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ABSTRACT 

The environmental impact of bitumen mining in the Athabasca region of Canada is of growing 

concern. Among these concerns is the need and difficulty to remediate and reclaim affected land, 

including tailing sands (TS), a byproduct of the hot water extraction used to separate bitumen 

from solid materials. Current reclamation methods consist of multiple steps and take several 

decades to be effective. The primary reason for the difficulty in reclaiming disturbed land is the 

harsh environment found within the TS combined with the scale of the problem. TS are 

extremely nutrient poor, having below-detectable levels of NPK and extremely low C and S. In 

addition to this TS have pHs outside of environmental normals, and are hydrophobic due to 

residual hydrocarbons. Previously, an endophytic fungus, Trichoderma harzianum strain 

TSTh20-1, was isolated from pioneer plants growing naturally on TS sites, and was found to 

promote plant growth on TS. In my study TSTh20-1 was also found to increase the rate of 

drought recovery, and to enhance seed germination rates on a variety of soils. Suitable 

application methods were explored for this endophyte, including seed coatings, granules, as well 

as direct application to plant/soil. Regardless of method, TSTh20-1 was found to successfully 

colonize the plants.  

Twenty-four species of grasses, forbs, and legumes were tested for their ability to grow 

on TS. The four most successful species (Trifolium repens, Bouteloua gracilis, Medicago sativa, 

and Elymus trachycaulus) were put into a seed mixture for use in experiments. In 

mesocosm-scale experiments, plant health and soil parameters were measured after 2 months of 

growth. Hydrocarbon analysis of the first mesocosm showed a 2.7-fold increase in total 

hydrocarbons when TSTh20-1 and plants were present, suggesting degradation of large 

hydrocarbons beyond the scope of the analysis. A repeat experiment using a different source of 

tailings did not yield this same result. This is most likely due using a source of tailings that had 

substantially different chemical characteristics. TSTh20-1 was also analyzed for its ability to 

produce plant hormones or siderophores, to increase peroxidase enzyme activity, to protect 

plants from reactive oxygen species, and to solubilize phosphate precipitates from soil. All of 

these are known mechanisms microbes use to promote plant growth. 
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1.0. INTRODUCTION 

The research presented in this thesis will characterize aspects of plant growth promotion and oil 

sand tailings bioremediation using a strain of the fungus Trichoderma harzianum,           

TSTh20-1. This is an endophytic plant symbiont that was isolated from a pioneer plant that 

naturally colonized a tailing sands (TS) site (Bao, 2009). TSTh20-1 has good potential for use in 

revegetation of TS and other dry and nutrient-limited soils. Specific study objectives are listed in 

section 1.5. 

 

1.1. Endophytic Fungi 

1.1.1 Endophytic fungi classifications and host ranges  

The vast majority of septate fungal endophytes belong to the phylum Deuteromycetes, 

subphylum Ascomycota, with few belonging to subphylum Basidomycota (Rodriguez et al, 

2008). Fungal endophytes can be divided into 4 classes depending on their function, 

transmission, host range, and colonization patterns, see Table 1.1.1 (Rodriguez et al, 2008). 

Class 1 endophytes are a small group of free-living and symbiotic species, mostly in the 

Clavicipitales (Redman et al, 2009). Their colonization is limited to few cool season grass hosts, 

and they are typically transmitted through the seed (Redman et al, 2009). Class 1 endophytes are 

defensive symbionts that are best known for producing toxins that make the host plant 

unpalatable to grazers (Bacon et al, 1977). The remaining three classes of endophytes include 

numerous fungal species that can colonize a wide range of plant hosts, both monocots and dicots 

(Redman et al, 2009). The fungus examined in this study, Trichoderma harzianum TSTh20-1, is 

a class 2 Ascomycete endophyte (Bao, 2009). Class 2 endophytes possess the ability to colonize 

all parts of the plant and form extensive networks of hyphae within the plant tissue. Class 3 

endophytes form highly localized colonies within above-ground tissue, and conversely class 4 

endophytes are limited to infecting below-ground tissue (Rodriguez et al, 2008). Class 2 

endophytes have been shown to confer habitat-specific stress tolerance to a wide variety of 

abiotic stresses including salt, heat, nutrient, water, and metal stress. Class 2 endophytes can 

confer these tolerances to a wide range of hosts and demonstrate high colonization rates in plants 

growing on stressful environments (Redman et al 1999, 2001, 2002, 2008, 2011; Rodriguez et al, 

2007). Class 2 fungal endophytes may also provide general benefits to the plant in a manner 
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similar to plant growth promoting bacteria, such as hormone production and enhanced nutrient 

uptake. 

 

Table 1.1.1. Criteria used to classify fungal endophytic classes. Adapted from Rodriguez et al 

(2009). 

Criteria Class 1 Class 2 Class 3 Class 4 

Host range Narrow Broad Broad Broad 

Tissue(s) colonized Shoot and 

rhizome 

Shoot, root, and 

rhizome 

Shoot Root 

In planta colonization Extensive Extensive Limited Extensive 

In planta biodiversity Low Low High Unknown 

Transmission Vertical and 

horizontal 

Vertical and 

horizontal 

Horizontal Horizontal 

Fitness benefits NHA NHA and HA NHA NHA 

 

 

1.1.2 Arbuscular Mycorrhizal Fungi (AMF) 

AMF are affiliated with over 80 % of all terrestrial plants, and they are obligate biotrophs 

(Smith and Read, 1997). It is important to note that AMF do not fall within the classification of 

fungal endophytes provided in the previous section. They are a separate and distinctive class of 

organisms. The relationship between AMF and the host plant is mutualistic. The mycobiont 

absorbs mineral nutrients from the soil such as N, P, K, S, as well as micronutrients (Garg et al, 

2006). It is believed that they provide these essential nutrients to the plant in exchange for 

fermentable carbon (Vierheilig et al, 1998; Smith and Read, 1997; Akiyama et al, 2005). 

Colonization of the root system by AMF allows the effective expansion of the rhizoplane to 

beyond what the roots themselves could achieve, leading to enhanced nutrient and water uptake 

(Kraus et al, 1987; Tawaraya et al, 2006). Bao (2009) studied the abundance of AMF present in 

plants (Taraxacum officinale) growing on TS. No difference in the colonization rates or 

abundance of AMF were found between unimpacted and TS sites. Rates of AMF colonization 

between sites was found to be abundant (~75 %) (Bao, 2009). 
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1.2. Class 2 Fungal Endophytes 

1.2.1. Development of class 2 endophyte symbiosis 

 Similar to other endophytes or plant pathogens, class 2 endophytes penetrate plant tissue 

using hyphae or by means of specialized infection structures, such as haustoria (Ernst, 2003). 

Once within the plant tissue, the growth occurs primarily in intercellular spaces with limited 

damage to host cells (Rodriguez, 2008). Sporulation does not occur during active symbiosis, 

however it rapidly occurs through emergence during host senescence (Weber, 2004). The 

endophytes do not place any observable stress onto the host plant (Rodriguez et al, 2008). 

However, the maintenance of colonization of plants by class 2 endophytes appears to be partially 

dependant on stress being present. In a greenhouse study by Redman et al (2011) it was observed 

that only 65 % of plants were colonized under stress free conditions, whereas under stress 

colonization remained at 100 % throughout the 2 month duration of the study. 

 

1.2.2. Culture of class 2 endophytes 

 Class 2 endophytes, unlike AMF (Tawaraya et al, 2006), can easily be cultured from 

sterilized plant parts on growth medium such as potato dextrose agar (Rodriguez et al, 2008; 

Bao, 2009). As a result they can easily be isolated from plants and subsequently purified. Since 

class 2 endophytes generally colonize the entire plant, they can be isolated from any part of the 

plant that has been surface sterilized. To-date no survey of fungal endophytes has been large 

enough to determine if Class 2 endophytes have a preferred location within the rhizosphere or 

whether they consistently extend beyond the rhizosphere (Rodriguez et al, 2009). The abundance 

of Class 2 fungal endophytes within the plant and rhizosphere appears to depend on species and 

likely varies at the strain level (Rodriguez et al, 2008). By this, it is best practice to always 

isolate Class 2 fungal endophytes from plant tissue rather than from rhizosphere soil. 

 

1.2.3. Habitat-adapted symbiosis 

 Class 2 fungal endophytes have been shown to confer a wide range of stress tolerances 

(Rodriguez et al, 2008; Redman et al, 2011). The particular stress tolerances conferred by these 

endophytes is highly dependent on the environment from which they were isolated (Rodriguez et 
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al, 2008). For example, an endophyte isolated from a geothermal environment confers tolerance 

to heat stress but not tolerance to salt stress. Conversely, an endophyte isolated from a saline 

environment confers tolerance to salt stress but not heat stress (Rodriguez et al, 2008). In this 

study it was found that an endophyte isolated from a geothermal environment could not survive 

independently in elevated temperatures, nor could the plant. However, the endophyte and plant 

pairing could survive at elevated temperatures (Redman et al, 2008). Naturally occurring class 2 

fungal endophytes have been isolated from a wide variety of high stress environments, and have 

been able to confer tolerance to each of these environments (Rodriguez et al, 2008; Bao, 2009; 

Redman et al, 2011) 

 

 Class 2 fungal endophytes can have dramatic effects on plant in both stress and non-stress 

conditions. Effects on host growth include, but are not limited to, increased biomass, reduced 

water use, increased reproductive yield, and greater resistance to pathogens (Bailey et al, 2006; 

Bao, 2009; Redman et al, 2011).  

 

1.2.4. Potential mechanisms of host benefits 

 The mechanism(s) by which fungal endophytes confer habitat-specific stress tolerance 

has not been elucidated. It is likely that the method of stress mitigation is dependent on the type 

of stress. In their study of an endophyte that conferred thermal tolerance to plants, Marquez et al 

(2007) observed that the particular fungal endophyte contained a viral partner. When the viral 

partner was removed from the endophyte by freezing, the fungus lost its ability to confer heat 

tolerance to the plant. When the virus was reintroduced the fungus could once again confer this 

thermal tolerance to the host plant (Marquez et al, 2007). To further characterize this tripartite 

symbiosis, two RNA segments were isolated from the virus. The first of which was found to be 

responsible for virus replication within the host and the second has no known function or match 

with any known protein and remains unidentified (Marquez et al, 2007; Rodriguez, personal 

communication). This complex three-way symbiosis may not be representative of all fungal 

endophytes, but does suggest a molecular component to the symbiosis between the endophyte 

and host in the form of gene regulation. 
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Figure 1.2.4. An outline of the basic methods used by bacteria and fungi to 

promote plant growth. 

 

 Alteration of gene expression levels of the host by endophytic Trichoderma spp. has been 

demonstrated in other studies (Bailey et al, 2006), where the gene expression patterns of the host 

and endophyte were observed to change during colonization. Bailey et al (2006) observed that 

gene expression patterns in both the endophyte and host change during infection, consistent with 

metabolic, regulatory, and signaling genes being regulated in both symbiotic partners. They also 

noted that the profile of expression changes was dependent on the endophyte strain used (Bailey 

et al, 2006). This suggests a complex genomic-level interaction between the endophyte and host. 

The fact that this interaction depends on the strain of endophyte used further suggests that the 

stress tolerances conferred by the endophytic partner will be specific to the endophyte and 
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environment from which it was isolated. 

 

 Chemical mechanisms of stress tolerance induced by fungal endophytes have not been 

studied in detail. However, these mechanisms have been studied in great depth in plant growth 

promoting bacteria (Hayat et al, 2010) and AMF (Artursson et al, 2006). Common mechanisms 

implicated in the promotion of plant growth by bacteria include alterations of mineral 

solubilization, siderophore production, and the production of hormones (Hayat et al, 2010). The 

solubilization of essential nutrients by both bacteria and fungi has been shown to increase plant 

biomass and apparent health (Guilden, 2000; Hayat et al, 2010). Due to microbial solubilization 

of key nutrients, most commonly phosphate, the plant can dedicate more energy to biomass 

production by not using energy reserves to solubilize nutrients from the rhizosphere. The 

production of siderophores by bacteria is believed to result in increased plant health (Hayat et al, 

2010). Siderophores are molecules that chelate iron in solution, resulting in their increased 

solubility and bioavailability. Iron is an essential nutrient to the plant’s energy generation 

processes, so by increasing iron availability the plant can increase its metabolic rate (Hayat et al, 

2010). Finally, many plant growth promoting (PGP) bacteria and fungi have been shown to 

produce compounds similar to indole acetic acid (IAA), an auxin (Rodriguez et al, 2008; Hayat 

et al, 2010). This can have numerous effects on plant growth, but one effect of PGP fungi on 

plants that has been observed is the increase in both root hair abundance and length (Gulden et 

al, 2000). Increased root hair surface area can result in better water and nutrient uptake by the 

plant. 

 

 A review by Hamilton et al (2012) discusses the ability of endophytes to mediate the 

generation of reactive oxygen species (ROS) in plants. ROS play a role in programed cell death, 

metabolism, plant immunity, and stress response (Hamilton et al, 2012). Numerous studies 

outlined in that review demonstrate the ability of fungal endophytes to regulate ROS in plants, 

leading to reduced stress and resulting cell death. This effect has also been demonstrated with 

certain class 2 fungal endophytes (Rodriguez et al, 2004; Marquez et al, 1997). The ability of 

fungal endophytes to offset stress metabolites generated within the plant is likely part of the 

complex mechanism used in symbiosis to confer stress tolerance (Rodriguez et al, 2004). 



 7 

 

Both fungal endophytes and plant pathogens have been found to release volatile 

compounds that can influence plant growth without physical interaction (Hung, 2013; Kang, 

2013). The profile of volatile compounds released by the fungal partner is complex and can 

contain hundreds of compounds (Kang, 2013). Each of the volatiles produced by the fungus 

could have specific effects on the plant. Some volatiles have been shown to increase seed 

germination rates, whereas others result in increased root biomass in early stages of plant growth 

(Hung, 2013). The detailed roles of these volatile compounds are currently unknown, but they 

are believed improve host fitness before infection by the pathogen or endophyte (Kang, 2013). 

PGP bacteria have also been shown to exude volatile compounds that regulate both plants and 

fungi in the rhizosphere (Piechulla, 2013). These initial investigations of volatile compounds 

exuded from fungi and their effects on plants suggest that volatile metabolites could play a 

crucial role in plant-fungal interactions. 

 

1.2.5. Hydrocarbon Degradation 

 Hydrocarbons present a challenge for microorganisms to degrade because they are 

hydrophobic and tend to tightly adhere to soil particles, resulting in low bioavailability (Covino 

et al, 2013). Degradation of straight-chain alkanes by microbes is typically by oxidizing one or 

both ends of the hydrocarbon chain (Callaghan et al, 2006). Once the alkane chain has been 

oxidized to a carboxylic acid, it can be degraded as normal fatty acids would be and used as an 

energy source by the microbes (Callaghan et al, 2006).  
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Figure 1.2.5. A comparison of the structures of lignin (A) and a sample asphaltene 

(B). 

 

Polycyclic hydrcarbons are typically difficult for microorganisms to degrade. Their 

relatively large molecular size, hydrophobicity, and numerous types of bonds make them 

difficult for enzymes to access and act upon. However, some fungal enzymes are known to 

degrade large and complex molecules found naturally, including lignins (Covino et al, 2013). 

Enzymes produced by white-rot fungi, including manganese-peroxidase, lignin peroxidase, and 

laccase have been shown to degrade poly-aromatic hydrocarbons (PAHs) under in vitro 

conditions (Majcherczyk et al, 1998; Eibes et al, 2006). Recent studies have shown that under 

certain circumstances, the introduction of white-rot fungi to soils contaminated with PAHs 

results in a marked decrease in hydrocarbon levels. The ability of white-rot fungi and their 

affiliated enzymes to degrade hydrocarbons is likely due to the similarity in structures found 

between lignins and complex hydrocarbons (Figure 1.2.5). Oil sands are known to contain high 

levels of complex and polycyclic hydrocarbons known as asphaltenes (Ignasiak et al, 1979). 

Depending on the extraction conditions used by each company, these large PAHs may or may 

not be extracted with the bitumen fraction. Regardless of extraction method used, some 

hydrocarbons, including asphaltenes, are not extracted and end up in tailings. 
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1.3. Trichoderma harzianum 

1.3.1. General information 

 Trichoderma harzianum is a species complex found over a wide geographic and 

environmental range. The numerous strains found within the species form a large complex with a 

range of phenotypic and genotypic variation (Chaverri et al, 2003). 

 

 Strains of Trichoderma harzianum are biocontrol agents used in commercial farming, as 

well as in the producers of cell well degrading enzymes (Naseby et al, 2000). These enzymes 

allow T. harzianum to degrade the cell walls of other fungi. The weakened cell wall is then 

penetrated, followed by a burst of antibiotics, killing the other fungus (Lorito et al, 1996). Once 

within the hypha, T. harzianum has been demonstrated to grow within the hyphal network of the 

other fungus, consuming cellular contents (Lorito et al, 1996). Trichoderma harzianum strains 

have also been found to alter the genetic expression of healthy plants, causing increased levels of 

defense genes and hormones, leading to increased resistance to a wide range of plant pathogens 

(Elad et al, 2000; Harman et al, 2004). Strain T-22 of T. harzianum has been demonstrated to 

solubilize key plant nutrients that are normally found as precipitates in the soil as well as leading 

to increase root growth when plants were grown in its presence (Altomare et al, 1999). In 

another study, T. harzianum T22 was shown to increase seed germination rates through the 

alleviation of biotic and abiotic stresses on seeds and seedlings (Mastouri et al, 2010). However, 

the mechanism of increased seed germination is not understood (Mastouri et al, 2010). 

 

1.3.2. Strain TSTh20-1 

 In a previous study by Bao (2009), a strain of T. harzianum, TSTh20-1 was isolated from 

a dandelion (Taraxacum officinale) growing on a TS site in northern Alberta. This endophyte 

was found to significantly promote the growth of tomatoes on TS (Figure 1.4.1.1.). The 

T. harzianum TSTh20-1 endophyte strain was isolated by standard microbiological methods and 

identified using molecular and morphological means (Bao, 2009). 

 

The mechanism(s) of PGP were not investigated in this previous study. However, TSTh20-1 was 
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examined for its ability to increase water use efficiency in plants grown on potting mix. This was 

measured by measuring the soil water content at the time of wilting. No significant differences in 

soil water content at the time of wilting were observed in this study (Bao, 2009). TSTh20-1 was 

also found to contain a plasmid as part of its genetic material. However, the role of this plasmid 

in symbiosis and its sequence remains undescribed (Redman, Personal Communication). 

Figure 1.3.2. Fungal endophyte TSTh20-1 has been previously shown to enhance 

growth of tomato plants on TS (Bao, 2009). 

 

1.4. Athabasca Oil Sands 

1.4.1.  Geographical and geological characteristics 

 The Athabasca oil sands in north-eastern Alberta (Figure 1.4.1.), Canada are the largest 

oil sands deposits in the world and are the world’s third largest proven oil reserve (Royal Society 

of Canada Expert Panel, 2010; Radler et al, 2002). The Athabasca region is one of three oil sands 

mining areas in Alberta, and is by far the largest, accounting for over 95% of bitumen found in 

all of North America (Royal Society of Canada Expert Panel, 2010; Hein et al, 2000). The 

Athabasca oil sands have been known for over 200 years through the discovery of oil seeps along 

the Athabasca River, for which the region is named (Carrigy et al, 1963).  
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Figure 1.4.1. Map of North America, highlighting the oil sands deposits in Alberta. 

Three major oil sands deposits exist in Alberta: The Peace River, Cold Lake, and 

Athabasca deposits. The Athabasca deposit is the world’s largest deposit of bitumen 

(Radler et al, 2002; Royal Society of Canada Expert Panel, 2010). 

 

 The Athabasca oil sands deposits are composed of 83-88 % inorganic materials, 

particularly sand and fine clay particles. These solids are mixed with 3-5 % water with the 

remainder being bitumen, a semisolid mixture of complex hydrocarbons derived from a variety 

of sources (Engelhardt et al, 2005; Budgell et al, 2006). The deposits of bitumen are found 

within a layer from the Lower Cretaceous period (Carrigy et al, 1963). There are several theories 

regarding their origin. The most prevalent theory suggests that they developed from 

Carboniferous shales 300-360 million years ago through coalification (Stanton et al, 2004). 

Coalification is the process of peat changing to coal through increased temperature and pressure. 
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As coal formation progresses there is a release of water and volatile organics (Stanton et al, 

2004). In adjacent regions, over 650 billion tonnes of coal are known to exist, suggesting that the 

coal and bitumen arose from similar starting material and processes (Stanton et al, 2004). 

 

1.4.2. Current and future scales of operation 

 Alberta's oil sands are one of the few hydrocarbon deposits, worldwide, that are 

experiencing growth in production. There are ~170 billion barrels of proven oil reserves and the 

total of all recoverable oil reserve is estimated at nearly 335 billion barrels (Alberta Government, 

2011; AEUB, 2007; Chastko et al, 2004). Production may increase as new technology allows 

deeper bitumen deposits to be accessed. For surface mining to be economically viable, bitumen 

deposits must be no deeper than 70 meters below the surface. Deposits deeper than 70 meters can 

only be accessed using in-situ methods (Government of Alberta).  

 

As of 2010, 767 km
2
 have been disturbed by surface mining alone, and the area of 

disturbance could expand to 4800 km
2
 using current technologies (Government of Alberta). 

Figure 1.4.2.1 illustrates the scale of current mining operations compared to a major U.S. city, 

Chicago. At 767 km
2
 the area disturbed by surface mining operations are larger than the entire 

city, which covers 606 km
2
. Figure 1.4.2.1 also shows the two key components of a bitumen 

mine. Surface mines are the location pits where mixtures of bitumen/sand mixtures are extracted 

from the ground. After processing, tailings are pumped as a slurry to tailings management areas 

where the solids are allowed to settle out of process water, which is then reused. Heavy particles, 

such as sand, rapidly settle forming coarse tailings; the remaining oil sands process water 

(OSPW) and fine tailings (FT) remain in tailings ponds until enough solids have settled out of 

the water for its reuse leaving FT behind. 
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Figure 1.4.2.1. Satellite images showing the scale of oil sands mining operations 

compared to Chicago. The approximate outline of the Chicago city limits has been 

outlined in yellow. Landsat imagery courtesy of the United States Geological Survey 

(USGS). 

 

 An estimated 1.5 million barrels of oil is produced daily from the Athabasca oil sands 

region, a volume that is expected to increase to over 3 million barrels per day by 2018 

(Government of Alberta). Estimates project that current and planned oil sands mining projects 

could increase production to as high as 6 million barrels per day by 2035 (International Energy 

Agency, 2012). As a result of mining expansion, the area disturbed by surface mining is expected 

to grow 6.7-fold to 4800 km
2
. Legislation dictates that companies operating in the area must 

have a zero-discharge policy. This means that all tailings and process water must be held on site. 

OSPW is held in large tailings ponds, these ponds are projected to contain over one billion cubic 

meters (one trillion liters; one cubic kilometer) by the year 2025 (Han, 2008). These tailings 

ponds already cover an estimated 130 km
2
 and will have to be augmented to meet the additional 

influx of OSPW (Government of Alberta, 2010).  

 

 Oil sands mining and exploitation have seen exponential growth over the past three 
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decades. This is very closely related to the surface area of land disturbed by mining operations as 

depicted in figure 1.4.2.2 (Statistics Canada). Current projections by the International Energy 

Agency expect this rate of growth, and thus land disturbance, to continue for several decades 

(International Energy Agency, 2012). 

 

 

Figure 1.4.2.2. Satellite image showing growth of oil sands mining operations over the past 

three decades. Corresponding oil production in millions of barrels per day (mbd) data is from 

Statistics Canada). Landsat imagery courtesy of the United States Geological Survey (USGS). 

 



 15 

 

1.4.3. Oil extraction process 

 Bitumen can be recovered by one of two processes, depending on the depth of the 

deposit. Deposits that are deeper than 70 meters are recovered using in situ methods. In general, 

this is done by pumping steam into the deposit. The added heat reduces viscosity the bitumen, 

which can then be pumped out of the ground and further refined (Bao, 2009). This method 

generates very few surface tailings because the extraction process specifically targets bitumen, 

leaving solids in place. 

 

 Surface mining is used for deposits that are less than 70 m deep. This process is outlined 

in Figure 1.4.3. Before mining can begin, the existing forest and organic soils are stripped from 

the land and stockpiled for reclamation purposes (Government of Alberta, 2010). The remaining 

overburden, or mineral soil, is removed and placed into tailings management areas (Government 

of Alberta, 2010). Once the bitumen deposit is exposed, it is mined using traditional methods 

including drag lines and transported to crushers. Crushers are used to make the raw bitumen an 

even size for mixing into a slurry. The slurry is composed of bitumen and sand mixed with 

water, and typically a dispersant such as NaOH (Albian Sands is the only company to use 

sodium citrate instead of NaOH) to bring the pH to near pH 8. The slurry is pumped to an 

extraction facility where bitumen is separated from OSPW and solids. The bitumen is sent for 

further refinement where it is treated with solvents to remove any remaining solids. The cleaned 

bitumen is then diluted with natural gas condensate before being sent to for refinement. The 

solids and water slurry is pumped to tailings management areas where the solids are allowed to 

settle from the water to become tailings. Two types of tailings are formed; coarse tailings 

composed of sand and gravel, and fine tailings composed of fine clay particles. Water is removed 

from tailings ponds and recycled (Patents: US 4240897 A, US 20130081981 A1, and US 

5876592 A). 
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Figure 1.4.3. A generalized overview of surface mining techniques used to extract 

bitumen (Imperial Oil, 2012). 

 

1.4.4. Legal requirements of reclamation and remediation 

 Before any oil sands mining project is permitted to begin, the company must submit 

reclamation plans for restoring the future affected area. The Environmental Protection and 

Enhancement Act (EPEA) calls for oil sands companies to “conserve and reclaim the disturbed 

land with the objective of returning the land to an equivalent land capability”. Companies are 

also required to pay a bond to the Government of Alberta that will be used for reclamation if the 

company fails to properly reclaim on their own (Government of Alberta, 2010). If a company 

does successfully reclaim its disturbed lands, the bond paid to the government will be released 

back to the company (Government of Alberta, 2010). Upon completion of reclamation, the site is 

subject to 15+ years of monitoring to ensure that the restored landscape functions as a complete 

ecosystem (Government of Alberta, 2010). The complete 230+ pages of legal requirements, 

guidelines, and monitoring processes for reclamation can be found in: Guidelines for 

Reclamation to Forest Vegetation in the Athabasca Oil Sands Region, which is publicly available 

through the Government of Alberta (2009). 
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1.4.5. Current reclamation and remediation strategies 

 Once an area of land is no longer being used for active mining operations it is designated 

as “ready for reclamation.” The first stage in reclamation is to fill the land, which is often the 

remnants of pit mines, with tailings and overburden. In the process the land is given a natural 

shape that should include habitat for wildlife such as embankments for burrowing animals. Once 

the land has been filled, it is covered with a 1 m thick layer of mixed peat and mineral soil that 

was stockpiled at the start of mining operations in the area. To stabilize this soil until further 

reclamation can occur, a mixture of grasses is planted. At this stage regular fertilizations are used 

to maintain healthy growth of plants.  Over the course of several months to years, the grasses are 

replaced with a variety of natural species (as designated in the Guidelines for Reclamation) at 

natural densities. These natural species are maintained with fertilizer until they are able to grow 

without human intervention. At this point the land is designated as under “Permanent 

Reclamation”. The 15+ year monitoring process begins to determine if the area has returned to a 

natural, stable, state per EPEA. (Government of Alberta, 2009). This process may take several 

decades depending on the site. 

 

 Due to their more complex ecology, there are currently no reclamation guidelines for 

restoring wetland sites: guidelines exist only for upland, dry, sites (Government of Alberta, 

2009). Currently Syncrude, a major oil sands mining company, is undertaking an experimental 

project to restore a wetland site to a natural state (Syncrude, 2010). Restoration of wetland sites 

is important because of the large amount of area they cover in the Athabasca region. Wetlands 

are estimated to cover near 65 % of the surface area affected by mining operations (Foote, 2012). 

Current reclamation plans for wetland sites mostly involve a process known as water-capping, 

where a tailings pond is layered with clean water and left as a lake (Syncrude, 2010). This 

reclamation method results in the restoration of water rich areas, but does not restore the massive 

amount of peatland that was lost in the mining process, leaving the area in an unnatural state 

(Rooney et al, 2011). The loss of wetland has the potential to result in the release of over 45 

million tonnes of carbon into the atmosphere and to reduce carbon sequestering capacity in the 

area by up to 7.4 tonnes of carbon dioxide per year (Rooney et al, 2011). 
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1.4.6. Projected costs of reclamation under current methods 

 Since only a small area, 1 km
2
 (Government of Alberta) has been deemed under 

permanent reclamation the estimated costs of reclamation must be taken with some caution. 

However, reclamation costs of upland, dry, sites have been shown to range from $20,000 to 

$46,000 per hectare, and the projected cost of Syncrude's experimental wetland site is estimated 

to cost as much as $375,000 per hectare (Pembina Institute, 2010).  

 

 Because the reclamation of wetland sites is still in an experimental phase, it is likely costs 

will decrease as better methods are found. For simplicity, all disturbed areas will be treated as if 

they are upland sites. Assuming a median cost of $33,000 per hectare to restore upland sites, it 

would cost an estimated 2.4 billion dollars to reclaim the current 767 km
2
 of disturbed land. If all 

4800 km
2
 of potential disturbance occurs this cost rises to 15.8 billion dollars for reclamation. 

The cost of wetland sites and tailings ponds will likely result in both of these estimates being 

much too low (Pembina Institute, 2010). 

 

 As discussed previously, current legislation requires the payment of a bond to the 

Government of Alberta, which will be used to pay for reclamation should the companies fail to 

do so. As of 2011, the government held 1 billion dollars in security bonds for this purpose 

(Government of Alberta, 2011). This is less than half of the dollar amount required to fully 

revegetate and restore the currently disturbed lands. This gap will likely grow as mining 

operations expand leaving the Canadian taxpayers at financial risk if companies fail to properly 

revegetate. 

 

1.4.7. Previous studies of tailing sands (TS) soil environment 

 Very little research has been done to show the soil conditions found in coarse tailings. 

Previous work by Bao (2009) has shown TS generated by one company to be low in macro plant 

nutrients, low in organic carbon, hydrophobic, and with a moderately alkaline pH. No other 

studies of TS soil conditions have been located in the literature, nor have tailings generated by 

different extraction methods been compared. It appears that some of these data exist, but they are 

proprietary and not available even to the general scientific community. Without this information 
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it is difficult to generate standards and protocols for the revegetation of coarse tailings sites.  

 

 Limited studies on the environment presented by fine tailings (FT) and OSPW are 

publicly available. Wu et al (2011) studied the availability of key nutrients in FT and OSPW. 

The source of the OSPW and FT was not provided, therefore it is not known what extraction 

method was used to generate these tailings. These tailings were found to be low in key 

macro-nutrients such as nitrogen, phosphate, and potassium. However both OSPW and FT were 

high in sodium and chloride. pH was within half a unit of neutral in all samples measured (Wu et 

al, 2011). 

 

 No scientific data regarding the hydrocarbon content or distribution in OSPW, FT, or CT 

is publicly available to the best of our knowledge. However, the Alberta Energy Institute (2008) 

reports on the extraction methods, the percent of hydrocarbons recovered, and the treatment of 

large hydrocarbons such as asphaltenes by each major company operating in the Athabasca 

region. Both Syncrude and Suncor utilize NaOH in their slurry. This results in a >90 % 

extraction efficiency for both companies due to the greater amount of asphaltenes, complex 

polycyclic hydrocarbons, being extracted with the bitumen. By accepting these complex 

hydrocarbons into the refining process a large amount of coke, a coal like material, is generated 

during the upgrading process, which is classified as fuel, but generally is not sold due to 

pollution concerns. This method of extraction is most typically used by bitumen mining 

companies.  

 

In contrast, Albian Sands uses sodium citrate to process their slurry (Devenny, 2009). 

Complex hydrocarbons such as asphaltenes are rejected from the Na citrate process and sent with 

tailings. This results in a lower overall extraction efficiency, but results in no coke being 

generated during the upgrading process. It also generates fewer fine tailings because the 

chemistry of the fine clay particles is not altered by the hydroxide ions. This difference in 

extraction methods likely has implications in the resulting chemistry of the coarse tailings. For 

example we would expect Albian Sands tailings to have a higher hydrocarbon percentage than 

Syncrude tailings due to the asphaltenes being rejected by Albian Sands (Devenny, 2009). This 
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difference in tailings chemistry may require different reclamation approaches to be used 

depending on the type of tailings on hand. 

 

1.4.8. Naphthenic Acids 

 Naphthenic acids (NAs) are a complex group of organic acids. They typically contain 

either a 5 or 6 member cyclical structures attached to an alkane like structure (Rogers et al, 

2002). Their mass can range from 100 to over 800 atomic mass units and can contain numerous 

carbon atoms (Rogers et al, 2002). NAs are naturally found in petroleum deposits and can be 

generated as part of the oil refinement process by oxidation of the naphtha fraction of crude oil. 

Typically, NAs are more of a corrosion concern than an environmental one. 

 

 However, NAs are one of the most researched contaminants produced by Athabasca oil 

sands production (Rogers et al, 2002). During the hot water extraction utilized in mining 

operations, NAs are liberated from the crude oil and dissolve into the water fraction as a sodium 

salt. Due to the solubility of NAs, they are widely regarded as an aquatic toxin (Nero et al, 

2005). In toxicology studies, NAs have been demonstrated to be acutely toxic to fish (Nero et al, 

2005). Similar studies have found that high doses of NAs can be acutely toxic to adult rats and 

chronic exposure at a lower dosage can result in liver and organ damage (Rogers et al, 2001). In 

a study on the effects of NAs on a deciduous tree species, it was found that NAs inhibit root 

water transport, leaf growth, and gas exchange (Kamaluddin et al, 2002). To date, no studies 

publically available have been performed assessing the quantity of NAs found in coarse tailings 

generated by oil sands mining. 

 

1.5. Study objectives 

 The primary objective of this research was to better characterize Trichoderma harzianum, 

strain TSTh20-1, and determine if it can be used effectively to assist in reclamation and 

remediation of sites that have been affected by oil sands development. The secondary objective 

was to determine the most effective application methods and host plant species to use in potential 

future field studies. 

 



 21 

1.5.1. What are suitable application methods for TSTh20-1 for plant colonization? 

 Previous studies of Class 2 fungal endophytes inoculated fungal spores directly to a 

young plant (Bao, 2009; Redman et al, 2011). This type of application is not suitable to field 

conditions because of the time-consuming nature and difficulty of planting germinated seeds. It 

was hypothesized that colonization would be possible using a variety of seed coating methods or 

soil application methods similar to commercial bacterial and fungal inoculations. Once an 

effective inoculation method is identified it can be used in future experiments using this 

endophyte. 

 

1.5.2. Does TSTh20-1 confer abiotic stress tolerance related to growth on TS? 

 Tailing sands contain multiple stressors: they are nutrient poor, hydrophobic, and likely 

hydrocarbon-contaminated. Therefore, it is likely that TSTh20-1 is capable of conferring 

multiple stress tolerances. In this research TSTh20-1 was tested for its ability to confer drought 

tolerance, drought recovery, saline tolerance, as well as for its ability to liberate essential plant 

nutrients from soil. Other endophytic strains of Trichoderma harzianum have been shown to 

increase the germination rates of seeds; TSTh20-1 was tested for similar effects with and without 

stress present. 

 

1.5.3. What native plant species demonstrate strong growth on tailing sands? 

 Twenty-four native and naturalized species of grasses and forbs were tested for their 

ability to confer strong growth on TS without the presence of TSTh20-1. It was hypothesized 

that plants able to grow well without TSTh20-1 would grow even better when the endophyte had 

colonized. Species were selected based on their native & naturalization status in Alberta 

(Government of Alberta; Alberta Reclamation Guide, 2004) as well as their cost when purchased 

commercially. Of the 24 species tested, 4 would be selected for a seed mixture that would be 

used in mesocosm scale experiments. 

 

1.5.4. When paired with TSTh20-1, do native species demonstrate potential for remediation 

of TS? 

 Upon identification of suitable plant species and application methods, mesocosm scale 
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experiments were performed. In these experiments plant health parameters were measured 

including shoot length, root length, and biomass. Soil quality parameters including 

macronutrients (NPKS), soil organic matter, enzyme activity, and hydrocarbon levels were also 

measured. These were used as standards to determine the ability of TSTh20-1 to enhance 

reclamation as well as its ability to remediate the soil compared to control treatments. 

 

1.5.5. Can any mechanisms of the conferred stress tolerance(s) be identified? 

 Preliminary work has been done to evaluate the potential mechanisms of stress tolerance 

provided by class 2 fungal endophytes. In this research TSTh20-1 was evaluated for its ability to 

confer tolerance to reactive oxygen species (ROS). It was also tested for its ability to produce 

extracellular organic acids and siderophores as well as solubilization of mineral nutrients. These 

mechanisms have been demonstrated either in other fungal-plant interactions as well as in plant 

growth promoting bacteria. 

 

 

2.0. MATERIALS & METHODS 

2.1. General procedures 

2.1.1. Seed surface sterilization 

Liquid sterilization 

Tomato (Solanum lycopersicum, cv Rutgers) seeds were used for abiotic stress assays. 

Seeds were counted and placed into a steel mesh two-sided tea infuser for easy handling. The tea 

infuser was placed into 1 % (w/v) sodium hypochlorite (NaOCl) with moderate agitation for     

15 min. After surface sterilization, seeds were rinsed using sterile ultrapure water (18 MegOhm 

from a Barnsted Nanodiamond) then placed in a sterile Petri plate for immediate use. 

 

Gas sterilization 

Small and sensitive seeds from native species were sterilized using chlorine gas. Seeds 

were counted and placed into a clean weigh boat so that there was no more than one seed layer 

thick. Fifty millilitres of household bleach (sodium hypochlorite, ~2.5 % w/v NaOCl) was placed 

into a 100 mL beaker or flask. Both the beaker of bleach and weigh boat of seeds were placed 
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into a large Tupperware® container. One milliliter of concentrated HCl was rapidly added to the 

beaker containing the bleach. The Tupperware container was quickly sealed and allowed to sit 

for 20-30 min. The chamber was opened in a fume hood, allowing chlorine gas to escape, seeds 

were transferred to a sterile Petri plate. Seeds could be stored like this for up to a wk before use 

without losing viability. 

 

Verification of surface sterilization 

To verify the surface sterility of seeds, a subset of seeds was plated onto 10 % PDA. 

Seeds were incubated for 1 wk allowing any colonies of bacteria or fungi to grow to a visible 

size. Plates were visually inspected for contaminants. For experiments where axenic conditions 

were essential, all seeds were plated on 10 % PDA and incubated until they germinated. Only 

seeds that had germinated and showed no signs of contamination were used for experiments. One 

plant species used in mesocosm scale experiments, Blue Grama (Bouteloua gracilis), contained 

an unidentified fungal endophyte [within the seed] that could not be removed by surface 

sterilization without killing the seed. This as yet unidentified endophyte grew from over 90 % of 

surface-sterilized seeds tested, but was not observed growing from surface-sterilized plant 

material where these seeds were used. 

 

2.1.2. Growth media 

Potato Dextrose Agar (PDA) 

100 % PDA: 39 g of PDA powder in 1 L of ultrapure water, mixed until smooth. Medium 

was autoclaved using a 25 min ‘liquid’ cycle. After autoclaving, media was mixed and stored for 

future use. Alternatively, 100 % PDA was prepared by placing 24 g of potato dextrose broth 

(PDB) powder and 15 g of agar powder into 1 L of ultrapure water. 

 

Ten percent PDA: 2.4 g of PDB powder and 15 g of agar powder were placed into 1 L of 

ultrapure water and mixed until no dry clumps remained. Media was autoclaved using a 

25-minute liquid cycle. After autoclaving media was mixed and stored for future use. 

Alternatively, 10 % PDA was prepared by placing 3.9 g of PDA powder and 13.5 g of agar 

powder into 1 L of ultrapure water. 
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Chrome azurol S (CAS) 

 CAS media was prepared following the protocol developed by Alexander & Zuberer 

(1991) for the detection of siderophores. This method has been demonstrated to provide more 

consistent results than the original method provided by Schwyn and Neilands (1987). The media 

was prepared from 3 solutions: the indicator solution, the buffer solution, and the nutrient 

solution.  

 

 The indicator solution was prepared by mixing 10 mL of 1 mM FeC13.6H20 in 10 mL of 

10 mM HCl with 50 mL of 1.21 mg/mL aqueous solution of chrome azurol S (CAS). The 

resulting blue liquid was slowly added, with constant stirring, to a 40 mL solution of 1.82 

mg/mL HTAB. The resulting dark blue solution was then autoclaved and then cooled to 50 
o
C.  

 

 The buffer solution was prepared by dissolving 30.24 g of PIPES in 750 mL of a salt 

solution containing 0.3 g KH2PO4, 0.5 g NaCl, and 1.0 g NH4Cl. The pH was adjusted to 6.8 

with 50 % KOH, and water was added to bring the volume to 800 mL. Fifteen grams of agar 

power were added, then the solution was autoclaved, then cooled to 50 
o
C. The nutrient solution 

contained 1 mL of a standard micronutrient solution and 2.4 g of PDB in 70 mL of water. The 

solution was autoclaved then cooled to 50 
o
C. The three solutions were mixed together with 

stirring, but avoiding introduction of air bubbles to the media. The media was poured into Petri 

plates for immediate use, but could be stored for several months at room temperature. 

 

Pikovskaya's agar (PVK) 

 Pikovskaya’s medium is used to detect phosphate-solubilizing microorganisms. It was 

prepared by mixing, per litre of water: 0.5 g yeast extract, 10 g glucose, 5 g calcium phosphate 

(hydroxyapatite), 0.5 g ammonium sulphate, 0.2 g potassium sulphate, 0.1 g magnesium 

sulphate, 1 mL micronutrient solution, and 15 g of agar. Media was autoclaved for 25 min, then 

allowed to cool to 50 
o
C. Cooled media was stirred to keep the hydroxyapatite in suspension then 

poured into sterile Petri plates. Pikovskaya’s medium should be opaque, with hydroxyapatite 

spread evenly throughout (Sigma Aldrich). 
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2.1.3. Surface sterilization of plant material 

 Endophytes can be isolated from surface sterilized plant material. Since class 2 fungal 

endophytes are expected to colonize roots, shoots and leaves, either 1 cm root sections, entire 

leaves, or 5 mm punches of leaf material were sampled then surface sterilized. Plant material was 

placed into a steel tea steeper leaving ample room for the plant material to move within the 

steeper during agitation. The tea steeper was placed into a beaker containing 1 % (w/v) NaOCl 

for 5 min with moderate agitation. After surface sterilization, the plant material was rinsed using 

sterile ultrapure water, then placed into a sterile Petri plate for immediate use. 

 

 To verify surface sterility, the imprint method (Rodriguez et al, 2008) was used. Surface 

sterilized plant material was transferred to a plate of 10 % PDA. Plant material was pressed 

gently against the surface of the plate for 5-10 s, then was transferred from this plate. Imprinted 

plates were incubated for 1 wk. Plates were visually inspected for contaminants. If any were 

visible, surface sterilization had failed and the material was discarded. 

 

2.1.4. Verification of axenic or inoculated conditions 

 Upon the completion of each experiment, plant material was sampled from both the 

control groups and experimental groups. The plant material was surface sterilized using 

previously described methods and plated onto 10 % PDA. Plates were incubated for 1 wk and 

visually inspected for fungal growth. Control plants were expected to have no fungal growth 

emanating from the plant tissues whereas the experimental groups should show fungal growth 

that matched the type of inoculant.  

 

2.1.5. Dry silica stocks 

 Dry silica stocks were used for long-term storage of fungal spores. One and a half mL 

freezer tubes were filled to approximately the 1 mL mark with sterile anhydrous 200-mesh silica. 

Small (~5 mm) cubes of media were cut from a Petri plate that contained a sporulating fungal 

colony using a flame-sterilized scalpel. Three cubes of media were transferred to the freezer tube 

containing silica. Tubes were sealed and shaken vigorously for 5 min. After shaking the caps 
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were loosened from the tubes and they were placed in a desiccator for 24-48 h. Lids were then 

resealed and tubes were stored at either -20 
o
C or -80 

o
C. Samples were regrown from dry silica 

stocks by gently tapping a small amount of powder from the freezer tube onto a Petri plate 

containing 10 % PDA. Plates were incubated at room temperature until a mature sporulating 

colony was obtained. 

 

2.1.6. Preparation of double-decker Magenta boxes 

 Double-decker Magenta boxes were prepared as per Redman et al (2010). For 

experiments where potting mix was needed, the top half of the double-decker Magenta box was 

filled halfway with potting mix (Sunshine Mix #1, Sun Gro Horticulture, USA) and the bottom 

half was filled with 250 mL of a 1 % fertilizer solution (Plant Prod All-Purpose 20-20-20 [NPK] 

water soluble fertilizer, Brampton, Ontario, www.plantprod.com). Prepared Magenta boxes were 

autoclaved for 25 min with the lids partially opened. After autoclaving, the lids were 

immediately sealed and the boxes were allowed to cool to room temperature. In experiments 

requiring the use of TS, the top half of the double-decker Magenta box was filled with 150 g of 

TS and the bottom half was filled with 250 mL of ultrapure water. Prepared Magenta boxes were 

autoclaved for 25 min with the lids partially opened. After autoclaving, the lids were 

immediately sealed and the boxes were allowed to cool to room temperature. 

 

http://www.plantprod.com/
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Figure 2.1.6. – Preparation of double-decker Magenta boxes. This image shows an 

example preparation of a double-decker Magenta box from its individual components (A) 

to assembled (B) to filled with soil and solutions (C). 

 

2.2. Application methods 

2.2.1. Liquid application to seedling 

 In previous endophyte studies (Bao, 2009; Redman et al, 2010), endophyte spores were 

applied directly to germinated seedlings. Seeds were surface sterilized and germinated on 10 % 

PDA as previously described. Spores of endophytic fungi were harvested in ultrapure water by 

rubbing the surface of a mature fungal colony with a sterile bent glass rod. The spore suspension 

was transferred to a 1.5 mL tube and diluted to 10
4
-10

5
 spores per mL as determined by 

hemocytometer. Seedlings were inoculated by transferring them to a Petri plate containing        

20 mL of spore suspension. Seedlings were allowed to soak in this solution, with occasional 

agitation, for 30 minutes. After 30 min seeds were transferred to Magenta boxes for further 

germination and growth. Axenic controls were mock-inoculated by transferring them to a Petri 

plate containing sterile ultrapure water and allowing them to rest for 30 min, with occasional 

agitation. After the soaking, seedlings were transferred to Magenta boxes for further germination 

and growth. 
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2.2.2. Seed coating methods 

 Seed coatings are commonly used in commercial applications to carry germination 

enhancers as well as inoculants. Modern seed coating methods are complex and often contain 

several coatings combined together. To test the ability of TSTh20-1 to infect the plant from a 

seed coat, several rudimentary seed coating methods were devised: diatomaceous earth (DE) 

with a sucrose sticker, a polymer coating (polyvinyl alcohol with glycerol, PVAG), DE with a 

PVAG sticker, and dried alginate. Radish seeds were chosen for their large size and rapid 

germination. Fifteen coated seeds were planted in 500 mL pots filled with sterile potting mix, 

covered with 1 cm of vermiculite, and watered with ultrapure water. After 1 wk of growth plants 

were harvested, surface sterilized, and colonization assessed. 

 

DE with Sucrose sticker 

 A number of seeds equal to 25 millilitres were treated in a sterile 50 mL conical tube with 

1 mL of a 15% w/v sucrose solution that also contained 10
4
-10

5
 spores per mL as determined by 

hemocytometer. Seeds were shaken to ensure even coating with sucrose and spores. Seeds were 

then transfer to a fresh 50 mL tube where 1 g of dry DE was added. Seeds were shaken 

vigorously to ensure even coating with DE. Seeds were removed from the tube and allowed to 

dry for 24 h before use in experiments. 

 

PVAG 

 Polyvinvl alcohol glycerol (PVAG) solution was prepared per Kaminskyj (2008) as 

modified from Brundrett et al (1996). The solution contains 4 g polyvinyl alcohol powder,        

50 mL distilled water, 20 mL glycerol. This was warmed to 60 ºC, covered, with constant stirring 

until dissolved, typically 3 h to overnight. Five mL of room temperature PVAG were aliquoted 

and spore suspension was added to produce a spore density of 10
4
-10

5
 per mL. This was poured 

onto a 25 mL volume of seed in a 50 mL tube and shaken vigorously to ensure even coating. 

Seeds were removed from the tube and allowed to dry for 24 h. 

 

DE with PVAG sticker 

 PVAG containing spores was prepared per the above method. This is poured onto 25 mL 
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of a seed in a 50 mL tube and shaken vigorously to ensure even coating. Coated seeds were 

transferred to a fresh 50 mL tube where 1 g of dry DE was added. Seeds were shaken vigorously 

to ensure even coating with DE. Seeds were removed from the tube and allowed to dry for 24 h. 

 

Dried Alginate 

 A spore suspension was added to 30 mL of a 3 % w/v sodium alginate solution so that the 

final spore concentration was 10
4
-10

5
 spores per mL. Individual seeds were dipped into this 

solution then immediately dropped into a 5 % w/v calcium chloride solution with rapid stirring 

(Vipen et al, 2013). Seeds were gently removed and were placed evenly on trays in a 37 
o
C 

incubator for 24 h to dry. 

 

2.2.3. Alginate beads 

 Alginate beads were prepared using a method similar to Vipen et al (2013). A spore 

suspension was added to 30 mL of a 3 % w/v sodium alginate solution so that the final spore 

concentration was 10
4
-10

5
 spores per mL. The spore alginate solution was dripped into a rapidly 

stirring 5% w/v calcium chloride solution causing the alginate solution to form gelatinous beads 

entrapping the spores. Freshly prepared alginate beads were used to inoculate plants 

immediately, but could be stored for 1 wk at 4 
o
C. Plants were inoculated by placing a bead next 

to each seed or seedling for slow growing endophytes. For rapidly growing endophytes, 

including TSTh20-1, placing 5-10 beads randomly placed in a Magenta box was adequate for 

inoculation of all plants in the box. 

 

2.2.4. Charcoal pellets 

 Pellets were prepared by weighing 1 g of aquarium charcoal, approximately 300 pellets, 

(Fluval, www.hagen.com) and adding a spore suspension containing 50,000 total spores, as 

determined by hemocytometer, in a 50 mL conical tube. The mixture was shaken vigorously for 

5 min and allowed to air dry at room temperature in the conical tube with the lid loose. The 

resulting pellets each contain approximately 170 spores.  Spores on pellets prepared this way 

remained viable for several months (data not shown). Granules could be stored at room 

temperature for short-term storage or at -20 
o
C for long term storage. Plants can be inoculated by 
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placing a pellet next to each seed or seedling for slow growing endophytes. For more rapidly 

growing strains, such as TSTh20-1, placing 5-10 pellets anywhere in a Magenta box was 

adequate for inoculation of plants. 

 

2.2.5. Direct application of spores to soil 

 The simplest and most rapid method to inoculate plants with TSTh20-1 was to apply 

spores directly to the soil. A sterile toothpick was pressed into a mature fungal colony so that the 

first 2-3 mm of the toothpick were covered with a visible layer of spores. The toothpick was then 

pressed into the soil near the centre of the Magenta box or pot at the same time the seeds or 

seedlings were planted.  

 

2.3. Stress assays 

2.3.1. Growth on tailing sands 

 To test the ability of TSTh20-1 to promote plant growth on TS double-decker Magenta 

boxes were prepared using previously described methods. Bao (2009) used seeds which had been 

germinated on Petri plates containing 10% PDA that had been inoculated with TSTh20-1 using 

liquid inoculation methods. After 2 wk of growth on potting mix, plants were gently transferred 

to Magenta boxes that contained TS. To decrease the number of steps and to make experiments 

more realistic, this study directly planted surface-sterilized seeds into Magenta boxes containing 

TS. Seeds were surface sterilized using previously described methods and 5 seeds were planted 

into each Magenta box. Boxes were inoculated with 5 charcoal pellets and sealed with their 

plastic lid to retain moisture during germination and early seedling growth. Double-decker 

Magenta boxes were grown in 16:8 h light:dark cycles for 2-4 wk at 21 
o
C. After the growth 

period plants were evaluated for their overall health using root wet/dry biomass, shoot wet/dry 

biomass, and root:shoot ratios. 

 

2.3.2. Drought tolerance & recovery 

 Magenta boxes were prepared with potting mix using previously described methods. 

Tomato seeds were surface sterilized and 3 seeds were planted per Magenta box. Ten Magenta 

boxes per experimental group were used. Tomato plants were grown for 5 wk in 16:8 h 
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light:dark cycles at 21 
o
C refilling the bottom half of the Magenta boxes with sterile fertilizer 

solution as necessary. After 5 wk of growth, the bottom half of the Magenta boxes were emptied, 

removing the water supply from the plants. Plants were allowed to wilt for 36 h under the same 

lighting and temperature. One leaf was sampled from each Magenta box at 0, 18, and 36 h of 

wilting. Leaf samples were weighed fresh and then dried for 48 h at 55 
o
C, after which a dry 

weight was taken. After 36 h of wilt, the plants were rehydrated by pouring 200 mL of water 

over the potting mix and roots so that the water trickled into the bottom half of the Magenta box. 

One leaf was sampled from each Magenta box at 15, 30, 60, and 120 min after watering. Leaf 

samples were weighed fresh and then dried for 48 h at 55 
o
C, after which a dry weight was taken. 

Fresh and dry weights were used to calculate the weight percentage of water in each leaf. The 

Student’s t-test was performed at each time point to determine significance (P < 0.05). The 

average water contents were graphed as a time course using 1 standard error for error bars and 

regression lines were assigned with their respective r
2
 values. 

 

2.3.3. Seed germination enhancement 

 White clover (T. repens) seeds were used to test seed germination enhancement since their 

small size makes them more susceptible to stress. Twenty 100 mL pots were filled with potting 

mix and another 20, 100 mL pots were filled with TS. Twenty-five white clover seeds were 

evenly spread over the soil surface of each pot. Ten pots containing potting mix and 10 pots 

containing TS were inoculated with 5 charcoal pellets containing TSTh20-1 spores. The other 20 

pots were mock-inoculated with sterile charcoal pellets. Pots were incubated for 1 wk in 16:8 h 

light:dark cycles at 21 
o
C, and were watered with ultrapure water as needed. After 1 wk the 

number of germinated seeds was counted and the Student’s t-test was performed to test whether 

there were significance in germination rates. 

 

2.4. Selection of native species 

2.4.1. Selection of candidate species 

 Twenty four native and naturalized species were chosen based on their preference for dry 

environments, coarse soils, native to Alberta, and commercially available through our chosen 

supplier; Prairie Moon Nursery (Prairie Moon Nursery, 32115 Prairie Lane, Winona, MN  
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55987, USA http://www.prairiemoon.com/).  Seeds were divided into 2 groups; those requiring 

cold stratification and those that did not, roughly two groups of 12 species. 

 

The forbes used in this study were: Artemisia caudata (Beach wormwood), Aquilegia 

Canadensis (Columbine), Aster pilosus (Frost aster), Astragalus crassicarpus (Ground plum), 

Campanula rotundifolia (Harebell), Geum triflorum (Prairie smoke), Heuchera richardsonii 

(Prairie alumroot), Meticago sativa (Alfalfa), Penstemon calycosus (Calico beardtongue), 

Penstemon tubaeflorus (Tube beardtongue), Potentilla arguta (Prairie cliquefoil), Solidago 

nemoralis (Oldfield goldenrod), Trifolium repens (White clover), and Zigadenus elegans (White 

Camass). The grasses used in this study were: Agropyron smithii (Western wheatgrass), 

Agropyron trachycaulum (Slender wheatgrass), Andropogon scoparium (Little bluestem), 

Bouteloua gracilis (Blue grama), Calamagrotis canadensis (Blue jointgrass), Elymus Canadensis 

(Canada wild rye), Hordeum jubatum (Squirrel-tail grass), Juncus balticus (Baltic Rush), Poa 

palustris (Fowl bluegrass), and Sporobolus crytandrus (Sand Dropseed). 

 

2.4.2. Assay for growth on tailing sands 

 Two trays containing 50, 100 mL wells were surface sterilized with 70 % ethanol and 

allowed to air dry. Each well was filled with TS. Into one tray, the seeds requiring cold 

stratification were planted. Three to 10 seeds were planted per well depending on seed size: 3 

large seeds or 10 small seeds with 3 replicate wells being planted for each species. Seeds were 

cold stratified as per germination instructions for 60 d at 4 
o
C (Prairie Moon Nursery, personal 

communication). Upon the completion on the cold stratification, the second tray was planted in a 

manner similar to the first with the seeds that required no stratification phase. Both trays were 

inoculated with TSTh20-1 and grown for 4 wk under 16:8 h light:dark cycles at a constant 21 
o
C 

and watered with a 1 % Tween 20 solution to reduce the hydrophobicity of the TS at the start of 

the experiment. After 4 wk of growth, seedlings were qualitatively evaluated for growth and 

health. 

 

2.4.3. Seed mixture for use in mesocosm scale experiments 

 A seed mixture containing 4 species was developed using the qualitative growth data in the 

http://www.prairiemoon.com/
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selection experiment with the aims of creating a mixture that would support both short-term 

growth, long-term growth, and increased soil nutrient availably. Four candidate species were 

selected, and were planted together at 15 times their recommended seeding density indicated by 

the seed supplier in three 500 mL pots containing TS that had been treated with a 1 % Tween 20 

solution to reduce hydrophobicity. All pots were inoculated with TSTh20-1 using 3-5 charcoal 

pellets and allowed to grow for 4 wk under 16:8 h light:dark cycles at a constant 21
o
C, watering 

as necessary. At the end of 4 wk, pots were visually inspected for the presence of all 4 species 

and qualitative health. If all 4 species were present and relatively healthy the mixture was 

deemed suitable for meso-scale experiments. 

 

2.4.4. Testing for competition effects 

 To ensure that one species would not dominate growth in meso-scale experiments the seed 

mixture was tested for competition effects. Thirty-two 100 mL test tubes were filled to 80 % 

capacity with TS that had been treated with a 1 % Tween 20 solution and arranged into 4 groups 

of 8 tubes. The first set of 4 tubes received 1 seed from each species, the second tube received 2 

seeds from each species, and so-on until the final tube which received 8 seeds from each species. 

Seeds were covered with a 1 cm layer of potting mix and gently watered. Tubes were inoculated 

with TSTh20-1 using 3-5 charcoal pellets and incubated for 4 wk under 16:8 h light:dark cycles 

at a constant 21 
o
C, watering as necessary. After 4 wk each tube was evaluated for the presence 

of each species and qualitative health of plants in each tube (plant colour and height). If no one 

species was found to dominate growth, and all species were still present in significant numbers, 

and the plants appeared healthy, then competition effects were deemed negligible for future 

short-term experiments. 

 

2.5. Mesocosm scale experiments 

2.5.1. Version 1 – Tailing sands from company A 

 Tailings from Company A were used for the first mesocosm scale experiment. 12 PVC 

pipes 45 cm in length and 10 cm in diameter were cut lengthwise into 2 halves. These were held 

together using pipe clamps allowing the pipes to be easily opened and examined at the 

termination of the experiment. Eight pipes were filled with TS, leaving 5 cm clearance at the top 
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of the pipe. The remaining 8 pipes were filled with potting mix leaving 5 cm clearance. Each 

pipe was seeded with the seed mixture developed previously at 15 times the suggested rate to 

account for limited growth on TS.  

 

 

Figure 2.5.1.1. An outline of the design used in Version 1 (Company A) mesocosm 

scale experiment. The right portion of the figure shows how each tube was filled and the 

position of seeds within the tube. 

 

 Three pipes containing TS and 3 pipes containing potting mix were inoculated with 0.1 g 

of charcoal pellets containing TSTh20-1 (approx. 5000 spores) , the remaining 6 control pipes 

were inoculated with 0.1g of sterile charcoal pellets. Pipes were watered with a 1 % Tween 20 

solution and grown in a phytotron chamber for 2 months under a 16:8 light dark cycle, 

20
o
C:11

o
C day night temperature regime, and constant 80% relative humidity. These conditions 

are representative of Athabasca region in early summer (Environment Canada). 
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Figure 2.5.1.2. A brief outline of the assembly of the PVC pipes used in mesocosm 

scale experiments. (A) shows the necessary parts for assembling each tube; 2 halves 

of pipe, 2 pipe clamps, and 2 sheets of garden fabric. (B) shows the completed setup. 

 

2.5.2. Version 2 – Tailing sands from company B 

 Due to limited quantities of tailings from Company A, tailings from Company B were 

used for a second mesocosm scale experiment. Thirty-six PVC pipes 20 cm in length and 10 cm 

in diameter and 5 PVC pipes 45 cm in length and 10 cm in diameter were cut lengthwise into 

two halves. These two halves were held together using pipe clamps allowing the pipes to be 

easily opened and examined at the termination of the experiment. Thirty pipes were filled with 

TS leaving 5 cm clearance at the top of the pipe. The remaining 5 pipes were filled with potting 

mix leaving 5 cm clearance. All but 10 pipes were seeded with the seed mixture developed 

previously at 30 times the suggested rate to account for limited growth on TS. The 5 pipes 



 36 

containing potting mix were covered with 1 cm of potting mix and watered with a 1% Tween 20 

solution. The 10 pipes that were not seeded were divided into 2 groups of 5. One group was 

inoculated with 0.1 g of charcoal pellets containing TSTh20-1 and the other was 

mock-inoculated with sterile pellets. The remaining 10 pipes were divided into 2 groups of 5. 

One group was inoculated with 0.1 g of charcoal pellets containing ~5000 spores TSTh20-1 and 

the other was mock-inoculated with sterile pellets. All pipes were covered with 1 cm of potting 

mix. Pipes were watered with a 1% Tween 20 solution at the start of the experiment, and water 

from thereafter and grown in a phytotron chamber for 2 months under a 16:8 h light dark cycle, 

20 
o
C:11 

o
C day:night temperature regime, and constant 80 % relative humidity. These 

conditions are comparable to Athabasca region in early summer (Environment Canada). This 

experiment was designed to test the effects of TSTh20-1 on soil conditions with and without the 

presence of plants. 
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Figure 2.5.2.1. An outline of the experimental setup for the second mesocosm 

scale experiment (Company B). 
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Figure 2.5.2.2. PVC pipes in place in the phytotron chamber used for the 

mesocosm scale experiments. 

 

2.5.3. Measuring plant parameters 

 In the first mesocosm scale experiment using tailings from Company A plant parameters 

were measured and statistically analyzed for significant differences in growth. At the completion 

of the experiment each pipe was opened lengthwise by removing the pipe clamps. From the pipes 

containing TS each individual plant was carefully removed from the pipe. For each plant species, 

pipe, treatment, root length, shoot length, wet root biomass, wet shoot biomass, dry root biomass, 

and dry shoot biomass were recorded. Dry weights were obtained by placing each plant in an 

individual weigh boat and drying them at 55 
o
C for 48 h. Plants in pipes containing potting mix 

were not analyzed, but root systems and leaf material was photographed. 
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2.5.4. Soil analysis 

Company A 

 Soil samples were taken from within the rhizosphere from each tube containing TS and 

placed into 50 mL tubes. These tubes were evaluated for concentrations of potassium, sulfate, 

phosphate, nitrate, ammonia, and organic carbon. Equal portions of soil from each replicate pipe 

were sampled, mixed thoroughly, and placed into a 50 mL tube. These mixed samples were 

evaluated for hydrocarbons using the CCME guidelines (CCME, 2008). A sample of untreated 

tailings was taken and analyzed for nutrients and hydrocarbons as a baseline. All analyses were 

performed by ALS Environmental (http://www.alsglobal.com/). 

 

Company B 

 Soil samples were taken from within the rhizosphere from each tube containing TS and 

placed into 50 mL tubes. All tubes were analyzed for hydrocarbons following the CCME 

guidelines (CCME, 2008). All analysis was performed by ALS Environmental 

(http://www.alsglobal.com/). The Student’s t-test was performed on hydrocarbon levels to 

determine significant differences between treatments. Soil was also evaluated for cell-free 

peroxidase activity, see section 2.6.3 for method. 

 

2.6. Mechanisms of plant growth promotion 

2.6.1. Phosphate solubilization 

 Initial screening for phosphate solubilization (PSOL) was performed on plates containing 

Pikovskaya’s media as prepared in section 2.1.2. Inconclusive results on this medium prompted a 

study of PSOL by TSTh20-1 in liquid cultures. Pikovskaya’s medium was prepared without agar 

or hydroxyapatite to create a clear broth. Eighteen 50 mL flasks were filled with 25 mL of this 

clear broth. Flasks were divided into 3 groups of 6. Each group received equi-molar amounts of 

an insoluble phosphate precipitate commonly found in the soil: aluminum, calcium, and iron. 

Flasks were autoclaved for 25 min and cooled to room temperature. Each flask was inoculated 

with ~3000 spores, as counted by hemocytometer, of either Penicillium bilaiae, a known 

phosphate solubilizer (David Greenshields, personal communication), or TSTh20-1, and shaken 

for 1 wk at 150 r.p.m. At the start of the experiment and after 1 wk, 1 mL aliquots were sampled. 

http://www.alsglobal.com/
http://www.alsglobal.com/
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Each sample was filter sterilized and examined by HPLC for organic acid production. A 20 µL 

sample was then examined for the concentration of solubilized phosphate in the sample using the 

malachite green method (Feng et al, 2011). 

 

2.6.2. Production of siderophores 

 TSTh20-1 was plated onto Petri plates containing CAS media and grown for 1 wk. This 

medium turns from blue to pink when siderophores are present. This test is universal and can 

detect all classes of siderophores (Perez-Midranda et al, 2007). Lack of colour change indicates 

that no significant amount of siderophores were detected, whereas a pink halo around the colony 

indicates that siderophores were being produced. Penicillium bilaiae was used a positive control 

to test the media since it is known to produce siderophores (David Greenshields, personal 

communication). 

 

2.6.3. Soil enzyme activity 

 Soil cell-free peroxidase activity was tested following the procedure developed by Barth 

and Bordeleau (1969). Fifty grams of soil were suspended in 50 mL of 0.05 M phosphate buffer 

at pH 6.0. The suspension was agitated for 5 min then gravity filtered into a clean flask. The 

assay consisted of the following reagents mixed together into a 3 mL, 1 cm, cuvette: 0.05 mL   

0.5 % o-dianisdine in methanol, 0.3 mL 0.06 % hydrogen peroxide in water, and 2.7 mL soil 

extract. After 2 minutes the optical density was recorded at 460 nm. Ultrapure water was used as 

a blank for the spectrophotometer and the negative control consisted of a cuvette where ultrapure 

water was used in place of the soil extract. Activity was calculated as the change in absorbance 

per min at 460 nm. 

 

2.6.4. Tolerance to reactive oxygen species 

 Rodriguez et al (2008) reported an assay for testing the ability of fungal endophytes to 

protect against reactive oxygen species (ROS) in green (photosynthesizing) plant tissue. One 

millilitre of 10 mM paraquat solution, a herbicide that generates ROS in stressed plants, was 

pipetted into a 1.5 mL centrifuge tube. Leaf disks were taken using a hole-punch from 2 wk old 

tomato plants that had been grown on TS, creating leaf disks consistent in size. Leaf disks were 
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taken from both plants that had been inoculated with TSTh20-1 and axenic plants. The disks 

were gently placed on the surface of the paraquat solution, with each disk receiving its own tube. 

Disks were placed into a rack and left under bright fluorescent lighting for 24 h. After 24 h the 

amount of bleaching was evaluated using the scale provided by Redman et al (2008). 

 

2.6.5. Hormone production 

 Hormone production was evaluated using a modified Ehrlich reaction. The reagent was 

prepared by mixing 2 g of p-dimethylamino benzaldehyde into 50 mL of 100 % ethanol. Then, 

50 mL of concentrated HCl was added slowly, with mixing. The reagent was best used when 

freshly made (Hvorost et al, 2010).  

 

A solid, nutrient-free growth medium was prepared by making 10 % PDA and adding an 

addition 1 g per litre tryptophan, the precursor for indole compounds. Medium was poured into 

sterile Petri plates and allowed to cool. Once cool, sterile paper filter disks were placed over the 

media and spores were inoculated onto the top of the filter disk. After 1 wk of growth the filter 

disks were removed and placed into a Petri plate containing 20 mL of Ehrlich reagent. Disks 

were allowed to rest for 5 min then colour changes were noted. If no colour changes were noted 

the test was considered negative: the fungus did not produce significant quantities of indole-type 

compounds as secondary metabolites. A red or purple colour change was considered positive for 

indole-type compounds. 

 

2.7. Other tests 

2.7.1. Nutrient requirements of TSTh20-1 

 A nutrient-free growth medium was created by mixing 15 g molecular grade agarose with 

1 L ultrapure water in a new, unused, bottle to create a 1.5% solution. The medium was 

autoclaved then allowed to cool to 50 
o
C before being poured into sterile Petri plates and allowed 

to solidify. TSTh20-1 spores were carefully placed in the centre of the media and incubated at 

room temperature for 48 h. After this incubation, each plate was evaluated for hyphal growth 

under a dissecting scope. If growth was observed the plates were discarded and a fresh batch of 

media created.  



 42 

 

If no growth was observed, six sterile 5 mm filter paper disks were placed evenly around 

the outside of the media. Each disk was given 20 μL of one of the following nutrient solutions: 1 

M dextrose, 1 M KCl, 1 M Na2SO4, 1 M Ca(NO3)2, 1 M Na2HPO4, standard micronutrients 

solution (Kaminskyj, 2001). Two additional replicate plates were created randomizing the 

location of each nutrient around the outside of the plate. Six more sets of plates, with 3 

randomized replicates of each, were created excluding one nutrient solution from each. Plates 

were incubated for 1 wk, after which the plates were evaluated for hyphal growth, sporulation, 

and direction of growth under a dissecting scope. 

 

2.7.2. pH changes in media induced by TSTh20-1 

 pH changes induced in the growth media by TSTh20-1 were observed by mixing 5 mL of 

25 mM bromocresol purple per litre of medium. Medium pH was adjusted to the neutral point of 

bromocresol purple, ~ pH 6. Medium was autoclaved then poured into sterile Petri plates. 

TSTh20-1 spores were inoculated at the edge the side of the plate, allowing maximum distance 

to observe gradients. The growing colony was imaged once every 24 h for 1 wk. Colour changes 

and patterns were noted in the media. 

 

2.7.3. Compatibility with tree species 

 Jack pine seeds were generously donated by Coast-to-Coast Reforestation 

(http://c2ctrees.com/). Magenta boxes were prepared with TS as previously described. Five jack 

pine seeds were planted into each of 10 Magenta boxes. Five boxes were inoculated with 10 

charcoal pellets containing TSTh20-1 and the remaining 5 boxes were mock inoculated with 

sterile charcoal pellets. Plants were grown in a phytotron chamber for 3 months under a 16:8 h 

light dark cycle, 20 
o
C:11 

o
C day night temperature regime, and constant 80% relative humidity. 

These conditions are representative of Athabasca region in early summer (Environment Canada). 

At the end of 3 months, seedlings were carefully removed from the boxes and separated into 

roots and shoots. Root length, shoot length, wet root biomass, wet shoot biomass, dry shoot 

biomass, dry root biomass, and needle length were measured for each tree. The student’s t-test 

was performed to determine significant differences in growth. 

http://c2ctrees.com/
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2.7.4. Demonstration of reduction in soil hydrophobicity by Tween 20 solutions 

 Soil hydrophobicity was found to be one of the conditions effecting plant growth on TS, 

creating conditions where water is extremely limiting to the plant. Two simple experiments were 

performed to demonstrate the effectiveness of using a mild surfactant to reduce this 

hydrophobicity and enhance plant growth. The first experiment involved filling a glass beaker 

with hard, cement-like, pieces of TS from Company A. The beaker was filled with water and 

gently swirled to observe any wetting by water alone. After the water came to rest, a volume of 

Tween 20 was added to the sand/water mixture to create a ~1% solution (estimated). The beaker 

was once again gently swirled to mix and the wetting of the sand was observed. 

 

 A qualitative test was used to determine if TS treated with TS enhanced or inhibited plant 

growth. Four pots with ample draining holes were filled with TS, leaving enough room at the top 

of the pot for watering without overflowing. Two pots were watered with distilled water and the 

water allowed to drain so that the soil was at field capacity. The remaining two pots were 

watered with a 1% solution of Tween 20 and allowed to drain to field capacity. Each pot was 

seeded with 10 radish seeds and allowed to grow for 1 week with no additional watering. After 

one week the germination and health of each pot was recorded by photo. 

 

3.0 RESULTS 

3.1. Soil conditions 

 To the best of my knowledge, this is the first report on soil conditions found in Alberta 

oil sand coarse tailings in the public domain. Tailings from two companies were compared. 

Company A uses sodium citrate in their slurry rather than NaOH, and they do not add a 

flocculent (see below) to their tailings stream to consolidate tailings. Company B uses the more 

common method of adding NaOH to their slurry and they add gypsum to their tailings stream as 

a coagulant (Bordenave et al, 2009). These different processing methods may account for the 

differences in coarse tailings conditions. 
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3.1.1. Company A 

 Tailings from Company A were tested for major soil nutrients, organic carbon, pH, 

hydrophobicity, and total petroleum hydrocarbons (TPH). TS had no detectable nitrogen (total or 

ammonia), phosphate, or potassium. Low levels of sulfate were present, ~8 ppm. Low levels 

(~5 %) of organic carbon were present in all samples, as well as low levels of organic matter 

(< 1 %).  

 

TPH are divided into 4 fractions as per the Canadian Council of Ministers of the 

Environment (CCME) guidelines (CCME, 2008). These are F1 (benzene, toluene, ethyl-benzene, 

and xylene [BTEX]), F2 (C10-C16), F3 (C16-C34), and F4 (C34-C50). No detectable amounts 

of BTEX were found in soil samples. For the others, F2 was < 30 ppm; F3 was 319 ppm; F4 was 

197 ppm. The total of these fractions, TPH was 516 ppm. See Figure 3.1.1 for a graphical 

representation of TPH values. Untreated TS were found to be hydrophobic, as previously 

reported by Bao (2009). Soil pH was found to be moderately alkaline per US EPA standards, 

~pH 8. 

 

3.1.2. Company B 

 Tailings from company B were found to have no detectable amounts of nitrogen (total), 

phosphate, or potassium. High levels of sulphate (~250 ppm) were observed in these samples, 

most likely due to the addition of gypsum to the tailings stream. No detectable amounts of BTEX 

were found in soil samples. Fractions 2-4 were as follows: F2, < 30 ppm; F3, 319 ppm; F4, 162 

ppm for a TPH of 481 ppm. See Figure 3.1.1 for a graphical representation of TPH values. 

Untreated TS were hydrophobic. Soil pH was extremely acidic, ~pH 3.1. 

 

3.2. Application methods 

Effective deployment of a microbial inoculant resulting in a high level of plant 

colonization is an essential step in development of the inoculant for application in a revegetation 

strategy. Different microbes might require particular application techniques, so several were 

tested to find the most effective.  
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TSTh20-1 was very aggressive in its ability to colonize plants, at least in Magenta box 

experiments. Regardless of application method tested, plants were always colonized. 

Furthermore, TSTh20-1 was found growing in both potting mix and in TS regardless of the 

presence of plants (Figure 3.2.1). Fungal hyphae and spores that morphologically resembled 

TSTh20-1 could be observed growing in the soil a few days after inoculation. This aggressive 

growth pattern resulted in plant colonization even if added to the soil >9 cm away. Axenic plants 

grown alongside experimental ones were not colonized with any endophyte, verifying the 

effectiveness of soil sterilization techniques and that the endophyte colonizing the plant was the 

applied endophyte only. 

 

 

Figure 3.2.1. TSTh20-1 growing from TS samples that were inoculated with the 

endophyte but had no plants grown on them for 1 month. 

 

3.3. Abiotic stress assays 

3.3.1. Drought tolerance and recovery 

The hydrophobic nature of TS makes water a limiting resource for plant growth, meaning 

any increase in the ability to utilize limited water resources could be very benificial. TSTh20-1 
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enhanced drought recovery in tomato plants that had been allowed to wilt for 36 h and then 

drenched. After just 15 min of recovery, the plants colonized with TSTh20-1 had significantly 

higher leaf water content (P = 0.0099). This relative water content continued beyond 30 min (P = 

0.0077). Axenic plants showed a linear of recovery (r
2
 = 0.981) whereas plants colonized with 

TSTh20-1 showed a logarithmic recovery curve (r
2
 = 0.9988). The difference in plant water 

content and apparent turgor was visible by 30 min. See Figure 3.3.1 for a graph of leaf water 

contents with their best fit lines, as well as an image of plants 30 minutes into their recovery. No 

significant differences were recorded during the desiccation period, suggesting TSTh20-1 does 

not assist with drought tolerance. However, the slightly higher t=0 water content in TSTH-

colonized vs axenic plants suggests a trend toward improved water use efficiency. 
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Figure 3.3.1. The drought recovery curves of axenic and inoculated plants. Leaf 

water content was measured 5 times over the course of drought recovery and plotted. 

Blue diamonds (upper line) represent plants grown with TSTh20-1 while red circles 

(lower line) represent axenic plants. Significant time points are denoted with an asterisk. 

The lower half of the figure shows visually the difference in drought recovery 30 

minutes into recovery. 
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3.3.2. Seed germination assays 

Environments with stressful conditions will result in lower germination rates and higher 

rates of seedling mortality. Some strains of T. harzianum have been shown to enhance seed 

germination rates. TSTh20-1 was found to enhance germination rates of clover seeds grown both 

on potting mix (P < 0.01) and TS. A P-value was not recorded for growth on TS, however figure 

3.3.2 shows the visible differences in growth on potting mix. Figure 3.3.2 shows the visible 

differences in germination rates of clover seeds grown on PM for 7 d. 

 

 

 

Figure 3.3.2. Seed germination enhancement of white clover (T. repens) by TSTh20-1 on 

potting mix after a 1 w growth period. 

 

3.4. Selection of native species 

3.4.1. Growth on tailing sands 

Choosing the appropriate species for reclamation can be difficult. Avoiding invasive 

species, plants that can survive the difficulties of the environment, and plants that require limited 

maintenance, such as fertilizer and watering are needed. The 24 species screened for growth on 

TS were grouped into 3 categories based on qualitative inspection. These were strong growth on 
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TS; weak growth on TS; no growth on TS. Figure 3.4.1 shows examples of strong and weak 

growth on TS. Generally, seeds requiring cold stratification either did not germinate, or the 

seedlings grew poorly. This may be partially due to a longer exposure to toxins found in TS, or 

their smaller seed size (data not shown) making them more vulnerable to small amounts of toxic 

materials. 

 

 

Figure 3.4.1. Some examples of strong and poor growth of native species on TS. 

Top row (Blue grama, White clover, Slender wheatgrass) show strong growth on TS. 

Bottom row (Ground plum, Calico beardtongue, Harebell) show weak growth on TS. 

Arrows indicate location of small seedlings. 

 

3.4.2. Seed mixture 

Monoculture of a species, even in reclamation, can present problems in the event of a 

dynamic environment, disease, or insects that could result in mass mortality of monocultures. A 
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diversity of species can result in lower maintenance of a site by decreasing the risk of 

catastrophic mortality from a single cause. Four plants species were used in a seed mixture for 

microcosm revegetation studies. They were chosen for their strong growth on TS and suitability 

to reclamation purposes: stabilizing soil, adding nutrients to soil, and rapid establishment. The 

four species chosen were: blue grama (Bouteloua gracilis), slender wheatgrass (Elymus 

trachycaulus), alfalfa (Medicago sativa), and white clover (Trifolium repens). 

 

3.4.3. Competition effects and compatibility with TSTh20-1 

When using a mixture of seeds it is important to ensure that competition effects between 

species are not hindering overall growth. No competition effects were noted regardless of 

seeding density on limited volumes of TS after the growth period. Qualitative analysis suggests 

that plants grown in higher densities were performing as well as, or better than, plants grown in 

lower seed densities as shown in Figure 3.4.3. This may be due to the extremely low nutritional 

availability in TS, leaving little for plants to compete for. It may also be that plants grown in 

higher densities better distributed the toxic load of residual hydrocarbons and moderate pH levels 

amongst more plants leading to better performance as a whole despite limited nutrients, however 

there is no data to support either of these hypotheses. Over a longer growth period competition 

effects may become more apparent as pH and toxins are reduced. 
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Figure 3.4.3. Seed density experiment as shown from above. Seeding density 

increases from left to right. No dramatic differences in plant growth were apparent 

after the 4 wk growth period. 

 

3.5. Mesocosm scale experiments 

3.5.1. Tailing sands from Company A 

 To investigate the potential effects of plant growth and soil conditions on a larger scale, 

a mesocosm scale experiment was established. Twelve PVC tubes (45 cm tall x 10 cm diameter) 

were set up. Half of the tubes were filled with TS and the other half PM. All tubes were seeded 

with a seed mixture, and 3 tubes from each group inoculated with TSTh20-1. Plants were 

allowed to grow, with regular watering, for 2 months. Plant parameters such as shoot length, root 

length, fresh and dry biomass, and root to shoot ratios were measured. No significant differences 

in plant health parameters (root length, shoot length, wet biomass, dry biomass, and root:shoot 

ratios) were observed after 2 months of plant growth (P > 0.05). Plants were verified for axenic 
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or colonized conditions. Axenic plants were found to be sterile with the exception of an orange 

endophyte found in blue grama seeds that eventually colonized other plants, both monocot and 

dicot, as well. This orange endophyte was observed growing from > 90 % of seeds on Petri 

plates. It is believed that it is a Class 1 fungal endophyte that could not be removed via surface 

sterilization. It was found that TSTh20-1 and the putative Class 1 endophyte both colonized 

plants grown on TS (Figure 3.5.1.1) Nutrient levels in the soil were found to be unchanged as all 

nutrients remained below detectable levels. 

 

 

Figure 3.5.1.1. A Petri plate containing surface sterilized plants that were grown 

on TS in the presence of TSTh20-1 for 1 month. Both TSTh20-1 and the orange 

endophyte from the blue grama seeds can been seen growing from a dicot (Alfalfa) and 

monocot (Blue Grama). 

 

 TPH levels in TS increased from 510 ppm to > 800 ppm with the growth of axenic plants 

on the TS for two months. Hydrocarbon levels increased to nearly 1400 ppm with the growth of 

plants inoculated with TSTh20-1 on TS for two months. Figure 3.5.1.2 shows the increase in 
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hydrocarbons over the baseline level. The significance of this increase cannot be determined as 

only one sample was analyzed which was a mixture of three replicate mesocosms. Hydrocarbons 

were not expected to increase, see the discussion for a hypothesis as to why this might have 

occurred. 

 

 

Figure 3.5.1.2. A graph showing the increase in hydrocarbons observed in the 

Company A mesocosm experiment. Hydrocarbons are broken shown as 3 CCME 

fractions (F2, blue; F3, green; and F4, yellow) as well as total hydrocarbons (red). Left 

shows the baseline level of hydrocarbons observed in TS, centre shows hydrocarbon 

levels when axenic plants were grown on TS for 2 months, and right shows hydrocarbon 

levels after plants inoculated with TSTh20-1 were grown on TS for 2 months. 

Hydrocarbon levels increase in the presence of plants, and greatly increase when 

TSTh20-1 was added. 

 

3.5.2. Tailing sands from Company B 

A second mesocosm-scale experiment using tailings from Company B, due to limited 

quantities of tailings from Company A, was designed to test why dramatic increases in 

measureable hydrocarbons were observed in the first experiment. Soil hydrocarbons were 
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measured in randomly selected replicates. No significant differences were observed in TPH 

levels between treatment groups in the F2, F3, F4, or TPH (P > 0.100). Soil peroxidase activities 

were found to not increase with the addition of TSTh20-1 to TS without the presence of plants. 

However the presence of plants alone significantly increased peroxidase activities (P < 0.05). 

Plants inoculated with TSTh20-1 increased peroxidase activity significantly over the control and 

plants-only treatments (P < 0.05). Please see the discussion section on possible reasons why 

differences in hydrocarbons were not observed in this experiment. The orange endophyte 

observed in blue grama and the Company A experiment was observed in this experiment as well. 

 

 

Figure 3.5.2. Relative levels of cell-free peroxidase activity in TS under a variety of 

treatments. Soil peroxidase activity was found to increase under the presence of plants, 

and increase significantly more when TSTh20-1 inoculated plants were present. The 

addition of TSTh20-1 alone to TS did not increase peroxidase activity. 

 

3.6. Mechanisms of plant growth promotion 

3.6.1. Phosphate solubilization and organic acid production 

The nature of TS dictates a need for any organism(s) living on it to be an excellent 

scavenger of the few nutrients present. Phosphate, which is essential and known for its limited 

solubility in soil, was chosen for this study. TSTh20-1 strongly solubilized Al-phosphate 

precipitate in liquid culture. Solubilization of this solid was as strong, or stronger than, the 



 55 

solubilization observed with Penicillium bilaiae, a known phosphate solubbilizer. Solubilization 

of Ca- and Fe-phosphate precipitates was weak relative to P. bilaiae. Using HPLC, TSTh20-1 

was found to produce oxalic, gluconic, and citric acids, which together are likely responsible for 

the solubilization of phosphate solids observed in liquid culture via pH changes and anion 

exchange. Figure 3.6.1 shows the relative levels of PSOL performed by both TSTh20-1 and P. 

bilaiae on three types of phosphate precipitates in liquid culture. 

 

 

Figure 3.6.1. Relative levels of PSOL, represented as optical density, of P. bilaiae 

and TSH20-1. PSOL capability of each fungus was measured in liquid culture with 

insoluble phosphate precipitates (Al, Ca, and Fe) for 1 wk. 

 

3.6.2. Production of siderophores 

Siderophores have been implicated as one possible mechanism used by PGP bacteria to 

enhance plant growth, it stands to reason the PGP fungi may also utilize these compounds. 

However, TSTh20-1 did not produce detectable levels of siderophores in vitro. This was 

compared to P. bilaiae, which produces large amounts of siderophores that can be visually 

detected on CAS media. Since this test was not performed using a plant, it is impossible to say 

whether TSTh20-1 produces siderophores or induces siderophore production in planta. 
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Figure 3.6.2. CAS plates showing siderophore assay for TSTh20-1 and P. bilaiae. 

TSTh20-1 (left) shows no colour change in the media, an indication that no 

siderophores are produced. P. bilaiae (right) shows a change in the media from blue 

to pink, a positive reaction for siderophore production.  

 

3.6.3. Tolerance to reactive oxygen species 

Under stress conditions, many plants produce reactive oxygen species (ROS), that can 

lead to cell damage and death. Some fungal endophytes have been shown to protect plants from 

this effect by unknown mechanisms. TSTh20-1 did not protect plants from the generation of 

ROS under stressed (grown on TS) or non-stressed (grown on PM) conditions. Leaf disks taken 

from plants grown under different conditions were found to bleach at similar rates regardless or 

endophyte colonization. 

 

3.6.4. Hormone production 

Some fungal endophytes and PGP bacteria produce plant hormones that can lead to 

growth changes in the plant. Common plant hormones include IAA, and other indole family 

compounds. TSTh20-1 did not produce indole family compounds in vitro. TSTh20-1 may 

produce other types of hormones that were not tested for such as jasmonic acid, ethylene, or 

gibberelins. Since this test was not performed using a plant, it is impossible to say whether 

TSTh20-1 produces hormones or induces hormone production in planta. 
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3.7. Other tests 

3.7.1. Nutrient requirements of TSTh20-1 

Given the oligotrophic nature of TS, it was hypothesized that TSTh20-1 would have low 

nutrient requirements (Kaminskyj et al, 2008). Low nutrient requirements would also place 

minimal stress on the host plant. TSTh20-1 was found to grow in extremely oligotrophic 

environments. TSTh20-1 would readily grow on media prepared with nothing but molecular 

grade agarose and 18 MegOhm ultrapure water. Growth was weak, but viable spores were 

produced even under these conditions. This growth and spore production may be part of the 

dowry effect, where nutrients stored in spores are used for growth and further sporulation in 

absence of nutrient in the environment. Only one batch of molecular grade agarose did not 

support growth of TSTh20-1. Spores did not germinate on media made from this agarose, so it 

was used to test for the nutritional requirements for spore germination and hyphal growth. 

TSTh20-1 spores did not germinate without the presence of micronutrients found in standard 

micronutrient solution. Germling growth showed a strong tendency to grow in the direction of 

micronutrients, regardless of micronutrient position on the plate. Tests were not performed to 

determine which micronutrient was the most limiting for fungal spore germination and growth. 

This ability to grow in oligotrophic conditions is reflective of the oligotrophic environment 

found in TS. 

 

3.7.2. pH changes in media 

 The effect of TSTh20-1 on medium pH was examined as a control for organic acid 

production (e.g. if acids are not produced the media will remain neutral). TSTh20-1 

demonstrated unexpected changes in medium pH when grown on PDA. pH was found to 

increase near the youngest hyphal tips for 20-50 mm, older hyphae strongly acidified the media, 

and hyphae associated with sporualtion made the medium strongly alkaline. Figure 3.7.2 shows 

the pH changes induced in media as TSTh20-1 grows. 
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Figure 3.7.2. pH changes induced in 2 media by TSTh20-1 as indicated by 

bromocresol purple. Left: TSTh20-1 grown on 10 % PDA for 120 h. A bull’s-eye 

effect of high-low-high pH can be observed in the media. Right: TSTh20-1 grown for 

120 h on medium containing an insoluble phosphate source, bone meal. The pH 

patterns are not similar to those seen on 10 % PDA. HCl and NaOH are used as 

controls. 
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3.7.3. Compatibility with trees 

The legal requirements of reclamation in Alberta dictate that the affected land must be 

restored to an equivalent land capacity before a reclamation certificate can be awarded; in this 

case that is a mixed wood boreal forest. As such, knowing the effects of TSTh20-1 on tree 

growth could be important for future work. TSTh20-1 was found to inhibit the growth of Jack 

pine seedlings when grown on TS, particularly the shoot section of the plant. Trees inoculated 

with TSTh20-1 had shorter needles (P = 0.002), shoots (P = 0.023), and lower shoot biomass (P 

= 0.006). No significant differences were observed in length of root (P = 0.129), root branching 

(P = 0.124), or root biomass (P = 0.424). The reason for these differences was not studied, 

however may be attributed to increased levels of short-chain hydrocarbons (See Discussion). 

Figure 3.7.3 shows representative plants from each treatment group. 
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Figure 3.7.3. Growth differences observed in 2 month old jack pine seedlings grown on TS 

with and without TSTh20-1. No differences were observed in root growth parameters. Shoot 

growth was inhibited in trees grown with TSTh20-1. 

 

 



 61 

3.7.4. The effect of surfactants on soil hydrophobicity and plant growth. 

 Previously (Bao, 2009), TS have been shown to be strongly hydrophobic. Soil 

hydrophobicity became a pronounced problem when establishing experiments throughout this 

study. TS from Company A in their raw, dry, form were found to be cement-like in nature and 

strongly hydrophobic. Aggregates of this hard and dry TS could be left in water for extended 

times without the sand wetting. Similarly, in experimental setups, pots containing TS were 

watered; the water would remain on the surface of the sand, never soaking in to the sand 

aggregates. Treating the TS with a 1% solution of Tween 20 was found to eliminate soil 

hydrophobicity without the need for repeated treatments (Figure 3.7.4.1). In a second experiment 

to determine the effect this has on plant growth it was found that radish seedlings growing on 

Tween 20 treated TS were still alive after one week of no watering, while those grown on raw 

TS were wilted beyond saving. The soil in each pot also reflected this; the treated soil was 

homogenous in nature and still moist after one week while the untreated TS were completely dry 

and still contained numerous hard sections (Figure 3.7.4.2). 
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Figure 3.7.4.1. A demonstration of the effect Tween 20 has on TS hydrophobicity. The 

image on the left shows tailing sands in water after gentle mixing. The tailing sands aggregates 

remain dry. The image on the right shows the same tailing sands after the addition of Tween 20. 

The tailing sands are easily wetted after this. 
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Figure 3.7.4.2. A preliminary experiment testing the effects of Tween 20 treated 

TS on plant growth. Left: Seedlings grown on untreated TS perish due to water stress. 

TS are visibly dry and clumped. Right: Plants on treated TS are not water stressed. TS 

are visibly wet and not clumped. 

 

 

4.0. DISCUSSION 

4.1. Tailing sands are an environment of extremes 

 Tailing sands are a difficult environment for plants to survive on, let alone thrive. 

Regardless of extraction method, TS were found to contain no detectable amounts of nitrogen, 

phosphate, or potassium. These are the three most essential inorganic macro-nutrients required 

for healthy plant growth. Without available NPK, plants must dedicate more resources to obtain 

the necessary amounts, for example producing longer or larger root systems. 
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TS have been shown to be hydrophobic in both this and previous studies (Bao, 2009). TS 

hydrophobicity means that water will not permeate into the pore spaces of aggregates, thusly 

limiting the amount of water plants can use for their growth. TS hydrophobicity creates problems 

for current accepted methods of reclamation. These include increased water runoff, possibly 

leading to erosion of the peat mineral mix used to cap tailings. TS hydrophobicity may play a 

role in inhibiting the growth of trees and larger plants on the peat mineral cap because their root 

systems could extend into the hydrophobic TS where water relations will be affected, potentially 

limiting root growth. TS from Company A contained barely detectable levels of sulfate, whereas 

TS from Company B contained large amounts. This is most likely due to the addition of gypsum 

to the tailings stream by Company B. Gypsum serves as a coagulant that causes fine tailings to 

settle at an increased rate (Devenny, 2009). With the exception of sulfate, no detectable amounts 

of NPK, nutrients key for plant growth, were found in TS from either company. Without the 

addition of fertilizer or an endophyte that assists in nutrient acquisition, possibly both, uptake 

plant growth with be severely limited. 

 

Table 4.1. A summary of conditions found in coarse tailings from two companies. 

 

 

TS hydrophobicity is thought to arise from residual hydrocarbons coating to the surface 

of sand particles. One theory is that hydrocarbons are saponified during the extraction process, 

giving them surfactant like properties (Zhou et al, 1999). It is then believed that the hydrophilic 
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part of the saponified hydrocarbons attaches to water coated sand particles, leaving the 

hydrophobic side of the hydrocarbons facing outward (Zhou et al, 1999). TS hydrophobicity was 

greatly reduced through a one-time treatment of TS with a 1 % (v/v) solution of Tween 20. 

Tween 20 is a biodegradable, non-accumulating, surfactant. Surfactants have been used 

previously to reduce the hydrophobicity of impacted soils to enhance plant growth (Sunderman, 

1983). No sources indicate the use of surfactants in oil sands reclamation, this study indicates 

that they may be useful in reducing or eliminating the hydrophobicity of TS. However, studies 

should be performed to ensure that surfactants do not increase the mobility and bioavailability of 

hydrocarbons or other toxins. A proof of concept experiment performed shows the great effect a 

one-time treatment of Tween 20 can have on water retention and plant growth, leading to 

enhanced plant growth on TS. This effect is likely due to the increased water availability to the 

plant. 

 

TS pH was vastly different (~4 pH units) between the two companies. This was directly 

due to use of different additives to their slurries. TS from Company A were moderately alkaline, 

whereas TS from Company B were moderately acidic. Both of these pHs fall well outside of the 

range, pH 4.8 – 6.0, for boreal forest soils in the Athabasca region (Alberta ESRD, 2000). These 

differences in pH are likely due to the particular additives used by each company in the 

extraction process.  

 

Company A uses sodium citrate, a weak organic base in their slurry. Due to the low 

microbial activity in TS (data not shown) an organic base is likely to be highly recalcitrant in the 

soil, which therefore buffers the soil pH at a higher value. Company B uses NaOH, a strong and 

reactive base, in their slurry. NaOH reacts with CO2 in the atmosphere to form sodium carbonate, 

which can form carbonic acid when combined with acidic rainwater. The nominal pH of 

dissolved carbonic acid at atmospheric levels of CO2 is ~5.7, not low enough to explain the pH 

observed. However, the low buffering capacity of carbonic acid may allow other factors present 

in the soil to lower the pH further to the levels observed. Deviations from normal forest soil pHs 

may inhibit the healthy growth of boreal forest species. pHs that deviate far from neutral ranges 

can inhibit the growth of plants that are not adapted (Islam et al, 1980). 
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As expected, TS contained residual hydrocarbons, since the oil extraction process is not 

100 % efficient. The level of hydrocarbons found in each fraction was within CCME guidelines 

for an industrial soil for both companies’ TS (CCME, 2008). Figure 4.1 shows an overlay of the 

TPH profiles from each company. As can be seen the overlays show highly similar profiles of 

hydrocarbons, with Company B having slightly less Fraction 4 hydrocarbons and more Fraction 

2 hydrocarbons than Company A. Both companies have a similar level of total hydrocarbons, 

around 510 ppm. It is somewhat surprising that the TPH for each company are so similar as each 

company claims a different efficiency for their extraction methods. Company A claims an 

extraction rate of 80 % whereas Company B claims an extraction rate of 92 %. Company A is 

known to reject asphaltenes, large polycyclic hydrocarbons from their extraction process. These 

are sent to tailings, resulting in a lower extraction percentage. Company B accepts asphaltenes in 

their extraction process. Knowing this, one would expect to observe a higher percentage of large, 

Fraction 4, hydrocarbons in the TPH profile from Company A. Asphaltenes are large molecules, 

many of which contain more than 50 carbons. This is critical since the CCME method for 

evaluating hydrocarbons does not evaluate the presence of hydrocarbons larger than 50 carbons 

in size. Thus I expect that the tailings from Company A likely contain a significantly larger 

amount of hydrocarbons than those from Company B, but due to their size and complexity, they 

are not detected by the CCME TPH analysis, as this analysis only examines hydrocarbons less 

than 50 carbons in size. The effect of these large hydrocarbons on plant growth and soil health is 

not known. 
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Figure 4.1. Raw chromatograms comparing the relative hydrocarbon levels found 

in TS from Company A (red) and Company B (green). Company A shows a larger 

portion of larger hydrocarbons, in line with the extraction methods used by Company A. 

Company B has a higher ratio of smaller hydrocarbons to larger hydrocarbons. 

 

To the best of my knowledge this is the first report on the conditions found in coarse TS 

available publically. These results indicate that sustaining plant growth on such an environment 

is likely to be difficult, and the lack of reclamation certificates issued by the Government of 

Alberta to-date is in agreement with this assessment.  

 

The most difficult aspects of growth on TS for plants will likely be the limiting levels of 

plant nutrients and water. No in-depth studies publically available have been performed on 

coarse tailings to evaluate the presence of toxic compounds or what their effect on plant growth 

may be. Given the lack of nutrients present in TS, it is possible that inorganic toxins, such as 

metals, are present in biologically significant quantities relative to organic toxins.  
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Naphthenic acids (NAs) are a complex group of thousands of related organic compounds, 

that have been shown to reduce water conductance in woody tree species and are known to be 

present in OSPW as well as reduce gas exchange and root water transport in aspen (Apostol et al, 

2004; Kamaluddin et al, 2002). However, the concentration of NAs in TS is currently unknown 

as these have never been measured for solid samples. As it stands, there are no established 

methods for extracting NAs from soil material. It may be possible that NAs can be extracted 

from TS using methods commonly used to extract NAs from OSPW, which should be 

investigated in a future study.  

 

4.2. TSTh20-1, a single endophyte, confers multiple tolerances 

 Previously, TSTh20-1 was shown to promote the growth of tomato plants on TS (Bao, 

2009). The current study tested the ability of TSTh20-1 to promote the growth of native species 

in medium-scale environments, to enhance seed germination and seedling growth, and to assist 

in drought tolerance and recovery. TSTh20-1 did not contribute to drought tolerance, but did 

significantly enhance drought recovery. The ability of TSTh20-1 to assist in water uptake, when 

water is available, may reflect the hydrophobic environment of the plants from which it was 

isolated. TSTh20-1 also increased the rate of germination of white clover seeds on potting mix 

and TS.  The mechanism of this germination enhancement is not known. The ability of TSTh20-

1 to confer multiple tolerances makes it attractive as a microbial inoculant to be used in 

environments where those stresses are found. However, the scope of the tests performed is 

limited to few soil types and in highly controlled conditions. Further testing under a larger range 

of circumstances should be done before TSTh20-1 can be recommended for wide spread use. 
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Figure 4.2. A small study investigating the growth of native species on a small 

volume of TS. The top row consists of native plants grown on TS in the absence of 

TSTh20-1 while the bottom row consists of plants grown in the presence of TSTh20-1. 

Qualitatively, the plants with TSTh20-1 appear both more numerous and larger, 

something that was not observed in experiments with larger volumes of TS. 

 

 TSTh20-1 did not appear to promote the growth of native species in meso-scale 

environments. The reason for this is unknown; however it may be due to the size of the 

rhizosphere. A small experiment was performed (Figure 4.2) where the same native species were 

grown in small rather than the large volumes (Magenta box vs. PVC pipe) of TS. Plants 

inoculated with TSTh20-1 grew significantly faster, at least in the first month of the experiment. 

This suggests that the volume of the soil to which the plant in exposed has an effect. One might 

expect plants to do better in larger than smaller soil volumes because more nutrients are 

accessible. A possible explanation to this might be that a toxic agent, such as NAs, present in TS. 

A smaller soil volume might allow the plant and fungus to more effectively degrade this toxin or 
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be exposed to a lower dose leading to better growth, whereas in larger soil volumes the dose of 

the toxin may be larger or more persistent. However, as toxins have not been studied in TS, so 

this must remain a hypothesis. Further studies investigating this hypothesis will allow for a better 

understanding to the unexpected relationship between soil volume and plant health. 

 

4.3. The possibility of hydrocarbon degradation 

 In the meso-scale experiment using TS from Company A, a large spike in the amount of 

total hydrocarbons was observed when plants inoculated with TSTh20-1 were grown on TS. 

Unfortunately, the TPH analysis was performed as a single replicate consisting of an even 

mixture of 3 samples. This makes the results statistically insignificant. A repeat of this 

experiment was performed using TS from Company B, due to the limited quantities of TS 

available from Company A. The analysis of the Company B TS after the growth period showed 

no change in the hydrocarbon profile. These two companies utilize different extraction methods 

with different extraction efficiencies and specificities for different types of hydrocarbons. This 

offers a potential explanation for the reason for the increase in TPH seen in one TS but not the 

other. 

 

 It is known that Company A rejects asphaltenes from their extraction process (Devenny, 

2009) and sends them to tailings, leaving a bank of large hydrocarbon molecules that are 

undetectable via CCME methods, whereas hydrocarbons present in TS from Company B do not 

have this potential source.  

 

 It may be that TSTh20-1 can degrade these large hydrocarbons into smaller pieces, pieces 

that are small enough to become visible in the CCME method (<50 carbons). In the absence of 

this bank of large hydrocarbons, no change in TPH was observed. This hypothesis is supported 

by the enhanced plant growth on smaller volumes of TS seen in the previous section, suggesting 

that a degradable toxin is present and is more rapidly degraded in a smaller environment, 

allowing for greater plant growth. However, since the results using tailings from Company A did 

not have proper analytical replication, and since their composition differed from Company B TS, 

this remains an untested hypothesis. More studies will be required to evaluate the value of 
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TSTh20-1 as a hydrocarbon degrading fungus, and whether this degradation correlates with 

enhanced plant growth. 

 

4.4. Mechanisms of plant growth promotion 

 TSTh20-1 strongly solubilized Al phosphate precipitates. Moderate solubilization of Ca 

and Fe phosphates was observed, but solubilization was weaker than a known phosphate 

solubilizer. The ability to liberate nutrients in an oligotrophic environment is essential for 

survival of both the fungus and plant. It was not investigated whether the liberated phosphate is 

taken up by the plant or if it remains within the endophyte and should be the subject of a future 

study.  

 

 TSTh20-1 did not produce indole-type compounds or siderophores, when grown on 

synthetic media in the absence of a plant. However, potentially, TSTh20-1 could have induced 

production of either type of compound when in planta. Some strains of T. harzianum (T-22) 

have been shown to alter genetic expression and hormone profiles within plants. Thus it a strong 

possibility that the fungus does not produce these compounds itself, but rather alters the 

expression of the genes within the plant by other means. TSTh20-1 did not protect green plant 

tissue from reactive oxygen species (ROS) as other fungal endophytes have been shown to do 

(Marquez et al, 2007; Hamilton et al, 2012). However, the endophyte might be protecting the 

plant from ROS generated in other tissues. This cannot be tested using the paraquat assay as 

paraquat is only effective in green tissue. These preliminary results looking at the potential 

mechanisms that TSTh20-1 may employ to benefit the host plant in a harsh environment have 

proven inconclusive at best. The mechanisms that Class 2 fungal endophytes use to enhance 

plant growth are currently not yet clarified in the literature, leaving little base to compare these 

results to, or to determine if the experiments performed were adequate enough to test for these 

mechanisms. 

 

4.5. Use of endophytes in reclamation may reduce costs and increase success rates 

 Despite our incomplete knowledge about the plant growth promoting mechanisms used by 

TSTh20-1, this endophyte still holds the potential to enhance current efforts to reclaim lands 
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disturbed by oil sands surface mining. First, TSTh20-1 has been shown to increase drought 

recovery in plants that have severely wilted. Second, TSTh20-1 has been shown to enhance seed 

germination both on potting mix and on TS. Third, TSTh20-1 enhances plant growth on TS 

without added mineral fertilizer. Fourth, TSTh20-1 readily colonizes a wide range of grasses, 

legumes and other forbs, many of which are suitable for TS reclamation strategies. 

 

  TS reclamation is a multi-stage process, at least for methods currently used by mining 

companies. The cost of TS reclamation has the potential to outgrow the money set aside for it. 

The use of TSTh20-1 in the early stages, during establishment of the perennial grass cover, is 

expected to reduce cost. The improved seed germination rates that TSTh20-1 would allow for 

industrial seeders to be used. Further, I have shown that treating TS with 1 % Tween 20 helps 

improve water penetration of hydrophobic TS, and so offers a potentially much higher 

germination success. In addition, TSTh20-1 helps plants rapidly recover from water stress 

situations. As a result, TSTh20-1 colonized plants will better be able to utilize small amounts of 

water received in hydrophobic soils before it evaporates or is lost as runoff allowing for lower 

death rates for plants. TSTh20-1 liberates phosphate from recalcitrant soil precipitates. Although 

I fully expect that oil sands companies will fertilize their sites during perennial cover 

establishment, lower rates of fertilization or only one fertilizer application may be required. All 

of these features combined will allow lower maintenance of sites under temporary reclamation 

and when combined with other technologies may greatly reduce the costs of reclamation. 

 

4.6. Future directions 

 This thesis research project was a preliminary investigation into the suitability of   

TSTh20-1 for use in reclamation and remediation of sites impacted by oil sands mining 

activities. In addition, I explored the mechanisms potentially used by TSTh20-1 to enhance plant 

growth on dry, nutrient-limited, hydrocarbon-contaminated TS.  

 Some of the results in this study have proven to be inconclusive, largely due to the limited 

amount of TS available and limited information in the literature. As a result the scale and types 

of experiments necessary for conclusive, statistically sound, results were unable to be performed. 

Current results have only been able to provide intriguing and highly promising glimpses of the 
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potential for this research. Taken together, despite limitations, preliminary results indicate many 

interesting future directions for this work.  

 

 The most interesting finding of the research presented in this thesis is the possibility that 

TSTh20-1 is degrading large and complex hydrocarbons, however more concrete evidence is 

needed. These are found in certain types of tailings, including those from company A. 

Degradation of large hydrocarbon molecules may result in enhanced plant growth dependent on 

soil volume and the rate of degradation. Future studies would be best focused on tailings that 

contain large amounts of asphaltenes and related compounds, namely those from Company A. 

For statistical rigor, experiments should use larger numbers of replicates that are correlated to 

soil enzyme activities. Similarly, it would be very interesting to examine the concentration of 

naphthenic acids in TS and use established methods to determine if they are degraded when 

exposed to TSTh20-1. 

 

 A great increase in soil peroxidase activity was observed in TS when plants inoculated 

with TSTh20-1 were present, but not when TSTh20-1 alone was present. Notably, TSTh20-1 can 

grow in TS without need of additional fermentable carbon sources.  It is possible that all 

peroxidase activity observed was plant derived with increased production of the enzyme being 

induced by the fungus. This could be studied using protein-based techniques. For example, a 

comparison of the type and activity of peroxidases present in the soil when TSTh20-1, the plant, 

and inoculated plants are present would be useful to understanding how best to apply TSTh20-1 

to decontaminate as well as revegetate TS. Similarly, molecular means such as qPCR could be 

used to asses changes in peroxidase gene activity in plants inoculated with TSTh20-1. 

 

 Methods other than those used in this study can be used to determine the possible 

mechanisms employed by TSTh20-1 to enhance plant growth. Plant hormone profiles could be 

examined to determine if TSTh20-1 is altering the levels and types of hormones present. 

Siderophores could be better tested by extracting them from soil grown with plants inoculated 

with TSTh20-1 and without TSTh20-1 using the same CAS assay but analyzed 

spectrophotometrically. Finally, nutrient solubilization in soil could be evaluated by creating an 
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artificial soil with known amounts of insoluble nutrients. Plants grown on this artificial soil could 

be evaluated for nutrient content when grown with or without TSTh20-1 under these conditions 

to determine if TSTh20-1 is assisting in uptake of recalcitrant nutrients. 

 

 Most importantly, a future study should establish a field site to test the effectiveness of 

TSTh20-1 in real world conditions. A field site could be used to evaluate if TSTh20-1 promotes 

plant growth the same way observed in lab conditions, degrades hydrocarbons, and leads to 

reduced need for maintenance (and thusly cost) at the site. 
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