
 

 

 

Multistage Expansion Planning of Active Distribution 

Systems: Towards Network Integration of Distributed 

Energy Resources 

 

A Thesis  

Submitted to the College of Graduate and Postdoctoral Studies 

in Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy 

in the Department of Electrical and Computer Engineering 

University of Saskatchewan 

Saskatoon, Saskatchewan, Canada 

 

by 

Alireza Zare    

 

 

 Copyright Alireza Zare, September, 2018. All rights reserved. 



i 

  

Permission to Use 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the Libraries of this University may make it freely 

available for inspection. I further agree that permission for copying of this thesis in any manner, 

in whole or in part, for scholarly purposes may be granted by the professor or professors who 

supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the 

College in which my thesis work was done. It is understood that any copying or publication or use 

of this thesis or parts thereof for financial gain shall not be allowed without my written permission. 

It is also understood that due recognition shall be given to me and to the University of 

Saskatchewan in any scholarly use which may be made of any material in my thesis. 

Requests for permission to copy or to make other uses of materials in this thesis in whole or part 

should be addressed to: 

Head of the Department of Electrical and Computer Engineering 

University of Saskatchewan 

57 Campus Drive 

Saskatoon, Saskatchewan, S7N 5A9 

Canada 

OR 

Dean of the College of Graduate and Postdoctoral Studies 

University of Saskatchewan 

116 Thorvaldson Building, 110 Science Place 

Saskatoon, Saskatchewan S7N 5C9 

Canada 

 

 



ii 

  

Abstract 

Over the last few years, driven by several technical and environmental factors, there has been a 

growing interest in the concept of active distribution networks (ADNs). Based on this new concept, 

traditional passive distribution networks will evolve into modern active ones by employing 

distributed energy resources (DERs) such as distributed generators (DGs), energy storage systems 

(ESSs), and demand responsive loads (DRLs). Such a transition from passive to active networks 

poses serious challenges to distribution system planners. On the one hand, the ability of DGs to 

directly inject active and reactive powers into the system nodes leads to bidirectional power flows 

through the distribution feeders. This issue, if not adequately addressed at the design stage, can 

adversely affect various operational aspects of ADNs, specifically the reactive power balance and 

voltage regulation. Therefore, the new context where DGs come into play necessitates the 

development of a planning methodology which incorporates an accurate network model reflecting 

realistic operational characteristics of the system. On the other hand, large-scale integration of 

renewable DGs results in the intermittent and highly volatile nodal power injections and the 

implementation of demand response programs further complicates the long-term predictability of 

the load growth. These factors introduce a tremendous amount of uncertainty to the planning 

process of ADNs. As a result, effective approaches must also be devised to properly model the 

major sources of uncertainty.   

Based on the above discussion, successful transition from traditional passive distribution 

networks to modern active ones requires a planning methodology that firstly includes an accurate 

network model, and secondly accounts for the major sources of uncertainty. However, 

incorporating these two features into the planning process of ADNs is a very complex task and 

requires sophisticated mathematical programming techniques that are not currently available in the 

literature. Therefore, this research project aim to develop a comprehensive planning methodology 

for ADNs, which is capable of dealing with different types of DERs (i.e., DGs, ESSs, and DRLs), 

while giving full consideration to the above-mentioned two key features. To achieve this objective, 

five major steps are defined for the project.  
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Step 1 develops a deterministic mixed-integer linear programming (MILP) model for integrated 

expansion planning of distribution network and renewable/conventional DGs, which includes a 

highly accurate network model based on a linear format of AC power flow equations. This MILP 

model can be solved using standard off-the-shelf mathematical programming solvers that not only 

guarantee convergence to the global optimal solution, but also provide a measure of the distance 

to the global optimum during the solution process. Step 2 proposes a distributionally robust 

chance-constrained programming approach to characterize the inherent uncertainties of renewable 

DGs and loads. The key advantage of this approach is that it requires limited information about 

the uncertain parameters, rather than perfect knowledge of their probability distribution functions. 

Step 3 devises a fast Benders decomposition-based solution procedure that paves the way for 

effective incorporation of ESSs and DRLs into the developed planning methodology. To this end, 

two effective acceleration strategies are proposed to significantly enhance the computational 

performance of the classical Benders decomposition algorithm. Eventually, Steps 4 and 5 propose 

appropriate models for ESSs and DRLs and integrate them into the developed planning 

methodology. In this regard, a sequential-time power flow simulation method is also proposed to 

incorporate the short-term operation analysis of ADNs into their long-term planning studies.     

By completing the above-defined steps, the planning model developed in Step 1 will be gradually 

evolved, so that Step 5 will yield the final comprehensive planning methodology for ADNs.   
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Chapter 1 

1. Introduction 

1 Introduction  

1.1 Motivation   

Power distribution networks need to be expanded to meet the growing demand in an economic, 

reliable, and safe manner [1], [2]. In general, the distribution expansion planning (DEP) problem 

consists of finding the optimal location, size, and time for construction, replacement, or 

reinforcement of the system equipment such as substations and feeders [3]. These expansion 

decisions are usually made with the objective of minimizing a specific cost function while taking 

a set of technical and financial constraints into account [4], [5]. From the viewpoint of planning 

horizon, the DEP problem can be either single-stage (also called static) or multistage (also known 

as dynamic). In the single-stage DEP (SDEP) problem, the expansion plans are determined at one 

single time step in order to meet the demand forecasted for the end of the planning horizon [6]. 

Whereas, in the multistage DEP (MDEP) problem, the planning period is divided into several 

stages and, accordingly, the expansion plans are distributed among the specified stages to gradually 

satisfy the increasing demand [7], [8]. The MDEP problem is more challenging to model and solve 

due to the correlations and interdependencies among the stages, but its ability to provide better 

solutions makes it more attractive compared with the SDEP problem. As a result, the focus of this 

research project is mainly on the MDEP problem.   

In recent years, driven by several technical and environmental factors, there has been a growing 

interest in the concept of active distribution networks (ADNs) [9]. Based on this new concept, 

traditional passive distribution networks will evolve into modern active ones by employing 

distributed energy resources (DERs) such as distributed generators (DGs), energy storage systems 

(ESSs), and demand responsive loads (DRLs), as shown in Figure 1.1. Such a transition from 

passive to active networks poses serious challenges to distribution system planners. On the one 

hand, the ability of DGs to directly inject active and reactive powers into the system nodes leads 
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to bidirectional power flows through the distribution feeders [10]. This issue, if not adequately 

addressed at the design stage, can adversely affect various operational aspects of ADNs, 

specifically the reactive power balance and voltage regulation. Therefore, the new context where 

DGs come into play necessitates the development of a planning methodology which incorporates 

an accurate network model reflecting realistic operational characteristics of the system. On the 

other hand, large-scale integration of renewable DGs results in the intermittent and highly volatile 

nodal power injections [11], [12], and the implementation of demand response programs further 

complicates the long-term predictability of the load growth [10]. Furthermore, the coordinated 

operation of DGs, ESSs, and DRLs reduces the peak load and damps the effect of the load growth, 

which can postpone the need for network reinforcement. These factors introduce a tremendous 

amount of uncertainty to the planning process of ADNs. As a result, effective approaches must 

also be devised to properly model the major sources of uncertainty.  

 
(a) 

 

(b) 

Figure 1.1 Illustration of the passive and active distribution networks [13]: (a) Traditional 

passive distribution networks; (b) Modern active distribution networks.   

Based on the above discussion, it is obvious that obtaining dependable expansion plans for 

ADNs requires a planning methodology which has two key features:  
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 Feature 1: It should consider an accurate network model representing AC power flow 

equations and energy losses.  

 Feature 2: It should adequately account for the uncertainties associated with DERs and 

loads. 

In other words, successful transition from traditional passive distribution networks to modern 

active ones requires a planning methodology which firstly includes an accurate network model, 

and secondly accounts for the major sources of uncertainty. However, incorporating these two 

features into the planning process of ADNs is a very complex task and requires sophisticated 

mathematical programming techniques that are not currently available in the literature. As a result, 

this research project aims to develop a planning methodology that is able to jointly expand both 

the distribution network assets (feeders and substations) and DERs, while giving full consideration 

to the above-mentioned key features. The final outcome of this research project will be a 

comprehensive planning tool for ADNs, which is capable of dealing with different DER 

technologies.   

1.2 Literature Review  

Over the last few years, many researchers have devoted their attention to modelling the MDEP 

problem in the context of ADNs [5]. The following presents a careful and thorough review of the 

current literature from the perspectives of the above-described features, i.e., distribution network 

modelling, and uncertainty modelling.  

1.2.1 Distribution Network Modelling Perspective  

From the perspective of distribution network modelling, the existing MDEP models can be 

categorized into two main groups: 1) nonlinear MDEP models, and 2) linear MDEP models.  

1.2.1.1 Nonlinear MDEP Models  

The first group of MDEP models precisely reflect the nonlinear characteristics of the network 

(i.e., AC power flow equations and energy losses), but they are formulated as mixed-integer 

nonlinear programming (MINLP) problems which are very difficult to solve [1-3], [9], [14-34]. 

For instance, the authors of [1] propose a profit-based multistage expansion planning model for a 
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distribution system equipped with automatic voltage and VAR control (AVVC) and automatic 

fault management (AFM). This model is formulated as an MINLP problem and the genetic 

algorithm (GA) is employed to solve it. In [3], a nonlinear model is developed to investigate the 

impacts of large-scale electric vehicle (EV) penetration on the expansion planning of distribution 

networks, while taking both controlled and uncontrolled EV charging modes into account. The 

optimal solution of this planning model is also found using the GA. A long-term planning model 

to determine the optimal location, capacity, and power rating of battery storage units in a 

distribution network integrated with wind-based DGs is presented in [9]. This nonlinear model, 

which incorporates AC power flow equations, is solved using a hybrid algorithm based on tabu 

search (TS) and particle swarm optimization (PSO).  The authors of [15] propose an optimization 

model for the MDEP problem in the presence of DGs, which aims at enhancing the reliability and 

security levels of distribution networks. This model has a nonlinear formulation involving many 

local optimums and is solved using a modified version of the PSO algorithm. A nonlinear DG 

planning framework that considers voltage regulation and energy losses as the key determinant 

factors of the optimization problem is presented in [16], where the PSO algorithm is utilized to 

find the optimal solution. In [17], a Pareto-based multi-objective problem formulation subject to 

AC power flow constraints is proposed to determine the optimal size and location of the utility-

operated DG units, where a hybrid evolutionary approach based on the combination of the PSO 

and shuffled frog-leaping (SFL) algorithms is employed to solve the problem. A multi-objective 

framework which aims to incorporate the specific reliability requirements of different customers 

into the expansion planning process of distribution systems is proposed in [23]. This multi-

objective optimization problem is solved using the non-dominated sorting genetic algorithm 

(NSGA) along with a fuzzy decision making approach. The authors of [26] develop an MINLP 

model for the expansion planning of active distribution systems, while taking the reactive power 

generation capability of different renewable DG technologies into consideration. The optimal 

solution of this MINLP model is found by employing a hybrid solution algorithm based on the 

PSO and ordinal optimization (OO).   

As can be seen, the MINLP models are often solved using heuristic methods which not only 

cannot guarantee obtaining the global optimal solution, but also do not provide a measure of the 

quality of the obtained solution as they cannot estimate the distance to the global optimum.  
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1.2.1.2 Linear MDEP Models  

To overcome the above-mentioned drawbacks, the second group of MDEP models are presented 

in the form of mixed-integer linear programming (MILP) problems achieved by eliminating the 

nonlinearities of the network model [6-8], [11], [12], [35-45] . However, these models also have 

their own shortcomings. For instance, an MILP model, based on an extension of the linear 

disjunctive model normally used in the expansion planning of transmission networks, is proposed 

for the MDEP problem in [7], [8]. This linear model is obtained by making some simplifications 

such as employing DC power flow equations and ignoring energy losses. Similarly, the authors of 

[11], [12] propose an MILP model incorporating an adapted version of DC power flow equations, 

where energy loss and reactive power balance (i.e., the essential factors in any study on ADNs) 

are entirely neglected. Using these simplified network models may cause the solutions found for 

the MDEP problem to be optimistic or even deficient. The MILP models presented in [36-38] have 

a relative advantage over the ones proposed in [7], [8], [11], [12] due to taking the energy losses 

into account. Nevertheless, they also utilize a variant of DC power flow equations. It is an 

unquestionable fact that a linear MDEP model will provide dependable expansion plans for ADNs 

only if it incorporates a complete study of the network operation based on AC power flow 

equations. This issue has recently attracted the attention of some researchers [6], [35], [40-42]. As 

an example, the MILP model proposed in [40], [41] employs a linearized version of AC power 

flow equations to better capture the inherent characteristics of the network. However, the presented 

linearized network model is obtained by making several error-prone assumptions which adversely 

affect its correctness. In [6], a more accurate MILP model reflecting AC power flow equations is 

developed for the MDEP problem, which makes use of a piecewise-based linearization technique 

to overcome the nonlinearities. Nevertheless, the accuracy of the adopted linearization technique 

needs to be improved. 

To sum up, it can be stated that the MILP models proposed in the literature for the MDEP 

problem have sacrificed the accuracy of the network model. As a result, these MILP models may 

lead to optimistic or even deficient expansion plans for ADNs because they fail to conduct a 

complete and accurate study of the network operation at the planning stage. Based on this fact, it 

is indispensable to develop new MILP models which not only can overcome the drawbacks of the 
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MINLP models, but also are able to reflect the operational characteristics of the distribution 

network in a highly accurate manner.      

1.2.2 Uncertainty Modelling Perspective  

From the perspective of uncertainty modelling, several different approaches have been utilized 

in the available literature. These approaches can be categorized into four main groups: 1) 

deterministic approaches, 2) scenario-based stochastic programming approaches, 3) probabilistic 

approaches, and 4) robust optimization approaches.   

1.2.2.1 Deterministic Approaches  

Many of the reported works utilize a deterministic approach in which one or a few certain values 

are considered for each uncertain parameter [1], [2], [6-8], [14-18], [36], [42], [43], [45], [46]. In 

[1], [2], [6], for example, the expansion planning studies are conducted by considering one single 

load level (i.e., the forecasted peak power demand) for each planning stage, without taking the 

related uncertainties into account. In [7], [8], each planning stage is assumed to have three load 

levels representing the on-peak, mid-peak, and off-peak parts of a typical load duration curve. In 

[14-18], all DG units are presumed to be conventional (i.e., no renewable DG units are considered) 

and the uncertainties associated with loads are completely neglected. In [36], the system demand 

is characterized by three load levels and the wind power generation is determined based on three 

given wind speed values that are assumed to remain unchanged during the whole planning horizon. 

The authors of [42], [45], [46] also consider three deterministic load levels (obtained by 

multiplying the predicted peak power demand by three certain factors) to model the heavy, 

medium, and light loading conditions.     

The above-mentioned research works have entirely ignored the uncertainties. Such a simplistic 

approach will obviously result in inaccurate and unreliable solutions for the MDEP problem, 

especially in the context of ADNs where the network integration of DERs gives rise to a 

tremendous amount of uncertainty.   

1.2.2.2 Scenario-Based Stochastic Programming Approaches   

Another group of works adopt a scenario-based stochastic programming (SBSP) approach [10-

12], [22], [31], [35], [38-41], [44], [47], [48] which models the uncertainties by defining a finite 
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number of scenarios for the random variables and finds the optimal solution of the MDEP problem 

by weighting the objective function of each scenario in proportion to its probability of occurrence. 

In [11], [12], for example, the historical data of load demand, wind speed, and solar radiation are 

first split into several blocks based on quarters, working/non-working days, and day/night hours. 

Each block of historical data is then approximated by a relatively large number of operating 

conditions obtained by combining different levels of load demand, wind speed, and solar radiation. 

These operating conditions are finally assigned appropriate probability values and used for 

implementation of the SBSP approach. In [31], a number of typical daily profiles are considered 

for the load demand and power outputs of wind-based/solar-based DGs, and then the Latin 

hypercube sampling (LHS) method is employed to create large series of samples for the load 

demand and wind/solar generation. A scenario reduction algorithm based on the idea of minimum 

probabilistic distance is also utilized to reduce the number of generated samples and improve the 

computational performance of the SBSP approach. In [40], [41], first a simple method is used to 

create a long series of samples for each of the uncertain parameters (i.e., load demand, wind speed, 

and solar radiation). After that, in order to better model the uncertainties, two additional series are 

also generated for each of the uncertain parameters by assuming ±5% deviations from the initially 

generated series. Then, a standard scenario reduction algorithm based on the k-means clustering 

method is adopted to shorten the length of the generated series. Finally, different combinations of 

these series are considered to define the scenarios required by the SBSP approach. The authors of 

[47] assume that load demand, wind speed, and solar radiation follow certain probability 

distributions and, based on this assumption, they generate a set of scenarios and make use of the 

SBSP approach to incorporate the uncertainties into the expansion planning process of ADNs.      

Several studies available in the current literature have demonstrated that the SBSP approach is 

very computationally demanding as it requires a large number of scenarios to precisely describe 

the uncertainties [49]. For example, in [11], [12] a total number of 1296 operating conditions are 

defined for each planning stage to model the uncertainties associated with renewable DGs and 

loads. As another example, the authors of  [40], [41] generate a total number of 5400 scenarios to 

account for different uncertainties. It is obvious that such a large number of scenarios can easily 

cause the MDEP problem to become intractable, especially when dealing with large-scale 

distribution systems.  
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1.2.2.3 Probabilistic Approaches  

Probabilistic approaches such as point estimate method (PEM) [9], [50-53], cumulant method 

[54], and unscented transformation (UT) method [55], [56] have also attracted the attention of 

many researchers due to their computational tractability. However, the main drawback of these 

approaches is that they assume the existence of perfect knowledge about the probability 

distribution functions (PDFs) of random variables, which are very difficult to obtain in practice. 

In [9], for example, a Gaussian PDF is considered for load demand and a two-point estimate 

method (2-PEM) is utilized to approximate this PDF by two concentration points located around 

its mean value. In [26], different PDF types are utilized to characterize the uncertainties associated 

with wind speed, solar radiation, and load demand. In this regard, a Weibull distribution is 

employed to describe the wind speed characteristics, the uncertainty in solar radiation is modelled 

by a Beta distribution, and the random behavior of load demand is described by a truncated 

Gaussian distribution. The authors of [54] propose a cumulant-based method to model the 

uncertainties presuming that load demand follows a Gaussian distribution and wind speed has a 

Weibull distribution. In [56], a UT-based probabilistic approach is employed to model the 

correlated uncertainties, where load demand and wind speed are both assumed to be Gaussian 

distributed.      

1.2.2.4 Robust Optimization Approaches   

Another approach gaining widespread use is the robust optimization (RO) in which a suitable 

uncertainty space is defined for each uncertain parameter and the optimal solution of the problem 

is found for the worst-case scenario [57-67]. For instance, the authors of [57] define some 

polyhedral uncertainty sets for wind and solar power generations as well as load demand, and 

propose a min-max-min optimization problem whose solution works well for all possible scenarios 

belonging to the defined uncertainty sets. This complex min-max-min optimization problem is 

solved using the column-and-constraint generation (CCG) algorithm. In [60], the uncertainties of 

load demand and renewable generations are included in the planning problem by introducing 

appropriate uncertainty intervals and developing a max-min optimization problem that finds the 

optimal solution under worst-case operational conditions. The developed max-min optimization 

problem is solved using the Benders decomposition algorithm. In [64], a two-stage RO approach 

is proposed, which assumes that the power outputs of renewable DGs lie within some predefined 
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uncertainty intervals covering a wide range of scenarios. The duality theory of linear programs is 

employed to reformulate the proposed two-stage optimization problem as a one-stage problem, 

and the CCG algorithm is adopted to find the optimal solution under the worst-case scenario of 

renewable generation.      

The RO approach has a low computational demand as opposed to the SBSP approach, and also 

does not need detailed knowledge about the PDFs of uncertain parameters in contrast to the 

probabilistic approaches. However, it often leads to over-conservative solutions as it cannot 

effectively control the degree of conservatism.  

1.3 Research Objectives  

In light of the above literature review, despite the efforts of previous researchers, it is 

indispensable to develop a new planning methodology that firstly incorporates an accurate network 

model reflecting the realistic operational characteristics of distribution system, and secondly 

accounts for the uncertainties in an efficient manner. Based on this fact, the final objective of this 

research project is to develop a comprehensive planning methodology for ADNs, which is capable 

of dealing with different types of DERs (i.e., DGs, ESSs, and DRLs) while giving full 

consideration to the above-mentioned essential features (i.e., accurate distribution network 

modelling, and efficient uncertainty modelling). To achieve this objective, five major steps are 

defined for the project, as described in the following: 

 Step 1: To develop a deterministic MILP model for integrated expansion planning of 

distribution network and renewable/conventional DGs. This model will include a highly 

accurate network model based on a linear format of AC power flow equations, but it will not 

take the uncertainties into account.      

 Step 2: To propose a sophisticated uncertainty modelling approach which not only is able to 

adequately characterize the inherent uncertainties of renewable DGs and loads, but also results 

in a reasonable computational cost. The already developed deterministic MILP model will be 

modified to incorporate this uncertainty modelling approach.          

 Step 3: To devise a fast Benders decomposition-based solution procedure for improving the 

computational performance. This fast solution procedure will pave the way for effective 

incorporation of ESSs and DRLs into the developed planning methodology.      
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 Step 4: To model an ESS technology which is appropriate for integration into ADNs. The ESS 

model will be incorporated into the developed planning methodology considering its short-

term operational impacts on the long-term planning studies.          

 Step 5: To model DRLs and incorporate them into the developed planning methodology. The 

short-term impacts of DRLs on the long-term expansion planning problem of ADNs will be 

thoroughly investigated.         

As can be seen, the MILP model developed in Step 1 will be gradually evolved, so that Step 5 

will yield the final comprehensive planning methodology. To shed light on this point, the logic 

behind the steps defined for the project is illustrated in Figure 1.2.    

 

Figure 1.2 Illustration of the logic behind the steps defined for the project. 

In order to demonstrate the step-by-step evolution of the project, the above-defined steps are 

also compared with each other in Table 1.1.    
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Table 1.1 Comparison of the steps defined for the project  

Project 

Steps 

MILP Model 

for MDEP 

Problem 

Essential Features 
Fast Solution 

Procedure 

Incorporated DERs 

Network 

Modelling 

Uncertainty 

Modelling 
DGs ESSs DRLs 

Step 1 
  × ×  × × 

Step 2 
   ×  × × 

Step 3      × × 

Step 4 
      × 

Step 5 
       

 

1.4 Contributions of the Thesis   

All the steps defined in the previous section have been successfully completed. In the following, 

a summary of the main contributions of different steps of the project is presented. 

With regard to Step 1 of the project, first a deterministic non-convex MINLP model is developed 

for the MDEP problem, which incorporates an accurate network model reflecting the realistic 

operational characteristics of distribution system. This model provides several expansion 

alternatives including construction of new feeder sections, replacement of existing feeder sections, 

construction of new substations, reinforcement of existing substations, and installation of 

renewable/conventional DGs. After that, with the aim of obtaining a more tractable problem 

formulation, the developed non-convex MINLP model is converted to a convex mixed-integer 

second-order conic programming (MISOCP) model by proposing a conic quadratic format for AC 

power flow equations. Finally, a highly accurate polyhedral-based linearization method [68] is 

utilized to approximate the conic quadratic constraints with a number of linear constraints. This 

linearization results in an accurate MILP model for the MDEP problem that is computationally 

tractable and ensures the optimality of the solution found, while fully incorporating the first 

essential feature (i.e., accurate distribution network modelling).   

With regard to Step 2 of the project, we have employed a chance-constrained programming 

(CCP) approach which is a powerful technique to control the risk in decision making under 

uncertainty [69]. In this approach, the uncertainties are handled by defining a number of chance 

constraints (CCs) which ensure that the constraints subject to uncertainty will be satisfied with a 
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certain probability level specified by the decision maker. That is, the CCP approach enables the 

decision maker to effectively adjust the degree of conservatism of the solution by changing a 

controllable risk parameter incorporated into the CCs. The only difficulty of using the CCP 

approach is that the CCs, due to their implicit form, are not straightforward to deal with and, hence, 

need to be reformulated as explicit constraints. In most of the existing research works (such as [70-

72]), this reformulation is carried out assuming that the random variables affecting CCs are 

Gaussian distributed. In practice, however, it is quite unrealistic to make such an assumption. Some 

other works (such as [73], [74]) do not consider any specific PDFs for random variables, but they 

propose approximate reformulations (not exact ones) for CCs, which can adversely affect the 

correctness and dependability of the CCP approach. To address these issues, we have proposed a 

distributionally robust (DR) reformulation for CCs, which not only is exact, but also does not make 

any assumption about the uncertainty distributions [75]. To this end, first a moment-based 

ambiguity set, covering all PDFs whose first two moments lie within its confidence intervals, is 

constructed. This ambiguity set is then used to derive the DR variants of CCs. After that, using the 

duality theory of conic linear programming problems [76] and the S-Lemma [77], the DR variants 

of CCs are equivalently reformulated as a number of explicit nonlinear constraints. Finally, the 

nonlinear DR reformulations of CCs are expressed in the form of some conic and bilinear 

constraints which can be linearized using suitable linearization methods. By doing so, a 

distributionally robust chance-constrained mixed-integer linear programming (DRCC-MILP) 

model is obtained, which offers four significant advantages: first, it has a low computational 

demand and provides the opportunity to deal with large-scale distribution systems; second, it 

requires limited information about the random variables, rather than perfect knowledge of their 

PDFs; third, it immunizes the expansion plans against the uncertain renewable generations and 

loads; fourth, it enables the decision maker to effectively control the degree of conservatism of the 

solution. 

With regard to Step 3 of the project, a fast solution procedure based on an accelerated version 

of the Benders decomposition (BD) algorithm is proposed to solve the MDEP problem. By making 

use of the BD algorithm, the MDEP problem is partitioned into a master problem and two 

subproblems, and the optimal solution is found through an iterative process in which multiple 

feasibility and optimality cuts are generated. Note that the straightforward implementation of the 

BD algorithm converges very slowly, requiring a huge number of iterations. Therefore, two novel 
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strategies are also proposed to accelerate the BD algorithm: 1) modification of the master problem, 

and 2) generation of auxiliary optimality cuts. These acceleration strategies, when used together, 

not only significantly decrease the number of iterations required to achieve the convergence, but 

also considerably shorten the time consumed by each iteration. In this way, the performance of the 

BD algorithm is greatly enhanced and a very fast solution procedure is obtained for the MDEP 

problem.  

With regard to Steps 4 and 5 of the project, a decomposed model based on the accelerated BD 

algorithm is developed for the MDEP problem, which takes ESSs and DRLs along with 

renewable/conventional DGs into consideration. The incorporation of ESSs and DRLs into the 

MDEP problem requires integrating the short-term operation analysis of distribution system into 

its long-term planning studies. Based on this fact, the developed planning model carries out 

sequential-time power flow simulation (STPFS) [78], [79] over a series of time slots (e.g., 24 

hours) to analyze the short-term operational impacts of ESSs and DRLs when deciding about the 

long-term expansion plans. A major challenge is that the STPFS calls for simultaneous analysis of 

a relatively large number of operating states, which causes the MDEP problem to become very 

computationally demanding or even intractable, especially when dealing with large-scale 

distribution systems. To achieve the computational speed required for performing STPFS, the fast 

solution procedure proposed in Step 3 of the project is employed. In this regard, the MDEP 

problem is decomposed into a master problem which determines the long-term expansion plans 

and two subproblems which conduct the short-term operation analysis. Regarding ESS modeling, 

after exploring different technologies that are appropriate for employment in distribution systems, 

advanced adiabatic compressed air energy storage (AA-CAES) is chosen as the energy storage 

option due to its lower costs and significantly longer lifetime compared to other technologies [80], 

and a detailed model is proposed for it. Regarding DRL modelling, an hourly real-time pricing 

(RTP) scheme is considered and a demand function based on self-price and cross-price elasticities 

is employed to model the reaction of DRLs to electricity price changes. Furthermore, a new robust 

optimization-based approach is proposed to model the uncertainties of renewable generations, 

loads, and electricity prices, which does not have the drawbacks of other RO approaches existing 

in the literature.  
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It should be mentioned that in each of the above-described steps, two different test systems (i.e., 

24-node and 138-node) are employed to demonstrate the effectiveness of the proposed planning 

methodology.   

1.5 Organization of the Thesis   

The remainder of the thesis is organized as follows:   

Chapter 2 provides a detailed description of the works done in Step 1 of the project. In this 

chapter, the uncertainties are ignored and a deterministic MILP model is developed for integrated 

planning of distribution network and renewable/conventional DGs. This chapter is part of a paper 

titled “A distributionally robust chance-constrained MILP model for multistage distribution 

system planning with uncertain renewables and loads”, which is published in IEEE Transactions 

on Power Systems (Volume: 33, Issue: 5, Pages: 5248-5262, 2018). As the lead author of this 

paper, I developed and implemented the MILP model, carried out the simulations, analyzed the 

results, and wrote the paper. Dr. Junpeng Zhan and Dr. Sherif Omar Faried, as the co-authors of 

this paper, provided me with valuable comments and suggestions during the development of the 

MILP model.      

Chapter 3 provides a detailed description of the works done in Step 2 of the project. In this 

chapter, a novel distributionally robust chance-constrained programming (DRCCP) approach is 

proposed to model the uncertainties of renewable DGs and loads. This chapter is part of a paper 

titled “A distributionally robust chance-constrained MILP model for multistage distribution 

system planning with uncertain renewables and loads”, which is published in IEEE Transactions 

on Power Systems (Volume: 33, Issue: 5, Pages: 5248-5262, 2018). As the lead author of this 

paper, I developed and implemented the DRCCP approach, carried out the simulations, analyzed 

the results, and wrote the paper. Dr. Junpeng Zhan and Dr. Sherif Omar Faried, as the co-authors 

of this paper, provided me with valuable comments and suggestions during the development of the 

DRCCP approach.     

Chapter 4 provides a detailed description of the works done in Step 3 of the project. In this 

chapter, a fast solution procedure based on an accelerated version of the BD algorithm is proposed 

to enhance the computational efficiency of the developed planning methodology. This chapter is 

part of a paper titled “A robust sequential-time simulation-based decomposed model for 
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distribution network and DER planning—part I: deterministic formulation”, which is going to be 

submitted to IEEE Transactions on Power Systems. As the lead author of this paper, I developed 

and implemented the accelerated BD algorithm, carried out the simulations, analyzed the results, 

and wrote the paper. Mr. Benyamin Khorramdel, as the co-author of this paper, assisted me in 

programming the proposed fast solution procedure in MATLAB software. Moreover, Dr. Sherif 

Omar Faried, as another co-author of this paper, provided me with valuable comments and 

suggestions during the preparation of the paper.   

Chapter 5 provides a detailed description of the works done in Steps 4 and 5 of the project. In 

this chapter, a robust decomposed model is developed for integrated expansion planning of 

distribution network assets (i.e., feeders and substations) and different types of DERs (i.e., DGs, 

ESSs, and DRLs), which is capable of performing sequential-time simulation (STS). This chapter 

is part of two papers titled “A robust sequential-time simulation-based decomposed model for 

distribution network and DER planning—part I: deterministic formulation” and “A robust 

sequential-time simulation-based decomposed model for distribution network and DER 

planning—part II: uncertainty modelling and numerical analysis”, which are going to be submitted 

to IEEE Transactions on Power Systems. As the lead author of these papers, I developed and 

implemented the robust STS-based planning model, carried out the simulations, analyzed the 

results, and wrote the papers. Mr. Benyamin Khorramdel and Dr. Sherif Omar Faried, as the co-

authors of these papers, provided me with helpful comments and suggestions during the 

preparation of the papers.   

Chapter 6 presents the concluding remarks of the thesis.    
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Chapter 2 

2. A Deterministic MILP Model for Integrated Planning of 

Distribution Network and Distributed Generation   

2 A Deterministic MILP Model for Integrated Planning of Distribution Network and Distributed Generation   

2.1 Introduction  

In this chapter, the uncertainties are ignored and a deterministic mathematical formulation is 

proposed for the MDEP problem. To this end, first a non-convex MINLP model is developed. This 

model is then changed to a convex MISOCP model by employing an exact relaxation technique. 

Finally, using a highly accurate linearization method, the convex MISOCP model is converted to 

an MILP model. The key advantage of the proposed MILP model is that it can be solved using 

standard off-the-shelf mathematical programming solvers (e.g., branch-and-cut algorithm) which 

not only guarantee convergence to the global optimal solution, but also provide a measure of the 

distance to the global optimum during the solution process.      

2.2 Non-Convex MINLP Model Developed for the MDEP Problem  

This model, which is partly based on the models described in [6] and [36], provides several 

expansion alternatives (construction/replacement of feeder sections, construction/reinforcement of 

substations, and installation of renewable/conventional DGs), while minimizing the total 

investment and operation costs and taking all the necessary constraints into account.     

2.2.1 Objective Function  

The optimization aims at minimizing the present value of the costs distributed through time, as 

given in (2.1), (2.2), and (2.3).  

Minimize  𝑐 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟.             (2.1)  
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𝑐𝐼𝑛𝑣. = ∑
1

(1+𝑟)(𝑡−1)𝐷 [∑ ∑ 𝑐𝑎
𝐹𝑅𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝑅
𝑎∈(𝛺𝑎−𝑎𝑖𝑗

𝐹𝑅)(𝑖𝑗)∈𝛺𝐹𝑅𝑡∈𝛺𝑇 + ∑ ∑ 𝑐𝑎
𝐹𝐶𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝐶
𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹𝐶   

+∑ ∑ 𝑐𝑏
𝑆𝑅𝑥𝑖,𝑏,𝑡

𝑆𝑅
𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝑅 + ∑ ∑ 𝑐𝑏

𝑆𝐶𝑥𝑖,𝑏,𝑡
𝑆𝐶

𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝐶 + ∑ ∑ 𝑐𝑔
𝐺𝑅𝑥𝑖,𝑔,𝑡

𝐺𝑅
𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)   

+∑ ∑ 𝑐𝑔
𝐺𝐶𝑥𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿) ]            (2.2) 

𝑐𝑂𝑝𝑒𝑟. = ∑
1

(1+𝑟)(𝑡−1)𝐷

(1+𝑟)𝐷−1

𝑟(1+𝑟)𝐷𝑡∈𝛺𝑇 [∑ 𝜏𝐻𝑖𝑛𝑌𝑐𝐸𝑃𝑖,𝑡
𝑆

𝑖∈𝛺𝑆 + ∑ 𝜏𝐻𝑖𝑛𝑌𝑐𝐸𝜙𝑆𝑓𝑖,𝑡
𝑆

𝑖∈𝛺𝑠   

+∑ ∑ 𝜏𝐻𝑖𝑛𝑌𝑐𝑔
𝐸𝐺𝐶𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿) ]           (2.3) 

The objective function is comprised of two parts. In (2.2), 𝑐𝐼𝑛𝑣. represents the present value of 

the investment costs required for replacement of existing feeder sections, construction of new 

feeder sections, reinforcement of existing substations, construction of new substations, and 

installation of renewable/conventional DGs. In (2.3), 𝑐𝑂𝑝𝑒𝑟. represents the present value of the 

system operation costs including cost of electrical energy received from the upstream power grid, 

operation costs of substations, and generation costs of conventional DGs. In (2.3), 𝑐𝑂𝑝𝑒𝑟. also 

includes the costs of energy losses in feeder sections; this is because the active power received 

from the upstream grid (i.e., 𝑃𝑖,𝑡
𝑆 ) includes the power losses in feeder sections as well.  

In the above objective function, the decision variables are 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝑅 , 𝑥𝑖𝑗,𝑎,𝑡

𝐹𝐶 , 𝑥𝑖,𝑏,𝑡
𝑆𝑅 , 𝑥𝑖,𝑏,𝑡

𝑆𝐶 , 𝑥𝑖,𝑔,𝑡
𝐺𝑅 , 𝑥𝑖,𝑔,𝑡

𝐺𝐶 , 

𝑃𝑖,𝑡
𝑆 , 𝑓𝑖,𝑡

𝑆 , and 𝑃𝑖,𝑔,𝑡
𝐺𝐶 . In this regard, 𝑥𝑖𝑗,𝑎,𝑡

𝐹𝑅  is the binary investment variable for replacement of 

existing feeder sections; 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶  is the binary investment variable for construction of new feeder 

sections; 𝑥𝑖,𝑏,𝑡
𝑆𝑅  is the binary investment variable for reinforcement of existing substations; 𝑥𝑖,𝑏,𝑡

𝑆𝐶  is 

the binary investment variable for construction of new substations; 𝑥𝑖,𝑔,𝑡
𝐺𝑅  is the binary investment 

variable for installation of renewable DGs; 𝑥𝑖,𝑔,𝑡
𝐺𝐶  is the binary investment variable for installation 

of conventional DGs; 𝑃𝑖,𝑡
𝑆  is the active power provided by substations; 𝑓𝑖,𝑡

𝑆  is square of the current 

flow provided by substations; and 𝑃𝑖,𝑔,𝑡
𝐺𝐶  is the active power generated by conventional DGs. Note 

that the planning horizon is divided into a number of planning stages with known duration (e.g., 

one year), and the index “𝑡” is used to indicate the decision variables associated with each planning 

stage. For example, 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶 = 1 means that feeder section 𝑖𝑗 with conductor type 𝑎 is constructed 

at planning stage 𝑡. By contrast, 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶 = 0 means that feeder section 𝑖𝑗 with conductor type 𝑎 is 
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not constructed at planning stage 𝑡. That is, the index “𝑡” is used to determine the optimal time for 

addition of new equipment to the system. Moreover, it is worthwhile to mention that in (2.2), 

1

(1+𝑟)(𝑡−1)𝐷 is employed to calculate the present value of the investment costs associated with 

planning stage 𝑡. Similarly, in (2.3), 
1

(1+𝑟)(𝑡−1)𝐷

(1+𝑟)𝐷−1

𝑟(1+𝑟)𝐷
 is used to calculate the present value of the 

operation costs related to planning stage 𝑡.        

2.2.2 Technical and Operational Constraints  

The constraints of the MDEP problem can be categorized into four main groups: 1) power flow 

equations, 2) voltage, current, and capacity limits, 3) constraints on binary investment and 

utilization variables, and 4) radiality constraints.  

2.2.2.1 Power Flow Equations  

Constraints (2.4)-(2.14) represent the AC power flow model in a radial distribution network 

based on a set of recursive equations called DistFlow branch equations [6], [81]. More specifically, 

constraints (2.4) and (2.5) ensure the active and reactive power balances in system nodes. 

Constraints (2.6)-(2.8) relate the active, reactive, and apparent power flows and the current flow 

of a feeder section to the voltages of its sending and receiving ends. These three constraints are 

somehow applying the Kirchhoff’s voltage law (KVL) to each feeder section. Note that ∆𝑉𝑖𝑗,𝑡 is 

an auxiliary variable which gets a zero value if feeder section 𝑖𝑗 is utilized to connect nodes 𝑖 and 

𝑗, otherwise it will have a positive/negative value corresponding to the difference between 

variables 𝑢𝑖,𝑡 and 𝑢𝑗,𝑡. In other words, when feeder section 𝑖𝑗 is operated, the voltage magnitude 

difference between nodes 𝑖 and 𝑗 will be represented by the first part of the right-hand side of (2.6), 

and hence ∆𝑉𝑖𝑗,𝑡 should have a value of zero. However, when feeder section 𝑖𝑗 is not operated, the 

first part of the right-hand side of (2.6) is equal to zero and consequently ∆𝑉𝑖𝑗,𝑡 should have a 

nonzero value to represent the voltage magnitude difference between nodes 𝑖 and 𝑗. Constraints 

(2.9)-(2.12), which actually complement constraints (2.7) and (2.8), are employed based on the 

fact that each feeder section uses only one of the candidate conductor types at each planning stage. 

Constraints (2.13) and (2.14) relate the active, reactive, and apparent power flows provided by a 

substation to its current flow and voltage magnitude. 
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It should be noted that DistFlow branch equations are an exact representation of AC power flow 

equations. A proof of this exactness is given in Appendix A.   

∑ ∑ [𝑃𝑘𝑖,𝑎,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑃𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 = 𝑃𝑖̇,𝑡
𝐷̿̿ ̿̿     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇        (2.4) 

∑ ∑ [𝑄𝑘𝑖,𝑎,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑄𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 = 𝑄𝑖̇,𝑡
𝐷̿̿ ̿̿    ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇        (2.5) 

𝑢𝑖,𝑡 − 𝑢𝑗,𝑡 = ∑ [2(𝑅𝑎𝑙𝑖𝑗𝑃𝑖𝑗,𝑎,𝑡
𝐹 + 𝑋𝑎𝑙𝑖𝑗𝑄𝑖𝑗,𝑎,𝑡

𝐹 )−(𝑍𝑎𝑙𝑖𝑗)
2
𝑓𝑖𝑗,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎 + ∆𝑉𝑖𝑗,𝑡    

      ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇        (2.6) 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 = (𝑆̂𝑖𝑗,𝑡

𝐹 )
2
    ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇        (2.7) 

(𝑆̂𝑖𝑗,𝑡
𝐹 )

2
= (𝑃̂𝑖𝑗,𝑡

𝐹 )
2
+ (𝑄̂𝑖𝑗,𝑡

𝐹 )
2
   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇        (2.8) 

𝑓𝑖𝑗,𝑡
𝐹 = ∑ 𝑓𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇        (2.9) 

𝑃̂𝑖𝑗,𝑡
𝐹 = ∑ 𝑃𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (2.10) 

𝑄̂𝑖𝑗,𝑡
𝐹 = ∑ 𝑄𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.11) 

𝑆̂𝑖𝑗,𝑡
𝐹 = ∑ 𝑆𝑖𝑗,𝑎,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.12) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 = (𝑆𝑖,𝑡

𝑆 )
2
    ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇      (2.13) 

(𝑆𝑖,𝑡
𝑆 )

2
= (𝑃𝑖,𝑡

𝑆 )
2
+ (𝑄𝑖,𝑡

𝑆 )
2
   ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇      (2.14) 

2.2.2.2 Voltage, Current, and Capacity Limits  

Constraint (2.15) determines the acceptable range of the nodal voltage magnitudes. Constraint 

(2.16) represents the limits on the current flows of feeder sections based on the conductor types 

used for constructing them. This constraint also makes sure that the current flows assigned to the 

feeder sections which are not operated (i.e., feeder sections with 𝑦𝑖𝑗,𝑎,𝑡 = 0) are equal to zero. 

Constraint (2.17) sets appropriate bounds on the variable ∆𝑉𝑖𝑗,𝑡 and also causes it to have a zero 
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value for operated feeder sections (i.e., feeder sections with 𝑦𝑖𝑗,𝑎,𝑡 = 1). Constraints (2.18) and 

(2.19) cause the apparent power provided by each substation to be less than its installed capacity. 

Constraints (2.20) and (2.21) limit the active and reactive powers generated by conventional DGs. 

Constraints (2.22) and (2.23) set the active and reactive power generations of renewable DGs equal 

to their expected values. Note that renewable DGs are assumed to be operated at a constant power 

factor (𝜌𝐺𝑅) as they often lack the ability to provide controlled reactive power.  

(𝑉)
2
≤ 𝑢𝑖,𝑡 ≤ ( 𝑉 )

2
    ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇      (2.15) 

𝑓𝑖𝑗,𝑎,𝑡
𝐹 ≤ ( 𝐼𝑎 )

2
𝑦𝑖𝑗,𝑎,𝑡    ∀(𝑖𝑗) ∈ 𝛺𝐹 , 𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇     (2.16) 

|∆𝑉𝑖𝑗,𝑡| ≤ ∆𝑉(1 − ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 )  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.17) 

𝑆𝑖,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1   ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇      (2.18) 

𝑆𝑖,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1    ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇      (2.19) 

𝑃𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑃𝑔

𝐺𝐶𝑥𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇   (2.20) 

|𝑄𝑖,𝑔,𝑡
𝐺𝐶 | ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇   (2.21) 

𝑃𝑖,𝑔,𝑡
𝐺𝑅 = ∑ 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇   (2.22) 

𝑄𝑖,𝑔,𝑡
𝐺𝑅 = ∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇   (2.23) 

2.2.2.3 Constraints on Binary Investment and Utilization Variables  

Constraints (2.24)-(2.27) ensure that a maximum of one construction or reinforcement is 

performed for each feeder section or substation during the planning horizon. Constraint (2.28) 

limits the number DG installations at each candidate node to one. Constraints (2.29) and (2.30) 

specify the maximum number of renewable and conventional DGs that can be installed in the 

system during the planning horizon. Constraints (2.31)-(2.35) address the operating conditions of 

different feeder section categories including existing irreplaceable feeder sections, existing 

replaceable feeder sections, and candidate feeder sections for construction. In this regard, 𝑦𝑖𝑗,𝑎,𝑡 is 

equal to one if its corresponding feeder section is operated, otherwise it will be equal to zero. In 
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fact, imposing these constraints on the utilization variables denoted by “𝑦” guarantees that a feeder 

section with a specific conductor type can be used only if its corresponding investment has already 

been made. 

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶

𝑎∈𝛺𝑎𝑡∈𝛺𝑇 ≤ 1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶       (2.24) 

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝑅

𝑎∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)𝑡∈𝛺𝑇 ≤ 1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅       (2.25) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝐶

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑆𝐶       (2.26) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝑅

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑆𝑅       (2.27) 

∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑡∈𝛺𝑇 + ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑡∈𝛺𝑇 ≤ 1 ∀𝑖 ∈ 𝛺𝑁𝐺       (2.28) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝑅         (2.29) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝐶          (2.30) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝑅𝑡

𝜐=1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅 , ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝑅), ∀𝑡 ∈ 𝛺𝑇   (2.31) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1 − ∑ ∑ 𝑥𝑖𝑗,𝜔,𝜐
𝐹𝑅

𝜔∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)

𝑡
𝜐=1  ∀(𝑖𝑗)ϵ𝛺𝐹𝑅 , ∀𝑎 = 𝑎𝑖𝑗

𝐹𝑅 , ∀𝑡ϵ𝛺𝑇     (2.32) 

𝑦𝑖𝑗,𝑎,𝑡 = 0     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝐼), ∀𝑡 ∈ 𝛺𝑇   (2.33) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 = 𝑎𝑖𝑗
𝐹𝐼 , ∀𝑡 ∈ 𝛺𝑇    (2.34) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝐶𝑡

𝜐=1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶 , ∀𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇    (2.35) 

2.2.2.4 Radiality Constraints  

Constraints (2.36)-(2.44) guarantee the radiality of the distribution network [36], [82]. When 

DGs are not considered as expansion alternatives, constraints (2.36)-(2.39) are enough to ensure 

the radiality. However, when DGs are brought into play, constraints (2.40)-(2.44) should also be 

considered in order to prevent the existence of areas exclusively supplied by DGs. These 

constraints assign fictitious current flow demands to the candidate nodes for DG installation and, 

in this way, keep them connected to the substations to preclude formation of isolated areas (see 

[36]). Another important point is that the distribution system is here assumed to include a number 
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of so-called “transfer nodes” at some of the planning stages [82]. These nodes are not connected 

to the loads or substations, but they can be used to connect different load nodes to each other and, 

in this way, may help to find better planning solutions. The binary variables denoted by “𝑧” 

indicate the operating conditions of the transfer nodes. In this regard, 𝑧𝑖,𝑡 will be equal to one if its 

corresponding transfer node is utilized, otherwise it will be equal to zero.   

∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡 =𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 |𝛺𝑁| − |𝛺𝑁𝑆| − ∑ (1 − 𝑧𝑖,𝑡)𝑖∈𝛺𝑡
𝑁𝑇  ∀𝑡 ∈ 𝛺𝑇     (2.36) 

∑ ∑ 𝑦𝑘𝑖,𝑎,𝑡𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 +∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ≥ 2𝑧𝑖,𝑡  ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇, ∀𝑡 ∈ 𝛺𝑇    (2.37) 

∑ 𝑦𝑘𝑖,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎     ∀(𝑘𝑖) ∈ 𝛺𝐹, ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇    (2.38)    

∑ 𝑦𝑖𝑗,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇    (2.39)    

∑ 𝜃̃𝑘𝑖,𝑡
𝐹

(𝑘𝑖)∈𝛺𝐹 − ∑ 𝜃̃𝑖𝑗,𝑡
𝐹

(𝑖𝑗)∈𝛺𝐹 + 𝜃̃𝑖,𝑡
𝑆 = 𝜃̃𝑖,𝑡

𝐷   ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇       (2.40) 

0 ≤ 𝜃̃𝑖𝑗,𝑡
𝐹 ≤ |𝛺𝑁𝐺| ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.41)  

0 ≤ 𝜃̃𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|    ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇      (2.42) 

0 ≤ 𝜃̃𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|(∑ ∑ 𝑥𝑖,𝑏,𝜐

𝑆𝐶
𝑏∈𝛺𝑏

𝑡
𝜐=1 )  ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇      (2.43) 

𝜃̃𝑖,𝑡
𝐷 = {

1            ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇 

0            ∀𝑖 ∉ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇          (2.44) 

2.3 Convex MISOCP Model Proposed for the MDEP Problem  

Although the above-described model well reflects the essential characteristics of the MDEP 

problem, it is a non-convex MINLP model which not only is very difficult to solve, but also cannot 

guarantee obtaining the global optimal solution. To overcome these drawbacks, it should be 

changed to a convex model.  

The non-convexity of the model arises from (2.7), (2.8), (2.13), and (2.14). In order to convexify 

the model, first the objective function should be modified in the following manner:   

𝑐 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟. + 𝑐𝐶𝑜𝑛𝑣.           (2.45) 

𝑐𝐶𝑜𝑛𝑣. = 𝜕 [∑ ∑ 𝑆̂𝑖𝑗,𝑡
𝐹

(𝑖𝑗)∈𝛺𝐹𝑡∈𝛺𝑇 + ∑ ∑ 𝑆𝑖,𝑡
𝑆

𝑖∈𝛺𝑆𝑡∈𝛺𝑇 ]        (2.46) 
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The main purpose of this modification is to add positive multiples of the variables 𝑆̂𝑖𝑗,𝑡
𝐹  and 𝑆𝑖,𝑡

𝑆  

to the objective function. Accordingly, 𝜕 is a positive coefficient that can be set to a small value. 

Considering the modified objective function, convexity can now be obtained by relaxing the 

equality constraints (2.7), (2.8), (2.13), and (2.14) as follows: 

(𝑆̂𝑖𝑗,𝑡
𝐹 )

2
≥ (𝑃̂𝑖𝑗,𝑡

𝐹 )
2
+ (𝑄̂𝑖𝑗,𝑡

𝐹 )
2
   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.47) 

(𝑆𝑖,𝑡
𝑆 )

2
≥ (𝑃𝑖,𝑡

𝑆 )
2
+ (𝑄𝑖,𝑡

𝑆 )
2
   ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇      (2.48) 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 ≥ (𝑆̂𝑖𝑗,𝑡

𝐹 )
2
    ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.49) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 ≥ (𝑆𝑖,𝑡

𝑆 )
2
    ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇      (2.50) 

It should be noted that the above relaxation technique is exact and hence the inequality 

constraints (2.47)-(2.50) act exactly as equality constraints. The detailed proof of the exactness of 

this relaxation technique can be found in [83]. Based on [83], the proposed relaxation technique 

will be exact if: 1) the network is radial; and 2) the objective function is strictly increasing with 

respect to 𝑆̂𝑖𝑗,𝑡
𝐹 , 𝑆𝑖,𝑡

𝑆 , 𝑓𝑖𝑗,𝑡
𝐹 , and 𝑓𝑖,𝑡

𝑆 , which appear on the left-hand sides of (2.47)-(2.50), respectively. 

It is obvious that the first condition is fully satisfied because the radiality constraints force the 

network to be always radial. However, in order to satisfy the second condition, the objective 

function should contain positive multiples of 𝑆̂𝑖𝑗,𝑡
𝐹 , 𝑆𝑖,𝑡

𝑆 , 𝑓𝑖𝑗,𝑡
𝐹 , and 𝑓𝑖,𝑡

𝑆 . A carful look at the objective 

function reveals that it already includes positive multiples of 𝑓𝑖𝑗,𝑡
𝐹  and 𝑓𝑖,𝑡

𝑆 , but it does not contain 

𝑆̂𝑖𝑗,𝑡
𝐹  and 𝑆𝑖,𝑡

𝑆 . Therefore, the new component (2.46) is included in the objective function to make it 

strictly increasing with respect to 𝑆̂𝑖𝑗,𝑡
𝐹  and 𝑆𝑖,𝑡

𝑆 , as required by the second condition. In this way, 

both of the above conditions are satisfied and the exactness of the proposed relaxation technique 

is ensured.  

Using the above relaxation technique, the resultant MDEP problem is now a convex MISOCP 

model which, in contrast to the initial non-convex MINLP model, is tractable and ensures 

obtaining the global optimal solution. However, it is still computationally demanding due to the 

nonlinearities of (2.47)-(2.50). Therefore, these four constraints should also be linearized.    
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2.4 Polyhedral-Based MILP Model Proposed for the MDEP Problem  

As the first step to overcome the nonlinearities, (2.47) and (2.48) are rewritten in the following 

manner: 

𝑆̂𝑖𝑗,𝑡
𝐹 ≥ √(𝑃̂𝑖𝑗,𝑡

𝐹 )
2
+ (𝑄̂𝑖𝑗,𝑡

𝐹 )
2
   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (2.51) 

𝑆𝑖,𝑡
𝑆 ≥ √(𝑃𝑖,𝑡

𝑆 )
2
+ (𝑄𝑖,𝑡

𝑆 )
2
   ∀𝑖 ∈ 𝛺𝑆, ∀𝑡 ∈ 𝛺𝑇      (2.52)  

On the other hand, the left-hand sides of (2.49) and (2.50) can be expressed as follows: 

𝑢𝑖,𝑡𝑓𝑖𝑗,𝑡
𝐹 = [(𝑢𝑖,𝑡 + 𝑓𝑖𝑗,𝑡

𝐹 )/2]
2
− [(𝑢𝑖,𝑡 − 𝑓𝑖𝑗,𝑡

𝐹 )/2]
2
        (2.53) 

𝑢𝑖,𝑡𝑓𝑖,𝑡
𝑆 = [(𝑢𝑖,𝑡 + 𝑓𝑖,𝑡

𝑆 )/2]
2
− [(𝑢𝑖,𝑡 − 𝑓𝑖,𝑡

𝑆 )/2]
2
        (2.54) 

As a result, (2.49) and (2.50) can also be written as: 

[(𝑢𝑖,𝑡 + 𝑓𝑖𝑗,𝑡
𝐹 )/2] ≥ √[(𝑢𝑖,𝑡 − 𝑓𝑖𝑗,𝑡

𝐹 )/2]
2
+ (𝑆̂𝑖𝑗,𝑡

𝐹 )
2
 ∀(𝑖𝑗)ϵ𝛺𝐹, ∀𝑡ϵ𝛺𝑇     (2.55) 

[(𝑢𝑖,𝑡 + 𝑓𝑖,𝑡
𝑆 )/2] ≥ √[(𝑢𝑖,𝑡 − 𝑓𝑖,𝑡

𝑆 )/2]
2
+ (𝑆𝑖,𝑡

𝑆 )
2
 ∀𝑖ϵ𝛺𝑆, ∀𝑡ϵ𝛺𝑇      (2.56) 

In this way, (2.47)-(2.50) are respectively represented as the second-order conic constraints 

(2.51), (2.52), (2.55), and (2.56) which all have the following form:   

𝑥3 ≥ √(𝑥1)2 + (𝑥2)2            (2.57) 

Using a highly accurate method based on polyhedral approximation, the second-order conic 

constraint (2.57) can be approximated by a system of linear equalities and inequalities which are 

expressed in terms of 𝑥1, 𝑥2, 𝑥3, and a number of auxiliary variables (i.e., 𝜉ℓ and 𝜂ℓ) [68]: 

{
𝜉ℓ ≥ |𝑥1|

𝜂ℓ ≥ |𝑥2|
     ∀ℓ = 0       (2.58)  

{
𝜉ℓ = 𝜉ℓ−1 cos (

𝜋

2ℓ+1) + 𝜂ℓ−1 sin (
𝜋

2ℓ+1)      

𝜂ℓ ≥ |−𝜉ℓ−1 sin (
𝜋

2ℓ+1) + 𝜂ℓ−1 cos (
𝜋

2ℓ+1)|
 ∀ℓ = 1,… , ℒ       (2.59) 
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{
𝜉ℓ ≤ 𝑥3                   

𝜂ℓ ≤ 𝜉ℓ tan (
𝜋

2ℓ+1
)
    ∀ℓ = ℒ       (2.60) 

Note that ℒ is a parameter that determines the number of additional constraints and variables 

required to linearize (2.57), and the linearization error will decrease as this parameter increases. In 

[68], it is proved that the set of linear constraints (2.58)-(2.60) approximate (2.57) in such a way 

that:   

𝑥3(1 + 𝜚) ≥ √(𝑥1)2 + (𝑥2)2           (2.61) 

where 𝜚 is dependent on ℒ and can be calculated as follows:  

𝜚 = [1/ cos (
𝜋

2ℒ+1)] − 1           (2.62) 

It is obvious that choosing an appropriate value for ℒ will result in a highly accurate 

approximation. Table 2.1 shows the approximation errors associated with different values of ℒ. As 

an example, choosing ℒ = 8 leads to 𝜚 = 1.88 × 10−5, which demonstrates the high accuracy of 

the polyhedral approximation. 

Table 2.1 Approximation errors associated with different values of ℒ. 

ℒ 2 3 4 5 6 7 8 

𝜚 0.0824 0.0196 0.0048 0.0012 3.01×10-4 7.53×10-5 1.88×10-5 

 

In a similar manner, each of the conic quadratic constraints (2.51), (2.52), (2.55), and (2.56) can 

also be replaced by the polyhedral approximation represented by (2.58)-(2.60). This causes the 

MISOCP model to be converted to an MILP one.   

2.5 Simulation Results and Discussion  

In this section, the most important results obtained from the implementation of the proposed 

MILP model are presented and discussed. This model has been implemented on a PC with a 3.40 

GHz Intel Core i7-4770 processor and 16 GB of RAM using MATLAB R2015a [84] and CPLEX 

12.6.1 [85].  
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2.5.1 Test System Description 

A 24-node distribution system, based on [36], is utilized to carry out the simulations. Figure 2.1 

shows the one-line diagram of this test system. As can be seen, the system consists of 4 substations 

(2 existing ones with reinforcement possibility and 2 candidate ones), 20 load nodes, and 33 feeder 

sections (2 existing replaceable ones, 2 existing irreplaceable ones, and 29 candidate ones). 

 
Figure 2.1 One-line diagram of the 24-node distribution system. 

Table 2.2 shows the data related to candidate conductor types considered for replacement and 

construction of feeder sections. The existing reinforceable substations located at nodes 21 and 22 

are both assumed to have the initial apparent power capacities of 7.5 MVA. Moreover, two 

alternatives are proposed for reinforcement and construction of substations, as shown in Table 2.3.  

Table 2.2 Data related to candidate conductor types. 

𝛺𝑎 
𝑅𝑎 

(Ω/km) 

𝑋𝑎 

(Ω/km) 

𝐼𝑎  

(A) 

𝑐𝑎
𝐹𝑅 

(US$/km) 

𝑐𝑎
𝐹𝐶 

(US$/km) 

1 0.342 0.387 260 19000 25000 

2 0.202 0.204 410 30000 36000 
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Table 2.3 Data related to alternatives for substation reinforcement/construction. 

𝛺𝑏 𝑆𝑏  (MVA) 𝑐𝑏
𝑆𝑅 (US$) 𝑐𝑏

𝑆𝐶 (US$) 

1 12 750000 790000 

2 15 950000 1000000 

  

The data related to the alternatives for installation of renewable and conventional DGs are given 

in Tables 2.4 and 2.5, respectively. Furthermore, the set of candidate nodes for DG installation is 

defined as 𝛺𝑁𝐺 = { 1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 16, 17, 18, 19 }.  

Table 2.4 Data related to alternatives for installation of renewable DGs.  

𝛺𝑔𝑟 𝑃𝑔
𝐺𝑅  (MW) 𝑐𝑔

𝐺𝑅  (US$) 

1 1 450000 

2 2 850000 

 

Table 2.5 Data related to alternatives for installation of conventional DGs.  

𝛺𝑔𝑐 𝑃𝑔
𝐺𝐶  (MW) 𝑐𝑔

𝐺𝐶  (US$) 𝑐𝑔
𝐸𝐺𝐶  (US$/MWh) 

1 1 350000 45 

2 2 650000 45 

 

Table 2.6 presents the nodal power demands at different stages of the planning horizon. The data 

related to the lengths of feeder sections are given in Table 2.7. 

Table 2.6 Nodal power demands at different planning stages (MVA).  

Nodes 
Stages 

Nodes 
Stages 

1 2 1 2 

1 4.05 5.42 11 0 2.8 

2 0.78 1.21 12 0 1.29 

3 2.58 3.98 13 0 1.87 

4 0.32 2.43 14 0 3.16 

5 0.28 0.47 15 0 1.62 
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6 1.17 1.81 16 0 1.22 

7 4.04 4.36 17 0 2.4 

8 0.72 0.94 18 0 2.1 

9 1.14 1.77 19 0 1.81 

10 1.56 2.4 20 0 3.79 

 

Table 2.7 Lengths of feeder sections (km).  

Sections 
𝑙𝑖𝑗  

Sections 
𝑙𝑖𝑗 

Sections  
𝑙𝑖𝑗 

𝑖 𝑗 𝑖 𝑗 𝑖 𝑗 

1 5 2.22 4 9 1.2 7 23 0.9 

1 9 1.2 4 15 1.6 8 22 1.9 

1 14 1.2 4 16 1.3 10 16 1.6 

1 21 2.2 5 6 2.4 10 23 1.3 

2 3 2 5 24 0.7 11 23 1.6 

2 12 1.1 6 13 1.2 14 18 1 

2 21 1.7 6 17 2.2 15 17 1.2 

3 10 1.1 6 22 2.7 15 19 0.8 

3 16 1.2 7 8 2 17 22 1.5 

3 23 1.2 7 11 1.1 18 24 1.5 

4 7 2.6 7 19 1.2 20 24 0.9 

 

For all load nodes, the power factor is set to 0.9. Other required data are given in Table 2.8.   

Table 2.8 Other required data.  

Parameters Values Parameters Values 

𝑉𝑛𝑜𝑚 20 (kV) 𝑟 0.1 

𝑉 0.95× 𝑉𝑛𝑜𝑚 = 19 (kV) 𝐷 1 (year) 

𝑉 1.05×𝑉𝑛𝑜𝑚=21 (kV) 𝑎𝑖𝑗
𝐹𝑅 1 

∆𝑉 (𝑉)
2
− (𝑉)

2
= 80  𝑎𝑖𝑗

𝐹𝐼 2 

𝑐𝐸 85 (US$/MWh) 𝜙𝑆 0.15 

𝑁𝐺𝐶  4 𝜌𝐺𝑅 0.9 

𝑁𝐺𝑅 4 𝑃𝑔
𝐺𝑅̿̿ ̿̿ ̿ 0.45× 𝑃𝑔

𝐺𝑅   
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2.5.2 A Discussion on the Accuracy and Computation Time of the Proposed 

MILP Model  

A comparative analysis is here conducted to assess the performance of the proposed MILP model 

from the aspects of accuracy and computational efficiency. The logic behind this comparative 

analysis is illustrated in Figure 2.2.  

 

Figure 2.2 Illustration of the logic behind the conducted comparative analysis. 

As previously discussed in Section 2.3, the developed MISOCP model is exact and does not 

involve any approximations. Based on this fact, we have used the MISOCP model as a benchmark 

against which the approximate MILP models can be compared. In this regard, first the MISOCP 

model is solved and the global optimal solution of the problem is found. This solution is then used 

as a benchmark for assessing the solution quality of two different approximate MILP models: 1) 

our proposed polyhedral-based MILP model; and 2) a piecewise-based MILP model presented in 

[6]. Note that the main reason for choosing the model presented in [6] is that it is the most accurate 

MILP model existing in the literature.  

The optimal expansion plans obtained by solving the MISOCP model are depicted in Figure 2.3. 

The investment, operation, and total costs associated with these expansion plans are 

US$6,699,691, US$31,892,808, and US$38,592,499, respectively. The MISOCP model, in spite 

of its ability to find the global optimal solution of the MDEP problem, is time-consuming and 

requires 182 min to be solved. This fact demonstrates the necessity of introducing an MILP model 

which is able to significantly improve the computational efficiency.   
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Figure 2.3 Expansion plans obtained for the 24-node distribution system by solving the MISOCP 

model.  

Table 2.9 compares our proposed polyhedral-based MILP model with the piecewise-based MILP 

model presented in [6] from the accuracy and computation time perspectives. Note that the errors 

presented in this table, in fact, indicate the amount by which the solutions of the MILP models 

deviate from the global optimal solution found by the MISOCP model. These errors are calculated 

as follows: 

𝐸𝑟𝑟𝑜𝑟 =
𝑐𝑀𝐼𝐿𝑃−𝑐𝑀𝐼𝑆𝑂𝐶𝑃

𝑐𝑀𝐼𝑆𝑂𝐶𝑃 × 100%          (2.63) 

where 𝑐𝑀𝐼𝐿𝑃 denotes the costs associated with the MILP models; 𝑐𝑀𝐼𝑆𝑂𝐶𝑃 denotes the costs 

associated with the MISOCP model; and 𝐸𝑟𝑟𝑜𝑟 is the percent error. 
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Table 2.9 Comparison of the performances of the polyhedral-based and piecewise-based MILP 

models for the 24-node distribution system.   

MILP models 
Linearization 

parameter (ℒ) 

Errors in different costs (%) Computation 

Time (min) Investment Operation  Total 

Polyhedral-based 

3 2.91 1.47 0.71 4.5 

4 1.83 0.98 0.49 5 

5 0.35 0.62 0.45 8 

6 0.00 0.34 0.28 9.5 

7 0.00 0.05 0.04 12 

8 0.00 0.01 0.01 15 

Piecewise-based 

10 3.62 2.34 2.56 3 

20 2.54 1.24 1.47 4 

30 1.97 0.93 1.11 6.5 

40 1.97 1.08 1.23 10 

50 1.97 1.26 1.38 13 

60 1.97 0.99 1.16 14.5 

70 1.97 1.15 1.29 17 

 

As can be seen, the accuracy of the piecewise-based model cannot be improved beyond a certain 

level, even if the linearization parameter is set to large values such as 60 and 70. Whereas, the 

polyhedral-based model is capable of reaching extremely high degrees of accuracy, so that setting 

the linearization parameter to 8 results in the accuracies of 100%, 99.99%, and 99.99% for the 

investment, operation, and total costs, respectively. On the other hand, by investigating the results 

shown in Table 2.9, it can be realized that after spending almost the same amount of computation 

time on both models, the polyhedral-based model provides better solutions.  For instance, as shown 

in the bold rows of the table, when a computation time of 15 min is spent on the polyhedral-based 

model, the errors in the investment, operation, and total costs are notably lower than the case in 

which 17 min is spent on the piecewise-based model. These facts prove the superiority of the 

polyhedral-based model over the piecewise-based one. Moreover, it is obvious that our proposed 

MILP model is able to provide the same solution as the MISOCP model, while its required 

computation time is around 12 times shorter than that of the MISOCP model. Given the presented 

results, it can concluded that the proposed MILP model has a great performance in deterministic 

expansion planning studies of ADNs.   
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2.5.3 Demonstration of the Scalability of the Proposed MILP Model  

A 138-node distribution system, based on [36], is  here employed to demonstrate the scalability 

of the proposed MILP model. This test system, as shown in Figure 2.4, consists of 3 substations 

(2 existing ones with reinforcement possibility and 1 candidate one), 135 load nodes, and 151 

feeder sections (12 existing replaceable ones, 88 existing irreplaceable ones, and 51 candidate 

ones). The candidate conductor types for replacement and construction of feeder sections, and the 

alternatives for reinforcement and construction of substations are the same as those presented in 

Tables 2.2 and 2.3. The existing reinforceable substations located at nodes 136 and 137 are both 

assumed to have the initial apparent power capacities of 12 MVA. The set of candidate nodes for 

DG installation is defined as 𝛺𝑁𝐺 = { 4, 10, 19, 25, 28, 31, 42, 52, 56, 64, 68, 72, 78, 85, 94, 97, 

100, 103, 106, 108, 111, 116, 120, 122, 126, 133 }. The data related to the alternatives for 

installation of renewable and conventional DGs are the same as those presented in Tables 2.4 and 

2.5. The nodal power demands at different stages of the planning horizon and the lengths of feeder 

sections can be found in Appendix B. For all load nodes, the power factor is assumed to be equal 

to 0.9. Other required data are the same as those given in Table 2.8, except that the nominal voltage 

of the system is 13.8 kV (i.e., 𝑉𝑛𝑜𝑚=13.8 kV, 𝑉=0.95×𝑉𝑛𝑜𝑚=13.11 kV, 𝑉=1.05×𝑉𝑛𝑜𝑚=14.49 kV, 

and ∆𝑉=(𝑉)
2
− (𝑉)

2
=38.08).  

The simulation results show that for the linearization parameter of ℒ=8, the proposed MILP 

model consumes a computation time of 83 min to find the optimal expansion plans of the 138-

node distribution system. It is obvious that the model is solved within a very reasonable 

computation time. This fact demonstrates another outstanding merit of the proposed MILP model, 

i.e., its ability to deal with the MDEP problem of large distribution systems in a computationally 

efficient manner. 

The expansion plans obtained by solving the proposed MILP model are tabulated in  

Table 2.10. The numbers shown in brackets denote the conductor types used for 

construction/replacement of feeder sections, the alternatives utilized for 

construction/reinforcement of substations, and the alternatives chosen for installation of 

renewable/conventional DGs. The investment, operation, and total costs associated with these 

expansion plans are US$7,785,341, US$39,787,373, US$47,572,714, respectively.   
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Figure 2.4 One-line diagram of the 138-node distribution system.    
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Table 2.10 Expansion plans obtained for the 138-node distribution system by solving the 

proposed MILP model.  

Expansion plans 
Planning stages 

1 2 

Feeder section construction 

106-107 (1)    103-102 (1) 

108-109 (1)    138-103 (1) 

108-122 (1)    105-104 (1) 

109-110 (1)    122-105 (1) 

126-127 (1)    138-108 (2) 

127-128 (1)    121-15 (1) 

138-126 (2)    108-45 (1) 

133-132 (1)    101-50 (2) 

128-100 (1)    65-133 (1) 

102-101 (2)    94-106 (1) 

132-121 (1) 

111-112 (1)    130-118 (1) 

112-113 (1)    120-119 (1) 

113-114 (2)    138-130 (1) 

114-123 (1)    123-31 (1) 

123-124 (1)    104-59 (2) 

124-125 (1)    119-72 (1) 

133-134 (1)    16-120 (1) 

134-135 (1)    46-129 (2) 

116-115 (1)    65-131 (1) 

117-116 (1)    85-111 (1) 

118-117 (1) 

Feeder section replacement 

17-18 (2)        86-87 (2) 

18-19 (2)        136-17 (2) 

19-20 (2)        137-86 (2) 

136-35 (2) 

Substation construction 138 (1) ̶ 

Substation reinforcement ̶ ̶ 

Renewable DG installation 28 (2) 72 (2)     100 (1)     108 (2) 

Conventional DG installation ̶ 10 (1)       85 (1)      133 (2) 

Transfer node 
121      122      126      127  

128      132      133 
̶ 

 

The optimal topologies of the 138-node distribution system at different stages of the planning 

horizon are also depicted in Figure 2.5. As can be observed, the multistage planning approach has 

yielded a different system topology at each planning stage. This fact shows the greater flexibility 

of the multistage planning approach in reducing the total costs through the appropriate utilization 

of resources, when compared to the static planning method. 
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(b) 

Figure 2.5 Optimal topologies obtained for the 138-node distribution system by solving the 

proposed MILP model: (a) Planning stage 1; (b) Planning stage 2.    
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2.6 Summary  

In this chapter, a novel MILP model has been proposed for the MDEP problem, which is able to 

jointly expand both the network assets (i.e., feeders and substations) and renewable/conventional 

DGs. This MILP model has two outstanding merits: first, it incorporates a highly accurate 

linearized network model reflecting AC power flow equations and energy losses; second, its linear 

formulation ensures the computational tractability and solution optimality. Note that a highly 

accurate polyhedral-based linearization method has been utilized to eliminate the nonlinearities of 

the MDEP problem.   

The proposed planning methodology has been successfully validated using two different 

distribution systems (24-node and 138-node). The simulation results show that the MILP model 

developed in this chapter is able to provide better solutions than the most accurate MILP model 

available in the literature, while both models consume almost the same amounts of computation 

time. This superiority is due to the great performance of the polyhedral-based linearization method, 

so that the accuracy of this method can go up to almost 100% by choosing an appropriate value 

for the linearization parameter. The simulation results also demonstrate the ability of the developed 

MILP model to deal with the MDEP problem of large distribution systems in a computationally 

efficient manner.  

As previously discussed, careful consideration of the major sources of uncertainty is of crucial 

importance in the MDEP problem of ADNs. To address this issue, in the next chapter, an efficient 

approach is proposed to model the uncertainties associated with renewable DGs and loads.        
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Chapter 3 

3. A Distributionally Robust Chance-Constrained 

Programming Approach to Model the Uncertainties of 

Renewables and Loads       

3 A Distributionally Robust Chance-Constrained Programming Approach to Model the Uncertainties of Renewables and 

Loads 

3.1 Introduction  

In this chapter, by employing a chance-constrained programming (CCP) approach, the 

deterministic MILP model developed in Chapter 2 is modified to incorporate the uncertainties of 

renewable DGs and loads. In this regard, first a number of chance constraints (CCs) are added to 

the model to guarantee that the constraints subject to uncertainty will be satisfied with a certain 

probability level. After that, as the probability distribution functions (PDFs) of uncertain 

parameters are not perfectly known, a distributionally robust (DR) reformulation is proposed for 

the CCs, which guarantees the robustness of the expansion plans against all uncertainty 

distributions defined within a moment-based ambiguity set. Finally, effective linearization 

techniques are devised to eliminate the nonlinearities of the DR reformulation proposed for the 

CCs.  

By doing the above, a distributionally robust chance-constrained mixed-integer linear 

programming (DRCC-MILP) model is obtained, which offers four significant advantages: first, it 

has a low computational demand and provides the opportunity to deal with large-scale distribution 

systems; second, it requires limited information about the random variables, rather than perfect 

knowledge of their PDFs; third, it immunizes the expansion plans against the uncertain renewable 

generations and loads; fourth, it enables the decision maker to effectively control the degree of 

conservatism of the solution. These properties make the proposed DRCC-MILP model highly 

applicable for the expansion planning of ADNs, especially when long-term data about the 

uncertain parameters are difficult to acquire.  
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3.2 Chance Constraints  

Taking a careful look at the model developed in the previous chapter reveals that the 

uncertainties of renewable DGs and loads mainly affect constraints (2.4) and (2.5) which represent 

the active and reactive power balances. Based on this fact, with the help of two random variables 

(𝜒𝐺𝑅̃ and 𝜒𝐷̃) defined to characterize the stochasticity of renewable generations and loads, 

constraints (2.4) and (2.5) are changed to the following CCs: 

ℙ{∑ ∑ [𝑃𝑘𝑖,𝑎,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑃𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒𝐺𝑅̃ ≥ 𝑃𝑖̇,𝑡
𝐷̿̿ ̿̿  𝜒𝐷̃} ≥ 1 − 𝜖  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇       (3.1) 

ℙ{∑ ∑ [𝑄𝑘𝑖,𝑎,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑄𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒𝐺𝑅̃ ≥ 𝑄𝑖̇,𝑡
𝐷̿̿ ̿̿  𝜒𝐷̃} ≥ 1 − 𝜖  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇       (3.2) 

In fact, these CCs ensure that the active and reactive power balance constraints are satisfied with 

a probability of at least 1 − 𝜖, where 𝜖 is a controllable risk parameter that enables the decision 

maker to adjust the degree of conservatism of the solution. It is obvious that decreasing the value 

of 𝜖 results in more conservative solutions for the MDEP problem. Note that the risk parameter 𝜖 

is normally set to a very small value (less than 0.05) to ensure that CCs will be satisfied with a 

very high level of probability.  

Unfortunately, (3.1) and (3.2) are very challenging to handle due to their implicit form. The 

implicitness of these CCs arises from the fact that evaluation of the probability statements given 

on their left-hand sides is not straightforward to carry out as the PDFs of 𝜒𝐺𝑅̃ and 𝜒𝐷̃ are not 

perfectly known. Most of the existing research works using the CCP approach (such as [70-72]) 

assume that the random variables follow a Gaussian distribution and, based on this unrealistic 

assumption, reformulate the CCs as a number of explicit constraints. In this chapter, however, a 

novel method is proposed to reformulate the CCs, which does not make any assumption about the 

PDF types of the random variables [75]. That is, we obtain the explicit counterparts of the CCs in 

such a way that their satisfaction is guaranteed irrespective of the PDF types of the random 

variables. In this way, the CCs are in fact immunized against the probability distributions of the 

random variables. Based on this fact, the proposed method is called “distributionally robust” which 
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means “robust with respect to probability distributions”. Accordingly, the word “distributionally” 

means “with respect to probability distributions”. In the following, the DR reformulation proposed 

for the CCs is described in detail.  

3.3 Distributionally Robust Reformulation of Chance Constraints  

In order to simplify the notation, each of the constraints (3.1) and (3.2) can be rewritten in the 

following form:   

ℙ{𝑨𝑇𝝌̃ ≤ 𝐵} ≥ 1 − 𝜖               (3.3) 

where 𝝌̃ = 〈𝜒1̃ , 𝜒2̃〉 = 〈𝜒𝐺𝑅̃ , 𝜒𝐷̃〉 is the vector of random variables; 𝑨 = 〈𝐴1, 𝐴2〉 is a vector 

including the coefficients of random variables; and 𝐵 is a variable representing the remaining part 

of the power balance constraints. For constraint (3.1), 𝑨 and 𝐵 are as follows: 

𝑨 = 〈−(∑ 𝑃𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 ), 𝑃𝑖̇,𝑡
𝐷̿̿ ̿̿  〉              (3.4) 

𝐵 = ∑ ∑ [𝑃𝑘𝑖,𝑎,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐      (3.5) 

For constraint (3.2), 𝑨 and 𝐵 can be similarly obtained as: 

𝑨 = 〈−(∑ 𝑄𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 ), 𝑄𝑖̇,𝑡
𝐷̿̿ ̿̿  〉              (3.6) 

𝐵 = ∑ ∑ [𝑄𝑘𝑖,𝑎,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐      (3.7) 

Now, we describe how to derive the DR reformulation of (3.7). As the first step, a moment-

based ambiguity set (𝒟) is built to define all PDFs for which the satisfaction of (3.7) must be 

guaranteed [75]:  

𝒟 = {𝑓(𝝌̃)|

∫ 𝑓(𝝌̃)𝑑𝝌̃ = 1                                
 

𝝌̃∈𝕊

𝜇𝓃 ≤ 𝔼[𝜒̃𝓃] ≤ 𝜇𝓃            ∀𝓃 = 1, 2

𝜎𝓃 ≤ 𝔼[(𝜒𝓃)2] ≤ 𝜎𝓃       ∀𝓃 = 1, 2

}          (3.8) 

where 𝑓(𝝌̃) is the PDF of 𝝌̃ ; 𝕊 ∈ ℝ2 is the support of 𝑓(𝝌̃); [𝜇𝓃, 𝜇𝓃  ] is the confidence interval 

of the first moment of the 𝓃th random variable; and [𝜎𝓃, 𝜎𝓃 ] is the confidence interval of the 

second moment of 𝓃th random variable.  
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The three conditions in 𝒟 make sure that: (i) the integral of 𝑓(𝝌̃) over its support is equal to one; 

(ii) the first moment of 𝜒𝓃 lies in the determined interval; and (iii) the second moment of 𝜒̃𝓃 falls 

within the specified range. Note that 𝒟 covers all PDFs whose first and second moments agree 

with its conditions and, hence, it can be used to define a huge family of uncertainty distributions. 

Considering this ambiguity set, the DR variant of (3.7) can be obtained as follows:    

inf 
𝑓(𝝌̃)∈𝒟

ℙ{𝑨𝑖,𝑡
𝑇 𝝌̃ ≤ 𝐵𝑖,𝑡} ≥ 1 − 𝜖   ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇       (3.9)  

The left-hand side of (3.9) yields the worst-case probability bound of ℙ{𝑨𝑖,𝑡
𝑇 𝝌̃ ≤ 𝐵𝑖,𝑡} over 𝒟 

and is equal to the objective value of the following optimization problem: 

𝛤 = min 
𝑓(𝝌̃)

 ∫ 𝕀𝒞(𝝌̃)𝑓(𝝌̃)𝑑𝝌̃
 

𝝌̃∈𝕊
           (3.10) 

        s.t.    ∫ 𝑓(𝝌̃)𝑑𝝌̃ = 1
 

𝝌̃∈𝕊
           (3.11) 

                 𝜇𝓃 ≤ ∫ 𝜒̃𝓃
 

𝝌̃∈𝕊
𝑓(𝝌̃)𝑑𝝌̃ ≤ 𝜇𝓃  ∀𝓃 = 1, 2      (3.12) 

                 𝜎𝓃 ≤ ∫ (𝜒̃𝓃)2 

𝝌̃∈𝕊
𝑓(𝝌̃)𝑑𝝌̃ ≤ 𝜎𝓃  ∀𝓃 = 1, 2      (3.13) 

where 𝕀𝒞(𝝌̃) is the indicator function over the set 𝒞 = {𝝌̃|𝑨𝑖,𝑡
𝑇 𝝌̃ ≤ 𝐵𝑖,𝑡}; that is, 𝕀𝒞(𝝌̃) = 1 if 𝝌̃ ∈

𝒞 and 𝕀𝒞(𝝌̃) = 0 otherwise.  

Obviously, (3.9) will be satisfied when 𝛤 ≥ 1 − 𝜖. In [75], it is demonstrated that by applying 

the duality theory of conic linear programming problems [76] to the optimization problem (3.10)-

(3.13) and using the S-Lemma [77], (3.9) can be equivalently reformulated as follows:    

𝑞𝑖,𝑡 + ∑ (𝜇𝓃 𝑝𝑖,𝑡,𝓃
𝐿 − 𝜇𝓃 𝑝𝑖,𝑡,𝓃

𝑈 )2
𝓃=1 + ∑ (𝜎𝓃 ℎ𝑖,𝑡,𝓃

𝐿 − 𝜎𝓃 ℎ𝑖,𝑡,𝓃
𝑈 )2

𝓃=1 ≥ 1 − 𝜖   ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇  (3.14) 

𝑞𝑖,𝑡 + ∑ 𝛼𝑖,𝑡,𝓃 ≤ 12
𝓃=1      ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.15) 

𝑞𝑖,𝑡 + ∑ 𝛽
𝑖,𝑡,𝓃

≤ 𝛶𝑖,𝑡𝐵𝑖,𝑡
2
𝓃=1     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.16) 

‖[
𝑝𝑖,𝑡,𝓃

𝐿 − 𝑝𝑖,𝑡,𝓃
𝑈

𝛼𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃
𝐿 − ℎ𝑖,𝑡,𝓃

𝑈 ]‖ ≤ 𝛼𝑖,𝑡,𝓃 − ℎ𝑖,𝑡𝓃
𝐿 + ℎ𝑖,𝑡,𝓃

𝑈  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.17) 

‖[
𝑝𝑖,𝑡,𝓃

𝐿 − 𝑝𝑖,𝑡,𝓃
𝑈 + 𝛶𝑖,𝑡𝐴𝑖,𝑡,𝓃

𝛽𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃
𝐿 − ℎ𝑖,𝑡,𝓃

𝑈 ]‖ ≤ 𝛽𝑖,𝑡,𝓃 − ℎ𝑖,𝑡,𝓃
𝐿 +ℎ𝑖,𝑡,𝓃

𝑈  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.18) 
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where 𝑞𝑖,𝑡 , 𝑝𝑖,𝑡,𝓃
𝐿  , 𝑝𝑖,𝑡,𝓃

𝑈  , ℎ𝑖,𝑡,𝓃
𝐿  , ℎ𝑖,𝑡,𝓃

𝑈  , 𝛼𝑖,𝑡,𝓃 , 𝛽𝑖,𝑡,𝓃 , 𝛶𝑖,𝑡 ≥ 0 are auxiliary variables.  

By deriving (3.14)-(3.18), the DR reformulation of (3.7) over 𝒟 is achieved. In other words, 

utilization of (3.14)-(3.18) guarantees that (3.7) will be satisfied for all PDFs covered by 𝒟. It is 

worthwhile to note that (3.14) explicitly includes the risk parameter 𝜖. As a result, the proposed 

DRCC programming approach is able to directly control the robustness level of the solution based 

on the value chosen for the risk parameter 𝜖. This ability to directly control the robustness level 

prevents the proposed DRCC programming approach from resulting in over-conservative 

solutions. 

However, (3.16)-(3.18) are highly nonlinear and make the MDEP problem intractable. To 

address this issue, the nonlinearities of the noted constraints must be eliminated.  

3.4 Linearization of the Distributionally Robust Reformulation  

In this section, constraints (3.16)-(3.18) are linearized to attain a tractable DRCC-MILP model 

for the MDEP problem.  

 Linearization of Constraint (3.16)  

The nonlinearity of this constraint is only due to the bilinear term 𝛶𝑖,𝑡𝐵𝑖,𝑡 on the right-hand side 

of it. This bilinear term can be rewritten as follows:  

𝛶𝑖,𝑡𝐵𝑖,𝑡 = [(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
− [(𝐵𝑖,𝑡 − 𝛶𝑖,𝑡)/2]

2
 ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.19) 

As a result, (3.16) can also be expressed as:   

𝑞𝑖,𝑡+∑ 𝛽𝑖,𝑡,𝓃 ≤ [(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
− [(𝐵𝑖,𝑡 − 𝛶𝑖,𝑡)/2]

22
𝓃=1  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.20) 

Now, (3.20) can be linearized using a piecewise-based linearization method: 

𝑞𝑖,𝑡 + ∑ 𝛽𝑖,𝑡,𝓃
2
𝓃=1 ≤ ∑ (𝑚𝜆

+𝛿𝑖,𝑡,𝜆
+ + 𝑛𝜆

+∆𝑖,𝑡,𝜆
+ )𝛬

𝜆=1 − ∑ (𝑚𝜆
−𝛿𝑖,𝑡,𝜆

− + 𝑛𝜆
−∆𝑖,𝑡,𝜆

− )𝛬
𝜆=1  ∀𝑖 ∈ 𝛺𝑁 , ∀𝑡 ∈ 𝛺𝑇 (3.21) 

(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2 = ∑ 𝛿𝑖,𝑡,𝜆
+𝛬

𝜆=1     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.22) 

(𝐵𝑖,𝑡 − 𝛶𝑖,𝑡)/2 = ∑ 𝛿𝑖,𝑡,𝜆
−𝛬

𝜆=1     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.23) 

𝜓𝜆−1
+ ∆𝑖,𝑡,𝜆

+ ≤ 𝛿𝑖,𝑡,𝜆
+ ≤ 𝜓𝜆

+∆𝑖,𝑡,𝜆
+     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝜆 = 1,… , 𝛬   (3.24) 
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𝜓𝜆−1
− ∆𝑖,𝑡,𝜆

− ≤ 𝛿𝑖,𝑡,𝜆
− ≤ 𝜓𝜆

−∆𝑖,𝑡,𝜆
−     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝜆 = 1,… , 𝛬   (3.25) 

∑ ∆𝑖,𝑡,𝜆
+𝛬

𝜆=1 ≤ 1     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.26) 

∑ ∆𝑖,𝑡,𝜆
−𝛬

𝜆=1 ≤ 1     ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (3.27) 

where the superscripts “+” and “−” respectively indicate the elements associated with the 

quadratic terms [(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
 and [(𝐵𝑖,𝑡 − 𝛶𝑖,𝑡)/2]

2
; 𝛿𝑖,𝑡,𝜆

 ≥ 0 and ∆𝑖,𝑡,𝜆
 ∈ {0,1} respectively 

denote the continuous and binary auxiliary variables needed to obtain the piecewise linear 

expressions of the quadratic terms; and 𝜓𝜆
 , 𝑚𝜆

 , and 𝑛𝜆
  are constant parameters that can be obtained 

as follows: 

𝜓𝜆
+ = (𝜆)(1/𝛬)[(𝐵𝑖̇,𝑡 + 𝛶𝑖̇,𝑡)/2]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ∀𝜆 = 1,… , 𝛬      (3.28) 

𝜓𝜆
− = (𝜆)(1/𝛬)[(𝐵𝑖̇,𝑡 − 𝛶𝑖̇,𝑡)/2]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    ∀𝜆 = 1,… , 𝛬      (3.29) 

𝑚𝜆
+ = [(𝜓𝜆

+)2 − (𝜓𝜆−1
+ )2]/[𝜓𝜆

+ − 𝜓𝜆−1
+ ]  ∀𝜆 = 1,… , 𝛬      (3.30) 

𝑚𝜆
− = [(𝜓𝜆

−)2 − (𝜓𝜆−1
− )2]/[𝜓𝜆

− − 𝜓𝜆−1
− ]  ∀𝜆 = 1,… , 𝛬      (3.31) 

𝑛𝜆
+ = (𝜓𝜆

+)2 − 𝑚𝜆
+𝜓𝜆

+     ∀𝜆 = 1,… , 𝛬      (3.32) 

𝑛𝜆
− = (𝜓𝜆

−)2 − 𝑚𝜆
−𝜓𝜆

−     ∀𝜆 = 1,… , 𝛬      (3.33) 

where [(𝐵𝑖̇,𝑡 + 𝛶𝑖̇,𝑡)/2]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and [(𝐵𝑖̇,𝑡 − 𝛶𝑖̇,𝑡)/2]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denote the upper bounds of the quadratic terms 

[(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
 and [(𝐵𝑖,𝑡 − 𝛶𝑖,𝑡)/2]

2
, respectively.  

In order to clarify the proposed linearization method, the piecewise linear approximation of the 

quadratic term [(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
 is illustrated in Figure 3.1. As can be seen, first the distance 

between zero and [(𝐵𝑖̇,𝑡 + 𝛶𝑖̇,𝑡)/2]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is partitioned into 𝛬 segments. Then, corresponding to each 

segment 𝜆, a line with the slope of  𝑚𝜆
+ and the intercept of 𝑛𝜆

+ is considered. Finally, using the 

binary variables denoted by ∆𝑖,𝑡,𝜆
+ , only one of the lines is chosen to represent the quadratic term 

[(𝐵𝑖,𝑡 + 𝛶𝑖,𝑡)/2]
2
.   
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Figure 3.1 Illustration of the proposed piecewise linear approximation. 

 Linearization of Constraints (3.17) and (3.18) 

With the help of some auxiliary variables (𝑝𝑖,𝑡,𝓃, ℎ𝑖,𝑡,𝓃, 𝑑𝑖,𝑡,𝓃), (3.17) and (3.18) can be simplified 

and rewritten as:  

𝑝𝑖,𝑡,𝓃 = 𝑝𝑖,𝑡,𝓃
𝐿 − 𝑝𝑖,𝑡,𝓃

𝑈      ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.34)  

ℎ𝑖,𝑡,𝓃 = ℎ𝑖,𝑡,𝓃
𝐿 − ℎ𝑖,𝑡,𝓃

𝑈      ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.35) 

𝑑𝑖,𝑡,𝓃 = 𝑝𝑖,𝑡,𝓃 + 𝛶𝑖̇,𝑡𝐴𝑖,𝑡,𝓃    ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.36) 

(𝑝𝑖,𝑡,𝓃)
2
≤ −4𝛼𝑖,𝑡,𝓃ℎ𝑖,𝑡,𝓃    ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.37) 

(𝑑𝑖,𝑡,𝓃)
2
≤ −4𝛽𝑖,𝑡,𝓃ℎ𝑖,𝑡,𝓃    ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.38) 

Now, (3.36) can be linearized in a similar way as (3.16) by employing the above-described 

piecewise-based linearization method. On the other hand, the right-hand sides of (3.37) and (3.38) 

can be expressed as follows:  

−4𝛼𝑖,𝑡,𝓃ℎ𝑖,𝑡,𝓃=(𝛼𝑖,𝑡,𝓃 − ℎ𝑖,𝑡,𝓃)
2
− (𝛼𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃)

2
 ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.39) 
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−4𝛽𝑖,𝑡,𝓃ℎ𝑖,𝑡,𝓃=(𝛽𝑖,𝑡,𝓃 − ℎ𝑖,𝑡,𝓃)
2
− (𝛽𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃)

2
 ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.40) 

Therefore, (3.37) and (3.38) can be written as:  

𝛼𝑖,𝑡,𝓃 − ℎ𝑖,𝑡,𝓃 ≥ √(𝑝𝑖,𝑡,𝓃)
2
+ (𝛼𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃)

2
 ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.41) 

𝛽𝑖,𝑡,𝓃 − ℎ𝑖,𝑡,𝓃 ≥ √(𝑑𝑖,𝑡,𝓃)
2
+ (𝛽𝑖,𝑡,𝓃 + ℎ𝑖,𝑡,𝓃)

2
 ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇 , ∀𝓃 = 1, 2    (3.42)  

It is obvious that (3.41) and (3.42) are second-order conic constraints which have the same form 

as (2.57). Therefore, they can be linearized using the polyhedral-based method described in 

Section 2.4. That is, each of the conic quadratic constraints (3.41) and (3.42) can be replaced by 

the polyhedral approximation represented by (2.58)-(2.60).  

Linearization of constraints (3.16)-(3.18) results in a DRCC-MILP model for the MDEP 

problem, which is able to efficiently account for the uncertainties associated with renewable DGs 

and loads.    

3.5 Simulation Results and Discussion  

In this section, the most important results obtained from the implementation of the proposed 

DRCC-MILP model are presented and discussed. This model has been implemented on a PC with 

a 3.40 GHz Intel Core i7-4770 processor and 16 GB of RAM using MATLAB R2015a [84] and 

CPLEX 12.6.1 [85]. The 24-node and 138-node distribution systems are again utilized to carry out 

the simulations. The data related to the candidate conductor types, alternatives for 

construction/reinforcement of substations, alternatives for installation of renewable/conventional 

DGs, power demands, lengths of feeder sections, and other parameters of the problem are exactly 

the same as those presented in Chapter 2. Note that as an illustrative example, renewable DGs are 

here assumed to be wind turbines. However, the proposed planning methodology is fully 

applicable to other renewables DG technologies such as photovoltaic panels.      

3.5.1 Robustness Evaluation of the Proposed DRCC-MILP Model  

In this subsection, we demonstrate the robustness of the proposed DRCC-MILP model against 

the uncertain wind generations and loads having various types of PDFs. This model is also 
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compared with two other models based on the deterministic and Gaussian chance-constrained 

(GCC) approaches which are widely used in the existing literature. That is, the following three 

models are considered: 

 Model 1: Deterministic MILP model in which, similar to [1], [2], [6-8], [14-18], [36], [42], [43], 

[45], [46], the uncertainties are totally ignored.  
 

 Model 2: GCC-MILP model in which, similar to [70-72], all the uncertainties are assumed to 

be Gaussian distributed.  
 

 Model 3: Proposed DRCC-MILP model in which the uncertainty distributions are assumed to 

be unknown.  

In Model 3, in order to build the ambiguity set (𝒟), the confidence intervals of the first and 

second moments of the random variables need to be specified. These confidence intervals should 

be defined based on historical data of random variables. In this regard, given a series of data 

samples {𝜒𝓃,𝓌} 𝓌=1
𝒲  for the random variable 𝜒̃𝓃, the estimated values of the first and second 

moments can be obtained using the following formulas:  

𝜇𝓃̂ =
1

𝒲
∑ 𝜒̃𝓃,𝓌

𝒲
𝓌=1      ∀𝓃 = 1,2      (3.43) 

𝜎𝓃̂ =
1

𝒲
∑ (𝜒̃𝓃,𝓌)

2𝒲
𝓌=1     ∀𝓃 = 1,2      (3.44) 

where 𝜇𝓃̂ denotes the estimated value of the first moment of the 𝓃th random variable; 𝜎𝓃̂ denotes 

the estimated value of the second moment of the 𝓃th random variable; 𝜒̃𝓃,𝓌 denotes the 𝓌th data 

sample of the 𝓃th random variable; and 𝒲 is the total number of data samples. 

Now, the confidence intervals [𝜇𝓃, 𝜇𝓃 ] and [𝜎𝓃, 𝜎𝓃] can be obtained by defining reasonable 

ranges around 𝜇𝓃̂ and 𝜎𝓃̂, respectively. It is obvious that defining a wider range around 𝜇𝓃̂ or 𝜎𝓃̂ 

will result in robustness against a larger family of PDFs. In this chapter, the historical data of wind 

generation and load are acquired from [86], [87], respectively. These historical data are converted 

to per-unit values and utilized to calculate 𝜇𝓃̂ and 𝜎𝓃̂. The obtained values are as follows: 𝜇1̂ = 

0.427, 𝜇2̂ = 0.988, 𝜎1̂ = 0.0519, and 𝜎2̂=0.0126. Considering plausible ranges around these values, 

the confidence intervals are defined as: [𝜇1, 𝜇1 ] = [0.3, 0.5], [𝜇2, 𝜇2  ] = [0.95, 1.05], [𝜎1, 𝜎1 ] = 
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[0.02, 0.08], and [𝜎2, 𝜎2 ] = [0.01, 0.02]. Note that these confidence intervals can be flexibly 

tailored to meet the decision maker’s requirements.    

After solving Models 1-3, the solution robustness of each of them is assessed taking into account 

several different PDFs for wind generation and load. To this end, as shown in Figure 3.2, three 

typical PDFs are considered for each of the random variables 𝜒𝐺𝑅̃and 𝜒𝐷̃. Then, regarding all 

combinations of W1-W3 and L1-L3, a total number of nine test cases are defined for PDFs of wind 

generation and load. Lastly, under each defined PDF case, 10000 samples of wind generation and 

load are produced and used for robustness evaluations. 

 
Figure 3.2 Illustration of the nine test cases defined for PDFs of wind generation and load (𝜇 and 

𝜎 denote the first and second moments, respectively).  

Table 3.1 compares the performances of Models 1-3 from the viewpoints of solution robustness, 

investment cost, and computation time, while considering two different risk parameters (𝜖 = 0.1 

and 𝜖 = 0.05). In this table, the abbreviations Avg., Min., and Max. respectively represent the 

average, minimum, and maximum of the robustness levels found by testing the defined PDF cases. 

The details of the robustness levels of Models 1-3 for each PDF case are also provided in Figure 

3.3. It can be seen that Model 1 has the lowest level of robustness, so that its average robustness 

level is only 29.86%. This poor performance is obviously due to the fact that Model 1 does not 

have any information about the uncertainties when deciding about the expansion plans. Model 2 
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results in higher robustness levels; however, as can be seen in Figure 3.3, its robustness is always 

below the requirement (i.e., 1 − 𝜖) for different PDF cases. The reason is that Model 2 finds the 

solution of the MDEP problem assuming Gaussian PDFs for wind generation and load and, hence, 

it cannot sufficiently account for other types of uncertainty distributions. In contrast, Model 3 is 

highly robust against the uncertainties and, as illustrated in Figure 3.3, its robustness is 

considerably higher than the specified level (i.e., 1 − 𝜖) under all PDF cases. Moreover, taking a 

careful look at Figure 3.3 reveals that when 1 − 𝜖 = 90%, the robustness of Model 2 is significantly 

lower than when 1 − 𝜖 = 95%. Whereas, the robustness of Model 3 is very high for both 𝜖 = 0.1 

and 𝜖 = 0.05, which implies that this model is less sensitive to the risk parameter 𝜖.  

Table 3.1 Performance comparison of Models 1-3 from the viewpoints of solution robustness, 

investment cost, and computation time for the 24-node test system.  

MDEP Models Model 1 Model 2 Model 3 

1 − 𝜖 (%) N/A 90 95 90 95 

Robustness (%) 

Avg. 29.86 44.95 80.05 99.06 99.89 

Min. 10.54 21.08 62.22 98.33 99.75 

Max. 49.18 69.48 92.23 99.62 99.97 

Investment (106 US$) 6.699 7.002 7.161 7.218 7.365 

Time (min) 15 18.5 19 23 24.5 

 

Figure 3.3 Solution robustness of Models 1-3 for the 24-node test system. 
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It should be noted that, as expected, the higher robustness of Model 3 is obtained at the cost of 

a small increase in computation time and investment. Nevertheless, it is worth to bear such a 

reasonable cost to achieve the reported substantial improvement in the robustness of the solution. 

To sum up, it can be stated that Model 3 has made an appropriate trade-off among the solution 

robustness, investment cost, and computational burden as compared to the other two models. 

3.5.2 Sensitivity Analysis of Robustness of the Proposed DRCC-MILP Model 

As described in Section 3.4, to overcome the nonlinearities of the DR reformulation of CCs, a 

combination of two linearization methods has been utilized: 1) polyhedral approximation, and 2) 

piecewise approximation. In this subsection, we analyze the impacts of the accuracy of these 

linearization methods on the robustness of the proposed DRCC-MILP model.  

The accuracy of the polyhedral approximation depends on a parameter denoted by ℒ, so that the 

approximation error decreases as ℒ is increased. In Section 2.4, it was shown that choosing an 

appropriate value for ℒ causes the polyhedral approximation to be highly accurate. For instance, 

based on (2.62), setting ℒ to 8 results in an approximation error of 𝜚=1.88 × 10−5, which is 

equivalent to the accuracy of almost 100%. Based on this fact, it can be stated that when ℒ is 

greater than or equal to 8, the high accuracy of the polyhedral approximation is ensured. Thus, in 

order to linearize the DR reformulation of CCs, we have chosen ℒ=8 to make sure about the high 

accuracy of the polyhedral approximation.   

On the other hand, the accuracy of the piecewise approximation is dependent on a parameter 

denoted by 𝛬, which determines the number of segments used for linearization. It is obvious that 

by increasing 𝛬, the approximation error will be decreased. However, it is not straightforward to 

quantify the effect of 𝛬 on the accuracy of the piecewise approximation. As a result, we have 

conducted a sensitivity analysis to study the impacts of 𝛬 on the robustness of the DRCC-MILP 

model. . In this regard, 𝛬 is changed from 5 to 20 in steps of 1, and the corresponding changes in 

the robustness of the DRCC-MILP model are examined. The obtained results are illustrated in 

Figure 3.4. Note that the sensitivity analyses are performed for all the PDF cases defined in Section 

3.5.1 while considering ℒ = 8 and 𝜖 = 0.1. As can be seen, by increasing 𝛬 in the range of 5 to 13, 

the robustness of the DRCC-MILP model is significantly improved. The reason is that in this 

range, an increase in 𝛬 leads to a big improvement in the accuracy of the piecewise approximation, 
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which causes the accuracy of the linearized DR reformulation of CCs to be considerably improved. 

However, increasing 𝛬 in the range beyond 14 does not make a tangible improvement in the 

robustness of the DRCC-MILP model. This is because when 𝛬 reaches the value of 14, the 

piecewise approximation achieves its highest accuracy level (almost 100%) and hence the solution 

robustness remains constant beyond 𝛬=14.  

Based on the above discussion, it can be stated that choosing suitable values for ℒ and 𝛬 causes 

the linearized DR reformulation of CCs to be highly accurate, so that the approximation errors 

have a negligible impact on the robustness of the DRCC-MILP model. 

 

Figure 3.4 Impacts of the accuracy of the piecewise approximation on the robustness of the 

DRCC-MILP model for the 24-node test system. 

3.5.3 Investigating the Impacts of the Proposed DRCCP Approach on DG 

Deployment Plans  

One of the main purposes of our proposed planning methodology is to determine the optimal 

location, size, and type of DGs. This aspect is studied using the 138-node test system as it is large 

enough to provide a wide range of options for DG installation. In this regard, to investigate the 

impacts of the proposed DRCCP approach on the DG deployment plans, we have compared the 

deterministic MILP model developed in Chapter 2 with the DRCC-MILP model proposed in this 

chapter from the viewpoints of the location, size, and type of the installed DGs, as shown in 

Table 3.2. Note that in this table, “C” and “R” stand for “conventional” and “renewable”, 

respectively. As can be seen, four DG locations (i.e., 10, 28, 85, and 108) are the same for both 
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models. However, the sizes and types of DGs are different for the deterministic and DRCC models. 

When utilizing the deterministic model, the uncertainties of renewable generations are entirely 

ignored. This causes the deterministic model to deploy more renewable DGs (7 MW) than 

conventional ones (4 MW) because renewable DGs do not have any generation costs. However, 

when the DRCC model is used, the uncertainties of renewable DGs are incorporated into the 

optimization process. As a result, the DRCC model deploys less renewable DGs (3 MW) to obtain 

more robust expansion plans. This fact implies that the robustness of the expansion plans has an 

inverse relationship with the penetration of renewable DGs. Therefore, making a proper trade-off 

between these two conflicting factors is of great importance.  

Table 3.2 Comparison of the deterministic MILP model and the DRCC-MILP model from the 

viewpoint of DG deployment for the 138-node test system.   

MDEP Models Specifications of the installed DGs  

Deterministic MILP  

Location 10 28 72 85 100 108 133 

Size (MW) 1 2 2 1 1 2 2 

Type C R R C R R C 

DRCC-MILP  

Location 10 28 85 97 103 106 108 

Size (MW)  2 1 1 1 1 2 1 

Type C R C R C C R 

 

It is worthwhile to mention that for the risk parameter of 𝜖 = 0.05 and the linearization parameters 

of ℒ = 8 and 𝛬 = 14, the DRCC-MILP model consumes a computation time of 119 min to obtain 

the optimal solution of the MDEP problem. This reasonable computation time demonstrates the 

scalability of the proposed DRCC-MILP model.    

3.6 Summary  

In this chapter, a novel DRCCP approach has been proposed to deal with the major sources of 

uncertainty in the MDEP problem of ADNs. In this regard, the uncertainties have been modelled 

by defining a number of CCs which ensure that the constraints subject to uncertainty will be 

satisfied with a certain probability level. A DR reformulation has also been proposed for the CCs, 

which makes the optimal solution of the MDEP problem robust against the PDFs of the uncertain 
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parameters. Furthermore, a combination of the polyhedral and piecewise approximations has been 

utilized to overcome the nonlinearities of the DR reformulation proposed for the CCs, resulting in 

a DRCC-MILP model that can be efficiently solved using off-the-shelf mathematical programming 

solvers.  

The 24-node and 138-node distribution systems have been employed to demonstrate the 

effectiveness of the proposed DRCC-MILP model. After testing the uncertain renewable 

generations and loads with several different PDFs, the simulation results demonstrate the 

significantly higher robustness level of the proposed DRCC-MILP model as compared to the 

deterministic and Gaussian chance-constrained MILP models. The simulation results also show 

that the proposed DRCC-MILP model is capable of making an appropriate trade-off among the 

solution robustness, investment cost, and computational burden. 
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Chapter 4 

4. A Fast Benders Decomposition-Based Solution 

Procedure for the Developed Planning Methodology  

4 A Fast Benders Decomposition-Based Solution Procedure for the Developed Planning 

Methodology       

4.1 Introduction  

In this chapter, a fast solution procedure based on an accelerated version of the Benders 

decomposition (BD) algorithm is proposed to solve the MDEP problem. To this end, by making 

use of the BD algorithm, the MDEP problem is partitioned into a master problem and two 

subproblems and the optimal solution is found through an iterative process. The straightforward 

implementation of the BD algorithm results in a very slow convergence rate, requiring a large 

number of iterations. To address this issue, the BD algorithm is accelerated by devising two 

innovative strategies that not only significantly decrease the number of iterations required to 

achieve the convergence, but also considerably shorten the time consumed by each iteration. In 

this way, the performance of the BD algorithm is greatly enhanced and a very fast solution 

procedure is obtained. It should be noted that for clarity and ease of understanding, the proposed 

fast solution procedure is here applied to the deterministic MILP model developed in Chapter 2.        

4.2 Application of the BD Algorithm to the MDEP Problem  

In this section, based on the BD algorithm [88], [89], the deterministic MILP model developed 

in Chapter 2 is decomposed into a master problem, an optimal operation subproblem, and a 

feasibility check subproblem. After that, the iterative process of finding the optimal solution is 

also described.     
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4.2.1 Master Problem  

This problem only includes the binary decision variables of the MDEP problem and determines 

the investment and utilization decisions: 

Minimize  𝑐𝐼𝑛𝑣. + 𝛹              (4.1) 

s.t.   (2.2), (2.24)-(2.44) 

𝛹 ≥ 𝑐𝑂𝑝𝑒𝑟.(𝑚) + ∑ ∑ ∑ 𝜗𝑖𝑗,𝑎,𝑡
𝑓𝐹(𝑚)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑚)
)𝑡∈𝛺𝑇   

−∑ ∑ (𝜗𝑖̇𝑗̇,𝑡
∆𝑉1(𝑚)

+ 𝜗𝑖̇𝑗̇,𝑡
∆𝑉2(𝑚)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑚)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹𝑡∈𝛺𝑇   

+∑ ∑ 𝜗𝑖,𝑡
𝑆𝑅(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅𝑡∈𝛺𝑇   

+∑ ∑ 𝜗𝑖,𝑡
𝑆𝐶(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝐶(𝑚)

𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶1(𝑚)

+ 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶2(𝑚)

)𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇    

+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇  tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑚)
)   

+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑚)
)𝑡∈𝛺𝑇  ∀𝑚 = 1,… ,𝑀𝐹𝑒𝑎𝑠.     (4.2) 

 𝒦𝑃𝑄(𝑛) + ∑ ∑ ∑ 𝜔𝑖𝑗,𝑎,𝑡
𝑓𝐹(𝑛)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑛)
)𝑡∈𝛺𝑇   

−∑ ∑ (𝜔𝑖̇𝑗̇,𝑡
∆𝑉1(𝑛)

+ 𝜔𝑖̇𝑗̇,𝑡
∆𝑉2(𝑛)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑛)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹𝑡∈𝛺𝑇   

+∑ ∑ 𝜔𝑖,𝑡
𝑆𝑅(𝑛)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑛)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅𝑡∈𝛺𝑇   

+∑ ∑ 𝜔𝑖,𝑡
𝑆𝐶(𝑛)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑛)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝐶(𝑛)

𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑛)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜔𝑖,𝑔,𝑡
𝑄𝐺𝐶1(𝑛)

+ 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝐶2(𝑛)

)𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑛)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇   
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+∑ ∑ ∑ 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝑅(𝑛)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇  tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑛)
)  

+∑ ∑ ∑ 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝑅(𝑛)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑛)
)𝑡∈𝛺𝑇 ≤ 0 ∀𝑛 = 1,… ,𝑁𝐼𝑛𝑓𝑒𝑎𝑠.     (4.3) 

where 𝛹 is a continuous variable required for generating optimality cuts; 𝑐𝑂𝑝𝑒𝑟. is the objective 

value of the optimal operation subproblem; 𝜗𝑖𝑗,𝑎,𝑡
𝑓𝐹

, 𝜗𝑖̇𝑗̇,𝑡
∆𝑉1, 𝜗𝑖̇𝑗̇,𝑡

∆𝑉2, 𝜗𝑖,𝑡
𝑆𝑅, 𝜗𝑖,𝑡

𝑆𝐶, 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝐶, 𝜗𝑖,𝑔,𝑡

𝑄𝐺𝐶1
, 

𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶2

, 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝑅

, and 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝑅 are the dual variables of the optimal operation subproblem; 𝑚 is the index 

of iterations in which the solution provided by the master problem is feasible; 𝑀𝐹𝑒𝑎𝑠. denotes the 

number of iterations in which the solution provided by the master problem is feasible; 𝒦𝑃𝑄 is the 

objective value of the feasibility check subproblem; 𝜔𝑖𝑗,𝑎,𝑡
𝑓𝐹

, 𝜔𝑖̇𝑗̇,𝑡
∆𝑉1, 𝜔𝑖̇𝑗̇,𝑡

∆𝑉2, 𝜔𝑖,𝑡
𝑆𝑅, 𝜔𝑖,𝑡

𝑆𝐶, 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝐶, 𝜔𝑖,𝑔,𝑡

𝑄𝐺𝐶1
, 

𝜔𝑖,𝑔,𝑡
𝑄𝐺𝐶2

, 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝑅

, and 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝑅 are the dual variables of the feasibility check subproblem; 𝑛 is the index 

of iterations in which the solution provided by the master problem is infeasible; and 𝑁𝐼𝑛𝑓𝑒𝑎𝑠. 

denotes the number of iterations in which the solution provided by the master problem is infeasible.  

The hat signs indicate the values of the binary decision variables obtained by solving the master 

problem in the previous iterations. Constraints (4.2) and (4.3) respectively represent the optimality 

and feasibility cuts added to the master problem in different iterations. As can be seen, these cuts 

are generated based on the information received from the optimal operation and feasibility check 

subproblems.    

4.2.2 Optimal Operation Subproblem  

This problem only includes the continuous variables of the MDEP problem and determines the 

optimal power flow for the system configuration found by the master problem:  

Minimize  𝑐𝑂𝑝𝑒𝑟.              (4.4) 

s.t.   (2.3)-(2.6), Linearized (2.7), Linearized (2.8), (2.9)-(2.12), Linearized (2.13),  

        Linearized (2.14), (2.15) 

𝑓𝑖𝑗,𝑎,𝑡
𝐹 ≤ ( 𝐼𝑎 )

2
𝑦̂𝑖𝑗,𝑎,𝑡   : 𝜗𝑖𝑗,𝑎,𝑡

𝑓𝐹
  ∀(𝑖𝑗) ∈ 𝛺𝐹 , 𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇      (4.5) 

∆𝑉𝑖𝑗,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜗𝑖̇𝑗̇,𝑡
∆𝑉1  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (4.6) 
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−∆𝑉𝑖𝑗,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜗𝑖𝑗,𝑡
∆𝑉2  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇       (4.7) 

𝑆𝑖,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1  : 𝜗𝑖,𝑡
𝑆𝑅  ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇       (4.8) 

𝑆𝑖,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1   : 𝜗𝑖,𝑡

𝑆𝐶  ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇       (4.9) 

𝑃𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑃𝑔

𝐺𝐶𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝐶  ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.10) 

𝑄𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶1

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.11) 

−𝑄𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶2

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.12) 

𝑃𝑖,𝑔,𝑡
𝐺𝑅 = ∑ 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1   : 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝑅  ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇  (4.13) 

𝑄𝑖,𝑔,𝑡
𝐺𝑅 = ∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1   : 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝑅

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇  (4.14) 

It should be mentioned that 𝑦̂𝑖𝑗,𝑎,𝑡, 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅 , 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶 , 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶 , and 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅  have been previously determined 

by the master problem. Therefore, when solving the optimal operation subproblem, they should be 

considered as constant values.   

4.2.3 Feasibility Check Subproblem  

This problem is used to check the feasibility of the solution provided by the master problem in 

each iteration:  

Minimize  𝒦𝑃𝑄 = ∑ ∑ 𝒦𝑖,𝑡
𝑃

𝑖∈𝛺𝑁𝑡∈𝛺𝑇 + ∑ ∑ 𝒦𝑖,𝑡
𝑄

𝑖∈𝛺𝑁𝑡∈𝛺𝑇        (4.15) 

s.t.   (2.6), Linearized (2.7), Linearized (2.8), (2.9)-(2.12), Linearized (2.13), 

        Linearized (2.14), (2.15)   

∑ ∑ [𝑃𝑘𝑖,𝑎,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑃𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 − 𝑃𝑖̇,𝑡
𝐷̿̿ ̿̿ + 𝒦𝑖,𝑡

𝑃 = 0   ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (4.16) 

∑ ∑ [𝑄𝑘𝑖,𝑎,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑄𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 − 𝑄𝑖̇,𝑡
𝐷̿̿ ̿̿ + 𝒦𝑖,𝑡

𝑄 = 0   ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇     (4.17) 
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𝑓𝑖𝑗,𝑎,𝑡
𝐹 ≤ ( 𝐼𝑎 )

2
𝑦̂𝑖𝑗,𝑎,𝑡   : 𝜔𝑖𝑗,𝑎,𝑡

𝑓𝐹
  ∀(𝑖𝑗) ∈ 𝛺𝐹 , 𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇    (4.18) 

∆𝑉𝑖𝑗,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜔𝑖̇𝑗̇,𝑡
∆𝑉1  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇     (4.19) 

−∆𝑉𝑖𝑗,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜔𝑖𝑗,𝑡
∆𝑉2  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇     (4.20) 

𝑆𝑖,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1  : 𝜔𝑖,𝑡
𝑆𝑅  ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇     (4.21) 

𝑆𝑖,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1   : 𝜔𝑖,𝑡

𝑆𝐶  ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇     (4.22) 

𝑃𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑃𝑔

𝐺𝐶𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝐶  ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.23) 

𝑄𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝐶1

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.24) 

−𝑄𝑖,𝑔,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   : 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝐶2

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇  (4.25) 

𝑃𝑖,𝑔,𝑡
𝐺𝑅 = ∑ 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1   : 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝑅  ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇  (4.26) 

𝑄𝑖,𝑔,𝑡
𝐺𝑅 = ∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1    : 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝑅

 ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇  (4.27) 

Note that 𝒦𝑖,𝑡
𝑃  and 𝒦𝑖,𝑡

𝑄
 are positive unconstrained slack variables defined to determine whether 

the solution provided by the master problem is feasible or not. In this regard, when the objective 

value of the feasibility check subproblem (i.e., 𝒦𝑃𝑄) is equal to zero, the master problem solution 

is feasible. The reason is that the objective function of the feasibility check subproblem (which is 

equal to the sum of the slack variables) in fact measures the amount by which the constraints of 

the optimal operation subproblem are violated. Therefore, if the value of this objective function 

can be reduced to zero, it means that all the constraints in the optimal operation subproblem can 

be satisfied, implying that the solution provided by the master problem is feasible.   

4.2.4 Iterative Process of Finding the Optimal Solution 

The iterative procedure for finding the optimal solution of the MDEP problem using the BD 

algorithm is as follows: 

 Step 1: Solve the master problem and obtain 𝑦̂𝑖𝑗,𝑎,𝑡, 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅 , 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶 , 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶 , 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅 , and 𝛹.  
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 Step 2: Substitute 𝑦̂𝑖𝑗,𝑎,𝑡, 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅 , 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶 , 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶 , and 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅  into the feasibility check subproblem and 

solve it to obtain 𝒦𝑃𝑄. If this objective value is equal to zero, go to Step 3. Otherwise, obtain 

the dual variables 𝜔𝑖𝑗,𝑎,𝑡
𝑓𝐹

, 𝜔𝑖̇𝑗̇,𝑡
∆𝑉1, 𝜔𝑖̇𝑗̇,𝑡

∆𝑉2, 𝜔𝑖,𝑡
𝑆𝑅, 𝜔𝑖,𝑡

𝑆𝐶, 𝜔𝑖,𝑔,𝑡
𝑃𝐺𝐶, 𝜔𝑖,𝑔,𝑡

𝑄𝐺𝐶1
, 𝜔𝑖,𝑔,𝑡

𝑄𝐺𝐶2
, 𝜔𝑖,𝑔,𝑡

𝑃𝐺𝑅, and 𝜔𝑖,𝑔,𝑡
𝑄𝐺𝑅

, and 

form a feasibility cut. Append the feasibility cut to the master problem and go to Step 1.     

 Step 3: Substitute 𝑦̂𝑖𝑗,𝑎,𝑡, 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅 , 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶 , 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶 , and 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅  into the optimal operation subproblem and 

solve it to obtain 𝑐𝑂𝑝𝑒𝑟..  

 Step 4: Form the lower bound 𝐿𝐵 = 𝑐𝐼𝑛𝑣. + 𝛹 and the upper bound 𝑈𝐵 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟..   

 Step 5: If 𝑈𝐵 − 𝐿𝐵 ≤ 𝜁 × 𝐿𝐵, the current solution is the final optimal one. Otherwise, obtain 

the dual variables 𝜗𝑖𝑗,𝑎,𝑡
𝑓𝐹

, 𝜗𝑖̇𝑗̇,𝑡
∆𝑉1, 𝜗𝑖̇𝑗̇,𝑡

∆𝑉2, 𝜗𝑖,𝑡
𝑆𝑅, 𝜗𝑖,𝑡

𝑆𝐶, 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝐶, 𝜗𝑖,𝑔,𝑡

𝑄𝐺𝐶1
, 𝜗𝑖,𝑔,𝑡

𝑄𝐺𝐶2
, 𝜗𝑖,𝑔,𝑡

𝑄𝐺𝑅
, and 𝜗𝑖,𝑔,𝑡

𝑃𝐺𝑅, and form 

an optimality cut. Append the optimality cut to the master problem and go to Step 1.   

Note that 𝜁 is a small constant value (e.g., 0.001) used to define the convergence criterion of the 

BD algorithm. 

4.3 Acceleration of the BD Algorithm for Solving the MDEP Problem  

Using the classical BD algorithm, the MDEP problem is now partitioned into a master problem 

(which only includes binary variables) and two subproblems (which merely comprise continuous 

variables). Accordingly, the optimal solution of the MDEP problem can be found through an 

iterative process in which multiple feasibility and optimality cuts are generated and added to the 

master problem. However, the huge number of iterations and cuts required by the classical BD 

algorithm to achieve the convergence causes it to be very slow and time-consuming. Therefore, if 

the number of generated cuts and consequently iterations can be somehow reduced, the solution 

speed will be significantly increased. To this end, we have proposed two efficient acceleration 

strategies: 1) modification of the master problem, and 2) generation of auxiliary optimality cuts.  

4.3.1 Modified Master Problem  

The first acceleration strategy is to modify the master problem with the help of some auxiliary 

constraints that prevent it from producing a vast majority of solutions which are either infeasible 

or non-optimal. In this way, the quality of the master problem solutions is improved and 

consequently the BD algorithm will be able to converge to the optimal solution by generating a 



59 

  

relatively small number of feasibility and optimality cuts. The modified master problem is as 

follows:  

Minimize  𝑐𝐼𝑛𝑣. + 𝛹            (4.28) 

s.t.   (2.2), (2.24)-(2.44), (4.2), (4.3) 

∑ ∑ (𝐼𝑘𝑖,𝑎,𝑡
𝐹 )𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ (𝐼𝑖𝑗,𝑎,𝑡

𝐹 )𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝐼𝑖,𝑡
𝑆 + ∑ (𝐼𝑖,𝑔,𝑡

𝐺𝐶 )𝑔∈𝛺𝑔𝑐 + ∑ (𝐼𝑖,𝑔,𝑡
𝐺𝑅 )𝑔∈𝛺𝑔𝑟 = 𝐼𝑖̇,𝑡

𝐷̿̿ ̿  

      ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇      (4.29) 

𝑉𝑖,𝑡 − 𝑉𝑗,𝑡 = ∑ (𝑍𝑎𝑙𝑖𝑗𝐼𝑖𝑗,𝑎,𝑡
𝐹 )𝑎∈𝛺𝑎 + ∆𝑉𝑖𝑗,𝑡  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (4.30) 

𝑉 ≤ 𝑉𝑖,𝑡 ≤ 𝑉      ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇      (4.31) 

𝐼𝑖𝑗,𝑎,𝑡
𝐹 ≤ 𝐼𝑎 𝑦𝑖𝑗,𝑎,𝑡    ∀(𝑖𝑗) ∈ 𝛺𝐹 , 𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇     (4.32) 

|∆𝑉𝑖𝑗,𝑡| ≤ ∆𝑉(1 − ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 )  ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (4.33) 

𝐼𝑖,𝑡
𝑆 ≤ 𝐼𝑖

𝑆0 + ∑ ∑ 𝐼𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1   ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇      (4.34) 

𝐼𝑖,𝑡
𝑆 ≤ ∑ ∑ 𝐼𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1    ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇      (4.35) 

𝐼𝑖,𝑔,𝑡
𝐺𝐶 ≤ 𝐼𝑔

𝐺𝐶𝑥𝑖,𝑔,𝑡
𝐺𝐶     ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀𝑡 ∈ 𝛺𝑇   (4.36) 

𝐼𝑖,𝑔,𝑡
𝐺𝑅 = 𝐼𝑔

𝐺𝑅̿̿ ̿̿ 𝑥𝑖,𝑔,𝑡
𝐺𝑅     ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀𝑡 ∈ 𝛺𝑇   (4.37) 

The auxiliary constraints added to the master problem include a simplified version of the power 

flow equations as well as the voltage and current limits. These additional constraints have a 

negligible impact on increasing the solution time of the master problem, while they can 

significantly decrease the number of required cuts and iterations. Therefore, the overall 

consequence of using them is the rapid acceleration of the BD algorithm.  

The other important point is that when there are no optimality and feasibility cuts, the modified 

master problem is in fact an approximated version of the MDEP problem. As a result, in the first 

iteration (where no cuts are added yet), the modified master problem provides a solution that is 

quite close to the optimal solution of the MDEP problem. This feature provides an opportunity to 

further accelerate the BD algorithm, as discussed below.  
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4.3.2 Auxiliary Optimality Cuts  

A deep understanding of the special characteristics of the decomposed MDEP problem can help 

find more ways to accelerate its solution process. One of these specific characteristics is the near-

optimality of the solution found by the modified master problem in the first iteration. This unique 

feature can be utilized to significantly reduce the number of optimality cuts and iterations required 

for reaching the convergence. With this background, the second acceleration strategy is explained 

in the following.  

Consider a hypothetical optimization problem with a small maser problem that only has one 

integer variable y and four potential optimality cuts as shown in Figure 4.1. This figure shows the 

step-by-step process of constraining the variable 𝛹 by adding the optimality cuts to the master 

problem. Suppose that in the first iteration, the master problem finds the solution y1 which is very 

close to the optimal solution of the original problem yopt. By passing y1 to the subproblem and 

solving its dual, the first optimality cut C1 which determines the lower bound of the variable 𝛹 is 

found. Note that the solid circle shown on C1 is in fact the objective value of the dual subproblem 

at point y1, which is also equal to the objective value of the primal subproblem based on the strong 

duality theorem. After adding C1 to the master problem and solving it in the second iteration, the 

new solution y2 is obtained. Obviously, since the master problem is minimizing the variable 𝛹, y2 

should lie to the left of y1. The solution y2 is again passed to the subproblem and the second 

optimality cut C2 is also found. The hollow circle shown on C1 indicates the value that the master 

problem has allocated to the variable 𝛹. In fact, the master problem, given its current constraints 

on the variable 𝛹, thinks that choosing the solution y2 will cause the subproblem to have the 

objective value represented by the hollow circle on C1. However, the subproblem actually gets the 

objective value shown by the solid circle on C2. The reason is that at point y2, the constraint C2 

(which the master problem did not know about in the second iteration) is active and, hence, the 

objective value of the subproblem lies on this constraint. In the third iteration, C2 is also passed 

back to the master problem as another optimality cut and the new solution y3 is achieved. Then, 

the process continues in a similar way until all the potential optimality cuts are added to the master 

problem and consequently the hollow circle (i.e., the value allocated to the variable 𝛹) coincides 

with the solid circle (i.e., the objective value of the subproblem) in the fifth iteration, which means 

that the BD algorithm has converged to the optimal solution.   
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Figure 4.1 Step-by-step process of constraining the variable 𝛹 by adding the optimality cuts to 

the master problem. 

The above discussion showed the fact that although the solution y1 obtained in the first iteration 

was quite close to the optimal solution yopt, the added optimality cuts caused the master problem 

to generate solutions that were relatively far from the optimal one in the next iterations. 

Accordingly, it was necessary to find all the potential optimality cuts to reach the optimal solution. 

That is, the BD algorithm required the maximum number of iterations to achieve the convergence. 

However, knowing the near-optimality of the master problem solution in the first iteration, it is 

possible to accelerate the BD algorithm by generating more clever cuts. To this end, in addition to 

the optimality cut generated in each iteration, an auxiliary optimality cut can also be produced to 
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keep the near-optimality of the master problem solutions in the next iterations. To clarify this 

matter, consider the above-discussed hypothetical optimization problem again. In the second 

iteration, besides the optimality cut C1, an auxiliary optimality cut named C1
 Aux can also be 

generated and added to the master problem, as shown in Figure 4.2. This auxiliary optimality cut 

in fact restricts the variable y in such a way that the solution y2 lies in the positive part of the 

optimality cut C1. The reasons behind choosing such an auxiliary optimality cut are that, firstly, y1 

is located in the positive part of C1 and, secondly, yopt is very close to y1. These two reasons together 

imply that yopt is also located in the positive part of C1. Therefore, by keeping the master problem 

solution y2 in the positive part of C1, we can make sure that it is not far from the optimal solution. 

After passing y2 to the subproblem, the second optimality cut C2 is also found. In the third iteration, 

by adding C2 and C2
 Aux (which is generated in a similar way as C1

 Aux) to the master problem and 

solving it, the optimal solution is obtained as the hollow circle has coincided with the solid circle. 

 

Figure 4.2 Step-by-step process of constraining the variable 𝛹 by adding both the optimality cuts 

and the auxiliary optimality cuts to the master problem. 
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Note that the optimal solution is here achieved by finding only two of the four potential 

optimality cuts, which means that the algorithm has saved two iterations as compared to the case 

in which the auxiliary optimality cuts are not used. Therefore, the first benefit of the auxiliary 

optimality cuts is to make savings in the number of iterations. Moreover, it is obvious that by 

adding the auxiliary optimality cuts to the master problem, its search space is significantly reduced 

and, hence, it can be solved in a considerably shorter time. That is, the second benefit of the 

auxiliary optimality cuts is to decrease the solution time of the master problem, which in turn 

reduces the overall time consumed by the algorithm to achieve the convergence.   

The above discussion can be also generalized to the decomposed MDEP problem due to the 

following reasons:  

 The modifications made in the master problem cause its solution in the first iteration to be quite 

close to the optimal solution of the original problem. 

 The solution of the master problem always lies in the positive part of its corresponding 

optimality cut. This is due to the fact that, as can be seen in (4.2), substituting a master problem 

solution into the right-hand side of its corresponding optimality cut yields the objective value of 

the optimal operation subproblem which is always a positive value. 

Therefore, when solving the decomposed MDEP problem, in addition to the optimality cut (4.2), 

the auxiliary optimality cut (4.38) can also be generated and added to the modified master problem. 

This auxiliary cut ensures that in each iteration, the modified master problem determines the 

optimal values of binary variables in such a way that the right-hand sides of all the optimality cuts 

discovered in the previous iterations remain positive. This will considerably accelerate the solution 

process by the same logic as described for the above hypothetical optimization problem.  

𝑐𝑂𝑝𝑒𝑟.(𝑚) + ∑ ∑ ∑ 𝜗𝑖𝑗,𝑎,𝑡
𝑓𝐹(𝑚)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑚)
)𝑡∈𝛺𝑇   

−∑ ∑ (𝜗𝑖̇𝑗̇,𝑡
∆𝑉1(𝑚)

+ 𝜗𝑖̇𝑗̇,𝑡
∆𝑉2(𝑚)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑚)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹𝑡∈𝛺𝑇   

+∑ ∑ 𝜗𝑖,𝑡
𝑆𝑅(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅𝑡∈𝛺𝑇   

+∑ ∑ 𝜗𝑖,𝑡
𝑆𝐶(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶𝑡∈𝛺𝑇   
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+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝐶(𝑚)

𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶1(𝑚)

+ 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝐶2(𝑚)

)𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇    

+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑄𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇  tan(cos−1(𝜌𝐺𝑅))𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑚)
)   

+∑ ∑ ∑ 𝜗𝑖,𝑔,𝑡
𝑃𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) 𝑃𝑔

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑚)
) ≥ 0𝑡∈𝛺𝑇  ∀𝑚 = 1,… ,𝑀𝐹𝑒𝑎𝑠.   (4.38) 

4.4 Simulation Results and Discussion  

In this section, the most important results obtained from the application of the proposed solution 

procedure to the MDEP problem are presented and discussed. All the simulations have been 

implemented on a PC with a 3.40 GHz Intel Core i7-4770 processor and 16 GB of RAM using 

MATLAB R2015a [84] and CPLEX 12.6.1 [85]. The 24-node and 138-node distribution systems 

are again utilized to carry out the simulations. The data related to the candidate conductor types, 

alternatives for construction/reinforcement of substations, alternatives for installation of 

renewable/conventional DGs, power demands, lengths of feeder sections, and other parameters of 

the problem are exactly the same as those presented in Chapter 2. 

4.4.1 A Discussion on the Solution Optimality and Computation Time of the 

Accelerated BD Algorithm  

The performance of the proposed solution procedure in solving the MDEP problem is here 

assessed from the optimality and computation time perspectives. To this end, the original MDEP 

problem is directly solved using the standard off-the-shelf mathematical programming solvers and 

the obtained results are compared with those achieved by solving the decomposed MDEP problem 

using the accelerated BD algorithm. Note that the simulations are conducted considering the 

convergence criterion of 𝜁=0.001.  

Figure 4.3 depicts the expansion plans found by the proposed solution procedure and the direct 

solution method. As can be seen, the system topologies, substation constructions/reinforcements, 

feeder section replacements/constructions, and renewable/conventional DG installations obtained 

by the proposed solution procedure are exactly the same as those achieved by the direct solution 
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method. The only difference is that using the accelerated BD algorithm causes the feeder section 

18-14 to be constructed with conductor type 2 (as shown in red color), while this feeder section is 

constructed with conductor type 1 when the direct solution method is utilized. This slight 

difference demonstrates the ability of the proposed accelerated BD algorithm to find the optimal 

solution of the MDEP problem.  

 

 

Figure 4.3 Comparison of the expansion plans obtained by the proposed solution procedure and 

the direct solution method for the 24-node test system.  

Table 4.1 compares the investment, operation, and total costs obtained by the accelerated BD 

algorithm and the direct solution method at different planning stages. These cost information help 

to more accurately investigate the optimality of the expansion plans found by the proposed solution 

procedure. It can be observed that at stage 1, the accelerated BD algorithm and the direct solution 

method have resulted in the same investment and operation costs. At stage 2, however, there is a 
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slight difference between the investment and operation costs obtained by the accelerated BD 

algorithm and those achieved by the direct solution method. The total cost resulted from the 

accelerated BD algorithm is just 0.024% higher than that yielded by the direct solution method. 

This fact provides another evidence for the ability of the proposed solution procedure to find the 

optimal solution of the MDEP problem.  

Table 4.1 Comparison of the investment, operation, and total costs obtained by the proposed 

solution procedure and the direct solution method for the 24-node test system (US$). 

Solution method Costs 
Stages 

1 2 

Direct solution method  

(Original MDEP)  

Investment  1,050,600 5,649,091 

Operation 10,245,971 21,646,837 

Total 38,592,499 

Accelerated BD algorithm 

(Decomposed MDEP) 

Investment  1,050,600 5,659,091 

Operation 10,245,971 21,646,011 

Total 38,601,673 

 

The direct solution method and the accelerated BD algorithm required 15 min and 12 sec to 

solve the MDEP problem, respectively. That is, the accelerated BD algorithm has solved the 

MDEP problem 75 times faster than the direct solution method. This significant reduction of the 

computation time proves another outstanding merit of the proposed solution procedure.    

4.4.2 Performance Evaluation of the Acceleration Strategies Proposed for the 

BD Algorithm  

In Section 4.3, two acceleration strategies (i.e., modification of the master problem and 

generation of the auxiliary optimality cuts) were proposed to make the solution process of the 

decomposed MDEP problem more efficient and less time-consuming. In the following, these 

acceleration strategies are step by step applied to the BD algorithm and their impacts on different 

aspects of the solution process are analyzed.  

Table 4.2 compares the performances of three different versions of the BD algorithm in solving 

the MDEP problem: 
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 Version 1: The classical BD algorithm.   

 Version 2: The accelerated BD algorithm including only the modified master problem. 

 Version 3: The accelerated BD algorithm including both the modified master problem and the 

auxiliary optimality cuts. 

In Table 4.2, UB and LB stand for the upper and lower bounds, respectively. As can be observed, 

the classical BD algorithm is not able to converge to the optimal solution, so that even after 861 

iterations taking 62 min, no feasible solution is found by the master problem. Whereas, the 

proposed acceleration strategies have caused the BD algorithm to achieve the convergence very 

fast. Moreover, the computation time and number of iterations required by Version 3 are 

significantly lower than those required by Version 2, which demonstrates the highly effective role 

of the auxiliary optimality cuts in the rapid acceleration of the solution process. 

Table 4.2 Performance comparison of the classical BD algorithm and the proposed accelerated 

BD algorithm in solving the MDEP problem for the 24-node test system.  

BD algorithm Converged Time 
No. of 

iterations 

Relative gap 

between UB and LB 

Version 1 No 62 min 861 
No feasible solution 

was found  

Version 2 Yes 7 min 285 0.06% 

Version 3 Yes 12 sec 77 0.03% 

 

In order to clearly illustrate how the auxiliary optimality cuts can accelerate the solution process 

of the MDEP problem, the key features of some selected iterations of Versions 2 and 3 of the BD 

algorithm are tabulated in Tables 4.3 and 4.4. By comparing these two tables, it can be observed 

that the benefits of the auxiliary optimality cuts are twofold. The first benefit is to dramatically 

reduce the search space of the master problem, which causes its solution time to be significantly 

shortened. As can be seen in Table 4.3, when the auxiliary optimality cuts are not considered, the 

time consumed for solving the master problem in each iteration is between 1 to 2 sec. Whereas, 

the results presented in Table 4.4 show that by including the auxiliary optimality cuts in the master 

problem, its solution time is reduced to less than 0.25 sec from the second iteration onwards. The 

second benefit is to keep the near-optimality of the master problem solutions in all the iterations. 

Table 4.3 shows that when the auxiliary optimality cuts are not considered, in spite of the near-
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optimality of the master problem solution in the first iteration, the relative gap between the upper 

and lower bounds experiences a large increase after the first iteration. That is, in the iterations 

following the first iteration, the master problem solution gets away from the optimal solution. 

However, as can be observed in Table 4.4, by adding the auxiliary optimality cuts to the master 

problem, the relative gap between the upper and lower bounds is always very small. This implies 

that the master problem solution is kept near-optimal and, hence, a small number of iterations are 

required to obtain the convergence. 

It is necessary to mention that in the first iteration, the relative gap between the upper and lower 

bounds (i.e., [(𝑈𝐵 − 𝐿𝐵)/𝐿𝐵] × 100) cannot be defined. The reason is that in the first iteration, 

in order to prevent the master problem from being unbounded, the variable 𝛹 is set to zero. This 

causes the lower bound to only include the investment costs (i.e., 𝐿𝐵 = 𝑐𝐼𝑛𝑣. + 𝛹 = 𝑐𝐼𝑛𝑣. + 0), 

while the upper bound includes both the investment and operation costs (𝑈𝐵 = 𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟.). 

Therefore, the relative gap between the upper and lower bounds for the first iteration has not been 

reported in Tables 4.3 and 4.4. 

Table 4.3 Key features of some selected iterations of Version 2 of the BD algorithm for the 24-

node test system.  

Iteration  
Master problem 

solution time (sec) 

Relative gap 

between UB and LB 

1 1.27 ̶ 

2 1.06 -178.67% 

3 1.15 -110.93% 

4 1.80 -116.32% 

5 1.79 -117.26% 

… … … 

281 1.44 1.39% 

282 1.53 3.43% 

283 1.62 2.2% 

284 1.93 7.43% 

285 1.84 0.06% 
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Table 4.4 Key features of some selected iterations of Version 3 of the BD algorithm for the 24-

node test system.  

Iteration  
Master problem 

solution time (sec) 

Relative gap 

between UB and LB 

1 1.27 ̶ 

2 0.13 6.01% 

3 0.09 5.55% 

4 0.14 6.49% 

5 0.19 6.11% 

… … … 

74 0.18 0.83% 

75 0.21 1.38% 

76 0.14 1.08% 

77 0.17 0.03% 

    

Figure 4.4 depicts the convergence trends of Versions 2 and 3 of the BD algorithm by comparing 

the value of the variable 𝛹 with the objective value of the optimal operation subproblem 𝑐𝑂𝑝𝑒𝑟. for 

the second iteration onwards. As can be seen, when the auxiliary optimality cuts are not considered, 

the master problem solution gets away from the optimal one and the variable 𝛹 attains very large 

negative values at the beginning of the solution process (i.e., iterations 2 to 34). This causes the 

relative gap between the upper and lower bounds to significantly increase. Consequently, a 

relatively large number of iterations are required to decrease this big gap and achieve the 

convergence. However, by considering the auxiliary optimality cuts, the master problem solution 

is kept near-optimal and the variable 𝛹 always attains positive values that are quite close to 𝑐𝑂𝑝𝑒𝑟.. 

In this way, the relative gap between the upper and lower bounds remains small during the whole 

solution process and, hence, the BD algorithm quickly converges to the optimal solution.  

It is worth noting that the difference between the upper and lower bounds is exactly the same as 

the difference between 𝑐𝑂𝑝𝑒𝑟. and 𝛹, as shown in (4.39). This is the reason why the convergence 
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trends of the proposed accelerated BD algorithm are investigated by comparing the values of 𝑐𝑂𝑝𝑒𝑟. 

and 𝛹 in different iterations.  

𝑈𝐵 − 𝐿𝐵 = (𝑐𝐼𝑛𝑣. + 𝑐𝑂𝑝𝑒𝑟.) − (𝑐𝐼𝑛𝑣. + 𝛹) = 𝑐𝑂𝑝𝑒𝑟. − 𝛹       (4.39) 

 
(a) 

 
(b) 

Figure 4.4 Convergence trends of the proposed accelerated BD algorithm for the 24-node test 

system: (a) Version 2, (b) Version 3.   

.Operc
.Operc
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4.4.3 An Extended Case Study  

The 138-node distribution system is here employed to demonstrate the scalability of the solution 

procedure proposed for the MDEP problem. The data required to carry out the simulations are 

exactly the same as those presented in Chapter 2.  

The simulation results show that the accelerated BD algorithm requires 95 iterations taking 76 

sec to solve the MDEP problem of the 138-node test system, while the direct solution method 

consumes a computation time of 83 min to find the optimal solution. That is, the accelerated BD 

algorithm has solved the MDEP problem 65 times faster than the direct solution method. This fact 

demonstrates another outstanding merit of the proposed solution procedure, i.e., its ability to 

quickly solve large-scale MDEP problems that are time-consuming to be directly solved using the 

standard off-the-shelf mathematical programming solvers.  

4.5 Summary  

In this chapter, a fast BD-based solution procedure has been proposed for the MDEP problem. 

This solution procedure has been obtained by applying two novel acceleration strategies (namely 

modification of the master problem and generation of the auxiliary optimality cuts) to the classical 

BD algorithm. These acceleration strategies, when used together, not only decrease the number of 

iterations required by the BD algorithm to reach the convergence, but also shorten the time 

consumed by each iteration. In this way, an accelerated version of the BD algorithm has been 

achieved, which is capable of solving the MDEP problem in a computationally efficient manner.   

 The proposed solution procedure has been successfully validated using the 24-node and 138-

node distribution systems. The simulation results show that the accelerated BD algorithm is able 

to find the optimal solution of the MDEP problem tens of times faster than the standard off-the-

shelf mathematical programming solvers. The results also show that the straightforward 

application of the classical BD algorithm to the MDEP problem leads to a failure to achieve the 

convergence. Whereas, the accelerated BD algorithm is able to quickly converge to the optimal 

solution, which indicates the highly effective role of the proposed acceleration strategies in 

speeding up the solution process. Moreover, the scalability of the proposed solution procedure is 

demonstrated by solving a large-scale MDEP problem.   
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In fact, the proposed fast solution procedure has paved the way for Steps 4 and 5 of the project. 

The reason is that the incorporation of ESSs and DRLs into the MDEP problem requires us to 

consider the load and renewable generation profiles that reflect the chronological relationship 

between demand and generation. This necessitates simultaneous consideration of a wide range of 

operating conditions of ADNs. It is possible to deal with such a large number of operating 

conditions only if the developed planning methodology is fast enough.           

      

 

  



73 

  

 

Chapter 5 

5. A Robust Sequential-Time Simulation-Based Decomposed 

Model for Integrated Planning of Distribution Network, 

Distributed Generation, Energy Storage, and Demand Response     

5 A Robust Sequential-Time Simulation-Based Decomposed Model for Integrated Planning of 

Distribution Network, Distributed Generation, Energy Storage, and Demand Response 

5.1 Introduction  

Significant techno-economic and environmental benefits of DERs (i.e., DGs, ESSs, and DRLs) 

have brought them into the core of the future development of distribution systems [90], [91]. 

According to a recent report published by Navigant Research, the global capacity of DERs is 

forecasted to grow from 132.4 GW in 2017 to 528.4 GW in 2026 [92]. This tremendous growth of 

DERs will present serious challenges to distribution system planners from the viewpoints of 

simulation and analysis. One of the major challenges is that successful network integration of 

DERs requires a distribution system planning model with the capability of incorporating the short-

term operation analysis into the long-term planning studies [48]. This is, on the one hand, due to 

the fact that ESSs store “energy” which is the time integral of power [78]. This fact makes it 

necessary to add the time dimension to the planning problem by simulating distribution system 

operation over a certain time period (e.g., one day). On the other hand, DRLs have the ability to 

make significant changes to daily demand profiles by shifting the load demand from one hour to 

another during the day [47]. This is another factor that necessitates analyzing the short-term 

operation of distribution system along with its long-term planning studies. To this end, there needs 

to be a planning model capable of carrying out sequential-time power flow simulation (STPFS) 

over a series of time slots (e.g., 24 hours) [78], [79]. As opposed to the static power flow simulation 

(SPFS) which only considers one single operating state, the STPFS provides the opportunity to 

account for a series of operating states [78]. In this way, the STPFS enables the distribution system 
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planners to perform chronological simulations required for analyzing the short-term operational 

impacts of ESSs and DRLs when deciding about the long-term expansion plans.  

Based on the above discussion, the Electric Power Research Institute (EPRI) has identified the 

STPFS capability as the most important requirement for future distribution system planning tools 

[79]. However, the challenge is that the STPFS calls for simultaneous analysis of a relatively large 

number of operating states, which causes the planning problem to become very computationally 

demanding or even intractable, especially when dealing with large-scale distribution systems. This 

challenge can be met only if the planning model is computationally fast enough.  

In the existing literature, two main approaches have been used to achieve the computational 

speed required for conducting STPFS. A group of researchers have increased the speed of their 

proposed planning models by using simplified distribution network models [11], [38-40], [44], 

[48], [93]. For instance, the authors of [48] propose an expansion planning model for ADNs 

incorporating ESSs, which performs a simple power flow analysis based on a linear relationship 

between nodal voltage magnitudes and current flows. The adopted network model completely 

ignores the energy losses and reactive power, while they are key factors in any study on distribution 

systems. In [11], [39], an MILP model is developed for joint of distribution network and DER 

planning, which uses an approximate network model based on DC power flow equations. 

Similarly, the distribution expansion planning models presented in [38], [44] also utilize a DC 

power flow model to reduce the computational complexity. Employing these simplified network 

models can obviously lead to inaccurate and undependable expansion plans for distribution 

systems. The planning models proposed in [40], [93] have a clear advantage over those presented 

in [11], [38], [39], [44], [48] as they use linearized versions of AC power flow equations. 

Nevertheless, they also make some error-prone assumptions to overcome the nonlinearities of AC 

power flow equations. Another group of researchers have utilized heuristic solution methods such 

as genetic algorithm (GA) [3], [47], [94], immune genetic algorithm (IGA) [32], particle swarm 

optimization (PSO) [9], [26], [31], tabu search (TS) [26], [33], simulated annealing (SA) [33], and 

artificial bee colony (ABC) [29] to solve their proposed planning models with the required speed. 

For instance, the authors of [47] present an integrated planning model that considers renewable 

DGs and DRLs as expansion alternatives to reduce the carbon footprint of distribution systems, 

where an interior-point-method-embedded discrete GA (IPM-DGA) is employed to find the 
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optimal solution. In [3], a scenario-based model is developed to investigated the impacts of large-

scale electric vehicle (EV) penetration on the expansion planning of distribution networks, while 

a GA with the elitist strategy is used to solve the model. A long-term planning model to determine 

the optimal location, capacity, and power rating of ESSs in a distribution network integrated with 

wind-based DGs is presented in [9], which is solved using a hybrid solution method based on the 

TS and PSO algorithms. The authors of [26] develop an MINLP model for the expansion planning 

of ADNs, which takes the reactive power generation capability of different renewable DG 

technologies into consideration. This MINLP model is solved by a hybrid solution method based 

on the PSO algorithm and the ordinal optimization (OO) approach. In [33], the optimal planning 

of DGs and ESSs is considered as an option to mitigate the impacts of EVs on distribution systems, 

where the TS and SA algorithms are utilized to solve the short-term operation and long-term 

planning problems, respectively. The main drawback of the above-mentioned heuristic solution 

methods is that they not only cannot guarantee obtaining the global optimal solution, but also do 

not provide a measure of the quality of the obtained solution (i.e., distance to the global optimum). 

In summary, it can be stated that the planning models existing in the literature have attained the 

required computational speed by sacrificing either the accuracy of the network model or the 

optimality of the solution.  

This chapter develops an MDEP model for integrated expansion of distribution network assets 

(i.e., feeders and substations) and DERs (i.e., DGs, ESSs, and DRLs), which is capable of 

performing sequential-time simulation (STS) without suffering from the above-described 

drawbacks. The developed STS-based MDEP model not only incorporates a highly accurate 

linearized distribution network model reflecting AC power flow equations, but is also able to 

quickly find the global optimal solution with a low computational effort. In this regard, by making 

use of the fast solution procedure proposed in Chapter 4, the MDEP model is partitioned into a 

master problem and two subproblems, and the optimal solution is found through an iterative 

process. The master problem determines the long-term expansion plans, while the subproblems 

conduct the short-term STS-based operation analysis considering the linearized AC power flow 

equations proposed in Chapter 2.  

With regard to energy storage modelling, we have explored different ESS technologies that are 

appropriate for employment in ADNs. After careful comparison of different ESS technologies, 
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advanced adiabatic compressed air energy storage (AA-CAES) is chosen as the energy storage 

option for ADNs due to its lower costs and significantly longer lifetime compared to other 

technologies [80]. In this regard, a detailed AA-CAES model is proposed and incorporated into 

the developed STS-based MDEP model. Moreover, with regard to demand response modelling, 

we have considered an hourly real-time pricing (RTP) scheme which is the most effective time-

based pricing structure to encourage consumers to use electricity in a more efficient manner [95]. 

In order to model the reaction of DRLs to electricity price changes, we have employed a demand 

function based on self-price and cross-price elasticities of demand. The proposed DRL model is 

successfully included in the developed STS-based MDEP model. 

It should be noted that a new robust optimization-based approach is also proposed in this chapter 

to model the uncertainties of renewable generations, loads, and electricity prices [96], [97]. The 

reason for proposing this new uncertainty modelling approach is that the DRCCP approach 

proposed in Chapter 2 cannot be used when the BD algorithm is applied to the MDEP problem. In 

the BD algorithm, the subproblems should not include any binary variables, while the piecewise-

based linearization method employed by the DRCCP approach will introduce binary variables to 

the subproblems. As a result, we have proposed a new robust optimization-based uncertainty 

modelling approach which has the significant advantages of the DRCCP approach, but it does not 

introduce any binary variables to the subproblems. This approach allows controlling the degree of 

conservatism of the solution and also provides the decision maker with a probabilistic bound on 

the robustness level of the obtained solution. These features make the proposed approach stand out 

among other robust optimization approaches existing in the literature.                      

5.2 Deterministic Sequential-Time Simulation-Based Decomposed 

Model Developed for the MDEP Problem  

In this section, the uncertainties of renewable generations, loads, and electricity prices are 

ignored and a deterministic decomposed model with the ability to carry out STS is developed for 

the MDEP problem. This model consists of a master problem, an optimal operation subproblem, 

and a feasibility check subproblem, which are iteratively solved based on the accelerated BD 

algorithm proposed in Chapter 4. The master problem determines the long-term plans for 

construction/replacement of feeder sections, construction/reinforcement of substations, 
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installation of renewable/conventional DGs, installation of ESSs, and installation of smart meters. 

Whereas, the subproblems analyze the short-term STS-based operation of distribution system 

considering the expansion plans found by the master problem.  

5.2.1 Master Problem  

The master problem only includes the binary decision variables of the MDEP problem and 

determines the investment and utilization decisions. The objective function of this problem is to 

minimize the present value of the investment costs over the planning period:   

Minimize  𝑐𝐼𝑛𝑣. + 𝛹              (5.1) 

𝑐𝐼𝑛𝑣. = ∑
1

(1+𝑟)(𝑡−1)𝐷 [∑ ∑ 𝑐𝑎
𝐹𝑅𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝑅
𝑎∈(𝛺𝑎−𝑎𝑖𝑗

𝐹𝑅)(𝑖𝑗)∈𝛺𝐹𝑅 + ∑ ∑ 𝑐𝑎
𝐹𝐶𝑙𝑖𝑗𝑥𝑖𝑗,𝑎,𝑡

𝐹𝐶
𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹𝐶𝑡∈𝛺𝑇   

+∑ ∑ 𝑐𝑏
𝑆𝑅𝑥𝑖,𝑏,𝑡

𝑆𝑅
𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝑅 + ∑ ∑ 𝑐𝑏

𝑆𝐶𝑥𝑖,𝑏,𝑡
𝑆𝐶

𝑏∈𝛺𝑏𝑖∈𝛺𝑆𝐶 + ∑ ∑ 𝑐𝑔
𝐺𝑅𝑥𝑖,𝑔,𝑡

𝐺𝑅
𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)   

+∑ ∑ 𝑐𝑔
𝐺𝐶𝑥𝑖,𝑔,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿) + ∑ ∑ 𝑐𝑠
𝐸𝑆𝑥𝑖,𝑠,𝑡

𝐸𝑆
𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡

𝑁𝐿)   

+∑ ∑ 𝜅𝑝
𝑆𝑀𝑁𝑖,𝑡

𝐶 𝑐𝑆𝑀𝑥𝑖,𝑝,𝑡
𝑆𝑀

𝑝∈𝛺𝑠𝑚𝑖∈(𝛺𝑁𝑆𝑀∩𝛺𝑡
𝑁𝐿) ]           (5.2) 

In the above objective function, 𝑐𝐼𝑛𝑣. represents the present value of the investment costs 

required for replacement of existing feeder sections, construction of new feeder sections, 

reinforcement of existing substations, construction of new substations, installation of 

renewable/conventional DGs, installation of ESSs, and installation of smart meters. Note that the 

planning horizon is divided into a number of stages with known duration, and the binary variables 

denoted by “𝑥” are used to model the investment decisions made in each planning stage. In (5.1), 

𝛹 is a continuous variable required for generating optimality cuts.  

The constraints of the master problem can be categorized into three main groups: 1) constraints 

on binary investment and utilization variables, 2) radiality constraints, and 3) optimality and 

feasibility cuts. In the following, these three groups are described in detail.     

5.2.1.1 Constraints on Binary Investment and Utilization Variables  

Constraints (5.3)-(5.6) ensure that a maximum of one construction or reinforcement is performed 

for each feeder section or substation during the planning horizon. Constraint (5.7) limits the 
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number DG installations at each candidate node to one. Constraint (5.8) is used to avoid more than 

one ESS installation at each candidate node. Constraint (5.9) guarantees that each candidate node 

is equipped with smart meters at most once. Constraints (5.10)-(5.12) determine the maximum 

number of renewable DGs, conventional DGs, and ESSs that can be installed in the system. 

Constraint (5.13) specifies the maximum number of nodes that can be equipped with smart meters. 

Constraints (5.14)-(5.18) ensure that different types of feeder sections (i.e., existing replaceable, 

existing irreplaceable, and candidate for construction) can be operated only if their corresponding 

investments have already been made. The binary variables denoted by “𝑦” represent the operating 

conditions of feeder sections. In this regard, 𝑦𝑖𝑗,𝑎,𝑡 = 1 indicates that feeder section 𝑖𝑗 with 

conductor type 𝑎 is utilized at planning stage 𝑡. By contrast, 𝑦𝑖𝑗,𝑎,𝑡 = 0 means that feeder section 

𝑖𝑗 with conductor type 𝑎 is not operated at planning stage 𝑡. Constraint (5.19) is used to avoid 

simultaneous charging and discharging of ESSs. This constraint also makes sure that an ESS can 

be operated only if its corresponding investment has already been made.        

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝐶

𝑎∈𝛺𝑎𝑡∈𝛺𝑇 ≤ 1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶         (5.3) 

∑ ∑ 𝑥𝑖𝑗,𝑎,𝑡
𝐹𝑅

𝑎∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)𝑡∈𝛺𝑇 ≤ 1   ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅         (5.4) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝐶

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑆𝐶         (5.5) 

∑ ∑ 𝑥𝑖,𝑏,𝑡
𝑆𝑅

𝑏∈𝛺𝑏𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑆𝑅         (5.6) 

∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑡∈𝛺𝑇 +∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑡∈𝛺𝑇 ≤ 1 ∀𝑖 ∈ 𝛺𝑁𝐺         (5.7)  

∑ ∑ 𝑥𝑖,𝑠,𝑡
𝐸𝑆

𝑠∈𝛺𝑒𝑠𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑁𝐸𝑆         (5.8) 

∑ ∑ 𝑥𝑖,𝑝,𝑡
𝑆𝑀

𝑝∈𝛺𝑠𝑚𝑡∈𝛺𝑇 ≤ 1   ∀𝑖 ∈ 𝛺𝑁𝑆𝑀         (5.9) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝑅         (5.10) 

∑ ∑ ∑ 𝑥𝑖,𝑔,𝑡
𝐺𝐶

𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐺𝐶          (5.11) 

∑ ∑ ∑ 𝑥𝑖,𝑠,𝑡
𝐸𝑆

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝐸𝑆         (5.12) 

∑ ∑ ∑ 𝑥𝑖,𝑝,𝑡
𝑆𝑀

𝑝∈𝛺𝑠𝑚𝑖∈(𝛺𝑁𝑆𝑀∩𝛺𝑡
𝑁𝐿)𝑡∈𝛺𝑇 ≤ 𝑁𝑆𝑀         (5.13) 
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𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝑅𝑡

𝜐=1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅 , ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝑅), ∀𝑡 ∈ 𝛺𝑇    (5.14) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1 − ∑ ∑ 𝑥𝑖𝑗,𝜔,𝜐
𝐹𝑅

𝜔∈(𝛺𝑎−𝑎𝑖𝑗
𝐹𝑅)

𝑡
𝜐=1  ∀(𝑖𝑗) ∈ 𝛺𝐹𝑅 , ∀𝑎 = 𝑎𝑖𝑗

𝐹𝑅 , ∀𝑡 ∈ 𝛺𝑇    (5.15) 

𝑦𝑖𝑗,𝑎,𝑡 = 0     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 ∈ (𝛺𝑎 − 𝑎𝑖𝑗
𝐹𝐼), ∀𝑡 ∈ 𝛺𝑇   (5.16) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ 1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐼 , ∀𝑎 = 𝑎𝑖𝑗
𝐹𝐼 , ∀𝑡 ∈ 𝛺𝑇    (5.17) 

𝑦𝑖𝑗,𝑎,𝑡 ≤ ∑ 𝑥𝑖𝑗,𝑎,𝜐
𝐹𝐶𝑡

𝜐=1     ∀(𝑖𝑗) ∈ 𝛺𝐹𝐶 , ∀𝑎 ∈ 𝛺𝑎, ∀𝑡 ∈ 𝛺𝑇    (5.18) 

𝛼𝑖,𝑠,ℎ,𝑡
𝐶ℎ + 𝛼𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ ≤ ∑ 𝑥𝑖,𝑠,𝜐
𝐸𝑆𝑡

𝜐=1           ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.19) 

5.2.1.2 Radiality Constraints  

Constraints (5.20)-(5.28) guarantee the radiality of the distribution network [36], [82]. If DGs 

were not considered as expansion alternatives, constraints (5.20)-(5.23) would be enough to ensure 

the radiality of the network. However, when DGs are brought into play, constraints (5.24)-(5.28) 

should also be considered in order to prevent the existence of areas exclusively supplied by DGs. 

These constraints assign fictitious current flow demands to the candidate nodes for DG installation 

and, in this way, keep them connected to the substations to preclude formation of isolated areas 

[36]. It should be noted that the distribution system is assumed to include a number of so-called 

“transfer nodes” at some of the planning stages [82]. These nodes are not connected to the loads 

or substations, but they can be used to connect different load nodes to each other and, in this way, 

may help to find better planning solutions. The binary variables denoted by “𝑧” represent the 

operating conditions of the transfer nodes. In this regard, 𝑧𝑖,𝑡 = 1 indicates that transfer node 𝑖 is 

operated at planning stage 𝑡. Whereas, 𝑧𝑖,𝑡 = 0 means that transfer node 𝑖 is not utilized at planning 

stage 𝑡. 

∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡 =𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 |𝛺𝑁| − |𝛺𝑁𝑆| − ∑ (1 − 𝑧𝑖,𝑡)𝑖∈𝛺𝑡
𝑁𝑇  ∀𝑡 ∈ 𝛺𝑇     (5.20) 

∑ ∑ 𝑦𝑘𝑖,𝑎,𝑡𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 +∑ ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ≥ 2𝑧𝑖,𝑡  ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇, ∀𝑡 ∈ 𝛺𝑇    (5.21) 

∑ 𝑦𝑘𝑖,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎     ∀(𝑘𝑖) ∈ 𝛺𝐹, ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇    (5.22) 

∑ 𝑦𝑖𝑗,𝑎,𝑡 ≤ 𝑧𝑖,𝑡𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑖 ∈ 𝛺𝑡
𝑁𝑇 , ∀𝑡 ∈ 𝛺𝑇    (5.23) 
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∑ 𝜃̃𝑘𝑖,𝑡
𝐹

(𝑘𝑖)∈𝛺𝐹 − ∑ 𝜃̃𝑖𝑗,𝑡
𝐹

(𝑖𝑗)∈𝛺𝐹 + 𝜃̃𝑖,𝑡
𝑆 = 𝜃̃𝑖,𝑡

𝐷  ∀𝑖 ∈ 𝛺𝑁, ∀𝑡 ∈ 𝛺𝑇      (5.24) 

𝜃̃𝑖𝑗,𝑡
𝐹 ≤ |𝛺𝑁𝐺| ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎    ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑡 ∈ 𝛺𝑇      (5.25) 

𝜃̃𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|     ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀𝑡 ∈ 𝛺𝑇      (5.26) 

𝜃̃𝑖,𝑡
𝑆 ≤ |𝛺𝑁𝐺|(∑ ∑ 𝑥𝑖,𝑏,𝜐

𝑆𝐶
𝑏∈𝛺𝑏

𝑡
𝜐=1 )  ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀𝑡 ∈ 𝛺𝑇      (5.27) 

𝜃̃𝑖,𝑡
𝐷 = {

1       ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇 

0       ∀𝑖 ∉ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑡 ∈ 𝛺𝑇 

         (5.28)  

5.2.1.3 Optimality and Feasibility Cuts  

As described in Section 4.2.4, the BD algorithm finds the optimal solution of the MDEP problem 

through an iterative process in which multiple optimality and feasibility cuts are generated and 

added to the master problem. Constraints (5.29) and (5.30) respectively represent the optimality 

and feasibility cuts added to the master problem in different iterations of the BD algorithm. These 

cuts are generated based on the information received from the optimal operation and feasibility 

check subproblems.  

𝛹 ≥ 𝑐𝑂𝑝𝑒𝑟.(𝑚) + ∑ ∑ ∑ ∑ 𝜗𝑖𝑗,𝑎,ℎ,𝑡
𝑓𝐹(𝑚)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

−∑ ∑ ∑ (𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1(𝑚)

+ 𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉2(𝑚)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑚)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜗𝑖,ℎ,𝑡
𝑆𝑅(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜗𝑖,ℎ,𝑡
𝑆𝐶(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶(𝑚)

[∑ 𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ (𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶1(𝑚)

+ 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶2(𝑚)

) [∑ 𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝑡

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝐶(𝑚)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) [∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡

𝐺𝑅(𝑚)
)𝑡

𝜐=1 ]ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝑅(𝑚)

[∑ 𝑃𝑔,ℎ
𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝑡

𝐺𝑅 − 𝑥̂𝑖,𝑔,𝑡
𝐺𝑅(𝑚)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   
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+∑ ∑ ∑ ∑ 𝜗𝑖,𝑠,ℎ,𝑡
𝑃𝐶ℎ(𝑚)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐶ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐶ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐶ℎ(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑠,ℎ,𝑡
𝑃𝐷𝑐ℎ(𝑚)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐷𝑐ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜗𝑖,ℎ,𝑡
𝐷𝑆𝑀(𝑚)

− 𝜗𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝(𝑚)

)𝑃𝑖̇,ℎ,𝑡
𝐷̿̿ ̿̿ ̿̿ [∑ ∑ 𝜅𝑝

𝑆𝑀(𝑥𝑖,𝑝,𝜐
𝑆𝑀 − 𝑥̂𝑖,𝑝,𝜐

𝑆𝑀(𝑚)
)𝑝∈𝛺𝑠𝑚

𝑡
𝜐=1 ]𝑖∈𝛺𝑁ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

∀𝑚 = 1,… ,𝑀𝐹𝑒𝑎𝑠.   (5.29) 

𝒦𝑃𝑄(𝑛) + ∑ ∑ ∑ ∑ 𝜔𝑖𝑗,𝑎,ℎ,𝑡
𝑓𝐹(𝑛)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑛)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

−∑ ∑ ∑ (𝜔𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1(𝑛)

+ 𝜔𝑖̇𝑗̇,ℎ,𝑡
∆𝑉2(𝑛)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑛)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜔𝑖,ℎ,𝑡
𝑆𝑅(𝑛)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑛)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜔𝑖,ℎ,𝑡
𝑆𝐶(𝑛)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑛)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜔𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶(𝑛)

[∑ 𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝜐

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝜐
𝐺𝐶(𝑛)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ (𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶1(𝑛)

+ 𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶2(𝑛)

) [∑ 𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝜐

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝜐
𝐺𝐶(𝑛)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝑅(𝑛)

𝑔∈𝛺𝑔𝑟 [∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔,ℎ
𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝜐

𝐺𝑅 − 𝑥̂𝑖,𝑔,𝜐
𝐺𝑅(𝑛)

)𝑡
𝜐=1 ]𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜔𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝑅(𝑛)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) [∑ 𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝜐
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝜐

𝐺𝑅(𝑛)
)𝑡

𝜐=1 ]ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜔𝑖,𝑠,ℎ,𝑡
𝑃𝐶ℎ(𝑛)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐶ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐶ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐶ℎ(𝑛)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜔𝑖,𝑠,ℎ,𝑡
𝑃𝐷𝑐ℎ(𝑛)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐷𝑐ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ(𝑛)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜔𝑖,ℎ,𝑡
𝐷𝑆𝑀(𝑛)

− 𝜔𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝(𝑛)

) 𝑃𝑖̇,ℎ,𝑡
𝐷̿̿ ̿̿ ̿̿ [∑ ∑ 𝜅𝑝

𝑆𝑀(𝑥𝑖,𝑝,𝜐
𝑆𝑀 − 𝑥̂𝑖,𝑝,𝜐

𝑆𝑀(𝑛)
)𝑝∈𝛺𝑠𝑚

𝑡
𝜐=1 ]𝑖∈𝛺𝑁ℎ∈𝛺𝐻𝑡∈𝛺𝑇 ≤ 0  

∀𝑛 = 1,… ,𝑁𝐼𝑛𝑓𝑒𝑎𝑠.   (5.30) 

where 𝛹 is a continuous variable included in the objective function of the master problem; 𝑐𝑂𝑝𝑒𝑟. 

is the objective value of the optimal operation subproblem; 𝜗𝑖𝑗,𝑎,ℎ,𝑡
𝑓𝐹

, 𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1 , 𝜗𝑖̇𝑗̇,ℎ,𝑡

∆𝑉2 , 𝜗𝑖,ℎ,𝑡
𝑆𝑅 , 𝜗𝑖,ℎ,𝑡

𝑆𝐶 , 

𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶 , 𝜗𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝐶1
, 𝜗𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝐶2
, 𝜗𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝑅
, 𝜗𝑖,𝑔,ℎ,𝑡

𝑃𝐺𝑅 , 𝜗𝑖,𝑠,ℎ,𝑡
𝑃𝐶ℎ , 𝜗𝑖,𝑠,ℎ,𝑡

𝑃𝐷𝑐ℎ, 𝜗𝑖,ℎ,𝑡
𝐷𝑆𝑀, and 𝜗𝑖,ℎ,𝑡

𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝
 are the dual variables of 



82 

  

the optimal operation subproblem; 𝑚 is the index of iterations in which the solution provided by the 

master problem is feasible; 𝑀𝐹𝑒𝑎𝑠. denotes the number of iterations in which the solution provided 

by the master problem is feasible; 𝒦𝑃𝑄 is the objective value of the feasibility check subproblem; 

𝜔𝑖𝑗,𝑎,ℎ,𝑡
𝑓𝐹

, 𝜔𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1 , 𝜔𝑖̇𝑗̇,ℎ,𝑡

∆𝑉2 , 𝜔𝑖,ℎ,𝑡
𝑆𝑅 , 𝜔𝑖,ℎ,𝑡

𝑆𝐶 , 𝜔𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶 , 𝜔𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝐶1
, 𝜔𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝐶2
, 𝜔𝑖,𝑔,ℎ,𝑡

𝑄𝐺𝑅
, 𝜔𝑖,𝑔,ℎ,𝑡

𝑃𝐺𝑅 , 𝜔𝑖,𝑠,ℎ,𝑡
𝑃𝐶ℎ , 𝜔𝑖,𝑠,ℎ,𝑡

𝑃𝐷𝑐ℎ , 𝜔𝑖,ℎ,𝑡
𝐷𝑆𝑀, 

and 𝜔𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝

 are the dual variables of the feasibility check subproblem; 𝑛 is the index of 

iterations in which the solution provided by the master problem is infeasible; and 𝑁𝐼𝑛𝑓𝑒𝑎𝑠. denotes 

the number of iterations in which the solution provided by the master problem is infeasible. Note 

that the hat signs indicate the values of the binary decision variables obtained by solving the master 

problem in the previous iterations.  

5.2.2 Optimal Operation Subproblem  

The optimal operation subproblem only includes the continuous variables of the MDEP problem 

and performs STPFS for the system configuration found by the master problem. The objective 

function of this problem is to minimize the present value of the operation costs over the planning 

period:  

Minimize  𝑐𝑂𝑝𝑒𝑟.            (5.31) 

𝑐𝑂𝑝𝑒𝑟. = ∑
1

(1+𝑟)(𝑡−1)𝐷

(1+𝑟)𝐷−1

𝑟(1+𝑟)𝐷𝑡∈𝛺𝑇 𝜏𝐷𝑖𝑛𝑌[∑ ∑ 𝑐ℎ
𝐸𝑃𝑖,ℎ,𝑡

𝑆
𝑖∈𝛺𝑆ℎ∈𝛺𝐻 + ∑ ∑ 𝑐ℎ

𝐸𝜙𝑆𝑓𝑖,ℎ,𝑡
𝑆

𝑖∈𝛺𝑠ℎ∈𝛺𝐻   

+∑ ∑ ∑ 𝑐𝑔
𝐸𝐺𝐶𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻 ]         (5.32) 

In the above objective function, 𝑐𝑂𝑝𝑒𝑟. represents the present value of the system operation costs 

including cost of electrical energy received from the upstream power grid, operation costs of 

substations, and generation costs of conventional DGs. It should be mentioned that 𝑐𝑂𝑝𝑒𝑟. also 

includes the costs of energy losses in feeder sections because the active power received from the 

upstream grid (i.e., 𝑃𝑖,𝑡
𝑆 ) includes the power losses in feeder sections.  

The constraints of the optimal operation subproblem can be categorized into three main groups: 

1) distribution network model, 2) distributed generation model, 3) energy storage model, and 4) 

demand response model. In the following, these four groups are described in detail.   
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5.2.2.1 Distribution Network Model  

Constraints (5.33)-(5.43) represent the AC power flow model in a radial distribution network 

based on the DistFlow branch equations (see Appendix A). In this regard, constraints (5.33) and 

(5.34) guarantee the active and reactive power balances in system nodes, respectively. Constraints 

(5.35)-(5.37) relate the active, reactive, and apparent power flows and the current flow of each 

feeder section to the voltages of its sending and receiving ends and, in this way, apply the 

Kirchhoff’s voltage law (KVL) to feeder sections. Constraints (5.38)-(5.41) are used based on the 

fact that each feeder section uses only one of the candidate conductor types at each planning stage. 

Constraints (5.42) and (5.43) relate the active, reactive, and apparent power flows provided by 

each substation to its current flow and voltage magnitude. Constraint (5.44) specifies the 

acceptable range of the nodal voltage magnitudes. Constraint (5.45) represents the limits on the 

current flows of feeder sections based on the conductor types used for constructing them. 

Constraints (5.46) and (5.47) set appropriate bounds on the auxiliary variable ∆𝑉𝑖𝑗,ℎ,𝑡 used in 

constraint (5.35). Constraints (5.48) and (5.49) cause the apparent power provided by each 

substation to be less than its installed capacity. Note that 𝑦̂𝑖𝑗,𝑎,𝑡, 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅 , and 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶  have already been 

determined by the master problem.     

∑ ∑ [𝑃𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,ℎ,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 + ∑ [𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝑃𝑖,𝑠,ℎ,𝑡

𝐶ℎ ]𝑠∈𝛺𝑒𝑠 = 𝑃𝑖̇,ℎ,𝑡
𝐷  ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.33) 

∑ ∑ [𝑄𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹   ̶  ∑ ∑ 𝑄𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,ℎ,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐  

+∑ 𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 = 𝑄𝑖̇,ℎ,𝑡
𝐷     ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.34) 

𝑢𝑖,ℎ,𝑡 − 𝑢𝑗,ℎ,𝑡 = ∑ [2(𝑅𝑎𝑙𝑖𝑗𝑃𝑖𝑗,𝑎,ℎ,𝑡
𝐹 + 𝑋𝑎𝑙𝑖𝑗𝑄𝑖𝑗,𝑎,ℎ,𝑡

𝐹 )−(𝑍𝑎𝑙𝑖𝑗)
2
𝑓𝑖𝑗,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎 + ∆𝑉𝑖𝑗,ℎ,𝑡  

       ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.35) 

𝑢𝑖,ℎ,𝑡𝑓𝑖𝑗,ℎ,𝑡
𝐹 = (𝑆̂𝑖𝑗,ℎ,𝑡

𝐹 )
2
     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.36) 

(𝑆̂𝑖𝑗,ℎ,𝑡
𝐹 )

2
= (𝑃̂𝑖𝑗,ℎ,𝑡

𝐹 )
2
+ (𝑄̂𝑖𝑗,ℎ,𝑡

𝐹 )
2
   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.37) 

𝑓𝑖𝑗,ℎ,𝑡
𝐹 = ∑ 𝑓𝑖𝑗,𝑎,ℎ,𝑡

𝐹
𝑎∈𝛺𝑎      ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.38) 
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𝑃̂𝑖𝑗,ℎ,𝑡
𝐹 = ∑ 𝑃𝑖𝑗,𝑎,ℎ,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.39) 

𝑄̂𝑖𝑗,ℎ,𝑡
𝐹 = ∑ 𝑄𝑖𝑗,𝑎,ℎ,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.40) 

𝑆̂𝑖𝑗,ℎ,𝑡
𝐹 = ∑ 𝑆𝑖𝑗,𝑎,ℎ,𝑡

𝐹
𝑎∈𝛺𝑎     ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.41) 

𝑢𝑖,ℎ,𝑡𝑓𝑖,ℎ,𝑡
𝑆 = (𝑆𝑖,ℎ,𝑡

𝑆 )
2
     ∀𝑖 ∈ 𝛺𝑆, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.42) 

(𝑆𝑖,ℎ,𝑡
𝑆 )

2
= (𝑃𝑖,ℎ,𝑡

𝑆 )
2
+ (𝑄𝑖,ℎ,𝑡

𝑆 )
2
   ∀𝑖 ∈ 𝛺𝑆, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.43) 

(𝑉)
2
≤ 𝑢𝑖,ℎ,𝑡 ≤ ( 𝑉 )

2
    ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.44) 

𝑓𝑖𝑗,𝑎,ℎ,𝑡
𝐹 ≤ ( 𝐼𝑎 )

2
𝑦̂𝑖𝑗,𝑎,𝑡   : 𝜗𝑖𝑗,𝑎,ℎ,𝑡

𝑓𝐹
        ∀(𝑖𝑗) ∈ 𝛺𝐹, ∀𝑎 ∈ 𝛺𝑎, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.45) 

∆𝑉𝑖𝑗,ℎ,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.46) 

−∆𝑉𝑖𝑗,ℎ,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜗𝑖𝑗,ℎ,𝑡
∆𝑉2   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.47) 

𝑆𝑖,ℎ,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1  : 𝜗𝑖,ℎ,𝑡
𝑆𝑅   ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.48) 

𝑆𝑖,ℎ,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1   : 𝜗𝑖,ℎ,𝑡

𝑆𝐶   ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.49) 

It is clear that constraints (5.36), (5.37), (5.42), and (5.43) are non-convex and nonlinear. This 

causes the optimal operation subproblem to become a nonlinear programming problem (NLP) 

which is very difficult to solve. To address this issue, first the exact relaxation technique proposed 

in Section 2.3 is used to convexify these constraints. After that, the polyhedral-based linearization 

method proposed in Section 2.4 is employed to linearize the convexified constraints. In this way, 

the optimal operation subproblem is converted to a linear programming (LP) problem which can 

be solved to global optimality with a very high computational speed using standard mathematical 

programming solvers.      

5.2.2.2 Distributed Generation Model  

Constraints (5.50)-(5.52) limit the active and reactive powers generated by conventional DGs. 

Constraint (5.53) and (5.54) set the active and reactive power generations of renewable DGs equal 

to their expected values. It should be mentioned that renewable DGs are assumed to be operated 
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at a constant power factor (𝜌𝐺𝑅) as they often lack the ability to provide controlled reactive power. 

Constraints (5.50)-(5.54) also ensure that a DG can be operated only if its corresponding 

investment has already been made.  

𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑃𝑔

𝐺𝐶𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.50) 

𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶1

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.51) 

−𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶2

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.52) 

𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅 = ∑ 𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1  : 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝑅    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇      (5.53) 

𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅 = ∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1  : 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝑅

  

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.54) 

Note that 𝑥̂𝑖,𝑔,𝜐
𝐺𝐶  and 𝑥̂𝑖,𝑔,𝜐

𝐺𝑅  have already been determined by the master problem. As a result, they 

should be considered as constant values.  

5.2.2.3 Energy Storage Model  

Energy storage can be provided by a variety of technologies including flywheel energy storage 

(FWES), superconducting magnetic energy storage (SMES), supercapacitor energy storage 

(SCES), pumped hydroelectric storage (PHS), aboveground/underground compressed air energy 

storage (CAES), and battery energy storage system (BESS) [80], [98-102]. However, most of these 

technologies are not suitable for integration into distribution systems. Short-term energy storage 

technologies such as FWES, SMES, and SCES have short discharge times and small storage 

capacities. Hence, they cannot be used for energy management purposes such as load shifting, 

peak shaving, and load leveling, which are the most important applications of ESSs in distribution 

systems [98]. Moreover, long-term energy storage technologies such as PHS and underground 

CAES require special geographical conditions (i.e., underground caverns or height difference 

between water reservoirs) which are not usually available in distribution systems [98]. By contrast, 

BESS and aboveground CAES are quite appropriate for employment in distribution systems. In 

the existing literature, the vast majority of researchers working on ADNs have only focused on 

BESS and totally ignored the great potential of aboveground CAES [9], [103-106]. This is while 
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different studies have shown that aboveground CAES has lower costs and longer lifetime 

compared to BESS [80], [100]. Figure 5.1 shows the levelized cost of electricity (LCOE) related 

to aboveground CAES and various BESS technologies in distribution system support services 

considering different scenarios of electricity price and interest rate. It can be observed that 

aboveground CAES results in the lowest LCOE for different electricity price and interest rate 

scenarios. This fact demonstrates the higher cost-effectiveness of aboveground CAES than various 

BESS technologies.   

 
Figure 5.1 LCOE related to aboveground CAES and various BESS technologies in distribution 

system support services for different electricity price and interest rate scenarios [80].  

Table 5.1 compares the lifetimes of aboveground CAES and BESS technologies. As can be seen, 

aboveground CAES has a considerably longer lifetime than different types of BESS.    

Table 5.1 Comparison of the lifetimes of aboveground CAES and BESS technologies [80]. 

ESS 

Technologies 

CAES 

(above) 
NiCd Fe-Cr Zn-Br VRFB Li-ion NaS Lead-acid 

Lifetime (year) 20-40 10-20 10-15 5-10 5-10 5-15 10-15 5-15 

 

Based on the above-mentioned facts, aboveground CAES can be a viable alternative to BESS in 

distribution networks. Therefore, we have chosen aboveground CAES as the energy storage option 

for integration into ADNs.   
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In a typical aboveground CAES, the ambient air is first compressed to a high pressure using a 

series of compressors driven by electric power. This pressurized air is then injected into an air 

storage tank located above ground. Finally, the stored compressed air is released and expanded 

through a series of turbines to generate electric power. The important point is that the air reaches 

very high temperatures during the compression process, which can cause serious operational 

problems for CAES. The heat produced during the compression process must be removed from 

the air before it enters the air storage tank. In conventional CAES technology, this heat is removed 

and dumped into the atmosphere, which gives rise to the need for consumption of fossil fuels 

(typically natural gas) to reheat the air during the expansion process [107]. Consumption of fossil 

fuels in conventional CAES technology results in reduced efficiency and greenhouse gas (GHG) 

emissions. Recent advancements in CAES technology have led to the introduction of advanced 

adiabatic CAES (AA-CAES), which offers high efficiency and eliminates GHG emissions [108-

111]. In AA-CAES, the heat released from the compression process is stored in a thermal energy 

storage unit for later use during the expansion process. In this way, AA-CAES eliminates the need 

for consumption of fossil fuels and overcomes the drawbacks of conventional CAES technology. 

In the following, we focus on AA-CAES and propose a detailed model for it.  

Figure 5.2 illustrates the schematic diagram of the proposed AA-CAES model. As can be seen, 

the proposed model consists of a compression train, an expansion train, an air storage tank (AST), 

and a thermal energy storage (TES) system. The compression train is composed of a low pressure 

compressor (LPC), a high pressure compressor (HPC), an inter-cooler (IC), and an after-cooler 

(AC). During the compression process, an electric motor drives the LPC and HPC to compress the 

air to a high pressure. The heat produced during the compression process is removed from the air 

using the IC and AC. This heat is stored in the TES system which includes a hot oil tank (HOT), 

a cold oil tank (COT), and a number of pumps that circulate the heat transfer oil. The cooled-down 

pressurized air is then injected into the AST. The expansion train is composed of a high pressure 

turbine (HPT), a low pressure turbine (LPT), a pre-heater (PH), an inter-heater (IH), and a 

recuperator (RC). During the expansion process, the compressed air stored in the AST is released 

and expanded through the HPT and LPT to drive a generator. The heat stored in the TES system 

is transferred to the air using the PH and IH to raise its temperature before entering the turbines. 

An RC is also utilized to recover the heat from the exhaust air of the LPT.        
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Figure 5.2 Schematic diagram of AA-CAES. 

In the following, a linear mathematical formulation is presented for the proposed AA-CAES 

model. It should be noted that the presented mathematical formulation is partly based on the 

thermodynamic models developed in [110] and [111].    

 Compression Train 

Constraint (5.55) determines the upper limit of the charging power of AA-CAES. Note that 

𝛼̂𝑖,𝑠,ℎ,𝑡
𝐶ℎ  has already been determined by the master problem. Constraint (5.56) defines the 

relationship between the charging power of AA-CAES and the mechanical powers consumed by 

the LPC and HPC. Constraints (5.57) and (5.58) relate the mechanical powers consumed by the 

LPC and HPC to the air mass flow rate in the compression train. Constraints (5.59) and (5.60) 

calculate the outlet air temperatures of the LPC and HPC in terms of their inlet air temperatures. 

Constraints (5.61) and (5.62) ensure the energy balance in the IC and AC, respectively. In fact, 

constraints (5.57)-(5.62) represent the thermodynamic model of the compression train.           

𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ ≤ 𝑃𝑠

𝐶ℎ𝛼̂𝑖,𝑠,ℎ,𝑡
𝐶ℎ   : 𝜗𝑖,𝑠,ℎ,𝑡

𝑃𝐶ℎ     ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.55) 

𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ =

1

𝜂𝑀 (𝑊𝑖,𝑠,ℎ,𝑡
𝐿𝑃𝐶 + 𝑊𝑖,𝑠,ℎ,𝑡

𝐻𝑃𝐶 )    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.56) 

LPC HPC HPT LPT

Air Storage 
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Cold Oil 
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RC
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𝑊𝑖,𝑠,ℎ,𝑡
𝐿𝑃𝐶 =

1

𝜂𝐿𝑃𝐶 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐶𝑇𝑐𝐴𝑖𝑟(𝑇𝐿𝑃𝐶,𝑜𝑢𝑡 − 𝑇𝐿𝑃𝐶,𝑖𝑛)   

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.57)   

𝑊𝑖,𝑠,ℎ,𝑡
𝐻𝑃𝐶 =

1

𝜂𝐻𝑃𝐶 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐶𝑇𝑐𝐴𝑖𝑟(𝑇𝐻𝑃𝐶,𝑜𝑢𝑡 − 𝑇𝐻𝑃𝐶,𝑖𝑛)  

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.58) 

𝑇𝐿𝑃𝐶,𝑜𝑢𝑡 = 𝑇𝐿𝑃𝐶,𝑖𝑛 [1 +
1

𝜂𝐿𝑃𝐶
((𝜋𝐿𝑃𝐶)

𝛾𝐴𝑖𝑟−1

𝛾𝐴𝑖𝑟 − 1)]        (5.59) 

𝑇𝐻𝑃𝐶,𝑜𝑢𝑡 = 𝑇𝐻𝑃𝐶,𝑖𝑛 [1 +
1

𝜂𝐻𝑃𝐶 ((𝜋𝐻𝑃𝐶)
𝛾𝐴𝑖𝑟−1

𝛾𝐴𝑖𝑟 − 1)]        (5.60) 

𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐶𝑇𝑐𝐴𝑖𝑟(𝑇𝐿𝑃𝐶,𝑜𝑢𝑡 − 𝑇𝐻𝑃𝐶,𝑖𝑛) = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝐼𝐶𝑐𝑂𝑖𝑙(𝑇𝐻𝑂𝑇 − 𝑇𝐶𝑂𝑇)  

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎϵ𝛺𝐻, ∀𝑡ϵ𝛺𝑇   (5.61) 

𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐶𝑇𝑐𝐴𝑖𝑟(𝑇𝐻𝑃𝐶,𝑜𝑢𝑡 − 𝑇𝐴𝑆𝑇) = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝐴𝐶𝑐𝑂𝑖𝑙(𝑇𝐻𝑂𝑇 − 𝑇𝐶𝑂𝑇)  

        ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎϵ𝛺𝐻, ∀𝑡ϵ𝛺𝑇   (5.62) 

where 𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ  is the charging power of AA-CAES; 𝑃𝑠

𝐶ℎ denotes the upper limit of charging power 

of AA-CAES; 𝜂𝑀 is the efficiency of the electric motor; 𝑊𝑖,𝑠,ℎ,𝑡
𝐿𝑃𝐶  and 𝑊𝑖,𝑠,ℎ,𝑡

𝐻𝑃𝐶  are the mechanical 

powers consumed by the LPC and HPC, respectively; 𝜂𝐿𝑃𝐶 and 𝜂𝐻𝑃𝐶  denote the isentropic 

efficiencies of the LPC and HPC, respectively; 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐶𝑇

 is the air mass flow rate in the compression 

train; 𝑐𝐴𝑖𝑟 is the specific heat of air at constant pressure; 𝑇𝐿𝑃𝐶,𝑖𝑛 and 𝑇𝐿𝑃𝐶,𝑜𝑢𝑡 are the inlet and 

outlet air temperatures of the LPC, respectively; 𝑇𝐻𝑃𝐶,𝑖𝑛 and 𝑇𝐻𝑃𝐶,𝑜𝑢𝑡 are the inlet and outlet air 

temperatures of the HPC, respectively; 𝜋𝐿𝑃𝐶  and 𝜋𝐻𝑃𝐶  denote the pressure ratios of the LPC and 

HPC, respectively; 𝛾𝐴𝑖𝑟 is the ratio of specific heats of air; 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐼𝐶

 and 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐴𝐶

 are the oil mass 

flow rates in the IC and AC, respectively; 𝑐𝑂𝑖𝑙 is the specific heat of the heat transfer oil; 𝑇𝐻𝑂𝑇 

and 𝑇𝐶𝑂𝑇 are the oil temperatures in the HOT and COT, respectively; and 𝑇𝐴𝑆𝑇 denotes the air 

temperature in the AST. 

 Expansion Train 

Constraint (5.63) specifies the upper limit of the discharging power of AA-CAES. Note that 

𝛼̂𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ  has already been determined by the master problem. Constraint (5.64) defines the 
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relationship between the discharging power of AA-CAES and the mechanical powers generated 

by the HPT and LPT. Constraints (5.65) and (5.66) relate the mechanical powers generated by the 

HPT and LPT to the air mass flow rate in the expansion train. Constraints (5.67) and (5.68) 

calculate the outlet air temperatures of the HPT and LPT in terms of their inlet air temperatures. 

Constraint (5.69) models the RC used to recover the heat from the exhaust air of the LPT. 

Constraints (5.70) and (5.71) ensure the energy balance in the PH and IH, respectively. In fact, 

constraints (5.65)-(5.71) represent the thermodynamic model of the expansion train.     

𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ ≤ 𝑃𝑠

𝐷𝑐ℎ𝛼̂𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ   : 𝜗𝑖,𝑠,ℎ,𝑡

𝑃𝐷𝑐ℎ    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.63) 

𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ = 𝜂𝐺(𝑊𝑖,𝑠,ℎ,𝑡

𝐻𝑃𝑇 + 𝑊𝑖,𝑠,ℎ,𝑡
𝐿𝑃𝑇 )    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.64) 

𝑊𝑖,𝑠,ℎ,𝑡
𝐻𝑃𝑇 = 𝜂𝐻𝑃𝑇𝑚̇𝑖,𝑠,ℎ,𝑡

𝐴𝑖𝑟,𝐸𝑇𝑐𝐴𝑖𝑟(𝑇𝐻𝑃𝑇,𝑖𝑛 − 𝑇𝐻𝑃𝑇,𝑜𝑢𝑡)  

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.65) 

𝑊𝑖,𝑠,ℎ,𝑡
𝐿𝑃𝑇 = 𝜂𝐿𝑃𝑇𝑚̇𝑖,𝑠,ℎ,𝑡

𝐴𝑖𝑟,𝐸𝑇𝑐𝐴𝑖𝑟(𝑇𝐿𝑃𝑇,𝑖𝑛 − 𝑇𝐿𝑃𝑇,𝑜𝑢𝑡)  

        ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.66) 

𝑇𝐻𝑃𝑇,𝑜𝑢𝑡 = 𝑇𝐻𝑃𝑇,𝑖𝑛 [1 − 𝜂𝐻𝑃𝑇 (1 − (𝜋𝐻𝑃𝑇)
1−𝛾𝐴𝑖𝑟

𝛾𝐴𝑖𝑟 )]        (5.67) 

𝑇𝐿𝑃𝑇,𝑜𝑢𝑡 = 𝑇𝐿𝑃𝑇,𝑖𝑛 [1 − 𝜂𝐿𝑃𝑇 (1 − (𝜋𝐿𝑃𝑇)
1−𝛾𝐴𝑖𝑟

𝛾𝐴𝑖𝑟 )]        (5.68) 

(𝑇𝑅𝐶,𝑜𝑢𝑡 − 𝑇𝐴𝑆𝑇) = 𝜀𝑅𝐶(𝑇𝐿𝑃𝑇,𝑜𝑢𝑡 − 𝑇𝐴𝑆𝑇)         (5.69) 

𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐸𝑇𝑐𝐴𝑖𝑟(𝑇𝐻𝑃𝑇,𝑖𝑛 − 𝑇𝑅𝐶,𝑜𝑢𝑡) = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝑃𝐻𝑐𝑂𝑖𝑙(𝑇𝐻𝑂𝑇 − 𝑇𝐶𝑂𝑇)  

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.70) 

𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐸𝑇𝑐𝐴𝑖𝑟(𝑇𝐿𝑃𝑇,𝑖𝑛 − 𝑇𝐻𝑃𝑇,𝑜𝑢𝑡) = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝐼𝐻𝑐𝑂𝑖𝑙(𝑇𝐻𝑂𝑇 − 𝑇𝐶𝑂𝑇)  

   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.71) 

where 𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ  is the discharging power of AA-CAES; 𝑃𝑠

𝐷𝑐ℎ denotes the upper limit of discharging 

power of AA-CAES; 𝜂𝐺  is the efficiency of the generator; 𝑊𝑖,𝑠,ℎ,𝑡
𝐻𝑃𝑇  and 𝑊𝑖,𝑠,ℎ,𝑡

𝐿𝑃𝑇  are the mechanical 

powers generated by the HPT and LPT, respectively; 𝜂𝐻𝑃𝑇 and 𝜂𝐿𝑃𝑇 are the isentropic efficiencies 
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of the HPT and LPT, respectively; 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐸𝑇

 denotes the air mass flow rate in the expansion train; 

𝑇𝐻𝑃𝑇,𝑖𝑛 and 𝑇𝐻𝑃𝑇,𝑜𝑢𝑡 are the inlet and outlet air temperatures of the HPT, respectively; 𝑇𝐿𝑃𝑇,𝑖𝑛 and 

𝑇𝐿𝑃𝑇,𝑜𝑢𝑡 are the inlet and outlet air temperatures of the LPT, respectively; 𝜋𝐻𝑃𝑇 and 𝜋𝐿𝑃𝑇 are the 

pressure ratios of the HPT and LPT, respectively; 𝑇𝑅𝐶,𝑜𝑢𝑡 is the outlet air temperature of the RC; 

𝜀𝑅𝐶 denotes the effectiveness of the RC; and 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝑃𝐻

 and 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐼𝐻

 are the oil mass flow rates in the 

PH and IH, respectively. 

 Air Storage Tank 

Constraints (5.72)-(5.75) represent the state-of-charge (SOC) of AA-CAES in terms of the mass 

and pressure of the air stored in the AST. More specifically, constraint (5.72) uses the ideal gas 

law to model the behavior of air in the AST. Constraints (5.73) and (5.74) calculate the mass of 

the air stored in the AST. Constraint (5.75) determines the lower and upper limits of air pressure 

in the AST.         

𝑝𝑖,𝑠,ℎ,𝑡
𝐴𝑆𝑇 𝑉𝑠

𝐴𝑆𝑇 = 𝑚𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇𝑇𝐴𝑆𝑇𝑅𝐴𝑖𝑟    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.72) 

𝑚𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇 = 𝑚𝑖,𝑠,ℎ−1,𝑡

𝐴𝑖𝑟,𝐴𝑆𝑇 + 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇𝜏𝑆𝑖𝑛𝐻  ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.73) 

𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇 = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝐴𝑖𝑟,𝐶𝑇 − 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐸𝑇

    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.74) 

𝑝𝐴𝑆𝑇 ≤ 𝑝𝑖,𝑠,ℎ,𝑡
𝐴𝑆𝑇 ≤ 𝑝𝐴𝑆𝑇      ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.75) 

where 𝑝𝑖,𝑠,ℎ,𝑡
𝐴𝑆𝑇  is the air pressure in the AST; 𝑉𝑠

𝐴𝑆𝑇 denotes the volume of the AST; 𝑚𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇

 is the 

mass of the air stored in the AST; 𝑅𝐴𝑖𝑟 is the specific gas constant for air; 𝑚̇𝑖,𝑠,ℎ,𝑡
𝐴𝑖𝑟,𝐴𝑆𝑇

 is the net air 

mass flow entering the AST; 𝑝𝐴𝑆𝑇 and 𝑝𝐴𝑆𝑇 are the lower and upper limits of air pressure in the 

AST; and 𝜏𝑆𝑖𝑛𝐻 denotes the number of seconds in one hour. 

 Thermal Energy Storage  

Constraints (5.76)-(5.77) represent the amount of heat stored in the TES. In this regard, 

constraints (5.76) and (5.77) calculate the mass of the heat transfer oil stored in the HOT. 

Constraint (5.78) determines the lower and upper limits of the mass of the heat transfer oil stored 

in the HOT.  
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𝑚𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐻𝑂𝑇 = 𝑚𝑖,𝑠,ℎ−1,𝑡

𝑂𝑖𝑙,𝐻𝑂𝑇 + 𝑚̇ℎ
𝑂𝑖𝑙,𝐻𝑂𝑇𝜏𝑆𝑖𝑛𝐻 ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.76)  

𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐻𝑂𝑇 = 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝐼𝐶 + 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐴𝐶 − 𝑚̇𝑖,𝑠,ℎ,𝑡

𝑂𝑖𝑙,𝑃𝐻 − 𝑚̇𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐼𝐻

  

        ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.77) 

0 ≤ 𝑚𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐻𝑂𝑇 ≤ 𝜌𝑂𝑖𝑙𝑉𝑠

𝐻𝑂𝑇     ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.78) 

where 𝑚𝑖,𝑠,ℎ,𝑡
𝑂𝑖𝑙,𝐻𝑂𝑇

 is the mass of the heat transfer oil stored in the HOT; 𝑚̇ℎ
𝑂𝑖𝑙,𝐻𝑂𝑇

 is the net oil mass 

flow entering the HOT; 𝜌𝑂𝑖𝑙 is the density of the heat transfer oil; and 𝑉𝑠
𝐻𝑂𝑇 denotes the volume 

of the HOT.  

5.2.2.4 Demand Response Model 

Demand response refers to changes in the electricity usage by consumers in response to changes 

in the electricity price over time [112]. In general, time-based pricing of electricity can have 

different structures such as time-of-use (TOU) pricing, critical peak pricing (CPP), and real-time 

pricing (RTP). Different studies have shown that among different time-based pricing structures, 

RTP is the most effective scheme to encourage consumers to use electricity in a more efficient 

manner [95], [113], [114]. Therefore, we have considered an hourly RTP scheme here and 

proposed an RTP-based DRL model, as presented in (5.79)-(5.83). In the proposed DRL model, 

as can be seen in constraint (5.79), the power demand of each load node is assumed to be composed 

of two parts: 1) unresponsive, and 2) responsive. The unresponsive part of the power demand is 

not equipped with smart meters and hence cannot be subject to time-dependent pricing. However, 

the responsive part of the power demand can be affected by changes in the electricity price as it is 

equipped with smart meters. Constraints (5.80) and (5.81) define the unresponsive and responsive 

parts of the power demand, respectively. Note that 𝑥̂𝑖,𝑝,𝜐
𝑆𝑀  has already been determined by the master 

problem. Constraint (5.82) models the reaction of the responsive part of the power demand to the 

electricity price changes using a demand function based on self-price and cross-price elasticities 

[95]. Self-price elasticity represents the change in the demand at a certain hour in response to the 

change in the electricity price at the same hour of the day, while cross-price elasticity characterizes 

the change in the demand at a certain hour in response to the change in the electricity price at other 

hours of the day [95]. In fact, self-price and cross-price elasticities are measures of consumer 

reactions to the electricity price changes. For example, a self-price elasticity of 𝜀𝑆𝑒𝑙𝑓 = −0.4 
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indicates that an increase of 1% in the electricity price at hour ℎ of the day leads to a decrease of 

0.4% in the demand at hour ℎ of the day. As another example, a cross-price elasticity of 

𝜀𝐶𝑟𝑜𝑠𝑠 =0.01 means that an increase of 1% in the electricity price at hour 𝛾 of the day results in an 

increase of 0.01% in the demand at hour ℎ of the day. It should be noted that while self-price 

elasticity is negative, cross-price elasticity is positive [115]. Constraint (5.83) calculates the 

reactive power demands of load nodes in terms of their active power demands.       

𝑃𝑖̇,ℎ,𝑡
𝐷 = 𝑃𝑖̇,ℎ,𝑡

𝐷,𝑈𝑛𝑟𝑒𝑠𝑝 + 𝑃𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝

        ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.79) 

𝑃𝑖̇,ℎ,𝑡
𝐷,𝑈𝑛𝑟𝑒𝑠𝑝 = (1 − ∑ ∑ 𝜅𝑝

𝑆𝑀𝑥̂𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿   : 𝜗𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝

  ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.80) 

𝑃𝑖,ℎ,𝑡
𝐷,𝑆𝑀 = (∑ ∑ 𝜅𝑝

𝑆𝑀𝑥̂𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿        : 𝜗𝑖,ℎ,𝑡
𝐷𝑆𝑀    ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.81) 

𝑃𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝 = 𝑃𝑖,ℎ,𝑡

𝐷,𝑆𝑀 [1 + 𝜀𝑆𝑒𝑙𝑓 𝑐ℎ
𝐸−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿ + ∑ 𝜀𝐶𝑟𝑜𝑠𝑠 𝑐𝛾
𝐸−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿ ̿̿𝛾∈(𝛺𝐻−ℎ) ]   ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.82) 

𝑄𝑖̇,ℎ,𝑡
𝐷 = tan(cos−1(𝜌𝐷))𝑃𝑖̇,ℎ,𝑡

𝐷         ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.83) 

where 𝑃𝑖̇,ℎ,𝑡
𝐷  and 𝑄𝑖̇,ℎ,𝑡

𝐷  are the active and reactive power demands of load nodes, respectively; 

𝑃𝑖̇,ℎ,𝑡
𝐷,𝑈𝑛𝑟𝑒𝑠𝑝

 and 𝑃𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝

 denote the unresponsive and responsive parts of the active power demands 

of load nodes, respectively; 𝜅𝑝
𝑆𝑀 is the penetration level of smart meters; 𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿  represents the 

expected active power demands of load nodes; 𝜀𝑆𝑒𝑙𝑓 and 𝜀𝐶𝑟𝑜𝑠𝑠 are the self-price and cross-price 

elasticities, respectively; 𝑐ℎ
𝐸 is the hourly real-time electricity price; 𝑐𝐸̿̿ ̿ denotes the fixed electricity 

price; and 𝜌𝐷 is the load power factor.    

5.2.3 Feasibility Check Subproblem  

The feasibility check subproblem only includes the continuous variables of the MDEP problem 

and is employed to check the feasibility of the solution found by the master problem in each 

iteration of the BD algorithm. The objective function and constraints of this problem are as follows:  

Minimize  𝒦𝑃𝑄 = ∑ ∑ ∑ 𝒦𝑖,ℎ,𝑡
𝑃

𝑖∈𝛺𝑁ℎ∈𝛺𝐻𝑡∈𝛺𝑇 + ∑ ∑ ∑ 𝒦𝑖,ℎ,𝑡
𝑄

𝑖∈𝛺𝑁ℎ∈𝛺𝐻𝑡∈𝛺𝑇      (5.84) 

s.t.   (5.35), Linearized (5.36), Linearized (5.37), (5.38)-(5.41), Linearized (5.42),  

        Linearized (5.43), (5.44), (5.57)-(5.79), (5.82), (5.83)     
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∑ ∑ [𝑃𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 + ∑ [𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝑃𝑖,𝑠,ℎ,𝑡

𝐶ℎ ]𝑠∈𝛺𝑒𝑠 + 𝒦𝑖,ℎ,𝑡
𝑃 = 𝑃𝑖̇,ℎ,𝑡

𝐷  ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇      (5.85) 

∑ ∑ [𝑄𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,ℎ,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+∑ 𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 + 𝒦𝑖,ℎ,𝑡
𝑄 = 𝑄𝑖̇,ℎ,𝑡

𝐷     ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇      (5.86)  

𝑓𝑖𝑗,𝑎,ℎ,𝑡
𝐹 ≤ ( 𝐼𝑎 )

2
𝑦̂𝑖𝑗,𝑎,𝑡   : 𝜔𝑖𝑗,𝑎,ℎ,𝑡

𝑓𝐹
       ∀(𝑖𝑗) ∈ 𝛺𝐹, ∀𝑎 ∈ 𝛺𝑎, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.87) 

∆𝑉𝑖𝑗,ℎ,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜔𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.88) 

−∆𝑉𝑖𝑗,ℎ,𝑡 ≤ ∆𝑉(1 − ∑ 𝑦̂𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 ) : 𝜔𝑖𝑗,ℎ,𝑡
∆𝑉2   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.89) 

𝑆𝑖,ℎ,𝑡
𝑆 ≤ 𝑆𝑖

0 + ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1  : 𝜔𝑖,ℎ,𝑡
𝑆𝑅   ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.90) 

𝑆𝑖,ℎ,𝑡
𝑆 ≤ ∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1   : 𝜔𝑖,ℎ,𝑡

𝑆𝐶   ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.91) 

𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑃𝑔

𝐺𝐶𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜔𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.92) 

𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶1

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.93) 

−𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝑄𝑔

𝐺𝐶  𝑥̂𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1  : 𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶2

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.94) 

𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅 = ∑ 𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1  : 𝜔𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝑅    ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡

𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇      (5.95) 

𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅 = ∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿𝑥̂𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1  : 𝜔𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝑅

  

   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.96) 

𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ ≤ 𝑃𝑠

𝐶ℎ𝛼̂𝑖,𝑠,ℎ,𝑡
𝐶ℎ   : 𝜔𝑖,𝑠,ℎ,𝑡

𝑃𝐶ℎ    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.97) 

𝑃𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ ≤ 𝑃𝑠

𝐷𝑐ℎ𝛼̂𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ   : 𝜔𝑖,𝑠,ℎ,𝑡

𝑃𝐷𝑐ℎ    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇   (5.98) 

𝑃𝑖̇,ℎ,𝑡
𝐷,𝑈𝑛𝑟𝑒𝑠𝑝 = (1 − ∑ ∑ 𝜅𝑝

𝑆𝑀𝑥̂𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿   : 𝜔𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝

  ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.99) 

𝑃𝑖,ℎ,𝑡
𝐷,𝑆𝑀 = (∑ ∑ 𝜅𝑝

𝑆𝑀𝑥̂𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿        : 𝜔𝑖,ℎ,𝑡
𝐷𝑆𝑀    ∀𝑖 ∈ 𝛺𝑁 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.100) 
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where 𝒦𝑖,ℎ,𝑡
𝑃  and 𝒦𝑖,ℎ,𝑡

𝑄
 are positive unconstrained slack variables defined to determine whether the 

solution provided by the master problem is feasible or not. As can be seen in constraints (5.85) and 

(5.86), these slack variables are included in the active and reactive power balance constraints to 

identify the lack of enough generation for supplying the demand. That is, 𝒦𝑖,ℎ,𝑡
𝑃  and 𝒦𝑖,ℎ,𝑡

𝑄
 measure 

the amount by which the active and reactive power balance constraints are violated. It is obvious that 

if the objective value of the feasibility check subproblem 𝒦𝑃𝑄 (which is equal to the sum of the 

slack variables) can be reduced to zero, the load demands can be completely fulfilled without 

violating any of the operational constraints. Therefore, 𝒦𝑃𝑄 = 0 indicates that the solution found 

by the master problem is feasible. Note that, except for the power balance constraints, all the 

constraints of the feasibility check subproblem are exactly the same as those of the optimal 

operation subproblem.   

5.2.4 BD Algorithm Acceleration Strategies  

 As discussed in the previous chapter, the straightforward implementation of the classical BD 

algorithm results in a very slow convergence rate, requiring a large number of iterations. To 

address this issue, two acceleration strategies were proposed in Section 4.3: 1) modification of the 

master problem, and 2) generation of auxiliary optimality cuts. In the following, the modified 

master problem and the auxiliary optimality cuts are described.    

5.2.4.1 Modified Master Problem  

The modified master problem is obtained by adding a number of auxiliary constraints to the 

master problem as follows: 

Minimize  𝑐𝐼𝑛𝑣. + 𝛹          (5.101) 

s.t.   (5.2)-(5.30) 

∑ ∑ 𝐼𝑘𝑖,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝐼𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝐼𝑖,ℎ,𝑡
𝑆 + ∑ 𝐼𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐 + ∑ 𝐼𝑖,𝑔,ℎ,𝑡

𝐺𝑅
𝑔∈𝛺𝑔𝑟   

+∑ [𝐼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝐼𝑖,𝑠,ℎ,𝑡

𝐶ℎ ]𝑠∈𝛺𝑒𝑠 = 𝐼𝑖̇,ℎ,𝑡
𝐷    ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.102) 

𝑉𝑖,ℎ,𝑡 − 𝑉𝑗,ℎ,𝑡 = ∑ (𝑍𝑎𝑙𝑖𝑗𝐼𝑖𝑗,𝑎,ℎ,𝑡
𝐹 )𝑎∈𝛺𝑎 + ∆𝑉𝑖𝑗,ℎ,𝑡 ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.103) 

𝑉 ≤ 𝑉𝑖,ℎ,𝑡 ≤ 𝑉      ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.104) 
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𝐼𝑖𝑗,𝑎,ℎ,𝑡
𝐹 ≤ 𝐼𝑎 𝑦𝑖𝑗,𝑎,𝑡    ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀𝑎 ∈ 𝛺𝑎, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.105) 

|∆𝑉𝑖𝑗,ℎ,𝑡| ≤ ∆𝑉(1 − ∑ 𝑦𝑖𝑗,𝑎,𝑡𝑎∈𝛺𝑎 )   ∀(𝑖𝑗) ∈ 𝛺𝐹 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.106) 

𝐼𝑖,ℎ,𝑡
𝑆 ≤ 𝐼𝑖

𝑆0+∑ ∑ 𝐼𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐
𝑆𝑅𝑡

𝜐=1    ∀𝑖 ∈ 𝛺𝑆𝑅 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.107) 

𝐼𝑖,ℎ,𝑡
𝑆 ≤ ∑ ∑ 𝐼𝑏𝑏∈𝛺𝑏 𝑥𝑖,𝑏,𝜐

𝑆𝐶𝑡
𝜐=1     ∀𝑖 ∈ 𝛺𝑆𝐶 , ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.108) 

𝐼𝑖,𝑔,ℎ,𝑡
𝐺𝐶 ≤ ∑ 𝐼𝑔

𝐺𝐶𝑥𝑖,𝑔,𝜐
𝐺𝐶𝑡

𝜐=1   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑐, ∀ℎ ∈ ϵ𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.109) 

𝐼𝑖,𝑔,ℎ,𝑡
𝐺𝑅 = ∑ 𝐼𝑔,ℎ

𝐺𝑅̿̿ ̿̿ 𝑥𝑖,𝑔,𝜐
𝐺𝑅𝑡

𝜐=1   ∀𝑖 ∈ (𝛺𝑁𝐺 ∩ 𝛺𝑡
𝑁𝐿), 𝑔 ∈ 𝛺𝑔𝑟, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.110) 

𝐼𝑖,𝑠,ℎ,𝑡
𝐶ℎ ≤ 𝐼𝑠

𝐶ℎ𝛼𝑖,𝑠,ℎ,𝑡
𝐶ℎ    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.111) 

𝐼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ ≤ 𝐼𝑠

𝐷𝑐ℎ𝛼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ    ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡

𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.112) 

∑ 𝐼𝑖,𝑠,ℎ,𝑡
𝐶ℎ

ℎ∈𝛺𝐻 ≤ 𝐼𝑠
𝐶ℎ 𝑇𝑠

𝐶ℎ   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀𝑡 ∈ 𝛺𝑇 (5.113) 

∑ 𝐼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ

ℎ∈𝛺𝐻 ≤ 𝐼𝑠
𝐷𝑐ℎ 𝑇𝑠

𝐷𝑐ℎ   ∀𝑖 ∈ (𝛺𝑁𝐸𝑆 ∩ 𝛺𝑡
𝑁𝐿), ∀𝑠 ∈ 𝛺𝑒𝑠, ∀𝑡 ∈ 𝛺𝑇 (5.114) 

𝐼𝑖̇,ℎ,𝑡
𝐷 = 𝐼𝑖̇,ℎ,𝑡

𝐷,𝑈𝑛𝑟𝑒𝑠𝑝 + 𝐼𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝

    ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.115) 

𝐼𝑖̇,ℎ,𝑡
𝐷,𝑈𝑛𝑟𝑒𝑠𝑝 = (1 − ∑ ∑ 𝜅𝑝

𝑆𝑀𝑥𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝐼𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿ ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.116)  

𝐼𝑖,ℎ,𝑡
𝐷,𝑆𝑀 = (∑ ∑ 𝜅𝑝

𝑆𝑀𝑥𝑖,𝑝,𝜐
𝑆𝑀

𝑝∈𝛺𝑠𝑚
𝑡
𝜐=1 )𝐼𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿  ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇  (5.117) 

𝐼𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝 = 𝐼𝑖,ℎ,𝑡

𝐷,𝑆𝑀 [1 + 𝜀𝑆𝑒𝑙𝑓 𝑐ℎ
𝐸−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿ + ∑ 𝜀𝐶𝑟𝑜𝑠𝑠 𝑐𝛾
𝐸−𝑐𝐸̿̿ ̿̿

𝑐𝐸̿̿̿̿𝛾∈(𝛺𝐻−ℎ) ] ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.118) 

In fact, the above auxiliary constraints include an approximate distribution network model (i.e., 

constraints (5.102)-(5.108)) and a simplified version of the DER models (i.e., constraints (5.109)-

(5.118)) in the master problem. These auxiliary constraints improve the quality of solutions found 

by the master problem and significantly reduce the number of optimality and feasibility cuts 

required to achieve the convergence. Constraints (5.102) ensures the current flow balance in each 

system node. Constraint (5.103) applies an approximate form of the Kirchhoff’s voltage law 

(KVL) to each feeder section. Constraint (5.104) determines the allowable range of the nodal 

voltage magnitudes. Constraint (5.105) represents the limits on the current flows of feeder sections 
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based on the conductor types used for constructing them. Constraint (5.106) sets appropriate 

bounds on the auxiliary variable ∆𝑉𝑖𝑗,ℎ,𝑡 used in constraint (5.103). Constraints (5.107) and (108) 

limit the current flows provided by substations based on their installed capacities. Constraint 

(5.109) limits the current flows provided by conventional DGs. Constraint (5.110) sets the current 

flows provided by renewable DGs equal to their expected values. Constraint (5.111) and (5.112) 

determine the upper limits of the charging and discharging currents of ESSs. Constraint (5.113) 

defines the maximum amount of energy that can be stored in each ESS. Constraint (5.114) limits 

the amount of energy that can be discharged form an ESS. Constraints (5.15) splits the current 

flow demand of each load node into an unresponsive part and a responsive part. Constraints (5.116) 

and (5.117) define the unresponsive and responsive parts of the current flow demands of load 

nodes, respectively. Constraint (5.118) models the reaction of the responsive part of the current 

flow demands to the electricity price changes using a demand function based on self-price and 

cross-price elasticities (see Section 5.2.2.4).        

5.2.4.2 Auxiliary Optimality Cuts  

To further accelerate the convergence rate of the BD algorithm, in addition to the optimality cut 

(5.29), the auxiliary optimality cut (5.119) should also be generated and added to the master 

problem. This will considerably speed up the solution process of the MDEP problem, as 

thoroughly discussed in Section 4.3.2.   

𝑐𝑂𝑝𝑒𝑟.(𝑚) + ∑ ∑ ∑ ∑ 𝜗𝑖𝑗,𝑎,ℎ,𝑡
𝑓𝐹(𝑚)

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 ( 𝐼𝑎 )
2
(𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡

(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

−∑ ∑ ∑ (𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉1(𝑚)

+ 𝜗𝑖̇𝑗̇,ℎ,𝑡
∆𝑉2(𝑚)

)∆𝑉 [∑ (𝑦𝑖𝑗,𝑎,𝑡 − 𝑦̂𝑖𝑗,𝑎,𝑡
(𝑚)

)𝑎∈𝛺𝑎 ](𝑖𝑗)∈𝛺𝐹ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜗𝑖,ℎ,𝑡
𝑆𝑅(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝑅 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝑅(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝑅ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ 𝜗𝑖,ℎ,𝑡
𝑆𝐶(𝑚)

[∑ ∑ 𝑆𝑏𝑏∈𝛺𝑏 (𝑥𝑖,𝑏,𝜐
𝑆𝐶 − 𝑥̂𝑖,𝑏,𝜐

𝑆𝐶(𝑚)
)𝑡

𝜐=1 ]𝑖∈𝛺𝑆𝐶ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝐶(𝑚)

[∑ 𝑃𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝜐

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝜐
𝐺𝐶(𝑚)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ (𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶1(𝑚)

+ 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝐶2(𝑚)

) [∑ 𝑄𝑔
𝐺𝐶(𝑥𝑖,𝑔,𝜐

𝐺𝐶 − 𝑥̂𝑖,𝑔,𝜐
𝐺𝐶(𝑚)

)𝑡
𝜐=1 ]𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑄𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) [∑ tan(cos−1(𝜌𝐺𝑅))𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝜐
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝜐

𝐺𝑅(𝑚)
)𝑡

𝜐=1 ]ℎ∈𝛺𝐻𝑡∈𝛺𝑇   
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+∑ ∑ ∑ ∑ 𝜗𝑖,𝑔,ℎ,𝑡
𝑃𝐺𝑅(𝑚)

𝑔∈𝛺𝑔𝑟𝑖∈(𝛺𝑁𝐺∩𝛺𝑡
𝑁𝐿) [∑ 𝑃𝑔,ℎ

𝐺𝑅̿̿ ̿̿ ̿(𝑥𝑖,𝑔,𝜐
𝐺𝑅 − 𝑥̂𝑖,𝑔,𝜐

𝐺𝑅(𝑚)
)𝑡

𝜐=1 ]ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑠,ℎ,𝑡
𝑃𝐶ℎ(𝑚)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐶ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐶ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐶ℎ(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ ∑ 𝜗𝑖,𝑠,ℎ,𝑡
𝑃𝐷𝑐ℎ(𝑚)

𝑠∈𝛺𝑒𝑠𝑖∈(𝛺𝑁𝐸𝑆∩𝛺𝑡
𝑁𝐿) 𝑃𝑠

𝐷𝑐ℎ(𝛼𝑖,𝑠,ℎ,𝑡
𝐷𝑐ℎ − 𝛼̂𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ(𝑚)
)ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

+∑ ∑ ∑ (𝜗𝑖,ℎ,𝑡
𝐷𝑆𝑀(𝑚)

− 𝜗𝑖,ℎ,𝑡
𝑃𝐷,𝑈𝑛𝑟𝑒𝑠𝑝(𝑚)

)𝑃𝑖̇,ℎ,𝑡
𝐷̿̿ ̿̿ ̿̿ [∑ ∑ 𝜅𝑝

𝑆𝑀(𝑥𝑖,𝑝,𝜐
𝑆𝑀 − 𝑥̂𝑖,𝑝,𝜐

𝑆𝑀(𝑚)
)𝑝∈𝛺𝑠𝑚

𝑡
𝜐=1 ] ≥ 0𝑖∈𝛺𝑁ℎ∈𝛺𝐻𝑡∈𝛺𝑇   

∀𝑚 = 1,… ,𝑀𝐹𝑒𝑎𝑠. (5.119) 

5.3 Proposed Robust Optimization-Based Uncertainty Modelling 

Approach  

In this section, a new robust optimization-based approach is proposed to model the uncertainties 

of renewable generations, loads, and electricity prices [96], [97]. As previously discussed, the 

necessity of proposing this new uncertainty modelling approach arises from the fact that when the 

MDEP problem is decomposed into a master problem and two subproblems using the BD 

algorithm, the DRCCP approach proposed in Chapter 2 cannot be employed. The reason is that 

the DRCCP approach requires binary variables to overcome the nonlinearities, while the 

subproblems should not include any binary variables in the BD algorithm. Therefore, a new robust 

optimization-based uncertainty modelling approach is proposed here, which not only retains the 

significant advantages of the DRCCP approach, but also does not introduce any binary variables 

to the subproblems. This new approach offers the following advantages:  

1) It is computationally tractable.        

2) It only needs the mean and the lower and upper bounds of the uncertain parameters, rather 

than detailed knowledge about their PDFs. 

3) It immunizes the solution of the MDEP problem against all realizations of the uncertain 

parameters within the uncertainty sets specified by the decision maker.   

4) It allows to control the degree of conservatism of the solution in a straightforward manner. 

5) Most importantly, it provides the decision maker with a probabilistic bound on the robustness 

level of the obtained solution, which makes it stand out among other robust optimization 

approaches existing in the literature.  
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In the following, the proposed uncertainty modelling approach is described in detail. 

Taking a careful look at the STS-based decomposed MDEP model developed in Section 5.2 

reveals that the uncertainties of renewable generations, loads, and electricity prices only affect the 

subproblems. In the optimal operation subproblem, the uncertainties have a direct impact on the 

objective function (5.32), the active power balance constraint (5.33), the reactive power balance 

constraint (5.34), and the demand function (5.82). To incorporate the uncertainties into the optimal 

operation subproblem, first the random variables 𝜒ℎ
𝐺𝑅̃, 𝜒ℎ

𝐷̃, and 𝜒ℎ
𝐶𝐸̃ are defined to characterize the 

stochasticity of renewable generations, loads, and electricity prices. Then, with the help of these 

random variables, (5.32)-(5.34) and (5.82) are changed to (5.120)-(5.123), respectively:       

𝑐𝑂𝑝𝑒𝑟. = ∑
1

(1+𝑟)(𝑡−1)𝐷

(1+𝑟)𝐷−1

𝑟(1+𝑟)𝐷𝑡∈𝛺𝑇 𝜏𝐷𝑖𝑛𝑌 [∑ ∑ 𝑐ℎ
𝐸𝜒ℎ

𝐶𝐸̃𝑃𝑖,ℎ,𝑡
𝑆

𝑖∈𝛺𝑆ℎ∈𝛺𝐻 + ∑ ∑ 𝑐ℎ
𝐸𝜒ℎ

𝐶𝐸̃𝜙𝑆𝑓𝑖,ℎ,𝑡
𝑆

𝑖∈𝛺𝑠ℎ∈𝛺𝐻   

+∑ ∑ ∑ 𝑐𝑔
𝐸𝐺𝐶𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐𝑖∈(𝛺𝑁𝐺∩𝛺𝑡

𝑁𝐿)ℎ∈𝛺𝐻 ]       (5.120) 

∑ ∑ [𝑃𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒ℎ
𝐺𝑅̃ + ∑ [𝑃𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ − 𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ ]𝑠∈𝛺𝑒𝑠 ≥ 𝑃𝑖̇,ℎ,𝑡

𝐷 𝜒ℎ
𝐷̃ ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.121) 

∑ ∑ [𝑄𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹  − ∑ ∑ 𝑄𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,ℎ,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒ℎ
𝐺𝑅̃ ≥ 𝑄𝑖̇,ℎ,𝑡

𝐷 𝜒ℎ
𝐷̃    ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇 (5.122) 

𝑃𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝

≥ 𝑃𝑖,ℎ,𝑡
𝐷,𝑆𝑀 [1 + 𝜀𝑆𝑒𝑙𝑓 𝑐ℎ

𝐸𝜒ℎ
𝐶𝐸̃−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿ + ∑ 𝜀𝐶𝑟𝑜𝑠𝑠 𝑐𝛾
𝐸𝜒𝛾

𝐶𝐸̃−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿𝛾∈(𝛺𝐻−ℎ) ]     

        ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.123) 

On the other hand, in the feasibility check subproblem, the uncertainties directly affect the 

demand function (5.82), the active power balance constraint (5.85), and the reactive power balance 

constraint (5.86). Note that the objective function of this subproblem is not subject to uncertainty. 

Similarly, with the help of the random variables 𝜒ℎ
𝐺𝑅̃, 𝜒ℎ

𝐷̃, and 𝜒ℎ
𝐶𝐸̃, the uncertainties can be 

incorporated into the feasibility check subproblem by changing (5.82), (5.85), and (5.86) to 

(5.124)-(5.126), respectively:   
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𝑃𝑖̇,ℎ,𝑡
𝐷,𝑅𝑒𝑠𝑝 ≥ 𝑃𝑖,ℎ,𝑡

𝐷,𝑆𝑀 [1 + 𝜀𝑆𝑒𝑙𝑓 𝑐ℎ
𝐸𝜒ℎ

𝐶𝐸̃−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿ + ∑ 𝜀𝐶𝑟𝑜𝑠𝑠 𝑐𝛾
𝐸𝜒𝛾

𝐶𝐸̃−𝑐𝐸̿̿̿̿

𝑐𝐸̿̿̿̿𝛾∈(𝛺𝐻−ℎ) ]     

        ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.124) 

∑ ∑ [𝑃𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑅𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑃𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑃𝑖,𝑡
𝑆 + ∑ 𝑃𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑃𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒ℎ
𝐺𝑅̃ + ∑ [𝑃𝑖,𝑠,ℎ,𝑡

𝐷𝑐ℎ − 𝑃𝑖,𝑠,ℎ,𝑡
𝐶ℎ ]𝑠∈𝛺𝑒𝑠 + 𝒦𝑖,ℎ,𝑡

𝑃 ≥ 𝑃𝑖̇,ℎ,𝑡
𝐷 𝜒ℎ

𝐷̃  

∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.125) 

∑ ∑ [𝑄𝑘𝑖,𝑎,ℎ,𝑡
𝐹 − 𝑋𝑎𝑙𝑘𝑖𝑓𝑘𝑖,𝑎,ℎ,𝑡

𝐹 ]𝑎∈𝛺𝑎(𝑘𝑖)∈𝛺𝐹 − ∑ ∑ 𝑄𝑖𝑗,𝑎,ℎ,𝑡
𝐹

𝑎∈𝛺𝑎(𝑖𝑗)∈𝛺𝐹 + 𝑄𝑖,ℎ,𝑡
𝑆 + ∑ 𝑄𝑖,𝑔,ℎ,𝑡

𝐺𝐶
𝑔∈𝛺𝑔𝑐   

+(∑ 𝑄𝑖,𝑔,ℎ,𝑡
𝐺𝑅

𝑔∈𝛺𝑔𝑟 )𝜒ℎ
𝐺𝑅̃ + 𝒦𝑖,ℎ,𝑡

𝑄 ≥ 𝑄𝑖̇,ℎ,𝑡
𝐷 𝜒ℎ

𝐷̃   ∀𝑖 ∈ 𝛺𝑁, ∀ℎ ∈ 𝛺𝐻, ∀𝑡 ∈ 𝛺𝑇    (5.126)  

By making the above changes to the optimal operation and feasibility check subproblems, the 

uncertainties of renewable generations, loads, and electricity prices are included in the developed 

STS-based decomposed MDEP model. Now, the proposed robust optimization-based uncertainty 

modelling approach can be explained.   

In order to simplify the notation, each of the optimal operation and feasibility check subproblems 

can be expressed in the following general form:   

Min  ∑ 𝑐𝓃̃𝑥𝓃
𝒩
𝓃=1           (5.127) 

s.t.    ∑ 𝑎𝓂,𝑛̃𝑥𝓃
𝒩
𝓃=1 ≤ 𝑏𝓂   ∀𝓂 = 1,… ,ℳ    (5.128) 

         ∑ 𝑑𝓅,𝓃𝑥𝓃
𝒩
𝓃=1 ≤ 𝑒𝓅   ∀𝓅 = 1,… ,𝒫     (5.129) 

         ∑ 𝑓𝓆,𝓃𝑥𝓃
𝒩
𝓃=1 = 𝑔𝓆   ∀𝓆 = 1,… , 𝒬     (5.130) 

         𝑥𝓃 ≤ 𝑥𝓃 ≤ 𝑥𝓃    ∀𝓃 = 1,… ,𝒩     (5.131) 

where 𝑥𝓃 denotes the decision variables of the optimization problem; 𝒩/𝓃 is the number/index 

of the decision variables; 𝑐𝓃̃ denotes the coefficients of the decision variables in the objective 

function; ℳ/𝓂 is the number/index of the constraints subject to uncertainty; 𝑎𝓂,𝑛̃ denotes the 

coefficients of the decision variables in the constraints subject to uncertainty; 𝑏𝓂 denotes the 

constant values located at the right-hand sides of the constraints subject to uncertainty; 𝒫/𝓅 is the 

number/index of the inequality constraints which are not subject to uncertainty; 𝑑𝓅,𝓃 denotes the 
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coefficients of the decision variables in the inequality constraints which are not subject to 

uncertainty; 𝑒𝓅 denotes the constant values located at the right-hand sides of the inequality 

constraints which are not subject to uncertainty; 𝒬/𝓆 is the number/index of the equality 

constraints which are not subject to uncertainty; 𝑓𝓆,𝓃 denotes the coefficients of the decision 

variables in the equality constraints which are not subject to uncertainty; 𝑔𝓆 denotes the constant 

values located at the right-hand sides of the equality constraints which are not subject to 

uncertainty; and 𝑥𝓃 and 𝑥𝓃  are the lower and upper bounds of the decision variables, respectively.  

Let us assume that the coefficients 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ can take values in the following uncertainty sets:          

𝑎𝓂,𝓃̃ ∈ [𝑎𝓂,𝓃̿̿ ̿̿ ̿̿ − 𝑎𝓂,𝓃̂ , 𝑎𝓂,𝓃̿̿ ̿̿ ̿̿ + 𝑎𝓂,𝓃̂]       (5.132) 

𝑐𝓃̃ ∈ [ 𝑐𝓃̿̿ ̿ , 𝑐𝓃̿̿ ̿ + 𝑐𝓃̂ ]          (5.133) 

where 𝑎𝓂,𝓃̿̿ ̿̿ ̿̿  is the expected value of 𝑎𝓂,𝑛̃; 𝑎𝓂,𝓃̂ denotes the maximum deviation of 𝑎𝓂,𝑛̃ from its 

expected value; 𝑐𝓃̿̿ ̿ is the expected value of 𝑐𝓃̃; and 𝑐𝓃̂ is the maximum deviation of 𝑐𝓃̃ from its 

expected value. Note that in the case when any of the coefficients 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ are certain, their 

corresponding deviation values 𝑎𝓂,𝓃̂ and 𝑐𝓃̂ are equal to zero (i.e., 𝑎𝓂,𝓃̂ = 0 and 𝑐𝓃̂ = 0).  

For every constraint 𝓂 that is subject to uncertainty, we define a parameter 𝛤𝓂 as follows:            

0 ≤ 𝛤𝓂 ≤ |𝒥𝓂| , 𝒥𝓂 = {𝓃|𝑎𝓂,𝓃̂ > 0}  ∀𝓂 = 1,… ,ℳ  (5.134) 

where 𝒥𝓂 is the set of all coefficients 𝑎𝓂,𝑛̃ which are uncertain (i.e., coefficients with 𝑎𝓂,𝓃̂ > 0). 

Note that 𝛤𝓂 is not necessarily integer and can take real values in the interval [0, |𝒥𝓂|].   

We also define a parameter 𝛤0 for the objective function as follows:   

0 ≤ 𝛤0 ≤ |𝒥0|  , 𝒥0 = {𝓃|𝑐𝓃̂ > 0}      (5.135) 

where 𝒥0 is the set of all coefficients 𝑐𝓃̃ which are uncertain (i.e., coefficients with 𝑐𝓃̂ > 0). Note 

that 𝛤0 can also take real values in the interval [0, |𝒥0|].     

The parameters 𝛤𝓂 and 𝛤0 are defined to adjust the degree of conservatism of the solution. In the 

proposed robust optimization-based approach, these parameters will be used to allow only a subset 

of all uncertain 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ coefficients to deviate from their expected values. In other words, it 

is unlikely that all uncertain 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ coefficients deviate from their expected values as much 
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as 𝑎𝓂,𝓃̂ and 𝑐𝓃̂. Hence, the parameters 𝛤𝓂 and 𝛤0 are defined to specify the number of uncertain 

𝑎𝓂,𝑛̃ and 𝑐𝓃̃ coefficients that are allowed to deviate from their expected values. In this regard, 

when 𝛤𝓂 is set to a value in the interval [0, |𝒥𝓂|], the optimal solution will be found under the 

condition that ⌊𝛤𝓂⌋ of uncertain 𝑎𝓂,𝑛̃ coefficients deviate from their expected values as much as 

𝑎𝓂,𝓃̂ and one uncertain 𝑎𝓂,𝑛̃ coefficient deviates from its expected value as much as 

(𝛤𝓂 − ⌊𝛤𝓂⌋)𝑎𝓂,𝓃̂. Similarly, when 𝛤0 is set to a value in the interval [0, |𝒥0|], the optimal solution 

will be found under the condition that ⌊𝛤0⌋ of uncertain 𝑐𝓃̃ coefficients deviate from their expected 

values as much as 𝑐𝓃̂ and one uncertain 𝑐𝓃̃ coefficient deviates from its expected value as much 

as (𝛤0 − ⌊𝛤0⌋)𝑐𝓃̂. It is obvious that increasing the values of 𝛤𝓂 and 𝛤0 will allow a larger number 

of uncertain 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ coefficients to deviate from their expected values, which results in 

obtaining a more conservative solution. This is how the degree of conservatism of the solution will 

be controlled by the parameters 𝛤𝓂 and 𝛤0.    

Based on the above discussion, the robust counterpart of the optimization problem (5.127)-

(5.131) is proposed as follows [96], [97]:  

Min∑ 𝑐𝓃̿̿ ̿𝑥𝓃
𝒩
𝓃=1 + Max 

{𝒟0∪{𝛿0}|𝒟0⊆𝒥0, |𝒟0|≤⌊𝛤0⌋, 𝛿0∈ 𝒥0\𝒟0}
{∑ 𝑐𝓃̂𝓃∈𝒟0

|𝑥𝓃|+(𝛤0 − ⌊𝛤0⌋)𝑐𝛿0̂
|𝑥𝛿0

|} (5.136) 

s.t.  (5.129)-(5.131) 

       ∑ 𝑎𝓂,𝓃̿̿ ̿̿ ̿̿ 𝑥𝓃
𝒩
𝓃=1 + Max 

{𝒟𝓂∪{𝛿𝓂}|𝒟𝓂⊆𝒥𝓂, |𝒟𝓂|≤⌊𝛤𝓂⌋,𝛿𝓂∈ 𝒥𝓂\𝒟𝓂}
{∑ 𝑎𝓂,𝓃̂|𝑥𝓃|𝓃∈𝒟𝓂

  

       +(𝛤𝓂 − ⌊𝛤𝓂⌋)𝑎𝓂,𝛿𝓂̂
|𝑥𝛿𝓂

|} ≤ 𝑏𝓂 ∀𝓂 = 1,… ,ℳ    (5.137) 

As can be seen in the second terms of (5.136) and (5.137), the above robust optimization problem 

finds the optimal solution considering the level of conservatism defined by the parameters 𝛤𝓂 and 

𝛤0. For instance, in the case when 𝛤𝓂 = |𝒥𝓂| and 𝛤0 = |𝒥0|, all the uncertain 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ 

coefficients will be allowed to have the maximum deviations 𝑎𝓂,𝓃̂ and 𝑐𝓃̂ from their expected 

values. This case will result in the most conservative solution possible. By contrast, in the case 

when 𝛤𝓂 = 0 and 𝛤0 = 0, none of the uncertain 𝑎𝓂,𝑛̃ and 𝑐𝓃̃ coefficients will be allowed to deviate 

from their expected values. This case will lead to a deterministic solution which completely ignores 

all the uncertainties. Thus, by setting 𝛤𝓂 and 𝛤0 to appropriate values in the intervals [0, |𝒥𝓂|] and 

[0, |𝒥0|], the decision maker will be able to flexibly adjust the level of conservatism of the solution. 
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It should be noted that the absolute value operators (i.e., |−|) in (5.136) and (5.137) cause the 

above robust optimization problem to become a nonlinear programming (NLP) problem which is 

very difficult to solve. The authors of [96], [97] demonstrate that this NLP problem can be 

equivalently reformulated as the following linear programming (LP) problem:  

Min ∑ 𝑐𝓃̿̿ ̿𝑥𝓃
𝒩
𝓃=1 + 𝛼0𝛤0 + ∑ 𝛽0,𝓃𝓃∈𝒥0

       (5.138) 

s.t.  (5.129)-(5.131) 

       ∑ 𝑎𝓂,𝓃̿̿ ̿̿ ̿̿ 𝑥𝓃
𝒩
𝓃=1 + 𝛼𝓂𝛤𝓂 + ∑ 𝛽𝓂,𝓃𝓃∈𝒥𝓂

≤ 𝑏𝓂 ∀𝓂 = 1,… ,ℳ   (5.139) 

       𝛼0 + 𝛽0,𝓃 ≥ 𝑐𝓃̂𝑤𝓃   ∀𝓃 ∈ 𝒥0     (5.140) 

       𝛼𝓂 + 𝛽𝓂,𝓃 ≥ 𝑎𝓂,𝓃̂𝑤𝓃   ∀𝓂 = 1,… ,ℳ,∀𝓃 ∈ 𝒥𝓂   (5.141) 

       −𝑤𝓃 ≤ 𝑥𝓃 ≤ 𝑤𝓃    ∀𝓃 ∈ (𝒥0 ∪ 𝒥𝓂)    (5.142) 

       𝛼0 ≥ 0           (5.143) 

       𝛽0,𝓃 ≥ 0     ∀𝓃 ∈ 𝒥0     (5.144) 

       𝛼𝓂 ≥ 0     ∀𝓂 = 1,… ,ℳ    (5.145) 

       𝛽𝓂,𝓃 ≥ 0     ∀𝓂 = 1,… ,ℳ,∀𝓃 ∈ 𝒥𝓂   (5.146) 

       𝑤𝓃 ≥ 0     ∀𝓃 ∈ (𝒥0 ∪ 𝒥𝓂)    (5.147) 

where 𝛼0, 𝛽0,𝓃, 𝛼𝓂, 𝛽𝓂,𝓃, and 𝑤𝓃 are auxiliary variables. 

The above LP problem is the final robust counterpart of the optimization problem (5.127)-

(5.131). In [96], [97], it is proved that for the optimal solution of the above robust LP problem, the 

probability that the constraints subject to uncertainty (i.e., ∑ 𝑎𝓂,𝑛̃𝑥𝓃
𝒩
𝓃=1 ≤ 𝑏𝓂) are violated can 

be obtained as follows:     

ℙ{∑ 𝑎𝓂,𝑛̃𝑥𝓃
∗𝒩

𝓃=1 > 𝑏𝓂} ≤ ℬ(|𝒥𝓂|, 𝛤𝓂)       (5.148) 
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ℬ(|𝒥𝓂|, 𝛤𝓂) ≤ (1 −
𝛤𝓂+|𝒥𝓂|

2
+ ⌊

𝛤𝓂+|𝒥𝓂|

2
⌋)ℱ (|𝒥𝓂|, ⌊

𝛤𝓂+|𝒥𝓂|

2
⌋) + ∑ ℱ(|𝒥𝓂|, ℓ)

|𝒥𝓂|

ℓ=⌊
𝛤𝓂+|𝒥𝓂|

2
⌋+1

      (5.149) 

ℱ(|𝒥𝓂|, ℓ) = {

1

2|𝒥𝓂|                                                                                                  ∀ℓ ∈ {0, |𝒥𝓂|} 

1

√2𝜋
√

|𝒥𝓂|

(|𝒥𝓂|−ℓ)ℓ
exp (|𝒥𝓂| log (

|𝒥𝓂|

2(|𝒥𝓂|−ℓ)
) + ℓ log (

|𝒥𝓂|−ℓ

ℓ
)) ∀ℓ ∉ {0, |𝒥𝓂|}

(5.150)  

where 𝑥𝓃
∗  denotes the optimal solution of the robust LP problem; ℬ is a bound on the probability 

of violation of constraints subject to uncertainty; and ℱ is a function required to calculate ℬ.  

In fact, equations (5.148)-(5.150) provide a probabilistic bound on the robustness level of the 

solution obtained by the robust LP problem. These equations enable the decision maker to have an 

accurate estimation of the solution robustness for different values of the parameter 𝛤𝓂. In this way, 

the proposed robust optimization-based uncertainty modelling approach provides the decision 

maker with the opportunity to not only adjust the degree of conservatism of the solution, but also 

calculate the robustness level of the obtained solution.   

By applying the above-described uncertainty modelling approach to the optimal operation and 

feasibility check subproblems, the deterministic model developed in Section 5.2 will be converted 

to a robust one.       

5.4 Simulation Results and Discussion  

In this section, the most important results obtained from the implementation of the proposed 

STS-based decomposed MDEP model are presented and discussed. This model has been 

implemented on a PC with a 3.40 GHz Intel Core i7-4770 processor and 16 GB of RAM using 

MATLAB R2015a [84] and CPLEX 12.6.1 [85]. The 24-node system is again utilized to carry out 

the simulations. The data related to the candidate conductor types, alternatives for 

construction/reinforcement of substations, alternatives for installation of renewable/conventional 

DGs, expected nodal peak power demands, and lengths of feeder sections are exactly the same as 

those presented in Chapter 2. The data related to the alternatives for installation of ESSs are 

presented in Table 5.2. Furthermore, the set of candidate nodes for ESS installation is defined as 

𝛺𝑁𝐸𝑆 = {1,2,3,4,5,7,9,13,14,15,16,17,18,19}. It should be mentioned that the candidate nodes 

considered for ESS installation are the same as those considered for DG installation (i.e., 𝛺𝑁𝐸𝑆 =

𝛺𝑁𝐺). Another important point is that as an illustrative example, renewable DGs are here assumed 
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to be wind turbines. However, the proposed planning methodology is fully applicable to other 

renewables DG technologies such as photovoltaic panels. 

Table 5.2 Data related to alternatives for installation of ESSs.  

𝛺𝑒𝑠 𝑃𝑠
𝐶ℎ (MW) 𝑃𝑠

𝐷𝑐ℎ (MW) 𝑇𝑠
𝐶ℎ (h) 𝑇𝑠

𝐷𝑐ℎ (h) 𝑐𝑠
𝐸𝑆 ($) 

1 1 1 6 4.2 550000 

2 1.5 1.5 6 4.2 825000 

 

Table 5.3 shows the data related to the alternatives for installation of smart meters. Moreover, 

the set of candidate nodes for smart meter installation is defined as 𝛺𝑁𝑆𝑀 = {2,6,7,8,10,11,12,14, 

16,17,20}. Table 5.4 presents the data related to the parameters of AA-CAES. Other required data 

are given in Table 5.5.  

Table 5.3 Data related to alternatives for installation of smart meters.  

𝛺𝑠𝑚 𝜅𝑝
𝑆𝑀 (%) 𝑐𝑆𝑀 ($) 

1 40 400 

2 60 400 

  

Table 5.4 Parameters of AA-CAES. 

Parameter Value Parameter Value Parameter Value 

𝛾𝐴𝑖𝑟  1.4 𝑇𝐴𝑆𝑇  293.15 (K) 𝑐𝐴𝑖𝑟  1.005 (kJ/kg.K)  

𝜀𝑅𝐶  0.8 𝑇𝐶𝑂𝑇  293.15 (K) 𝑐𝑂𝑖𝑙  2.2 (kJ/kg.K) 

𝜂𝐺   0.97 𝑇𝐻𝑂𝑇  573.15 (K) 𝜌𝑂𝑖𝑙  750 (kg/m3) 

𝜂𝑀  0.95 𝑇𝐻𝑃𝐶,𝑖𝑛  313.15 (K) 𝑉𝐴𝑆𝑇  900 m3   ∀𝑠 = 1 

𝜂𝐿𝑃𝐶 , 𝜂𝐻𝑃𝐶   0.87 𝑇𝐻𝑃𝐶,𝑜𝑢𝑡  605.22 (K) 𝑉𝐴𝑆𝑇  1400 m3 ∀𝑠 = 2 

𝜂𝐻𝑃𝑇 , 𝜂𝐿𝑃𝑇   0.9 𝑇𝐿𝑃𝐶,𝑖𝑛  293.15 (K) 𝑉𝐻𝑂𝑇  40 m3     ∀𝑠 = 1 

𝜋𝐿𝑃𝐶   8 𝑇𝐿𝑃𝐶,𝑜𝑢𝑡  566.57 (K) 𝑉𝐻𝑂𝑇  60 m3     ∀𝑠 = 2 

𝜋𝐻𝑃𝐶   8 𝑇𝐻𝑃𝑇,𝑖𝑛  675.15 (K) 𝑝𝐴𝑆𝑇  72 (bar) 

𝜋𝐻𝑃𝑇   8 𝑇𝐻𝑃𝑇,𝑜𝑢𝑡  402.96 (K) 𝑝𝐴𝑆𝑇  42 (bar) 

𝜋𝐿𝑃𝑇  8 𝑇𝐿𝑃𝑇,𝑖𝑛  675.15 (K) 𝑅𝐴𝑖𝑟  287.05×10-5 (bar.m3/kg.K) 

𝑇𝑅𝐶,𝑜𝑢𝑡  381(K) 𝑇𝐿𝑃𝑇,𝑜𝑢𝑡  402.96 (K)   
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Table 5.5 Other required data. 

Parameter Value Parameter Value Parameter Value 

𝑎𝑖𝑗
𝐹𝑅  1 𝜀𝐶𝑟𝑜𝑠𝑠  0.01 𝑉  0.95×20=19 (kV) 

𝑎𝑖𝑗
𝐹𝐼   2 𝜀𝑆𝑒𝑙𝑓  −0.4 𝑉  1.05×20=21 (kV) 

𝑁𝐺𝐶   4 𝜏𝐷𝑖𝑛𝑌  365 ∆𝑉  (𝑉)
2
̶  (𝑉)

2
= 80 

𝑁𝐺𝑅  4 𝜏𝑆𝑖𝑛𝐻  3600 𝑆𝑖
0  7.5 (MVA) 

𝑁𝐸𝑆  3 𝜌𝐺𝑅 , 𝜌𝐷  0.9 𝑐𝐸̿̿ ̿  85 ($/MWh) 

𝑁𝑆𝑀  5 𝑟  0.1 𝐷  5 (year) 

𝑁𝑖,𝑡
𝐶   max {𝑃𝑖̇,ℎ,𝑡

𝐷̿̿ ̿̿ ̿̿   ∀ℎ ∈ 𝛺𝐻} /(10kW) 𝜙𝑆  0.15 

 

As discussed in Section 5.3, the proposed robust optimization-based uncertainty modelling 

approach requires the mean and the lower and upper bounds of the uncertain parameters to define 

the uncertainty sets. In this regard, we have used the historical data provided in [116] to calculate 

the mean and the lower and upper bounds of the load, wind generation, and electricity price at 

different hours of the day. Figure 5.3 shows the box plots and the expected values of the acquired 

historical data of load, wind generation, and electricity price.   
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Figure 5.3 Box plots and expected values of the historical data: (a) load; (b) wind generation; (c) 

electricity price. 

Table 5.6 shows the test cases defined to conduct the simulations: Case 1) deterministic expansion 

planning of the network assets (feeders and substations); Case 2) deterministic expansion planning 

of the network assets and renewable/conventional DGs; Case 3) deterministic expansion planning 

of the network assets, renewable/conventional DGs, and ESSs; Case 4) deterministic expansion 

planning of the network assets, renewable/conventional DGs, ESSs, and DRLs; Case 5) robust 

expansion planning of the network assets, renewable/conventional DGs, ESSs, and DRLs.                  

Table 5.6 Defined test cases.  

Test Cases Feeders Substations 
DGs 

ESSs DRLs 
Uncertainty 

Modelling Conv. Ren. 

Case 1   × × × × × 

Case 2     × × × 

Case 3      × × 

Case 4       × 

Case 5        

 

5.4.1 Techno-Economic Analysis of DER Benefits  

In this subsection, a comparative analysis is performed to weigh the benefits of network 

integration of DERs. In this regard, the numerical results obtained for Cases 1-4 are compared to 

evaluate the DER benefits from two different perspectives: economic and technical. Note that the 

uncertainties of loads, wind generations, and electricity prices are ignored here.      
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5.4.1.1 Economic Benefits of DERs  

Table 5.7 compares the investment, operation, and total costs obtained for Cases 1-4. It can be 

observed that the incorporation of DERs into the MDEP problem leads to an increase in the 

investment costs and a decrease in the operation costs. However, the decrease in the operation 

costs is considerably higher than the increase in the investment costs. As a result, DERs make 

significant reductions in the total costs. For instance, the incorporation of renewable/conventional 

DGs into the MDEP problem decreases the total costs from $117.27 million in Case 1 to $82.08 

million in Case 2, which shows a 30% reduction. By incorporation of both DGs and ESSs into the 

MDEP problem, the total costs decrease to $80.50 million in Case 3, which shows a 31.35% 

reduction compared with Case 1. Furthermore, the incorporation of DRLs along with DGs and 

ESSs into the MDEP problem decreases the total costs to $78.69 million in Case 4, which 

demonstrates a 32.90% reduction compared with Case 1.               

Table 5.7 Comparison of investment, operation, and total costs for Cases 1-4.  

Test Cases 
Costs (106 $) 

Investment  Operation  Total  

Case 1 2.67 114.60 117.27 

Case 2 8.07 74.01 82.08 

Case 3 9.79 70.71 80.50 

Case 4 9.87 68.82 78.69 

 

Table 5.8 presents the costs and benefits associated with different types of DERs. These 

information help to better quantify the net economic benefits gained by integrating each DER type 

into the distribution system. Note that DG costs/benefits are calculated by comparing Cases 1 and 

2, ESS costs/benefits are calculated by comparing Cases 2 and 3, and DRL costs/benefits are 

calculated by comparing Cases 3 and 4. As can be seen, the costs of different types of DERs are 

considerably lower than their benefits. The net benefits offered by DGs, ESSs, and DRLs are 

$35.19 million, $1.58 million, and $1.81 million, respectively. It can be observed that DGs yield 

the highest net benefit among different DER types. This is obviously due to the ability of DGs to 

generate electric power, which provides the opportunity to substantially decrease the operation 

costs by reducing the electrical energy received from the upstream power grid.            
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Table 5.8 Costs and benefits associated with different types of DERs.  

Test Case 

Comparisons 
DER Types 

Costs 

(106 $) 

Benefits 

(106 $) 

Net Benefits 

(106 $) 

Case 1 & Case 2 DG 5.40 40.59 35.19 

Case 2 & Case 3 ESS 1.72 3.30 1.58 

Case 3 & Case 4 DRL 0.08 1.89 1.81 

 

For illustration purposes, the expansion plans obtained for the 24-node distribution system for 

Case 4 are depicted in Figure 5.4. It is worthwhile to mention that for this case, the accelerated BD 

algorithm consumes 47 min to solve the STS-based MDEP model, while the direct solution method 

requires a computation time of more than 17 hours to find the optimal solution of the STS-based 

MDEP model. This fact demonstrates the necessity of having a fast solution method in order to 

incorporate the STS capability into the planning problem.     

 
Figure 5.4 Expansion plans obtained for the 24-node distribution system for Case 4.  
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5.4.1.2 Technical Benefits of DERs  

The technical benefits of DERs are evaluated based on their impacts on four important 

operational aspects of the distribution system: 1) power demand profile, 2) nodal voltage 

magnitudes, 3) power losses, and 4) loading of feeder sections.  

Figure 5.5 illustrates the total power demand profiles of the system for Cases 1-4. It can be 

observed that the peak power demand of the system in Case 2 is significantly lower than that in 

Case 1, which is obviously due to the incorporation of DGs into the MDEP problem in Case 2. 

Moreover, as can be seen, the incorporation of ESSs and DRLs into the MDEP problem in Cases 

3 and 4 not only further reduces the peak power demand of the system, but also makes the power 

demand profile smoother by shifting the demand from peak hours to off-peak hours. The peak 

power demand of the system in Case 1 is 42.17 MW, while the network integration of DERs 

reduces it to 30.55 MW, 27.65 MW, and 26.32 MW in Cases 2-4, respectively. Furthermore, the 

peak-to-average ratios of the power demand profiles of the system for Cases 1-4 are 1.22, 1.33, 

1.18, and 1.13, respectively. These values further clarify the role of ESSs and DRLs in making the 

power demand profile smoother.             

 
Figure 5.5 Power demand profiles of the system for Cases 1-4. 
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Figure 5.6 depicts the minimum nodal voltage magnitudes as well as the power losses of the 

system during peak hours for Cases 1-4. As can be observed, the network integration of DERs not 

only improves the nodal voltage magnitudes of the system, but also reduces the power losses in 

feeder sections. For instance, DERs increase the minimum nodal voltage magnitude of the system 

from 1.0265 p.u. in Case 1 to 1.0394 p.u. in Case 4. Moreover, by incorporation of DERs into the 

MDEP problem, the average of the system power losses during peak hours is decreased from 340 

kW in Case 1 to 128 kW in Case 4.     

 
Figure 5.6 Minimum nodal voltage magnitudes and power losses of the system during peak 

hours for Cases 1-4. 

Table 5.9 compares the percentage loading of feeder sections for Cases 1-4. It can be seen that 

as more and more DERs are integrated into the distribution system, the loading of feeder sections 

is gradually decreased. For instance, the network integration of DERs causes the average loading 

of feeder sections to decrease from 46.01% in Case 1 to 32.89% in Case 4. Table 5.9 also shows 

that DERs reduce the number of highly loaded feeder sections. For instance, there are six feeder 

sections with loading of greater than 70% in Case 1, while Case 4 has only one feeder section with 

loading of greater than 70%. Similarly, Case 1 has two feeder sections with loading of greater than 

90%, whereas there is no feeder section with loading of greater than 90% in Case 4. Based on the 

above discussion, reduced loading of distribution network assets is another substantial technical 

benefit of DERs.   
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Table 5.9 Comparison of the percentage loading of feeder sections for Cases 1-4. 

Test Cases 
Avg. Loading of 

Feeder Sections   

No. of Feeder Sections with Loading of 

≥ 70% ≥ 80% ≥ 90% 

Case 1 46.01% 6 3 2 

Case 2 34.64% 2 1 1 

Case 3 33.15% 2 1 0 

Case 4 32.89% 1 1 0 

 

5.4.2 Robustness Evaluation of the Proposed Planning Model  

In this subsection, the robustness of the proposed STS-based decomposed MDEP model against 

the uncertainties of loads, wind generations, and electricity prices is assessed. To this end, first the 

solutions of Case 4 (deterministic) and Case 5 (robust) are obtained for comparison purposes. 

Then, the hourly historical data shown in figure 5.3 are used to produce a large number of samples 

of load, wind generation, and electricity price. Finally, the solution robustness of each of the Cases 

4 and 5 is assessed using the produced samples.  

Figure 5.7 compares the performances of Cases 4 and 5 from the viewpoint of solution 

robustness. Note that the solution robustness of Case 5 is evaluated considering ten different values 

for ℬ which denotes the probabilistic bound on violation of constraints subject to uncertainty (see 

equations (5.148)-(5.150)). In this regard, ℬ is changed from 1% to 10% in steps of 1%, and the 

corresponding changes in the solution robustness of Case 5 are examined. It can be observed that 

Case 4 has the lowest level of robustness, so that its solution robustness goes down to 55% during 

peak hours of the day. This poor performance is obviously due to the fact that in Case 4, the 

expansion plans are obtained without having any information about the uncertainties. By contrast, 

Case 5 results in considerably higher robustness levels for different values of ℬ, so that its solution 

robustness reaches 100% during off-peak hours of the day. Taking a careful look at Figure 5.7 also 

reveals that the solution robustness of Case 5 is always above the specified requirement (i.e., 1 −  ℬ), 

even during the peak hours of the day. It is worthwhile to note that by decreasing the value of ℬ, 

the degree of conservatism of Case 5 is increased and consequently the solution robustness is also 

increased.  
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Figure 5.7 Robustness comparison of Case 4 (deterministic) and Case 5 (robust) at different 

hours of the day.     

 
Figure 5.8 Investment costs and average solution robustness of Case 4 (deterministic) and Case 5 

(robust).  
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Figure 5.8 compares Cases 4 and 5 from the viewpoints of investment cost and average solution 

robustness (i.e., average of the robustness levels at different hours of the day). As can be observed, 

the average solution robustness of Case 5 for different values of ℬ is significantly higher than that 

of Case 4. As expected, the higher robustness of Case 5 is achieved at the cost of an increase in 

the investment costs. However, it is worth to bear such a reasonable cost to obtain the reported 

substantial improvement in the average solution robustness. Therefore, it can be stated that the 

proposed robust STS-based decomposed MDEP model makes an appropriate trade-off between 

the solution robustness and the investment cost. 

5.4.3 An Extended Case Study  

The 138-node distribution system is here used to demonstrate the scalability of the proposed 

robust STS-based decomposed MDEP model. The data related to the candidate conductor types, 

alternatives for construction/reinforcement of substations, alternatives for installation of 

renewable/conventional DGs, expected nodal peak power demands, and lengths of feeder sections 

are exactly the same as those presented in Chapter 2. The data related to the alternatives for 

installation of ESSs and smart meters are the same as those presented in Tables 5.2 and 5.3. The 

set of candidate nodes for ESS installation is defined as 𝛺𝑁𝐸𝑆 = {4,10,19,25,28,31,42,52,56,64, 

68,72,78,85,94,97,100,103,106,108,111,116,120,122,126,133}. It should be noted that the 

candidate nodes considered for ESS installation are the same as those considered for DG 

installation (i.e., 𝛺𝑁𝐸𝑆 = 𝛺𝑁𝐺). Moreover, the set of candidate nodes for smart meter installation 

is defined as 𝛺𝑁𝑆𝑀 = {1,3,7,12,15,22,27,30,38,49,54,60,66,75,83,91,102,109,114,125,132}. 

The parameters of AA-CAES and other required data are the same as those presented in Tables 5.4 

and 5.5 (except that 𝑆𝑖
0=12 MVA , 𝑉=0.95×13.8=13.11 kV , 𝑉=1.05×13.8=14.49 kV , ∆𝑉=38.08). 

The historical data of load, wind generation, and electricity price are the same as those depicted in 

Figure 5.3.   

The simulation results show that for Case 5, the accelerated BD algorithm requires 159 min to solve 

the proposed robust STS-based MDEP model. Whereas, due to the large scale of the 138-node 

distribution system, the direct solution method cannot find the optimal solution of the proposed robust 

STS-based MDEP model, even after an extremely long computation time (e.g., several days). This fact 

once again demonstrates the necessity of having a fast solution method in order to incorporate the 
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STS capability into the planning problem, especially when dealing with large-scale distribution 

systems. 

5.5 Summary  

In this chapter, a robust STS-based decomposed MDEP model has been developed for ADNs 

incorporating various types of DERs (i.e., DGs, ESSs, and DRLs). This model has the ability to 

perform STPFS which is identified as the most important requirement for future distribution 

system planning tools. To achieve the computational speed required for performing STPFS, the 

fast solution procedure proposed in Chapter 4 has been employed. In this regard, the MDEP model 

has been decomposed into a master problem which determines the long-term expansion plans and 

two subproblems which conduct the short-term STS-based operation analysis. With regard to ESS 

modelling, after careful comparison of different technologies, AA-CAES has been chosen as the 

energy storage option for ADNs and a detailed model has been proposed for it. With regard to 

DRL modelling, an RTP scheme has been considered and a demand function based on self-price 

and cross-price elasticities has been employed to model the reaction of DRLs to electricity price 

changes. Furthermore, in order to model the uncertainties of renewable generations, loads, and 

electricity prices, a new robust optimization-based approach has been proposed, which provides 

the decision maker with the opportunity to not only adjust the degree of conservatism of the 

solution, but also calculate the robustness level of the obtained solution.   

The developed robust STS-based decomposed MDEP model has been successfully validated 

using the 24-node and 138-node distribution systems. The simulation results show that the network 

integration of DERs provides significant techno-economic benefits. From the economic point of 

view, the incorporation of DERs into the MDEP problem leads to significant reductions in the 

costs. From the technical point of view, DERs have a positive effect on four important operational 

aspects of the distribution system: first, they reduce the peak power demand of the system and also 

make the power demand profile smoother; second, they improve the nodal voltage magnitudes of 

the system; third, they reduce the power losses in feeder sections; fourth, they decrease the loading 

of feeder sections. The simulation results also demonstrate the high solution robustness of the 

developed robust STS-based decomposed MDEP model, so that the robustness of this model is 

always above the level specified by the decision maker. The results also show that in order to 
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incorporate the STS capability into the planning problem of large-scale distribution systems, it is 

essential to have a fast solution method, otherwise it will be extremely time-consuming or even 

impossible to find the optimal solution of the problem.        
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Chapter 6 

6. Conclusions and Suggestions for Future Work    

6 Conclusions and Suggestions for Future Work  

6.1 Conclusions  

This project has developed a comprehensive planning methodology for ADNs, which is able to 

jointly expand both the network assets (feeders and substations) and DERs (DGs, ESSs, and 

DRLs), while giving full consideration to accurate distribution network modelling and efficient 

uncertainty modelling. To this end, five major steps have been defined for the project and a 

thorough description of the works done in each step has been presented.  

Regarding the first step of the project, a novel polyhedral-based MILP model has been proposed 

for the MDEP problem, which has two outstanding merits: first, it incorporates a highly accurate 

linearized network model reflecting AC power flow equations and energy losses; second, its linear 

formulation ensures the computational tractability and solution optimality. The simulation results 

showed that the developed MILP model can provide better solutions than the most accurate MILP 

model available in the literature. This superiority is due to the great performance of the polyhedral-

based linearization method proposed for eliminating the nonlinearities of the MDEP problem, so 

that the accuracy of this method can go up to almost 100% by choosing an appropriate value for 

the linearization parameter. The obtained results also demonstrated the scalability of the developed 

MILP model.       

Regarding the second step of the project, a novel DRCCP approach has been proposed to deal 

with the uncertainties associated with renewable generations and loads. In this regard, the 

uncertainties have been modelled by defining a number of CCs which ensure that the constraints 

subject to uncertainty will be satisfied with a certain probability level. A DR reformulation has 

also been proposed for the CCs, which makes the optimal solution of the MDEP problem robust 

against the PDFs of the uncertain parameters. Moreover, highly accurate linearization methods 

have been utilized to overcome the nonlinearities of the DR reformulation proposed for the CCs. 
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In this way, a DRCC-MILP model has been obtained, which can be efficiently solved using off-

the-shelf mathematical programming solvers. The simulation results showed that the proposed 

DRCC-MILP model is capable of making an appropriate trade-off among the solution robustness, 

investment cost, and computational burden. 

Regarding the third step of the project, a fast solution procedure based on an accelerated version 

of the BD algorithm has been proposed to solve the MDEP problem. This solution procedure has 

been obtained by applying two novel acceleration strategies (i.e., modification of the master 

problem and generation of the auxiliary optimality cuts) to the classical BD algorithm. The 

simulation results showed that the accelerated BD algorithm is able to find the optimal solution of 

the MDEP problem tens of times faster than the standard off-the-shelf mathematical programming 

solvers. The obtained results also demonstrated the highly effective role of the proposed 

acceleration strategies in speeding up the solution process, so that they not only decrease the total 

number of iterations required by the BD algorithm to reach the convergence, but also shorten the 

time consumed by each iteration.  

 Regarding the fourth and fifth steps of the project, a robust STS-based decomposed model has 

been developed for the MDEP problem, which takes ESSs and DRLs along with DGs into account. 

This model is capable of performing STPFS to analyze the short-term operational impacts of ESSs 

and DRLs when deciding about the long-term expansion plans. In this regard, the accelerated BD 

algorithm proposed in the third step of the project has been employed to achieve the computational 

speed required for performing STPFS. With respect to energy storage and demand response 

modelling, AA-CAES has been chosen as the ESS option and an RTP scheme has been considered 

for DRLs. Moreover, a robust optimization-based approach has been proposed for modelling the 

uncertainties of renewable generations, loads, and electricity prices, which allows controlling the 

degree of conservatism of the solution and also provides the decision maker with a probabilistic 

bound on the robustness level of the obtained solution. The simulation results showed that DERs 

provide significant techno-economic benefits as they not only make substantial reductions in the 

costs, but also positively affect the important operational aspects of the distribution system. The 

simulation results also showed the high robustness level of the robust STS-based decomposed 

model developed for the MDEP problem.   
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By completing the above-described steps, a comprehensive planning methodology has been 

developed for ADNs incorporating various types of DERs.     

6.2 Suggestions for Future Work  

The following studies are recommended for future extension of the research work carried out in 

this thesis:  

 The planning methodology developed in this thesis can be extended to consider the reliability 

issues of the distribution system (e.g., component failures). To this end, it is necessary to 

incorporate the distribution system reliability assessment into the optimization process, which 

is an extremely difficult task. The difficulty of incorporating the distribution system 

reliability assessment into the optimization process stems from the fact that the network 

topology must be known in order to perform the contingency analysis and calculate the 

reliability indices, but the network topology itself is an outcome of the optimization process 

and hence is not known before solving the optimization problem. To address this issue, the 

conventional simulation-based reliability assessment approaches must be equivalently 

formulated as explicit algebraic expressions. That is, the topology-dependent reliability 

indices must be explicitly formulated in terms of the topology-related decision variables of 

the optimization problem. To the best of our knowledge, such explicit algebraic expressions 

for reliability assessment are not currently available in the literature. Therefore, it is 

recommended to develop the explicit algebraic expressions required for incorporating the 

reliability considerations into the developed planning methodology.   

 The planning methodology developed in this thesis can be extended to take EVs (which are 

special DERs capable of acting as both DRLs and ESSs) into consideration. On the one hand, 

the high penetration of EVs can place a huge charging power demand on the distribution 

system. This huge demand, if not carefully considered at the planning stage, can adversely 

affect the normal operation of the distribution system. On the other hand, EVs can serve as 

active elements and feed the electrical energy stored in their batteries back into the grid. This 

capability, which is called vehicle-to-grid (V2G), enables EVs to act as ESSs. The possibility 

to operate EVs as some dispersed ESS units can introduce potential benefits to the distribution 

system planners. Based on the above discussion, it is recommended to model EVs and 
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incorporate them into the developed planning methodology considering their demand 

responsiveness and V2G capability.  

 The high penetration of DERs can significantly change the pattern of bulk power transfer, 

which in turn affects the expansion planning studies of the transmission system. Based on 

this fact, it is recommended to develop a new planning methodology which concurrently 

considers both transmission and distribution systems. This can lead to an integrated planning 

tool for transmission and distribution systems with high penetration of DERs.                     
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Appendix A 

Proof of Exactness of DistFlow Branch Equations  

Appendix A - Proof of Exactness of DistFlow Branch Equations 

In order to understand how DistFlow branch equations are derived, consider the illustrative 

example depicted in Figure A, which shows the flow of power in a radial distribution network 

[45], [117], [118]. Based on this illustrative example, the active and reactive power balance 

equations in a node of the network can be written as follows:   

𝑃𝑘𝑖
𝐹 − 𝑅𝑘𝑖(𝐼𝑘𝑖

𝐹 )2 − 𝑃𝑖𝑗
𝐹 + 𝑃𝑖

𝑆 + 𝑃𝑖
𝐺𝐶 + 𝑃𝑖

𝐺𝑅 = 𝑃𝑖̇
𝐷̿̿ ̿̿  ∀𝑖 ∈ 𝛺𝑁       (A.1) 

𝑄𝑘𝑖
𝐹 − 𝑋𝑘𝑖(𝐼𝑘𝑖

𝐹 )2 − 𝑄𝑖𝑗
𝐹 + 𝑄𝑖

𝑆 + 𝑄𝑖
𝐺𝐶 + 𝑄𝑖

𝐺𝑅 = 𝑄𝑖̇
𝐷̿̿ ̿̿  ∀𝑖 ∈ 𝛺𝑁       (A.2) 

These two equations are in fact representing the Kirchhoff’s current law (KCL) as they give rise 

to nodal power balance. On the other hand, regarding the Kirchhoff’s voltage law (KVL), the 

voltage drop across a feeder section can be expressed as:   

𝑉𝑖̇
⃗⃗⃗  − 𝑉𝑗̇⃗⃗⃗  = 𝐼𝑖̇𝑗̇

𝐹⃗⃗  ⃗(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗)    ∀(𝑖𝑗) ∈ 𝛺𝐹       (A.3) 

𝐼𝑖̇𝑗̇
𝐹⃗⃗  ⃗ = [(𝑃𝑖𝑗

𝐹 + 𝑗𝑄𝑖𝑗
𝐹 )/𝑉𝑖̇

⃗⃗⃗  ]
∗
    ∀(𝑖𝑗) ∈ 𝛺𝐹       (A.4) 

where the rightwards arrows denote complex variables; the asterisk denotes complex conjugate; 

and 𝑗 is the imaginary unit (i.e., 𝑗 = √−1).    

Substituting (A.4) into (A.3) results in the following equation: 

(𝑉𝑖̇
⃗⃗⃗  − 𝑉𝑗̇⃗⃗⃗  )𝑉𝑖̇

⃗⃗⃗  
∗
= (𝑃𝑖𝑗

𝐹 − 𝑗𝑄𝑖𝑗
𝐹 )(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗)  ∀(𝑖𝑗) ∈ 𝛺𝐹       (A.5) 

Bearing in mind that 𝑉𝑖̇
⃗⃗⃗  = 𝑉𝑖∠𝜃𝑖 and 𝑉𝑗̇⃗⃗⃗  = 𝑉𝑗∠𝜃𝑗 , equation (A.5) can be rewritten as:   

(𝑉𝑖̇)
2 − 𝑉𝑖̇𝑉𝑗̇(cos𝜃𝑖𝑗 − 𝑗 sin𝜃𝑖𝑗) = (𝑃𝑖𝑗

𝐹 − 𝑗𝑄𝑖𝑗
𝐹 )(𝑅𝑖𝑗 + 𝑗𝑋𝑖𝑗)   ∀(𝑖𝑗)ϵ𝛺𝐹     (A.6) 



124 

  

where 𝜃𝑖 and 𝜃𝑗  denote the voltage phase angles of sending and receiving ends of the feeder section, 

respectively; and 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗  is the voltage phase angle difference across the feeder section. 

By separating the real and imaginary parts of (A.6), the following equations will be obtained:  

𝑉𝑖𝑉𝑗 cos 𝜃𝑖𝑗 = (𝑉𝑖)
2 − (𝑅𝑖𝑗𝑃𝑖𝑗

𝐹 + 𝑋𝑖𝑗𝑄𝑖𝑗
𝐹 )  ∀(𝑖𝑗) ∈ 𝛺𝐹       (A.7) 

𝑉𝑖𝑉𝑗 sin 𝜃𝑖𝑗 = (𝑋𝑖𝑗𝑃𝑖𝑗
𝐹 − 𝑅𝑖𝑗𝑄𝑖𝑗

𝐹 )   ∀(𝑖𝑗) ∈ 𝛺𝐹       (A.8) 

Summing the squares of (A.7) and (A.8) leads to: 

(𝑉𝑖)
4 − (𝑉𝑖)

2(𝑉𝑗)
2
= 2(𝑉𝑖)

2(𝑅𝑖𝑗𝑃𝑖𝑗
𝐹 + 𝑋𝑖𝑗𝑄𝑖𝑗

𝐹 ) − [(𝑅𝑖𝑗)
2
+ (𝑋𝑖𝑗)

2
] [(𝑃𝑖𝑗

𝐹)
2
+ (𝑄𝑖𝑗

𝐹 )
2
]   ∀(𝑖𝑗) ∈ 𝛺𝐹 (A.9) 

Dividing both sides of (A.9) by (𝑉𝑖)
2 gives the following final equations: 

(𝑉𝑖)
2 − (𝑉𝑗)

2
= 2(𝑅𝑖𝑗𝑃𝑖𝑗

𝐹 + 𝑋𝑖𝑗𝑄𝑖𝑗
𝐹 ) − (𝑍𝑖𝑗)

2
(𝐼𝑖̇𝑗̇

𝐹)
2
 ∀(𝑖𝑗) ∈ 𝛺𝐹     (A.10) 

(𝐼𝑖̇𝑗̇
𝐹)

2
= (𝑆𝑖𝑗

𝐹)
2
/(𝑉𝑖)

2     ∀(𝑖𝑗) ∈ 𝛺𝐹     (A.11) 

(𝑆𝑖𝑗
𝐹)

2
= (𝑃𝑖𝑗

𝐹)
2

+ (𝑄𝑖𝑗
𝐹 )

2
    ∀(𝑖𝑗) ∈ 𝛺𝐹     (A.12) 

Considering that 𝑓𝑖̇𝑗̇
𝐹 = (𝐼𝑖̇𝑗̇

𝐹)
2
and 𝑢𝑖 = (𝑉𝑖)

2, equations (A.1), (A.2), and (A.10)-(A.12) are 

equivalent to constraints (2.4)-(2.8), respectively.  

 

Figure A.1 Illustration of a radial distribution network.  
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Appendix B 

Data Related to the 138-Node Test System 

Appendix B - Data Related to the 138-Node Test System 

Table B.1 Nodal power demands at different planning stages (kVA).  

Nodes 
Stages 

Nodes 
Stages 

1 2 1 2 

1 284.9 375.55 69 98.27833 129.5487 

2 56.56472 74.56258 70 257.9862 340.0727 

3 50.37446 66.4027 71 27.57662 36.351 

4 103.022 135.8017 72 6.008053 7.919706 

5 368.5496 485.8154 73 85.99321 113.3547 

6 176.2413 232.318 74 480.634 633.563 

7 282.5523 372.4553 75 203.5 268.25 

8 73.75343 97.22043 76 119.6907 157.7741 

9 147.4983 194.4295 77 170.2769 224.4559 

10 165.932 218.7285 78 114.7465 151.2567 

11 138.2871 182.2876 79 358.9665 473.1831 

12 295.0182 388.8877 80 168.747 222.4392 

13 344.8884 454.6256 81 334.3513 440.7358 

14 359.564 473.9707 82 104.3166 137.5082 

15 254.9924 336.1264 83 291.3405 384.0398 

16 235.1019 309.9071 84 296.003 390.1857 

17 471.9 622.05 85 466.4 614.8 

18 173.8 229.1 86 107.3824 141.5496 

19 82.5 108.75 87 1358.792 1791.135 

20 36.88823 48.62539 88 547.6056 721.8438 

21 282.805 372.7884 89 460.2191 606.6525 

22 73.77891 97.25402 90 73.7 97.15 

23 282.805 372.7884 91 95.11212 125.3751 

24 147.5544 194.5035 92 104.3166 137.5082 

25 295.9 390.05 93 286 377 

26 69.76851 91.96758 94 88.41308 116.5445 

27 446.5078 588.5785 95 277.2429 365.4566 

28 237.6 313.2 96 169.44 223.3528 

29 152.6235 201.1855 97 73.7 97.15 

30 69.76851 91.96758 98 91.33795 120.4 
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31 414.7 546.65 99 399.3 526.35 

32 104.655 137.9543 100 61.31719 80.82721 

33 188.1 247.95 101 71.53461 94.29562 

34 485.7756 640.3406 102 143 188.5 

35 410.3 540.85 103 246.4 324.8 

36 221.8041 292.3781 104 19.08532 25.4471 

37 296.5158 390.8618 105 1718.087 2290.783 

38 92.21836 121.5606 106 356.9817 475.9756 

39 157.3 207.35 107 91.04335 121.3911 

40 1.497971 1.974598 108 55.7429 75.25292 

41 7.496052 9.88116 109 73 98.55 

42 188.1 247.95 110 219.8776 296.8348 

43 140.8378 185.6498 111 0 85.92696 

44 74.45057 98.13939 112 0 64.41182 

45 205.8435 271.3392 113 0 197.6 

46 547.8671 722.1884 114 0 221.7802 

47 314.1719 414.1356 115 0 146.25 

48 281.6756 371.2996 116 0 339.6218 

49 224.4 295.8 117 0 443.75 

50 130.4904 172.0101 118 0 93.14168 

51 317.9 419.05 119 0 41.80178 

52 86.98906 114.6674 120 0 79.61486 

53 308.8089 407.0662 121 0 327.6 

54 82.64017 108.9348 122 0 121.1235 

55 26.09724 34.4009 123 0 63.822 

56 486.2 640.9 124 0 157.6554 

57 24.52488 32.32825 125 0 100.2937 

58 179.8699 237.1012 126 0 178.1274 

59 263.6699 347.5649 127 0 26.1646 

60 110.3763 145.4961 128 0 91.5734 

61 467.5 616.25 129 0 266.3954 

62 270.8395 357.0157 130 0 41.62426 

63 401.5 529.25 131 0 291.3636 

64 348.0761 458.8276 132 0 352.5436 

65 98.27833 129.5487 133 0 371.5778 

66 98.27833 129.5487 134 0 277.4892 

67 122.8492 161.9376 135 0 317 

68 208.8444 275.2949    
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Table B.2 Lengths of feeder sections (km).  

Sections 
𝑙𝑖𝑗  

Sections 
𝑙𝑖𝑗 

Sections 
𝑙𝑖𝑗 

𝑖 𝑗 𝑖 𝑗 𝑖 𝑗 

1 2 0.4106 43 44 0.00472 86 202 0.83536 

1 201 0.83536 43 52 0.17463 87 88 0.11799 

2 3 0.28789 44 45 0.9209 87 89 0.02359 

3 4 0.08019 45 108 0.53541 89 90 0.42476 

4 5 0.58895 46 47 0.16046 90 91 0.87545 

5 6 0.1537 46 129 0.97444 91 92 0.48117 

6 7 0.44974 47 48 0.33037 92 93 0.64249 

6 8 0.96991 48 49 0.15574 93 94 0.1537 

8 9 0.16708 49 50 0.28789 94 106 0.02831 

8 10 0.56753 50 101 0.64249 94 110 1.633 

10 11 0.08019 51 101 0.87807 95 96 0.64249 

10 12 0.33196 52 53 1.40097 95 202 0.39173 

10 13 0.83536 53 54 0.40089 96 97 0.02831 

11 121 1.1516 53 57 0.11327 97 98 1.0525 

13 14 0.00472 54 55 0.06607 97 99 0.17214 

13 15 0.56162 55 56 0.15102 99 100 1.1044 

15 16 0.27374 56 107 1.2207 100 128 0.11327 

15 120 0.3328 57 58 0.07551 101 102 0.55651 

15 121 0.35001 58 59 0.05191 102 103 1.05191 

16 120 0.62108 59 104 1.213 103 203 0.29733 

17 18 0.21238 60 61 0.27374 104 105 0.59966 

17 201 0.07949 60 202 0.00472 105 122 0.24542 

18 19 0.33509 61 62 0.28912 106 107 0.29733 

19 20 0.41434 62 63 0.47116 107 122 0.34924 

20 21 0.80312 63 64 0.56753 107 125 1.10855 

20 22 0.4578 64 65 0.37479 108 109 0.23125 

22 23 0.34266 65 131 0.53541 108 122 0.40588 

22 24 0.06135 65 133 0.81176 108 203 2.4168 

24 25 0.11327 66 67 0.23558 109 110 0.53462 

25 26 0.04719 66 202 0.56169 111 112 0.56136 

26 27 0.16306 67 68 0.34924 112 113 0.41434 

27 28 0.03341 68 69 0.01887 113 114 0.916562 

28 29 0.21416 69 70 1.67962 114 123 1.702315 

28 31 0.44974 70 71 0.96279 115 116 0.276255 

29 30 0.08019 71 72 0.83064 115 129 0.90413 

30 113 0.61037 72 73 0.82592 116 117 1.254929 

31 32 0.10708 72 119 0.36812 117 118 0.862264 

31 123 0.07459 74 75 0.42948 118 130 0.555482 

32 33 0.47116 74 202 0.25014 119 120 0.641857 
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33 34 1.12849 75 76 0.63178 121 132 0.964302 

35 36 0.30741 76 77 0.14631 123 124 0.581637 

35 201 0.19351 76 78 0.79241 124 125 0.357121 

36 37 0.10692 78 79 1.1565 126 127 1.358272 

36 38 0.37424 78 80 0.16991 126 203 1.1469 

38 39 0.25958 80 81 1.3992 127 128 0.359297 

39 40 0.41762 80 82 0.02831 130 203 1.751 

39 46 0.29983 82 83 1.8359 132 133 0.307052 

40 41 0.08015 83 84 0.56634 133 134 0.452773 

41 42 0.83536 84 85 0.52388 134 135 0.560965 

42 43 0.29733 85 111 0.3115    

42 51 3.1323 86 87 0.33981    
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