EVALUATION OF DRY BEAN (Phaseolus vulgaris L.) AS AN ALTERNATIVE GRAIN AND SEED PRODUCTION CROP FOR THE IRRIGATED REGIONS OF SOUTH-CENTRAL SASKATCHEWAN

A. Vandenberg Saskatchewan Irrigation Development Centre, Outlook

A.E. Slinkard

Crop Development Centre, University of Saskatchewan, Saskatoon

INTRODUCTION

Dry bean was produced in Saskatchewan during the 1920s and 1930s (McGregor, 1931; CDA, 1938). During the 1970s, evaluation of dry bean cultivars for both dryland and irrigated production was initiated by the Crop Development Centre at University of Saskatchewan, Commercialization of irrigated pinto bean production was attempted in the Outlook area in the late 1970's. The maximum production area reached about 200 ha in 1978; by 1982 commercial production had ceased (Saskatchewan 1987). Low grain prices have since Water Corporation, restimulated the search for alternative crops in both dryland and irrigated cropping systems. In 1986, a research program initiated with the objective of evaluating both germplasm was and agronomic practices for dry bean production in the irrigated regions of south-central Saskatchewan. Agronomic evaluations included seeding date, harvest date, harvest method, seeding rate and row spacing. This paper reports some of the results of the first two years of these investigations.

MATERIALS AND METHODS

All evaluations were conducted under irrigation on a Bradwell loam at the Saskatchewan Irrigation Development Centre in Outlook. The U. S. Cooperative Dry Bean Nursery was grown in 1986 and 1987. All yield tests were seeded in four row plots 3.6 m long at 30 cm spacing with a seeding rate appropriate for a stand of 30 plants/m² with four replications. The two center rows were harvested.

Agronomic studies were conducted on seeding date, harvest date, harvest method and seeding rate and row spacing. Details of plot arrangements for the agronomic studies are shown in Six replications were used in all experiments. Table 1. Border row areas equivalent to 25% of the total plot area were included on both sides of all plots in the agronomic evaluations. Hand harvest and straight combining with a small plot Hege combine were compared in the harvest method study. Cultivar treatments in this experiment included vining (Type III - 'U.I. 111' pinto), a semi-vining (Type II - 'Viva' pink), bush (Type I - 'D843101' navy) and upright ('Midnight' black black bean) plant types. In the seeding rate and row spacing experiments, U.I. 111, Viva and D843101 were used.

RESULTS AND DISCUSSION

In 1986, cultivar evaluations were too variable to detect meaningful differences. Cultivars and advanced lines of acceptable maturity and yield were found in all five market classes in 1987 (Table 2). Killing frosts did not occur until October, allowing most lines to mature. In most years, a more pronounced yield advantage for early-maturing genotypes would occur. Results indicate that it is possible to produce several market classes of dry bean in south-central Saskatchewan. Pink and pinto market classes would be the easiest to produce because of fewer marketing problems and initially less stringent quality considerations relative to navy, great northern and kidney bean.

Results of the seeding date study indicated that seeding the fourth week of May is the ideal "window" for planting in (Table 3). Planting earlier than this date increases frost risk in the early growing season. Delaying seeding until June depressed yields by 25% or more because the filling period coincides with a cooler part of the growing season, thereby delaying maturity. Delayed seeding also increases frost risk at the end of the growing season, causing concern for both yield and quality reduction. The seeding date results show that the ideal planting time is almost identical to the planting window identified in Alberta (Alberta Agriculture, 1982).

Delaying harvest beyond physiological maturity by two or more caused a yield reduction in 1987 (Table 4). In weeks general, dry bean shatters less than some grain legumes but shattering losses also depend on pod moisture conditions at harvest and plant type (market class). Shattering losses can be reduced if pods are moist at harvest. Quality losses were not considered in these tests, but pinto bean would likely suffer less deterioration in quality than navy bean with delayed harvest.

Mean harvest losses of around 10% were found in both years when hand harvest was compared with direct harvest with a small plot combine (Table 5). Row spacing had no significant effect on yield. Viva pink was consistently the highest yielding cultivar. Direct harvest losses can be reduced by using a quick-cut knife, using a floating cutter bar and growing cultivars with an upright growth habit. These technological improvements in dry bean harvest methods are being rapidly developed in other production regions, especially those areas in which dry bean is a relatively new crop.

seeding rate and row width study results 1986 The in showed no significant difference between 30 cm and 60 cm rows and no effect of seeding rate on yield. In 1987, however, cm row spacings declined significantly yields at30 in comparison to 60 cm spacing at seeding rates above 30 seeds/ m^2 . At 60 cm row spacing, seeding rate had no effect on yield. White mold (Sclerotinia) infection, particularly in U.I. 111

(pinto), and to some extent, in Viva (pink), was more severe in 30 cm row spacing treatments especially at higher seeding rates. Any treatment combination that favoured rapid development of a full canopy also favoured white mold development.

SUMMARY

Dry bean of several market classes can be successfully grown under irrigation in south-central Saskatchewan. The fourth week of May is the ideal planting window. Planting in 30 cm rows can be advantageous if white mold is controlled. Seeding rates above 30 seeds/m² show no advantage and may be detrimental if white mold is a problem. Lentil harvesting technology may be useful in developing a direct combining harvest system with reduced field losses, especially in conjunction with recently developed upright bean cultivars.

Trial	Plot size	Seeding rate	Row spacing	Cultivar*	Design
	102 1	plant/m ²	cm		
Seeding date	1.2 X 3.6	30	30	Viva, UI 111, D843101	RCBD (within dates)
Harvest date	1.2 X 3.6	30	30	Viva, UI 111, D843101	RCBD
Harvest method	2.4 X 3.6	30	*30,60	Viva, UI 111, D843101, Midnight	RCBD (within methods)
Seeding rate and row spacing	2.4 X 3.6	*15,30, 45,60	*30,60	Viva, UI 111, D843101	RCBD

Table 1: Plot size, seeding rates, row spacings and cultivars used in four dry
bean agronomic trials in 1986 and 1987 at Outlook, Saskatchewan

.

* Experimental treatments.

Market class	Entry	Seed yield	Date ripe, September	l,000 seed weight
CONSIGNED CONTRACT THEY HAVE A AN A AND AND AND AND AND AND AND AND	is në në çenara sëtën nënën serie (deret sëtes setterite) së në deret dë s	kg/ha	in en la frankfordel frankfordel and a state de la frankfordel de la frankfordel de la frankfordel de la frankf	g
Pinto	D84-340 RS101 D84-354 UI 114 UI 126 83B-235	3477 3065 2643 2581 2434 1718	22 25 26 26 26 30	262 265 282 254 233 339
Great Northern	83B-352 83B-342 UI 59 Harris	2959 2350 2004 1678	22 28 31 31	257 333 227 247
White (navy)	ISB84-244 D81-228 ISB82-258 Fleetwood Aurora GH-11 83B-10 83B-13 ISB84-245	2675 2658 2533 2518 2486 2407 2372 2172 1718	22 29 20 28 26 22 26 26 26 26	127 118 157 132 115 150 128 125 160
Pink	55001 Viva	3095 2908	22 18	262 206
Kidney (white)	Sacramento 57033 Montcalm Lassen Red Kloud MRK-45 K59 MRK-44 ISB82-1024 K407 MRK-43	3168 2598 2576 2570 2490 2472 2468 2450 2392 2218 2198	18 32 25 19 18 21 27 16 21 28 16	518 482 505 488 531 581 529 523 432 468 511
Mean Standard error		2502 231	24	

Table 2: Seed yield, maturity date and seed weight of entries by market class in U.S. Cooperative Dry Bean Nursery at Outlook, Saskatchewan, 1987

14/00/1010 Hords 4/04/D-000000/00/00/00/00/00/00/00/00/00/00/00	in 1986 and 1	987.		•	and an and an and an and	
		Ye	ar		Personal transfer and a state	
-1000-000 6000-000 4000-000 -0000-0000	1986	51127-0316-0410 ¹⁰ 1179-0302		1987	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	
Seeding date	ling Mean yield*		Seeding date	Me yi	Mean yield*	
	kg/ha	%		kg/ha	%	
May 27 June 3 June 9	1253 824 611	100 66 49	May 20 May 27 June 3 June 10	2527 2526 1855 644	100 100 73 25	
* Mean of	6 replication	s of 3 (cultivars for	r each dat	e.	
	physiological in 1986 and 1	pean w: maturit 987.	ty at Outlook	rvest at 1, Saskato	hewan	
	223 - C	Year				
	1986		1987	?		
Harvest date	Mean yield*		Harvest date	Mea yie	n ld	
	kg/ha			kg/	ha	
Sept. 4 Sept. 11 Sept. 18 Sept. 24	953 1067 1123 1148		Sept. 1 Sept. 8 Sept. 15 Sept. 22	189 198 164 150	3 2 8 8	
Oct. 1	1047		Sept. 29	168	2	

Table 3: Effect of seeding date on mean seed yield of irrigated dry bean at Outlook, Saskatchewan in 1986 and 1987.

* Mean of 6 replications of all 3 cultivars for each date.

.

		Year				
	Row spacing	1986		1	1987	
Cultivar and market class		Hand	Combine	Hand	Combine	
	cm		k	g/ha		
Viva pink	30 60	1508	1187 1594	3220 3172	2514 2985	
U.I. 111 pink	30 60	1447 1679	1424	2214 2127	1860 1916	
Midnight black	30 60	648 1277	867 965	2119 2108	2110 1869	
D843101 navy	30 60	836 1159	858 893	2069 1947	1786 1855	
Mean		1263	1166	2372	2112	

Table 5: Seed yield* of four irrigated dry bean cultivars at two row widths and harvested by hand or direct combining for 1986 and 1987 at Outlook, Saskatchewan

* Mean of 6 replications for each treatment.

	ta na fi anna ritha anna fasal ann anna dhan anna dhan anna an an anna anna	Year	
		198	37
		Row	spacing
	1986	30 cm	60 cm
Seeding rate	Mean yield*	Mean yield	Mean yield
seeds/m ²		kg/ha	න කොකොතො හො හො කොකොතො කො
15	1324	1826	2143
30	1298	1835	2170
45	1336	1613	2165
60	1268	1424	2152
Mean	1306	1700	2157

Table	6:	Effect of seeding rate and row spacing on mean
		seed yield of irrigated dry bean at Outlook,
		Saskatchewan, in 1986 and 1987.

* Mean of 6 replications of 3 cultivars for each treatment

Acknowledgement: This research was supported by a grant from the Saskatchewan Agriculture Development Fund and conducted in cooperation with the Saskatchewan Irrigation Development Centre.

REFERENCES

Alberta Agriculture, 1982. Dry bean production in Alberta. Agdex 142/20-8. February.

Canada Department of Agriculture, 1938. Progress reports of the Dominion cerealist.

McGregor, 1931. Field beans in Canada, CDA pamphlet No. 141.

Saskatchewan Water Corporation, 1987. History of South Saskatchewan River Irrigation Project. Irrigation Services, Operations Division. July.

ICM Experiments with Rye and Winter, Spring and Durum Wheats in Saskatchewan, 1985-87

P.R. Hopkins and H.M. Austenson Department of Crop Science and Plant Ecology University of Saskatchewan

Introduction

Intensive cereal management involves the optimization of inputs and management to remove every limitation to yield. Due to environmental differences, optimum management varies considerably between different grain producing areas. The economic environment also differs, in both space and time. A producer's goal must not necessarily be maximum yield, but rather maximum economic yield, a yield that varies spatially, but also through time. Maximum yield research is important, however, in evaluating the biological responses possible, before checking the short-run financial feasibility of the inputs involved.

From 1985 through 1987, the potential of some chemical inputs typical of intensively managed Western European agriculture, were tested on wheats and rye in different climatic zones of Saskatchewan. This paper summarizes the 1987 biological responses, and also the frequency of responses over the three years of experimentation, and the associated economics.

Materials and Methods

Sites were established in the spring of 1987 on good early season stands of Musketeer and Puma fall rye, Norstar and Norwin winter wheat, Katepwa or Columbus hard red spring, Fielder soft white spring, and Kyle amber durum wheats. The environmental gradient over which winter and hard red spring wheats are normally grown, was represented by sites at Elrose, Outlook (irrigated), Saskatoon, and Birch Hills.

In addition to soil test recommended fertilization, nitrogen (N) as ammonium nitrate $(34-\emptyset-\emptyset)$ was broadcast postemergently at rates of \emptyset , 56, and 112 kg/ha, the latter in a split application 3-4 weeks apart.

The fungicides Bayleton 50W^1 (triadimefon) and Tilt 2E^2 (propiconazole) were applied at 250 g/ha and 500 ml/ha, respectively, around head emergence (Zadoks Growth Stage 49-61). Dithane M-45³ (mancozeb) was applied at 2.5 kg/ha at Zadoks 47-51 (flag leaf sheath opening to first awns visible), and a second treatment 7-10 days later.

- ² Ciba-Geigy Canada Ltd.
- ³ Rohm and Haas Company Inc.

¹ Registered trademark of Bayer AG, Chemagro Limited is the user.

The plant growth regulating (PGR) chemicals Cycocel Extra⁴ (chlormequat chloride) and Terpal C⁵ (ethephon + chlormequat) were applied at Zadoks 31 (detection of the first node) and 32-37 (between detection of the second node and appearance of the flag leaf), at rates of 2.5 and 2.0 1/ha, respectively.

Fungicides and PGR's were applied through 80° TeeJets in 220 1 of water per ha, with a three-point hitch mounted sprayer. Both were compared to check (no application) plots. The N, fungicide and PGR treatments were applied in all combinations, with three replications per site.

Yields were determined from a 7.5 m cut with a 1.25 m Hege plot harvester, and converted to an equal moisture basis.

RESULTS AND DISCUSSION

1) Rye

The only significant yield effect in the rye tests was a response to Tilt by Musketeer. Disease was not evaluated on this site, so it is not known what was controlled. Both PGR's reduced the height of the tall Musketeer, but only Terpal C reduced the Puma. Refer to Table 1.

Table 1. Effect of N, fungicides and PGR's on fall rye at Saskatoon, Sask., in 1987.

	Musk	eteer	Puma		
Treatment	Yield, kg/ha	Height cm	Yield kg/ha	Height cm	
ON	1750	80	1650	79	
56 KG N/HA	1830	82	1660	81	
112 KG N/HA	1780	82	1640	79	
NO FUNGICIDE	1710	81	1630	78	
BAYLETON	1740	81	1650	80	
TTI.T	1870++	83	1690	80+	
DITHANE	1820	8 Ø	1640	81+	
	a an an <i>a</i> a				
NO PGR	1//0	83	1650	82	
CYCOCEL	1810	8Ø-	1610	82	
TERPAL C	1780	8 Ø -	1690	76	
MEAN	1790	81	1650	8 Ø	
	මහා කොට කොට කොට කොට කොට නොට නොට නොට කොට කොට නොට නොට මහා කොට කොට නොට නොට නොට කොට නොට නොට කොට නොට නොට නොට නොට කොට කොට නොට නොට නොට නොට නොට නොට නොට නොට නොට න	. 2020 2020 2020 2020 2020 2020 2020 20	80 400 400 400 400 400 400 400 400 400 4		
+,- = Sign	nificant incre	ase or decrea	ase at P=0.05		
++, = Sig	nificant incre	ase or decrea	ase at P=0.01		

⁴ Registered trademark of Cyanamid of Canada Ltd. BASF is the user.

⁵ BASF.

2) Winter wheat

Tables 2 and 3 summarize the winter wheat results. There were no positive effects on yield in 1987. At Hagen, N increased the number of fertile tillers, and this was overcompensated by reducing the kernels per head so that yield was reduced. The effect is hardly surprising since a soil test indicated 172 # of N at this site. Over the four sites, the first 56 kg N raised the protein content Ø.6% and the second application another Ø.3%

Table 2. Effect of N, fungicides and PGR's on Norstar winter wheat, in 1987.

	Eli	rose		Hagen	
Treatment	Yield, kg/ha	Height	Yield kg/ha	Height	Lodging*
ON	1730	62	3850	81	2.1
56 KG N/HA	1680	61	3600	79	2.0
112 KG N/HA	1750	63	376Ø	8Ø	2.5
NO FUNGICIDI	s 1710	61	3670	81	2.5
BAYLETON	1770	63	376Ø	81	1.9
TILT	1710	62	375Ø	8Ø	2.0
DITHANE	1690	62	3780	78	2.3
NO PGR	1830	64	3730	81	2.6
CYCOCEL	1720	64	3690	81	2.4
TERPAL C	1610	59	3800	77-	1.5
MEAN	1720	62	3740	8Ø	

-,-- = Significant decrease at P=0.05 or P=0.01

* Belgium Lodging Rating, Ø.2 - 9.0 (complete)

Table 3. Effect of N, fungicides and PGR's on winter wheat at Saskatoon, Sask., in 1987.

	Nc	orstar	Norwin	
Treatment	Yield, kg7	ha Height cm	Yield kg/ha	Height cm
1980 633 632 632 639 630 639 639 639 639 639 639 639 639 63 639 630 630 638 639 639 639 639 639 639 639 639 639 639		80 කඩ අඩා අඩ අඩා කා කො කඩ අඩා කා	වේ යැට තෙර තබා තිබේ කොට ගැට තබා තිබ් පෙට යැට තබා තබා තිබේ තබා යැට තව තිබ ම යුටු කෙර තබා තිබේ කොට ගැට තබා තිබ් පෙට යැට තබා	මෙහි යනම පතම සේව පතිව පත්ව පතව පතව සේව යනව යනව මෙහි නොම යනම පතව පතිව පත්ව පත්ව සේව යනු යනු
ON	1900	49	1590	30
56 KG N/HA	1870	5Ø	1530	29-
112 KG N/HA	1940	49	1610	3Ø+
NO FUNGICIDE	1920	49	1620	30
BAYLETON	1880	49	1570	30
TILT	1900	5Ø	1560	3Ø
DITHANE	1920	49	1550	30
NO PGR	196Ø	52	1610	31
CYCOCEL	1880	52	1600	31
TERPAL C	187Ø	44	1520	28
MEAN	1900	49	1580	30
	uny may way wait and and and and and and and and and a na and and and and and and and and and a	න තාය තාය හැය බැලි කාය පාය තාය නොම නොම කොට කොට නොම නොම තිබ ම නාය තාය තාය බැලි කාට කොට තාය නොම කොට කොට නොම නැව ත ම	97 THU THU THU THU AND	
+,- ++, = \$	Significant	increase or d	lecrease at P=0.0	5 or P=0.01

Terpal C reduced the height an average of 5 cm. Both PGR's were detrimental to yield at the drought stressed Elrose site.

3) Hard red spring wheat

Results from hard red spring wheat sites are listed in tables 4 and 5. The Birch Hills site responded to the first 56 kg of N. Protein was raised 2.8%, plus an additional 1.8% with the next 56 kg N. Height and grade were also increased. At Outlook, both levels of N increased lodging. Protein was raised an average of 1.3% by the N-56 treatment across all 4 sites.

At Elrose, Bayleton and Tilt increased yield by 100 kg/ha. The same two compounds had no yield effect, but appeared to reduce lodging at Outlook.

The PGR Terpal C increased yields by 110 and 340 kg/ha at Elrose and Outlook respectively. Maturity was delayed in both instances. Height was reduced substantially at all 4 sites by this treatment, and lodging reduced on the Outlook Katepwa. Cycocel increased the yield 240 kg/ha at Birch Hills. Height was reduced marginally by this compound at Elrose and Outlook, but lodging was not controlled at Outlook. All the PGR responses were associated with increased numbers of heads per unit area.

Table 4. Effect of N, fungicides and PGR's on hard red spring wheat, in 1987.

	Elrose Co	lumbus	Outlook	Outlook Katepwa		
Treatment	Yield, kg/ha	Height	Yield kg/ha	Height	Lodging*	
ON	324Ø	75	3520	89	3.2	
56 KG N/HA	3230	74	3690	9Ø	3.8	
112 KG N/HA	3280	74	3620	90	4.2	
NO FUNGICID	E 318Ø	74	3540	9Ø	3.9	
BAYLETON	3280+	76	365Ø	89	3.6	
TILT	3280+	73	3640	90	3.5	
DITHANE	3250	74	3640	9Ø	4.0	
NO PGR	3220	8Ø	3570	95	4.4	
CYCOCEL	3200	78	338Ø	92	4.2	
TERPAL C	3330++	65	3910++	82	2.5	
MEAN	325Ø	74	3620	9Ø		
		8 201 400 400 400 400 400 400 400 400 400 4				
+,- = Si	gnificant inc	ease or d	ecrease at P=	0.05		
++, = Si	gnificant inc	cease or d	ecrease at P=	0.01		
* Belgium L	odging Rating	, Ø.2 – 9.	Ø (complete)			

Table 5. Effect of N, fungicides and PGR's on hard red spring wheat, in 1987.

	Saskatoon	Katepwa	Birch Hills	Katepwa
Treatment	Yield, kg/ha	Height cm	Yield kg/ha	Height cm
ON	1710	62	2100	75
56 KG N/HA	1700	62	2760++	82++
112 KG N/HA	1690	62	276Ø	83
NO FUNGICIDE	1730	62	2440	81
BAYLETON	1640	61	2570	8Ø
TILT	1710	61	2510	8Ø
DITHANE	1720	63	2650	8Ø
NO PGR	178Ø	66	2460	86
CYCOCEL	1670	65	2700+	85
TERPAL C	1650	55	2470	69
MEAN	1700	62	2540	8 Ø

+,- = Significant increase or decrease at P=0.05 ++,-- = Significant increase or decrease at P=0.01

4) Soft white spring and durum wheats

One irrigated site of Fielder soft white spring wheat was established at Outlook. Ineffective weed control may have been related to the lack of response to inputs, but a response to Dithane was obtained. Kernel weight was increased, characteristic of disease control, but maturity was hastened. Both PGR's reduced height, but only Terpal C controlled lodging. Protein was increased Ø.7 and Ø.6% by each level of N.

Table 6. Effect of N, fungicides and PGR's on soft white spring wheat and durum, in 1987.

	Outlook	Fielder	SWS	Dinsmo	re Kyle	durum
Treatment	Yield	Height	Lodging	Yield	Height	Lodging*
						888 988 989 989 989 983 983 983 983 985 985 985 985 985 985 985 985 985 985
ON	4020	75	2.3	3170	85	1.1
56 KG N/HA	392Ø	76	2.6	3880++	91++	1.1
112 KG N/HA	3910	76	2.9	4110++	91	1.3
NO FUNGICIDE	3880	76	2.9	3560	88	1.5
BAYLETON	387Ø	77	2.8	367Ø	9Ø	1.2
TILT	4000	75	2.3	3910++	89	Ø.9
DITHANE	4060+	76	2.4	3740	90	1.0
NO PGR	397Ø	81	3.2	3620	93	1.8
CYCOCEL	3980	78-	3.0	3740	90	1.0
TERPAL C	3910	69	1.7	3800+	84	Ø.7
MEAN	3950	76		3720	89	
*60 400 400 400 400 400 400 400 400 400 4		100 000 000 000 000 000 000 00 100 000 0		80 440 440 440 460 460 460 460 460 80 450 466 460 460 460 460 460 460		400 400 400 400 400 400 400 400 400 400 400
+,- ++, = Significant increase or decrease at P=0.05 or P=0.01 * Belgium Lodging Rating, 0.2 - 9.0 (complete)						

One site of tall durum was set up at Dinsmore, in the area in which durum is extensively grown. The N treatments gave large yield responses (see Table 6), which are reasonable since the site received 24.3 cm of rain from May through August, and the soil test indicated only 55 # of N per acre. The yield components "number of heads" and "kernels per head" were increased. Protein was increased 1.4% and 1.6% by each level of N, and height was also increased.

Tilt increased yield by 350 kg/ha. Lodging control seemed to be positively related to yield at this site.

Terpal C increased the yield by increasing the number of heads. Both regulators reduced height, and Cycocel was nearly as effective as Terpal C in controlling lodging.

5) Response Frequencies and Cost Effectiveness

To judge the potential of the inputs involved in these studies, the frequency and size of response must be considered. A summary of the three years' results is found in Table 7. (Refer to Austenson and Hopkins, 1986; Hopkins and Austenson, 1987).

Table 7.	Direction	and	Frequency	of	Response	to I	nputs;	1985-87
EFFECT		+		Ø		-		Total
N-56		7		22		2		31
N-112		3		26		2		31
Bayleton		5		26		Ø		31
Tilt		10		21		ø		31
2 x Tilt		ø		5		Ø		5
Dithane		1		11		ø		12
Cycocel		2		28		1		31
Terpal C		3		22		6		31
	n (18) नहीं। सही नहीं आगे की नहीं नहीं की सही क n नहीं नहीं नहीं नहीं नहीं नहीं नहीं नहीं		87 465 487 487 487 487 487 488 489 48 8 487 488 487 488 487 487 487 487 488 488			10 430 440 430 430 4 0 480 490 480 490 4	90 900 900 900 900 900 900 90 90 900 90 90 90 90 90	
Total		31]	L61		1	L	

Nine sites showed a response to the added N, while 3 sites were negatively affected. Twelve sites showed a response to one or more fungicides, 7 of which occurred in 1986 and were largely related to a rust epidemic. Five positive and seven negative responses to growth regulators were recorded. Four of the positive responses were independent of lodging. The negative effects related either to stress near application time, or maturity delay and frost damage. The first 56 kg of N increased protein an average of Ø.85% Terpal C controlled lodging in 7 of 9 instances where lodging occurred. Cycocel was effective in this capacity only on the 1 durum site.

Using 1987-88 price estimates and initial payments, the cost effectiveness is evaluated in Table 8. Only 8 of 31 positive effects on yield were cost effective. Of these, 5 are N

responses at 4 sites. All had some combination of low soil N or very high, late growing season precipitation. Cycocel gave a response of 770 kg/ha on irrigated winter wheat. Bayleton controlled powdery mildew and maintained 750 kg/ha of winter wheat yield. Tilt maintained 1070 kg/ha of yield by controlling leaf diseases on irrigated soft white spring wheat.

Table 8. Cost Eff	ecti from	ve Tre	atments (bas	ed on yields
Site		rease	Source Cost	S/tonne of
D 4 6 6	2110		incr	eased vield
Saskatoon Puma Rve	1987	98	Tilt	775
Outlook Winter Wheat	1985	148	N-56	79
	1985	15%	Cvcocel	53*
Saskatoon W.W.	1986	68	N-112	702
	1986	98	Bayleton	366
	1986	218	Tilt	147
Shellbrook W.W	1985	178	Bayleton	56*
Birch Hills W.W.	1986	108	Bayleton	143
	1986	11%	Tilt	124
Elrose Hard Red Spring	1986	68	N-56	221
	1987	38	Bayleton	409
	1987	38	Tilt	380
	1987	48	Terpal C	428
Outlook HRS	1986	8 %	Tilt	131
	1987	10%	Terpal C	150
	1987	98	Cycocel	178
Saskatoon HRS	1985	88	N-56	107
	1986	88	Tilt	157
Birch Hills HRS	1985	8%	N-56	93*
	1986	18%	N-56	73*
	1986	98	Tilt	192
	1987	318	N-56	44*
Saskatoon HY320	1985	88	N-56	79
	1986	88	Tilt	132
Outlook Soft White Spr	1986	108	Bayleton	106
	1986	28%	Tilt	37*
	1987	5%	Dithane	112
Dinsmore Durum	1987	238	N-56	40*
	1987	308	N-112	61*
	1987	108	Tilt	112
	1987	5%	Terpal C	298
	10 100 etc 100 000 000			

* = treatments that were cost effective

CONCLUSIONS

It is evident that N fertilization above soil test recommendations is not profitable unless you can predict excellent precipitation.

Disease can be controlled with fungicides, but a substantial increase is needed to be cost effective at today's prices. It is noted that of the 12 sites where a response was obtained, only

four had responses to 2 fungicides. This reinforces the statement that timing is critical and it is hard to predict an optimum for these sprays.

A yield response to costly growth regulators is infrequent. Only one of the PGR's controls lodging, and it can be quite detrimental to yield in many instances.

Interactions between inputs are infrequent and not usually meaningful.

REFERENCES

- Austenson, H.M. and P.R. Hopkins. 1986. ICM experiments with winter and spring wheats in Saskatchewan, 1985. In. Proc. Annual Saskatchewan Soils and Crops Workshop, Feb. 20 - 21, 1986.
- Hopkins, P.R. and H.M. Austenson. 1987. ICM experiments with wheat in Saskatchewan, 1986. In. Proc. Annual Saskatchewan Soils and Crops Workshop, Feb. 19 - 20, 1987.