 1 1 0 
SW 137 68 43 31 10 5 3 3 2 1 1 1 0 
W 101 41 18 16 8 4 3 3 2 1 1 1 0 

NNW 48 39 15 13 7 4 3 3 2 1 1 1 0 

AERMOD 

S 73 40 29 22 9 5 4 3 2 2 1 1 0 
SW 150 61 38 27 10 6 4 3 2 2 1 1 1 
W 95 36 22 18 9 5 3 3 2 2 1 1 1 

NNW 57 30 19 16 8 5 3 3 2 2 1 1 1 

 

Table 4.13 Centerline concentrations of odour plume at different wind directions under D3 (OU/m3) 

Model Wind direction 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

S 245 67 61 55 32 21 14 11 8 7 5 5 4 
SW 294 191 137 106 42 24 16 11 9 7 6 5 4 
W 240 113 49 43 28 19 14 10 8 6 5 4 4 

NNW 114 120 44 37 24 18 13 10 8 6 5 4 4 

AERMOD 

S 230 74 55 48 27 14 8 6 5 4 3 2 2 
SW 302 70 51 43 27 14 8 6 5 4 3 2 2 
W 235 108 40 32 25 13 8 6 4 4 3 2 2 

NNW 108 96 37 29 23 13 8 6 4 4 3 2 2 

 

Table 4.14 Centerline concentrations of odour plume at different wind directions under E3 (OU/m3) 

Model Wind direction 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

S 198 85 58 59 46 34 25 20 16 13 11 9 8 
SW 220 145 123 113 66 42 29 22 17 14 11 9 8 
W 117 87 71 60 40 31 24 19 15 13 11 9 8 

NNW 113 93 66 55 34 27 21 17 14 12 10 9 8 

AERMOD 

S 148 98 73 57 24 14 10 9 6 4 4 3 0 
SW 280 143 93 67 25 15 10 9 6 5 4 3 3 
W 188 78 61 50 23 14 10 9 5 4 4 3 3 

VNW 122 98 50 43 28 16 10 8 4 4 3 2 2 
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Table 4.15 Centerline concentrations of odour plume at different wind directions under F2 (OU/m3) 

Model Wind direction 
Distance (km) 

0.2 0.3 0.4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

CALPUFF 

S 273 175 76 87 93 80 67 56 47 40 34 30 26 
SW 314 255 235 221 162 116 86 67 54 44 37 32 28 
W 259 197 163 139 87 70 59 51 43 38 33 29 26 

NNW 250 215 163 135 76 60 51 45 39 35 31 27 24 

AERMOD 

S 385 238 225 204 114 71 49 37 29 23 19 16 14 
SW 441 416 386 302 184 81 54 45 38 30 22 18 15 
W 309 228 199 180 107 68 48 36 28 23 19 16 14 

NNW 294 222 176 159 100 66 47 35 28 23 19 16 14 

 

4.3.6 Variable Meteorological Conditions 

The simulated results of annual average odour concentrations are shown in Figures 4.7 and 4.8. 

Compared with more smooth contour shape CALPUFF presented, it seems there are some edges 

on AERMOD simulating contour. The reason is that AERMOD preprocessor AERMET would 

automatically divide wind directions of 360 degrees into 36 directions, appearing on the contour 

map the odour traveled longer distance at these directions (USEPA, 2004). According to the 

statistical results of the weather data of this year the positions of the edges on the contour were 

these specified wind directions.  

These two contours show odour travels longer distance when the wind came from direction of 

NNW and shorter at wind direction of NE. From the wind rose (Figure 4.6), we can see NNW is 

the prevailing winds direction and NE is the wind direction with very low occurrence frequency. 

Schauberger et al. (2005) also concluded that the highest of the direction-dependent separation 

distances were found for the prevailing wind directions when they conducted sensitivity analysis 

of Austrian odour dispersion model. 
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Figure 4.6 Wind direction rose for the simulated area 

 

Figure 4.7 Annual average odour concentration contour map simulated by CALPUFF 
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Figure 4.8 Annual average odour concentration contour map simulated by AERMOD  

 

The maximum odour travel distance downwind the farm for odour concentrations of 1, 2, 5 and 

10 OU/m3 is presented in Table 4.16. 

Table 4.16 Maximum odour travel distance for different odour concentration level as predicted 
by CALPUFF and AERMOD 

Odour concentration 

level (OU/m3) 

Maximum odour travel distance (km) 

CALPUFF AERMOD 

1 3.3 3.5 

2 2 1.4 

5 1 0.6 

10 0.75 0.5 
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It can be observed from above table model predicted maximum odour travel distance is different 

for each odour concentration value for two models. CALPUFF over-predicted AERMOD at each 

odour concentration level except for 1 OU/m3. CALPUFF predicted distance was 6, 30, 33.3 and 

48.9% higher than that of the AERMOD for odour concentration of 2, 5, and 10 OU/m3, 

respectively. However, CALPUFF prediction was 6.1% lower than AERMOD for odour 

concentration of 1 OU/m3. Schmidt et al. (2006) compared the modeling results of CALUFF and 

AERMOD and also found that there were some differences between the predicted results of these 

two models when conducting odour concentration prediction near a 2,000 head finishing site in 

Minnesota over five years. If the modeling results of these two models are used as the setback 

distance criteria there will be great difference. Why such huge differences? The reasons may be 

the different methods these two models adopted to treat the calm weather condition and the 

theories used to express movement of odour in atmosphere. Scire et al. (2000) indicated that 

CALPUFF had advantages compared with plume models like AERMOD in handling calm and 

stagnant weather condition. When it was in calm weather, especially when the wind speed was 

zero, odour would not travel and the concentration around the odour source would be zero as 

predicted by AERMOD. According to statistical result of the weather condition of 2003, there 

were 503 hours with the wind speed of zero, accounting for 5.74% of the whole time. But when 

the wind speed was relatively small but not zero and the weather was very stable, the odour 

would travel much longer distance as predicted by AERMOD, which can be seen from 

steady-state analysis part above. Different theories of treating odour plume were applied by 

CALPUFF and AERMOD. In CALPUFF, the odour was deemed as puffs. Puffs could be 

accumulated from time to time as they disperse in air. In AERMOD, however, odour was treated 

as separated plume. Plume had no memory, i.e., previous plume had no effect on later one. The 

principle that the accumulated effect of hour by hour odour during the transportation adopted by 

puff and no effect of previous plume on later one adopted by plume was an important reason for 

the difference produced by these two models. The difference was also be aggregated by the 
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different method of treating odour plume dispersion during calm weather condition (USEPA, 

1998). 

As stated previously, the odour travel distance with odour concentration of 10 OU/m3 predicted 

under variable meteorological condition was longest at prevailing wind directions as predicted by 

both AERMOD and CALPUFF. Subsequently, an appropriate odour setback distance should be 

dependent at wind direction, i.e, setback distance should be longer under prevailing wind 

directions, and shorter under other directions. Compared with the maximum odour travel 

distance with odour concentration of 10 OU/m3 predicted under variable meteorological 

condition, the critical odour detection distance predicted under steady-state weather conditions 

was longer under some circumstances, but shorter under other circumstances. For example, the 

maximum odour travel distance with odour concentration of 10 OU/m3 predicted under variable 

meteorological condition was 0.75 and 0.5 km for CALPUFF and AERMOD, respectively; while, 

the value of CDD was 0.3 and 0.2 km under D15, and 5 and 6 km under F2 under steady-state 

weather conditions. So if we want to use steady-state weather data to predict odour setback 

distance, we have to change the meteorological parameters according to the real weather 

condition of the simulated area. If the actual weather of the case area is moderately stable or even 

calm at the most time of the year, we have to choose stable stability class and low wind speed; in 

contrast, if the actual weather there is unstable, we should pick up relatively unstable stability 

class and high wind speed.  

Another thing may be pointed out is that Zwicke (1998) and Fritz et al. (2005) found that using 1 

hr time interval for Gaussian-based dispersion models might result in overestimated downwind 

concentrations compared to a series of controlled pollutant release and experiments. Using 1 hr 

computational time interval may not accurately characterize an instantaneous odour plume (Li 

and Guo, 2006). Difference of odour concentration between 1 hr average time and instantaneous 

should be taken into account when choosing meteorological data. A more appropriate time 
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interval for a specific air dispersion model is needed to best represent the real odour 

concentration value. 

 

4.4 Conclusions 

1. Mixing heights of 100, 200, 500, 1500, 3000 and 5000 m had no impact on agricultural odour 

dispersion as simulated by both CALPUFF and AERMOD. The reason may be agricultural 

odour transported very low in air, just a few meters above ground;  

2. Although ambient temperature had very limited influence at both of two models, there was a 

trend with increase of temperature, the odour concentration within 5 km from the odour 

source increased as predicted two models. The reason may be that when temperature 

increased, more odour molecules moved into the odour transportation direction, causing 

higher odour concentration in horizontal direction; 

3. Atmospheric stability class had great impact on CDD as predicted by both models. As the 

weather condition changed from D to F, the CDD increased 203 and 100% at wind speed 2 

m/s, 213 and 43% at wind speed 3 m/s for CALPUFF and AERMOD, respectively. Odour 

concentration values within 5 km increased following the change of stability class to next 

more stable one at the same distance under the same wind speed. The reason of this is that 

when the atmosphere is stable, odour can travel longer distance without disturbed by the 

mixing of the vertical and horizontal air. The simulated results also showed that CALPUFF 

was more sensitive to the stability class change compared with AERMOD; 

4. Under the same atmospheric stability class, the CDD decreased greatly as the wind speed 

increased for both models. When wind speed increased from 2 to 5 m/s, the CDD decrement 

was 54.5 and 76.7% under stability class D, and 48 and 86.7% under E for CALPUFF and 

AERMOD, respectively. Odour concentrations within 5 km decreased following the 

increases of wind speed at the same distance under the same atmospheric stability class. It 
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also indicated that AERMOD was more sensitive to wind speed change compared with 

CALPUFF; 

5. The analysis results of impact of wind direction on CDD and odour concentrations within 5 

km showed that wind direction had effect on the odour concentration because of the source 

orientation against the wind direction. This effect was distinct at close distance to the odour 

source and diminished and even disappeared at long distance of 5 km. Based on the fact that 

each animal production site consists of barns and manure storage cells, wind direction should 

be carefully considered when the farm was close to residential area; 

6. The difference of method of treating wind direction caused the difference of the contour 

shape, i.e., CALPUFF’s contour lines were smooth while AERMOD’s had sharp edges. The 

reason was CALPUFF treated wind direction as 360 directions while AERMOD only divided 

360 degrees into 36 directions; 

7. Variable annual hourly meteorological data simulation result showed CALPUFF predicted 

longer maximum odour travel distance than AERMOD for selected odour concentration 

values of 2, 5, 10 and 20 OU/m3 but lower for 1 OU/m3. The difference was 6, 30, 33.3, 48.9 

and 6.1% for odour concentration of 2, 5, 10, 20 and 1 OU/m3, respectively. Different 

methods used to deal with calm weather condition and theories used to describe movement of 

odour plume in atmosphere may be two reasons caused the discrimination of models 

predictions; 

8. To predict appropriate odour setback distance for an odour source, the setbacks should be 

wind direction dependent, i.e., setback distance should be longer under prevailing wind 

directions and shorter under other directions. Both steady-state and variable meteorological 

data could be employed to predict odour setback distance; however, proper values should be 

given to the climatic parameters if steady-state meteorological data are used or say 

acceptable odour concentration should be based on the climatic parameters chosen under 

steady-state weather conditions. 
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5. EVALUATION OF AERMOD AND CALPUFF FOR 

ODOUR DISPERSION USING FIELD MEASURED 

ODOUR DATA: PART І. USING ODOUR PLUME 

MEASUREMENT DATA FROM UNIVERSITY OF 

MINNESOTA 

 

5.1 Introduction 

Evaluation and comparison of air dispersion models not only give us an opportunity to 

understand the capability of models simulating odour dispersion but also provide an access to 

know which model is the best to predict odour concentration for a general case of odour source. 

Evaluation of model required model predictions and field odour measurements.  

Model was prepared using odour emissions, meteorological data, and parameters describing the 

terrain condition, and setting of odour receptors and then was run to produce odour 

concentrations in the vicinity of the odour source. However, field odour measurements were 

performed through letting human sniffers standing in the field downwind the odour source to 

sniff the odour they detected. The odour these human sniffers detected was recorded as the field 

measurement. The model predictions were then could be compared with the field measurements. 

During this process of comparison, some mathematical methods (e.g., scaling factor) can be 

applied to improve the agreement of field measured and predicted values. Evaluation of models 

requires a large amount of field odour data, which could be only available recently based on a lot 

of work done by researchers and trained odour sniffers or resident-odour-observers.  
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This part of the project aims at evaluating the performance of two air dispersion models, 

CALPUFF and AERMOD, through comparing the models predictions with field measurements 

using the field odour data from University of Minnesota. Comparison of models predictions 

between these two models was also made to find out which model is better. Another purpose of 

this part is to recheck the scaling factors yielded in this project to see if they are the same as 

those obtained in Zhu, (2000). 

 

5.2 Materials and Methods 

Evaluation of models required odour emissions of the odour source(s), field odour data, 

meteorological data, and terrain condition surrounding the odour source(s). Odour emissions 

from the odour source(s), field odour data, and meteorological data were obtained by a research 

group charged by Dr. L. D. Jacobson, a faculty member of University of Minnesota in 1998. 

Meteorological data were also recorded by odour sniffers involved in that project. 

 

5.2.1 Site Description and Odour Emission Rates 

A Farmland with location of 94.19W (Longitude) 44.28N (Latitude) at an elevation of 302 m 

above MSL near Nicollet county in south central Minnesota was chosen to monitor odour 

occurrence. This area was surrounded by agricultural land and was relatively flat, so the 

influence of topography on the odour dispersion was minimal. A total of 28 farm sites were 

visited, which covered most of the animal species (Zhu et al., 1999). We conducted odour 

prediction simulation on eight farm sites in this project because the field measurement data of 

odour occurrence and weather condition data were only available from these farms. Air samples 

for determining odour emission rates from each odour source on the farm sites were collected at 
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the same time as odour plume measurement. For some farms, only odour emissions from barn 

were measured, while for others only EMS emissions were measured, and for some farms both 

barn and EMS emissions were measured. The details of emission rates are presented in Table 

5.1. 

Table 5.1 Odour Emission rates of selected farms in Minnesota (Jacobson et al., 1998) 

Farm ID Source type Measured time 
Total odour  

emissions (OU) 

Odour emission 

rate (OU/s-m2) 

203 EMS 
Am - 06/03/98 320134 41.30 

Pm - 06/03/98 207118 26.70 

217 EMS 
Am - 04/29/98 8106 4.45 

Pm - 04/29/98 14102 7.73 

219 Barn Am/Pm - 04/22/98 998 1.72 

220 EMS Am - 06/16/98 27747 6.53 

221 Barn 
Am - 04/22/98 298 1.67 

Pm - 04/22/98 2125 11.85 

222 Barn Am - 06/10/98 1327 1.73 

223 Barn 
Am - 05/20/98 4727 2.48 

Pm - 05/20/98 5672 2.97 

224 Barn 
Am - 06/10/98 5286 6.89 

Pm - 06/10/98 5343 6.97 

 

5.2.2 Field Odour Plume Measurement 

As described in Jacobson et al. (1998), seven trained human sniffers were taken to the field to 

carry out on-site odour intensity measurements. Distances between 25 to 500 m were marked off 

along approximately the centerline of the odour plume depending upon farm site and strength of 

odour from the source. Straight lines were drawn perpendicular to this centerline to locate each 

individual sniffer with marker flags from between 5 to 20 m apart depending upon the plume 

width so that the seven individual sniffers would approximately cover the involved plume width. 

Intensity scales of 0 - 5 (0: no odour; 1: very faint; 2: faint; 3: distinctly noticeable; 4: strong; 5: 
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very strong odour) with constant interval of 0.5 was used by human sniffers to assess the odour 

intensities detected. Human sniffer scores were taken every 10 seconds (6 seconds for sniffing 

and 4 seconds for resting) in a period of 10 min session, i.e., there were 60 records in each 

session for each sniffer. A total of 30 sessions of data were taken over eight different farms in six 

days in 1998. For each day, two or three sessions of data were taken in the morning and/or 

afternoon at different short range of distances (25 to 300 meters) downwind odour source. The 

averaged values recorded in each single session for every sniffer were deemed as the odour 

intensity that sniffer got in that odour plume testing action. The detailed procedure to measure 

the odour plume was presented at Jacobson et al. (1998). 

At each farm site, a portable weather station about two meters high was employed to collect 

on-site weather data including wind speed and direction, solar radiation, temperature, and 

relative humidity. The weather data were recorded at the same time the odour plume intensities 

were recorded. These weather data were then used in the model to calculate the downwind odour 

concentration for that specific site. Field weather data (e.g., temperature, wind speed) recorded 

by the weather station in each 10 min session were averaged and were deemed as the weather 

data in that session. Every averaged weather data in that session were prepared for the input of 

air dispersion models and were considered to be the same as the hourly meteorological data that 

the models usually need. 

 

5.2.3 Model Configuration 

AERMOD of version 02222 and CALPUFF of version 5.7 were used in this part. Most of the 

configurations of two models were the same as those addressed in chapter 4.2.4 of models 

configuration; however, some there were still some differences should be specified based on 

simulation situation in this part. The differences were:  
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a) Simulation time was changed to correspond the time field odour data were taken; 

b) Odour emission rates were prepared according to Table 5.1; 

c) The elevation of the simulated area was 302 m; 

d) Field measured meteorological data in this part were used here; 

e) The type of odour receptors was discrete receptors, and the location of these receptors were 

specified according to the location of human sniffers involved in this part that stood in the 

field to sniff and record the odour intensity; 

f) For the upper air data used in AERMOD, The location of the nearest upper air station was 

93.55W (Longitude), 44.83N (Latitude); 

g) For both AERMOD and CALPUFF, value of surface roughness length was set to 0.03 in 

April, 0.20 from May to June according to Table 4.5. For AERMOD, value of Albedo and 

Bowen ratio was set to 0.14 and 0.3 in April, 0.20 and 0.5 from May to June according to 

Table 4.5. 

 

5.2.4 Relationship between Odour Concentration and Intensity 

Concentration-intensity conversion equation from University of Minnesota derived from 

Minnesota field measured odour data used 5-pint (0 - 5) scales, however, Concentration-intensity 

conversion equation from University of Alberta derived from Alberta field measured odour data 

used 8-point (0 - 8) scales. In order to find out which conversion equation is more accurate to 

express relationship between concentration and intensity, both conversion equations from 

University of Minnesota and University of Alberta , i.e., equations 2.1, and 2.3, were used in this 

part to convert modeled concentrations to corresponding intensities to be compared with field 

measured intensities. 
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5.2.5  Comparison  between  Model  Predicted  and  Field  Measured 

Odour Intensity 

A pair of data was defined as one model predicted odour intensity and the corresponding field 

measured odour intensity. A total of 196 pairs of data (including field measured intensity 0) were 

compared between the model predictions and field measurements for both models, respectively. 

As stated previously, because the odour sniffers applied 5-point scales to recorded odours they 

detected, and the final result was the average of all records in each 10-min session, the measured 

values could be any values in the range of 0 - 5. Subsequently, each measured intensity value 

covers ±0.5 range, e.g., if the measured value is 3, then it covers 2.5 to 3.5. Hence, if the 

predicted odour intensity is within ±0.5 of the measured intensity, the predicted value is 

considered to be in agreement with the corresponding measured one. For example, if the 

measured intensity is 2 and the predicted intensity falls into the range of 1.5 to 2.5, the predicted 

value and corresponding measured one are considered in agreement, otherwise, we deem them 

disagreeing.  

Sometimes, the odour sniffers did not detect any odour, i.e., the detected odour intensity was 0. 

In order to find out the impact of field measured odour intensity 0 on the agreement of modeled 

and field measured odour occurrences, comparison of model predicted and field measured odour 

intensity was conducted under two situations as a) comparison was made using all field 

measured odour intensities, including intensity 0; b) comparison was made using field measured 

odour intensities, excluding intensity 0. Under the situation b, measured intensity 0 were kicked 

out, leaving the rest values to be averaged to compare with corresponding modeled ones. If all 

measured odour intensities were 0 by any sniffer in any odour data measurement session, we 

would ignore the field measured odour by that sniffer in that session. According to the statistical 

results of Minnesota field measured odour intensities, there were three sessions in which all 

measured odour intensities were 0, i.e., only 193 pairs of data could be compared if excluding 

field measured intensity 0.  
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5.2.6  Using  an  ASTM­Standard  Guide  for  Statistical  Evaluation  of 

AERMOD and CALPUFF Performance 

The performance of atmospheric dispersion models can be evaluated via a standard guide 

released by the American Society for Testing and Materials (ASTM) from a statistical point of 

view (ASTM, 1988). This ASTM Guide is used for assessing the performance of atmospheric 

transport and diffusion models for predicting the concentration of a pollution plume released 

from the source (USEPA, 2003). Experience with air quality modeling showed that deviations 

between model predictions and observations were sometime pretty large. For example, 

comparisons between 12 regulatory air dispersion models used in some European countries 

revealed that quite huge differences existed between modeled and measured results (Cosemans et 

al., 1995). A lot of studies have been done to evaluate models performance in pollution 

dispersion simulation (Weil, 1992; Olesen, 1998, Olesen, 1999, etc). Evaluation of models 

performance can be determined by seven statistical parameters, i.e., Bias, the normalized mean 

square error, the coefficient of correlation, fraction of predictions with a factor of two of 

observations, the Fractional Bias (FB), the geometric mean variance, and the geometric mean 

bias (USEPA, 1992). Generally, FB could be used to give an overall estimation of how well the 

model’s predicted results match the corresponding observations (Olesen, 1999). The expression 

of the Fractional Bias is (ASTM, 1998): 

FB = 
ଶ ሺ௉ோି ை஻ሻ 
௉ோା ை஻

                                             (5.1) 

Where: OB and PR refer to the average of the observed (OB) and predicted (PR) values 

respectively. The same expression is used to calculate the FB of the standard deviation, where 

OB and PR refer to the standard deviation of the observed and predicted values, respectively. 

The FB was selected as a measure of model’s performance based on its two desirable features 

(USEPA, 1992). First, FB is symmetrical and bounded varying between -2.0 (extreme 
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under-prediction) and + 2.0 (extreme over-prediction) and 0 for an ideal model. Second, FB is a 

dimensionless number, which can show advantages in comparing the results that involve 

different concentration levels. Value of the FB of -0.67 is equivalent to model under-prediction 

by a factor of two, while +0.67 is equivalent to over-prediction by a factor of two. The value of 

FB of a perfect model prediction is 0, meaning free from bias. A low variance in FB can be taken 

as indicating confidence in the model prediction (McHugh et al., 1999). The FB of average 

intensity and intensity standard deviation between predicted and measured intensities were 

calculated to evaluate the models’ performance. 

 

5.3 Results and Discussions 

Evaluation of AERMOD and CALPUFF through comparing model predicted and field measured 

odour intensities to find out the agreement between them was presented in this part. Models 

predicted concentrations were converted to intensities using concentration-intensity conversion 

equations from University of Minnesota and University of Alberta. Scaling factors were also 

used to improve the agreement. Discussions of the simulated results as well as statistical 

evaluation of two models performance using an ASTM-Standard Guide were also made.  

 

5.3.1  Evaluating  Models  Using  Concentration­intensity  Conversion  Equation  from 

University of Minnesota 

Models predictions of odour concentration can be very low at sometimes. We got negative 

values of intensities when odour concentrations were converted to intensities using conversion 

equation if this happened. Therefore, the converted values of intensities from model predicted 

concentrations were set to zero whenever encountered this situation because the concentrations 
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were so low that there could be considered no odour, i.e., both odour concentration and the 

corresponding intensity were zero. Figures 5.1 and 5.2 show the detailed information of model 

predicted versus measured odour intensities using conversion equation from University of 

Minnesota. One example of how modeled intensity versus measured intensity was given here. If 

the odour concentration predicted by an odour receptor is 30 OU/m3, using the 

concentration-intensity conversion equation from University of Minnesota, i.e., equation 2.1 (the 

farms involved in this part were swine farms), the predicted intensity corresponding to this 

concentration should be 1.2. If the odour intensity observed by a human sniffer standing at the 

same location as this odour receptor is 1.5, and then they are marked as a pair of data, presenting 

a dot in the figures of model predicted versus measured odour intensity. The X and Y-coordinate 

of the dot that corresponding to this pair of data is (1.2, 1.5). A total of 196 dots were presented 

in the Figures 5.1 and 5.2.  

The straight line of X = Y in the figure was drawn to see how many dots were on it. Those dots 

converging on X = Y means modeled and measured intensities were the same. 

 

Figure 5.1 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Minnesota plume data 
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Figure 5.2 CALPUFF predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Minnesota plume data 

Table 5.2 summarizes the agreement of model predicted and field measured odour intensities as 

well as the number of paired data at distance of 100, 200 and 300 m using conversion equation 

from University of Minnesota for Minnesota odor data. 

Table 5.2 Agreement between model predicted and field measured odour intensities using 
conversion equation from University of Minnesota for Minnesota plume data 

Model Distance (m) 
Total No. of 

paired data 

Agreement No. 

of paired data 

Agreement 

Percentage (%) 

AERMOD 

100 154 52 33.8 

200 28 10 35.7 

300 14 6 42.9 

Overall 196 68 34.7 

CALPUFF 

100 154 53 34.4 

200 28 15 53.6 

300 14 7 50.0 

Overall 196 75 38.3 

From Figures 5.1 and 5.2 we can obviously notice most of the dots are under the straight line X = 

Y, indicating most of the modeled odour intensities are lower than the corresponding field 

measured intensities. It could also be observed a large portion of dots converge at zero level of 

the modeled intensity, showing the models predicted concentrations were pretty low though the 
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measured intensities fell into the range of 0 to 5. From Table 5.2 we can see for all selected 

distances (100, 200 and 300 m) downwind, CALPUFF achieved better agreements compared 

with AERMOD although the differences are not huge. The difference is 0.6, 17.9 and 7.1% at 

distance of 100, 200 and 300 m, respectively. For the overall level, CALPUFF again did a better 

job than AERMOD; the agreement is 34.7 and 38.3% for AERMOD and CALPUFF, 

respectively. Table 5.2 also shows agreement of modeled and measured odour intensities for 

both models are poor. Overall level of agreement percentages for both models not even exceeds 

40%. 

However, if we only consider the measurements with odours detected, i.e., excluding all the 

odour measurements with intensity zero, the agreement of the modeled and measured intensities 

was then given in Table 5.3. Figures 5.3 and 5.4 show the detailed information of predicted 

versus field measured intensities if measured intensity 0 was excluded and conversion equation 

from University of Minnesota was used for Minnesota odour data.  

 

Figure 5.3 AERMOD predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota for Minnesota plume data 
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Figure 5.4 CALPUFF predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota for Minnesota plume data 

 

Table 5.3 Agreement between model predicted and field measured odour intensities (excluding 
measured odour intensity 0) using conversion equation from University of Minnesota for 

Minnesota plume data 

Model Distance (m) 
Total No. of 

paired data 
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of paired data 

Agreement 

Percentage (%) 

AERMOD 

100 151 26 17.2 

200 28 8 28.6 

300 14 0 0 

Overall 193 34 17.6 

CALPUFF 

100 151 28 18.5 

200 28 11 39.3 

300 14 1 7.1 

Overall 193 40 20.7 

From Table 5.3 it could be observed the overall agreement of modeled and measured odour 

intensities (excluding measured odour intensity 0) was 17.6 and 20.7% for AERMOD and 

CALPUFF, respectively. Comparing Table 5.2 and 5.3, we can see if intensity zero was not 

considered, the overall agreement decreased sharply, indicating intensity zero contributed a lot to 

improve the agreement as shown in Table 5.2. The reasons for low agreement as shown in Table 
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5.2 and 5.3 include uncertainty in odour intensity measurements by human sniffers, b) the odour 

emission measurements, c) the uncertainty of using the average of the 10-min session odour 

plume and weather data measurement, and d) the uncertainty in odour concentration and 

intensity Minnesota conversion equation.  

 

5.3.2  Evaluating Models Using  Concentration­intensity  Conversion 

Equation from University of Alberta 

Figures 5.5 and 5.6 show the detailed information of predicted versus measured intensities using 

conversion equation from University of Alberta for Minnesota odour data. From Figures 5.5 and 

5.6 we can observe that dots scatter widely at two sides of the straight line X = Y, indicating 

either modeled intensities were lower than the corresponding measured ones or the measured 

intensities were lower than the corresponding modeled ones.  

 

Figure 5.5 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Alberta for Minnesota plume data 
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Figure 5.6 CALPUFF predicted and field measured odour intensities using conversion equation 
from University of Alberta for Minnesota plume data 

Table 5.4 shows the predicted and measured odour intensity agreement analysis results using 

conversion equation from University of Alberta for Minnesota plume data.  

Table 5.4 Agreement between model predicted and field measured odour intensity using 
conversion equation from University of Alberta for Minnesota plume data 

Model Distance (m) 
Total No. of 

paired data 

Agreement No. 

of paired data 

Agreement 

Percentage (%) 

AERMOD 

100 154 55 35.7 

200 28 11 39.3 

300 14 1 7.1 

Overall 196 67 34.2 

CALPUFF 

100 154 52 33.8 

200 28 8 28.6 

300 14 1 7.1 

Overall 196 61 31.1 

From Table 5.4 we can see for selected distances 100 and 200 m downwind, AERMOD got 

better agreements compared with CALPUFF although the differences are pretty small. The 

difference is 1.9 and 10.7% at distance of 100 and 200 m, respectively. They got the same 

agreement at distance of 300 m. For the overall level, the agreement is 34.2 and 31.1% for 
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AERMOD and CALPUFF, respectively. The same situation as that in Table 5.2 can be noticed, 

i.e., agreement percentages of modeled and measured odour intensities for both models are pretty 

poor. Overall level of agreement percentages for both models is around 33%. 

Comparing the outcomes in Tables 5.2 and 5.4, we may find the model performance was partly 

determined by the conversion equation. When conversion equation from University of Minnesota 

was used, CALPUFF achieved a better agreement than AERMOD; however, AERMOD got a 

better agreement than CALPUFF when using conversion equation from University of Alberta 

was employed. Generally, conversion equation from University of Minnesota is more suitable for 

both models if Minnesota plume data was used only considering the overall agreement level. 

Detailed agreement analysis of measured and predicted odour intensities for each intensity level 

from 0 to 5 are shown in Tables C.1, C.2, C.5 and C.6 in Appendix C. Both of Tables C.1 and 

Table C.2 present nearly for each intensity level, the measured odour intensity were higher than 

the corresponding modeled ones; however, Tables C.5 and C.6 present measured intensities were 

higher than the corresponding modeled ones at some intensity levels and lower at other intensity 

levels. 

Again, if we only consider the measurements with odours detected, i.e., excluding all the odour 

measurements with intensity zero, then the agreement of the modeled and measured intensities 

was given in Table 5.5. Figures 5.7 and 5.8 show the detailed information of predicted versus 

measured intensities using conversion equation from University of Alberta for Minnesota plume 

data if field measured odour intensity 0 was excluded. 
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Figure 5.7 AERMOD predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Alberta for Minnesota plume data 

 

 

Figure 5.8 CALPUFF predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Alberta for Minnesota plume data 
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Table 5.5 Agreement between model predicted and field measured odour intensities (excluding 
measured odour intensity 0) using conversion equation from University of Alberta for Minnesota 

plume data 

Model Distance (m) 
Total No. of 

paired data 

Agreement No. 

of paired data 

Agreement 

Percentage (%) 

AERMOD 

100 151 38 25.2 

200 28 11 39.3 

300 14 4 28.6 

Overall 193 53 27.5 

CALPUFF 

100 151 40 26.5 

200 28 6 21.4 

300 14 4 28.6 

Overall 193 50 25.9 

From Table 5.5 it could be observed the overall agreement of modeled and measured odour 

intensities was 27.5 and 25.9% for AERMOD and CALPUFF, respectively. Comparing Table 

5.4 and 5.5, we can see if intensity zero was not considered, the overall agreement decreased 

greatly, indicating intensity zero contributed some to improve the agreement as shown in Table 

5.4.  

 

5.3.3 Adjusting Modeled Results Using Scaling Factors 

When using INPUFF-2 model to conduct agricultural odour dispersion simulation, Zhu et al. 

(1999) found that the odour source emission rates need to be multiplied by a ‘scaling factor’(SF) 

before use as a model input to obtain results that fell into the same numerical magnitude as the 

field measured data. Applying air dispersion models, which were originally designed for 

industrial gas pollution as stated before, to predict agricultural odours dispersion sometime got 

huge differences between the predicted results and field measured ones because odours are so 

different from industrial gases. Therefore, the approach of using ‘scaling factors’ to adjust the 

model input for odour could be considered an attempt in employing air dispersion models for 
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odour dispersion (Zhu et al., 1999). Koppplu et al. (2004) reported that scaling factors in the 

range of 0.2 to 3900 may be needed to adjust AERMOD predictions to short-term odour 

measurements depending on the source type (point, area, volume) and the type of facility being 

modeled after comparing measured odour intensities from livestock facilities to predicted 

ambient odour levels from AERMOD. A common practice is to get the modeled odour 

concentration at the receptors’ locations for both buildings and manures storages separately and 

then apply the scaling factors to all odour producing sources and adjust the values of scaling 

factors to get the desirable ones by comparing the final adjusted total concentrations with the 

observed ones. The final adjusted total concentrations was expressed by Xing, (2006) 

C = a×C1 + b×C2                                                            (5.1) 

Where:  

C: Adjusted total odour concentration;  

C1: Modeled odour concentration from building source;  

C2: Modeled odour concentration from manure storage source, and  

a, b: Constants, i.e., scaling factors for barn and manure storage, respectively. 

According to Zhu et al. (2000), Barns and manure storages have different scaling factors (35 for 

the barn and 10 for the manure storage) due to different source characteristics. In order to get 

most suitable values of a and b, we can start with a = 1 and b = 1 and then increase or decrease 

the value of b at a constant step of 0.1 while keeping a unchanged, after we finish changing b we 

turn around to do the same work to a as b and keeping b constant. After these two rounds, we can 

find out the maximum agreement of adjusted modeled concentrations with observed ones via 

comparing them. During this process, statistical method could be used to get the most 

appropriate value for a and b.  
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Scaling factors for both AERMOD and CALPUFF are listed in Table 5.6 if conversion equation 

from University of Minnesota was applied for Minnesota plume data. 

Table 5.6 Scaling factors using conversion equation of University of Minnesota for Minnesota 
plume data 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 32.5 6.5 

CALPUFF 22 4 

Figures 5.9 and 5.10 show the detailed information of predicted versus measured odour 

intensities. 

 

Figure 5.9 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Minnesota with scaling factors for Minnesota odour plume data 
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Figure 5.10 CALPUFF predicted and field measured odour intensities using conversion equation 
from University of Minnesota with scaling factors for Minnesota odour plume data 

Table 5.7 shows the original (without scaling factors) and adjusted agreement (after applying 

scaling factors using conversion equation from University of Minnesota for Minnesota plume 

data 

Table 5.7 Original and adjusted agreement using conversion equation from University of 
Minnesota for Minnesota odour plume data 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

100 33.8 48.1 

200 35.7 57.1 

300 42.9 50.0 

Overall 34.7 49.5 

CALPUFF 

100 34.4 49.4 

200 53.6 42.9 

300 50.0 57.1 

Overall 38.3 49.0 

Comparing Figures 5.9 and 5.10 with corresponding Figures 5.1 and 5.2, we may find dots 

converge some to the straight line X = Y in two latter figures. This phenomenon indicates scaling 
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factors can help improve agreement percentage of modeled and measured odour intensities using 

conversion equation from University of Minnesota. 

For AERMOD, the agreement at every distance level got improvement after applying scaling 

factors. The improvement was 14.3, 21.4 and 7.1% at distances of 100, 200 and 300 m, 

respectively, and 14.8% for overall level. While for CALPUFF, the improvement was 15 and 

7.1% at distances of 100 and 300 m, respectively. Though the agreement went down by 10.7% at 

distance of 200 m, improvement was 10.7% for the overall level. Based on this result, we may 

say conversion equation from University of Minnesota with scaling factors was useful for 

improving agreement of measured and predicted odour intensities for both CALPUFF and 

AERMOD if using odour plume data measured by University of Minnesota. This conclusion can 

be consolidated by comparing Tables C.3 and C.4 with Tables C.1 and C.2 in Appendix C. 

Comparison of Table C.3 with C.1 and C.4 with C.2 turns out the overall agreement percentages 

increased after using scaling factors, i.e., sum of numbers in blue background unit table increased 

in Tables C.3 and C.4. 

Scaling factors for both AERMOD and CALPUFF are listed in Table 5.8 if field measured odour 

intensity 0 was excluded and conversion equation from University of Minnesota was applied for 

Minnesota plume data. 

Table 5.8 Scaling factors using conversion equation from University of Minnesota for Minnesota 
plume data (excluding intensity 0) 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 33.6 8.5 

CALPUFF 24 7.2 

Figures 5.11 and 5.12 show the detailed information of predicted versus measured odour 

intensities if field measured odour intensity 0 was excluded and scaling factors were used at the 

same time. Table 5.9 shows the original (without scaling factors) and adjusted agreement (after 
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applying scaling factors using conversion equation from University of Minnesota for Minnesota 

odour data.  

   

Figure 5.11 AERMOD predicted and field measured odour intensities (excluding odour intensity 
0) using conversion equation from University of Minnesota with scaling factors for Minnesota 

odour plume data 

 

Figure 5.12 CALPUFF predicted and field measured odour intensities (excluding odour intensity 
0) using conversion equation from University of Minnesota with scaling factors for Minnesota 

odour plume data 
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Table 5.9 Original and adjusted agreement using conversion equation from University of 
Minnesota for Minnesota odour plume data (excluding measured intensity 0) 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

100 17.2 24.8 

200 28.6 36.6 

300 0 23.2 

Overall 17.6 27.7 

CALPUFF 

100 18.5 29.4 

200 39.3 47.3 

300 7.1 5.1 

Overall 20.7 30.1 

It is shown in the Table 5.9 the increase was 7.6, 8.0 and 23.2% at distance of 100, 200 and 

300m for AERMOD, respectively. For CALPUFF, the increase was 10.9, 8.0% at distance of 

100 and 200 m respectively. However, agreement decreased 2.0% at distance of 300 m fro 

CALPUFF. The overall agreement increased 10.1 and 9.4 % for AERMOD and CALPUFF, 

respectively. Based on this result, it may be concluded conversion equation from University of 

Minnesota with scaling factors improved some of the performance of for both models if field 

measured intensity o was excluded. 

Scaling factors for both AERMOD and CALPUFF are listed in Table 5.10 if conversion equation 

from University of Alberta was applied for Minnesota plume data. 

Table 5.10 Scaling factors using conversion equation from University of Alberta for Minnesota 
odour plume data 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 3.5 0.7 

CALPUFF 1.4 0.5 

Table 5.11 shows the original (before using scaling factors) and adjusted agreement (after 

applying scaling factors) using conversion equation from University of Albert for Minnesota 

data. 
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Table 5.11 Original and adjusted agreement using conversion equation from University of 
Alberta for Minnesota odour plume data 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

100 35.7 35.1 

200 39.3 40.4 

300 7.1 21.4 

Overall 34.2 35.7 

CALPUFF 

100 33.8 33.7 

200 28.6 33.6 

300 7.1 12.9 

Overall 31.1 34.3 

It is shown in the Table 5.11 the increase was 1.1 and 5.0% at distance of 200 m, 14.3 and 5.8% 

at distance 300 m for AERMOD and CALPUFF, respectively. However, the decrement was 0.6 

and 0.1% at 100 m for AERMOD and CALPUFF, respectively. The overall agreement increased 

1.5 and 3.2% for AERMOD and CALPUFF, respectively. Based on this result, it may be 

concluded conversion equation from University of Alberta with scaling factors did not improve 

much of the performance of for both models.  

Scaling factors for both AERMOD and CALPUFF are listed in Table 5.12 if field measured 

odour intensity 0 was excluded and conversion equation from University of Alberta was applied 

for Minnesota plume data. 

Table 5.12 Scaling factors using conversion equation from University of Alberta for Minnesota 
odour plume data (excluding measured intensity 0) 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 6.4 0.9 

CALPUFF 3.2 0.7 

Table 5.13 shows the original (without scaling factors) and adjusted agreement (after applying 

scaling factors) using conversion equation from University of Alberta for Minnesota plume data 

if field measured odour intensity 0 was excluded. 
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Table 5.13 Original and adjusted agreement using conversion equation from University of 
Alberta for Minnesota odour plume data (excluding measured intensity 0) 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

100 25.2 23.7 

200 39.3 43.6 

300 28.6 29.1 

Overall 27.5 29.4 

CALPUFF 

100 26.5 24.8 

200 21.4 26.6 

300 28.6 30.2 

Overall 25.9 31.1 

From Table 5.13 we can see agreement increased 4.3 and 5.2% at distance of 200 m, 0.5 and 

1.6% at distance 300 m for AERMOD and CALPUFF, respectively. However, the decrement 

was 1.5 and 1.7% at 100 m for AERMOD and CALPUFF, respectively. The overall agreement 

increased 1.9 and 5.2% for AERMOD and CALPUFF, respectively. Based on this result, we may 

draw the conclusion conversion equation from University of Alberta with scaling factors did not 

improve much of the performance of for both models if field measured odour intensity 0 was 

excluded. 

 

5.3.4  Using  an  ASTM­Standard  Guide  for  Statistical  Evaluation  of 

AERMOD and CALPUFF Performance 

Figures 5.13 and 5.14 show the fractional bias analysis results of original and adjusted with 

scaling factor for both AERMOD and CALPUFF models. It shows in two figures the results of 

FB analysis are pretty poor for AERMOD using both conversion equations, and poor if using 

conversion equation of Minnesota for CALPUFF. We can also notice from these two figures if 

conversion equation from University of Minnesota was employed, use of scaling factor can 

improve much the performance of both CALPUFF and AERMOD, i.e., both biases of average 
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intensity and standard deviation got much closer to original point. But scaling factor cannot help 

so much if conversion equation from University of Alberta was used. This statistical evaluation 

of atmospheric dispersion models’ performance was consistent with the previous analysis in 

chapter 5.5.3 above.  

 

Figure 5.13 Bias analysis results for AERMOD 
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Figure 5.14 Bias analysis results for CALPUFF 
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and 200 m respectively, and 3.1% for the overall level. The agreement of the two models for 

every corresponding distance was very close;  

3. It was better to choose conversion equation from University of Alberta instead of that from 

University of Minnesota for Alberta odour plume data considering the result of statistical 

evaluation of model performance;  

4. If field measured odour intensity 0 was excluded from the measured intensities, agreement 

of modeled and field measured odour intensities went down sharply for both AERMOD and 

CALPUFF for both conversion equations from University of Minnesota and University and 

Alberta for Minnesota odour data. Using conversion equation from University of Minnesota, 

the agreement was 17.6 and 20.7% for AERMOD and CALPUFF, respectively; however, 

Using conversion equation from University of Alberta, the agreement was 27.5 and 25.9% 

for AERMOD and CALPUFF, respectively; 

5. Agreement of modeled and measured odour intensities for both AERMOD and CALPUFF 

was poor, not even exceeding 40% for all the measured odour intensities, and not exceeding 

30% for the measured odour intensities without intensity 0. The reason may come from three 

aspects: poor model predictions or poor field measurements or poor of both;  

6. Field recorded odour intensities sometimes varied greatly for a single human odour sniffer in 

one odour measurement session. The reason may be the change of odour intensity during 

that session or the human-caused error of odour detection; 

7. Scaling factors can improve the agreement of predicted and measured odour intensities for 

both of CALPUFF and AERMOD using conversion equation from University of Minnesota 

but not conversion equation from University of Alberta. Using conversion equation from 

University of Minnesota with scaling factors, the overall improvement of agreement was 

14.8 and 10.7% for all measured odour intensities and 10.1 and 9.4% for the measured odour 

intensities without 0 for AERMOD and CALPUFF, respectively. Most of the measured 

odour intensities were higher than the corresponding modeled ones when using conversion 

equation from University of Minnesota for Minnesota odour plume data was the reason 
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scaling factors can be helpful in improving the agreement of modeled and measured odour 

intensities; 

8. Although the scaling factors yielded in this project were not exactly the same as those 

created by Zhu, (2000), they fell in the same range. The reason of discrimination between 

them may be Zhu, (2000) used a different model (INPUFF-2); 

9. It was better to choose conversion equation from University of Minnesota instead of that 

from University of Alberta for Minnesota odour plume data from statistical evaluation 

results of model performance point of view. 
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6. EVALUATION OF AERMOD AND CALPUFF FOR 

ODOUR DISPERSION USING FIELD MEASURED 

ODOUR DATA: PART II. USING ODOUR PLUME 

MEASUREMENT DATA FROM UNIVERSITY OF 

ALBERTA 

 

6.1 Introduction 

Original field odour measurement data could only be accessible from University of Minnesota, 

University of Alberta, University of Manitoba and University of Saskatchewan in North America 

till now. However, odour plume data from University of Alberta were the only data not used by 

Xing, (2006) to evaluate four air dispersion models. Xing, (2006) served as the first part of a 

project, and this research will serve as the other part. Qu et al. (2006) employed field measured 

odour data from University of Alberta to calibrate ISC-PRIME model for odour dispersion 

simulation and found the model predicted odour intensities were 1 to 2 magnitudes more than the 

corresponding measured odour intensities though the trend of odour sniffers measured field 

odour intensities was similar to the model predicted ones.  

Field odour measurement data from University of Alberta was used in this part to evaluate the 

capability of AERMOD and CALPUFF in predicting odour concentrations downwind a selected 

farm in Alberta. Scaling factors were developed to improve the agreement of modeled and 

measured intensities.  
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6.2 Materials and Methods 

As stated previously in chapter 5, evaluation of models required odour emissions of the odour 

source(s), field odour data, meteorological data, and terrain condition surrounding the odour 

source(s). Odour emissions of the odour source(s), field odour data, and meteorological data 

were obtained by a research team lead by Drs. J. C. Segura and J. J. R. Feddes, researchers of 

Alberta Agriculture Food and Rural Development (AAFRD), in 2003. Meteorological data were 

also recorded by odour sniffers involved in that project. A portable weather station was employed 

in the case that some weather data were missed by the odour sniffer(s) for such a long 

experiment time.  

 

6.2.1 Site Description and Odour Emission Rates 

A swine farm with location of 113.82W (Longitude), 53.31N (Latitude) and elevation of 715 m 

above MSL in Calmar, Alberta was selected to carry out this project. There were five odour 

emission sources: three EMS cells and two animal facilities. The east barn was north-west 

direction and the west one was like a T shape. These barns were mechanically ventilated. The 

largest EMS cell was located at the northwest corner of the swine farm and a smaller one was 

located besides it and the third one was parallel to the east barn. The relative position of these 

five odour sources are shown in Figure 6.1.  
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Figure 6.1 Air Photo of the selected swine farm Facilities in Calmar, Alberta (adapted from 
AMEC Earth & Environmental, 2003) 

For use in the model, the West Barn was divided into two barns for simplicity sake. West Barn1 

is furthest east and runs north south. West Barn 2 runs east west and was furthest west. This was 

the easiest way to put the coordinate parameters in the model. Actually West Barn 2 had the 

highest peak and runs east west for the full length of the two barns. 

Odour emission rate was measured during the period of August 14th to September 23rd, 2003 for 

the west barn and lagoon one. Odour emission from east barn was estimated to be the same as 

west barn basing on the number of animals as compared to the west barn. Emission rate of 

Lagoon one was measured with a wind tunnel. Lagoon two and three were assumed to have the 

same average emission rate (OU/s-m2) as that of lagoon 1. The summary of average odour 

emission rates from the odour sources are given in Table 6.1. 

We can see from Figure 6.1 there are two roads of trees on the farm. One road of trees is on the 

west side of the farm lane. These trees extend from the county road to the west barn on the west 

side of the farm lane with almost constant height about 13.3 m for the full length. The other road 

of trees is on the east side of farm lane. These trees extended from the county road to the private 

road with almost constant height about 15.2 m for the full length. Field within short distance (< 
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600 m) surrounding the farm is the flat cropland. There is a tree belt standing about 600 m away 

from the farm, the tress formed a circle embracing three sides of the farm, i.e., east, north and 

west sides of the farm. These trees will certainly affect odour dispersion.  

Table 6.1 Odour emission rates of buildings and earthen manure storages from the swine farm in 
Calmar, Alberta (Segura and Morin, 2003) 

Date 

Building odour emissions EMS odour emissions 

Total odour  

emissions (OU/S) 
Odour emission 

rate (OU/S-m2) 

Total odour 

emissions (OU/S) 
Odour emission 

rate (OU/S-m2) 
West barn East barn Lagoon 1 Lagoon 2 Lagoon 3 

08/14/03 84508 63381 20.9 1067785 161674 152124 62.0 

08/21/03 43284 32463 10.7 161454 24446 23002 9.4 

08/26/03 68516 51387 17.0 113769 17226 16208 6.6 

08/28/03 56162 42121 13.9 157900 23908 22496 9.2 

09/02/03 86767 65075 21.5 184007 27861 26215 10.7 

09/04/03 55346 41510 13.7 410748 62192 58518 23.9 

09/09/03 53644 40233 13.3 1415473 214319 201658 82.2 

09/11/03 29711 22283 7.4 224466 33987 31979 13.0 

09/16/03 54692 41019 13.5 781193 118281 111294 45.4 

09/18/03 72184 54138 17.9 79953 12106 11391 4.6 

09/23/03 9736 7302 2.4 231360 35031 32961 13.4 

 

6.2.2 Field Odour Plume Measurement   

As described in Segura and Morin (2003), an odour sniffer panel consisting of five trained 

persons was assigned to collect the field data downwind emission sources in August and 

September, 2003. This sniffer panel used handhold personal global position system (GPS) units 

to locate themselves approximately downwind the odour source according the wind direction, 

which could be obtained via a radio link between them and weather station. Intensity scales of 0 - 

8 (0: no odour; 1: not annoying; 2: a little annoying; 3: a little annoying; 4: annoying; 5: 

annoying; 6: very annoying; 7: very annoying; 8; extremely annoying) with constant interval of 1 

was used by the odour sniffers to assess the odour they detected. Every data collection session 
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lasted 8 minutes, and during this period of time each person recorded his/her measurement per 

minute. Thus, during a data collection session, 8 records were obtained from each odour sniffer. 

The average of these 8 records was deemed as the final odour intensity that sniffer got at that 

period of odour sniffing activity at that specific location. A total of 52 sessions (258 pairs) of data 

over 11 days were taken. The detailed procedure how to measure the odour was presented at 

Segura and Morin (2003).  

Weather condition parameters like wind speed and direction, temperature, etc. were recorded at 

the same time when the odour intensity was written down. The weather station on the farm was 

also employed to record the weather data. The averaged value of each weather condition 

parameter in that session was deemed as the weather condition of that session and was prepared 

for the input of air dispersion models.  

 

6.2.3 Model Configuration 

AERMOD of version 02222 and CALPUFF of version 5.7 were used in this part. Most of the 

configurations of two models were the same as those addressed in chapter 4.2.4 of models 

configuration; however, some there were still some differences should be specified based on 

simulation situation in this part. The differences were:  

a) Simulation time was changed to correspond the time field odour data were taken; 

b) Odour emission rates were prepared according to Table 6.1; 

c) The elevation of the simulated area was 715 m; 

d) Field measured meteorological data in this part were used here; 

e) The type of odour receptors was discrete receptors, and the location of these receptors 

were specified according to the location of human sniffers involved in this part that 

stood in the field to sniff and record the odour intensity; 
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f) For the upper air data used in AERMOD, The location of the nearest upper air station 

was 114.06W (Longitude), 53.33N (Latitude); 

g) For CALPUFF, the land type within the short distance (< 600 m) was set to unirrigated 

agricultural land, and the corresponding value of surface roughness length was 0.20 in 

both August and September according to Table 4.5. However, the land type for long 

distance (>= 600 m) was set to forest land and the corresponding value of surface 

roughness length was 1.30 in both August and September according to Table 4.5; 

h) For AERMOD, the values of three parameters, i.e., Albedo, Bowen ratio, and surface 

roughness, varied according to the corresponding seasons of the year and the distance to 

the odour sources. According to Tables 4.3 to 4.5, the value of Albedo, Bowen ratio, 

and surface roughness was set to 0.20, 0.5, and 0.20 in both August and September 

within the short distance (< 600 m). However, for those field odour data taken in or out 

of tree belt (>= 600 m), the value of Albedo, Bowen ratio, and surface roughness was 

set to 0.12, 0.3, and 1.3 in both August and September. 

 

6.2.4 Relationship between Odour Concentration and Intensity   

Both concentration-intensity conversion equations from University of Alberta and University of 

Minnesota were used in this part to convert modeled concentrations to intensities to be compared 

with corresponding field measured intensities. For the conversion equation from University of 

Alberta, i.e., equation 2.3, 8-point scales were used; while for the conversion equation from 

University of Minnesota, i.e., equations 2.1 and 2.2, 5-point scales were used. 
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6.2.5  Comparison  between  Model  Predictions  and  Field 

Measurement 

A total of 258 pairs of data (including field measured intensity 0) were compared between the 

model predictions and field measurements for both models respectively. As stated previously, the 

measured odour intensities in this part used 8-point referencing scales. The model predicted 

concentrations were converted to intensities using conversion equations of University of Alberta 

and University of Minnesota. Procedures and methods of comparing (matching/mismatching) the 

modeled intensities and corresponding measured intensities were addressed in details in chapter 

5.2.5. 

In order to analyze the impact of field measured odour intensity 0 on the agreement of modeled 

and field measured odour occurrences, all field measured odour intensity 0 was excluded. The 

method of picking out the measured intensity 0 was addressed in details in chapter 5.2.5. 

According to the statistical results of Alberta field measured odour intensities, there were 19 

sessions in which all measured odour intensities were 0, i.e., only 239 pairs of data could be 

compared if excluding field measured intensity 0.  

6.3 Results and Discussions 

Evaluation of AERMOD and CALPUFF through comparing model predicted and field measured 

odour intensities to find out the agreement between them was presented in this part. Model 

predicted concentrations were converted to corresponding intensities using 

concentration-intensity conversion equations. Scaling factors were also used to improve the 

agreement. Discussions of the simulated results as well as statistical evaluation of two models 

performance using an ASTM-Standard Guide were also made.  

 



 

92 
 

6.3.1  Evaluating Models  Using  Concentration­intensity  Conversion 

Equation from University of Alberta 

It is obviously noticed in Table 2.2 the concentration values for intensities 1, 2, and 3 ranged 0 - 

12 OU/m3. Because it is difficult for human noses to distinguish the difference of concentrations 

under 25 OU/m3 (SRF Consulting Group, Inc., 2004), intensities 1, 2 and 3 were grouped into 

the same intensity level, i.e., intensity 1 - 3. The originally field recorded odour intensities were 

then categorized to seven grades, i.e., 0, 1 - 3, 4, 5, 6, 7 and 8. The converted intensities from 

concentrations predicted by models also took these seven grades.  

Figures 6.2 and 6.3 presented the detailed information of modeled versus measured odour 

intensities using the conversion equation from University of Alberta for Alberta odour plume 

data. The way to produce these two figures was the same as the way to create Figures 5.1 and 5.1 

in chapter 5.3.1, except that there were a total of 258 pairs of data. The straight line of X = Y in 

the figure was drawn to see how many dots were on it. Those dots converging on X = Y means 

modeled and measured intensities were the same. It could be easily noticed 258 dots scatter at 

the whole 5 by 5 unit area, and widely two sides of the straight line of X = Y, indicating the 

agreement of modeled and measured intensities could be pretty low. 
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Figure 6.2 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Alberta for Alberta odour plume data 

 

Figure 6.3 CALPUFF predicted and field measured odour intensities using conversion equation 
from University from Alberta for Alberta odour plume data 

Table 6.2 summarized the agreements at distances 200, 300, 500 and 800 m downwind the odour 

sources after the predicted odour concentrations were converted to intensities using the 

conversion equation from University of Alberta for these two models.  
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Table 6.2 Agreement between model predictions and field measurements using conversion 
equation from University of Alberta for Alberta plume data 

Model Distance (m) 
Total NO. of 

paired data 

Agreement NO. 

of paired data 

Agreement  

Percentage (%) 

AERMOD 

200 10 1 10.0 

300 44 5 11.4 

500 124 31 25.0 

800 80 25 31.3 

Overall 258 62 24.0 

CALPUFF 

200 10 6 60.0 

300 44 3 6.8 

500 124 31 25.0 

800 80 20 25.0 

Overall 258 60 23.3 

From Table 6.2 above we can see the agreement between model predictions and field 

measurements for both models pretty low and close for every single distance except for distance 

of 200 m. The agreement discrimination was 50, 4.6, 0 and 6.3% at the distance of 200, 300, 500 

and 800 m for AERMOD and CALPUFF, respectively. The overall agreement discrimination 

between two models was 0.7%. It could also be seen agreements of model predictions and 

measurements for both models were ugly. Most of the agreement percentages were around 25%, 

and the overall agreement percentages were 24.0 and 23.3% for AERMOD and CALPUFF, 

respectively. Detailed agreement analysis of measured and predicted odour intensities are shown 

in Tables D.5 and D.6 in Appendix D. From Tables D.5 and D.6, we can notice modeled 

intensity were higher than the corresponding field measured ones at some intensity levels, and 

lower at others intensity levels, i.e., there are some values in the unit table above blue 

background unit tables, and others are below the blue background unit tables. This phenomenon 

was consistent with the scatting of the dots at two sides of line X = Y in Figures 6.2 and 6.3.  

However, if we only consider the measurements with odours detected, i.e., excluding all the 

odour measurements with intensity zero, the agreement of the modeled and measured intensities 

was then given in Table 6.3. Figures 6.4 and 6.5 show the detailed information of predicted 
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versus measured intensities using conversion equation from University of Alberta if field 

measured odour intensity o was excluded. 

 

Figure 6.4 AERMOD predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Alberta for Alberta plume data 

 

Figure 6.5 CALPUFF predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Alberta for Alberta plume data 
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Table 6.3 Agreement between model predictions and field measurements (excluding measured 
intensity 0) using conversion equation from University of Alberta for Alberta plume data 

Model Distance (m) 
Total NO. of 

paired data 

Agreement NO. 

of paired data 

Agreement  

Percentage (%) 

AERMOD 

200 10 0 0 

300 43 3 7.0 

500 115 13 11.3 

800 71 12 17.0 

Overall 239 28 11.7 

CALPUFF 

200 10 2 20.0 

300 43 2 4.7 

500 115 15 12.2 

800 71 10 14.1 

Overall 239 29 12.1 

From Table 6.3 it could be observed the overall agreement of modeled and measured odour 

intensities was 14.6 and 13.8% for AERMOD and CALPUFF respectively. Comparing Table 6.2 

and 6.3, we can see if intensity zero was not considered, the overall agreement decreased sharply, 

indicating intensity zero contributed a lot to improve the agreement as shown in Table 6.2. 

 

6.3.2  Evaluating Models  Using  Concentration­intensity  Conversion 

Equation from University of Minnesota 

Figures 6.6 and 6.7 presented the detailed information of modeled versus measured odour 

intensities using the conversion equation from University of Alberta for Alberta odour plume 

data. From Figures 6.6 and 6.7 we can obviously notice most of the dots are under the straight 

line X = Y, indicating most of the modeled odour intensities are lower than the corresponding 

field measured intensities. It could also be observed a large part of dots converge at zero level of 

the modeled intensity, showing the models predicted concentrations were very low though the 

measured intensities fell in the range of 0 to 8. 
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Figure 6.6 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Alberta odour plume data 

 

Figure 6.7 CALPUFF predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Alberta odour plume data 

Table 6.4 presented the agreements of modeled versus measured odour intensities using 

conversion equation from University of Minnesota for Alberta odour plume data for these two 

models.  
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Table 6.4 Agreement between model predictions and field measurements using conversion 
equation from University of Minnesota for Alberta odour plume data 

Model Distance (m) 
Total NO. of 

paired data 

Agreement ON. 

of paired data 

Agreement  

Percentage (%) 

AERMOD 

200 10 0 0 

300 44 3 6.8 

500 124 31 25.0 

800 80 24 30.0 

Overall 258 58 22.5 

CALPUFF 

200 10 0 0 

300 44 2 4.6 

500 124 30 24.2 

800 80 23 28.8 

Overall 258 55 21.3 

Table 6.4 almost showed the same thing of agreement between model predictions and field 

measurements for both models as that in Table 6.2, .i.e., the agreement percentage was pretty low 

and very close for every corresponding distance for two models. The agreement difference was 0, 

2.2, 0.8 and 1.2 and at distance of 200, 300, 500 and 800 m respectively. And the agreement 

difference was 1.2% for the overall agreement level. Agreement percentage analysis of both 

models was ugly, 22.5 and 21.3% for the overall agreement level for AERMOD and CALPUFF, 

respectively. Detailed agreement analysis of measured and predicted odour intensities are in 

Table D.1 and D.2 in Appendix D. we can see from these two tables most of the values are above 

the blue background unit tables, indicating models under-predicted field measurements. From 

Tables 6.2 and 6.4, we may draw the conclusion neither of conversion equation from University 

of Alberta nor conversion equation from University of Minnesota behaved well for the Alberta 

odour plume data. Generally speaking, the agreement of predicted and measured odour 

intensities using Alberta odour plume data only barely exceeded 20%, much lower than that of 

University of Minnesota odour plume data simulation.  

If we only consider the measurements with odours detected, the agreement of the modeled and 

measured intensities was then given in Table 6.5. Figures 6.8 and 6.9 show the detailed 
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information of predicted versus measured intensities using conversion equation from University 

of Minnesota if field measured odour intensity 0 was excluded. 

 

Figure 6.8 AERMOD predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota for Alberta odour plume 

data 

 

Figure 6.9 CALPUFF predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota for Alberta odour plume 

data 
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Table 6.5 Agreement between model predictions and field measurements (excluding measured 
intensity 0) using conversion equation from University of Minnesota for Alberta plume data 

Model Distance (m) 
Total NO. of 

paired data 

Agreement ON. 

of paired data 

Agreement  

Percentage (%) 

AERMOD 

200 10 0 0 

300 43 1 2.3 

500 115 15 13.0 

800 71 13 18.3 

Overall 239 29 12.1 

CALPUFF 

200 10 0 0 

300 43 1 2.3 

500 115 14 12.2 

800 71 10 14.1 

Overall 239 27 11.3 

From Table 6.5 it could be observed the overall agreement of modeled and measured odour 

intensities was 12.1 and 11.3% for AERMOD and CALPUFF respectively. Comparing Table 6.4 

with 6.5, we can see if intensity zero was not considered, the overall agreement decreased 

sharply, indicating intensity zero contributed much to improving the agreement as shown in 

Table 6.4. 

 

6.3.3 Adjusting Modeled Results Using Scaling Factors 

Scaling factors for both AERMOD and CALPUFF are listed in Table 6.6 if conversion equation 

from University of Alberta was applied for Alberta odour data. Table 6.7 shows the original 

(without scaling factors) and adjusted agreement (after applying scaling factors) using 

conversion equation from University of Alberta for Alberta odour data. 
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Table 6.6 Scaling factors using conversion equation from University of Alberta for Alberta 
plume data 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 7 3.5 

CALPUFF 4.5 2 

 

Table 6.7 Original and adjusted agreement after applying scaling factors using conversion 
equation from University of Alberta for Alberta plume data 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

200 10.0 0 

300 11.4 6.8 

500 25.0 29.0 

800 31.3 31.3 

Overall 24.0 24.8 

CALPUFF 

200 60.0 10.0 

300 6.8 13.6 

500 25.0 26.6 

800 25.0 40.0 

Overall 23.3 27.9 

From Table 6.7 we can see use of scaling factors did not improve much of agreement of modeled 

and measured odour intensities. For AERMOD, agreement improved 4.0% at distance of 500 m 

while decreased 10 and 4.6% at distance of 200 and 300 m, respectively. For CALPUFF, 

agreement improved 6.8, 1.6 and 15% at distance 300, 500 and 800 m, respectively, while 

decreased 50% at distance of 200 m. The overall increase was 0.8 and 4.6% for AERMOD and 

CALPUFF, respectively. We may conclude based on the results from Table 6.7 that scaling 

factors were not helpful if conversion equation from University of Alberta was used for Alberta 

odour plume data. This conclusion could be consolidated by Figures 6.2 and 6.3. As it was stated 

in chapter 6.3.1 that dots scatter the whole 8 by 8 unite area, indicating scaling factors can’t 

make them converge on the straight line X = Y. 
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Scaling factors for both AERMOD and CALPUFF are listed in Table 6.8 if conversion equation 

from University of Alberta was applied for Alberta odour data and field measured odour 

intensity 0 was excluded. Table 6.9 shows the original (without scaling factor) and adjusted 

agreement (after applying scaling factors) using conversion equation from University of Alberta 

for Alberta odour data if field measured odour intensity 0 was excluded. 

Table 6.8 Scaling factors using conversion equation from University of Alberta for Alberta 
plume data (excluding measured intensity 0) 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 10.2 6.4 

CALPUFF 5.6 4.5 

 

Table 6.9 Original and adjusted agreement after applying scaling factors using conversion 
equation from University of Alberta for Alberta plume data (excluding measured intensity 0) 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

200 0 4.5 

300 7.0 5.4 

500 11.3 17.0 

800 17.0 18.4 

Overall 11.7 16.1 

CALPUFF 

200 20.0 30.0 

300 4.7 5.2 

500 12.2 15.7 

800 14.1 13.7 

Overall 12.1 14.4 

From Table 6.9 we can see use of scaling factors did not improve much of agreement of modeled 

and measured odour intensities. Foe AERMOD, agreement improved 4.5, 5.7, and 1.4% at 

distance of 200, 500 and 800m, respectively, while decreased 1.6% at distance of 300. However, 

foe CALPUFF, agreement improved 10, 0.5 and 3.5% at distance 200, 300 and 500 m, 
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respectively, while decreased 0.4% at distance of 800 m. The overall agreement increase was 4.4 

and 2.3% for AERMOD and CALPUFF, respectively. We may conclude based on the results 

from Table 6.7 that scaling factors were not helpful very much if conversion equation from 

University of Alberta was used for Alberta odour plume data and field measured odour intensity 

0 was excluded.  

Scaling factors for both AERMOD and CALPUFF are listed in Table 6.10 if conversion equation 

from University of Minnesota was used for Alberta odour plume data. 

Table 6.10 Scaling factors using conversion equation from University of Minnesota for Alberta 
plume data 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 15.5 5 

CALPUFF 10.5 9 

Figures 6.10 and 6.11 show the detailed agreement information of predicted versus measured 

intensities using conversion equation from University of Minnesota for Alberta plume data. 

Compared the locations of dots in Figures 6.6 and 6.7, they converged some to the straight line X 

= Y in Figures 6.10 and 6.11, indicating scaling factors should be helpful to improve the 

agreement of modeled and measured odour intensities though the help may be limited.  
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Figure 6.10 AERMOD predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Alberta plume data 

 

Figure 6.11 CALPUFF predicted and field measured odour intensities using conversion equation 
from University of Minnesota for Alberta plume data 

Table 6.11 summarized the agreement for two models original (without scaling factors) and 

adjusted agreement (after applying scaling factors) using conversion equation from University of 

Minnesota for Alberta odour data. 
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Table 6.11 Original and adjusted agreement after applying scaling factors with conversion 
equation from University of Minnesota for Alberta plume data 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

200 0 0 

300 6.8 12.1 

500 25.0 28.3 

800 30.0 37.5 

Overall 22.5 29.6 

CALPUFF 

200 0 10 

300 4.6 10.1 

500 24.2 29.2 

800 28.8 38.3 

Overall 21.3 28.7 

From Table 6.11 we can see there were some improvements for every distance after applying 

scaling factors for both models. The improvement was 5.3 and 5.6%, 3.3 and 5.0%, 7.5 and 9.5% 

for at distance of 300, 500 and 800 m for AERMOD and CALPUFF, respectively. The 

improvement was 10% at the distance of 100 m for CALPUFF; however, there was not 

improvement for AERMOD at this distance. The overall improvement was 7.1 and 7.4% for the 

AERMOD and CALPUFF respectively. Improvement of agreement for two models after using 

scaling factors shown in the Table 6.11 was consistent with conclusion came from analysis of 

Figures 6.10 and 6.11 that dots converged some to the line X = Y. 

Scaling factors for AERMOD and CALPUFF are listed in Table 6.12 if conversion equation from 

University of Minnesota was used for Alberta odour plume data and at the same time field 

measured odour intensity 0 was excluded. 

Table 6.12 Scaling factors using conversion equation from University of Minnesota for Alberta 
plume data (excluding measured intensity 0) 

Model 
Scaling factor 

Barn Manure storage 

AERMOD 23.8 7.2 

CALPUFF 12.4 9.5 
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Figures 6.12 and 6.13 show the detailed agreement information of predicted versus modeled 

intensities using conversion equation from University of Minnesota for Alberta plume data 

(excluding measured intensity 0). Compared with the locations of dots in Figures 6.8 and 6.9, 

they converged a some to the straight line X = Y in Figures 6.10 and 6.11, indicating scaling 

factors should be helpful to improve the agreement of modeled and measured odour intensities 

though the help may be limited.  

 

 

Figure 6.12 AERMOD predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota with scaling factors for 

Alberta plume data 
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Figure 6.13 CALPUFF predicted and field measured odour intensities (excluding measured 
intensity 0) using conversion equation from University of Minnesota with scaling factors for 

Alberta plume data 

Table 6.13 summarized the agreement for two models original (without scaling factors) and 

adjusted agreement (after applying scaling factors) using conversion equation from University of 

Minnesota for Alberta odour data if the field measured odour intensity 0 was excluded. 

Table 6.13 Original and adjusted agreement after applying scaling factors using conversion 
equation from University of Minnesota for Alberta odour data (excluding measured intensity 0) 

Model Distance (m) 
Agreement percentage (%) 

Original Adjusted 

AERMOD 

200 0 10.0 

300 2.3 5.3 

500 13.0 25.5 

800 18.3 17.6 

Overall 12.1 22.5 

CALPUFF 

200 0 20.0 

300 2.3 8.3 

500 12.2 20.5 

800 14.1 13.1 

Overall 11.3 20.4 
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From Table 6.13 we can see there were some improvements for every distance after applying 

scaling factors for both models if field measured odour intensity 0 was excluded. The 

improvement was 10.0 and 20.0%, 3.0 and 6.0%, 12.5 and 8.3% at distance of 200, 300 and 500 

m for AERMOD and CALPUFF, respectively. However, the agreement decreased by 0.7 and 

1.0% at distance of 800 m for the AERMOD and CALPUFF, respectively. The overall 

improvement of agreement was 10.4 and 9.1% for AERMOD and CALPUFF, respectively. 

Improvement of agreement for two models after using scaling factors without field measured 

intensity 0 shown in the Table 6.13 was consistent with conclusion came from analysis of 

Figures 6.12 and 6.13 that dots converged some to the line X = Y compared with those in Figures 

6.8 and 6.9. 

 

6.3.4  Using  an  ASTM­Standard  Guide  for  Statistical  Evaluation  of 

AERMOD and CALPUFF Performance 

Figure 6.14 and 6.15 show the bias analysis result for these two models. We can see for both 

models the agreement of measured and predicted odour intensity was really poor if using 

conversion equation from University of Minnesota. There was some improvement if scaling 

factors was applied for this conversion equation. Application of scaling factor for conversion 

equation from University of Alberta could bring improvement but not that distinct. 

Either conversion equation from University of Alberta or University of Minnesota could be used 

for Alberta odour plume data if just looking from the agreement of measured and predicted odour 

intensities. We may draw another conclusion from the aspect that if we check the bias analysis 

results for these two models. These two figures show clearly both of the average intensity and 

intensity standard deviation were smaller if Alberta conversion equation was applied. From this 
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point of view we may say it is better to use conversion equation from University of Alberta when 

conduct simulation using Alberta odour plume data.  

 

 

Figure 6.14 Bias analysis results for AERMOD 
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Figure 6.15 Bias analysis results for CALPUFF 
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odour intensities. The difference under two conversion equations was 1.5 and 2.0% at 

overall level for AERMOD and CALPUFF, respectively;  

3. If field measured odour intensity 0 was excluded from the measured intensities, agreement 

of modeled and field measured odour intensities decreased greatly for both AERMOD and 

CALPUFF for both conversion equations from University of Minnesota and University and 

Alberta for Alberta odour data. Using conversion equation from University of Alberta, the 

agreement was 11.7 and 12.1% for AERMOD and CALPUFF, respectively; however, using 

conversion equation from University of Minnesota, the agreement was 12.1 and 11.3% for 

AERMOD and CALPUFF, respectively; 

4. Agreements of modeled and measured intensities for Alberta odour plume data were very 

low, only barely exceeding 20 and 10% for all measured odour intensities and measurements 

without intensity 0, which was even lower than those got from Minnesota’s odour plume 

data simulation in chapter 5. The reason may come from poor model predictions or poor 

field measurements or poor of both. The probability of human-caused reason to low 

agreement was pretty big because a lot of odour measurements were recorded when the 

odour sniffers were standing close or in a woods around the farm, making the mistaken 

records of field odour intensity happen easily; 

5. Scaling factor can improve the agreement for both models if conversion equation from 

University of Minnesota was used. The improvement was 7.1 and 7.4% for all odour 

measurements, and 10.4 and 9.1% for odour measurements without 0 for AERMOD and 

CALPUFF, respectively. However, it was not so useful when conversion equation from 

University of Alberta was applied;  

6. Scaling factors generated using conversion equation from University of Minnesota were 

larger than those created using equation from University of Alberta for field odour 

measurement data from both University of Minnesota and University of Alberta showed 

conversion equation from University of Minnesota yielded more conservative values 

compared with conversion equation from University of Alberta; 
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7. It was better to choose conversion equation from University of Alberta instead of that from 

University of Minnesota for Alberta odour plume data from statistical evaluation outcomes 

of model performance point of view. 
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7. APPLICATION OF AERMOD AND CALPUFF FOR 

DETERMINING ODOUR SETBACK DISTANCE FROM A 

SELECTED SWINE FARM 

7.1 Introduction 

All of the existing government recommended separation distances, i.e., setback distances, from 

animal production site to neighboring residential area in the Prairie Provinces, Canada are 

calculated out through established agricultural odour control guidelines till now. These 

guidelines have been used by the government to make the decisions in locating new animal 

production facilities or expanding of existed farms for many years because no other better 

methods of determining the setbacks were available and plenty of land could be used in the 

Prairie Provinces. Following the expansion of agricultural industry, less and less land could be 

accessible for animal production purpose. Based on this situation, scientific methods are needed 

to deal with determining odour setbacks problem. Air dispersion model is a potential successor 

of guideline method.  

Agricultural odour setbacks guidelines in Canadian Prairie Provinces, i.e., Alberta, Manitoba and 

Saskatchewan, were used in this part to determine Minimum Separation Distance (MSD) from 

odour sources to the residential area in the vicinity of these odour sources. Meanwhile, odour 

dispersion models will be used to predict odour concentrations downwind odour sources. 

Because the capability of AERMOD and CALPUFF in simulating odour dispersion using field 

odour measurement data from University of Minnesota and University of Alberta was pretty 

close, it could not be determined which model is better only from the performance of them in 

chapters 5 and 6. Subsequently, both of them were used in this part for the purpose of predicting 

setbacks. Because no universal scaling factors could be available from the research results by 

other researchers till now and scaling factors developed in chapters 5 and 6 were so different, no 
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scaling factors were applied in this part. This part of the project was intended to use AERMOD 

and CALPUFF to predict setback distance for a typical sized swine farm in Yorkton, 

Saskatchewan. The models predicted odour setback distances for this farm were then compared 

with these three-province guidelines recommended setbacks. 

The previous sensitivity analysis revealed that different acceptable odor concentration levels 

should be used to get the same odour travel distance if steady state and variable weather 

conditions are used. In this chapter, we took the standard practice that US EPA has been using, 

i.e., employing historical hourly weather data to get the annual average odour concentrations at 

the receptors location. 

 

7.2 Odour Setbacks Guidelines of Canadian Prairie Provinces 

Odour setbacks guidelines of three Canadian Prairie Provinces, i.e., Saskatchewan, Manitoba and 

Alberta, were presented in this part. It could be noticed both guidelines of Saskatchewan and 

Manitoba are very easily follow because they are only based on Animal Units (AUs) of the farm 

and the neighboring residence scale. However, Alberta odour control guideline was more 

complicated compared with the previous two because it is based on some complex equations that 

involve several parameters related to the odour source and odour dispersion condition and 

topography surrounding the farm. 

 

7.2.1 Saskatchewan Odour Setbacks Guideline 

Odour setback distance guideline for establishing and managing livestock operation was 

mentioned in Saskatchewan Agriculture and Food, (1999). Odour setbacks calculated out by this 

provincial odour control guideline is quite simple to follow. First, we calculate the total Animal 
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Units of all animals (e.g., swine, poultry) in the farm. AU is the measurement of any kind of 

animals in the feeding operation. An AU is “one mature cow of approximately 1000 pounds and 

a calf up to weaning, usually 6 months of age, or their equivalent” (Saskatchewan Agriculture 

and Food, 1999). Converting all animals to AUs allows equal standards for all animals based on 

type and size and manure production. Though swine was the only kind animal involved in this 

part, they were at different growth phases thus different weight and manure production, so it was 

necessary to convert them to AUs via the standard unit criterion. Then the setback distance is 

calculated out by AUs and the neighboring residence area scale. Saskatchewan MSD for odour 

control is shown in Table 7.1. The general rule was the larger of the residence scale and AUs, the 

longer of the MSD.  

Table 7.1 Saskatchewan recommended minimum separation distance from agricultural odour 
source to rural residence (Saskatchewan Agriculture and Food, 1999) 

Separation Requirements (m) 

Population 
Animal Units 

10 - 50 50 - 300 300 - 500 500 - 2000 2000 - 5000 > 5000 

Single Rural Residence 300 - 450 300 - 450 400 - 600 800 - 1200 1200 - 1600 1600 - 2000 

< 100 400 - 600 400 - 600 800 - 1200 1200 - 1600 1600 - 2000 2000 - 2400 

100 - 500 400 - 600 800 - 1200 1200 - 1600 1600 - 2000 2400 - 2400 2400 - 2400 

500 - 5000 800 - 1200 1200 - 1600 1600 - 2000 2400 - 2400 3200 - 3200 3200 - 3200 

> 5000 800 - 1200 2400 - 2400 2400 - 2400 3200 - 3200 3200 - 3200 3200 - 3200 

Because hog was the only considered kind of animal in Saskatchewan in this part, Table 7.2 was 

used to convert animal numbers to AUs in Saskatchewan.  

Table 7.2 Converting number of animals to Animal Units for Saskatchewan odour guideline 
(Saskatchewan Agriculture and Food, 1999) 

Type Kind of Animal 
Number which equals 

one animal unit 

Hog 

Boars or sows 3.0 

Gilts 4.0 

Feeder pigs 6.0 

Weaning pigs 20.0 
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7.2.2 Manitoba Odour Setbacks Guideline 

Manitoba minimum separation distance for reducing odour impact on neighbors was calculated 

out based on Animal Units of the farm and the type of the residential area as shown in Table 7.3 

(Manitoba Agricultural Guidelines Development Committee, 2007). Residential area was 

generally divided into two groups: single residence and special purposed land use. It needs much 

longer separation distance for the second group compared with the ordinary residential area for 

the same farm scale. It could also be observed the distance to the EMS is longer compared to the 

building for the same level of AUs. The reason for this is normally manure storage cells 

produced more odour than the animals stored in building in that farm. The maximum number of 

residences within 1.6 km to the farm was also specified. 

Table 7.3 Manitoba recommended minimum separation distance for sitting livestock operations 
(Manitoba Agricultural Guidelines Development Committee, 2007) 

Population 

Maximum number 

of residences within 

1.6km1 

Minimum setback distance (m) 

From single residence 
From designated residential 

or recreation area2 

To EMS To building3 To EMS To building 

10 - 100 18 200 100 800 530 

101 - 200 16 300 150 1200 800 

201 - 300 15 400 200 1600 1070 

301 - 400 14 450 225 1800 1200 

401 - 800 12 500 250 2000 1330 

801 - 1600 10 600 300 2400 1600 

1601 - 3200 8 700 350 2800 1870 

3201 - 6400 6 800 400 3200 2130 

6401 - 12800 4 900 450 3600 2400 

12801 and grater 2 1000 500 4000 2670 

1Number of residences within 1.6 km (one mile) of the center of the facility applies only to new 
facilities. Expansions of existing facilities and the proponent’s residence are excluded; 

2Officially designated areas in a development plan or basic planning statement; 
3The distance to buildings includes barns and non-earthen manure storages such as above or 
below grade structures which may be covered or uncovered. 
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For Manitoba, the table used to convert animals to AUs is listed in following table (Table 7.4). 

The listed animal in the table is pig, not including other kind of animals because it is the only 

considered animal in Manitoba in this part. 

Table 7.4 Converting number of animals to Animal Units for Manitoba odour guideline 
(Manitoba Agricultural Guidelines Development Committee, 2007) 

Animal Units 

(AU) 

Barn capacity or animal places 

Sows, 

Farrow-Finish 

(110-115 kg) 

Sows, 

Farrow-Weaning 

(5 kg) 

Sows, 

Farrow-Nursery 

(23 kg) 

Weanlings 

(5-23kg) 

Grower/Finishers 

(23-113 kg) 

10 - 100 8 - 80 32 - 319 40 - 400 303 - 3030 70 - 699 

101 - 200 81 - 160 323 - 639 404 - 800 3061 - 6061 706 - 1399 

201 - 300 161 - 240 642 - 958 804 - 1200 6091 - 9091 1406 - 2098 

301 - 400 241 - 320 962 - 1278 1204 - 1600 9121 - 12121 2105 - 2797 

401 - 800 321 - 640 1281 - 2556 1604 - 3200 12152 - 24242 2804 - 5594 

801 - 1600 641 - 1280 2559 - 5112 3204 - 6400 24273 - 48485 5601 - 11189 

1601 - 3200 1281 - 2560 5115 - 10224 6404 - 12800 48515 - 96970 11196 - 22378 

3201 - 6400 2561 - 5210 10227 - 20447 12804 - 25600 97000 - 193939 22385 - 44755 

6401 - 12800 5121 - 10240 20450 - 40895 25604 - 51200 193970 - 3878789 44762 - 89510 

12801 and 

grater 

10241 and 

greater 

40898 and 

greater 

51204 and 

greater 

387909 and  

greater 

89517 and  

greater 

 

7.2.3 Alberta Odour Setbacks Guideline 

The Alberta MSD is determined by factors such as the Odour Production (OP), Odour Objective 

(OB), Dispersion Factor (DF), and Expansion Factor (EF) as following equation (Alberta 

Standards and Administration Regulation, 2000): 

MSD = OP0.365 × OB × DF × EF                                               (7.1) 

Odour Production (OP) OP measured by Livestock Sitting Units (LSU) is clarified in the 

Alberta Standards and Administration Regulation, (2000) and parts of LSU table are presented in 

Table 7.5. There were four factors contributing to OP, including the nuisance value of livestock 
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(Factor AA), technology of production systems (Factor BA), manure production (MU), and 

number of animals as following: 

OP = LSU = Factor A A× Factor B A × MU Reciprocal × number of animals            (7.2) 

Detailed information of Factor AA, Factor BA, and MU Reciprocal for different animals 

categories are tabulated in the Alberta Standards and Administration Regulation, (2000).  

Odour Objective (OB) OB describes the sensitivity or assumed tolerance level of neighboring 

land uses. Its value stated in Alberta Standards and Administration Regulation, (2000) was listed 

as:  

Category 1: OB = 41.04 for land zoned for agricultural purposes such as farmsteads, acreage 

residences, etc. 

Category 2: OB = 54.72 for land zoned for non-agricultural purposes such as country residential, 

rural commercial businesses, etc. 

Category 3: OB = 68.40 for land zoned as large scale country residential, high use recreational, 

or commercial purposes as well as for the urban fringe boundary or land zoned as a rural hamlet, 

village, or town with an urban fringe. 

Category 4: OB = 109.44 for land zoned as rural hamlet, village, or town without an urban 

fringe. 

Dispersion factor (DF) DF permits a variance to MSD based on the impact of climatic and 

terrain on odour dispersion. The standard value is 1.0 (Alberta Standards and Administration 

Regulation, 2000). 

Expansion factor (EF) EF only applies to the expanding operations. 
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Table 7.5 Alberta Livestock Sitting Units table (Alberta Standards and Administration 
Regulation, 2000) 

Category of Livestock 
Type of  

Livestock 
Factor AA 

Technology  

Factor BA 
MU 

Swine Liquid 

Farrow to finish 2.000 1.100 1.780 

Farrow to wean 2.000 1.100 0.670 

Farrow only 2.000 1.100 0.530 

Feeders/Boars 2.000 1.100 0.200 

Growers/Roasters 2.000 1.100 0.118 

Weaners 2.000 1.100 0.055 

Swine Solid 

Farrow to finish 2.000 0.800 1.780 

Farrow to wean 2.000 0.800 0.670 

Farrow only 2.000 0.800 0.530 

Feeders/Boars 2.000 0.800 0.200 

Growers/Roasters 2.000 0.800 0.118 

Weaners 2.000 0.800 0.055 

 

7.3 Materials and Methods 

A typical sized of swine farm located in Yorkton, Saskatchewan was targeted to get odour 

emissions. 5-year warm season meteorological data of simulated area were used. Odour setback 

distances predicted by both models AERMOD and CALPUFF as well as the Canadian Prairie 

Provinces were compared for the three different sites of the farm.  

 

7.3.1 Site Description and Odour Emission Rates 

The involved typical sized swine farm consisting of three different farms was located at Yorkton, 

Saskatchewan. These three farms included one farrowing/gestation site (5,000 sows, 3 barns, one 

2-cell EMS), one nursery site (19,200 head, 4 barns, one 2-cell EMS), and one finishing site 

(11,550 head, 1 barn, one 2-cell EMS) (Guo et al., 2005b). The layout of the farm is shown in 
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Figure 7.1. The study area was relatively flat crop land and there were no obstacles around the 

farm. Odour emission rates for the input of models from buildings and EMS of these three sites 

were measured from May to October, 2003. The geometric means of the odour emission rates 

measured in those six months were used as the warm season odour emission rates as shown in 

Table 7.6.  

Table 7.6 Warm season emission rates from buildings and EMS from swine farm in 
Saskatchewan (Guo et al., 2005b) 

Odour emission site 
Odour emissions of warm season 

geometric mean (OU/s) 

Odour emission rate of warm 

season geometric mean (OU/s-m2) 

Breeding/Gestation & 

Farrowing 

Building1 106377 10.4 

Building2 138166 26.7 

Cell 16122 5.5 

Cell 164434 34.5 

Nursery 

Building 188103 24.0 

Cell 134804 24.0 

Cell 252811 25.8 

Finishing 

Building 394298 41.3 

Cell 270537 48.1 

Cell 302732 30.9 
1Emission from Breeding/Gestation; 
2Emission from Farrowing 

 

7.3.2 Meteorological Data Involved in This Part 

Generally, warm season are the high odour occurrence time in one year. The reason for this is 

high odour emissions are released from buildings and outdoor manure storages during this period 

of time. To be conservative, instead of getting annual average odour concentrations around the 

odour source, we choose the worst time of the year, i.e., warm season, to predict odour setback 

distance in this part. Warm season here is defined from May to October consecutively in one 

year. To predict setback distance using air dispersion models, US EPA recommends at least five 
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years of meteorological data should be applied. Based on these, 5-year hourly meteorological 

data from May to October at each year from 1998 to 2002 at this place were used. Model 

simulations were carried out separately for these five years and the geometric mean of them was 

deemed as final odour concentrations. Upper air data of these five years used in AERMOD was 

obtained from the nearest upper air station, Bratts Lakes Upper Air Station, Saskatchewan. 

 

7.3.3 Model Configuration 

AERMOD of version 02222 and CALPUFF of version 5.7 were used in this part. Most of the 

configurations of two models were the same as those addressed in chapter 4.2.4 of models 

configuration; however, some there were still some differences should be specified based on 

simulation situation in this part. The differences were:  

a) Simulation time was changed to correspond the time field odour data were taken; 

b) Odour emission rates were prepared according to Table 7.6; 

c) The elevation of the simulated area was 499 m; 

d) The type of odour receptors was gridded receptors, and odour receptors were located 

surrounding the farm with uniform spacing of 100 m; 

e) For the upper air data used in AERMOD, The location of the nearest upper air station was 

114.10W (Longitude), 53.55N (Latitude); 

f) For both AERMOD and CALPUFF, value of surface roughness length was set to 0.20 from 

May to October according to Table 4.5. For AERMOD, value of Albedo and Bowen ratio 

was set to 0.20 and 0.5 from May to October respectively according to Table 4.5. 

Because the target farm covered too large area for the CALPUFF to run for a single time, 

CALPUFF was used to simulated odour dispersion for these three sites separately. The results 
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were then put together in one figure. For AERMOD, however, one run for all three sites was 

adequate.  

 

Figure 7.1 Layout of the swine barn in Saskatchewan for the purpose of applying models in 
setback distance determination (adapted from Guo et al., 2005b) 

 

7.4 Results and Discussions 

5-year warm season odour concentration contour maps in the vicinity of the farm as simulated by 

CALPUFF and AERMOD were shown in Figures 7.2 and 7.3. Though the shape of contours 

shown in two figures is not exactly the same for each site, the change trend of the contours is 

similar, i.e., the odour traveled longer at the directions of WNW and SSE for the same 

concentration level for two figures. According to the statistical calculation result of weather data 

of this area, the prevailing wind directions of this area are WNW and SSE. It may be concluded 

odour travel longer distance under leeward of prevailing wind direction, which agreed with what 

has been found in Guo et al. (2005b) and Xing, (2006). Both of them studied odour occurrence in 
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the same area and found that the areas with high odour events were mostly downwind the 

prevailing wind directions. 

For a certain odour concentration value, there was a maximum odour travel distance and a 

minimum odour travel distance from the source. Take AERMOD simulation result for the 

Finishing site as an example, the maximum odour travel distance should be approximately at the 

direction of WNW, and the minimum odour travel distance approximately at the direction of 

SSW. The maximum odour travel distance can be used as the maximum odour setback distance 

from the odour source and the minimum odour travel distance can be used as the minimum odour 

setback distance. For comparing the setbacks predicted by models and recommended by 

guidelines, if the guidelines recommended distances are shorter than the minimum setback 

distance, then there was always odour occurrence; if the guidelines recommended distances were 

between minimum and maximum setback distance, then there were odour occurrence at 

sometime and; if the guidelines recommended distances were longer than the maximum setback 

distance, there was no odour occurrence at all. For the purpose of setting appropriate odour 

setback distance, the third case should be chosen, i.e., the recommended distances by odour 

setbacks guideline should be always longer than maximum setback distances.  

The maximum and minimum setback distance for field odour concentrations of 1, 2, 5 and 10 

OU/m3 simulated by two models during warm season as well as three Canadian Prairie Provinces 

odour control guidelines recommended setbacks for three different swine operation sites was 

presented in Tables 7.7 to 7.9. For the Farrowing site (Table 7.7), we can notice both of 

Saskatchewan and Manitoba odour control guideline recommended MSD are longer than the 

maximum setback distance as predicted by both models for all odour concentration levels (1, 2, 5 

and 10 OU/m3). However, Alberta odour control guideline recommended MSD was 1430 m, 

shorter than maximum setback distance for odour concentration level of 1 OU/m3 for AERMOD 

predictions and 1 and 2 OU/m3 for CALPUFF predictions. For the Nursery site (Table 7.8), the 

Saskatchewan recommended MSD is longer than the model predicted maximum distance for all 
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tabulated odour concentration values, and Alberta recommended MSD is shorter than model 

predicted maximum distance for odour concentrations of 1 and 2 OU/m3, longer than model 

predicted maximum distance for odour concentrations of 5 and 10 OU/m3, and Manitoba 

recommended MSD is shorter than model predicted maximum distance for odour concentrations 

of 1 OU/m3, longer than model predicted maximum distance for odour concentrations of 2, 5 and 

10 OU/m3. For the Finishing site (Table 7.9), the Saskatchewan recommended MSD is longer 

than the model predicted maximum distance for all tabulated odour concentration values except 

for odour concentration of 1 OU/m3 predicted by AERMOD, and Alberta recommended MSD is 

shorter than model predicted maximum distance for odour concentrations of 1 and 2 OU/m3, 

longer than model predicted maximum distance for odour concentrations of 5 and 10 OU/m3, and 

Manitoba recommended MSD is shorter than model predicted maximum distance for odour 

concentrations of 1 OU/m3, longer than model predicted maximum distance for odour 

concentrations of 2, 5 and 10 OU/m3.  

Now the problem is what odour concentration level should be chosen? There is no a specific 

odour concentration level that could be accepted by most of the researchers till now; however, 

some researchers (e.g., Jacobson, et al., 2002; Guo et al., 2005a) did suggest some odour 

concentration levels and the corresponding desired odour-free-frequency as a criterion of 

acceptable odour event. An interesting thing could be found from these three Prairie Provinces 

guidelines suggested odour MSD is that Alberta recommended MSD were much shorter than 

those recommended by other two provinces for all three swine operation sites. This may come 

from that Alberta government is less strict with odour related issues compared with other two 

provincial governments. 
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Figure 7.2 5-year average warm season odour concentration contour map of the swine farm 
simulated by CALPUFF 

 

 

Figure 7.3 5-year average warm season odour concentration contour map of the swine farm 
simulated by AERMOD 
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Table 7.7 Maximum and minimum setback distances for different odour concentration values 
from Farrowing site in warm season as simulated by CALPUFF and AERMOD and 

recommended setback distances in three Prairie Provinces 

Odour concentration  

level (OU/m3) 

Setback distance range 

predicted by two models (m) 

Recommended minimum setbacks by 

Prairie Province odour guidelines (m) 

CALPUFF AERMOD Saskatchewan Alberta Manitoba 

1 1060 - 2570 850 - 3000 

3200 1430 3600 
2 920 - 1300 630 - 1500 

5 700 - 890 410 - 780 

10 500 - 650 300 - 450 

 

Table 7.8 Maximum and minimum setback distances for different odour concentration values 
from Nursery site in warm season as simulated by CALPUFF and AERMOD and recommended 

setback distances in three Prairie Provinces 

Odour concentration  

level (OU/m3) 

Setback distance range 

predicted by two models (m) 

Recommended minimum setbacks by 

Prairie Province odour guidelines (m) 

CALPUFF AERMOD Saskatchewan Alberta Manitoba 

1 1010 - 2440 850 - 3110 

3200 1000 2000 
2 870 - 1230 670 - 1510 

5 650 - 850 450 - 730 

10 450 - 600 320 - 450 

 

Table 7.9 Maximum and minimum setback distances for different odour concentration values 
from Finishing site in warm season as simulated by CALPUFF and AERMOD and 

recommended setback distances in three Prairie Provinces 

Odour concentration  

level (OU/m3) 

Setback distance range 

predicted by two models (m) 

Recommended minimum setbacks by 

Prairie Province odour guidelines (m) 

CALPUFF AERMOD Saskatchewan Alberta Manitoba 

1 1200 - 3040 1080 - 4000 

3200 1270 2800 
2 1050 - 1680 850 - 2200 

5 830 - 990 540 - 1100 

10 650 - 740 360 - 710 
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7.5 Conclusions 

1. Both of 5-year warn season average odour concentration contour maps simulated by 

CALPUFF and AERMOD in warm season showed odour traveled longer distance under 

prevailing wind directions;  

2. 5-year warn season simulation results of AERMOD and CALPUFF fell in the same 

magnitude for each odour concentration level of 1, 2, 5 and 10 OU/m3 for all three sites; 

3. There were some differences between models predicted maximum odour setback distance 

and three Prairie Provinces, Canada odour control guidelines recommended odour MSD for 

both AERMOD and CALPUFF; 

4. Scaling factor(s) as described in the evaluation of models in chapters 5 and 6 may be used in 

modeling; commonly used scaling factor(s) for a specific model, however, could not be 

available was the reason they were not used in this part; 

5. MSD recommended by Prairie Provinces for odour control purpose only provided a certain 

distance; however, maximum odour setback distance predicted by AERMOD and CALPUFF 

varied depending on predicted odour concentration values. Comparison between by Prairie 

Provinces recommended MSD with model predicted setback distance seemed to be awkward 

because they could not be compared directly; 

6. Further studies in terms of scaling factor(s) for a certain model and acceptable odour criteria 

should be involved. Acceptable odour criteria may include odour concentration and the 

corresponding desired odour-free-frequency. 

 

 

 

 



 

128 
 

8. CONCLUSIONS AND RECOMMENDATIONS 

Use of Air dispersion models to predict odour concentrations downwind livestock facilities was 

proved to be a practical approach to determine proper setback distance between odour sources 

and neighboring residents to minimize negative impact of odour nuisance. A lot of researchers 

have applied air dispersion models in agricultural odour dispersion simulation though these 

models were originally developed for simulating industrial air pollutions. Applicability of air 

dispersion models in predicting odour concentrations in the vicinity of odour sources should be 

evaluated and validated before them being applied in a real odour dispersion simulation. 

Evaluation and validation of air dispersion models were conducted through comparing models 

predictions with field odour measurements. Field odour data were only accessible recently 

because of a large amount of work done by researchers and trained odour sniffers or 

resident-odour-observers related to those odour issue projects. AERMOD and CALPUFF were 

two air dispersion models selected to applied in this project because CALPUFF showed good 

performance in odour dispersion simulation proved by many other researchers and AERMOD 

was U.S. EPA newly recommended regulatory models and limited information of performance of 

AERMOD in odour dispersion simulation could be found till now. Sensitivity analysis of these 

two air dispersion models to major climatic parameters was carried out in prior to evaluation of 

them. Application of AERMOD and CALPUFF in determining odour setback distance for a 

selected farm was also made based on the results that these two models performed close in the 

chapters of evaluation of them. 

Sensitivity analysis of AERMOD and CALPUFF was conducted under both of steady-state and 

variable meteorological weather conditions in a chosen swine farm in Calmar. Aim of sensitivity 

analysis of these two models was to find out extent of change of five major climatic parameters, 

i.e., mixing height, ambient temperature, stability class, wind speed, and wind direction, on the 

impact of odour dispersion. Evaluation of these two models was carried out using field odour 

data and concentration-intensity conversion equation from University of Minnesota and 
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University of Alberta. Application of the two models was conducted using historical warm 

season (from May to October continuous in one year) meteorological data from year 1998 to 

2002 and a selected farm in Yorkton, Saskatchewan.  

 

8.1 Summary of Conclusions   

Some primary conclusions could be drawn based on the results of sensitivity analysis, evaluation, 

and application of AERMOD and CALPUFF in odour dispersion simulation as following: 

 

8.1.1 Sensitivity Analysis of Models to Major Climatic Parameters 

1. Mixing height had no impact on odour dispersion for both models;  

2. Although ambient temperature had very limited influence at both of two models, there was a 

trend with increase of temperature, the odour concentration within 5 km from the odour 

source increased as predicted two models. The reason may be that when temperature 

increased, more odour molecules moved into the odour transportation direction, causing 

higher odour concentration in horizontal direction; 

3. Atmospheric ability class had great impact on odour dispersion for both models. It was also 

found CALPUFF was more sensitive to stability class compared with AERMOD; 

4. Wind speed had huge influence at odour dispersion for both models. It was also observed 

AERMOD was more sensitive to wind speed compared with CALPUFF; 

5. Wind direction had limited influence at odour dispersion for both models. It was also noticed 

effect of wind direction on odour concentration values was obvious at close distance to the 

odour source but diminished until disappeared at the distance of 5 km. Based on this result, 

wind direction should be carefully considered when the farm was close to residential area; 
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6. Variable meteorological data simulation result showed odour traveled longer distance under 

prevailing wind directions. Difference of maximum odour travel distance between two 

models (with AERMOD predictions as the basis) was -6.1, 6, 30, 33.3, and 48.9% for odour 

concentration of 1, 2, 5, 10 and 20 OU/m3, respectively. Different methods used to deal with 

calm weather condition and theories used to describe the movement of odour plume in 

atmosphere may be the two reasons caused the discrimination of models predictions.  

7. Appropriate odour setback distance should be wind direction dependent, i.e., setback distance 

should be longer under prevailing wind directions and shorter under other directions. Both 

steady-state and variable meteorological data could be employed to predict odour setback 

distance; however, acceptable odour concentration should be based on the climatic 

parameters chosen under steady-state weather conditions. 

 

8.1.2  Evaluation  of  AERMOD  and  CALPUFF  in  Odour  Dispersion 

Simulation 

Using Minnesota field odour plume data 

1. Using conversion equation from University of Minnesota, the overall agreement of all field 

odour measurements and model predictions was 34.7 and 38.3% for AERMOD and 

CALPUFF, respectively; however, the overall agreement for field measured odour intensities 

without intensity and model predictions 0 was 17.6 and 20.7% for AERMOD and CALPUFF, 

respectively; 

2. Using conversion equation from University of Alberta, the overall agreement of all field 

odour measurements and model predictions was 34.2 and 31.1% for AERMOD and 

CALPUFF, respectively; however, the overall agreement for field measured odour intensities 

without intensity 0 was 27.5 and 25.9% for AERMOD and CALPUFF, respectively; 
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3. Scaling factors can improve the agreement of model predictions and all field odour 

measurements by 14.8 and 10.7%, and model predictions and field odour measurements 

without intensity 0 by 10.1 and 9.4% for AERMOD and CALPUFF respectively, if 

conversion equation from University of Minnesota was applied; 

4. It is better to choose conversion equation from University of Minnesota not that from 

University of Alberta for Minnesota odour plume data considering statistical evaluation 

results of model performance; 

Using Alberta field odour plume data 

5. Using conversion equation from University of Alberta, the overall agreement of all field 

odour measurements and model predictions was 24.0 and 23.3% for AERMOD and 

CALPUFF, respectively; however, the overall agreement for field measured odour intensities 

without intensity 0 and model predictions was 11.7 and 12.1% for AERMOD and CALPUFF, 

respectively; 

6. Using conversion equation from University of Minnesota, the overall agreement of all field 

odour measurements and model predictions was 22.5 and 21.3% for AERMOD and 

CALPUFF, respectively; however, the overall agreement for field measured odour intensities 

without intensity 0 and model predictions was 12.1 and 11.3% for AERMOD and CALPUFF, 

respectively; 

7. Scaling factors can improve the agreement of model predictions and all field odour 

measurements by 7.1 and 7.4%, and model predictions and field odour measurements 

without intensity 0 by 10.4 and 9.1% for AERMOD and CALPUFF respectively, if 

conversion equation from University of Minnesota was applied; 

8. It is better to choose conversion equation from University of Alberta not that from 

University of Minnesota for Alberta odour plume data considering statistical evaluation 

results of model performance; 
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9. Inaccuracy of field measured odour plume data may be a key reason caused the low 

agreement of field odour measurements and models predictions for the odour plume data 

from both University of Minnesota and University of Alberta. 

 

8.1.3 Application of AERMOD and CALPUFF  in Determining Odour 

Setback Distance   

1. 5-year warn season (May to October from 1998 to 2002) simulation results of AERMOD and 

CALPUFF for odour concentration levels of 1, 2, 5 and 10 OU/m3 showed odour traveled 

longer distance under prevailing wind directions;  

2. Differences existed between models simulated maximum odour setback distance and 

Canadian Prairie Provinces odour control guidelines recommended minimum separation 

distance for both AERMOD and CALPUFF; 

3. Acceptable odour criteria may include odour concentration and the corresponding desired 

odour-free-frequency. 

 

8.2 Recommendations for Future Studies 

Future studies of air dispersion modeling in agricultural odour dispersion simulation could find 

ways in a model created for agricultural odour dispersion purpose, accurate measurement of field 

odour data, and acceptable odour criteria:  

1. The currently used air dispersion models are originally created for industrial gases pollution 

simulation purpose. Experiments have proved a lot of differences exist between industrial 
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gases and agricultural odours. Development of a model for agricultural odour dispersion 

purpose may improve agreement of modeled and field measured odour occurrences; 

2. Field measured odour data was obtained by trained odour sniffers or 

resident-odour-observers. These data may be not accurate due to some human-caused or 

external incidents. Two approaches could be provided to solve this problem: employing 

people who can detect odour intensities more objectively or using odour detecting machines 

to record the odour occurrences; 

3. Widely acceptable odour criteria have not been set up by researchers till now. Acceptable 

odour criteria may conclude odour concentration that can be accepted by most of the normal 

people as well as odour occurrence frequency corresponding to a certain odour concentration 

value. 
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APPENDICES 

Appendix A: GUI run-stream screen of CALPUFF V5.7 (CALPUFF* and 

CALPOST) 

Run-stream screen of graphical user interface of CALPUFF of version 5.7 as a step by step 

example in the part of model sensitivity analysis was shown below: 

Screen 1: Run Information. Only one title was used “Sensitivity Analysis of CALPUFF to 

Major Climatic Parameters”. Turn to the option “Do not check selections against Regulatory 

Guidance” because this application does not use a CALMET meteorological data and will not 

pass the regulatory guidance checks. Check the box to “run all periods in met file” and the 

provided the starting year of 2003, and the associated “Time Zone” is -6. “Model Restart 

Configuration” option is None; 
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Screen 2: Grid Settings. In the “Map Projection” box, choose UTM: Universal Transverse 

Mercator and “UTM Zone” is 15, N, and NAS-C: NAD 27, MEAN FOR (CONUS). In the 

“Meteorological Grid Settings” boxes, “Grid Origin” is (-10, -10) for (X, Y) (km), and “Grid 

Spacing” is 0.05 km. “Number of Cells” is (400, 400, 1) for (NX, NY, XZ); 

 

Screen 3: Modeled Species. ODOR is the only modeled species; 
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Screen 4: Chemical Transformation. No Chemical Transformation is used here 

 

Screen 5: Deposition. Neither “Dry Deposition” nor “Wet Deposition” is considered; 
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Screen 6: Meteorological/Landuse. In the “Meteorological Data Format” box, select ISC ASCII 

File and provide the file name in the box of “File Name”. In the “Landuse Type” box, choose 

Agricultural Land – unirrigated, and a “Roughness Length” value of 0.20. “Dispersion Regime” 

is Rural. “Elevation Above Sea Level (m)” of the simulated area is 715. “Latitude” and 

“Longitude” of the area is 53.31N, 113.82W, respectivley. In “Wind Speed Profile” box choose 

ISC RURAL. Other defaults are retained; 
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Screen 7: Plume Rise. Only “Transitional Plume Rise Modeled” is selected; 

 

Screen 8: Dispersion. In “Plume Element Modeled”, PUFF is selected. Retain all other default 

settings. Other defaults are retained; 
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Screen 9: Terrain Effects. Choose No Adjustment in the box of “Terrain Adjustment Method 

Applied to Gridded and Discrete Receptors”. Other defaults are retained. 

 

Screen 10: Point Sources. Detailed information of 32 point sources is provided on this screen; 
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Screen 11: Area Sources. Detailed information of two area sources is provided on this screen; 

 

Screen 12: Volume Sources. No volume source is involved; 
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Screen 13: Buoyant Line Sources. No Buoyant Line Sources are involved; 

 

 

Screen 14: Boundary Sources. No boundary source is related; 
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Screen 15: Gridded Receptors. The number of Grids will be automatically shown based on 

previous setting; 

 

Screen 16: Discrete Receptors. No discrete receptor is involved; 
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Screen 17: Output. Only Binary file for “Concentration” is specified with Pint Interval of 1 hr.  
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GUI run-stream file of CALPOST is shown as following part: 

Screen 1: Process Option. Only one title was used here: Sensitivity analysis of CALPUFF to 

Major Climatic Parameters. Check the box of “Run all periods in CALPUFF data file(s)”; with 

“Process Every nth Hour” of 1. Provide the “Starting Time”: 2003. Type of “Receptors” should 

be consistent with what used in CALPUFF*, so Gridded is checked. Others on this screen are 

retained as default; 
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Screen 2: Processed Data. In the box of “Input Data Type”, Concentration is chosen, and 

“Species” was ODOR, and the name of CALPUFF* output file should be provided; 
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Screen 3: Output Options. For “Average Time”, 1-Hr. and Run-length are checked. A name is 

provided to the CALPOST output in the box of “List File Name”. Check the box in front of the 

“Produce Plot Files”. A path is also given to the “Plot File Path”. The outputs of CALPOST are 

the desired outcomes. 
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Appendix B: Run-stream Files of AERMOD V02222 (AERMET and 

AERMOD) 

AERMOD of version 02222 were used in this part. Variables/parameters were specified 

according to the sensitivity simulation conditions in this part.  

Run-stream files of AERMOD Version 02222 as a step by step example in the model sensitivity 

analysis was shown below: 

To run AERMOD successfully, AERMET and AERMOD should be run in sequence. Both of 

them could be edited via a text editor. Three stages should be specified in AETMET to get the 

Surface File and Profiles File as following in this part: 

Stage 1: Get the extracted surface observations and air soundings; 
***_____________________________*** 
JOB 
     MESSAGES AERMET_S1.ERR 
     REPORT AERMET_S1.RPT 
 
UPPERAIR 
     DATA AERMET_UA.FSL FSL 
     EXTRACT AERMET_UA.IQA 
     QAOUT AERMET_UA.OQA 
     LOCATION 00099999 114.10 W 53.55N 6 
     XDATES 03/06/22 03/06/22  
 
     AUDIT UAPR UAHT UATT UATD UAWD UAWS 
 
SURFACE 
     DATA AERMET_SF.144 CD144 
     EXTRACT AERMET_SF.IQA 
     QAOUT AERMET_SF.OQA 
     LOCATION 25000 113.82W 53.31N 0 
     XDATES 03/06/22 03/06/22 
***_____________________________*** 
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Notes:  

1. JOB --- The file names for the message and report files; 

2. UPPERAIR --- determined that NWS upper air soundings are to be processed and 

summarizes the information as follows: 

a) The input and output file names and if they were successfully opened; 

b) The station information (identifier, latitude, longitude and time conversion factor). In this 

part they are listed as “00099999 114.10 W 53.55N 6”;  

c) The extract dates. In this part, they are listed as “03/06/22 03/06/22”. 

3. SURFACE --- determined that NWS hourly surface observations are to be processed and 

summarizes the information as follows: 

d) The input and output file names and if they were successfully opened; 

e) The station information (identifier, latitude, longitude and time conversion factor). For 

sensitivity analysis purpose in this part, they are listed as “25000 113.82W 53.31N 0”;  

f) The extract dates. For sensitivity analysis purpose in this part, they are listed as “03/06/22 

03/06/22”. 

Stage 2: Get QA’d surface observations and air soundings; 

***_____________________________*** 
JOB 
    REPORT AERMET_S2.RPT 

MESSAGES AERMET_S2.ERR 
 

UPPERAIR 
QAOUT AERMET_UA.OQA 
 

SURFACE 
QAOUT AERMET_SF.OQA 
 
 



 

158 
 

MERGE 
    OUTPUT AERMET_MR.MET 

XDATES 03/06/22 03/06/22 
***_____________________________*** 

Notes: 

1. JOB --- The file names for the message and report files; 

2. UPPERAIR --- output file name of upper air data if it was successfully processed; 

3. SURFACE --- output file name of surface data if it was successfully processed; 

4. MERGE --- output file name of merged data (upper air data and surface data) if it was 

successfully processed; 

5. The extract dates. For sensitivity analysis purpose in this part, they are listed as “03/06/22 

03/06/22”. 

Stage 3: Get surface file and profile file; 

***______________________________*** 
JOB 
    REPORT   AERMET_S3.RPT 
    MESSAGES AERMET_S3.ERR 
 
METPREP 
    DATA AERMET_MR.MET 
    OUTPUT AERMET_MP4.SFC 
    PROFILE AERMET_MP4.PFL 

LOCATION 99999 113.82W 53.31N 6 
    XDATES 03/06/22 03/06/22 
 
    METHOD REFLEVEL SUBNWS 
    METHOD WIND_DIR NORAND 
    NWS_HGT WIND 10 
 
    FREQ_SECT MONTHLY 1 
    SECTOR 1 0 360 
    SITE_CHAR 1 1 0.60 1.50 0.01 
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    SITE_CHAR 2 1 0.60 1.50 0.01 
    SITE_CHAR 3 1 0.60 1.50 0.01 
    SITE_CHAR 4 1 0.60 1.50 0.01 
    SITE_CHAR 5 1 0.14 0.30 0.03 
    SITE_CHAR 6 1 0.14 0.30 0.03 
    SITE_CHAR 7 1 0.20 0.50 0.20 
    SITE_CHAR 8 1 0.20 0.50 0.20 
    SITE_CHAR 9 1 0.20 0.50 0.20 
    SITE_CHAR 10 1 0.18 0.70 0.05 
    SITE_CHAR 11 1 0.60 1.50 0.01 
    SITE_CHAR 12 1 0.60 1.50 0.01 
***______________________________*** 

Notes: 

1. JOB --- The file names for the message and report files; 

2. METPREP --- Determined the output files as followings: 

a) Output file name of surface data and profile data if it was successfully processed; 

b) The station information (identifier, latitude, longitude and time conversion factor). For 

sensitivity analysis purpose in this part, they are listed as “25000 113.82W 53.31N 6”;  

c) The extract dates. For sensitivity analysis purpose in this part, they are listed as “03/06/22 

03/06/22”; 

d) Wind field parameters were determined according to simulation situation here. Under 

steady-state weather condition, wind direction was “NORAND”, while under variable 

weather condition, it was “RANDOM”; 

e) Three parameters, i.e., albedo, Bowen ratio, and surface roughness length, used in 

AETMET to define site characteristics in “SITE_CHAR”. For convenience, May to June 

was deemed as spring; July to September was deemed as summer; October was deemed 

as fall, and November to April next year was deemed as winter for the simulated area. 

According to Tables 4.3 to 4.5, typical values were given to these three parameters 

according to the different simulation season as above. 
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The input file needed to run the AERMOD model is based on a method that uses descriptive 

keywords that could be edited in a text editor. The run-stream file is divided into six functional 

"pathways." These pathways are identified by a two-character pathway ID placed at the 

beginning of each runstream image. The pathways and the order in which they are input to the 

model are as follows: 

CO - for specifying overall job COntrol options; 

SO - for specifying SOurce information; 

RE - for specifying REceptor information; 

ME - for specifying MEteorology information; 

EV - for specifying EVent processing; 

OU - for specifying OUtput options. 

One example of runs-stream file for model sensitivity is shown as following: 

***___________________________________________________________*** 
** SENSITIVITY ANALYSIS OF AERMOD TO MAJOR CLIMATIC PARAMETERS  
 
CO STARTING 
   TITLEONE ODOUR DISPERSION MODELING USING AERMOD MODEL 
   TITLETWO UNDER STEADY STATE METEOROLOGICAL CONDITION 
   MODELOPT DFAULT CONC  
   AVERTIME 1 PERIOD 
   POLLUTID OTHER 
   FLAGPOLE 1.5 
   RUNORNOT RUN 
** RUN: RUN THE MODEL; NOT: PROCESS ONLY THE RUNTREAM FILE  
   ERRORFIL RAMA.ERR 
CO FINISHED 
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SO STARTING 
SO ELEVUNIT METERS 
** Axes                           X (m), Y (m), Z (m) 
SO LOCATION BARN (1) POINT -5.3125 64.9375 1.5 
                BARN (2) POINT 11.0625 64.9375 1.5 
…………………………………………………….……….. 
                BARN (32) POINT 109.3125 114.0625 0 
                CELL (1) AREA -93.5 -23.5 0 
                CELL (2) AREA -117.5 -127.5 0 
**PARAMETERS           Ptemis Stkhgt Stktmp Stkvel Stkdia 
SO SRCPARAM BARN (1) 13685.25 1.5 296 0.05 16.375  
                  BARN (2) 13685.25 1.5 296 0.05 16.375   
**PARAMETERS           Aremis Relhgt Xinit Yinit Angle Szinit    
                  CELL (1) 41.80 0 75 75 0 0 
                  CELL (2) 33.25 0 99 99 0 0 
SO SRCGROUP ALL 
SO FINISHED 
 
RE STARTING 
RE ELEVUNIT METERS  
RE GRIDCART Netid STA 
                       XYINC -24000 400 50 -24000 400 50 
                       END 
 
ME STARTING 
ME SURFFILE AERMET_MP4.SFC free 
ME PROFFILE AERMET_MP4.PFL free 
ME SURFDATA 25000 2003 Calmar 
ME UAIRDATA 00099999 2003 Calmar 
ME SITEDATA 0 2003 Calmar 
ME PROFBASE 715 
ME FINISHED 
 
OU STARTING 
OU RECTABLE 1 first-third 
OU PLOTFILE period ALL AVERAGE.txt 
OU FINISHED 
***___________________________________________________________*** 

Output of AERMOD, i.e., AVERAGE.txt is the desired result. 
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Appendix  C:  Detailed  Agreement  Analysis  Results  of  Modeled  and 

Measured Odour Intensity Using Minnesota Odour Plume Data 

Table C.1 AERMOD predicted and all field measured odour intensity comparison using 
conversion equation from University of Minnesota for Minnesota odour plume data 

100 m 
Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 38 0 0 0 0 0 38 38 100 

1 64 5 0 0 0 0 69 5 7 

2 32 2 0 0 0 0 34 0 0 

3 8 5 0 0 0 0 13 0 0 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 154 43 28 

200 m 
0 6 0 0 0 0 0 6 6 100 

1 13 1 0 0 0 0 14 1 7 

2 5 3 0 0 0 0 8 0 0 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 28 7 25 

300 m 
0 1 0 0 0 0 0 1 1 100 

1 10 0 0 0 0 0 10 0 0 

2 3 0 0 0 0 0 3 0 0 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 14 1 7.1 
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Table C.2 CALPUFF predicted and all field measured odour intensity comparison using 
conversion equation from University of Minnesota for Minnesota odour plume data 

100 m 
Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 35 3 0 0 0 0 38 35 92 

1 62 7 0 0 0 0 69 7 10 

2 28 5 1 0 0 0 34 1 3 

3 7 2 4 0 0 0 13 0 0 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 154 43 28 

200 m 

0 5 1 0 0 0 0 6 5 83 

1 9 4 1 0 0 0 14 4 29 

2 1 4 3 0 0 0 8 3 38 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 28 12 43 

300 m 

0 1 0 0 0 0 0 1 1 100 

1 6 4 0 0 0 0 10 4 40 

2 2 1 0 0 0 0 3 0 0 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 --- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 14 5 35.7 
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Table C.3 AERMOD predicted and all filed measured odour intensity comparison using 
conversion equation from University of Minnesota with scaling factor for Minnesota odour 

plume data 

100 m 

Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 27 6 5 0 0 0 38 27 71 

1 22 28 14 0 0 0 69 28 41 

2 11 10 11 0 0 0 34 11 32 

3 3 4 6 0 0 0 13 0 0 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

0 - 5 154 66 43 

200 m 

0 5 2 1 0 0 0 8 5 63 

1 4 5 3 0 0 0 12 5 42 

2 1 2 5 0 0 0 8 5 63 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

0 - 5 28 15 54 

300 m 

0 0 0 1 0 0 0 1 0 0 

1 0 3 4 0 0 0 7 3 43 

2 0 4 2 0 0 0 6 2 33 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

0 - 5 14 5 35.7 
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Table C.4 CALPUFF predicted and all field measured odour intensity comparison using 
conversion equation from University of Minnesota with scaling factor for Minnesota odour 

plume data 

100 m 

Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 27 6 5 0 0 0 38 27 71 

1 38 18 12 1 0 0 69 18 26 

2 11 11 7 5 0 0 34 7 21 

3 3 2 4 4 0 0 13 4 31 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 154 56 36 

200 m 

0 5 0 1 0 0 0 6 5 83 

1 8 0 3 3 0 0 14 0 0 

2 1 0 4 3 0 0 8 4 50 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 28 9 32 

300 m 

0 0 1 0 0 0 0 1 0 0 

1 0 6 3 0 0 0 9 6 67 

2 0 2 2 0 0 0 4 2 50 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 14 8 57 
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Table C.5 AERMOD predicted and all field measured odour intensity comparison using 
conversion equation from University of Alberta for Minnesota odour plume data 

100 m 

Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 29 4 2 3 0 0 38 29 76 

1 42 8 3 11 5 0 69 8 12 

2 18 3 3 8 2 0 34 3 9 

3 7 0 0 3 3 0 13 3 23 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 154 43 28 

200 m 

0 5 0 1 0 0 0 6 5 83 

1 8 0 3 3 0 0 14 0 0 

2 1 0 4 1 2 0 8 4 50 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 28 9 32 

300 m 

0 0 0 0 1 0 0 1 0 0 

1 0 0 4 6 0 0 10 0 0 

2 0 0 1 2 0 0 3 1 33 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 14 1 7.1 
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Table C.6 CALPUFF predicted and all field measured odour intensity comparison using 
conversion equation from University of Alberta for Minnesota odour plume data 

100 m 

Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 2 3 4 5 

0 32 2 1 1 2 0 38 32 84.21 

1 42 9 5 9 4 0 69 9 13.04 

2 14 5 4 5 4 2 34 4 11.76 

3 4 3 0 1 1 4 13 1 7.69 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 154 46 29.87 

200 m 

0 5 0 0 0 1 0 6 5 83.33 

1 8 0 0 2 2 2 14 0 0 

2 1 0 0 0 4 3 8 0 0 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 28 5 17.86 

300 m 

0 0 0 1 0 0 0 1 0 0 

1 0 0 6 0 4 0 10 0 0 

2 0 0 1 1 1 0 3 1 33.3 

3 0 0 0 0 0 0 0 0 -- 

4 0 0 0 0 0 0 0 0 -- 

5 0 0 0 0 0 0 0 0 -- 

Total 0 - 5 14 1 7.14 
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Appendix  D:  Detailed  Agreement  Analysis  Results  of  Modeled  and 

Measured Odour Intensity Using Alberta Odour Plume Data 

Table D.1 AERMOD predicted and all measured odour intensity comparison using conversion 
equation from University of Minnesota for Alberta odour plume data 

200 m 
Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 -- 
1 - 3 2 0 0 0 0 0 0 2 0 0 

4 1 0 0 0 0 0 0 1 0 0 

5 1 0 0 0 0 0 0 1 0 0 

6 3 0 0 0 0 0 0 3 0 0 

7 3 0 0 0 0 0 0 3 0 0 

8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 10 0 0 

300 m
0 1 0 0 0 0 0 0 1 1 100 

1 - 3 11 6 0 0 0 0 0 17 6 35 

4 9 1 0 0 0 0 0 10 0 0 

5 6 2 0 0 0 0 0 8 0 0 

6 5 0 0 0 0 0 0 5 0 0 

7 2 0 0 0 0 0 0 2 0 0 

8 1 0 0 0 0 0 0 1 0 0 

Total 0 - 8 44 7 16 

500 m
0 16 5 0 0 0 0 0 21 16 76 

1 - 3 68 6 0 0 0 0 0 74 6 8 

4 15 0 0 0 0 0 0 15 0 0 

5 5 1 0 0 0 0 0 6 0 0 

6 5 1 0 0 0 0 0 6 0 0 

7 1 0 0 0 0 0 0 1 0 0 

8 1 0 0 0 0 0 0 1 0 0 

Total 0 - 8 124 22 18 

 
(To be continued) 
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800 m 
Measured odour 

intensity 

Predicted odour intensity Total 

No. 

No. of 

agreed 

% of 

agreement 0 1 - 3 4 5 6 7 8 

0 21 0 0 0 0 0 0 21 21 100 
1 - 3 52 0 0 0 0 0 0 52 0 0 

4 4 0 0 0 0 0 0 4 0 0 

5 1 0 0 0 0 0 0 1 0 0 

6 2 0 0 0 0 0 0 2 0 0 

7 0 0 0 0 0 0 0 0 0 -- 

8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 21 26 
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Table D.2 CALPUFF predicted and all measured odour intensity comparison using conversion 
equation from University of Minnesota for Alberta odour plume data 

200 m 
Measured 

odour intensity 
Predicted odour intensity Total 

No. 
No. of 
agreed 

% of 
agreement0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 --
1 - 3 2 0 0 0 0 0 0 2 0 0 

4 0 1 0 0 0 0 0 1 0 0 
5 1 0 0 0 0 0 0 1 0 0 
6 0 3 0 0 0 0 0 3 0 0 
7 0 3 0 0 0 0 0 3 0 0 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 10 0 0 

300 m 

0 1 0 0 0 0 0 0 1 1 100
1 - 3 10 7 0 0 0 0 0 17 7 41.18 

4 6 4 0 0 0 0 0 10 0 0 
5 3 5 0 0 0 0 0 8 0 0 
6 4 1 0 0 0 0 0 5 0 0 
7 1 1 0 0 0 0 0 2 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 44 8 18.19 

500 m 

0 15 6 0 0 0 0 0 21 15 71.43
1 - 3 63 11 0 0 0 0 0 74 11 14.86 

4 14 1 0 0 0 0 0 15 0 0 
5 6 1 0 0 0 0 0 7 0 0 
6 3 2 0 0 0 0 0 5 0 0 
7 1 0 0 0 0 0 0 1 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 124 26 20.97 

800 m 

0 20 1 0 0 0 0 0 21 20 95.24
1 - 3 49 3 0 0 0 0 0 52 3 5.77 

4 3 1 0 0 0 0 0 4 0 0 
5 1 0 0 0 0 0 0 1 0 0 
6 2 0 0 0 0 0 0 2 0 0 
7 0 0 0 0 0 0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 23 28.75 
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Table D.3 AERMOD predicted and all measured odour intensity comparison using conversion 
equation from University of Minnesota with scaling factor for Alberta odour plume data 

200 m 
Measured 

odour intensity 
Predicted odour intensity Total 

No. 
No. of 
agreed 

% of 
agreement0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 --
1 - 3 2 0 0 0 0 0 0 2 0 0

4 0 1 0 0 0 0 0 1 0 0 
5 0 1 0 0 0 0 0 1 0 0 
6 0 3 0 0 0 0 0 3 0 0 
7 0 3 0 0 0 0 0 3 0 0 
8 0 0 0 0 0 0 0 0 0 --

Total 0 - 8 10 0 0 

300 m 
0 1 1 0 0 0 0 0 2 1 50 

1 - 3 7 6 3 0 0 0 0 16 6 38 
4 2 8 0 0 0 0 0 10 0 0 
5 2 6 0 0 0 0 0 8 0 0 
6 3 2 0 0 0 0 0 5 0 0 
7 0 2 0 0 0 0 0 2 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 44 7 16 

500 m 

0 15 3 3 0 0 0 0 21 15 71
1 - 3 45 30 0 0 0 0 0 75 30 40 

4 8 6 0 0 0 0 0 14 0 0 
5 2 3 1 0 0 0 0 6 0 0 
6 2 4 0 0 0 0 0 6 0 0 
7 0 1 0 0 0 0 0 1 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 124 45 36 

800 m 

0 19 2 0 0 0 0 0 21 19 90
1 - 3 34 18 0 0 0 0 0 52 18 35 

4 3 1 0 0 0 0 0 4 0 0 
5 1 0 0 0 0 0 0 1 0 0 
6 2 0 0 0 0 0 0 2 0 0 
7 0 0 0 0 0 0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 37 46 
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Table D.4 CALPUFF predicted and all measured odour intensity comparison using conversion 
equation from University of Minnesota with scaling factor for Alberta odour plume data 

200 m 
Measured 

odour intensity 
Predicted odour intensity Total 

No. 
No. of 
agreed 

% of 
agreement0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 --
1 - 3 0 2 0 0 0 0 0 2 2 100 

4 0 1 0 0 0 0 0 1 0 0 
5 0 1 0 0 0 0 0 1 0 0 
6 0 3 0 0 0 0 0 3 0 0 
7 0 3 0 0 0 0 0 3 0 0 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 10 2 20 

300 m 

0 1 1 0 0 0 3 0 5 1 20
1 - 3 6 6 1 3 0 0 0 16 6 38 

4 2 8 0 0 0 0 0 10 0 0 
5 1 7 0 0 0 0 0 8 0 0 
6 2 3 0 0 0 0 0 5 0 0 
7 0 0 0 0 0 0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 44 7 16 

500 m 

0 13 5 3 0 0 0 0 21 13 62
1 - 3 32 36 6 0 0 0 0 74 36 49 

4 2 13 0 0 0 0 0 15 0 0 
5 1 4 1 0 0 0 0 6 0 0 
6 0 5 1 0 0 0 0 6 0 0 
7 0 1 0 0 0 0 0 1 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 124 39 31 

800 m 

0 15 6 0 0 0 0 0 21 15 71
1 - 3 29 22 1 0 0 0 0 52 22 42 

4 2 2 0 0 0 0 0 4 0 0 
5 0 1 0 0 0 0 0 1 0 0 
6 1 1 0 0 0 0 0 2 0 0 
7 0 0 0 0 0 0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 37 46 
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Table D.5 AERMOD predicted and all measured odour intensity comparison using conversion 
equation from University of Alberta for Alberta odour plume data 

200 m 
Measured 

odour intensity 
Predicted odour intensity Total 

No. 
No. of 
agreed 

% of 
agreement0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 --
1 - 3 1 1 0 0 0 0 0 2 1 50 

4 0 1 0 0 0 0 0 1 0 0 
5 0 1 0 0 0 0 0 1 0 0 
6 0 3 0 0 0 0 0 3 0 0 
7 0 3 0 0 0 0 0 3 0 0 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 10 1 10 

300 m 

0 1 0 0 0 1 0 0 2 1 50
1 - 3 8 3 2 1 2 0 0 16 3 19 

4 2 7 1 0 0 0 0 10 1 10 
5 1 6 1 0 0 0 0 8 0 0 
6 3 2 0 0 0 0 0 5 0 0 
7 0 2 0 0 0 0 0 2 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 44 5 11 

500 m 

0 14 2 2 2 1 0 0 21 14 67
1 - 3 44 26 3 2 0 0 0 75 26 35 

4 7 7 0 0 0 0 0 14 0 0 
5 1 4 0 1 0 0 0 6 1 17 
6 1 4 1 0 0 0 0 6 0 0 
7 0 1 0 0 0 0 0 1 0 0 
8 0 1 0 0 0 0 0 1 0 0 

Total 0 - 8 124 40 32 

800 m 

0 19 2 0 0 0 0 0 21 19 90
1 - 3 32 19 0 1 0 0 0 51 19 37 

4 3 1 0 0 0 0 0 4 0 0 
5 1 0 0 0 0 0 0 1 0 0 
6 2 0 0 0 0 0 0 2 0 0 
7 0 0 0 0 0 0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 38 48 
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Table D.6 CALPUFF predicted and all measured odour intensity comparison using conversion 
equation from University of Alberta for Alberta odour plume data 

200 m 
Measured 

odour intensity 
Predicted odour intensity Total 

No. 
No. of 
agreed 

% of 
agreement0 1 - 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 --
1 - 3 0 2 0 0 0 0 0 2 2 100 

4 0 0 1 0 0 0 0 1 1 100 
5 0 1 2 0 0 0 0 3 0 0 
6 0 0 3 0 0 0 0 3 0 0 
7 0 0 1 0 0 0 0 1 0 0 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 10 3 30 

300 m 

0 1 0 0 0 0 0 0 1 1 100
1 - 3 7 3 3 0 1 3 0 17 3 17.65 

4 2 5 2 1 0 0 0 10 2 20 
5 1 3 3 1 0 0 0 8 1 12.5 
6 2 2 1 0 0 0 0 5 0 0 
7 0 1 1 0 0 0 0 2 0 0 
8 0 0 1 0 0 0 0 1 0 0

Total 0 - 8 44 7 15.91 

500 m 

0 13 4 1 3 0 0 0 21 13 61.9
1 - 3 32 31 5 6 0 0 0 74 31 41.89 

4 2 13 0 0 0 0 0 15 0 0 
5 1 4 0 0 1 0 0 6 0 0 
6 0 4 1 1 0 0 0 6 0 0 
7 0 1 0 0 0 0 0 1 0 0 
8 0 0 1 0 0 0 0 1 0 0 

Total 0 - 8 124 44 35.48 

800 m 

0 13 7 1 0 0 0 0 21 13 61.9
1 - 3 29 21 1 1 0 0 0 52 21 40.38 

4 2 2 0 0 0 0 0 4 0 0 
5 0 1 0 0 0 0 0 1 0 0 
6 1 1 0 0 0 0 0 2 0 0 
7 0 0 0 0  0 0 0 0 -- 
8 0 0 0 0 0 0 0 0 0 -- 

Total 0 - 8 80 34 42.5 

 


