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Abstract 

There are two main carbon sources for consumers in aquatic ecosystems: allochthonous sources, 

those generated through primary production outside of the waterbody, and autochthonous 

sources, those generated through both benthic and pelagic primary production within the 

waterbody. Lake Diefenbaker, a large prairie reservoir located on the South Saskatchewan River 

in central Saskatchewan, contains an additional carbon source for consumers via waste products 

from an aquaculture facility located within the reservoir. This study set out to identify the 

importance of each potential carbon source to four common fish species throughout the length of 

Lake Diefenbaker. Lake Whitefish (Coregonus clupeaformis), Northern Pike (Esox lucius), 

Walleye (Sander vitreus) and White Sucker (Catostomus commersoni) were sampled in 2012 and 

2013 and the importance of each potential carbon source was examined using stable isotope 

analysis and the Bayesian mixing model SIAR. Lake Whitefish in the area surrounding the 

aquaculture facility were using the waste feed from the fish farm as a diet subsidy; however, the 

effect was extremely localized and only fish in the immediate vicinity of the cages showed any 

contribution from aquaculture waste. Whitefish feeding on the pelleted fish feed were larger in 

size and in better condition than those that were not using the diet subsidy. Benthic 

autochthonous primary production was the most important source to Northern Pike, Walleye and 

White Sucker, while pelagic autochthonous production was the primary source supporting Lake 

Whitefish throughout the reservoir. Allochthonous carbon was of little importance to any of the 

fish species studied throughout the downstream reaches of Lake Diefenbaker, but was of slightly 

higher importance at the most upstream site in the riverine zone of the reservoir.  
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CHAPTER 1. General Introduction 

 

1.1 Review of Carbon Sourcing Literature 

1.1.1 Introduction 

Saskatchewan is home to 58 species of native fish, as well as eleven additional species 

which have either invaded or have been intentionally introduced (Atton and Merkowsky 1983; 

Liaw 1991). These fish are found in over 50,000 fish bearing lakes, rivers, streams and reservoirs 

throughout the province (Ashcroft et al. 2006), where they play an important role in 

Saskatchewan’s economy via recreational and commercial fisheries (Duffy 2006; GOS 2011). 

This is especially true within the northern regions of the province where the majority of 

Saskatchewan’s fishing outfitters are located and where commercial fishing is one of the major 

forms of employment for communities such as Kinoosao, located on the north eastern shores of 

Reindeer Lake. Recreational fishing also plays an important role throughout the rest of 

Saskatchewan. In 2010, sport fishing was responsible for generating $496 million in direct and 

indirect revenue (GOS 2011). Much of the angling pressure in Saskatchewan is directed at lakes 

and reservoirs in the southern and central portion of the province due to their proximity to urban 

centres. Tobin Lake, Last Mountain Lake, Lake Diefenbaker and the Qu’Appelle Lakes are 

consistently the top angling destinations in Saskatchewan (Duffy 2006) due to their proximity to 

major cities combined with their excellent fisheries.  

Fisheries management relies on productivity estimates for particular waterbodies in order 

to ensure recreational and commercial harvest levels are sustainable. Productivity estimates for 

aquatic systems are often estimated based on relatively few physical and chemical variables (e.g. 

nutrient concentrations, bathymetry, and surface area). Knowing where the energy supporting a 

lake food web comes from, along with the relative importance of each potential carbon pathway 
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to the upper trophic levels in that food web can allow for more precise estimates of the 

productivity of aquatic ecosystems. In turn, this allows for more accurate estimates of the 

productivity of fish populations which can be used to manage harvest rates more effectively to 

ensure the sustainability of the fishery. 

1.1.2 Aquaculture Subsidies in Wild Fish Populations 

In the world of agricultural practises, aquaculture is still in its infancy compared to other 

forms of food production. The recent increase in the demand for high protein diets in developing 

nations of the world has sparked increased interest in the consumption of fish. However, with 

most of the commercially viable fisheries across the world already harvested at or above their 

productive capacity and with most wild fisheries in decline (Pauly et al. 2002; Worm et al. 2009; 

Pitcher and Cheung 2013; Lam 2016) there is no room to increase commercial production on 

wild caught fisheries. With the supply of wild caught fish in decline, the world is turning to 

aquaculture to increase production of fish for consumption (Brander 2007; FAO 2014). 

Aquaculture production has increased steadily since the 1960s and in 2012 it accounted 

for 66.6 million tonnes or 42 % of the world’s production of seafood (FAO 2014). Currently, 

aquaculture is the world’s fastest growing agricultural industry. Production from aquaculture is 

expected to meet 60 % of the world’s commercial fish supply by 2020 (FAO 2014). Much of the 

aquaculture industry relies on cage culture facilities where fish are kept within floating cages. 

These cages allow for the exchange of water and aquaculture waste products with the 

surrounding environment. The ecological impacts of these facilities on the surrounding 

environment are a major concern, especially with the ongoing expansion of aquaculture (Black 

2001). 
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Extensive research has been carried out on the potential ecological impacts of aquaculture 

(Black 2001). Much of the early research concentrated on marine systems while more recent 

studies have also expanded into freshwater ecosystems (Black 2001; DFO 2006). Most research 

has focused on abiotic factors such as nutrient deposition and oxygen depletion in waters 

immediately surrounding cage culture facilities (Black 2001; Guo and Li 2003; Clerk et al. 2004; 

Yan 2005). The results indicate the impacts of aquaculture on the abiotic environment are 

localized, only impacting the waters underneath and immediately adjacent to the cage culture 

facilities (Black 2001; Mente et al. 2006; Silva 2012). Less research has been conducted on the 

impacts of aquaculture facilities on wild fish populations. A large portion of the research 

concerning wild fish has focused on the negative impacts associated with parasite and pathogen 

transfer between farmed and wild fish (Beveridge et al. 1994; Sanchez-Jerez et al. 2008; Diana 

2009; Arechavala-Lopez et al. 2013) and the increase in wild fish densities associated with 

aquaculture facilities (Carrs 1990; Dempster et al. 2002; Dempster et al. 2004; Dempster et al. 

2009; Dempster et al. 2010; Boyra et al. 2004). More recently studies have begun to examine the 

impacts of aquaculture on the diets of wild fish populations in both marine and freshwater 

habitats and the effects these changes in diet may have on the wild fish populations (Gabrielsen 

1999;  Skog et al. 2003; Vita et al. 2004;  Fernandez-Jover et al. 2007; Fernandez-Jover et al. 

2008; Kullman et al. 2009; Otterå et al. 2009; Johnston et al. 2010; Strictar-Pereira et al. 2010; 

Dempster et al. 2011; Fernandez-Jover et al. 2011; Bagdonas et al. 2012). 

1.1.2.1 Marine Aquaculture 

Marine aquaculture accounts for 40 % of the world’s total aquaculture production, a large 

proportion of which is produced in cage culture facilities (Bostock et al. 2010). Wild fish are 

often found in much higher abundance immediately around the cage culture facilities than in 
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surrounding waters (Carss 1990; Boyra et al. 2004; Dempster et al. 2004; 2009; Sudirman et al. 

2009; Bagdonas et al. 2012). The higher abundance around cage culture facilities is thought to be 

linked to both the additional structural habitat provided by the facilities themselves (Powers et al. 

2007), as well as the waste feed from the fish farm entering the food chain (Cromey et al. 2002; 

Gabrielsen 1999; Sudirman et al. 2009; Fernandez-Jover et al. 2011; Bagdonas et al. 2012). 

Otterå et al. (2009) found that up to five percent of the total pelleted feed went uneaten by the 

caged salmon and entered the local food web. The wasted feed is only available in close 

proximity to the cages because uneaten pellets sink, preventing them from drifting long distances 

(Black 2001; Cromey et al. 2002). Small fish around the cage culture facilities are often attracted 

to the area to feed on the wasted feed (Felsing et al. 2005; Sudirman et al. 2009; Dempster et al. 

2010; Bagdonas et al. 2012) while larger predatory species are attracted by the greater abundance 

of smaller prey species (Bagdonas et al. 2012; Serra-Llinares et al. 2013), or by the escaped 

farmed species (Ugelm et al. 2014). In some cases, juvenile fish were attracted to the cage 

culture facilities to feed on zooplankton which were found in higher abundance around the cages 

than in control areas (Fernadez-Jover et al. 2009).  

A common observation in many studies of marine cage culture is the increased 

abundance of wild fish in the areas adjacent to the aquaculture facilities in both temperate and 

tropical regions of the world. Often, the impact of aquaculture waste on the benthos below and 

adjacent to the cages is diminished as a result of wild fish consuming aquaculture waste (Sanz-

Lázaro et al. 2011; Uglem et al. 2014). Some of these wild fish species were found to stay within 

close proximity to the cages throughout their life cycles (Dempster et al. 2010), while other 

species traveled away from the cages and between sites more frequently (Uglem et al. 2009; 
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Sudirman et al. 2009; Otterå and Skilbrei 2014). When fish move away from cage culture sites, 

they disperse nutrients (e.g., NH3) taken up at the aquaculture sites over a greater area. 

 Species presence around the cages often varied throughout the year and was suspected to 

be linked to water temperature as well as the spawning periods for some fish species (Valle et al. 

2007). Although the increased densities of fish around marine cage culture facilities may 

increase the spread of parasites and pathogens between fish (Beveridge et al. 1994; Sanchez-

Jerez et al. 2008; Diana 2009; Arechavala-Lopez et al. 2013), the wild fish in close proximity to 

the aquaculture sites were often in better condition (i.e., increased condition factors) than those 

from control sites (Fernandez-Jover et al. 2011; Dempster et al. 2011). Increases in fish condition 

were thought to be the result of the increased food supply via trophic subsidies in areas 

surrounding the cages from aquaculture waste (Fernandez-Jover et al. 2011; Dempster et al. 

2011).  Increases in body condition, especially increases in lipid concentrations, may allow for 

higher production of gametes due to increased energy stores (Marshall et al. 1999; Izquierdo et 

al. 2001). However, this hypothesis has not yet been tested. 

1.1.2.2 Freshwater Aquaculture 

Although freshwater makes up only 3 % of the earth’s water, 60 % of the world’s 

aquaculture production occurs in freshwater systems (Bostock et al. 2010). Carp and other 

cyprinid species account for over 65 % of the freshwater aquaculture production. The majority of 

the production of cyprinid species takes place in small pond culture facilities where few or no 

other fish species are present, resulting in little or no impact on wild fish populations (Bostock et 

al. 2010). However, many fish species are reared in cage culture facilities throughout the world’s 

lakes, rivers and reservoirs. Cage culture is an important part of freshwater aquaculture 

production in the developed world and is becoming more important in the developing world as 
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an affordable source of high protein food (Bostock et al. 2010).  In 2004 cage culture facilities 

accounted for almost half of the freshwater aquaculture production in Canada (Bostock et al. 

2010). Freshwater cage culture facilities resemble their marine counterparts in structure, but the 

impacts on local ecosystems can often be magnified due to the smaller size of the receiving 

waters where the facilities are located (Kullman et al. 2009; Bostock et al. 2010).  

Similar to marine aquaculture research, most of the studies on the impacts of freshwater 

aquaculture facilities have focused on eutrophication and oxygen depletion in the surrounding 

waters as a result of nutrient loading from aquaculture waste. In freshwater systems 

eutrophication is often a larger concern than in marine environments simply due to the smaller 

volume of the receiving waters. Many of the impacts of cage culture facilities on freshwater fish 

species are the same as those seen in marine environments. Numerous studies have found 

increased abundance of wild fishes around the cage culture facilities compared to reference sites 

(Johnston et al. 2010; Demétrio et al. 2012; Gondwe et al. 2012; Brandão et al. 2013; Ramos et 

al. 2013; Brandão et al. 2014) or prior to the cage culture operations (Johnston et al. 2010; 

Demétrio et al. 2012; Gondwe et al. 2012; Brandão et al. 2013; Ramos et al. 2013; Brandão et al. 

2014).  

Wild fish around cage culture facilities often show signs of diet subsidies from the 

assimilation of aquaculture waste. Gut content analysis is commonly used to confirm if fish have 

recently been feeding directly on particulate aquaculture waste (Phillips et al. 1985; Gabrielsen 

1999; Strictar-Pereira et al. 2010; Demétrio et al. 2012; Brandão et al. 2013; Ramos et al. 2013; 

Brandão et al. 2014). Stable isotope analysis is also used to determine if fish, as well as 

invertebrates, are assimilating aquaculture waste over longer periods of time either directly by 

feeding on the particulate waste products (Grey et al. 2004; Kullman et al. 2009; Gondwe et al. 
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2012), or indirectly when dissolved waste products enter the food web via nutrient uptake by 

primary producers (Kullman et al. 2009; Benedito et al. 2013). Both gut content analysis and 

stable isotope analysis have proved useful in determining when the diet of wild fish is subsidized 

directly or indirectly with aquaculture waste. Bašić et al. (2015) found that pelleted fish feed 

used as bait by anglers to attract and catch European barbel (Barbus barbus) contributed up to 

50 % of the assimilated diet of the population in three of four rivers studied using stable isotope 

analysis. Some of these fish were specialists with diets consisting of up to 79 % pelleted feed. In 

areas surrounding cage culture facilities, where higher volumes of pelleted feed are introduced as 

waste, the diets of wild fish in the area can consist of even higher proportions of the pelleted fish 

feed due to some species selective preference for this highly nutritious food source (Bašić et al. 

2015). 

Fish often had increased condition factors when subsidizing their diets with aquaculture 

waste (Gabrielsen 1999; Ramos et al. 2008; Brandão et al. 2013; Ramos et al. 2013). Brandão et 

al. (2014) found changes in fecundity, via an increased number of smaller eggs, in those fish 

utilizing aquaculture subsidies. In certain instances fish occurred in greater abundance around 

cages because they fed on invertebrates or other fish and not directly on the particulate 

aquaculture waste; such fish often had a decrease in condition (Strictar-Pereira et al. 2010), or no 

change at all (Ramos et al. 2013). Fish that feed on aquaculture waste have been observed to 

travel away from the cage culture sites (Gabrielsen 1999; Gondwe et al. 2012; Ramos et al. 2013; 

Brandão et al. 2014). This causes the dispersion of the waste products over a larger area, 

resulting in a decreased impact on the sediments and benthic organisms below the cages 

(Gondwe et al. 2012; Ramos et al. 2013). This, in turn, leads to lower rates of oxygen depletion 

in the waters immediately below the cages, providing a net positive effect for both the fish and 
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the environment around the cages. With the rapidly expanding aquaculture industry it is vital to 

have an understanding of the potential impacts of waste feed on the ecosystems around cage 

culture facilities. 

1.1.3 Allochthonous and Autochthonous Carbon Sources 

Two major carbon sources exist for aquatic consumers including fish: autochthonous 

sources, those generated through benthic and pelagic primary production within a waterbody, 

and allochthonous sources, those generated through primary production outside of the 

waterbody. Lake Diefenbaker contains a third possible source of nutrients to consumers via 

allochthonous inputs of waste products from the aquaculture facility located within Cactus Bay. 

The relative importance of allochthonous and autochthonous organic matter sources to 

consumers depends on many factors, including the size, shape and trophic status of the 

waterbody (Dolson et al. 2009; Solomon et al. 2011), as well as the availability of each organic 

matter source throughout the year (Delong and Thorp 2006; Bašić et al. 2015). On top of these 

physical parameters, variations in the feeding habits between fish species, as well as within a 

single species, play a role in the organic matter sources on which fish rely (Weidel et al. 2008). 

Although many factors are at play in the importance of each potential carbon source, some of the 

variation in the importance of allochthonous and autochthonous carbon can be attributed to the 

type of water body being studied. Knowing the relative importance of each potential carbon 

source to the diets of fish throughout Lake Diefenbaker may allow for a better estimation of the 

potential yields of fish within the reservoir and an understanding of how this may change with 

year to year variations in the water residence time. This in turn is important for the potential 

management implications of the valuable sport fishery within Lake Diefenbaker, now and in the 

future. 
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1.1.3.1 Lakes 

Benthic and pelagic sources of autochthonous primary production are of high importance 

to consumers within lentic ecosystems (Hecky and Hesslein 1995). However, the relative 

importance of allochthonous carbon to consumers within lakes has been debated and is the topic 

of recent research. Del Giorgio and Peters (1993) found algal production and planktonic 

respiration to be closely correlated to chlorophyll concentrations in lakes across a wide range of 

trophic gradients. However, in oligotrophic lakes respiration often exceeded photosynthetic 

production (Del Giorgio and Peters 1993), meaning an additional source of carbon from outside 

the waterbody was being utilized. These allochthonous subsidies could be occurring in three 

different forms including dissolved organic carbon, non-living particulate carbon (i.e., leaf litter), 

or terrestrial organisms such as insects (Cole et al. 2006). Allochthonous carbon sources were 

important for consumers in oligotrophic and dystrophic lakes (Jones et al. 1998; Carpenter et al. 

2005), but as the gross primary production of lakes increased, the importance of terrestrially 

derived carbon decreased (Cole et al. 2000). 

In boreal lakes, littoral fish species can be dependent on terrestrially derived carbon for 

part of their energy, linking the lake ecosystems with the adjacent forest (France 1997). Benthic 

macroinvertebrates often rely on allochthonous inputs of leaf litter from the surrounding forest 

(Solomon et al. 2011; Glaz et al. 2012), and fish species such as brook trout can derive up to 

90 % of their carbon from terrestrial sources by feeding mainly on these macroinvertebrates 

(Glaz et al. 2012). The importance of allochthonous carbon is highest in dystrophic lakes where 

light penetration is low due to high levels of terrestrial dissolved organic carbon (Carpenter et al. 

2005; Solomon et al. 2011; Karlsson et al. 2015). Interestingly, removal of the forest buffer 

along boreal lakes by clear cutting resulted in an increase in the importance of autochthonous 
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carbon to the diets of brook trout as they fed more heavily on zooplankton following the clear 

cutting and subsequent decrease in terrestrial subsidies (Glaz et al. 2014).  

The contribution of terrestrial carbon to consumers increases with the concentration of 

terrestrially derived dissolved organic carbon (Karlsson et al. 2015). However, even at 

exceedingly high concentrations of allochthonous carbon, consumers still rely on autochthonous 

primary production for some of their diet (Karlsson et al. 2012) indicating that allochthonous 

sources alone may have an upper limit to their contribution to the biomass of upper trophic level 

consumers. This may be due to the low quality of most allochthonous carbon sources when 

compared to autochthonous sources such as phytoplankton (Brett et al. 2012). Certain 

consumers, such as zooplankton preferentially rely on autochthonous carbon sources (Cole et al. 

2002; Pulido-Villena et al. 2005) with the majority of their diets reflective of these 

autochthonous sources (Mohamed and Taylor 2009). Other consumers such as many 

Ephemeroptera species preferentially rely on terrestrially derived carbon regardless of abundance 

(Weidel et at 2008; Glaz et al. 2012). This specialization on different carbon sources seen in 

primary consumers is reflected in higher trophic level consumers, such as fish. As a result, 

zooplanktivorous fish have a larger amount of their carbon derived from autochthonous sources 

(Cole et al. 2002; Christensen and Moore 2009) while fish feeding mainly on benthic 

macroinvertebrates often have an increased contribution from allochthonous carbon compared to 

pelagic species (Christensen and Moore 2009; Glaz et al. 2012; Glaz et al. 2015). Allochthonous 

carbon can be an important contributor to food webs present in lentic systems, especially in 

oligotrophic and dystrophic lakes (Jones et al. 1998; Carpenter et al. 2005; Pulido-Villena et al. 

2005). However, autochthonous carbon sources are still important to consumers at all trophic 
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levels even when autochthonous sources are in much lower abundance than allochthonous 

sources (Brett et al. 2012; Karlsson et al. 2012).  

1.1.3.2 Rivers 

The primary carbon sources supporting lotic food webs have long been a topic of both 

study and debate (Humphries et al. 2014). The River Continuum Concept (Vannote et al. 1980) 

was one of the earliest models that described the processing of organic matter throughout a river 

system. It emphasized the importance of terrestrial inputs of organic matter in headwater streams 

that are transported longitudinally to the lower reaches of large rivers as the primary source of 

organic matter in river ecosystems. The Flood Pulse Concept (Junk et al. 1989) stressed the 

importance of the floodplain of the watershed as the primary source of organic matter for a river. 

The organic matter from the river’s floodplain is delivered laterally in pulses during periods of 

high water when connectivity between a river and its floodplain is at its greatest. Thorp and 

Delong (1994) introduced The Riverine Productivity Model which proposed that some large 

river systems derive most of their organic matter from autochthonous sources such as 

phytoplankton, benthic algae and aquatic macrophytes within the river. This model did not 

contradict either the Flood Pulse Concept or the River Continuum Concept, but rather suggested 

they may both be relevant depending on the type of river and the river section.  

Subsequent studies have linked stream order to the importance of allochthonous and 

autochthonous carbon sources to the diets of consumers (Finlay 2001). As stream order 

increases, the stream channel widens, decreasing the amount of riparian stream cover shading the 

streambed, which results in higher levels of instream primary production (Stockner and 

Shortreed 1976; Webster and Meyer 1997). Removal of the forest canopy along streams through 

logging or fire decreases allochthonous inputs to the system and increases light penetration and 
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autochthonous production, resulting in higher levels of autochthonous organic matter use by 

macroinvertebrates and fish (Hansmann and Phinney 1973; Spencer et al. 2003). Consumers in 

higher order streams often show a greater contribution from autochthonous carbon than those in 

headwater streams (Finlay 2001). The importance of autochthonous carbon to consumers has 

been linked to watershed size, with the transition from predominantly allochthonous to 

autochthonous carbon occurring when watersheds reach ~10 km2 (Finlay 2001) and increasing in 

year round importance as catchment size increases further (McCutchan 1999). In higher order 

rivers, allochthonous carbon is still important during periods of high flow (Kendall et al. 2001) 

and for certain species which specialize on allochthonous carbon (Herwig et al. 2007; Hladyz et 

al. 2012; Jardine et al. 2012). Overall, lotic systems often have food webs driven by 

allochthonous organic matter in the headwater reaches, but with autochthonous primary 

production becoming more important as stream order and catchment size increase (Finlay 2001; 

Kendall et al. 2001; Humphries et al. 2014). There are obvious exceptions to this and all systems 

must be considered on a river by river or even a reach by reach basis and certain consumers will 

always differ due to species specific specializations in feeding habits. 

1.1.3.3 Reservoirs  

There are currently 16 to 17 million reservoirs greater than 0.01 hectares worldwide 

(Lehner et al. 2011) which have a storage capacity of approximately 10 % of the world’s 

freshwater lakes. The number of reservoirs across the world is expected to continue to grow as 

the demand for fresh water increases due to humanity’s increased reliance on water from 

impoundments for commercial, agricultural, municipal and recreational use (Uhlmann et al. 

2011). The carbon sources supporting reservoir food webs have been studied in less detail 

compared to the food webs of lakes and rivers. However, there has been a recent surge in the 
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number of studies being conducted on reservoir carbon sources around the world. Similar to 

lakes and rivers, reservoirs display variation in the primary source of carbon supporting food 

webs. Much of the variation seen in the allochthonous and autochthonous support of reservoir 

food webs is a result of highly variable water residence times (Perga et al. 2005; Chen and Jia 

2009; Hou et al. 2013; Lee et al. 2013). Increased turbidity during periods of high inflow into a 

reservoir corresponds to decreases in chlorophyll a concentrations and autochthonous primary 

production (Yip et al. 2015), while the same high flows increase the availability of allochthonous 

carbon (Sanchez-Vidal et al. 2013). Reservoir age (De Merona et al. 2003; Perga et al. 2005; 

Lucas et al. 2015) and land use practises prior to impoundment (Perga et al. 2005) also play a 

role in which carbon sources support reservoir food webs.  

Reservoirs are generally thought to act as a trap for particulates because the particulates 

settle out of suspension with decreases in water velocity (Kaymak et al. 2015). This in turn 

causes an increase in water clarity in the downstream lacustrine zone of reservoirs allowing for 

greater light penetration and increased phytoplankton abundance (Kimmel and Groeger 1984; 

Chen et al. 2005; Yip et al. 2015). This increase in autochthonous primary production in the 

lacustrine zone of reservoirs produces particulate organic matter (POM) with strong algal 

signatures when compared to POM in tributaries (Kendall et al. 2001). For this reason, reservoir 

food webs are thought to be supported largely by autochthonous carbon in their lower reaches, 

especially during low flow periods (Chen et al. 2005; Hoeinghaus et al. 2007; Kaymak et al. 

2015). This is often shown to be the case in stable isotope studies showing greater variation in 

particulate organic matter and consumer δ13C and δ15N values within reservoirs than in the 

tributary reaches upstream which rely mainly on allochthonous carbon (Chen et al. 2005; 

Mercado-Silva et al. 2008; Kaymak et al. 2015). River reaches immediately downstream of 
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reservoirs often have food webs which rely almost entirely on autochthonous carbon of 

planktonic origin produced in the upstream reservoir (Kendall et al. 2001). As a result, reservoirs 

which lie in close proximity downstream of another reservoir have lower inputs of allochthonous 

carbon (Kendall et al. 2001). 

Allochthonous support of reservoir food webs is common in newly formed reservoirs 

(Perga et al. 2005; Chen and Jia 2009; Hou et al. 2013; Lee et al. 2013; Lucas et al. 2015), 

especially if the impounded area was forested prior to flooding (Perga et al. 2005). 

Allochthonous carbon loads from flooded landscapes decline as reservoirs age and 

autochthonous primary production becomes more important (De Merona et al. 2003; Lucas et al. 

2015). Allochthonous carbon can be important throughout the riverine, transitional and lacustrine 

zones of a reservoir during periods of high flow or flooding (Perga et al. 2005; Chen et al. 2009; 

Hou et al. 2013; Lee et al. 2013; Min-Seob et al. 2014). High flow events prevent terrestrial 

carbon from sedimenting out in the upper reaches of the reservoir and allow for its incorporation 

into the food web further downstream compared to periods of low flow (Perga et al. 2005; Chen 

et al. 2009; Hou et al. 2013; Lee et al. 2013; Min-Seob et al. 2014). Reservoirs with regular 

periods of high inflow act as optimal study sites to test the importance of allochthonous carbon to 

consumers throughout the reservoir. 

1.1.4 Stable Isotope Analysis 

Isotopes are different forms of the same element which differ in the number of neutrons 

in their nuclei, resulting in differences in their atomic weights. Stable isotopes are those isotopes 

that do not undergo radioactive decay. Different isotopes of the same element are functionally 

equivalent, but the differences in atomic weight cause them to behave differently in many 

chemical reactions (Peterson and Fry 1987; Fry 2006). This results in isotopic discrimination 
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during chemical reactions resulting in different ratios of the heavy to light stable isotopes before 

and after a reaction (Peterson and Fry 1987). The degree of isotopic discrimination differs for 

each element and for different chemical reactions. Metabolic reactions involving the stable 

isotopes of hydrogen, carbon, nitrogen, oxygen and sulfur have been well studied (Fry 2006). 

These are the most commonly used isotopes for stable isotope analysis in ecological studies 

because they are present throughout the biosphere and cycle predictably with organic matter (Fry 

2006). 

The isotopic value of a sample is given in delta (δ) notation, measured as the distance 

from an international standard in permil (‰), also known as parts per thousand, according to the 

following formula: 

Equation 1.1: δX = [(Rsample/Rstandard)-1]*103 

where X is the heavy isotope of either 13C or 15N and R is the ratio of 13C/12C or 15N/14N in the 

sample (RSample) and in the international standard (RStandard). 

The international standards against which the isotopic values of samples are measured are 

PeeDee Belemnite limestone for δ13C (Craig 1957), atmospheric nitrogen for δ15N (Mariotti 

1983), primordial sulfur from the Canyon Diablo meteorite for δ34S (Rees et al. 1978) and 

Vienna Standard Mean Ocean Water for both δ2H and δ18O (Coplen 1994). These international 

standards are by definition set at a value of 0 ‰ for each respective element. The δX value for a 

sample can be either positive or negative relative to the standards, indicating more or less of the 

heavy isotope of the measured element in the sample, respectively. The current study uses both 

carbon and nitrogen stable isotopes to track different organic matter sources (i.e., allochthonous 

and autochthonous carbon and aquaculture waste) through the food web of Lake Diefenbaker. 
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1.1.4.1 Carbon  

The isotopes of carbon used in stable isotope analysis are 13C and 12C. The δ13C value of 

atmospheric CO2 is currently at –8 ‰ (Fry 2006) when compared to the international standard. 

When plants take in CO2 during photosynthesis, isotopic discrimination occurs in a predictable 

manner, resulting in δ13C values around –28 ‰ for most terrestrial C3 plants (Peterson and Fry 

1987; Fry 2006). Less discrimination occurs between carbon isotopes during photosynthesis in 

C4 plants resulting in δ13C values around –13 ‰ (Peterson and Fry 1987). In marine 

environments, phytoplankton are the primary producers and their δ13C values can range from      

–19 ‰ to –24 ‰ (Fry 2006). Due to the planktonic origin of particulate organic matter (POM) in 

the oceans, its δ13C values generally mirror that of marine phytoplankton (Fry 2006). The δ13C 

value of freshwater primary producers varies more widely due to the use of carbon from multiple 

sources including atmospheric CO2, the respiratory products of organic matter, and carbonate 

rock (Fry 2006). However, the δ13C value of freshwater POM is commonly within the range of   

–28 to –35 ‰ (Fry 2006; Marty and Planas 2008).  

As carbon moves through food webs, the δ13C changes very little (between 0 to 1 ‰) 

with each trophic level (Rounick and Winterbourn 1986; Peterson and Fry 1987; France and 

Peters 1997; Post 2002) due to its mean trophic enrichment factor of 0.4 ‰ per trophic level 

(Post 2002). Because of the predictable isotopic discrimination of carbon stable isotopes with 

increasing trophic levels, the δ13C of freshwater primary producers can be approximated by 

measuring the δ13C values of primary consumers feeding directly on them (DeNiro and Epstein 

1978; Peterson and Fry 1987; Vander Zanden and Rasmussen 1999; Post 2002; Marty and Planas 

2008). Therefore, the δ13C values of primary consumers can be used to track different carbon 

sources to the diets of higher level consumers (Peterson and Fry 1987; Post 2002; Fry 2006). 
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This makes stable isotopes of carbon valuable tracers for food web and nutrient sourcing studies 

as well as for differentiating between diet sources and tracking animal migrations (Hobson 1999; 

Cunjak et al. 2005). The δ13C value of freshwater aquatic primary producers can even be used to 

differentiate between habitat types as periphyton and phytoplankton growing in the same river 

can have different δ13C values due to the differences in water velocity, with faster flowing 

stretches characterized by depleted 13C values compared to nearby slower flowing stretches 

(Finlay et al. 1990). 

1.1.4.2 Nitrogen 

The majority of the nitrogen in the biosphere is atmospheric N2 which is used as the 

international standard for nitrogen stable isotope analysis due to the well mixed nature of the 

atmosphere and its almost constant composition of 15N and 14N (Mariotti 1983). Most of the 

pools of nitrogen within the biosphere contain δ15N values between 10 and –10 ‰. The relatively 

low range of δ15N values seen in nature occurs because nitrogen is often a limiting nutrient, 

causing all available nitrogen to be used with little or no isotopic discrimination (Fry 2006). 

However, in freshwater lakes nitrogen is often not limiting, resulting in the possibility for larger 

discrimination factors (Fry 2006). As a result, the δ15N values of primary producers in freshwater 

ecosystems can often be useful for differentiating between allochthonous and autochthonous 

sources (Fry 2006).  

Nitrogen behaves in a predictable manner when transferred from one tropic level to the 

next with consumer δ15N values increasing by 3 to 4 ‰ (mean = 3.4 ‰) relative to their food 

source (DeNiro and Epstein 1981; Peterson and Fry 1987; Post 2002). This predictable 

discrimination of nitrogen isotopes occurs because of the assimilation of 15N into tissues and 

through the preferential excretion of the 14N as metabolic waste in urine (Ponsard and Averbuch 
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1999). This results in δ15N values being a useful indicator of trophic position when the δ15N 

values of the baseline primary producers are known (Peterson and Fry 1987; Post 2002). The 

predictable nature of nitrogen stable isotopes makes them useful for tracking nutrient sources 

used by consumers as well as measuring consumer trophic level. Anthropogenic alterations to 

watersheds are often evident throughout aquatic food webs in the δ15N values of organisms and 

particulate organic matter making nitrogen isotopes useful for identifying anthropogenic 

influences on aquatic systems (Finlay and Kendall 2007). 

1.2. Research Introduction 

1.2.1 Lake Diefenbaker 

Located in southern Saskatchewan, Lake Diefenbaker was formed in 1969 from the 

creation of two large earth filled dams, the main Gardiner Dam and the Qu’Appelle Dam. Lake 

Diefenbaker is the largest reservoir on the South Saskatchewan River at 394 km2 and 182 km 

long (Sadeghian et al. 2015; SWA 2012). Throughout the majority of its length, Lake 

Diefenbaker acts as a dimictic reservoir, but in the upper most riverine sections it does not 

thermally stratify most years (Hudson and Vandergucht 2015). The ice free period lasts from 

early to mid-May until December or January depending on the year (Hudson and Vandergucht 

2015). Peak runoff generally occurs in mid to late June with the onset of mountain runoff 

(Hudson and Vandergucht 2015). Mean annual flow into the reservoir generally falls between 

200 and 300 m3s-1 with mean peak flows of 1252 m3s-1 from 1967 to 2010. The reservoir is 

classed as mesotrophic based on its total nitrogen, total phosphorus and chlorophyll a levels 

(Abirhire et al., 2015). The reservoir was constructed for water storage, irrigation, hydroelectric 

power generation, recreation and flood control (Royer 1972). In recent times the reservoir has 

become renowned for its sport fishery (Duffy 2006).  
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In the original fisheries assessment on the reservoir, twenty-five species of fish were 

found to exist within Lake Diefenbaker (Royer 1972). Today at least 18 species of large bodied 

fish exist within the reservoir, with Goldeye, Northern Pike, Yellow Perch, Rainbow Trout, 

Sauger, Walleye and Lake Whitefish being the most sought after fish by sport fishermen 

(Wallace et al. 2010). From 1991 until 2013 a spawn camp was operated near Gardiner Dam at 

Coteau Bay. The camp captured spawning Walleye and collected their eggs and milt for stocking 

Walleye throughout the province (Wallace and Jensen 2004; Wallace et al. 2010). Starting in 

2004, ≥ 5 % of the total Walleye fry collected from Coteau Bay were released back into Lake 

Diefenbaker in an effort to reduce any impacts of the spawn camp on Walleye populations. Fish 

stocking efforts first took place in 1969 with the introduction of Lake Whitefish and Walleye to 

supplement the natural populations of these species. Since then, over 100 million fry and 

fingerlings of seven species of fish have been stocked in attempts to establish new sport fishing 

opportunities or supplement existing fisheries within Lake Diefenbaker. In addition to these 

intentional stocking efforts, hundreds of thousands of domestic Rainbow Trout have escaped into 

Lake Diefenbaker from the aquaculture facility located at Cactus Bay. A commercial fishery for 

Lake Whitefish was in operation on Lake Diefenbaker from 1978 until 1986 when it was closed 

due to a drop in both the size and numbers of fish captured. No commercial fishery has operated 

on the reservoir since the closure of the Lake Whitefish fishery. 

A recent study published by Donald et al. (2015) was conducted on the upstream reaches 

of Lake Diefenbaker near Highway 4, linking mercury bioaccumulation in fish to their δ15N 

values. Donald et al. (2015) also tested for relationships between mercury bioaccumulation and 

the levels of benthic and pelagic resource use in some species. Doing so, they measured the 

values of each potential resource and found pelagic primary consumers to be depleted in 13C by 
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5.9 ‰ and enriched in 15N by 3.3 ‰ relative to benthic primary consumers, showing there is a 

detectable difference in benthic and pelagic primary production within Lake Diefenbaker. 

1.2.2 Rationale for Study 

Lake Diefenbaker is often referred to as Saskatchewan’s prairie jewel (North et al. 2015). 

It is located in the semi-arid region of southern Saskatchewan and serves many purposes 

including as a popular recreational getaway (North et al. 2015). The world class fishery has 

produced the International Game Fish Association (IGFA) all tackle world records for Rainbow 

Trout (Oncorhynchus mykiss) and Burbot (Lota lota) (IGFA: www.igfa.org) in 2009 and 2010, 

respectively. Due to its large size and convenient location near Saskatchewan’s major population 

centres, Lake Diefenbaker is a popular angling destination in Saskatchewan (Duffy 2006). The 

aquaculture facility located within Cactus Bay is one of the largest freshwater cage culture 

facilities of its kind in Canada and has recently expanded to a second site within nearby Kadla 

Coulee after the completion of this study. Lake Whitefish have been observed feeding on waste 

feed around the cage culture facility at certain times of the year (Jeff Sereda, personal 

communication April 25th, 2012).  

Inflow to the reservoir varies from year to year and recent years of high flow have 

resulted in large plumes of turbidity throughout the reservoir (Yip et al. 2015; Hudson and 

Vandergucht 2015) which may increase the availability of allochthonous carbon sources 

downstream in the reservoir while at the same time decreasing the availability of autochthonous 

sources by limiting primary production (Chen et al. 2005; Min-Seob et al. 2014; Yip et al. 2015). 

In years of drought and low flow, the opposite may be true and allochthonous carbon may only 

be available to the diets of fish in the upper most reaches of the reservoir while autochthonous 

primary production may be consumed throughout the remainder of the reservoir (Chen et al. 

http://www.igfa.org/
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2005; Yip et al. 2015; Lucas et al. 2015). The recent variation in both the volume and timing of 

major inflows into Lake Diefenbaker likely results in seasonal and annual variation in the 

availability of allochthonous and autochthonous carbon throughout the reservoir. The relative 

importance of varying seasonal flows and aquaculture subsidies on the food web throughout 

Lake Diefenbaker, and in particular wild fish, is unknown.  

1.2.3 Objectives 

The three major objectives of this study are as follows: 

1. To determine the degree to which Lake Whitefish in the vicinity of the aquaculture 

facility are subsidizing their diets with waste feed from the cage culture facility and to 

determine the spatial extent of these diet subsidies. 

2. To assess the importance of allochthonous and autochthonous carbon pathways to the 

diets of the native and naturalized fish assemblages of Lake Diefenbaker. 

3. To determine if fish relying on different carbon sources (i.e., allochthonous sources, 

autochthonous sources, or aquaculture waste products) differ in their overall condition or 

fecundity.  

1.2.4 Study Design 

To address the above objectives, the study was divided into two sections. The first section 

of the study was designed to examine the diets of Lake Whitefish in the area adjacent to the 

aquaculture facility at Cactus Bay. Eight sampling sites were used in this portion of the study: 

two located within Cactus Bay, two located within Kadla Coulee and four sites on the main 

channel of the reservoir, two upstream and two downstream of Cactus Bay (Fig 1.1). In addition 

to these eight sampling sites, Lake Whitefish were sampled directly adjacent to the fish farm 

cages in the fall of 2013 to increase sample size of fish using aquaculture waste as a diet subsidy. 
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Main channel sites were used to determine if the subsidy extended to Lake Whitefish found in 

the main channel of the reservoir, while the sites within Kadla Coulee were used as reference 

sites for the sites within Cactus Bay.  

The second portion of this study evaluates the importance of allochthonous and 

autochthonous carbon sources to the diets of four common fish species throughout Lake 

Diefenbaker. I hypothesize that the importance of each carbon source changes with distance 

downstream of the river input, with allochthonous sources being of greatest importance in the 

riverine zone of the reservoir and decreasing with distance downstream. Eight study sites along 

the main channel of Lake Diefenbaker as well as the four sample sites within Cactus Bay and 

Kadla Coulee were used for this portion of the study (Fig 1.1). Baseline isotopic samples as well 

as the four study species of fish, Lake Whitefish (Coregonus clupeaformis), White Sucker 

(Catostomus commersoni), Northern Pike (Esox lucius), and Walleye (Sander vitreus) were 

collected at each site. In addition to these sites, baseline samples were also collected at the South 

Saskatchewan River before entering the reservoir and supplementary POM data from 10 

additional sites along the length of the reservoir (Fig 1.1) were used to determine the change in 

importance of allochthonous and autochthonous carbon sources down the length of the reservoir. 
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Figure 1.1. Location of all sampling sites throughout Lake Diefenbaker and the South Saskatchewan River used in this study. The 

location of the Wild West Steelhead aquaculture facility and site FF used in Chapter 2 are indicated with a white arrow. Sites used in 

Chapters 2 and 3 are labeled with the separate site numbers used in each chapter in the format: Chapter 2 site #/Chapter 3 site #. 
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CHAPTER 2. Assimilation of aquaculture waste by Lake Whitefish, Coregonus 

clupeaformis, in Lake Diefenbaker. 

 

2.1 Introduction 

2.1.1 Importance of Aquaculture 

Aquaculture is one of the world’s fastest growing agricultural practises. By the year 2020 

freshwater and marine aquaculture is predicted to account for 60 % of the world’s production of 

seafood (FAO 2014). The recent increase in aquaculture production is a result of the increased 

demand for high protein food across many developing nations combined with the over allocation 

and collapse of many wild caught fisheries across the globe (Pauly et al. 2002; Worm et al. 2009; 

Pitcher and Cheung 2013; Lam 2016). The impacts of this rapidly expanding industry include 

eutrophication and oxygen depletion in surrounding waters as a result of nutrient deposition from 

the aquaculture waste (Black 2001; Guo and Li 2003; Clerk et al. 2004; Yan 2005). These 

environmental impacts are often localized, affecting the environment only in close proximity to 

the aquaculture operations (Black 2001; Mente et al. 2006; Silva 2012). However, in freshwater 

environments the environmental impacts can be much greater due to the lower volume of the 

receiving waters.  

2.1.2 A Brief History of Aquaculture in Lake Diefenbaker 

The first commercial aquaculture operation on Lake Diefenbaker began in 1992 with one 

site located at Kadla Coulee operated by AgPro Fish Farms (Sweeney International 2010). In 

1994, the facility was moved to Cactus Bay where it is located today (Sweeney International 

2010). In 1998, ownership of the aquaculture facility was transferred to the Saskatchewan Wheat 

Pool and the name was changed to CanGro Processors (Sweeney International 2010). In 2004, 

the facility was sold to Nil-Ray Farms Ltd. and changed names to Wild West Steelhead 

(Sweeney International 2010). The operation is still under the same name and ownership today.  
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The production capacity of the facility has continuously increased from 225 metric tons a 

year (MT y-1) in 1993 to 1450 MT y-1 throughout the duration of this study (Sweeney 

International 2010). Recently, the establishment of a second site at Kadla Coulee has increased 

the production capacity to 1750 MT y-1. However, the Cactus Bay site remains at 1450 MT y-1 

and the additional site at Kadla Coulee was not in operation until fall 2014, after the completion 

of the field sampling portion of this study. Rainbow Trout have been the only species produced 

since 1998 when the production of Atlantic Salmon was phased out. 

The aquaculture facility operates under a “zero waste” feed policy (Sweeney 

International 2010), but inevitably some waste feed, fish faeces and fines enter the surrounding 

water (Kullman et al. 2009). Fines are the portion of the pelleted fish feed which are too small to 

be ingested directly by the domestic fish and can comprise up to 3.7 % of the total mass of the 

feed (Clark et al. 1985). During periods of feeding, Lake Whitefish are often seen around the 

cages and are believed to be supplementing their diets on the aquaculture waste (Jeff Sereda, 

personal communication, April 25th, 2012).  

2.1.3 Trends of Other Aquaculture Studies 

 Much of the past research on aquaculture has focused on the ecological impacts to the 

surrounding environment via increased nutrient deposition and oxygen depletion (Black 2001; 

Guo and Li 2003; Clerk et al. 2004; Yan 2005). Recently, more emphasis has been placed on the 

biotic community surrounding the cages including the examination of the impacts on local fish 

and invertebrate communities. Studies in both marine and freshwater environments generally 

indicate an increase in fish abundance near the cages (Carrs 1990; Boyra et al. 2004; Dempster et 

al. 2010), although the number of wild fish surrounding the cages can vary seasonally (Dempster 

et al. 2002). Wild fish are attracted to the physical structure of the cages (Powers et al. 2007), as 
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well as the increased productivity in the area resulting from both increased nutrient 

concentrations and the direct addition of aquaculture waste (Fernandez-Jover et al. 2011; 

Dempster et al. 2011). Wild fish surrounding the cages often subsidize their diets with 

aquaculture waste (Phillips et al. 1985; Gabrielsen 1999; Strictar-Pereira et al. 2010; Brandão et 

al. 2014) and can have increased condition factors when compared to fish that were not utilizing 

the aquaculture waste (Gabrielsen 1999; Fernandez-Jover et al. 2011; Dempster et al. 2011). This 

increase in body condition is believed to result in increased fecundity in some fish species. 

Brandão et al. (2014) identified an increased number of smaller eggs in fish using aquaculture 

waste as a diet subsidy in a Brazilian reservoir when compared to reference groups of fish. 

2.1.4 Expected Results 

 Impacts of the aquaculture facility on the diets of the Lake Whitefish community in Lake 

Diefenbaker are believed to be localized to the area surrounding the fish farm. It is anticipated 

that as distance increases away from the cage culture facility the importance of aquaculture waste 

to the diets of Lake Whitefish will decrease. The significance of this diet subsidy is examined 

directly adjacent to the fish farm cages, immediately upstream and downstream from the cages, 

and within the coulee where the aquaculture facility is located. All sample sites were located 

within a 10 km radius of the aquaculture cages. It is predicted that the waste feed will be of little 

importance to fish outside of Cactus Bay where the fish farm is located, but fish in the vicinity of 

the aquaculture facility will be using the diet subsidy as found in other studies (Phillips et al. 

1985; Gabrielsen 1999; Strictar-Pereira et al. 2010; Brandão et al. 2014). Fish subsidizing their 

diets with aquaculture waste are expected to have higher relative weights and fecundity than fish 

not using this diet subsidy. 
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2.2 Methods 

2.2.1 Field Sampling 

Eight sites in the area surrounding the aquaculture facility were sampled in spring (May – 

June), summer (July – September) and fall (October – November) of 2012 and 2013. Four sites 

(1, 2, 5 and 6) were located on the main channel of Lake Diefenbaker while two sites were 

located within Cactus Bay (sites 3 and 4) and two sites were located within Kadla Coulee (sites 7 

and 8) to act as a reference to the sites within Cactus Bay (Fig. 1.1). One site in both Cactus Bay 

and Kadla Coulee was located near the mouth of the embayment (sites 3 and 5) and one site was 

located 1.5 km within the embayment (sites 4 and 8). Due to the sheer size of Lake Diefenbaker 

only locations within close proximity of the aquaculture facility were included in this study in 

order to increase the likelihood of capturing fish that were consuming aquaculture waste. In 

addition to these eight sites, Lake Whitefish were also sampled directly adjacent to the cage 

culture facility at site FF in the fall of 2013. This sampling was done to increase the sample size 

of fish that may be subsidizing their diets with aquaculture waste in an area where fish were 

observed to be feeding directly on the pelleted feed. 

2.2.1.1 Lake Whitefish, Domestic Rainbow Trout and Pelleted Fish Feed 

Lake Whitefish were sampled in the spring of 2012 and 2013 and in the fall of 2012 

using two gill nets at each of the eight sampling sites. The nets consisted of seven 4.27 metre 

panels of nylon monofilament mesh measuring 25, 38, 51, 63, 76, 89 and 102 mm, for a total 

length of 30 metres and a height of 2.13 metres. Gill nets were set perpendicular to shore starting 

in water ≥ 2 metres deep and extending out for the 30 metre length of the net with the smallest 

mesh set inshore. The nets were set to run along the bottom. In the fall of 2013 Lake Whitefish 

were collected directly adjacent to the cages at the aquaculture facility at site FF using a large dip 
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net. Domestic Rainbow Trout were collected from within the cages at the aquaculture facility 

using a dip net in August of 2012 and 2013 and November 2013 and were used to calculate a 

trophic enrichment factor from pelleted fish feed to consumer. All Lake Whitefish and trout were 

measured for total length, fork length, weight, sex, state of maturity, and stomach contents. In 

mature fish fecundity was measured by weighing the ovaries and testes in the field to the nearest 

gram. Ovaries were then brought back to the lab where a subsample of eggs (0.500 to 1.000 g) 

was taken and preserved in phosphate buffered formalin. The number of eggs and egg diameter 

were determined at a later date. A subsample of boneless and skinless dorsal muscle was 

collected from the central part of each fish above the lateral line for C and N stable isotope 

analysis. Pelleted fish feed (PFF) was sampled directly from the feed storage area at the 

aquaculture facility in February and August of 2012 and again in August and November of 2013.   

2.2.1.2 Aquatic Baseline Samples 

Aquatic baseline samples were collected at each site three times throughout the open 

water season. Particulate organic carbon (POC) and particulate nitrogen (PN) (collectively 

known as particulate organic matter (POM)), zooplankton and aquatic macroinvertebrates 

(lymnaeid snails and Gammarus lacustris) were sampled three times throughout each open water 

season. Water was collected from a depth of 2.0 metres using a 6.4 L van Dorn sampler. 

Zooplankton were collected with vertical tows using a 1.5 metre long plankton net with a hoop 

diameter of 30 cm and a mesh size of 153 µm from a depth of 10 metres to the surface. When 

inadequate numbers of zooplankton were collected in one net tow, tows were repeated until an 

adequate number had been collected. Aquatic macroinvertebrates were collected in the littoral 

area immediately adjacent to sampling sites using a D frame net and a kick and sweep method. 

Kick sweeps were performed along 100 metres of shoreline at a depth of 0.3 to 1.0 m and 
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repeated until enough macroinvertebrates were collected, or 10 passes had been completed. 

When possible, duplicate POC, PN, zooplankton and aquatic macroinvertebrate samples were 

collected to assess variability between samples. 

 All water, zooplankton and macroinvertebrate samples were transported back to the 

University of Saskatchewan in 4 litre carboys in coolers. Zooplankton and aquatic 

macroinvertebrates were filtered through a 153 µm filter and then left overnight in deionized 

water to void any stomach contents (Marty and Planas 2008). Zooplankton samples were 

individually hand sorted to remove filamentous algae, large predatory zooplankton species (i.e., 

Espichura spp., Leptidora spp., Mesocyclops spp.), and particulate contaminants or debris (Post 

2002; Marty and Planas 2008) before being placed in glass vials. Aquatic macroinvertebrates 

were sorted to remove any debris and placed into aggregates of 5 to 25 individuals. Only the soft 

tissues of lymnaeid snails were kept for analysis as the shells do not represent carbon from the 

snail’s diet, but rather inorganic carbon from their environment (Post 2002). Water samples were 

filtered onto pre-combusted 25 mm GFF (nominal pore size of 0.7 μm) filters in 2012 and 25 

mm quartz filters (Advantec QR-100) in 2013, using vacuum filtration. POM filters, 

zooplankton, and macroinvertebrate samples were dried at 60°C for 48 hours.  

2.2.2 Stable Isotope Analysis 

Lipid extraction was performed on all pelleted fish feed, zooplankton, aquatic 

macroinvertebrate and fish tissue samples using a 2:1 chloroform:methanol solution. Samples 

were soaked in the solution for 24 hours before the solution containing lipids was decanted and 

the method was repeated until the chloroform:methanol solution was clear after soaking for 24 

hours. Following lipid extraction, samples were allowed to air dry for 24 hours and then ground 

into a homogeneous powder using a mortar and pestle. Subsamples were weighed out to 1.0 mg 
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and weight recorded to the nearest 0.001 mg before being placed into 4 x 6 mm ultrapure tin 

capsules. POM filters were subdivided into two groups: those for particulate δ15N (PN) were set 

aside while those for particulate organic δ13C (POC) were acidified to remove carbonates. 

Acidification was performed by fumigating the POC filters for 4 hours using concentrated 

(37 %) hydrochloric acid following the same methodology as Dubourg et al. (2015). Following 

acidification, POC filters were treated the same as PN filters. All filters were sealed inside 8 x 11 

mm ultrapure tin capsules.  

All stable isotope analyses were performed in the Department of Soil Sciences Stable 

Isotope Lab at the University of Saskatchewan. Samples were processed using a Thermo 

Scientific Delta V mass spectrometer manufactured in Bremen, Germany, coupled to an 

ECS4010 elemental analyzer manufactured by Costech Analytical Technologies Inc. of 

Valencia, California, USA. Pee Dee Belemnite and atmospheric nitrogen were used as the C and 

N international references, respectively. When analyzing the POC and PN samples, an internal 

laboratory standard made of pea grain flour was included after every 5 samples to determine the 

precision associated with the mass spectrometer. Repeat analysis of this laboratory standard (n = 

132) resulted in a precision of < 0.2 ‰ and < 0.1 ‰ for nitrogen and carbon, respectively. All 

macroinvertebrate, zooplankton, pelleted fish feed and fish tissue samples were analyzed with an 

internal laboratory standard of egg albumen (n = 164) after every 11 samples. This laboratory 

standard provided a precision of < 0.06 ‰ for nitrogen and < 0.04 ‰ for carbon.  Every 15th 

sample of fish tissue, macroinvertebrate tissue, zooplankton and pelleted fish feed was run in 

duplicate to determine within sample variability, which was found to be 0.07 ‰ and 0.04 ‰ for 

nitrogen and carbon, respectively. An internal standard made from Walleye dorsal muscle was 

included in each 96 well plate of fish and invertebrate samples (n = 8) and had a measurement 
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precision of < 0.4 ‰ for nitrogen and < 0.1 ‰ for carbon. All stable isotope values are reported 

in ratios of the heavy isotope to the light isotope (13C/12C, 15N/14N) and expressed in parts per 

thousand (‰) relative to the international standards in delta notation following equation 1.1. 

2.2.2.1 Discrimination Factors 

 Discrimination factors, also known as trophic enrichment factors (TEFs), were applied to 

each source to account for isotopic discrimination which occurs with increases in trophic level 

from source to consumer. The TEFs used in this study were 0.39 ± 1.3 ‰ for δ13C and 

3.4 ± 0.98 ‰ for δ15N (Post 2002) for all sources except aquaculture waste which had TEFs of 

2.65 ± 0.63 ‰ and 2.33 ± 1.06 ‰ for carbon and nitrogen respectively. The TEFs used for 

aquaculture waste were calculated from the difference in isotopic values between the pelleted 

fish feed at Wild West Steelhead and the dorsal muscle tissue from the domestic Rainbow Trout 

(DRT) which are known to have a diet of 100 % pelleted feed. This allowed for a more accurate 

estimation of trophic enrichment over literature values. Pelleted fish feed samples (n = 14) were 

collected four times throughout the two year study period while domestic Rainbow Trout (n = 

16) were collected three times during the study period. 

2.2.3 Mixing Models 

 To determine the proportion of each carbon source to the diet of fish, the Bayesian 

mixing model SIAR was used for each site (Parnell et al. 2010; R Core Development Team 

2013). The relative importance of each food source to the diet of each individual Lake Whitefish 

was determined with SIARsolo mixing model in R. SIAR and SIARsolo use a Bayesian 

approach to estimate the probability distributions of source contributions to the tissue of 

consumers (Parnell et al. 2010). Both models account for uncertainties associated with the input 

data such as the isotopic values of the different diet sources and the TEFs (Parnell et al. 2010). 
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Mixing models were run using both 13C and 15N. Four sources were used in both the SIAR and 

SIARsolo mixing models which included pelagic (zooplankton) and benthic (lymnaeid snails and 

G. lacustris) primary production pathways and aquaculture waste (pelleted fish feed). 

Zooplankton samples were used as the proxy for pelagic primary production, while lymnaeid 

snails and G. lacustris samples were used as proxies of benthic primary production. Results from 

these two benthic primary consumers were pooled a posteriori following Phillips et al. (2005), 

due to significant difference between both δ13C and δ15N values for these consumers (T-test: 

δ13C:  T = -6.06, P < 0.001; δ15N: T = 2.85, P < 0.01). The combined contribution of lymnaeid 

snails and G. lacustris to the diets of Lake Whitefish represented the benthic primary production 

pathway. Pelleted fish feed was used as the source representing aquaculture waste. Primary 

consumer samples from all eight sampling locations were averaged over the two year study 

period prior to input into the mixing models to account for spatial and temporal variations 

throughout the sampling region (Jardine et al. 2014).  

2.2.4 Fish Condition  

 Relative weight (Wr) was used to determine the condition of each Lake Whitefish caught 

in the study using the formula: 

Equation 2.1: Wr = (W/Ws)*100 

where W is the actual weight of the fish and Ws is the standard weight of a fish of the same 

species of the same total length.  

Standard weight (Ws) equations were developed using populations throughout the entire 

range of a fish species (Blackwell et al. 2000). A Wr value below 100 indicates a fish is in poor 

body condition while values above 100 indicate the fish is considered to be in good condition 

(Blackwell et al. 2000; Bonar et al. 2009). The equation for Lake Whitefish Ws was taken from 
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Rennie and Verdon (2008) which was developed for Lake Whitefish of both sexes using the 

following formula:  

Equation 2.2: log10(Ws) = -5.559919 + (3.218445*log10TL) 

where Ws is the standard weight and TL is the Lake Whitefish’s total length in mm. 

 Fecundity was calculated as the total number and size of eggs by capturing images with a 

flatbed scanner and using the software ImageJ following methods outlined in Klibansky and 

Juanes (2008) to determine both egg number and size for each sample. Egg numbers were 

standardized based on fish body weight. The gonadosomatic index (GSI) was calculated to make 

comparisons between different size ranges of fish (DeVlaming et al. 1982).  

2.2.5 Statistical Analysis 

Relationships between fish total length and δ13C, δ15N, and Wr were examined to identify 

any ontogenetic trends in the data (model I linear regression). Differences in δ13C, δ 15N, and Wr 

between sites and between seasons were tested to determine any spatial or temporal differences 

throughout the study (one way ANOVAs with Tukey’s HSD post hoc tests for pairwise 

comparisons). Whitefish were separated into three groups based on SIARsolo output: those with 

< 15 % of their diet made up of aquaculture waste (No AW: n = 131), those with 15 – 50 % of 

their diet made up of aquaculture waste (AW Generalists: n = 3) and those with > 50 % of their 

diet made up of aquaculture waste (AW Specialists: n = 10). Differences in Wr and fecundity 

between the three groups were tested to determine if differences in condition factors were present 

between groups (one way ANOVAs and post hoc Tukey Tests). All statistical analyses were 

performed in the statistical software R (R version 3.0.2, R Project for Statistical Computing) with 

a level of significance of P < 0.05. 

 



 

34 

2.3 Results 

2.3.1 Fish Size and Condition 

 A total of 135 Lake Whitefish were collected from sites 1 – 8 and an additional 9 were 

collected directly adjacent to the fish farm cages (site FF) for a total sample size of 144 (Tables 

2.1 – 2.3). Total length ranged from 274 – 681 mm (mean 414 ± 66 mm) and weight ranged from 

174 – 3650 g, with a mean of 675 ± 563 g (Tables 2.1 – 2.3).   Relative weight values ranged 

widely from 53 – 126 with a mean value of 82 ± 11 (Tables 2.1 – 2.3). In total, 27 Lake 

Whitefish caught in fall 2012 and fall 2013 were sexually mature (female: n = 14, male: n = 13). 

Male testes weight ranged from 2 – 100 g (mean 18 ± 27 g) with a GSI range of 0.3 – 3.4 (mean 

= 1.3 ± 0.8). Female ovaries weighed between 50 – 435 g (mean 137 ± 128 g) with a GSI range 

of 8.8 – 15.1 (mean = 11.8 ± 2.0). Egg counts ranged from 10,270 – 91,740 (mean 28,170 ± 

24,220). Once standardized per gram of body weight, egg counts ranged from 15.9 – 32.2 eggs 

per gram of body weight (mean 24.1 ± 5.3 eggs/g). Egg diameter ranged from 2.01 – 2.50 mm 

and had a mean of 2.23 ± 0.14 mm. A total of 16 domestic Rainbow Trout (DRT) were collected 

from the aquaculture facility. Total length ranged from 287 – 552 mm (mean 440 ± 76 mm) and 

weight ranged from 270 – 2450 g (mean 1225 ± 609 g). 

2.3.2 Stable Isotope Analysis 

The δ13C and δ15N values of all Lake Whitefish along with their potential dietary sources 

can be seen in Table 2.4 and Fig. 2.1. Lake Whitefish from individual sites along with potential 

sources can be seen in Fig. 2.2. The δ13C values for Lake Whitefish ranged from –31.3 to            

–18.4 ‰ with a mean of –27.5 ± 2.5 ‰ and the δ15N values ranged from 11.0 to 19.2 ‰ with a 

mean of 16.9 ± 1.5 ‰. Particulate organic matter samples had δ13C values which ranged from    

–40.1 to –27.6 ‰ with a mean of –31.8 ± 2.5 ‰, while the δ15N values ranged from 4.3 to 
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14.9 ‰ with a mean of 9.8 ± 2.6 ‰.  Zooplankton samples had a narrower range and were 

slightly enriched in both δ13C (range –35.7 to –28.1 ‰, mean –31.4 ± 1.6 ‰) and δ15N (range 

10.3 to 21.3 ‰, mean 14.5 ± 2.6 ‰) compared to POM samples. Macroinvertebrate samples had 

a narrower range in both their δ13C (G. lacustris: –25.6 to –23.1 ‰, lymnaeid snails: –28.9 to     

–24.5 ‰) and δ15N values (G. lacustris: 8.1 to 10.8 ‰, lymnaeid snails: 8.6 to 11.7 ‰) than both 

zooplankton and POM. Mean δ13C values for macroinvertebrates (G. lacustris: –24.1 ± 0.7 ‰, 

lymnaeid snails: –26.2 ± 1.3 ‰) were enriched in 13C compared to those of zooplankton while 

the δ15N values were 15N depleted (G. lacustris: 9.5 ± 0.7 ‰, lymnaeid snails: 10.4 ± 1.1 ‰). 

Pelleted fish feed was enriched in δ13C (range –22.3 to –20.3 ‰, mean –21.1 ± 0.6 ‰) and 

depleted in δ15N (range 7.7 to 10.7 ‰, mean 9.0 ± 0.9 ‰) compared to zooplankton and 

macroinvertebrates. 

Table 2.1. Characteristics of Lake Whitefish (Coregonus clupeaformis) captured at sites 1 – 8 in 

spring 2012. Values are listed as the mean ± standard deviation (SD) and the range is included in 

brackets. 

Site n 
Total Length 

(mm) 

Weight 

(g) 

Relative 

Weight (Wr) 

δ13C 

(‰) 

δ15N 

(‰) 

 

1 6 366 ± 19 442 ± 26 92 ± 15 –28.7 ± 0.3 17.4 ± 0.3 

  

(340 - 385) (400 - 470) (78 - 111) (–29.1 - –28.4) (16.6 - 18.0) 

2 6 400 ± 17 538 ± 122 82 ± 8 –28.1 ± 0.3 17.4 ± 0.3 

  

(378 - 422) (425 - 760) (76 - 98) (–28.7 - –27.9) (16.8 - 17.8) 

3 12 405 ± 25 542 ± 89 80 ± 8 –27.9 ± 0.9 17.3 ± 0.9 

  

(370 -458) (400 - 725) (67 - 92) (–29.1 - –25.7) (16.4 - 18.4) 

4 6 357 ± 42 395 ± 151 85 ± 14 –28.7 ± 0.3 17.8 ± 0.3 

  

(310 - 412) (210 - 660) (66 - 106) (–29.3 - –28.5) (17.5 - 18.2) 

5 6 393 ± 24 498 ± 75 81 ± 5 –28.1 ± 0.2 17.1 ± 0.2 

  

(348 - 414) (370 - 565) (75 - 89) (–28.6 - –27.9) (16.6 - 18.0) 

6 6 380 ± 48 435 ± 167 75 ± 10 –28.0 ± 0.7 17.6 ± 0.7 

  

(296 - 430) (200 - 600) (56 - 83) (–28.9 - –27.0) (17.1 - 18.0) 

7 6 388 ± 44 575 ± 175 96 ± 16 –27.6 ± 0.8 17.4 ± 0.8 

  

(320 - 430) (400 - 750) (81 - 126) (–29.0 - –26.8) (16.8 - 18.1) 

8 6 407 ± 17 573 ± 110 83 ± 12 –27.8 ± 0.8 17.3 ± 0.8 

  

(390 - 430) (400 - 730) (65 - 101) (–29.1 - –26.6) (16.5 - 18.3) 
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Domestic Rainbow Trout collected from the aquaculture facility had enriched δ13C (mean 

–18.4 ± 0.2 ‰, range –19.1 to –18.1 ‰) and δ15N values (mean 11.3 ± 0.3 ‰, range 10.2 to 

12.2 ‰) compared to the pelleted fish feed, their sole dietary source (Fig. 2.2, Table 2.4). The 

isotopic differences between the pelleted fish feed and the domestic Rainbow Trout dorsal 

muscle tissue resulted in trophic enrichment factors (TEFs) of 2.65 ± 0.63 ‰ and 2.33 ± 1.06 ‰ 

for carbon and nitrogen, respectively.  

Table 2.2. Characteristics of Lake Whitefish (Coregonus clupeaformis) captured at sites 1 – 8 in 

fall 2012 and at site FF, directly adjacent to the fish farm cages, in fall 2013. Values are listed as 

the mean ± SD and the range is included in brackets. 

Site n 
Total Length 

(mm) 

Weight 

(g) 

Relative 

Weight (Wr) 

δ13C 

(‰) 

δ15N 

(‰) 

 

1 3 407 ± 17 537 ± 32 78 ± 8 –28.9 ± 0.4 17.8 ± 0.4 

  

(391 - 425) (500 - 560) (69 - 82) (–29.3 - –28.6) (17.4 - 18.4) 

2 6 378 ± 70 518 ± 273 87 ± 5 –28.8 ± 1.4 17 ± 1.4 

  

(274 - 450) (174 - 900) (82 - 94) (–31.3 - –27.0) (16.6 - 17.3) 

3 8 426 ± 96 832 ± 847 85 ± 9 –27.7 ± 3.9 16.8 ± 3.9 

  

(290 - 636) (220 - 2900) (72 - 100) (–30.8 - –18.7) (11.9 - 18.3) 

4 6 408 ± 27 648 ± 167 92 ± 10 –28.6 ± 1.0 17.4 ± 1.0 

  

(375 -455) (450 - 950) (78 - 108) (–30.0 - –27.0) (16.9 - 18.4) 

5 5 384 ± 17 432 ± 60 75 ± 4 –28.8 ± 0.4 17 ± 0.4 

  

(366 - 404) (350 - 510) (71 - 80) (–29.1 - –27.9) (16.6 - 17.4) 

6 6 402 ± 22 517 ± 117 77 ± 7 –28.5 ± 0.3 17.2 ± 0.3 

  

(365 - 430) (350 - 700) (68 - 85) (–28.9 - –27.9) (16.3 - 17.7) 

7 3 462 ± 50 850 ± 312 79 ± 7 –27.9 ± 1.0 16.3 ± 1.0 

  

(430 - 520) (600 - 1200) (73 - 86) (–28.8 - –26.8) (16.0 - 16.8) 

8 5 413 ± 26 560 ± 138 76 ± 5 –28.1 ± 1.0 17 ± 1.0 

  

(395 - 460) (450 - 800) (68 - 80) (–29.0 - –26.5) (14.6 - 19.2) 

FF* 9 615 ± 46 2564 ± 592 97 ± 6 –19.2 ± 0.7 12 ± 0.7 

  

(565 - 681) (1875 - 3650) (88 - 107) (–20.5 - –18.4) (11.0 - 13.3) 

       

*Site FF was located directly adjacent to the fish farm cages and was the only site sampled in fall 

2013. 

 

The relationships between Lake Whitefish total length and δ13C, δ15N, and Wr can be 

seen in Fig. 2.3, 2.4 and 2.5, respectively. Both δ13C and Wr showed significant positive 

correlations with total length for all Lake Whitefish (δ13C: F = 487, d.f. = 1, 142, R2 = 0.77, P < 
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0.001; Wr: F = 5.8, d.f. = 1, 142, R2 = 0.04, P < 0.05), but when the Lake Whitefish which were 

feeding on pelleted fish feed were removed the relationship between total length and Wr showed 

a significant decrease in relative weight as total length increased (F = 10.8, d.f. = 1, 132, R2 = 

0.08, P < 0.01). The relationship between total length and δ13C remained positively correlated 

and significant when the Lake Whitefish feeding on pelleted fish feed were removed (F = 44.7, 

d.f. = 1, 132, R2 = 0.25, P < 0.001).   Lake Whitefish δ15N showed a significant negative 

correlation to total length when all Lake Whitefish were included (F = 232, d.f. = 1, 142, R2 = 

0.62, P < 0.001), but when fish feeding on pelleted fish feed were excluded the relationship was 

no longer significant (F = 1.8, d.f. = 1, 132, R2 = 0.01, P = 0.18).  

Table 2.3. Characteristics of Lake Whitefish (Coregonus clupeaformis) captured at sites 1 – 8 in 

spring 2013. Values are listed as the mean ± SD and the range is included in brackets. 

Site n 
Total Length 

(mm) 

Weight 

(g) 

Relative 

Weight (Wr) 

δ13C 

(‰) 

δ15N 

(‰) 

 

1 2 404 ± 0 600 ± 35 89 ± 5 –27.5 ± 1.1 16.4 ± 1.1 

  

(404 - 404) (575 - 625) (85 - 93) (–28.3 - –26.7) (16.3 - 16.5) 

2 4 410 ± 27 544 ± 147 76 ± 5 –27.8 ± 0.5 17.6 ± 0.5 

  

(381 - 445) (400 - 750) (72 - 89) (–28.2 - –27.1) (17.0 - 17.8) 

3 6 408 ± 18 552 ± 85 79 ± 7 –27.4 ± 1.0 16.9 ± 1.0 

  

(392 - 440) (440 - 650) (72 - 89) (–28.5 - –25.6) (16.3 - 17.7) 

4 6 408 ± 27 532 ± 123 76 ± 6 –27.8 ± 1.2 16.9 ± 1.2 

  

(376 - 444) (410 - 700) (68 - 84) (–29.0 - –25.7) (16.4 - 17.6) 

5 5 403 ± 26 535 ± 84 79 ± 4 –27.7 ± 0.6 16.8 ± 0.6 

  

(371 - 434) (425 - 625) (74 - 84) (–28.3 - –26.8) (16.3 - 17.5) 

6 6 400 ± 25 500 ± 86 76 ± 5 –28.1 ± 0.6 17.3 ± 0.6 

  

(369 - 424) (380 - 580) (71 – 85) (–29.0 - –27.3) (16.1 - 18.0) 

7 6 425 ± 14 562 ± 124 70 ± 10 –28.1 ± 1.0 17.4 ± 1.0 

  

(410 - 450) (375 - 725) (53 - 81) (–29.1 - –26.4) (16.6 - 18.6) 

8 4 392 ± 20 514 ± 92 83 ± 3 –27.9 ± 0.4 16.9 ± 0.4 

  

(365 - 408) (400 - 600) (80 - 86) (–28.4 - –27.4) (16.5 - 17.2) 
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Table 2.4. Seasonal contribution of pelagic primary production, benthic primary production, and 

aquaculture waste to Lake Whitefish diets as determined through the stable isotope mixing 

model SIARsolo. Lake Whitefish were caught at sites 1 – 8 in spring 2012 (S12), fall 2012 

(F12), and spring 2013 (S13), while those at site FF were caught in fall 2013 (F13). Domestic 

Rainbow Trout were included as they were known to have a diet of entirely pelleted fish feed, 

but still show a proportion of their diet from benthic and pelagic sources due to the inclusion of 

all sources in the mixing model. Proportions are reported as the seasonal mean ± SD for each 

site, while the range of values is reported in brackets 

    Source  

Site  Season n 
 

Pelagic (%)  Benthic1 (%)  Aquaculture Waste (%) 

 

1 S12 6 55.4 ± 3.7 (50.3 - 60.0) 32.7 ± 4.0 (28.0 - 37.9) 6.3 ± 3.5 (6.0 - 6.9) 

 
F12 3 58.1 ± 4.9 (54.6 - 64.7) 29.8 ± 4.6 (24.6 - 33.0) 6.2 ± 4.1 (5.8 - 6.5) 

 
S13 2 44.8 ± 4.1 (42.0 - 47.7) 42.0 ± 1.8 (40.7 - 43.3) 9.2 ± 3.1 (7.0 - 11.4) 

2 S12 6 52.2 ± 1.9 (48.8 - 53.7) 35.0 ± 2.3 (33.0 - 39.1) 7.3 ± 0.5 (6.2 - 7.7) 

 
F12 6 54.9 ± 8.2 (45.5 - 69.7) 29.7 ± 7.9 (20.6 - 35.3) 5.6 ± 1.2 (4.3 - 6.5) 

 
S13 4 51.9 ± 1.9 (50.3 - 53.9) 34.4 ± 2.1 (23.9 - 37.5) 8.0 ± 1.3 (7.1 - 9.9) 

3 S12 12 51.0 ± 6.0 (40.5 – 59.6) 35.2 ± 4.7 (27.8 - 43.6) 8.4 ± 2.9 (5.9 - 16.5) 

 
F12 8 51.0 ± 21.6 (2.7 - 70.4) 27.6 ± 9.6 (12.5 - 40.0) 16.1 ± 26.4 (4.6 - 81.2) 

 
S13 6 46.7 ± 5.3 (40.3 - 55.6) 39.1 ± 4.3 (31.8 - 43.5) 9.7 ± 3.8 (6.7 - 17.3) 

4 S12 6 57.7 ± 2.2 (54.5 - 61.1) 29.9 ± 2.0 (27.2 - 33.0) 6.4 ± 3.9 (5.7 - 6.7) 

 
F12 6 55.2 ± 4.6 (50.0 - 61.3) 32.1 ± 3.7 (27.4 - 36.6) 6.9 ± 1.7 (5.1 - 10.0) 

 
S13 6 49.1 ± 6.4 (38.9 - 54.4) 37.3 ± 4.3 (32.8 - 43.7) 8.8 ± 4.1 (5.9 - 16.8) 

5 S12 6 50.1 ± 2.6 (47.2 - 55.0) 36.4 ± 3.3 (30.1 - 40.8) 7.3 ± 4.4 (6.5 - 7.7) 

 
F12 5 53.6 ± 2.7 (50.8 - 57.6) 34.6 ± 2.6 (30.6 - 37.6) 6.3 ± 5.3 (5.9 - 7.2) 

 
S13 5 47.5 ± 2.4 (43.8 - 50.0) 39.3 ± 2.3 (35.6 - 41.1) 8.4 ± 1.5 (6.9 - 10.8) 

6 S12 6 53.5 ± 3.6 (47.9 - 57.4) 33.0 ± 2.9 (29.9 - 37.0) 7.6 ± 1.4 (6.1 - 9.9) 

 
F12 6 53.0 ± 2.9 (49.4 - 56.3) 34.8 ± 3.1 (31.2 - 39.5) 6.7 ± 0.6 (6.0 - 7.8) 

 
S13 6 52.0 ± 2.6 (47.8 - 54.9) 35.1 ± 2.6 (31.4 - 37.9) 7.4 ± 1.2 (5.9 - 9.1) 

7 S12 6 50.1 ± 5.6 (43.4 - 60.5) 36.0 ± 4.9 (27.3 - 41.9) 8.7 ± 1.8 (6.1 - 10.9) 

 
F12 3 46.1 ± 6.5 (39.6 - 52.7) 41.5 ± 5.3 (35.8 - 46.4) 8.4 ± 2.7 (6.2 - 11.5) 

 
S13 6 52.7 ± 6.1 (44.7 - 59.6) 34.0 ± 5.3 (27.6 - 40.1) 7.9 ± 5.3 (5.8 - 12.6) 

8 S12 6 50.1 ± 6.8 (40.9 - 58.9) 36.3 ± 6.1 (29.1 - 43.5) 8.5 ± 2.2 (6.0 - 12.3) 

 
F12 5 51.2 ± 10.3 (33.7 - 60.2) 35.9 ± 10.2 (24.7 - 51.9) 8.1 ± 3.2 (5.9 - 13.5) 

 
S13 4 48.7 ± 3.4 (44.2 - 52.7) 38.7 ± 3.4 (34.8 - 43.0) 7.7 ± 9.5 (6.8 - 9.0) 

FF F13 9 3.2 ± 0.9 (2.5 - 5.2) 16.3 ± 6.6 (10.9 - 30.3) 76.4 ± 8.3 (58.7 - 83.3) 

 
DRT2 16 2.4 ± 0.1 (2.2 - 2.6) 10.4 ± 0.9 (9.2 - 12.2) 84.1 ± 1.2 (81.8 - 85.8) 

         
1Results for lymnaeid snails and G. lacustris were combined a posteriori following Phillips et al. 

(2005) to account for all benthic production. 
2Domestic Rainbow Trout (DRT) were sampled from the aquaculture facility in August of 2012 

and again in August and November of 2013 and results were combined. 
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Figure 2.1. Stable isotope biplot of all Lake Whitefish (Coregonus clupeaformis) δ13C and δ15N 

values collected in spring 2012 (S12), fall 2012 (F12), spring 2013 (S13) and fall 2013 (F13) 

(open symbols) and the mean (± SD) of potential dietary sources corrected for trophic 

enrichment (closed symbols). POM was corrected for two trophic levels by doubling the trophic 

enrichment factors applied to it due to it being a basal resource whereas other sources were 

primary consumers. Potential dietary sources include bulk zooplankton (ZP), particulate organic 

matter (POM), lymnaeid snails (LS), Gammarus lacustris (GA), and pelleted fish feed (PFF).  
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Figure 2.2. Individual site stable isotope biplots of Lake Whitefish (Coregonus clupeaformis) δ13C and δ15N values from spring 2012 

(S12), fall 2012 (F12), spring 2013 (S13) and fall 2013 (F13). Domestic Rainbow Trout collected at the fish farm facility (DRT) were 

included for site FF.  The mean (± SD) of potential dietary sources including POM, zooplankton (ZP), G. lacustris (GA), lymnaeid 

snails (LS), and pelleted fish feed (PFF) were corrected for trophic enrichment and plotted alongside consumers (POM was corrected 

for two trophic levels as it was a basal resource whereas other sources were primary consumers).  
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Figure 2.3.  The relationship between Lake Whitefish total length (mm) and δ13C (model I linear 

regression). Plot “A” shows data for all Lake Whitefish, while plot “B” has the Lake Whitefish 

which were subsidizing their diets with pelleted fish feed (AW specialists) removed from the 

plots. Note the difference in scale on both the X and Y axes between the plots. 

 

 

Figure 2.4. The relationship between Lake Whitefish total length (mm) and δ15N (model I linear 

regression). Plot “A” shows data for all Lake Whitefish, while plot “B” has the Lake Whitefish 

which were subsidizing their diets with pelleted fish feed (AW specialists) removed from the 

plots. Note the difference in scale on both the X and Y axes between the plots. 
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Figure 2.5. The relationship between Lake Whitefish total length (mm) and Wr (model I linear 

regression). Plot “A” shows data for all Lake Whitefish, while plot “B” has the Lake Whitefish 

which were subsidizing their diets with pelleted fish feed (AW specialists) removed from the 

plots.  

 

2.3.3 Mixing Models 

Pelagic primary production, represented by bulk zooplankton samples, was the most 
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benthic primary production, represented by combined benthic macroinvertebrates lymnaeid 
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shows one Lake Whitefish captured at site 3 was a specialist, with 81.2 % of its diet made up of 

aquaculture waste. This is also evident in the fish captured directly adjacent to the aquaculture 
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cages (site FF) which have very similar proportional contribution of all three potential sources as 

the domestic Rainbow Trout collected from within the cage culture facility (Table 2.4). These 

aquaculture waste specialists with high diet contribution from pelleted fish feed are the reason 

for the high standard deviation associated with the mean contribution of aquaculture waste.  

Figure 2.6. Boxplots showing the proportional contribution of each potential carbon source to 

the diets of all Lake Whitefish (Coregonus clupeaformis) at each sample site (site numbers are 

listed in the top right corner of each plot). The potential dietary sources include pelagic primary 

production represented by zooplankton (ZP), benthic primary production represented by two 

aquatic macroinvertebrates, lymnaeid snails (LS) and G. lacustris (GA), and aquaculture waste, 

represented by pelleted fish feed (PFF) from the aquaculture facility. The inner, central and outer 

portions of the boxplots represent the 50 %, 75 % and 95 % credible intervals of the data.  
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Two Lake Whitefish collected at site 3 show minor contributions of 16.5 and 17.3 % 

pelleted fish feed captured in spring 2012 and spring 2013, respectively. Only one other Lake 

Whitefish that was captured at sites 1 – 8 showed a contribution of aquaculture waste greater 

than 15 %. This fish was captured at site 4 in spring 2013 and had a diet contribution of 16.8 % 

from aquaculture waste. All nine Lake Whitefish collected adjacent to the aquaculture cages (site 

FF) in fall 2013 were calculated to almost entirely rely on aquaculture waste with proportional 

contributions between 58.7 and 83.3 %, similar to that of the domestic Rainbow Trout (81.8 – 

85.8 %). 

Figure 2.6 shows the proportional contribution of each source to the diets of Lake 

Whitefish at each site. Boxplots for sites 1 – 8 look almost identical with pelagic primary 

production (zooplankton) contributing the majority of the biomass to Lake Whitefish followed in 

importance by benthic primary production in the form of lymnaeid snails and G. lacustris.  

2.3.4 Fish Condition by Carbon Source 

Of the 144 Lake Whitefish collected in this study, 10 had greater than 50 % contribution 

of their diet from aquaculture waste, 3 showed diet contribution between 15 and 20 % and the 

remaining 131 showed little or no contribution from aquaculture waste (Table 2.4). For statistical 

analysis between the different groups, the above groupings were defined as aquaculture waste 

specialists (AW specialists), aquaculture waste generalists (AW generalists), and fish with no 

reliance on aquaculture waste (No AW), respectively. These groupings were used to test for 

differences between fish with similar diet preferences even if captured at different sites. Total 

length and weight differed between groups (total length: F = 183.4, d.f. = 2, 141, P < 0.001; 

weight: F = 502, d.f. = 2, 141, P < 0.001), with AW specialists having significantly higher total 

lengths and weights compared to both the AW generalists and No AW groups (Tukey’s tests, P < 
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0.001). Neither total length nor weight differed between the AW generalists or No AW groups 

(Tukey’s test, total length: P = 0.29; weight: P = 0.51). Relative weight also differed significantly 

between the groups (F = 12.7, d.f. = 2, 141, P < 0.001) with the AW specialists having a 

significantly higher Wr than either the AW generalists (Tukey’s test, P < 0.05) or the No AW 

groups (Tukey’s test, P < 0.001). The Wr of the AW generalists and No AW groups did not differ 

significantly (Tukey’s test, P = 0.99).  

A total of 14 sexually mature female Lake Whitefish were caught in the study (AW 

specialist: n = 4, AW generalist: n = 0, No AW: n = 10) (Table 2.5). Both gamete weight and egg 

number showed significant differences between groups (gonad weight: F = 50.9, d.f. = 1, 12, P < 

0.001; egg number: F = 33.0, d.f. = 1, 12, P < 0.001), but when standardized for body weight, 

there was no significant difference between groups (egg number per gram body weight: F = 1.2, 

d.f. = 1, 12, P < 0.30). Egg diameter and GSI did not differ significantly between groups (egg 

diameter: F = 3.3, d.f. = 1, 12, P = 0.09; GSI: F = 0.04, d.f. = 1, 12, P = 0.85). A total of 13 

sexually mature male Lake Whitefish were caught in the study (AW specialists: n = 4, AW 

generalists: n = 0, No AW: n = 9). Gonad weight of males differed significantly between groups 

(F = 11.9, d.f. = 1, 11, P < 0.01), but when standardized for body weight, the resulting GSI did 

not differ significantly between groups (F = 4.1, d.f. = 1, 11, P = 0.06).  

The two year means for Wr for each site differed significantly from each other (F = 4.4, 

d.f. = 8, 135, P < 0.001), with site mean Wr for site FF significantly different from all sites 

(Tukey’s test, P <0.01) except site 1 (Tukey’s test, P = 0.40) (Fig. 2.7A). However, after the AW 

specialists were removed, there were no significant differences between sites (F = 1.8, d.f. = 7, 

126, P = 0.09) (Fig. 2.7B). The seasonal mean relative weight for all Lake Whitefish was found 

to be significantly different between sampling seasons (F = 10.7, d.f. =3, 140, P < 0.001), with 
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spring 2012 differing significantly from spring 2013 (Tukey’s test P < 0.05) and fall 2013 

differing from all other seasons (Tukey’s test P < 0.001) (Fig. 2.8A). When the fish subsidizing 

their diets with aquaculture waste feed (AW specialists) were removed, relative weight still 

differed between seasons (F = 4.6, d.f. = 2, 131, P < 0.05) with spring 2012 and 2013 differing 

significantly from one another (Tukey’s test: P < 0.01), but neither differed significantly from 

fall 2012 (Tukey’s test: P > 0.05), (Fig. 2.8B). No Lake Whitefish other than AW specialists 

were captured in the fall of 2013. 

 

Figure 2.7. Mean relative weight (Wr) for all Lake Whitefish (Coregonus clupeaformis) captured 

at each site throughout 2012 and 2013. Plot “A” includes all Lake Whitefish caught in this study, 

while plot “B” has those fish which were specialists on aquaculture waste excluded. Error bars 

represent 95 % confidence intervals for the means. Means with a common letter are not 

significantly different from one another.  
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Table 2.5. Size and fecundity of Lake Whitefish caught in Lake Diefenbaker in the fall of 2012 and 2013. Lake Whitefish were 

separated by sex and those with a greater than 50 % contribution of aquaculture waste to their diets (AW Specialist) were separated 

from fish with between 15 – 50 % diet contribution from aquaculture waste (AW Generalists) and from fish with < 15 % diet 

contribution from aquaculture waste (No AW). No sexually mature AW Generalists were caught in this study, so they are not included 

in the table. 

Category Sex n 
TL 

 (mm) 

Fish  

Wt. (g) 

Gonad  

Wt. (g) 
GSI 

Egg Diameter 

(mm) 

Egg # 

(1000s) 

Egg #/gram 

Body Weight 

 

All  F 14 475 ± 97 1228 ± 1045 147 ± 134 11.8 ± 2.0 2.23 ± 0.14 28.1 ± 24.2 24.1 ± 5.3 

   

391 - 681 450 - 3650 50 - 435 8.8 - 15.1 2.01 - 2.50 10.3 - 91.7 15.9 - 32.2 

          No AW F 9 419 ± 23 632 ± 143 74 ± 18 11.8 ± 2.0 2.19 ± 0.11 15.4 ± 3.2 25.7 ± 4.7 
 

  

391 - 460 450 - 900 50 - 95 8.8 - 15.1 2.01 - 2.35 10.3 - 20.0 15.9 - 32.2 

          AW Specialist F 4 615 ± 52 2719 ± 722 331 ± 118 12.0 ± 2.1 2.33 ± 0.15 59.8 ± 25.5 21.7 ± 6.6 

   

572 - 681 2100 - 3650 210 - 435 10.0 - 14.9 2.19 - 2.50 36.7 - 91.7 16.7 - 31.4 

          All M 13 475 ± 91 1131 ± 847 18 ± 27 1.3 ± 0.8 

   

   

395 - 636 500 - 2900 2 - 100 0.3 - 3.4 

   

          No AW M 9 421 ± 38 619 ± 222 6 ± 3 1.0 ± 0.5 

   

   

395 - 520 500 - 1200 2 - 10 0.0 - 1.8 

   

          AW Specialist M 4 595 ± 30 2281 ± 438 46 ± 37 1.9 ± 1.1 

   

   

565 - 636 

 

1875 - 2900 

 

15 - 100 

 

0.8 - 3.4 

 

   

4
7
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Figure 2.8. Mean relative weight (Wr) for all Lake Whitefish (Coregonus clupeaformis) captured 

during spring 2012 (S12), fall 2012 (F12), spring 2013 (S13) and fall 2013 (F13). Plot “A” 

includes all Lake Whitefish caught in this study, while plot “B” has those fish which were 

specialists on aquaculture waste excluded. Error bars represent 95 % confidence intervals for the 

means and means with a common letter are not significantly different from one another.  

 

2.4 Discussion 

2.4.1 Assimilation of Aquaculture Waste 

 Only Lake Whitefish in the immediate vicinity of the aquaculture facility had isotopic 

values indicating the use of aquaculture waste as a diet subsidy. All nine Lake Whitefish caught 

directly adjacent to the fish farm cages had δ13C and δ15N values indicating they were specialists 

on aquaculture waste (AW specialists). Only one other fish, caught at site 3, showed isotope 

values indicative of a specialist on aquaculture waste. Two fish caught at site 3, one each in 

spring of 2012 and 2013, showed isotopic values which indicated a small contribution of 

aquaculture waste (AW generalists). One other fish caught at site 4 within Cactus Bay also had 

isotopic values indicating it was an AW generalist. In an oligotrophic lake in Norway, Gabrielsen 

(1999) found Arctic Charr containing pelleted fish feed in their stomach contents up to 1.5 km 

7
0

8
0

9
0

1
0

0
1

1
0

Date

M
e

a
n

 W
r

S12 F12 S13

a
ab

b

7
0

8
0

9
0

1
0

0
1

1
0

Date

M
e

a
n

 W
r

S12 F12 S13 F13

a
ab

b

c

R
el

at
iv

e 
W

ei
g
h

t 
(W

r)

Season Season

A B1
1

0
1

0
0

9
0

8
0

7
0

S12 F12 S13 F13 S12 F12 S13



 

49 
 

from the aquaculture cages, indicating short term movements to and from the cage culture 

facilities to feed. Most of the Arctic Charr containing pelleted fish feed were believed to be 

aquaculture specialists, as they were larger and had higher condition factors than other Arctic 

Charr in the lake (Gabrielsen 1999). A single Lake Whitefish collected at site 3, located 400 

metres from the aquaculture cages, had a calculated diet contribution of 81.2 % aquaculture 

waste, indicating it fed almost exclusively at the aquaculture cages because this value was 

similar to that of domestic Rainbow Trout. It was the largest fish collected at any site, other than 

directly adjacent to the cage culture facility and had a relative weight of 100, considerably higher 

than either the mean value of 85 at site 3 during the fall of 2012 or the study wide mean of 82. 

All AW specialists were caught during fall either at site 3 or directly adjacent to the fish 

farm cages.  The turnover time for fish muscle tissue varies with the speed of growth, but 

represents a long term average of dietary intake (Hesslein et al. 1993; Grey 2006) indicating that 

these fish had been relying on aquaculture waste for a large portion of their diet for a prolonged 

period of time (contribution of 58.7 – 83.3 % aquaculture waste). The upper range of the diet 

contribution for these fish was similar to that of domestic Rainbow Trout, known to be feeding 

exclusively on pelleted fish feed. Due to the nature of the mixing models in SIAR, all sources 

included in the model are fit with some diet contribution. In the case of fish with a diet of almost 

exclusively aquaculture waste such as the domestic Rainbow Trout or AW specialists, the other 

potential sources still appear to contribute 15 – 20 % to the diet of each fish, likely an over 

estimation resulting from the inclusion of these sources in the mixing models. In the case of the 

AW specialists, the lower proportion of their diet from aquaculture waste (i.e., 50 – 75 %), may 

be the result of the slow turnover time for fish dorsal muscle tissue (Hesslein et al. 1993), or it 

could mean these fish stray from the aquaculture facility and feed on other sources at certain 
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times throughout the year. However, these fish likely feed almost exclusively on aquaculture 

waste, indicated by their large size (total length range of 565 – 681 mm) and high relative 

weights (88 – 107). In addition to the aquaculture specialists, three fish showed a contribution of 

aquaculture waste of > 15 % to their diets, as indicated by the SIARsolo mixing models. Two of 

these fish were from site 3, one from spring 2012 and another in spring 2013, while the other was 

from site 4 in spring 2013.  

There are three potential explanations for these fish referred to as aquaculture waste 

generalists (AW generalists). They could be fish which opportunistically feed on aquaculture 

waste while in the area of the fish farm, they could have only recently begun to feed as 

specialists on aquaculture waste and the slow turnover time of their tissue reflects this recent 

change in diet, or they could be fish with a stronger reliance on benthic primary production than 

most other fish. Due to the δ13C and δ15N values of the benthic primary production sources 

falling between the aquaculture waste and pelagic primary production sources, the mixing 

models cannot differentiate between a high reliance on benthic sources versus a lower reliance 

on aquaculture waste (Phillips et al. 2014). As a result, this may have caused the model output to 

have a mid-range contribution from aquaculture waste for these individuals rather than a higher 

benthic contribution. This is one of the inherent problems associated with the output of mixing 

models such as SIARsolo when the sources all fall in a relatively linear distribution (Fig. 2.1).  

All three of these AW generalist fish were captured within Cactus Bay at sites 3 and 4, so it is 

likely that they had fed on aquaculture waste previously, but either did not specialize on it, or 

only recently begun to feed specifically on it. If these were fish with higher contributions of 

benthic resources, fish with similar contributions from aquaculture waste would have likely been 

detected at sites 7 and 8 at the mouth and inside of Kadla Coulee. These sites are similar to sites 
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3 and 4 within Cactus Bay, with the exception of the cage culture facility, so they act as 

reference sites. An interesting test would be to return to sites 7 and 8 and collect Lake Whitefish 

in those areas now that a cage culture facility is operational in Kadla Coulee to see if there have 

been any changes to the isotopic values for Lake Whitefish following the establishment of the 

aquaculture facility there. 

2.4.2 Distance from the Aquaculture Cages 

Other than the nine Lake Whitefish caught immediately outside of the fish farm cages, 

only one other AW specialist was caught. This fish was caught at site 3, located 400 metres from 

the cage culture facility. A total of 26 Lake Whitefish were caught at site 3 throughout the two 

field seasons. Other than the one AW specialist, only two fish were estimated to have a higher 

than normal contribution from aquaculture waste. This could mean AW specialists rarely stray 

far from the cage culture facility throughout the spring and fall when sampling was conducted. 

Interestingly the one AW specialist caught at site 3 in fall 2012 was a mature male. Brandão et 

al. (2014) found a species of catfish in a Brazilian reservoir that would feed on aquaculture waste 

around the cage culture facilities throughout the year, but when this fish reached sexual maturity 

it would migrate to spawning habitat. A similar situation may be occurring for the Lake 

Whitefish around the cage culture facility in Lake Diefenbaker during the fall spawning season. 

Lake Whitefish are known to spawn around water temperatures of 7 – 8 °C (Scott and Crossman, 

1973), which occur in November in Lake Diefenbaker when spawning has been observed along 

shorelines. All three AW generalists were also caught within Cactus Bay as well, two at site 3 

and one at site 4, indicating that these fish do not stray far from the aquaculture cages either. 

However, the consumption of waste feed by wild fish at cage culture facilities distributes the 

waste over a greater area, which in turn leads to a reduced impact on the benthic sediments 



 

52 
 

directly below the cage culture facilities (Gondwe et al. 2012; Ramos et al. 2013; Brandão et al. 

2014). The Lake Whitefish consuming aquaculture waste in Lake Diefenbaker likely play a role 

in spreading the nutrients associated with waste feed from the aquaculture facility over a greater 

area reducing the impacts on the bottom sediments immediately below the cage culture facility. 

2.4.3 Fish Condition 

The study wide average for relative weight (Wr) for Lake Whitefish was 82 ± 11, lower 

than the value of 100 which is defined as the average across the range of the species (Blackwell 

et al. 2000). Aquaculture waste specialists (site FF mean Wr = 97 ± 6) had higher relative 

weights than any other group of fish. This indicates a diet consisting of aquaculture waste has a 

positive impact on body condition in Lake Whitefish, similar to what is seen in other fish species 

subsidizing their diets with aquaculture waste (Gabrielsen 1999; Fernandez-Jover et al. 2011; 

Dempster et al. 2011; Brandão et al. 2014).  

When comparing the Wr values for individual Lake Whitefish to their total lengths (Fig. 

2.5A) there is an apparent increase in Wr as total length increases, but this is mainly driven by 

the high Wr values at the highest end of the total length spectrum. Once the AW specialists are 

removed from the relationship, Wr decreases with increasing total length (Fig. 2.5B), although 

this trend is only slightly significant (R2 = 0.08, P < 0.01). This trend is associated with the 

pattern of decreasing δ15N and increasing δ13C as total length increases when aquaculture waste 

specialists are removed from the relationships (Fig. 2.3B and 2.4B). All three relationships 

appear to be the result of Lake Whitefish switching from pelagic to benthic resource use as they 

increase in total length. This switch in resource utilization is apparent in the stable isotope values 

which reflect those of macroinvertebrates at higher total lengths (i.e., enriched δ13C and depleted 

δ15N) and zooplankton at shorter total lengths (Fig. 2.3 and 2.4). Similar ontogenetic diet shifts 
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are seen in Lake Whitefish populations in the great lakes where smaller fish feed heavily on 

zooplankton and switch to benthic macroinvertebrates and mussels at larger sizes (Pothoven and 

Nalepa 2006). Lake Whitefish feeding on zooplankton have been found to have slower growth 

than those feeding on larger benthic macroinvertebrates (Ihssen et al. 1981). This may explain 

why smaller Lake Whitefish have more pelagic δ13C and δ15N values, as they have not yet 

transitioned onto benthic resources. Benthic resource use is often attributed to increased 

condition in Lake Whitefish when compared to pelagic resource use (Ihssen et al. 1981; Fagan et 

al. 2008), the opposite of what is seen in this study (Fig. 2.5B). This could be due to the limited 

littoral area present in Lake Diefenbaker and the vast amount of pelagic habitat (Sadeghian et al. 

2015) that may effectively limit the supply of benthic resources. Lake Diefenbaker experiences 

annual water level fluctuations of up to seven metres (Sadeghian et al. 2015). Such fluctuations 

in water level are known to cause a reduction in both macrophyte and benthic macroinvertebrate 

biomass within the area of the littoral zone influenced by drawdown (McEwen and Butler 2010; 

Mjelde et al. 2013), further limiting benthic production within Lake Diefenbaker. 

Significant differences in gonad weight were detected between the AW specialists and 

other Lake Whitefish for both males and female fish. Female Lake Whitefish also showed a 

significant difference between the number of eggs in AW specialists compared to the other fish 

caught. However, the size of the eggs did not differ between groups and when egg number was 

standardized per gram of body weight, a significant difference was no longer present. Once 

standardized for body weight, the GSI was not significantly different between groups. In some 

species of fish gametogenesis is linked to condition, with increases in fecundity present when 

condition increases (Kamler 2005). Muir et al. (2014) found that Lake Whitefish with low body 

condition in the great lakes maintained egg quality by decreasing the total number and size of 
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eggs. However, in my study, Lake Whitefish in poorer condition did not have significantly 

smaller eggs. They did have smaller gonads and lower egg counts than the fish with higher Wr 

that specialized on aquaculture waste, but once standardized per gram of body weight, this 

relationship did not hold between groups (P > 0.05). This may mean that Lake Whitefish in the 

study area with low Wr are sacrificing body condition to achieve maximum fecundity for their 

size, while those specializing on aquaculture waste do not have to sacrifice their own condition 

for high fecundity. 

2.4.4 Spatial and Temporal Comparisons 

Lake Whitefish specializing in aquaculture waste were only caught during the fall of 

2012 and 2013. However, site FF immediately adjacent to the fish farm cages was only sampled 

in fall 2013 and only one Lake Whitefish caught in fall 2012 at site 3 was an AW specialist. With 

such a low sample size, it is not possible to say that AW specialists were not present at site 3 at 

other times of the year, however if they were widespread it is likely that more than one would 

have been caught at sites 1 – 8. Gabrielsen (1999) found Arctic Charr in a Norwegian lake with 

stomach contents containing pelleted feed from an aquaculture facility up to 1.5 km from the 

nearest cages. Studies on Lake Malawi in Africa have found that large schools of wild fish will 

migrate to cage culture facilities at feeding times on a daily basis, but disperse once the feeding 

period is over (Gondwe 2009; Gondwe et al. 2011). These habits may also be present in the Lake 

Whitefish in Lake Diefenbaker and may explain the sole aquaculture specialist fish that was 

caught 400 metres from the cages, i.e., fish may be migrating to and from the cage culture 

facility at feeding times. 

The only significant differences in Wr between seasons occurred between the spring of 

2012 and spring 2013 (Fig. 2.5), with the exception of fall 2013 when only site FF was sampled. 
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Relative weight is known to change seasonally with most fish having the highest relative weight 

of the year immediately before spawning (Blackwell et al. 2000). For Lake Whitefish, this means 

the highest Wr values would be present in the fall, immediately before spawning with lower 

values present in spring. However, this was not the case in this study, as Wr was higher in spring 

2012 than in either fall 2012 or spring 2013. This difference may be related to the later date of 

ice-off in 2013 compared to 2012. In 2012, ice was off Lake Diefenbaker by late April, but in 

2013 ice-off did not occur until May 12th for the majority of the reservoir (personal observation). 

The longer winter in 2013 may have been responsible for depleting fat reserves due to lower 

abundance of prey items during late ice as is seen in other species (Woodward and Wilson 1989), 

resulting in lower condition for Lake Whitefish in Lake Diefenbaker in 2013 when sampling was 

conducted immediately after ice off. 

 Mean relative weight at each site had a general decreasing trend from site 1 to 8, with the 

main channel sites (sites 1, 2, 5 and 6) showing a decrease with distance downstream. However, 

there were no significant differences between sites 1 to 8. This decreasing trend in relative 

weight with distance downstream may be the result of differences in habitat type between sites, 

but is likely just variation in the low sample sizes of Lake Whitefish caught at these sites (Tables 

2.1 to 2.3) because no significant differences were present between sites. 

2.4.5 Comparison with Other Systems 

 Aquaculture operations are known to subsidize fish diets in marine and freshwater 

environments, with an estimated 5 – 30 % of total feed entering the local food web (Beveridge 

1984; Otterå et al. 2009). This substantial amount of feed attracts both fish which feed directly 

on the waste feed, as well as larger predatory fish. In marine systems, changes in abundance and 

species composition often occur seasonally due to differences in water temperature (Valle et al. 
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2007). However, some species do remain around the cages year round when conditions are 

adequate (Dempster et al. 2010). This is also the case in freshwater systems where fish travel 

away from the cage culture facilities either on a regular or seasonal basis (Gabrielsen 1999; 

Gondwe et al. 2012; Ramos et al. 2013; Brandão et al. 2014). The movement of fish may be 

species dependent. For example, Lake Whitefish in Lake Diefenbaker appear to be present at the 

aquaculture facility all year, albeit in varying abundance (Jeff Sereda, personal communication 

April 25th, 2012). During the summer when surface temperatures warm, Lake Whitefish are 

suspected of remaining in the vicinity of the cage culture facility, but moving to the deeper 

cooler water below the cages. This appears to be the case for Lake Whitefish specializing on 

aquaculture waste, as their δ13C and δ15N values, as well as, the contribution of aquaculture 

waste to their diets are almost identical to those of the domestic Rainbow Trout. This indicates 

the majority of their diet is made up of aquaculture waste year round, even when they are not 

visible in the surface waters around the cage culture facility. The rate of feeding at the 

aquaculture facility varies throughout the year and is highest when water temperatures are 

optimal for growth of domestic trout during spring and fall (Sweeney International 2010). 

Consequently, the highest volume of aquaculture waste and the corresponding highest density of 

Lake Whitefish likely occur around the cage culture facility during these periods of peak feeding. 

In both marine and freshwater systems, diet subsidies from aquaculture waste are often 

associated with increased fish condition (Gabrielsen 1999; Ramos et al. 2008; Fernandez-Jover 

et al. 2011; Dempster et al. 2011; Ramos et al. 2013; Brandão et al. 2014), as seen in the Lake 

Whitefish that utilize aquaculture waste in Lake Diefenbaker. Increases in fecundity are not as 

well studied, but some studies (Marshall et al. 1999; Izquierdo et al. 2001) have found that 

increases in condition and total lipid content can lead to increases in fecundity. Brandão et al. 
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(2014) found an increased number of eggs, but a corresponding decrease in egg size in fish 

utilizing aquaculture waste as a diet subsidy in a reservoir in Brazil, similar to the increase egg 

numbers seen in the Lake Whitefish specializing on aquaculture waste in Lake Diefenbaker. 

Brandão et al. (2014) did not standardize their egg numbers by the body weight of the fish so it is 

not known if the egg number per gram body weight differed between net cage and reference 

sites. In Lake Diefenbaker, when standardized for body weight, the egg number per gram of 

body weight did not differ between aquaculture waste specialists and those fish not consuming 

aquaculture waste products. 

2.5 Conclusions 

 Stable isotopes of carbon and nitrogen can be used to identify which Lake Whitefish in 

Lake Diefenbaker are subsidizing their diets with aquaculture waste from the Wild West 

Steelhead aquaculture facility. The impact of the aquaculture facility on the diets of Lake 

Whitefish appears to be restricted to the area immediately surrounding the aquaculture cages and 

possibly within Cactus Bay to some extent. However, even within Cactus Bay, the diet subsidy is 

very limited with the majority of the Lake Whitefish caught at site 3, located 400 metres from the 

cages, estimated as having a negligible influence from the aquaculture waste diet subsidy. Lake 

Whitefish outside of Cactus Bay were estimated as having no contribution from aquaculture 

waste. Only Lake Whitefish in the immediate vicinity of the aquaculture cages are utilizing 

aquaculture waste for the majority of their diets. These aquaculture waste specialists have 

significantly longer total lengths, greater body weights, and higher relative weights than other 

Lake Whitefish found elsewhere in the reservoir. Once sexually mature, both male and female 

aquaculture waste specialists have larger gonads and females have an increased number of eggs 

compared to Lake Whitefish caught elsewhere in Lake Diefenbaker. However, once standardized 
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for body weight, the gonadosomatic index and number of eggs per gram of body weight were not 

significantly different between groups. The main benefit of feeding on aquaculture waste appears 

to be increased size and relative weight with a corresponding increase in gonad size and egg 

number in females, but without an increase in the number of eggs per gram of body weight or the 

gonadosomatic index.  
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CHAPTER 3. The importance of allochthonous and autochthonous carbon sources to the 

diets of fish throughout Lake Diefenbaker 

 

3.1 Introduction 

3.1.1 Allochthonous and Autochthonous Support of Food Webs 

Aquatic food webs are supported through both primary production generated within a 

waterbody, known as autochthonous production, and also through inputs to the system from 

primary production outside of the waterbody, known as allochthonous production. The relative 

importance of allochthonous and autochthonous carbon sources to the diets of aquatic consumers 

varies widely throughout different aquatic systems based on many factors including the 

morphometry of the waterbody (Dolson et al. 2009; Solomon et al. 2011), the spatial and 

temporal availability of each carbon source (Delong and Thorp 2006; Bašić et al. 2015), and the 

feeding habits of different consumers (Wallace and Webster 1996; Weidel et al. 2008; 

Christensen and Moore 2009). Even with all these factors considered, the importance of 

allochthonous and autochthonous carbon sources to the diets of fish can often be related to the 

category of waterbody being studied. 

3.1.2 Lentic systems 

 The importance of benthic and pelagic autochthonous primary production to consumers 

in lake ecosystems has been a topic of considerable discussion with both sources known to be of 

high importance to lake food webs (Hecky and Hesslein 1995; Vander Zanden and 

Vadeboncoeur 2002). In more recent years, the importance of allochthonous primary production 

to higher trophic levels has been a topic of increased study. Allochthonous carbon sources have 

been found to be more important to consumers in oligotrophic and dystrophic lakes (Del Giorgio 

and Peters 1993; Carpenter et al. 2005; Soloman et al. 2011), and decrease in importance as lakes 

increase in trophic status (Del Giorgio and Peters 1993; Cole et al. 2000; Carpenter et al. 2005) 



 

60 
 

and decrease in dissolved organic carbon concentrations (Solomon et al. 2011; Karlsson et al. 

2015).  Allochthonous carbon sources are generally of lower nutritional value when compared to 

autochthonous sources such as phytoplankton (Brett et al. 2012). As a result, consumers such as 

zooplankton often preferentially use autochthonous resources even when allochthonous carbon is 

abundant (Cole et al. 2002; Weidel et al. 2008). Other consumers, such as some benthic insects, 

feed almost entirely on terrestrially derived carbon. These consumers are often important dietary 

sources for higher trophic levels, such as fish; hence allochthonous terrestrial carbon can be 

important by indirect means to upper trophic levels (Glaz et al. 2012). Habitat and diet 

preferences are largely responsible for the importance of autochthonous and allochthonous 

carbon contributions to the diets of fish, as different fish preferentially feed on benthic, pelagic 

or terrestrially derived carbon (Weidel et al. 2008; Christensen and Moore 2009). 

3.1.3 Lotic systems 

 The roles and importance of allochthonous and autochthonous carbon sources in river 

systems has been a topic of debate for decades. It is generally accepted that stream order plays a 

large role in the importance of organic matter sources for consumers within lotic systems (Finlay 

2001). Increasing stream order is often positively correlated to the importance of instream 

autochthonous primary production (Webster and Meyer 1997). This shift in resource use with 

increasing stream order is thought to be linked to decreases in stream cover as stream channel 

size increases (Hansmann and Phinney 1973; Finlay 2001). In stream primary production and 

autochthonous resource use both increase with stream channel width (Finlay 2001; Delong and 

Thorp 2006), but allochthonous carbon is still of importance to some specialist consumers even 

in higher order rivers (Herwig et al. 2007; Jardine et al. 2012). During periods of high flow and 

flooding, allochthonous resource availability increases (Kendall et al. 2001; Oliveira et al. 2005) 
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and the use of this resource by consumers often increases until flows subside (Oliveira et al. 

2005; Sanchez-Vidal et al. 2013).  

3.1.4 Reservoirs 

 Reservoirs act as an intermediate between lentic and lotic systems with regards to carbon 

cycling. The relative importance of allochthonous and autochthonous resource use by consumers 

is largely driven by short water residence time and seasonal differences in flow; similar to what 

is seen in rivers (Kendall et al. 2001; Perga et al. 2005; Lee et al. 2013). Reservoirs can be 

divided into three zones with a riverine zone in the upstream reaches, a lacustrine zone in the 

downstream reaches and a transitional zone in between (Kimmel and Groeger 1984). The 

availability of allochthonous carbon is highest in the riverine zone and decreases with distance 

downstream from the tributary inflow as particulates sediment out of the water column (Chen et 

al. 2009; Kaymak et al. 2015; Lucas et al. 2015). The opposite is true for autochthonous carbon 

as the increased water clarity in the lacustrine zone results in greater light penetration and 

increased phytoplankton and macrophyte growth (Kendall et al. 2001; Yip et al. 2015). During 

periods of high flow, allochthonous carbon is transported further downstream, increasing its 

availability to consumers in the transitional and lacustrine zones (Perga et al. 2005; Min-Seob et 

al. 2014) while at the same time the associated increase in turbidity decreases phytoplankton 

growth and autochthonous carbon availability (Yip et al. 2015). As a result, allochthonous 

carbon is generally of highest importance to aquatic consumers in the upstream reaches of 

reservoirs and during periods of high flow, while autochthonous carbon is most important in the 

lacustrine zone and during periods of low flow in reservoirs (Chen et al. 2005; Kaymak et al. 

2015).  
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3.1.5 Expected Results  

 Average flows into Lake Diefenbaker are 200 – 300 m3s-1 with peak flows generally 

occurring in June and July when mountain runoff occurs (Hudson and Vandergucht 2015). Water 

levels fluctuate seasonally up to 7 metres as a result of drawdown throughout the winter months 

for hydroelectric power generation at Gardiner Dam (Sadeghian et al. 2015). The average water 

residence time is between 1.5 and 2.5 years with a range of 0.7 to 3.4 years (Costa 2011; Hudson 

and Vandergucht 2015). As a result of the short water residence time and the high inflow in June 

and July, it is expected that allochthonous inputs from the watershed will be of importance to the 

reservoir food web in the upstream reaches of the reservoir (Site 1), but their importance will 

decrease with distance downstream of the Highway 4 Bridge. Allochthonous support of the food 

web is expected to be highest during periods of high inflow (summer months) and to be of little 

importance during periods of lower flow in the spring and fall. Fish act as long term integrators 

of carbon sources due to the slow turnover time of their muscle tissue (Hesslein et al. 1992). As a 

result, the δ13C and δ15N values of fish tissue will reflect the long term averages of items 

assimilated in their diet. The importance of allochthonous and autochthonous carbon sources to 

the diets of fish are expected to vary in importance both spatially and between species. 

Autochthonous sources are expected to be most important to the diets of all fish species, 

especially in the downstream reaches of the reservoir. Pelagic production is expected to be of 

greater importance than benthic production to all four fish species due to the physical 

characteristics of Lake Diefenbaker. The steep shoreline, mean average depth of 22.9 metres, and 

water level fluctuations of up to 7 metres per year all contribute to a potential higher importance 

of pelagic primary production to the food web of Lake Diefenbaker.  



 

63 
 

Fish of the same species found throughout different areas of Lake Diefenbaker may use 

different carbon sources for their diet. These fish are expected to differ in condition factors, 

including relative weight and different measures of fecundity due to the difference in the quality 

of each potential carbon source to lower trophic levels (Brett et al. 2012).  

3.2 Methods 

3.2.1 Field Sampling 

Twelve sites throughout Lake Diefenbaker and one site upstream on the tributary, the 

South Saskatchewan River, were sampled in spring (May – June), summer (July – September) 

and fall (October – November) of 2012 and 2013. Eight sites (1, 2, 3, 4, 7, 8, 11 and 12) were 

located on the main channel of Lake Diefenbaker while four sites were located within 

embayments (sites 5 and 6 in Cactus Bay and sites 9 and 10 within Kadla Coulee) (Fig. 1.1). 

Sites were not located equidistantly throughout the reservoir, with the highest density of sites 

located in the mid reaches of the reservoir near the aquaculture facility due to a parallel study (as 

described in Chapter 2). Both main channel and embayment sites were used in order to increase 

sample size and representation of the reservoir. There were no major differences between the 

embayment and main channel sites as all locations were sampled in similar depths (2 to 15 m) 

along shoreline areas. This was evident in the homogeneity of data from embayment and main 

channel sites for all fish species seen in Fig. 3.13. 

3.2.1.1 Fish 

Four common fish species found in Lake Diefenbaker were used in this study. Lake 

Whitefish (Coregonus clupeaformis), Northern Pike (Esox lucius), Walleye (Sander vitreus) and 

White Sucker (Catostomus commersoni) were sampled in the spring and fall of 2012 and again 

in spring 2013. Fish were sampled using monofilament gill nets following the methodology 
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described for sampling Lake Whitefish in Chapter 2 (Section 2.2.1.1). All fish were measured for 

total length, fork length, weight, sex, state of maturity, and stomach contents. Sexually mature 

fish had their fecundity calculated following the methods outlined for Lake Whitefish in Chapter 

2 (Section 2.2.1.1) and in Klibansky and Juanes (2008). Boneless, skinless dorsal muscle tissue 

was collected from the central part of each fish above the lateral line for C and N stable isotope 

analysis.  

3.2.1.2 Aquatic Baseline Samples 

The tributary inflow site at Lemsford Ferry along the South Saskatchewan River was 

sampled in the spring, summer and fall of 2012 and 2013 for particulate organic matter (POM) at 

a depth of 0.1 metre. As well, unionid mussels were collected in the summer and fall of each 

year, but were unavailable in spring due to high flows. Particulate organic carbon (POC), 

particulate nitrogen (PN), zooplankton and aquatic macroinvertebrates (lymnaeid snails and 

Gammarus lacustris) were sampled three times throughout each open water season at each site 

within Lake Diefenbaker. Methods used for sampling were the same as previously described in 

Chapter 2 (Section 2.2.1.2). All samples were transported back to the limnology laboratory at the 

University of Saskatchewan for further processing. 

Leaf litter data from the South Saskatchewan River watershed was obtained from Painter 

et al. (2015). These samples were collected throughout the headwaters of the South 

Saskatchewan River basin in the Kananaskis region of Alberta Canada. Approximately 98 % of 

the inflow to Lake Diefenbaker originates in Alberta (SWAS 2012); hence the majority of 

allochthonous inputs to the system will be from Alberta which makes the leaf litter data from 

Painter et al. (2015) a good approximation of allochthonous inputs to the reservoir. 

3.2.2 Stable Isotope Analysis 
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Lipid extraction was performed on all zooplankton, macroinvertebrate, and fish tissue 

samples using a 2:1 chloroform:methanol solution following the protocol outlined in Chapter 2 

(Section 2.2.2). All fish tissue, zooplankton, macroinvertebrate, and POM samples were 

analyzed using the same methodology as outlined in Chapter 2 (Section 2.2.2). Leaf litter 

samples were weighed to 3.0 mg and packed into tin capsules (Painter et al. 2015). 

All stable isotope analyses, with the exception of leaf litter, were performed at the 

Department of Soil Sciences Stable Isotope Laboratory within the College of Agriculture at the 

University of Saskatchewan. The methods, equipment and precision of the equipment used are 

described in Chapter 2 (Section 2.2.2). Leaf litter samples were analyzed at the UC Davis Stable 

Isotope Facility in the Department of Plant Sciences at the University of California using a PDZ 

Europa ANCA-GSL elemental analyzer coupled to a PDZ Europa 20-20 CFIR mass 

spectrometer (Sercon Ltd., Cheshire, UK). Repeat analysis of laboratory standards that were 

similar in composition to samples had a precision of 0.3 ‰ and 0.2 ‰ for nitrogen and carbon, 

respectively. 

3.2.2.1 Discrimination Factors 

 Discrimination factors, or trophic enrichment factors (TEFs), were applied to each source 

to account for isotopic discrimination with increases in trophic level from source to consumer. 

Due to the difference in feeding ecology for each of the four fish species, the trophic level for 

each species was determined using FishBase.org (Froese and Pauly 2017). The mean trophic 

level for each species was calculated based on the average of North American studies for that 

species as 3.08, 4.22, 4.40 and 2.99 for Lake Whitefish, Northern Pike, Walleye and White 

Sucker, respectively (Depew et al. 2013). The TEFs used in this study were 0.39 ± 1.3 ‰ for 

δ13C and 3.4 ± 0.98 ‰ for δ15N per trophic level for all sources (Post 2002). These TEFs were 
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multiplied by the difference in trophic level between potential dietary sources and each fish 

species for input into the mixing models. Due to the use of primary consumers for autochthonous 

sources (i.e., trophic level 2), the TEF for leaf litter data was increased by an additional trophic 

level to account for the lower trophic level (i.e., trophic level 1) of this basal resource. 

3.2.3 Mixing Models 

 To determine the proportion of each carbon source to the diet of fish throughout the study 

area, the Bayesian mixing models SIAR and SIARsolo were used for the population at each site 

and for each individual fish, respectively (Parnell et al. 2010; R Core Development Team 2013). 

The methodology used for these mixing models is outlined in Chapter 2 (Section 2.2.3). 

Similarly, as in Chapter 2, the results from the two benthic primary consumers (lymnaeid snails 

and G. lacustris) were pooled a posteriori following Phillips et al. (2005), due to a significant 

difference in the δ13C values between these benthic consumers, even though the δ15N values did 

not differ significantly (δ13C:  T = -4.45, p < 0.001; δ15N: T = 1.44, p = 0.159). Leaf litter data 

from the headwaters of the South Saskatchewan River Basin were used as the source 

representing allochthonous inputs to the system. Primary consumer samples from each sampling 

location were averaged over the two year study period prior to input into the mixing models to 

account for spatial and temporal variations throughout the study (Jardine et al. 2014).  

3.2.4 Fish Condition  

 Relative weight (Wr) was used to determine the condition of each individual fish using 

the same methods as in Chapter 2 (Equation 2.2; Section 2.2.4). The standard weight (Ws) 

equation for Lake Whitefish was taken from Rennie and Verdon (2008) and is outlined in 

Equation 2.3 while Northern Pike, Walleye and White Sucker were taken from Blackwell et al. 

(2000). The formulas for each of these species are listed below:  
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Equation 3.1: Northern Pike: log10(Ws) = -5.437 + (3.096*log10TL) 

Equation 3.2: Walleye: log10(Ws) = -5.453 + (3.18*log10TL) 

Equation 3.3: White Sucker: log10(Ws) = -4.755 + (2.94*log10TL) 

For all equations Ws is the standard weight and TL is the fish’s total length in mm. 

 Fecundity was assessed as the total number and size of eggs and standardized for body 

weight using the same methods as outlined for Lake Whitefish in Chapter 2 (Section 2.2.4). 

Fecundity was only calculated during spawning seasons for sexually mature fish which had not 

yet spawned. 

3.2.5 Statistical Analysis 

Relationships between each fish species’ total length and δ13C, δ15N, and Wr were tested 

to identify ontogenetic changes in any of the variables (model I linear regression). The 

relationships between the percent contribution of each carbon source with Wr and each measure 

of fecundity were tested in order to identify any links between carbon sources and condition 

factors in each species (model I linear regression). Differences in δ13C, δ 15N, total length, Wr 

and fecundity between sites and seasons were tested to determine any spatial or temporal 

differences in each of the variables (ANOVAs with Tukey’s HSD post hoc tests for pairwise 

comparisons). Measures of fecundity were tested for differences between spawning seasons for 

Northern Pike, Walleye and White Sucker (T-tests). All statistical analyses were performed in 

the statistical software R (R version 3.0.2, R Project for Statistical Computing) with a level of 

significance of P < 0.05. 

3.3 Results 

3.3.1 Fish Size and Condition 

3.3.1.1 Lake Whitefish 
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 A total of 176 Lake Whitefish were caught at sites 1 – 12 (Tables 3.1 and 3.2) in spring 

2012 (n = 66), fall 2012 (n = 56) and spring 2013 (n = 54). Total length ranged from 172 – 520 

mm (mean = 398 ± 39 mm), while weight ranged from 30 – 1200 g with a mean of 532 ± 147 g. 

Relative weight ranged from 53 – 126 with a mean of 81 ± 10. A total of 23 sexually mature 

Lake Whitefish were caught (Table 3.6), with males (n = 10) having a mean gonad weight of 6 ± 

2 g (range 2 – 10 g) and females (n = 13) having a mean gonad weight of 72 ± 18 g (range 50 – 

95 g). The mean GSI value for male Lake Whitefish was 0.9 ± 0.4 (range 0.3 – 1.6) and was 11.8 

± 2.4 (range 8.8 – 16.1) for females. The average number of eggs per Lake Whitefish was 15,130 

± 4,080 (range 6,750 – 21,620) but once standardized for body weight, the average number of 

eggs was 24.8 ± 6.4 eggs/g (range 12.2 – 36.0 eggs/g). Egg size ranged from 1.8 – 2.6 mm and 

had a mean size of 2.2 ± 0.2 mm. One Lake Whitefish captured in fall 2012 at site 5 was 

excluded from all analysis as it was deemed to be feeding almost exclusively on aquaculture 

waste (see chapter 2) and was much larger (TL = 636 mm, weight = 2900 g) and had a higher 

δ13C value (–18.7 ‰) and a lower δ15N value (11.9 ‰) than any other Lake Whitefish collected 

at sites 1 – 12. 

3.3.1.2 Northern Pike 

 A total of 139 Northern Pike were caught at sites 1 – 12 (Tables 3.1 and 3.3) in spring 

2012 (n = 59), fall 2012 (n = 28) and spring 2013 (n = 52). Total length ranged from 175 – 1060 

mm (mean = 626 ± 176 mm), while weight ranged from 120 – 9160 g with a mean of 2061 ± 

2035 g. Relative weight ranged from 43 – 143 with a mean of 91 ± 15. A total of 60 sexually 

mature Northern Pike were caught (Table 3.6), with males (n = 38) having a mean gonad weight 

of 33 ± 33 g (range 5 – 130 g) and females (n = 22) having a mean gonad weight of 651 ± 525 g 

(range 45 – 1675 g). The mean GSI value for male Northern Pike was 1.7 ± 0.8 (range 0.5 – 3.8) 
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and was 14.1 ± 5.3 (range 4.1 – 24.1) for female Northern Pike. The average number of eggs per 

female Northern Pike was 105,915 ± 91,540 (range 6,800 – 310,600), but once standardized for 

body weight, the average number of eggs was 22.6 ± 9.5 eggs/g (range 6.2 – 44.6 eggs/g). Egg 

size ranged from 2.2 – 3.0 mm and had a mean size of 2.7 ± 0.2 mm. 

Table 3.1. Characteristics (mean ± SD) of Lake Whitefish (LKWH), Northern Pike (NRPK), 

Walleye (WALL) and White Sucker (WHSC) caught at sites 1 – 12 in spring 2012 (S12), fall 

2012 (F12), spring 2013 (S13) and the overall mean for each species. Data for sample size (n), 

total length (TL), weight (Wt.), relative weight (Wr), δ
13C and δ15N are included. 

Species Date n TL (mm) Wt. (g) Wr δ13C (‰) δ 15N (‰) 

 

LKWH S12 66 389 ± 33 499 ± 126 83 ± 12 –28.0 ± 0.7 17.3 ± 0.6 

 

F12 56 397 ± 51 542 ± 186 81 ± 9 –28.6 ± 0.9 17.1 ± 0.8 

 

S13 54 412 ± 25 561 ± 114 78 ± 8 –28.0 ± 0.9 17.0 ± 0.6 

 

Mean 176 398 ± 39 532 ± 147 81 ± 10 –28.2 ± 0.9 17.1 ± 0.7 

        NRPK S12 59 644 ± 202 2433 ± 2341 93 ± 15 –27.5 ± 0.7 18.3 ± 1.4 

 

F12 28 607 ± 162 1764 ± 1923 89 ± 15 –27.8 ± 1.2 18.4 ± 1.3 

 

S13 52 615 ± 151 1798 ± 1653 92 ± 17 –27.6 ± 0.8 18.7 ± 0.6 

 

Mean 139 626 ± 176 2061 ± 2035 91 ± 15 –27.6 ± 0.9 18.5 ± 1.2 

        WALL S12 70 418 ± 111 783 ± 609 84 ± 18 –27.7 ± 0.8 19.1 ± 1.2 

 

F12 55 433 ± 116 915 ± 636 87 ± 11 –27.7 ± 0.8 18.9 ± 1.1 

 

S13 53 447 ± 109 930 ± 772 81 ± 7 –27.5 ± 0.6 18.8 ± 1.3 

 

Mean 178 432 ± 112 871 ± 671 83 ± 9 –27.7 ± 0.7 19.0 ± 1.2 

        WHSC S12 71 435 ± 38 1015 ± 246 99 ± 9 –26.7 ± 0.9 15.8 ± 0.9 

 

F12 55 443 ± 32 1045 ± 207 97 ± 7 –26.5 ± 1.0 15.8 ± 0.7 

 

S13 63 441 ± 36 1014 ± 288 95 ± 7 –26.9 ± 1.0 15.9 ± 0.9 

 

Mean 

 

189 

 

439 ± 35 

 

1023 ± 250 

 

97 ± 8 

 

–26.7 ± 1.0 

 

15.8 ± 0.9 

 

 

3.3.1.3 Walleye 

 In total, 178 Walleye were caught at sites 1 – 12 (Tables 3.1 and 3.4) throughout spring 

2012 (n = 70), fall 2012 (n = 55) and spring 2013 (n = 53). Total length for all Walleye ranged 

from 126 – 770 mm (mean = 432 ± 112 mm), while weight ranged from 15 – 4475 g with a mean 
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of 871 ± 671 g. Relative weight ranged from 42 – 106 with a mean of 83 ± 9. A total of 42 

sexually mature Walleye were caught (Table 3.6), with males (n = 35) having a mean gonad 

weight of 21 ± 11 g (range 5 – 55 g) and females (n = 7) having a mean gonad weight of 253 ± 

68 g (range 125 – 350 g). The mean GSI value was 2.7 ± 1.0 (range 0.7 – 5.6) for male Walleye 

and was 18.3 ± 2.7 (range 14.4 – 22.0) for females. The average number of eggs per female was 

101,475 ± 30,955 (range 44,490 – 144,100) but once standardized for body weight, the average 

number of eggs was 73.0 ± 13.1 eggs/g (range 51.1 – 87.9 eggs/g). Egg size ranged from 1.7 – 

2.3 mm and had a mean size of 1.9 ± 0.2 mm. 

3.3.1.4 White Sucker 

 White Sucker were the most abundant species caught in the study, with a total of 189 

captured at sites 1 – 12 (Tables 3.1 and 3.5) throughout spring 2012 (n = 71), fall 2012 (n = 55) 

and spring 2013 (n = 63). Total length for all White Suckers ranged from 280 – 580 mm (mean = 

439 ± 35 mm), while weight ranged from 240 – 2500 g with a mean of 1023 ± 250 g. Relative 

weight ranged from 72 – 124 with a mean of 97 ± 8. A total of 101 sexually mature White 

Sucker were caught (Table 3.6), with males (n = 53) having a mean gonad weight of 46 ± 13 g 

(range 10 – 76 g) and females (n = 48) having a mean gonad weight of 174 ± 56 g (range 95 – 

420 g). The mean GSI value for male White Suckers was 5.2 ± 1.1 (range 1.2 – 7.1) and was 

14.6 ± 2.3 (range 9.0 – 20.7) for females. The average number of eggs per female White Sucker 

was 42,800 ± 14,170 (range 19,552 – 100,620) but once standardized for body weight, the 

average number of eggs was 36.0 ± 7.0 eggs/g (range 21.8 – 49.7 eggs/g). Egg sized ranged from 

2.1 – 2.8 mm and had a mean size of 2.4 ± 0.1 mm. 
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Table 3.2. Characteristics (mean ± SD) of Lake Whitefish (Coregonus clupeaformis) caught in spring 

(S12) and fall 2012 (F12) and spring 2013 (S13). Data for sample size (n), total length (TL), weight 

(Wt.), relative weight (Wr), δ
13C and δ15N are included, or listed as NA when no fish were caught. 

Site Date n TL (mm) Wt. (g) Wr δ13C (‰) δ 15N (‰) 

 

1 S12 0 NA NA NA NA NA 

 

F12 6 405 ± 55 555 ± 170 80 ± 8 –28.8 ± 0.4 17.2 ± 0.9 

 

S13 6 421 ± 25 667 ± 146 85 ± 7 –29.4 ± 05 16.4 ± 0.9 

2 S12 0 NA NA NA NA NA 

 

F12 1 172 30 70 –27.9 16.0 

 

S13 0 NA NA NA NA NA 

3 S12 6 366 ± 19 443 ± 26 92 ± 15 –28.7 ± 0.3 17.4 ± 0.6 

 

F12 3 407 ± 17 537 ± 32 78 ± 8 –28.9 ± 0.4 17.8 ± 0.5 

 

S13 2 404 ± 0 600 ± 35 89 ± 5 –27.5 ± 1.1 16.4 ± 0.2 

4 S12 6 400 ± 17 538 ± 121 82 ± 8 –28.1 ± 0.3 17.4 ± 0.4 

 

F12 6 378 ± 70 518 ± 273 87 ± 5 –28.8 ± 1.4 17.0 ± 0.2 

 

S13 4 410 ± 27 544 ± 147 76 ± 5 –27.8 ± 0.5 17.6 ± 0.4 

5 S12 12 405 ± 25 542 ± 89 80 ± 8 –27.9 ± 0.9 17.3 ± 0.5 

 

F12 7 396 ± 44 537 ± 142 83 ± 7 –29.0 ± 1.4 17.5 ± 0.5 

 

S13 6 409 ± 18 553 ± 85 79 ± 7 –27.4 ± 1.0 16.9 ± 0.5 

6 S12 6 357 ± 42 395 ± 151 85 ± 14 –28.7 ± 0.3 17.8 ± 0.3 

 

F12 6 408 ± 27 648 ± 167 92 ± 10 –28.6 ± 1.0 17.4 ± 0.6 

 

S13 6 408 ± 27 533 ± 123 76 ± 6 –27.8 ± 1.2 16.9 ± 0.5 

7 S12 6 393 ± 24 498 ± 75 81 ± 5 –28.1 ± 0.2 17.1 ± 0.6 

 

F12 5 384 ± 17 432 ± 60 75 ± 4 –28.8 ± 0.4 17.0 ± 0.3 

 

S13 5 403 ± 26 535 ± 84 79 ± 4 –27.7 ± 0.6 16.8 ± 0.5 

8 S12 6 381 ± 48 435 ± 167 75 ± 10 –28.0 ± 0.7 17.6 ± 0.4 

 

F12 6 402 ± 22 517 ± 117 77 ± 7 –28.5 ± 0.3 17.2 ± 0.5 

 

S13 6 400 ± 25 500 ± 86 76 ± 5 –28.1 ± 0.6 17.3 ± 0.7 

9 S12 6 388 ± 44 575 ± 175 96 ± 16 –27.6 ± 0.8 17.4 ± 0.5 

 

F12 3 462 ± 50 850 ± 312 79 ± 7 –27.9 ± 1.0 16.3 ± 0.4 

 

S13 6 425 ± 14 563 ± 124 70 ± 10 –28.1 ± 0.9 17.4 ± 0.7 

10 S12 6 407 ± 17 573 ± 110 83 ± 12 –27.8 ± 0.8 17.3 ± 0.7 

 

F12 5 413 ± 26 560 ± 138 76 ± 5 –28.1 ± 1.0 17.0 ± 1.7 

 

S13 4 392 ± 20 514 ± 92 83 ± 3 –27.9 ± 0.4 16.9 ± 0.3 

11 S12 6 369 ± 25 435 ± 91 85 ± 8 –27.9 ± 0.6 17.2 ± 0.3 

 

F12 1 410 600 85 –28.4 16.9 

 

S13 6 428 ± 39 626 ± 136 77 ± 10 –27.4 ± 0.8 16.9 ± 0.7 

12 S12 6 405 ± 33 513 ± 140 75 ± 17 –27.6 ± 0.7 16.3 ± 0.5 

 

F12 7 391 ± 26 485 ± 87 80 ± 10 –28.6 ± 0.9 17.1 ± 0.8 

 

S13 

 

3 

 

417 ± 15 

 

517 ± 52 

 

70 ± 12 

 

–28.7 ± 0.7 

 

16.6 ± 0.5 
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Table 3.3. Characteristics (mean ± SD) of Northern Pike (Esox lucius) caught in spring (S12) and 

fall 2012 (F12) and spring 2013 (S13). Data for sample size (n), total length (TL), weight (Wt.), 

relative weight (Wr), δ
13C and δ15N are included, or listed as NA when no fish were caught. 

Site Date n TL (mm) Wt. (g) Wr δ13C (‰) δ 15N (‰) 

 

1 S12 6 475 ± 88 643 ± 317 82 ± 8 –26.9 ± 0.9 14.8 ± 1.8 

 

F12 3 489 ± 103 800 ± 397 101 ± 37 –27.1 ± 0.7 15.2 ± 0.5 

 

S13 2 707 ± 323 3160 ± 3578 93 ± 8 –28.0 ± 0.2 18.4 ± 1.7 

2 S12 3 625 ± 230 2150 ± 2556 92 ± 17 –27.7 ± 0.5 18.2 ± 0.7 

 

F12 1 923 5370 97 –27.7 ± 0.5 20.2 

 

S13 6 641 ± 122 1829 ± 1073 93 ± 12 –27.5 18.8 ± 0.6 

3 S12 6 682 ± 222 2700 ± 2292 92 ± 16 –27.4 ± 0.5 18.7 ± 0.4 

 

F12 2 495 ± 92 688 ± 336 82 ± 6 –27.1 ± 0.7 18.2 ± 0.1 

 

S13 5 589 ± 211 1758 ± 2423 86 ± 7 –27.5 ± 0.7 18.6 ± 0.5 

4 S12 6 604 ± 191 2086 ± 2512 95 ± 16 –26.9 ± 0.7 18.4 ± 0.6 

 

F12 1 707 2350 97 –29.0 18.1 

 

S13 6 501 ± 51 830 ± 328 95 ± 11 –26.4 ± 0.9 18.5 ± 0.6 

5 S12 3 592 ± 328 2252 ± 3289 88 ± 16 –27.6 ± 0.2 18.8 ± 0.8 

 

F12 

 

NA NA NA NA NA 

 

S13 4 693 ± 226 2894 ± 3666 87 ± 14 –27.2 ± 1.1 17.9 ± 0.6 

6 S12 3 623 ± 169 1897 ± 1533 101 ± 4 –26.9 ± 2.2 18.5 ± 1.6 

 

F12 5 575 ± 65 1180 ± 647 86 ± 14 –26.5 ± 1.8 18.0 ± 0.9 

 

S13 3 622 ± 83 1475 ± 781 85 ± 8 –28.1 ± 0.5 18.6 ± 0.6 

7 S12 3 564 ± 241 1628 ± 2107 87 ± 10 –27.6 ± 0.2 18.4 ± 0.3 

 

F12 2 905 ± 131 5325 ± 2581 98 ± 5 –28.1 ± 0.9 18.6 ± 0.5 

 

S13 3 512 ± 71 693 ± 362 71 ± 16 –27.5 ± 0.7 19.1 ± 0.1 

8 S12 7 821 ± 222 5026 ± 3330 104 ± 20 –27.6 ± 0.4 19.1 ± 0.7 

 

F12 2 620 ± 101 1513 ± 937 87 ± 14 –28.1 ± 1.0 19.3 ± 0.7 

 

S13 5 685 ± 198 2100 ± 1495 82 ± 9 –27.4 ± 0.6 18.9 ± 0.4 

9 S12 7 532 ± 160 1305 ± 1691 93 ± 11 –27.9 ± 0.3 18.4 ± 0.9 

 

F12 1 520 910 97 –27.7 19.3 

 

S13 2 727 ± 207 2950 ± 2263 100 ± 4 –28.2 ± 0.1 19.1 ± 0.1 

10 S12 6 730 ± 211 3423 ± 2310 95 ± 26 –28.0 ± 0.4 19.0 ± 0.2 

 

F12 3 762 ± 249 3730 ± 3475 96 ± 6 –28.0 ± 0.6 18.8 ± 0.3 

 

S13 5 635 ± 144 2005 ± 1428 97 ± 17 –27.7 ± 0.5 18.9 ± 0.6 

11 S12 3 715 ± 35 2560 ± 546 101 ± 10 –27.7 ± 0.2 18.5 ± 0.3 

 

F12 2 480 ± 31 580 ± 106 79 ± 1 –28.0 ± 0.2 18.8 ± 0.4 

 

S13 5 599 ± 124 1555 ± 1322 92 ± 11 –28.0 ± 0.6 18.8 ± 0.4 

12 S12 6 705 ± 149 2447 ± 1721 87 ± 11 –28.2 ± 0.2 19.0 ± 0.4 

 

F12 6 538 ± 40 842 ± 186 80 ± 12 –28.8 ± 0.2 19.1 ± 0.2 

 

S13 

 

6 

 

592 ± 102 

 

1688 ± 894 

 

114 ± 32 

 

–28.5 ± 0.5 

 

18.8 ± 0.4 

 



 

73 
 

Table 3.4. Characteristics (mean ± SD) of Walleye (Sander vitreus) caught in spring (S12) and fall 

2012 (F12) and spring 2013 (S13). Data for sample size (n), total length (TL), weight (Wt.), relative 

weight (Wr), δ
13C and δ15N are included, or listed as NA when no fish were caught. 

Site Date n TL (mm) Wt. (g) Wr δ13C (‰) δ 15N (‰) 

 

1 S12 6 355 ± 142 501 ± 407 78 ± 8 –28.0 ± 1.2 17.4 ± 1.6 

 

F12 5 447 ± 39 827 ± 176 87 ± 6 –27.5 ± 0.8 17.2 ± 1.8 

 

S13 6 497 ± 245 1829 ± 1867 83 ± 7 –27.4 ± 0.7 17.3 ± 1.9 

2 S12 6 419 ± 99 694 ± 587 73 ± 9 –27.7 ± 0.4 19.4 ± 0.5 

 

F12 

 

NA NA NA NA NA 

 

S13 1 432 650 77 –27.3 18.1 

3 S12 6 399 ± 104 644 ± 369 82 ± 8 –27.9 ± 0.5 19.1 ± 0.8 

 

F12 6 343 ± 186 580 ± 698 78 ± 18 –27.8 ± 1.9 19.2 ± 0.4 

 

S13 5 381 ± 106 547 ± 320 81 ± 5 –27.8 ± 0.6 19.0 ± 0.4 

4 S12 6 378 ± 127 570 ± 509 77 ± 3 –27.4 ± 0.6 19.0 ± 0.4 

 

F12 6 380 ± 158 766 ± 685 91 ± 9 –27.9 ± 1.0 19.3 ± 1.0 

 

S13 6 450 ± 92 889 ± 531 79 ± 10 –28.0 ± 0.3 19.4 ± 0.7 

5 S12 6 482 ± 46 1050 ± 289 85 ± 4 –27.1 ± 1.3 19.1 ± 1.2 

 

F12 6 520 ± 33 1446 ± 295 94 ± 6 –27.5 ± 0.2 18.9 ± 1.1 

 

S13 6 519 ± 87 1204 ± 635 75 ± 4 –27.1 ± 0.9 19.7 ± 0.8 

6 S12 6 495 ± 140 1407 ± 1360 90 ± 11 –28.0 ± 0.2 19.8 ± 0.8 

 

F12 6 410 ± 155 860 ± 730 88 ± 9 –27.5 ± 0.5 18.9 ± 0.6 

 

S13 2 359 ± 237 835 ± 1117 87 ± 22 –27.0 ± 1.2 16.7 ± 3.9 

7 S12 4 448 ± 18 808 ± 103 85 ± 5 –28.0 ± 0.1 19.4 ± 0.1 

 

F12 6 469 ± 136 1233 ± 1279 85 ± 12 –276 ± 0.9 19.3 ± 1.0 

 

S13 6 422 ± 48 654 ± 222 81 ± 4 –27.8 ± 0.3 19.2 ± 0.7 

8 S12 6 416 ± 124 837 ± 573 88 ± 8 –28.0 ± 0.6 19.2 ± 0.8 

 

F12 4 478 ± 29 931 ± 221 79 ± 11 –27.7 ± 0.3 18.7 ± 1.1 

 

S13 6 415 ± 56 667 ± 301 85 ± 6 –27.5 ± 0.3 19.2 ± 0.7 

9 S12 6 334 ± 100 390 ± 337 81 ± 7 –28.1 ± 0.6 19.8 ± 0.6 

 

F12 4 501 ± 33 1138 ± 284 83 ± 4 –28.0 ± 0.2 19.5 ± 0.7 

 

S13 6 451 ± 39 808 ± 217 82 ± 6 –27.4 ± 0.8 19.4 ± 0.5 

10 S12 6 463 ± 98 1025 ± 449 105 ± 56 –27.5 ± 0.5 19.1 ± 15 

 

F12 6 384 ± 65 564 ± 333 87 ± 9 –27.7 ± 0.4 18.9 ± 0.8 

 

S13 6 452 ± 23 867 ± 145 88 ± 5 –27.5 ± 0.3 18.2 ± 0.9 

11 S12 4 508 ± 88 1173 ± 565 80 ± 8 –27.5 ± 0.1 19.5 ± 0.6 

 

F12 

 

NA NA NA NA NA 

 

S13 2 493 ± 74 1013 ± 477 76 ± 1 –27.6 ± 0.2 18.4 ± 1.3 

12 S12 6 373 ± 99 519 ± 438 81 ± 3 –28.4 ± 0.5 19.8 ± 0.3 

 

F12 6 436 ± 48 867 ± 340 95 ± 6 –28.2 ± 0.2 19.1 ± 0.6 

 

S13 

 

1 

 

432 

 

675 

 

80 

 

–27.7 

 

19.5 
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Table 3.5. Characteristics (mean ± SD) of White Sucker (Catostomus commersoni) caught in spring 

(S12) and fall 2012 (F12) and spring 2013 (S13). Data for sample size (n), total length (TL), weight 

(Wt.), relative weight (Wr), δ
13C and δ15N are included, or listed as NA when no fish were caught. 

Site Date n TL (mm) Wt. (g) Wr δ13C (‰) δ 15N (‰) 

 

1 S12 6 433 ± 77 990 ± 372 93 ± 8 –27.3 ± 1.1 15.0 ± 1.3 

 

F12 1 335 425 91 –28.1 13.5 

 

S13 6 433 ± 44 954 ± 265 94 ± 5 –28.2 ± 0.9 14.7 ± 1.4 

2 S12 6 444 ± 33 1042 ± 282 96 ± 15 –26.8 ± 0.9 16.1 ± 1.0 

 

F12 

 

NA NA NA NA NA 

 

S13 6 425 ± 22 888 ± 152 94 ± 5 –27.2 ± 0.8 16.6 ± 1.5 

3 S12 6 431 ± 35 983 ± 272 98 ± 6 –26.7 ± 1.0 16.4 ± 1.3 

 

F12 6 453 ± 33 1121 ± 158 99 ± 10 –26.6 ± 0.4 15.9 ± 0.7 

 

S13 6 472 ± 59 1317 ± 612 98 ± 10 –25.9 ± 1.1 16.1 ± 0.6 

4 S12 6 435 ± 28 1039 ± 196 103 ± 8 –26.5 ± 1.0 15.9 ± 0.8 

 

F12 6 440 ± 13 1050 ± 71 101 ± 5 –25.4 ± 1.0 15.6 ± 0.5 

 

S13 6 429 ± 20 875 ± 128 90 ± 7 –26.3 ± 1.1 16.1 ± 0.7 

5 S12 5 438 ± 15 1001 ± 72 98 ± 7 –26.9 ± 0.7 15.9 ± 1.0 

 

F12 6 438 ± 35 1025 ± 206 99 ± 8 –26.5 ± 1.3 15.9 ± 1.1 

 

S13 6 466 ± 46 1183 ± 327 94 ± 9 –26.1 ± 0.5 15.5 ± 0.5 

6 S12 6 417 ± 21 983 ± 146 111 ± 8 –26.7 ± 0.6 15.9 ± 0.6 

 

F12 6 451 ± 42 1104 ± 294 97 ± 6 –26.2 ± 0.9 15.6 ± 0.6 

 

S13 6 456 ± 19 1106 ± 132 95 ± 3 –26.9 ± 0.6 15.5 ± 0.6 

7 S12 6 419 ± 25 893 ± 184 98 ± 5 –26.5 ± 0.8 15.5 ± 0.5 

 

F12 5 437 ± 8 955 ± 54 93 ± 4 –26.0 ± 0.7 16.0 ± 0.4 

 

S13 6 427 ± 15 942 ± 131 98 ± 6 –27.9 ± 0.5 16.7 ± 0.7 

8 S12 6 438 ± 61 1057 ± 434 97 ± 6 –26.0 ± 1.0 15.5 ± 1.0 

 

F12 6 460 ± 29 1100 ± 216 92 ± 6 –25.6 ± 0.9 15.6 ± 0.7 

 

S13 6 436 ± 30 932 ± 231 91 ± 5 –26.3 ± 0.3 15.7 ± 0.6 

9 S12 6 436 ± 40 970 ± 300 94 ± 9 –26.8 ± 1.4 16.4 ± 0.8 

 

F12 4 475 ± 26 1221 ± 190 94 ± 6 –26.2 ± 0.6 16.0 ± 0.7 

 

S13 2 400 ± 1 738 ± 18 94 ± 2 –26.2 ± 1.5 15.5 ± 0.2 

10 S12 6 420 ± 22 890 ± 160 97 ± 9 –27.0 ± 1.0 15.9 ± 0.3 

 

F12 4 431 ± 11 944 ± 66 96 ± 3 –26.9 ± 0.5 16.1 ± 0.5 

 

S13 1 430 875 90 –28.0 16.9 

11 S12 6 456 ± 24 1220 ± 141 106 ± 11 –26.3 ± 0.8 15.1 ± 0.5 

 

F12 7 425 ± 31 911 ± 180 96 ± 6 –27.5 ± 0.5 16.4 ± 0.5 

 

S13 6 428 ± 29 994 ± 205 103 ± 4 –26.9 ± 0.7 15.9 ± 0.4 

12 S12 6 454 ± 34 1107 ± 171 97 ± 8 –26.5 ± 0.7 16.0 ± 0.3 

 

F12 4 455 ± 13 1213 ± 118 105 ± 4 –27.5 ± 0.6 15.3 ± 0.6 

 

S13 6 452 ± 33 1063 ± 232 94 ± 5 –27.3 ± 0.6 15.8 ± 0.5 
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Table 3.6. Characteristics and fecundity data (mean ± SD) for all sexually mature Lake Whitefish (LKWH), Northern Pike (NRPK), 

Walleye (WALL) and White Sucker (WHSC) caught at sites 1 – 12 in spring 2012 (S12), fall 2012 (F12), spring 2013 (S13).  

Species Date Sex n TL (mm) Fish Wt. (g) 
Gonad 

Wt.(g) 
GSI 

Egg Diameter 

(mm) 

Egg # 

(1000s) 

Egg #/gram 

Body wt. 

 

LKWH F12 F 13 414 ± 22 618 ± 127 72 ± 18 11.8 ± 2.4 2.2 ± 0.2 15 ± 4 24.8 ± 6.4 

 

F12 M 10 421 ± 31 615 ± 182 6 ± 2 0.9 ± 0.4 

   

           NRPK S12 F 10 925 ± 73 6371 ± 1595 1125 ± 305 17.9 ± 3.8 2.7 ± 0.2 186 ± 66 29.2 ± 8.3 

 

S13 F 12 638 ± 112 1958 ± 1404 256 ± 275 11.0 ± 4.2 2.7 ± 0.1 39 ± 41 17.0 ± 6.4 

 

Mean F 22 769 ± 174 3964 ± 2680 651 ± 525 14.1 ± 5.3 2.7 ± 0.2 106 ± 92 22.6 ± 9.5 

 

S12 M 12 697 ± 106 2429 ± 1074 46 ± 35 1.8 ± 0.9 

   

 

S13 M 26 594 ± 151 1516 ± 1274 26 ± 32 1.6 ± 0.8 

   

 

Mean M 38 626 ± 145 1804 ± 1274 33 ± 33 1.7 ± 0.8 

   

           WALL S12 F 5 506 ± 32 1214 ± 341 250 ± 83 18.2 ± 2.3 2.0 ± 0.2 98 ± 37 70.5 ± 13.9 

 

S13 F 2 528 ± 3 1425 ± 283 260 ± 14 18.7 ± 4.7 1.8 ± 0.1 111 ± 5 79.2 ± 12.2 

 

Mean F 7 511 ± 30 1261 ± 326 253 ± 68 18.3 ± 2.7 1.9 ± 0.2 101 ± 31 73.0 ± 13.1 

 

S12 M 9 469 ± 66 942 ± 406 21 ± 8 2.6 ± 0.9 

   

 

S13 M 26 439 ± 51 744 ± 246 21 ± 12 2.7 ± 1.0 

   

 

Mean M 35 441 ± 48 764 ± 235 21 ± 11 2.7 ± 1.0 

   

           WHSC S12 F 23 445 ± 29 1140 ± 221 161 ± 47 13.9 ± 2.1 2.4 ± 0.1 39 ± 12 33.6 ± 6.4 

 

S13 F 25 467 ± 36 1220 ± 320 186 ± 62 15.2 ± 2.3 2.4 ± 0.1 47 ± 15 38.2 ± 6.9 

 

Mean F 48 421 ± 22 881 ± 148 174 ± 56 14.6 ± 2.3 2.4 ± 0.1 43 ± 14 36.0 ± 7.0 

 

S12 M 22 421 ± 28 921 ± 179 48 ± 12 5.2 ± 0.9 

   

 

S13 M 31 421 ± 18 853 ± 116 45 ± 14 5.2 ± 1.3 

   

 

Mean M 53 421 ± 22 881 ± 148 46 ± 13 5.2 ± 1.1 

              

7
5 
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3.3.2 Stable Isotope Analysis 

The δ13C and δ15N values for each fish species and their potential dietary sources can be 

seen in Table 3.1 and in Fig. 3.1, 3.2, 3.3 and 3.4 for Lake Whitefish, Northern Pike, Walleye 

and White Sucker, respectively. Fig. 3.5 shows δ13C and δ15N values for each species of fish at 

each site while the site and seasonal mean δ13C and δ15N values for Lake Whitefish, Northern 

Pike, Walleye and White Sucker can be seen in Tables 3.2, 3.3, 3.4, and 3.5. The δ13C values for 

Lake Whitefish were the lowest of all four fish species and ranged from –31.3 to –25.6 ‰ with a 

mean of –28.2 ± 0.9 ‰. Lake Whitefish δ15N values were lower than both Northern Pike and 

Walleye, but higher than White Sucker, ranging from 14.6 to 19.2 ‰ with a mean of 17.1 ± 

0.7 ‰. Northern Pike had δ13C values slightly higher compared to those of Lake Whitefish 

ranging from –29.1 to –23.9 ‰ (mean –27.6 ± 0.9 ‰) and δ15N values ranging from 11.3 to 

20.2 ‰ (mean 18.5 ± 1.2 ‰), considerably higher than those of Lake Whitefish and White 

Sucker, but slightly lower than those of Walleye. Walleye δ13C values were similar to Northern 

Pike and slightly higher compared to those of Lake Whitefish and ranged from –30.1 to –24.4 ‰ 

(mean –27.7 ± 0.7 ‰). Walleye had the highest δ15N values of any fish species, even higher than 

Northern Pike, ranging from 13.9 to 20.9 ‰ (mean 19.0 ± 1.1 ‰), reflecting both the high 

trophic level they occupy as well as their increased lifespan when compared to Northern Pike. 

White Sucker had the highest δ13C values ranging from –29.0 to –24.1 ‰ with a mean of –26.7 ± 

1.0 ‰. White Sucker δ15N values ranged from 12.4 to 19.6 ‰ with a mean of 15.8 ± 0.9 ‰, 

which were the lowest of any fish species, considerably lower than those of Northern Pike, 

Walleye and even Lake Whitefish.  
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Figure 3.1. Stable isotope biplot for Lake Whitefish caught at sites 1 – 12 in spring 2012 

(yellow), fall 2012 (blue) and spring 2013 (green). Potential dietary sources were adjusted for 

trophic level of each species and are indicated by black symbols with error bars representing the 

standard deviation. These include pelagic autochthonous sources (zooplankton (ZP) and 

particulate organic matter (POM)), benthic autochthonous sources (lymnaeid snails (LS) and 

Gammarus lacustris (GA)), unionid mussels from the tributary inflow (UM) and an 

allochthonous source (leaf litter (LL)). 
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Figure 3.2. Stable isotope biplot for Northern Pike caught at sites 1 – 12 in spring 2012 (yellow), 

fall 2012 (blue) and spring 2013 (green). Potential dietary sources were adjusted for trophic level 

of each species and are indicated by black symbols with error bars representing the standard 

deviation. These include pelagic autochthonous sources (zooplankton (ZP) and particulate 

organic matter (POM)), benthic autochthonous sources (lymnaeid snails (LS) and Gammarus 

lacustris (GA)), unionid mussels from the tributary inflow (UM) and an allochthonous source 

(leaf litter (LL)). 
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Figure 3.3. Stable isotope biplot for Walleye caught at sites 1 – 12 in spring 2012 (yellow), fall 

2012 (blue) and spring 2013 (green). Potential dietary sources were adjusted for trophic level of 

each species and are indicated by black symbols with error bars representing the standard 

deviation. These include pelagic autochthonous sources (zooplankton (ZP) and particulate 

organic matter (POM)), benthic autochthonous sources (lymnaeid snails (LS) and Gammarus 

lacustris (GA)), unionid mussels from the tributary inflow (UM) and an allochthonous source 

(leaf litter (LL)). 
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Figure 3.4. Stable isotope biplot for White Sucker caught at sites 1 – 12 in spring 2012 (yellow), 

fall 2012 (blue) and spring 2013 (green). Potential dietary sources were adjusted for trophic level 

of each species and are indicated by black symbols with error bars representing the standard 

deviation. These include pelagic autochthonous sources (zooplankton (ZP) and particulate 

organic matter (POM)), benthic autochthonous sources (lymnaeid snails (LS) and Gammarus 

lacustris (GA)), unionid mussels from the tributary inflow (UM) and an allochthonous source 

(leaf litter (LL)).
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Figure 3.5. Stable isotope biplots for Lake Whitefish (black), Northern Pike (yellow), Walleye (blue) and White Sucker (green) 

caught in spring 2012 (triangle), fall 2012 (circle) and spring 2013 (square) at each of the twelve sampling sites located throughout 

Lake Diefenbaker. The number in the top right corner of each plot corresponds to the site number. 
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Particulate organic matter (POM) samples had the widest range of δ13C values from        

–40.1 to –20.8 ‰ with a mean of –31.0 ± 2.3 ‰. The δ15N values of POM ranged from 1.3 to 

14.9 ‰ with a mean of 9.2 ± 2.3 ‰.  Zooplankton samples had a narrower range and were 

slightly depleted in 13C (δ13C range –35.7 to –28.1 ‰, mean –31.3 ± 1.8 ‰) and enriched in 15N 

(δ15N range 10.3 to 21.3 ‰, mean 14.3 ± 2.2 ‰) when compared to POM samples. Zooplankton 

had the lowest δ13C and highest δ15N values of any of the potential dietary sources. Both aquatic 

macroinvertebrates had a narrower range in their δ13C values (G. lacustris: –25.6 to –22.4 ‰, 

lymnaeid snails: –28.9 to –22.7 ‰) and their δ15N values (G. lacustris: 5.5 to 12.4 ‰, lymnaeid 

snails: 7.6 to 11.7 ‰) than either zooplankton or POM. The mean δ13C values for 

macroinvertebrates (G. lacustris: –24.2 ± 0.7 ‰, lymnaeid snails: –25.7 ± 1.4 ‰) were higher 

compared to those of zooplankton and POM, while the δ15N values were lower in comparison 

(G. lacustris: 9.4 ± 1.3 ‰, lymnaeid snails: 9.8 ± 1.2 ‰). Leaf litter samples had δ13C values 

(range –30.0 to –26.1 ‰, mean –27.9 ± 0.9 ‰) intermediate to zooplankton and benthic 

macroinvertebrates but were depleted in 15N (δ15N range –4.5 to 3.4 ‰, mean –0.7 ± 2.0 ‰) 

compared to the other sources. Even though the mean δ13C value of leaf litter was intermediate to 

that of zooplankton and the macroinvertebrates, the δ15N value of leaf litter was isotopically 

distinct from all other potential dietary sources even after taking into account its lower trophic 

position. 

The relationship between distance downstream of the Highway 4 Bridge and δ13C and 

δ15N values for POM and zooplankton can be seen in Fig. 3.6, while those for G. lacustris and 

lymnaeid snails can be seen in Fig. 3.7. As distance downstream increases, the δ13C values of 

POM and zooplankton show a general decreasing trend as evident in the LOESS fitted line on 

each plot. The δ13C values for G. lacustris show no major change with distance downstream 
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while lymnaeid snails show a slight increase as distance downstream increases. The δ15N values 

for POM and zooplankton increase with distance downstream, opposite of the trend seen in δ13C. 

However, at around 130 km downstream of the Highway 4 Bridge, the δ15N value of POM 

plateaus and begins to decrease slightly for the remaining 20 km of the reservoir. The δ15N 

values of G. lacustris show a decrease from site 1 to site 2, but then remain relatively constant 

for the remainder of the reservoir. The opposite is seen for lymnaeid snails, which show a slight 

increase in δ15N values from site 1 to site 2, but then also remain relatively constant throughout 

the rest of the reservoir downstream. 

The relationships between fish total length and δ13C, δ15N, and Wr for each of the four 

fish species are seen in Fig. 3.8. There was a positive and significant relationship between δ13C 

and total length for Lake Whitefish (F = 26.0, d.f. = 1, 174 =, R2 = 0.125, P < 0.00001), Walleye 

(F = 16.1, d.f. = 1, 174, R2 = 0.079, P < 0.0001) and White Sucker (F = 26.9, d.f. = 1, 187, R2 = 

0.121, P < 0.0001) and a significant negative relationship for Northern Pike (F = 4.0, d.f. = 1, 

137, R2 = 0.021, P = 0.047). There was no relationship between δ15N and total length for either 

Lake Whitefish (F = 0.8, d.f. = 1, 174, R2 = 0.001, P = 0.37) or White Sucker (F = 0.2, d.f. = 1, 

187, R2 = 0.004, P = 0.65). δ15N was positively related to total length for Northern Pike and 

Walleye and the relationship was significant for Northern Pike (F = 18.6, d.f. = 1, 137, R2 = 

0.113, P < 0.0001), but not for Walleye (F = 1.7, d.f. = 1, 174, R2 = 0.004, P = 0.19). Relative 

weight in Lake Whitefish decreased significantly as total length increased (F = 10.4, d.f. = 1, 

174, R2 = 0.051, P < 0.01), but the opposite was true for Northern Pike and Walleye which 

showed an increase in relative weight with total length. This relationship was significant for 

Northern Pike (F = 27.6, d.f. = 1, 137, R2 = 0.161, P < 0.00001) but not for Walleye (F = 3.089, 
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d.f. = 1, 173, R2 = 0.012, P = 0.08). Relative weight in White Sucker was not related to total 

length (F = 0.142, d.f. = 1, 187, R2 = 0.005, P = 0.71). 

Mean δ13C values for main channel sites were not significantly different from embayment 

sites for POM (F = 0.002, d.f. = 1, 76, P = 0.96), zooplankton (F = 0.11, d.f. = 1, 70, P = 0.74), 

lymnaeid snails (F = 0.51, d.f. = 1, 28, P = 0.48), or G. lacustris (F = 0.101, d.f. = 1, 26, P = 

0.75). The same was true for δ15N values, with no significant differences present between main 

channel and embayment sites for POM (F = 0.007, d.f. = 1, 76, P = 0.457), zooplankton (F = 

0.018, d.f. = 1, 70, P = 0.89), lymnaeid snails (F = 0.02, d.f. = 1, 28, P = 0.90), or G. lacustris (F 

= 0.0001, d.f. = 1, 26, P = 0.98).  

3.3.3 Mixing Models 

3.3.3.1 Lake Whitefish 

 The main carbon source contributing to the diets of Lake Whitefish in Lake Diefenbaker 

was pelagic primary production (Fig. 3.9), represented by zooplankton, which made up 50.7 ± 

6.1 % of the diets of all Lake Whitefish (range 31.1 – 68.5 %). The next most important source 

was benthic primary production, represented by the combined G. lacustris and lymnaeid snails, 

which contributed 36.6 ± 6.8 % to the diets of all Lake Whitefish (range 19.1 – 54.9 %). 

Allochthonous primary production, represented by leaf litter, was the least important carbon 

source to the diets of Lake Whitefish in Lake Diefenbaker, with only 6.9 ± 1.4 % of all Lake 

Whitefish diets being contributed by this source (range 4.6 – 13.9 %). Interestingly, with the 

exception of site 2, pelagic primary production was most important at the most upstream sites, 

with the lowest importance occurring at the more downstream sites. The opposite was true for 

benthic primary production which generally increased in importance with distance downstream, 

again with the exception of site 2. Allochthonous primary production was generally of low 



 

85 
 

importance, but was of highest importance in the most upstream sites, although the difference 

between upstream and downstream sites was mostly negligible. Site 2 was the exception to the 

trends seen for the importance of both benthic and pelagic primary production. However, only a 

single juvenile Lake Whitefish was caught at site 2, so this does not likely represent the true 

average for the site. 

3.3.3.2 Northern Pike 

  Benthic primary production was the most important carbon pathway to the diets of 

Northern Pike in Lake Diefenbaker, with an average contribution of 48.1 ± 2.7 % and a range of 

39.8 – 57.4 % (Fig. 3.10). The next most important source of carbon to the diets of pike was 

pelagic primary production which had a mean contribution of 32.6 ± 4.4 % (range 9.0 – 38.8 %). 

Allochthonous carbon had the lowest importance to the diets of Northern Pike with a range in the 

contribution of 11.6 – 45.1 % and a mean contribution of 17.9 ± 4.3 %. The contribution of 

benthic carbon was highest throughout the mid ranges of the reservoir at sites 2 – 8 and lowest at 

site 12, the most downstream site. Site 1, the most upstream site had the second lowest 

contribution from benthic primary production, but it was similar to the values for sites 9 – 11. 

Pelagic primary production was least important at the most upstream site and highest at the most 

downstream site, but relatively constant from sites 2 – 11, although there was a slight increasing 

trend visible as distance increased downstream. Allochthonous primary production was the least 

important source to the diets of Northern Pike at sites 2 – 12 where it had a relatively constant 

contribution to the diets of pike. However, at site 1, allochthonous sources contributed 28.5 ± 

7.4 % (range 13.7 – 45.1 %) to the diet of Northern Pike, higher than the 23.6 ± 6.9 % (range 9.0 

– 37.0 %) contributed from pelagic primary production.
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Figure 3.6. The δ13C and δ15N values of particulate organic matter (POM) and zooplankton with increasing distance downstream of 

the Highway 4 Bridge, located near the upstream end of Lake Diefenbaker. Each point in each panel represents a single sample. A 

LOESS smoothed line is fitted to each variable and shown on each graph, while the shaded area represents the 95 % confidence 

interval. POM samples were collected in May, June, July, August, September, October, and November at sites throughout the 

reservoir, while zooplankton samples were collected at sites 1 – 12 in spring, summer and fall. 
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Figure 3.7. The δ13C and δ15N values of both benthic macroinvertebrates, Gammarus lacustris and lymnaeid snails, with increasing 

distance downstream of the Highway 4 Bridge, located near the upstream end of Lake Diefenbaker. Each point in each panel 

represents a single sample. A LOESS smoothed line is fitted to each variable and shown on each graph, while the shaded area 

represents the 95 % confidence interval. Aquatic invertebrate samples were collected in summer and fall of each open water season at 

sites 1 – 12. No aquatic macroinvertebrates were collected during attempted sampling in spring. 
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Figure 3.8. The relationship between total length (mm) and δ13C, δ15N, and relative weight (Wr) for Lake Whitefish, Northern Pike, 

Walleye and White Sucker at all 12 sites over both sampling years (model I linear regression). Note the difference in scales on the X 

axis for each species.
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Figure 3.9. Boxplots of the proportional contribution of each potential carbon source to the diets 

of Lake Whitefish (Coregonus clupeaformis) at sites 1 – 12 in Lake Diefenbaker. The potential 

dietary sources include pelagic primary production represented by zooplankton, benthic primary 

production represented by two aquatic macroinvertebrates, lymnaeid snails and G. lacustris, and 

allochthonous primary production, represented by leaf litter. The inner, central and outer portions 

of the boxplots represent the 50 %, 75 % and 95 % credible intervals of the data. For site 

locations within Lake Diefenbaker, please refer to Fig. 1.1. 
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Figure 3.10. Boxplots of the proportional contribution of each potential carbon source to the 

diets of Northern Pike (Esox lucius) at sites 1 – 12 in Lake Diefenbaker. The potential dietary 

sources include pelagic primary production represented by zooplankton, benthic primary 

production represented by two aquatic macroinvertebrates, lymnaeid snails and G. lacustris, and 

allochthonous primary production, represented by leaf litter. The inner, central and outer portions 

of the boxplots represent the 50 %, 75 % and 95 % credible intervals of the data. For site 

locations within Lake Diefenbaker, please refer to Fig. 1.1. 
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3.3.3.3 Walleye 

  Similar to Northern Pike, the carbon pathway most important to the diets of Walleye in 

Lake Diefenbaker was benthic primary production, with an average contribution of 48.0 ± 2.2 % 

and a range of 39.5 – 56.5 % (Fig. 3.11). This was followed in importance by pelagic primary 

production which had a mean contribution of 32.2 ± 3.8 % and a range of 15.4 – 38.8 %. 

Allochthonous carbon contributed between 11.9 – 35.5 %, with a mean contribution of 18.5 ± 

3.9 % to the diets of Walleye, making it the least important carbon pathway. For the most part, 

the contribution of benthic and pelagic carbon did not differ much between sites, with the 

exceptions of sites 1 and 12. Site 1 had the highest contribution from allochthonous carbon with 

a mean value of 24.6 ± 5.7 % (range 15.5 – 33.8 %) and the lowest contribution from pelagically 

derived carbon with a mean value of 27.5 ± 5.3 % (range 16.5 – 35.0 %), similar to what was 

seen in Northern Pike. Site 12 had the highest contribution from pelagic primary production to 

the diets of Walleye at 34.7 ± 2.2 % (range 31.5 – 38.4 %), while also having the lowest 

contribution from benthic primary production with a mean contribution of 46.3 ± 1.7 % (range 

43.5 – 48.5 %). Site 12 also had one of the lowest contributions from allochthonous derived 

carbon at 16.9 ± 2.0 % (range 14.3 – 20.9 %), second only to site 9 located at the mouth of Kadla 

Coulee, where allochthonous carbon had a mean contribution of 16.4 ± 1.9 % (range 13.5 – 

19.6 %). Interestingly, site 9 also had the second highest contribution from pelagically derived 

carbon to the diets of Walleye with a mean value of 34.1 ± 2.7 % (range 29.1 – 38.5 %), only 

slightly below that of site 12. 

3.3.3.4 White Sucker 

  As seen in Northern Pike and Walleye, the carbon pathway most important to the diets of 

White Sucker in Lake Diefenbaker was benthic primary production, with an average contribution 
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of 50.0 ± 7.8 % (range of 21.6 – 70.9 %) to their diets (Fig. 3.12). This was followed in 

importance by pelagic primary production with a mean contribution of 39.2 ± 7.1 % and a range 

of 15.4 – 68.6 %. Allochthonous carbon contributed very little to the diets of White Sucker, with 

a mean contribution of 7.6 ± 2.9 % (range 4.4 – 28.2 %). The highest contribution from benthic 

carbon to the diets of White Suckers was at sites 4 and 8 with mean contributions of 53.5 ± 8.3 % 

(range 41.0 – 67.9 %) and 54.7 ± 6.3 % (range 46.1 – 66.5 %), respectively. The lowest 

contribution from benthic carbon occurred at the upstream most sites 1 and 2 with mean 

contributions of 44.7 ± 6.5 % and 45.9 ± 10.5 % and ranges of 36.4 – 58.1 % and 21.1 – 58.3 %, 

respectively. The highest contribution from pelagic carbon occurred at site 2 (mean 43.4 ± 

10.1 %, range 33.3 – 68.6 %), while the lowest contribution occurred at site 8 (mean 35.2 ± 

6.9 %, range 22.6 – 44.2 %). The contribution of allochthonous carbon to the diets of White 

Sucker was relatively stable at all sites, with the exception of site 1 where it contributed close to 

double the amount of most other sites (mean 13.9 ± 7.5 %; range 6.4 – 28.2 %). 

3.3.4 Fish Condition by Carbon Source 

 The only spawning season for Lake Whitefish when sampling was conducted was fall 

2012. During this sampling season, 13 sexually mature female Lake Whitefish and 10 sexually 

mature males were caught at sites 1 – 12 (Table 3.6). When examined by site, there were no 

significant differences between sites for male gonad weight (F = 0.5, d.f. = 7, 3, P = 0.80) or GSI 

(F = 0.3, d.f. = 6, 3, P = 0.89). Female Lake Whitefish also had no significant difference between 

sites for gonad weight (F = 0.6, d.f. = 9, 7, P = 0.74), GSI (F = 0.4, d.f. = 9, 7, P = 0.88), egg 

diameter (F = 3.0, d.f. = 7, 5, P = 0.12), egg number (F = 2.8, d.f. = 7, 5, P = 0.14), or number of 

eggs standardized per gram of body weight (F = 1.6, d.f. = 7, 5, P = 0.32).  
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Figure 3.11. Boxplots of the proportional contribution of each potential carbon source to the 

diets of Walleye (Sander vitreus) at sites 1 – 12 in Lake Diefenbaker. The potential dietary 

sources include pelagic primary production represented by zooplankton, benthic primary 

production represented by two aquatic macroinvertebrates, lymnaeid snails and G. lacustris, and 

allochthonous primary production, represented by leaf litter. The inner, central and outer portions 

of the boxplots represent the 50 %, 75 % and 95 % credible intervals of the data. For site 

locations within Lake Diefenbaker, please refer to Fig. 1.1. 
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Figure 3.12. Boxplots of the proportional contribution of each potential carbon source to the 

diets of White Sucker (Catostomus commersoni) at sites 1 – 12 in Lake Diefenbaker. The 

potential dietary sources include pelagic primary production represented by zooplankton, benthic 

primary production represented by two aquatic macroinvertebrates, lymnaeid snails and G. 

lacustris, and allochthonous primary production, represented by leaf litter. The inner, central and 

outer portions of the boxplots represent the 50 %, 75 % and 95 % credible intervals of the data. 

For site locations within Lake Diefenbaker, please refer to Fig. 1.1. 
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In total, 22 mature female and 38 mature male Northern Pike were caught between the 

two spring sampling seasons (Table 3.6). There were no significant differences between sites for 

male gonad weight (F = 0.8, d.f. = 10, 27, P = 0.61) or GSI (F = 0.8, d.f. = 10, 27, P = 0.60) or 

between sampling seasons (gonad weight: F = 3.1, d.f. = 1, 36, P = 0.09; GSI: F = 0.2, d.f. = 1, 

36, P = 0.62). For female Northern Pike, there were also no significant differences between sites 

for gonad weight (F = 0.8, d.f. = 9, 12, P = 0.61), GSI (F = 0.9, d.f. = 9, 12, P = 0.55), egg 

diameter (F = 1.9, d.f. = 9, 12, P = 0.14), egg number (F = 0.7, d.f. = 9, 12, P = 0.74), or egg 

number standardized per gram body weight (F = 0.7, d.f. = 9, 12, P = 0.71). However significant 

differences were present between sampling years for gonad weight (F = 49.3, d.f. = 1, 20, P < 

0.001), GSI (F = 16.0, d.f. = 1, 20, P < 0.001), egg number (F = 40.7, d.f. = 1, 20, P < 0.001), and 

egg number standardized per gram body weight (F = 15.2, d.f. = 1, 20, P < 0.001). Egg diameter 

of Northern Pike eggs was not significantly different between spring 2012 and spring 2013 (F = 

0.002, d.f. = 1, 20, P = 0.96). 

Between the two spawning seasons when sampling was conducted, a total of 42 sexually 

mature Walleye were caught in Lake Diefenbaker. However, only seven of the 42 were females. 

The males showed no significant difference in gonad weight between the sites (F = 1.2, d.f. = 10, 

24, P = 0.36), but the GSI for male Walleye was significantly different between sites (F = 4.1, 

d.f. = 10, 24, P < 0.01), with site 4 having the highest GSI value and being significantly different 

from sites 2, 3, 5, 7, 9, and 12 (Tukey’s test, P < 0.05). Neither male gonad weight (F = 0.03, d.f. 

= 1, 33, P = 0.87) nor GSI (F = 0.1, d.f. = 1, 33, P = 0.72) were significantly different between 

2012 and 2013. Female Walleye did not show any significant difference between sites for gonad 

weight (F = 0.1, d.f. = 3, 3, P = 0.98), GSI (F = 0.7, d.f. = 3, 3, P = 0.62), egg diameter (F = 2.2, 

d.f. = 3, 3, P = 0.27), egg number (F = 0.1, d.f. = 3, 3, P = 0.94), or egg number per gram of body 
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weight (F = 1.1, d.f. = 3, 3, P = 0.47). There were no differences between 2012 and 2013 for 

female Walleye gonad weight (F = 0.03, d.f. = 1, 5, P = 0.87), GSI (F = 0.05, d.f. = 1, 5, P = 

0.83), egg diameter (F = 1.2, d.f. = 1, 5, P = 0.33), egg number (F = 0.24, d.f. = 1, 5, P = 0.64), or 

egg number standardized per gram of body weight (F = 0.6, d.f. = 1, 5, P = 0.48). 

More sexually mature White Suckers were caught than any other species of fish, with 48 

mature females and 53 mature males caught over the two years of study (Table 3.6). Male White 

Suckers showed no difference between sites for either gonad weight (F = 1.2, d.f. = 10, 42, P = 

0.33), or GSI (F = 0.7, d.f. = 10, 42, P = 0.76), nor were there any significant differences 

between the sampling seasons (gonad weight: F = 0.9, d.f. = 1, 51, P = 0.36; GSI: F = 0.01, d.f. = 

1, 51, P = 0.93). Female White Suckers also showed no significant differences between sites for 

gonad weight (F = 1.0, d.f.= 10, 37, P = 0.49), GSI (F = 0.4, d.f.= 10, 37, P = 0.93), egg diameter 

(F = 0.4, d.f.= 10, 37, P = 0.93), egg number (F = 1.0, d.f.= 10, 37, P = 0.50), or egg number 

standardized per gram of body weight (F = 0.2, d.f.= 10, 37, P = 0.997).  Between the 2012 and 

2013 spawning seasons there were no significant differences between gonad weight (F = 2.5, d.f. 

= 1, 46, P = 0.122), GSI (F = 3.8, d.f. = 1, 46, P = 0.06), or egg diameter (F = 0.3, d.f. = 1, 46, P 

= 0.58). However, there were significant differences between sampling seasons for both egg 

number (F = 4.2, d.f. = 1, 46, P < 0.05) and egg number standardized for body weight (F = 5.9, 

d.f. = 1, 46, P < 0.05). 

 Relationships between each of the dietary sources of carbon for individual fish and the 

relative weight and fecundity of each fish species were examined using linear regression. There 

were no significant relationships between the percent contributions of each carbon source with 

relative weight for each species (Table 3.7). However, when the different measures of fecundity 

were examined, some were found to be significantly related to the percent contribution of 
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different carbon sources (Table 3.7). In Lake Whitefish, the contribution from benthic carbon 

was negatively related to egg number standardized per gram body weight (F = 5.10, d.f. = 11, R2 

= 0.25, P < 0.05). In Northern Pike, female gonad weight (F = 7.14, d.f. = 20, R2 = 0.23, P < 

0.05), GSI (F = 10.13, d.f. = 20, R2 = 0.30, P < 0.01), egg number (F = 4.42, d.f. = 20, R2 = 0.14, 

P < 0.05), and egg number standardized per gram body weight (F = 4.90, d.f. = 20, R2 = 0.16, P 

< 0.05) were all significantly positively related to the contribution from pelagic carbon to the 

diets of individual fish. As well, female gonad weight (F = 9.77, d.f. = 20, R2 = 0.29, P < 0.01), 

GSI (F = 4.36, d.f. = 20, R2 = 0.14, P < 0.05), and egg number (F = 5.77, d.f. = 20, R2 = 0.19, P < 

0.05) were all significantly negatively related to the contribution from allochthonous carbon. 

Walleye showed no significant relationships between condition factors and the percent 

contribution from each carbon source. The percent contribution of benthic carbon to the diets of 

individual White Suckers was positively related to both gonad weight (F = 12.52, d.f. = 46, R2 = 

0.20, P < 0.001) and egg number (F = 10.84, d.f. = 46, R2 = 0.17, P < 0.01), with both 

relationships being significant. White Sucker also showed significant negative relationships 

between the percent contributions of carbon from pelagic sources with both female gonad weight 

(F = 10.13, d.f. = 46, R2 = 0.16, P < 0.01) and egg number (F = 9.08, d.f. = 46, R2 = 0.15, P < 

0.01). 

 The two year mean δ13C, δ15N, total length and Wr values for each species at each site 

can be seen in Fig. 3.13. Lake Whitefish δ13C values differed significantly between sites (F = 2.2, 

d.f. = 11, 164, P < 0.05) and had an increasing trend in the mean δ13C values as distance 

increased downstream from site 1, with sites 5, 9, 10 and 11 having significantly higher δ13C 

values than site 1 (Tukey’s test, P < 0.05). There were no significant differences between sites 

for δ15N values (F = 2.0, d.f. = 11, 164, P = 0.06). Total length did differ significantly between 
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sites (F = 4.9, d.f. = 11, 164, P < 0.0001), with site 2 significantly different from all other sites 

(Tukey’s test, P < 0.05). Lake Whitefish Wr values showed no significant differences between 

sites (F = 1.5, d.f. = 11, 164, P = 0.12), although there was a slight decrease in relative weight 

visible with increasing distance downstream.  

Northern Pike δ13C values were also significantly different between sites (F = 5.2, d.f. = 

11, 127, P < 0.0001) but showed the opposite trend from Lake Whitefish with δ13C values 

showing a significant decrease from site 1 to sites 9 – 12 (Tukey’s test, P < 0.05). Northern Pike 

δ15N values at site 1 differed significantly from all other sites (F = 15.5, d.f. = 2, 127, P < 0001; 

Tukey’s test, P < 0.001). A large range in both total length and Wr was evident at each site for 

Northern Pike, as shown in the size of the error bars representing 95 % confidence intervals in 

Fig. 3.13, but no sites were significantly different from one another (Total length: (F = 1.6, d.f. = 

11, 127, P = 0.11; Wr: F = 0.5, d.f. = 11, 127, P = 0.87). Walleye had a similar trend to Northern 

Pike in their δ13C and δ15N values with site 12 having the lowest mean δ13C values and site 1 

having the lowest δ15N value. However, the δ13C values were only significantly different 

between site 5 and site 12 for Walleye (F = 1.2, d.f. = 11, 164, P < 0.05; Tukey’s test, P < 0.01). 

The δ15N value for Walleye at site 1 was significantly lower than all other sites (F = 5.9, d.f. = 

11, 164, P < 0.0001; Tukey’s test, P < 0.01). Mean total length values were very similar between 

sites, but site 3 was significantly lower than site 5 (F = 1.6, d.f. = 11, 164, P < 0.05; Tukey’s test, 

P < 0.05); no other sites showed any significant difference. The mean Wr values for each site 

showed a general increase with site as distance increased downstream, but the only significant 

difference was between site 2 and site 6 (F = 2.1, d.f. = 11, 163, P < 0.05; Tukey’s test, P < 

0.05), which had the lowest and highest Wr values, respectively.  
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White Sucker site mean δ13C values show an interesting trend, increasing with distance 

downstream of Highway 4, until site 4 and then decreasing again until a peak at site 8 followed 

by another decrease until site 12. Sites 3, 4, 5, 6, 8 and 9 had significantly higher δ13C values 

than site 1 (F = 4.4, d.f. = 11, 177, P < 0.0001; Tukey’s test, P < 0.05). The mean δ15N value at 

site 1 was significantly lower than all sites (F = 3.4, d.f. = 11, 177, P < 0.001; Tukey’s test, P < 

0.05), with the exception of sites 6 and 8. The total length and Wr values for all sites were 

similar, with no significant differences between sites for White Sucker (total length: F = 1.2, d.f. 

= 11, 177, P = 0.31; Wr: F = 2.01, d.f. = 11, 177, P = 0.05). 

 The seasonal means for δ13C, δ15N, total length and Wr values for each species can be 

seen in Fig. 3.14. Mean δ13C values for Lake Whitefish differed significantly between seasons (F 

= 8.6, d.f. = 2, 173, P < 0.001), with the δ13C value in fall of 2012 significantly lower than either 

spring 2012 or 2013 (Tukey’s test, P < 0.01). The seasonal mean δ15N value for Lake Whitefish 

differed significantly through time (F = 3.8, d.f. = 2, 173, P < 0.05) with the highest value in 

spring 2012 and the lowest value in spring 2013, with these two being significantly different 

from one another (Tukey’s test, P < 0.05), but neither different from fall 2012 (Tukey’s test, P > 

0.05). Total length also differed significantly by sampling season (F = 5.5, d.f. = 2, 173, P < 

0.01) with spring 2012 differing from spring 2013 (Tukey’s test, P < 0.01), but fall 2012 again 

not differing from either (Tukey’s test, P > 0.05). Relative weight also differed significantly 

between seasons (F = 4.0, d.f. = 2, 173, P < 0.05) and showed the same trend as seen in δ15N 

with the highest value in spring 2012 differing significantly from the lowest value in spring 2013 

(Tukey’s test, P < 0.05), but neither differing from fall 2012 (Tukey’s test, P > 0.05). Northern 

Pike showed no significant differences between seasons for δ13C (F = 0.8, d.f. = 2, 136, P = 

0.46), δ15N (F = 1.7, d.f. = 2, 136, P = 0.19), total length (F = 0.6, d.f. = 2, 136, P = 0.57), or 
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relative weight values (F = 0.7, d.f. = 2, 136, P = 0.48). Walleye also had no significant 

differences between the seasons for δ13C (F = 1.8,  d.f. = 2, 173, P = 0.17), δ15N (F = 1.9,  d.f. = 

2, 173, P = 0.15), or total length values (F = 0.9,  d.f. = 2, 173, P = 0.39), but the relative weight 

did differ significantly between the seasons (F = 6.8,  d.f. = 2, 172, P < 0.01) with fall 2012 

differing from both spring 2012 (Tukey’s test, P < 0.01) and spring 2013 (Tukey’s test, P < 

0.01), but no difference between either spring season (Tukey’s test, P > 0.05). White Sucker 

were similar to Walleye in that there were no significant differences between seasons for δ13C, 

δ15N and total length but again, relative weight did show a significant difference between seasons 

(F = 4.4, d.f. = 2, 186, P < 0.05). White Sucker had the highest relative weight in spring 2012, 

which differed significantly from spring 2013 (Tukey’s test, P < 0.01), while fall 2012 did not 

differ from either of the spring sampling seasons (Tukey’s test, P > 0.05).  
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Table 3.7. The relationship between condition factors and the proportion of diet contribution of each carbon source for four species of 

fish in Lake Diefenbaker Saskatchewan. Significant relationships (P < 0.05) are shown in bold text (model I linear regression). Sex is 

indicated as either (M) for male or (F) for female for gonad weight and GSI.  

Condition 

Factor  
 Lake Whitefish Northern Pike Walleye White Sucker 

 

Source 

 

F d.f R2 P 

 

F d.f R2 P 

 

F d.f R2 P 

 

F d.f R2 P 

 

Wr ZP 0.01 174 -0.01 0.944 0.77 137 -0.02 0.382 2.50 173 0.01 0.116 1.68 187 0.00 0.196 

 
MI 0.09 174 -0.01 0.770 0.01 137 -0.01 0.927 0.33 173 0.00 0.569 1.39 187 0.00 0.241 

 
LL 0.53 174 0.00 0.467 1.10 137 0.00 0.296 1.84 173 0.00 0.177 0.01 187 0.00 0.754 

Gonad  

Wt. (M) 

ZP 0.07 9 -0.10 0.794 2.98 36 0.05 0.093 0.50 33 -0.01 0.483 2.00 51 0.02 0.163 

MI 0.08 9 -0.10 0.783 4.07 36 0.08 0.051 0.00 33 -0.03 0.953 1.76 51 0.01 0.190 

 
LL 0.00 9 -0.11 0.980 1.13 36 0.00 0.294 1.26 33 0.01 0.269 0.44 51 -0.01 0.508 

GSI (M) ZP 0.04 8 -0.12 0.841 2.25 36 0.03 0.143 0.12 33 -0.03 0.729 0.38 51 -0.01 0.539 
 

MI 0.04 8 -0.12 0.843 2.57 36 0.04 0.118 0.11 33 -0.03 0.747 0.26 51 -0.01 0.610 

 

LL 0.04 8 -0.12 0.843 1.03 36 0.00 0.318 0.02 33 -0.03 0.892 0.03 51 -0.02 0.875 

Gonad 

Wt. (F) 

ZP 1.06 15 0.00 0.319 7.14 20 0.23 0.015 0.97 5 -0.01 0.370 10.13 46 0.16 0.003 

MI 0.68 15 -0.02 0.422 0.46 20 -0.03 0.508 0.89 5 -0.02 0.388 12.52 46 0.20 0.001 

 
LL 1.25 15 0.02 0.282 9.77 20 0.29 0.006 1.01 5 0.00 0.360 0.30 46 -0.02 0.588 

GSI (F) ZP 1.65 15 0.04 0.219 10.13 20 0.30 0.005 0.19 5 -0.16 0.678 1.99 46 0.02 0.165 

 
MI 2.34 15 0.08 0.147 3.91 20 0.12 0.062 1.75 5 0.11 0.243 2.12 46 0.02 0.152 

 
LL 0.13 15 -0.06 0.720 4.36 20 0.14 0.050 0.20 5 -0.15 0.677 1.67 46 0.01 0.203 

Egg 

diameter 

ZP 0.51 11 -0.04 0.489 0.11 20 -0.04 0.743 0.02 5 -0.20 0.898 0.00 46 -0.02 0.990 

MI 0.94 11 0.00 0.353 0.00 20 -0.05 0.968 0.08 5 -0.18 0.787 0.02 46 -0.02 0.897 

 
LL 0.52 11 -0.04 0.485 0.16 20 -0.04 0.693 0.01 5 -0.20 0.918 1.16 46 0.00 0.288 

Egg # ZP 0.00 11 -0.09 0.963 4.42 20 0.14 0.048 2.65 5 0.22 0.164 9.08 46 0.15 0.004 

 
MI 0.04 11 -0.09 0.842 0.31 20 -0.03 0.586 1.05 5 0.01 0.352 10.84 46 0.17 0.002 

 
LL 1.09 11 0.01 0.320 5.77 20 0.19 0.026 2.56 5 0.21 0.171 0.64 46 -0.01 0.426 

Egg #/g ZP 3.54 11 0.17 0.087 4.90 20 0.16 0.039 0.25 5 -0.14 0.638 1.19 46 0.00 0.282 

 
MI 5.10 11 0.25 0.045 2.37 20 0.06 0.139 2.39 5 0.19 0.183 1.16 46 0.00 0.288 

 

LL 0.03 11 -0.09 0.862 2.07 20 0.05 0.166 0.20 5 -0.15 0.677 2.20 46 0.02 0.145 

1
0

1
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Figure 3.13. Mean δ13C, δ15N, total length, and relative weight (Wr) for all Lake Whitefish, Northern Pike, Walleye and White Sucker 

captured at sites 1 – 12 throughout 2012 and 2013. Error bars represent 95 % confidence intervals for the means. Means with a 

common letter are not significantly different from one another. Both main channel sites (closed circles) and sites located within 

embayments (open circles) are included. For site locations within Lake Diefenbaker, please refer to Fig. 1.1. 
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Figure 3.14. Seasonal mean δ13C (‰), δ15N (‰), total length (mm), and relative weight (Wr) for 

all Lake Whitefish, Northern Pike, Walleye and White Sucker captured at sites 1 – 12 during 

spring 2012 (S12), fall 2012 (F12), and spring 2013 (S13). Error bars represent 95 % confidence 

intervals for the means. Means with a common letter are not significantly different from one 

another. 

 

3.4 Discussion  

3.4.1 Carbon Sources: Allochthony versus Autochthony 

The majority of carbon supporting the growth of Lake Whitefish, Northern Pike, Walleye 

and White Sucker in Lake Diefenbaker is of autochthonous origin. Lake Whitefish and White 

Sucker show the least assimilation of allochthonous carbon of the four study species, with 

negligible contributions at all sites other than in the most upstream reaches of the reservoir at site 

1. Site 2 also had a relatively high contribution for Lake Whitefish, but only a single juvenile 

-2
9

.0
-2

7
.5

-2
6

.0

Date

M
e

a
n

 d
1

3
C

S12 F12 S13

a
a

a
7

5
8

5
9

5
1

0
5

Date

M
e

a
n

 W
r

S12 F12 S13

a
ab

b

1
5

1
7

1
9

Date

M
e

a
n

 d
1

5
N

S12 F12 S13

a ab b

-2
9

.0
-2

7
.5

-2
6

.0

Date

M
e

a
n

 d
1

3
C

S12 F12 S13

a

b

a

3
0

0
5

0
0

7
0

0

Date

M
e

a
n

 T
L

 (
m

m
)

S12 F12 S13

a ab b

7
5

8
5

9
5

1
0

5

Date

M
e

a
n

 W
r

S12 F12 S13

a
a

a

1
5

1
7

1
9

Date

M
e

a
n

 d
1

5
N

S12 F12 S13

a a a

-2
9

.0
-2

7
.5

-2
6

.0

Date
M

e
a

n
 d

1
3

C

S12 F12 S13

a a a

3
0

0
5

0
0

7
0

0

Date

M
e

a
n

 T
L

 (
m

m
)

S12 F12 S13

a a a

7
5

8
5

9
5

1
0

5

Date

M
e

a
n

 W
r

S12 F12 S13

a

b

a

1
5

1
7

1
9

Date

M
e

a
n

 d
1

5
N

S12 F12 S13

a a a

-2
9

.0
-2

7
.5

-2
6

.0

Date

M
e

a
n

 d
1

3
C

S12 F12 S13

a a
a

3
0

0
5

0
0

7
0

0

Date

M
e

a
n

 T
L

 (
m

m
)

S12 F12 S13

a a a

7
5

8
5

9
5

1
0

5
Date

M
e

a
n

 W
r

S12 F12 S13

a ab
b

1
5

1
7

1
9

Date

M
e

a
n

 W
r

S12 F12 S13

a a a

3
0

0
5

0
0

7
0

0

Date

M
e

a
n

 T
L

 (
m

m
)

S12 F12 S13

a a a

-
2

9
.
0

-
2

7
.
5

-
2

6
.
0

Date

M
e

a
n

 
d

1
3

C

S12 F12 S13

a

b

a

δ
1

3
C

 (
‰

)
δ

1
5
N

 (
‰

)
W

r
T

L
 (

m
m

)

Date

LKWH NRPK WALL WHSC

–
2

9
–

2
7

.5
–

2
6



 

104 
 

Lake Whitefish was caught at this site, so this may be an artifact of the very limited sample size. 

Northern Pike and Walleye both had higher contributions of allochthonous carbon to their diets 

than either Lake Whitefish or White Sucker. Again, the highest contributions from this source 

were at site 1 in the upstream reaches of Lake Diefenbaker. This higher average contribution of 

allochthonous carbon to the diets of Northern Pike and Walleye compared to Lake Whitefish and 

White Sucker could be a result of the predatory nature of these species which may be consuming 

prey species that have a higher reliance on allochthonous carbon. Another reason the 

contribution to the predatory species may be higher could be the result of their increased trophic 

levels on the SIAR and SIARsolo model output. The increased trophic levels of these predatory 

species result in increased trophic enrichment factors as well as increased standard deviations of 

these enrichment factors. Increased variability associated with the trophic enrichment factors can 

cause model performance to decrease (Parnell et al 2010), resulting in the potential 

overestimation of the importance of certain carbon sources. 

Although autochthonous carbon far outweighed the importance of allochthonous carbon 

to the diets of all four fish species, the importance of each autochthonous source varied between 

species. Benthic autochthonous production was more important than pelagic production to the 

diets of Northern Pike, Walleye and White Sucker. Pelagic primary production was on average, 

the most important carbon source to the diets of Lake Whitefish throughout the entire reservoir. 

However, the importance of this source decreased slightly with distance downstream, marked by 

a corresponding increase in Lake Whitefish dependence on benthic carbon in the lower reaches 

of the reservoir. Northern Pike showed a similar but opposite trend, with pelagic carbon 

becoming more important and benthic carbon less important with increasing distance 

downstream. There is little variability in the contribution of benthic carbon to the diets of 
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Walleye throughout the reservoir, but the lowest contribution from benthic carbon and the 

highest contribution from pelagic carbon both occur at site 12, the most downstream site. White 

Sucker had the lowest contribution from benthic carbon at sites 1 and 2 in the upstream reaches 

and the importance of benthic carbon remained relatively constant among the other downstream 

sites.  

The quality and the availability of each carbon source to the diets of consumers 

throughout Lake Diefenbaker are likely the main drivers in the importance of each source to the 

diets of each fish species. Allochthonous carbon is generally thought to be of lower nutritional 

quality (Brett et al. 2012), resulting in the preferential use of autochthonous carbon by some 

consumers. This is the case even when autochthonous carbon is in lower abundance (Karlsson et 

al. 2012), such as in dystrophic lakes (Carpenter et al. 2005). The ratio of littoral to pelagic 

habitat is lowest in the downstream reaches of Lake Diefenbaker (Sadeghian et al. 2015). This is 

likely why the predatory species have a higher diet contribution from pelagic carbon sources in 

the downstream reaches of Lake Diefenbaker where habitat overlap with pelagic prey species 

such as Cisco are more likely to occur due to the limited littoral habitat available. Interestingly, 

Lake Whitefish have the lowest contribution from pelagic sources in the same downstream 

regions of the reservoir, although it is still the most important carbon source contributing to their 

diets.  

3.4.2 δ13C and δ15N Along the Length of Lake Diefenbaker 

The δ13C and δ15N values of POM and primary consumers (Fig. 3.6 and 3.7) change with 

distance downstream of the tributary inflow for each autochthonous carbon source. Both pelagic 

sources, POM and zooplankton, show a decrease in their δ13C values and an increase in their 

δ15N values as distance increases downstream, which both level off between site 1 and 2 in the 
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transitional zone of the reservoir (Fig. 3.6). This transition likely is the result of autochthonous 

production becoming more lacustrine compared to the more riverine values reflected in the POM 

isotopic values at site 1 and further upstream. However, both benthic macroinvertebrates have 

isotopic values that remain relatively unchanged throughout much of the reservoir downstream 

of site 1. Macroinvertebrates were never found in abundance at the most upstream site (site 1), so 

the difference between this site and others further downstream may be a result of the low sample 

size which did not capture the temporal changes in both δ13C and δ15N values. When compared 

to values found by Donald et al. (2015) for the area of Lake Diefenbaker around site 1, the δ 13C 

values for bulk zooplankton were identical at –31.3 ‰ while the Sphaeriid mussels used to 

represent littoral benthic macroinvertebrates had a value of –25.4 ‰, very similar to the values 

of –24.2 and –25.7 ‰ found for G. lacustris and lymnaeid snails, respectively. However, the 

mean δ15N value for bulk zooplankton found by Donald et al. (2015) was 10.1 ‰, much lower 

than the mean value found in this study of 14.3 ‰. The mean δ15N value for Sphaeriid mussels 

was not given in Donald et al. (2015). The difference seen in δ15N values in Donald et al. (2015) 

is likely the result of all samples being collected near the upstream end of Lake Diefenbaker near 

site 1 of this study, which had lower δ15N values from the rest of the reservoir (Fig. 3.6 and 3.7), 

although still higher than those found by Donald et al. (2015). 

The δ13C values for Lake Whitefish, Northern Pike, Walleye and White Sucker from 

Donald et al. (2015) were similar to the values found in this study for all four study species. 

However, the δ15N values from Donald et al. (2015) were all lower than those seen in this study, 

but were similar to the values for site 1, located in the same area where sampling by Donald et al. 

(2015) took place. The lower δ15N values seen for all four fish species in Donald et al. (2015) are 

likely the result of the limited sampling area in that study, which focused on the upstream 



 

107 
 

reaches of Lake Diefenbaker in the riverine zone.  The δ15N values for Northern Pike, Walleye 

and White Sucker in this study were considerably lower at site 1 than for the rest of the reservoir 

and similar to the mean δ15N values seen in Donald et al. (2015). The δ15N values for Lake 

Whitefish at site 1 were lower than the mean value for Lake Diefenbaker, but did not differ as 

greatly from the other sites as the δ15N values of the other species.  

The decrease seen in δ13C values of POM and zooplankton with increasing distance 

downstream (Fig. 3.6) is also seen in Northern Pike (Fig. 3.13). This may be the result of the 

increased importance of pelagically derived carbon to the diets of Northern Pike in the 

downstream reaches of Lake Diefenbaker. Pelagic carbon had a more negative δ13C value than 

benthic carbon and became increasingly more negative with distance downstream (Fig. 3.6 and 

3.7). The decrease in δ13C values of pelagic carbon with distance downstream is likely the result 

of increased levels of primary production in the downstream reaches of the reservoir 

(Wiesenberger et al. 2012). Yip et al. (2015) found Secchi disk depth to be highest in the lower 

reaches of the reservoir and turbidity to be highest in the upstream reaches, as the result of 

suspended sediment and allochthonous inputs. Furthermore, Dubourg et al. (2015) found that 

light limitation was common throughout Lake Diefenbaker and the highest gross primary 

production in the system occurred in the downstream reaches in June. This trend may have been 

magnified by the timing of this study, as both 2012 and 2013 were high water years with large 

inflows to the system (Hudson and Vandergucht 2015).  

During years of low water, the δ13C values of both POM and zooplankton would likely be 

more negative in the upstream reaches due to increased light penetration and potentially 

increased primary production (Wiesenberger et al. 2012). This would occur alongside a decrease 

in the input of allochthonous carbon (Sanchez-Vidal et al. 2013; Yip et al. 2015) with higher 
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δ13C values than pelagic autochthonous production (Fig. 3.1). Future flows are predicted to be 

lower in the South Saskatchewan River (Tanzeeba and Gan 2012; Vogt et al. 2015), but the 

potential for flooding from extreme rainfall events is also increasing (Dankers et al. 2013). This 

may result in δ13C values of POM and zooplankton being more negative in the upstream reaches 

of Lake Diefenbaker, similar to those currently seen further downstream in this study. In turn, 

this would lead to increased homogeneity of δ13C values of POM and zooplankton between 

upstream and downstream sites. However, this would also result in a stronger differentiation 

between pelagic and benthic carbon pathways in the upstream reaches of the reservoir, due to the 

higher δ13C values associated with benthic primary production. The opposite would be true 

during high water years, with a decrease in the δ13C values of POM and zooplankton with 

increasing distance downstream. During low water years, the importance of allochthonous 

carbon to the diets of all four fish species studied is expected to be even lower than in high water 

years such as 2012 and 2013 when this study was conducted. 

The increase in POM and zooplankton δ15N values with distance downstream (Fig. 3.6) is 

also seen in the δ15N values for Northern Pike and Walleye, although it is not as evident (Fig. 

3.13). Site 1 had the lowest δ15N values for all species of fish, except Lake Whitefish, which 

have relatively constant δ15N values throughout all sites. The increase seen in δ15N values in the 

POM and zooplankton likely reflects an increase in the δ15N value of inorganic nitrogen in the 

system. This increase may be due to the addition of nitrogen to the system with a higher δ15N 

value, such as manure from livestock, causing the δ15N values of the POM and zooplankton to 

increase with increasing nitrogen loads from such sources (Kendall et al. 2007). Nitrogen 

fixation by cyanobacteria results in the addition of nitrogen to the system with δ15N values near 

0 ‰ (Kendall et al. 2007), which in turn lowers the δ15N values for the POM and zooplankton, 
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the opposite of what is occurring with increased distance downstream in Lake Diefenbaker. 

Hodell and Schelske (1998) found that the sedimentation of phytoplankton in Lake Ontario from 

the epilimnion caused increasing δ13C and δ15N values due to the preferential sedimentation of 

12C and 14N. In turn, this led to isotopically heavier phytoplankton and POM. A similar process 

may be happening in Lake Diefenbaker, leading to the increase in δ15N values with increasing 

distance downstream, even with Lake Diefenbaker’s much smaller size and shallower waters. 

Lucas et al (2015) analyzed the upper 1 cm of bottom sediments and found the δ13C value to be 

relatively stable downstream of the riverine zone after an initial drop, but the δ15N value of the 

sediment increased with distance downstream, similarly to what is seen for POM in this study 

(Fig. 3.6) and reflected in the Northern Pike and Walleye (Fig. 3.13). 

The δ15N values of primary producers and POM within undisturbed rivers are often in the 

range of –1 to +7 ‰ (Finlay and Kendall 2007). Rivers with high inputs of either waste water or 

animal manure often have δ15N values in the range of 10 to 25 ‰ (Kendall and Caldwell 1998), 

similar to the δ15N values seen in the downstream reaches of Lake Diefenbaker. Anderson and 

Cabana (2005) found δ15N values of primary consumers, predatory macroinvertebrates, and 

certain fish species were all positively correlated with the percent agricultural land in the 

watershed. However, this relationship was weakest in fish, which was attributed to the ability of 

fish to move around rapidly within a watershed resulting in a weaker relationship than seen in 

more sedentary taxa. The increase in δ15N with increasing percentage of agricultural land in the 

catchment was attributed to the addition of manure and fertilizer with high δ15N values as well as 

further increases in δ15N values through biogeochemical processes (Battaglin et al. 2001; 

Anderson and Cabana 2005). High δ15N values in POM are often associated with inputs of either 

animal waste, sewage, or the influx of groundwater that has been significantly affected by 
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denitrification (Mariotti 1986). Wiesenberger et al. (2012) reported increased levels of 

autochthonous primary production in a number of Quebec reservoirs lead to an increase in δ15N 

values. Interestingly, the increased δ15N values were most often associated with decreased δ13C 

values, both of which were attributed to increased levels of primary production (Wiesenberger et 

al. 2012). A similar pattern was seen for both isotopes in Lake Diefenbaker as distance increased 

downstream of the tributary inflow.  The high δ15N values seen in the downstream reaches of 

Lake Diefenbaker are likely due to a combination of the high percentage of agricultural land 

within the watershed, inputs from both manure and water treatment plants upstream of the 

reservoir and the increased levels of primary production with increasing distance downstream. 

3.4.3 Where Does the Change in Resource Use Occur? 

The major change in the importance of allochthonous sources for all species occurs in the 

riverine zone of the reservoir between site 1 and 2, as predicted by the longitudinal zonation 

concept (Kimmel and Groeger 1984). This is a large area of the reservoir where fish sampling 

was not conducted, so the exact location is not possible to pin point, but likely a gradual change 

in the importance of allochthonous carbon occurs throughout the riverine zone. All four study 

species showed the greatest contribution from allochthonous carbon in the upstream reaches of 

the reservoir where it was most readily available. Further downstream, the contribution of 

allochthonous carbon to the diets of all four fish species remained relatively unchanged 

throughout sites 2 through 12, located in the transitional and lacustrine zones of the reservoir 

(Hudson and Vandergucht 2015). Lake Whitefish differed slightly from the other species in that 

they only had a minor difference in the contribution from allochthonous carbon between site 1 

and the rest of the sites. Lake Whitefish abundance has been found to be low in the upstream 

reaches of the reservoir during periods of warm water temperature in late spring and summer 
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(Wallace et al. 2010). This was evident in June of 2012 when Lake Whitefish were not caught at 

site 1. The lower contribution of allochthonous carbon to the diets of Lake Whitefish at site 1 

compared to the other study species may be a result of Lake Whitefish leaving the area when 

water temperatures become too high in late spring, corresponding to the timing of peak inflow 

and the highest inputs of allochthonous carbon to the system (Yip et al. 2015). Lake Whitefish 

may be moving downstream to areas with their preferred lower water temperature (Scott and 

Crossman 1973) during summer months and moving back into the upstream reaches after the 

water decreases in temperature in the fall. This seasonal movement of Lake Whitefish may result 

in the lower contribution from allochthonous carbon to their diets at site 1 relative to the other 

study species. However, due to the slow turnover time of fish tissue (Hesslein et al. 1992), this 

could not be tested directly. 

Autochthonous carbon was the most important carbon source for all four fish species at 

all 12 sites, indicating that even in the riverine zone with high allochthonous inputs, 

autochthonous production was still more important. The two study years were during periods of 

high flow in the South Saskatchewan River which likely resulted in higher than average inputs of 

allochthonous carbon to Lake Diefenbaker. As a result, the importance of allochthonous carbon 

would be expected to be even lower in periods of low flow or drought in the watershed (Lee et 

al. 2013; Min-Seob et al. 2014). 

3.4.4 Fish Condition Throughout Lake Diefenbaker 

Relative weight for Lake Whitefish, Northern Pike and White Sucker did not differ 

between sites, but Walleye did show a significant difference between site 2 and site 6 (Fig. 3.13). 

Even though significant differences were not present between sites for Lake Whitefish, there was 

a general decrease in Wr from upstream to downstream. A similar, but opposite trend is seen in 
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Walleye with increasing Wr values as distance increases downstream of Highway 4. 

Interestingly, the decrease in Lake Whitefish Wr corresponds with a decrease in the importance 

of pelagically derived carbon with distance downstream.  However, the relationships between 

relative weight and potential carbon sources were not significant for any species of fish (Table 

3.7).  

Total length was positively related to δ13C for Lake Whitefish, Walleye and White 

Sucker, indicating a shift from pelagic to benthic resource use with increasing fish size. A 

significant negative relationship was present between total length and Wr in Lake Whitefish. This 

drop in Wr with increasing total length indicates the increase in benthic carbon to Lake Whitefish 

diets with increasing total length comes at the cost of body condition. As well, a significant 

negative relationship between the percent contribution of benthic carbon to the diets of 

individual Lake Whitefish and the number of eggs standardized per gram body weight was 

identified. The ontogenetic shift in Lake Whitefish diet with increasing size observed in this 

study has also been observed in other Lake Whitefish populations in North America (Tohtz 

1993; Pothaven et al. 2001) and Common Whitefish (C. lavaretus) populations in Europe 

(Kahilainen et al. 2003). Ihssen et al. (1981) found that Lake Whitefish feeding on benthic prey 

sources grow faster than those feeding on zooplankton. However, Lake Whitefish populations 

can feed heavily on zooplankton during summer months when they are abundant or in periods 

when benthic food sources are in short supply (Tohtz 1993). In a comparison between Lake 

Ontario and Lake Erie, Lake Whitefish were found to be in lower condition and have lower GSI 

values in Lake Ontario which had lower abundance and a less diverse benthic community (Lumb 

et al. 2007). In Lake Diefenbaker, the switch to increased consumption of benthic resources with 

increased total length may be driven by necessity if zooplankton are not readily available 
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throughout much of the year. Lake Whitefish stocks in Lake Huron showed decreased growth 

rates and condition following the invasion of zebra mussels (Dreissena polymorpha) which 

caused a decrease in the diversity and abundance of many benthic prey sources (McNickle et al. 

2006). The decrease seen in Wr and number of eggs standardized for body weight seen with 

increased total length in Lake Diefenbaker is likely the result of low abundance of benthic food 

sources throughout the reservoir, which are increasingly important to Lake Whitefish diets with 

increased size (Pothoven and Nalepa 2006). 

 Northern Pike were the only fish species that showed a significant negative relationship 

between total length and δ13C. Combined with the positive relationship between δ15N and total 

length in Northern Pike (Fig. 3.8), this indicates a switch to a more pelagic based diet with 

increasing size. Increased consumption of Cisco (Coregonus artedi) or small Lake Whitefish at 

larger sizes could drive this change as both are largely zooplanktivorous (Scott and Crossman 

1973; Gamble et al. 2011; this study) and rely heavily on carbon of pelagic origin. Northern Pike 

of all sizes are often associated with shallow macrophyte beds in the littoral zone of lakes 

(Chapman and Mackay 1984), but larger individuals are also known to inhabit open water areas 

and have higher rates of movement than smaller fish (Vehanen et al. 2006). Northern Pike 

undergo ontogenetic diet shifts, with adults being largely piscivorous (Scott and Crossman 

1973). Large Northern Pike in Lake Diefenbaker appear to be either utilizing the pelagic habitat 

available within the reservoir and preying on Cisco and Lake Whitefish populations, or the 

pelagic prey species are acting as vectors between the pelagic and benthic habitats. Both Cisco 

and Lake Whitefish spawn in fall in shallow water and often remain there until the water warms 

again in spring (Scott and Crossman 1973). This increases their availability as a prey source for 

Northern Pike due to habitat overlap during this cool water period. The drop in δ13C and rise in 
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δ15N with increased total length was associated with a significant increase in Wr as well as 

female gonad weight, GSI, egg number, and egg number standardized per gram body weight, 

indicating a link between body condition and fecundity with increasing diet contributions from 

pelagic sources (Table 3.7). This may be the result of pelagic carbon sources being of higher 

nutritional value than either benthic carbon or allochthonous carbon sources for Northern Pike. 

Kaufman et al (2006) found that predation on Cisco resulted in increased growth potential in 

Walleye due to the high energy value of Cisco and increased foraging efficiency when feeding 

on this species. A similar situation may be occurring in Northern Pike in Lake Diefenbaker, 

resulting in higher Wr at increased sizes. Fish with higher Wr values generally have more energy 

to allocate to reproductive fitness and growth (Blackwell et al. 2000), which further helps to 

explain why the largest Northern Pike had the highest Wr as well as different measures of 

fecundity. However, when examining fish condition based on the carbon sources utilized by 

individual fish, there were no significant relationships between percent contribution of each 

potential carbon source and Wr for Northern Pike (Table 3.7). 

Walleye total length was positively related to δ13C values indicating an increased 

contribution from benthic carbon with increased size. The relationship between total length and 

Wr was also slightly positive, but not significant (Fig. 3.8). The percent contribution of each 

carbon source to Walleye diet was not related to any measure of fecundity or Wr (Table 3.7). 

This could be due to the population being below the carrying capacity of the reservoir, as 

Walleye are known to have increased body condition and growth rates when the population is 

heavily exploited or below carrying capacity (Sprangler and Payne 1977, Blackwell et al. 2000). 

Water level fluctuations in reservoirs can result in large year to year variations in Walleye 

recruitment, often causing reservoir Walleye populations to be at or below carrying capacity 
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(Kerr et al. 1997). This may be the case in Lake Diefenbaker, resulting in similar condition 

factors and fecundity for Walleye regardless of which carbon source they are utilizing. The study 

wide mean Wr value of 83 ± 9 for Walleye is below the optimal value of 100, but within the 

range of northern populations of Walleye (Blackwell et al. 2000). Some measures of fecundity of 

female Walleye may have been overlooked due to the limited sample size of sexually mature 

female Walleye in this study.   

White Sucker Wr was not related to total length, despite their diet becoming increasingly 

more benthic with increased size (Fig. 3.8). However, both gonad weight and egg number in 

female White Suckers were positively related to the percent contribution of benthic carbon and 

negatively related to the percent contribution of pelagic carbon. However, there was no 

noticeable change in Wr with the increased contribution of either benthic or pelagic carbon. 

Gonad weight and egg number are expected to be higher in large females, so the correlation 

between increased contribution from benthic carbon and increased total length may be the driver 

behind the increases seen in White Sucker fecundity. Munkittrick and Dixon (1988) 

hypothesized that a shortage of food sources in some contaminated lakes resulted in lower 

fecundity and growth in female White Suckers after sexual maturity was reached. There is no 

indication of a shortage of prey items for White Sucker in Lake Diefenbaker, as female gonad 

weight and egg number continuously increased, and there was no noticeable drop in Wr with 

increasing size. 

3.4.5 Spatial and Temporal Comparisons 

No seasonal differences in δ13C, δ15N, or total length were present for Northern Pike, 

Walleye or White Sucker, but Lake Whitefish showed significant differences for all three 

variables (Fig. 3.14). Lake Whitefish had a significantly lower δ13C value in fall 2012 than in 
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either spring 2012 or spring 2013, likely the result of increased pelagic resource use during 

summer months. Lake Whitefish of all size classes are known to feed heavily on zooplankton 

during the summer when this prey source is most abundant (Tohtz 1993). The decrease in δ13C 

values in fall could also be the result of increased surface water temperatures during summer, 

which are not ideal for Lake Whitefish in shallow water areas (Scott and Crossman 1973). This 

would force them into deeper water where benthic prey sources may be less abundant. A 

combination of these two factors were likely responsible for the increased pelagic resource use 

seen in Lake Whitefish in the fall of 2012. 

The δ15N values of Lake Whitefish did not differ between fall 2012 and spring of 2012 

and 2013, but δ15N values were significantly lower in spring 2013 than in spring 2012. This 

could be the result of Lake Whitefish feeding at a lower trophic level in the spring of 2013, or 

having higher reliance on benthic carbon with a lower δ15N value (Fig. 3.1). Interestingly, the 

opposite trend was seen in total length, with Lake Whitefish in spring 2013 significantly longer 

than those caught in spring 2012. The difference in total length between spring 2012 and spring 

2013 may be the cause of the difference in δ15N values as Lake Whitefish undergo ontogenetic 

diet shifts from pelagic to benthic prey sources with increased size (Tohtz 1993; Pothaven et al. 

2001).  

The relative weight of Lake Whitefish dropped throughout the sampling period from a 

high in spring 2012 to a significantly lower value in spring 2013.  A similar and significant 

decrease in Wr values from spring 2012 to spring 2013 was also seen in White Sucker. However, 

there was no corresponding drop in White Sucker δ15N values or an increase in total length 

between the seasons as seen in Lake Whitefish. This may mean the later date of ice off, longer 

winter and the earlier dates of fish sampling resulted in a shorter growing season in 2013 before 
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fish were sampled compared to spring 2012. This may be responsible for the decrease in Lake 

Whitefish and White Sucker Wr in 2013. 

The different measures of fecundity did not differ between sites for any fish species 

except Walleye. Male Walleye at site 4 had a significantly higher GSI than at sites 2, 3, 5, 7 and 

9. However, the sample size of sexually mature fish for all species was relatively low at each 

site, so the difference seen in GSI in male Walleye may be the result of low sample size.  

Female Northern Pike and White Sucker had significant differences between spring 2012 

and spring 2013 in some measures of fecundity, with Northern Pike having significantly higher 

values for each variable in spring 2012 and White Suckers in spring 2013. Both are likely the 

result of the larger average size of female Northern Pike caught in spring 2012 compared to 

spring 2013 and the larger average size of sexually mature White Suckers caught in spring 2013 

when compared to 2012 (Table 3.6). However, relative weight was not significantly different 

between seasons for Northern Pike. 

3.4.6 Comparison with Other Systems 

All four fish species obtained the majority of their carbon through autochthonous sources 

indicating that in situ primary production was the most important carbon source within Lake 

Diefenbaker. Small rivers often have food webs supported largely by allochthonous carbon while 

the food webs of large rivers are supported mainly by autochthonous carbon (Finlay 2001). 

Allochthonous carbon is of greater importance during periods of high flow in most river systems 

(Kendall et al. 2001). Of three major carbon cycling models for rivers, the Riverine Productivity 

Model (Thorp and Delong 1994) most accurately describes the dominant carbon pathways within 

Lake Diefenbaker compared to the River Continuum Concept (Vannote et al 1980) or the Flood 

Pulse Concept (Junk et al. 1989). Reservoir food webs often have a higher contribution from 
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autochthonous carbon sources than the riverine food webs in their tributaries (Hoeinghaus et al. 

2007). Even when allochthonous carbon sources are plentiful in reservoirs, certain consumers 

such as Daphnia spp. often rely almost entirely on autochthonous organic matter for their diets 

(Min-Seob et al. 2014). This is common in lakes, where zooplankton are known to rely heavily 

on autochthonous organic matter when allochthonous carbon is abundant (Cole et al. 2002; 

Mohamed and Taylor 2009). In turn, this leads to the higher importance of autochthonous carbon 

to all higher trophic levels throughout the planktonic food web. 

Allochthonous carbon is most important to reservoir food webs during or immediately 

after periods of high flow in the tributaries (Chen and Jia 2009; Sanchez-Vidal et al. 2013). 

Increased turbidity during periods of high inflow into Lake Diefenbaker is also associated with 

low concentrations of chlorophyll (Yip et al. 2015). In 2012 and 2013 Lake Diefenbaker was 

characterized by high flow events from the South Saskatchewan River (Hudson and Vandergucht 

2015). The associated large loads of allochthonous organic carbon to Lake Diefenbaker during 

these events should have resulted in greater contributions of allochthonous carbon to consumer 

diets (Perga et al. 2005). However, the importance of allochthonous carbon to the diets of all fish 

species was still low when compared to the importance of autochthonous carbon during these 

years. This could be due in part to the slow turnover times of fish tissue (Hesslein et al. 1992), 

but is more likely an indicator that even during periods of high flow, allochthonous carbon is of 

little importance to the prey of these fish species throughout Lake Diefenbaker. 

3.5 Conclusions 

The diets of four common fish species within Lake Diefenbaker (i.e., Lake Whitefish, 

Northern Pike, Walleye and White Sucker) predominantly consist of carbon of autochthonous 

origin. Allochthonous carbon is of little importance to the diets of any of these fish species 
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throughout the reservoir. The only site with a noticeably higher contribution of allochthonous 

carbon to the diets of fish was site 1, located in the most upstream reaches of the reservoir in the 

riverine zone. Autochthonous carbon produced through benthic primary production was the most 

important source to the diets of Northern Pike, Walleye and White Sucker. Pelagically derived 

autochthonous carbon was the most important source for Lake Whitefish. The contribution of 

pelagic carbon to the diets of Lake Whitefish decreased with increasing distance downstream, 

but increased for Northern Pike and White Sucker. Walleye did not show a major increase or 

decrease in the contribution of pelagic carbon to their diets with the exception of site 1, which 

had the lowest contribution from this carbon source. Secondarily, it was predicted that pelagic 

carbon would be of higher importance than benthic carbon to all four fish species due to the 

physical properties (i.e., mean depth of 22.9 metres, high levels of shoreline erosion and 

fluctuating water levels) of Lake Diefenbaker. However, benthic carbon contributed more to the 

diets of Northern Pike, Walleye and White Sucker than pelagic carbon, but pelagic carbon 

contributed more to the diets of Lake Whitefish, just as predicted.  

Fish condition often corresponded to the proportion of the diet made up by each carbon 

source for most species. Lake Whitefish had lower Wr as well as some measures of fecundity in 

those fish with a higher contribution of benthic carbon and a corresponding decrease in the 

contribution of pelagic carbon to their diets. This was most commonly seen in fish from the 

downstream reaches of the reservoir. Northern Pike showed an increase in Wr and measures of 

fecundity with increasing contributions from pelagic carbon to their diets. This corresponded to a 

decrease in some measures of fecundity with increasing contributions from allochthonous 

carbon. Interestingly White Suckers showed a decrease in some measures of fecundity with 

increasing contributions from pelagically derived carbon, the opposite of what was seen in Lake 
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Whitefish and Northern Pike. Walleye Wr and some measures of fecundity were not related to 

the percent contribution of each carbon source to their diets. The importance of each carbon 

source as well as the quality of that carbon source to the diets of fish within Lake Diefenbaker 

varies between species, but it is clear that autochthonous carbon is of greater importance to the 

diets of all four fish species at all sites within the reservoir when compared to allochthonous 

carbon. 
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CHAPTER 4. General Conclusions 

4.1 Study Accomplishments 

This study set out to determine the importance of different carbon sources to the diets of 

Lake Whitefish, Northern Pike, Walleye and White Sucker within Lake Diefenbaker using stable 

isotope analysis. Carbon and nitrogen stable isotope values of aquaculture waste were different 

from both benthic and pelagic autochthonous primary production as well as allochthonous 

primary production. This allowed for the identification of fish that were subsidizing their diets 

with aquaculture waste and differentiating from those which were not. Differences in δ13C and 

δ15N values between the potential carbon sources allowed for the use of the stable isotope mixing 

models SIAR and SIARsolo to estimate the contribution of each carbon source to the diets of fish 

within Lake Diefenbaker. Resource use varied by species both spatially and temporally in some 

cases. Differences in resource use were often linked to differences in condition factors including 

relative weight and fecundity.  

4.2 Support of Lake Whitefish Diets through Aquaculture Waste 

Only Lake Whitefish that were caught in close proximity to the cages showed any 

contribution from aquaculture waste to their diets. Lake Whitefish caught immediately adjacent 

to the fish farm cages in fall 2013 and one other Lake Whitefish caught approximately 400 

metres from the cages were calculated to rely almost entirely on aquaculture waste. Three Lake 

Whitefish caught within Cactus Bay where the aquaculture facility is located showed some 

contribution from aquaculture waste, but were not yet specializing on it or had only recently 

begun to do so. 

  Those Lake Whitefish specializing on aquaculture waste were larger and had higher 

relative weights than either the aquaculture waste generalists or Lake Whitefish not utilizing this 
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diet subsidy. When examining the different measures of fecundity, both male and female 

aquaculture waste specialists had larger gonads and females had higher egg counts than those 

Lake Whitefish not utilizing aquaculture waste. However, once standardized for body weight, 

there were no differences between the groups for egg number per gram of body weight or GSI 

for either males or females. Any benefits to the Lake Whitefish population in Lake Diefenbaker 

from the addition of aquaculture waste appeared to be limited to the area immediately 

surrounding the cage culture facility. Lake Whitefish may act as vectors of dispersion, helping to 

distribute nutrients from the aquaculture facility to the surrounding area, but this dispersion also 

appears to be limited to the area immediately surrounding the fish farm. 

4.3 The Importance of Allochthonous and Autochthonous Support of Food Webs 

Allochthonous carbon sources were of little importance to the diets of Lake Whitefish, 

Northern Pike, Walleye and White Sucker throughout most of Lake Diefenbaker. The only site 

that had higher contributions of allochthonous carbon to the diets of the study species was the 

most upstream site located in the riverine zone of the reservoir near the Highway 4 Bridge. Lake 

Whitefish showed almost no contribution from allochthonous carbon at any sites including those 

in the riverine zone. Pelagic primary production was expected to be of highest importance to the 

diets of all four fish species studied due to the morphometry of the reservoir (i.e., the system was 

steep sided with little littoral habitat and a mean depth of 22.9 metres). However, pelagic primary 

production was the most important carbon source only for Lake Whitefish. Northern Pike, 

Walleye and White Sucker showed higher contributions from benthic carbon to their diets than 

from pelagic primary production. The importance of each carbon source to the diets of each fish 

species often differed between sites, with Lake Whitefish becoming increasingly more benthic 

and Northern Pike becoming increasingly more pelagic with distance downstream. No clear 
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trends were apparent for Walleye and White Sucker which both showed relatively stable 

contributions from benthic and pelagic carbon throughout sites located in the lacustrine zone of 

Lake Diefenbaker.  

Differences in resource use between members of the same species often corresponded to 

differences in fecundity or relative weight. Lake Whitefish had lower relative weight and some 

measures of fecundity with increasing contributions of benthic carbon to their diet. Northern Pike 

showed increases in fecundity and relative weight with increased contributions of pelagic carbon 

and decreased contributions from allochthonous carbon. On the other hand, White Sucker had 

decreases in some measures of fecundity with increased contributions from pelagic carbon and 

decreased contributions from benthic carbon. Walleye did not show any major differences in 

fecundity or relative weight with different contributions from each potential carbon source. 

4.4 Limitations of the Current Study and Potential Room for Improvement 

The complexity of most large reservoirs makes them interesting, but difficult to study. 

One of the limitations to both studies was the spatial extent to which sampling was carried out. In 

hindsight, more sites should have been located in close proximity to the fish farm cages (i.e., 

within 1000 metres) as Lake Whitefish specializing in aquaculture waste were not found further 

than 400 metres from the cages. If more sampling was conducted in this area of the reservoir, a 

greater number of fish feeding on aquaculture waste may have been encountered. However, the 

impact of the fish farm on the diets of Lake Whitefish in Lake Diefenbaker would likely still 

only have been noticeable in the area immediately surrounding the cages and would have 

remained a very minor contribution on the overall wild stock of the reservoir. As well, more sites 

should have been located within the riverine zone of the reservoir to test for allochthonous 

resource use in the area of the reservoir where allochthonous carbon was highest in abundance. 
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This would have allowed for a greater spatial representation of both of these resource subsidies 

to the food webs in Lake Diefenbaker.  

One of the biggest limitations of the current study was time. Time from when sampling 

was conducted until when stable isotope analysis results were received made for an exceptionally 

long study. Sampling fewer locations within the lacustrine zone of Lake Diefenbaker and 

focusing more on the riverine zone of the reservoir and in the area immediately around the fish 

farm cages would have allowed for a more efficient use of the time allocated to this study. A 

more rapid turnaround time of samples would have permitted adjustments to the study design 

following the first field season and allowed for a redistribution of sites in the riverine zone of the 

reservoir for better spatial coverage.  

Both 2012 and 2013 were flood years with higher than average inflow into Lake 

Diefenbaker (Hudson and Vandergucht 2015). It would have been beneficial to test 

allochthonous and autochthonous resource use in years with high flow as well as low flow to 

account for the variability seen in reservoirs. Unfortunately, inflow into Lake Diefenbaker cannot 

be controlled from year to year and is one of the variables which may play a key role in the 

variation of the contribution of allochthonous and autochthonous resources to the diets of 

consumers from year to year. If the study had included a year of low water, it is likely that 

allochthonous carbon would have been of even lower importance compared to the results from 

2012 and 2013. 

The addition of other fish species to this study may have helped to further characterize 

the importance of each carbon source. Other benthic feeding species, such as Lake Sturgeon, 

Burbot, or Shorthead Redhorse may have been utilizing aquaculture waste directly below the 

cage culture facility. Pelagic fish species, such as Cisco would likely have shown a higher 
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contribution from pelagic carbon, while species such as Goldeye, known to prefer turbid waters 

(Scott and Crossman 1973) may have had a higher contribution from allochthonous carbon than 

other species. However, all things considered, the four species studied were the only species 

encountered at all study sites. The other species had sporadic distributions and were only present 

at a few locations, or in the case of Burbot were not present in any of the gill net catches. If any 

other species were used in this study, different sampling methodology would have been 

necessary as they were not commonly encountered in the gill net catches in this study. 

4.5 Future Directions 

The recent expansion of Wild West Steelhead to another site located at Kadla Coulee, 

one of the sites used in this study, allows for a follow up study in this location. The data 

collected in this study could be used as baseline information before the fish farm cages were 

located in Kadla Coulee. In addition to this, it would be beneficial to have a larger degree of 

sampling located in close proximity (i.e., 1000 metres) to the aquaculture cages to address the 

limited spatial distribution for which Lake Whitefish subsidizing their diets on aquaculture waste 

were found. This would allow for a better estimation of the distribution of Lake Whitefish 

specializing on aquaculture waste and the potential area over which nutrients from the fish farm 

are dispersed by these fish. Another useful addition to this study could involve tagging Lake 

Whitefish around the aquaculture cages with acoustic telemetry tags in order to track their 

movements around the cage culture facility. This would provide additional information on the 

range of these aquaculture waste specialists within the reservoir and provide information on the 

dispersal of nutrients by these fish. 

The most important addition to this study would likely come from an increase in the 

number of sites located in the riverine zone, including sites upstream of the Highway 4 Bridge. 
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This would allow for a better estimation of allochthonous resource use in the area of the reservoir 

where allochthonous resources are plentiful. Allochthonous carbon was of little importance to all 

four fish species in the lacustrine regions of the reservoir, so any additional sampling should be 

focused on the upstream regions of Lake Diefenbaker. In addition, using a species commonly 

found throughout the riverine zone of the reservoir, such as Goldeye, could provide further 

insight into the use of allochthonous carbon by a fish species that specializes in the upstream 

reaches of the reservoir. 
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