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Abstract

In statistics, p dimensional data are collected n times. Traditionally, the dimension of

p would be larger than n; however, as technology progresses, we enter the era of big data

where n is no longer much larger than p. The large ratio of
p

n
causes pitfalls in methods and

algorithms that were developed with the opposite in mind. To solve this problem, methods

using random matrix theory were brought up in [4], this thesis will be focusing on results

concerning the Marchenko-Pastur Law.

This thesis is not a cutting-edge research, but an organized presentation of the Marchenko-

Pastur Law. This is written so students and researchers can quickly grasp the ideas and

methods without difficulty.
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Introduction

The main objective of this thesis is to study the Marchenko-Pastur Law. In 1967, Ukrainian

mathematicians V.A. Marchenko and L.A. Pastur proved the Marchenko-Pastur Law, which

describes the asymptotic behavior of eigenvalues of large sample covariance random matrices

in their paper [6]. This thesis is not a cutting-edge research, but instead, provides a detailed

proof for people studying the Marchenko-Pastur Law to understand the theorem and its

proof.

Our proof of the Marchenko-Pastur Law in Chapter 2 roughly follows the one for Wigner’s

Semicircle Law in the book [7]. In fact, our approach has been listed as a series of exercises

in [7], however, the complete solutions to these exercises are not provided in [7].

This thesis is organized into three chapters:

• Chapter 1 introduces definitions involving random matrices and the problem of the

loss of matrix norm equivalence that we encounter in large rectangular matrices, which

motivates our use of the Marchenko-Pastur Law.

• Chapter 2 introduces the Marchenko-Pastur Law. Before proceeding to the proof,

further definitions and theorems are introduced to be used. The proof is further broken

up into three sections: convergence in moments, limit distribution, and convergence in

distribution.

• Chapter 3 concludes by elaborating the applications of the Marchenko-Pastur Law and

additional resources for further reading.
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1 The loss of equivalence between matrix

norms

1.1 Motivating the Marchenko-Pastur Law

We begin by introducing the matrix norm and its properties.

Definition (Matrix Norm). The matrix norm is the norm on the space of N ×N complex

or real matrices (MN(C) or MN(R)) denoted by || · || that satisfies the following:

• ||A|| ≥ 0.

• ||A|| = 0 → A = 0 ∈ MN(C) or MN(R).

• ||A+B|| ≤ ||A||+ ||B|| (Triangle inequality).

Example 1.1.1. Let A = [aij]N×N , aij ∈ C. Taking the 1-norm, we have

||A||1 =
∑
ij

|aij|.

Taking the p-norm, 1 ≤ p ≤ ∞, we have

||A||p =

(∑
ij

|aij|p
)1/p

.

Taking the infinity norm, we have

||A||∞ = max
i,j

|aij|.

Taking the operator norm of we have

||A|| = max
{
|Ax| : x ∈ CN ,with |x| = 1

}
.
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Similarly, taking the operator norm of A ∈ MN(R), we have

∥A∥ = max
{
|Ax| : x ∈ RN with |x| = 1

}
.

Proposition 1.1.1. (matrix norm equivalence on finite dimension). If || · ||(1) and || · ||(2)

are two matrix norms on MN(C), then there exist constants c1, c2 > 0 such that

c1||A||(1) ≤ ||A||(2) ≤ c2||A||(1) ∀A ∈ MN(C).

Proof. Given A ∈ MN(C) with A ̸= 0, one has

||A||(2) = ||A||(1) · ||A||
(2)

||A||(1)

= ||A||(1) ·
∥∥∥∥ A

||A||(1)

∥∥∥∥(2)
≤ ||A||(1) · sup

B ̸=0

∥∥∥∥ B

||B||(1)

∥∥∥∥(2)
= ||A||(1) · sup

C:∥(1)=1

∥C∥(2)

= ||A||(1) · max
C:∥C∥(1)=1

∥C∥(2),

where maxC:∥C∥(1)=1 ∥C∥(2) < ∞ because the set
{
C ∈ MN(C) : ∥C∥(1) = 1

}
is a compact set

and the map C 7→ ∥C∥(2) is a continuous function. Thus, one can take the constant

c2 = max
C:∥C∥(1)=1

∥C∥(2).

Likewise, the constant c1 can be chosen as maxC:∥C∥(2)=1 ∥C∥(1)

Remark. If c1||A||(1) ≤ ||A||(2) ≤ c2||A||(1) ∀A ∈ MN(C) then a sequence An ∈ MN(C)

converges to the zero matrix under || · ||(1) if and only if An → 0 under || · ||(2).

In statistics, when given random variables X, Y with finite mean and variance, we can

say X, Y : Ω → R(or C) are Borel measurable in probability space (Ω,F , P r).

Assume the expectations of X and Y , denoted by E[X] and E[Y ] (abbreviated as EX
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and EY for convenience) and variances of X and Y denoted by V ar(X) and V ar(Y ) converge

as Lebesgue integrals

EX =

∫
Ω

XdPr,

EY =

∫
Ω

Y dPr

V ar(X) = E[(X − EX)2] =

∫
ω∈Ω

(X(ω)− EX)2dPr(ω),

V ar(Y ) = E[(Y − EY )2] =

∫
ω∈Ω

(Y (ω)− EY )2dPr(ω)

Definition (covariance). The covariance between random variables X and Y , denoted by

Cov(X, Y ), is defined as:

Cov(X, Y ) = E[(X − EX)(Y − EY )] for X, Y : Ω → R

or

Cov(X, Y ) = E[(X − EX)(Y − EY )] for X, Y : Ω → C

Definition (Covariance Matrix). X is a random vector on Rp if and only if X is a Borel

measurable function on R.

We can write

X =


x1

x2

...

xp


where each xi : Ω → R is a real-valued random variable.

The covariance matrix CX of random vector X is defined as

CX = [cij]p×p

where cij = Cov(xi, xj) = E[(xi − Exi)(xj − Exj)].

Remark. 1. By definition, cov(xi, xj) = cov(xj, xi), meaning cij = cji ∀i, j, which implies

that C is symmetric (C = CT ) in the real case, or self-adjoint in the complex case. Because
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of this, the spectral theorem applies to C.

2. Let b =


b1

b2
...

bp

 ∈ Rp and X =


x1

x2

...

xp

 be a random vector on Rp, then

bTX =
[
b1 b2 . . . bp

]

x1

x2

...

xp

 =

p∑
j=1

bjXj,

is a real-valued random variable.

Calculating the variance of bTX, we get:

V ar(bTX) = E

{ p∑
j=1

bjxj − E

(
p∑

j=1

bjxj

)}2


= E

[{∑
j

bj(xj − Exj)

}{∑
i

bj(xi − Exi)

}]

= E

[∑
i,j

bibj(xi − Exi)(xj − Exj)

]

=
∑
i,j

biCov(xi, xj)bj

=
[
b1 b2 . . . bp

]
CX


b1

b2
...

bp


= bTCXb,

which is the quadratic form associated with the matrix CX .

By our assumptions earlier,

V ar(bTX) =

∫
Ω

(bTX − EbTX)2dPr ≥ 0
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This shows that bTXb ≥ 0∀ b ∈ Rp, meaning the covariance matrix is positive semidefinite. If

bTCXb = 0 for some b ∈ Rp, then V ar(bTX) = 0 meaning bTX
∑p

j=1 bjxj = 0 almost surely

(i.e. there exists a set in Ω where E ⊂ Ω, P r(E) = 0 and
∑p

j=1 bjxj(ω) = 0 ∀ω ∈ Ω \ E).

Meaning random vector X is ”degenerate” (its distribution is supported on the hyper plane∑p
j=1 bjtj = 0 if one parameterizes Rp = {(t1, t2, . . . , tp) : t1, . . . , tp ∈ R}).

3. All eigenvalues of C are positive λ1 < λ2 < · · · < λp, with eigenvectors v1, v2, . . . , vp

forming an orthonormal basis on Rp. Any unit vector x ∈ Rp, x =
∑p

j=1 αjvj, with the

operator norm of C, denoted by || · ||, we have:

||Cx|| = ||
∑

αjCvj|| ≤ λ1|α1|+ λ2|α2|+ · · ·+ λp|αp|

< λp|α1|+ λp|α2|+ · · ·+ λp|αp|

= λp

∑
|αj|

≤ λp||x||Rp ,

which implies that ||C|| ≤ λp, the maximum eigenvalue.

Conversely, ||Cvp|| = λp implies that ||C|| = λp.

We continue with an example in big data analysis. Let p ≈ ∞. We may also say p is

large.

Definition (Gaussian/Normal Density). Given C ∈ Mp(R), where C is symmetric (CT =

C) and positive definite, bTCb > 0 ∀ b ̸= 0 and µ ∈ Rp. Define the Gaussian density function

for all t = (t1, t2, . . . , tp) ∈ Rp

0 < fµ,C(t) =
1

(2π)p/2
1√
detC

ex

(
−1

2
(t− µ)C−1(t− µ)

)

In the case that µ = 0 ∈ Rp and C is the identity matrix Ip ∈ Rp, the function f0,C is called

the standard Gaussian density function.

Properties. 1. fµ,C is integrable over Rp with respect to the Lebesgue measure dt1dt2 . . . dtp

on Rp and ∫
Rp

fµdt1dt2 . . . dtp = 1
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2. The Borel probability measure γµ,C on Rp defined by

γµ,C(E) =

∫
E

fµ,Cdt1dt2 . . . dtp,∀ Borel measurable E ⊂ Rp

is called the Gaussian (normal) distribution on Rp.

3. In the case that p = 1, for µ ∈ R, C > 0,

γµ,C(E) =

∫
E

1√
2π

1√
C

exp

(
(t− µ)2

2C

)
dt,∀ Borel measurable E ⊂ R.

Definition (Standard Gaussian/Normal Distribution). A random vector

X =


x1

x2

...

xp

 : (Ω, P r) → Rp

is said to be a Gaussian random vector (said to have Gaussian distribution with mean µ and

covariance C) if

Pr({ω ∈ Ω : x(ω) ∈ E}) = γµ,C(E) ∀ Borel measurable E ⊂ Rp.

Remark. If a random vector X =


x1

x2

...

xp

 has standard Gaussian distribution, then x1, x2, . . . , xp

are independently, identically distributed (i.i.d.) with γ0,1 as the common distribution on R.

That is, ∀ 1 ≤ i ≤ p,

Pr({ω ∈ Ω : xi(ω) ∈ E}) = γ0,1(E) =

∫
E

1√
2π

et
2/2dt

holds for all Borel sets E ⊂ R.
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1.2 The Large Dimension Paradox: The loss of matrix

norm equivalence

In a statistical problem, people believe the underlying distribution is Gaussian γ0,C with

covariance C ∈ MP (R). It would be of some interest to estimate C. We will do that by

”collecting data” through using realizations of X(ω) for some ω ∈ Ω.

Theorem 1.2.1 (Strong Law of Large Numbers (SLLN)). (See Thm 22.1 in [3]) Suppose

that y1, y2, . . . are i.i.d. real-valued random variables on a probability space Ω, and assume

that they have finite mean E[y1]. Then
1

n

∑
yi(ω) −−−→

n→∞
E[y1] holds for almost all ω ∈ Ω.

To estimate C, we take x1, x2, . . . , xn i.i.d. random vectors with a common distribu-

tion γ0,C , that is, Pr(xj ∈ E) = γ0,C(E) for all Borel sets E ∈ RP . Then we form a sample

covariance matrix

Ĉ =
1

n
XXT =

1

n

n∑
j=1

xjx
T
j .

Here we let X = [X1X2 . . . Xn] = [xij] where Xj =


x1j

x2j

...

xpj

.

Then,

1

n
XXT =

1

n
[xij][xji]

=
1

n
[Ĉij],

where

Ĉij =
n∑

k=1

xikxjk.
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Example 1.2.1. Calculating Ĉ11, we get:

Ĉ11 = x11x11 + x12x12 + x13x13 + · · ·+ x1nx1n

= x2
11 + x2

12 + x2
13 + · · ·+ x2

1n

which is a sum of i.i.d. real-valued random variables.

Given Borel set E ⊂ R

Pr(x11 ∈ E) = E[ϕ(x1)] where ϕ = IE × IR × IR × · · · × IR

= E[ϕ(xj)].

Example 1.2.2. Calculating Ĉ21, we get:

Ĉ21 = x21x11 + x22x12 + · · ·+ x2nx1n,

which is a sum of i.i.d. random variables by our assumption.

In general, SLLN can be applied when we fix the variable P .

1

n
Ĉij(ω) −−−→

n→∞
E[xikxjk]

i.i.d.
= E[xi1xj1]

=Cov(xi1, xj1)

def
=Cij

for almost all ω ∈ Ω.

In conclusion, we have the almost-sure entry-wise convergence of Ĉ −−−→
n→∞

C when p is

fixed. In particular, any matrix norm of Ĉ − C tends to zero almost surely as n → ∞,

including the operator norm || · ||. In other words, ||Ĉ − C|| −−−→
n→∞

0 holds for almost all

ω ∈ Ω.

In big data analysis, p is as large as n (the number of random trials to estimate C) [4]. The

main issue arises when n, p → ∞ with
p

n
→ c ∈ (0,∞), the operator norm approximation

fails. For the remainder of this section, we assume c > 1.

Theorem 1.2.2. (Corollary 1, Sec. 1.5 [1]) Let A be a Banach algebra with unit, then
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the set of all invertible elements in A forms an open set under norm topology. Precisely, if

x0 ∈ A is invertible, then there exists ϵ0 > 0 so that every x satisfying ||x − x0|| < ϵ0 is

invertible.

We refer to [1] for a proof of the above theorem.

Proof. Note: Mp(R) is a Banach algebra with the unit Ip under the operator norm || · || and

the usual matrix multiplication.

Suppose, in order to derive a contradiction, that

lim
n,p→∞
p/n→c

||Ĉ(ω)− C|| = 0,

then by Theorem 1.2.2, the invertibility of C implies that Ĉ(ω) must also be invertible for

large n and p.

Note the fact that Xj is Gaussian implies that Xj has absolutely continuous distribution,

meaning Pr(Xj = 0) = 0. Thus,

Xj(ω) =


x1j(ω)

x2j(ω)
...

xpj(ω)

 ̸=


0

0
...

0

 ∈ Rp for almost all ω ∈ Ω.

Say, some xij(ω) ̸= 0 for some i ∈ [p] = {1, 2, . . . , p}, then

Xj(ω)Xj(ω)
T =



x1j(ω)xj(ω)
T

x2j(ω)xj(ω)
T

...

xij(ω)xj(ω)
T

...

xpj(ω)xj(ω)
T


has rank 1.

Then

Ĉ(ω) =
1

n

n∑
j=1

xj(ω)xj(ω)
T

10



has at most rank n. However, since
p

n
→ c > 1, we know p > n for sufficiently large p, n, by

the Rank Nullity Theorem, the rank of Ĉ(ω) is at least p− n ≥ 1, meaning Ĉ(ω) cannot be

invertible for large p and n, creating a contradiction. Thus, Ĉ is not a good estimator for C

and the operator norm approximation fails.

Moreover, as stated in [4], due to the concentration inequalities of Gaussian entries, the

entry-wise approximation Ĉij(ω) → Cij holds as n → ∞ uniformly in p so any matrix norm

approximation still holds in this case. The failure of the operator norm approximation im-

plies the matrix norm is not equivalent to the operator norm in this case. In view of this, it

is natural to ask:

Is there any controllable asymptotic behavior for the sample covariance matrix Ĉ?

We will continue this discussion in the next chapter with the introduction of the Marchenko-

Pastur Law.
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2 Marchenko-Pastur Law for sample

covariance matrix of Gaussian entries

Let X denote a rectangular p× n random matrix of standard complex Gaussian entries.

The Marchenko-Pastur Law for the sample covariance matrix Ĉ =
1

p
XX∗ (where X∗ denotes

the conjugate transpose of X) is the following limit theorem concerning the arranged eigen-

values of Ĉ :

Theorem 2.0.1 (Marchenko-Pastur Law). (From [6]) Denote by λ1, λ2, . . . , λp the ran-

dom eigenvalues of Ĉ, then as n, p → ∞ with
p

n
→ c ∈ (0,∞), the averaged eigenvalue

distribution denoted by

µĈ = E

[
1

p

p∑
j=1

δλj

]

converges weakly to a deterministic, absolutely continuous Borel probability measure γc,

defined by the density

(
1− 1

c

)+

δ0 +
1

2πcX

√
(x− 1)(b− x),

where a = (1−
√
c)2, b = (1 +

√
c)2 and (x)+ = max{X, 0}.

We consider the sample covariance matrix of more general complex Gaussian entries, the

result of the real Gaussian entries can be shown in the same way. In Chapter 3, we will

discuss the Marchenko-Pastur Law for general entries, not necessarily Gaussian, as well as

the stronger, almost-sure convergence of the eigenvalue distribution.
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2.1 Preliminaries

2.1.1 Non-crossing Partitions and Permutations

Definition (Non-crossing partitions). (From [7]) Let π be a partition of [n]. If we can find

i < j < k < l such that i and k are in one block V and j and l are in another block W of

π, we say V and W cross. If no pair of blocks of π cross, then we say π is non-crossing. We

denote the set of non-crossing partitions of [n] by NC(n). The set of non-crossing pairings

of [n] is denoted NC2(n).

Definition (Permutations). (From [8]). Denote by Sn the symmetric group of permutations

of {1, . . . , n}

Proposition 2.1.2. (Proposition 23.11 of [8]) For σ ∈ Sn, |σ|+#(σ) = n.

Proposition 2.1.3. (Proposition 23.22 of [8] and [2]) If γ denotes the permutation

(1 2 3 . . . k) then #(γσ) + #(σ) = k − 1 ⇐⇒ σ ∈ NC(k)

2.1.2 Wick’s Formula

Recall the fact that Z is a standard complex Gaussian random variable if and only if

Z =
1√
2
X + iY,

where X, Y are independent real standard Gaussian random variables, so

E[Z] = 0

and

E[ZZ̄] =
E[X2]E[Y 2]

2
= 1.

The joint distribution of X, Y is the probability measure γ0,C where the covariance matrix

C =

12 0

0
1

2

.
13



For m,n ∈ N

E[ZmZ̄n] =

∫
R2

(s+ it)m(s− it)
1

π
exp

(
−�2(s2 + t2)

�2

)
dsdt

=
1

π

∫ 2π

0

ei(m−n)θdθ

=

∫ ∞

0

rm+n+1e−r2dr

=

0 if m ̸= n.

m! if m = n.

For mixed moments of general Gaussians, we have

Theorem 2.1.1 (Wick’s Formula). (Corollary 2, Section 1.5 of [7]) Suppose (X1, . . . , Xn)

is a complex Gaussian random vector then

E(Xϵ1
i1
. . . Xϵk

ik
) =

∑
π∈P2(k)

Eπ(X
ϵ1
i1
, . . . , Xϵk

ik
)

for all i1, . . . , ik ∈ [n] and all ϵ1, . . . ϵk ∈ {0, 1}; where we have used the notation X
(0)
i := Xi

and X
(1)
i := Xi.

Applying Wick’s formula to independent standard complex Gaussians, we have the fol-

lowing results (see [7]):

Proposition 2.1.4. (Exercise 7 of [7])

If Z1, Z2, . . . , Zs are independent, standard complex Gaussian random variables with E[Zj] =

0 and E[|Zj|2] = 1, then

E[Zi1Zi2 . . . ZimZ̄j1Z̄j2 . . . Z̄jn] =

0 if m ̸= n

#{σ ∈ Sn : i = j ◦ σ} if m = n

Proof. (exercise 6 on Part 5 of [7])

The balance condition in proposition 2.1.4 shows that each Zi has to be paired with some

Z̄j. In other words if m ̸= n, then the expression equals 0.

14



When m = n, Wick’s formula shows:

E[∗] =
∑

π∈P2(m+n)
π pairs ZiwithZ̄j

∏
(r,s)∈π

E[ZirZ̄js]

=
∑

π∈P2(m+n)
π pairs ZiwithZ̄j

1

= #{all such π}

Every such π determines a unique permutation σ ∈ Sn as follows:

Zi1 −→Zjσ(1)

Zi2 −→Zjσ(2)

...

Zin −→Zjσ(n)

Thus σ satisfies i = j ◦ σ on [n] = {1, 2, . . . n}.

Conversely, if σ ∈ Sn satisfies i = j ◦ σ, then we write out π as follows:

Zi1Zi2 . . . Zik . . . ZinZj1Zj2 . . . Zjσ(k)
. . . Zjn

Thus, E[∗] = #{all such π} = #{σ ∈ Sn : i = j ◦ σ}

2.1.3 Free Cumulants and Cauchy Transform

Definition (Free cumulants and the moment-cumulant formula). (Definition 8, Section

2.2 of [7]). Let (A, ϕ) be a non-commutative probability space. The corresponding free

cumulants denoted by κn : An → C(n ≥ 1) are defined inductively in terms of moments by

the moment-cumulant formula:

ϕ(a1 . . . an) =
∑

π∈NC(n)

κπ(a1, . . . , an)

where, by definition, if π = {V1, . . . , Vr}, then

κπ(a1 . . . an) =
∏
V ∈π

V=(i1...il)

κl(ai1 , . . . ail)

15



Definition (The case when a1 = a2 = · · · = an = a ). (2.16 of [7])

ϕ(an) =
∑

π∈NC(n)

κa
π =

∏
π=V1∪···∪Vr

κ|Vj |(a, a, . . . , a)

Remark. If a, b are free, then the free cumulant is additive:

κa,b
n = κa

n + κb
n ∀n.

Proposition 2.1.5. (Section 17 section 2.4 of [7]) The relation between the moment series

M(z) and the cumulant series C(z) of a random variable is given by

M(z) = C(zM(z)).

Assume ϕ(an) =
∫
R t

ndµ(t),∀n = 1, 2, . . . , where µ is a probability measure on R, uniquely

determined by its moments, then

Ga(z) =

∫
R

1

z − t
dµ(t), z = x+ iy, y > 0

is called the Cauchy transform of µ.

Properties. Let v be a probability measure on R with Cauchy transform G.

1. (Lemma 3, Chapter 3 of [7])

lim
y→∞

iyG(iy) = 1

and

sup
y>0,x∈R

y|G(x+ iy)| = 1.
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2. (Theorem 6, Chapter 3 of [7]) For a < b we have

− lim
y→0+

1

π

∫ b

a

ℑ(G(x+ iy))dx = v((a, b)) +
1

2
v({a, b}).

If v1 and v2 are probability measures with Gv1 = Gv2 , thenv1 = v2.

3. (Proposition 8, Chapter 3 of [7]) For all a ∈ R we have

lim
z→a

(z − a)G(z) = v({a}).

2.1.4 The Method of Moments

Theorem 2.1.2 (Theorem 30.2 of [3]). Let µ, µn, (n ∈ N) be probability measures on R.

Assume that µ is uniquely determined by its moments, and

lim
n→∞

∫
R
tkdµn(t) =

∫
R
tkdµ(t),∀k = 1, 2, 3, . . .

then µn converges weakly to µ as n → ∞.

2.2 Proof of the Marchenko-Pastur Law

2.2.1 Convergence in Moments

Recall X = [Zij]p×n is a rectangular random matrix with independent standard complex

Gaussians Zij. First, we will investigate
1

p
XX∗ = Y . Let λ1, λ2, . . . , λp be the random

eigenvalues of Y and set tr(A) =
1

p
Tr(A)∀A ∈ Mp(C). The average eigenvalue distribution

is

µY = E

[
1

p

p∑
j=1

δλj

]

17



By the spectral theorem, we have the k-th moment∫
R
tkdµY (t) = E[tr(Y k)]]

=
1

pk+1
E[Tr(XX∗XX∗ . . . XX∗︸ ︷︷ ︸

2k terms

)]

= p−(k+1)
∑

i:[k]→[p]

j:[k]→[n]

E[Zi1j1Zi2j1Zi2j2Zi3j2 . . . ZikjkZi1jk ]︸ ︷︷ ︸
(∗)

Let γ denote the one-cycle permutation (1 2 3 . . . k). Then

(∗) = E[Zi1j1Zi2j2 . . . ZikjkZi2j1Zi3j2 . . . Zi1jk ]

= card{σ ∈ Sk : each iljl pairs with a unique iσ(l)+1jσ(l) = iγ(σ(l))jσ(l) via σ}

In other words, we have to count all such σ ∈ Sk through the conditions: i = i◦(γσ), j = j◦σ

on the set [k] = {1, 2, . . . , k}. We conclude from the conditions that i must remain a constant

on each cycle of γσ and so does j on each cycle of σ.

Since there are p#(γσ) many i’s and n#(σ) many j’s, we obtain

mk

∫
R
tkdµY (t) = p−(k+1)

∑
σ∈Sk

p#(γσ) · n#(σ)

=
∑
σ∈Sk

p#(γσ)−k−1+#(σ) ·
(
n

p

)#(σ)

Now, recall the assumptions: n, p → ∞,
p

n
→ c > 0 ⇒ n

p
→ 1

c
= d > 0. Note that it is easy

to see from proposition 2.1.3 that #(γσ) + #(σ) ≤ k + 1 and the equality holds if and only

if σ ∈ NC(k). So in the limit n, p → ∞ with
n

p
→ d > 0, we conclude the convergence of

the k-th moment mk →
∑

σ∈NC(k) d
#(σ).

In the next subsection, we will identify this limit as the k-th moment of a probability measure

on R.

2.2.2 Limit Distribution

In the previous section, we proved that k-th moment converges mk →
∑

σ∈NC(k) d
#(σ). If

we take a non-commutative random variable x with constant free cumulants κx
n = d for

n = 1, 2, . . . , then the moment-cumulant formula shows that ϕ(xk) =
∑

σ∈NC(k) d
#(σ). Thus,
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we have the R-transform of x given by Rx(z) = d + dz + dz2 + · · · = d

1− z
= G−1

x (z) − 1

z
,

which further implies that

G−1
x (z) =

d

1− z
+

1

z
=

dz + 1− z

z − z2
.

It follows that the Cauchy transform is either

Gx(z) =
z − (d− 1) +

√
[z − (d− 1)]2 − 4z

2z

or

Gx(z) =
z − (d− 1)−

√
[z − (d− 1)]2 − 4z

2z

where the branch of the square root is chosen as follows:

√
z =

√
reiθ/2 for z = reiθ, θ ∈ [0, 2π).

By property (1) on the Cauchy transform in subsection 2.1.3, the correct form of Gx is given

by

Gx(z) =
z − (d− 1)−

√
[z − (d− 1)]2 − 4z

2z

for z in the upper half-plane.

Note that

[z − (d− 1)]2 − 4z = z2 − 2(d− 1)z + (d− 1)2 − 4z

= z2 − 2(d+ 1)z + (d+ 1)2 − 4d

= [z − (d+ 1)]2 − 4d.

Therefore, we have

Gx(z) =
z − (d− 1)−

√
(z − a)(z − b)

z

provided that a = (d+ 1)− 2
√
d = (

√
d− 1)2 and b = (d+ 1) + 2

√
d = (

√
d+ 1)2.

Note that Gx is precisely the Cauchy transform of the free Poisson distribution with param-

eter d.

Recall that Y =
1

p
XX∗ and

E[tr(Y k)] −−−−−→
n,p→∞

p/n→c>0

ϕ(xk) =

∫
R
tkdµd(t),
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then the k-th moment of Ĉ =
1

n
XX∗:

E[tr(Ĉk)] = E[tr((
p

n
Y )k)]

=
(p
n

)k
E[tr(Y k)] −−−−−→

n,p→∞
p/n→c>0

ckϕ(xk)

= ck
∫
R
tkdµd(t)

=

∫
R
(ct)kdµd(t)

=

∫
R
tkdνc(t)

where νc denotes the pushforward measure of the free Poisson law µd via the transformation

T (t) = ct, t ∈ R, and νc is precisely the distribution of the dilation cx.

Note that the Cauchy transform of cx satisfies

Gcx(z) =
1

c
Gx

(z
c

)
,∀ℑz > 0.

Thus by properties (2), (3) on Cauchy transform, we have:

1. νc({0}) > 0 ⇐⇒ c > 1, meaning νc({0}) = 1− 1

c

2. The support of νc is the interval [A,B] where A = ca = (1−
√
c)2, B = cb = (1+

√
c)2.

3. Denote by m the Lebesgue measure on R. The density νc is given by the dilation

dνc
dm

(t) =
1

c

dµd

m

(
t

c

)
for m-almost all t ∈ R.

In summary, we have

dνc(t) =

(
1− 1

c

)+

δ0 +

√
(t− A)(B − t)

2πct
dt for t ∈ [A,B]

.

2.2.3 Convergence in Distribution

Denote by µn the averaged eigenvalue distribution of Ĉ =
1

n
XX∗. We have shown that µn

converges in moments to νc as n, p → ∞ with
p

n
→ c.
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We will now show that µn converges weakly to νc. In order to apply the method of moments,

we need to show that νc is uniquely determined by its moments. Quoting from Theorem 30.1

of [3] and Lemma 3.2.6 of [5] as follows:

Theorem 2.2.1 (Theorem 30.1 of [3] and Lemma 3.2.6 of [5]). If µ is a Borel Probability

measure on R such that
∫
R |t|

kdµ(t) < ∞∀k = 1, 2, . . . and the power series
∑∞

k=1

αk

k!
rk has

the radius of convergence R =
1

limsup
k

√
|αk|
k!

> 0, where αk

∫
R t

kdµ(t), then µ is uniquely

determined by its moments.

Applying this to νc, we have

k
√
k! ≥ 1, k = 1, 2, . . .

and

k

√∣∣∣∣∫
R
tkdνc(t)

∣∣∣∣ = k

√∫ B

A

tkdνc(t) ≤
k
√
Bk = B

and hence,

lim sup
k→∞

k

√
|αk|
k!

≤ B,

thus the radius of convergence is

R =
1

lim sup
k

≥ B > 0.

So, νc is uniquely determined by its moments and theorem implies µn ⇒ νc.
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3 Further discussion

First, concerning the stronger, almost-sure convergence of the Marchenko-Pastur Law,

Marchenko and Pastur actually show in the original result from [6] that the law also holds

for entries with zero mean and finite variance (with minor moment conditions), not necessarily

Gaussian entries.

Secondly, the law in fact holds almost surely for the ”un-averaged” eigenvalue distribution
1

p

∑p
j=1 δλj

with the same limit law νC .

For these general results, we quote Theorem 2.4 from the book [4] as follows:

Theorem 3.0.1 ((Theorem 2.4 of [4]). Let X ∈ Rp×n with i.i.d. columns xi such that

xi has independent entries with zero mean, unit variance, and some light tail condition and

denote the resolvent of
1

n
XXT as

Q(z) =

(
1

n
XXT − zIp

)−1

.

Then as n, p → ∞ with p/n → c ∈ (0,∞),

Q(z) ↔ Q(z), Q(z) = m(z)Ip

with (z,m(z)) the unique solution in Z(C \ [(1−
√
c)2, (1 +

√
c)2]) of

zcm2(z)− (1− c− z)m(z) + 1 = 0.

The function m(z) is the Stieltjes transform of the probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+(E+ − x)+dx

where E± = (1 ±
√
c)2 and (x)+ = max(0, x), and is known as the Marchenko Pastur

distribution. In particular, with probability one, the empirical spectral measure µ 1

n
XXT

converges weakly to µ.

One can even go beyond measures with finite variance, see [4] and the references therein.
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[6] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random
matrices. Mat. Sb. (N.S.), 72(114):507–536, 1967.

[7] James A. Mingo and Roland Speicher. Free probability and random matrices, volume 35
of Fields Institute Monographs. Springer, New York; Fields Institute for Research in
Mathematical Sciences, Toronto, ON, 2017.

[8] Alexandru Nica and Roland Speicher. Lectures on the combinatorics of free probability,
volume 335 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 2006.

23


	Permission to Use
	Abstract
	Contents
	The loss of equivalence between matrix norms
	Motivating the Marchenko-Pastur Law
	The Large Dimension Paradox: The loss of matrix norm equivalence

	Marchenko-Pastur Law for sample covariance matrix of Gaussian entries
	Preliminaries
	Non-crossing Partitions and Permutations
	Wick's Formula
	Free Cumulants and Cauchy Transform
	The Method of Moments

	Proof of the Marchenko-Pastur Law
	Convergence in Moments
	Limit Distribution
	Convergence in Distribution


	Further discussion
	References

