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ABSTRACT

The depth of cracking of soils is often required for
boundary value and limit equilibrium analyses in
geotechnical engineering. At present, the depth of cracking
is customarily expressed as a function of shear strength
using the Rankine theory of lateral earth préssure. The
objectives of this thesis are to study the mechanism of

|

desiccation cracking in soils and to propose a mathematical

model for the prediction of crack depth.

Observations obtained from the laboratory program
indicated that the locations of desiccation cracks and the
crack spacing were highly dependent upon the inhomogeneities
in the soils. Based on the expérimental results, desiccation
cracks were initiated at a matric suction of less than 10
kPa for silty and clayey soils. Silty soils are expected to
require a higher matric suction at cracking than do clayey
soils. The volumetric shrinkage strain at cracking for
Indian Head Till was about 7%. Regina Clay is expected to
require a lower volumetric shrinkage strain at cracking than

does Indian Head Till.

Two mathematical expressions were derived using the
volume change (i.e., elastic equilibrium analysis) and shear
strength (i.e., plastic equilibrium analysis) behavior of

unsaturated soils for the prediction of crack depth. Based
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on the result of a parametric study, it was found that the
crack depth predicted by the plastic analysis was almost
twice as deep as that predicted by the elastic analysis.
Since desiccation cracks are formed as a result of soil
volume reduction, the elastic analysis is expected to be
more appropriate for the prediction of crack depth, although
the wvalidity of the analysis must be confirmed with future

studies on the desiccation crack depth in the field.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Large portions of the land surface on earth have been
subjected to the influence of desiccation. 1In nature,
desiccation takes place whenever the surface of the soils is
not permanently flooded. Most soil deposits when originally
laid down are saturated. Lacustrine deposits, for example,
are deposited at water contents above the liquid limit and
are then consolidated by the weight of the overlying
sediments. When the surface of a soil deposit is exposed to
the air, desiccation proceeds slowly from the exposed soil

surface in a downward direction.

In localities where the soils are continuously below
the water table or where evaporation is slow, desiccation
will remain near the ground surface. In semi-arid regions,
the water table 1s drawn below the ground surface,
particularly during dry periods. The soil loses water and
shrinks during desiccation. Consequently, the upper portion
of the soil profile becomes unsaturated and desiccation
cracks are formed. These cracks extend some distance below

the ground surface.



1.2 SIGNIFICANCE OF CRACK DEPTH IN ENGINEERING PROBLEMS

In geotechnical engineering, the depth of cracking is
often required for boundary value and 1limit equilibrium
analyses. As an example, cracking due to shrinkage affects
the stability of embankments and earth dams. In slope
stability computations, the presence of tension cracks

affects the analysis in a number of ways (Spencer, 1968):

a) by shortening the length of the slip surface
(as shown in Fig. 1.01), thus reducing the

resistance to failure,

b) the water pressure acting on the crack face
constitutes an additional driving force

contributing to failure, and

c) the water in the crack tends to soften the
soil, degrading its strength properties.

When designing an open cut in cohesive soils, the
presence of tension cracks must be considered. Pufahl et al
(1983) showed that the presence of tension cracks
substantially reduced the critical height of an unsupported

vertical slope. The effect of the tension cracks on the
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Fig. 1.01: The length of slip surface is shortened due to the presence of tension cracks.
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critical height of an unsupported excavation is illustrated

in Fig. 1.02.

Compacted cohesive soils are | often used as
"impermeable"” barriers to retain various types of industrial
waste products. Compacted clay liners are prone to crack due
to desiccation. A cracked clay liner has a permeability many
orders of magnitude greater than does an uncracked liner.
Desiccation cracking has been known to cause problem in the
field (Kléppe and Olson, 1985). Excessive water loss in an
exploratory borehole was partially blamed on desiccation
cracking in the clay core of Lovewell Dam (Sherard, 1973).
The clay core had been exposed to desiccation in dry weather

during a construction stoppage.

The infiltration rate in fractured soils depends on the
configuration and the extent of cracking. From a computer
study on the infiltration in an fractured soil, Moore and
Ali (1982) found that the depth of 'cracking played a
significant role, whereas the cracking frequency was less

important.

When a desiccated so0il is soaked with water during wet
seasons, the soil swells and the cracks are closed. The
opening and closing of desiccation cracks generates fissures
in the so0il (Blight and Williams, 1971). It has been

recognized that the strength of stiff fissured clays 1is
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governed mainly by the orientation and spacing of fissures
(Terzaghi and Peck, 1967). If the origin and the extent of
the fissures are known, its effect on the performance of

fissured soils can be assessed with more confidence.

Soils containing a significant amount of clay will
experience high volume changes during dgy and wet seasons.
This type of soil is commonly known as "expansive soil”. The
main engineering problem associated with expansive soil is
the distress caused to 1light structures as a result of
volume changes. A rational engineering design approach is to
place the foundation units of a light structure in stable
ground conditions below the active zone of expansive soil
(Can. Geotech. Soc., 1978). However, this approach is not
always economical, especially in the <case of highway
construction. Recently, vertical moisture barriers have been
used in highway construction to prevent the expansive
foundation soil from detrimental seasonal volume changes
(see Fig. 1.03, Picornell, 1985). The function of the
barrier is to reduce the infiltration of rainfall into the
desiccation cracks within the foundation soils in wet
seasons and to prevent the foundation soils from excessive
drying in dry seasons. A knowledge of the maximum crack

depth is required to design this type of moisture barriers.
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1.3 THE NEEDS

When the depths of cracks are known, it is usually not
difficult to incorporate their effect into an engineering
analysis as discussed in Section 1.2. However, the depth of
cracking remains a difficult variable to obtain in the
analysis (Baker, 1981). Taylor reviewed this problem in 1948
and stated:

| "The questionable action and the questionable
depth of the tension =zone 'have considerable
bearing on the 1limited dependability of many
stability analyses, and the action within the
tension zone is a subject that is worthy of much

study."

Unfortunately, the study of tension cracking in soils
has been neglected in the engineering disciplines (Lee et
al, 1982). In Codes of Practices (1951) as well as in many
textbooks (Terzaghi and Peck 1967, Lambe and Whitman 1969,
Chowdhury 1978 and Craig 1978), the depth of tension crack

is customarily estimated using the Rankine theory of earth

pressure.
Ze = 2. c' tan (45 + ¢'/2) ' [1.01]
Y
where:

Zo = depth of tension crack.
¢’ = effective cohesion intercept.
¢’ = effective friction angle.
Y = the unit weight of soils.

8



Spencer (1968) suggested a procedure in his method of
slope stability computation to determine the line of thrust
of the interslice forces. if the position of the line of
thrust is not reasonable, a tension crack is introduced and
a different liné of thrust is determined. The depth of
tension crack can be estimated, when a reasonable line of
thrust is obtained. The depth of tension crack can also be
determined using wvariational approach to slope stability

analysis (Baker, 1981).

All the above analyses deal with the shear strength
behavior of the soils. However, there are other factors,
such as expansion/cbntraction caused by frost action and the
shrinkage of the clay due to drying, which have important
effects on the depth to which cracks extend (Taylor, 1948).
Other than the above methods, there exist no other rational

means for the estimation of the depth of desiccation cracks.
1.4 THE SCOPE OF THIS DISSERTATION
The purposes of this thesis are to study the mechanism

of desiccation <cracking in soils and to propose a

mathematical model for the prediction of depth of cracking.



The investigation consists of conducting a 1literature
review, a laboratory experimental program and an analytical

program. The principal objectives of the investigation are,

a) to study the cracking patterns of desiccating

soil,

b) to identify the parameterslthat influence the

- cracking pattern and the depth of cracking,

c) to study the effect of soil suction on the

desiccation cracking in soils,

d) to propose a mathematical model for the

prediction of crack depth, and

e) to evaluate the effects of different soil

parameters on the prediction of crack depth.

This dissertation is divided into eight (8) chapters. A
general introduction to the desiccation cracking in soils is
provided in Chapter 1. Chapter 2 contains a summary of the
existing knowledge on the desiccation cracking of soils.
Mathematical expressions for the prediction of crack depth
are given as part of the theory in Chapter 3. Descriptions

of the analytical and experimental programs are provided in

10



Chapter 4. The results of the analytical and experimental
programs and a discussion of results are presented in
Chapters 5, 6 and 7, respectively. Conclusions derived from

this study and recommendations on future research are given

in Chapter 8.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Research literature was reviewed from the geology, soil
science and engineering disciplines that pertained to the
problem of shrinkage and desiccation cracking in soils. Most
of the information provided by geologists deal with the
physical observation on the aerial patterns of desiccation
cracks. The information provided by the soil scientists is
concerned with the physical behavior of soil shrinkage.
There is a limited amount of information provided from the
engineering field which considers the strength
characteristics of soils. It appears that not one researcher
has completely assessed or defined an approach to the
problem of shrinkage and desiccétion cracking of soils.
However, the 1literature review given in this chapter
provides some insight into the behavior of desiccation

cracking in soils.

2.2 SHRINKAGE OF SOILS

Soils shrink in response to a change in the stress

state. The stress state depends on various environmental
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factors such as, land use and annual climatic conditions.
Haines (1923) studied blocks of soil moulded from a paste
and distinguished three main phases of soil shrinkage that
accompanied water withdrawal: normal, residual and no
shrinkage as shown in Fig. 2.01. Normal shrinkage occurs
when the change in so0il wvolume equals to the water lost.
Residual shrinkage occurs when air enters the soil and the
reduction in soil volume is less than volume of water lost.
At the no shrinkage phase, soil does not shrink upon further

drying.

Stirk (1954) defined a fourth phase of shrinkage termed
structural shrinkage (Fig. 2.02). It has siﬁilar
characteristics to residual shrinkage (i.e., water 1lo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>