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Abstract

Intervals of Steady Magnetospheric Convection (SMC) are loosely defined as times

when convection in the magnetosphere as a whole is enhanced and there are no

substorm signatures. A lack of substorm signatures implies that the large scale

structure of the magnetotail is maintained. There have been several quantitative

methods developed to detect SMC events. None of these methods are based on

observations of convection. The Super Dual Auroral Radar Network (SuperDARN)

is a useful tool for studying SMC, because it gives a direct measurement of convection

on a global scale.

Previous SMC selection methods have made use of ground based magnetometer

responses to auroral currents in the atmosphere. These methods resulted in a strong

seasonal dependence in SMC occurrence due to seasonal changes in ionospheric con-

ductivity.

A new SMC selection criterion was developed to improve upon the previous

criteria. This new method identifies all the events found using currently accepted

methods plus additional intervals that reduce the seasonal dependence in SMC oc-

currence. SuperDARN was used to evaluate the old and new selection methods.

According to SuperDARN convection observations, the new SMC selection criterion

largely eliminated ionospheric conductivity effects. A conceptual model of the con-

ductivity effects on the traditional SMC selection method was developed, and the

occurrence of modelled SMC events agrees well with observations.

Statistical studies have revealed that the additional SMC intervals have similar

properties as events selected using traditional methods. Case studies confirmed the

statistical results that SMCs selected by the new criterion have SMC properties.

Both SMC events sets have a moderate solar wind driver, enhanced convection, and

stable polar cap size. Statistical studies have also shown there was good SuperDARN

data coverage during SMC, which is not typical of SuperDARN observations during
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enhanced and disturbed conditions in the magnetosphere. It is therefore shown to

be an excellent tool with which to study SMC.

iii



Acknowledgements

Typically, people at least thank their supervisor so “props” go to Kathryn

McWilliams for knowing what’s going on, because for a long time I didn’t.

Besides the support provided by Kathryn, this thesis would not have been

possible without the following individuals, Chad Bryant, Wilson Brenna, Paul and

Eddie Kulyk, Robin Barnes, and last but not least Bob McPherron.

Funding for this reseach was provided by an NSERC Discovery Grant and

NSERC CRO fund for the Canadian SuperDARN Program. I would also like to

express gratitude to the WDC-C2 Kyoto AE index service for providing AE index

data, the National Geophysical Data Center for providing GOES data, and the

Coordinated Data Analysis Web for proving ACE data.

iv



This thesis is for my folks, because they’ve put up with me for longer than

anyone.

v



Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Figures viii

1 General Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Solar Wind and the Magnetosphere . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Magnetospheric Dynamics 12
2.1 Magnetospheric Convection . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Convection States of the Magnetosphere . . . . . . . . . . . . . . . . 18

2.2.1 Substorms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Sawtooth Events . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Steady Magnetospheric Convection . . . . . . . . . . . . . . . 22

3 The Ionosphere 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 The Neutral Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 The Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Electrical Conductivity in the Ionosphere . . . . . . . . . . . . . . . . 32
3.5 Regions of the Ionosphere . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Ionospheric and Magnetospheric
Convection 41
4.1 Observational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Auroral Electrojet Indices . . . . . . . . . . . . . . . . . . . . 41
4.1.2 SuperDARN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Previous SMC Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation of SMC Selection Methods 53
5.1 AE Solar Cycle Dependence . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 AE Dependence on Season . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Improving SMC Selection Criteria . . . . . . . . . . . . . . . . . . . . 57
5.4 SuperDARN and Seasonal Effects On SMC . . . . . . . . . . . . . . . 62

vi



5.5 Conceptual Model of Conductivity Effects on SMC Selection . . . . . 67

6 Statistical Studies of SMC 78
6.1 Superposed Epoch Study . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Interplanetary Magnetic Field Conditions . . . . . . . . . . . . 79
6.1.2 Convection Electric Field and Transpolar Voltage . . . . . . . 82
6.1.3 SuperDARN Data Coverage . . . . . . . . . . . . . . . . . . . 87

6.2 Scatter Plot Study of Association Between
SMC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.1 IMF Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Polar Cap Voltage and Electric Field Values . . . . . . . . . . 91

6.3 Statistical Study Summary . . . . . . . . . . . . . . . . . . . . . . . . 95

7 SMC Case Study 96
7.1 SMC Case Study 1: October 20, 2001 . . . . . . . . . . . . . . . . . . 97
7.2 SMC Case Study 2: October 30, 2001 . . . . . . . . . . . . . . . . . . 107
7.3 Sawtooth Case Study: October 21, 2001 . . . . . . . . . . . . . . . . 116
7.4 Case Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Conclusion and Future Work 126
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

vii



List of Figures

1.1 Regions of the magnetosphere . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The IMF and neutral current sheet. . . . . . . . . . . . . . . . . . . . 13

2.2 The convection cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Magnetic reconnection for different IMF By orientations. . . . . . . . 17

2.4 Idealised northern hemisphere ionospheric convection patterns for dif-
ferent IMF By orientations. . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Seasonal variation of the geomagnetic aa and aam indices. . . . . . . 19

2.6 The different phases of a substorm as seen in the visible aurora . . . . 20

3.1 An example of an ionospheric equipotential contours in the northern
hemisphere from SuperDARN. . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Modelled electron density as a function of height. . . . . . . . . . . . 28

3.3 The flat earth approximation. . . . . . . . . . . . . . . . . . . . . . . 29

3.4 The coordinate system for the magnetic and electric fields in the iono-
sphere for the high latitude case. . . . . . . . . . . . . . . . . . . . . 34

3.5 Ionospheric conductivity as a function of height. . . . . . . . . . . . . 37

3.6 Three cases of charged particle motion in the ionosphere in the pres-
ence of electromagnetic fields and collisions. . . . . . . . . . . . . . . 39

4.1 The auroral electrojet currents. . . . . . . . . . . . . . . . . . . . . . 42

4.2 The location of the magnetometers used to derive the AE indices. . . 43

4.3 SuperDARN radar coverage. . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Line of site SuperDARN data and the corresponding convection map. 47

5.1 Yearly number of SMC events compared to the yearly number of
sunspots observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Occurrence of SMC events for each month for available years from
1966 to 2001 selected with AE ≥ 200 nT. . . . . . . . . . . . . . . . . 56

5.3 The total distribution of SMC events selected using the constant AE
cutoff of 200 nT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 The brute force comparison of variable SMC selection methods. . . . 59

5.5 An example of AE data with reasonable baseline adjustment and an
example of AE data with baseline errors. . . . . . . . . . . . . . . . . 61

5.6 Occurance of SMC events per month for AE ≥ 200 nT and Equation 5.2. 63

5.7 Total distribution of SMC events for AE ≥ 200 nT and Equation 5.2. 64

5.8 Average interval values of SuperDARN PCPD for several data sets. . 65

5.9 The geometry of the Sun-Earth system in spherical coordinates. . . . 68

5.10 Comparison of the conceptual model to experimental data. . . . . . . 74

5.11 The number of magnetometer pairs that contribute over 3 hours to
the AE index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



6.1 Cumulative distributions of IMF Bz as a function of superposed epoch
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Cumulative distributions of IMF By as a function of superposed epoch
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Cumulative distributions of PCPD as a function of superposed epoch
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Cumulative distributions of the convection electric field as a function
of superposed epoch time. . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Cumulative distributions of the distance between voltage extrema as
a function of superposed epoch time. . . . . . . . . . . . . . . . . . . 86

6.6 Cumulative distributions of the SuperDARN data points as a function
of superposed epoch time. . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Scatter plots of IMF By verses IMF Bz. . . . . . . . . . . . . . . . . . 90
6.8 Scatter plots of PCPD verses IMF Bz. . . . . . . . . . . . . . . . . . 92
6.9 Scatter plots of PCPD verses distance between voltage extrema. . . . 93
6.10 Scatter plots of convection electric field verses IMF Bz. . . . . . . . . 94

7.1 The AE indices for October 20, 2001. . . . . . . . . . . . . . . . . . . 98
7.2 Auroral image obtained from the IMAGE satellite by WIC with the

shaded region indicating the estimated polar cap area. . . . . . . . . 99
7.3 The polar cap area and corresponding keograms for October 20, 2001. 101
7.4 The IMF components for October 20, 2001. . . . . . . . . . . . . . . 104
7.5 Solar wind properties for October 20, 2001. . . . . . . . . . . . . . . . 105
7.6 Properties of the SuperDARN convection maps for October 20, 2001. 106
7.7 The AE indices for October 30, 2001. . . . . . . . . . . . . . . . . . . 108
7.8 The polar cap area and corresponding keograms for October 30, 2001. 109
7.9 The IMF components for October 30, 2001. . . . . . . . . . . . . . . 111
7.10 The solar wind properties for October 30, 2001. . . . . . . . . . . . . 112
7.11 Properties of the SuperDARN convection maps for October 30, 2001. 114
7.12 The northward magnetic field component measured at the GOES-8

and GOES-10 satellites on October 30, 2001. . . . . . . . . . . . . . . 115
7.13 The AE indices for October 21, 2001. . . . . . . . . . . . . . . . . . . 117
7.14 The polar cap area and corresponding keograms for October 21, 2001. 118
7.15 Solar wind properties for October 21, 2001. . . . . . . . . . . . . . . . 119
7.16 The IMF components for October 21, 2001. . . . . . . . . . . . . . . 121
7.17 The northward magnetic field component measured at the GOES-8

and GOES-10 satellites on October 21, 2001. . . . . . . . . . . . . . . 122
7.18 Properties of the SuperDARN convection maps for October 21, 2001. 124

ix



Chapter 1

General Introduction

1.1 Objectives

The fundamental objective of near-Earth space science has been to understand

the dynamics of the magnetosphere. Space weather, like surface weather, can have

a profound effect on human activity. These effects can be negative, as in the case

of magnetic storms which can destroy satellites, disrupt radio communications, and

damage power grids. If one had the ability to forecast the occurrence of such storms,

preventative measures could be taken to minimise the damage.

Unravelling magnetospheric dynamics is not easy. The magnetosphere is strongly

influenced by the solar wind, which has a highly variable plasma density, plasma ve-

locity, and magnetic field. In addition to external variability, processes intrinsic to

the magnetosphere make predictions about its state a daunting task. The most

fundamental questions regarding the dynamics of the magnetosphere are related to

its stability. Is a stable configuration possible? What conditions lead to stability?

What characterises stability? Answering these questions would greatly improve the

understanding of magnetospheric dynamics.

Stability in the magnetosphere can occur and can take two forms: a quiescent

state with little activity and a state of dynamic equilibrium where the magneto-

sphere is active and steady. The special case of active but stable magnetospheric

convection (e.g., Pytte et al. (1978) and Sergeev et al. (1995)) is the focus of the

research presented in this thesis.
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1.2 The Solar Wind and the Magnetosphere

The solar wind, which flows outward from the Sun, is a plasma composed

mainly of hydrogen ions and helium ions at a number density ratio of 20:1 (Hund-

hausen, 1995). The solar wind moves at speeds typically of the order of 400 km s−1

(Gonzalez et al., 1999). Along with the protons and alpha particles that make up

the solar wind, there are enough electrons that the solar wind is electrically neutral.

Parker (1958) suggested that the solar wind is formed by the steady expansion of

the solar corona and demonstrated that this was mathematically possible. Parker

(1958) used pressure balance arguments showing that the outward force of the plasma

pressure gradient was larger than the inward pull of the Sun’s gravity. With this

conjecture, Parker (1958) was successful in showing that the solar wind flow is also

supersonic at distance of 1.5×1011m from the Sun. The Explorer 10 spacecraft later

verified that the solar wind was indeed supersonic (Bonetti et al., 1963).

As this supersonic plasma propagates away from the Sun it carries with it the

magnetic field of the Sun. In the solar system the Sun’s magnetic field is referred

to as the interplanetary magnetic field, or IMF, and it has a typical magnitude of

about 5 nT (Gonzalez et al., 1999). The IMF is bound to the solar wind according

to Faraday’s Law, which states that changing the magnetic flux passing through a

conductor will induce a voltage. The solar wind is a nearly perfect conductor and

will not support an ambient electric field. This means the magnetic flux through a

given volume of solar wind plasma will remain constant. So as a parcel of solar wind

plasma propagates, to ensure constant magnetic flux, the IMF is carried along. This

is referred to as the “frozen-in” approximation, because each IMF field line acts as

if it were frozen to the parcel of solar wind plasma it permeates.

Like the Sun, the Earth has a magnetic field. The Earth’s dipolar magnetic

field is tilted with respect to the geographic pole. The south pole of the magnetic

dipole is located in the Canadian high Arctic, near the geographic North Pole. At

the Earth’s surface the magnetic field strength is about 50 µT, and in the equatorial

plane of the Earth the planetary field points in the northward direction.
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Figure 1.1: Regions of the magnetosphere as adapted from Hughes
(1995). The different regions of the magnetosphere are shown. Currents
flowing out of the plane of this image are represented by circled dots,
and inward currents circled crosses.

The solar wind and IMF encounter the planetary magnetic field. In the absence

of the solar wind the Earth’s magnetic field is mainly dipolar. The Earth’s magnetic

field acts as an obstacle to the solar wind, so the IMF and the planetary field are de-

formed. According to the “frozen-in” approximation, the solar wind and the plasma

of the Earth’s magnetic field cannot mix, because the plasma cannot flow across the

magnetic field lines. The Lorentz force acts on the solar wind plasma to oppose the

bending of the IMF field lines. Therefore the solar wind-IMF combination exerts a

dynamic pressure on the magnetosphere, compressing the planetary field lines on the

dayside. The dynamic pressure of the solar wind will balance the magnetic pressure

of the planetary field. Satellite measurements, reveal that, on average, the sunward

boundary of the magnetosphere is located about 10 Earth radii upstream of the

Earth (Bonetti et al., 1963).
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The solar wind is deflected by the planetary magnetic field forming a bowshock

upstream of the magnetopause. It is roughly symmetrical about a line that runs from

the Earth to the Sun. The plasma that flows between the bow shock and the mag-

netopause is referred to as magnetosheath plasma. Near the dayside magnetopause

the magnetosheath plasma has a density of the order of 10 cm−3, and the magnetic

field has a strength of about 15 nT. The ions in the region typically have energies of

150 eV (Hughes , 1995).

The boundary between the IMF and the planetary magnetic field is called the

magnetopause. In this region currents must flow according to Ampère’s Law. These

magnetopause currents serve to support the geometry of the deformed IMF and

planetary magnetic fields. On the dayside of the magnetosphere the magnetopause

current flows from dawn to dusk. On the nightside of the magnetopause the currents

flow from dusk to dawn. These currents are illustrated along the magnetopause in

Figure 1.1 which represents a dusk side view of the magnetosphere. The duskward

currents (circled dots) along the front side of the magnetopause serve to support the

compression of the dayside magnetosphere while dawnward surface currents further

down stream (circled crosses) contribute to supporting the magnetotail structure.

Figure 1.1 is not to scale, but does illustrate schematically the regions and currents

of the magnetosphere.

The “frozen-in” approximation implies that the solar wind and the magneto-

sphere interact only in a minimal way. In this closed magnetosphere some energy,

mass, and momentum can be exchanged through viscous interaction with the solar

wind. Viscous interaction involves the transfer of momentum from the solar wind to

just inside the magnetosphere. There is still much debate as to what role the viscous

iteraction plays in driving the magnetosphere (Farrugia et al., 2001).

Dungey (1961) presented a different hypothesis of solar wind-magnetosphere

coupling that could occur if the frozen-in approximation were to break down. The

hypothesis allows the IMF magnetic field to merge with the planetary field. In this

open system, the IMF is connected to the magnetic field of the planet, so a significant

amount of mass, momentum, and energy from the solar wind can enter the magneto-
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sphere. This constitutes the second way in which mass, energy, and momentum can

be transfered from the solar wind into the magnetosphere. Many ground-based and

satellite observations have been interpreted as signatures of magnetic reconnection

(e.g., McWilliams et al., 2004).

If the IMF is southward, magnetic reconnection with the northward planetary

field can occur on the dayside of the Earth. After reconnection a field line is created

that is neither entirely an IMF field line nor entirely a magnetospheric field line. It

is called an open field line, because it is part of the planetary magnetic field but does

not close itself inside the Earth; rather is connected to the IMF. Solar wind particles

that were originally confined to IMF can now flow into the magnetosphere on these

open field lines. Entry of the solar wind into the magnetosphere is most direct in

the cusp region (e.g., Fritz and Zong , 2005).

The open field lines that result from the reconnection process are drawn by the

solar wind across the northern and southern polar regions. These open flux tubes

continue to flow behind the Earth to form a long tail, which is referred to as the

magnetotail. The lobes of the magnetotail have a field strength of about 20 nT. The

magnetotail acts as a reservoir of magnetic energy and plasma in the magnetosphere.

The length of the tail can be estimated based on the speed of the solar wind and

the time that a given flux tube remains open. It is estimated that the magnetotail

has a length of several hundred Earth radii (Hughes , 1995). In the northern portion

of the tail the magnetic field is directed toward the Earth, while in the southern

portion it is directed away from the Earth. These two magnetic lobes, as they are

called, are separated by the plasma sheet. The plasma concentration in the lobes of

the magnetotail is of the order of 0.01 cm−3, and the ions have energies of 300 eV

(Hughes , 1995).

The plasma sheet is a region in the equatorial plane of the magnetotail with

higher concentrations, of the order of 0.1 cm−3, and with ion energies about 5 keV.

The field strength in the central plasma sheet is of the order of 10 nT (Hughes , 1995).

In the equatorial plane the cross tail current sheet flows from dawn to dusk through

the central plasma sheet, as illustrated in Figure 1.1. This duskward current closes
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the dawnward magnetopause currents on the nightside, forming a double solenoid

current configuration. It is this night side current system that serves to support the

nearly anti-parallel magnetic fields of the north and south tail lobes.

Closer to the Earth in regions of more dipolar closed field lines exists the

plasmasphere, which co-rotates with the Earth. The plasmasphere is idemtified

in Figure 1.1. This doughnut-shaped region is populated by plasma primarily of

ionospheric origin (Hughes , 1995). The particle density here is much higher than

in other regions of the magnetosphere because the field lines in the plasmasphere

are perpetually closed. The plasma concentration is of the order of 103 cm−3, and

particles energies are of the order of 1 eV (Hughes , 1995).

As magnetospheric field lines were opened on the dayside by reconnection with

the IMF, so they must be closed. Open field lines can close in the magnetotail because

the magnetic field in the north and south tail lobes points in opposite directions.

When the frozen-in approximation once again breaks down, the open field lines in

the magnetotail merge to form closed field lines connected to the Earth and IMF

field lines downstream of the Earth. The tension on the highly stretched and newly

closed field lines in the magnetotail causes them, along with the associated frozen-in

plasma, to slingshot back towards the Earth. Much of this plasma precipitates into

the Earth’s upper atmosphere, imparting energy to the atoms and molecules there.

These excited upper atmospheric particles release energy as photons to create the

aurora.

The merged field lines that close in the magnetotail convect towards the Earth

and then progress around to the dayside magnetosphere where the reconnection

process can begin anew. The process of magnetic field reconnection is cyclic in

nature, with geomagnetic field lines being connected to and disconnected from the

IMF. This reconnection transport process is called magnetospheric convection, and

it can occur in several distinct ways.

The progression of the convection cycle is always the same. The IMF merges

with the planetary field on the dayside. Magnetic energy is stored in the magnetotail

and eventually this energy is released through reconnection in the magnetotail. How
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this energy is released defines the mode of convection. It can occur in a relatively

steady fashion, but more often it happens explosively when the convection cycle

becomes unstable. The unstable modes are referred to as substorms and sawtooth

events. A substorm occurs when the open field lines that have gradually accumu-

lated in the magnetotail rapidly merge, leading to an explosive release of the stored

energy. This catastrophic release is referred to as the onset of the expansion phase

of a substorm and is observed as a brightening of the aurora. The second unstable

convection mode, sawtooth, is similar to the first. Sawtooth events are series of semi-

periodic substorms that result when the IMF remains strongly southward for long

periods of time (Henderson et al., 2006). They are referred to as sawtooth events

because plots of the large amplitude oscillations of energetic particle fluxes observed

at geosynchronous orbit resemble sawblades. Both unstable convection modes result

in a large scale reconfiguration of the magnetotail. When reconnection rates on the

dayside are balanced by the reconnection rates in the magnetotail, a stable mode of

convection is achieved. This stable convection mode was originally referred to as a

convection bay (Pytte et al., 1978), and it is now commonly referred to as steady

magnetospheric convection (SMC) (Sergeev et al., 1995). It has been found that

SMC results from solar wind conditions similar to but somewhat more moderate

than those causing sawtooth events. The difference is believed to be that during

sawtooth events the magnetosphere is too strongly driven to dissipate energy in a

steady fashion (Henderson et al., 2006).

Studying magnetospheric convection on a large scale can be difficult due to

the large size of the magnetosphere. Fortunately, the ionosphere is coupled to the

magnetosphere through the Earth’s magnetic field (e.g., Wolf , 1995). Due to this

coupling, one can observe the convection cycle in the ionosphere and from that de-

velop a picture of convection in the magnetosphere. This is highly advantageous since

the dimensions of the ionosphere are much smaller, and ground based instruments

can be more easily deployed to observe ionospheric convection.

The ionosphere is an electrically conducting layer that exists in the Earth’s

upper atmosphere. This charged layer is the region of the magnetosphere closest
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to the Earth and is mainly produced by photo-ionisation, which is the process by

which light from the Sun ionises the neutral atmosphere. There are three regions of

the ionosphere that are distinguished from each other by their chemical and physical

properties, such as plasma number density, collision frequency, and conductivity.

The deepest layer is called the D region and exists from roughly 50 km to 90 km.

The middle ionospheric layer is called the E region and is roughly from 90 - 150 km

altitude. The final region is referred to as the F region and exists above 150 km

altitude.

The production of plasma in the ionosphere is highly dependent on the amount

of solar radiation present. Therefore, substantial variations in the plasma density can

occur on many different time scales. The variation due to the Earth’s daily rotation

leads to low plasma density in the nightside ionosphere in comparison to the higher

densities in the daylight hours. Variations also occur on the yearly scale, because

the Earth’s axis of rotation has a tilt with respect to the plane of its orbit. During

summer months the plasma number density is enhanced in the summer hemisphere.

Since ionospheric conductivity is dependent on the plasma density, variations in

charged particle content cause conductivity variations.

Dynamics in the ionosphere are strongly controlled by electromagnetic effects

due to magnetospheric convection. Collisions between plasma particles and neutral

particles also play a large role in influencing particle motion in the ionosphere. In

the F region, which exists at the highest altitude in the ionosphere, collisions are

negligible and therefore both ions and electrons are magnetically controlled. In

the E region the neutral density has increased to the point where ions will endure

far more collisions. Ion motion here is controlled by collisions, while electrons are

still controlled by the electric and magnetic fields that permeate the ionosphere.

This discrepancy in ion-electron motion results in E-region currents, which depend

heavily on the amount of convection in the magnetosphere. These currents depend

not only on the convection-induced electromagnetic forces present in the ionosphere

but on ionospheric conductivity as well. Because of this, variations in ionospheric

conductivity can affect the magnitude of these currents. Magnetometer arrays are
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often deployed on the surface to measure these currents.

This introduction has touched only briefly on the complexities of magneto-

spheric and ionospheric dynamics, providing the groundwork for understanding the

research presented in this thesis.

1.3 Thesis Outline

Qualitatively Steady Magnetospheric Convection (SMC) has been defined as

times where convection is enhanced and there are no substorm signatures. This sim-

ple qualitative definition has yet to be translated into a robust quantitative definition.

Several methods have been developed to identify SMC but none have been universally

accepted in the space science community. These methods all have one underlying

problem: none are based on actual convection measurements. Instead these methods

rely on phenomena related to SMC to identify events. Direct convection measure-

ments would greatly improve quantitative SMC definitions. The SuperDARN radar

network directly measures convection in the ionosphere on a global scale and would

be an appropriate tool for studying SMC. SuperDARN convection measurements

will make it possible to address the two most important questions about SMC: (1)

do the quantitative selection methods currently being used to identify SMC properly

identify events with steady enhanced convection, and (2) if these methods are indeed

correctly identifying SMC, what convection characteristics define steady convection

in the magnetosphere? The research presented in this thesis aims to address these

questions.

The physics behind magnetospheric and ionospheric dynamics will be expanded,

beginning with a more detailed discussion in Chapter 2 of convection in the magneto-

sphere. The IMF will be discussed in the context of geomagnetic activity followed by

a detailed description of the modes of convection in the magnetosphere: substorms,

sawtooth events, and SMC.

Since the ionosphere plays a large role both in SuperDARN measurements and

SMC detection, Chapter 3 will be devoted to the processes that give rise to the iono-
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sphere. The process of photo-ionisation will be studied with special emphasis placed

on how variations in sunlight intensity affect the ambient plasma number density.

The details of conductivity are explained for the high latitude ionosphere. The rel-

ative drift velocities of the ions and electrons are important for understanding how

ionospheric convection and currents are related and used to quantify magnetospheric

convection.

The tools used to quantify geomagnetic activity will be presented in Chapter 4.

The method by which the Auroral Electrojet indices are derived is explained first,

since SMC selection methods based on these indices are the most widely used. A

discussion of SuperDARN, a radar network devoted to measuring the drift velocities

of plasma in the high latitude ionosphere, follows. The method used to obtain

SuperDARN global convection maps is detailed in this section.

In Chapter 5 the SMC definition developed by O’Brien et al. (2002) was evalu-

ated. The list of events obtained revealed that this selection method was influenced

by not only the amount of magnetospheric activity but also by ionospheric conduc-

tivity. SMC is a convection based phenomenon, and therefore in order to take into

account the role of ionospheric conductivity a new SMC selection criterion was de-

veloped. SuperDARN was used to show that with this new SMC selection method

the list of events obtained had been selected with a minimum convection thresh-

old. Additional proof was needed to show the effectiveness of the new SMC selection

method. A conceptual model of SMC occurrence based solely on ionospheric conduc-

tivity was developed. The results of this model were compared to the experimental

results obtained using the method of O’Brien et al. (2002). This comparison between

the model and experimental results provided additional evidence that the improved

SMC selection method was using a minimum convection threshold.

With an improved SMC selection method, it was important to show these new

events satisfied the qualitative criteria of SMC. Chapter 6 contains the first approach,

which was statistical in nature and focuses on SuperDARN convection data. This

new list of SMC events was found to possess enhanced convection.

A case study of two SMC events is presented in Chapter 7. The purpose of
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this work is to compare a traditional SMC event with one that would not previously

have been identified as SMC but which the new SMC selection method deems to

be SMC. The results of this case study show that the new SMC events do possess

steady convection. The case study provided additional insight into magnetospheric

activity during SMC not found statistically. A sawtooth event was also included to

contrast stable convection with unstable convection.
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Chapter 2

Magnetospheric Dynamics

2.1 Magnetospheric Convection

Magnetospheric convection is driven by magnetospheric reconnection. In Sec-

tion 1.2 it was suggested that for reconnection to occur on the dayside of the mag-

netosphere the IMF should be anti-parallel to the Earth’s magnetic field. There are

many possible scenarios that can lead to reconnection, and the amount and state of

convection in the magnetosphere depend heavily on the direction and magnitude of

the IMF (e.g., Ruohoniemi and Baker , 1998).

The IMF is twisted into an Archimedean spiral which is similar to the stream-

lines produced by the water ejected from a spinning lawn sprinkler. The Sun is

rotating and emitting solar wind plasma with the embedded IMF, analogous to the

water emitted by the sprinkler head. Figure 2.1 is an illustration of the process

by which the IMF archimedean spiral geometry is formed. Panel (a) of Figure 2.1

is a two dimensional representation of the actual three dimensional structure of the

IMF’s archimedean spiral and panel (b) displays the neutral current sheet. The solar

wind plasma is ejected radially, but the rotation of the Sun leads to a twisting of

the frozen-in IMF. This three dimensional structure results because the IMF spiral

is ordered in the solar equatorial coordinate system (GSEQ), with field lines being

directed out of the Sun in one hemisphere and into the Sun in the opposite hemi-

sphere. The geometry of oppositely directed magnetic field lines is supported by

the neutral current sheet which flows between them. This current sheet does not lie

perfectly in the solar equatorial plane. Because of this and the rotation of the Sun,

undulations form in the neutral current sheet which bear resemblance to a ballerina’s
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Figure 2.1: (a) The loci of plasma parcels emitted radially from the
rotating Sun takes the form of an Archimedean spiral (after Hund-
hausen, 1995). (b) Open and closed field lines emanating from the Sun
with both the rotational and magnetic axis displayed. The oppositely
directed field lines are separated by the neutral current sheet (after
Smith et al., 1978).
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skirt. These undulations give rise to the three dimensional structure of the IMF and

can be seen in panel (b) of Figure 2.1.

The direction of the IMF is usually defined with respect to the Geocentric

Solar Magnetospheric (GSM) coordinate system (Russell and McPherron, 1973).

This coordinate system has an x axis that points from the centre of the Earth

toward the Sun and a y axis is in the Earth’s orbital plane. The x and y directions

are perpendicular by definition. The z component completes the set right-handed

coordinate system such that the north magnetic pole lies in the x-z plane. A negative

IMF Bz component plays a large role in driving convection but convection is also

affected by the IMF By component. Two factors affect convection: (1) magnetic

tension on newly reconnected magnetic field lines, and (2) solar wind flow in the

magnetosheath, carrying the geomagnetic field lines across the polar cap of the Earth

in the anti-sunward direction. When the IMF By component is approximately zero,

convection is expected to be symmetric about the line running from the Sun to

the Earth. The case of symmetric convection is illustrated in Figure 2.2 with the

convection cycle beginning when a southward pointing IMF field line (field line 1
′
)

reconnects with the closed, northward pointing field line (field line 1) of the Earth.

Numbered field lines 2 to 5 show the anti-sunward flow of the solar wind dragging the

open field lines behind the Earth to form the magnetotail. The oppositely directed

field lines of the lobes of the magnetotail eventually close (field lines 6 and 6
′
) and

then progress back to the dayside (field lines 7, 8, 9). Where each numbered field

line maps to in the ionosphere is displayed in the bottom right portion of Figure 2.2.

This figure illustrates the basic convection cycle in both the magnetosphere and

the ionosphere. Convection is symmetric in the case of Figure 2.2, as both the

magnetic tension and the solar wind flow act in the anti-sunward direction. When

IMF By is not zero, an asymmetry results in convection. The difference lies in

the magnetic tension exerted on the newly opened field line. This tension will no

longer act entirely in the anti-sunward direction due to the addition of the IMF By

component. The zonal portion of the motion is the result of the highly kinked, newly

open field line straightening out, while the subsequent anti-sunward motion over the
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Figure 2.2: The numbered field lines indicate the different configura-
tions a geomagnetic field line assumes after reconnection. The bottom
right insert of this figure illustrates where each numbered field line maps
to in the northern ionosphere (Hughes , 1995).
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poles is due to convection with the magnetosheath flow. Figure 2.3 illustrates the

configuration of newly opened fields on the dayside of the Earth. The open field lines

will follow a path that trace out a sickle shape in the ionosphere as they move into

and over the polar cap. For positive IMF By the flow near noon is dawnward in the

northern hemisphere. The opposite tension is exerted on newly opened field lines

in the southern hemisphere, so the flow in the south will have a strong duskward

component when IMF By is positive. The magnetospheric convection cycle generates

electric fields that map down to ionospheric heights. These electric fields produce the

related ionospheric convection pattern. Figure 2.4 displays the effect that IMF By

has on the northern ionospheric convection pattern. Local noon is toward the tope

of the figure, and the solid lines represent the convection streamlines at ionospheric

altitudes. When IMF By is approximately zero (central panel) the symmetric two

convection cell pattern is observed. This pattern is symmetric about the noon-

midnight meridian. A negative IMF By component (left panel) results in a convection

pattern where the flow into the polar cap, is tilted toward dusk. The opposite effect

is expected for positive IMF By (right panel).

Reconnection on the dayside of the Earth happens most efficiently when IMF

Bz is negative, but it can also occur when IMF Bz is positive. There are many possi-

ble ways that northward pointing IMF field lines may reconnect to the geomagnetic

field on the dayside. Each results in a different form of convection in the magneto-

sphere (e.g., Watanabe et al., 2007). A common attribute of convection driven by

northward IMF is sunward plasma flows at high latitudes in the polar cap. It has

been found that this reversed convection can occur for 2-3 hours in a steady state,

as long as the IMF is stable (Huang et al., 2000).

It has been shown that the average amount of geomagnetic activity is not

constant over the course of the year; rather there is a semi-annual variation that peaks

near equinox (Russell and McPherron, 1973). Methods to quantify geomagnetic

activity commonly employ magnetic field instruments on the Earth’s surface. These

magnetometers respond to magnetospheric and ionospheric currents. For example,

the aa and aam indices are commonly used to quantify geomagnetic activity (Delouis
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Figure 2.3: Magnetic reconnection for (a) positive and (b) negative
IMF By orientations, as viewed from the Sun (Golsing et al., 1990a).

and Mayaud , 1975). Figure 2.5 displays the semi-annual trend in the aa and aam

indices with peaks in geomagnetic activity near equinox (Svalgaard et al., 2002).

Russell and McPherron (1973) proposed that this semi-annual variation, seen

in Figure 2.5, is the result of: (1) the Earth’s magnetic field having a tilt with respect

to the solar equatorial plane, and (2) the geometry of the IMF which results from

the magnetic field of the Sun being twisted into spiral. Due to the dipole tilt of the

Earth’s magnetic field, there is a systematic variation in the orientation of planetary

field with respect to the IMF spiral through out the year. This leads to a varying

probability that the IMF and the geomagnetic field will be anti-parallel. Russell and

McPherron (1973) found that, with respect to the Earth’s dipole axis, the IMF Bz

component is more likely to have a negative component near equinox. IMF Bz plays

a large role in driving geomagnetic activity, so it is expected to be higher at equinox.

17



Figure 2.4: Idealised northern hemisphere ionospheric convection pat-
terns for different IMF By orientations. The solid lines indicate convec-
tion contours. The auroral oval is illustrated by the dashed lines (after
Cowley et al., 1991).

2.2 Convection States of the Magnetosphere

The convection cycle leads to energy storage and release in the Earth’s mag-

netosphere. The unloading of energy in the magnetotail may occur in a relatively

steady fashion, but more commonly it results in a catastrophic change to the state

of the magnetotail. There are three primary ways that energy is released in the

magnetotail: (1) substorms, (2) sawtooth events, and (3) steady magnetospheric

convection (McPherron et al., 2008).

2.2.1 Substorms

Substorms occur when there has been relatively gradual loading of energy in

the magnetotail in the form of open flux. This gradual build-up is followed by an

explosive release of energy into the magnetosphere. There are three main phases

to a substorm: (1) the growth phase (McPherron, 1970), (2) the expansion phase,

and (3) the recovery phase (Akasofu, 1964). The development of a substorm in the

visible aurora is illustrated in Figure 2.6 (Akasofu, 1964).

Panels A and B of Figure 2.6 illustrate the quiet phase preceeding the onset

of the substorm. According to McPherron (1970) this quiet phase or growth phase

lasts about one hour and begins when the IMF turns southward and magnetospheric

18



Figure 2.5: Seasonal variation of the geomagnetic aa and aam indices
(from Svalgaard et al., 2002).

convection becomes enhanced. Magnetic energy from the solar wind is transfered to

the magnetosphere through magnetic merging on the dayside. The open flux that

is created on the dayside convects into the tail lobes. The open flux builds up in

the magnetotail and the ionospheric footprint of open flux (the polar cap) grows.

In Figure 2.6 the polar cap resides within the auroral oval. Panels A and B show

the polar cap near the end of the growth phase, when it is close to its maximum

size. This increase of open magnetic flux leads to an increase of the strength of the

magnetic field in the tail lobes. As the strength of the field in the tail grows, the

plasma sheet thins. The cross-tail current becomes stronger during the growth phase

(McPherron, 1972).

The second phase of a substorm, the expansion phase, corresponds to panels C

and D in Figure 2.6 and is characterised by an increase in the intensity of the visible

aurora. On average, the expansion phase lasts 5 - 30 minutes (Akasofu, 1964).

The first brightening of the nightside aurora is referred to as the expansion phase

onset and is often used to define the start of a substorm (Elphinstone et al., 1996).

Energy that was built up in the magnetotail during the growth phase is released
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Figure 2.6: The different phases of a substorm as seen in the visible
aurora. A-B: the quite phase, C-D: the expansion phase, E-F: the
recovery phase. (Adapted from Akasofu, 1964). Local midnight is
towards the bottom of each panel.

rapidly. Newly closed magnetic field lines retreat back towards the Earth dragging

magnetotail plasma with them. An auroral signature of this phase is that the visible

aurora expands poleward thoughout the duration of the expansion phase, such as in

the transition in Figure 2.6 from C to D.

At onset and during the substorm expansion phase the cross-tail current be-

comes disrupted, and it is diverted into the ionosphere. This phenomena is called

the substorm current wedge and it can be observed on Earth as an enhanced west-

ward electrojet current. The strong westward electrojet current can be observed

by ground-based magnetometer stations as a strong southward magnetic perturba-

tion, which is often used to quantify substorm activity. This westward electrojet

current is closed by a downward field aligned current on the eastern side and an

upward field-aligned current on the western side. Pseudo-breakups, a phenomenon
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similar to a substorm, may occur during the growth phase of a substorm (Koskinen

et al., 1993). They share most the same features that are present during full blown

substorms, the difference being that pseudo-breakups are much more localised and

have a much smaller poleward expansion of the aurora. During pseudo-breakup a

full-fledged substorm current wedge does not develop (Koskinen et al., 1993).

After the expansion phase the recovery phase begins. During this phase there

is a reduction in the intensity of the aurora globally (Akasofu, 1964), as illustrated

in panels E and F of Figure 2.6. The aurora tends retreat equatorward during the

recovery phase (Elphinstone et al., 1996).

2.2.2 Sawtooth Events

Sawtooth events are sequences of large amplitude oscillations of energetic par-

ticle fluxes in the near magnetotail that occur with a variable repetition rate of

between 2 to 4 hours. Their phenomenology greatly resembles that of substorms

(Henderson et al., 2006). During sawtooth events the magnetosphere is moderately

to strongly driven by a continuosly southward IMF (IMF Bz ≤ -10 nT) (Hender-

son et al., 2006). Sawtooth events get their name because plots of the proton flux

measurements by satellites on the nightside have a shape similar to that of a saw

blade (Belian et al., 1995). The proton fluxes that are observed on the nightside are

associated with strong stretching and dipolarization of the magnetotail. Henderson

et al. (2006) proposed that the quasi-periodicity of sawtooth events is the time for

the magnetosphere to be driven to a point of instability and therefore to substorm

expansion phase onset.

DeJong et al. (2007) compared sawtooth events to isolated substorms using

auroral measurements made by POLAR and IMAGE satellites. It was found that an

individual sawtooth had more intense aurora, that the aurora extended further north

in magnetic latitude, and that the amount of open magnetic flux in the polar cap

was larger. It was found 150% more magnetic flux, on average, was contained in the

polar cap during an individual sawtooth event as compared to an isolated substorm

(DeJong et al., 2007). Sawtooth events also release more open flux at expansion
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phase onset than isolated substorms, but the percentage released was the same as

isolated substorms. Both displayed a 30% decrease in polar cap magnetic flux during

the expansion phase.

A statistical comparison between isolated substorms and sawtooth events was

conducted by Cai et al. (2006). They investigated whether dipolarization during

sawtooth events was a global phenomenon. This was done by examining the magnetic

tilt angle measured by the geosynchronous GOES satellites. The tilt angle is the

angle between the magnetic field vector and the equatorial plane of the planetary

magnetic field. Cai et al. (2006) found that individual teeth follow a dipolarization

pattern similar to isolated substorms, the difference being that the magnetotail is

much more stretched prior to onset for a sawtooth than for isolated substorms. The

dipolarisation observed is also much larger during individual teeth and is present

over a wider magnetic local time sector.

Although sawtooth events represent an unstable configuration of the magneto-

sphere, it has been suggested that they are similar in nature to steady magnetospheric

convection, the difference being that the magnetosphere is too strongly driven during

sawtooth events to dissipate energy without the occurrence of substorms (Henderson

et al., 2006).

2.2.3 Steady Magnetospheric Convection

Steady magnetospheric convection (SMC) is the third type of magnetospheric

convection. It is a case of steady, balanced dynamic equilibrium where reconnection

rates on the dayside and on the magnetotail are balanced. Qualitatively, SMC events

are defined as times when the energy input into the magnetosphere is enhanced

and no substorm signatures are observed for extended time periods, i.e., for times

longer than a typical substorm interval. This implies the large scale stability of the

magnetotail is maintained.

Solar wind conditions during SMC are characterised by moderate solar wind

speeds, typically below 450 km/s, as well as moderately southward IMF, with IMF

Bz typically about -3 nT (O’Brien et al., 2002).
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Steady convection can occur without enhanced energy input to the magne-

tosphere, but it is preferential to study SMC events that have a similar level of

convection as substorms. SMC events that have enhanced convection are interest-

ing to study because moderate to strong energy input into the magnetosphere is

expected to generate semi-periodic substorms or sawtooth events, rather than SMC

(Sergeev et al., 1995).

The duration of SMC events originally considered was between 4 and 6 hours.

This duration is twice the average time between substorms and longer than a typical

substorm (Sergeev et al., 1995). This ensures that substorm growth and recovery

phases are not misinterpreted as SMC. O’Brien et al. (2002) allowed for shorter

durations and stated that there is no obvious minimum duration for an SMC event

but that there should be a continuum from very short to very long durations. The

requirement that SMC events must have a minimum time length is usually applied

to ensure that the SMC events are not confused with part of a substorm cycle.

The most important criterion of SMC is the long term, large scale stability

of the magnetotail. The key to defining stability lies in the content of magnetic

flux in the lobes. During the expansion phase of substorms the magnetic flux in

the magnetotail is reduced by about 20% to 30%. During SMC the variation in the

lobe flux content is expected to be less than this (Sergeev et al., 1995). If the flux

content of the magnetotail is stable then the open flux in the polar cap should remain

constant. A relatively stable polar cap area implies that the reconnection rate on

the dayside magnetopause is balanced by the reconnection rate in the magnetotail.

A global simulation of SMC conducted by Goodrich et al. (2007) found that

during SMC, quasi-steady reconnection occurs in the midtail 35-40 RE downstream

from the Earth. This quasi-steady reconnection in the magnetotail drives steady

earthward flows which are diverted to the dusk and dawn sectors due to a thick cur-

rent sheet. This diversion of flow left the modelled inner magnetosphere undisturbed.

Goodrich et al. (2007) also performed a simulation of a sawtooth event. They found

that both the SMC and sawtooth events demonstrated a similar magnetospheric

convection system, the difference being that reconnection in the magnetotail was
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intermittent and patchy for the sawtooth event with flow bursts penetrating into

the inner magnetosphere. These flow bursts are associated with observed plasma

injections and field signatures observed at geosynchronous orbit.

During SMC there is evidence that the plasma sheet magnetic flux content may

undergo a slow large scale reconfiguration similar to the substorm recovery phase, but

proceeding at a slower pace (Sergeev et al., 1995). If the plasma sheet magnetic flux

content is relatively stable no poleward motion of the aurora oval and no substorm

current wedge should be observed during SMC.

Pseudo-breakups are a prominant feature of SMC as well. It has been sug-

gested that during SMC pseudo-breakups release energy on a small scale so that the

convection can remain steady on a large scale (DeJong and Clauer , 2005). DeJong

et al. (2007) found the difference between the isolated substorms and SMC lies in

the amount of open flux. The open flux content in the polar cap decreases by 20% to

30% for isolated substorms, which is contrary to SMC. During SMC the flux content

in the polar cap is expected to remain roughly constant.

Although difficult to quantify, SMC is a fundamental concept of the dynam-

ics and stability of the earth’s magnetosphere. Understanding SMC would greatly

improve our understanding of magnetospheric physics and predictive capabilities of

space science.
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Chapter 3

The Ionosphere

3.1 Introduction

The ionosphere is the region of the magnetosphere that is closest to the surface

of the Earth, and is the most accessible for study. Because the electric field in the

magnetosphere maps down to ionospheric heights, observations of convection in the

ionosphere effectively mirror convection in the magnetosphere (e.g., Ruohoniemi and

Baker , 1998).

For purely southward IMF, the classic two-cell ionospheric convection pattern,

displayed in Figure 3.1, has anti-sunward flow over the pole and sunward flow at lower

latitudes. The black solid and dashed lines in Figure 3.1 represent the convection

streamlines in the ionosphere. These streamlines represent the direction plasma in

the ionosphere will drift. In the F region SuperDARN makes measurements where

relatively few collisions take place so the plasma experiences a bulk drift, which will

be described in detail in section 3.4. In the F region the bulk plasma flow velocity

is perpendicular to the ionospheric electric field, therefore plasma flow streamlines

are equivalently equipotential contours. The dashed lines in Figure 3.1 represent

countours that have a positive voltage, while the solid lines represent contours where

the voltage is negative. The “×” and “+” symbols represent the minimum and

maximum voltages, respectively. The potential difference between the maximum

and minimum voltage is the cross polar cap potential difference (PCPD) and often

used as an indication of the magnitude of convection in the magnetosphere. Caution

should be exercised when using the cross polar cap difference because the plasma

drift velocity is not directly dependent on the voltage. It is the cross polar cap electric
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Figure 3.1: An example of an ionospheric equipotential contours in
the northern hemisphere from SuperDARN. The Sun is towards the top
of the the figure and local midnight is towards the bottom. The vector
~Epc represents the cross polar cap electric field.

field, ~Epc, that drives plasma flow across the polar cap and PCPD is dependent on

the distance between voltage centres, as well as on the cross polar cap electric field.

3.2 The Neutral Atmosphere

To first order, the ions and electrons that exist in the ionosphere are the result

of photo-ionisation of neutral atmospheric constituents. It is therefore appropriate

to study the density of neutral atmospheric constituents as a function of height.

If one assumes that the neutral gas is stationary and horizontally stratified only,

a simplistic model of the gravitational force balanced by thermal pressure gradient

force can be applied. This is called hydrostatic balance and is expressed:

∂(nkT )

∂z
= −nmg , (3.1)

where the acceleration due to gravity is g, and m is the mass of a neutral constituent

of the gas. The vertical pressure gradient on the left hand side of Equation 3.1 de-

pends on the particle density, n, the gas temperature, T , and Boltzmann’s constant,

26



k. Equation 3.1 is based on the “flat Earth” approximation where z is the vertical

distance above the Earth’s surface.

With several assumptions a simple, yet useful, result can be derived from Equa-

tion 3.1. By neglecting changes in the temperature of the gas species and changes in

the gravitational constant g as a function of height, integrating from some reference

altitude zo to the altitude of interest z, the gas density n(z) is:

n(z) = noe
−(z−zo)/H , (3.2)

where,

H =
kT

mg
and (3.3)

the number density at some reference altitude is no. A new variable is defined in

Equation 3.3 called the scale height, H. It is the vertical distance upwards over

which the pressure of the atmosphere decreases by a factor of e. From Equation 3.2

several things can be learned: (1) the majority of the Earth’s atmosphere is located

near the Earth’s surface, and (2) the number density of a gas near the Earth’s surface

can be used to estimate it at any height.

3.3 The Ionosphere

There are two principle mechanisms for ionising atoms and molecules in the

upper atmosphere. These are photo-ionisation by solar radiation and bombardment

by energetic particles from the magnetosphere. Only the details of photo-ionisation

are considered in this thesis since it is relevant for electrojet currents and therefore

SMC studies. Particle precipitation is more important for disturbed times such as

substorms and sawteeth events.

When solar radiation reaches the Earth, photons are absorbed by neutral atmo-

spheric constituents. As the photons travel earthward, they encounter an exponen-

tially increasing atmospheric density. At high altitudes photo-ionisation is limited

by the low neutral gas concentration, while at low altitudes photo-ionisation is lim-

ited by the low levels of ionising radiation. In between these two limiting regions,
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Figure 3.2: The modelled electron density in the atmosphere with
regions of the ionosphere identified (adapted from Bilitza, 2001).

a layer of peak plasma production exists. Figure 3.2 is an example of the electron

concentration in the Earth’s atmosphere with height (Bilitza, 2001). The D, E, and

F regions of the ionosphere are indicated in this figure.

To estimate the electron density in the ionosphere one must begin with the

ion electron production. The following derivation is adapted from Luhmann (1995).

Light travelling an incremental differential distance, ds, through the neutral gas the

intensity of light, I, is attenuated by an amount dI. The amount of attenuation

depends on the density of the neutral gas, n, and the absorption cross section, σ,

such that:

dI = −Iσnds . (3.4)

Consider sunlight entering the atmosphere at an angle χ from the vertical direction,

as illustrated in Figure 3.3. The differential height above the surface dz is related to

the path length ds since ds = −dz sec(χ). Therefore Equation 3.4 becomes:

dI = Inσ sec(χ)dz . (3.5)
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Figure 3.3: The differential path length ds in relation to χ, the solar
zenith angle, and the differential height dz in a horizontally stratified
atmosphere.

Rearranging Equation 3.5 leads to an expression for the attenuation of the

incident light:

dI

I
= nσ sec(χ)dz . (3.6)

To find the intensity of sunlight that penetrates through the atmosphere to a

particular altitude, one must integrate down through the atmosphere from the Sun

(effectively at infinity) to the altitude of interest:∫ I

I∞

dI

I
=
∫ z

∞
n(z)σ sec(χ)dz . (3.7)

Substitution of Equation 3.2, the neutral density from simple hydrostatic balance,

leads to:

ln
(

I

I∞

)
= −nσH sec(χ) , (3.8)

where H is the scale height of the neutral gas (Equation 3.3). The quantity nσH sec(χ)

is known as the optical depth, τ , so Equation 3.8 can be further simplified as follows:

I = I∞e−τ , (3.9)

The production rate, Q, describes how incoming radiation ionises the neutral atmo-

sphere,

Q = ξσnI . (3.10)

where ξ is the ionising efficiency of the incoming radiation. The production rate

maximises at the altitude where dQ/ds = 0, so at the height of maximum photoion-

isation:

− 1

nmax

dn

ds
=

1

Imax

dI

ds
, (3.11)
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where nmax and Imax are the density and intensity at the height of maximum pro-

duction. The derivative of Equation 3.2 with respect to the path length can be

calculated, as ds = − sec(χ)dz. This leads to the following expression for the left

hand side of Equation 3.11:

1

nmax

dn

ds
=

cos(χ)

H
. (3.12)

Substituting Equation 3.12 and Equation 3.4 into Equation 3.11 reveals that at the

height of maximum production:

sec(χ)Hσnmax = 1 . (3.13)

Recalling this is the definition of the optical depth, τ , the maximum production rate

occurs where the optical depth is unity. It should be noted that the optical depth is a

function of the absorption cross section, σ, and is different for various wavelengths of

light, so the peak production will occur at different altitudes for different wavelengths

of light.

It can be advantageous to derive an expression for the production rate in terms

of the maximum production rate. Because the optical depth is unity at the maximum

production height, Equation 3.9 becomes I∞e−1. Combining this with Equation 3.13,

Equation 3.10 can be rewritten:

Qmax =
ξI∞

eH sec(χ)
. (3.14)

Now consider the neutral gas density at the height of maximum production, using

the neutral gas profile,

nmax = noe
−(zmax−zo)/H . (3.15)

Substituted into Equation 3.13, the following result can be obtained,

no =
e(zmax−zo)/H

sec(χ)Hσ
. (3.16)

This now allows the reference density, no, to be explicitly included in the equation

for the production function, by substituting Equation 3.16 into Equation 3.10. The

production function becomes:

Q =
ξI∞

Hsec(χ)
e(zmax−zo)/He−(z−zo)/He−τ . (3.17)
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Expanding e−τ using the neutral gas profile yields:

e−τ = exp
(
−e(zmax−z)/H

)
. (3.18)

Using this result and including the expression for Qmax (Equation 3.14) the produc-

tion rate can be written as follows:

Q = Qmaxexp
(
1 +

zmax − z

H
− ezmax−z/H

)
. (3.19)

This equation describes the well known “Chapman production function” (e.g., Luh-

mann, 1995).

When the Sun is directly overhead the maximum overhead production rate

from Equation 3.10 is given by:

Qmo = ησImonmo . (3.20)

Recall that for maximum production the optical depth is unity. Therefore Equa-

tion 3.14 can be rewritten:

Qmax = Qmo cos(χ) . (3.21)

Therefore the production of plasma, relative to the maximum possible produc-

tion, is modulated throughout the year by the tilt of the Earth’s rotational axis.

The preceeding discussion includes only the production of plasma, but loss processes

must be included to determine the ambient plasma number density. In the iono-

sphere there are two principle loss processes for electrons: (1) recombination, where

an electron and a ion combine, and (2) attachment, where an electron combines with

a neutral atom or molecule to produce a negative ion.

In the region of the ionosphere where currents flow, recombination is the dom-

inant loss mechanism (Brekke and Hall , 1988). The probability for one electron to

combine with an ion is proportional to the ion density since recombination implies

collisions. The number of electrons that can recombine must also be proportional to

the electron density. Since the plasma in the ionosphere is quasi-neutral, ne ' ni,

one can write:

L = αn2
e , (3.22)
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where L is the loss rate, and the proportionality constant, α, is called the recom-

bination coefficient. If one assumes the charged particles are in equilibrium in the

ionosphere then the production and loss rates are balance and L is equal to Q. This

will be true for the maximum production rate as well. Thus the maximum electron

concentration, based on Equation 3.22 and Equation 3.21, will be related to the solar

zenith angle, as follows:

nmax ∝
√

cos(χ) . (3.23)

3.4 Electrical Conductivity in the Ionosphere

Currents in the ionosphere flow because of the relative motion of ions and

electrons. For the materials that compose the ionosphere, the current density is

proportional to the force per unit charge. The constant of proportionality between

the two is called the electrical conductivity of the medium. Ionospheric conductivity

is dependent on the properties of the medium.

When charged particles move through the ionosphere they collide with neutral

and charged particles. The collision frequency is defined for each pair of interactive

species. For example, νin is the collision rate between ions and any species of neutral

particle and νie is the collision rate between ions and electrons. The collision rate

between the electrons and the ions, νie, is much smaller than νin or νen and is often

considered negligible (Walker and Russell , 1995).

Consider charged particle motion in the presence of only an electric field and

collisions. The momentum equation is given as follows:

mα
D ~vα

Dt
= qα

~E −mαναn( ~vα − ~Un) , (3.24)

where α is the particle species (ion or electron). The variable ~Un represents the

ambient velocity of the neutrals and is zero in the rest frame of the neutrals. The

mass of the particle is given by mα, ναn is the collision rate with the neutrals, ~vα

is the drift velocity of the particle, and qα is the charge of the particle. Consider

the equilibrium, or steady-state, condition of force balance in the rest frame of the
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neutrals where:

qα
~E = mαναn ~vα . (3.25)

In a situation with only electric fields and collisions, both electrons and ions drift

parallel to the electric field so vector notation in is no longer required. If i and e

represent ions and electrons, respectively, and the generic charge of qα is replaced by

the quantised electron charge, e, (qi = +e; qe = −e) the particle velocities are given

by:

vi =
qE

νinmi

; (3.26)

ve =
qE

νenme

. (3.27)

Therefore, the drift velocity for any kind of charged particle in the ionosphere is

known when only an electric field is the driver. This is advantageous because the

electric current density is defined as the amount of charge passing through a cross

sectional area per unit time. In the case of the ionosphere, both ions and electrons

have a charge magnitude of e. Their velocity, ~vα, and their density, nα, are known.

With these three parameters one can obtain the electric current density, since the

current density is defined as:

~J = nee(~vi − ~ve) . (3.28)

Again, vector notation is not required as the electric current density will be parallel

to the drift velocity. Substituting Equations 3.26 and 3.27 into Equation 3.28 leads

to the following:

J = e2ne

(
1

νeme

+
1

νimi

)
E . (3.29)

With only an electric field present, the current density can also be defined as follows:

~J = σ ~E . (3.30)

Based on of the results of Equation 3.29 and Equation 3.30, the conductivity in the

presence of an electric field only can be written:

σ = e2no

(
1

νeme

+
1

νimi

)
. (3.31)
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This result is useful, but it is incomplete, as there is also a magnetic field present in

the ionosphere. The Earth’s magnetic field plays an important role in the motion of

charged particles in the ionosphere. Consider the high northern latitude case where

the magnetic field is pointing nearly radially inward toward the Earth.

Figure 3.4: The coordinate system for the magnetic and electric fields
in the ionosphere for the high latitude case.

This changes the situation but does not nullify the result of Equation 3.31.

The above result is still useful because when a charged particle moves parallel to

the magnetic field it experiences no Lorentz force. That is why the conductivity in

Equation 3.31 is often referred to as σ‖, the conductivity in a direction parallel to

the magnetic field. Figure 3.4 shows the electric and magnetic field direction in the

high latitude ionospheric coordinate system. The electric field has two components,

one perpendicular to the magnetic field ( ~E⊥) and one parallel to the magnetic field

( ~E‖). The full electric field vector can be written as follows:

~E = ~E‖ + ~E⊥ = Ezk̂ + Exî . (3.32)

The charged particles moving perpendicular to the magnetic field feel two contribu-

tions to their acceleration, namely that of the electric field, ~E, and of the magnetic
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field, ~B. Similar to the case where there was no magnetic field, it is assumed that

collisional effects are balanced by the electromagnetic forces:

qα( ~E + ~vα × ~B) = mαναn ~vα . (3.33)

Consider the drift velocity in the direction perpendicular to the magnetic field. This

drift velocity is effectively horizontal in the northern polar regions. The vector

components can be separated according to the geometry of Figure 3.4: ~vα = vαxî +

vαy ĵ, ~E = Exî, and ~B = −Bzk̂. Because of the addition of the magnetic field the

velocities perpendicular to the magnetic field will have components in both the î

and the ĵ directions. Substituting these components into the equilibrium equation

(Equation 3.33) results in the following equations:

qαEx

mα

− qαvαyBz

mα

= ναnvαx , (3.34)

qαvαxBz

mα

= ναnvαy . (3.35)

It is useful to the derivation to introduce the motion due to gyration at this point,

since the gyrofrequency has the same units as the collision frequency. The gyrofre-

quency is the rate at which a charged particle oscillates around a given magnetic

field line. It depends on the mass and charge of the particle as well as the strength

of the magnetic field. It is given the symbol Ω and is defined as:

Ωα =
qαB

mα

. (3.36)

Equations 3.34 and 3.35 can be rewritten:

0 =
qαEx

mα

− Ωαvαy − ναnvαx , (3.37)

0 = Ωαvαx − ναnvαy . (3.38)

The drift velocities of charged particles in the î and ĵ directions are therefore given

by:

vαx =
qαναn

mα(Ωα
2 + ναn

2)
Ex , (3.39)

35



vαy =
qαΩα

mα(Ωα
2 + ναn

2)
Ex . (3.40)

More specifically the motion of the ions and electrons can be considered separately

if the species place holder α in Equations 3.39 and 3.40 is replaced with an i and e

for the ions and electrons, and the generic charge q is replaced by +e for ions and

−e for electrons. The equations of velocity therefore become:

vex =
−eνen

me(Ωe
2 + νen

2)
Ex , vey =

eΩe

me(Ωe
2 + νen

2)
Ex (3.41)

vix =
eνin

mi(Ωi
2 + νin

2)
Ex , viy =

eΩi

mi(Ωi
2 + νin

2)
Ex (3.42)

It is the relative flow of the ions and electrons that gives rise to currents and the

components of the current density (Equation 3.30) are:

Jx = e2ne

(
νin

mi(Ω2
i + ν2

in)
+

νen

me(Ω2
e + ν2

en)
)

)
Ex , (3.43)

Jy = e2ne

(
Ωe

me(Ω2
e + ν2

en)
− Ωi

mi(Ω2
i + ν2

in)

)
Ex . (3.44)

There are two conductivities: one parallel to the electric field and one perpendicular

to it. The conductivity parallel to the electric field is called the Pedersen conductiv-

ity, σP :

σP = e2ne

(
νin

mi(Ω2
i + ν2

in)
+

νen

me(Ω2
e + ν2

en)

)
. (3.45)

The conductivity perpendicular to the electric field in the plane of the horizontal

atmosphere is called the Hall conductivity, σH :

σH = e2ne

(
Ωe

me(Ω2
e + ν2

en)
− Ωi

mi(Ω2
i + ν2

in)

)
. (3.46)

The presence of ~B and ~E fields in ionspheric plasma creates a medium with

conductivities in three dimensions. In the polar regions, where the magnetic field is

nearly vertical, the full current density vector can be written in terms of a conduc-

tivity tensor:

~J =


σP σH 0

−σH σP 0

0 0 σ‖

 ~E . (3.47)
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Figure 3.5: (a) Parallel conductivity versus altitude, (b) Pedersen
conductivity versus altitude, and (c) Hall conductivity versus altitude
for the day and night during solar maximum and minimum as indicated
(Johnson, 1961).
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The σ‖ is related to field-aligned currents (FAC) and is defined by Equation 3.31.

The Hall and Pedersen conductivities are related to currents flowing perpedicular to

the magnetic field. Figure 3.5 displays typical values for the parallel, Pedersen, and

Hall conductivities for day and night at solar minimum and solar maximum.

3.5 Regions of the Ionosphere

Each neutral constituent in the atmosphere has a different natural response to

light and a different scale height. Because of this, the maximum production rates

for different ion species occur at different heights.

In the Earth’s ionosphere above 100 km altitude, plasma is mainly produced by

photo-ionisation of atomic oxygen O, molecular nitrogen N2 and molecular oxygen

O2, according to the three following reactions:

O + hν → O+ + e , (3.48)

N2 + hν → N+
2 + e . (3.49)

O2 + hν → O+
2 + e . (3.50)

After the initial photochemical reaction, the N+
2 ions go through the intermediate

reaction to form NO+: O+ + N2 → NO+ + N . Likewise, O+ can interacts with N2

to produce NO+: N+
2 + O → NO+ + N . At the highest altitudes in the ionosphere

O+ is the dominant ion, as there is little N2 to produce NO+. Lower down increased

nitrogen density leads to NO+ being dominant (Hunsucker and Hargreaves , 2003).

Based on electron number density three regions of the ionosphere can be de-

fined: (1) the F region, (2) the E region, and (3) the D region. The ionospheric

region at the highest altitude is the F region, and it extends upward from about

150 km. The maximum electron number density in the F region occurs at an alti-

tude of about 250 km and is called the F peak. The F peak is the result of oxygen ion

(O+) production and typically has electron concentrations of the order of 106 cm−3

(Luhmann, 1995).
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Figure 3.6: Three cases of charged particle motion in the ionosphere
in the presence of electromagnetic fields and collisions. (Adapted from
Kelley , 1989).

In the F region the neutral density is low enough that charged particles in

this region incur very few collisions. The ion-neutral collision frequency is of the

order of 10 s−1, and the electron-neutral collision frequency is of the order of 100 s−1

(Kelley , 1989). These collision frequencies are small compared to their respective

gyrofrequencies (Ωi ' 150 s−1 and Ωe ' 107 s−1). Neglecting collisions reveals that

in the F region the electron and ion drift velocity is controlled by the electric and

magnetic field, as follows:

Electrons: vex = 0 , vey =
Ex

B
(3.51)

Ions: vix = 0 , viy =
Ex

B
(3.52)

Figure 3.4 displays typical particle motion in the presence of collisions. The elec-

tric and magnetic field direction in the high latitude ionospheric coordinate system

displayed in this figure applies to all panels. Both the electrons and the ions are mag-

netically controlled in the F region, and therefore no horizontal currents will flow in

this region, as electrons and ions drift with the same velocity. The drift direction

is perpendicular to both the electric and magnetic field as observed in Figure 3.4.

Panel (b) of Figure 3.6 displays the typical electron and ion drift motion in the near

collisionless F region.

The E region exists between 90 km and 150 km. The E region has a peak in

electron number density near 110 km. During times of active aurora the E-region
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peak is due to both the production of nitric oxide ions (NO+) and molecular oxygen

ions (O+
2 ) with a typical electron concentrations of 105 cm−3. In the E region, the

neutral density has increased to a value where ions no longer convect in the ~E × ~B

direction. In this region the ion-neutral collision frequency has increased to about

103 s−1, which is an order of magnitude greater than the ion gyro frequency (Kelley ,

1989), and therefore the ions are collision-controlled. The electron-neutral collision

frequency is of the order of 104 s−1 for electrons in the E region. Electrons have a

much larger gyrofrequency and remain magnetically controlled. Therefore, electrons

continue to have a drift motion similar to that displayed in panel (b) of Figure 3.6.

The ions, due to the increase in collisions, drift as pictured in panel (c) of Figure 3.6.

After a collision with a slower neutral particle the electric field accelerates the ion in

the direction of the electric field. As the ion gains speed, the Lorentz force begins to

act on it. However, before the ion can make a full rotation, another collision occurs

and the cycle repeats. The result is a drift velocity component in the direction

of the electric field, which in turn results in relative motion of ions and electrons.

This relative motion between charged particles is what produces E-region currents.

These E-region currents create magnetic perturbations that can be observed near

the surface of the Earth by magnetometers. The E region peak disappears at night,

but the F peak does not. This is because O+ cannot recombine directly; first it must

become NO+. In the F region, it is difficult for O+ to become NO+ because the

density of N2 is lower.

Below the E region lies the D region which has electron concentration up to

104 cm−3. It is the deepest layer of the ionosphere and exists between 50 km and

90 km altitude (Luhmann, 1995; Russell , 1995). In this region the neutral density

has increased to the point where ions and electrons are both strongly collisionally

controlled. The D-region motion of charged particles is displayed in panel (a) of

Figure 3.6. Thus no currents flow in the D-region.

40



Chapter 4

Ionospheric and Magnetospheric

Convection

4.1 Observational Techniques

The Earth’s magnetosphere is vast, encompassing a volume of the order of 1026

m3 (Elphinstone et al., 1996), so direct observation is very difficult. There are many

satellites in a variety of orbits around the Earth that do make direct observations,

but these only make point measurements. Because the ionospheric electric field maps

to the magnetosphere, it is possible to quantify many magnetospheric phenomena

with Earth-based instruments. Instruments, such as ground-based networks of mag-

netometers and radars, have been developed to exploit ionosphere - magnetosphere

coupling. This coupling makes it possible to study magnetospheric convection from

the ground with good spatial and temporal resolution, as well as extensive coverage,

while using instruments that are a small fraction of the cost of a satellite.

4.1.1 Auroral Electrojet Indices

The name Auroral Electrojet Indices, or AE Indices, is applied to a group

of four variables: (1) the Auroral Upper (AU) Index, (2) the Auroral Lower (AL)

Index, (3) the Auroral Electrojet (AE) Index, and (4) the AO index. These were

developed as a means to characterise the strength of the global electrojet currents

(Davis and Sugiura, 1966). A simplified morphology of the electrojet currents is

illustrated in Figure 4.1, where noon is towards the top of the page. The currents

flow primarily in the anti-sunward direction at low latitudes, in the magnetic latitude
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Figure 4.1: The auroral electrojet currents (from Baumjohann and
Treumann, 1996). Noon is toward the top of the figure, midnight is
towards the bottom, dusk is towards the left and dawn is towards the
right.

range of 65o - 75o (Davis and Sugiura, 1966). The convection electrojets develop in

response to the large-scale circulation of magnetospheric plasma, while the substorm

electrojet becomes important when the magnetosphere is disturbed, such as during

a substorm.

To characterise the electrojets, an array of ground-based magnetometers at lat-

itudes near 70o are used (Kamide and Kokubun, 1996). Magnetometer networks offer

several advantages: (1) they are very responsive to currents that flow in the iono-

sphere due to the convection cycle and (2) they operate continuously, independent

of interruptions such as cloudy skies.

The AE indices are derived from the horizontal variations of the Earth’s mag-

netic field observed at the Earth’s surface by 10 to 15 magnetometers in the auroral

zone. The north-south magnetic variations are the result of the mainly east-west

electrojet currents that flow overhead. Figure 4.2 presents the locations of AE mag-

netometer stations, which are all in the northern hemisphere. Ideally there would

be a similar network in the southern hemisphere, but there is insufficient land in the

southern auroral zone to deploy an evenly spaced array of magnetometers. The AE

indices are therefore only a northern hemispheric measurement.

The AU index responds to the eastward electrojet current that flows in the dusk

side of the ionosphere. The AL index responds to the westward electrojet current

or the substorm electrojet in the dawn-midnight sector, as illustrated in Figure 4.1.
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Figure 4.2: The location of the magnetometers used to derive the AE
indices. The two grey lines enclose the statistical auroral oval for Kp=4
(moderately disturbed) (Feldstein and Starkov , 1967).

The auroral electrojets flow in the regions of sunward return flow in the low latitude

part of the global convection pattern (seen in Figure 3.1).

Before calculating the AE indices, the data must be adjusted to a baseline

value. The north-south magnetic field value (H component) is usually recorded with

1-min resolution. The H component data are then normalised to a base H value

for each station. The base value is calculated each month for each station. It is

an average of all of the data for the 5 geomagnetically quietest days of that month.

This base value is then subtracted from all H-component data measured at that

particular station during the month.

For each minute, the greatest positive value of the H-component magnetic

field perturbation from all available stations is chosen, and this is the AU index.

The greatest positive perturbation is determined by the magnetometer station that

is closest to the maximum eastward current intensity. The most negative H pertur-

bation for all stations at the same instant becomes the AL index, and it quantifies
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Figure 4.3: The shaded areas indicate the viewing area that the Su-
perDARN radar network covers in the North and South hemisphere,
respectively. (Figure courtesy R. Barnes).

the strongest westward electrojet. The AL index responds to either the westward

convection electrojet in the dawn sector or to the substorm electrojet in the midnight

section, whichever is stronger. The AE index is obtained by subtracting AL from

AU and quantifies the total maximum amplitude of the east and west electrojets.

Since AU is mainly positive and AL is mainly negative the AE index is mainly a

positive value. The AO index is obtained by averaging AU and AL and is a measure

of the displacement of the midpoint of AU and AL from the reference level at any

time (Davis and Sugiura, 1966).

4.1.2 SuperDARN

The Super Dual Auroral Radar Network (SuperDARN) (Greenwald et al., 1995)

is an international network of high frequency (HF) radars. The coverage of the Super-

DARN radar network for both hemispheres is displayed in Figure 4.3. SuperDARN

measures the convection velocity of plasma in the ionosphere. In the northern hemi-

sphere there are currently twelve radars in operation, while in the southern hemi-

sphere there are seven. Each SuperDARN radar is capable of observing over 4 million

square kilometers in the ionosphere.

Each radar in the “common mode” of operation makes a complete scan in
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1 or 2 minutes. A single radar beam is swept sequentially through 16 positions

separated by 3.24o in azimuth, therefore in one scan a beam sweeps through 52o.

Along each beam there are 75 “range gates” of 45 km in length with the first range

gate starting at a horizontal distance of 180 km from the radar. Offset along the

array boresight, either in front of or behind the main antenna array there is a four-

antenna interferometer array that is used to identify the elevation angle of arrival of

the returning electromagnetic waves.

SuperDARN measures the convection velocity of the ionospheric plasma using

the Doppler shift of returning radar echoes. Each radar can only measure the plasma

drift speed in the direction parallel to the radar beam. The ionospheric convection

pattern is two dimensional, which is why the radars in the network are designed to

operate in pairs. With the two fields of view overlapping, as seen in Figure 4.3, two

dimensional velocity vectors can be resolved. To reconstruct the two dimensional

flow vectors data from all available radars must be combined. This is done with the

“merge” technique, which combines pairs of overlapping components to reconstruct

the full velocity vector.

Not all of the SuperDARN range gates contain ionospheric velocity data in

every scan. Ionospheric data can be contaminated by echoes from the ground, and

poor scattering conditions can lead to no data. In addition to this SuperDARN

cannot make velocity measurements over the entire northern region since there are

gaps in radar coverage. To obtain a global convection pattern, the velocties in

the regions where there are no measured data must be interpolated. Before doing

any interpolation measured velocity components are placed in an equal area grid

of magnetic latitude and magnetic longitude. The area of each cell in the grid is

defined by the spatial scale of 1o in latitude, which is roughly 111 km projected on

to the surface of the Earth. For each interval of 1o of latitude the number of grid

cells distributed in longitude is set by the requirement that the step in longitude

be as close to 111 km as possible. Panel (a) of Figure 4.4 illustrates an example of

the gridded line of sight velocity measurements made by SuperDARN. A convection

mapping technique developed by Ruohoniemi and Baker (1998) is used to produce
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two dimensional convection maps from the combined gridded data. At the heart

of this technique is an iterative process to find a convection map produced from

spherical harmonic functions that best fit the velocity components. The iterative

algorithms change the spherical harmonic coefficients until the velocity components

from the convection map are as similar as possible to the measured SuperDARN

velocity components. It is possible that the electrostatic potential obtained from

the convection mapping procedure is unphysical. This is undesirable and this is

why, in order to obtain a global convection map that is the most consistant with all

available data, the iterative process is initiated with an a priori statistical convection

model. The statistical model tells one, based on the IMF conditions, what convection

pattern is most likely to occur. The statistical model constrains the regions of the

convection pattern where no SuperDARN velocity data have been obtained. When

there are no velocity components the convection pattern obtained from the iterative

convection mapping process is strongly influenced by the model, which may or may

not represent what actually occurred.

To ensure that the convection map is a true representation of the actual iono-

spheric convection pattern, it is important that there be sufficient measurements

to dominate the fit (Ruohoniemi and Baker , 1998). This is particularly important

for SuperDARN studies of SMC because a convection model largely influenced by a

statistical constraint is inherently steady.

A typical convection pattern is presented in Figure 4.4 (b). The equipotential

lines are represented by the solid and dashed black lines, with dashed lines repre-

senting positive voltages and solid lines representing negative voltages. The best-fit

algorithm imposes a low magnetic latitude (usually ≤50o) zero-flow and zero-voltage

boundary, which is illustrated by the green line in panel (b) of Figure 4.4. The re-

constructed flow vectors are overlaid on the best-fit electrostatic potential contours.

The IMF conditions for the a priori statistical convection pattern are displayed in

the top right hand corner of the convection map. The dial plot indicates the direction

and magnitude of the IMF vector in the Bz-By GSM plane, and the magnitude of

the IMF is printed to the left of the dial plot. The difference between the maximum
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Figure 4.4: (a) The gridded line of sight velocity measurements made
by SuperDARN. (b) The SuperDARN convection map constructed from
the line of sight data. In panel (b) the equipotential contours resulting
from the spherical harmonic potential expansion are represented by the
black lines. The clock plot in the top right hand corner of panel (b)
displays the IMF Bz and IMF By components used for the statistical
model. The maximum and minimum potential are represented by an
+ and × respectively. The potential difference between the maximum
and minimum voltage is displayed in the top left corner (figure courtesy
R. Barnes).
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voltage (+) and the minimum voltage (×) is the cross polar cap potential difference

(PCPD).

4.2 Previous SMC Results

SMC detection methods have been based on quantitative definitions of phe-

nomena related to SMC, such as magnetometer responses to ionospheric currents.

While the qualitative description of SMC is generally accepted, developing a robust

quantitative definition has proven to be very difficult. There have been three primary

qualitative definitions that have been developed to classify SMC.

Sergeev et al. (1995) developed a SMC definition consisting of four criteria that

must be satisfied for 4-6 hours: (1) the IMF must be stable and continously south-

ward; (2) the AE index must be greater than 200 nT to ensure enhanced convection;

(3) no substorm signatures should be observed by ground based instruments; and

(4) there should be no current sheet disruptions or plasmoid releases in the near

Earth magnetotail to ensure that no large scale reconfiguration of the tail occurred.

The fourth condition requires in situ magnetotail measurements. If no magnetotail

measurements are available, a lack of substorm signatures in ground based data is

accepted as confirmation that the tail was not reconfigured.

During SMC, the large scale stability of the magnetotail is maintained, but

Sergeev et al. (1995) found that auroral zone magnetometers recorded considerable

amounts of short term activity. They called these signatures magnetic transient

activations. These activations resemble those found during substorms, and without

multi-instrument information it would be difficult to differentiate a substorm feature

from a transient activation. The duration of these events is typically less than

10 minutes with a periodicity between 10 and 40 minutes. On average the periodicity

was 30 minutes. The magnetic field fluctuations during these events can be equal to

substorm onset or expansion phase activity levels. The differentiating factor, Sergeev

et al. (1995) states, is the large scale stability of the magnetotail.

Sergeev et al. (1995) found the active auroral regions during SMC resemble
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the auroral distribution during the expansion phase of substorms. These aurora are

characterised by active, discrete aurora, which form a bulge-like pattern. This bulge

is the primary location of the magnetic transient activations, and can persist for

several hours during SMC events.

Observations made by satellites during SMC in the magnetotail have found that

there are small scale activations in the plasma sheet magnetic field and earthward

plasma flow bursts. Sergeev et al. (1995) states that these transient activations in the

plasma sheet do not change the large-scale state of the magnetotail but can enhance

the earthward transport of plasma and magnetic flux.

Sergeev et al. (1995) also found that all the SMC events studied began and

ended with substorms. They concluded that SMC represents a period of extended

activity between two substorms and that it may be that the magnetic configuration

required to sustain steady convection can only develop following substorm develop-

ment. Sergeev et al. (1995) found that the substorms that occurred at the end of SMC

event could either be triggered due to IMF variations or could occur spontaneously.

The work conducted by Sergeev et al. (1995) was an important step in under-

standing SMC but some have questioned the quantitative definition used. O’Brien

et al. (2002) stated that the first condition of the Sergeev et al. (1995) definition

presumed the IMF conditions that should lead to SMC. They also claimed that the

third and fourth criteria do not actually quantify steady convection. O’Brien et al.

(2002) developed a quantitative substorm indicator based on the AL index and also

considered shorter lengths of time for the SMC conditions to be maintained. An

event was deemed to be SMC if AE was greater than or equal to 200 nT and AL de-

creased at less than 25 nT per minute for a period of at least 90 minutes. The period

of 90 minutes was used instead of 4 hours, because it allowed for the investigation

of the behaviour of shorter steady intervals as well. The disadvantage of using this

shorter time constraint was that the recovery phase of substorms may be identified

as SMC.

The first criterion that AE ≥ 200 nT is accepted as an indication that con-

vection is enhanced. The second criterion, dAL/dt ≥ -25 nT/min requires a brief
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explanation. According to McPherron et al. (2005) a moderate substorm expansion

phase can last 20 minutes, and the AL index can drop to -500 nT. Therefore AL

would have dropped by 25 nT per minute, on average, during the course of the ex-

pansion phase. During a larger substorm, AL is expected to drop more quickly than

25 nT per minute. If AL decreases because the convection electrojets have become

enhanced due to SMC, it is expected to decrease more slowly than 25 nT per minute.

The AL criterion is contentious as it is an empirical rule of thumb.

Applying their criteria to the AE data from 1978 to 1988, O’Brien et al. (2002)

found 2000 SMC’s of duration greater than 90 minutes. Several of these SMC can-

didate events occurred when IMF Bz varied substantially, thereby contradicting the

notion that steady convection must be driven exclusively by a steady negative IMF

Bz component. O’Brien et al. (2002) found statistically that values of IMF Bz near

-3 nT and solar wind velocities below 450 km/s promote but do not always lead to

SMC.

DeJong and Clauer (2005) developed another technique to classify SMC. The

method was based on the principle that when convection in the magnetosphere is

steady, the creation and destruction of open flux should be balanced. The amount of

open flux in the magnetosphere should therefore remain relatively constant during

SMC. When the amount of open flux is constant, the area of the polar cap should not

change. DeJong and Clauer (2005) used the poleward boundary of the auroral oval as

an approximate indicator of the perimeter of the polar cap from which to calculate

its area. The poleward edge of the auroral oval was estimated using the auroral

emissions recorded by the Ultraviolet Imager (UVI) on the POLAR spacecraft (Torr

et al., 1995). The poleward auroral boundary was defined as the latitude poleward

of which the image intensity fell below 4.3 photons/cm3/s. At times during its orbit

the Polar spacecraft did not have a full view of the northern auroral oval. When this

occurred the missing part of the polar cap boundary was extrapolated by fitting a

curve to the visible part of the boundary.

During a substorm, the polar cap area can decrease by as much as 20% to

30% within an hour (DeJong and Clauer , 2005). Thus DeJong and Clauer (2005)
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adopted the criterion that when the polar cap area changed by less than 10% in

one hour convection was steady. To ensure convection was enhanced, the AE index

was required to remain above 200 nT for the duration of the SMC interval. They

required that these conditions must persist for at least 3 hours. DeJong and Clauer

(2005) used a time constraint of 3 hours, as compared to the 90 minutes used by

O’Brien et al. (2002). This was to reduce the likelihood that the recovery phase of

substorms was included in the SMC data set. In the event that Polar UVI could no

longer see the auroral oval during the course of a SMC event, its end was determined

by looking for substorm signatures in the AL index.

For the years 1997 to 2001 DeJong and Clauer (2005) identified 22 SMC events.

The average IMF Bz was found to be -4 nT. This is in agreement with past studies,

such as O’Brien et al. (2002), which found Bz to be moderately negative during SMC

events. DeJong and Clauer (2005) also identified two SMC events where the polar

cap area increased steadily over 3 hours eventually ending in a substorm. These two

events were more consistant with being substorms with very long growth phases.

The use of POLAR UVI to indirectly measure the amount of open flux in the

polar cap is an intriguing way to study SMC, but there are drawbacks. Foremost

of these drawbacks is that the poleward edge of the auroral oval is only a proxy for

the polar cap boundary, but the method does not require absolute areas; rather it

relies on the relative changes in area. Polar UVI does not always have a full view of

the auroral oval due to its orbit and viewing angle. In addition, during the northern

summer months a large portion of the polar cap is immersed in sunlight, which

prevents the calculation of the entire perimeter of the auroral oval.

All three quantitative SMC definitions described above were designed to de-

tect SMC but none directly measured convection. Instead, indirect observations

were used to quantify convection based on either ground-based magnetometer mea-

surements or auroral luminosity measured by a satellite. Some direct convection

measurements have been used to study SMC. Hughes and Bristow (2003) used Su-

perDARN to study two SMC events. Hughes and Bristow (2003) focused on the

electrically defined Harang discontinuity portion of the convection pattern in the
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midnight sector. Their study indicated, for the first time, that Harang discontinuity

was present during the SMC. This study was an important first step in incorporating

direct convection measurements into the study of SMC but was limited as only two

events were examined. Future work using SuperDARN should include larger event

sets so a more complete picture of convection during SMC can be developed.
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Chapter 5

Evaluation of SMC Selection Methods

SuperDARN directly measures ionosphere convection patterns on a global scale.

For this reason the SuperDARN convection maps are an ideal tool with which to

study SMC. One must, however, understand the advantages and limitations of Su-

perDARN before making use of its data.

Because SuperDARN can not measure the entire ionospheric convection pat-

tern, the gaps in the observations are interpolated using spherical harmonic expan-

sion algorithms to deduce the convection pattern that best fits the data obtained by

SuperDARN. The interpolation process used to obtain the best fit convection map

is constrained by statistical convection maps, and these are parameterised by the

IMF conditions at that particular time. When very few data points are obtained,

the resultant convection map is usually very similar to the statistical model, which

is inherently steady. It would be prudent to use previously developed and accepted

methods of SMC selection to determine the properties of SuperDARN data during

SMC. A quantitative SuperDARN definition of SMC may be developed out of this

process. The global convection maps may also illuminate problems with existing

SMC selection methods, which are not based on direct observations of convection.

The SMC intervals in this study were identified using the enhanced convection

criterion (AE≥ 200 nT) and the stable magnetotail criterion (dAL/dt ≥- 25 nT/min)

of O’Brien et al. (2002). In contrast, to reduce the likelihood of selecting the recovery

phases of substorms, the enhanced convection and stable magnetotail criteria were

required to persist for at least 3 hours. This was a compromise between the 1.5 hour

minimum SMC time of O’Brien et al. (2002) and the 4 - 6 hour duration used

by Sergeev et al. (1995). It should also be noted that de-spiked AE and AL data
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Figure 5.1: The solid line is the yearly number of SMC events selected
as a function of year. The dotted line is the yearly number of sunspots
observed. Sunspot data provided by National Geophysical Data Centre.

were used in this study. The processed data were obtained from R. L. McPherron,

who performed a visual inspection to remove data spikes, which were likely due to

magnetometer instrument effects (R. L. McPherron, personal communication).

AE and AL data were available for the years 1966-2001, inclusive, with the

exception of 1975-1977, 1988, 1989, and 1996. The selection criteria resulted in a

total of 1126 SMC intervals. This amounts to one SMC event occurring every 10

days, on average, but the SMC intervals did not occur at regular intervals. SMC

occurrence has a strong seasonal dependence, as well as a strong dependence on the

solar cycle.

5.1 AE Solar Cycle Dependence

The monthly counts of SMC intervals for all available years from 1966 to 2001 is

presented in Figure 5.3. More SMC events were detected during the years near solar

maximum (1968, 1979, 1990, 2001). The SMC occurrence and solar cycle relationship

is more clearly evident in Figure 5.1, in which the sunspot number (dashed line) and

SMC occurrence (solid line) vary in phase. The lack of one-to-one correspondence

54



is of interest and should be investigated further, but is out of the scope of the

present study. The increased SMC occurrence at solar max does suggests that the

SMC occurrence rate is related to geomagnetic activity. Solar cycle modulation

of geomagnetic activity is a well known phenomenon (e.g, Gonzalez et al., 1993).

Increased geomagnetic activity is expected during solar maximum.

5.2 AE Dependence on Season

The SMC occurrence rate, presented in Figure 5.2, exhibits a seasonal variation,

with more SMC events selected in the northern summer months. This seasonal

variation occurred during all phases of the solar cycle, and the trend was present

each year. There is no corresponding trend in the southern summer months because

the AE indices are only a northern hemisphere measurement. The SMC distributions

for all available years were combined to form a total annual SMC events distribution,

which is presented in Figure 5.3. The strong seasonal dependence is more clearly

evident, and the total events distribution is much more smoothly varying than the

yearly distributions in Figure 5.2.

The large variation in the number of SMC events as a function season is more

likely due to some process other than convection. Studies, such as that by Ahn et al.

(2000), have reported that ionospheric conductivity causes a seasonal variation in the

AE indices, with stronger currents observed in the northern summer. The AU index is

most affected by variations in photoconductivity, while the AL index, which is closely

related to substorm activity and therefore geomagnetic activity, displays a peak in

activity near equinox. This variation in ionospheric conductivity is unfortunate for

SMC studies as it makes a constant AE cutoff unsuitable for selecting events with a

minimum convection threshold. Appropriate methods must therefore be developed

to minimise the effects that conductivity has on SMC event selection using the AE

index.
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Figure 5.2: Occurrence of SMC events for each month for available
years from 1966 to 2001 selected with AE ≥ 200 nT.
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Figure 5.3: The total distribution of SMC events selected using the
constant AE cutoff of 200 nT.

5.3 Improving SMC Selection Criteria

A particular value of AE is dependent on the convection in the magnetosphere

and the conductivity of the ionosphere, and the ionospheric conductivity is dependent

on season. While the modified method of O’Brien et al. (2002) is designed to find

intervals of enhanced convection, the annual variation in ionospheric conductivity

may be introducing a non-constant minimum convection threshold thoughout the

year. As a first attempt at minimising the effects of conductivity, a variable AE

cutoff function should be developed.

During the winter months the conductivity in the polar ionosphere is at its

lowest because the solar zenith angle is large, resulting in a lower rate of photo-

ionisation in the upper atmosphere. The strength of magnetospheric convection

in the winter must therefore be greater to generate electrojet currents equivalent

to those observed in the summer months. In an attempt to quantify convection

enhanced above a consistent minimum value throughout the year, the minimum AE

value of the modified O’Brien et al. (2002) method was varied as a function of year,
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with the AE cutoff being lowest in the winter. Many different functional forms for

a variable AE cutoff were tried, including a Gaussian and several cosine polynomial

functions. All functions that were tested maximised at 200 nT at the northern

summer solstice. For each function tested a working total SMC events distribution

was produced. To gauge which function produced the “flattest” distribution two tests

were devised. The first was the minimum difference test. For all AE cutoff functions

tested, the difference between the maximum and the minimum number of events

per month was determined for the working total events distribution. The “best”

function would have the smallest difference between maximum and minimum. The

second test was based on the variance of each function’s total events distribution.

The function with the smallest variance of monthly values was deemed the most

appropriate. The variable AE cutoff function is a single cosine function raised to a

power n, as follows:

AE ≥ A cosn

(
(t− 173)π

365

)
+ (200− A) . (5.1)

In the generalised equation t is the day of the year, A is the amplitude of the

cosine function in units of nT, and the integer exponent n controls the width of the

function. For all integer values of n between 1 and 10, SMC occurrence distributions

were determined for integer values of A between 0 and 200 nT.

When A is equal to 0 nT the resulting AE cutoff function will have a constant

value of 200 nT, which is the traditional SMC selection criterion. When A is equal

to 200 nT the AE cutoff function peaks at 200 nT at the summer solstice and

minimises at 0 nT at the winter solstice. Each AE cutoff function was used to select

working SMC events, and a total monthly events distribution was determined for all

combinations of A and n using all available AE data from 1966 to 2001.

The minimum difference test and minimum variance test were applied to de-

termine which pair of A and n values produced the flattest total events distribution

for Equation 5.1. Figure 5.4 displays in panel (a) the minimum difference test as a

function of A and n, and in panel (b) the variance as a function of A and n. The

minimum value in each plot is indicated by a plus sign. The minimum difference test

found the flattest events distribution occurred for A equal to 107 nT and n equal to
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Figure 5.4: (a) The difference and (b) the variance of the working
“SMC” events distributions resulting from applying the variable AE
cutoff function (Equation 5.1) for integer values of cosine exponent n
from 1 - 10 and integer values of cosine amplitude A from 0 - 200 nT.
The plus sign indicates the minimum in both plots.
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5. The minimum variance test had the lowest value when A was equal to 110 and n

was equal to 5. Therefore both tests minimised at nearly identical values of A and n

and there were not multiple minima for physically realistic values of A and n. With

the most appropriate values of A and n the following variable-AE cutoff function

was adopted:

AE ≥ 110 cos5

(
(t− 173)π

365

)
+ (90) . (5.2)

A word of caution should be noted here. In the winter months the new en-

hanced convection criterion (Equation 5.2) is as low as 90 nT. Recall that the AE

index is obtained by subtracting the quite-time baseline H component from the

raw magnetometer data, as described in Chapter 3. If this baseline correction is

not sufficient, the AE index can appear weakly enhanced for long periods of time.

Questionable baselining is more common during times when there are technical dif-

ficulties and fewer magnetometers are operating. Most of the AE index data have

been thoroughly checked to ensure that baseline problems are removed. However,

only provisional data are avaliable for the years 1997 - 2001, so there may be prob-

lems during these years. For large AE index values, such as 200 nT, baseline errors

are not usually significant, but they can become a problem at lower values of AE.

Since the modified AE cutoff of Equation 5.2 has such a low enhanced convection

requirement in the winter months, it was necessary to institute a baseline check to

ensure that the apparent enhancement present during selected events was the result

of convection rather than of a baseline error.

Qualitatively, intervals with baseline errors look different from SMC in that

the AU index is much larger than the AL index. Often with baseline errors the

AU index never drops to zero but instead remains elevated above a constant value.

Figure 5.5 displays the quicklook plot of the AU, AL, AE and AO indices for two

different days, October 30, 2001, and December 22, 2000. The data from October

30, 2001, displayed in panel (A) contained two intervals that were deemed SMC

by Equation 5.2, one from 4:33 UT until 7:47 UT and a second from 8:23 UT to

11:43 UT. Baseline subtraction was not an issue for these events as AU and AL were

roughly the same magnitude and both dropped to zero at 15:30 UT. This indicates
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Figure 5.5: (A) An example of AE data with reasonable baseline
adjustment, and (B) an example of baseline errors in the AE indices.
(AE quicklook plots provided by the World Data Center, Kyoto.
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proper baseline procedure had occurred. In contrast the SMC interval starting at

1:53 UT on December 22, 2000 and ending at 7:55 UT was plagued by baseline

problems. This event is pictured in panel (B) of Figure 5.5. Notice, especially

between 10 and 21 UT, that the AU index remains enhanced and unusually stable

for most of the day, while at the same time the AL index was nearly zero. To ensure

a high quality data set visual inspection of the quicklook AE plots was performed

for every variable AE SMC event selected in the years 1998 - 2001. In these years of

provisional AE data there were 55 rejected events out of a total of 421.

The white histograms in Figure 5.6 are the monthly counts of SMC intervals

for all available years from 1966 to 2001 as selected by Equation 5.2. The white

histogram in Figure 5.7 is the verified total events distribution when the variable

AE cutoff defined by Equation 5.2 was used. Both figures show the seasonal depen-

dence has been greatly reduced. The original distributions have been reproduced

in Figure 5.6 and 5.6 for reference. While the total event distribution that resulted

from the variable AE cutoff function is relatively flat, a semi-annual variation still

remains. This semi-annual variation peaks in the spring and the fall in agreement

with the Russell McPherron effect (Russell and McPherron, 1973). This trend was

noted by Ahn et al. (2000) in the AL index. The white histogram in Figure 5.7

also displays strong qualitative agreement with the geomagnetic activity aa index in

Figure 2.5, which describes average geomagnetic activity.

5.4 SuperDARN and Seasonal Effects On SMC

The main purpose behind developing a variable AE cutoff function was to

identify SMC consistently, based on a fixed minimum convection threshold. Super-

DARN data will now be included to determine how the variable AE cutoff function

performs. As a first step, the cross polar cap potential difference (PCPD) was used

to quantify convection. SuperDARN convection maps were produced every 2 min-

utes for the duration of each SMC. A delay of 60 minutes was applied to the IMF

data from the ACE Magnetic Field Instrument. The ACE spacecraft is located at
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Figure 5.6: The black histrograms are the occurrence of SMC events
per month for available years from 1966 to 2001 selected with AE ≥
200 nT. The white histrograms are the occurrence of SMC events per
month for available years from 1966 to 2001 selected using the variable-
AE cutoff function in Equation 5.2.
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Figure 5.7: The dark histogram is the total distribution of SMC events
selected using a constant AE cutoff of 200 nT. The white histogram is
the total distribution of SMC events selected using the variable AE
cutoff function from Equation 5.2, with A = 110 and n = 5.

the L1 lagrangian point, which is approximately 1.5 million kilometers upstream of

the Earth along the Earth-Sun line. The polar cap voltages from the individual

convection maps were combined to determine the average value of PCPD for each

SMC interval. The average PCPD value for an event is represented by a black dot

in Figure 5.8. The black line in each panel represents a sliding mean of the PCPD

calculated on the first day of each month and includes two months of PCPD data.

The dashed line in each plot represents 45 kV.

The mean interval voltages for SMC events selected using AE ≥ 200 nT are

presented in panel (a) of Figure 5.8, and panel (b) of Figure 5.8 displays the voltages

of the SMC events selected using the variable AE cutoff function of Equation 5.2. To

provide context, it is useful to know what SuperDARN typically observes. To this

end, a list of randomly selected events was created by changing the date of properly

identified SMC events using a random number generator. The SMC list was used

as a starting point, in order to maintain some statistical properties of the interval
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Figure 5.8: Average interval values of SuperDARN PCPD for: (a)
SMC events selected using AE ≥ 200 nT, (b) SMC events selected using
Equation 5.2, (c) randomly selected events, and (d) events selected
using AE ≤ 200 nT. The dashed line represents 45 kV, the solid line is
a sliding 2-month average of PCPD.
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set, such as event duration. The randomly selected events were distributed evenly

throughout the year, and they are presented in panel (c) of Figure 5.8.

The mean voltages during the random intervals are predominantly between

20 and 60 kV, and the average of the 2-min map voltages is 45 kV. In contrast,

of the events selected using a constant AE cutoff, only 7 were below 45 kV. Fur-

thermore, 90% of the 18379 individual 2-min map voltages for the SMC intervals in

panel (a) exceeded 45 kV. The SuperDARN PCPD data therefore confirms that the

SMC events selected using a constant AE cutoff 200 nT are intervals of enhanced

convection.

The sliding mean voltage line in panel (a) suggests that the summer SMC

events have lower voltages, which indicates weaker summer convection. The ran-

domly selected events of panel (c) did not seem to display this seasonal variation.

This could be construed as evidence that conductivity is affecting SMC events se-

lection in panel (a). This evidence is not conclusive, since there is an unquantified

uncertainty in the voltages derived from SuperDARN measurements. Further work

will need to be needed to address the significance of the trend in panel (a).

The variable AE cutoff events also displayed enhanced convection, compared to

the randomly selected events, with 86% of the 439 variable-AE SMC events having a

mean event voltage above 45 kV. Of the 55105 2-min map voltages used to calculate

the average PCPD, 80% were above 45 kV. The variable AE cutoff function therefore

preserves enhanced convection throughout the year, while increasing the number of

events in the winter months. The events selected in the winter months had similar

voltages to those selected in the summer, providing some evidence that the variable

AE cutoff selects events with a constant minimum convection threshold.

As a further check of the strength of convection quantified by the AE indices,

an investigation of “non-enhanced” intervals was performed. Events in panel (d) of

Figure 5.8 were selected for which AE < 200 nT and dAL/dt ≥-25 nT/min were

satisfied for at least 3 hours. These events were selected to contrast the SMC events

in panels (a) and (b). In panel (d) 84% of the 1967 events had an average voltage

below 45 kV. Panel (d) events are therefore a subset of SuperDARN data that are
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not enhanced.

SuperDARN has provided evidence that convection is enhanced during SMC

and suggests that the variable AE cutoff function selects events with enhanced con-

vection and a fixed minimum convection threshold. Unfortunately, this evidence is

not conclusive since the uncertainties in SuperDARN measurements are not quanti-

fied. It is therefore appropriate to find additional evidence to support the hypothesis

that the seasonal dependence in the AE ≥ 200 nT events is the result of ionospheric

conductivity. Based on the physical process of photo-ionisation that was described

in Chapter 3, one may develop a model to describe the effects conductivity have on

SMC selection.

5.5 Conceptual Model of Conductivity Effects on

SMC Selection

The plasma production function in Equation 3.21 will be the basis of a con-

ceptual model of ionospheric conductivity effects, from which to derive an analytical

SMC events distribution based solely on the annual variations of conductivity. If the

suppresion of events in the winter months using a constant AE cutoff is caused by

the conductivity variation, then the modelled distribution should have strong qual-

itative agreement with Figure 5.3. The conceptual model is based on probabilities,

in particular the effect that the ionospheric conductivity has on the probability of

observing an AE index value above 200 nT. In this model photo-ionisation processes

are considered. Contributions from energetic particle precipitation, such as during a

substorm, are neglected.

Several simplifying assumptions were used in this conceptual model. The first

was to assume that convection is constant in the magnetosphere. This assumption is

intended to decouple the solar wind driver and the ionospheric conductivity effects.

With this assumption, the “steadiness” requirement of SMC (i.e., dAL/dt ≥-25 nT)

becomes irrelevant. When convection is constant dAL/dt is zero at all times. The

next assumption is that all SMCs have the same duration. The length of each SMC
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Figure 5.9: The geometry of the Sun-Earth system in spherical coor-
dinates, where δ is the declination angle, h is the hour angle, L is the
latitude, and χ is the solar zenith angle.

interval was fixed at 3 hours. The distribution of magnetometers was also idealised

in this model despite that, in reality, the magnetometers used to derived the AE

indices are not evenly spaced, as can be observed in Figure 4.2. The twelve idealised

magnetometers are evenly spaced in longitude and situated at the same geographic

latitude. The time dependence of the solar zenith angle was also simplified in this

model, but before proceeding to the modelled SMC events distribution, the solar

zenith angle should be examined in more detail.

The solar zenith angle, χ, is defined as the angle at the centre of the Earth sub-

tended by the vector pointing towards the Sun and the surface normal vector passing

through the point on the surface where χ is to be determined (see Figure 5.9). This

differs from the approach used in Chapter 3, where χ was determined at ionospheric

altitudes using the flat Earth approximation. Due to the astronomical distance in-

volved, the Sun’s light rays are effectively parallel at Earth so both angles converge

to the same value.

The latitude angle of the point on the Earth’s surface where the solar zenith

angle is to be determined is denoted by L. The hour-of-day angle is given by h,

and δ is the declination angle. These angles are illustrated in Figure 5.9. The solar
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zenith angle is related to the other angles as follows:

cos(χ) = cos(L) cos(δ) cos(h) + sin(L) sin(δ) . (5.3)

The declination angle δ depends on the day of year and varies between ±δmax, which

is the maximum declination angle and is equal to 23.5o. The hour angle h depends on

the hour of the day t (from 0 to 24). The hour of the day is set to zero at midnight.

The expanded equation for the solar zenith angle becomes:

cos(χ) = cos(L) cos

(
δmax cos(

2π(x + 10)

365
)

)
cos

(
πt

12

)
+ sin(L) sin

(
δmax cos(

2π(x + 10)

365
)

)
, (5.4)

where x is the day of year, and the offset of 10 days ensures that the function max-

imises at the summer solstice. Notice that cos(χ) in Equation 5.4 varies on two

primary time scales: (1) with time of day by the hour angle h, and (2) with day of

year by the declination angle δ. For the purposes of this conceptual model, Equa-

tion 5.4 can be simplified by assuming the hourly variations of the solar zenith angle

are less significant than the seasonal variation. Furthermore, neglecting changes in

the solar zenith angle on small time scales should also be valid in this model be-

cause convection has been constrained to be constant. If the convection pattern is

constant then the distribution of electrojet currents will not change during a day,

implying that the location of the maximum current densities in the electrojets will

not change on a scale of an hour. In other words, if the greatest magnitude in the

eastward electrojet is located at 18 UT, it will remain located at 18 UT. The AE

indices are a measure of the maximum currents in the convection electrojets, and

the magnetometers closest to the current maxima will contribute to the AE indices.

Therefore if the maximum currents are always located at the same location in MLT,

the hour angle in Equation 5.3 will be constant. Due to the simplifying assumptions,

Equation 5.4 reduces to:

cos(χ) = C0 cos

(
L + δmax cos(

2π(N + 10)

365
)

)
, (5.5)

where C0 is a constant. Assuming a constant convection pattern, the AE current
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intensity scales up or down according to the conductivity in the ionosphere, and the

conductivity is proportional to the electron density (Equation 3.47). In Section 3.3 it

was shown that the maximum electron concentration at any point in the ionosphere

is related to the solar zenith angle as follows:

nmax ∝
√

cos(χ) . (5.6)

Equation 5.5 therefore describes how conductivity will affect current strength as

a function of season. Electrojet currents, through the AE indices, are used to quantify

the level of convection in the magnetosphere. For a SMC event to be selected the

traditional methods require the AE index to be above a set minimum value. For

the AE index to be large, the AU index must be above a minimum threshold and

the AL index must be below a maximum negative threshold. The chance of this

occurring will depend both on convection and on ionospheric conductivity, as the

AU and AL indices are functions of these two parameters. In a statistical sense,

the probability that AU is above a minimum threshold depends on the overhead

ionospheric conductivity which is proportional to Equation 5.5, and on the amount

of convection in the magnetosphere. Similarly, the probability that AL has a large

magnitude is dependent on the ionospheric conductivity overhead, as well as on the

amount of convection. For the AE index to be above a minimum threshold of 200 nT

both AU and AL must have appropriately large magnitudes. The probability that

AE is above a minimum threshold is the combined probability that both AU and

AL exceed their thresholds:

P (AE ≥ 200 nT ) = P (AU ≥ AUmin) ∩ P (AL ≤ ALmax) . (5.7)

If P (AU ≥ AUmin) and P (AL ≤ ALmax) were independent, P (AE ≥ 200 nT) would

simply be the product of these two probabilities. Unfortunately these probabilities

are not independent, as they share a common driver, the IMF. Without independence

a simple equation describing P (AE ≥ 200 nT) cannot be written. Fortunately, in

this model convection has been constrained to be constant, which means that AU

and AL no longer share a common cause. This constraint implies that the IMF,
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which drives the invariable convection pattern, is itself unvarying. In other words,

AU and AL are independent, as long as convection is constant.

To illustrate this concept further, consider the following analogy. Imagine two

rose bushes in neighbouring gardens. The probability that the first rose bush flowers

(Event 1) is dependent on the amount of rainfall (Event 0), while the probability

that the second rose bush flowers (Event 2) also depends on the amount of rainfall.

Both events have a common cause: Event 0. Therefore Event 1 and Event 2 are

not independent. If, however, rainfall is constrained to be constant, Event 1 will

only depend on the conditions in the first garden, such as soil nutrient content or

care given by the owner. The same will be true for the second garden. Thus,

Event 1 and Event 2 are conditionally independent, given Event 0 is constant. This

rainfall analogy illustrates how the independence of AU and AL can be considered

to be conditionally independent given a constant convection pattern. Because of

this independence, the combined probability can be written as the product of the

individual probabilities. Therefore the probability of AE being greater than 200 nT

can be written as follows:

P (AE ≥ 200 nT) = P (AU ≥ AUmin)P (AL ≤ ALmax) . (5.8)

This conceptual model has reduced the variability in the AE currents to variability

in ionospheric conductivity. Since the intensity of the AE currents varies with iono-

spheric conductivity directly, the probability of observing a certain AE value will

also vary in this manner. The AU and AL probabilities will vary as
√

cos(χ), so the

combined probability for AE becomes:

P (AE ≥ 200 nT) ∝ cos(χ) . (5.9)

Thus the probability that AE ≥ 200 nT is known as a function of season, assuming

that convection is constant. Without this assumption it would not have been pos-

sible to develop this conceptual model. It is therefore important to provide some

evidence to suggest that this is a valid assumption for SMC. Based on the proba-

bility treatment above, AU and AL should be uncoupled during times of constant
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convection, but during times of unstable convection the AU and AL indices should

show a level of dependence.

In order to investigate this dependence quantitatively, the correlation coefficient

of AU and AL was calculated for SMC and non-SMC times. The correlation between

AU and AL for AE≥200 nT SMC events for the years from 1966 to 2001 was found

to be, on average, 0.162. For the SMC events selected using the variable AE cutoff

function the average correlation was 0.288. In contrast, the correlation coefficient for

all times from 1966 to 2001 was found to be 0.589. The lower correlation between

AU and AL during SMC times supports the assumption of constant convection in

the conceptual model.

The above work has provided the foundation with which to derive a theoretical

SMC distribution based solely on the probability of observing a particular value of

AE. According to Equation 5.9, the chance that any AE measurement is greater

than 200 nT is proportional to cos(χ). In addition to this, according to the model

for an event to be deemed SMC the AE index must be greater than 200 nT for three

hours. The next stage of the model is to consider the probability that AE ≥ 200 nT

for 180 measurements in a row, as AE is determined every minute.

For the answer to this question, one should consider the statistics of discrete

random variables. In this model there are two discrete random variables. The first

will be called X, and it is equal to 1 if AE ≥ 200 nT and 0 if AE ≤ 200 nT.

The probability that X is equal to 1 is proportional to cos(χ), while the probability

that X is equal to 0 is proportional to 1 − cos(χ). The second discrete random

variable defined is Y, which corresponds to the time when a pair of magnetometers

contributes to AE. For each measurement, Y, there are two possible values for X.

One could measure AE ≥ 200 nT (X=1) or AE ≤ 200 nT (X=0). If one wanted to

find the chance that X=1 for 180 measurements in a row, one must sum the all the

probabilities from Y=0 to Y=180 for X=1, with each probability being proportional

to cos(χ). Since the day time variations have not been included, the cos(χ) term can

be factored out of the sum and the resultant probability is simply cos(χ) multiplied

by a constant. Therefore the probability that any series of AE measurements made

72



by a pair of magnetometers are greater than 200 nT is proportional to cos(χ). This

seems to indicate that the probability that any 3 hour interval is SMC is proportional

to cos(χ), but this is not necessarily the case, since the pair of magnetometers that

contribute to AE can change during the 3 hour interval.

Because of the constant convection assumption in the conceptual model, the

electrojet current system is fixed with respect to the Earth-Sun line. The Earth, on

the other hand, rotates with respect to the Sun, so the magnetometers closest to

the maximum AE currents, and therefore the magnetometers contributing to AE,

change over time. Consider two different pairs of magnetometers contributing to the

AE index over a 3 hour time interval. For this time period to be deemed SMC both

pairs must contribute AE ≥ 200 nT. Or in other words pair 1 and pair 2 must both

contribute an AE index greater than the cutoff of 200 nT. The probability that pair 1

contributes AE values greater than 200 nT is independent of what pair 2 contributes.

Because of this, the probability that a 3 hour interval will be SMC is the product

of the probabilities that each individual pair contributes AE ≥ 200 nT at some time

during those three hours. Therefore, when two pairs of magnetometers contribute

to the AE index over a three hour interval the probability of the AE index being

greater than AE ≥ 200 nT for the length of that interval is proportional to cos2(χ).

Because the length of the idealised SMC was set to be 3 hours, a maximum of

8 SMC events can occur in one day. It is assumed that the same number of pairs of

magnetometers contribute to AE during each event. Because hourly variations in χ

have been neglected (by neglecting the hour angle h), each three hour interval will

have the same probability of success. This kind of experiment is called a Bernoulli

trial. Bernoulli trials are any experiments in which n trials are made with the

probability p of success in any given trial. The probability distribution of a Bernoulli

trial is described by a binomial distribution. Therefore in the case of this model each

day of the year is a Bernoulli trial and there will be a binomial distribution that

describes the chances of between 0 and 8 SMC events occurring each day. The

binominal distribution will have a probability that is proportional to cosn(χ), where

n represents the number of magnetometer pairs involved in the SMC measurement.
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Since cosn(χ) is dependent on season, the expected number of SMC events per day

will change. In the summer months the expected number of SMC events per day

will be higher. The tools are now in place to construct a modelled total SMC events

distribution.

Figure 5.10: The red histogram represents the total events distribu-
tion selected using a constant minimum cutoff of 200 nT. Each line
represents a theoretically derived distribution with monthly values rep-
resented by each lines respective symbol. The blue distribution was
obtained with probabilities proportional to cos2(χ). The red distribu-
tion was obtained with probabilities proportional to cos5(χ). The black
distribution was obtained with probabilities proportional to cos10(χ).

The modelled distribution was built by first calculating the expected number

of SMC events for each day of the year. Then a total events distribution was formed

simply by adding up the expected number of SMC events from each day of a given

month to find the expected number of SMC events per month. The distributions

that were obtained for various values of n, and these agreed very well with the exper-

imental distribution. The comparison is pictured in Figure 5.10. The experimental

total events distribution is represented by the red histogram. The theoretical total

events distribution found using a probability proportional to cos2(χ) is represented
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by the blue line, with monthly number of events being represented by blue dots.

The distribution obtained from the n = 2 model was too wide and too large in the

winter months. Recall, that the power of the cosine term is controlled by the number

of pairs of stations that contribute to AE over a 3 hour interval. Because a power

of two is too low, it seems likely the n = 2 model underestimates the number of

magnetometers that contribute to AE over a three hour interval. A distribution was

constructed with probabilities proportional to cos10(χ), and it is represented by the

black line, with monthly values represented by black squares. In contrast to the

n = 2 distribution, the n = 10 distribution was too narrow and was too low in the

winter months. This is not unexpected, however, since the Earth will not rotate over

10 pairs of equally spaced magnetometers in 3 hours. Hence the number of pairs

of magnetometers that contribute to AE over a 3 hour interval is expected to lie

somewhere between 2 and 10.

The cosine power was varied from 2 to 10 until a distribution that best agreed

with the experimental distribution was found. The cos5(χ) model provided an events

distribution that most resembled the actual events distribution obtained from the

measured AE index data. The cos5(χ) modelled distribution is displayed in Fig-

ure 5.10 as the solid red line with red triangles. The model therefore implies that 5

pairs of magnetometers contribute to the AE index over the course of a three hour

interval. This is not entirely unexpected since cos5(χ) was the best empirical choice

for a variable AE cutoff function. Figure 5.11 displays the idealised magnetometer

array in panel (a) at time t=0. For illustrative purposes only, physically realistic

locations were chosen for the maximum AU and AL electrojet currents, and these

are indicated in panel (a) of Figure 5.11. The magnetometers closest to these lo-

cations will constitute the pair contributing to the AE measurements. Panel (b)

of Figure 5.11 displays which magnetometers contribute to AE over a three hour

interval starting at time t=0. Notice that 5 pairs can contribute to the AE index

over the three hour interval.

The analytical distribution constructed with cos5(χ) agreed well with the ex-

perimental distribution for most of the year. The weakest agreement was in months
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Figure 5.11: (a) The idealised magnetometer array at time t=0 with
the locations of the maximum AU and AL electrojet current densities.
(b) The number of pairs of magnetometers that will contribute to AE
over a three hour interval beginning at time t=0.
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near equinox, particularly in April and October. This could be due to the Russell-

Mcpherron affect (Russell and McPherron, 1973), which can not be included in this

model as long as convection is restricted to be constant. Overall, however, the two

distributions displayed agree very well, thus providing supporting evidence that the

trend displayed in the number of SMC events per month selected by the AE ≥ 200 nT

threshold is the result of variable conductivity in the ionosphere.
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Chapter 6

Statistical Studies of SMC

Based on the evidence provided by SuperDARN, as well as by the conceptual

model, the variable AE cutoff of Equation 5.2 identifies SMC events based on a con-

sistent minimum convection threshold. Properties of the sets of events presented in

Chapter 5 will be examined statistically in Chapter 6. This approach will provide

an overview of activity in the magnetosphere during SMC. The conditions during

the variable-AE SMC events selected using Equation 5.2 will be compared to the

AE ≥ 200 nT events selected using the modified method of O’Brien et al. (2002).

The two test populations will also be examined to discover if the conditions in the

magnetosphere during SMC events are unique to SMC. These test populations were

identified in Chapter 5. The first test population is made of randomly selected inter-

vals, and the second is the non-enhanced steady events selected with AE ≤ 200 nT.

6.1 Superposed Epoch Study

The first statistical approach allows the evolution of conditions during SMC

to be examined in detail. This method presented is a superposed epoch analysis in

which all events are combined relative to the event onset time - the zero epoch time.

All events in a particular set will be represented as a cumulative distribution. All

cumulative distributions presented in this section will include six lines (95%, 80%,

65%, 50%, 35%, 20%, and 5%). Each line represents the value below which that

particular percentage of the total number of events occur. For example the 50% line

indicates that half of all the events lie below this line for any given epoch time.
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Figure 6.1: Cumulative distributions of IMF Bz as a function of su-
perposed epoch time for (a) AE≥200 nT SMC events, (b) Variable-AE
SMC events, (c) randomly selected events, (d) non-enhanced events
with AE <200 nT.

6.1.1 Interplanetary Magnetic Field Conditions

Consider the behaviour of the IMF Bz component as a function of epoch time,

since IMF Bz is an important driver of convection in the Earth’s magnetosphere.

The IMF Bz data that were analysed were obtained by the ACE satellite. For this

statistical study, the IMF data were shifted by 60 minutes to account for the travel

time of the solar wind conditions from the ACE satellite to the Earth’s magnetopause.

The value of 60 minutes is based on the simple ballistic delay for particles that

typically have a radial velocity from the Sun of 400 km/s. Changes in the solar
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wind speed are expected to lead to variation in the delay times of the events, and

it is expected that errors of up to 15 minutes could occur in a few cases. The

cumulative distributions of IMF Bz are presented in Figure 6.1. In panel (A) are the

SMC events selected using AE ≥ 200 nT. In panel (B) are the SMC events selected

using the variable AE cutoff function of Equation 5.2. Roughly two hours before the

onset of the SMC events, the IMF Bz component decreased for both SMC events

in panel (A) and (B). The IMF Bz component in panel (A) dropped by roughly

2 nT for the percent lines 80%, 65%, 50%, 35% and 20%. The 95% line dropped

by almost 4 nT, while the 5% dropped by 1 nT. After onset IMF Bz gradually

increases until at 6 hours after onset it is roughly equivalent to the initial IMF Bz

value observed at 6 hours before onset. For events selected using Equation 5.2, IMF

Bz followed the same general trend as those events selected using a constant AE

cutoff function, the difference being that the trend was more gradual for the variable

AE cutoff SMCs. In panel (B) the 95%, 80% and 65% lines dropped by 2 nT.

The 50%, 35%, and 20% lines dropped by roughly 1.5 nT. The 5% line dropped

1 nT. One interesting thing is that not all the events in panels (A) and (B) had a

negative IMF Bz component. The 95% line and 80% line did not dip below zero for

the variable selection method, while the 95% line did not drop below zero for the

cumulative distribution in panel (A). Therefore 20% of the SMC events selected by

Equation 5.2 and 5% of events selected by the modified method of O’Brien et al.

(2002) did not have a negative IMF Bz component at onset. This could be due to a

strong IMF By component playing a role in driving convection in the magnetosphere.

On average, SMC events from both selection methods appear to be driven by a

moderately negative IMF Bz component, with the AE ≥ 200 nT events occurring

under more strongly negative IMF Bz conditions. This is in agreement with previous

SMC studies such as those by DeJong and Clauer (2005), O’Brien et al. (2002) and

Sergeev et al. (1995). All of these papers concluded that SMC occurred when IMF

Bz was moderately negative. This trend of IMF Bz decreasing before onset appears

to be specific to the SMC events, because the randomly selected events in the panel

(C) of Figure 6.1 show no discernable decrease before or after onset. In contrast,
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the “non-enhanced” AE ≤ 200 nT events in panel (D) displayed the opposite trend.

The cumulative distribution lines in panel (D) increased significantly by about 1 nT

leading up to the zero epoch time. This contrast adds further support to the notion

that negative IMF Bz drives convection. One might even say that a northward

turning of the IMF during steady conditions effectively suppresses convection in the

magnetosphere, but this requires much more investigation in future studies. It should

be noted that the lower variability of the lines in panel (D) is due to better statistics,

as many more “non-enhanced” events selected.

Figure 6.2: Cumulative distributions of IMF By as a function of
superposed epoch time for (a) AE≥200 nT SMC events, (b) Variable-
AE SMC events, (c) randomly selected events, (d) non-enhanced events
with AE <200 nT.

The cumulative distributions in Figure 6.1 reveal that a moderately negative

IMF Bz component plays a significant role in driving SMC in the magnetosphere.
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Since strong IMF By can also drive convection when IMF Bz is weak, it would be

wise to examine IMF By to determine if there is a preferred azimuthal component.

In Figure 6.2 the cumulative distribution of the IMF By component is presented

as a function of the epoch time. All four panels show roughly the same trend, the

50% line lies approximately at 0 nT, so the events are equally distributed between

positive and negative IMF By. There is also no noticeable change in IMF By near

the onset.

6.1.2 Convection Electric Field and Transpolar Voltage

Enhanced convection is one of the main requirements of SMC. The electric

field in the magnetosphere, which is induced by the flow of the solar wind in the

magnetosheath, maps down to the ionosphere where it can be measured by Super-

DARN. When convection is enhanced the electric field induced in the ionosphere will

be larger, and vice versa. It can be difficult however to use the electric field, as it

is a vector quantity, which is why the SuperDARN PCPD is very often used as a

proxy for the convection electric field.

The cumulative distributions of PCPD in Figure 6.3 are of the same form as

those presented in Figure 6.1, including the events sets (A) AE ≥ 200 nT SMCs, (B)

the variable-AE SMCs, (C) the randomly selected intervals, and (D) “non-enhanced”

AE ≤ 200 nT events. Roughly two hours before the SMC onset epoch time panels

(A) and (B) of Figure 6.3 show a marked increase in the PCPD. This two hour

“growth phase” occurred at roughly the same epoch time as IMF Bz was dropping

in Figure 6.1.

In panels (A) and (B) the 5% line displayed the largest increase in PCPD, and

as one progresses to higher percentages of events in the cumulative distributions the

voltage increase becomes less prominant. The one exception in both panels was the

95% line. It displayed a greater increase than the 80% line. This could be because

the 95% line represents the upper fringe of the data set, where the most erratic events

exist. The general trend in the other percentage lines is clear: when the voltage is

initially large it stays large after onset, and when it is low beforehand it becomes
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Figure 6.3: Cumulative distributions of PCPD as a function of su-
perposed epoch time for (a) AE≥200 nT SMC events, (b) Variable-AE
SMC events, (c) randomly selected events, (d) non-enhanced events
with AE <200 nT.

large after onset. The two hour ramp-up before onset of SMCs is interesting. Sergeev

et al. (1995) stated that all SMC events they observed were preceded by a substorm.

The 2 hours before onset could be the time frame for the substorm. It may take two

hours for the magnetosphere to reconfigure itself before entering a phase of enhanced

and steady convection.

The randomly selected events in panel (C) did not display any clear change near

onset. The voltage was roughly constant before and after onset. The non-enhanced

AE ≤ 200 nT events, once again, displayed the opposite trend as panels (A) and

(B). Based on the superposed epoch analysis of SuperDARN PCPD, the SMC events

selected using both methods exhibit enhanced PCPD. The events in panel (D) serve
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to illustrate the suppression of PCPD for non-enhanced intervals.

Figure 6.4: Cumulative distributions of the convection electric field as
a function of superposed epoch time for (a) AE≥200 nT SMC events,
(b) Variable-AE SMC events, (c) randomly selected events, (d) non-
enhanced events with AE <200 nT.

The cross polar cap potential difference depends on the electric field present and

the size of the convection pattern. In other words, integrating a strong convection

electric field along a short path between the voltage extrema can yield the same

PCPD as a weak convection electric field integrated across a much larger convection

pattern. To determine if the distance between voltage extrema affects the PCPD

results, the average cross polar cap electric field was estimated. The cumulative

distribution of the calculated cross polar cap electric field is presented as a function

of epoch time in Figure 6.4.

The software tools that are used to analyse data from SuperDARN produce
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voltage values in every grid cell of the convection pattern. The locations of the

maximum and minimum voltage values can be determined. The arc length between

these two points can then be calculated. The arc length between the two voltage

extrema is calculated by first determining the angle at the Earth’s centre between

the two vectors that point toward the voltage extrema. This angle was found by

computing the dot product between these two vectors. The spherical arc length

subtended by the vectors is calculated at an altitude of 250 km, which corresponds

to the F-region peak. This arc length is the geodesic distance between the two voltage

extrema on a spherical surface at ionospheric heights. By dividing the PCPD by this

arc length, one obtains a rough estimate of the average cross polar cap electric field

for that particular SuperDARN convection map. There are some words of caution

that are necessary before using these calculated electric field values.

The SuperDARN convection mapping software finds the position of the maxi-

mum and minimum voltage. These are not necessarily the centres of a well behaved

two cell convection pattern. At times the convection patterns can become highly

convoluted and complex. In the event that this occurs the average cross polar cap

electric field may not be a true representation of the convection electric field in the

ionosphere. To find the actual electric field a line integral calculation is required

between voltage maxima perpendicular to the convection streamlines. However as a

first step, this simple estimate can reveal if the convection electric field as well as the

PCPD are enhanced during SMC, or if the polar cap is getting larger during SMC.

The AE ≥ 200 nT SMC events in Figure 6.4 (A) display an increase in the polar

cap electric field, indicating convection becomes enhanced before SMC onset. At the

3 hour epoch time the average electric field values began to decrease back to pre-SMC

levels. The variable AE cumulative distribution in panel (B) of Figure 6.4 displayed

a similar but much weaker trend. When the electric field value was low before

onset it became large afterwards; when it was large before onset it stayed large. The

trend, which is similar to that of PCPD, was less pronounced for panel (B). This was

expected because using a constant AE cutoff function will only identify the events

with the strongest convection in the winter months. The relative increase leading up
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to onset was less pronounced for the electric field, compared with the PCPD. This

suggests that the distance between voltage centres maybe increasing before SMC.

The random events of panel (C) show no increase in electric field before or at

onset, and the AE ≤ 200 nT events display a decrease in polar cap electric field

at onset, in contrast to panels (A) and (B). Based on the average electric field

superposed epoch analysis, SMC intervals selected by both methods have enhanced

convection, but it is apparent that the distance between voltage extrema is having

an effect on the PCPD.

Figure 6.5: Cumulative distributions of the distance between volt-
age extrema as a function of superposed epoch time for (a) AE≥200
nT SMC events, (b) Variable-AE SMC events, (c) randomly selected
events, (d) non-enhanced events with AE <200 nT.

The cumulative distributions of the distance between voltage extrema is pre-

sented in Figure 6.5. In panels (A) and (B) SMC events selected using a constant
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AE cutoff function and using Equation 5.2 are shown, respectively. In both panels

(A) and (B) all percentage lines show a small increase in distance roughly 2 hours

before onset but after onset the distance stays relatively constant. The increase in

distance became less prominant with increasing percentage with one exception, the

95 % line showed large fluctuation. As before, this is likely due to statistical outliers.

The encouraging aspect of panels (A) and (B) is that the distance remains stable

after onset. During the course of SMC events the PCPD is, therefore, on average, an

appropriate proxy for convection. The increase in distance prior to onset corresponds

well with IMF Bz turning southward, and it could be an indication that it takes time

for the magnetosphere to adjust to a stable convection state. The polar cap may

need to increase in size until equilibrium between the reconnection rates on the day

and night side are reached. Based on Figure 6.5, Figure 6.3, and Figure 6.4 it can

also be concluded that the PCPD does contain information regarding convection and

is a useful proxy for convection during SMC.

6.1.3 SuperDARN Data Coverage

During very active times in the magnetosphere, such as substorms, the ener-

getic auroral particle precipitation can greatly increase the electron density in the

ionosphere. In regions of bright aurora the amount of data SuperDARN obtains is

often greatly diminished (Gauld et al., 2002). During these scientifically interesting

dynamic times in the magnetosphere SuperDARN often loses its view of convection.

Whether this happens during active but steady times such as SMC has not yet been

investigated. In Figure 6.6 the cumulative distributions of the number of Super-

DARN data points are presented in the same format as the previous cumulative

distributions.

In panels (A) and (B) the number of data points gradually increases before

onset for all percentage lines. As before, panels (A) and (B) were made using SMC

events selected using the constant AE cutoff function and the variable AE cutoff

function, respectively. In panels (A) and (B) the number of SuperDARN convec-

tion points begin to increase roughly 4 hours before onset. By 6 hours after onset
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Figure 6.6: Cumulative distributions of the SuperDARN data points
as a function of superposed epoch time for (a) AE≥200 nT SMC events,
(b) Variable-AE SMC events, (c) randomly selected events, (d) non-
enhanced events with AE <200 nT.

the number of data points had decreased back to pre-SMC levels. The number of

data points was roughly constant for the randomly selected events in panel (C). The

number of data points decreased slightly for the non-enhanced events in panel (D).

Figure 6.6 indicates studying convection during SMC with SuperDARN is appropri-

ate as, statistically, there is no reduction in data volume associated with SMC.
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6.2 Scatter Plot Study of Association Between

SMC Parameters

The superposed epoch analysis of the previous section revealed characteristics

of the time evolution of SMC in a statistical manner over a 12 hour interval centred

on SMC onset. This analysis, however, did not include any information regarding the

average conditions during the various types of events that were compared. It would

be useful to study conditions, in particular the SuperDARN convection data, during

the SMC events and compare these with the other measured parameters, as well as

previous SMC studies of average conditions during SMC. To that end, statistical

scatter plots were produced. Scatter plots allow one to determine if two different

parameters are related, but it is important to remember that the causal links can

not be verified with this type of analysis.

6.2.1 IMF Conditions

This discussion will begin with the upstream IMF conditions that drive convec-

tion in the magnetosphere. An average IMF Bz and an average IMF By value was

calculated for each interval in the events sets measured during the years 1998 - 2001.

The IMF Bz value was then plotted as a function of IMF By to produce the scatter

plots in Figure 6.7.

Panel (A) of Figure 6.7 corresponds to the events that were selected with a

constant minimum AE value of 200 nT. The median IMF Bz value for these events

is moderately negative at -2.7 nT. This is an expected result and is in agreement

with past SMC studies such as O’Brien et al. (2002) and DeJong and Clauer (2005).

Panel (B) was created using the variable-AE SMC events selected using Equation 5.2.

The median IMF Bz value was roughly -1.8 nT, which was less than for the events

selected using a constant AE cutoff function of 200 nT, but was also moderately

negative. One would expect that the average IMF Bz would be slightly less negative

during the variable AE SMC events because, as previously discussed, a constant AE
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Figure 6.7: Scatter plots of IMF By verses IMF Bz for: (a)
AE ≥ 200 nT SMC events, (b) Variable-AE SMC events, (c) randomly
selected events, and (d) non-enhanced events with AE ≤ 200 nT. The
grey lines in each panel indicate the median values.

cutoff function will favour only the strongest events in the winter months. On the

other hand, the variable AE events will include those that have weaker convection

and therefore, presumably, a weaker driver, which is supported by the slightly smaller

driven IMF Bz median values. The IMF By values for both SMC event sets were

more evenly distributed around 0 nT. The variable AE SMC events of panel (B) had

many more events with large IMF By magnitudes. This indicates that the weaker

winter SMC events that are added when the AE threshold is lowered occur when

the upstream IMF is strongly tilted from the southward. The dominant IMF By

component may therefore have had an important role in driving convection in the
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magnetosphere during these weaker SMC events.

In the scatter plot for the randomly selected events, which is panel (C) of

Figure 6.7, the IMF Bz values were centred around 0 nT, while IMF By values were

centred near 1 nT. The scatter of the data points suggests that there is no preferred

IMF orientation during the randomly selected intervals. The non-enhanced events of

panel (D) had a positive IMF Bz median value of 1.1 nT and an IMF By component

median value near 0 nT. The scatter plots therefore confirm the superposed epoch

analysis results, as well as previous work, that SMC are a phenomenon that occur

under moderately negative IMF conditions and with a significant IMF By component.

6.2.2 Polar Cap Voltage and Electric Field Values

In this convection driven system it is of interest to determine how the Super-

DARN PCPD relates to the IMF Bz component. Figure 6.8 displays the scatter plot

of IMF Bz verses SuperDARN PCPD. In general, when IMF Bz is strongly negative

a large convection electric field is expected and since PCPD has been shown to be

a good proxy for convection during SMC, large values of PCPD are also expected.

This trend will manifest itself in a scatter plot of IMF Bz verses PCPD with data

points clustered around a line of negative slope. This is true for all four scatter

plots in Figure 6.8. Panel (A), which consist of events selected using the constant

AE cutoff function, have the largest median voltage at 57 kV and the most negative

median IMF Bz component at -2.7 nT. Panel (B), which consists of events selected

using the variable AE cutoff function in Equation 5.1, have a median PCPD of 54

kV and a median IMF Bz of -1.8 nT. The randomly selected events in panel (C) have

a median voltage of roughly 45 kV and a median IMF Bz component of 0 nT. The

non-enhanced events of panel (D) had a small median PCPD of 45kV and occurred

under predominantly positive IMF Bz conditions. SMC is therefore a phenomenon

that is driven by a moderately negative IMF Bz and has higher PCPD values than

typical and non-enhanced intervals.

Since the PCPD is dependent on both the convection electric field and the path

between voltage centres, it would be useful to investigate the relationship between
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Figure 6.8: Scatter plots of PCPD verses IMF Bz for: (a)
AE ≥ 200 nT SMC events, (b) Variable-AE SMC events, (c) randomly
selected events, and (d) non-enhanced events with AE ≤ 200 nT. The
grey lines in each panel indicate the median values.

these two properties. In Figure 6.9 the PCPD is plotted as a function of the distance

between voltage centres. The median distance between voltage centres was larger for

the SMC events in panel (A) and (B), compared to the randomly selected events in

panel (C) and the non-enhanced events in panel (D). The median voltage was also

larger for SMC events. The larger median values for both properties during SMC is

not unexpected however, since the superposed epoch analysis has shown that both

increased roughly 2 hours before onset. It is interesting to note that, while the SMC

events may be a higher PCPD subset of the “typical” events in panel (C), the SMC

events do not display a clear dependence on the distance between voltage extrema.
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Figure 6.9: Scatter plots of PCPD verses distance between voltage
extrema for: (a) AE ≥ 200 nT SMC events, (b) Variable-AE SMC
events, (c) randomly selected events, and (d) non-enhanced events with
AE ≤ 200 nT. The grey lines in each panel indicate the median values.

For SMC events it is not clear whether there is a relationship between polar cap

size and PCPD. Recall that in Section 6.1.2 the superposed epoch study of distance

between voltage extrema revealed that the distance was unchanging during SMC.

It may be possible that the unchanging polar cap area expected during SMC could

effectively decouple PCPD and the distance between the voltage extrema, but this

will require much more detailed investigation.

Figure 6.10 contains the scatter plot comparison of the convection electric field

and IMF Bz. When IMF Bz is strongly negative the convection electric field is also

strong, resulting in a cluster of data points about a line with negative slope in all four
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Figure 6.10: Scatter plots of convection electric field verses IMF
Bz for: (a) AE ≥ 200 nT SMC events, (b) Variable-AE SMC
events, (c) randomly selected events, and (d) non-enhanced events with
AE ≤ 200 nT. The grey lines in each panel indicate the median values.

sets of events. This is indicative of IMF Bz driving convection in the magnetosphere

when it is southward and expected. The events selected using the constant AE cutoff

function had a median electric field value of 22 mV/m. The events selected using

the variable AE cutoff had a median electric field value of 21 mV/m. The randomly

selected events had an median voltage of 18 mV/m while the AE ≤ 200 nT events

had a median voltage of 16 mV/m. Consistent with previous results, SMC is a

phenomenon with a strong convection electric field.
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6.3 Statistical Study Summary

These statistical studies revealed many interesting properties of SMC, as well

as the relationships between them. A moderately negative IMF Bz drives SMC in

the magnetosphere, with IMF Bz dropping roughly 2 hours before onset of most

SMC events. The IMF Bz component rose to pre-SMC values 4 to 6 hours after

onset. Furthermore, there was no preference in direction of IMF By for SMCs. It

is also interesting to note that, in contrast, the AE ≤ 200 nT “non-enhanced” but

steady events experienced an increase in IMF Bz leading up to onset.

The PCPD and the convection electric field both were large during SMC. Like

the IMF components they increased roughly two hours prior to SMC onset. When

convection was strong before onset it stayed strong, and when convection was weaker

before onset it increased much more in a relative sense.

Investigation of the relationship between PCPD and polar cap size revealed that

the distance between voltage centres was larger during SMCs than during non-SMC

times. Both statistical analysis methods indicate that the PCPD is an appropriate

proxy for convection. The relatively steady polar cap area during SMC results in

changes in the convection electric field being reflected in changes in PCPD. More

detailed investigation is required to determine the relationship between the polar cap

area and the PCPD.
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Chapter 7

SMC Case Study

The improved variable AE selection criterion described in Chapter 5 was de-

veloped to identify SMC events with convection levels above a minimum convection

threshold. Statistical studies of SuperDARN PCPD values and convection electric

field estimates in Chapter 6, as well as the conceptual model in section 5.5, provided

evidence supporting the hypothesis that the new enhanced convection criterion was

performing well. The new criterion continued to identify enhanced events, with the

conductivity effects on SMC selection greatly reduced. While the statistical methods

are extremely useful in identifying the general properties of SMC, they can not reveal

details of a particular SMC interval. To that end two SMC events will be discussed

in detail.

The first SMC event, which occurred on October 20, 2001, was identified by

both the modified method of O’Brien et al. (2002) and the variable AE cutoff func-

tion. The second SMC interval, which occurred on October 30, 2001, had AE values

well below the 200 nT threshold of the modified selection criteria of O’Brien et al.

(2002), so this event would not have been considered SMC according to traditional

selection methods. This interval, however, did satisfy the new variable AE selection

criterion. The AE threshold on this day was 93 nT, as per Equation 5.2.

The primary motivation of presenting these two case studies is to establish

whether the extra events identified by the significantly lower AE threshold are similar

to the SMC events selected using previously established methods. These two SMC

intervals in particular were selected because they occurred at roughly the same time

of year, and they both had optical observations of the entire northern auroral oval

for the duration of the SMC events.
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SMC has been suggested as a special type of convection in the magnetosphere

(Pytte et al., 1978, and Sergeev et al., 1995). In order to compare with another

enhanced convection mode in the magnetosphere a case study of a sawtooth event

is also presented. The sawtooth event occurred on October 21, 2001. The sawtooth

case study will highlight, using a data presentation identical to that of the SMC case

studies, the properties of solar wind-magnetosphere coupling during strongly driven

but not steady conditions. This particular sawtooth event was selected because it

occurred at the same time of year as the two SMC intervals, and it had good optical

auroral coverage.

7.1 SMC Case Study 1: October 20, 2001

The first SMC event occurred on October 20, 2001. The AE and AL indices

for the entire day are presented in Figure 7.1. This SMC was selected using the

traditional AE ≥ 200 nT enhanced convection criterion. Because the variable AE

cutoff is lower than 200 nT in the winter months, this SMC is also identified using

the new modified AE criterion. On this day the variable AE enhanced convection

threshold is 94 nT. On this day the AE index ranged from 100 nT to more than

500 nT. This large range of values is due to the occurrence of several substorms on

this day. During the SMC event (indicated by vertical lines in Figure 7.1) the AE

index decreased from near 500 nT to about 200 nT.

Both selection methods identified the same start and end times (14:26 UT

and 17:41 UT). This indicates that the steadiness criterion (dAL/dt ≤ -25 nT/min)

determined the duration of this event, as this requirement is the same for both

selection methods. Examination of the AL index reveals several vary rapid decreases,

indicative of substorms. The first AL substorm signature occurred just after 5 UT,

the second near 10 UT, and the third immediately preceeded onset of the SMC

event (14:26 UT). It was the substorm signature preceding the SMC that violated

the steadiness criterion, but there is no similar signature at the end of the SMC

indicating unsteady convection afterward. The derivative of AL with respect to time
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was carefully examined to determine when and for how long convection was unsteady

after the SMC.

Figure 7.1: From top to bottom: (1) the AE index and (2) the AL
index for October 20, 2001. The start and end of the SMC Event 1 is
marked by vertical lines.

The steadiness criterion, dAL/dt ≥ -25 nT/min, was violated when dAL/dt = -

29 nT/min at 17:42 UT. The steadiness criterion was only violated at this one data

point, after which the AL remained steady until 18:14 UT. The AE index dropped

below 200 nT at 17:50 UT, so the modified criteria of O’Brien et al. (2002) would

have deemed this event ended at 17:50 UT had it not been for that one AL data

point. For convection to be considered enhanced according to the new variable-AE

threshold of Equation 5.2, the AE index must be above 94 nT. If that single data

point had not violated the steadiness requirement, the variable selection method

would have ended the event at 18:14 UT. More work is required to develop a more

robust method for quantifying steady convection using the AL index. Methods are

currently being tested that scale the -25 nT/min threshold according to the AE index

(T. Pulkkinen, personal communication) and allow a small percentage of data points

to violate the steadiness criterion (R. L. McPherron, personal communication).

The Wideband Imaging Camera (WIC), which is part of the Far Ultra Violet
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Figure 7.2: Auroral image obtained from the IMAGE satellite by
WIC with the shaded region indicating the estimated polar cap area as
determined through piece-wise integration. The image is projected on
a magnetic latitude, magnetic local time grid, where the dashed circles
represent 10 degree increments in magnetic latitude, and the straight
dashed lines represent hours of MLT, with magnetic local noon towards
the top of the figure.

(FUV) instrument package, aboard the IMAGE satellite recorded images of the entire

northern auroral oval during this SMC event (Mende et al., 2000a, Mende et al.,

2000b). A sample image recorded by the WIC is presented in Figure 7.2. The start

time of this image is 15:42:54 UT, and the exposure time of each image is 10 seconds.

The WIC camera records ultraviolet light emissions from the atmosphere in the UV

wavelength band from 140 - 180 nm. This sample image is presented in units of raw

counts. The absolute calibration of the image is not important for this study, but

rather it is the general morphology of the aurora and the relative changes in the

pattern. The image is projected on a magnetic latitude, magnetic local time grid,

where the dashed circles represent 10 degree increments in magnetic latitude, and

the straight dashed lines represent hours of MLT, with magnetic local noon towards

the top of the figure.
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The auroral oval is the red and yellow coloured ring of bright aurora between

60 and 70o magnetic latitude. The bright emission that fills the top of the figure is

the ultraviolet dayglow caused by sunlight. The dayglow can make calculations of

the absolute size of the polar cap very difficult, but this study requires only relative

areas, so the dayglow contamination of the image is not a significant problem in this

case.

From the sequence of images it is possible to obtain an estimate of the polar

cap size and its variations during the SMC event. These results will be compared

with the work of DeJong and Clauer (2005). Figure 7.3 is a summary of all WIC

images that were recorded between 12 and 20 UT on October 20, 2001. The bottom

two panels are composed of slices extracted from all the WIC images. This type of

data presentation is referred to as a keogram. Figure 7.3 contains the luminosity

measurements within 10 km of 6 and 18 MLT, effectively a horizontal slice through

the middle of Figure 7.2. Figure 7.3 contains the luminosity measurements within

10 km of 12 and 24 MLT, effectively a vertical slice through the middle of Figure 7.2.

The work of DeJong and Clauer (2005) relied on the assumption that when

convection is steady the area of the polar cap is unchanging. DeJong and Clauer

(2005) defined steady polar cap area numerically as changing less than 10% per

hour. Unfortunately, their description of the area calculation process is rather vague.

Because of this ambiguity it is not possible to deterime if the SMCs in the present

study possess steady convection according to the criterion of DeJong and Clauer

(2005).

The polar cap area boundary was defined as the contours equatorward of which

the luminosity fell below a maximum threshold defined by the user. This contour

was determined from an image that was smoothed using a two dimensional boxcar

filter of order 12. The maximum threshold was not the same for all events, as the

background brightness in the polar cap could be quite different for different events.

For SMC Event 1 a value of 550 raw counts for the WIC was used. With the

perimeter of the auroral oval in place, the area was estimated through piece-wise

integration. The polar cap boundary was projected onto a flat two-dimensional
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Figure 7.3: From top to bottom: (1) the polar cap area, (2) the
keogram from dawn to dusk, and (3) the keogram from noon to mid-
night on October 20, 2001. The start and end of SMC Event 1 is
denoted by the vertical dashed lines.
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coordinate system centred on the magnetic pole, with the x axis pointing from dusk

to dawn in MLT and the y axis pointing from midnight to noon in MLT. A two

dimensional projection of the spherical solid angle was deemed sufficient for the

purposes of this thesis, since the primary objective is to investigate the change in

polar cap area. The piecewise integration progressed in steps of 111 km (1o latitude)

in the x direction. For each incremental vertical stripe, the polar cap area was

determined by integrating from the maximum y value to the minimum y value. The

total polar cap area for each auroral image is the sum of the areas of the incremental

vertical slices. A graphical example of the area calculation is displayed in Figure 7.2.

The solid closed contour represents the polar cap, and the vertical lines represent

the starting point of successive integrations from left to right.

Over the course of SMC Event 1 the average polar cap area was found to

be 4.9×106 km2 with a standard deviation of 0.7×106 km2 (14% of the mean).

In contrast, the average area for the whole day was 5.9×106 km2 with a standard

deviation of 1.8×106 km2 (20% of the mean). The polar cap area was therefore much

less variable during the SMC interval. A second approach was also used to quantify

the steadiness of the polar cap area. The number of data points that fell within 10%

of the hourly mean was determined for the duration of the SMC. Of the 96 polar cap

area values during the interval 73% were within 10% of the hourly mean. Of the 173

polar cap area values on this day not included in the SMC interval, 53% fell within

10% of the hourly mean. Both polar cap area variability estimations indicate that

the polar cap area was less variable during the identified SMC interval.

Frey et al. (2004) identified a substorm onset over Russia at 15:35 UT based

on the same WIC images used to estimate the polar cap area. A substorm onset was

identified when the following three criteria were met: (1) a clear local brightening of

the aurora must occur, (2) the aurora had to expand to the poleward boundary of

the auroral oval and expand azimuthally in local time for at least 20 minutes, and

(3) the substorm onset was only selected as a separate event if at least 30 minutes

had passed after the previous onset.

This identified substorm onset occurs in the middle of SMC Event 1 and con-
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tradicts the notion that this interval is a time of steady convection as substorms

represent times of unstable convection. There was no substorm signature in the AL

index, but this may be due to poor magnetometer coverage in the vicinity of the

substorm during the event. As well, there were no satellite measurements from the

magnetotail available, so it is impossible to know if any large scale reconfiguration

of the magnetotail occurred at the time of this event.

This situation illustrates why it can be dangerous to use ground based mag-

netometers to determine convection states in the magnetosphere and why a more

robust definition of steady convection is required.

The solar wind conditions measured by the ACE satellite were used to provide

insight into the role of the solar wind and the IMF during SMC Event 1. One of the

primary functions of ACE is to measure the magnitude and direction of the IMF,

using the Magnetic Field Instrument (MAG) (Smith et al., 1998). The measurements

made by this satellite must be time-shifted to account for the finite propagation time

of the solar wind from ACE to Earth. The time shifted data are used as an input

parameter for SuperDARN convection maps. As described in Section 4.12 , the IMF

data determine the statistical a priori convection model that is used to constrain the

convection map fitting procedure.

The unshifted IMF data measured from 0 to 24 UT at ACE are presented in

Figure 7.4. The data are in GSM coordinates. SMC Event 1 was characterised by a

negative IMF Bz component (third panel) that oscillated between 0 and -5 nT. The

IMF By component (second panel) was predominantly positive with a magnitude of

about 5 nT, while the IMF Bx (top panel) component was near zero. The magnitude

of the IMF (bottom panel) was very stable and near 8 nT during the SMC event.

The unshifted solar wind speed, pressure and density, as measured by the ACE

Solar Wind Experiment (SWE) (McComas et al., 1998), are pictured in Figure 7.5.

The solar wind conditions over the course of SMC Event 1 were stable. The solar

wind speed (bottom panel) was near or below 400 km/s and the proton density (top

panel) was about 4 cm−3.

The time delay between ACE and the magnetopause was estimated from the
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Figure 7.4: From top to bottom: (1) IMF Bx, (2) IMF By, (3) IMF
Bz and, (4) IMF magnitude in GSM coordinates for October 20, 2001.
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Figure 7.5: From top to bottom: (1) the solar wind proton density,
and (2) the proton velocity of the solar wind for October 20, 2001.

solar wind and IMF conditions. It is a simple ballistic delay for protons using the x

component of the solar wind speed and the distance between ACE and the Earth’s

magnetopause. The proton density and proton speed allows one to determine the

location of the magnetopause with the following equation from Walker and Russell ,

1995,

Lmp[RE] = 107.4(nswu2
sw)−1/6 , (7.1)

where nsw is the solar wind proton number density adjusted for helium content in

units of cubic centimetres, usw is the solar wind speed in kilometers per second, RE

is the radius of the Earth in kilometers, and Lmp is the number of RE upstream

the front of the magnetopause is located (Walker and Russell , 1995). Using a solar

wind speed of 360 km/s and an adjusted proton density of 6 cm−3, the location of

the magnetopause was estimated to be 11.2 RE upstream. The location of ACE

varied 0.063% over the day and therefore can be considered stationary at a location

of 1.4×106 km upstream. The calculated time delay is therefore roughly 62 minutes,

and due to the uncertainties in the estimates, for the purpose of this case study a

time delay of 60 minutes was used.
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Figure 7.6: From top to bottom: (1) the average cross polar cap
electric field, (2) the PCPD, (3) the distance between voltage centres,
(4) the number of data points in the SuperDARN convection maps for
October 20, 2001.

106



The SuperDARN convection maps were produced with the ACE data time

shifted by 60 minutes. SuperDARN parameters of interest are presented in Fig-

ure 7.6. On average the PCPD (second panel) was largest during the SMC event,

exceeding 100 kV at times. The convection electric field (top panel), which was de-

termined according to the method described in section 6.1.2, was also very enhanced

during the SMC. A decrease in both the voltage and the cross polar cap electric field

were observed near the time of the identified substorm onset but interestingly the

distance between the voltage centres (third panel) was very steady. In fact, the dis-

tance was much steadier during the SMC. The number of SuperDARN data points

(bottom panel) increased from 200 to 600 during the SMC event. The large num-

ber of data points is a good indicator that SuperDARN measurements are strongly

influencing the convection map fitting process.

7.2 SMC Case Study 2: October 30, 2001

SMC case study 2 occurred on October 30, 2001. This is an example of a

SMC interval that would not have been identified using the traditional 200 nT AE

threshold but was detected using the new variable AE threshold. Two events were

identified. SMC Event 2a occurred from 4:33 UT to 7:47 UT, and SMC Event 2b

occurred from 8:23 UT to 11:48 UT. The AE index and AL index for this day are

presented in Figure 7.7. The horizontal dashed line in the top panel indicates the

enhanced convection AE cutoff of 93 nT for this particular day, as determined using

Equation 5.2. The AE index was above 93 nT from roughly 1 UT until the end

of SMC event 2b. There was a noticeable rapid decrease of the AL index to near

-400 nT at 4:30 UT. The sharp drop in the AL index resembled the classic AL

signature of a substorm. SMC event 2a began at 4:33 UT. During the course of this

SMC the AL index climbed back to -100 nT, peaking near 6 UT. The AL index

then gradually became more negative. This decline continued till 7:47 UT when

the AL index dropped sharply to -400 nT. This was the second substorm signature

observed in the AL index on this day and also marked the end SMC Event 2a. This
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is consistent with the work of Sergeev et al. (1995), in which all SMC events studied

began and ended with substorms. SMC Event 2b began shortly after at 8:23 UT

and lasted until 11:48 UT. Unlike Event 2a this one did not end with a substorm.

Event 2b ended after a gradual decrease of AE.

Figure 7.7: From top to bottom: (1) AE index and, (2) AL index for
October 30, 2001. The start and end times of SMC Event 2a and 2b
are indicated by the vertical lines.

Figure 7.8 provides a general overview of the auroral images from IMAGE

WIC recorded during SMC Event 2a. Figure 7.8 is presented in the same format

as Figure 7.3 for Event 1. The polar cap area contour for October 30, 2001 was

determined at the 550 raw count level, which is the same value used in case study

1. Because the background instrument count levels are different on this day, a

comparison of the absolute polar cap area of the SMCs should not be performed.

The area estimates are intended to illustrate relative changes for a particular interval.

The WIC instrument has a good view of the auroral oval during nearly all of Event

2a. During Event 2b, however, the WIC could not observe the northern auroral oval

because of the spacecraft’s position.

The intensity of the aurora near midnight began to increase after about 1 UT,

at roughly the same time as the AL index began to slowly decrease. These character-
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Figure 7.8: From top to bottom: (1) the polar cap area, (2) the
keogram from dawn to dusk, and (3) the keogram from noon to mid-
night on October 30, 2001. The start and end of SMC Event 2a is
denoted by the vertical dashed lines.

109



istics are consistent with those of substorm growth phase (Elphinstone et al., 1996),

but the conditions persist from 1 UT to 4:20 UT, which is longer than a typical

growth phase.

Before the onset of SMC Event 2a at 4:20 UT the AL index (Figure 7.7) was

variable enough to violate the steady convection criterion of SMC. Interestingly, the

polar cap area measurements made during this time (Figure 7.8), indicate that the

polar cap area was stable near 1.2×107 km2 with a standard deviation of the polar

cap area equal to 0.4×106 km2 (3% of the mean). In addition to this 100% of polar

cap area values fell within 10% of the mean area during this period, suggesting

that convection may have been steady during this period. This contradiction again

brings attention to the discrepancy between the steady convection requirement of

O’Brien et al. (2002) (dAL/dt ≥ -25 nT/min) and the polar cap area measurements.

The steady convection requirement of O’Brien et al. (2002) was an empirical rule of

thumb and reassessment is needed, particularly in the winter months when the new

AE cutoff can be as low as 90 nT.

At about 4:20 UT the AL index decreased rapidly from -150 nT to -400 nT.

The onset of this substorm was present in the auroral data, as the noon-midnight

keogram reached its most poleward extent at roughly 4:20 UT. The polar cap area

decreased from 4 UT until just after the onset of the SMC.

During SMC Event 2a the area of the polar cap was stable. The average polar

cap area during the interval was 107 km2 with a standard deviation of 0.68×105 km2

(7% of the mean). The mean polar cap area for the day was 9.0×106 km2 with a

standard deviation of 2.6×106 km2 (29% of the mean). Like SMC Event 1, the polar

cap area was less variable during this SMC interval than all data obtained during

the day. Of the 93 polar cap area estimates recorded during SMC Event 2a, 95% fell

within 10% of the hourly mean. The 276 non-SMC data points had 47% within 10%

of the hourly mean. Like SMC Event 1, the polar cap area was less variable during

this SMC interval than all non-SMC data obtained during the day.

In Figure 7.9 the unshifted IMF components and magnitude from ACE are

shown. Near 0 UT the IMF Bz component became negative and stable at -2.5 nT.
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Figure 7.9: From top to bottom: (1) IMF Bx, (2) IMF By, (3) IMF
Bz and, (4) IMF magnitude in GSM coordinates for October 30, 2001.
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At 10 UT the IMF Bz component increased fairly rapidly to 0 nT. The IMF By

component decreased very slowly from 5 nT to near 0 nT from 0 UT to 10 UT. IMF

Bx, which was near 0 nT until 9 UT, experienced the opposite trend of IMF Bz,

dropping relatively quickely around 10 UT to -2.5 nT.

Figure 7.10: From top to bottom for: (1) the solar wind proton
density, and (2) the proton velocity of the solar wind for October 30,
2001.

As in Section 7.1, the solar wind and IMF measurements made by ACE are

used to estimate the time delay from ACE to the magnetopause. The proton speed

and density from ACE SWE for October 30, 2001, are presented in Figure 7.10. Over

the course of the day the proton speed is fairly steady. It decreases very slowly from

about 400 km/s to just below 350 km/s. The position of the ACE satellite did not

change substantially, changing less than 0.1% during the day. This is small enough

that the ACE satellite can be considered stationary at 1.4×106 km upstream.

The estimated location of the magnetopause was calculated using Equation 7.1.

The magnetopause was roughly constant for the first 10 hours of the day because

the properties of the solar wind were so stable. A proton speed of 375 km/s was

used with a proton density, adjusted for alpha particles, of 5.2 cm−3. The magne-

topause was found to be located roughly 11 Earth radii upstream, leaving a distance
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of 1.34×106 km between ACE and the magnetopause. With the proton speed of

375 km/s the time delay was 60 minutes.

At roughly 9:30 UT there was a sharp increase in the proton density when

it suddenly tripled from 4 cm−3 to 12 cm−3. This increase in proton density will

affect the estimate of the position of the magnetopause. With a solar wind speed of

375 km/s and a proton density of 14.3 cm−3, adjusted to account for the percentage

of alpha particles in the solar wind, the magnetopause moved to roughly 9.5 Earth

radii, leaving a distance of 1.35×106km between ACE and the magnetopause. The

time delay was still 60 minutes.

The SuperDARN data are presented in Figure 7.11, and these consist of the

PCPD, the convection electric field, the distance between voltage centres, and the

number of SuperDARN data points. The maximum voltage occurred after the onset

of SMC Event 2a, and in general the PCPD values were largest during the SMC

intervals, indicating that convection was enhanced. Like SMC Event 1 in Section 7.1,

the distance between voltage centres was not highly variable, so the changes in the

electric field are very similar to those in the PCPD. Both PCPD and the convection

electric field gradually decreased towards the end of the SMC Event 2b. This is

consistent with the SMC terminating when the enhanced convection AE criterion

was no longer satisfied. This is in contrast with SMC Events 1 and 2a which both

terminate due to rapid changes in AL. The number of SuperDARN data points

recorded on this day was high. From 0 to 5 UT there were between 600 and 800

data points in each map. From 5 UT to 11 UT the number of data point was more

than 400.

The set of observations during SMC Case Study 2 are greatly augmented by

the data from geosynchronous satellites GOES-8 and GOES-10. The satellites orbit

on the Earth’s nightside where they were monitoring magnetotail conditions. The

GOES satellites are operated by the National Oceanic and Atmospheric Administra-

tion who make the data publicly available through the National Geophysical Data

Center (http://goes.ngdc.noaa.gov/data/avg/).

The magnetic field instruments onboard the GOES-8 and GOES-10 record
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Figure 7.11: From top to bottom: (1) the average cross polar cap
electric field, (2) the PCPD, (3) the distance between voltage centres,
(4) the number of data points in the SuperDARN convection maps for
October 30, 2001.
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Figure 7.12: The northward magnetic field component mea-
sured at the GOES-8 and GOES-10 satellites on October 30,
2001. (data courtesy of National Geophysical Data Center
(http://goes.ngdc.noaa.gov/data/avg/))

three components: northward, eastward, and earthward. GOES-8 orbits at a fixed

geographic longitude of 75o West over North and South America and the Atlantic

Ocean. GOES-10 orbits at 135o West geographic longitude over North America and

the Pacific Basin. Figure 7.12 displays the northward magnetic field components

measured at GOES-8 and GOES-10 on October 30, 2001. The northward magnetic

field component is an indicator of the degree of stretching of the magnetotail, and

the largest values correspond to the least stretched or most dipolar configuration.

At 0 UT GOES-8 was located approximately at 19 MLT, and GOES-10 was near

15 MLT. From 0 UT to 4:20 UT the northward component decreased from nearly

90 nT to 60 nT at both satellites, which indicates a gradual change from dipolar

to stretched. This could be simply due to the satellite orbiting from the dusk sec-

tor into the midnight sector, where the field naturally becomes less dipolar. At the

time of substorm onset, 4:20 UT, there was a dipolarisation of the magnetic field

in the magnetotail. The associated increase in the northward field component was

detected at both satellites. In situ measurements of the magnetotail indicate signif-
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icant reconfiguration of the magnetotail occurred between 4 and 5 UT during the

first substorm.

During SMC Event 2a, GOES-8 measured a northward component that was

fairly stable, decreasing gradually from 80 nT to about 70 nT. GOES-10 reported a

slightly more variable northward component which gradually decreased from 70 nT

to 50 nT. At the end of the first SMC both satellites recorded a sharp dipolarisation,

evident in the sharp increase in the northward magnetic field component. This

dipolarization corresponded with the second substorm onset that was seen in the AL

data and this terminated SMC Event 2a.

GOES-8 was located in the dawn sector during the course of the second SMC

event. The northward component at GOES-8 gradually increased from 80 nT to

100 nT. GOES-10 was located in the midnight sector when the second SMC event

began. It too reported a fairly constant northward component at 70 nT. Both GOES

satelites provide evidence to suggest that the magnetotail did not experience any

sudden reconfiguration, such as those due to a substorm, during or following SMC

Event 2b.

7.3 Sawtooth Case Study: October 21, 2001

The sawtooth event that occurred on October 21, 2001, was one of a set identi-

fied by M. Henderson and R. McPherron (personal communication). This sawtooth

event had four individual “teeth” occurring at 16:46 UT, 18:34 UT, 20:00 UT, and

23:07 UT. Because this sawtooth event occurred one day after the SMC on October

20, 2001, and nine days before the SMCs on October 30, 2001, the photo-conductivity

conditions in the ionosphere are very similar for all events. With similar conductiv-

ity conditions the AE indices are expected to be a fairly consistent indicator of the

relative level of convection for these events.

The AE and AL indices from October 21, 2001 are presented in Figure 7.13.

The onset times of four “teeth” are indicated by vertical lines. Following the onsets,

the AE index became extremely large very quickly, reaching values near 1500 nT
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Figure 7.13: From top to bottom for: (1) the AE index and, (2) the
AL index for October 21, 2001. Vertical lines mark sawtooth onsets.

in a matter of minutes. The magnitude of the AL index became very large as well

during these events, indicating that a large substorm current wedge was present.

Interestingly, while all events had a large enhancement of AE, the second event

starting at 18:34 UT did not experience a correspondingly large deflection of AL.

It is not known why this event differs from the others, but it may be related to

poor magnetometer operation at a few stations, since only 8 out of a possible 12 AE

magnetometer stations were in operation that day. The AE and AL enhancements

during the sawtooth case study are much larger that those observed during the SMC

events presented, indicating that the AE current system is much more enhanced

during the sawtooth intervals.

The IMAGE satellite was able to make auroral luminosity measurements of

the entire auroral oval during nearly the entire sawtooth case study. With the WIC

images estimates of the polar cap area could be obtained for nearly 10 hours. Qual-

itatively and quantitatively the polar cap area measurements in Figure 7.14 are in

stark contrast to those obtained during the previously studied SMCs. The raw counts

detected by WIC were much higher than those during the SMC intervals, so a dif-

ferent value had to be chosen for a polar cap threshold. A value of 700 raw counts
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Figure 7.14: From top to bottom: (1) the polar cap area, (2) the
keogram from dawn to dusk, and (3) the keogram from noon to mid-
night on October 21, 2001. The sawtooth onset times are denoted by
the vertical dashed lines.

118



was used. Like the SMC cases, it is not appropriate to consider the absolute value of

the polar cap size, rather it is the relative change in size that is important. Over the

day the area of the polar cap varied from 106 km2 up to 2×107 km2, indicating that

conditions were far from steady during this sawtooth event. The mean polar cap

area during this day was 9.9×106 km2 with a standard deviation of 5×106 km2 (50%

of the mean). The polarcap area was highly variable during this day as compared

to both SMCs studied. Furthermore, of the 254 polar cap area measurements made,

42% were within 10% of the mean. The variability of the polar cap area supports

previous studies (e.g., Henderson et al., 2006, DeJong et al., 2007) that convection

is steadier during times of SMC. A steady polar cap area implies the reconnection

rates on the dayside are balanced with the reconnection rates in the magnetotail.

Figure 7.15: From top to bottom for the day: (1) the solar wind
proton density, and (2) the proton velocity of the solar wind for October
21, 2001.

The solar wind conditions recorded on October 21, 2001 are displayed in Fig-

ure 7.15. Measurements of solar wind density were disrupted many times during

this day, leading to the large data gaps in the top panel of Figure 7.15. Solar wind

conditions were calm leading up to the sawtooth event. The solar wind proton den-

sity was roughly 5 cm−3, with speeds below 400 km/sec. Near 16:15 UT, about a
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quarter of an hour before the onset of the first sawtooth at 16:46 UT, the solar wind

speed increased very rapidly to 650 km/s. Simultaneously the density also increased

suddenly up to 30 cm−3. For the duration of the sawtooth event the solar wind

speed was in excess of 600 km/s and quite steady. The solar wind density, in con-

trast, was far from steady. Three large fluctuations occurred at 16:30 UT, 17:30 UT,

and 20:00 UT. These density enhancements should also correspond to increases in

solar wind ram pressure, since the solar wind speed remained stable. Based on the

solar wind plasma data, it is possible that several of the sawteeth could have been

triggered by solar wind pressure pulses.

The IMF conditions at ACE on October 21, 2001, are presented in Figure 7.16.

During the hours leading up to the sawtooth event IMF Bz and IMF Bx were nearly

0 nT, while IMF By was about 8 nT. All components were very stable. At roughly

the same time as the solar wind pressure and speed increased IMF Bz and IMF By

changed sharply to -20 nT and 20 nT, respectively. The IMF magnitude also jumped

from 8 nT to 25 nT at this time and remained large for the duration of the sawtooth

event. All three IMF components experienced large variations throughout the rest

of the day, and rapid rotations of the magnetic field occurred at about the same time

as the large changes in the proton density.

In order to produce the SuperDARN convection maps for the sawtooth inter-

val with ACE data, it is necessary to estimate the time delay from ACE to the

magnetopause for these solar wind conditions. For the SMC cases the time delay

to the magnetopause was estimated using the solar wind speed and proton density.

Fortunately, for the sawtooth event there is a much more accurate method of tim-

ing. The GOES-8 and GOES-10 satellites were on the dayside of the Earth at the

time of the first sawtooth. When in the dayside, geosynchronous satellites are in

an excellent location to detect impulsive solar wind disturbances, such as pressure

pulses, when they perturb the middle magnetosphere. The northward magnetic field

component at GOES-8 and GOES-10 are presented in Figure 7.17. The identified

onset time of each sawtooth is marked by vertical dotted lines in Figure 7.17. At

the onset of the first sawtooth the GOES-8 satellite was located near 12 MLT. The
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Figure 7.16: From top to bottom: (1) IMF Bx, (2) IMF By, (3) IMF
Bz and, (4) IMF magnitude in GSM coordinates for October 21, 2001.
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northward magnetic field component increased sharply to nearly double its initial

value and then reversed to an equally large value in the southward direction. The

large southward deflection indicates that GOES-8 crossed the magnetopause and

entered the magnetosheath. GOES-10 which was in the dawn sector near 8 MLT

recorded the initial response to the presure pulse at 16:51 UT, which is the same

time it was observed at GOES-8. Therefore according to the northward magnetic

field components at GOES-8 and GOES-10 the time delay from ACE should be 36

minutes. It took 40 minutes after 16:51 UT before GOES-10 detected the strong

southward magnetic field component of the magnetosheath. This delay was due to

the time required for GOES-10, which was initially in the dawn sector to orbit close

to the highly compressed frontside magnetopause.

Figure 7.17: The northward magnetic field component mea-
sured at the GOES-8 and GOES-10 satellites on October 21,
2001. (data courtesy of National Geophysical Data Center
(http://goes.ngdc.noaa.gov/data/avg/))

The time delay was also calculated based on the solar wind conditions at ACE.

During this day the location of ACE varied 0.063%, so once again ACE can be

considered stationary at a distance of 1.4×106km upstream. During the sawtooth

event the solar wind speed x component was roughly 650 km/s. There were several
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proton density fluctuations over the course of this event. The maximum proton

density adjusted for helium content was roughly 77 cm−3 and the minimum proton

density adjusted for proton content was 5.6 cm−3. Equation 7.1 was again used to

estimate the location of the magnetopause. For the maximum proton density the

magnetopause was located 6.0 earth radii upstream. Therefore the time delay should

be 35 minutes. For the minimum proton density the magnetopause was 9.3 Earth

radii upstream, leading to a time delay of 34 minutes. The magnetopause distance of

6.3 is more consistent with GOES-8 and GOES-10, which orbit at 6.6 RE, crossing

into the magnetosheath. These time delay estimations based on ACE data are very

similar to the time delay obtained from feature matching in the ACE and GOES

data streams.

SuperDARN provided measurements of ionospheric convection over the course

of the sawtooth case study. The electric field, voltage, distance between voltage

extrema, and the number of SuperDARN data points are displayed in Figure 7.18.

On average, the SuperDARN had excellent coverage. On this day there were times

when SuperDARN recorded close to 1200 data points. Values obtained from the

SuperDARN convection maps are therefore highly reliable. To confirm this, two dif-

ferent time delays were used to shift the ACE data. A 60 minute time delay and a 30

minute time delay were both used, and both gave nearly identical results, indicating

the initial statistical model was inconsequential for the resulting convection maps.

The onset of each sawtooth is marked by a vertical line in Figure 7.18. The mag-

nitudes of these parameters were large for the duration of this sawtooth as well. The

PCPD was greater than 100 kV at times, while the electric field neared 40 mV/m,

indicating convection was very strongly enhanced. The distance between voltage

centres was also large, having magnitudes close to 5×106 m. The voltage, electric

field, and distance between voltage centres was highly variable thoughout the day

as well. In general, the sawtooth event was much more disturbed and variable than

the SMC case studies in all aspects, which is not unexpected.
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Figure 7.18: From top to bottom: (1) the average cross polar cap
electric field, (2) the PCPD, (3) the distance between voltage centres,
(4) the number of data points in the SuperDARN convection maps for
October 21, 2001. The vertical lines mark sawtooth onsets.
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7.4 Case Study Results

Based on the analysis presented in the three case studies, several things can be

concluded regarding the variable selection method and SMC. Events selected by the

variable SMC selection method displayed all the qualitative characteristics of SMC.

When compared to an event selected using the modified SMC selection method of

O’Brien et al. (2002), it was found that both resulted from moderate solar wind

and IMF conditions and that both possess enhanced convection. To quantify the

steadiness of convection a method similar to that of DeJong and Clauer (2005)

was employed. During the SMC events the majority of polar cap area estimations

fell within 10% of the hourly mean. There was also evidence that the steadiness

requirement developed by O’Brien et al. (2002) was problematic. Future work will

be required to refine this criterion.

The sawtooth case study revealed that magnetospheric convection is unstable

during sawtooth events, resulting in drastic changes in the state of the magnetotail.

SMC events, on the contrary, did not display similar large scale reconfiguration of

the magnetotail.
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Chapter 8

Conclusion and Future Work

8.1 Summary

Steady magnetospheric convection (SMC) is qualitatively defined as times of

enhanced convection in the magnetosphere during which the stability of the magne-

totail is maintained. In the past, intervals of SMC have been identified and studied

using data sets comprised of ground based magnetometer measurements, IMF con-

ditions, and ultraviolet aurora images. The analysis of these data have increased

our understanding of SMC and the dynamics of the magnetosphere. This positive

progress was made despite that the data sets used were all the result of indirect

observations of convection. SMC is a convection based phenomenon. This thesis is

a presentation of the first statistical study of direct convection observations during

SMC.

SuperDARN makes direct observations on a global scale of ionospheric convec-

tion. One must understand both the advantages and limitations of this tool before

applying it to SMC studies. One limitation is that the SuperDARN radar network

does not have enough radars to measure the entire ionospheric convection pattern.

Complex algorithms are used to interpolate across the data gaps. These algorithms

are based on statistical models and are highly dependent on the amount of data

the radar network obtains. Many complex factors play into radio wave propagation,

making continual data reception in every possible data volume nearly impossible.

Because SuperDARN convection maps can be strongly influenced by an inherently

steady statistical convection model, it is prudent to first identify SMC based on the

previous work conducted by others and then use SuperDARN to study the conditions
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that arise during SMC.

SMC events used in this thesis were initially selected based on the work of

O’Brien et al. (2002). Before SuperDARN was even employed in this study a very

interesting trend was discovered in the data set. The SMC events selected revealed

strong solar cycle and seasonal dependences. Near solar maximum and during the

northern summer months more SMC events were identified. The solar cycle variation

was expected since convection varies with the solar cycle. The seasonal dependence,

on the other hand, was not expected. Convection in the magnetosphere is not known

to vary so drastically with season; therefore it is likely that the previous methods

used to identify SMC are being effected by parameters other than convection.

SMC events selected using the modified method of O’Brien et al. (2002) were

identified using ground based magnetometers that respond to auroral electrojet cur-

rents flowing in the ionosphere. These currents are not only controlled by convection

but also depend on the conductivity of the ionosphere which, in turn, is highly de-

pendent on the amount of sunlight that reaches the Earth. In winter months little

sunlight reaches to the high latitudes resulting in low ionospheric conductivity, while

in the summer months the more direct sunlight at high latitudes results in greater

ionospheric conductivity. If one wishes to use ground based magnetometer measure-

ments to quantify only convection, variable conductivity must be accounted for.

As a first attempt at eliminating this problem, the seasonal dependence dis-

played by the number of SMC events per month was largely reduced with a new

variable-AE SMC selection method. The new requirements placed on ground based

magnetometer measurements vary as a function of season to reduce the effects of vari-

able ionospheric conductivity on SMC selection. With the seasonal dependence di-

minished, evidence was required to show that the variable-AE SMC selection method

is an improvement on previous methods and identifies events based on a minimum

convection threshold. SuperDARN global convection maps were used for this task.

SuperDARN can measure the ionospheric convection pattern once every two

minutes. The level of convection in each pattern is usually quantified by a parame-

ter called the cross polar cap potential difference (PCPD). The PCPD is not a true
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measure of convection but is commonly used as a proxy. The larger this voltage

measurement, the more enhanced convection is assumed to be. If the variable SMC

selection method is selecting events based on a minimum convection threshold, the

average PCPD should be roughly constant during all seasons. To compare the dif-

ferent methods the average SuperDARN PCPD was determined for the modified

method of O’Brien et al. (2002) and for the variable-AE SMC selection method.

To ensure that the conditions during these events were distinct from typical and

non-enhanced magnetospheric activity, two additional test populations were stud-

ied. These populations consisted of randomly selected events, to quantify typical

conditions, and events with low AE, to quantify low magnetospheric activity.

The events selected using the modified method of O’Brien et al. (2002) dis-

played a lower average PCPD in the summer as compared to the winter. This

indicates that the events selected by the modified method of O’Brien et al. (2002)

were not based on a minimum convection threshold. On the other hand, events

selected with the variable-AE method displayed a more consistent voltage over the

year. The randomly selected events also displayed roughly equivalent voltages for

both winter and summer but had a yearly voltage average that was much lower than

both SMC selection methods. The events with weak convection also had roughly

equivalent voltages over the course of the year with a yearly average voltage that

was lower than all other events sets.

The results from SuperDARN are quite promising, as they appear to support

the hypothesis that conductivity causes the seasonal dependence of the total events

distribution. These results however are not conclusive since the uncertainties in Su-

perDARN convection maps are unknown. Additional evidence is therefore required

to support this claim.

To augment the evidence from SuperDARN a conceptual model of SMC de-

tection was developed based entirely on conductivity. With several simplifying as-

sumptions, an analytical average events distribution was produced. This resulting

distribution displays the same seasonal trend as the experimental distribution ob-

tained through the modified method of O’Brien et al. (2002). The model provided
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strong support that conductivity variations are contributing to the seasonal trend.

In addition to this, the conceptual model implies that a flat distribution would be

composed of events selected with a constant minimum convection threshold. Thus

the combined evidence from SuperDARN and the conceptual model strongly support

the hypothesis that seasonal changes in ionospheric conductivity caused the seasonal

variation in the number of SMC events selected.

With an improved SMC selection method in place, it is important to show

that the additional events satisfy the qualitative criteria of SMC. Properties of SMC

can also be better determined quantitatively. Several approaches were used. The

superposed epoch analysis is statistical in nature and allows one to examine in a

general sense how conditions in the solar wind and the magnetosphere evolve during

SMC. The superposed epoch analysis revealed that the IMF Bz component increases

for about 2 hours before SMC onset. This trend was evident in SMCs selected using

traditional and the new variable-AE methods.

The SuperDARN convection maps were also examined with the superposed

epoch analysis. It was found that enhanced PCPD exists during the intervals selected

with both the modified method of O’Brien et al. (2002) and with the variable SMC

selection method. The SMC events were found to be enhanced in comparison to the

typical and non-enhanced data sets. Leading up to SMC onset, there was an increase

in PCPD. This “growth phase” lasted for about 2 hours.

SuperDARN PCPD is only a proxy for convection. This voltage depends not

only on the strength of the convection electric field but also on the distance between

the centres of the convection cells. The convection electric field is a much better

measure of convection, but it is difficult to determine. To obtain an estimate of

the average cross polar cap electric field, the value of PCPD was divided by the

distance between the voltage extrema. The superposed epoch analysis showed that

the polarcap electric field was enhanced during SMC and also had a similar “growth

phase” leading up to SMC onset.

A superposed epoch analysis was also performed on the distance between volt-

age extrema. The cumulative distributions showed that the distance increased before
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onset for both sets of SMC events. During the SMC events, however, there were no

large changes in the distance. The superposed epoch analysis provides evidence

indicating that the polar cap was large and stable during SMC.

The superposed epoch analysis of the number of data points in the SuperDARN

convection maps revealed a gradual increase in data coverage. This was interesting

because during unstable active times such as substorms the amount of SuperDARN

often decreases. Since the SuperDARN data volume is not adversely affected by

conditions during SMC, SuperDARN is a useful tool to study SMC.

The superposed epoch analysis was a very useful approach for statistical studies

of the time evolution of SMC. A scatter plot analysis was performed to supplement

the statistical studies with information about typical properties of SMC and rela-

tionships between them.

The scatter plot analysis of upstream IMF orientation revealed that SMC is

driven by a moderately negative IMF Bz component and there is no preferred di-

rection of IMF By. The extra SMC events detected using the variable-AE method

appear to have a preponderance of large IMF By components. This may be indica-

tive of a slightly weaker driving of convection by an IMF that is highly tilted from

the southward.

The PCPD was most enhanced for the SMC events selected with the modified

method of O’Brien et al. (2002). The variable method possessed enhanced convection

as well but to a lesser degree. In comparison to the test set, the scatter plot analysis

suggests that enhanced PCPD is a defining feature of SMC.

PCPD can be a proxy for convection because it depends on the strength of

convection, but it also depends on the distance between the centres of the convection

cells. The scatterplot analysis was a very useful method to establish if there is a

relationship between PCPD and distance. Comparing all events sets, the voltage

did have a dependence on distance, with increased voltage for increased distance.

The SMC events, however, did not display a clear trend. This result combined with

the result from superposed epoch analysis indicates that the polar cap area does not

change during SMC and may effectively decouple PCPD and distance during SMC.
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The statistical approaches have shown that convection is enhanced for SMC

events selected with both methods and that these events are driven by a moderately

negative IMF Bz component. The evidence also suggests the PCPD is an effective

proxy for convection during SMC.

Following the statistical analysis, a series of three case studies were presented.

The first SMC case study was selected by both the modified method of O’Brien

et al. (2002) and the variable-AE SMC selection method. The second event had

a much weaker AE index overall and was only selected by the variable-AE SMC

selection method. The third case study was of a sawtooth event, which was included

for comparison with SMC.

The three main goals of the case studies were: (1) to show that SMCs selected

by both methods possess enhanced and steady convection, (2) to show that the addi-

tional events selected by the variable AE method satisfy the qualitative requirements

of SMC, and (3) to demonstrate that SMC is distinct from other active phenomena

in the magnetosphere. The case studies employed a wide variety of data sets to give

several perspectives. These data sets provided detailed information on the state of

convection in the ionosphere on a global scale, the upstream conditions of the solar

wind, and in two cases in situ observations of conditions in the magnetosphere from

geosynchronous satellites. All three case studies were chosen because they occurred

at nearly the same time of year, so photo-conductivity conditions in the ionosphere

would have been very similar for all these events.

SMC Event 1 occurred on October 20, 2001, beginning at 14:26 UT and ending

at 17:41 UT. This interval was selected by both the modified method of O’Brien

et al. (2002) and the variable-AE selection method. Careful analysis of the AL index

revealed that the steady convection convection criterion was problematic. As well, a

substorm onset as identified by Frey et al. (2004) during SMC Event 1 also indicated

that the steadiness requirement of O’Brien et al. (2002) may be flawed. During the

interval IMF Bz fluctuated but on average was moderately negative at -2 nT, which is

in agreement with past SMC studies (e.g. DeJong and Clauer , 2005, O’Brien et al.,

2002). IMF By was positive and large at 7 nT. Based on SuperDARN measurements,
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convection was enhanced during this event with a PCPD between 80 to 100 kV.

The second SMC case study occurred on October 30, 2001. Two SMC events

were identified on this day using the new variable-AE selection method. The first

started at 4:33 UT and ended at 7:47 UT . The second started at 8:23 UT and

ended at 11:48 UT. These events would not have been identified by previous SMC

methods, as the AE index was below 200 nT. Both intervals began with substorms.

The first SMC event ended with a substorm while the second ended due to weak

convection. IMAGE WIC data was only available for the first SMC event on this

day but again indicated that the polar cap area was steady. The distance between

voltage extrema also provided evidence that the polar cap area was steady during

the second SMC event. The IMF Bz component was moderately negative at -3 nT

with IMF By being positive at 5 nT. SuperDARN data indicated that convection

was enhanced with the PCPD between 60 to 80 kV and a large convection electric

field. The GOES satellite constellation made in situ measurements indicating that

no large scale reconfiguration of the magnetotial occurred during these intervals.

Conditions during this event were similar in nature to those of SMC event 1, but

all quantities like PCPD and IMF magnitude were slightly smaller. This is not

unexpected since the AE index for this event was smaller. The second case study

exhibited all qualitative propagation of SMC, but was slightly weaker overall.

A case study of a sawtooth event was performed as well, with four individual

“teeth” identified. This event was characterised by large fluctuations in the AE index.

The polar cap area was not steady, as determined by IMAGE WIC observations and

the distance between voltage extrema. The PCPD and the convection electric field

were highly variable. IMF Bz and IMF By displayed large fluctuations with both

components varying between 20 nT and -20 nT. ACE and GOES provided evidence

suggesting that all four sawteeth on this day were triggered by variations in the

solar wind. The sawtooth event was clearly different from the SMC intervals. The

sawtooth event exhibited much stronger and more variable conditions.
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8.2 Future Work

Work in this thesis was a first step towards understanding SMC in terms of

global convection using SuperDARN. It is not an attempt to produce a SuperDARN

definition of SMC; rather it is an evaluation of current SMC selection methods us-

ing observations of global convection by SuperDARN. Ideally, SMC events would

be defined using observations of global convection. Because the SuperDARN con-

vection mapping technique employs statistical convection patterns to constrain the

fitting algorithms, one must be extremely cautious when attempting to quantify the

steadiness of these convection patterns. It is this inherently steady model that may

cause problems identifying SMC using SuperDARN. Before a SuperDARN defini-

tion of SMC is produced, work is required to deduce the properties of SMC seen by

SuperDARN using convection maps where data, not models, dominate.

Interestingly the variable-AE SuperDARN SMC maps contained more data

points on average than all other sets of events studied. Further investigation is

required to determine if the SuperDARN data rate responds to the steadiness of the

magnetospheric system during SMC.

The seasonal variations in ionospheric conductivity that affect AE are also

expected to impact the “steadiness” criterion (dAL/dt ≥ -25 nT). This criterion is

already problematic, since all it takes is one noisy data spike to cut short a SMC

interval or even to preclude the selection of an interval. As well, there were issues

with the reliability of the AL index due to poor magnetometer coverage. Modification

of the AL criterion may also change the occurrence distribution that was used to

develop the variable-AE cutoff function in Equation 5.2. Further refinement of the

SMC criteria is essential.

Recall that on average the PCPD was generally lower in the northern summer

months for SMCs selected using the modified method of O’Brien et al. (2002). Since

the uncertainties in the SuperDARN voltages are unknown further work is required

to determine if this trend is actually significant. Further insight into the problem

could be provided by calculating the average PCPD values for southern hemisphere
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radars to see if the seasonal trend is reversed.

In addition to the seasonal effects, the number of SMC events is not found

to be directly proportional to the sunspot number. The solar cycle peak may be

related to the increased occurrence of magnetic clouds associated with coronal mass

ejections, inside of which the IMF is usually steady. This behaviour requires further

investigation.

Bryant (2008) studied substorms using an auroral power indicator. It is a

calculation of energy deposited in the atmosphere by precipitating energetic auroral

particles. It would be very interesting to apply this method to SMC studies, as

bright and structured aurora is common during SMC intervals (Henderson et al.,

2006). This type of study could reveal if auroral particles were depositing energy

steadily in the atmosphere as a whole, despite the large variability in brightness in

localised areas.
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